WorldWideScience

Sample records for amphibian xenopus laevis

  1. Plasticity of lung development in the amphibian, Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Christopher S. Rose

    2013-10-01

    Contrary to previous studies, we found that Xenopus laevis tadpoles raised in normoxic water without access to air can routinely complete metamorphosis with lungs that are either severely stunted and uninflated or absent altogether. This is the first demonstration that lung development in a tetrapod can be inhibited by environmental factors and that a tetrapod that relies significantly on lung respiration under unstressed conditions can be raised to forego this function without adverse effects. This study compared lung development in untreated, air-deprived (AD and air-restored (AR tadpoles and frogs using whole mounts, histology, BrdU labeling of cell division and antibody staining of smooth muscle actin. We also examined the relationship of swimming and breathing behaviors to lung recovery in AR animals. Inhibition and recovery of lung development occurred at the stage of lung inflation. Lung recovery in AR tadpoles occurred at a predictable and rapid rate and correlated with changes in swimming and breathing behavior. It thus presents a new experimental model for investigating the role of mechanical forces in lung development. Lung recovery in AR frogs was unpredictable and did not correlate with behavioral changes. Its low frequency of occurrence could be attributed to developmental, physical and behavioral changes, the effects of which increase with size and age. Plasticity of lung inflation at tadpole stages and loss of plasticity at postmetamorphic stages offer new insights into the role of developmental plasticity in amphibian lung loss and life history evolution.

  2. Immune defenses against Batrachochytrium dendrobatidis, a fungus linked to global amphibian declines, in the South African clawed frog, Xenopus laevis.

    Science.gov (United States)

    Ramsey, Jeremy P; Reinert, Laura K; Harper, Laura K; Woodhams, Douglas C; Rollins-Smith, Louise A

    2010-09-01

    Batrachochytrium dendrobatidis is a chytrid fungus that causes the lethal skin disease chytridiomycosis in amphibians. It is regarded as an emerging infectious disease affecting diverse amphibian populations in many parts of the world. Because there are few model amphibian species for immunological studies, little is known about immune defenses against B. dendrobatidis. We show here that the South African clawed frog, Xenopus laevis, is a suitable model for investigating immunity to this pathogen. After an experimental exposure, a mild infection developed over 20 to 30 days and declined by 45 days postexposure. Either purified antimicrobial peptides or mixtures of peptides in the skin mucus inhibited B. dendrobatidis growth in vitro. Skin peptide secretion was maximally induced by injection of norepinephrine, and this treatment resulted in sustained skin peptide depletion and increased susceptibility to infection. Sublethal X-irradiation of frogs decreased leukocyte numbers in the spleen and resulted in greater susceptibility to infection. Immunization against B. dendrobatidis induced elevated pathogen-specific IgM and IgY serum antibodies. Mucus secretions from X. laevis previously exposed to B. dendrobatidis contained significant amounts of IgM, IgY, and IgX antibodies that bind to B. dendrobatidis. These data strongly suggest that both innate and adaptive immune defenses are involved in the resistance of X. laevis to lethal B. dendrobatidis infections.

  3. Electron microscopy of the amphibian model systems Xenopus laevis and Ambystoma mexicanum.

    Science.gov (United States)

    Kurth, Thomas; Berger, Jürgen; Wilsch-Bräuninger, Michaela; Kretschmar, Susanne; Cerny, Robert; Schwarz, Heinz; Löfberg, Jan; Piendl, Thomas; Epperlein, Hans H

    2010-01-01

    In this chapter we provide a set of different protocols for the ultrastructural analysis of amphibian (Xenopus, axolotl) tissues, mostly of embryonic origin. For Xenopus these methods include: (1) embedding gastrulae and tailbud embryos into Spurr's resin for TEM, (2) post-embedding labeling of methacrylate (K4M) and cryosections through adult and embryonic epithelia for correlative LM and TEM, and (3) pre-embedding labeling of embryonic tissues with silver-enhanced nanogold. For the axolotl (Ambystoma mexicanum) we present the following methods: (1) SEM of migrating neural crest (NC) cells; (2) SEM and TEM of extracellular matrix (ECM) material; (3) Cryo-SEM of extracellular matrix (ECM) material after cryoimmobilization; and (4) TEM analysis of hyaluronan using high-pressure freezing and HABP labeling. These methods provide exemplary approaches for a variety of questions in the field of amphibian development and regeneration, and focus on cell biological issues that can only be answered with fine structural imaging methods, such as electron microscopy.

  4. Characterisation and in vivo ecotoxicity evaluation of double-wall carbon nanotubes in larvae of the amphibian Xenopus laevis

    Energy Technology Data Exchange (ETDEWEB)

    Mouchet, Florence [Laboratoire d' Ecologie fonctionnelle - EcoLab, Universite Paul Sabatier, UMR UPS INPT CNRS 5245, Campus INP-ENSAT, Avenue de l' Agrobiopole, 31326 Auzeville-Tolosane (France)], E-mail: florence.mouchet@cict.fr; Landois, Perine [CIRIMAT, Universite Paul Sabatier, UMR UPS INPT CNRS 5085, Bat. 2R1, 118 Route de Narbonne 31062 Toulouse cedex 9 (France); Sarremejean, Elodie; Bernard, Guillaume [Laboratoire d' Ecologie fonctionnelle - EcoLab, Universite Paul Sabatier, UMR UPS INPT CNRS 5245, Campus INP-ENSAT, Avenue de l' Agrobiopole, 31326 Auzeville-Tolosane (France); Puech, Pascal [CEMES, 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse cedex 4 (France); Pinelli, Eric [Laboratoire d' Ecologie fonctionnelle - EcoLab, Universite Paul Sabatier, UMR UPS INPT CNRS 5245, Campus INP-ENSAT, Avenue de l' Agrobiopole, 31326 Auzeville-Tolosane (France); Flahaut, Emmanuel [CIRIMAT, Universite Paul Sabatier, UMR UPS INPT CNRS 5085, Bat. 2R1, 118 Route de Narbonne 31062 Toulouse cedex 9 (France); Gauthier, Laury [Laboratoire d' Ecologie fonctionnelle - EcoLab, Universite Paul Sabatier, UMR UPS INPT CNRS 5245, Campus INP-ENSAT, Avenue de l' Agrobiopole, 31326 Auzeville-Tolosane (France)

    2008-04-28

    Because of their outstanding properties, carbon nanotubes (CNTs) are being assessed for inclusion in many manufactured products. Due to their massive production and growing number of potential applications, the impact of CNTs on the environment must be taken into consideration. The present investigation evaluates the ecotoxicological potential of double-walled carbon nanotubes (DWNTs) in the amphibian larvae Xenopus laevis at a large range of concentrations in water (from 10 to 500 mg L{sup -1}). Acute toxicity and genotoxicity were analysed after 12 days of static exposure in laboratory conditions. Acute toxicity was evaluated according to the mortality and the growth of larvae. The genotoxic effects were analysed by scoring the micronucleated erythrocytes of the circulating blood of larvae according to the International Standard micronucleus assay. Moreover, histological preparations of larval intestine were prepared after 12 days of exposure for observation using optical and transmission electron microscopy (TEM). Finally, the intestine of an exposed larva was prepared on a slide for analyse by Raman imaging. The results showed no genotoxicity in erythrocytes of larvae exposed to DWNTs in water, but acute toxicity at every concentration of DWNTs studied which was related to physical blockage of the gills and/or digestive tract. Indeed, black masses suggesting the presence of CNTs were observed inside the intestine using optical microscopy and TEM, and confirmed by Raman spectroscopy analysis. Assessing the risks of CNTs requires better understanding, especially including mechanistic and environmental investigations.

  5. The Effects of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD on the Mortality and Growth of Two Amphibian Species (Xenopus laevis and Pseudacris triseriata

    Directory of Open Access Journals (Sweden)

    Alex Collier

    2008-12-01

    Full Text Available We observed a slight drop in the growth of Xenopus laevis and Pseudacris triseriata larvae following acute exposure (24-48 h during egg development to three concentrations of TCDD (0.3, 3.0, 30.0 μg/l. Our exposure protocol was modeled on a previous investigation that was designed to mimic the effects of maternal deposition of TCDD. The doses selected were consistent with known rates of maternal transfer between mother and egg using actual adult body burdens from contaminated habitats. Egg and embryonic mortality immediately following exposure increased only among 48 h X. laevis treatments. Control P. triseriata and X. laevis completed metamorphosis more quickly than TCDDtreated animals. The snout-vent length of recently transformed P. triseriata did not differ between treatments although controls were heavier than high-dosed animals. Likewise, the snout-vent length and weight of transformed X. laevis did not differ between control and TCDD treatments. These findings provide additional evidence that amphibians, including P. triseriata and X. laevis are relatively insensitive to acute exposure to TCDD during egg and embryonic development. Although the concentrations selected for this study were relatively high, they were not inconsistent with our current understanding of bioaccumulation via maternal transfer.

  6. Comparative evaluation of genotoxicity of captan in amphibian larvae (Xenopus laevis and Pleurodeles waltl) using the comet assay and the micronucleus test.

    Science.gov (United States)

    Mouchet, F; Gauthier, L; Mailhes, C; Ferrier, V; Devaux, A

    2006-06-01

    Captan (N-trichloromethylthio-4-cyclohexene-1,2-dicarboximide) is a fungicide used to inhibit the growth of many types of fungi on plants used as foodstuffs. The toxic and genotoxic potentials of captan were evaluated with the micronucleus test (MNT; AFNOR,2000) and the comet assay (CA) using amphibian larvae (Xenopus laevis and Pleurodeles waltl). Acute toxicity results showed that captan was toxic (1) to Xenopus larvae exposed to from 2 mg/L to 125 or 62.5 microg/L, depending on the nature of the water [reconstituted water containing mineral salts or mineral water (MW; Volvic, Danone, France)] and (2) to Pleurodeles exposed to from 2 mg/L to 125 microg/L in both types of water. The MNT results obtained in MW showed that captan (62.5 microg/L) was genotoxic to Xenopus but not genotoxic to Pleurodeles at all concentrations tested. CA established that the genotoxicity of captan to Xenopus and Pleurodeles larvae depended on the concentration, the exposure times, and the comet parameters (tail DNA, TEM, OTM, and TL). The CA and MNT results were compared for their ability to detect DNA damage at the concentrations of captan and the exposure times applied. CA showed captan to be genotoxic from the first day of exposure. In amphibians, CA appears to be a sensitive and suitable method for detecting genotoxicity such as that caused by captan.

  7. Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis

    NARCIS (Netherlands)

    Jenks, B.G.; Kidane, A.H.; Scheenen, W.J.; Roubos, E.W.

    2007-01-01

    Melanotrope cells of the amphibian pituitary pars intermedia produce alpha-melanophore-stimulating hormone (alpha-MSH), a peptide which causes skin darkening during adaptation to a dark background. The secretory activity of the melanotrope of the South African clawed toad Xenopus laevis is regulated

  8. Are Fish and Standardized FETAX Assays Protective Enough for Amphibians? A Case Study on Xenopus laevis Larvae Assay with Biologically Active Substances Present in Livestock Wastes

    Directory of Open Access Journals (Sweden)

    Federica Martini

    2012-01-01

    Full Text Available Biologically active substances could reach the aquatic compartment when livestock wastes are considered for recycling. Recently, the standardized FETAX assay has been questioned, and some researchers have considered that the risk assessment performed on fish could not be protective enough to cover amphibians. In the present study a Xenopus laevis acute assay was developed in order to compare the sensitivity of larvae relative to fish or FETAX assays; veterinary medicines (ivermectin, oxytetracycline, tetracycline, sulfamethoxazole, and trimethoprim and essential metals (zinc, copper, manganese, and selenium that may be found in livestock wastes were used for the larvae exposure. Lethal (LC50 and sublethal effects were estimated. Available data in both, fish and FETAX studies, were in general more protective than values found out in the current study, but not in all cases. Moreover, the presence of nonlethal effects, caused by ivermectin, zinc, and copper, suggested that several physiological mechanisms could be affected. Thus, this kind of effects should be deeply investigated. The results obtained in the present study could expand the information about micropollutants from livestock wastes on amphibians.

  9. Assessment of lead ecotoxicity in water using the amphibian larvae (Xenopus laevis) and preliminary study of its immobilization in meat and bone meal combustion residues.

    Science.gov (United States)

    Mouchet, F; Cren, S; Cunienq, C; Deydier, E; Guilet, R; Gauthier, L

    2007-04-01

    Lead (Pb) is a major chemical pollutant of the environment. It has been associated with human activities for the last 6000 years. Quite rightly, it remains a public health concern today. The present investigation evaluates the toxic potential of Pb in larvae of the toad Xenopus laevis after 12 days exposure in lab conditions. Acute toxicity, genotoxicity and Pb bioaccumulation were analyzed. The genotoxic effects were analyzed in the circulating blood from the levels of micronucleus induction according to the French standard micronucleus assay (AFNOR 2000 Association française de normalization. Norme NFT 90-325. Qualité de l'Eau. Evaluation de la génotoxicité au moyen de larves d'amphibien (Xenopus laevis, Pleurodeles waltl)). Lead bioaccumulation was analyzed in the liver of larvae at the end of exposure. Moreover, the toxic potential of lead, in aquatic media, was investigated in the presence of meat and bone meal combustion residues (MBMCR) known to be rich in phosphates and a potential immobiliser of lead. Previously, acute toxicity and genotoxicity of MBMCR alone were evaluated using Xenopus larvae. The results obtained in the present study demonstrated: (i) that lead is acutely toxic and genotoxic to amphibian larvae from 1 mg Pb/l and its bioaccumulation is significant in the liver of larvae from the lowest concentration of exposure (1 microg Pb/l), (ii) MBMCR were not acutely toxic nor genotoxic in Xenopus larvae, (iii) lead in presence of MBMCR induced inhibition or reduction of the toxic and genotoxic potential of lead in water at concentrations that do not exceed the capacity of MBMCR of Pb-binding (iv) Pb accumulation in larvae exposed to lead with MBMCR in water was lower than Pb-accumulation in larvae exposed to lead alone except at the concentration of 0.01 mg Pb/l suggesting complex mechanisms of MBMCR interaction in organisms. The results confirm the high toxicity and genotoxicity of lead in the aquatic compartment and suggest the potential

  10. Probing the Xenopus laevis inner ear transcriptome for biological function

    Directory of Open Access Journals (Sweden)

    Powers TuShun R

    2012-06-01

    Full Text Available Abstract Background The senses of hearing and balance depend upon mechanoreception, a process that originates in the inner ear and shares features across species. Amphibians have been widely used for physiological studies of mechanotransduction by sensory hair cells. In contrast, much less is known of the genetic basis of auditory and vestibular function in this class of animals. Among amphibians, the genus Xenopus is a well-characterized genetic and developmental model that offers unique opportunities for inner ear research because of the amphibian capacity for tissue and organ regeneration. For these reasons, we implemented a functional genomics approach as a means to undertake a large-scale analysis of the Xenopus laevis inner ear transcriptome through microarray analysis. Results Microarray analysis uncovered genes within the X. laevis inner ear transcriptome associated with inner ear function and impairment in other organisms, thereby supporting the inclusion of Xenopus in cross-species genetic studies of the inner ear. The use of gene categories (inner ear tissue; deafness; ion channels; ion transporters; transcription factors facilitated the assignment of functional significance to probe set identifiers. We enhanced the biological relevance of our microarray data by using a variety of curation approaches to increase the annotation of the Affymetrix GeneChip® Xenopus laevis Genome array. In addition, annotation analysis revealed the prevalence of inner ear transcripts represented by probe set identifiers that lack functional characterization. Conclusions We identified an abundance of targets for genetic analysis of auditory and vestibular function. The orthologues to human genes with known inner ear function and the highly expressed transcripts that lack annotation are particularly interesting candidates for future analyses. We used informatics approaches to impart biologically relevant information to the Xenopus inner ear transcriptome

  11. Facial Transplants in Xenopus laevis Embryos

    OpenAIRE

    Jacox, Laura A.; Dickinson, Amanda J.; Sive, Hazel

    2014-01-01

    Craniofacial birth defects occur in 1 out of every 700 live births, but etiology is rarely known due to limited understanding of craniofacial development. To identify where signaling pathways and tissues act during patterning of the developing face, a 'face transplant' technique has been developed in embryos of the frog Xenopus laevis. A region of presumptive facial tissue (the "Extreme Anterior Domain" (EAD)) is removed from a donor embryo at tailbud stage, and transplanted to a host embryo ...

  12. Expression and physiological regulation of BDNF receptors in the neuroendocrine melanotrope cell of Xenopus laevis

    NARCIS (Netherlands)

    Kidane, A.H.; Dooren, S.H. van; Roubos, E.W.; Jenks, B.G.

    2007-01-01

    Brain-derived neurotrophic factor (BDNF) and alpha-melanophore-stimulating hormone (alpha-MSH) are co-sequestered in secretory granules in melanotrope cells of the pituitary pars intermedia of the amphibian Xenopus laevis. alpha-MSH is responsible for pigment dispersion in dermal melanophores during

  13. Application of Xenopus laevis in ecotoxicology (I)--Introduction and quality control of laboratory animal

    Institute of Scientific and Technical Information of China (English)

    QIN Zhanfen; XU Xiaobai

    2006-01-01

    The aim of the series of papers is to discuss the application of Xenopus laevis, as model animal in biology, in ecotoxicology. X. laevis as model animal is wildly used in biological study and has provided a lot of relating data because of many advantages, such as living in water and being easily maintained, laying eggs in the whole year, and externally fertilizing and developing. Embryos and larvae of X. laevis like other amphibians are directly exposed in the aquatic environment and sensitive to pollutants. In addition, sex differentiation and sex organ development of X. laevis are sensitive to sex hormones and endocrine disruptors with sex hormone activities, which enable X. laevis to be used in studies on sex hormone disruption and reproductive toxicity of endocrine disruptors. Metamorphic development of X. laevis is very sensitive to thyroid hormones and thyroid disruptors, which enables X. laevis to be used for evaluating thyroid disruptors. Also, X. laevis ecotoxicology can be linked with amphibian population declines and malformed frog occurrence, being one of the hotspots in ecology. Thus, more and more laboratories have introduced X. laevis to ecotoxicological study. The quality of laboratory animals correlates with scientificity and reliability of results from animal experiments. It is especially important for toxicology. Quality control of X. laevis involving several factors such as water and food is discussed in this paper.

  14. Regulative development of Xenopus laevis in microgravity

    Science.gov (United States)

    Black, S.; Larkin, K.; Jacqmotte, N.; Wassersug, R.; Pronych, S.; Souza, K.

    To test whether gravity is required for normal amphibian development, Xenopus leavis females were induced to ovulate aboard the orbiting Space Shuttle. Eggs were fertilized in vitro, and although early embryonic stages showed some abnormalities, the embryos were able to regulate and produce nearly normal larvae. These results demonstrate for the first time that a vertebrate can ovulate in the virtual absence of gravity, and that the eggs can develop to a free-living stage.

  15. Vascular regression during amphibian metamorphosis--a scanning electron microscope study of vascular corrosion casts of the ventral velum in tadpoles of Xenopus laevis Daudin.

    Science.gov (United States)

    Aichhorn, H; Lametschwandtner, A

    1996-09-01

    We used scanning electron microscopy and vascular casting to study gross arterial supply, venous drainage, and microvascular patterns of the fully developed ventral velum of tadpoles of Xenopus laevis Daudin and analyzed changes of the velar vascular bed from prometamorphosis to metamorphic climax in a qualitative and quantitative manner. The multilayered, highly secretory ventral velum is supplied bilaterally by an anterior and a posterior velar artery, branches of the external carotid artery. Velar arterioles branch mainly dichotomously and form a flat two-dimensional capillary meshwork overlying the tops of filterplates I-IV. Thymopharyngeal veins, dorsal branches of the filter plates veins, and the internal jugular veins drain the velum toward the venous sinus of the heart. Location, architecture, and the drainage of the velar microvascular bed into the venous sinus make a significant contribution of the velar capillaries to gas exchange unlikely. Instead, velar capillaries rather serve the nutrition of the secretory epithelium. The overall morphology of velar vessels from prometamorphosis to metamorphic climax--deduced from vascular corrosion casts--points to atonic vessels with increased leakage indicated by adhering globular extravasations, and to obstructed or blind ending vessels evidenced by the tapered and/or rounded blind ending cast vessels. The significant decrease in the size of the ventral velum during the metamorphic cycle was paralleled by a miniaturization of the velar vascular bed. We hypothetize that this miniaturization occurs by a shortening and fusion of capillary mesh elements. Our findings in corrosion casts, particularly the miniaturization of the velar microvascular bed and the morphology of the regressing capillaries, point to profound morphologic and ultrastructural changes in velar vessels; a study on the fine structure of the microvascular bed of the ventral velum in metamorphic tadpoles is in progress.

  16. An age-dependent sensitivity of the roll-induced vestibuloocular reflex to hypergravity exposure of several days in an amphibian ( Xenopus laevis)

    Science.gov (United States)

    Sebastian, C. E.; Pfau, K.; Horn, E. R.

    In tadpoles of the Southern Clawed Toad ( Xenopus laevis), the effects of an exposure to hypergravity of several days duration on the development of the roll-induced static vestibuloocular reflex (rVOR) were investigated. Special attention was given to the onset of the 9 or 12 days lasting 3G-period during early life. First recordings of the rVOR characteristics for complete 360 ° rolls of the tadpoles were performed 24 hrs after the end of the 3G-period. The rVOR peak-to-peak amplitudes as well as the VOR-gain for a roll angle of 15 ° from 3G-and 1G-samples recorded at the 2nd and 3rd day after 3G-termination agreed for the youngest group, but were reduced by approx. 30% in the older tadpoles. Long-term observations lasting up to 8 weeks after termination of the 3G-period, demonstrated (i) an early retardation of the development, and (ii) a developmental acceleration in all groups so that after 2 weeks in the stage 6/9- and 33/36-samples and after 8 weeks in the stage 45-tadpoles, the rVOR-amplitude as well as the rVOR-gain for a 15 ° roll were at the same level in both the 3G- and the 1G-samples. The results support the existence of a sensitive period for the rVOR development, and additionally demonstrate the importance of the period of the first appearance of the rVOR for the development of adaptive properties of the underlying neuronal network. They also demonstrate the dominant efficiency of genetic programs in the functional development of the vestibular system. Methodological approaches are discussed which will be useful in the further description of the critical period. They include studies on the neuronogenesis and synaptic maturation within the vestibular pathways as well as on the fundamentals of buoyancy control during swimming. A modular but closed mini-system for experimental use is described which allows survival periods lasting many weeks and multiple types of treatments of developing aquatic animals in orbit, controlled automatically.

  17. Calpains expression during Xenopus laevis development.

    Science.gov (United States)

    Moudilou, E N; Mouterfi, N; Exbrayat, J-M; Brun, C

    2010-10-01

    Calpains are cytoplasmic proteases activated by calcium, implicated in cell differentiation and apoptosis. The best characterized enzymes are calpains 1-3. The aim of this work was to localize calpains 1-3 during the development of Xenopus laevis in order to clarify the function of these three proteases. For the first time, we detected the localization of the three proteases at the protein level between one-cell stage and adult age. Their expression was weak at early stages, then increased at tadpole stage and decreased through metamorphosis and adult life. The calpain's expression was maximal during the period characterized by the appearance of organs and modelling process. These observations suggest that calpains play a crucial role during development.

  18. Bioconcentration kinetics of PCBs in various parts of the lifecycle of the tadpoles Xenopus laevis

    Institute of Scientific and Technical Information of China (English)

    ZHAO Rong-biao; SUN Da-yu; FU Shan; WANG Xiao-fei; ZHAO Ru-song

    2007-01-01

    Polychlorinated biphenyls(PCBs)in Xenopus laevis have been reported only for a few congeners.Additionally,there is very little information on the abilitv of Xenopus laevis to bioconcentrate PCBs.To address these issues,the tadpole Xenopus laevis was exposed to Aroclorl254 mixtures in water at room temperature for 110 d followed by an additional 110 d of nonspiked PCBs in the water for the control group.During the whole process,bioconcentration factors(BCFs)of PCBs ranged from 1180 to 15670.For most PCB congeners.the highest and lowest bioconcentrations of the kinetic curves were found to be remarkably simultaneous,respectively.All 141 PCB congeners under the same experimental conditions had no linear correlation on the lgBCF versus lgKow relationship.The relationship between lgBCFs and lgKow followed a parabolic pattern indicative of selective bioconcentration,suggesting that the kinetic curves of the PCB congeners observed in the lifecycle of the tadpoles may be concentrated due to the amphibian special species and internal metabolism.In contrast,IgBCFs for PCBs were inversely related to lgKow,suggesting that a metabolism of the higher Kow'PCB congeners occurred.These results support the author'S conclusion that the tadpole Xenopus laevis plays major roles in the bioconcentration of PCB congeners,and demonstrated that the exposure kinetic curves of PCB congeners are complex.Besides the amphibian metamorphous development,the lifecycle of the tadpole Xenopus laevis also may be of importance in determining the bioconcentration of PCB congeners.

  19. Polystyrene nanoparticles affect Xenopus laevis development

    Energy Technology Data Exchange (ETDEWEB)

    Tussellino, Margherita; Ronca, Raffaele [University of Naples Federico II, Department of Biology (Italy); Formiggini, Fabio [Italian Institute of Technology, Center for Advanced Biomaterials for Health Care IIT@CRIB (Italy); Marco, Nadia De [University of Naples Federico II, Department of Biology (Italy); Fusco, Sabato; Netti, Paolo Antonio [Italian Institute of Technology, Center for Advanced Biomaterials for Health Care IIT@CRIB (Italy); Carotenuto, Rosa, E-mail: rosa.carotenuto@unina.it [University of Naples Federico II, Department of Biology (Italy)

    2015-02-15

    Exposing living organisms to nanoparticulates is potentially hazardous, in particular when it takes place during embryogenesis. In this investigation, we have studied the effects of 50-nm-uncoated polystyrene nanoparticles (PSNPs) as a model to investigate the suitability of their possible future employments. We have used the standardized Frog Embryo Teratogenesis Assay-Xenopus test during the early stages of larval development of Xenopus laevis, and we have employed either contact exposure or microinjections. We found that the embryos mortality rate is dose dependent and that the survived embryos showed high percentage of malformations. They display disorders in pigmentation distribution, malformations of the head, gut and tail, edema in the anterior ventral region, and a shorter body length compared with sibling untreated embryos. Moreover, these embryos grow more slowly than the untreated embryos. Expressions of the mesoderm markers, bra (T-box Brachyury gene), myod1 (myogenic differentiation1), and of neural crest marker sox9 (sex SRY (determining region Y-box 9) transcription factor sox9), are modified. Confocal microscopy showed that the nanoparticles are localized in the cytoplasm, in the nucleus, and in the periphery of the digestive gut cells. Our data suggest that PSNPs are toxic and show a potential teratogenic effect for Xenopus larvae. We hypothesize that these effects may be due either to the amount of NPs that penetrate into the cells and/or to the “corona” effect caused by the interaction of PSNPs with cytoplasm components. The three endpoints of our study, i.e., mortality, malformations, and growth inhibition, suggest that the tests we used may be a powerful and flexible bioassay in evaluating pollutants in aquatic embryos.

  20. Polystyrene nanoparticles affect Xenopus laevis development

    Science.gov (United States)

    Tussellino, Margherita; Ronca, Raffaele; Formiggini, Fabio; Marco, Nadia De; Fusco, Sabato; Netti, Paolo Antonio; Carotenuto, Rosa

    2015-02-01

    Exposing living organisms to nanoparticulates is potentially hazardous, in particular when it takes place during embryogenesis. In this investigation, we have studied the effects of 50-nm-uncoated polystyrene nanoparticles (PSNPs) as a model to investigate the suitability of their possible future employments. We have used the standardized Frog Embryo Teratogenesis Assay- Xenopus test during the early stages of larval development of Xenopus laevis, and we have employed either contact exposure or microinjections. We found that the embryos mortality rate is dose dependent and that the survived embryos showed high percentage of malformations. They display disorders in pigmentation distribution, malformations of the head, gut and tail, edema in the anterior ventral region, and a shorter body length compared with sibling untreated embryos. Moreover, these embryos grow more slowly than the untreated embryos. Expressions of the mesoderm markers, bra (T-box Brachyury gene), myod1 (myogenic differentiation1), and of neural crest marker sox9 (sex SRY (determining region Y-box 9) transcription factor sox9), are modified. Confocal microscopy showed that the nanoparticles are localized in the cytoplasm, in the nucleus, and in the periphery of the digestive gut cells. Our data suggest that PSNPs are toxic and show a potential teratogenic effect for Xenopus larvae. We hypothesize that these effects may be due either to the amount of NPs that penetrate into the cells and/or to the "corona" effect caused by the interaction of PSNPs with cytoplasm components. The three endpoints of our study, i.e., mortality, malformations, and growth inhibition, suggest that the tests we used may be a powerful and flexible bioassay in evaluating pollutants in aquatic embryos.

  1. Development of the Larval Amphibian Growth and Development Assay: effects of chronic 4-tert-octylphenol or 17β-trenbolone exposure in Xenopus laevis from embryo to juvenile.

    Science.gov (United States)

    Haselman, Jonathan T; Kosian, Patricia A; Korte, Joseph J; Olmstead, Allen W; Iguchi, Taisen; Johnson, Rodney D; Degitz, Sigmund J

    2016-12-01

    The Larval Amphibian Growth and Development Assay (LAGDA) is a globally harmonized test guideline developed by the U.S. Environmental Protection Agency in collaboration with Japan's Ministry of the Environment. The LAGDA was designed to evaluate apical effects of chronic chemical exposure on growth, thyroid-mediated amphibian metamorphosis and reproductive development. During the validation phase, two well-characterized endocrine-disrupting chemicals were tested to evaluate the performance of the initial assay design: xenoestrogen 4-tert-octylphenol (tOP) and xenoandrogen 17β-trenbolone (TB). Xenopus laevis embryos were exposed, in flow-through conditions, to tOP (nominal concentrations: 0.0, 6.25, 12.5, 25 and 50 µg l(-1) ) or TB (nominal concentrations: 0.0, 12.5, 25, 50 and 100 ng l(-1) ) until 8 weeks post-metamorphosis, at which time growth measurements were taken, and histopathology assessments were made of the gonads, reproductive ducts, liver and kidneys. There were no effects on growth in either study and no signs of overt toxicity, sex reversal or gonad dysgenesis. Exposure to tOP caused a treatment-related decrease in circulating thyroxine and an increase in thyroid follicular cell hypertrophy and hyperplasia (25 and 50 µg l(-1) ) during metamorphosis. Müllerian duct development was affected after exposure to both chemicals; tOP exposure caused dose-dependent maturation of oviducts in both male and female frogs, whereas TB exposure caused accelerated Müllerian duct regression in males and complete regression in >50% of the females in the 100 ng l(-1) treatment. Based on these results, the LAGDA performed adequately to evaluate apical effects of chronic exposure to two endocrine-active compounds and is the first standardized amphibian multiple life stage toxicity test to date. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  2. Development of the larval amphibian growth and development assay: Effects of benzophenone-2 exposure in Xenopus laevis from embryo to juvenile

    Science.gov (United States)

    The Larval Amphibian Growth and Development Assay (LAGDA) is a globally harmonized chemical testing guideline developed by the U.S. Environmental Protection Agency in collaboration with Japan’s Ministry of Environment to support risk assessment. The assay is employed as a ...

  3. Xenopus laevis - A success story in biological research in Space

    Science.gov (United States)

    Horn, E.

    A feature of sensory, neuronal and motor systems is the existence of a critical period during their development. Environmental modifications, in particular stimulus depri-vation, during this period of life affects development in a long-term manner. For gravity sensory systems, space flights offer the only opportunity for deprivation conditions. Studies in the amphibian Xenopus laevis presented the most complete picture. The presentation demonstrates the importance of Xenopus laevis as an ex-perimental model animal in the past and even for future research in Space. Studies are presented which range from fertilization in Space and anatomical studies during early development under weightlessness up to post-flight studies on the anatomy of the peripheral sense organ, the spinal motor activity and behavior. Gravity depriva-tion induces anatomical as well as behavioral and neurophysiological modifications, which are normalized either during flight (thickening of the blastocoel roof) or after reentry in 1g-conditions (swimming and reflex behavior, spinal motor activity). The physiological changes can be explained by mechanisms of physiological adaptation. However, the studies also revealed stages which were insensitive to gravity depriva-tion; they point to the existence of a critical period. Observations on morphological mal-formations are described which are reversible after termination of microgravity and which are linked to a depression of vestibular reflex behavior. They might be caused by a competition between dorsalization and ventralization inducing growth factors. This observation offers the possibility for a genetic approach in finding ba-sics for microgravity effects on the development of Xenopus, and in a general frame, on the development of vertebrates including men. At the present stage of research, it remains open whether adaptive processes during exposure to altered gravity or the existence of a critical period in vestibular development are responsible for

  4. Effective RNAi-mediated β2-microglobulin loss of function by transgenesis in Xenopus laevis.

    Science.gov (United States)

    Nedelkovska, Hristina; Edholm, Eva-Stina; Haynes, Nikesha; Robert, Jacques

    2013-03-15

    To impair MHC class I (class I) function in vivo in the amphibian Xenopus, we developed an effective reverse genetic loss of function approach by combining I-SceI meganuclease-mediated transgenesis with RNAi technology. We generated transgenic outbred X. laevis and isogenetic laevis/gilli cloned lines with stably silenced expression of β2-microglobulin (b2m) critical for class I function. Transgenic F1 frogs exhibited decreased surface class I expression on erythrocytes and lymphocytes, decreased frequency of peripheral CD8 T cells and impaired CD8 T cell-mediated skin allograft rejection. Additionally, b2m knockdown increased susceptibility to viral infection of F0 transgenic larvae. This loss of function strategy offers new avenues for studying ontogeny of immunity and other developmental processes in Xenopus.

  5. Effective RNAi-mediated β2-microglobulin loss of function by transgenesis in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Hristina Nedelkovska

    2013-01-01

    To impair MHC class I (class I function in vivo in the amphibian Xenopus, we developed an effective reverse genetic loss of function approach by combining I-SceI meganuclease-mediated transgenesis with RNAi technology. We generated transgenic outbred X. laevis and isogenetic laevis/gilli cloned lines with stably silenced expression of β2-microglobulin (b2m critical for class I function. Transgenic F1 frogs exhibited decreased surface class I expression on erythrocytes and lymphocytes, decreased frequency of peripheral CD8 T cells and impaired CD8 T cell-mediated skin allograft rejection. Additionally, b2m knockdown increased susceptibility to viral infection of F0 transgenic larvae. This loss of function strategy offers new avenues for studying ontogeny of immunity and other developmental processes in Xenopus.

  6. Biophysics of underwater hearing in the clawed frog, Xenopus laevis

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, J; Elepfandt, A

    1995-01-01

    Anesthetized clawed frogs (Xenopus laevis) were stimulated with underwater sound and the tympanic disk vibrations were studied using laser vibrometry. The tympanic disk velocities ranged from 0.01 to 0.5 mm/s (at a sound pressure of 2 Pa) in the frequency range of 0.4-4 kHz and were 20-40 dB higher...

  7. Characterization of histone genes isolated from Xenopus laevis and Xenopus tropicalis genomic libraries.

    Science.gov (United States)

    Ruberti, I; Fragapane, P; Pierandrei-Amaldi, P; Beccari, E; Amaldi, F; Bozzoni, I

    1982-12-11

    Using a cDNA clone for the histone H3 we have isolated, from two genomic libraries of Xenopus laevis and Xenopus tropicalis, clones containing four different histone gene clusters. The structural organization of X. laevis histone genes has been determined by restriction mapping, Southern blot hybridization and translation of the mRNAs which hybridize to the various restriction fragments. The arrangement of the histone genes in X. tropicalis has been determined by Southern analysis using X. laevis genomic fragments, containing individual genes, as probes. Histone genes are clustered in the genome of X. laevis and X. tropicalis and, compared to invertebrates, show a higher organization heterogeneity as demonstrated by structural analysis of the four genomic clones. In fact, the order of the genes within individual clusters is not conserved.

  8. Pattern and morphogenesis of presumptive superficial mesoderm in two closely related species, Xenopus laevis and Xenopus tropicalis.

    Science.gov (United States)

    Shook, David R; Majer, Christina; Keller, Ray

    2004-06-01

    The mesoderm, comprising the tissues that come to lie entirely in the deep layer, originates in both the superficial epithelial and the deep mesenchymal layers of the early amphibian embryo. Here, we characterize the mechanisms by which the superficial component of the presumptive mesoderm ingresses into the underlying deep mesenchymal layer in Xenopus tropicalis and extend our previous findings for Xenopus laevis. Fate mapping the superficial epithelium of pregastrula stage embryos demonstrates ingression of surface cells into both paraxial and axial mesoderm (including hypochord), in similar patterns and amounts in both species. Superficial presumptive notochord lies medially, flanked by presumptive hypochord and both overlie the deep region of the presumptive notochord. These tissues are flanked laterally by superficial presumptive somitic mesoderm, the anterior tip of which also appears to overlay the presumptive deep notochord. Time-lapse recordings show that presumptive somitic and notochordal cells move out of the roof of the gastrocoel and into the deep region during neurulation, whereas hypochordal cells ingress after neurulation. Scanning electron microscopy at the stage and position where ingression occurs suggests that superficial presumptive somitic cells in X. laevis ingress into the deep region as bottle cells whereas those in X. tropicalis ingress by "relamination" (e.g., [Dev. Biol. 174 (1996) 92]). In both species, the superficially derived presumptive somitic cells come to lie in the medial region of the presumptive somites during neurulation. By the early tailbud stages, these cells lie at the horizontal myoseptum of the somites. The morphogenic pathway of these cells strongly resembles that of the primary slow muscle pioneer cells of the zebrafish. We present a revised fate map of Xenopus, and we discuss the conservation of superficial mesoderm within amphibians and across the chordates and its implications for the role of this tissue in

  9. Xenopus laevis a success story of biological research in space

    Science.gov (United States)

    Horn, Eberhard R.

    2006-01-01

    The clawed toad Xenopus laevis is a common experimental animal used in many disciplines of life sciences, such as integrative, developmental and molecular biology or experimental medicine. Since 30 years, Xenopus is used in biological research in space. Important milestones were the years 1975, when Xenopus embryos flew for the first time on the Russian space station Salut-4 and 1994, when Xenopus eggs were successfully fertilized for the first time in space during the Japanese Spacelab mission STS-47 and developed in microgravity to vital tadpoles. Most Xenopus studies were related to embryogenesis and development. Observations during and after altered gravity revealed changes such as the thickening of the blastocoel roof, the dorsalization of the tail, and modifications of vestibular reflexes, fictive and freely swimming. Many changes were reversible even during microgravity exposure. Studies about the vestibuloocular reflex or synapse formation revealed an age-related sensitivity to altered gravity. Xenopus offers useful tools for studies about microgravity effects on living systems. Its oocyte is a suitable model to study ion channel function in space; the dorsalization model can be used to analyse growth factor sensibilities. Hardware for life support of adults, tadpoles and embryos (cf. SUPPLY unit in combination with miniaquaria) as well as for controlled experiments in space are prerequisites for an extension of research with Xenopus. The application aspect is based on the fact that fundamental research per se brings benefit to man.

  10. Cloning of an origin of DNA replication of Xenopus laevis

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, S.; Taylor, J.H.

    1980-09-01

    DNA fragments of Xenopus laevis, the African frog, were cloned in the EcoRI site of the Eschrichia coli plasmid pACYC189 and tested for ability to initiate and complete replication of the recombinant plasmid when injected into unfertilized eggs of X. laevis. After measurement of the (/sup 3/H)-thymidine incorporation per egg for a number of recombinant plasmids, pSW14 and pSW9, which respectively contain a small segment (550 base pairs) and several kilobases of frog DNA, were selected for more extensive analysis. In spite of the small size of th segment in pSW14, it incorporates in 2 hr at least 3 times as much labeled thymidine as either pSW9 or the vector alone. To determine the number of replications of pSW14, a novel method was employed. The results showed that about 50% of the labeled, supercoiled DNA recovered from eggs after 4 hr was sensitive to EcoRI digestion, which indicates that most of the DNA that incorporated (/sup 3/H)thymidine had replicated twice during the 4 hr in the unfertilized eggs of X. laevis. We conclude the pSW14 has a functional origin in the Xenopus DNA segment.

  11. Skin wound healing in different aged Xenopus laevis.

    Science.gov (United States)

    Bertolotti, Evelina; Malagoli, Davide; Franchini, Antonella

    2013-08-01

    Xenopus froglets can perfectly heal skin wounds without scarring. To explore whether this capacity is maintained as development proceeds, we examined the cellular responses during the repair of skin injury in 8- and 15-month-old Xenopus laevis. The morphology and sequence of healing phases (i.e., inflammation, new tissue formation, and remodeling) were independent of age, while the timing was delayed in older frogs. At the beginning of postinjury, wound re-epithelialization occurred in form of a thin epithelium followed by a multilayered epidermis containing cells with apoptotic patterns and keratinocytes stained by anti-inducible nitric oxide synthase (iNOS) antibody. The inflammatory response, early activated by recruitment of blood cells immunoreactive to anti-tumor necrosis factor (TNF)-α, iNOS, transforming growth factor (TGF)-β1, and matrix metalloproteinase (MMP)-9, persisted over time. The dermis repaired by a granulation tissue with extensive angiogenesis, inflammatory cells, fibroblasts, and anti-α-SMA positive myofibroblasts. As the healing progressed, wounded areas displayed vascular regression, decrease in cellularity, and rearrangement of provisional matrix. The epidermis restored to a prewound morphology while granulation tissue was replaced by a fibrous tissue in a scar-like pattern. The quantitative PCR analysis demonstrated an up-regulated expression of Xenopus suppressor of cytokine signaling 3 (XSOCS-3) and Xenopus transforming growth factor-β2 (XTGF-β2) soon after wounding and peak levels were detected when granulation tissue was well developed with a large number of inflammatory cells. The findings indicate that X. laevis skin wound healing occurred by a combination of regeneration (in epidermis) and repair (in dermis) and, in contrast to froglet scarless wound healing, the growth to a more mature adult stage is associated with a decrease in regenerative capacity with scar-like tissue formation.

  12. Effects of agricultural pesticides on the immune system of Xenopus laevis and Rana pipiens

    Energy Technology Data Exchange (ETDEWEB)

    Christin, M.S.; Menard, L.; Gendron, A.D.; Ruby, S.; Cyr, D.; Marcogliese, D.J.; Rollins-Smith, L.; Fournier, M

    2004-03-30

    Over the last 30 years, there have been mass declines in diverse geographic locations among amphibian populations. Multiple causes have been suggested to explain this decline. Among these, environmental pollution is gaining attention. Indeed, some chemicals of environmental concern are known to alter the immune system. Given that amphibians are frequently exposed to agricultural pesticides, it is possible that these pollutants alter their immune system and render them more susceptible to different pathogens. In this study, we exposed two frog species, Xenopus laevis and Rana pipiens, for a short period of time to a mixture of pesticides (atrazine, metribuzine, endosulfan, lindane, aldicarb and dieldrin) representative in terms of composition and concentrations to what it is found in the environment of the southwest region of the province of Quebec. The pesticides were known to be present in surface water of many tributaries of the St. Lawrence River (Quebec, Canada). Our results demonstrate that the mixture of pesticides could alter the cellularity and phagocytic activity of X. laevis and the lymphocyte proliferation of R. pipiens. Taken together, these results indicate that agricultural pesticides can alter some aspects of the immune response in frogs and could contribute to their global decline by rendering them more susceptible to certain infections.

  13. Swimming kinematics and respiratory behaviour of Xenopus laevis larvae raised in altered gravity

    Science.gov (United States)

    Fejtek, M.; Souza, K.; Neff, A.; Wassersug, R.

    1998-01-01

    We examined the respiratory behaviours and swimming kinematics of Xenopus laevis tadpoles hatched in microgravity (Space Shuttle), simulated microgravity (clinostat) and hypergravity (3 g centrifuge). All observations were made in the normal 1 g environment. Previous research has shown that X. laevis raised in microgravity exhibit abnormalities in their lungs and vestibular system upon return to 1 g. The tadpoles raised in true microgravity exhibited a significantly lower tailbeat frequency than onboard 1 g centrifuge controls on the day of landing (day0), but this behaviour normalized within 9 days. The two groups did not differ significantly in buccal pumping rates. Altered buoyancy in the space-flight microgravity tadpoles was indicated by an increased swimming angle on the day after landing (day1). Tadpoles raised in simulated microgravity differed to a greater extent in swimming behaviours from their 1 g controls. The tadpoles raised in hypergravity showed no substantive effects on the development of swimming or respiratory behaviours, except swimming angle. Together, these results show that microgravity has a transient effect on the development of locomotion in X. laevis tadpoles, most notably on swimming angle, indicative of stunted lung development. On the basis of the behaviours we studied, there is no indication of neuromuscular retardation in amphibians associated with embryogenesis in microgravity.

  14. Mapping neurogenesis onset in the optic tectum of Xenopus laevis

    Science.gov (United States)

    Herrgen, Leah; Akerman, Colin J.

    2016-01-01

    Neural progenitor cells have a central role in the development and evolution of the vertebrate brain. During early brain development, neural progenitors first expand their numbers through repeated proliferative divisions and then begin to exhibit neurogenic divisions. The transparent and experimentally accessible optic tectum of Xenopus laevis is an excellent model system for the study of the cell biology of neurogenesis, but the precise spatial and temporal relationship between proliferative and neurogenic progenitors has not been explored in this system. Here we construct a spatial map of proliferative and neurogenic divisions through lineage tracing of individual progenitors and their progeny. We find a clear spatial separation of proliferative and neurogenic progenitors along the anterior-posterior axis of the optic tectum, with proliferative progenitors located more posteriorly and neurogenic progenitors located more anteriorly. Since individual progenitors are repositioned toward more anterior locations as they mature, this spatial separation likely reflects an increased restriction in the proliferative potential of individual progenitors. We then examined whether the transition from proliferative to neurogenic behavior correlates with cellular properties that have previously been implicated in regulating neurogenesis onset. Our data reveal that the transition from proliferation to neurogenesis is associated with a small change in cleavage plane orientation and a more pronounced change in cell cycle kinetics in a manner reminiscent of observations from mammalian systems. Our findings highlight the potential to use the optic tectum of Xenopus laevis as an accessible system for the study of the cell biology of neurogenesis. PMID:27358457

  15. Cutaneous acariasis in the African clawed frog (Xenopus laevis).

    Science.gov (United States)

    Ford, Timothy R; Dillehay, Dirck L; Mook, Deborah M

    2004-12-01

    Increased mortality was observed in a single colony of 50 Xenopus laevis. The frogs were used as oocyte donors in developmental biology studies. Necropsy findings included dermal erythema and petechiation consistent with red leg syndrome; dermal ulcerations and white, filamentous growths on the skin were consistent with Saprolegnia sp. Microscopic evaluation of the skin and fungus revealed an astigmatid mite similar to those of the genus Rhizoglyphus. The mite was also found in the water and the biological filter of the tanks housing the frogs. This mite is considered not to be a parasite of X. laevis; instead, it feeds off moss, fungi, and detritus. Subsequent evaluation of the sphagnum moss used for shipping the frogs from the supplier revealed the same mite in the moss. Our hypothesis is that the mite was introduced into the tank with the shipment of new frogs in sphagnum moss. The mites lived within the biological filter, and were only found after the growth of Saprolegnia sp. attracted the mites to the frogs. Laboratory animal care and veterinary personnel should consider non-pathogenic species of mites in the differential diagnosis of acariasis in Xenopus frogs.

  16. Rhodopsin Forms Nanodomains in Rod Outer Segment Disc Membranes of the Cold-Blooded Xenopus laevis.

    Directory of Open Access Journals (Sweden)

    Tatini Rakshit

    Full Text Available Rhodopsin forms nanoscale domains (i.e., nanodomains in rod outer segment disc membranes from mammalian species. It is unclear whether rhodopsin arranges in a similar manner in amphibian species, which are often used as a model system to investigate the function of rhodopsin and the structure of photoreceptor cells. Moreover, since samples are routinely prepared at low temperatures, it is unclear whether lipid phase separation effects in the membrane promote the observed nanodomain organization of rhodopsin from mammalian species. Rod outer segment disc membranes prepared from the cold-blooded frog Xenopus laevis were investigated by atomic force microscopy to visualize the organization of rhodopsin in the absence of lipid phase separation effects. Atomic force microscopy revealed that rhodopsin nanodomains form similarly as that observed previously in mammalian membranes. Formation of nanodomains in ROS disc membranes is independent of lipid phase separation and conserved among vertebrates.

  17. Benchmarking Transcriptome Quantification Methods for Duplicated Genes in Xenopus laevis.

    Science.gov (United States)

    Kwon, Taejoon

    2015-01-01

    Xenopus is an important model organism for the study of genome duplication in vertebrates. With the full genome sequence of diploid Xenopus tropicalis available, and that of allotetraploid X. laevis close to being finished, we will be able to expand our understanding of how duplicated genes have evolved. One of the key features in the study of the functional consequence of gene duplication is how their expression patterns vary across different conditions, and RNA-seq seems to have enough resolution to discriminate the expression of highly similar duplicated genes. However, most of the current RNA-seq analysis methods were not designed to study samples with duplicate genes such as in X. laevis. Here, various computational methods to quantify gene expression in RNA-seq data were evaluated, using 2 independent X. laevis egg RNA-seq datasets and 2 reference databases for duplicated genes. The fact that RNA-seq can measure expression levels of similar duplicated genes was confirmed, but long paired-end reads are more informative than short single-end reads to discriminate duplicated genes. Also, it was found that bowtie, one of the most popular mappers in RNA-seq analysis, reports significantly smaller numbers of unique hits according to a mapping quality score compared to other mappers tested (BWA, GSNAP, STAR). Calculated from unique hits based on a mapping quality score, both expression levels and the expression ratio of duplicated genes can be estimated consistently among biological replicates, demonstrating that this method can successfully discriminate the expression of each copy of a duplicated gene pair. This comprehensive evaluation will be a useful guideline for studying gene expression of organisms with genome duplication using RNA-seq in the future.

  18. Negative effects of low dose atrazine exposure on the development of effective immunity to FV3 in Xenopus laevis.

    Science.gov (United States)

    Sifkarovski, Jason; Grayfer, Leon; De Jesús Andino, Francisco; Lawrence, B Paige; Robert, Jacques

    2014-11-01

    The recent dramatic increase of the prevalence and range of amphibian host species and populations infected by ranaviruses such as Frog Virus 3 (FV3) raises concerns about the efficacies of amphibian antiviral immunity. In this context, the potential negative effects of water contaminants such as the herbicide atrazine, at environmentally relevant levels, on host antiviral immunity remains unclear. Here we describe the use of the amphibian Xenopus laevis as an ecotoxicology platform to elucidate the consequences of exposure to ecologically relevant doses of atrazine on amphibian antiviral immunity. X. laevis were exposed at tadpole and adult stages as well as during metamorphosis to atrazine (range from 0.1 to 10.0 ppb) prior to infection with FV3. Quantitative analysis of gene expression revealed significant changes in the pro-inflammatory cytokine, TNF-α and the antiviral type I IFN gene in response to FV3 infection. This was most marked in tadpoles that were exposed to atrazine at doses as low 0.1 ppb. Furthermore, atrazine exposure significantly compromised tadpole survival following FV3 infections. In contrast, acute atrazine exposure of mature adult frogs did not induce detectable effects on anti-FV3 immunity, but adults that were exposed to atrazine during metamorphosis exhibited pronounced defects in FV3-induced TNF-α gene expression responses and slight diminution in type I IFN gene induction. Thus, even at low doses, atrazine exposure culminates in impaired development of amphibian antiviral defenses.

  19. Basolateral Cl- uptake mechanisms in Xenopus laevis lung epithelium.

    Science.gov (United States)

    Berger, Jens; Hardt, Martin; Clauss, Wolfgang G; Fronius, Martin

    2010-07-01

    A thin liquid layer covers the lungs of air-breathing vertebrates. Active ion transport processes via the pulmonary epithelial cells regulate the maintenance of this layer. This study focuses on basolateral Cl(-) uptake mechanisms in native lungs of Xenopus laevis and the involvement of the Na(+)/K(+)/2 Cl(-) cotransporter (NKCC) and HCO(3)(-)/Cl(-) anion exchanger (AE), in particular. Western blot analysis and immunofluorescence staining revealed the expression of the NKCC protein in the Xenopus lung. Ussing chamber experiments demonstrated that the NKCC inhibitors (bumetanide and furosemide) were ineffective at blocking the cotransporter under basal conditions, as well as under pharmacologically stimulated Cl(-)-secreting conditions (forskolin and chlorzoxazone application). However, functional evidence for the NKCC was detected by generating a transepithelial Cl(-) gradient. Further, we were interested in the involvement of the HCO(3)(-)/Cl(-) anion exchanger to transepithelial ion transport processes. Basolateral application of DIDS, an inhibitor of the AE, resulted in a significantly decreased the short-circuit current (I(SC)). The effect of DIDS was diminished by acetazolamide and reduced by increased external HCO(3)(-) concentrations. Cl(-) secretion induced by forskolin was decreased by DIDS, but this effect was abolished in the presence of HCO(3)(-). These experiments indicate that the AE at least partially contributes to Cl(-) secretion. Taken together, our data show that in Xenopus lung epithelia, the AE, rather than the NKCC, is involved in basolateral Cl(-) uptake, which contrasts with the common model for Cl(-) secretion in pulmonary epithelia.

  20. Islet-1 Immunoreactivity in the Developing Retina of Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Guadalupe Álvarez-Hernán

    2013-01-01

    Full Text Available The LIM-homeodomain transcription factor Islet1 (Isl1 has been widely used as a marker of neuronal differentiation in the developing visual system of different classes of vertebrates, including mammals, birds, reptiles, and fish. In the present study, we analyzed the spatial and temporal distribution of Isl1-immunoreactive cells during Xenopus laevis retinal development and its relation to the formation of the retinal layers, and in combination with different markers of cell differentiation. The earliest Isl1 expression appeared at St29-30 in the cell nuclei of sparse differentiating neuroblasts located in the vitreal surface of the undifferentiated retina. At St35-36, abundant Isl1-positive cells accumulated at the vitreal surface of the neuroepithelium. As development proceeded and through the postmetamorphic juveniles, Isl1 expression was identified in subpopulations of ganglion cells and in subsets of amacrine, bipolar, and horizontal cells. These data together suggest a possible role for Isl1 in the early differentiation and maintenance of different retinal cell types, and Isl1 can serve as a specific molecular marker for the study of retinal cell specification in X. laevis.

  1. Biochemical response to exposure to six textile dyes in early developmental stages of Xenopus laevis.

    Science.gov (United States)

    Güngördü, Abbas; Birhanli, Ayse; Ozmen, Murat

    2013-01-01

    The present study was undertaken to determine the toxic effect of a lethal concentration of six different commercially used textile dyes on the 46th stage of Xenopus laevis tadpoles. The tadpoles were exposed to Astrazon Red FBL, Astrazon Blue FGRL, Remazol Red RR, Remazol Turquoise Blue G-A, Cibacron Red FN-3G, and Cibacron Blue FN-R for 168 h in static test conditions, and thus, 168-h median lethal concentrations (LC(50)s) of each dye were determined to be 0.35, 0.13, 112, 7, 359, and 15.8 mg/L, respectively. Also, to evaluate the sublethal effects of each dye, tadpoles were exposed to different concentrations of dyes (with respect to 168-h LC(50)s) for 24 h. The alteration of selected enzyme activities was tested. For this aim, glutathione S-transferase (GST), carboxylesterase, and lactate dehydrogenase (LDH) were assayed. After dye exposure, the GST induction or inhibition and LDH induction indicated some possible mechanisms of oxidative stress and deterioration in aerobic respiration processes induced by the tested dyes. Findings of the study suggest that selected biomarker enzymes are useful in understanding the toxic mechanisms of these dyes in X. laevis tadpoles as early warning indicators. Therefore, these selected biomarkers may evaluate the effect of environmental factors, such as textile dye effluents and other industrial pollutants, on amphibians in biomonitoring studies.

  2. Protein pattern of Xenopus laevis embryos grown in simulated microgravity.

    Science.gov (United States)

    Tedeschi, Gabriella; Pagliato, Lara; Negroni, Manuela; Montorfano, Gigliola; Corsetto, Paola; Nonnis, Simona; Negri, Armando; Rizzo, Angela Maria

    2011-03-01

    Numerous studies indicate that microgravity affects cell growth and differentiation in many living organisms, and various processes are modified when cells are placed under conditions of weightlessness. However, until now, there is no coherent explanation for these observations, and little information is available concerning the biomolecules involved. Our aim has been to investigate the protein pattern of Xenopus laevis embryos exposed to simulated microgravity during the first 6 days of development. A proteomic approach was applied to compare the protein profiles of Xenopus embryos developed in simulated microgravity and in normal conditions. Attention was focused on embryos that do not present visible malformations in order to investigate if weightlessness has effects at protein level in the absence of macroscopic alterations. The data presented strongly suggest that some of the major components of the cytoskeleton vary in such conditions. Three major findings are described for the first time: (i) the expression of important factors involved in the organization and stabilization of the cytoskeleton, such as Arp (actin-related protein) 3 and stathmin, is heavily affected by microgravity; (ii) the amount of the two major cytoskeletal proteins, actin and tubulin, do not change in such conditions; however, (iii) an increase in the tyrosine nitration of these two proteins can be detected. The data suggest that, in the absence of morphological alterations, simulated microgravity affects the intracellular movement system of cells by altering cytoskeletal proteins heavily involved in the regulation of cytoskeleton remodelling.

  3. A transgenic Xenopus laevis reporter model to study lymphangiogenesis

    Directory of Open Access Journals (Sweden)

    Annelii Ny

    2013-07-01

    The importance of the blood- and lymph vessels in the transport of essential fluids, gases, macromolecules and cells in vertebrates warrants optimal insight into the regulatory mechanisms underlying their development. Mouse and zebrafish models of lymphatic development are instrumental for gene discovery and gene characterization but are challenging for certain aspects, e.g. no direct accessibility of embryonic stages, or non-straightforward visualization of early lymphatic sprouting, respectively. We previously demonstrated that the Xenopus tadpole is a valuable model to study the processes of lymphatic development. However, a fluorescent Xenopus reporter directly visualizing the lymph vessels was lacking. Here, we created transgenic Tg(Flk1:eGFP Xenopus laevis reporter lines expressing green fluorescent protein (GFP in blood- and lymph vessels driven by the Flk1 (VEGFR-2 promoter. We also established a high-resolution fluorescent dye labeling technique selectively and persistently visualizing lymphatic endothelial cells, even in conditions of impaired lymph vessel formation or drainage function upon silencing of lymphangiogenic factors. Next, we applied the model to dynamically document blood and lymphatic sprouting and patterning of the initially avascular tadpole fin. Furthermore, quantifiable models of spontaneous or induced lymphatic sprouting into the tadpole fin were developed for dynamic analysis of loss-of-function and gain-of-function phenotypes using pharmacologic or genetic manipulation. Together with angiography and lymphangiography to assess functionality, Tg(Flk1:eGFP reporter tadpoles readily allowed detailed lymphatic phenotyping of live tadpoles by fluorescence microscopy. The Tg(Flk1:eGFP tadpoles represent a versatile model for functional lymph/angiogenomics and drug screening.

  4. Developmental Toxicity of Drinking Water Disinfection By-Products to Embryos of the African Clawed Frog (Xenopus laevis)

    Science.gov (United States)

    2005-06-10

    developmental toxicity tests with embryos of the South African clawed frog Xenopus laevis used to evaluate four individual DWDB; bromodichloromethane...SUBJECT TERMS Developmental toxicity; FETAX; water disinfection by-products; frogs ; Xenopus laevis; embryo malformations; embryo mortality...Disinfection By-Products to Embryos of the African Clawed Frog (Xenopus laevis) L. M. Brennan,1 M. W. Toussaint,1 D. M. Kumsher,1 W. E. Dennis,’ A. B

  5. Dose-Dependent Early Life Stage Toxicities in Xenopus laevis Exposed In Ovo to Selenium.

    Science.gov (United States)

    Massé, Anita J; Muscatello, Jorgelina R; Janz, David M

    2015-11-17

    Selenium (Se) is a developmental toxicant in oviparous vertebrates. The adverse reproductive effects of Se toxicity have been predominantly investigated in fishes and birds with only a few studies focusing on amphibians. The objective of this study was to determine tissue-based toxicity thresholds for early life stage Se toxicities in Xenopus laevis as a consequence of in ovo exposure through maternal transfer of dietary Se. Following a 68-day dietary exposure to food augmented with l-selenomethionine (SeMet) at measured concentrations of 0.7 (control), 10.9, 30.4, or 94.2 μg Se/g dry mass (d.m.), adult female X. laevis were bred with untreated males, and resulting embryos were incubated until 5 days postfertilization (dpf). The measured Se concentrations in eggs were 1.6, 10.8, 28.1, and 81.7 μg Se/g d.m., respectively. No biologically significant effects were observed on fertilization success, hatchability, or mortality in offspring. Frequency and severity of morphological abnormalities were significantly greater in 5 dpf tadpoles from the highest exposure group when compared to the control, with eye lens abnormalities being the most prominent of all abnormalities. The estimated EC10 value for frequency of total early life stage abnormalities was 44.9 μg Se/g egg d.m., which suggests that this amphibian species is less sensitive to in ovo Se exposure than most of the fish species studied to date.

  6. Budgett's frog (Lepidobatrachus laevis): A new amphibian embryo for developmental biology.

    Science.gov (United States)

    Amin, Nirav M; Womble, Mandy; Ledon-Rettig, Cristina; Hull, Margaret; Dickinson, Amanda; Nascone-Yoder, Nanette

    2015-09-15

    The large size and rapid development of amphibian embryos has facilitated ground-breaking discoveries in developmental biology. Here, we describe the embryogenesis of the Budgett's frog (Lepidobatrachus laevis), an unusual species with eggs that are over twice the diameter of laboratory Xenopus, and embryos that can tolerate higher temperatures to develop into a tadpole four times more rapidly. In addition to detailing their early development, we demonstrate that, like Xenopus, these embryos are amenable to explant culture assays and can express exogenous transcripts in a tissue-specific manner. Moreover, the steep developmental trajectory and large scale of Lepidobatrachus make it exceptionally well-suited for morphogenesis research. For example, the developing organs of the Budgett's frog are massive compared to those of most model species, and are composed of larger individual cells, thereby affording increased subcellular resolution of early vertebrate organogenesis. Furthermore, we found that complete limb regeneration, which typically requires months to achieve in most vertebrate models, occurs in a matter of days in the Budgett's tadpole, which substantially accelerates the pace of experimentation. Thus, the unusual combination of the greater size and speed of the Budgett's frog model provides inimitable advantages for developmental studies-and a novel inroad to address the mechanisms of spatiotemporal scaling during evolution.

  7. Sequencing and analysis of 10967 full-length cDNA clones from Xenopus laevis and Xenopus tropicalis

    Energy Technology Data Exchange (ETDEWEB)

    Morin, R D; Chang, E; Petrescu, A; Liao, N; Kirkpatrick, R; Griffith, M; Butterfield, Y; Stott, J; Barber, S; Babakaiff, R; Matsuo, C; Wong, D; Yang, G; Smailus, D; Brown-John, M; Mayo, M; Beland, J; Gibson, S; Olson, T; Tsai, M; Featherstone, R; Chand, S; Siddiqui, A; Jang, W; Lee, E; Klein, S; Prange, C; Myers, R M; Green, E D; Wagner, L; Gerhard, D; Marra, M; Jones, S M; Holt, R

    2005-10-31

    Sequencing of full-insert clones from full-length cDNA libraries from both Xenopus laevis and Xenopus tropicalis has been ongoing as part of the Xenopus Gene Collection initiative. Here we present an analysis of 10967 clones (8049 from X. laevis and 2918 from X. tropicalis). The clone set contains 2013 orthologs between X. laevis and X. tropicalis as well as 1795 paralog pairs within X. laevis. 1199 are in-paralogs, believed to have resulted from an allotetraploidization event approximately 30 million years ago, and the remaining 546 are likely out-paralogs that have resulted from more ancient gene duplications, prior to the divergence between the two species. We do not detect any evidence for positive selection by the Yang and Nielsen maximum likelihood method of approximating d{sub N}/d{sub S}. However, d{sub N}/d{sub S} for X. laevis in-paralogs is elevated relative to X. tropicalis orthologs. This difference is highly significant, and indicates an overall relaxation of selective pressures on duplicated gene pairs. Within both groups of paralogs, we found evidence of subfunctionalization, manifested as differential expression of paralogous genes among tissues, as measured by EST information from public resources. We have observed, as expected, a higher instance of subfunctionalization in out-paralogs relative to in-paralogs.

  8. Effect of methoxychlor on various life stages of Xenopus laevis.

    Science.gov (United States)

    Fort, Douglas J; Guiney, Patrick D; Weeks, John A; Thomas, John H; Rogers, Robert L; Noll, Andra M; Spaulding, Clinton D

    2004-10-01

    The toxicological effects of the organochlorine pesticide methoxychlor were evaluated at various life stages of the South African clawed frog, Xenopus laevis, in an effort to determine stage-specific sensitivity. A battery of four separate assays, including a short-term (4-day) early embryo-larval assay (FETAX) (NF stages 8-46 [Nieuwkoop and Faber, 1994]), 30-day hind limb development assay (NF stages 8-54), 18-day metamorphic climax assay (NF stages 58-66), and 30-day adult reproduction assay were performed. Test concentrations for the FETAX, hind limb development, metamorphic climax, and reproductive assays ranged from 0.0001-1.0 mg/l, 0.0001-0.1 mg/l, 0.0001-0.1 mg/l, and 0.001-0.1 mg/l, respectively. Results from the short-term embryo-larval assay indicated that increased embryo-lethality, malformation, and growth inhibition were not induced at methoxychlor (maximum soluble concentration). The 30-day hind limb development studies indicated methoxychlor exposure >/=0.01 mg/l delayed hind limb digit differentiation. Follicular hyperplasia of the thyroid glands was noted in specimens exposed to 0.1 mg/l methoxychlor. Results from the 18-day metamorphic climax assay indicated that methoxychlor inhibited the rate of tail resorption in a concentration-dependent manner. Whole body tissue triiodothyronine (T(3)) profiles showed a reduced and delayed surge during climax compared to controls. For the reproductive assessment, adult female X. laevis were super-ovulated and both female and male were then exposed to varying concentrations of methoxychlor. A concentration-dependent reduction in ovary weight and the number of viable oocytes was observed. In exposed male specimens, a concentration-dependent reduction in testis weight and sperm count was found. Methoxychlor was found to accumulate in the ovary, and to a lesser extent in the testis. Based on breeding studies in which exposed females were bred with control males and exposed males bred with control females, the

  9. Homoeologous chromosomes of Xenopus laevis are highly conserved after whole-genome duplication.

    Science.gov (United States)

    Uno, Y; Nishida, C; Takagi, C; Ueno, N; Matsuda, Y

    2013-11-01

    It has been suggested that whole-genome duplication (WGD) occurred twice during the evolutionary process of vertebrates around 450 and 500 million years ago, which contributed to an increase in the genomic and phenotypic complexities of vertebrates. However, little is still known about the evolutionary process of homoeologous chromosomes after WGD because many duplicate genes have been lost. Therefore, Xenopus laevis (2n=36) and Xenopus (Silurana) tropicalis (2n=20) are good animal models for studying the process of genomic and chromosomal reorganization after WGD because X. laevis is an allotetraploid species that resulted from WGD after the interspecific hybridization of diploid species closely related to X. tropicalis. We constructed a comparative cytogenetic map of X. laevis using 60 complimentary DNA clones that covered the entire chromosomal regions of 10 pairs of X. tropicalis chromosomes. We consequently identified all nine homoeologous chromosome groups of X. laevis. Hybridization signals on two pairs of X. laevis homoeologous chromosomes were detected for 50 of 60 (83%) genes, and the genetic linkage is highly conserved between X. tropicalis and X. laevis chromosomes except for one fusion and one inversion and also between X. laevis homoeologous chromosomes except for two inversions. These results indicate that the loss of duplicated genes and inter- and/or intrachromosomal rearrangements occurred much less frequently in this lineage, suggesting that these events were not essential for diploidization of the allotetraploid genome in X. laevis after WGD.

  10. Development of the larval amphibian growth and development assay: Effects of chronic 4-tert-octylphenol or 17ß-trenbolone exposure in Xenopus laevis from embryo to juvenile

    Science.gov (United States)

    The Larval Amphibian Growth and Development Assay (LAGDA) is a Tier II test guideline being developed by the US Environmental Protection Agency under the Endocrine Disruptor Screening Program. The LAGDA was designed to evaluate effects of chronic chemical exposure on growth, thy...

  11. Atrazine and malathion shorten the maturation process of Xenopus laevis oocytes and have an adverse effect on early embryo development.

    Science.gov (United States)

    Ji, Qichao; Lee, Jessica; Lin, Yu-Huey; Jing, Guihua; Tsai, L Jillianne; Chen, Andrew; Hetrick, Lindsay; Jocoy, Dylan; Liu, Junjun

    2016-04-01

    The use of pesticides has a negative impact on the environment. Amphibians have long been regarded as indicator species to pollutants due to their permeable skin and sensitivity to the environment. Studies have shown that population declines of some amphibians are directly linked with exposure to agricultural contaminants. In the past, much of the studies have focused on the toxic effect of contaminants on larvae (tadpoles), juvenile and adult frogs. However, due to the nature of their life cycle, amphibian eggs and early embryos are especially susceptible to the contaminants, and any alteration during the early reproductive stages may have a profound effect on the health and population of amphibians. In this study, we analyzed the effect of atrazine and malathion, two commonly used pesticides, on Xenopus laevis oocyte maturation and early embryogenesis. We found that both atrazine and malathion shortened the frog oocyte maturation process and resulted in reduced Emi2 levels at cytostatic factor-mediated metaphase arrest, and a high level of Emi2 is critically important for oocyte maturation. Furthermore, frog embryos fertilized under the influence of atrazine and/or malathion displayed a higher rate of abnormal division that eventually led to embryo death during early embryogenesis.

  12. A Tunable Silk Hydrogel Device for Studying Limb Regeneration in Adult Xenopus Laevis.

    Directory of Open Access Journals (Sweden)

    Anne Golding

    Full Text Available In certain amphibian models limb regeneration can be promoted or inhibited by the local wound bed environment. This research introduces a device that can be utilized as an experimental tool to characterize the conditions that promotes limb regeneration in the adult frog (Xenopus laevis model. In particular, this device was designed to manipulate the local wound environment via a hydrogel insert. Initial characterization of the hydrogel insert revealed that this interaction had a significant influence on mechanical forces to the animal, due to the contraction of the hydrogel. The material and mechanical properties of the hydrogel insert were a factor in the device design in relation to the comfort of the animal and the ability to effectively manipulate the amputation site. The tunable features of the hydrogel were important in determining the pro-regenerative effects in limb regeneration, which was measured by cartilage spike formation and quantified by micro-computed tomography. The hydrogel insert was a factor in the observed morphological outcomes following amputation. Future work will focus on characterizing and optimizing the device's observed capability to manipulate biological pathways that are essential for limb regeneration. However, the present work provides a framework for the role of a hydrogel in the device and a path forward for more systematic studies.

  13. Distinct expression profiles of transcriptional coactivators for thyroid hormone receptors during Xenopus laevis metamorphosis

    Institute of Scientific and Technical Information of China (English)

    BINDU D PAUL; YUN-BO SHI

    2003-01-01

    The biological effects of thyroid hormone(T3)are mediated by the thyroid hormone receptor(TR).Amphibian metamorphosis is one of the most dramatic processes that are dependent on T3.T3 regulates a series of orchestrated developmental changes,which ultimately result in the conversion of an aquatic herbivorous tadpole to a terrestrial carnivorous frog.T3 is presumed to bind to TRs,which in turn recruit coactivators,leading to gene activation.The best-studied coactivators belong to the p 160 or SRC family.Members of this family include SRC 1/NCoA- 1,SRC2/TIF2/GRIP 1,and SRC3/pCIP/ACTR/AIB- 1/RAC-3/TRAM- 1.These SRCs interact directly with liganded TR and function as adapter molecules to recruit other coactivators such as p300/CBP.Here,we studied the expression patterns of these coactivators during various stages of development.Amongst the coactivators cloned in Xenopus laevis,SRC3 was found to be dramatically upregulated during natural and T3-induced metamorphosis,and SRC2 and p300 are expressed throughout postembryonic development with little change in their expression levels.These results support the view that these coactivators participate in gene regulation by TR during metamorphosis.

  14. Effects of low dose endosulfan exposure on brain neurotransmitter levels in the African clawed frog Xenopus laevis.

    Science.gov (United States)

    Preud'homme, Valérie; Milla, Sylvain; Gillardin, Virginie; De Pauw, Edwin; Denoël, Mathieu; Kestemont, Patrick

    2015-02-01

    Understanding the impact of pesticides in amphibians is of growing concern to assess the causes of their decline. Among pesticides, endosulfan belongs to one of the potential sources of danger because of its wide use and known effects, particularly neurotoxic, on a variety of organisms. However, the effect of endosulfan was not yet evaluated on amphibians at levels encompassing simultaneously brain neurotransmitters and behavioural endpoints. In this context, tadpoles of the African clawed frog Xenopus laevis were submitted to four treatments during 27 d: one control, one ethanol control, and two low environmental concentrations of endosulfan (0.1 and 1 μg L(-1)). Endosulfan induced a significant increase of brain serotonin level at both concentrations and a significant increase of brain dopamine and GABA levels at the lower exposure but acetylcholinesterase activity was not modified by the treatment. The gene coding for the GABA transporter 1 was up-regulated in endosulfan contaminated tadpoles while the expression of other genes coding for the neurotransmitter receptors or for the enzymes involved in their metabolic pathways was not significantly modified by endosulfan exposure. Endosulfan also affected foraging, and locomotion in links with the results of the physiological assays, but no effects were seen on growth. These results show that low environmental concentrations of endosulfan can induce adverse responses in X. laevis tadpoles. At a broader perspective, this suggests that more research using and linking multiple markers should be used to understand the complex mode of action of pollutants.

  15. Regional expression of Pax7 in the brain of Xenopus laevis during embryonic and larval development

    Directory of Open Access Journals (Sweden)

    Sandra eBandín

    2013-12-01

    Full Text Available Pax7 is a member of the highly conserved Pax gene family that is expressed in restricted zones of the central nervous system during development, being involved in early brain regionalization and the maintenance of the regional identity. Using sensitive immunohistochemical techniques we have analyzed the spatiotemporal pattern of Pax7 expression in the brain of the anuran amphibian Xenopus laevis, during development. Pax7 expression was first detected in early embryos in the basal plate of prosomere 3, roof and alar plates of prosomere 1 and mesencephalon, and the alar plate of rhombomere 1. As development proceeded, Pax7 cells were observed in the hypothalamus close to the catecholaminergic population of the mammillary region. In the diencephalon, Pax7 was intensely expressed in a portion of the basal plate of prosomere 3, in the roof plate and in scattered cells of the thalamus in prosomere 2, throughout the roof of prosomere 1, and in the commissural and juxtacommissural domains of the pretectum. In the mesencephalon, Pax7 cells were localized in the optic tectum and, to a lesser extent, in the torus semicircularis. The rostral portion of the alar part of rhombomere 1, including the ventricular layer of the cerebellum, expressed Pax7 and, gradually, some of these dorsal cells were observed to populate ventrally the interpeduncular nucleus and the isthmus (rhombomere 0. Additionally, Pax7 positive cells were found in the ventricular zone of the ventral part of the alar plate along the rhombencephalon and the spinal cord. The findings show that the strongly conserved features of Pax7 expression through development shared by amniote vertebrates are also present in the anamniote amphibians as a common characteristic of the brain organization of tetrapods.

  16. Developmental segregation of spinal networks driving axial- and hindlimb-based locomotion in metamorphosing Xenopus laevis.

    Science.gov (United States)

    Combes, D; Merrywest, S D; Simmers, J; Sillar, K T

    2004-08-15

    Amphibian metamorphosis includes a complete reorganization of an organism's locomotory system from axial-based swimming in larvae to limbed propulsion in the young adult. At critical stages during this behavioural switch, larval and adult motor systems operate in the same animal, commensurate with a gradual and dynamic reconfiguration of spinal locomotor circuitry. To study this plasticity, we have developed isolated preparations of the spinal cord and brainstem from pre- to post-metamorphic stages of the amphibian Xenopus laevis, in which spinal motor output patterns expressed spontaneously or in the presence of NMDA correlate with locomotor behaviour in the freely swimming animal. Extracellular ventral root recordings along the spinal cord of pre-metamorphic tadpoles revealed motor output corresponding to larval axial swimming, whereas postmetamorphic animals expressed motor patterns appropriate for bilaterally synchronous hindlimb flexion-extension kicks. However, in vitro recordings from metamorphic climax stages, with the tail and the limbs both functional, revealed two distinct motor patterns that could occur either independently or simultaneously, albeit at very different frequencies. Activity at 0.5-1 Hz in lumbar ventral roots corresponded to bipedal extension-flexion cycles, while the second, faster pattern (2-5 Hz) recorded from tail ventral roots corresponded to larval-like swimming. These data indicate that at intermediate stages during metamorphosis separate networks, one responsible for segmentally organized axial locomotion and another for more localized appendicular rhythm generation, coexist in the spinal cord and remain functional after isolation in vitro. These preparations now afford the opportunity to explore the cellular basis of locomotor network plasticity and reconfiguration necessary for behavioural changes during development.

  17. Early temporal effects of three thyroid hormone synthesis inhibitors in Xenopus laevis.

    Science.gov (United States)

    Tietge, Joseph E; Butterworth, Brian C; Haselman, Jonathan T; Holcombe, Gary W; Hornung, Michael W; Korte, Joseph J; Kosian, Patricia A; Wolfe, Marilyn; Degitz, Sigmund J

    2010-06-01

    Thyroid axis disruption is an important consideration when evaluating risks associated with chemicals. Bioassay methods that include thyroid-related endpoints have been developed in a variety of species, including amphibians, whose metamorphic development is thyroid hormone (TH)-dependent. Inhibition of TH synthesis in these species leads to developmental delay, and assays designed to capture these effects take several weeks to complete. In an effort to develop a shorter term approach, the early responses of various endpoints were evaluated in Xenopus laevis throughout 8d of exposure to three TH synthesis inhibitors: methimazole (100mg/L), 6-propylthiouracil (6-PTU) (20mg/L), and perchlorate (4 mg/L). Endpoints included thyroid gland histology and cell numbers, circulating TH concentrations, and thyroidal TH and associated iodo-compounds. Thyroidal 3,5-diodo-L-tyrosine (DIT) and thyroxine (T4) were significantly reduced from day 2 onward by all three chemicals, while 3-monoiodo-L-tyrosine (MIT) was significantly reduced by methimazole and perchlorate, but not by 6-PTU. These reductions were the earliest indicators of TH synthesis inhibition. Histological effects were apparent on day 4 and became more exaggerated through day 8. However, reductions in circulating T4 and increases in thyroid gland cell numbers were not apparent until day 6. Reductions of thyroidal MIT, DIT, and T4 and circulating T4 are indicative of inhibitory effects of the chemicals on TH synthesis. Changes in thyroid histology and cell number represent compensatory effects modulated by circulating TSH. These observations establish a basis for the development of short term amphibian-based methods to evaluate thyroid axis effects using a suite of diagnostic endpoints.

  18. A New Nomenclature of Xenopus laevis Chromosomes Based on the Phylogenetic Relationship to Silurana/Xenopus tropicalis.

    Science.gov (United States)

    Matsuda, Yoichi; Uno, Yoshinobu; Kondo, Mariko; Gilchrist, Michael J; Zorn, Aaron M; Rokhsar, Daniel S; Schmid, Michael; Taira, Masanori

    2015-01-01

    Xenopus laevis (XLA) is an allotetraploid species which appears to have undergone whole-genome duplication after the interspecific hybridization of 2 diploid species closely related to Silurana/Xenopus tropicalis (XTR). Previous cDNA fluorescence in situ hybridization (FISH) experiments have identified 9 sets of homoeologous chromosomes in X. laevis, in which 8 sets correspond to chromosomes 1-8 of X. tropicalis (XTR1-XTR8), and the last set corresponds to a fusion of XTR9 and XTR10. In addition, recent X. laevis genome sequencing and BAC-FISH experiments support this physiological relationship and show no gross chromosome translocation in the X. laevis karyotype. Therefore, for the benefit of both comparative cytogenetics and genome research, we here propose a new chromosome nomenclature for X. laevis based on the phylogenetic relationship and chromosome length, i.e. XLA1L, XLA1S, XLA2L, XLA2S, and so on, in which the numbering of XLA chromosomes corresponds to that in X. tropicalis and the postfixes 'L' and 'S' stand for 'long' and 'short' chromosomes in the homoeologous pairs, which can be distinguished cytologically by their relative size. The last chromosome set is named XLA9L and XLA9S, in which XLA9 corresponds to both XTR9 and XTR10, and hence, to emphasize the phylogenetic relationship to X. tropicalis, XLA9_10L and XLA9_10S are also used as synonyms.

  19. Neural transduction in Xenopus laevis lateral line system.

    Science.gov (United States)

    Strelioff, D; Honrubia, V

    1978-03-01

    1. The process of neural excitation in hair cell systems was studied in an in vitro preparation of the Xenopus laevis (African clawed toad) lateral line organ. A specially designed stimulus chamber was used to apply accurately controlled pressure, water movement, or electrical stimuli, and to record the neural responses of the two afferent fibers innervating each organ or stitch. The objective of the study was to determine the characteristics of the neural responses to these stimuli, and thus gain insight into the transduction process. 2. A sustained deflection of the hair cell cilia due to a constant flow of water past the capula resulted in a maintained change in the mean firing rate (MFR) of the afferent fibers. The data also demonstrated that the neural response was proportional to the velocity of the water flow and indicated that both deflection and movement of the cilia were the effective physiological stimuli for this hair cell system. 3. The preparations responded to sinusoidal water movements (past the capula) over the entire frequency range of the stimulus chamber, 0.1-130 Hz, and were most sensitive between 10 and 40 Hz. The variation of the MFR and the percent modulation indicated that the average dynamic range of each organ was 23.5 dB. 4. The thresholds, if any, for sustained pressure changes and for sinusoidal pressure variations in the absence of water movements were very high. Due to the limitations of the stimulus chamber it was not possible to generate pressure stimuli of sufficient magnitude to elicit a neural response without also generating suprathreshold water-movement stimuli. Sustained pressures had no detectable effect on the neural response to water-movement stimuli. 5. The preparations were very sensitive to electrical potentials applied across the toad skin on which the hair cells were located. Potentials which made the ciliated surfaces of the hair cells positive with respect to their bases increased the MFR of the fibers, whereas

  20. Regulation of cyclin E stability in Xenopus laevis embryos

    Science.gov (United States)

    Brandt-(Webb), Yekaterina

    Cyclin-Cdk complexes positively regulate cell cycle progression. Cyclins are regulatory subunits that bind to and activate cyclin-dependent kinases or Cdks. Cyclin E associates with Cdk2 to mediate G1/S phase transition of the cell cycle. Cyclin E is overexpressed in breast, lung, skin, gastrointestinal, cervical, and ovarian cancers. Its overexpression correlates with poor patient prognosis and is involved in the etiology of breast cancer. We have been studying how this protein is downregulated during development in order to determine if these mechanisms are disrupted during tumorigenesis, leading to its overexpression. Using Xenopus laevis embryos as a model, we have shown previously that during the first 12 embryonic cell cycles Cyclin E levels remain constant yet Cdk2 activity oscillates twice per cell cycle. Cyclin E is abruptly destabilized by an undefined mechanism after the 12th cell cycle, which corresponds to the midblastula transition (MBT). Based on work our work and work by others, we have hypothesized that differential phosphorylation and a change in localization result in Cyclin E degradation by the 26S proteasome at the MBT. To test this, we generated a series of point mutations in conserved threonine/serine residues implicated in degradation of human Cyclin E. Using Western blot analysis, we show that similarly to human Cyclin E, mutation of these residues to unphosphorylatable alanine stabilizes Cyclin E past the MBT when they are expressed in vivo. Cyclin E localization was studied by immunofluorescence analysis of endogenous and exogenous protein in pre-MBT, MBT, and post-MBT embryos. In addition, we developed a novel method of conjugating recombinant His6-tagged Cyclin E to fluorescent (CdSe)ZnS nanoparticles (quantum dots) capped with dihydrolipoic acid. Confocal microscopy was used to visualize His6Cyclin E-quantum dot complexes inside embryo cells in real time. We found that re-localization at the MBT from the cytoplasm to the nucleus

  1. Twitch and tetanic tension during culture of mature xenopus laevis single muscle fibres

    NARCIS (Netherlands)

    Jaspers, R.T.; Feenstra, H.M.; Lee-de Groot, M.B.E.; Huijing, P.A.; Laarse, W.J.

    2001-01-01

    Investigation of the mechanisms of muscle adaptation requires independent control of the regulating factors. The aim of the present study was to develop a serum-free medium to culture mature single muscle fibres of Xenopus laevis. As an example, we used the culture system to study adaptation of twit

  2. Translational control of Connexin 30 and 41 m RNAs in Xenopus laevis embryos

    NARCIS (Netherlands)

    Meijer, Hedda Arlinde

    2001-01-01

    During the early stages of Xenopus laevis development no transcription occurs. Many cell divisions take place in about 9 h, a process orchestrated by maternal mRNAs. When the embryo contains about thousand cells, zygotic transcription initiates during the so-called mid blastula transition or MBT. Be

  3. Comparative effects of DDT, allethrin, dieldrin and aldrin-transdiol on sense organs of Xenopus laevis

    NARCIS (Netherlands)

    Akkermans, L.M.A.; Bercken, J. van den; Versluijs-Helder, M.

    1975-01-01

    The effects of DDT, allethrin, dieldrin and aldrin-transdiol were studied in two different sense organs of Xenopus laevis; the lateral-line organ and the cutaneous touch receptors. DDT and allethrin produced pronounced repetitive firing in both preparations. Dieldrin and aldrin-transdiol, on the oth

  4. Optimized transgenesis in Xenopus laevis/gilli isogenetic clones for immunological studies.

    Science.gov (United States)

    Nedelkovska, Hristina; Robert, Jacques

    2012-03-01

    Xenopus laevis provides a unique animal model, alternative to mouse, to study immunology. Even though, several methodologies have been developed for the generation of transgenic Xenopus, to date none have been adapted for the X. laevis/gilli (LG) isogenetic clones that are essential for immunological studies. Since LG clones are generated via gynogenesis, transgenic methods using transgene integration into the sperm nuclei are not suited. Therefore, we have tested three alternative methods for LG transgenesis: the phiC31 integrase, the Sleeping Beauty transposase, and the I-SceI meganuclease. All three techniques produced transgenic LG clones; however, the I-SceI meganuclease was most effective. It resulted in high transgenesis efficiency (35-50%), bright nonmosaic GFP expression as well as stable germline transmission with 100% of the progeny carrying the transgene. Production of transgenic LG clones will allow us to modulate immune gene expression and further strengthen X. laevis as a biomedical model.

  5. A western blot protocol for detection of proteins heterologously expressed in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Jørgensen, Morten Egevang; Nour-Eldin, Hussam Hassan; Halkier, Barbara Ann

    2016-01-01

    Oocytes of the African clawed frog, Xenopus laevis, are often used for expression and biochemical characterization of transporter proteins as the oocytes are particularly suitable for uptake assays and electrophysiological recordings. Assessment of the expression level of expressed transporters a...

  6. Extracellular quaternary ammonium blockade of transient receptor potential vanilloid subtype 1 channels expressed in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Rivera-Acevedo, Ricardo E; Pless, Stephan Alexander; Schwarz, Stephan K W;

    2012-01-01

    expressed in Xenopus laevis oocytes, whereas the neutral local anesthetic, benzocaine, does not, suggesting that a titratable amine is required for high-affinity inhibition. Consistent with this possibility, extracellular tetraethylammonium (TEA) and tetramethylammonium application produces potent, voltage...

  7. Xenopus laevis: an ideal experimental model for studying the developmental dynamics of neural network assembly and sensory-motor computations.

    Science.gov (United States)

    Straka, Hans; Simmers, John

    2012-04-01

    The amphibian Xenopus laevis represents a highly amenable model system for exploring the ontogeny of central neural networks, the functional establishment of sensory-motor transformations, and the generation of effective motor commands for complex behaviors. Specifically, the ability to employ a range of semi-intact and isolated preparations for in vitro morphophysiological experimentation has provided new insights into the developmental and integrative processes associated with the generation of locomotory behavior during changing life styles. In vitro electrophysiological studies have begun to explore the functional assembly, disassembly and dynamic plasticity of spinal pattern generating circuits as Xenopus undergoes the developmental switch from larval tail-based swimming to adult limb-based locomotion. Major advances have also been made in understanding the developmental onset of multisensory signal processing for reactive gaze and posture stabilizing reflexes during self-motion. Additionally, recent evidence from semi-intact animal and isolated CNS experiments has provided compelling evidence that in Xenopus tadpoles, predictive feed-forward signaling from the spinal locomotor pattern generator are engaged in minimizing visual disturbances during tail-based swimming. This new concept questions the traditional view of retinal image stabilization that in vertebrates has been exclusively attributed to sensory-motor transformations of body/head motion-detecting signals. Moreover, changes in visuomotor demands associated with the developmental transition in propulsive strategy from tail- to limb-based locomotion during metamorphosis presumably necessitates corresponding adaptive alterations in the intrinsic spinoextraocular coupling mechanism. Consequently, Xenopus provides a unique opportunity to address basic questions on the developmental dynamics of neural network assembly and sensory-motor computations for vertebrate motor behavior in general.

  8. Accelerated Gene Evolution and Subfunctionalization in thePseudotetraploid Frog Xenopus Laevis

    Energy Technology Data Exchange (ETDEWEB)

    Hellsten, Uffe; Khokha, Mustafa K.; Grammar, Timothy C.; Harland,Richard M.; Richardson, Paul; Rokhsar, Daniel S.

    2007-03-01

    Ancient whole genome duplications have been implicated in the vertebrate and teleost radiations, and in the emergence of diverse angiosperm lineages, but the evolutionary response to such a perturbation is still poorly understood. The African clawed frog Xenopus laevis experienced a relatively recent tetraploidization {approx} 40 million years ago. Analysis of the considerable amount of EST sequence available for this species together with the genome sequence of the related diploid Xenopus tropicalis provides a unique opportunity to study the genomic response to whole genome duplication.

  9. Ni2+ treatment causes cement gland formation in ectoderm explants of Xenopus laevis embryo

    Institute of Scientific and Technical Information of China (English)

    HUANGYONG; XIAOYANDING

    1999-01-01

    We found T-type calcium channel blocker Ni2+ can efficiently induce the formation of cement gland in Xenopus laevis animal cap explants.Nother T-typer specific calcium channel blocker Amiloride can also induce the formation of cement gland,while L-type specific calcium channel blocker Nifedipine as no inductive effect.These results may offer us an new approach to study the differentiation of cement gland through the change of intracelluar calcium concentration.

  10. Specific degradation of keratin in Xenopus laevis egg extracts undergoing apoptosis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cytochrome c activates apoptosis specific protease XCPP32 when being added to Xenopus laevis egg extracts, and induces apoptosis in this cell-free system. During apoptosis, cyto-skeleton proteins in egg extracts are degraded. Western blot assay indicates that 42-ku acidic keratin in egg extracts has been degraded by XCPP32. The degradation of 42-ku keratin may be crucial in apoptosis.

  11. Deiodinase activity is present in Xenopus laevis during early embryogenesis

    NARCIS (Netherlands)

    G.M. Dubois (Ghislaine Morvan); A. Sebillot (Anthony); G.G.J.M. Kuiper (George); C.H.J. Verhoelst (Carla H.); V.M. Darras (Veerle); T.J. Visser (Theo); B.A. Demeneix (Barbara)

    2006-01-01

    textabstractThyroid hormones orchestrate amphibian metamorphosis. The type 2 and type 3 deiodinases make vital contributions to this process by controlling levels of the thyroid hormones T4 and T3 available to different tissues. Because the tadpole thyroid gland is not functional until stage NF44, i

  12. Histological development of the gonad in juvenile Xenopus laevis

    Science.gov (United States)

    As directed by the Food Quality Protection Act, the US Environmental Protection Agency is developing a screening program for endocrine disrupting compounds. The Larval Amphibian Growth and Development Assay (LAGDA) is a tier II test intended to identify and characterize the adver...

  13. Egg jelly proteins stimulate directed motility in Xenopus laevis sperm.

    Science.gov (United States)

    Burnett, Lindsey A; Sugiyama, Hitoshi; Bieber, Allan L; Chandler, Douglas E

    2011-06-01

    Previously we have shown that extracts from Xenopus egg jelly (egg water) increase the passage of sperm through a porous membrane in a dose-dependent manner. Although this assay has shown that sperm accumulation occurs only in the presence of an egg water gradient, it has not revealed the dynamic features of how Xenopus sperm swim in such gradients. Here, we use video microscopic observations to trace sperm trajectories in a Zigmond chamber. Our results show that Xenopus sperm swim in linear and gently curving paths and only infrequently perform turns. In the presence of an egg water gradient, however, the percent of sperm swimming up the gradient axis and the net distance traveled by each sperm along this axis was increased significantly. There was no change in curvilinear velocity. Rather, the orientation of sperm travel was shifted to more closely match that of the gradient axis. In addition, using a porous filter assay, we demonstrate that the egg water protein allurin, in both purified and recombinant forms, stimulates directed motility of sperm. Finally, we use Oregon Green 488-conjugated allurin to show that this protein binds primarily to the sperm midpiece; binding of allurin to the entire head was observed in a minor subpopulation of sperm. Dose dependence of allurin binding occurred over the 0-1 µg/ml range and correlated well with previously published dose-dependent sperm attraction data. Binding was rapid with a half-time of about 10 sec. These data suggest that egg water proteins bind to sperm and modify sperm-orienting behavior.

  14. The roles of Bcl-xL in modulating apoptosis during development of Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Calderon-Segura Maria

    2005-09-01

    Full Text Available Abstract Background Apoptosis is a common and essential aspect of development. It is particularly prevalent in the central nervous system and during remodelling processes such as formation of the digits and in amphibian metamorphosis. Apoptosis, which is dependent upon a balance between pro- and anti-apoptotic factors, also enables the embryo to rid itself of cells damaged by gamma irradiation. In this study, the roles of the anti-apoptotic factor Bcl-xL in protecting cells from apoptosis were examined in Xenopus laevis embryos using transgenesis to overexpress the XR11 gene, which encodes Bcl-xL. The effects on developmental, thyroid hormone-induced and γ-radiation-induced apoptosis in embryos were examined in these transgenic animals. Results Apoptosis was abrogated in XR11 transgenic embryos. However, the transgene did not prevent the apoptotic response of tadpoles to thyroid hormone during metamorphosis. Post-metamorphic XR11 frogs were reared to sexual maturity, thus allowing us to produce second-generation embryos and enabling us to distinguish between the maternal and zygotic contributions of Bcl-xL to the γ-radiation apoptotic response. Wild-type embryos irradiated before the mid-blastula transition (MBT underwent normal cell division until reaching the MBT, after which they underwent massive, catastrophic apoptosis. Over-expression of Bcl-xL derived from XR11 females, but not males, provided partial protection from apoptosis. Maternal expression of XR11 was also sufficient to abrogate apoptosis triggered by post-MBT γ-radiation. Tolerance to post-MBT γ-radiation from zygotically-derived XR11 was acquired gradually after the MBT in spite of abundant XR11 protein synthesis. Conclusion Our data suggest that Bcl-xL is an effective counterbalance to proapoptotic factors during embryonic development but has no apparent effect on the thyroid hormone-induced apoptosis that occurs during metamorphosis. Furthermore, post-MBT apoptosis

  15. Calcium signalling during neural induction in Xenopus laevis embryos.

    Science.gov (United States)

    Moreau, Marc; Néant, Isabelle; Webb, Sarah E; Miller, Andrew L; Leclerc, Catherine

    2008-04-12

    In Xenopus, experiments performed with isolated ectoderm suggest that neural determination is a 'by default' mechanism, which occurs when bone morphogenetic proteins (BMPs) are antagonized by extracellular antagonists, BMP being responsible for the determination of epidermis. However, Ca(2+) imaging of intact Xenopus embryos reveals patterns of Ca(2+) transients which are generated via the activation of dihydropyridine-sensitive Ca(2+) channels in the dorsal ectoderm but not in the ventral ectoderm. These increases in the concentration of intracellular Ca(2+)([Ca(2+)]i) appear to be necessary and sufficient to orient the ectodermal cells towards a neural fate as increasing the [Ca(2+)]i artificially results in neuralization of the ectoderm. We constructed a subtractive cDNA library between untreated and caffeine-treated ectoderms (to increase [Ca(2+)]i) and then identified early Ca(2+)-sensitive target genes expressed in the neural territories. One of these genes, an arginine methyltransferase, controls the expression of the early proneural gene, Zic3. Here, we discuss the evidence for the existence of an alternative model to the 'by default' mechanism, where Ca(2+) plays a central regulatory role in the expression of Zic3, an early proneural gene, and in epidermal determination which only occurs when the Ca(2+)-dependent signalling pathways are inactive.

  16. Migratory and adhesive properties of Xenopus laevis primordial germ cells in vitro

    Directory of Open Access Journals (Sweden)

    Aliaksandr Dzementsei

    2013-11-01

    The directional migration of primordial germ cells (PGCs to the site of gonad formation is an advantageous model system to study cell motility. The embryonic development of PGCs has been investigated in different animal species, including mice, zebrafish, Xenopus and Drosophila. In this study we focus on the physical properties of Xenopus laevis PGCs during their transition from the passive to the active migratory state. Pre-migratory PGCs from Xenopus laevis embryos at developmental stages 17–19 to be compared with migratory PGCs from stages 28–30 were isolated and characterized in respect to motility and adhesive properties. Using single-cell force spectroscopy, we observed a decline in adhesiveness of PGCs upon reaching the migratory state, as defined by decreased attachment to extracellular matrix components like fibronectin, and a reduced adhesion to somatic endodermal cells. Data obtained from qPCR analysis with isolated PGCs reveal that down-regulation of E-cadherin might contribute to this weakening of cell-cell adhesion. Interestingly, however, using an in vitro migration assay, we found that movement of X. laevis PGCs can also occur independently of specific interactions with their neighboring cells. The reduction of cellular adhesion during PGC development is accompanied by enhanced cellular motility, as reflected in increased formation of bleb-like protrusions and inferred from electric cell-substrate impedance sensing (ECIS as well as time-lapse image analysis. Temporal alterations in cell shape, including contraction and expansion of the cellular body, reveal a higher degree of cellular dynamics for the migratory PGCs in vitro.

  17. Sterility and gene expression in hybrid males of Xenopus laevis and X. muelleri.

    Directory of Open Access Journals (Sweden)

    John H Malone

    Full Text Available BACKGROUND: Reproductive isolation is a defining characteristic of populations that represent unique biological species, yet we know very little about the gene expression basis for reproductive isolation. The advent of powerful molecular biology tools provides the ability to identify genes involved in reproductive isolation and focuses attention on the molecular mechanisms that separate biological species. Herein we quantify the sterility pattern of hybrid males in African Clawed Frogs (Xenopus and apply microarray analysis of the expression pattern found in testes to identify genes that are misexpressed in hybrid males relative to their two parental species (Xenopus laevis and X. muelleri. METHODOLOGY/PRINCIPAL FINDINGS: Phenotypic characteristics of spermatogenesis in sterile male hybrids (X. laevis x X. muelleri were examined using a novel sperm assay that allowed quantification of live, dead, and undifferentiated sperm cells, the number of motile vs. immotile sperm, and sperm morphology. Hybrids exhibited a dramatically lower abundance of mature sperm relative to the parental species. Hybrid spermatozoa were larger in size and accompanied by numerous undifferentiated sperm cells. Microarray analysis of gene expression in testes was combined with a correction for sequence divergence derived from genomic hybridizations to identify candidate genes involved in the sterility phenotype. Analysis of the transcriptome revealed a striking asymmetric pattern of misexpression. There were only about 140 genes misexpressed in hybrids compared to X. laevis but nearly 4,000 genes misexpressed in hybrids compared to X. muelleri. CONCLUSIONS/SIGNIFICANCE: Our results provide an important correlation between phenotypic characteristics of sperm and gene expression in sterile hybrid males. The broad pattern of gene misexpression suggests intriguing mechanisms creating the dominance pattern of the X. laevis genome in hybrids. These findings significantly

  18. Nuclear assembly of purified Crythecodinium cohnii chromosomes in cell—free extracts of Xenopus laevis eggs

    Institute of Scientific and Technical Information of China (English)

    LIUXIAOLING; YANSHEN

    2000-01-01

    Incubation of dinoflagellate Crythecodinium cohnii chromosomes in cytoplasmic extracts of unfertilized Xenopus laevis eggs resulted in chromosomes decondensation and recondensation,nuclear envelope assembly,and nuclear reconstitution.Dinoflagellate Crythecodinium cohnii is a kind of primitive eukaryote which possesses numerous permanently condensed chromosomes and discontinuous double-layered nuclear membrane throughout the cell cycle.The assembled nuclei,being surrounded by a continuous double membrane containing nuclear pores and the uniformly dispersed chromatin fibers are morphologically distinguishable from that of Dinoflagellate Crythecodinium cohnii.However,incubation of dinoflagellate Cyrthecodinium cohnii chromosomes in the extracts from dinoflagellate Crythecodinium cohnii cells does not induce nuclear reconstitution.

  19. Nuclear assembly of purified Crythecodinium cohnii chromosomes in cell-free extracts of Xenopus laevis eggs

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Incubation of dinoflagellate Crythecodinium cohnii chromosomes in cytoplasmic extracts of unfertilized Xenopus laevis eggs resulted in chromosomes decondensation and recondensation, nuclear envelope assembly, and nuclear reconstitution.Dinoflagellate Crythecodinium cohnii is a kind of primitive eukaryote which possesses numerous permanently condensed chromosomes and discontinuous double-layered nuclear membrane throughout the cell cycle. The assembled nuclei, being surrounded by a continuous double membrane containing nuclear pores and the uniformly dispersed chromatin fibers are morphologically distinguishable from that of Dinoflagellate Crythecodinium cohnii. However, incubation of dinoflagellate Crythecodinium cohnii chromosomes in the extracts from dinoflagellate Crythecodinium cohnii cells does not induce nuclear reconstitution.

  20. Gamete Interactions in Xenopus laevis: Identification of Sperm Binding Glycoproteins in the Egg Vitelline Envelope

    OpenAIRE

    Tian, Jingdong; Gong, Hui; Thomsen, Gerald H.; Lennarz, William J.

    1997-01-01

    A quantitative assay was developed to study the interaction of Xenopus laevis sperm and eggs. Using this assay it was found that sperm bound in approximately equal numbers to the surface of both hemispheres of the unfertilized egg, but not to the surface of the fertilized egg. To understand the molecular basis of sperm binding to the egg vitelline envelope (VE), a competition assay was used and it was found that solubilized total VE proteins inhibited sperm-egg binding in a concentration-depe...

  1. Influence of 50-Hz Electromagnetic Field on Anurian (Xenopus laevis Metamorphosis

    Directory of Open Access Journals (Sweden)

    S. Grimaldi

    2004-01-01

    Full Text Available In this study, we show the effect of a 1-mT magnetic field AC at 50 Hz on Xenopus laevis tadpole populations. In the course of a 65-day exposure to the field, tadpole survival showed a small, but significant, decrease (p < 0.0004, together with a striking parallel 6-day shift in tadpole maturation frequency and a significant impairment of their metamorphosis. Particularly, metamorphosis was successful for 85% of individuals in the unirradiated tadpole population and for 45% of individuals in the irradiated tadpole population, respectively.

  2. Effect of antikeratin microinjection on the embryonic development of Xenopus laevis

    Institute of Scientific and Technical Information of China (English)

    YUHAOJIAN; JINGWUXIE; 等

    1993-01-01

    Anti-keratin monoclonal antibody AF5 was introduced into fertilized eggs of Xenopus laevis.,and its effects on embryonic development were studied.Survival rate of the antikeratin-injected embryos was much lower(only 35.67% at gastrula)than that of the control(74.85% at gastrula),in which embryos were injected with mouse IgG.Most of survivors in the experimental series showed aberrant external appearance.On the other hand,in cleavage stage,ie 2-7h after fertilization,immunohistochemical staining of embryos showed that the expermental embryos were mostly keratin negative,while embryos of the control ones were keratin positive.When introducing this antikeratin into one cell of a 2-cell embryo,only the uninjected half of the embryo continued its development while the other half could not develop at all.These results suggested that intact keratin cytoskeleton in early embryos is indispensable to the embryonic development of Xenopus laevis.

  3. Effect of light on expression of clock genes in Xenopus laevis melanophores.

    Science.gov (United States)

    Magalhães Moraes, Maria Nathália de Carvalho; de Oliveira Poletini, Maristela; Ribeiro Ramos, Bruno Cesar; de Lima, Leonardo Henrique Ribeiro Graciani; de Lauro Castrucci, Ana Maria

    2014-01-01

    Light-dark cycles are considered important cues to entrain biological clocks. A feedback loop of clock gene transcription and translation is the molecular basis underlying the mechanism of both central and peripheral clocks. Xenopus laevis embryonic melanophores respond to light with melanin granule dispersion, response possibly mediated by the photopigment melanopsin. To test whether light modulates clock gene expression in Xenopus melanophores, we used qPCR to evaluate the relative mRNA levels of Per1, Per2, Clock and Bmal1 in cultured melanophores exposed to light-dark (LD) cycle or constant darkness (DD). LD cycles elicited temporal changes in the expression of Per1, Per2 and Bmal1. A 10-min pulse of blue light was able to increases the expression of Per1 and Per2. Red light had no effect on the expression of these clock genes. These data suggest the participation of a blue-wavelength sensitive pigment in the light-dark cycle-mediated oscillation of the endogenous clock. Our results add an important contribution to the emerging field of peripheral clocks, which in nonmammalian vertebrates have been mostly studied in Drosophila and Danio rerio. Within this context, we show that X. laevis melanophores, which have already led to melanopsin discovery, represent an ideal model to understanding circadian rhythms.

  4. The role of brain-derived neurotrophic factor in the regulation of cell growth and gene expression in melanotrope cells of Xenopus laevis.

    Science.gov (United States)

    Jenks, Bruce G; Kuribara, Miyuki; Kidane, Adhanet H; Kramer, Bianca M R; Roubos, Eric W; Scheenen, Wim J J M

    2012-07-01

    Brain-derived neurotrophic factor (BDNF) is, despite its name, also found outside the central nervous system (CNS), but the functional significance of this observation is largely unknown. This review concerns the expression of BDNF in the pituitary gland. While the presence of the neurotrophin in the mammalian pituitary gland is well documented its functional significance remains obscure. Studies on the pars intermedia of the pituitary of the amphibian Xenopus laevis have shown that BDNF is produced by the neuroendocrine melanotrope cells, its expression is physiologically regulated, and the melanotrope cells themselves express receptors for the neurotrophin. The neurotrophin has been shown to act as an autocrine factor on the melanotrope to promote cell growth and regulate gene expression. In doing so BDNF supports the physiological function of the cell to produce and release α-melanophore-stimulating hormone for the purpose of adjusting the animal's skin color to that of its background.

  5. Gene expression analysis of the ovary of hybrid females of Xenopus laevis and X. muelleri

    Directory of Open Access Journals (Sweden)

    Malone John H

    2008-03-01

    Full Text Available Abstract Background Interspecific hybrids of frogs of the genus Xenopus result in sterile hybrid males and fertile hybrid females. Previous work has demonstrated a dramatic asymmetrical pattern of misexpression in hybrid males compared to the two parental species with relatively few genes misexpressed in comparisons of hybrids and the maternal species (X. laevis and dramatically more genes misexpressed in hybrids compared to the paternal species (X. muelleri. In this work, we examine the gene expression pattern in hybrid females of X. laevis × X. muelleri to determine if this asymmetrical pattern of expression also occurs in hybrid females. Results We find a similar pattern of asymmetry in expression compared to males in that there were more genes differentially expressed between hybrids and X. muelleri compared to hybrids and X. laevis. We also found a dramatic increase in the number of misexpressed genes with hybrid females having about 20 times more genes misexpressed in ovaries compared to testes of hybrid males and therefore the match between phenotype and expression pattern is not supported. Conclusion We discuss these intriguing findings in the context of reproductive isolation and suggest that divergence in female expression may be involved in sterility of hybrid males due to the inherent sensitivity of spermatogenesis as defined by the faster male evolution hypothesis for Haldane's rule.

  6. Inverse Effects on Growth and Development Rates by Means of Endocrine Disruptors in African Clawed Frog Tadpoles ("Xenopus Laevis")

    Science.gov (United States)

    Hackney, Zachary Carl

    2007-01-01

    Previous work on fish, frogs, and salamanders, showed the ability for estrogen (EE2) and anthropogenic endocrine disruptors to skew sex ratios and cause hermaphrodism. This study addressed the effects of estrogens on growth and development rates of African clawed frog tadpoles ("Xenopus laevis") during their gender determination stages. The…

  7. Characterization and regulation of voltage-operated Ca2+ channels in neuroendocrine melanotrope cells of Xenopus laevis

    NARCIS (Netherlands)

    Zhang, H.Y.

    2006-01-01

    To investigate the way by which multiple incoming neurochemical messengers control second messenger systems to evoke an unambiguous neuronal output, melanotrope neuroendocrine cells in the pars intermedia of the pituitary gland of the South African clawed toad Xenopus laevis were studied. Researches

  8. Impacts of Climate Change on the Global Invasion Potential of the African Clawed Frog Xenopus laevis.

    Science.gov (United States)

    Ihlow, Flora; Courant, Julien; Secondi, Jean; Herrel, Anthony; Rebelo, Rui; Measey, G John; Lillo, Francesco; De Villiers, F André; Vogt, Solveig; De Busschere, Charlotte; Backeljau, Thierry; Rödder, Dennis

    2016-01-01

    By altering or eliminating delicate ecological relationships, non-indigenous species are considered a major threat to biodiversity, as well as a driver of environmental change. Global climate change affects ecosystems and ecological communities, leading to changes in the phenology, geographic ranges, or population abundance of several species. Thus, predicting the impacts of global climate change on the current and future distribution of invasive species is an important subject in macroecological studies. The African clawed frog (Xenopus laevis), native to South Africa, possesses a strong invasion potential and populations have become established in numerous countries across four continents. The global invasion potential of X. laevis was assessed using correlative species distribution models (SDMs). SDMs were computed based on a comprehensive set of occurrence records covering South Africa, North America, South America and Europe and a set of nine environmental predictors. Models were built using both a maximum entropy model and an ensemble approach integrating eight algorithms. The future occurrence probabilities for X. laevis were subsequently computed using bioclimatic variables for 2070 following four different IPCC scenarios. Despite minor differences between the statistical approaches, both SDMs predict the future potential distribution of X. laevis, on a global scale, to decrease across all climate change scenarios. On a continental scale, both SDMs predict decreasing potential distributions in the species' native range in South Africa, as well as in the invaded areas in North and South America, and in Australia where the species has not been introduced. In contrast, both SDMs predict the potential range size to expand in Europe. Our results suggest that all probability classes will be equally affected by climate change. New regional conditions may promote new invasions or the spread of established invasive populations, especially in France and Great Britain.

  9. Impacts of Climate Change on the Global Invasion Potential of the African Clawed Frog Xenopus laevis.

    Directory of Open Access Journals (Sweden)

    Flora Ihlow

    Full Text Available By altering or eliminating delicate ecological relationships, non-indigenous species are considered a major threat to biodiversity, as well as a driver of environmental change. Global climate change affects ecosystems and ecological communities, leading to changes in the phenology, geographic ranges, or population abundance of several species. Thus, predicting the impacts of global climate change on the current and future distribution of invasive species is an important subject in macroecological studies. The African clawed frog (Xenopus laevis, native to South Africa, possesses a strong invasion potential and populations have become established in numerous countries across four continents. The global invasion potential of X. laevis was assessed using correlative species distribution models (SDMs. SDMs were computed based on a comprehensive set of occurrence records covering South Africa, North America, South America and Europe and a set of nine environmental predictors. Models were built using both a maximum entropy model and an ensemble approach integrating eight algorithms. The future occurrence probabilities for X. laevis were subsequently computed using bioclimatic variables for 2070 following four different IPCC scenarios. Despite minor differences between the statistical approaches, both SDMs predict the future potential distribution of X. laevis, on a global scale, to decrease across all climate change scenarios. On a continental scale, both SDMs predict decreasing potential distributions in the species' native range in South Africa, as well as in the invaded areas in North and South America, and in Australia where the species has not been introduced. In contrast, both SDMs predict the potential range size to expand in Europe. Our results suggest that all probability classes will be equally affected by climate change. New regional conditions may promote new invasions or the spread of established invasive populations, especially in France

  10. Expresión de canales de potasio voltaje dependientes en ovocitos de Xenopus laevis (Amphibia Voltage gated potassium channels expressed in Xenopus laevis(AMPHIBIA oocytes

    Directory of Open Access Journals (Sweden)

    Clavijo Carlos

    2003-06-01

    Full Text Available La expresión en sistemas heterólogos ha sido una herramienta ampliamente utilizada enlos últimos años para el estudio funcional y estructural de proteínas. Para la carac-terización de las propiedades biofísicas de canales, bombas y transportadores engeneral su expresión en ovocitos de Xenopus laevis, ha sido fundamental. Este estudioreporta la expresión de dos canales de potasio voltaje dependientes, Kv1.1y Shakerenovocitos de X. laevisusando un protocolo ajustado a las condiciones de latitud y altitudde Bogotá para la extracción, aislamiento, cultivo y microinyección de éstas células.Heterologous expression has been an important tool for structural and functionalcharacterization of proteins. The study of biophysical properties of ion channels,pumps and transporters has been possible thanks to their expression in Xenopuslaevisoocytes. Here we report the expression of two voltage gated channels, Kv1.1and Shaker, in X. laevisoocytes using a method for oocyte extraction, isolation, cul-ture, and microinjection adapted to the latitude and altitude conditions of Bogotá,Colombia.

  11. Unequal contribution of native South African phylogeographic lineages to the invasion of the African clawed frog, Xenopus laevis, in Europe.

    Science.gov (United States)

    De Busschere, Charlotte; Courant, Julien; Herrel, Anthony; Rebelo, Rui; Rödder, Dennis; Measey, G John; Backeljau, Thierry

    2016-01-01

    Due to both deliberate and accidental introductions, invasive African Clawed Frog (Xenopus laevis) populations have become established worldwide. In this study, we investigate the geographic origins of invasive X. laevis populations in France and Portugal using the phylogeographic structure of X. laevis in its native South African range. In total, 80 individuals from the whole area known to be invaded in France and Portugal were analysed for two mitochondrial and three nuclear genes, allowing a comparison with 185 specimens from the native range. Our results show that native phylogeographic lineages have contributed differently to invasive European X. laevis populations. In Portugal, genetic and historical data suggest a single colonization event involving a small number of individuals from the south-western Cape region in South Africa. In contrast, French invasive X. laevis encompass two distinct native phylogeographic lineages, i.e., one from the south-western Cape region and one from the northern regions of South Africa. The French X. laevis population is the first example of a X. laevis invasion involving multiple lineages. Moreover, the lack of population structure based on nuclear DNA suggests a potential role for admixture within the invasive French population.

  12. Unequal contribution of native South African phylogeographic lineages to the invasion of the African clawed frog, Xenopus laevis, in Europe

    Directory of Open Access Journals (Sweden)

    Charlotte De Busschere

    2016-02-01

    Full Text Available Due to both deliberate and accidental introductions, invasive African Clawed Frog (Xenopus laevis populations have become established worldwide. In this study, we investigate the geographic origins of invasive X. laevis populations in France and Portugal using the phylogeographic structure of X. laevis in its native South African range. In total, 80 individuals from the whole area known to be invaded in France and Portugal were analysed for two mitochondrial and three nuclear genes, allowing a comparison with 185 specimens from the native range. Our results show that native phylogeographic lineages have contributed differently to invasive European X. laevis populations. In Portugal, genetic and historical data suggest a single colonization event involving a small number of individuals from the south-western Cape region in South Africa. In contrast, French invasive X. laevis encompass two distinct native phylogeographic lineages, i.e., one from the south-western Cape region and one from the northern regions of South Africa. The French X. laevis population is the first example of a X. laevis invasion involving multiple lineages. Moreover, the lack of population structure based on nuclear DNA suggests a potential role for admixture within the invasive French population.

  13. Nuclear reconstitution of demembranated Orychophragmus violaceus sperm in Xenopus laevis egg extracts

    Institute of Scientific and Technical Information of China (English)

    LU; Ping(卢萍); REN; Min(任民); ZHAI; Zhonghe(翟中和)

    2002-01-01

    The cell-free extracts from animal Xenopus laevis egg could induce chromatin decon- densation and pronuclear formation from demembranated plant (Orychophragmus violaceus)sperm. The demembranated Orychophragmus violaceus sperm began to swell in 30 min incubation, and then were gradually decondensed. The reassembly of nuclear envelope in the reconstituted nuclei had been visualized by means of electron microscopy and fluorescent microscopy. Membrane vesicles fused to form the double envelope around the periphery of the decondensed chromatin. The morphology of the newly formed nucleus, with a double membrane, was similar to those nuclei after fertilization. Transmission electron microscope micrograph of the whole mount prepared nuclear matrix-lamina showed the reconstituted nucleus to be filled with a dense network.

  14. FUNCION DE SOX2 EN LA REGENERACION DE LA MEDULA ESPINAL DE XENOPUS LAEVIS

    OpenAIRE

    2010-01-01

    Los mamíferos presentan una limitada capacidad de regeneración frente a una lesión de la médula espinal, lo que impide una correcta recuperación locomotriz. Sin embargo, los renacuajos de Xenopus laevis sí son capaces de regenerar la médula espinal, pero se desconocen los mecanismos involucrados en este proceso. Es posible que esta regeneración proceda a través de la activación de células madre y progenitores neurales. Sox2 es un factor de transcripción que se expresa en las células mad...

  15. D-Amino acid oxidase and presence of D-proline in Xenopus laevis.

    Science.gov (United States)

    Soma, Hiroki; Furuya, Ryuji; Kaneko, Ryo; Tsukamoto, Ayaka; Shirasu, Kazumitsu; Tanigawa, Minoru; Nagata, Yoko

    2013-10-01

    We purified D-amino acid oxidase (EC 1.4.3.3, DAO) from Xenopus laevis tadpoles. The optimal temperature and pH for enzyme activity were 35-40 °C and 8.3-9.0, respectively, depending on the substrate amino acids available to the enzyme; the highest activity was observed with D-proline followed by D-phenylalanine. Activity was significantly inhibited by p-hydroxymercuribenzoate, but only moderately by p-chloromercuribenzoate or benzoate. Enzyme activity was increased until the final tadpole stage, but was reduced to one-third in the adult and was localized primarily in the kidney. The tadpoles contained high concentrations of D-proline close to the final developmental stage and nearly no D-amino acids were detected in the adult frog, indicating that D-amino acid oxidase functions in metamorphosis.

  16. Transmembrane Signal Transduction in Oocyte Maturation and Fertilization: Focusing on Xenopus laevis as a Model Animal

    Directory of Open Access Journals (Sweden)

    Ken-ichi Sato

    2014-12-01

    Full Text Available Fertilization is a cell biological phenomenon of crucial importance for the birth of new life in a variety of multicellular and sexual reproduction species such as algae, animal and plants. Fertilization involves a sequence of events, in which the female gamete “egg” and the male gamete “spermatozoon (sperm” develop, acquire their functions, meet and fuse with each other, to initiate embryonic and zygotic development. Here, it will be briefly reviewed how oocyte cytoplasmic components are orchestrated to undergo hormone-induced oocyte maturation and sperm-induced activation of development. I then review how sperm-egg membrane interaction/fusion and activation of development in the fertilized egg are accomplished and regulated through egg coat- or egg plasma membrane-associated components, highlighting recent findings and future directions in the studies using Xenopus laevis as a model experimental animal.

  17. Light conditions affect the roll-induced vestibuloocular reflex in Xenopus laevis tadpoles

    Science.gov (United States)

    El-Yamany, Nabil A.

    2008-12-01

    In Xenopus laevis tadpoles, effects of asymmetrical light conditions on the roll-induced vestibuloocular reflex (rVOR) were tested for the developmental period between stage 47 and 49. For comparison, the rVOR was tested in dim- and high-symmetrical light environments. Test parameters were the rVOR gain and rVOR amplitude. Under all light conditions, the rVOR increased from tadpole stage 47 to 49. For all stages, the asymmetrical light field induced the strongest response, the dim light field the weakest one. The response for the left and right eye was identical, even if the tadpoles were tested under asymmetrical light conditions. The experiments can be considered as hints (1) for an age-dependent light sensitivity of vestibular neurons, and (2) for the existence of control systems for coordinated eye movements that has its origin in the proprioceptors of the extraocular eye muscles.

  18. Cadmium but not lead exposure affects Xenopus laevis fertilization and embryo cleavage.

    Science.gov (United States)

    Slaby, Sylvain; Lemière, Sébastien; Hanotel, Julie; Lescuyer, Arlette; Demuynck, Sylvain; Bodart, Jean-François; Leprêtre, Alain; Marin, Matthieu

    2016-08-01

    Among the toxicological and ecotoxicological studies, few have investigated the effects on germ cells, gametes or embryos, while an impact at these stages will result in serious damage at a population level. Thus, it appeared essential to characterize consequences of environmental contaminant exposures at these stages. Therefore, we proposed to assess the effects of exposure to cadmium and lead ions, alone or in a binary mixture, on early stages of Xenopus laevis life cycle. Fertilization and cell division during segmentation were the studied endpoints. Cadmium ion exposures decreased in the fertilization rates in a concentration-dependent manner, targeting mainly the oocytes. Exposure to this metal ions induced also delays or blockages in the embryonic development. For lead ion exposure, no such effect was observed. For the exposure to the mixture of the two metal ions, concerning the fertilization success, we observed results similar to those obtained with the highest cadmium ion concentration.

  19. Efficacy of tricaine methanesulfonate (MS-222 as an anesthetic agent for blocking sensory-motor responses in Xenopus laevis tadpoles.

    Directory of Open Access Journals (Sweden)

    Carlana Ramlochansingh

    Full Text Available Anesthetics are drugs that reversibly relieve pain, decrease body movements and suppress neuronal activity. Most drugs only cover one of these effects; for instance, analgesics relieve pain but fail to block primary fiber responses to noxious stimuli. Alternately, paralytic drugs block synaptic transmission at neuromuscular junctions, thereby effectively paralyzing skeletal muscles. Thus, both analgesics and paralytics each accomplish one effect, but fail to singularly account for all three. Tricaine methanesulfonate (MS-222 is structurally similar to benzocaine, a typical anesthetic for anamniote vertebrates, but contains a sulfate moiety rendering this drug more hydrophilic. MS-222 is used as anesthetic in poikilothermic animals such as fish and amphibians. However, it is often argued that MS-222 is only a hypnotic drug and its ability to block neural activity has been questioned. This prompted us to evaluate the potency and dynamics of MS-222-induced effects on neuronal firing of sensory and motor nerves alongside a defined motor behavior in semi-intact in vitro preparations of Xenopus laevis tadpoles. Electrophysiological recordings of extraocular motor discharge and both spontaneous and evoked mechanosensory nerve activity were measured before, during and after administration of MS-222, then compared to benzocaine and a known paralytic, pancuronium. Both MS-222 and benzocaine, but not pancuronium caused a dose-dependent, reversible blockade of extraocular motor and sensory nerve activity. These results indicate that MS-222 as benzocaine blocks the activity of both sensory and motor nerves compatible with the mechanistic action of effective anesthetics, indicating that both caine-derivates are effective as single-drug anesthetics for surgical interventions in anamniotes.

  20. Subcellular metabolite and lipid analysis of Xenopus laevis eggs by LAESI mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Bindesh Shrestha

    Full Text Available Xenopus laevis eggs are used as a biological model system for studying fertilization and early embryonic development in vertebrates. Most methods used for their molecular analysis require elaborate sample preparation including separate protocols for the water soluble and lipid components. In this study, laser ablation electrospray ionization (LAESI, an ambient ionization technique, was used for direct mass spectrometric analysis of X. laevis eggs and early stage embryos up to five cleavage cycles. Single unfertilized and fertilized eggs, their animal and vegetal poles, and embryos through the 32-cell stage were analyzed. Fifty two small metabolite ions, including glutathione, GABA and amino acids, as well as numerous lipids including 14 fatty acids, 13 lysophosphatidylcholines, 36 phosphatidylcholines and 29 triacylglycerols were putatively identified. Additionally, some proteins, for example thymosin β4 (Xen, were also detected. On the subcellular level, the lipid profiles were found to differ between the animal and vegetal poles of the eggs. Radial profiling revealed profound compositional differences between the jelly coat vitelline/plasma membrane and egg cytoplasm. Changes in the metabolic profile of the egg following fertilization, e.g., the decline of polyamine content with the development of the embryo were observed using LAESI-MS. This approach enables the exploration of metabolic and lipid changes during the early stages of embryogenesis.

  1. Significant modulation of the hepatic proteome induced by exposure to low temperature in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Kazumichi Nagasawa

    2013-08-01

    The African clawed frog, Xenopus laevis, is an ectothermic vertebrate that can survive at low environmental temperatures. To gain insight into the molecular events induced by low body temperature, liver proteins were evaluated at the standard laboratory rearing temperature (22°C, control and a low environmental temperature (5°C, cold exposure. Using nano-flow liquid chromatography coupled with tandem mass spectrometry, we identified 58 proteins that differed in abundance. A subsequent Gene Ontology analysis revealed that the tyrosine and phenylalanine catabolic processes were modulated by cold exposure, which resulted in decreases in hepatic tyrosine and phenylalanine, respectively. Similarly, levels of pyruvate kinase and enolase, which are involved in glycolysis and glycogen synthesis, were also decreased, whereas levels of glycogen phosphorylase, which participates in glycogenolysis, were increased. Therefore, we measured metabolites in the respective pathways and found that levels of hepatic glycogen and glucose were decreased. Although the liver was under oxidative stress because of iron accumulation caused by hepatic erythrocyte destruction, the hepatic NADPH/NADP ratio was not changed. Thus, glycogen is probably utilized mainly for NADPH supply rather than for energy or glucose production. In conclusion, X. laevis responds to low body temperature by modulating its hepatic proteome, which results in altered carbohydrate metabolism.

  2. Overexpression of Fyn tyrosine kinase causes abnormal development of primary sensory neurons in Xenopus laevis embryos.

    Science.gov (United States)

    Saito, R; Fujita, N; Nagata, S

    2001-06-01

    The expression and function of the Src family protein tyrosine kinase Fyn in Xenopus laevis embryos have been examined. In situ hybridization analysis demonstrated nervous system-specific expression of Fyn mRNA in tail-bud embryos. However, a class of primary sensory neurons; that is, Rohon-Beard (RB) neurons, which is positive for immunoglobulin superfamily cell adhesion molecules (CAM), neural cell adhesion molecule (N-CAM) and contactin, is devoid of Fyn expression. Injection of Fyn mRNA into one of the blastomeres at the 2-cell stage led to overexpression of Fyn in the injected half of the tail-bud embryos. Immunolabeling of the embryos with anti-HNK-1 antibody revealed that the peripheral axons of RB neurons were partially misguided and bound to each other to form abnormal subcutaneous fascicles. Similar abnormality was induced by injection of the Fyn overexpression vector. The incidence of abnormality appeared dose-dependent, being 68-92% of the injected embryos at 50-400 pg of mRNA. Co-injection of the contactin antisense vector depleted contactin mRNA accumulation without affecting Fyn overexpression and reduced the incidence of the abnormal RB-cell phenotype. However, the N-CAM antisense was ineffective in reducing this abnormality. These results suggest that Fyn can modify signals regulating axonal guidance or fasciculation in the developing X. laevis nervous system and that contactin may affect this action of Fyn.

  3. Extracellular Ca2+ Is Required for Fertilization in the African Clawed Frog, Xenopus laevis

    Science.gov (United States)

    Duray, Alexis M.; Tembo, Maiwase; Beleny, David O.; Napolitano, Marc A.; Sauer, Monica L.; Wisner, Bennett W.

    2017-01-01

    Background The necessity of extracellular Ca2+ for fertilization and early embryonic development in the African clawed frog, Xenopus laevis, is controversial. Ca2+ entry into X. laevis sperm is reportedly required for the acrosome reaction, yet fertilization and embryonic development have been documented to occur in high concentrations of the Ca2+ chelator BAPTA. Here we sought to resolve this controversy. Methodology/principal finding Using the appearance of cleavage furrows as an indicator of embryonic development, we found that X. laevis eggs inseminated in a solution lacking added divalent cations developed normally. By contrast, eggs inseminated in millimolar concentrations of BAPTA or EGTA failed to develop. Transferring embryos to varying solutions after sperm addition, we found that extracellular Ca2+ is specifically required for events occurring within the first 30 minutes after sperm addition, but not after. We found that the fluorescently stained sperm were not able to penetrate the envelope of eggs inseminated in high BAPTA, whereas several had penetrated the vitelline envelope of eggs inseminated without a Ca2+ chelator, or with BAPTA and saturating CaCl2. Together these results indicate that fertilization does not occur in high concentrations of Ca2+ chelators. Finally, we found that the jelly coat includes >5 mM of readily diffusible Ca2+. Conclusions/Significance Taken together, these data are consistent with requirement of extracellular Ca2+ for fertilization. Based on our findings, we hypothesize that the jelly coat surrounding the egg acts as a reserve of readily available Ca2+ ions to foster fertilization in changing extracellular milieu. PMID:28114360

  4. The expression of melanopsin and clock genes in Xenopus laevis melanophores and their modulation by melatonin

    Energy Technology Data Exchange (ETDEWEB)

    Bluhm, A.P.C.; Obeid, N.N.; Castrucci, A.M.L.; Visconti, M.A. [Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-05-25

    Vertebrates have a central clock and also several peripheral clocks. Light responses might result from the integration of light signals by these clocks. The dermal melanophores of Xenopus laevis have a photoreceptor molecule denominated melanopsin (OPN4x). The mechanisms of the circadian clock involve positive and negative feedback. We hypothesize that these dermal melanophores also present peripheral clock characteristics. Using quantitative PCR, we analyzed the pattern of temporal expression of Opn4x and the clock genes Per1, Per2, Bmal1, and Clock in these cells subjected to a 14-h light:10-h dark (14L:10D) regime or constant darkness (DD). Also, in view of the physiological role of melatonin in the dermal melanophores of X. laevis, we determined whether melatonin modulates the expression of these clock genes. These genes show a time-dependent expression pattern when these cells are exposed to 14L:10D, which differs from the pattern observed under DD. Cells kept in DD for 5 days exhibited overall increased mRNA expression for Opn4x and Clock, and a lower expression for Per1, Per2, and Bmal1. When the cells were kept in DD for 5 days and treated with melatonin for 1 h, 24 h before extraction, the mRNA levels tended to decrease for Opn4x and Clock, did not change for Bmal1, and increased for Per1 and Per2 at different Zeitgeber times (ZT). Although these data are limited to one-day data collection, and therefore preliminary, we suggest that the dermal melanophores of X. laevis might have some characteristics of a peripheral clock, and that melatonin modulates, to a certain extent, melanopsin and clock gene expression.

  5. High efficiency TALENs enable F0 functional analysis by targeted gene disruption in Xenopus laevis embryos

    Directory of Open Access Journals (Sweden)

    Ken-ichi T. Suzuki

    2013-03-01

    Recently, gene editing with transcription activator-like effector nucleases (TALENs has been used in the life sciences. TALENs can be easily customized to recognize a specific DNA sequence and efficiently introduce double-strand breaks at the targeted genomic locus. Subsequent non-homologous end-joining repair leads to targeted gene disruption by base insertion, deletion, or both. Here, to readily evaluate the efficacy of TALENs in Xenopus laevis embryos, we performed the targeted gene disruption of tyrosinase (tyr and pax6 genes that are involved in pigmentation and eye formation, respectively. We constructed TALENs targeting tyr and pax6 and injected their mRNAs into fertilized eggs at the one-cell stage. Expectedly, introduction of tyr TALEN mRNA resulted in drastic loss of pigmentation with high efficiency. Similarly, for pax6, TALENs led to deformed eyes in the injected embryos. We confirmed mutations of the target alleles by restriction enzyme digestion and sequence analyses of genomic PCR products. Surprisingly, not only biallelic but also paralogous, gene disruption was observed. Our results demonstrate that targeted gene disruption by TALENs provides a method comparable to antisense morpholinos in analyzing gene function in Xenopus F0 embryos, but also applies beyond embryogenesis to any life stage.

  6. Adrenocorticotropin receptors: Functional expression from rat adrenal mRNA in Xenopus laevis oocytes

    Energy Technology Data Exchange (ETDEWEB)

    Mertz, L.M.; Catt, K.J. (National Inst. of Health, Bethesda, MD (United States))

    1991-10-01

    The adrenocorticotropin (ACTH) receptor, which binds corticotropin and stimulates adenylate cyclase and steroidogenesis in adrenocortical cells, was expressed in Xenopus laevis oocytes microinjected with rat adrenal poly(A){sup +} RNA. Expression of the ACTH receptor in individual stage 5 and 6 oocytes was monitored by radioimmunoassay of ligand-stimulated cAMP production. Injection of 5-40 ng of adrenal mRNA caused dose-dependent increases in ACTH-responsive cAMP production. Size fractionation of rat adrenal poly(A){sup +}RNA by sucrose density-gradient centrifugation revealed that mRNA encoding the ACTH receptor was present in the 1.1-to 2.0-kilobase fraction. These data indicate that ACTH receptors can be expressed from adrenal mRNA in Xenopus oocytes and are fully functional in terms of ligand specificity and signal generation. The extracellular cAMP response to ACTH is a sensitive and convenient index of receptor expression. This system should permit more complete characterization and expression cloning of the ACTH receptor.

  7. Functional joint regeneration is achieved using reintegration mechanism in Xenopus laevis.

    Science.gov (United States)

    Tsutsumi, Rio; Yamada, Shigehito; Agata, Kiyokazu

    2016-02-01

    A functional joint requires integration of multiple tissues: the apposing skeletal elements should form an interlocking structure, and muscles should insert into skeletal tissues via tendons across the joint. Whereas newts can regenerate functional joints after amputation, Xenopus laevis regenerates a cartilaginous rod without joints, a "spike." Previously we reported that the reintegration mechanism between the remaining and regenerated tissues has a significant effect on regenerating joint morphogenesis during elbow joint regeneration in newt. Based on this insight into the importance of reintegration, we amputated frogs' limbs at the elbow joint and found that frogs could regenerate a functional elbow joint between the remaining tissues and regenerated spike. During regeneration, the regenerating cartilage was partially connected to the remaining articular cartilage to reform the interlocking structure of the elbow joint at the proximal end of the spike. Furthermore, the muscles of the remaining part inserted into the regenerated spike cartilage via tendons. This study might open up an avenue for analyzing molecular and cellular mechanisms of joint regeneration using Xenopus.

  8. Identification of genes associated with regenerative success of Xenopus laevis hindlimbs

    Directory of Open Access Journals (Sweden)

    Barker Donna

    2008-06-01

    Full Text Available Abstract Background Epimorphic regeneration is the process by which complete regeneration of a complex structure such as a limb occurs through production of a proliferating blastema. This type of regeneration is rare among vertebrates but does occur in the African clawed frog Xenopus laevis, traditionally a model organism for the study of early development. Xenopus tadpoles can regenerate their tails, limb buds and the lens of the eye, although the ability of the latter two organs to regenerate diminishes with advancing developmental stage. Using a heat shock inducible transgene that remains silent unless activated, we have established a stable line of transgenic Xenopus (strain N1 in which the BMP inhibitor Noggin can be over-expressed at any time during development. Activation of this transgene blocks regeneration of the tail and limb of Xenopus tadpoles. Results In the current study, we have taken advantage of the N1 transgenic line to directly compare morphology and gene expression in same stage regenerating vs. BMP signalling deficient non-regenerating hindlimb buds. The wound epithelium of N1 transgenic hindlimb buds, which forms over the cut surface of the limb bud after amputation, does not transition normally into the distal thickened apical epithelial cap. Instead, a basement membrane and dermis form, indicative of mature skin. Furthermore, the underlying mesenchyme remains rounded and does not expand to form a cone shaped blastema, a normal feature of successful regeneration. Using Affymetrix Gene Chip analysis, we have identified genes linked to regenerative success downstream of BMP signalling, including the BMP inhibitor Gremlin and the stress protein Hsp60 (no blastema in zebrafish. Gene Ontology analysis showed that genes involved in embryonic development and growth are significantly over-represented in regenerating early hindlimb buds and that successful regeneration in the Xenopus hindlimb correlates with the induction of

  9. Nondestructive Imaging of Internal Structures of Frog (Xenopus laevis) Embryos by Shadow-Projection X-Ray Microtomography

    Science.gov (United States)

    Aoki, Sadao; Yoneda, Ikuo; Nagai, Takeharu; Ueno, Naoto; Murakami, Kazuo

    1994-04-01

    Nondestructive high-resolution imaging of frog ( Xenopus laevis) embryos has been developed by X-ray microtomography. Shadow-projection X-ray microtomography with a brilliant fine focus laboratory X-ray source could image fine structures of Xenopus embryos which were embedded in paraffin wax. The imaging system enabled us to not only distinguish endoderm from ectoderm at the gastrula stage, but also to obtain a cross-section view of the tail bud embryo showing muscle, notochord and neural tube without staining. Furthermore, the distribution of myosin was also imaged in combination with whole-mount immunohistochemistry.

  10. PARTICIPACION DE PROTEINAS-G EN EL PROCESO DE MADURACION INDUCIDO POR PROGESTERONA EN OVOCITOS DE XENOPUS LAEVIS

    OpenAIRE

    ROMO MARTY, XIMENA CAROLINA

    2005-01-01

    La hormona progesterona induce el proceso de maduración meiótica del ovocito de Xenopus laevis a través de un mecanismo de acción no genómico, el cual se caracteriza por ser un evento rápido en el tiempo y que involucra la inhibición del sistema efector a 134p.

  11. Effect of water hardness on oocyte quality and embryo development in the African clawed frog (Xenopus laevis).

    Science.gov (United States)

    Godfrey, Earl W; Sanders, George E

    2004-04-01

    Husbandry and health of the African clawed frog, Xenopus laevis, greatly influences the quality of oocytes produced. One factor affecting oocyte quality is the water conditions in which females are maintained. Dechlorination and adequate salt concentration are known to affect oocytes, but water hardness has not been considered an important factor in Xenopus husbandry by the research community. We found that, when females were kept in soft water or water with marine salts alone, even when it was cooled to 17 to 18 degrees C, the quality of oocytes decreased; only 20 to 25% of resulting embryos developed to tailbud stages. Survival and normal development of embryos increased significantly within one month of addition to the laboratory housing water of salts that mimic conditions in African Rift Valley lakes. These salts greatly increased water hardness; development of embryos to tailbud stages remained high (50 to 70% on average) for more than a year after their addition to the water housing females. Water from South African ponds where X. laevis are collected, and from wells used by the major suppliers of X. laevis, also was moderately to very hard. Our results suggest that X. laevis is naturally adapted to hard water, and indicate that increasing general hardness during laboratory housing is more important for oocyte quality and embryo development than is increasing carbonate hardness (alkalinity) in the water used to house females.

  12. Controlling the Messenger: Regulated Translation of Maternal mRNAs in Xenopus laevis Development.

    Science.gov (United States)

    Sheets, Michael D; Fox, Catherine A; Dowdle, Megan E; Blaser, Susanne Imboden; Chung, Andy; Park, Sookhee

    2017-01-01

    The selective translation of maternal mRNAs encoding cell-fate determinants drives the earliest decisions of embryogenesis that establish the vertebrate body plan. This chapter will discuss studies in Xenopus laevis that provide insights into mechanisms underlying this translational control. Xenopus has been a powerful model organism for many discoveries relevant to the translational control of maternal mRNAs because of the large size of its oocytes and eggs that allow for microinjection of molecules and the relative ease of manipulating the oocyte to egg transition (maturation) and fertilization in culture. Consequently, many key studies have focused on the expression of maternal mRNAs during the oocyte to egg transition (the meiotic cell cycle) and the rapid cell divisions immediately following fertilization. This research has made seminal contributions to our understanding of translational regulatory mechanisms, but while some of the mRNAs under consideration at these stages encode cell-fate determinants, many encode cell cycle regulatory proteins that drive these early cell cycles. In contrast, while maternal mRNAs encoding key developmental (i.e., cell-fate) regulators that function after the first cleavage stages may exploit aspects of these foundational mechanisms, studies reveal that these mRNAs must also rely on distinct and, as of yet, incompletely understood mechanisms. These findings are logical because the functions of such developmental regulatory proteins have requirements distinct from cell cycle regulators, including becoming relevant only after fertilization and then only in specific cells of the embryo. Indeed, key maternal cell-fate determinants must be made available in exquisitely precise amounts (usually low), only at specific times and in specific cells during embryogenesis. To provide an appreciation for the regulation of maternal cell-fate determinant expression, an overview of the maternal phase of Xenopus embryogenesis will be presented

  13. Exposure to butachlor causes thyroid endocrine disruption and promotion of metamorphosis in Xenopus laevis.

    Science.gov (United States)

    Li, Shuying; Li, Meng; Wang, Qiangwei; Gui, Wenjun; Zhu, Guonian

    2016-06-01

    Butachlor is extensively applied in rice paddy ecosystem in china, and has been widespread contaminant in the aquatic environment. Here, Xenopus laevis was used for the evaluation of teratogenesis developmental toxicity, and disruption of thyroid system when exposure to different concentrations of butachlor by window phase exposure. Acute toxicity investigation shown that 96 h-LC50 value of butachlor was 1.424 mg L(-1) and 0.962 mg L(-1) for tadpoles (starting from stages 46/47) and embryos (starting from stages 8/9), respectively. Exposure to butachlor caused malformation, including abnormal eye, pericardial edema, enlarged proctodaeum and bent tail. Window phase exposure test indicated that butachlor significantly promote the contents of whole-body thyroid hormones (THs, T3 and T4) at higher levels, indicating thyroid endocrine disruption. At 7 days, exposure to butachlor up-regulated the mRNA expression of genes involved in THs synthesis and metabolism (tshα, tg, tpo and dio1) and THs receptors (trα and trβ). At 14 days, up-regulation of the mRNA expression of genes related to THs synthesis and metabolism (tshα, tshβ, tg, tpo, dio1, dio2 and ttr) and THs receptors (trβ) were also observed after the exposure to butachlor. At 21 days, butachlor up-regulated the mRNA expression of tshα, tg, tpo genes and down-regulated the mRNA expression of tshβ, tg, dio1, ttr and trα genes. These results showed that butachlor could change the mRNA expression of genes involved in the HPT axis and increase whole-body thyroid hormones levels of X. laevis tadpoles in a dose- and time-dependent manner, causing thyroid endocrine disruption and developmental toxicity.

  14. Functional and Structural Effects of Amyloid-β Aggregate on Xenopus laevis Oocytes

    Science.gov (United States)

    Parodi, Jorge; la Paz, Lenin Ochoa-de; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2012-01-01

    Xenopus laevis oocytes exposed to amyloid-β aggregate generated oscillatory electric activity (blips) that was recorded by two-microelectrode voltage-clamp. The cells exhibited a series of “spontaneous” blips ranging in amplitude from 3.8 ± 0.9 nA at the beginning of the recordings to 6.8 ± 1.7 nA after 15 min of exposure to 1 μM aggregate. These blips were similar in amplitude to those induced by the channel-forming antimicrobial agents amphotericin B (7.8 ± 1.2 nA) and gramicidin (6.3 ± 1.1 nA). The amyloid aggregate-induced currents were abolished when extracellular Ca2+ was removed from the bathing solution, suggesting a central role for this cation in generating the spontaneous electric activity. The amyloid aggregate also affected the Ca2+-dependent Cl− currents of oocytes, as shown by increased amplitude of the transient-outward chloride current (Tout) and the serum-activated, oscillatory Cl− currents. Electron microcopy revealed that amyloid aggregate induced the dissociation of the follicular cells that surround the oocyte, thus leading to a failure in the electro-chemical communication between these cells. This was also evidenced by the suppression of the oscillatory Ca2+-dependent ATP-currents, which require proper coupling between oocytes and the follicular cell layer. These observations, made using the X. laevis oocytes as a versatile experimental model, may help to understand the effects of amyloid aggregate on cellular communication. PMID:23104436

  15. Ion Currents Induced by ATP and Angiotensin II in Cultured Follicular Cells of Xenopus laevis

    Science.gov (United States)

    Montiel-Herrera, Marcelino; Zaske, Ana María; García-Colunga, Jesús; Martínez-Torres, Ataúlfo; Miledi, Ricardo

    2011-01-01

    Xenopus laevis oocytes are commonly used to study the biophysical and pharmacological properties of foreign ion channels and receptors, but little is known about those endogenously expressed in their enveloping layer of follicular cells (FCs). Whole-cell recordings and the perforated patch-clamp technique in cultured FCs held at -60 mV revealed that ATP (20-250 μM) generates inward currents of 465 ± 93 pA (mean ± standard error) in ∼60% of the FCs studied, whereas outward currents of 317 ± 100 pA were found in ∼5% of the cells. The net effect of ATP on the FCs was to activate both mono- and biphasic inward currents, with an associated increase in membrane chloride conductance. Two-microelectrode voltage-clamp recordings of nude oocytes held at -60 mV disclosed that ATP elicited biphasic inward currents, corresponding to the well-known Fin and Sin-like currents. ATP receptor antagonists like suramin, TNP-ATP, and RB2 did not inhibit any of these responses. On the other hand, when using wholecell recordings, 1 μM Ang II yielded smooth inward currents of 157 ± 45 pA in ∼16% of the FC held at -60 mV. The net Ang II response, mediated by the activation of the AT1 receptor, was a chloride current inhibited by 10 nM ZD7155. This study will help to better understand the roles of ATP and Ang II receptors in the physiology of X. laevis oocytes. PMID:22083304

  16. Low concentrations of metal mixture exposures have adverse effects on selected biomarkers of Xenopus laevis tadpoles

    Energy Technology Data Exchange (ETDEWEB)

    Yologlu, Ertan, E-mail: ertanyologlu82@gmail.com [Adiyaman University, Faculty of Education, Department of Science Education, 02040 Adiyaman (Turkey); Ozmen, Murat [Inonu University, Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts & Science, 44280 Malatya (Turkey)

    2015-11-15

    Highlights: • Selected metal mixtures were evaluated for toxicity of safety limit concentrations. • Xenopus laevis tadpoles were used as model test organism. • Combinations of LC{sub 50} and LC{sub 50}/2 caused 100% lethality for some metals. • Metals did not change metallothionein levels in low concentrations. • Selected enzyme activities showed induction after low concentration exposures. - Abstract: Polluted ecosystems may contain mixtures of metals, such that the combinations of metals, even in low concentrations, may cause adverse effects. In the present study, we focused on toxic effects of mixtures of selected metals, the LC{sub 50} values, and also their safety limit in aquatic systems imposed by the European legislation using a model organism. Xenopus laevis tadpoles were used as test organisms. They were exposed to metals or their combinations due to 96-h LC{sub 50} values. Glutathione S-transferase (GST), glutathione reductase (GR), acetylcholinesterase (AChE), carboxylesterase (CaE), glutathione peroxidase (GPx), and catalase (CAT) levels were evaluated. Metallothionein concentrations were also determined. The LC{sub 50}s for Cd, Pb, and Cu were calculated as 5.81 mg AI/L, 123.05 mg AI/L, and 0.85 mg AI/L, respectively. Low lethality ratios were observed with unary exposure of each metal in lower concentrations. Double or triple combinations of LC{sub 50} and LC{sub 50}/2 concentrations caused 100% lethality with Cd + Cu and Pb + Cd + Cu mixtures, while the Pb + Cu mixture also caused high lethal ratios. The selected enzyme activities were significantly affected by metals or mixtures, and dose-related effects were determined. The metallothionein levels generally increased as related to concentration in unary metals and mixtures. Acceptable limit values of unary metals and mixtures did not significantly change metallothionein levels. The results suggest that oxidative stress-related mechanisms are involved in the toxicity induced by selected

  17. PEX11β induces peroxisomal gene expression and alters peroxisome number during early Xenopus laevis development

    Directory of Open Access Journals (Sweden)

    Damjanovski Sashko

    2011-04-01

    Full Text Available Abstract Background Peroxisomes are organelles whose roles in fatty acid metabolism and reactive oxygen species elimination have contributed much attention in understanding their origin and biogenesis. Many studies have shown that de novo peroxisome biogenesis is an important regulatory process, while yeast studies suggest that total peroxisome numbers are in part regulated by proteins such as Pex11, which can facilitate the division of existing peroxisomes. Although de novo biogenesis and divisions are likely important mechanisms, the regulation of peroxisome numbers during embryonic development is poorly understood. Peroxisome number and function are particularly crucial in oviparous animals such as frogs where large embryonic yolk and fatty acid stores must be quickly metabolized, and resulting reactive oxygen species eliminated. Here we elucidate the role of Pex11β in regulating peroxisomal gene expression and number in Xenopus laevis embryogenesis. Results Microinjecting haemagglutinin (HA tagged Pex11β in early embryos resulted in increased RNA levels for peroxisome related genes PMP70 and catalase at developmental stages 10 and 20, versus uninjected embryos. Catalase and PMP70 proteins were found in punctate structures at stage 20 in control embryos, whereas the injection of ectopic HA-Pex11β induced their earlier localization in punctate structures at stage 10. Furthermore, the peroxisomal marker GFP-SKL, which was found localized as peroxisome-like structures at stage 20, was similarly found at stage 10 when co-microinjected with HA-Pex11β. Conclusions Overexpressed Pex11β altered peroxisomal gene levels and induced the early formation of peroxisomes-like structures during development, both of which demonstrate that Pex11β may be a key regulator of peroxisome number in early Xenopus embryos.

  18. Myosin heavy chain isoform composition and stretch activation kinetics in single fibres of Xenopus laevis iliofibularis muscle.

    Science.gov (United States)

    Andruchova, Olena; Stephenson, Gabriela M M; Andruchov, Oleg; Stephenson, D George; Galler, Stefan

    2006-07-01

    Skeletal muscle is composed of specialized fibre types that enable it to fulfil complex and variable functional needs. Muscle fibres of Xenopus laevis, a frog formerly classified as a toad, were the first to be typed based on a combination of physiological, morphological, histochemical and biochemical characteristics. Currently the most widely accepted criterion for muscle fibre typing is the myosin heavy chain (MHC) isoform composition because it is assumed that variations of this protein are the most important contributors to functional diversity. Yet this criterion has not been used for classification of Xenopus fibres due to the lack of an effective protocol for MHC isoform analysis. In the present study we aimed to resolve and visualize electrophoretically the MHC isoforms expressed in the iliofibularis muscle of Xenopus laevis, to define their functional identity and to classify the fibres based on their MHC isoform composition. Using a SDS-PAGE protocol that proved successful with mammalian muscle MHC isoforms, we were able to detect five MHC isoforms in Xenopus iliofibularis muscle. The kinetics of stretch-induced force transients (stretch activation) produced by a fibre was strongly correlated with its MHC isoform content indicating that the five MHC isoforms confer different kinetics characteristics. Hybrid fibre types containing two MHC isoforms exhibited stretch activation kinetics parameters that were intermediate between those of the corresponding pure fibre types. These results clearly show that the MHC isoforms expressed in Xenopus muscle are functionally different thereby validating the idea that MHC isoform composition is the most reliable criterion for vertebrate skeletal muscle fibre type classification. Thus, our results lay the foundation for the unequivocal classification of the muscle fibres in the Xenopus iliofibularis muscle and for gaining further insights into skeletal muscle fibre diversity.

  19. Post-transcriptional regulation of ornithine decarboxylase in Xenopus laevis oocytes.

    Science.gov (United States)

    Bassez, T; Paris, J; Omilli, F; Dorel, C; Osborne, H B

    1990-11-01

    The level at which ornithine decarboxylase expression is regulated in growing oocytes has been investigated. Immunoprecipitation of the in vivo labelled proteins showed that ornithine decarboxylase accumulated less rapidly in stage IV oocytes than in previtellogenic stage I + II oocytes. Quantitative Northern analysis showed that ornithine decarboxylase mRNA is abundant in oocytes (about 8 x 10(8) transcripts/cell) and this number does not significantly change during oogenesis. Polysome analysis showed that this mRNA is present in polysomes in stage I + II oocytes but has passed into puromycin-insensitive mRNP particles by stage IV of oogenesis. Therefore, during the growth phase of oogenesis, ornithine decarboxylase expression is regulated at a translational level. These results are discussed relative to the temporal expression of ornithine decarboxylase and of other proteins whose expression also decreases during oogenesis. In order to perform these experiments, the cDNA (XLODC1) corresponding to Xenopus laevis ornithine decarboxylase mRNA was cloned and sequenced.

  20. Temperature-independent energy expenditure in early development of the African clawed frog Xenopus laevis

    Science.gov (United States)

    Nagano, Yatsuhisa; Ode, Koji L.

    2014-08-01

    The thermal dissipation of activated eggs and embryos undergoing development from cleavage to the tailbud stage of the African clawed frog Xenopus laevis was measured as a function of incubation time at temperatures ranging from T = 288.2 K to 295.2 K, using a high-precision isothermal calorimeter. A23187-mediated activation of mature eggs induced stable periodic thermal oscillations lasting for 8-34 h. The frequency agreed well with the cell cycle frequency of initial cleavages at the identical temperature. In the developing embryo, energy metabolism switches from embryonic to adult features during gastrulation. The thermal dissipation after gastrulation fit well with a single modified Avrami equation, which has been used for modeling crystal-growth. Both the oscillation frequency of the activated egg and the growth rate of the embryo strongly depend on temperature with the same apparent activation energy of approximately 87 kJ mole-1. This result suggests that early development proceeds as a single biological time, attributable to a single metabolic rate. A temperature-independent growth curve was derived by scaling the thermogram to the biological time, indicating that the amount of energy expenditure during each developmental stage is constant over the optimal temperature range.

  1. Electroencephalographic and physiologic changes after tricaine methanesulfonate immersion of African clawed frogs (Xenopus laevis).

    Science.gov (United States)

    Lalonde-Robert, Vanessa; Desgent, Sébastien; Duss, Sandra; Vachon, Pascal

    2012-01-01

    The objective of this study was to determine electroencephalographic and complementary physiologic changes in Xenopus leavis frogs after bath immersion in MS222. We also evaluated the addition of sodium pentobarbital injected intracoelomi- cally 2 h after MS222 immersion to achieve euthanasia. Frogs (n = 9) weighing 105.5 ± 8.4 g (mean ± 1 SD) were immersed in MS222 at either 1 or 3 g/L until anesthesia was achieved; a conductive stainless steel screw then was implanted in the skull on top of the outer pial surface of the brain. Frogs were immersed again in MS222 at the same concentration as previously, and electroencephalograms, heart rate, oxygen saturation, and respiratory movements were recorded. Amplitude and mean frequency of the electroencephalographic signal were evaluated at 15-min intervals until a flat-line signal was achieved. At 2 h after induction, frogs were injected intracoelomically with sodium pentobarbital (0.5 mL; 240 mg/mL) to accelerate euthanasia. Immersion of frogs in 1 or 3 g/L of MS222 depressed cerebral activity within 30 min without a significant effect on cardiac function. Intracoelomic injection of sodium pentobarbital at 2 h after MS222 administration rapidly (3.2 ± 1.7 min) induced cardiac arrest. In conclusion, immersion in MS222 can be used for the collection of organs from X. laevis frogs, but the addition of pentobarbital is required to achieve euthanasia.

  2. Changes in oscillatory dynamics in the cell cycle of early Xenopus laevis embryos.

    Directory of Open Access Journals (Sweden)

    Tony Y-C Tsai

    2014-02-01

    Full Text Available During the early development of Xenopus laevis embryos, the first mitotic cell cycle is long (∼85 min and the subsequent 11 cycles are short (∼30 min and clock-like. Here we address the question of how the Cdk1 cell cycle oscillator changes between these two modes of operation. We found that the change can be attributed to an alteration in the balance between Wee1/Myt1 and Cdc25. The change in balance converts a circuit that acts like a positive-plus-negative feedback oscillator, with spikes of Cdk1 activation, to one that acts like a negative-feedback-only oscillator, with a shorter period and smoothly varying Cdk1 activity. Shortening the first cycle, by treating embryos with the Wee1A/Myt1 inhibitor PD0166285, resulted in a dramatic reduction in embryo viability, and restoring the length of the first cycle in inhibitor-treated embryos with low doses of cycloheximide partially rescued viability. Computations with an experimentally parameterized mathematical model show that modest changes in the Wee1/Cdc25 ratio can account for the observed qualitative changes in the cell cycle. The high ratio in the first cycle allows the period to be long and tunable, and decreasing the ratio in the subsequent cycles allows the oscillator to run at a maximal speed. Thus, the embryo rewires its feedback regulation to meet two different developmental requirements during early development.

  3. Cadmium but not lead exposure affects Xenopus laevis fertilization and embryo cleavage

    Energy Technology Data Exchange (ETDEWEB)

    Slaby, Sylvain [Univ. Lille Nord de France, EA 4515 – LGCgE – Laboratoire Génie Civil et géo-Environnement, Université de Lille 1, Cité scientifique, SN3, F-59655 Villeneuve d’Ascq (France); Univ. Lille, CNRS, INRA, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille (France); Lemière, Sébastien [Univ. Lille Nord de France, EA 4515 – LGCgE – Laboratoire Génie Civil et géo-Environnement, Université de Lille 1, Cité scientifique, SN3, F-59655 Villeneuve d’Ascq (France); Hanotel, Julie; Lescuyer, Arlette [Univ. Lille, CNRS, INRA, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille (France); Demuynck, Sylvain [Univ. Lille Nord de France, EA 4515 – LGCgE – Laboratoire Génie Civil et géo-Environnement, Université de Lille 1, Cité scientifique, SN3, F-59655 Villeneuve d’Ascq (France); Bodart, Jean-François [Univ. Lille, CNRS, INRA, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille (France); and others

    2016-08-15

    Highlights: • First embryonic steps were studied. • Fertilization success was impacted by cadmium exposures. • Oocytes were most affected instead of spermatozoa by cadmium exposures. • First embryonic cleavages were slown down or stopped by cadmium exposures. • Lead exposures did not affected fertilization and segmentation. - Abstract: Among the toxicological and ecotoxicological studies, few have investigated the effects on germ cells, gametes or embryos, while an impact at these stages will result in serious damage at a population level. Thus, it appeared essential to characterize consequences of environmental contaminant exposures at these stages. Therefore, we proposed to assess the effects of exposure to cadmium and lead ions, alone or in a binary mixture, on early stages of Xenopus laevis life cycle. Fertilization and cell division during segmentation were the studied endpoints. Cadmium ion exposures decreased in the fertilization rates in a concentration-dependent manner, targeting mainly the oocytes. Exposure to this metal ions induced also delays or blockages in the embryonic development. For lead ion exposure, no such effect was observed. For the exposure to the mixture of the two metal ions, concerning the fertilization success, we observed results similar to those obtained with the highest cadmium ion concentration.

  4. Inhibition of the thyroid hormone pathway in Xenopus laevis by 2-mercaptobenzothiazole

    Energy Technology Data Exchange (ETDEWEB)

    Tietge, Joseph E., E-mail: tietge.joe@epa.gov [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804 (United States); Degitz, Sigmund J., E-mail: degitz.sigmund@epa.gov [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804 (United States); Haselman, Jonathan T., E-mail: haselman.jon@epa.gov [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804 (United States); Butterworth, Brian C., E-mail: butterworth.brian@epa.gov [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804 (United States); Korte, Joseph J., E-mail: korte.joe@epa.gov [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804 (United States); Kosian, Patricia A., E-mail: kosian.pat@epa.gov [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804 (United States); Lindberg-Livingston, Annelie J., E-mail: lind1020@d.umn.edu [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804 (United States); and others

    2013-01-15

    Determining the effects of chemicals on the thyroid system is an important aspect of evaluating chemical safety from an endocrine disrupter perspective. Since there are numerous chemicals to test and limited resources, prioritizing chemicals for subsequent in vivo testing is critical. 2-Mercaptobenzothiazole (MBT), a high production volume chemical, was tested and shown to inhibit thyroid peroxidase (TPO) enzyme activity in vitro, a key enzyme necessary for the synthesis of thyroid hormone. To determine the thyroid disrupting activity of MBT in vivo, Xenopus laevis larvae were exposed using 7- and 21-day protocols. The 7-day protocol used 18-357 {mu}g/L MBT concentrations and evaluated: metamorphic development, thyroid histology, circulating T4, circulating thyroid stimulating hormone, thyroidal sodium-iodide symporter gene expression, and thyroidal T4, T3, and related iodo-amino acids. The 21-day protocol used 23-435 {mu}g/L MBT concentrations and evaluated metamorphic development and thyroid histology. Both protocols demonstrated that MBT is a thyroid disrupting chemical at the lowest concentrations tested. These studies complement the in vitro study used to identify MBT as a high priority for in vivo testing, supporting the utility/predictive potential of a tiered approach to testing chemicals for TPO activity inhibition. The 7-day study, with more comprehensive, sensitive, and diagnostic endpoints, provides information at intermediate biological levels that enables linking various endpoints in a robust and integrated pathway for thyroid hormone disruption associated with TPO inhibition.

  5. Brain-derived neurotrophic factor (BDNF) expression in normal and regenerating olfactory epithelium of Xenopus laevis.

    Science.gov (United States)

    Frontera, Jimena Laura; Cervino, Ailen Soledad; Jungblut, Lucas David; Paz, Dante Agustín

    2015-03-01

    Olfactory epithelium has the capability to continuously regenerate olfactory receptor neurons throughout life. Adult neurogenesis results from proliferation and differentiation of neural stem cells, and consequently, olfactory neuroepithelium offers an excellent opportunity to study neural regeneration and the factors involved in the maintenance and regeneration of all their cell types. We analyzed the expression of BDNF in the olfactory system under normal physiological conditions as well as during a massive regeneration induced by chemical destruction of the olfactory epithelium in Xenopus laevis larvae. We described the expression and presence of BDNF in the olfactory epithelium and bulb. In normal physiological conditions, sustentacular (glial) cells and a few scattered basal (stem) cells express BDNF in the olfactory epithelium as well as the granular cells in the olfactory bulb. Moreover, during massive regeneration, we demonstrated a drastic increase in basal cells expressing BDNF as well as an increase in BDNF in the olfactory bulb and nerve. Together these results suggest an important role of BDNF in the maintenance and regeneration of the olfactory system.

  6. Action of nereistoxin on recombinant neuronal nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes.

    Science.gov (United States)

    Raymond Delpech, Valérie; Ihara, Makoto; Coddou, Claudio; Matsuda, Kazuhiko; Sattelle, David B

    2003-11-01

    Nereistoxin (NTX), a natural neurotoxin from the salivary glands of the marine annelid worm Lumbriconereis heteropoda, is highly toxic to insects. Its synthetic analogue, Cartap, was the first commercial insecticide based on a natural product. We have used voltage-clamp electrophysiology to compare the actions of NTX on recombinant nicotinic acetylcholine receptors (nicotinic AChRs) expressed in Xenopus laevis oocytes following nuclear injection of cDNAs. The recombinant nicotinic AChRs investigated were chicken alpha7, chicken alpha4beta2 and the Drosophila melanogaster/chicken hybrid receptors SAD/beta2 and ALS/beta2. No agonist action of NTX (0.1-100 microM) was observed on chicken alpha7, chicken alpha4beta2 and the Drosophila/chicken hybrid nicotinic AChRs. Currents elicited by ACh were reduced in amplitude by NTX in a dose-dependent manner. The toxin was slightly more potent on recombinant Drosophila/vertebrate hybrid receptors than on vertebrate homomeric (alpha7) or heteromeric (alpha4beta2) nicotinic AChRs. Block by NTX of the chicken alpha7, chicken alpha4beta2 and the SAD/beta2 and ALS/beta2 Drosophila/chicken hybrid receptors is in all cases non-competitive. Thus, the site of action on nicotinic AChRs of NTX, to which the insecticide Cartap is metabolised in insects, differs from that of the major nicotinic AChR-active insecticide, imidacloprid.

  7. Triclosan and anuran metamorphosis: no effect on thyroid-mediated metamorphosis in Xenopus laevis.

    Science.gov (United States)

    Fort, Douglas J; Rogers, Robert L; Gorsuch, Joseph W; Navarro, Lisa T; Peter, Robert; Plautz, James R

    2010-02-01

    Nieuwkoop and Faber stage 51 Xenopus laevis larvae were exposed for 21 days to four different concentrations of triclosan (TCS): <0.2 (control), 0.6, 1.5, 7.2, or 32.3 microg TCS/l. Primary endpoints were survival, hind limb length, body length (whole; snout to vent), developmental stage, wet whole body weight, and thyroid histology. Thyroid hormone (TH) concentrations were determined in whole thyroid and plasma samples from stage-matched exposure day 21 specimens. TH receptor-beta (TRbeta) expression was measured in stage-matched tail fin tissue samples collected at exposure days 0 and 21. Reduced larval growth occurred at exposure day 21 with 1.5 microg/l treatment. Larval developmental stage at exposure day 21 was not significantly different from controls based on observed parameters. Thyroid histology was not affected by TCS, and thyroxine (T4) levels in thyroid glands or plasma were not different from controls. A concentration-dependent increase in TRbeta expression in exposure day 21 larvae was not detected. However, increased expression was found in stage-matched larvae exposed to 1.5 or 7.2 microg TCS/l. Our study indicates that environmentally relevant TCS concentrations do not alter the normal course of thyroid-mediated metamorphosis in this standard anuran model.

  8. Wound healing ability of Xenopus laevis embryos. I. Rapid wound closure achieved by bisectional half embryos.

    Science.gov (United States)

    Yoshii, Yasuko; Noda, Masahiro; Matsuzaki, Takashi; Ihara, Setsunosuke

    2005-10-01

    We examined wound closure in 'half embryos' produced by the transverse bisection of Xenopus laevis embryos at the primary eye vesicle stage. Both the anterior- and posterior-half embryos survived for more than 6 days, and grew into 'half tadpoles'. Histology and videomicroscopy revealed that the open wound in the half embryo was rapidly closed by an epithelial sheet movement in the wound marginal zone. The time-course of wound closure showed a downward convex curve: the wound area decreased to one-fifth of the original area within 30 min, and the wound continued to contract slowly thereafter. The rapidity of closure of the epidermis as well as the absence of inflammatory cells are typical features of an embryonic type of wound healing. There was a dorso-ventral polarity in the motility of the epidermis: the wound was predominantly closed by the ventral and lateral epidermis. The change in the contour of the wound edge with time suggested a complex mechanism involved in the wound closure that could not be explained only by the purse-string theory. The present experimental system would be a unique and useful model for analyses of cellular movements in the embryonic epithelia.

  9. Hepatic confinement of newly produced erythrocytes caused by low-temperature exposure in Xenopus laevis.

    Science.gov (United States)

    Maekawa, Shun; Iemura, Hitomi; Kuramochi, Yuko; Nogawa-Kosaka, Nami; Nishikawa, Hironori; Okui, Takehito; Aizawa, Youichi; Kato, Takashi

    2012-09-01

    Diminished erythrocyte count and erythropoiesis have been reported during hypothermia in some ectothermic animals. In this study, the African clawed frog, Xenopus laevis, was used to investigate the cause of hypothermia-induced anemia. We developed a new model of hypothermia at 5°C and monitored blood cell count and erythropoiesis on several days. Erythrocyte count declined by 30% on the first day following cold exposure (5°C) and mRNA expression of hemeoxygenase-1 was enhanced 10-fold; accumulation of iron as a result of heme degradation was observed in the liver. One day after low-temperature exposure, erythropoietin mRNA expression was elevated in the liver and lung compared with that at normal temperature (22°C) by qRT-PCR analysis. Examination of liver sections (i.e. the erythropoietic organ) showed an increase in o-dianisidine-positive erythrocytes in the hepatic sinusoid 5 days after the onset of low-temperature exposure compared with normal liver. Peripheral erythrocyte count remained low, indicating that newly produced erythrocytes did not migrate from the liver to the circulation during hypothermia. In conclusion, this study reveals hypothermic anemia as being associated with hepatic erythrocyte destruction; prolonged anemia during low-temperature exposure is concomitant with newly produced erythrocytes being confined to the liver and may lead to new insights into vertebrate hematopoiesis.

  10. Analgesic effects of meloxicam, morphine sulfate, flunixin meglumine, and xylazine hydrochloride in African-clawed frogs (Xenopus laevis).

    Science.gov (United States)

    Coble, Dondrae J; Taylor, Douglas K; Mook, Deborah M

    2011-05-01

    We evaluated analgesic use and analgesiometry in aquatic African-clawed frogs (Xenopus laevis). We used the acetic acid test (AAT) to assess the analgesic potential of systemic xylazine hydrochloride, meloxicam, flunixin meglumine, and morphine sulfate after injection into the dorsal lymph sac. Flunixin meglumine provided better analgesia than did the other drugs, most evident at 5 and 9 h after administration. Because the AAT was associated with the development of dermal lesions, we discontinued use of this assay and chose the Hargreaves test as an alternative method of measuring nociception in Xenopus. This assay is commonly performed in rodents, but its efficacy in an aquatic species such as Xenopus was unknown prior to this study. We found that the Hargreaves test was an effective measure of nociception in Xenopus, and we used it to evaluate the effectiveness of the nonopiod agents xylazine hydrochloride, meloxicam, and flunixin meglumine both in the absence of surgery and after surgical oocyte harvest. Similar to findings from the AAT, flunixin meglumine provided better analgesia in the Hargreaves test than did the other agents when analyzed in the absence of surgical intervention. Results were equivocal after oocyte harvest. Although surgical oocyte harvest is a common procedure in Xenopus, and currently there are no published recommendations for analgesia after this invasive surgery. Future studies are needed to clarify the efficacy of nonsteroidal antiinflammatory drugs for that purpose.

  11. Comparison of diazinon toxicity to embryos of Xenopus laevis and Danio rerio; degradation of diazinon in water.

    Science.gov (United States)

    Modra, Helena; Vrskova, Dagmar; Macova, Stanislava; Kohoutkova, Jana; Hajslova, Jana; Haluzova, Ivana; Svobodova, Zdenka

    2011-06-01

    The aim of this study was to determine the toxic effect of diazinon (organophosphate insecticide) to embryos of Xenopus laevis and Danio rerio. The 96-h LC₅₀ values showed higher toxicity of diazinon for X. leavis in standard solution (9.84 mg/L) compared to the pond water (12.64 mg/L). Teratogenic index for diazinon was 1.3 and 1.6, respectively. The 96-h LC₅₀ diazinon values demonstrated similar sensitivity of embryos D. rerio (8.21-9.34 mg/L) and X. laevis in standard test solutions. Our results reflect that direct application of diazinon into the water can be associated with significant risks to aquatic organisms.

  12. Effects of GSM-like radiofrequency irradiation during the oogenesis and spermiogenesis of Xenopus laevis.

    Science.gov (United States)

    Boga, Ayper; Emre, Mustafa; Sertdemir, Yasar; Uncu, İbrahim; Binokay, Secil; Demirhan, Osman

    2016-07-01

    We aimed to evaluate the effect of GSM-like radiofrequency electromagnetic radiation (RF-EMR) on the oogenesis, and spermiogenesis of Xenopus laevis, and so the development of the embryos obtained from Normal Females+Normal Males (i.e. "N(F)+N(M)"); Normal Females+RF-exposed Males (i.e. "N(F)+RF(M)"); RF-exposed Female+Normal Male (i.e. "RF(F)+N(M)"); and RF-exposed Female+RF-exposed Male (i.e. "RF(F)+RF(M)". Various, assessments were performed to determine potential teratogenic effects and mortality, body growth and behavior on first generation embryos. After exposing adults frogs of both sexes to 900MHz RF-EMR (at 1.0W/kg) for 8h a day over a 5-week period, the embryos' specific energy absorption rate (SAR) was calculated. In our present study (control group; 2.2% abnormal, 0.0% dead); with the N(F)+RF(M) combination, the long-term exposure of adult males to GSM-like radiation at 900MHz (RF: 2W) for 5 week/8h/day resulted in normal, abnormal and dead embryo ratios of 88.3%, 3.3% and 8.3%, respectively (p<0.001). In the RF(F)+N(M) combination, long-term exposure (5 week/8h/day) of adult females led to normal, abnormal and dead embryo ratios of 76.7%, 11.7%, and 11.7%, respectively (p<0.001). And in the RF(F)+RF(M) combination, long-term exposure (5 week/8h/day) of both adult males and females led to normal, abnormal and dead embryo ratios of 73.3%, 11.7%, and 15%, respectively (p<0.001). With the exception RF(F)+RF(M) group (p<0.001), no significant changes were observed on body growth (lengths) in comparison to the control group. It was also observed that the offspring of female adult Xenopus exposed to RF-EMR during oogenesis exhibited a more aggressive behavior compared to the control group. Cell phones radiation can thus lead to detrimental effects in humans' male and female reproductive cells.

  13. Prolonged vestibular stimulation induces homeostatic plasticity of the vestibulo-ocular reflex in larval Xenopus laevis.

    Science.gov (United States)

    Dietrich, Haike; Straka, Hans

    2016-07-01

    Vestibulo-ocular reflexes (VOR) stabilise retinal images during head/body motion in vertebrates by generating spatio-temporally precise extraocular motor commands for corrective eye movements. While VOR performance is generally robust with a relatively stable gain, cerebellar circuits are capable of adapting the underlying sensory-motor transformation. Here, we studied cerebellum-dependent VOR plasticity by recording head motion-induced lateral rectus and superior oblique extraocular motor discharge in semi-intact preparations of Xenopus laevis tadpoles. In the absence of visual feedback, prolonged sinusoidal rotation caused either an increase or decrease of the VOR gain depending on the motion stimulus amplitude. The observed changes in extraocular motor discharge gradually saturated after 20 min of constant rotation and returned to baseline in the absence of motion stimulation. Furthermore, plastic changes in lateral rectus and superior oblique motor commands were plane-specific for horizontal and vertical rotations, respectively, suggesting that alterations are restricted to principal VOR connections. Comparison of multi- and single-unit activity indicated that plasticity occurs in all recorded units of a given extraocular motor nucleus. Ablation of the cerebellum abolished motoneuronal gain changes and prevented the induction of plasticity, thus demonstrating that both acquisition and retention of this type of plasticity require an intact cerebellar circuitry. In conclusion, the plane-specific and stimulus intensity-dependent modification of the VOR gain through the feed-forward cerebellar circuitry represents a homeostatic plasticity that likely maintains an optimal working range for the underlying sensory-motor transformation.

  14. Twitch and tetanic tension during culture of mature Xenopus laevis single muscle fibres.

    Science.gov (United States)

    Jaspers, R T; Feenstra, H M; Lee- de Groot, M B; Huijing, P A; van der Laarse, W J

    2001-12-01

    Investigation of the mechanisms of muscle adaptation requires independent control of the regulating factors. The aim of the present study was to develop a serum-free medium to culture mature single muscle fibres of Xenopus laevis. As an example, we used the culture system to study adaptation of twitch and tetanic force characteristics, number of sarcomeres in series and fibre cross-section. Fibres dissected from m. iliofibularis (n = 10) were kept in culture at a fibre mean sarcomere length of 2.3 microm in a culture medium without serum. Twitch and tetanic tension were determined daily. Before and after culture the number of sarcomeres was determined by laser diffraction and fibre cross-sectional area (CSA) was determined by microscopy. For five fibres twitch tension increased during culture and tetanic tension was stable for periods varying from 8 to 14 days ('stable fibres'), after which fibres were removed from culture for analysis. Fibre CSA and the number of sarcomeres in series remained constant during culture. Five other fibres showed a substantial reduction in twitch and tetanic tension within the first five days of culture ('unstable fibres'). After 7-9 days of culture, three of these fibres died. For two of the unstable fibres, after the substantial force reduction, twitch and tetanic tension increased again. Finally at day 14 and 18 of culture, respectively, the tensions attained values higher than their original values. For stable fibres, twitch contraction time, twitch half-relaxation time and tetanus 10%-relaxation time increased during culture. For unstable fibres these parameters fluctuated. For all fibres the stimulus threshold fluctuated during the first two days, and then remained constant, even for the fibres that were cultured for at least two weeks. It is concluded that the present culture system for mature muscle fibres allows long-term studies within a well-defined medium. Unfortunately, initial tetanic and twitch force are poor predictors

  15. Differential regulation of potassium currents by FGF-1 and FGF-2 in embryonic Xenopus laevis myocytes.

    Science.gov (United States)

    Chauhan-Patel, R; Spruce, A E

    1998-10-01

    1. Fibroblast growth factors (FGFs) are involved in the regulation of many aspects of muscle development. This study investigated their role in regulating voltage-dependent K+ currents in differentiating Xenopus laevis myocytes. Both FGF-1 and FGF-2 are expressed by developing muscle cells, so their actions were compared. Experiments were performed on cultured myocytes isolated from stage 15 embryos. 2. Long-term exposure of the embryonic myocytes to FGF-1 downregulated inward rectifier K+ current (IK(IR)) density as well as both sustained and inactivating voltage-dependent outward K+ currents (IK,S and IK,I, respectively) and their densities. In contrast, FGF-2 upregulated these currents, although, because of an increase in capacitance caused by FGF-2, current density did not change with this factor. 3. The regulation of IK(IR) by FGF-1 was prevented by the cytoplasmic tyrosine kinase inhibitor herbimycin A, but that of IK,S and IK,I was unaffected, indicating that FGF-1 achieves its regulatory effects on electrical development via separate signalling pathways. The receptor tyrosine kinase inhibitor genistein in isolation suppressed K+ currents, but this may have occurred through a channel-blocking mechanism. 4. In many cells, IK, S was found to be composed of two components with differing voltage dependencies of activation. The FGFs brought about an alteration in the amount of total IK,S by equal effects on each component. Conversely, herbimycin A increased the proportion of low voltage-activated current without affecting total current amplitude. Therefore, we suggest that a single species of channel whose voltage dependence is shifted by tyrosine phosphorylation generates IK,S. 5. In summary, FGF-1 and FGF-2 exert opposite effects on voltage-dependent K+ currents in embryonic myocytes and, furthermore, FGF-1 achieves its effects on different K+ currents via separate second messenger pathways.

  16. CFTR channel in oocytes from Xenopus laevis and its regulation by xShroom1 protein.

    Science.gov (United States)

    Palma, Alejandra G; Galizia, Luciano; Kotsias, Basilio A; Marino, Gabriela I

    2016-05-01

    Shroom is a family of related proteins linked to the actin cytoskeleton. xShroom1 is constitutively expressed in Xenopus laevis oocytes, and it is required for the expression of the epithelial sodium channel (ENaC). As there is a close relationship between ENaC and the cystic fibrosis transmembrane regulator (CFTR), we examined the action of xShroom1 on CFTR expression and activity. Biotinylation was used to measure CFTR surface expression, and currents were registered with voltage clamp when stimulated with forskolin and 3-isobutyl-1-methylxanthine. Oocytes were coinjected with CFTR complementary RNAs (cRNAs) and xShroom1 sense or antisense oligonucleotides. We observed an increment in CFTR currents and CFTR surface expression in oocytes coinjected with CFTR and xShroom1 antisense oligonucleotides. MG-132, a proteasome inhibitor, did not prevent the increment in currents when xShroom1 was suppressed by antisense oligonucleotides. In addition, we inhibited the delivery of newly synthesized proteins to the plasma membrane with BFA and we found that the half-life of plasma membrane CFTR was prolonged when coinjected with the xShroom1 antisense oligonucleotides. Chloroquine, an inhibitor of the late endosome/lysosome, did not significantly increase CFTR currents when xShroom1 expression was inhibited. The higher expression of CFTR when xShroom1 is suppressed is in concordance with the functional studies suggesting that the suppression of the xShroom1 protein resulted in an increment in CFTR currents by promoting the increase of the half-life of CFTR in the plasma membrane. The role of xShroom1 in regulating CFTR expression could be relevant in the understanding of the channel malfunction in several diseases.

  17. Readaptation of the vestibuloocular reflex to 1g-Condition in immature lower vertebrates ( Xenopus laevis) after micro- or hypergravity exposure

    Science.gov (United States)

    Sebastian, C.; Horn, E.; Eβeling, K.; Neubert, J.

    The effects of altered gravitational conditions (AGC) on the development of the static vestibulo-ocular reflex (VOR) and readaptation to 1g were investigated in the amphibian Xenopus laevis. Tadpoles were exposed to microgravity (μg) during the German Space Mission D-2 for 10 days, using the STATEX closed survival system, or to 3g for 9 days during earth-bound experiments. At the beginning of AGC, the tadpoles had not yet developed the static VOR. The main results were: (i) Tadpoles with ug- or 3g-experience had a lower gain of the static VOR than the 1g-controls during the 2nd and 5th post-AGC days, (ii) Readaptation to response levels of 1g-reared controls usually occurred during the following weeks, except in slowly developing tadpoles with 3g-experience. Readaptation was less pronounced if, during the acute VOR test, tadpoles were rolled from the inclined to the normal posture than in the opposite test situation. It is postulated that (i) gravity is necessarily involved in the development of the static VOR, but only during a period including the time before onset of the first behavioural response; and (ii) readaptation which is superimposed by the processes of VOR development depends on many factors including the velocity of development, the actual excitation level of the vestibular systems and the neuroplastic properties of its specific pathways.

  18. Accumulation of heme oxygenase-1 (HSP32) in Xenopus laevis A6 kidney epithelial cells treated with sodium arsenite, cadmium chloride or proteasomal inhibitors.

    Science.gov (United States)

    Music, Ena; Khan, Saad; Khamis, Imran; Heikkila, John J

    2014-11-01

    The present study examined the effect of sodium arsenite, cadmium chloride, heat shock and the proteasomal inhibitors MG132, withaferin A and celastrol on heme oxygenase-1 (HO-1; also known as HSP32) accumulation in Xenopus laevis A6 kidney epithelial cells. Immunoblot analysis revealed that HO-1 accumulation was not induced by heat shock but was enhanced by sodium arsenite and cadmium chloride in a dose- and time-dependent fashion. Immunocytochemistry revealed that these metals induced HO-1 accumulation in a granular pattern primarily in the cytoplasm. Additionally, in 20% of the cells arsenite induced the formation of large HO-1-containing perinuclear structures. In cells recovering from sodium arsenite or cadmium chloride treatment, HO-1 accumulation initially increased to a maximum at 12h followed by a 50% reduction at 48 h. This initial increase in HO-1 levels was likely the result of new synthesis as it was inhibited by cycloheximide. Interestingly, treatment of cells with a mild heat shock enhanced HO-1 accumulation induced by low concentrations of sodium arsenite and cadmium chloride. Finally, we determined that HO-1 accumulation was induced in A6 cells by the proteasomal inhibitors, MG132, withaferin A and celastrol. An examination of heavy metal and proteasomal inhibitor-induced HO-1 accumulation in amphibians is of importance given the presence of toxic heavy metals in aquatic habitats.

  19. Protein-Carbohydrate Interaction between Sperm and the Egg-Coating Envelope and Its Regulation by Dicalcin, a Xenopus laevis Zona Pellucida Protein-Associated Protein.

    Science.gov (United States)

    Miwa, Naofumi

    2015-05-22

    Protein-carbohydrate interaction regulates multiple important processes during fertilization, an essential biological event where individual gametes undergo intercellular recognition to fuse and generate a zygote. In the mammalian female reproductive tract, sperm temporarily adhere to the oviductal epithelium via the complementary interaction between carbohydrate-binding proteins on the sperm membrane and carbohydrates on the oviductal cells. After detachment from the oviductal epithelium at the appropriate time point following ovulation, sperm migrate and occasionally bind to the extracellular matrix, called the zona pellucida (ZP), which surrounds the egg, thereafter undergoing the exocytotic acrosomal reaction to penetrate the envelope and to reach the egg plasma membrane. This sperm-ZP interaction also involves the direct interaction between sperm carbohydrate-binding proteins and carbohydrates within the ZP, most of which have been conserved across divergent species from mammals to amphibians and echinoderms. This review focuses on the carbohydrate-mediated interaction of sperm with the female reproductive tract, mainly the interaction between sperm and the ZP, and introduces the fertilization-suppressive action of dicalcin, a Xenopus laevis ZP protein-associated protein. The action of dicalcin correlates significantly with a dicalcin-dependent change in the lectin-staining pattern within the ZP, suggesting a unique role of dicalcin as an inherent protein that is capable of regulating the affinity between the lectin and oligosaccharides attached on its target glycoprotein.

  20. Protein-Carbohydrate Interaction between Sperm and the Egg-Coating Envelope and Its Regulation by Dicalcin, a Xenopus laevis Zona Pellucida Protein-Associated Protein

    Directory of Open Access Journals (Sweden)

    Naofumi Miwa

    2015-05-01

    Full Text Available Protein-carbohydrate interaction regulates multiple important processes during fertilization, an essential biological event where individual gametes undergo intercellular recognition to fuse and generate a zygote. In the mammalian female reproductive tract, sperm temporarily adhere to the oviductal epithelium via the complementary interaction between carbohydrate-binding proteins on the sperm membrane and carbohydrates on the oviductal cells. After detachment from the oviductal epithelium at the appropriate time point following ovulation, sperm migrate and occasionally bind to the extracellular matrix, called the zona pellucida (ZP, which surrounds the egg, thereafter undergoing the exocytotic acrosomal reaction to penetrate the envelope and to reach the egg plasma membrane. This sperm-ZP interaction also involves the direct interaction between sperm carbohydrate-binding proteins and carbohydrates within the ZP, most of which have been conserved across divergent species from mammals to amphibians and echinoderms. This review focuses on the carbohydrate-mediated interaction of sperm with the female reproductive tract, mainly the interaction between sperm and the ZP, and introduces the fertilization-suppressive action of dicalcin, a Xenopus laevis ZP protein-associated protein. The action of dicalcin correlates significantly with a dicalcin-dependent change in the lectin-staining pattern within the ZP, suggesting a unique role of dicalcin as an inherent protein that is capable of regulating the affinity between the lectin and oligosaccharides attached on its target glycoprotein.

  1. Early changes in the ultrastructure of the pars intermedia of the pituitary of Xenopus laevis after change of background color.

    Science.gov (United States)

    Volcanes, B D; Weatherhead, B

    1976-01-01

    Stereological analysis of the secretory cells of the pars intermedia of Xenopus laevis over a period of 3 days following the transfer of animals from a white to a black background has revealed that significant alterations in the ultrastructural appearance of these cells can be detected 8 h after the transfer. In particular, changes in the secretory granules and the rough endoplasmic reticulum were found to correlate well with previous reports concerning the melanocyte-stimulating hormone (MSH) content and the capacity for protein synthesis of the pars intermedia.

  2. Comparative study of diclofenac-induced embryotoxicity and teratogenesis in Xenopus laevis and Lithobates catesbeianus, using the frog embryo teratogenesis assay: Xenopus (FETAX).

    Science.gov (United States)

    Cardoso-Vera, Jesús Daniel; Islas-Flores, Hariz; SanJuan-Reyes, Nely; Montero-Castro, Elena Irabella; Galar-Martínez, Marcela; García-Medina, Sandra; Elizalde-Velázquez, Armando; Dublán-García, Octavio; Gómez-Oliván, Leobardo Manuel

    2017-01-01

    Water is an increasingly deteriorated, limited natural resource due to population increase and industrialization. Also, the widespread use of pharmaceuticals in modern society leads to their presence in domestic, hospital and industrial effluents. Due to their analgesic properties, some of the most commonly used pharmaceuticals are nonsteroidal anti-inflammatory drugs (NSAIDs). High concentrations of one these products, diclofenac (DCF), have been detected in effluents and water bodies of different countries, including Mexico. Diverse studies show that trace amounts (ngL(-1) to μgL(-1)) of this compound induce toxicity on aquatic organisms such as algae, microcrustaceans and fish. However, studies on its potential toxicity during development in species of commercial interest such as the American bullfrog Lithobates catesbeianus are scarce. The present study aimed to evaluate DCF-induced teratogenesis and embryotoxicity in Xenopus laevis and L. catesbeianus, a species marketed as a nutritional meat source in Mexico, using the frog embryo teratogenesis assay: Xenopus (FETAX). Oocytes in mid-blastula transition were exposed for 96h to 1, 4, 8, 16, 32 and 62.5mgDCFL(-1). The criteria evaluated were mortality, malformation and growth inhibition. The teratogenic index was 4.2 in L. catesbeianus, three-fold higher than the reference limit (1.5), and 3.9 in X. laevis. Diclofenac induced diverse malformations in both species, the most frequent of these being axial malformations in the tail and notochord, edema and stunted growth. Results indicate that DCF is a potentially teratogenic compound and is toxic during development in X. laevis and L. catesbeianus, a species which, due to its sensitivity, can be used to evaluate the toxicity of pharmaceutical products, using FETAX.

  3. Cdc42 Effector Protein 2 (XCEP2 is required for normal gastrulation and contributes to cellular adhesion in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Nelson Richard W

    2004-10-01

    Full Text Available Abstract Background Rho GTPases and their downstream effector proteins regulate a diverse array of cellular processes during embryonic development, including reorganization of cytoskeletal architecture, cell adhesion, and transcription. Changes in the activation state of Rho GTPases are converted into changes in cellular behavior by a diversity of effector proteins, which are activated in response to changes in the GTP binding state of Rho GTPases. In this study we characterize the expression and function of one such effector, XCEP2, that is present during gastrulation stages in Xenopus laevis. Results In a search for genes whose expression is regulated during early stages of embryonic development in Xenopus laevis, a gene encoding a Rho GTPase effector protein (Xenopus Cdc42 effector protein 2, or XCEP2 was isolated, and found to be highly homologous, but not identical, to a Xenopus sequence previously submitted to the Genbank database. These two gene sequences are likely pseudoalleles. XCEP2 mRNA is expressed at constant levels until mid- to late- gastrula stages, and then strongly down-regulated at late gastrula/early neurula stages. Injection of antisense morpholino oligonucleotides directed at one or both pseudoalleles resulted in a significant delay in blastopore closure and interfered with normal embryonic elongation, suggesting a role for XCEP2 in regulating gastrulation movements. The morpholino antisense effect could be rescued by co-injection with a morpholino-insensitive version of the XCEP2 mRNA. Antisense morpholino oligonucleotides were found to have no effect on mesodermal induction, suggesting that the observed effects were due to changes in the behavior of involuting cells, rather than alterations in their identity. XCEP2 antisense morpholino oligonucleotides were also observed to cause complete disaggregation of cells composing animal cap explants, suggesting a specific role of XCEP2 in maintenance or regulation of cell

  4. De novo Transcriptome Assemblies of Rana (Lithobates catesbeiana and Xenopus laevis Tadpole Livers for Comparative Genomics without Reference Genomes.

    Directory of Open Access Journals (Sweden)

    Inanc Birol

    Full Text Available In this work we studied the liver transcriptomes of two frog species, the American bullfrog (Rana (Lithobates catesbeiana and the African clawed frog (Xenopus laevis. We used high throughput RNA sequencing (RNA-seq data to assemble and annotate these transcriptomes, and compared how their baseline expression profiles change when tadpoles of the two species are exposed to thyroid hormone. We generated more than 1.5 billion RNA-seq reads in total for the two species under two conditions as treatment/control pairs. We de novo assembled these reads using Trans-ABySS to reconstruct reference transcriptomes, obtaining over 350,000 and 130,000 putative transcripts for R. catesbeiana and X. laevis, respectively. Using available genomics resources for X. laevis, we annotated over 97% of our X. laevis transcriptome contigs, demonstrating the utility and efficacy of our methodology. Leveraging this validated analysis pipeline, we also annotated the assembled R. catesbeiana transcriptome. We used the expression profiles of the annotated genes of the two species to examine the similarities and differences between the tadpole liver transcriptomes. We also compared the gene ontology terms of expressed genes to measure how the animals react to a challenge by thyroid hormone. Our study reports three main conclusions. First, de novo assembly of RNA-seq data is a powerful method for annotating and establishing transcriptomes of non-model organisms. Second, the liver transcriptomes of the two frog species, R. catesbeiana and X. laevis, show many common features, and the distribution of their gene ontology profiles are statistically indistinguishable. Third, although they broadly respond the same way to the presence of thyroid hormone in their environment, their receptor/signal transduction pathways display marked differences.

  5. Organophosphate pesticides induce morphological abnormalities and decrease locomotor activity and heart rate in Danio rerio and Xenopus laevis.

    Science.gov (United States)

    Watson, Fiona L; Schmidt, Hayden; Turman, Zackery K; Hole, Natalie; Garcia, Hena; Gregg, Jonathan; Tilghman, Joseph; Fradinger, Erica A

    2014-06-01

    Organophosphate pesticides (OPs), a class of acetylcholinesterase inhibitors, are used widely in agriculture to reduce insect populations. Because of the conservation of acetylcholinesterase between invertebrates and vertebrates, OPs also can adversely affect nontarget species, such as aquatic and terrestrial animals. This study used uniform conditions to analyze the morphological and physiological effects caused by developmental exposure to 3 commonly used OPs-chlorpyrifos, dichlorvos, and diazinon-on 2 aquatic vertebrate species, Danio rerio (zebrafish) and Xenopus laevis. Survival, locomotor activity, heart rate, and gross anatomical abnormalities, including kyphosis and edema, were observed over a 5-d period in response to OP concentrations ranging from 0 µM to 1000 µM. Both zebrafish and Xenopus showed decreased survival for all 3 OPs at higher concentrations. However, Xenopus showed higher mortality than zebrafish at lower chlorpyrifos and dichlorvos concentrations. Both models showed a dose-dependent decrease in heart rate and free-swimming larval activity in response to chlorpyrifos and dichlorvos. In addition, kyphosis and decreased spine length were prominent in Xenopus in response to 10 µM of chlorpyrifos and 0.1 µM dichlorvos. Although diazinon induced no effects on skeletal and cardiac motor activity in either species, it did induce cardiac edemas in zebrafish. Differences in the biological actions of OPs and their differential effects in these 2 vertebrate models demonstrate the importance of using common protocols and multiple models to evaluate the ecotoxicology of OPs.

  6. Transcription factor COUP-TFII is indispensable for venous and lymphatic development in zebrafish and Xenopus laevis

    Energy Technology Data Exchange (ETDEWEB)

    Aranguren, Xabier L., E-mail: xabier.lopezaranguren@med.kuleuven.be [Center for Molecular and Vascular Biology, Katholieke Universiteit Leuven, Campus Gasthuisberg, Onderwijs and Navorsing 1, Herestraat 49, B-3000 Leuven (Belgium); Beerens, Manu, E-mail: manu.beerens@med.kuleuven.be [Center for Molecular and Vascular Biology, Katholieke Universiteit Leuven, Campus Gasthuisberg, Onderwijs and Navorsing 1, Herestraat 49, B-3000 Leuven (Belgium); Vandevelde, Wouter, E-mail: woutervandevelde@gmail.com [Vesalius Research Center, VIB, Campus Gasthuisberg, Onderwijs and Navorsing 1, Herestraat 49, B-3000 Leuven (Belgium); Vesalius Research Center, Katholieke Universiteit Leuven, Campus Gasthuisberg, Onderwijs and Navorsing 1, Herestraat 49, B-3000 Leuven (Belgium); Dewerchin, Mieke, E-mail: mieke.dewerchin@vib-kuleuven.be [Vesalius Research Center, VIB, Campus Gasthuisberg, Onderwijs and Navorsing 1, Herestraat 49, B-3000 Leuven (Belgium); Vesalius Research Center, Katholieke Universiteit Leuven, Campus Gasthuisberg, Onderwijs and Navorsing 1, Herestraat 49, B-3000 Leuven (Belgium); Carmeliet, Peter, E-mail: peter.carmeliet@vib-kuleuven.be [Vesalius Research Center, VIB, Campus Gasthuisberg, Onderwijs and Navorsing 1, Herestraat 49, B-3000 Leuven (Belgium); Vesalius Research Center, Katholieke Universiteit Leuven, Campus Gasthuisberg, Onderwijs and Navorsing 1, Herestraat 49, B-3000 Leuven (Belgium); Luttun, Aernout, E-mail: aernout.luttun@med.kuleuven.be [Center for Molecular and Vascular Biology, Katholieke Universiteit Leuven, Campus Gasthuisberg, Onderwijs and Navorsing 1, Herestraat 49, B-3000 Leuven (Belgium)

    2011-06-24

    Highlights: {yields} COUP-TFII deficiency in zebrafish affects arterio-venous EC specification. {yields} COUP-TFII is indispensable for lymphatic development in zebrafish. {yields} COUP-TFII knockdown in Xenopus disrupts lymphatic EC differentiation and migration. {yields} COUP-TFII's role in EC fate decisions is evolutionary conserved. -- Abstract: Transcription factors play a central role in cell fate determination. Gene targeting in mice revealed that Chicken Ovalbumin Upstream Promoter-Transcription Factor II (COUP-TFII, also known as Nuclear Receptor 2F2 or NR2F2) induces a venous phenotype in endothelial cells (ECs). More recently, NR2F2 was shown to be required for initiating the expression of Prox1, responsible for lymphatic commitment of venous ECs. Small animal models like zebrafish embryos and Xenopus laevis tadpoles have been very useful to elucidate mechanisms of (lymph) vascular development. Therefore, the role of NR2F2 in (lymph) vascular development was studied by eliminating its expression in these models. Like in mice, absence of NR2F2 in zebrafish resulted in distinct vascular defects including loss of venous marker expression, major trunk vessel fusion and vascular leakage. Both in zebrafish and Xenopus the development of the main lymphatic structures was severely hampered. NR2F2 knockdown significantly decreased prox1 expression in zebrafish ECs and the same manipulation affected lymphatic (L)EC commitment, migration and function in Xenopus tadpoles. Therefore, the role of NR2F2 in EC fate determination is evolutionary conserved.

  7. Lymphoid tumors of Xenopus laevis with different capacities for growth in larvae and adults.

    Science.gov (United States)

    Robert, J; Guiet, C; Du Pasquier, L

    1994-01-01

    Three new lymphoid tumors offering an assortment of variants in terms of MHC class I expressions, MHC class II expression, and Ig gene transcription have been discovered in the amphibian Xenopus. One was developed in an individual of the isogenic LG15 clone (LG15/0), one in a frog of the LG15/40 clone (derived from a small egg recombinant of LG15), and one (ff-2) in a male ff sib of the individual in which MAR1, the first lymphoid tumor in Xenopus was found 2 years ago. These tumors developed primarily as thymus outgrowths and were transplantable in histocompatible tadpoles but not in nonhistocompatible hosts. Whereas LG15/0 and LG15/40 tumor cells also grow in adult LG15 frogs, the ff-2 tumor, like the MAR1 cell line, is rejected by adult ff animals. Using flow cytometry with fluorescence-labeled antibodies and immunoprecipitation analysis, we could demonstrate that, like MAR1, these three new tumors express on their cell surface lymphopoietic markers recognized by mAbs F1F6 and RC47, as well as T-cell lineage markers recognized by mAbs AM22 (CD8-like) and X21.2, but not by immunologobulin (Ig) nor MHC class II molecules. Another lymphocyte-specific marker AM15 is expressed by 15/0 and 15/40 but not ff-2 tumor cells. The ff-2 tumor cell expresses MHC class I molecule in association with beta 2-microglobulin on the surface, 15/40 cells contain cytoplasmic class I alpha chain that is barely detected at the cell surface by fluocytometry, and 15/0 cells do not synthesize class I alpha chain at all. The three new tumors all produce large amounts of IgM mRNA of two different sizes but no Ig protein on the membrane nor in the cytoplasm. All tumor cell types synthesize large amount of Myc mRNA and MHC class I-like transcripts considered to be non classical.

  8. Regulation of Melanopsins and Per1 by α-MSH and Melatonin in Photosensitive Xenopus laevis Melanophores

    Directory of Open Access Journals (Sweden)

    Maria Nathália de Carvalho Magalhães Moraes

    2014-01-01

    Full Text Available α-MSH and light exert a dispersing effect on pigment granules of Xenopus laevis melanophores; however, the intracellular signaling pathways are different. Melatonin, a hormone that functions as an internal signal of darkness for the organism, has opposite effects, aggregating the melanin granules. Because light functions as an important synchronizing signal for circadian rhythms, we further investigated the effects of both hormones on genes related to the circadian system, namely, Per1 (one of the clock genes and the melanopsins, Opn4x and Opn4m (photopigments. Per1 showed temporal oscillations, regardless of the presence of melatonin or α-MSH, which slightly inhibited its expression. Melatonin effects on melanopsins depend on the time of application: if applied in the photophase it dramatically decreased Opn4x and Opn4m expressions, and abolished their temporal oscillations, opposite to α-MSH, which increased the melanopsins’ expressions. Our results demonstrate that unlike what has been reported for other peripheral clocks and cultured cells, medium changes or hormones do not play a major role in synchronizing the Xenopus melanophore population. This difference is probably due to the fact that X. laevis melanophores possess functional photopigments (melanopsins that enable these cells to primarily respond to light, which triggers melanin dispersion and modulates gene expression.

  9. RNS60, a charge-stabilized nanostructure saline alters Xenopus Laevis oocyte biophysical membrane properties by enhancing mitochondrial ATP production.

    Science.gov (United States)

    Choi, Soonwook; Yu, Eunah; Kim, Duk-Soo; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2015-03-01

    We have examined the effects of RNS60, a 0.9% saline containing charge-stabilized oxygen nanobubble-based structures. RNS60 is generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. This study, implemented in Xenopus laevis oocytes, addresses both the electrophysiological membrane properties and parallel biological processes in the cytoplasm. Intracellular recordings from defolliculated X. laevis oocytes were implemented in: (1) air oxygenated standard Ringer's solution, (2) RNS60-based Ringer's solution, (3) RNS10.3 (TCP-modified saline without excess oxygen)-based Ringer's, and (4) ONS60 (saline containing high pressure oxygen without TCP modification)-based Ringer's. RNS60-based Ringer's solution induced membrane hyperpolarization from the resting membrane potential. This effect was prevented by: (1) ouabain (a blocker of the sodium/potassium ATPase), (2) rotenone (a mitochondrial electron transfer chain inhibitor preventing usable ATP synthesis), and (3) oligomycin A (an inhibitor of ATP synthase) indicating that RNS60 effects intracellular ATP levels. Increased intracellular ATP levels following RNS60 treatment were directly demonstrated using luciferin/luciferase photon emission. These results indicate that RNS60 alters intrinsic the electrophysiological properties of the X. laevis oocyte membrane by increasing mitochondrial-based ATP synthesis. Ultrastructural analysis of the oocyte cytoplasm demonstrated increased mitochondrial length in the presence of RNS60-based Ringer's solution. It is concluded that the biological properties of RNS60 relate to its ability to optimize ATP synthesis.

  10. Targeted mutagenesis of multiple and paralogous genes in Xenopus laevis using two pairs of transcription activator-like effector nucleases.

    Science.gov (United States)

    Sakane, Yuto; Sakuma, Tetsushi; Kashiwagi, Keiko; Kashiwagi, Akihiko; Yamamoto, Takashi; Suzuki, Ken-Ichi T

    2014-01-01

    Transcription activator-like effector nucleases (TALENs) have been extensively used in genome editing in various organisms. In some cases, however, it is difficult to efficiently disrupt both paralogous genes using a single pair of TALENs in Xenopus laevis because of its polyploidy. Here, we report targeted mutagenesis of multiple and paralogous genes using two pairs of TALENs in X. laevis. First, we show simultaneous targeted mutagenesis of three genes, tyrosinase paralogues (tyra and tyrb) and enhanced green fluorescent protein (egfp) by injection of two TALENs pairs in transgenic embryos carrying egfp. Consistent with the high frequency of both severe phenotypic traits, albinism and loss of GFP fluorescence, frameshift mutation rates of tyr paralogues and egfp reached 40-80%. Next, we show early introduction of TALEN-mediated mutagenesis of these target loci during embryogenesis. Finally, we also demonstrate that two different pairs of TALENs can simultaneously introduce mutations to both paralogues encoding histone chaperone with high efficiency. Our results suggest that targeted mutagenesis of multiple genes using TALENs can be applied to analyze the functions of paralogous genes with redundancy in X. laevis.

  11. Changes in contractile properties by androgen hormones in sexually dimorphic muscles of male frogs (Xenopus laevis).

    Science.gov (United States)

    Regnier, M; Herrera, A A

    1993-02-01

    1. Male frogs (Xenopus laevis) were castrated then given either empty or testosterone-filled implants to produce animals with low or high levels of circulating testosterone. Eight weeks later the contractile properties of an androgen-sensitive forelimb flexor, the flexor carpi radialis muscle (FCR), were measured in vitro. Another forelimb flexor muscle, the coracoradialis, and a hindlimb muscle, the iliofibularis, were analysed similarly. 2. Plasma testosterone levels were 0.9 +/- 0.3 ng/ml (+/- S.E.M.) in castrated frogs with blank implants (C) and 61.3 +/- 4.7 ng/ml in castrates with testosterone implants (CT). Unoperated males, sampled at various times of the year, ranged between 10.8 and 51.0 ng/ml. 3. With direct electrical stimulation of the FCR, contraction time of the isometric twitch was not affected by testosterone levels. Relaxation times were affected, however. Half- and 90% relaxation times were 27 and 42% longer, respectively, for CT compared to C muscles. 4. Testosterone also had no effect on the contraction time of twitches elicited by stimulation of the FCR nerve. Half- and 90% relaxation times were 51 and 76% longer, respectively, for CT compared to C muscles. 5. Tetanus tension, elicited by direct stimulation of the FCR at 50 Hz, was 86% greater in CT compared to C muscles. The average cross-sectional area of FCR muscle fibres was 84% greater in CT muscles. These results implied that testosterone treatment had no effect on specific muscle tension. 6. Stimulation of the FCR nerve at 50 Hz resulted in 53% less tension than the same stimulus applied directly to CT muscles. In C muscles the difference was only 14%. This suggested that testosterone treatment reduced synaptic efficacy. 7. In CT muscles, direct or nerve stimulation of fibres in the shoulder region of the FCR elicited twitches that contracted and relaxed more slowly than fibres in the elbow region. In C muscles there was no difference in contraction or relaxation time between fibres in

  12. Genome-wide identification of Xenopus matrix metalloproteinases: conservation and unique duplications in amphibians

    Directory of Open Access Journals (Sweden)

    Mathew Smita

    2009-02-01

    Full Text Available Abstract Background Matrix metalloproteinases (MMPs are members of the superfamily of Zn2+ dependent extracellular or membrane-bound endopeptidases which have been implicated to play critical roles in vertebrate development and human pathogenesis. A number of MMP genes have been found to be upregulated in some or all organs during frog metamorphosis, suggesting that different MMPs may have different functions in various organs/tissues. The recent advances in EST (expressed sequence tag sequencing and the completion of the genome of Xenopus (X. tropicalis prompted us to systematically analyze the existence of MMPs in the Xenopus genome. Results We examined X. laevis and X. tropicalis ESTs and genomic sequences for MMPs and obtained likely homologs for 20 out of the 25 MMPs known in higher vertebrates. Four of the five missing MMPs, i.e. MMPs 8, 10, 12 and 27, were all encoded on human Chromosome 11 and the other missing MMP, MMP22 (a chicken MMP, was also absent in human genome. In addition, we identified several novel MMPs which appears to be derived from unique duplications over evolution, are present in the genomes of both Xenopus species. Conclusion We identified the homologs of most of the mammalian MMPs in Xenopus and discovered a number of novel MMPs. Our results suggest that MMP genes undergo dynamic changes over evolution. It will be of interest in the future to investigate whether MMP expression and functions during vertebrate development are conserved. The sequence information reported here should facilitate such an endeavor in the near future.

  13. cis- and trans-acting elements of the estrogen-regulated vitellogenin gene B1 of Xenopus laevis.

    Science.gov (United States)

    Wahli, W; Martinez, E; Corthésy, B; Cardinaux, J R

    1989-01-01

    Vitellogenin genes are expressed under strict estrogen control in the liver of female oviparous vertebrates. Gene transfer experiments using estrogen-responsive cells have shown that the 13 bp perfect palindromic element GGTCACTGTGACC found upstream of the Xenopus laevis vitellogenin gene A2 promoter mediates hormonal stimulation and thus, was called the estrogen-responsive element (ERE). In the Xenopus vitellogenin genes B1 and B2 there are two closely adjacent EREs with one or more base substitutions when compared to the consensus ERE GGTCANNNTGACC. On their own, these degenerated elements have only a low or no regulatory capacity at all but act together synergistically to form an estrogen-responsive unit (ERU) with the same strength as the perfect palindromic 13 bp element. Analysis of estrogen receptor binding to the gene B1 ERU revealed a cooperative interaction of receptor dimers to the two adjacent imperfect EREs which most likely explains the synergistic stimulation observed in vivo. Furthermore, a promoter activator element located between positions --113 and --42 of the gene B1 and functional in the human MCF-7 and the Xenopus B3.2 cells has been identified and shown to be involved in the high level of induced transcription activity when the ERE is placed at a distance from the promoter. Finally, a hormone-controlled in vitro transcription system derived from Xenopus liver nuclear extracts was exploited to characterize two additional novel cis-acting elements within the vitellogenin gene B1 promoter. One of them, a negative regulatory element (NRE), is responsible for repression of promoter activity in the absence of hormone. The second is related to the NF-I binding site and is required, together with the ERE, to mediate hormonal induction. Moreover, we detected three trans-acting activities in Xenopus liver nuclear extracts that interact with these regions and demonstrated that they participate in the regulation of the expression of the vitellogenin

  14. Structure-related effects of pyrethroid insecticides on the lateral-line sense organ and on peripheral nerves of the clawed frog, Xenopus laevis

    NARCIS (Netherlands)

    Vijverberg, H.P.M.; Ruigt, GeS. F.; Bercken, J. van den

    1982-01-01

    The effects of seven different pyrethroid insecticides on the lateral-line sense organ and on peripheral nerves of the clawed frog, Xenopus laevis, were investigated by means of electrophysiological methods. The results show that two classes of pyrethroid can be clearly distinguished. (i) Pyrethroid

  15. Multiple noggins in vertebrate genome: cloning and expression of noggin2 and noggin4 in Xenopus laevis.

    Science.gov (United States)

    Eroshkin, Fedor M; Ermakova, Galina V; Bayramov, Andrey V; Zaraisky, Andrey G

    2006-01-01

    Noggin is a neural inducer secreted by cells of the Spemann organizer. A single noggin gene was identified until very recently in all tested vertebrates. The only exception was zebrafish, in which two close homologs of noggin, named noggin1 and noggin3, and one gene more diverged from them, noggin2, were cloned. Nevertheless, finding of three zebrafish noggins was attributed exclusively to specific genomic duplications in the fish evolutionary branch. However, very recently it was shown that Xenopus tropicalis have additional noggin homolog, called noggin2 [Fletcher, R.B., Watson, A.L., Harland, R.M. (2004). Expression of Xenopus tropicalis noggin1 and noggin2 in early development: two noggin genes in a tetrapod. Gene Expr. Patterns 5, 225-230], which indicates at least two independent noggin genes in vertebrate phylum. Now we report identification of two novel noggin homologs in each of so evolutionary distant species as Xenopus laevis, chicken and fugu. One of these noggins is ortholog of the X. tropicalis and zebrafish noggin2, whereas another, named noggin4, was not known previously. In the X. laevis embryos, the expression of noggin2 very resembles that of its counterpart in X. tropicalis: it begins with neurulation at the anterior margin of the neural plate and, afterward, continues mainly in the forebrain and dorsal hindbrain. At the same time, noggin4 is expressed starting from the beginning of gastrulation, throughout the ectoderm, with a local expression maximum in the prospective anterior neurectoderm. Later, it is widely expressed on the dorsal side of embryo, including neural tube, eyes, otic vesicles, cranial placodes, branchial arches, and somites. The data presented here demonstrate that the vertebrate phylum contains at least three distinct noggin genes.

  16. The Expression of TALEN before Fertilization Provides a Rapid Knock-Out Phenotype in Xenopus laevis Founder Embryos.

    Directory of Open Access Journals (Sweden)

    Kei Miyamoto

    Full Text Available Recent advances in genome editing using programmable nucleases have revolutionized gene targeting in various organisms. Successful gene knock-out has been shown in Xenopus, a widely used model organism, although a system enabling less mosaic knock-out in founder embryos (F0 needs to be explored in order to judge phenotypes in the F0 generation. Here, we injected modified highly active transcription activator-like effector nuclease (TALEN mRNA to oocytes at the germinal vesicle (GV stage, followed by in vitro maturation and intracytoplasmic sperm injection, to achieve a full knock-out in F0 embryos. Unlike conventional injection methods to fertilized embryos, the injection of TALEN mRNA into GV oocytes allows expression of nucleases before fertilization, enabling them to work from an earlier stage. Using this procedure, most of developed embryos showed full knock-out phenotypes of the pigmentation gene tyrosinase and/or embryonic lethal gene pax6 in the founder generation. In addition, our method permitted a large 1 kb deletion. Thus, we describe nearly complete gene knock-out phenotypes in Xenopus laevis F0 embryos. The presented method will help to accelerate the production of knock-out frogs since we can bypass an extra generation of about 1 year in Xenopus laevis. Meantime, our method provides a unique opportunity to rapidly test the developmental effects of disrupting those genes that do not permit growth to an adult able to reproduce. In addition, the protocol shown here is considerably less invasive than the previously used host transfer since our protocol does not require surgery. The experimental scheme presented is potentially applicable to other organisms such as mammals and fish to resolve common issues of mosaicism in founders.

  17. The Expression of TALEN before Fertilization Provides a Rapid Knock-Out Phenotype in Xenopus laevis Founder Embryos.

    Science.gov (United States)

    Miyamoto, Kei; Suzuki, Ken-Ichi T; Suzuki, Miyuki; Sakane, Yuto; Sakuma, Tetsushi; Herberg, Sarah; Simeone, Angela; Simpson, David; Jullien, Jerome; Yamamoto, Takashi; Gurdon, J B

    2015-01-01

    Recent advances in genome editing using programmable nucleases have revolutionized gene targeting in various organisms. Successful gene knock-out has been shown in Xenopus, a widely used model organism, although a system enabling less mosaic knock-out in founder embryos (F0) needs to be explored in order to judge phenotypes in the F0 generation. Here, we injected modified highly active transcription activator-like effector nuclease (TALEN) mRNA to oocytes at the germinal vesicle (GV) stage, followed by in vitro maturation and intracytoplasmic sperm injection, to achieve a full knock-out in F0 embryos. Unlike conventional injection methods to fertilized embryos, the injection of TALEN mRNA into GV oocytes allows expression of nucleases before fertilization, enabling them to work from an earlier stage. Using this procedure, most of developed embryos showed full knock-out phenotypes of the pigmentation gene tyrosinase and/or embryonic lethal gene pax6 in the founder generation. In addition, our method permitted a large 1 kb deletion. Thus, we describe nearly complete gene knock-out phenotypes in Xenopus laevis F0 embryos. The presented method will help to accelerate the production of knock-out frogs since we can bypass an extra generation of about 1 year in Xenopus laevis. Meantime, our method provides a unique opportunity to rapidly test the developmental effects of disrupting those genes that do not permit growth to an adult able to reproduce. In addition, the protocol shown here is considerably less invasive than the previously used host transfer since our protocol does not require surgery. The experimental scheme presented is potentially applicable to other organisms such as mammals and fish to resolve common issues of mosaicism in founders.

  18. Molecular Cloning of phd1 and Comparative Analysis of phd1, 2, and 3 Expression in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Dandan Han

    2012-01-01

    Full Text Available Intensive gene targeting studies in mice have revealed that prolyl hydroxylase domain proteins (PHDs play important roles in murine embryonic development; however, the expression patterns and function of these genes during embryogenesis of other vertebrates remain largely unknown. Here we report the molecular cloning of phd1 and systematic analysis of phd1, phd2, and phd3 expression in embryos as well as adult tissues of Xenopus laevis. All three phds are maternally provided during Xenopus early development. The spatial expression patterns of phds genes in Xenopus embryos appear to define a distinct synexpression group. Frog phd2 and phd3 showed complementary expression in adult tissues with phd2 transcription levels being high in the eye, brain, and intestine, but low in the liver, pancreas, and kidney. On the contrary, expression levels of phd3 are high in the liver, pancreas, and kidney, but low in the eye, brain, and intestine. All three phds are highly expressed in testes, ovary, gall bladder, and spleen. Among three phds, phd3 showed strongest expression in heart.

  19. Extracts from plants used in Mexican traditional medicine activate Ca(2+)-dependent chloride channels in Xenopus laevis oocytes.

    Science.gov (United States)

    Rojas, A; Mendoza, S; Moreno, J; Arellano, R O

    2003-01-01

    The two-electrode voltage-clamp technique was employed to investigate the effects of chloroform-methanol (1:1) extracts derived from five medicinal plants on Xenopus laevis oocytes. When evaluated at concentrations of 1 to 500 microg/ml, the extracts prepared from the aerial parts of Baccharis heterophylla H.B.K (Asteraceae), Chenopodium murale L. (Chenopodiaceae), Desmodium grahami Gray (Leguminosae) and Solanum rostratum Dun (Solanaceae) produced concentration-dependent oscillatory inward currents in the oocytes, while the extract of Gentiana spathacea did not induce any response. The reversal potential of the currents elicited by the active extracts was -17 +/- 2 mV and was similar to the chloride equilibrium potential in oocytes. These ionic responses were independent of extracellular calcium. However, they were eliminated by overnight incubation with BAPTA-AM (10 microM), suggesting that the currents were dependent on intracellular Ca2+ increase. Thus the plant extracts activate the typical oscillatory Ca(2+)-dependent Cl- currents generated in the Xenopus oocyte membrane more probably via a mechanism that involves release of Ca2+ from intracellular reservoirs. These observations suggest that Xenopus oocyte electrophysiological recording constitutes a suitable assay for the study of the mechanisms of action of herbal medicines.

  20. Some effects of the venom of the Chilean spider Latrodectus mactans on endogenous ion-currents of Xenopus laevis oocytes.

    Science.gov (United States)

    Parodi, Jorge; Romero, Fernando; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2008-10-31

    A study was made of the effects of the venom of the Chilean spider Latrodectus mactans on endogenous ion-currents of Xenopus laevis oocytes. 1 microg/ml of the venom made the resting plasma membrane potential more negative in cells voltage-clamped at -60 mV. The effect was potentially due to the closure of one or several conductances that were investigated further. Thus, we determined the effects of the venom on the following endogenous ionic-currents: (a) voltage-activated potassium currents, (b) voltage-activated chloride-currents, and (c) calcium-dependent chloride-currents (Tout). The results suggest that the venom exerts its action mainly on a transient outward potassium-current that is probably mediated by a Kv channel homologous to shaker. Consistent with the electrophysiological evidence we detected the expression of the mRNA coding for xKv1.1 in the oocytes.

  1. Astrocytes phagocytose focal dystrophies from shortening myelin segments in the optic nerve of Xenopus laevis at metamorphosis.

    Science.gov (United States)

    Mills, Elizabeth A; Davis, Chung-ha O; Bushong, Eric A; Boassa, Daniela; Kim, Keun-Young; Ellisman, Mark H; Marsh-Armstrong, Nicholas

    2015-08-18

    Oligodendrocytes can adapt to increases in axon diameter through the addition of membrane wraps to myelin segments. Here, we report that myelin segments can also decrease their length in response to optic nerve (ON) shortening during Xenopus laevis metamorphic remodeling. EM-based analyses revealed that myelin segment shortening is accomplished by focal myelin-axon detachments and protrusions from otherwise intact myelin segments. Astrocyte processes remove these focal myelin dystrophies using known phagocytic machinery, including the opsonin milk fat globule-EGF factor 8 (Mfge8) and the downstream effector ras-related C3 botulinum toxin substrate 1 (Rac1). By the end of metamorphic nerve shortening, one-quarter of all myelin in the ON is enwrapped or internalized by astrocytes. As opposed to the removal of degenerating myelin by macrophages, which is usually associated with axonal pathologies, astrocytes selectively remove large amounts of myelin without damaging axons during this developmental remodeling event.

  2. Single Cell Proteomics Using Frog (Xenopus laevis) Blastomeres Isolated from Early Stage Embryos, Which Form a Geometric Progression in Protein Content.

    Science.gov (United States)

    Sun, Liangliang; Dubiak, Kyle M; Peuchen, Elizabeth H; Zhang, Zhenbin; Zhu, Guijie; Huber, Paul W; Dovichi, Norman J

    2016-07-05

    Single cell analysis is required to understand cellular heterogeneity in biological systems. We propose that single cells (blastomeres) isolated from early stage invertebrate, amphibian, or fish embryos are ideal model systems for the development of technologies for single cell analysis. For these embryos, although cell cleavage is not exactly symmetric, the content per blastomere decreases roughly by half with each cell division, creating a geometric progression in cellular content. This progression forms a ladder of single-cell targets for the development of successively higher sensitivity instruments. In this manuscript, we performed bottom-up proteomics on single blastomeres isolated by microdissection from 2-, 4-, 8-, 16-, 32-, and 50-cell Xenopus laevis (African clawed frog) embryos. Over 1 400 protein groups were identified in single-run reversed-phase liquid chromatography-electrospray ionization-tandem mass spectrometry from single balstomeres isolated from a 16-cell embryo. When the mass of yolk-free proteins in single blastomeres decreased from ∼0.8 μg (16-cell embryo) to ∼0.2 μg (50-cell embryo), the number of protein group identifications declined from 1 466 to 644. Around 800 protein groups were quantified across four blastomeres isolated from a 16-cell embryo. By comparing the protein expression among different blastomeres, we observed that the blastomere-to-blastomere heterogeneity in 8-, 16-, 32-, and 50-cell embryos increases with development stage, presumably due to cellular differentiation. These results suggest that comprehensive quantitative proteomics on single blastomeres isolated from these early stage embryos can provide valuable insights into cellular differentiation and organ development.

  3. Differential expression of two TEF-1 (TEAD) genes during Xenopus laevis development and in response to inducing factors.

    Science.gov (United States)

    Naye, François; Tréguer, Karine; Soulet, Fabienne; Faucheux, Corinne; Fédou, Sandrine; Thézé, Nadine; Thiébaud, Pierre

    2007-01-01

    Transcription enhancer factors 1 (TEF-1 or TEAD) make a highly conserved family of eukaryotic DNA binding proteins that activate not only viral regulatory elements but muscle specific genes and are involved in several developmental processes. In this study, we report the identification and the expression pattern of NTEF-1 (TEAD1) and DTEF-1 (TEAD3), two members of this family in Xenopus laevis. Both X. laevis NTEF-1 (XNTEF-1 or XTEAD1) and DTEF-1 (XDTEF-1 or XTEAD3) possess a 72 amino acid TEA domain characteristic of TEF-1 proteins. XNTEF-1 is a 426 amino acid protein that has 96% identity with the avian or the mammalian NTEF-1 proteins while XDTEF-1 is a 433 amino acid protein with 77 to 80% identity with the avian and mammalian DTEF-1 sequences respectively. Temporal expression analysis by RT-PCR indicated that the two genes are expressed maternally and throughout embryonic development. In the adult, the two genes are broadly expressed although they showed differences of expression between tissues. Spatial expression analysis by whole mount in situ hybridization showed that the XNTEF-1 and XDTEF-1 mRNAS were predominantly detected in eye, embryonic brain, somites and heart. In animal cap assay, the two genes are activated by bFGF but are differently regulated by BMP4, and the muscle regulatory factor Mef2d.

  4. Prx-1 expression in Xenopus laevis scarless skin-wound healing and its resemblance to epimorphic regeneration.

    Science.gov (United States)

    Yokoyama, Hitoshi; Maruoka, Tamae; Aruga, Akio; Amano, Takanori; Ohgo, Shiro; Shiroishi, Toshihiko; Tamura, Koji

    2011-12-01

    Despite a strong clinical need for inducing scarless wound healing, the molecular factors required to accomplish it are unknown. Although skin-wound healing in adult mammals often results in scarring, some amphibians can regenerate injured body parts, even an amputated limb, without it. To understand the mechanisms of perfect skin-wound healing in regenerative tetrapods, we studied the healing process in young adult Xenopus "froglets" after experimental skin excision. We found that the excision wound healed completely in Xenopus froglets, without scarring. Mononuclear cells expressing a homeobox gene, prx1, accumulated under the new epidermis of skin wounds on the limb and trunk and at the regenerating limb. In transgenic Xenopus froglets expressing a reporter for the mouse prx1 limb-specific enhancer, activity was seen in the healing skin and in the regenerating limb. Comparable activity did not accompany skin-wound healing in adult mice. Our results suggest that scarless skin-wound healing may require activation of the prx1 limb enhancer, and competence to activate the enhancer is probably a prerequisite for epimorphic regeneration, such as limb regeneration. Finally, the induction of this prx1 enhancer activity may be useful as a reliable marker for therapeutically induced scarless wound healing in mammals.

  5. Interactive effects of ultraviolet-B radiation and pesticide exposure on DNA photo-adduct accumulation and expression of DNA damage and repair genes in Xenopus laevis embryos.

    Science.gov (United States)

    Yu, Shuangying; Tang, Song; Mayer, Gregory D; Cobb, George P; Maul, Jonathan D

    2015-02-01

    Pesticide use and ultraviolet-B (UVB) radiation have both been suggested to adversely affect amphibians; however, little is known about their interactive effects. One potential adverse interaction could involve pesticide-induced dysregulation of DNA repair pathways, resulting in greater numbers of DNA photo-adducts from UVB exposure. In the present study, we investigated the interactive effects of UVB radiation and two common pesticides (endosulfan and α-cypermethrin) on induction of DNA photo-adducts and expression of DNA damage and repair related genes in African clawed frog (Xenopus laevis) embryos. We examined 13 genes that are, collectively, involved in stress defense, cell cycle arrest, nucleotide excision repair (NER), base excision repair, mismatch repair, DNA repair regulation, and apoptosis. We exposed X. laevis embryos to 0, 25, and 50 μg/L endosulfan or 0, 2.5, and 5.0 μg/L α-cypermethrin for 96 h, with environmentally relevant exposures of UVB radiation during the last 7 h of the 96 h exposure. We measured the amount of cyclobutane pyrimidine dimers (CPDs) and mRNA abundance of the 13 genes among treatments including control, pesticide only, UVB only, and UVB and pesticide co-exposures. Each of the co-exposure scenarios resulted in elevated CPD levels compared to UVB exposure alone, suggesting an inhibitory effect of endosulfan and α-cypermethrin on CPD repair. This is attributed to results indicating that α-cypermethrin and endosulfan reduced mRNA abundance of XPA and HR23B, respectively, to levels that may affect the initial recognition of DNA lesions. In contrast, both pesticides increased transcript abundance of CSA and MUTL. In addition, mRNA abundance of HSP70 and GADD45α were increased by endosulfan and mRNA abundance of XPG was increased by α-cypermethrin. XPC, HR23B, XPG, and GADD45α exhibited elevated mRNA concentrations whereas there was a reduction in MUTL transcript concentrations in UVB-alone treatments. It appeared that even

  6. In Vivo Study of Dynamics and Stability of Dendritic Spines on Olfactory Bulb Interneurons in Xenopus laevis Tadpoles.

    Directory of Open Access Journals (Sweden)

    Yu-Bin Huang

    Full Text Available Dendritic spines undergo continuous remodeling during development of the nervous system. Their stability is essential for maintaining a functional neuronal circuit. Spine dynamics and stability of cortical excitatory pyramidal neurons have been explored extensively in mammalian animal models. However, little is known about spiny interneurons in non-mammalian vertebrate models. In the present study, neuronal morphology was visualized by single-cell electroporation. Spiny neurons were surveyed in the Xenopus tadpole brain and observed to be widely distributed in the olfactory bulb and telencephalon. DsRed- or PSD95-GFP-expressing spiny interneurons in the olfactory bulb were selected for in vivo time-lapse imaging. Dendritic protrusions were classified as filopodia, thin, stubby, or mushroom spines based on morphology. Dendritic spines on the interneurons were highly dynamic, especially the filopodia and thin spines. The stubby and mushroom spines were relatively more stable, although their stability significantly decreased with longer observation intervals. The 4 spine types exhibited diverse preferences during morphological transitions from one spine type to others. Sensory deprivation induced by severing the olfactory nerve to block the input of mitral/tufted cells had no significant effects on interneuron spine stability. Hence, a new model was established in Xenopus laevis tadpoles to explore dendritic spine dynamics in vivo.

  7. Peter Pan functions independently of its role in ribosome biogenesis during early eye and craniofacial cartilage development in Xenopus laevis.

    Science.gov (United States)

    Bugner, Verena; Tecza, Aleksandra; Gessert, Susanne; Kühl, Michael

    2011-06-01

    The Xenopus oocyte possesses a large maternal store of ribosomes, thereby uncoupling early development from the de novo ribosome biosynthesis required for cell growth. Brix domain-containing proteins, such as Peter Pan (PPan), are essential for eukaryotic ribosome biogenesis. In this study, we demonstrate that PPan is expressed maternally as well as in the eye and cranial neural crest cells (NCCs) during early Xenopus laevis development. Depletion of PPan and interference with rRNA processing using antisense morpholino oligonucleotides resulted in eye and cranial cartilage malformations. Loss of PPan, but not interference with rRNA processing, led to an early downregulation of specific marker genes of the eye, including Rx1 and Pax6, and of NCCs, such as Twist, Slug and FoxD3. We found that PPan protein is localized in the nucleoli and mitochondria and that loss of PPan results in increased apoptosis. These findings indicate a novel function of PPan that is independent of its role in ribosome biogenesis.

  8. Canonical and Alternative Pathways in Cyclin-Dependent Kinase 1/Cyclin B Inactivation upon M-Phase Exit in Xenopus laevis Cell-Free Extracts

    Directory of Open Access Journals (Sweden)

    Jacek Z. Kubiak

    2011-01-01

    Full Text Available Cyclin-Dependent Kinase 1 (CDK1 is the major M-phase kinase known also as the M-phase Promoting Factor or MPF. Studies performed during the last decade have shown many details of how CDK1 is regulated and also how it regulates the cell cycle progression. Xenopus laevis cell-free extracts were widely used to elucidate the details and to obtain a global view of the role of CDK1 in M-phase control. CDK1 inactivation upon M-phase exit is a primordial process leading to the M-phase/interphase transition during the cell cycle. Here we discuss two closely related aspects of CDK1 regulation in Xenopus laevis cell-free extracts: firstly, how CDK1 becomes inactivated and secondly, how other actors, like kinases and phosphatases network and/or specific inhibitors, cooperate with CDK1 inactivation to assure timely exit from the M-phase.

  9. Characterization of the Xenopus homolog of an immediate early gene associated with cell activation:sequence analysis and regulation of its expression by thyroid hormone during amphibian metamorphosis

    Institute of Scientific and Technical Information of China (English)

    VIVIACTLIANG; TIFFANYSEDGWICK; 等

    1997-01-01

    The complex transformation of a tadpole to a frog during amphibian development is under the control of thyroid hormone (T3).T3 is known to regulate gene transcription through its nuclear receptors.We have previously isolated many genes which are up-regulated by T3 in the intestine of Xenopus laevis tadpoles.We have now cloned a full-length cDNA for one such gene (IU12).Sequence analysis shows that the IU12 cDNA encodes a plasma membrane protein with 12 transmembrane domains and homologous to a mammalian gene associated with cell activation and organ development.Similarly,we have found that IU12 is activated during intestinal remodeling when both cell death and proliferation take place.Furthermore,IU12 is an early T3-response gene and its expression in the intestine during T3-induced metamorphosis mimics that during normal development.These results argue for a role of IU 12 in the signal transduction pathways leading to intestinal metamorphosis.

  10. Thyroid disruption by Di-n-butyl phthalate (DBP and mono-n-butyl phthalate (MBP in Xenopus laevis.

    Directory of Open Access Journals (Sweden)

    Ouxi Shen

    Full Text Available BACKGROUND: Di-n-butyl phthalate (DBP, a chemical widely used in many consumer products, is estrogenic and capable of producing seriously reproductive and developmental effects in laboratory animals. However, recent in vitro studies have shown that DBP and mono-n-butyl phthalate (MBP, the major metabolite of DBP, possessed thyroid hormone receptor (TR antagonist activity. It is therefore important to consider DBP and MBP that may interfere with thyroid hormone system. METHODOLOGY/PRINCIPAL FINDINGS: Nieuwkoop and Faber stage 51 Xenopus laevis were exposed to DBP and MBP (2, 10 or 15 mg/L separately for 21 days. The two test chemicals decelerated spontaneous metamorphosis in X. laevis at concentrations of 10 and 15 mg/L. Moreover, MBP seemed to possess stronger activity. The effects of DBP and MBP on inducing changes of expression of selected thyroid hormone response genes: thyroid hormone receptor-beta (TRβ, retinoid X receptor gamma (RXRγ, alpha and beta subunits of thyroid-stimulating hormone (TSHα and TSHβ were detected by qPCR at all concentrations of the compounds. Using mammalian two-hybrid assay in vitro, we found that DBP and MBP enhanced the interactions between co-repressor SMRT (silencing mediator for retinoid and thyroid hormone receptors and TR in a dose-dependent manner, and MBP displayed more markedly. In addition, MBP at low concentrations (2 and 10 mg/L caused aberrant methylation of TRβ in head tissue. CONCLUSIONS: The current findings highlight potential disruption of thyroid signalling by DBP and MBP and provide data for human risk assessment.

  11. Acute effects of Fe₂O₃, TiO₂, ZnO and CuO nanomaterials on Xenopus laevis.

    Science.gov (United States)

    Nations, Shawna; Wages, Mike; Cañas, Jaclyn E; Maul, Jonathan; Theodorakis, Chris; Cobb, George P

    2011-05-01

    Metal oxide nanomaterials have exhibited toxicity to a variety of aquatic organisms, especially microbes and invertebrates. To date, few studies have evaluated the toxicity of metal oxide nanomaterials on aquatic vertebrates. Therefore, this study examined effects of ZnO, TiO(2), Fe(2)O(3), and CuO nanomaterials (20-100 nm) on amphibians utilizing the Frog Embryo Teratogenesis Assay Xenopus (FETAX) protocol, a 96 h exposure with daily solution exchanges. Nanomaterials were dispersed in reconstituted moderately hard test medium. These exposures did not increase mortality in static renewal exposures containing up to 1,000 mg L(-1) for TiO(2), Fe(2)O(3), CuO, and ZnO, but did induce developmental abnormalities. Gastrointestinal, spinal, and other abnormalities were observed in CuO and ZnO nanomaterial exposures at concentrations as low as 3.16 mg L(-1) (ZnO). An EC(50) of 10.3 mg L(-1) ZnO was observed for total malformations. The minimum concentration to inhibit growth of tadpoles exposed to CuO or ZnO nanomaterials was 10 mg L(-1). The results indicate that select nanomaterials can negatively affect amphibians during development. Evaluation of nanomaterial exposure on vertebrate organisms are imperative to responsible production and introduction of nanomaterials in everyday products to ensure human and environmental safety.

  12. Functional interaction between CFTR and the sodium-phosphate co-transport type 2a in Xenopus laevis oocytes.

    Directory of Open Access Journals (Sweden)

    Naziha Bakouh

    Full Text Available BACKGROUND: A growing number of proteins, including ion transporters, have been shown to interact with Cystic Fibrosis Transmembrane conductance Regulator (CFTR. CFTR is an epithelial chloride channel that is involved in Cystic Fibrosis (CF when mutated; thus a better knowledge of its functional interactome may help to understand the pathophysiology of this complex disease. In the present study, we investigated if CFTR and the sodium-phosphate co-transporter type 2a (NPT2a functionally interact after heterologous expression of both proteins in Xenopus laevis oocytes. METHODOLOGY/FINDINGS: NPT2a was expressed alone or in combination with CFTR in X. laevis oocytes. Using the two-electrode voltage-clamp technique, the inorganic phosphate-induced current (IPi was measured and taken as an index of NPT2a activity. The maximal IPi for NPT2a substrates was reduced when CFTR was co-expressed with NPT2a, suggesting a decrease in its expression at the oolemna. This was consistent with Western blot analysis showing reduced NPT2a plasma membrane expression in oocytes co-expressing both proteins, whereas NPT2a protein level in total cell lysate was the same in NPT2a- and NPT2a+CFTR-oocytes. In NPT2a+CFTR- but not in NPT2a-oocytes, IPi and NPT2a surface expression were increased upon PKA stimulation, whereas stimulation of Exchange Protein directly Activated by cAMP (EPAC had no effect. When NPT2a-oocytes were injected with NEG2, a short amino-acid sequence from the CFTR regulatory domain that regulates PKA-dependent CFTR trafficking to the plasma membrane, IPi values and NPT2a membrane expression were diminished, and could be enhanced by PKA stimulation, thereby mimicking the effects of CFTR co-expression. CONCLUSION/PERSPECTIVES: We conclude that when both CFTR and NPT2a are expressed in X. laevis oocytes, CFTR confers to NPT2a a cAMPi-dependent trafficking to the membrane. This functional interaction raises the hypothesis that CFTR may play a role in

  13. Mechanisms underlying the noradrenergic modulation of longitudinal coordination during swimming in Xenopus laevis tadpoles

    DEFF Research Database (Denmark)

    Merrywest, Simon D; McDearmid, Jonathan R; Kjaerulff, Ole

    2003-01-01

    Noradrenaline (NA) is a potent modulator of locomotion in many vertebrate nervous systems. When Xenopus tadpoles swim, waves of motor neuron activity alternate across the body and propagate along it with a brief rostro-caudal delay (RC-delay) between segments. We have now investigated the mechani......Noradrenaline (NA) is a potent modulator of locomotion in many vertebrate nervous systems. When Xenopus tadpoles swim, waves of motor neuron activity alternate across the body and propagate along it with a brief rostro-caudal delay (RC-delay) between segments. We have now investigated...... might promote postinhibitory rebound firing. The synaptic inputs during swimming were simulated using a sustained positive current, superimposed upon which were brief negative currents. When these conditions were held constant NA enhanced the probability of rebound firing--indicating a direct effect...

  14. Functional expression and characterization of plant ABC transporters in Xenopus laevis oocytes for transport engineering purposes

    DEFF Research Database (Denmark)

    Xu, Deyang; Veres, Dorottya; Belew, Zeinu Mussa

    2016-01-01

    suitable in transport engineering approaches, although their size and high number of introns make them notoriously difficult to clone. Here, we report a novel in planta “exon engineering” strategy for cloning of full-length coding sequence of ABC transporters followed by methods for biochemical......Transport engineering in bioengineering is aimed at efficient export of the final product to reduce toxicity and feedback inhibition and to increase yield. The ATP-binding cassette (ABC) transporters with their highly diverse substrate specificity and role in cellular efflux are potentially...... characterization of ABC exporters in Xenopus oocytes. Although the Xenopus oocyte expression system is particularly suitable for expression of membrane proteins and powerful in screening for novel transporter activity, only few examples of successful expression of ABC transporter has been reported. This raises...

  15. A developmental biological study of aldolase gene expression in Xenopus laevis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We cloned cDNAs for Xenopus aldolases A, B and C. These three aldolase genes are localized on different chromosomes as a single copy gene. In the adult, the aldolase A gene is expressed extensively in muscle tissues, whereas the aldolase B gene is expressed strongly in kidney, liver, stomach and intestine, while the aldolase C gene is expressed in brain, heart and ovary. In oocytes aldolase A and C mRNAs, but not aldolase B mRNA, are extensively transcribed. Thus, aldolase A and C mRNAs, but not B mRNA, occur abundantly in eggs as maternal mRNAs, and strong expression of aldolase B mRNA is seen only after the late neurula stage. We conclude that aldolase A and C mRNAs are major aldolase mRNAs in early stages of Xenopus embryogenesis which proceeds utilizing yolk as the only energy source, aldolase B mRNA, on the other hand, is expressed only later in development in tissues which are required for dietary fructose metabolism.We also isolated the Xenopus aldolase C genomic gene (ca. 12 kb) and found that its promoter (ca. 2 kb)contains regions necessary for tissue-specific expression and also a GC rich region which is essential for basal transcriptional activity.

  16. A concentration gradient of retinoids in the early Xenopus laevis embryo.

    Science.gov (United States)

    Chen, Y; Huang, L; Solursh, M

    1994-01-01

    Previous studies have postulated that Xenopus embryos contain an endogenous retinoic acid (RA) concentration gradient from posterior to anterior during the process of primary axis formation, since RA is able to alter profoundly primary axis formation in Xenopus embryos, to increase the expression of some posterior markers, and to inhibit the expression of some anterior markers, including homeobox-containing genes. Here, we provide direct evidence for this hypothesis. By using a reporter cell system, we demonstrate that the endogenous biologically active retinoid concentration in whole Xenopus embryos increases 3-fold from the two-cell stage to the neurula stage, and that the active retinoid concentration in the dorsal marginal zone, a region wherein the Spemann's organizer is located, increases about 5-fold from the early gastrula to late gastrula stages, suggesting the developmental regulation of the retinoid levels. In the early neurula stage (stage 13-14), endogenous active retinoids are present in a concentration gradient with the highest level at the posterior end, about 10-fold higher than that at the anterior end, of the embryo. This concentration gradient may be established during gastrulation and may provide positional cues for primary axis formation.

  17. Genetic Basis of Spectral Tuning in the Violet-Sensitive Visual Pigment of African Clawed Frog, Xenopus laevis

    Science.gov (United States)

    Takahashi, Yusuke; Yokoyama, Shozo

    2005-01-01

    Ultraviolet (UV) and violet vision in vertebrates is mediated by UV and violet visual pigments that absorb light maximally (λmax) at ∼360 and 390–440 nm, respectively. So far, a total of 11 amino acid sites only in transmembrane (TM) helices I–III are known to be involved in the functional differentiation of these short wavelength-sensitive type 1 (SWS1) pigments. Here, we have constructed chimeric pigments between the violet pigment of African clawed frog (Xenopus laevis) and its ancestral UV pigment. The results show that not only are the absorption spectra of these pigments modulated strongly by amino acids in TM I–VII, but also, for unknown reasons, the overall effect of amino acid changes in TM IV–VII on the λmax-shift is abolished. The spectral tuning of the contemporary frog pigment is explained by amino acid replacements F86M, V91I, T93P, V109A, E113D, L116V, and S118T, in which V91I and V109A are previously unknown, increasing the total number of critical amino acid sites that are involved in the spectral tuning of SWS1 pigments in vertebrates to 13. PMID:16079229

  18. Influence of inorganic phosphate and pH on sarcoplasmic reticular ATPase in skinned muscle fibres of Xenopus laevis.

    Science.gov (United States)

    Stienen, G J; Papp, Z; Zaremba, R

    1999-08-01

    1. The influence of 30 mM inorganic phosphate (Pi) and pH (6.2-7.4) on the rate of ATP utilization was determined in mechanically skinned bundles of myofibrils from the iliofibularis muscle of Xenopus laevis at approximately 5 C. 2. BDM (2,3-butanedione monoxime; 10 mM) depressed isometric force production and actomyosin (AM) ATPase activity equally. Therefore sarcoplasmic reticular (SR) ATPase activity could be determined by extrapolation of the total ATPase activity to zero force. 3. The SR ATPase activity without added Pi at pH 7.1 was 42 +/- 2 % of the total ATPase activity. Addition of 30 mM Pi reduced SR ATPase activity slightly, by 9 +/- 5 %, and depressed force by 62 +/- 2 % and AM ATPase activity by 21 +/- 6 %. 4. At pH 6.2, force, SR ATPase activity and AM ATPase activity were reduced by 21 +/- 5, 61 +/- 5 and 10 +/- 4 % of their respective values at pH 7.1. 5. The SR ATPase activity at 30 mM Pi and pH 6.2 was reduced markedly to 20 +/- 6 % of the value under control conditions, suggesting that the maximum rate of Ca2+ uptake during muscle fatigue was strongly depressed. This reduction was larger than expected on the basis of the effects of Pi and pH alone.

  19. Do Nanoparticle Physico-Chemical Properties and Developmental Exposure Window Influence Nano ZnO Embryotoxicity in Xenopus laevis?

    Science.gov (United States)

    Bonfanti, Patrizia; Moschini, Elisa; Saibene, Melissa; Bacchetta, Renato; Rettighieri, Leonardo; Calabri, Lorenzo; Colombo, Anita; Mantecca, Paride

    2015-07-28

    The growing global production of zinc oxide nanoparticles (ZnONPs) suggests a realistic increase in the environmental exposure to such a nanomaterial, making the knowledge of its biological reactivity and its safe-by-design synthesis mandatory. In this study, the embryotoxicity of ZnONPs (1-100 mg/L) specifically synthesized for industrial purposes with different sizes, shapes (round, rod) and surface coatings (PEG, PVP) was tested using the frog embryo teratogenesis assay-Xenopus (FETAX) to identify potential target tissues and the most sensitive developmental stages. The ZnONPs did not cause embryolethality, but induced a high incidence of malformations, in particular misfolded gut and abdominal edema. Smaller, round NPs were more effective than the bigger, rod ones, and PEGylation determined a reduction in embryotoxicity. Ingestion appeared to be the most relevant exposure route. Only the embryos exposed from the stomodeum opening showed anatomical and histological lesions to the intestine, mainly referable to a swelling of paracellular spaces among enterocytes. In conclusion, ZnONPs differing in shape and surface coating displayed similar toxicity in X. laevis embryos and shared the same target organ. Nevertheless, we cannot exclude that the physico-chemical characteristics may influence the severity of such effects. Further research efforts are mandatory to ensure the synthesis of safer nano-ZnO-containing products.

  20. Do Nanoparticle Physico-Chemical Properties and Developmental Exposure Window Influence Nano ZnO Embryotoxicity in Xenopus laevis?

    Directory of Open Access Journals (Sweden)

    Patrizia Bonfanti

    2015-07-01

    Full Text Available The growing global production of zinc oxide nanoparticles (ZnONPs suggests a realistic increase in the environmental exposure to such a nanomaterial, making the knowledge of its biological reactivity and its safe-by-design synthesis mandatory. In this study, the embryotoxicity of ZnONPs (1–100 mg/L specifically synthesized for industrial purposes with different sizes, shapes (round, rod and surface coatings (PEG, PVP was tested using the frog embryo teratogenesis assay-Xenopus (FETAX to identify potential target tissues and the most sensitive developmental stages. The ZnONPs did not cause embryolethality, but induced a high incidence of malformations, in particular misfolded gut and abdominal edema. Smaller, round NPs were more effective than the bigger, rod ones, and PEGylation determined a reduction in embryotoxicity. Ingestion appeared to be the most relevant exposure route. Only the embryos exposed from the stomodeum opening showed anatomical and histological lesions to the intestine, mainly referable to a swelling of paracellular spaces among enterocytes. In conclusion, ZnONPs differing in shape and surface coating displayed similar toxicity in X. laevis embryos and shared the same target organ. Nevertheless, we cannot exclude that the physico-chemical characteristics may influence the severity of such effects. Further research efforts are mandatory to ensure the synthesis of safer nano-ZnO-containing products.

  1. Combining different mRNA capture methods to analyze the transcriptome: analysis of the Xenopus laevis transcriptome.

    Directory of Open Access Journals (Sweden)

    Michael D Blower

    Full Text Available mRNA sequencing (mRNA-seq is a commonly used technique to survey gene expression from organisms with fully sequenced genomes. Successful mRNA-seq requires purification of mRNA away from the much more abundant ribosomal RNA, which is typically accomplished by oligo-dT selection. However, mRNAs with short poly-A tails are captured poorly by oligo-dT based methods. We demonstrate that combining mRNA capture via oligo-dT with mRNA capture by the 5' 7-methyl guanosine cap provides a more complete view of the transcriptome and can be used to assay changes in mRNA poly-A tail length on a genome-wide scale. We also show that using mRNA-seq reads from both capture methods as input for de novo assemblers provides a more complete reconstruction of the transcriptome than either method used alone. We apply these methods of mRNA capture and de novo assembly to the transcriptome of Xenopus laevis, a well-studied frog that currently lacks a finished sequenced genome, to discover transcript sequences for thousands of mRNAs that are currently absent from public databases. The methods we describe here will be broadly applicable to many organisms and will provide insight into the transcriptomes of organisms with sequenced and unsequenced genomes.

  2. The effect of 900 and 1800 MHz GSM-like radiofrequency irradiation and nicotine sulfate administration on the embryonic development of Xenopus laevis.

    Science.gov (United States)

    Boga, Ayper; Emre, Mustafa; Sertdemir, Yasar; Akillioglu, Kubra; Binokay, Secil; Demirhan, Osman

    2015-03-01

    The aim of this study was to investigate the effects of GSM-like radiofrequency electromagnetic radiation (RF EMR) and nicotine sulfate (NS) exposure on Xenopus embryonic development.The developmental effects of GSM-like RF-EMR (900-1800 MHz, at a SAR value of 1W/kg and NS on Xenopus laevis embryos were investigated). Following the application of radiofrequency radiation and/or NS administration, the embryos were closely examined in order to determine their possible teratogenic effects. Xenopus frogs obtained from the Department of Physiology of the Cukurova University, in accordance described by the Standard Guide of the American Society for Testing and Materials (ASTM). Following the exposure of Xenopus embryos to RF-EMR at 900 and 1800 MHz (1.0W/kg) for 4, 6 and 8h; the whole body specific energy absorption rate (SAR) of the embryos was calculated. With the exception of irradiation at 1800 MHz no dramatic developmental anomalies were observed in the Xenopus embryos in association with RF-EMR applications. Combined RF-EMR and NS applications resulted in dramatic abnormalities and death among the Xenopus embryos. The study results indicated that GSM-like RF-EMR (e.g. radiation from cell phones) was not as harmful to Xenopus embryos as might have been expected. However, the combined effects of GSM-like RF-EMR and NS on Xenopus embryos were more severe than the effect of RF-EMR or NS alone. In conclusion, the study results appear to suggest that the combined use of nicotine and cell phones might result in more pronounced detrimental effects on the health of smokers.

  3. Identification of Genes Expressed in the Migrating Primitive Myeloid Lineage of Xenopus laevis

    Science.gov (United States)

    Agricola, Zachary N.; Jagpal, Amrita K.; Allbee, Andrew W.; Prewitt, Allison R.; Shifley, Emily T.; Rankin, Scott A.; Zorn, Aaron M.; Kenny, Alan P.

    2017-01-01

    Background During primitive hematopoiesis in Xenopus, cebpa and spib expressing myeloid cells emerge from the anterior ventral blood island. Primitive myeloid cells migrate throughout the embryo and are critical for immunity, healing, and development. Although definitive hematopoiesis has been studied extensively, molecular mechanisms leading to the migration of primitive myelocytes remain poorly understood. We hypothesized these cells have specific extracellular matrix modifying and cell motility gene expression. Results In situ hybridization screens of transcripts expressed in Xenopus foregut mesendoderm at stage 23 identified seven genes with restricted expression in primitive myeloid cells: destrin; coronin actin binding protein, 1a; formin-like 1; ADAM metallopeptidase domain 28; cathepsin S; tissue inhibitor of metalloproteinase-1; and protein tyrosine phosphatase nonreceptor 6. A detailed in situ hybridization analysis revealed these genes are initially expressed in the aVBI but become dispersed throughout the embryo as the primitive myeloid cells become migratory, similar to known myeloid markers. Morpholino-mediated loss-of-function and mRNA-mediated gain-of-function studies revealed the identified genes are downstream of Spib.a and Cebpa, key transcriptional regulators of the myeloid lineage. Conclusions We have identified genes specifically expressed in migratory primitive myeloid progenitors, providing tools to study how different gene networks operate in these primitive myelocytes during development and immunity. PMID:26264370

  4. Dual-function vector for protein expression in both mammalian cells and Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Grunnet, M; Angelo, K;

    2002-01-01

    will often engage both oocytes and mammalian cells. Efficient expression of a protein in both systems have thus far only been possible by subcloning the cDNA into two different vectors because several different molecular requirements should be fulfilled to obtain a high protein level in both mammalian cells...... and oocytes. To address this problem, we have constructed a plasmid vector, pXOOM, that can function as a template for expression in both oocytes and mammalian cells. By including all the necessary RNA stability elements for oocyte expression in a standard mammalian expression vector, we have obtained a dual......-function vector capable of supporting protein production in both Xenopus oocytes and CHO-K1 cells at an expression level equivalent to the levels obtained with vectors optimized for either oocyte or mammalian expression. Our functional studies have been performed with hERGI, KCNQ4, and Kv1.3 potassium channels....

  5. Generation of stable Xenopus laevis transgenic lines expressing a transgene controlled by weak promoters.

    Science.gov (United States)

    L'hostis-Guidet, Anne; Recher, Gaëlle; Guillet, Brigitte; Al-Mohammad, Abdulrahim; Coumailleau, Pascal; Tiaho, François; Boujard, Daniel; Madigou, Thierry

    2009-10-01

    Combining two existing protocols of trangenesis, namely the REMI and the I-SceI meganuclease methods, we generated Xenopus leavis expressing a transgene under the control of a promoter that presented a restricted pattern of activity and a low level of expression. This was realized by co-incubating sperm nuclei, the I-SceI enzyme and the transgene prior to transplantation into unfertilized eggs. The addition of the woodchuck hepatitis virus posttranscriptional regulatory element in our constructs further enhanced the expression of the transgene without affecting the tissue-specificity of the promoter activity. Using this combination of methods we produced high rates of fully transgenic animals that stably transmitted the transgene to the next generations with a transmission rate of 50% indicating a single integration event.

  6. How Xenopus laevis embryos replicate reliably: investigating the random-completion problem

    CERN Document Server

    Yang, Scott Cheng-Hsin

    2008-01-01

    DNA synthesis in \\textit{Xenopus} frog embryos initiates stochastically in time at many sites (origins) along the chromosome. Stochastic initiation implies fluctuations in the time to complete and may lead to cell death if replication takes longer than the cell cycle time ($\\approx 25$ min). Surprisingly, although the typical replication time is about 20 min, \\textit{in vivo} experiments show that replication fails to complete only about 1 in 300 times. How is replication timing accurately controlled despite the stochasticity? Biologists have proposed two solutions to this "random-completion problem." The first solution uses randomly located origins but increases their rate of initiation as S phase proceeds, while the second uses regularly spaced origins. In this paper, we investigate the random-completion problem using a type of model first developed to describe the kinetics of first-order phase transitions. Using methods from the field of extreme-value statistics, we derive the distribution of replication-c...

  7. E-cadherin is required for cranial neural crest migration in Xenopus laevis.

    Science.gov (United States)

    Huang, Chaolie; Kratzer, Marie-Claire; Wedlich, Doris; Kashef, Jubin

    2016-03-15

    The cranial neural crest (CNC) is a highly motile and multipotent embryonic cell population, which migrates directionally on defined routes throughout the embryo, contributing to facial structures including cartilage, bone and ganglia. Cadherin-mediated cell-cell adhesion is known to play a crucial role in the directional migration of CNC cells. However, migrating CNC co-express different cadherin subtypes, and their individual roles have yet to be fully explored. In previous studies, the expression of individual cadherin subtypes has been analysed using different methods with varying sensitivities, preventing the direct comparison of expression levels. Here, we provide the first comprehensive and comparative analysis of the expression of six cadherin superfamily members during different phases of CNC cell migration in Xenopus. By applying a quantitative RT-qPCR approach, we can determine the copy number and abundance of each expressed cadherin through different phases of CNC migration. Using this approach, we show for the first time expression of E-cadherin and XB/C-cadherin in CNC cells, adding them as two new members of cadherins co-expressed during CNC migration. Cadherin co-expression during CNC migration in Xenopus, in particular the constant expression of E-cadherin, contradicts the classical epithelial-mesenchymal transition (EMT) model postulating a switch in cadherin expression. Loss-of-function experiments further show that E-cadherin is required for proper CNC cell migration in vivo and also for cell protrusion formation in vitro. Knockdown of E-cadherin is not rescued by co-injection of other classical cadherins, pointing to a specific function of E-cadherin in mediating CNC cell migration. Finally, through reconstitution experiments with different E-cadherin deletion mutants in E-cadherin morphant embryos, we demonstrate that the extracellular domain, but not the cytoplasmic domain, of E-cadherin is sufficient to rescue CNC cell migration in vivo.

  8. Interactive effects of ultraviolet-B radiation and pesticide exposure on DNA photo-adduct accumulation and expression of DNA damage and repair genes in Xenopus laevis embryos

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shuangying, E-mail: shuangying.yu@ttu.edu [Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, 1207 S. Gilbert Dr., Lubbock, TX 79416 (United States); Tang, Song, E-mail: song.tang@usask.ca [Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, 1207 S. Gilbert Dr., Lubbock, TX 79416 (United States); Mayer, Gregory D., E-mail: greg.mayer@ttu.edu [Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, 1207 S. Gilbert Dr., Lubbock, TX 79416 (United States); Cobb, George P., E-mail: george_cobb@baylor.edu [Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798 (United States); Maul, Jonathan D., E-mail: jonathan.maul@ttu.edu [Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, 1207 S. Gilbert Dr., Lubbock, TX 79416 (United States)

    2015-02-15

    Highlights: • Interactive effects of UVB radiation-pesticide co-exposures were examined in frogs. • Responses included induction of DNA photo-adducts and DNA damage and repair genes. • Elevated DNA adduct levels occurred for co-exposures compared to UVB alone. • One mechanism is that pesticides may alter nuclear excision repair gene expression. - Abstract: Pesticide use and ultraviolet-B (UVB) radiation have both been suggested to adversely affect amphibians; however, little is known about their interactive effects. One potential adverse interaction could involve pesticide-induced dysregulation of DNA repair pathways, resulting in greater numbers of DNA photo-adducts from UVB exposure. In the present study, we investigated the interactive effects of UVB radiation and two common pesticides (endosulfan and α-cypermethrin) on induction of DNA photo-adducts and expression of DNA damage and repair related genes in African clawed frog (Xenopus laevis) embryos. We examined 13 genes that are, collectively, involved in stress defense, cell cycle arrest, nucleotide excision repair (NER), base excision repair, mismatch repair, DNA repair regulation, and apoptosis. We exposed X. laevis embryos to 0, 25, and 50 μg/L endosulfan or 0, 2.5, and 5.0 μg/L α-cypermethrin for 96 h, with environmentally relevant exposures of UVB radiation during the last 7 h of the 96 h exposure. We measured the amount of cyclobutane pyrimidine dimers (CPDs) and mRNA abundance of the 13 genes among treatments including control, pesticide only, UVB only, and UVB and pesticide co-exposures. Each of the co-exposure scenarios resulted in elevated CPD levels compared to UVB exposure alone, suggesting an inhibitory effect of endosulfan and α-cypermethrin on CPD repair. This is attributed to results indicating that α-cypermethrin and endosulfan reduced mRNA abundance of XPA and HR23B, respectively, to levels that may affect the initial recognition of DNA lesions. In contrast, both pesticides

  9. The cytoskeletal protein Zyxin inhibits Shh signaling during the CNS patterning in Xenopus laevis through interaction with the transcription factor Gli1.

    Science.gov (United States)

    Martynova, Natalia Y; Ermolina, Ludmila V; Ermakova, Galina V; Eroshkin, Fedor M; Gyoeva, Fatima K; Baturina, Natalia S; Zaraisky, Andrey G

    2013-08-01

    Zyxin is a cytoskeletal protein that controls cell movements by regulating actin filaments assembly, but it can also modulate gene expression owing to its interactions with the proteins involved in signaling cascades. Therefore, identification of proteins that interact with Zyxin in embryonic cells is a promising way to unravel mechanisms responsible for coupling of two major components of embryogenesis: morphogenetic movements and cell differentiation. Now we show that in Xenopus laevis embryos Zyxin can bind to and suppress activity of the primary effector of Sonic hedgehog (Shh) signaling cascade, the transcription factor Gli1. By using loss- and gain-of-function approaches, we demonstrate that Zyxin is essential for reduction of Shh signaling within the dorsal part of the neural tube of X. laevis embryo. Thus, our finding discloses a novel function of Zyxin in fine tuning of the central neural system patterning which is based on the ventral-to-dorsal gradient of Shh signaling.

  10. Analysis of gamma-aminobutyric acidB receptor function in the in vitro and in vivo regulation of alpha-melanotropin-stimulating hormone secretion from melanotrope cells of Xenopus laevis.

    Science.gov (United States)

    De Koning, H P; Jenks, B G; Roubos, E W

    1993-02-01

    The activity of many endocrine cells is regulated by gamma-aminobutyric acid (GABA). The effects of GABA are mediated by GABAA and/or GABAB receptors. While GABAB receptors in the central nervous system have now been extensively characterized, little is known of the function and pharmacology of GABAB receptors on endocrine cells. In the amphibian Xenopus laevis, GABA inhibits the release of alpha MSH from the endocrine melanotrope cells through both GABAA and GABAB receptors. We have investigated the following aspects of the GABAB receptor of the melanotrope cells of X. laevis: 1) the pharmacology of this receptor, using antagonists previously established to demonstrate GABAB receptors in the mammalian central nervous system; 2) the relative contribution to the regulation of hormone secretion by the GABAA and GABAB receptors on melanotrope cells in vitro; and 3) the role of the GABAB receptor with respect to the physiological function of the melanotrope cell in vivo, i.e. regulation of pigment dispersion in skin melanophores in relation to background color. Our results demonstrate that phaclofen, 2-hydroxysaclofen, and 4-aminobutylphosphonic acid dose-dependently blocked the inhibition of alpha MSH release by GABAB receptor activation, but not by GABAA receptor activation. The GABAB receptor antagonist delta-aminovaleric acid appeared to be a selective agonist on the GABAB receptor of melanotrope cells. The inhibitory secretory response to a low dose of GABA (10(-5) M) was not affected by bicuculline, but was significantly reduced by phaclofen, indicating that at a low GABA concentration, the GABAB receptor mechanism would dominate in inhibiting the melanotrope cells. Different thresholds of activation may form the basis for differential action of GABA through both GABA receptor types. The tonic inhibition of alpha MSH release in animals adapted to a white background was not affected by 4-aminobutylphosphonic acid, indicating that the GABAB receptor is not (solely

  11. Survival fraction and phenotype alterations of Xenopus laevis embryos at 3 Gy, 150 kV X-ray irradiation.

    Science.gov (United States)

    Carotenuto, Rosa; Tussellino, Margherita; Mettivier, Giovanni; Russo, Paolo

    2016-11-25

    To determine the radiosensitivity of Xenopus laevis embryos, aquatic organism model, for toxicity studies utilizing X-rays at acute high dose levels, by analysing its survival fraction and phenotype alterations under one-exposure integral dose. We used the standard Frog Embryo Teratogenesis Assay Xenopus test during the early stages of X. laevis development. The embryos were harvested until st. 46 when they were irradiated. The radiation effects were checked daily for a week and the survival, malformations and growth inhibition were assessed. Sibling tadpoles as control organisms were used. Statistical analysis was performed to assess the extent of any damage. Irradiation was performed with an X-ray tube operated at 150 kV. The tube containing the tadpoles was exposed to an air kerma of 3 Gy as measured in air with an in-beam ionization chamber. After one week, survival fraction of irradiated embryos was 58%, while for control embryos it was 81%. Hence, irradiation with 150 kV, 3 Gy X-rays produced a 23% decrease of survival in regard to unirradiated embryos. The 70% of the irradiated embryos showed an altered distribution of the skin pigmentation, in particular on the dorsal area and in the olfactory pits, where the pigment concentration increased by a factor 2. In conclusion exposure of X. laevis to 3 Gy, 150 kV X-rays induced a reduction of embryos survival and a significant modification of pigmentation. The authors think that X. laevis embryos, at st 46, is a suitable biological model for large scale investigations on the effects of ionizing radiation.

  12. Acute and Chronic Outcomes of Gas-Bubble Disease in a Colony of African Clawed Frogs (Xenopus laevis).

    Science.gov (United States)

    Tsai, Julia Y; Felt, Stephen A; Bouley, Donna M; Green, Sherril L

    2017-02-01

    Gas-bubble disease occurs in aquatic species that are exposed to water that is supersaturated with gases. In February 2007, municipal water supersaturated with gas was inadvertently pumped into the vivarium's aquatic housing systems and affected approximately 450 adult female Xenopus laevis. The inflow of supersaturated water was stopped immediately, the holding tanks aggressively aerated, and all experimental manipulations and feeding ceased. Within the first 6 h after the event, morbidity approached 90%, and mortality reached 3.5%. Acutely affected frogs showed clinical signs of gas-bubble disease: buoyancy problems, micro- and macroscopic bubbles in the foot webbing, hyperemia in foot webbing and leg skin, and loss of the mucous slime coat. All of the frogs that died or were euthanized had areas of mesenteric infarction, which resulted in intestinal epithelial necrosis and degeneration of the muscular tunic. Over the subsequent 2 wk, as gas saturation levels returned to normal, the clinical symptoms resolved completely in the remaining frogs. However, 3 mo later, 85% of them failed to lay eggs or produce oocytes, and the remaining 15% produced oocytes of low number and poor quality, yielding cytosolic extracts with poor to no enzymatic activity. Histology of the egg mass from a single 2- to 3-y-old frog at 3 mo after disease resolution revealed irregularly shaped oocytes, few large mature oocytes, and numerous small, degenerating oocytes. At 6 mo after the incident, the remaining frogs continued to fail to produce eggs of sufficient quantity or quality after hormonal priming. The researchers consequently opted to cull the remainder of the colony and repopulate with new frogs.

  13. ATP formation and ATP hydrolysis during fatiguing, intermittent stimulation of different types of single muscle fibres from Xenopus laevis.

    Science.gov (United States)

    Nagesser, A S; Van der Laarse, W J; Elzinga, G

    1993-12-01

    This report describes changes of the rate of ATP hydrolysis in single, intact muscle fibres during the development of fatigue induced by intermittent tetanic stimulation. High (type 3) and low (type 1) oxidative muscle fibres dissected from the iliofibularis muscle of Xenopus laevis were studied at 20 degrees C. The rate of ATP hydrolysis was calculated during different time intervals from changes in the content of nucleotides, creatine compounds and lactate, as well as lactate efflux and oxygen uptake. During the first phase of intermittent stimulation, phosphocreatine is fully reduced while the rate of oxygen consumption increases to its maximum, the lactate content increases to a maximum level, and a small amount of IMP is formed; the rate of ATP hydrolysis in type 3 fibres is constant while force decreases, whereas the rate decreases approximately in proportion to force in type 1 fibres. After the first phase, the rate of ATP hydrolysis in type 3 fibres decreases slightly and the fibres reach a steady metabolic state in which the rates of ATP formation and hydrolysis are equal; in type 1 fibres a drastic change of the rate of ATP hydrolysis occurs and a steady metabolic state is not reached. On the basis of the time courses of the metabolic changes, it is concluded that the rate of ATP hydrolysis in type 3 fibres is reduced by acidification and/or a reduced calcium efflux from the sarcoplasmic reticulum, whereas in type 1 fibres inorganic phosphate and/or acidification inhibit the rate initially and ADP is a likely candidate to explain the drastic fall of the rate of ATP hydrolysis during late phases of fatiguing stimulation.

  14. Relation between force and calcium ion concentration in different fibre types of the iliofibularis muscle of Xenopus laevis.

    Science.gov (United States)

    Stienen, G J; van der Laarse, W J; Diegenbach, P C; Elzinga, G

    1987-01-01

    Calcium activated isometric force was measured in segments of single muscle fibres of the iliofibularis muscle of Xenopus laevis skinned by freeze-drying. A subdivision in five different fibre types was made, based on the location of the fibres inside the muscle, fibre diameter and a quantitative histochemical assay for succinate dehydrogenase activity. The Ca2+ sensitivity was characterized by fitting a Hill curve to the force levels reached at different Ca2+ concentrations. The parameter n of this equation indicates the steepness and pK the midpoint of this force-pCa relation. A considerable variability in the Ca2+ sensitivity characteristics was found between different fibres. The parameter n varied between 1.1 and 4.2 while pK varied between 5.5 and 6.6. The distribution of the data indicates the presence of three groups with different Ca2+ sensitivity; a group of fibres with low Ca2+ sensitivity but with considerable variation of the steepness of the Ca2+ sensitivity curves (type 1 fibres), an intermediate group (type 2, 3 and 4 fibres) with also considerable variation in steepness of the Ca2+ sensitivity curves, in which the lowest values for n are found in type 3 and 4 fibres and a group with high Ca2+ sensitivity and low n containing at least one tonic (type 5) fibre. At sub-saturating Ca2+ concentrations occasionally a transient decrease of the rate of force development was found which resembled the force oscillation reported for some mammalian muscle fibres.

  15. Differences in mobility at the range edge of an expanding invasive population of Xenopus laevis in the west of France.

    Science.gov (United States)

    Louppe, Vivien; Courant, Julien; Herrel, Anthony

    2017-01-15

    Theoretical models predict that spatial sorting at the range edge of expanding populations should favor individuals with increased mobility relative to individuals at the center of the range. Despite the fact that empirical evidence for the evolution of locomotor performance at the range edge is rare, data on cane toads support this model. However, whether this can be generalized to other species remains largely unknown. Here, we provide data on locomotor stamina and limb morphology in individuals from two sites: one from the center and one from the periphery of an expanding population of the clawed frog Xenopus laevis in France where it was introduced about 30 years ago. Additionally, we provide data on the morphology of frogs from two additional sites to test whether the observed differences can be generalized across the range of this species in France. Given the known sexual size dimorphism in this species, we also test for differences between the sexes in locomotor performance and morphology. Our results show significant sexual dimorphism in stamina and morphology, with males having longer legs and greater stamina than females. Moreover, in accordance with the predictions from theoretical models, individuals from the range edge had a greater stamina. This difference in locomotor performance is likely to be driven by the significantly longer limb segments observed in animals in both sites sampled in different areas along the range edge. Our data have implications for conservation because spatial sorting on the range edge may lead to an accelerated increase in the spread of this invasive species in France.

  16. Transplantation of Xenopus laevis tissues to determine the ability of motor neurons to acquire a novel target.

    Directory of Open Access Journals (Sweden)

    Karen L Elliott

    Full Text Available The evolutionary origin of novelties is a central problem in biology. At a cellular level this requires, for example, molecularly resolving how brainstem motor neurons change their innervation target from muscle fibers (branchial motor neurons to neural crest-derived ganglia (visceral motor neurons or ear-derived hair cells (inner ear and lateral line efferent neurons. Transplantation of various tissues into the path of motor neuron axons could determine the ability of any motor neuron to innervate a novel target. Several tissues that receive direct, indirect, or no motor innervation were transplanted into the path of different motor neuron populations in Xenopus laevis embryos. Ears, somites, hearts, and lungs were transplanted to the orbit, replacing the eye. Jaw and eye muscle were transplanted to the trunk, replacing a somite. Applications of lipophilic dyes and immunohistochemistry to reveal motor neuron axon terminals were used. The ear, but not somite-derived muscle, heart, or liver, received motor neuron axons via the oculomotor or trochlear nerves. Somite-derived muscle tissue was innervated, likely by the hypoglossal nerve, when replacing the ear. In contrast to our previous report on ear innervation by spinal motor neurons, none of the tissues (eye or jaw muscle was innervated when transplanted to the trunk. Taken together, these results suggest that there is some plasticity inherent to motor innervation, but not every motor neuron can become an efferent to any target that normally receives motor input. The only tissue among our samples that can be innervated by all motor neurons tested is the ear. We suggest some possible, testable molecular suggestions for this apparent uniqueness.

  17. Neural tube closure in Xenopus laevis involves medial migration, directed protrusive activity, cell intercalation and convergent extension.

    Science.gov (United States)

    Davidson, L A; Keller, R E

    1999-10-01

    We have characterized the cell movements and prospective cell identities as neural folds fuse during neural tube formation in Xenopus laevis. A newly developed whole-mount, two-color fluorescent RNA in situ hybridization method, visualized with confocal microscopy, shows that the dorsal neural tube gene xpax3 and the neural-crest-specific gene xslug are expressed far lateral to the medial site of neural fold fusion and that expression moves medially after fusion. To determine whether cell movements or dynamic changes in gene expression are responsible, we used low-light videomicroscopy followed by fluorescent in situ and confocal microscopy. These methods revealed that populations of prospective neural crest and dorsal neural tube cells near the lateral margin of the neural plate at the start of neurulation move to the dorsal midline using distinctive forms of motility. Before fold fusion, superficial neural cells apically contract, roll the neural plate into a trough and appear to pull the superficial epidermal cell sheet medially. After neural fold fusion, lateral deep neural cells move medially by radially intercalating between other neural cells using two types of motility. The neural crest cells migrate as individual cells toward the dorsal midline using medially directed monopolar protrusions. These movements combine the two lateral populations of neural crest into a single medial population that form the roof of the neural tube. The remaining cells of the dorsal neural tube extend protrusions both medially and laterally bringing about radial intercalation of deep and superficial cells to form a single-cell-layered, pseudostratified neural tube. While ours is the first description of medially directed cell migration during neural fold fusion and re-establishment of the neural tube, these complex cell behaviors may be involved during cavitation of the zebrafish neural keel and secondary neurulation in the posterior axis of chicken and mouse.

  18. Thyroid Hormone-Induced Activation of Notch Signaling is Required for Adult Intestinal Stem Cell Development During Xenopus Laevis Metamorphosis.

    Science.gov (United States)

    Hasebe, Takashi; Fujimoto, Kenta; Kajita, Mitsuko; Fu, Liezhen; Shi, Yun-Bo; Ishizuya-Oka, Atsuko

    2016-11-21

    In Xenopus laevis intestine during metamorphosis, the larval epithelial cells are removed by apoptosis, and the adult epithelial stem (AE) cells appear concomitantly. They proliferate and differentiate to form the adult epithelium (Ep). Thyroid hormone (TH) is well established to trigger this remodeling by regulating the expression of various genes including Notch receptor. To study the role of Notch signaling, we have analyzed the expression of its components, including the ligands (DLL and Jag), receptor (Notch), and targets (Hairy), in the metamorphosing intestine by real-time reverse transcription-polymerase chain reaction and in situ hybridization or immunohistochemistry. We show that they are up-regulated during both natural and TH-induced metamorphosis in a tissue-specific manner. Particularly, Hairy1 is specifically expressed in the AE cells. Moreover, up-regulation of Hairy1 and Hairy2b by TH was prevented by treating tadpoles with a γ-secretase inhibitor (GSI), which inhibits Notch signaling. More importantly, TH-induced up-regulation of LGR5, an adult intestinal stem cell marker, was suppressed by GSI treatment. Our results suggest that Notch signaling plays a role in stem cell development by regulating the expression of Hairy genes during intestinal remodeling. Furthermore, we show with organ culture experiments that prolonged exposure of tadpole intestine to TH plus GSI leads to hyperplasia of secretory cells and reduction of absorptive cells. Our findings here thus provide evidence for evolutionarily conserved role of Notch signaling in intestinal cell fate determination but more importantly reveal, for the first time, an important role of Notch pathway in the formation of adult intestinal stem cells during vertebrate development. Stem Cells 2016.

  19. Quantitative analysis of orofacial development and median clefts in Xenopus laevis.

    Science.gov (United States)

    Kennedy, Allyson E; Dickinson, Amanda J

    2014-05-01

    Xenopus has become a useful tool to study the molecular mechanisms underlying orofacial development. However, few quantitative analyses exist to describe the anatomy of this region. In this study we combine traditional facial measurements with geometric morphometrics to describe anatomical changes in the orofacial region during normal and abnormal development. Facial measurements and principal component (PC) analysis indicate that during early tadpole development the face expands primarily in the midface region accounting for the development of the upper jaw and primary palate. The mouth opening correspondingly becomes flatter and wider as it incorporates the jaw elements. A canonical variate analysis of orofacial and mouth opening shape emphasized that changes in the orofacial shape occur gradually. Orofacial anatomy was quantified after altered levels of retinoic acid using all-trans retinoic acid or an inhibitor of retinoic acid receptors or by injecting antisense oligos targeting RALDH2. Such perturbations resulted in major decreases in the width of the midface and the mouth opening illustrated in facial measurements and a PC analysis. The mouth opening shape also had a gap in the primary palate resulting in a median cleft in the mouth opening that was only illustrated quantitatively in the morphometric analysis. Finally, canonical and discriminant function analysis statistically distinguished the orofacial and mouth opening shape changes among the different modes used to alter retinoic acid signaling levels. By combining quantitative analyses with molecular studies of orofacial development we will be better equipped to understand the complex morphogenetic processes involved in palate development and clefting.

  20. Effect of allyl isothiocyanate on developmental toxicity in exposed Xenopus laevis embryos

    Directory of Open Access Journals (Sweden)

    John Russell Williams

    2015-01-01

    Full Text Available The pungent natural compound allyl isothiocyanate isolated from the seeds of Cruciferous (Brassica plants such as mustard is reported to exhibit numerous beneficial health-promoting antimicrobial, antifungal, anticarcinogenic, cardioprotective, and neuroprotective properties. Because it is also reported to damage DNA and is toxic to aquatic organisms, the objective of the present study was to determine whether it possesses teratogenic properties. The frog embryo teratogenesis assay-Xenopus (FETAX was used to determine the following measures of developmental toxicity of the allyl isothiocyanate: (a 96-h LC50, defined as the median concentration causing 50% embryo lethality; (b 96-h EC50, defined as the median concentration causing 50% malformations of the surviving embryos; and (c teratogenic malformation index (TI, equal to 96-h LC50/96-h EC50. The quantitative results and the photographs of embryos before and after exposure suggest that allyl isothiocyanate seems to exhibit moderate teratogenic properties. The results also indicate differences in the toxicity of allyl isothiocyanate toward exposed embryos observed in the present study compared to reported adverse effects of allyl isothiocyanate in fish, rodents, and humans. The significance of the results for food safety and possible approaches to protect against adverse effects of allyl isothiocyanate are discussed.

  1. How Xenopus laevis embryos replicate reliably: Investigating the random-completion problem

    Science.gov (United States)

    Yang, Scott Cheng-Hsin; Bechhoefer, John

    2008-10-01

    DNA synthesis in Xenopus frog embryos initiates stochastically in time at many sites (origins) along the chromosome. Stochastic initiation implies fluctuations in the time to complete and may lead to cell death if replication takes longer than the cell cycle time (≈25min) . Surprisingly, although the typical replication time is about 20min , in vivo experiments show that replication fails to complete only about 1 in 300 times. How is replication timing accurately controlled despite the stochasticity? Biologists have proposed two solutions to this “random-completion problem.” The first solution uses randomly located origins but increases their rate of initiation as S phase proceeds, while the second uses regularly spaced origins. In this paper, we investigate the random-completion problem using a type of model first developed to describe the kinetics of first-order phase transitions. Using methods from the field of extreme-value statistics, we derive the distribution of replication-completion times for a finite genome. We then argue that the biologists’ first solution to the problem is not only consistent with experiment but also nearly optimizes the use of replicative proteins. We also show that spatial regularity in origin placement does not alter significantly the distribution of replication times and, thus, is not needed for the control of replication timing.

  2. Progressively restricted expression of a new homeobox-containing gene during Xenopus laevis embryogenesis.

    Science.gov (United States)

    Su, M W; Suzuki, H R; Solursh, M; Ramirez, F

    1991-04-01

    We have isolated cDNAs encoding a novel Xenopus homeodomain-containing protein homologous to the mouse Hox-7.1 and the Drosophila muscle segment homebox (msh). Northern blot and RNAase protection experiments established that transcripts of the frog gene, termed Xhox-7.1, first appear at about the beginning of gastrulation. After a rapid increase, mRNA levels plateau between the neurula and middle-tailbud stages, and decrease steadily thereafter. In situ hybridization localized the Xhox-7.1 message to the dorsal mesodermal mantle of gastrula stage embryos. Comparison of the hybridization patterns of progressively more anterior cross-section of tailbud stage embryos localized the signal to the dorsal neural tube and neural crest, to specific regions of the lateral plate mesoderm, and to the cardiogenic region. By the tadpole stage, the Xhox-7.1 message appears only at specific sites in the central nervous system, such as in the dorsal hindbrain. Thus, during embryonic development levels of Xhox-7.1 expression decrease as the transcript becomes more progressively localized. Finally, evidence is presented of a distinct msh-like transcript (provisionally termed Xhox-7.1') which begins to accumulate at early-gastrula stage, as well.

  3. Mass-spectrometric identification of binding proteins of Mr 25,000 protein, a part of vitellogenin B1, detected in particulate fraction of Xenopus laevis oocytes.

    Science.gov (United States)

    Sugimoto, Isamu; Li, Zhijun; Yoshitome, Satoshi; Ito, Susumu; Hashimoto, Eikichi

    2004-10-01

    A phosphorylated protein with molecular mass of 25,000 (pp25) is a component of Xenopus laevis vitellogenin B1. Our previous report showed the existence of several binding proteins of pp25 in the particulate fraction of Xenopus oocytes. In an attempt to elucidate the function of pp25, two of these binding proteins were purified, analyzed by mass-spectrometry, and identified as ribosomal proteins S13 and S14. Other binding proteins in the particulate fraction mostly corresponded to those derived from purified 40S and 60S ribosomal subunits, as shown by the overlay assay method. However, pp25 did not show any effect on protein synthesis in the rabbit reticulocyte lysate system. A model in which pp25 connects a type of serpin (serine protease inhibitor), the only pp25-binding protein detected in the cytoplasm, to the endoplasmic reticulum through two serine clusters is proposed to explain a possible function of this protein.

  4. Shorter exposures to harder X-rays trigger early apoptotic events in Xenopus laevis embryos.

    Directory of Open Access Journals (Sweden)

    JiaJia Dong

    Full Text Available BACKGROUND: A long-standing conventional view of radiation-induced apoptosis is that increased exposure results in augmented apoptosis in a biological system, with a threshold below which radiation doses do not cause any significant increase in cell death. The consequences of this belief impact the extent to which malignant diseases and non-malignant conditions are therapeutically treated and how radiation is used in combination with other therapies. Our research challenges the current dogma of dose-dependent induction of apoptosis and establishes a new parallel paradigm to the photoelectric effect in biological systems. METHODOLOGY/PRINCIPAL FINDINGS: We explored how the energy of individual X-ray photons and exposure time, both factors that determine the total dose, influence the occurrence of cell death in early Xenopus embryo. Three different experimental scenarios were analyzed and morphological and biochemical hallmarks of apoptosis were evaluated. Initially, we examined cell death events in embryos exposed to increasing incident energies when the exposure time was preset. Then, we evaluated the embryo's response when the exposure time was augmented while the energy value remained constant. Lastly, we studied the incidence of apoptosis in embryos exposed to an equal total dose of radiation that resulted from increasing the incoming energy while lowering the exposure time. CONCLUSIONS/SIGNIFICANCE: Overall, our data establish that the energy of the incident photon is a major contributor to the outcome of the biological system. In particular, for embryos exposed under identical conditions and delivered the same absorbed dose of radiation, the response is significantly increased when shorter bursts of more energetic photons are used. These results suggest that biological organisms display properties similar to the photoelectric effect in physical systems and provide new insights into how radiation-mediated apoptosis should be understood and

  5. Expression of two nonallelic type II procollagen genes during Xenopus laevis embryogenesis is characterized by stage-specific production of alternatively spliced transcripts.

    Science.gov (United States)

    Su, M W; Suzuki, H R; Bieker, J J; Solursh, M; Ramirez, F

    1991-10-01

    The pattern of type II collagen expression during Xenopus laevis embryogenesis has been established after isolating specific cDNA and genomic clones. Evidence is presented suggesting that in X. laevis there are two transcriptionally active copies of the type II procollagen gene. Both genes are activated at the beginning of neurula stage and steady-state mRNA levels progressively increase thereafter. Initially, the transcripts are localized to notochord, somites, and the dorsal region of the lateral plate mesoderm. At later stages of development and parallel to increased mRNA accumulation, collagen expression becomes progressively more confined to chondrogenic regions of the tadpole. During the early period of mRNA accumulation, there is also a transient pattern of expression in localized sites that will later not undergo chondrogenesis, such as the floor plate in the ventral neural tube. At later times and coincident with the appearance of chondrogenic tissues in the developing embryo, expression of the procollagen genes is characterized by the production of an additional, alternatively spliced transcript. The alternatively spliced sequences encode the cysteine-rich globular domain in the NH2-propeptide of the type II procollagen chain. Immunohistochemical analyses with a type II collagen monoclonal antibody documented the deposition of the protein in the extracellular matrix of the developing embryo. Type II collagen expression is therefore temporally regulated by tissue-specific transcription and splicing factors directing the synthesis of distinct molecular forms of the precursor protein in the developing Xenopus embryo.

  6. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles

    Energy Technology Data Exchange (ETDEWEB)

    Zaya, Renee M., E-mail: renee.zaya@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Amini, Zakariya, E-mail: zakariya.amini@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Whitaker, Ashley S., E-mail: ashley.s.whitaker@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Ide, Charles F., E-mail: charles.ide@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States)

    2011-08-15

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 {mu}g/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 {mu}g/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 {mu}g/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 {mu}g/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p = 0.07) increases in peroxisome proliferator-activated receptor {beta} (PPAR-{beta}) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid {beta}-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-{beta}, an energy

  7. The acrylamide (S-2 as a positive and negative modulator of Kv7 channels expressed in Xenopus laevis oocytes.

    Directory of Open Access Journals (Sweden)

    Sigrid Marie Blom

    Full Text Available BACKGROUND: Activation of voltage-gated potassium channels of the Kv7 (KCNQ family reduces cellular excitability. These channels are therefore attractive targets for treatment of diseases characterized by hyperexcitability, such as epilepsy, migraine and neuropathic pain. Retigabine, which opens Kv7.2-5, is now in clinical trial phase III for the treatment of partial onset seizures. One of the main obstacles in developing Kv7 channel active drugs has been to identify compounds that can discriminate between the neuronal subtypes, a feature that could help diminish side effects and increase the potential of drugs for particular indications. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we have made a thorough investigation of the Bristol-Myers Squibb compound (S-N-[1-(4-Cyclopropylmethyl-3,4-dihydro-2H-benzo[1], [4]oxazin-6-yl-ethyl]-3-(2-fluoro-phenyl-acrylamide [(S-2] on human Kv7.1-5 channels expressed in Xenopus laevis oocytes. We found that the compound was a weak inhibitor of Kv7.1. In contrast, (S-2 efficiently opened Kv7.2-5 by producing hyperpolarizing shifts in the voltage-dependence of activation and enhancing the maximal current amplitude. Further, it reduced inactivation, accelerated activation kinetics and slowed deactivation kinetics. The mechanisms of action varied between the subtypes. The enhancing effects of (S-2 were critically dependent on a tryptophan residue in S5 also known to be crucial for the effects of retigabine, (S-1 and BMS-204352. However, while (S-2 did not at all affect a mutant Kv7.4 with a leucine in this position (Kv7.4-W242L, a Kv7.2 with the same mutation (Kv7.2-W236L was inhibited by the compound, showing that (S-2 displays a subtype-selective interaction with in the Kv7 family. CONCLUSIONS/SIGNIFICANCE: These results offer further insight into pharmacological activation of Kv7 channels, add to the understanding of small molecule interactions with the channels and may contribute to the design of

  8. Identification and quantification in single muscle fibers of four isoforms of parvalbumin in the iliofibularis muscle of Xenopus laevis.

    Science.gov (United States)

    Simonides, W S; van Hardeveld, C

    1989-10-05

    The major parvalbumins present in the iliofibularis muscle of Xenopus laevis were identified and the total parvalbumin content of different types of single fibers of this muscle was determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate (SDS). The criteria used in the identification of proteins as parvalbumins were: a relative molecular mass (Mr) between 10,000 and 14,000, an isoelectric point (pI) between 4.0 and 5.0, and a Ca2+-dependent mobility when run on a polyacrylamide gel in the absence of SDS. Four proteins were thus identified as parvalbumins: PA1, Mr 14,000, pI 4.90; PA2, Mr 11,000, pI 4.90; PA3, Mr 11,000, pI 4.95; and PA4, Mr 11,000, pI 4.25. An ultraviolet absorbance spectrum characteristic of parvalbumins was recorded for a purified preparation of these four proteins. Because the apparent Mr of rabbit parvalbumin in the gel system used was 14,000, whereas the true value is 12,100, it is not excluded that the Mr of component PA1 of 14,000 is an overestimation. The total parvalbumin content of muscles and single muscle fibers was determined using the supernatant obtained after centrifugation of tissue homogenates. Analysis of the protein pattern after electrophoresis in the presence of SDS of this fraction indicated that the Mr 14,000 and 11,000 protein bands contained virtually only parvalbumin. Quantification of the total parvalbumin content of relatively fast (type 1) and slow (type 2) contracting and relaxing single muscle fibers, using laser densitometric analysis of minigels, yielded mean values (mg protein/g wet wt., +/- S.D.) of 5.2 +/- 0.8 for nine type 1 fibers, and 1.9 +/- 1.0 for five type 2 fibers. Both fiber types contained about 2.5-times as much of the Mr 14,000 isoform relative to the combined Mr 11,000 isoforms.

  9. δβγ-ENaC is inhibited by CFTR but stimulated by cAMP in Xenopus laevis oocytes.

    Science.gov (United States)

    Rauh, Robert; Hoerner, Christian; Korbmacher, Christoph

    2017-02-01

    The epithelial sodium channel (ENaC) and the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel critically regulate airway surface liquid by driving fluid absorption and secretion, respectively. Their functional interplay is complex and incompletely understood. ENaC is a heteromeric channel with three well-characterized subunits (α, β, and γ). In humans, an additional δ-ENaC subunit exists in lung and several other tissues, where it may replace the α-subunit to form δβγ-ENaC. Little is known about the physiological role of δβγ-ENaC and its possible interaction with CFTR. The aim of the present study was to investigate the effect of human CFTR on human δβγ-ENaC heterologously expressed in Xenopus laevis oocytes. In oocytes coexpressing δβγ-ENaC and CFTR the ENaC-mediated amiloride-sensitive whole cell current (ΔIami) was reduced by ~50% compared with that measured in oocytes expressing δβγ-ENaC alone. Moreover, basal level of proteolytic ENaC activation was reduced in the presence of CFTR. The inhibitory effect of CFTR on δβγ-ENaC was due to a combination of decreased average open probability (Po) and reduced channel expression at the cell surface. Interestingly, in oocytes expressing δβγ-ENaC, increasing intracellular [cAMP] by IBMX and forskolin increased ΔIami by ~50%. This stimulatory effect was not observed for human and rat αβγ-ENaC and was independent of CFTR coexpression and coactivation. Experiments with a mutant channel (δβS520Cγ-ENaC) which can be converted to a channel with a Po of nearly 1 suggested that cAMP activates δβγ-ENaC by increasing Po In conclusion, our results demonstrate that δβγ-ENaC is inhibited by CFTR but activated by cAMP.

  10. The metamorphosis of amphibian toxicogenomics

    Directory of Open Access Journals (Sweden)

    Caren eHelbing

    2012-03-01

    Full Text Available Amphibians are important vertebrates in toxicology often representing both aquatic and terrestrial forms within the life history of the same species. Of the thousands of species, only two have substantial genomics resources: the recently published genome of the Pipid, Xenopus (Silurana tropicalis, and transcript information (and ongoing genome sequencing project of Xenopus laevis. However, many more species representative of regional ecological niches and life strategies are used in toxicology worldwide. Since Xenopus species diverged from the most populous frog family, the Ranidae, ~200 million years ago, there are notable differences between them and the even more distant Caudates (salamanders and Caecilians. These differences include genome size, gene composition, and extent of polyploidization. Application of toxicogenomics to amphibians requires the mobilization of resources and expertise to develop de novo sequence assemblies and analysis strategies for a broader range of amphibian species. The present mini-review will present the advances in toxicogenomics as pertains to amphibians with particular emphasis upon the development and use of genomic techniques (inclusive of transcriptomics, proteomics, and metabolomics and the challenges inherent therein.

  11. Diurnal variation of tight junction integrity associates inversely with matrix metalloproteinase expression in Xenopus laevis corneal epithelium: implications for circadian regulation of homeostatic surface cell desquamation.

    Directory of Open Access Journals (Sweden)

    Allan F Wiechmann

    Full Text Available The corneal epithelium provides a protective barrier against pathogen entrance and abrasive forces, largely due to the intercellular junctional complexes between neighboring cells. After a prescribed duration at the corneal surface, tight junctions between squamous surface cells must be disrupted to enable them to desquamate as a component of the tissue homeostatic renewal. We hypothesize that matrix metalloproteinase (MMPs are secreted by corneal epithelial cells and cleave intercellular junctional proteins extracellularly at the epithelial surface. The purpose of this study was to examine the expression of specific MMPs and tight junction proteins during both the light and dark phases of the circadian cycle, and to assess their temporal and spatial relationships in the Xenopus laevis corneal epithelium.Expression of MMP-2, tissue inhibitor of MMP-2 (TIMP-2, membrane type 1-MMP (MT1-MMP and the tight junction proteins occludin and claudin-4 were examined by confocal double-label immunohistochemistry on corneas obtained from Xenopus frogs at different circadian times. Occludin and claudin-4 expression was generally uniformly intact on the surface corneal epithelial cell lateral membranes during the daytime, but was frequently disrupted in small clusters of cells at night. Concomitantly, MMP-2 expression was often elevated in a mosaic pattern at nighttime and associated with clusters of desquamating surface cells. The MMP-2 binding partners, TIMP-2 and MT1-MMP were also localized to surface corneal epithelial cells during both the light and dark phases, with TIMP-2 tending to be elevated during the daytime.MMP-2 protein expression is elevated in a mosaic pattern in surface corneal epithelial cells during the nighttime in Xenopus laevis, and may play a role in homeostatic surface cell desquamation by disrupting intercellular junctional proteins. The sequence of MMP secretion and activation, tight junction protein cleavage, and subsequent surface

  12. Stimulation of circus movement by activin, bFGF and TGF-beta 2 in isolated animal cap cells of Xenopus laevis.

    Science.gov (United States)

    Minoura, I; Nakamura, H; Tashiro, K; Shiokawa, K

    1995-01-01

    Lobopodium is a hyaline cytoplasmic protrusion which rotates circumferencially around a cell. This movement is called circus movement, which is seen in dissociated cells of amphibian embryos. Relative abundance of the lobopodia-forming cells changes temporally and spatially within Xenopus embryos, reflecting stage-dependent difference of morphogenetic movements. The lobopodia-forming activity of dissociated animal cap cells was stimulated strongly by activin and bFGF, and weakly by TGF-beta 2. In addition, activin A was found to stimulate cellular attachment to the substratum when the cultivation lasted long. Thus, mesoderm-inducing growth factors stimulate lobopodia formation and cellular movements which may be necessary for gastrulation and neurulation in Xenopus early embryos.

  13. Quick-freeze, deep-etch, rotary-shadow views of the extracellular matrix and cortical cytoskeleton of Xenopus laevis eggs.

    Science.gov (United States)

    Larabell, C A; Chandler, D E

    1989-11-01

    The quick-freeze, deep-etch, rotary-shadow technique provides a powerful tool to study the structural dynamics of extracellular matrices. Using this technique, we show that the extracellular investments of the Xenopus laevis egg are multilayered and securely anchored to the egg surface. The cortical cytoskeleton within the egg contains embedded cortical granules with surrounding endoplasmic reticulum and is capped by a thin reticular sheet that contacts the inner surface of the plasma membrane. The extracellular matrix undergoes three distinct changes at fertilization: a) formation of a "smooth" layer below the vitelline envelope (VE), b) transformation of the VE itself to an altered VE composed of concentric fibrous sheets, and c) formation of a dense, "briar-patch"-like fertilization layer at the upper surface of the VE.

  14. Regression of blood vessels in the ventral velum of Xenopus laevis Daudin during metamorphosis: light microscopic and transmission electron microscopic study.

    Science.gov (United States)

    Bartel, H; Lametschwandtner, A

    2000-08-01

    Structural changes of the ventral velum of Xenopus laevis tadpoles from late prometamorphosis (stage 58) to the height of metamorphic climax (stage 62) were examined by light and transmission electron microscopy. Special emphasis was given to the blood vessel regression. Early changes of velar capillaries were formation of luminal and abluminal endothelial cell processes, vacuolation, and cytoplasmic and nuclear chromatin condensation. At the height of metamorphic climax, transmission electron microscopy revealed apoptotic endothelial cells with nuclear condensation and fragmentation, intraluminal bulging of rounded endothelial cells which narrowed or even plugged the capillary, and different stages of endothelial cell detachment ('shedding') into the vessel lumen. These changes explain the 'miniaturisation' of the velar microvascular bed as well as the typical features found in resin-casts of regressing velar vessels which have been observed in a previous scanning electron microscopy study of the ventral velum.

  15. Cytoskeleton and gravity at work in the establishment of dorso-ventral polarity in the egg of Xenopus laevis

    NARCIS (Netherlands)

    Brom, T.G.; Ubbels, G.A.

    1984-01-01

    The establishment of polarities during early embryogenesis is essential for normal development. Amphibian eggs are appropriate models for studies on embryonic pattern formation. The animal-vegetal axis of the axially symmetrical amphibian egg originates during oogenesis and foreshadows the main body

  16. Examination of KNK437- and quercetin-mediated inhibition of heat shock-induced heat shock protein gene expression in Xenopus laevis cultured cells.

    Science.gov (United States)

    Manwell, Laurie A; Heikkila, John J

    2007-11-01

    We examined the effect of quercetin (3,3',4',5,7-pentahydroxyflavon) and KNK437 (N-formyl-3,4-methylenedioxy-benzylidene-gamma-butyrolactam), a benzylidene lactam compound, on heat-induced heat shock protein (hsp) gene expression in Xenopus laevis A6 kidney epithelial cells. In previous studies, both quercetin and KNK437 inhibited heat shock factor activity resulting in a repression of hsp mRNA and protein accumulation in human cultured cells. In this first study of the effect of these hsp gene expression inhibitors in a non-mammalian cell line, we report that both quercetin and KNK437 reduced the heat shock-induced accumulation of hsp30, hsp47 and hsp70 mRNA in X. laevis cultured cells. However, these inhibitors had no effect on the relative level of a non-heat shock protein mRNA, ef1alpha, in either control or heat shocked cells. Western blot and immunocytochemical analyses revealed that quercetin partially inhibited HSP30 protein accumulation. In contrast, HSP30 protein was not detectable in KNK437-treated cells. Finally, treatment of A6 cells with KNK437 inhibited the heat shock-induced acquisition of thermotolerance, as determined by preservation of actin filaments and cellular morphology using immunocytochemistry and laser scanning confocal microscopy.

  17. Analysis of neural progenitors from embryogenesis to juvenile adult in Xenopus laevis reveals biphasic neurogenesis and continuous lengthening of the cell cycle

    Directory of Open Access Journals (Sweden)

    Raphaël Thuret

    2015-12-01

    Full Text Available Xenopus laevis is a prominent model system for studying neural development, but our understanding of the long-term temporal dynamics of neurogenesis remains incomplete. Here, we present the first continuous description of neurogenesis in X. laevis, covering the entire period of development from the specification of neural ectoderm during gastrulation to juvenile frog. We have used molecular markers to identify progenitors and neurons, short-term bromodeoxyuridine (BrdU incorporation to map the generation of newborn neurons and dual pulse S-phase labelling to characterise changes in their cell cycle length. Our study revealed the persistence of Sox3-positive progenitor cells from the earliest stages of neural development through to the juvenile adult. Two periods of intense neuronal generation were observed, confirming the existence of primary and secondary waves of neurogenesis, punctuated by a period of quiescence before metamorphosis and culminating in another period of quiescence in the young adult. Analysis of multiple parameters indicates that neural progenitors alternate between global phases of differentiation and amplification and that, regardless of their behaviour, their cell cycle lengthens monotonically during development, at least at the population level.

  18. NSF- and SNARE-mediated membrane fusion is required for nuclear envelope formation and completion of nuclear pore complex assembly in Xenopus laevis egg extracts.

    Science.gov (United States)

    Baur, Tina; Ramadan, Kristijan; Schlundt, Andreas; Kartenbeck, Jürgen; Meyer, Hemmo H

    2007-08-15

    Despite the progress in understanding nuclear envelope (NE) reformation after mitosis, it has remained unclear what drives the required membrane fusion and how exactly this is coordinated with nuclear pore complex (NPC) assembly. Here, we show that, like other intracellular fusion reactions, NE fusion in Xenopus laevis egg extracts is mediated by SNARE proteins that require activation by NSF. Antibodies against Xenopus NSF, depletion of NSF or the dominant-negative NSF(E329Q) variant specifically inhibited NE formation. Staging experiments further revealed that NSF was required until sealing of the envelope was completed. Moreover, excess exogenous alpha-SNAP that blocks SNARE function prevented membrane fusion and caused accumulation of non-flattened vesicles on the chromatin surface. Under these conditions, the nucleoporins Nup107 and gp210 were fully recruited, whereas assembly of FxFG-repeat-containing nucleoporins was blocked. Together, we define NSF- and SNARE-mediated membrane fusion events as essential steps during NE formation downstream of Nup107 recruitment, and upstream of membrane flattening and completion of NPC assembly.

  19. JAK‐STAT pathway activation in response to spinal cord injury in regenerative and non‐regenerative stages of Xenopus laevis

    Science.gov (United States)

    Tapia, Victor S.; Herrera‐Rojas, Mauricio

    2017-01-01

    Abstract Xenopus laevis tadpoles can regenerate the spinal cord after injury but this capability is lost during metamorphosis. Comparative studies between pre‐metamorphic and metamorphic Xenopus stages can aid towards understanding the molecular mechanisms of spinal cord regeneration. Analysis of a previous transcriptome‐wide study suggests that, in response to injury, the JAK‐STAT pathway is differentially activated in regenerative and non‐regenerative stages. We characterized the activation of the JAK‐STAT pathway and found that regenerative tadpoles have an early and transient activation. In contrast, the non‐regenerative stages have a delayed and sustained activation of the pathway. We found that STAT3 is activated in response to injury mainly in Sox2/3+ ependymal cells, motoneurons and sensory neurons. Finally, to study the role of temporal activation we generated a transgenic line to express a constitutively active version of STAT3. The sustained activation of the JAK‐STAT pathway in regenerative tadpoles reduced the expression of pro‐neurogenic genes normally upregulated in response to spinal cord injury, suggesting that activation of the JAK‐STAT pathway modulates the fate of neural progenitors. PMID:28316792

  20. Protein arginine methyltransferase Prmt5-Mep50 methylates histones H2A and H4 and the histone chaperone nucleoplasmin in Xenopus laevis eggs.

    Science.gov (United States)

    Wilczek, Carola; Chitta, Raghu; Woo, Eileen; Shabanowitz, Jeffrey; Chait, Brian T; Hunt, Donald F; Shechter, David

    2011-12-01

    Histone proteins carry information contained in post-translational modifications. Eukaryotic cells utilize this histone code to regulate the usage of the underlying DNA. In the maturing oocytes and eggs of the frog Xenopus laevis, histones are synthesized in bulk in preparation for deposition during the rapid early developmental cell cycles. During this key developmental time frame, embryonic pluripotent chromatin is established. In the egg, non-chromatin-bound histones are complexed with storage chaperone proteins, including nucleoplasmin. Here we describe the identification and characterization of a complex of the protein arginine methyltransferase 5 (Prmt5) and the methylosome protein 50 (Mep50) isolated from Xenopus eggs that specifically methylates predeposition histones H2A/H2A.X-F and H4 and the histone chaperone nucleoplasmin on a conserved motif (GRGXK). We demonstrate that nucleoplasmin (Npm), an exceedingly abundant maternally deposited protein, is a potent substrate for Prmt5-Mep50 and is monomethylated and symmetrically dimethylated at Arg-187. Furthermore, Npm modulates Prmt5-Mep50 activity directed toward histones, consistent with a regulatory role for Npm in vivo. We show that H2A and nucleoplasmin methylation appears late in oogenesis and is most abundant in the laid egg. We hypothesize that these very abundant arginine methylations are constrained to pre-mid blastula transition events in the embryo and therefore may be involved in the global transcriptional repression found in this developmental time frame.

  1. 氟吗啉对非洲爪蟾胚胎发育的影响%Effects of the Developmental Toxicity of Flumorph on Xenopus laevis Embryos

    Institute of Scientific and Technical Information of China (English)

    朱新萍; 蔡磊明; 蒋平安

    2007-01-01

    简述了FETAX(Frog Embryo Teratogenesis Assay-Xenopus)试验的发展,并以非洲爪蟾(Xenopus laevis)处于8~11阶段的胚胎为试验材料,对杀菌剂氟吗啉进行了发育毒性的研究,通过对受试胚胎96 h死亡数、半数致死浓度[LC50(96 h)]、半数效应浓度[EC50(96 h)]、致畸类型的统计,得出LC 50(96 h)值为83.15 mg/L,EC50(96 h)值为76.65 mg/L,TI(LC50/EC50)为1.01≤1.5.结果表明,氟吗啉对非洲爪蟾的胚胎发育不具有致畸影响,但表现出一定的发育毒性.在氟吗啉质量浓度大于20 mg/L时,可明显的抑制胚胎的孵化和体长生长的发育,表现的中毒症状有脊索弯曲、弯尾、眼部畸形、腹部水肿等.

  2. IRE1α影响非洲爪蟾胰腺发育%The effects of IRE1α on pancreas development in Xenopus laevies

    Institute of Scientific and Technical Information of China (English)

    李昕昕; 冯娇娇; 殷晨阳; 徐校佩; 王璐璐; 郭静; 王学军; 王宁; 袁栎

    2012-01-01

    目的:探讨肌醇依赖性激酶1α(inositol requiring enzyme 1α,IRE1α)对非洲爪蟾胰腺发育的影响.方法:通过显微注射基因特异性反义寡核苷酸实现基因敲降;利用整体胚胎原位杂交方法检测基因表达.结果:IRE1α表达于爪蟾发育中的胰腺;利用基因特异性反义寡核苷酸敲降IRE1α后,非洲爪蟾肠道明显异常,胰腺内外分泌标志性基因胰岛素、淀粉酶表达显著减少;胰腺前体细胞的标志基因pdx1和p48表达明显减少;敲降IRE1 α下游基因X-盒结合蛋白1(X-box binding protein 1,XBP1)后,非洲爪蟾的胰岛素、淀粉酶表达也明显减少.结论:IRE1α影响非洲爪蟾胰腺发育,可能通过XBP1发挥作用.%Objective:To investigate the effects of inositol requiring enzyme la (IRE1α) on pancreas development of Xenopus laevies. Methods:The gene-specific antisense oligonucleotides,morpholino (MO)s,were microinjected to knockdown IRE1α and XBP1. The whole mount in situ hybridization of Xenopus embryos was used to detect the gene expression. Resuits:IRE1α was expressed in developing pancreas in Xenopus. There were serious defects in gut development observed in IREla knockdown embryos of Xenopus. The expression of the endocrine marker gene(insulin) and the exocrine pancreas marker gene(amylase) was undetectable during tadpole stages of development in IRE1α knockdown embryos compared to the control embryos. The expression of the pancreas progenitor cell marker genes (pdx1 and p48) was repressed significantly. And after knockdown of XBP1 ,the expression of insulin and amylase decreased significantly and can't be detectable. Conclusion:IRE1α plays an essential role in pancreas development of Xenopus and may be through XBP1 dependent pathway.

  3. Friend of GATA (FOG interacts with the nucleosome remodeling and deacetylase complex (NuRD to support primitive erythropoiesis in Xenopus laevis.

    Directory of Open Access Journals (Sweden)

    Mizuho S Mimoto

    Full Text Available Friend of GATA (FOG plays many diverse roles in adult and embryonic hematopoiesis, however the mechanisms by which it functions and the roles of potential interaction partners are not completely understood. Previous work has shown that overexpression of FOG in Xenopus laevis causes loss of blood suggesting that in contrast to its role in mammals, FOG might normally function to repress erythropoiesis in this species. Using loss-of-function analysis, we demonstrate that FOG is essential to support primitive red blood cell (RBC development in Xenopus. Moreover, we show that it is specifically required to prevent excess apoptosis of circulating primitive RBCs and that in the absence of FOG, the pro-apoptotic gene Bim-1 is strongly upregulated. To identify domains of FOG that are essential for blood development and, conversely, to begin to understand the mechanism by which overexpressed FOG represses primitive erythropoiesis, we asked whether FOG mutants that are unable to interact with known co-factors retain their ability to rescue blood formation in FOG morphants and whether they repress erythropoiesis when overexpressed in wild type embryos. We find that interaction of FOG with the Nucleosome Remodeling and Deacetylase complex (NuRD, but not with C-terminal Binding Protein, is essential for normal primitive RBC development. In contrast, overexpression of all mutant and wild type constructs causes a comparable repression of primitive erythropoiesis. Together, our data suggest that a requirement for FOG and its interaction with NuRD during primitive erythropoiesis are conserved in Xenopus and that loss of blood upon FOG overexpression is due to a dominant-interfering effect.

  4. Amphibians.

    Science.gov (United States)

    Naturescope, 1987

    1987-01-01

    Describes some of the characteristics of amphibians. Contains teaching activities ranging from a "frog sing-along" to lessons on amphibian adaptations, and night hikes to identify frog calls. Includes reproducible handouts to be used with the activities, and a quiz. (TW)

  5. Investigation of Blood Flow and the Effect of Vasoactive Substances in Cutaneous Blood Vessels of "Xenopus Laevis"

    Science.gov (United States)

    Škorjanc, Aleš; Belušic, Gregor

    2015-01-01

    In the present study, a preparation of frog skin was presented, which can be used to demonstrate the basic concepts of blood flow regulation in a very clear and attractive way to high school and university students. In a freshly euthanized "Xenopus," a patch of abdominal skin was exposed from the internal side and viewed with a USB…

  6. Thyroid hormone-dependent development in Xenopus laevis: a sensitive screen of thyroid hormone signaling disruption by municipal wastewater treatment plant effluent.

    Science.gov (United States)

    Searcy, Brian T; Beckstrom-Sternberg, Stephen M; Beckstrom-Sternberg, James S; Stafford, Phillip; Schwendiman, Angela L; Soto-Pena, Jenifer; Owen, Michael C; Ramirez, Claire; Phillips, Joel; Veldhoen, Nik; Helbing, Caren C; Propper, Catherine R

    2012-05-01

    Because thyroid hormones (THs) are conserved modulators of development and physiology, identification of compounds adversely affecting TH signaling is critical to human and wildlife health. Anurans are an established model for studying disruption of TH signaling because metamorphosis is dependent upon the thyroid system. In order to strengthen this model and identify new gene transcript biomarkers for TH disruption, we performed DNA microarray analysis of Xenopus laevis tadpole tail transcriptomes following treatment with triiodothyronine (T(3)). Comparison of these results with previous studies in frogs and mammals identified 36 gene transcripts that were TH-sensitive across clades. We then tested molecular biomarkers for sensitivity to disruption by exposure to wastewater effluent (WWE). X. laevis tadpoles, exposed to WWE from embryo through metamorphosis, exhibited an increased developmental rate compared to controls. Cultured tadpole tails showed dramatic increases in levels of four TH-sensitive gene transcripts (thyroid hormone receptor β (TRβ), deiodinase type II (DIO2), and corticotropin releasing hormone binding protein (CRHBP), fibroblast activation protein α (FAPα)) when exposed to T(3) and WWE extracts. TRβ, DIO2, and CRHBP were identified as TH sensitive in other studies, while FAPα mRNA transcripts were highly TH sensitive in our array. The results validate the array and demonstrate TH-disrupting activity by WWE. Our findings demonstrate the usefulness of cross-clade analysis for identification of gene transcripts that provide sensitivity to endocrine disruption. Further, the results suggest that development is disrupted by exposure to complex mixes of compounds found in WWE possibly through interference with TH signaling.

  7. Binding of adrenergic ligands to liver plasma membrane preparations from the axolotl, Ambystoma mexicanum; the toad, Xenopus laevis; and the Australian lungfish, Neoceratodus forsteri.

    Science.gov (United States)

    Janssens, P A; Grigg, J A

    1988-09-01

    The beta-adrenergic ligand iodocyanopindolol (ICP) bound specifically to hepatic plasma membrane preparations from the axolotl, Ambystoma mexicanum (Bmax, 40 fmol/mg protein (P) at free concentration above 140 pM; KD, 42 pM); the toad, Xenopus laevis (Bmax, 200 fmol/mg P at 1 nM; KD, 300 pM); and the Australian lungfish, Neoceratodus forsteri (Bmax, 100 fmol/mg P at 5 nM). For the lungfish, the Scatchard plot was curved showing two classes of binding site with KD's of 20 and 500 pM. Neither the alpha 1-adrenergic ligand prazosin nor the alpha 2-adrenergic ligand yohimbine bound specifically to hepatic membrane preparations from any of the three species. Several adrenergic ligands displaced ICP from hepatic membrane preparations of all three species with KD's of Axolotl--propranolol, 50 nM; isoprenaline, 600 nM; adrenaline, 10 microM; phenylephrine, 20 microM; noradrenaline, 40 microM; and phentolamine, greater than 100 microM; X. laevis--propranolol, 30 nM; isoprenaline, 100 microM; adrenaline, 200 microM; noradrenaline, 300 microM; phenylephrine, 1 mM; and phentolamine, greater than 1 mM; N. forsteri,--propranolol, 25 nM; isoprenaline, 1 microM; adrenaline, 20 microM; phenylephrine, 35 microM; noradrenaline, 600 microM; and phentolamine, 400 microM. These findings suggest that alpha-adrenergic receptors are not present in hepatic plasma membrane preparations from these three species and that the hepatic actions of catecholamines are mediated via beta-adrenergic receptors. The order of binding of the beta-adrenergic ligands suggests that the receptors are of the beta 2 type.

  8. The Xenopus laevis Atg4B Protease: Insights into Substrate Recognition and Application for Tag Removal from Proteins Expressed in Pro- and Eukaryotic Hosts.

    Directory of Open Access Journals (Sweden)

    Steffen Frey

    Full Text Available During autophagy, members of the ubiquitin-like Atg8 protein family get conjugated to phosphatidylethanolamine and act as protein-recruiting scaffolds on the autophagosomal membrane. The Atg4 protease produces mature Atg8 from C-terminally extended precursors and deconjugates lipid-bound Atg8. We now found that Xenopus laevis Atg4B (xAtg4B is ideally suited for proteolytic removal of N-terminal tags from recombinant proteins. To implement this strategy, an Atg8 cleavage module is inserted in between tag and target protein. An optimized xAtg4B protease fragment includes the so far uncharacterized C-terminus, which crucially contributes to recognition of the Xenopus Atg8 homologs xLC3B and xGATE16. xAtg4B-mediated tag cleavage is very robust in solution or on-column, efficient at 4°C and orthogonal to TEV protease and the recently introduced proteases bdSENP1, bdNEDP1 and xUsp2. Importantly, xLC3B fusions are stable in wheat germ extract or when expressed in Saccharomyces cerevisiae, but cleavable by xAtg4B during or following purification. We also found that fusions to the bdNEDP1 substrate bdNEDD8 are stable in S. cerevisiae. In combination, or findings now provide a system, where proteins and complexes fused to xLC3B or bdNEDD8 can be expressed in a eukaryotic host and purified by successive affinity capture and proteolytic release steps.

  9. The Xenopus laevis Atg4B Protease: Insights into Substrate Recognition and Application for Tag Removal from Proteins Expressed in Pro- and Eukaryotic Hosts.

    Science.gov (United States)

    Frey, Steffen; Görlich, Dirk

    2015-01-01

    During autophagy, members of the ubiquitin-like Atg8 protein family get conjugated to phosphatidylethanolamine and act as protein-recruiting scaffolds on the autophagosomal membrane. The Atg4 protease produces mature Atg8 from C-terminally extended precursors and deconjugates lipid-bound Atg8. We now found that Xenopus laevis Atg4B (xAtg4B) is ideally suited for proteolytic removal of N-terminal tags from recombinant proteins. To implement this strategy, an Atg8 cleavage module is inserted in between tag and target protein. An optimized xAtg4B protease fragment includes the so far uncharacterized C-terminus, which crucially contributes to recognition of the Xenopus Atg8 homologs xLC3B and xGATE16. xAtg4B-mediated tag cleavage is very robust in solution or on-column, efficient at 4°C and orthogonal to TEV protease and the recently introduced proteases bdSENP1, bdNEDP1 and xUsp2. Importantly, xLC3B fusions are stable in wheat germ extract or when expressed in Saccharomyces cerevisiae, but cleavable by xAtg4B during or following purification. We also found that fusions to the bdNEDP1 substrate bdNEDD8 are stable in S. cerevisiae. In combination, or findings now provide a system, where proteins and complexes fused to xLC3B or bdNEDD8 can be expressed in a eukaryotic host and purified by successive affinity capture and proteolytic release steps.

  10. The 22 S cylinder particles of Xenopus laevis. II. Immunological characterization and localization of their proteins in tissues and cultured cells.

    Science.gov (United States)

    Hügle, B; Kleinschmidt, J A; Franke, W W

    1983-11-01

    Cylinder-shaped particles of 10 nm diameter were isolated from nuclei of Xenopus laevis oocytes and purified by sucrose gradient centrifugation and DEAE-Sephacel chromatography. Antibodies to protein constituents of these isolated particles were elicited in guinea pigs and examined by immunoblotting and immunoprecipitation techniques as well as by immunofluorescence microscopy. The antibodies reacted with only two out of the 12 constituent polypeptides characteristic for these particles when examined in the denatured state by the immunoblotting technique, including the largest component of Mr 30 000, but were able to precipitate the whole ensemble of these polypeptides in immunoprecipitation experiments, in agreement with the notion that these proteins form the 22 S particle complex. The antibodies displayed a rather narrow range of interspecies cross-reactivity, showing reaction with cells of other amphibia but not with avian and mammalian cells. In oocytes as well as in transcriptionally active somatic cells the antigen was localized in the nucleoplasm, excluding nucleoli, as well as in the cytoplasm, usually suggesting a higher concentration in the nucleoplasm. During mitosis, the proteins were dispersed throughout the cytoplasm whereas the chromosomes were negative. Inactive cells such as mature erythrocytes, spermatids and spermatozoa were negative. These immunolocalization findings support our conclusion based on fractionation studies that the cylindershaped particles and their protein constituents occur both in the nucleoplasm and the cytoplasm of a broad range of cell types.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Cloning and characterization of Xen-dorphin prohormone from Xenopus laevis: a new opioid-like prohormone distinct from proenkephalin and prodynorphin.

    Science.gov (United States)

    Pattee, Patrick; Ilie, Alina-Elena; Benyhe, Sandor; Toth, Geza; Borsodi, Anna; Nagalla, Srinivasa R

    2003-12-26

    Opioid-like peptides mediate analgesia and induce behavioral effects such as tolerance and dependence by ligand-receptor-mediated mechanisms. The classical opioid prohormones can generate several bioactive peptides, and these divergent families of prohormones share a common well conserved ancestral opioid motif (Tyr-Gly-Gly-Phe). Evidence from pharmacological and molecular cloning studies indicates the presence of multiple isoforms of opioid ligands and receptors that are as yet uncharacterized. To identify potential new members we used the opioid motif as an anchor sequence and isolated two distinct isoforms (Xen-dorphins A and B) of an opioid prohormone from Xenopus laevis brain cDNA library. Xen-dorphin prohormones can generate multiple novel opioid ligands distinct from the known members of this family. Both isoforms are present in a wide variety of tissues including the brain. Two potential bioactive peptides, Xen-dorphin-1A and -1B, that were chemically synthesized showed opioid agonist activity in frog and rat brain membranes using a [35S]GTPgammaS assay. Initial radioligand binding experiments demonstrated that Xen-dorphin-1B binds with high affinity to opioid receptor(s) and with potential preference to the kappa-opioid receptor subtype. Cloning of the Xen-dorphin prohormone provides new evidence for the potential presence of other members in the opioid peptide superfamily.

  12. Evaluation of spin labels for in-cell EPR by analysis of nitroxide reduction in cell extract of Xenopus laevis oocytes

    Science.gov (United States)

    Azarkh, Mykhailo; Okle, Oliver; Eyring, Philipp; Dietrich, Daniel R.; Drescher, Malte

    2011-10-01

    Spin-label electron paramagnetic resonance (SL-EPR) spectroscopy has become a powerful and useful tool for studying structure and dynamics of biomacromolecules. However, utilizing these methods at physiological temperatures for in-cell studies is hampered by reduction of the nitroxide spin labels and thus short half-lives in the cellular environment. Consequently, reduction kinetics of two structurally different nitroxides was investigated in cell extracts of Xenopus laevis oocytes using rapid-scan cw-experiments at X-band. The five member heterocyclic ring nitroxide PCA (3-carboxy-2,2,5,5-tetramethylpyrrolidinyl-1-oxy) under investigation features much higher stability against intracellular reduction than the six member ring analog TOAC (2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxilic acid) and is therefore a suitable spin label type for in-cell EPR. The kinetic data can be described according to the Michaelis-Menten model and thus suggest an enzymatic or enzyme-mediated reduction process.

  13. Distinct abscisic acid signaling pathways for modulation of guard cell versus mesophyll cell potassium channels revealed by expression studies in Xenopus laevis oocytes

    Science.gov (United States)

    Sutton, F.; Paul, S. S.; Wang, X. Q.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    2000-01-01

    Regulation of guard cell ion transport by abscisic acid (ABA) and in particular ABA inhibition of a guard cell inward K(+) current (I(Kin)) is well documented. However, little is known concerning ABA effects on ion transport in other plant cell types. Here we applied patch clamp techniques to mesophyll cell protoplasts of fava bean (Vicia faba cv Long Pod) plants and demonstrated ABA inhibition of an outward K(+) current (I(Kout)). When mesophyll cell protoplast mRNA (mesophyll mRNA) was expressed in Xenopus laevis oocytes, I(Kout) was generated that displayed similar properties to I(Kout) observed from direct analysis of mesophyll cell protoplasts. I(Kout) expressed by mesophyll mRNA-injected oocytes was inhibited by ABA, indicating that the ABA signal transduction pathway observed in mesophyll cells was preserved in the frog oocytes. Co-injection of oocytes with guard cell protoplast mRNA and cRNA for KAT1, an inward K(+) channel expressed in guard cells, resulted in I(Kin) that was similarly inhibited by ABA. However, oocytes co-injected with mesophyll mRNA and KAT1 cRNA produced I(Kin) that was not inhibited by ABA. These results demonstrate that the mesophyll-encoded signaling mechanism could not substitute for the guard cell pathway. These findings indicate that mesophyll cells and guard cells use distinct and different receptor types and/or signal transduction pathways in ABA regulation of K(+) channels.

  14. Uptake and caffeine-induced release of calcium in fast muscle fibers of Xenopus laevis: effects of MgATP and P(i).

    Science.gov (United States)

    Stienen, G J; van Graas, I A; Elzinga, G

    1993-09-01

    To elucidate the origin of the reduction in force during prolonged muscle fatigue, the dependency of Ca2+ uptake and release on MgATP and P(i) concentration was studied in saponin-skinned fast skeletal muscle fibers of the iliofibularis muscle of Xenopus laevis at 3 degrees C. The sarcoplasmic reticulum was loaded with Ca2+ for 5 min at pCa 7.0. The amount of Ca2+ released was derived from the area of the caffeine-induced force response. Ca2+ uptake increased with the MgATP concentration present during loading. It was half maximal at 20 microM and saturated at higher concentrations. The kinetics of Ca2+ release were affected for MgATP concentrations between 0.1 and 0.5 mM or less, but the amount of Ca2+ released by caffeine in ATP-free solutions was substantial. Phosphate (15 mM) only slightly reduced Ca2+ uptake when the loading period was short (1 min). It is unlikely, therefore, that the reduction in MgATP concentration contributes to the depression of Ca2+ released from the sarcoplasmic reticulum during fatigue. The increase in P(i) concentration could play a small role by reducing Ca2+ uptake.

  15. Multiple ING1 and ING2 genes in Xenopus laevis and evidence for differential association of thyroid hormone receptors and ING proteins to their promoters.

    Science.gov (United States)

    Wagner, Mary J; Helbing, Caren C

    2008-03-01

    ING (INhibitor of Growth) tumor suppressor proteins are epigenetic factors involved in numerous cellular processes including apoptosis in species ranging from yeast to humans. We recently isolated ING1 and ING2 transcript variants in Xenopus laevis and showed that these transcripts were differentially regulated by thyroid hormone (TH) during postembryonic development. However, no information exists regarding ING gene structure and how it relates to these differential responses to TH. To further investigate the regulation of ING genes by TH, we isolated ING1 and ING2 gene sequences and demonstrated that there are at least duplicate genes for each. The relationship between transcript variants and their responsiveness to TH were examined through promoter sequence and chromatin immunoprecipitation analyses on tail homogenates. Both TH receptors (TRs) differentially associated with ING1 and ING2 promoter regions with increased recruitment in the presence of TH. This occurred irrespective of gene transcript level response to this hormone. However, differential recruitment of RNA polymerase II corresponded well to transcript levels. ING proteins consistently associated with their own gene promoters except in the region generating the TH-inducible xING1b5 transcript. In this case, a substantial recruitment of TRbeta in the absence ING proteins occurred. These data establish the TH-dependent recruitment of transcription factors to ING promoter regions and suggest that differential TR recruitment in response to TH may not be a sufficient indicator for modulating the expression of ING in the tail.

  16. Functional characterization of the 1,5-benzodiazepine clobazam and its major active metabolite N-desmethylclobazam at human GABAA receptors expressed in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Hammer, Harriet; Ebert, Bjarke; Jensen, Henrik S.

    2015-01-01

    The 1,5-benzodiazepine clobazam is indicated for the adjunctive treatment of seizures associated with Lennox-Gastaut syndrome in patients 2 years of age or older in the United States, and for treatment of anxiety and various forms of epilepsy elsewhere. Clobazam has been reported to exhibit...... different in vivo adverse effects and addiction liability profile than the classic 1,4-benzodiazepines. In this study, it was investigated whether the in vitro pharmacological properties of clobazam and its major active metabolite N-desmethylclobazam could explain some of these clinical differences....... The functional properties of the two 1,5-benzodiazepines were characterized at the human γ-aminobutyric acid type A receptor (GABAAR) subtypes α1β2γ2S, α2β2γ2S, α3β2γ2S, α5β2γ2S and α6β2δ expressed in Xenopus laevis oocytes by use of two-electrode voltage-clamp electrophysiology and compared to those exhibited...

  17. Tone and call responses of units in the auditory nerve and dorsal medullary nucleus of Xenopus laevis

    DEFF Research Database (Denmark)

    Elliott, Taffeta M.; Christensen-Dalsgaard, Jakob; Kelley, Darcy B.

    2007-01-01

    those in partially terrestrial anurans. Broad tuning exists across characteristic frequencies (CFs). Threshold minima are -101 dB re 1 mm/s at 675 Hz; -87 dB at 1,600 Hz; and -61 dB at 3,000 Hz (-90, -77, and -44 dB re 1 Pa, respectively), paralleling the peak frequency of vocalizations at 1.2-1.6 k......The clawed frog Xenopus laevis produces vocalizations consisting of distinct patterns of clicks. This study provides the first description of spontaneous, pure-tone and communication-signal evoked discharge properties of auditory nerve (n.VIII) fibers and dorsal medullary nucleus (DMN) cells...... in an obligatorily aquatic anuran. Responses of 297 n.VIII and 253 DMN units are analyzed for spontaneous rates (SR), frequency tuning, rate-intensity functions, and firing rate adaptation, with a view to how these basic characteristics shape responses to recorded call stimuli. Response properties generally resemble...

  18. Delayed fertilization of anuran amphibian (Xenopus) eggs leads to reduced numbers of primordial germ cells

    Science.gov (United States)

    Wakahara, M.; Neff, A. W.; Malacinski, G. M.

    1984-01-01

    Several media were tested for the extent to which they promoted high fertilization efficiencies in ovulated, stripped Xenopus eggs. One medium was selected for maintaining eggs in a 'delayed fertilization' (DelF) condition. DelF eggs displayed several unusual characteristics, including shift of the center of gravity, prominent sperm entrance site, and occasional polyspermy. The frequency of normal pattern formation varied according to the length of time eggs were maintained in the DelF condition. Various developmental abnormalities were observed during gastrulation, neurulation, and organogenesis. Most abnormalities appeared, however, to be related to morphogenesis of the endoderm. Primordial germ cell (PGC) development was examined in DelF eggs which displayed normal external morphological features at the swimming tadpole stage. PGC counts were usually normal in short-duration (eg, 5 hr) DelF eggs, but frequently substantially reduced or completely diminished in longer-duration (eg, 25h) tadpoles. Six spawnings were compared and shown to exhibit considerable variability in fertility, morphogenesis, and PGC development. Yolk platelet shifts and developmental parameters were examined in two additional spawnings. The subcortical cytoplasm in which the germ plasm is normally localized appeared to be disrupted in longer duration DelF eggs. That observation may account for low PGC counts in DelF tadpoles.

  19. Pharmacologic parameters of MS222 and physiologic changes in frogs (Xenopus laevis) after immersion at anesthetic doses.

    Science.gov (United States)

    Lalonde-Robert, Vanessa; Beaudry, Francis; Vachon, Pascal

    2012-07-01

    We evaluated the anesthetic efficacy of MS222 (dose, 1 or 2 g/L; pH 7) administered as an immersion bath (duration, 20 min) for nonbreeding female Xenopus leavis frogs (n = 33; average body weight, 103 ± 16 g). The acid acetic test, the withdrawal reflex, righting behavior, heart rate, respiratory frequency, and blood oxygen saturation were used to evaluate the level of anesthesia. Acetic acid and withdrawal reflex responses were present at 30 and 60 min following immersion for the 1- and 2-g/L doses, respectively. MS222 had no effect on heart rate or oxygen saturation, but caused pronounced respiratory depression, as expected. Microscopic observations of selected tissues (heart, lung, liver, kidneys, and skin) showed no evidence of lesions at 24 h after immersion. In addition, we calculated the pharmacokinetics of MS222 in plasma and analyzed the drug by HPLC-tandem mass spectrometry. The calculated half-life of MS222 is 3.2 h. We conclude that MS222 administered at 1 or 2 g/mL via immersion bath for 20 min is an effective anesthetic that can be used for surgical procedures of less than 30 or 60 min, respectively, in Xenopus leavis.

  20. Swimming of Xenopus laevis sperm exhibits multiple gears and its duration is extended by egg jelly constituents.

    Science.gov (United States)

    Tholl, Nathan; Naqvi, Sumera; McLaughlin, Ericka; Boyles, Serenity; Bieber, Allan L; Chandler, Douglas E

    2011-06-01

    The motility of Xenopus sperm is initiated by the osmotic shock experienced when these cells are ejaculated into low-salinity pond water. Motility is brief and is required for the sperm to penetrate the jelly layers and fertilize the egg. In this study we demonstrate that extracts of egg jelly contain factors that extend the period of sperm motility as well as providing a chemoattractant activity as previously reported. Both activities are partially dependent on extracellular calcium. Time-lapse and video microscopy show that after activation of motility the number of motile sperm decreases rapidly, with a half-time of about 2 min. Addition of 10% v/v egg jelly extract ("egg water") increased the number of motile sperm 2-fold over controls at 20 s and about 4- to 10-fold over controls at 10 min after initiation of motility. Extension of motility lifetime was not mediated by a nonspecific protein or by allurin, the egg-water protein that has chemoattractant activity. The helical path of Xenopus sperm exhibited tight coupling between rotational and forward velocities in egg jelly, but coupling changed rapidly from moment to moment in low-salinity buffer. Our observations suggest that jelly-derived factors regulate both the longevity and directionality of sperm propulsion.

  1. Retinoic acid is a key regulatory switch determining the difference between lung and thyroid fates in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Wang Jean H

    2011-12-01

    Full Text Available Abstract Background The lung and thyroid are derived from the anterior endoderm. Retinoic acid and Fgf signalling are known to be essential for development of the lung in mouse but little is known on how the lung and thyroid are specified in Xenopus. Results If either retinoic acid or Fgf signalling is inhibited, there is no differentiation of the lung as assayed by expression of sftpb. There is no change in expression of thyroid gland markers when retinoic acid signalling is blocked after gastrulation and when Fgf signalling is inhibited there is a short window of time where pax2 expression is inhibited but expression of other markers is unaffected. If exogenous retinoic acid is given to the embryo between embryonic stages 20 and 26, the presumptive thyroid expresses sftpb and sftpc, specific markers of lung differentiation and expression of key thyroid transcription factors is lost. When the presumptive thyroid is transplanted into the posterior embryo, it also expresses sftpb, although pax2 expression is not blocked. Conclusions After gastrulation, retinoic acid is required for lung but not thyroid differentiation in Xenopus while Fgf signalling is needed for lung but only for early expression of pax2 in the thyroid. Exposure to retinoic acid can cause the presumptive thyroid to switch to a lung developmental program.

  2. Development of Thyroid Gland Specific Markers of Hypothalamic-pituitary-thyroid Axis Disruption in the Amphibian Model Species Xenopus laevis

    Science.gov (United States)

    The focus of the research presented here is the development of an in vitro thyroid gland culture system to test the effect of chemicals directly on the gland without influence of other parts of the HPT axis.

  3. Amphibians as Model Organisms for Studying the Dynamics of Eukaryote Genetic Material Architecture

    Directory of Open Access Journals (Sweden)

    Burlibaşa, L.

    2005-06-01

    Full Text Available Amphibians have played a key role in the elucidation of the mechanisms of early development over the last century. Much of our knowledge about the mechanisms of vertebrate early development comes from studies using Xenopus laevis. Xenopus sp. is a major contributor to our understanding of cell biological and biochemical processes, including: (1 chromosome replication; (2 chromatin, cytoskeleton and nuclear assembly; (3 cell cycle progression and (4 intracellular signaling. Amphibian embryos remained the embryos of choice for experimental embryology for many decades. European embryologists used predominantly urodele embryos (such as Triturus and embryos of the frog Rana temporaria, which is related to the North American species Rana pipiens. Using light, fluorescence, transmission electron microscopy (TEM and molecular investigations, some peculiar aspects of chromatin and chromosome organization and evolution in oogenesis and spermatogenesis of amphibians were investigated. We have focused our investigations on dynamics of the chromatin structure in different stages of development.

  4. Differences in regulation of the first two M-phases in Xenopus laevis embryo cell-free extracts.

    Science.gov (United States)

    Chesnel, Franck; Vignaux, Françoise; Richard-Parpaillon, Laurent; Huguet, Antoine; Kubiak, Jacek Z

    2005-09-15

    The first embryonic M-phase is special, being the time when paternal and maternal chromosomes mix together for the first time. Reports from a variety of species suggest that the regulation of first M-phase has many particularities; however, no systematic comparative study of the biochemical aspects of first and the following M-phases has been previously undertaken. Here, we ask whether the regulation of the first embryonic M-phase is modified, using Xenopus cell-free extracts. We developed new types of extract specific for the first and the second M-phase obtained either from parthenogenetic or from in vitro fertilized embryos. Analyses of these extracts confirmed that the amplitude of histone H1 kinase activity reflecting CDK1/cyclin B (or MPF for M-phase Promoting Factor) activity is higher and persists longer than during the second M-phase, and that levels of cyclins B1 and B2 are correspondingly higher during the first than the second embryonic M-phase. Inhibition of protein synthesis shortly before M-phase entry reduced mitotic histone H1 kinase amplitude, shortened the period of mitotic phosphorylation of chosen marker proteins, and reduced cyclin B1 and B2 levels, suggesting a role of B-type cyclins in regulating the duration of mitotic events. Moreover, addition of exogenous cyclin B to the extract prior the second mitosis brought forward the activation of mitotic histone H1 kinase but prolonged the duration of this activity. We also confirmed that the inhibitory phosphorylation of CDK1 on tyrosine 15 oscillates between the first two embryonic M-phases, but is clearly more pronounced before the first than the second mitosis, while the MAP kinase ERK2 tended to show greater activation during the first embryonic M-phase but with a similar duration of activation. We conclude that discrete differences exist between the first two M-phases in Xenopus embryo and that higher CDK1/cyclin B activity and B-type cyclin levels could account for the different

  5. Exposure of xenopus laevis tadpoles to cadmium reveals concentration-dependent bimodal effects on growth and monotonic effects on development and thyroid gland activity

    Science.gov (United States)

    Sharma, Bibek; Patino, R.

    2008-01-01

    Xenopus laevis were exposed to 0-855 ??g cadmium (Cd)/l (measured concentrations) in FETAX medium from fertilization to 47 days postfertilization. Measurements included embryonic survival and, at 47 days, tadpole survival, snout-vent length, tail length, total length, hindlimb length, weight, Nieuwkoop-Faber (NF) stage of development, initiation of metamorphic climax (??? NF 58), and thyroid follicle cell height. Embryonic and larval survival were unaffected by Cd. Relative to control tadpoles, reduced tail and total length were observed at 0.1- 8 and at 855 ??g Cd/l; and reduced snout-vent length, hindlimb length, and weight were observed at 0.1-1 and at 855 ??g Cd/l. Mean stage of development and rate of initiation of climax were unaffected by Cd at 0-84 ??g/l; however, none of the tadpoles exposed to 855 ??g Cd/l progressed beyond mid-premetamorphosis (NF 51). Thyroid glands with fully formed follicles were observed in all tadpoles ??? NF 49 examined. Follicle cell height was unaffected by Cd at 0-84 ??g/l but it was reduced at 855 ??g/l; in the latter, cell height was reduced even when compared with NF 49-51 tadpoles pooled from the 0 to 84 ??g Cd/l groups. In conclusion, (1) Cd affected tadpole growth in a bimodal pattern with the first and second inhibitory modes at concentrations below and above 84 ??g Cd/l, respectively; (2) exposure to high Cd concentrations (855 ??g/l) reduced thyroid activity and arrested tadpole development at mid-premetamorphosis; and (3) unlike its effect on growth, Cd inhibited tadpole development and thyroid function in a seemingly monotonic pattern.

  6. Effects of strain on contractile force and number of sarcomeres in series of Xenopus laevis single muscle fibres during long-term culture.

    Science.gov (United States)

    Jaspers, R T; Feenstra, H M; Verheyen, A K; van der Laarse, W J; Huijing, P A

    2004-01-01

    The aim of the present study is to test whether mechanical strain uniquely regulates muscle fibre atrophy/hypertrophy and adaptation of the number of sarcomeres in series within mature muscle fibres in vitro . Mature single muscle fibres from Xenopus laevis illiofibularis muscle were cultured (4-97 days) while kept at negative strain ( approximately 20% below passive slack length, 'short fibres') or at positive strain ( approximately 5% over passive slack length, 'long fibres'). Before and after culture the number of sarcomeres in series was determined using laser diffraction. During culture, twitch and tetanic force characteristics were measured every day. Survival time of long fibres was substantially less than that of short fibres. Of the long fibres 40% died or became inexcitable within 1 week, whereas this did not occur for short fibres. During culture, twitch and tetanic force of all short fibres increased substantially. Regression analysis showed that the post-culture number of sarcomeres in series was not significantly changed compared to the number before culture. It is concluded that culture at negative strain does not result in atrophy or a reduction of the number of sarcomeres in series, even after 97 days. For the long fibres we did not detect any hypertrophy as tetanic force remained stable or decreased slowly, while twitch force varied. Regression analysis of the change of the number of sarcomeres in series as a function of the culture time showed a positive slope ( P=0.054). Two out of four long fibres that were cultured for at least 2 weeks showed an increase in the number of sarcomeres of 4-5%. Compared with in vivo adaptation to mechanical stimuli this is much less than would be expected. The data suggest that strain may not be the only factor that regulates hypertrophy and the number of sarcomeres in series.

  7. Functional characterization of mouse urea transporters UT-A2 and UT-A3 expressed in purified Xenopus laevis oocyte plasma membranes.

    Science.gov (United States)

    Maciver, Bryce; Smith, Craig P; Hill, Warren G; Zeidel, Mark L

    2008-04-01

    Urea is a small solute synthesized by many terrestrial organisms as part of the catabolism of protein. In mammals it is transported across cellular membranes by specific urea transporter (UT) proteins that are the products of two separate, but closely related genes, referred to as UT-A and UT-B. Three major UT-A isoforms are found in the kidney, namely UT-A1, UT-A2, and UT-A3. UT-A2 is found in the thin, descending limb of the loop of Henle, whereas UT-A1 and UT-A3 are concentrated in the inner medullary collecting duct. UT-A2 and UT-A3 effectively represent two halves of the whole UT-A gene and, when joined together by 73 hydrophilic amino acids, constitute UT-A1. A biophysical characterization of mouse UT-A2 and UT-A3 was undertaken by expression in Xenopus laevis oocytes and subsequent preparation of highly enriched plasma membrane vesicles for use in stopped-flow fluorometry. Both isoforms were found to be highly specific for urea, and did not permeate water, ammonia, or other molecules closely related to urea (formamide, acetamide, methylurea, and dimethylurea). Single transporter flux rates of 46,000 +/- 10,000 and 59,000 +/- 15,000 (means +/- SE) urea molecules/s/channel for UT-A2 and UT-A3, respectively, were obtained. Overall, the UT-A2 and UT-A3 isoforms appear to have identical functional kinetics.

  8. Highly efficient gene knockout by injection of TALEN mRNAs into oocytes and host transfer in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Keisuke Nakajima

    2015-01-01

    Full Text Available Zinc-finger nucleases, transcription activator-like effector nucleases (TALENs and the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins system are potentially powerful tools for producing tailor-made knockout animals. However, their mutagenic activity is not high enough to induce mutations at all loci of a target gene throughout an entire tadpole. In this study, we present a highly efficient method for introducing gene modifications at almost all target sequences in randomly selected embryos. The gene modification activity of TALEN is enhanced by adopting the host-transfer technique. In our method, the efficiency is further improved by injecting TALEN mRNAs fused to the 3′UTR of the Xenopus DEADSouth gene into oocytes, which are then transferred into a host female frog, where they are ovulated and fertilized. The addition of the 3′UTR of the DEADSouth gene promotes mRNA translation in the oocytes and increases the expression of TALEN proteins to near-maximal levels three hours post fertilization (hpf. In contrast, TALEN mRNAs without this 3′UTR are translated infrequently in oocytes. Our data suggest that genomic DNA is more sensitive to TALEN proteins from fertilization to the midblastula (MBT stage. Our method works by increasing the levels of TALEN proteins during the pre-MBT stages.

  9. Highly efficient gene knockout by injection of TALEN mRNAs into oocytes and host transfer in Xenopus laevis.

    Science.gov (United States)

    Nakajima, Keisuke; Yaoita, Yoshio

    2015-01-16

    Zinc-finger nucleases, transcription activator-like effector nucleases (TALENs) and the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) system are potentially powerful tools for producing tailor-made knockout animals. However, their mutagenic activity is not high enough to induce mutations at all loci of a target gene throughout an entire tadpole. In this study, we present a highly efficient method for introducing gene modifications at almost all target sequences in randomly selected embryos. The gene modification activity of TALEN is enhanced by adopting the host-transfer technique. In our method, the efficiency is further improved by injecting TALEN mRNAs fused to the 3'UTR of the Xenopus DEADSouth gene into oocytes, which are then transferred into a host female frog, where they are ovulated and fertilized. The addition of the 3'UTR of the DEADSouth gene promotes mRNA translation in the oocytes and increases the expression of TALEN proteins to near-maximal levels three hours post fertilization (hpf). In contrast, TALEN mRNAs without this 3'UTR are translated infrequently in oocytes. Our data suggest that genomic DNA is more sensitive to TALEN proteins from fertilization to the midblastula (MBT) stage. Our method works by increasing the levels of TALEN proteins during the pre-MBT stages.

  10. GABAergic transmission and chloride equilibrium potential are not modulated by pyruvate in the developing optic tectum of Xenopus laevis tadpoles.

    Directory of Open Access Journals (Sweden)

    Arseny S Khakhalin

    Full Text Available In the developing mammalian brain, gamma-aminobutyric acid (GABA is thought to play an excitatory rather than an inhibitory role due to high levels of intracellular Cl(- in immature neurons. This idea, however, has been questioned by recent studies which suggest that glucose-based artificial cerebrospinal fluid (ACSF may be inadequate for experiments on immature and developing brains. These studies suggest that immature neurons may require alternative energy sources, such as lactate or pyruvate. Lack of these other energy sources is thought to result in artificially high intracellular Cl(- concentrations, and therefore a more depolarized GABA receptor (GABAR reversal potential. Since glucose metabolism can vary widely among different species, it is important to test the effects of these alternative energy sources on different experimental preparations. We tested whether pyruvate affects GABAergic transmission in isolated brains of developing wild type Xenopus tadpoles in vitro by recording the responsiveness of tectal neurons to optic nerve stimulation, and by measuring currents evoked by local GABA application in a gramicidin perforated patch configuration. We found that, in contrast with previously reported results, the reversal potential for GABAR-mediated currents does not change significantly between developmental stages 45 and 49. Partial substitution of glucose by pyruvate had only minor effects on both the GABA reversal potential, and the responsiveness of tectal neurons at stages 45 and 49. Total depletion of energy sources from the ACSF did not affect neural responsiveness. We also report a strong spatial gradient in GABA reversal potential, with immature cells adjacent to the lateral and caudal proliferative zones having more positive reversal potentials. We conclude that in this experimental preparation standard glucose-based ACSF is an appropriate extracellular media for in vitro experiments.

  11. Functional characterization of the 1,5-benzodiazepine clobazam and its major active metabolite N-desmethylclobazam at human GABA(A) receptors expressed in Xenopus laevis oocytes.

    Science.gov (United States)

    Hammer, Harriet; Ebert, Bjarke; Jensen, Henrik Sindal; Jensen, Anders A

    2015-01-01

    The 1,5-benzodiazepine clobazam is indicated for the adjunctive treatment of seizures associated with Lennox-Gastaut syndrome in patients 2 years of age or older in the United States, and for treatment of anxiety and various forms of epilepsy elsewhere. Clobazam has been reported to exhibit different in vivo adverse effects and addiction liability profile than the classic 1,4-benzodiazepines. In this study, it was investigated whether the in vitro pharmacological properties of clobazam and its major active metabolite N-desmethylclobazam could explain some of these clinical differences. The functional properties of the two 1,5-benzodiazepines were characterized at the human γ-aminobutyric acid type A receptor (GABA(A)R) subtypes α1β2γ(2S), α2β2γ(2S), α3β2γ(2S), α5β2γ(2S) and α6β2δ expressed in Xenopus laevis oocytes by use of two-electrode voltage-clamp electrophysiology and compared to those exhibited by the 1,4-benzodiazepine clonazepam. All three compounds potentiated GABA EC20-evoked responses through the α(1,2,3,5)β2γ(2S) GABA(A)Rs in a reversible and concentration-dependent manner, with each displaying similar EC50 values at the four subtypes. Furthermore, the degrees of potentiation of the GABA EC20 currents through the four receptors mediated by saturating modulator concentrations did not differ substantially for any of the three benzodiazepines. The three compounds were substantially less potent (200-3900 fold) as positive allosteric modulators at the α6β2δ GABA(A)R than at the α(1,2,3,5)β2γ(2S) receptors. Interestingly, however, clobazam and especially N-desmethylclobazam were highly efficacious potentiators of α6β2δ receptor signaling. Although this activity component is unlikely to contribute to the in vivo effects of clobazam/N-desmethylclobazam, the 1,5-benzodiazepine could constitute an interesting lead for novel modulators targeting this low-affinity binding site in GABAARs. In conclusion, the non-selective modulation

  12. Force-dependent and force-independent heat production in single slow- and fast-twitch muscle fibres from Xenopus laevis.

    Science.gov (United States)

    Buschman, H P; van der Laarse, W J; Stienen, G J; Elzinga, G

    1996-10-15

    1. The origin of labile heat production, i.e. a heat component which rapidly decays after the onset of stimulation, and of stable (maintenance) heat production was investigated in intact single fast-twitch (type 1) and slow-twitch (type 3) iliofibularis muscle fibres from Xenopus laevis, at 20 degrees C, by varying stimulation frequency and by varying sarcomere length and the concentration of 2,3-butanedione 2-monoxime (BDM) added. 2. The labile heat produced consisted of a force-independent and a force-dependent part. The average parvalbumin (PA) content found in type 1 fibre bundles (0.84 +/- 0.08 mM; mean +/- S.E.M.; n = 5) and in type 3 fibre bundles (0.12 +/- 0.02 mM; n = 5) indicates that the force-independent labile heat is explained by Ca(2+)-Mg2+ exchange on PA, and amounts to a molar enthalpy change of -78 kJ (molPA)-1. 3. Force-dependent labile heat during fused contractions was similar to the calculated heat production resulting from the formation of force-generating cross-bridges, assuming an enthalpy change associated with cross-bridge formation of -30 kJ mol-1. 4. Activation heat, i.e. the part of the total stable heat that is not related to the contractile apparatus, and of which the calcium sequestration by the sarcoplasmic reticulum is the most important contributor, determined by varying sarcomere length or BDM concentration, was identical. For fused contractions the fraction activation heat of the stable maintenance rate of heat production was 34 +/- 4% (mean +/- S.E.M.; n = 13) in type 1 fibres, and 52 +/- 4% (n = 15) in type 3 fibres. In unfused contractions this was 48 +/- 5% (n = 13) in type 1 fibres, and 35 +/- 2% (n = 11) in type 3 fibres. 5. From the force-dependent stable rate of heat production the economy of cross-bridge cycling, expressed as the force-time integral for a single myosin head per ATP molecule hydrolysed, was calculated. It followed that cross-bridge interaction in type 3 fibres is more economical than in type 1 fibres

  13. Functional characterization of the 1,5-benzodiazepine clobazam and its major active metabolite N-desmethylclobazam at human GABA(A receptors expressed in Xenopus laevis oocytes.

    Directory of Open Access Journals (Sweden)

    Harriet Hammer

    Full Text Available The 1,5-benzodiazepine clobazam is indicated for the adjunctive treatment of seizures associated with Lennox-Gastaut syndrome in patients 2 years of age or older in the United States, and for treatment of anxiety and various forms of epilepsy elsewhere. Clobazam has been reported to exhibit different in vivo adverse effects and addiction liability profile than the classic 1,4-benzodiazepines. In this study, it was investigated whether the in vitro pharmacological properties of clobazam and its major active metabolite N-desmethylclobazam could explain some of these clinical differences. The functional properties of the two 1,5-benzodiazepines were characterized at the human γ-aminobutyric acid type A receptor (GABA(AR subtypes α1β2γ(2S, α2β2γ(2S, α3β2γ(2S, α5β2γ(2S and α6β2δ expressed in Xenopus laevis oocytes by use of two-electrode voltage-clamp electrophysiology and compared to those exhibited by the 1,4-benzodiazepine clonazepam. All three compounds potentiated GABA EC20-evoked responses through the α(1,2,3,5β2γ(2S GABA(ARs in a reversible and concentration-dependent manner, with each displaying similar EC50 values at the four subtypes. Furthermore, the degrees of potentiation of the GABA EC20 currents through the four receptors mediated by saturating modulator concentrations did not differ substantially for any of the three benzodiazepines. The three compounds were substantially less potent (200-3900 fold as positive allosteric modulators at the α6β2δ GABA(AR than at the α(1,2,3,5β2γ(2S receptors. Interestingly, however, clobazam and especially N-desmethylclobazam were highly efficacious potentiators of α6β2δ receptor signaling. Although this activity component is unlikely to contribute to the in vivo effects of clobazam/N-desmethylclobazam, the 1,5-benzodiazepine could constitute an interesting lead for novel modulators targeting this low-affinity binding site in GABAARs. In conclusion, the non

  14. Connexins in the early development of the African clawed frog Xenopus laevis (Amphibia: The role of the connexin43 carboxyl terminal tail in the establishment of the dorso-ventral axis

    Directory of Open Access Journals (Sweden)

    Jaime Cofre

    2007-03-01

    Full Text Available Connexins are a family of related proteins identified in vertebrate forming gap junctions, which mediate cell-to-cell communication in early embryos, with an important role in establishing embryonic asymmetry and ‘communication compartments’. By in situ hybridization, immunocytochemistry, reverse transcriptase PCR (RT-PCR and western blotting we show that a Cx43-like molecule is present in oocytes and embryos of the African clawed frog Xenopus laevis, with specific localization in the animal-vegetal axis. This specific distribution is suggestive for an important role for this protein in the establishment of the dorso-ventral axis. Antisense RNA and antibodies directed against rat carboxyl terminal tail of the Cx43 (CT-Cx43 and injected in 1-cell stage Xenopus embryos, induced pronounced alterations in nervous system development, with a severe ventralization phenotype. Coherently, the overexpression of CT-Cx43 produced a dorsalization of the embryos. In antisense treated embryos, the expression of the beta-catenin gene is eliminated from the Nieuwkoop center, the pattern expression of the Chordin, Xnot and Xbra is modified, with no effect in expression of the Goosecoid gene. In CT-Cx43 mRNA treated embryos the pattern of expression of the beta-catenin, Chordin, Goosecoid, Xnot and engrailed-2 genes is modified. The expression of beta-catenin is increased in the Nieuwkoop center, the expression pattern of Chordin and Goosecoid is expanded to the posterior neural plate and engrailed-2 presents ectopic expression in the ventral region. Taken together our data suggest a role for CT-Cx43 as a maternal determinant with a critical function in the formation of the dorso-ventral axis in Xenopus laevis. The Cx43 may be one of the earliest markers of the dorso-ventral axis in these embryos and could possibly be acting through regionalization of factors responsible for the establishment of this axis.

  15. [Do the variations in water carbon dioxide pressure and PH have an effect on the nature of end products of protein catabolism, ammonia and urea, in the clawed frog Xenopus laevis?].

    Science.gov (United States)

    Dejours, P; Armand, J; Beekenkamp, H

    1991-01-01

    The effects of PCO2 and pH changes in the ambient water on the nitrogen catabolism and the proportions of the excreted nitrogenous end products, ammonia and urea, were studied in the clawed frog, Xenopus laevis, at 24 degrees C. In animals living in artificial fresh water, the exposure to a hypocapnic alkalosis (PCO2 = 0.7 Torr instead of 10 Torr) did not entail any change in the nitrogen catabolism. In animals who lived in a water loaded with NaCl and had therefore a higher oxygen consumption, an intense nitrogen catabolism and a marked ureotelism, the hypocapnic alkalosis seems to have increased the intensity of the nitrogen catabolism. In neither group were there signs of ammonia toxicity.

  16. Phase-II conjugation ability for PAH metabolism in amphibians: characteristics and inter-species differences.

    Science.gov (United States)

    Ueda, Haruki; Ikenaka, Yoshinori; Nakayama, Shouta M M; Tanaka-Ueno, Tomoko; Ishizuka, Mayumi

    2011-10-01

    The present study examines amphibian metabolic activity - particularly conjugation - by analysis of pyrene (a four ring, polycyclic aromatic hydrocarbon) metabolites using high-performance liquid chromatography (HPLC) with fluorescence detector (FD), a mass spectrometry detector (MS) system and kinetic analysis of conjugation enzymes. Six amphibian species were exposed to pyrene (dissolved in water): African claw frog (Xenopus laevis); Tago's brown frog (Rana tagoi); Montane brown frog (Rana ornativentris); Wrinkled frog (Rana rugosa); Japanese newt (Cynops pyrrhogaster); and Clouded salamander (Hynobius nebulosus); plus one fish species, medaka (Oryzias latipes); and a fresh water snail (Clithon retropictus), and the resultant metabolites were collected. Identification of pyrene metabolites by HPLC and ion-trap MS system indicated that medaka mainly excreted pyrene-1-glucuronide (PYOG), while pyrene-1-sulfate (PYOS) was the main metabolite in all amphibian species. Pyrene metabolites in amphibians were different from those in invertebrate fresh water snails. Inter-species differences were also observed in pyrene metabolism among amphibians. Metabolite analysis showed that frogs relied more strongly on sulfate conjugation than did Japanese newts and clouded salamanders. Furthermore, urodelan amphibians, newts and salamanders, excreted glucose conjugates of pyrene that were not detected in the anuran amphibians. Kinetic analysis of conjugation by hepatic microsomes and cytosols indicated that differences in excreted metabolites reflected differences in enzymatic activities. Furthermore, pyrenediol (PYDOH) glucoside sulfate was detected in the Japanese newt sample. This novel metabolite has not been reported previously to this report, in which we have identified unique characteristics of amphibians in phase II pyrene metabolism.

  17. EFFECTS OF WATER QUALITY ON DEVELOPMENT OF XENOPUS LAEVIS: A FETAX ASSESSMENT OF SURFACE WATER ASSOCIATED WITH MALFORMATIONS IN NATIVE ANURANS

    Science.gov (United States)

    The purpose of this work was to determine if surface water from a site in Minnesota with malformed anurans was able to elicit adverse developmental effects in the Frog Embryo Teratogenesis Assay: Xenopus (FETAX)...

  18. Joint effects of pesticides and ultraviolet-B radiation on amphibian larvae.

    Science.gov (United States)

    Yu, Shuangying; Wages, Mike; Willming, Morgan; Cobb, George P; Maul, Jonathan D

    2015-12-01

    A combination of multiple stressors may be linked to global amphibian declines. Of these, pesticides and UVB radiation co-exposures were examined on the African clawed frog (Xenopus laevis) to provide information that may be useful for amphibian conservation. The independent action model and inferential statistics were used to examine interactions between pesticides (malathion, endosulfan, α-cypermethrin, or chlorothalonil) and environmentally relevant UVB exposures. UVB radiation alone caused 35-68% mortality and nearly 100% of malformations. Pesticides and UVB had additive effects on larval mortality; however, several non-additive effects (antagonistic and synergistic interactions) were observed for total body length. Insecticides mainly affected axial development, whereas UVB radiation caused high incidence of edema, gut malformations, and abnormal tail tips. These results suggest that sublethal developmental endpoints were more sensitive for detecting joint effects. This work has implications for amphibian risk assessments for ecosystems where pesticides and high UVB radiation may co-occur.

  19. Dual processing of sulfated steroids in the olfactory system of an anuran amphibian

    Directory of Open Access Journals (Sweden)

    Alfredo eSansone

    2015-09-01

    Full Text Available Chemical communication is widespread in amphibians, but if compared to later diverging tetrapods the available functional data is limited. The existing information on the vomeronasal system of anurans is particularly sparse. Amphibians represent a transitional stage in the evolution of the olfactory system. Most species have anatomically separated main and vomeronasal systems, but recent studies have shown that in anurans their molecular separation is still underway. Sulfated steroids function as migratory pheromones in lamprey and have recently been identified as natural vomeronasal stimuli in rodents. Here we identified sulfated steroids as the first known class of vomeronasal stimuli in the amphibian Xenopus laevis. We show that sulfated steroids are detected and concurrently processed by the two distinct olfactory subsystems of larval Xenopus laevis, the main olfactory system and the vomeronasal system. Our data revealed a similar but partially different processing of steroid-induced responses in the two systems. Differences of detection thresholds suggest that the two information channels are not just redundant, but rather signal different information. Furthermore, we found that larval and adult animals excrete multiple sulfated compounds with physical properties consistent with sulfated steroids. Breeding tadpole and frog water including these compounds activated a large subset of sensory neurons

  20. Potential protective effect of L-cysteine against the toxicity of acrylamide and furan in exposed Xenopus laevis embryos: an interaction study

    Science.gov (United States)

    The embryo toxicities of two food-processing-induced toxic compounds, acrylamide and furan, with and without added L-cysteine were examined individually and in mixtures using the frog embryo teratogenesis assay-Xenopus (FETAX). The following measures of developmental toxicity were used (a) 96-h LC5...

  1. Effects of the beta-cypermethrin on the survival and metamorphosis of Xenopus laevis tadpoles%高效氯氰菊酯对非洲爪蟾蝌蚪生存和变态发育影响

    Institute of Scientific and Technical Information of China (English)

    赛林霖; 薄存香; 李兰波; 谢琳; 郭启明

    2014-01-01

    Objective To investigate the effects of beta-cypermethrin on the survival and metamorphosis of Xenopus laevis tadpoles. Methods Xenopus laevis tadpoles at stage 51 were randomly selected and tested by acute and chronic toxicity experiments. In acute toxicity test,240 tadpoles were randomly divided into 8 groups according to the exposure dose of beta-cypermethrin,including 0. 00μg/L dose group( control group)and 0. 80,0. 96,1. 15,1. 38,1. 66,1. 99 and 2. 40μg/L dose groups,with 30 tadpoles in each group. Then the survival situation of Xenopus laevis tadpoles in 24,48,72 and 96 hours were observed,as well as the lethal concentrations of 50%( LC50 )in the above four time points. In chronic toxi-city test,450 tadpoles were randomly divided into 5 groups according to the exposure dose of beta-cypermethrin,including 0. 00 μg/L dose group( control group)and 0. 05,0. 10,0. 20 and 0. 40 μg/L dose groups. The survival situation,body weight,body length and the time of completed the allergy in the early stage of the abnormal peak( stage 58)and abnormal peak(stage 66)were all observed. Results In the acute toxicity test,there was no tadpoles died in the above four time points in the control group and 0. 80μg/L dose group,but all of the tadpoles were dead in the 24 hours of 2. 40μg/L dose group. The survival rate was decreased with the increasing of the infected doses(P0. 05 ). But in stage 66,the survival rate was decreased with the increasing of the infected doses( P0. 05),while the time of completing the allergy in 0. 20 and 0. 40 μg/L dose groups was longer than that of the con-trol group respectively[(92. 21 ± 2. 81)vs(89. 43 ± 2. 41),(95. 55 ± 5. 54)vs(89. 43 ± 2. 41),P0.05);在变态高峰期,5组非洲爪蟾蝌蚪存活率随染毒剂量的增加而降低(P0.05);0.20和0.40μg/L剂量组非洲爪蟾蝌蚪从第51期到完成变态反应所需时间长于对照组[(92.21±2.81)vs(89.43±2.41) d(,95.55±5.54)vs(89.43±2.41)d,P<0

  2. Label-free Quantification of Proteins in Single Embryonic Cells with Neural Fate in the Cleavage-Stage Frog (Xenopus laevis) Embryo using Capillary Electrophoresis Electrospray Ionization High-Resolution Mass Spectrometry (CE-ESI-HRMS).

    Science.gov (United States)

    Lombard-Banek, Camille; Reddy, Sushma; Moody, Sally A; Nemes, Peter

    2016-08-01

    Quantification of protein expression in single cells promises to advance a systems-level understanding of normal development. Using a bottom-up proteomic workflow and multiplexing quantification by tandem mass tags, we recently demonstrated relative quantification between single embryonic cells (blastomeres) in the frog (Xenopus laevis) embryo. In this study, we minimize derivatization steps to enhance analytical sensitivity and use label-free quantification (LFQ) for single Xenopus cells. The technology builds on a custom-designed capillary electrophoresis microflow-electrospray ionization high-resolution mass spectrometry platform and LFQ by MaxLFQ (MaxQuant). By judiciously tailoring performance to peptide separation, ionization, and data-dependent acquisition, we demonstrate an ∼75-amol (∼11 nm) lower limit of detection and quantification for proteins in complex cell digests. The platform enabled the identification of 438 nonredundant protein groups by measuring 16 ng of protein digest, or embryo. LFQ intensity was validated as a quantitative proxy for protein abundance. Correlation analysis was performed to compare protein quantities between the embryo and n = 3 different single D11 blastomeres, which are fated to develop into the nervous system. A total of 335 nonredundant protein groups were quantified in union between the single D11 cells spanning a 4 log-order concentration range. LFQ and correlation analysis detected expected proteomic differences between the whole embryo and blastomeres, and also found translational differences between individual D11 cells. LFQ on single cells raises exciting possibilities to study gene expression in other cells and models to help better understand cell processes on a systems biology level.

  3. Estrogens can disrupt amphibian mating behavior.

    Directory of Open Access Journals (Sweden)

    Frauke Hoffmann

    Full Text Available The main component of classical contraceptives, 17α-ethinylestradiol (EE2, has high estrogenic activity even at environmentally relevant concentrations. Although estrogenic endocrine disrupting compounds are assumed to contribute to the worldwide decline of amphibian populations by adverse effects on sexual differentiation, evidence for EE2 affecting amphibian mating behaviour is lacking. In this study, we demonstrate that EE2 exposure at five different concentrations (0.296 ng/L, 2.96 ng/L, 29.64 ng/L, 2.96 µg/L and 296.4 µg/L can disrupt the mating behavior of adult male Xenopus laevis. EE2 exposure at all concentrations lowered male sexual arousal, indicated by decreased proportions of advertisement calls and increased proportions of the call type rasping, which characterizes a sexually unaroused state of a male. Additionally, EE2 at all tested concentrations affected temporal and spectral parameters of the advertisement calls, respectively. The classical and highly sensitive biomarker vitellogenin, on the other hand, was only induced at concentrations equal or higher than 2.96 µg/L. If kept under control conditions after a 96 h EE2 exposure (2.96 µg/L, alterations of male advertisement calls vanish gradually within 6 weeks and result in a lower sexual attractiveness of EE2 exposed males toward females as demonstrated by female choice experiments. These findings indicate that exposure to environmentally relevant EE2 concentrations can directly disrupt male mate calling behavior of X. laevis and can indirectly affect the mating behavior of females. The results suggest the possibility that EE2 exposure could reduce the reproductive success of EE2 exposed animals and these effects might contribute to the global problem of amphibian decline.

  4. Endocannabinoids affect the reproductive functions in teleosts and amphibians.

    Science.gov (United States)

    Cottone, E; Guastalla, A; Mackie, K; Franzoni, M F

    2008-04-16

    Following the discovery in the brain of the bonyfish Fugu rubripes of two genes encoding for type 1 cannabinoid receptors (CB1A and CB1B), investigations on the phylogeny of these receptors have indicated that the cannabinergic system is highly conserved. Among the multiple functions modulated by cannabinoids/endocannabinoids through the CB1 receptors one of the more investigated is the mammalian reproduction. Therefore, since studies performed in animal models other than mammals might provide further insight into the biology of these signalling molecules, the major aim of the present paper was to review the comparative data pointing toward the endocannabinoid involvement in the reproductive control of non-mammalian vertebrates, namely bonyfish and amphibians. The expression and distribution of CB1 receptors were investigated in the CNS and gonads of two teleosts, Pelvicachromis pulcher and Carassius auratus as well as in the anuran amphibians Xenopus laevis and Rana esculenta. In general the large diffusion of neurons targeted by cannabinoids in both fish and amphibian forebrain indicate endocannabinoids as pivotal local messengers in several neural circuits involved in either sensory integrative activities, like the olfactory processes (in amphibians) and food response (in bonyfish), or neuroendocrine machinery (in both). By using immunohistochemistry for CB1 and GnRH-I, the codistribution of the two signalling molecules was found in the fish basal telencephalon and preoptic area, which are key centers for gonadotropic regulation in all vertebrates. A similar topographical codistribution was observed also in the septum of the telencephalon in Rana esculenta and Xenopus laevis. Interestingly, the double standard immunofluorescence on the same brain section, aided with a laser confocal microscope, showed that in anurans a subset of GnRH-I neurons exhibited also the CB1 immunostaining. The fact that CB1-LI-IR was found indeed in the FSH gonadotrophs of the Xenopus

  5. Expression of odorant receptor family, type 2 OR in the aquatic olfactory cavity of amphibian frog Xenopus tropicalis.

    Directory of Open Access Journals (Sweden)

    Tosikazu Amano

    Full Text Available Recent genome wide in silico analyses discovered a new family (type 2 or family H of odorant receptors (ORs in teleost fish and frogs. However, since there is no evidence of the expression of these novel OR genes in olfactory sensory neurons (OSN, it remains unknown if type 2 ORs (OR2 function as odorant receptors. In this study, we examined expression of OR2 genes in the frog Xenopus tropicalis. The overall gene expression pattern is highly complex and differs depending on the gene and developmental stage. RT-PCR analysis in larvae showed that all of the OR2η genes we identified were expressed in the peripheral olfactory system and some were detected in the brain and skin. Whole mount in situ hybridization of the larval olfactory cavity confirmed that at least two OR2η genes so far tested are expressed in the OSN. Because tadpoles are aquatic animals, OR2η genes are probably involved in aquatic olfaction. In adults, OR2η genes are expressed in the nose, brain, and testes to different degrees depending on the genes. OR2η expression in the olfactory system is restricted to the medium cavity, which participates in the detection of water-soluble odorants, suggesting that OR2ηs function as receptors for water-soluble odorants. Moreover, the fact that several OR2ηs are significantly expressed in non-olfactory organs suggests unknown roles in a range of biological processes other than putative odorant receptor functions.

  6. Structural and functional divergence of growth hormone-releasing hormone receptors in early sarcopterygians: lungfish and Xenopus.

    Directory of Open Access Journals (Sweden)

    Janice K V Tam

    Full Text Available The evolutionary trajectories of growth hormone-releasing hormone (GHRH receptor remain enigmatic since the discovery of physiologically functional GHRH-GHRH receptor (GHRHR in non-mammalian vertebrates in 2007. Interestingly, subsequent studies have described the identification of a GHRHR(2 in chicken in addition to the GHRHR and the closely related paralogous receptor, PACAP-related peptide (PRP receptor (PRPR. In this article, we provide information, for the first time, on the GHRHR in sarcopterygian fish and amphibians by the cloning and characterization of GHRHRs from lungfish (P. dolloi and X. laevis. Sequence alignment and phylogenetic analyses demonstrated structural resemblance of lungfish GHRHR to their mammalian orthologs, while the X. laevis GHRHR showed the highest homology to GHRHR(2 in zebrafish and chicken. Functionally, lungfish GHRHR displayed high affinity towards GHRH in triggering intracellular cAMP and calcium accumulation, while X. laevis GHRHR(2 was able to react with both endogenous GHRH and PRP. Tissue distribution analyses showed that both lungfish GHRHR and X. laevis GHRHR(2 had the highest expression in brain, and interestingly, X. laevis(GHRHR2 also had high abundance in the reproductive organs. These findings, together with previous reports, suggest that early in the Sarcopterygii lineage, GHRHR and PRPR have already established diverged and specific affinities towards their cognate ligands. GHRHR(2, which has only been found in xenopus, zebrafish and chicken hitherto, accommodates both GHRH and PRP.

  7. Potential protective effect of L-cysteine against the toxicity of acrylamide and furan in exposed Xenopus laevis embryos: an interaction study.

    Science.gov (United States)

    Williams, John Russell; Rayburn, James R; Cline, George R; Sauterer, Roger; Friedman, Mendel

    2014-08-01

    The embryo toxicities of two food-processing-induced toxic compounds, acrylamide and furan, with and without added L-cysteine were examined individually and in mixtures using the frog embryo teratogenesis assay-Xenopus (FETAX). The following measures of developmental toxicity were used: (a) 96 h LC50, the median concentration causing 50% embryo lethality; (b) 96 h EC50, the median concentration causing 50% malformations of the surviving embryos; and (c) teratogenic index (96 h LC50/96 h EC50), an estimate of teratogenic risk. Calculations of toxic units (TU) were used to assess possible antagonism, synergism, or response addition of several mixtures. The evaluated compounds demonstrated counterintuitive effects. Furan had lower than expected toxicity in Xenopus embryos and, unlike acrylamide, does not seem to be teratogenic. However, the short duration of the tests may not show the full effects of furan if it is truly primarily genotoxic and carcinogenic. L-Cysteine showed unexpected properties in the delay of hatching of the embryos. The results from the interaction studies between combination of two or three components (acrylamide plus L-cysteine; furan plus L-cysteine; acrylamide plus furan; acrylamide plus furan and L-cysteine) show that furan and acrylamide seem to have less than response addition at 1:1 toxic unit ratio in lethality. Acrylamide and L-cysteine show severe antagonism even at low 19 acrylamide/1 L-cysteine TU ratios. Data from the mixture of acrylamide, furan, and L-cysteine show a slight antagonism, less than would have been expected from binary mixture exposures. Bioalkylation mechanisms and their prevention are discussed. There is a need to study the toxicological properties of mixtures of acrylamide and furan concurrently formed in heat-processed food.

  8. The RNA-binding protein Xp54nrb isolated from a Ca²+-dependent screen is expressed in neural structures during Xenopus laevis development.

    Science.gov (United States)

    Neant, Isabelle; Deisig, Nina; Scerbo, Pierluigi; Leclerc, Catherine; Moreau, Marc

    2011-01-01

    In amphibian embryos, calcium (Ca(2+)) signalling is a necessary and sufficient event to induce neural fate. Transient elevations of [Ca(2+)]i are recorded in neural tissue precursor cells in whole embryos during gastrulation. Using a subtractive cDNA library between control ectoderm (animal caps) and ectoderm induced toward a neural fate by Ca(2+) release, we have isolated several Ca(2+)-induced target genes. Among the isolated genes, Xp54nrb encodes a protein which exhibits the RRM domains characteristic of RNA binding proteins, and is implicated in pre-mRNA splicing steps. Here we show that the Xp54nrb transcripts are expressed throughout early developmental stages, specifically in the neural and sensorial territories and that Xp54nrb could be involved in anterior neural patterning.

  9. L-cysteine, N-acetyl-L-cysteine, and glutathione protect Xenopus laevis embryos against acrylamide-induced malformations and mortality in the frog embryo teratogenesis assay.

    Science.gov (United States)

    Rayburn, James R; Friedman, Mendel

    2010-10-27

    Dietary acrylamide is largely derived from heat-induced reactions between the amino group of the free amino acid asparagine and carbonyl groups of glucose and fructose during heat processing (baking, frying) of plant-derived foods such as potato fries and cereals. After consumption, acrylamide is absorbed into the circulation and is then distributed to various organs, where it can react with DNA, neurons, hemoglobin, and essential enzymes. In the present study, we explored the potential of L-cysteine (CySH), N-acetyl-L-cysteine (NAC), reduced glutathione (GSH), and the amino acid glycine (Gly) to protect frog embryos against acrylamide-induced developmental toxicity in the frog embryo teratogenesis assay - Xenopus (FETAX). To test the antiteratogenic potential, based on concentration-response study ranging from 0.07 to 4.22 mM acrylamide in FETAX solution (pH 8.1), we selected concentrations of acrylamide that induced 100% malformations and mortality. At the end of 96 h, we counted survivors and malformed embryos and measured embryo length. The data show that CySH, NAC, and GSH protected the embryos against acrylamide induced malformations and mortality to different degrees. CySH and GSH protected the embryos against both malformations and mortality, whereas NAC protected only against mortality. Gly had no protective effect. Possible mechanisms of the protective effects and the dietary significance of the results of this and related studies for food safety and human health are discussed.

  10. Impact of mechanical stress on ion transport in native lung epithelium (Xenopus laevis): short-term activation of Na+, Cl (-) and K+ channels.

    Science.gov (United States)

    Bogdan, Roman; Veith, Christine; Clauss, Wolfgang; Fronius, Martin

    2008-09-01

    Epithelia, in general, and the lung epithelium, in particular, are exposed to mechanical forces, but little is known about their impact on pulmonary ion transport. In our present study, we employed transepithelial ion transport measurements on Xenopus lung preparations using custom-built Ussing chambers. Tissues were exposed to mechanical stress by increasing the water column (5 cm) at one side of the tissues. Apical exposure to hydrostatic pressure significantly decreased the short circuit current (I (SC): 24 +/- 1%, n = 152), slightly decreased the transepithelial resistance (R (T): 7 +/- 2%, n = 152), but increased the apical membrane capacitance (C (M): 16 +/- 6%, n = 9). The pressure-induced effect was sensitive to Na+ (amiloride), Cl(-) (DIDS, NFA, NPPB) and K+ channel blockers (Ba2+), glibenclamide). Further on, it was accompanied by increased extracellular ATP levels. The results show that mechanical stress leads to an activation of Na+, Cl(-), and K+ conductances in a native pulmonary epithelium resulting in a net decrease of ion absorption. This could be of considerable interest, since an altered ion transport may contribute to pathophysiological conditions, e.g., the formation of pulmonary edema during artificial ventilation.

  11. The Xenopus FcR family demonstrates continually high diversification of paired receptors in vertebrate evolution

    Directory of Open Access Journals (Sweden)

    Najakshin Alexander M

    2008-05-01

    Full Text Available Abstract Background Recent studies have revealed an unexpected diversity of domain architecture among FcR-like receptors that presumably fulfill regulatory functions in the immune system. Different species of mammals, as well as chicken and catfish have been found to possess strikingly different sets of these receptors. To better understand the evolutionary history of paired receptors, we extended the study of FcR-like genes in amphibian representatives Xenopus tropicalis and Xenopus laevis. Results The diploid genome of X. tropicalis contains at least 75 genes encoding paired FcR-related receptors designated XFLs. The allotetraploid X. laevis displays many similar genes primarily expressed in lymphoid tissues. Up to 35 domain architectures generated by combinatorial joining of six Ig-domain subtypes and two subtypes of the transmembrane regions were found in XFLs. None of these variants are shared by FcR-related proteins from other studied species. Putative activating XFLs associate with the FcRγ subunit, and their transmembrane domains are highly similar to those of activating mammalian KIR-related receptors. This argues in favor of a common origin for the FcR and the KIR families. Phylogenetic analysis shows that the entire repertoires of the Xenopus and mammalian FcR-related proteins have emerged after the amphibian-amniotes split. Conclusion FcR- and KIR-related receptors evolved through continual species-specific diversification, most likely by extensive domain shuffling and birth-and-death processes. This mode of evolution raises the possibility that the ancestral function of these paired receptors was a direct interaction with pathogens and that many physiological functions found in the mammalian receptors were secondary acquisitions or specializations.

  12. Cardiac performance correlates of relative heart ventricle mass in amphibians.

    Science.gov (United States)

    Kluthe, Gregory J; Hillman, Stanley S

    2013-08-01

    This study used an in situ heart preparation to analyze the power output and stroke work of spontaneously beating hearts of four anurans (Rhinella marina, Lithobates catesbeianus, Xenopus laevis, Pyxicephalus edulis) and three urodeles (Necturus maculosus, Ambystoma tigrinum, Amphiuma tridactylum) that span a representative range of relative ventricle mass (RVM) found in amphibians. Previous research has documented that RVM correlates with dehydration tolerance and maximal aerobic capacity in amphibians. The power output (mW g(-1) ventricle mass) and stroke work (mJ g(-1) ventricle muscle mass) were independent of RVM and were indistinguishable from previously published results for fish and reptiles. RVM was significantly correlated with maximum power output (P max, mW kg(-1) body mass), stroke volume, cardiac output, afterload pressure (P O) at P max, and preload pressure (P I) at P max. P I at P max and P O at P max also correlated very closely with each other. The increases in both P I and P O at maximal power outputs in large hearts suggest that concomitant increases in blood volume and/or increased modulation of vascular compliance either anatomically or via sympathetic tone on the venous vasculature would be necessary to achieve P max in vivo. Hypotheses for variation in RVM and its concomitant increased P max in amphibians are developed.

  13. Molecular mechanisms for thyroid hormone-induced remodeling in the amphibian digestive tract: a model for studying organ regeneration.

    Science.gov (United States)

    Ishizuya-Oka, Atsuko; Shi, Yun-Bo

    2005-12-01

    During amphibian metamorphosis the digestive tract is extensively remodeled under the control of epithelial-connective tissue interactions. At the cellular level, larval epithelial cells undergo apoptosis, while a small number of stem cells appear, actively proliferate, and then differentiate to form adult epithelium that is analogous to its mammalian counterpart. Therefore the amphibian digestive tract is a unique model system for the study of postembryonic organ regeneration. As amphibian intestinal remodeling can be triggered by thyroid hormone (TH), the molecular mechanisms involved can be studied from the perspective of examining the expression cascade of TH response genes. A number of these genes have been isolated from the intestine of Xenopus laevis. Recent progress in the functional analysis of this cascade has shed light on key molecules in intestinal remodeling such as matrix metalloproteinase-11, sonic hedgehog, and bone morphogenetic protein-4. These genes are also thought to play key roles in organogenesis and/or homeostasis in both chick and mammalian digestive tract, suggesting the existence of conserved mechanisms underlying such events in terrestrial vertebrates. In this article, we review our recent findings in this field, focusing on the development of adult epithelium in the X. laevis intestine.

  14. Hedgehog inhibition causes complete loss of limb outgrowth and transformation of digit identity in Xenopus tropicalis.

    Science.gov (United States)

    Stopper, Geffrey F; Richards-Hrdlicka, Kathryn L; Wagner, Günter P

    2016-03-01

    The study of the tetrapod limb has contributed greatly to our understanding of developmental pathways and how changes to these pathways affect the evolution of morphology. Most of our understanding of tetrapod limb development comes from research on amniotes, with far less known about mechanisms of limb development in amphibians. To better understand the mechanisms of limb development in anuran amphibians, we used cyclopamine to inhibit Hedgehog signaling at various stages of development in the western clawed frog, Xenopus tropicalis, and observed resulting morphologies. We also analyzed gene expression changes resulting from similar experiments in Xenopus laevis. Inhibition of Hedgehog signaling in X. tropicalis results in limb abnormalities including reduced digit number, missing skeletal elements, and complete absence of limbs. In addition, posterior digits assume an anterior identity by developing claws that are usually only found on anterior digits, confirming Sonic hedgehog's role in digit identity determination. Thus, Sonic hedgehog appears to play mechanistically separable roles in digit number specification and digit identity specification as in other studied tetrapods. The complete limb loss observed in response to reduced Hedgehog signaling in X. tropicalis, however, is striking, as this functional role for Hedgehog signaling has not been found in any other tetrapod. This changed mechanism may represent a substantial developmental constraint to digit number evolution in frogs. J. Exp. Zool. (Mol. Dev. Evol.) 9999B:XX-XX, 2016. © 2016 Wiley Periodicals, Inc.

  15. Highly efficient bi-allelic mutation rates using TALENs in Xenopus tropicalis

    Directory of Open Access Journals (Sweden)

    Shoko Ishibashi

    2012-10-01

    In the past decade, Xenopus tropicalis has emerged as a powerful new amphibian genetic model system, which offers all of the experimental advantages of its larger cousin, Xenopus laevis. Here we investigated the efficiency of transcription activator-like effector nucleases (TALENs for generating targeted mutations in endogenous genes in X. tropicalis. For our analysis we targeted the tyrosinase (oculocutaneous albinism IA (tyr gene, which is required for the production of skin pigments, such as melanin. We injected mRNA encoding TALENs targeting the first exon of the tyr gene into two-cell-stage embryos. Surprisingly, we found that over 90% of the founder animals developed either partial or full albinism, suggesting that the TALENs induced bi-allelic mutations in the tyr gene at very high frequency in the F0 animals. Furthermore, mutations tyr gene were efficiently transmitted into the F1 progeny, as evidenced by the generation of albino offspring. These findings have far reaching implications in our quest to develop efficient reverse genetic approaches in this emerging amphibian model.

  16. Antiviral immunity in amphibians.

    Science.gov (United States)

    Chen, Guangchun; Robert, Jacques

    2011-11-01

    Although a variety of virus species can infect amphibians, diseases caused by ranaviruses ([RVs]; Iridoviridae) have become prominent, and are a major concern for biodiversity, agriculture and international trade. The relatively recent and rapid increase in prevalence of RV infections, the wide range of host species infected by RVs, the variability in host resistance among population of the same species and among different developmental stages, all suggest an important involvement of the amphibian immune system. Nevertheless, the roles of the immune system in the etiology of viral diseases in amphibians are still poorly investigated. We review here the current knowledge of antiviral immunity in amphibians, focusing on model species such as the frog Xenopus and the salamander (Ambystoma tigrinum), and on recent progress in generating tools to better understand how host immune defenses control RV infections, pathogenicity, and transmission.

  17. 非洲爪蟾胚胎用于发育神经毒性测试的方法%An assay for testing developmental neurotoxicity of chemicals using Xenopus laevis embryos

    Institute of Scientific and Technical Information of China (English)

    付旭锋; 李圆圆; 崔清华; 秦占芬

    2014-01-01

    Based on Frog Embryo Teratogenesis Assay-Xenopus ( FETAX ) of American Society for Testing and Materials, we aimed to establish an assay for evaluating developmental neurotoxicity of chemicals using body features, motoneuronal morphology and motor behavior as endpoints. Methylmercury chloride ( CH3 HgCl) was used as a model compound for developmental neurotoxicity. Following 3 d-exposure, the embryos exhibited weaker motor ability with increases in CH3 HgCl concentrations. After 4 d-exposure to CH3 HgCl, the embryos appeared shorter body lengths and motoneurons in 300 nmol·L-1 and 400 nmol·L-1 groups compared with the control. Seven day-exposure to CH3 HgCl resulted in a decrease in the swimming velocity of the tadpoles in a concentration-dependent manner. In conclusion, our results show that X. laevis embryos can be used to investigate developmental neurotoxicity of chemicals, and body features, motoneuronal morphology and motor behavior are sensitive endpoints.%在美国材料与测试协会( ASTM)的非洲爪蟾胚胎致畸试验( FETAX)的基础上,以已知具有发育神经毒性的氯化甲基汞为模式化合物,探索一种以体征、运动神经元形态和运动行为参数为终点指标的研究发育神经毒性的方法。非洲爪蟾胚胎暴露氯化甲基汞3 d时,观察到暴露组胚胎的运动能力随暴露浓度(100-400 nmol·L-1)的增加而减弱。暴露4 d发现300 nmol·L-1和400 nmol·L-1暴露组胚胎体长和运动神经元明显短于对照组。暴露持续7 d,通过行为分析软件对蝌蚪运动行为定量,发现暴露处理的蝌蚪的游泳速率明显小于对照组。以上结果显示,非洲爪蟾胚胎可用来研究化学品的发育神经毒性,胚胎的体征、运动神经元形态和运动行为可以作为相对敏感的评价指标。

  18. Two different network topologies yield bistability in models of mesoderm and anterior mesendoderm specification in amphibians.

    Science.gov (United States)

    Brown, L E; King, J R; Loose, M

    2014-07-21

    Understanding the Gene Regulatory Networks (GRNs) that underlie development is a major question for systems biology. The establishment of the germ layers is amongst the earliest events of development and has been characterised in numerous model systems. The establishment of the mesoderm is best characterised in the frog Xenopus laevis and has been well studied both experimentally and mathematically. However, the Xenopus network has significant differences from that in mouse and humans, including the presence of multiple copies of two key genes in the network, Mix and Nodal. The axolotl, a urodele amphibian, provides a model with all the benefits of amphibian embryology but crucially only a single Mix and Nodal gene required for the specification of the mesoderm. Remarkably, the number of genes within the network is not the only difference. The interaction between Mix and Brachyury, two transcription factors involved in the establishment of the endoderm and mesoderm respectively, is not conserved. While Mix represses Brachyury in Xenopus, it activates Brachyury in axolotl. Thus, whilst the topology of the networks in the two species differs, both are able to form mesoderm and endoderm in vivo. Based on current knowledge of the structure of the mesendoderm GRN we develop deterministic models that describe the time evolution of transcription factors in a single axolotl cell and compare numerical simulations with previous results from Xenopus. The models are shown to have stable steady states corresponding to mesoderm and anterior mesendoderm, with the in vitro model showing how the concentration of Activin can determine cell fate, while the in vivo model shows that β-catenin concentration can determine cell fate. Moreover, our analysis suggests that additional components must be important in the axolotl network in the specification of the full range of tissues.

  19. Gravitational effects on the rearrangement of cytoplasmic components during axial formation in amphibian development

    Science.gov (United States)

    Phillips, C. R.; Whalon, B.; Moore, J.; Danilchik, M.

    The spatial positioning of the dorsal-ventral axis in the amphibian, Xenopus laevis, can be experimentally manipulated either by tipping the embryo relative to Earth's gravitational force vector or by centrifugation. Experimental evidence suggests that certain cytoplasmic components are redistributed during the first cell cycle and that these components are, in part, responsible for the establishment of this axis. Further studies indicate that at least some of the cytoplasmic components responsible for establishing this axis may be RNA. Recombinant cDNA and PCR technology are utilized to isolate DNA clones for messenger RNA which becomes spatially localized to the dorsal side of the embryo. These clones are being used to study the mechanisms of spatial localization and the function of the localized RNA transcripts.

  20. Insights on the evolution of prolyl 3-hydroxylation sites from comparative analysis of chicken and Xenopus fibrillar collagens.

    Directory of Open Access Journals (Sweden)

    David M Hudson

    Full Text Available Recessive mutations that prevent 3-hydroxyproline formation in type I collagen have been shown to cause forms of osteogenesis imperfecta. In mammals, all A-clade collagen chains with a GPP sequence at the A1 site (P986, except α1(III, have 3Hyp at residue P986. Available avian, amphibian and reptilian type III collagen sequences from the genomic database (Ensembl all differ in sequence motif from mammals at the A1 site. This suggests a potential evolutionary distinction in prolyl 3-hydroxylation between mammals and earlier vertebrates. Using peptide mass spectrometry, we confirmed that this 3Hyp site is fully occupied in α1(III from an amphibian, Xenopus laevis, as it is in chicken. A thorough characterization of all predicted 3Hyp sites in collagen types I, II, III and V from chicken and xenopus revealed further differences in the pattern of occupancy of the A3 site (P707. In mammals only α2(I and α2(V chains had any 3Hyp at the A3 site, whereas in chicken all α-chains except α1(III had A3 at least partially 3-hydroxylated. The A3 site was also partially 3-hydroxylated in xenopus α1(I. Minor differences in covalent cross-linking between chicken, xenopus and mammal type I and III collagens were also found as a potential index of evolving functional differences. The function of 3Hyp is still unknown but observed differences in site occupancy during vertebrate evolution are likely to give important clues.

  1. An amphibian model to test the effects of xenobiotic chemicals on development of the hematopoietic system.

    Science.gov (United States)

    Rollins-Smith, Louise A; Hopkins, B Diane; Reinert, Laura K

    2004-12-01

    A number of manmade chemicals have deleterious effects on the developing immune system. Very few assay systems are available to study the effects of xenobiotics on hematopoietic stem cells. In rodent models, assays require exposure of pregnant females and analysis of the hematopoietic potential of stem cells from the offspring. These models are less relevant to lower vertebrates such as fish or amphibians where exposure of embryos is direct. To overcome this problem, an amphibian model was developed. Diploid (2N) embryos (16-20 h of age) of the South African clawed frog, Xenopus laevis, were exposed to 10 microg/ml diazinon or 10(-6) M lead acetate for 2 h. After 2 h, the ventral blood island (VBI) was transplanted from a chemically treated or untreated control embryo to an untreated triploid (3N) host embryo. After 55 d, the contribution of the donor VBI-derived stem cells to populations in the blood, thymus, and spleen was assessed by flow cytometry. Diazinon, but not lead acetate, interfered with the ability of transplanted stem cells to contribute to hematopoiesis. Because amphibian embryos are very sensitive indicators of the toxic effects of chemicals, this VBI assay could be employed to test any toxic chemical that is suspected of having a negative effect on development of the hematopoietic system.

  2. Comparative and phylogenetic perspectives of the cleavage process in tailed amphibians.

    Science.gov (United States)

    Desnitskiy, Alexey G; Litvinchuk, Spartak N

    2015-10-01

    The order Caudata includes about 660 species and displays a variety of important developmental traits such as cleavage pattern and egg size. However, the cleavage process of tailed amphibians has never been analyzed within a phylogenetic framework. We use published data on the embryos of 36 species concerning the character of the third cleavage furrow (latitudinal, longitudinal or variable) and the magnitude of synchronous cleavage period (up to 3-4 synchronous cell divisions in the animal hemisphere or a considerably longer series of synchronous divisions followed by midblastula transition). Several species from basal caudate families Cryptobranchidae (Andrias davidianus and Cryptobranchus alleganiensis) and Hynobiidae (Onychodactylus japonicus) as well as several representatives from derived families Plethodontidae (Desmognathus fuscus and Ensatina eschscholtzii) and Proteidae (Necturus maculosus) are characterized by longitudinal furrows of the third cleavage and the loss of synchrony as early as the 8-cell stage. By contrast, many representatives of derived families Ambystomatidae and Salamandridae have latitudinal furrows of the third cleavage and extensive period of synchronous divisions. Our analysis of these ontogenetic characters mapped onto a phylogenetic tree shows that the cleavage pattern of large, yolky eggs with short series of synchronous divisions is an ancestral trait for the tailed amphibians, while the data on the orientation of third cleavage furrows seem to be ambiguous with respect to phylogeny. Nevertheless, the midblastula transition, which is characteristic of the model species Ambystoma mexicanum (Caudata) and Xenopus laevis (Anura), might have evolved convergently in these two amphibian orders.

  3. Toxicity of CeO2 nanoparticles at different trophic levels--effects on diatoms, chironomids and amphibians.

    Science.gov (United States)

    Bour, Agathe; Mouchet, Florence; Verneuil, Laurent; Evariste, Lauris; Silvestre, Jérôme; Pinelli, Eric; Gauthier, Laury

    2015-02-01

    The aim of the present work is to provide wider information on the toxicity of cerium dioxide nanoparticles (CeO2 NPs) in aquatic environments, by studying the toxicity of two types of CeO2 NPs for four species (diatoms Nitzschia palea, the sediment-dwelling invertebrate Chironomus riparius, and the amphibian larvae Xenopus laevis and Pleurodeles waltl.). The two types of CeO2 NPs have different intrinsic properties: some of them are small citrate-coated spheres (2-5 nm), and the others are larger uncoated plates (20-60 nm). Acute toxicity (mortality at 48 or 96 h, depending on the test-organism) was assessed for the four species, from 0.1 to 100 mg L(-1) of NPs. Sub-lethal effects were assessed on chironomids exposed between 0.01 and 1 mg L(-1) of NPs. Mortality, growth inhibition and genotoxic effects were evaluated on amphibian larvae from 0.1 to 10 mg L(-1). Results reveal that no acute toxicity occurs on any species after short exposures, even at the highest concentrations. Mortality (35%) is observed on Xenopus larvae after 12d of exposure at the highest concentration of one type of NPs. No significant effects were observed on chironomids during chronic exposure. Xenopus larvae growth was inhibited from 1 mg L(-1) of both NPs while growth inhibition is observed on Pleurodeles only at the highest concentration of one type of NPs. No genotoxicity was observed on Xenopus but Pleurodeles exhibited dose-dependent genotoxic effects when exposed to one type of NPs. Observed differences in toxicity are discussed focusing on the studied compartment, routes of exposure, species and NPs.

  4. Germ tube mediated invasion of Batrachochytrium dendrobatidis in amphibian skin is host dependent.

    Directory of Open Access Journals (Sweden)

    Pascale Van Rooij

    Full Text Available Batrachochytrium dendrobatidis (Bd is the causative agent of chytridiomycosis, a fungal skin disease in amphibians and driver of worldwide amphibian declines.We focussed on the early stages of infection by Bd in 3 amphibian species with a differential susceptibility to chytridiomycosis. Skin explants of Alytes muletensis, Litoria caerulea and Xenopus leavis were exposed to Bd in an Ussing chamber for 3 to 5 days. Early interactions of Bd with amphibian skin were observed using light microscopy and transmission electron microscopy. To validate the observations in vitro, comparison was made with skin from experimentally infected frogs. Additional in vitro experiments were performed to elucidate the process of intracellular colonization in L. caerulea. Early interactions of Bd with amphibian skin are: attachment of zoospores to host skin, zoospore germination, germ tube development, penetration into skin cells, invasive growth in the host skin, resulting in the loss of host cell cytoplasm. Inoculation of A. muletensis and L. caerulea skin was followed within 24 h by endobiotic development, with sporangia located intracellularly in the skin. Evidence is provided of how intracellular colonization is established and how colonization by Bd proceeds to deeper skin layers. Older thalli develop rhizoid-like structures that spread to deeper skin layers, form a swelling inside the host cell to finally give rise to a new thallus. In X. laevis, interaction of Bd with skin was limited to an epibiotic state, with sporangia developing upon the skin. Only the superficial epidermis was affected. Epidermal cells seemed to be used as a nutrient source without development of intracellular thalli. The in vitro data agreed with the results obtained after experimental infection of the studied frog species. These data suggest that the colonization strategy of B. dendrobatidis is host dependent, with the extent of colonization most likely determined by inherent

  5. Germ tube mediated invasion of Batrachochytrium dendrobatidis in amphibian skin is host dependent.

    Science.gov (United States)

    Van Rooij, Pascale; Martel, An; D'Herde, Katharina; Brutyn, Melanie; Croubels, Siska; Ducatelle, Richard; Haesebrouck, Freddy; Pasmans, Frank

    2012-01-01

    Batrachochytrium dendrobatidis (Bd) is the causative agent of chytridiomycosis, a fungal skin disease in amphibians and driver of worldwide amphibian declines.We focussed on the early stages of infection by Bd in 3 amphibian species with a differential susceptibility to chytridiomycosis. Skin explants of Alytes muletensis, Litoria caerulea and Xenopus leavis were exposed to Bd in an Ussing chamber for 3 to 5 days. Early interactions of Bd with amphibian skin were observed using light microscopy and transmission electron microscopy. To validate the observations in vitro, comparison was made with skin from experimentally infected frogs. Additional in vitro experiments were performed to elucidate the process of intracellular colonization in L. caerulea. Early interactions of Bd with amphibian skin are: attachment of zoospores to host skin, zoospore germination, germ tube development, penetration into skin cells, invasive growth in the host skin, resulting in the loss of host cell cytoplasm. Inoculation of A. muletensis and L. caerulea skin was followed within 24 h by endobiotic development, with sporangia located intracellularly in the skin. Evidence is provided of how intracellular colonization is established and how colonization by Bd proceeds to deeper skin layers. Older thalli develop rhizoid-like structures that spread to deeper skin layers, form a swelling inside the host cell to finally give rise to a new thallus. In X. laevis, interaction of Bd with skin was limited to an epibiotic state, with sporangia developing upon the skin. Only the superficial epidermis was affected. Epidermal cells seemed to be used as a nutrient source without development of intracellular thalli. The in vitro data agreed with the results obtained after experimental infection of the studied frog species. These data suggest that the colonization strategy of B. dendrobatidis is host dependent, with the extent of colonization most likely determined by inherent characteristics of the host

  6. Hypothalamo-hypophysial relations in amphibian larvae

    NARCIS (Netherlands)

    Oordt, P.G.W.J. van; Goos, H.J.Th.; Peute, J.; Terlou, M.

    1972-01-01

    The results of studies on the differentiation of the preoptic nucleus and of experiments regarding the effects of propylthiouracil and extirpation of the preoptic area demonstrate that in Xenopus laevis tadpoles a thyrotropin-releasing factor (TRF) is formed in peptidergic cells in the dorsal part o

  7. Characterization of recombinant Xenopus laevis type I iodothyronine deiodinase: Substitution of a proline residue in the catalytic center by serine (Pro132Ser) restores sensitivity to 6-propyl-2-thiouracil

    NARCIS (Netherlands)

    G.G.J.M. Kuiper (George); W. Klootwijk (Willem); G.M. Dubois (Ghislaine Morvan); O. Destree (Olivier); V.M. Darras (Veerle); S. van der Geyten (Serge); B.A. Demeneix (Barbara); T.J. Visser (Theo)

    2006-01-01

    textabstractIn frogs such as Rana and Xenopus, metamorphosis does not occur in the absence of a functional thyroid gland. Previous studies indicated that coordinated development in frogs requires tissue and stage-dependent type II and type III iodothyronine deiodinase expression patterns to obtain r

  8. Yap1, transcription regulator in the Hippo signaling pathway, is required for Xenopus limb bud regeneration.

    Science.gov (United States)

    Hayashi, Shinichi; Tamura, Koji; Yokoyama, Hitoshi

    2014-04-01

    The Hippo signaling pathway is conserved from insects to mammals and is important for multiple processes, including cell proliferation, apoptosis and tissue homeostasis. Hippo signaling is also crucial for regeneration, including intercalary regeneration, of the whole body in the flatworm and of the leg in the cricket. However, its role in vertebrate epimorphic regeneration is unknown. Therefore, to identify principles of regeneration that are conserved among bilaterians, we investigated the role of Hippo signaling in the limb bud regeneration of an anuran amphibian, Xenopus laevis. We found that a transcription factor, Yap1, an important downstream effector of Hippo signaling, is upregulated in the regenerating limb bud. To evaluate Yap1׳s function in limb bud regeneration, we made transgenic animals that expressed a dominant-negative form of Yap under a heat-shock promoter. Overexpression of a dominant-negative form of Yap in tadpoles reduced cell proliferation, induced ectopic apoptosis, perturbed the expression domains of limb-patterning genes including hoxa13, hoxa11, and shh in the regenerating limb bud. Transient expression of a dominant-negative Yap in transgenic tadpoles also caused limb bud regeneration defects, and reduced intercalary regeneration. These results indicate that Yap1 has a crucial role in controlling the limb regenerative capacity in Xenopus, and suggest that the involvement of Hippo signaling in regeneration is conserved between vertebrates and invertebrates. This finding provides molecular evidence that common principles underlie regeneration across phyla, and may contribute to the development of new therapies in regenerative medicine.

  9. Skeletal muscle regeneration in Xenopus tadpoles and zebrafish larvae

    Directory of Open Access Journals (Sweden)

    Rodrigues Alexandre

    2012-02-01

    Full Text Available Abstract Background Mammals are not able to restore lost appendages, while many amphibians are. One important question about epimorphic regeneration is related to the origin of the new tissues and whether they come from mature cells via dedifferentiation and/or from stem cells. Several studies in urodele amphibians (salamanders indicate that, after limb or tail amputation, the multinucleated muscle fibres do dedifferentiate by fragmentation and proliferation, thereby contributing to the regenerate. In Xenopus laevis tadpoles, however, it was shown that muscle fibres do not contribute directly to the tail regenerate. We set out to study whether dedifferentiation was present during muscle regeneration of the tadpole limb and zebrafish larval tail, mainly by cell tracing and histological observations. Results Cell tracing and histological observations indicate that zebrafish tail muscle do not dedifferentiate during regeneration. Technical limitations did not allow us to trace tadpole limb cells, nevertheless we observed no signs of dedifferentiation histologically. However, ultrastructural and gene expression analysis of regenerating muscle in tadpole tail revealed an unexpected dedifferentiation phenotype. Further histological studies showed that dedifferentiating tail fibres did not enter the cell cycle and in vivo cell tracing revealed no evidences of muscle fibre fragmentation. In addition, our results indicate that this incomplete dedifferentiation was initiated by the retraction of muscle fibres. Conclusions Our results show that complete skeletal muscle dedifferentiation is less common than expected in lower vertebrates. In addition, the discovery of incomplete dedifferentiation in muscle fibres of the tadpole tail stresses the importance of coupling histological studies with in vivo cell tracing experiments to better understand the regenerative mechanisms.

  10. [On a contribution of Boris Balinsky to the comparative and ecological embryology of amphibians].

    Science.gov (United States)

    Desnitskiĭ, A G

    2014-01-01

    The outstanding embryologist Boris Ivanovich Balinsky (1905-1997) worked in the Soviet Union up to 1941 and in South Africa since 1949. His experimental studies fulfilled during the Soviet period of his scientific career mainly on the embryos of the caudate amphibians are widely known. After moving to Africa (Johannesburg), he continued the research of amphibian development, with using those possibilities, which were offered by the diverse fauna of local Anura. Other embryologists started complex studies of tropical frog ontogenies (mainly from South and Central America) 30-40 years later than Balinsky. Unfortunately, his pioneering works on numerous African species are poorly known (with the exceptions of the description of the development of endodermal derivatives in Xenopus laevis and the analysis of limb induction in the toad genus Amietophrynus). In this paper, the works of Balinsky are analyzed (with the emphasis on comparative and ecological aspects) and his priority in using of "nonmodel" tropical and subtropical anurans in embryological studies has been shown.

  11. Patterns of hypothalamic regionalization in amphibians and reptiles: common traits revealed by a genoarchitectonic approach.

    Science.gov (United States)

    Domínguez, Laura; González, Agustín; Moreno, Nerea

    2015-01-01

    Most studies in mammals and birds have demonstrated common patterns of hypothalamic development highlighted by the combination of developmental regulatory genes (genoarchitecture), supporting the notion of the hypothalamus as a component of the secondary prosencephalon, topologically rostral to the diencephalon. In our comparative analysis we have summarized the data on the expression patterns of different transcription factors and neuroactive substances, used as anatomical markers, in the developing hypothalamus of the amphibian Xenopus laevis and the juvenile turtle Pseudemys scripta. This analysis served to highlight the organization of the hypothalamus in the anamniote/amniotic transition. We have identified supraoptoparaventricular and the suprachiasmatic regions (SCs) in the alar part of the hypothalamus, and tuberal and mammillary regions in the basal hypothalamus. Shared features in the two species are: (1) The supraoptoparaventricular region (SPV) is defined by the expression of Otp and the lack of Nkx2.1/Isl1. It is subdivided into rostral, rich in Otp and Nkx2.2, and caudal, only Otp-positive, portions. (2) The suprachiasmatic area contains catecholaminergic cell groups and lacks Otp, and can be further divided into rostral (rich in Nkx2.1 and Nkx2.2) and a caudal (rich in Isl1 and devoid of Nkx2.1) portions. (3) Expression of Nkx2.1 and Isl1 define the tuberal hypothalamus and only the rostral portion expresses Otp. (4) Its caudal boundary is evident by the lack of Isl1 in the adjacent mammillary region, which expresses Nkx2.1 and Otp. Differences in the anamnio-amniote transition were noted since in the turtle, like in other amniotes, the boundary between the alar hypothalamus and the telencephalic preoptic area shows distinct Nkx2.2 and Otp expressions but not in the amphibian (anamniote), and the alar SPV is defined by the expression of Otp/Pax6, whereas in Xenopus only Otp is expressed.

  12. Patterns of hypothalamic regionalization in amphibians and reptiles: common traits revealed by a genoarchitectonic approach

    Directory of Open Access Journals (Sweden)

    Laura eDominguez

    2015-02-01

    Full Text Available Most studies in mammals and birds have demonstrated common patterns of hypothalamic development highlighted by the combination of developmental regulatory genes (genoarchitecture, supporting the notion of the hypothalamus as a component of the secondary prosencephalon, topologically rostral to the diencephalon. In our comparative analysis we have summarized the data on the expression patterns of different transcription factors and neuroactive substances, used as anatomical markers, in the developing hypothalamus of the amphibian Xenopus laevis and the juvenile turtle Pseudemys scripta. This analysis served to highlight the organization of the hypothalamus in the anamniote/amniotic transition. We have identified supraoptoparaventricular and the suprachiasmatic regions in the alar part of the hypothalamus, and tuberal and mammillary regions in the basal hypothalamus. Shared features in the two species are: 1 The supraoptoparaventricular region is defined by the expression of Otp and the lack of Nkx2.1/Isl1. It is subdivided into rostral, rich in Otp and Nkx2.2, and caudal, only Otp-positive, portions. 2 The suprachiasmatic area contains catecholaminergic cell groups and lacks Otp, and can be further divided into rostral (rich in Nkx2.1 and Nkx2.2 and a caudal (rich in Isl1 and devoid of Nkx2.1 portions. 3 Expression of Nkx2.1 and Isl1 define the tuberal hypothalamus and only the rostral portion expresses Otp. 4 Its caudal boundary is evident by the lack of Isl1 in the adjacent mammillary region, which expresses Nkx2.1 and Otp. Differences in the anamnio-amniote transition were noted since in the turtle, like in other amniotes, the boundary between the alar hypothalamus and the telencephalic preoptic area shows distinct Nkx2.2 and Otp expressions but not in the amphibian (anamniote, and the alar supraoptoparaventricular region is defined by the expression of Otp/Pax6, whereas in Xenopus only Otp is expressed.

  13. Pesticide mixtures, endocrine disruption, and amphibian declines: are we underestimating the impact?

    Science.gov (United States)

    Hayes, Tyrone B; Case, Paola; Chui, Sarah; Chung, Duc; Haeffele, Cathryn; Haston, Kelly; Lee, Melissa; Mai, Vien Phoung; Marjuoa, Youssra; Parker, John; Tsui, Mable

    2006-04-01

    Amphibian populations are declining globally at an alarming rate. Pesticides are among a number of proposed causes for these declines. Although a sizable database examining effects of pesticides on amphibians exists, the vast majority of these studies focus on toxicological effects (lethality, external malformations, etc.) at relatively high doses (parts per million). Very few studies focus on effects such as endocrine disruption at low concentrations. Further, most studies examine exposures to single chemicals only. The present study examined nine pesticides (four herbicides, two fungicides, and three insecticides) used on cornfields in the midwestern United States. Effects of each pesticide alone (0.1 ppb) or in combination were examined. In addition, we also examined atrazine and S-metolachlor combined (0.1 or 10 ppb each) and the commercial formulation Bicep II Magnum, which contains both of these herbicides. These two pesticides were examined in combination because they are persistent throughout the year in the wild. We examined larval growth and development, sex differentiation, and immune function in leopard frogs (Rana pipiens). In a follow-up study, we also examined the effects of the nine-compound mixture on plasma corticosterone levels in male African clawed frogs (Xenopus laevis). Although some of the pesticides individually inhibited larval growth and development, the pesticide mixtures had much greater effects. Larval growth and development were retarded, but most significantly, pesticide mixtures negated or reversed the typically positive correlation between time to metamorphosis and size at metamorphosis observed in controls: exposed larvae that took longer to metamorphose were smaller than their counterparts that metamorphosed earlier. The nine-pesticide mixture also induced damage to the thymus, resulting in immunosuppression and contraction of flavobacterial meningitis. The study in X. laevis revealed that these adverse effects may be due to an

  14. Comparative Analysis of Cartilage Marker Gene Expression Patterns during Axolotl and Xenopus Limb Regeneration.

    Directory of Open Access Journals (Sweden)

    Kazumasa Mitogawa

    Full Text Available Axolotls (Ambystoma mexicanum can completely regenerate lost limbs, whereas Xenopus laevis frogs cannot. During limb regeneration, a blastema is first formed at the amputation plane. It is thought that this regeneration blastema forms a limb by mechanisms similar to those of a developing embryonic limb bud. Furthermore, Xenopus laevis frogs can form a blastema after amputation; however, the blastema results in a terminal cone-shaped cartilaginous structure called a "spike." The causes of this patterning defect in Xenopus frog limb regeneration were explored. We hypothesized that differences in chondrogenesis may underlie the patterning defect. Thus, we focused on chondrogenesis. Chondrogenesis marker genes, type I and type II collagen, were compared in regenerative and nonregenerative environments. There were marked differences between axolotls and Xenopus in the expression pattern of these chondrogenesis-associated genes. The relative deficit in the chondrogenic capacity of Xenopus blastema cells may account for the absence of total limb regenerative capacity.

  15. Comparative Analysis of Cartilage Marker Gene Expression Patterns during Axolotl and Xenopus Limb Regeneration.

    Science.gov (United States)

    Mitogawa, Kazumasa; Makanae, Aki; Satoh, Ayano; Satoh, Akira

    2015-01-01

    Axolotls (Ambystoma mexicanum) can completely regenerate lost limbs, whereas Xenopus laevis frogs cannot. During limb regeneration, a blastema is first formed at the amputation plane. It is thought that this regeneration blastema forms a limb by mechanisms similar to those of a developing embryonic limb bud. Furthermore, Xenopus laevis frogs can form a blastema after amputation; however, the blastema results in a terminal cone-shaped cartilaginous structure called a "spike." The causes of this patterning defect in Xenopus frog limb regeneration were explored. We hypothesized that differences in chondrogenesis may underlie the patterning defect. Thus, we focused on chondrogenesis. Chondrogenesis marker genes, type I and type II collagen, were compared in regenerative and nonregenerative environments. There were marked differences between axolotls and Xenopus in the expression pattern of these chondrogenesis-associated genes. The relative deficit in the chondrogenic capacity of Xenopus blastema cells may account for the absence of total limb regenerative capacity.

  16. Do hormone-modulating chemicals impact on reproduction and development of wild amphibians?

    Science.gov (United States)

    Orton, Frances; Tyler, Charles R

    2015-11-01

    Globally, amphibians are undergoing a precipitous decline. At the last estimate in 2004, 32% of the approximately 6000 species were threatened with extinction and 43% were experiencing significant declines. These declines have been linked with a wide range of environmental pressures from habitat loss to climate change, disease and pollution. This review evaluates the evidence that endocrine-disrupting contaminants (EDCs) - pollutants that affect hormone systems - are impacting on wild amphibians and contributing to population declines. The review is limited to anurans (frogs and toads) as data for effects of EDCs on wild urodeles (salamanders, newts) or caecilians (limbless amphibians) are extremely limited. Evidence from laboratory studies has shown that a wide range of chemicals have the ability to alter hormone systems and affect reproductive development and function in anurans, but for the most part only at concentrations exceeding those normally found in natural environments. Exceptions can be found for exposures to the herbicide atrazine and polychlorinated biphenyls in leopard frogs (Rana pipiens) and perchlorate in African clawed frogs (Xenopus laevis). These contaminants induce feminising effects on the male gonads (including 'intersex' - oocytes within testes) at concentrations measured in some aquatic environments. The most extensive data for effects of an EDC in wild amphibian populations are for feminising effects of atrazine on male gonad development in regions across the USA. Even where strong evidence has been provided for feminising effects of EDCs, however, the possible impact of these effects on fertility and breeding outcome has not been established, making inference for effects on populations difficult. Laboratory studies have shown that various chemicals, including perchlorate, polychlorinated biphenyls and bromodiphenylethers, also act as endocrine disrupters through interfering with thyroid-dependent processes that are fundamental for

  17. Nerve-dependent and -independent events in blastema formation during Xenopus froglet limb regeneration.

    Science.gov (United States)

    Suzuki, Makoto; Satoh, Akira; Ide, Hiroyuki; Tamura, Koji

    2005-10-01

    Blastema formation, the initial stage of epimorphic limb regeneration in amphibians, is an essential process to produce regenerates. In our study on nerve dependency of blastema formation, we used forelimb of Xenopus laevis froglets as a system and applied some histological and molecular approaches in order to determine early events during blastema formation. We also investigated the lateral wound healing in comparison to blastema formation in limb regeneration. Our study confirmed at the molecular level that there are nerve-dependent and -independent events during blastema formation after limb amputation, Tbx5 and Prx1, reliable markers of initiation of limb regeneration, that start to be expressed independently of nerve supply, although their expressions cannot be maintained without nerve supply. We also found that cell proliferation activity, cell survival and expression of Fgf8, Fgf10 and Msx1 in the blastema were affected by denervation, suggesting that these events specific for blastema outgrowth are controlled by the nerve supply. Wound healing, which is thought to be categorized into tissue regeneration, shares some nerve-independent events with epimorphic limb regeneration, although the healing process results in simple restoration of wounded tissue. Overall, our results demonstrate that dedifferentiated blastemal cells formed at the initial phase of limb regeneration must enter the nerve-dependent epimorphic phase for further processes, including blastema outgrowth, and that failure of entry results in a simple redifferentiation as tissue regeneration.

  18. Reproductive Maturation of the Tropical Clawed Frog, Xenopus tropicalis

    Science.gov (United States)

    The model species Xenopus tropicalis is being widely used in developmental biology and amphibian toxicology studies. In order to increase our understanding of the role of steroid hormones in maturation in this species, we collected baseline reproductive data from metamorphosis t...

  19. Identification of Gender-specific Transcripts by Microarray in Gonad Tissue of Larval and Juvenile Xenopus tropicalis

    Science.gov (United States)

    Amphibian model species Xenopus tropicalis is currently being utilized by EPA in the development of a standardized in vivo reproductive toxicity assay. Perturbations to the hypothalamic-pituitary-gonadal axis from exposure to endocrine disrupting compounds during larval develop...

  20. Mesodermal origin of median fin mesenchyme and tail muscle in amphibian larvae.

    Science.gov (United States)

    Taniguchi, Yuka; Kurth, Thomas; Medeiros, Daniel Meulemans; Tazaki, Akira; Ramm, Robert; Epperlein, Hans-Henning

    2015-01-01

    Mesenchyme is an embryonic precursor tissue that generates a range of structures in vertebrates including cartilage, bone, muscle, kidney, and the erythropoietic system. Mesenchyme originates from both mesoderm and the neural crest, an ectodermal cell population, via an epithelial to mesenchymal transition (EMT). Because ectodermal and mesodermal mesenchyme can form in close proximity and give rise to similar derivatives, the embryonic origin of many mesenchyme-derived tissues is still unclear. Recent work using genetic lineage tracing methods have upended classical ideas about the contributions of mesodermal mesenchyme and neural crest to particular structures. Using similar strategies in the Mexican axolotl (Ambystoma mexicanum), and the South African clawed toad (Xenopus laevis), we traced the origins of fin mesenchyme and tail muscle in amphibians. Here we present evidence that fin mesenchyme and striated tail muscle in both animals are derived solely from mesoderm and not from neural crest. In the context of recent work in zebrafish, our experiments suggest that trunk neural crest cells in the last common ancestor of tetrapods and ray-finned fish lacked the ability to form ectomesenchyme and its derivatives.

  1. Photoenhanced toxicity of a carbamate insecticide to early life stage anuran amphibians

    Science.gov (United States)

    Zaga, A.; Little, E.E.; Rabeni, C.F.; Ellersieck, Mark R.

    1998-01-01

    African clawed frog (Xenopus laevis) and gray tree frog (Hyla versicolor) embryos and tadpoles were exposed to sublethal levels of carbaryl, a broad-spectrum insecticide, and ultraviolet radiation to determine interactive and sublethal effects. Ultraviolet intensity (UV-B [285-320 nm] plus LIV-A [321-400 nm]) was controlled with various types of plastic filters and quantified with a scanning spectroradiometer. Significant differences in swimming activity and mortality of both species were evident during the 96-h experiments. Ultraviolet-B radiation alone and carbaryl in the presence of UV-B significantly decreased swimming activity of both species. As little as 1.5% intensity of ambient solar UV-B radiation photoactivated carbaryl. Toxicity of 7.5 mg/L earbaryl increased by 10-fold in the presence of UV-B in all species and life stages tested. Our results indicate that photoenhancement by solar UV-B radiation should be considered when evaluating the toxicity of contaminants to amphibians and other organisms.

  2. Proteomics analysis of regenerating amphibian limbs: changes during the onset of regeneration.

    Science.gov (United States)

    King, Michael W; Neff, Anton W; Mescher, Anthony L

    2009-01-01

    During amphibian epimorphic limb regeneration, local injury produces metabolic changes that lead to cellular dedifferentiation and formation of a blastema, but few details of these changes have been elucidated. Here we report the first global proteomic analysis of epimorphic regeneration comparing the profiles of abundant proteins in larval limbs of the anuran Xenopus laevis (stage 53) at the time of amputation (0dPA) and 3 days post-amputation when the regeneration blastema is developing (3dPA). We identified and quantified 1517 peptides, of which 1067 were identified with high peptide ID confidence. Of these 1067 proteins, 489 showed significant changes in quantity between the two groups. Taking into account identical peptides whose fold changes were within 20%, and not including peptides whose fold changes were below the observed fold changes of peptides for the internal standard (chicken lysozyme), we were able to identify 145 peptides elevated in 3dPA relative to 0dPA and 220 peptides in 0dPA relative to 3dPA. In this report, we focus on those proteins that were elevated in the 3dPA tissue relative to 0dPA. In this class were members of the annexin family (e.g. ANXA1, ANXA2, ANXA5) and the ANXA2-binding partner S100A10, which have important immunoregulatory roles in other systems and were also shown to be differentially expressed in stage 53 and 57 3dPA and 5dPA blastemas in our previous microarray studies. Besides elucidating the possible modulation of inflammation during amphibian limb regeneration, our proteomic study also provides insight into dedifferentiation by revealing up-regulation of proteins known to characterize many stem cells.

  3. Xenopus laevis embryos: biochemical evaluations in simulated microgravity condition

    Directory of Open Access Journals (Sweden)

    B. Berra

    2009-01-01

    Full Text Available Exposure to space-flight environment, notably microgravity and radiations, can induce changes in living systems. Life in space increases the amount of stress hormones, insulin resistance, altered musculoskeletal system structure and function, inflammation and mitochondrial function with increased oxidative stress (Biolo et al., 2003; Zhang et al., 2007; Shatten et al., 2001.

  4. Thyroxine Induced Resorption of Xenopus Laevis Tail Tissue in Vitro.

    Science.gov (United States)

    Scadding, Steven R.

    1984-01-01

    A simple method of studying thyroxine-induced resorption of tadpole tails in vitro is described. This procedure demonstrates that resorption is dependent on thyroxine and requires protein synthesis. It introduces students to the use of tissue culture methods. (Author)

  5. Amphibians as animal models for laboratory research in physiology.

    Science.gov (United States)

    Burggren, Warren W; Warburton, Stephen

    2007-01-01

    The concept of animal models is well honored, and amphibians have played a prominent part in the success of using key species to discover new information about all animals. As animal models, amphibians offer several advantages that include a well-understood basic physiology, a taxonomic diversity well suited to comparative studies, tolerance to temperature and oxygen variation, and a greater similarity to humans than many other currently popular animal models. Amphibians now account for approximately 1/4 to 1/3 of lower vertebrate and invertebrate research, and this proportion is especially true in physiological research, as evident from the high profile of amphibians as animal models in Nobel Prize research. Currently, amphibians play prominent roles in research in the physiology of musculoskeletal, cardiovascular, renal, respiratory, reproductive, and sensory systems. Amphibians are also used extensively in physiological studies aimed at generating new insights in evolutionary biology, especially in the investigation of the evolution of air breathing and terrestriality. Environmental physiology also utilizes amphibians, ranging from studies of cryoprotectants for tissue preservation to physiological reactions to hypergravity and space exploration. Amphibians are also playing a key role in studies of environmental endocrine disruptors that are having disproportionately large effects on amphibian populations and where specific species can serve as sentinel species for environmental pollution. Finally, amphibian genera such as Xenopus, a genus relatively well understood metabolically and physiologically, will continue to contribute increasingly in this new era of systems biology and "X-omics."

  6. Altered development of Xenopus embryos in a hypogeomagnetic field.

    Science.gov (United States)

    Mo, Wei-Chuan; Liu, Ying; Cooper, Helen M; He, Rong-Qiao

    2012-04-01

    The hypogeomagnetic field (HGMF; magnetic fields HGMF exposure on living systems remains unclear. In this article, we examine the biological effects of HGMF on the embryonic development of Xenopus laevis (African clawed frog). A decrease in horizontal third cleavage furrows and abnormal morphogenesis were observed in Xenopus embryos growing in the HGMF. HGMF exposure at the two-cell stage, but no later than the four-cell stage, is enough to alter the third cleavage geometry pattern. Immunofluorescent staining for α-tubulin showed reorientation of the spindle of four-cell stage blastomeres. These results indicate that a brief (2-h) exposure to HGMF is sufficient to interfere with the development of Xenopus embryos at cleavage stages. Also, the mitotic spindle could be an early sensor to the deprivation of the geomagnetic field, which provides a clue to the molecular mechanism underlying the morphological and other changes observed in the developing and/or developed embryos.

  7. A simple method of transgenesis using I-SceI meganuclease in Xenopus.

    Science.gov (United States)

    Ishibashi, Shoko; Love, Nick R; Amaya, Enrique

    2012-01-01

    Here we present a protocol for generating transgenic embryos in Xenopus using I-SceI meganuclease. This method relies on integration of DNA constructs, containing one or two I-SceI meganuclease sites. It is a simpler method than the REMI method of transgenesis, and it is ideally suited for generating transgenic lines in Xenopus laevis and Xenopus tropicalis. In addition to it being simpler than the REMI method, this protocol also results in single copy integration events rather than tandem concatemers. Although the protocol we describe is for X. tropicalis, the method can also be used to generate transgenic lines in X. laevis. We also describe a convenient method for designing and generating complex constructs for transgenesis, named pTransgenesis, based on the Multisite Gateway(®) cloning, which include I-SceI sites and Tol2 elements to facilitate genome integration.

  8. Microbiota and mucosal immunity in amphibians

    Directory of Open Access Journals (Sweden)

    Bruno M Colombo

    2015-03-01

    Full Text Available We know that animals live in a world dominated by bacteria. In the last twenty years we have learned that microbes are essential regulators of mucosal immunity. Bacterias, archeas and viruses influence different aspects of mucosal development and function. Yet the literature mainly covers findings obtained in mammals. In this review, we focus on two major themes that emerge from the comparative analysis of mammals and amphibians. These themes concern: i the structure and functions of lymphoid organs and immune cells in amphibians, with a focus on the gut mucosal immune system; and ii the characteristics of the amphibian microbiota and its influence on mucosal immunity. Lastly, we propose to use Xenopus tadpoles as an alternative small animal model to improve the fundamental knowledge on immunological functions of gut microbiota.

  9. Biological Scaling Problems and Solutions in Amphibians.

    Science.gov (United States)

    Levy, Daniel L; Heald, Rebecca

    2015-08-10

    Size is a primary feature of biological systems that varies at many levels, from the organism to its constituent cells and subcellular structures. Amphibians populate some of the extremes in biological size and have provided insight into scaling mechanisms, upper and lower size limits, and their physiological significance. Body size variation is a widespread evolutionary tactic among amphibians, with miniaturization frequently correlating with direct development that occurs without a tadpole stage. The large genomes of salamanders lead to large cell sizes that necessitate developmental modification and morphological simplification. Amphibian extremes at the cellular level have provided insight into mechanisms that accommodate cell-size differences. Finally, how organelles scale to cell size between species and during development has been investigated at the molecular level, because subcellular scaling can be recapitulated using Xenopus in vitro systems.

  10. Microbiota and mucosal immunity in amphibians.

    Science.gov (United States)

    Colombo, Bruno M; Scalvenzi, Thibault; Benlamara, Sarah; Pollet, Nicolas

    2015-01-01

    We know that animals live in a world dominated by bacteria. In the last 20 years, we have learned that microbes are essential regulators of mucosal immunity. Bacteria, archeas, and viruses influence different aspects of mucosal development and function. Yet, the literature mainly covers findings obtained in mammals. In this review, we focus on two major themes that emerge from the comparative analysis of mammals and amphibians. These themes concern: (i) the structure and functions of lymphoid organs and immune cells in amphibians, with a focus on the gut mucosal immune system; and (ii) the characteristics of the amphibian microbiota and its influence on mucosal immunity. Lastly, we propose to use Xenopus tadpoles as an alternative small-animal model to improve the fundamental knowledge on immunological functions of gut microbiota.

  11. Regulation of ALF promoter activity in Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Dan Li

    Full Text Available BACKGROUND: In this report we evaluate the use of Xenopus laevis oocytes as a matched germ cell system for characterizing the organization and transcriptional activity of a germ cell-specific X. laevis promoter. PRINCIPAL FINDINGS: The promoter from the ALF transcription factor gene was cloned from X. laevis genomic DNA using a PCR-based genomic walking approach. The endogenous ALF gene was characterized by RACE and RT-PCR for transcription start site usage, and by sodium bisulfite sequencing to determine its methylation status in somatic and oocyte tissues. Homology between the X. laevis ALF promoter sequence and those from human, chimpanzee, macaque, mouse, rat, cow, pig, horse, dog, chicken and X. tropicalis was relatively low, making it difficult to use such comparisons to identify putative regulatory elements. However, microinjected promoter constructs were very active in oocytes and the minimal promoter could be narrowed by PCR-mediated deletion to a region as short as 63 base pairs. Additional experiments using a series of site-specific promoter mutants identified two cis-elements within the 63 base pair minimal promoter that were critical for activity. Both elements (A and B were specifically recognized by proteins present in crude oocyte extracts based on oligonucleotide competition assays. The activity of promoter constructs in oocytes and in transfected somatic Xenopus XLK-WG kidney epithelial cells was quite different, indicating that the two cell types are not functionally equivalent and are not interchangeable as assay systems. CONCLUSIONS: Overall the results provide the first detailed characterization of the organization of a germ cell-specific Xenopus promoter and demonstrate the feasibility of using immature frog oocytes as an assay system for dissecting the biochemistry of germ cell gene regulation.

  12. Bimodal processing of olfactory information in an amphibian nose: odor responses segregate into a medial and a lateral stream.

    Science.gov (United States)

    Gliem, Sebastian; Syed, Adnan S; Sansone, Alfredo; Kludt, Eugen; Tantalaki, Evangelia; Hassenklöver, Thomas; Korsching, Sigrun I; Manzini, Ivan

    2013-06-01

    In contrast to the single sensory surface present in teleost fishes, several spatially segregated subsystems with distinct molecular and functional characteristics define the mammalian olfactory system. However, the evolutionary steps of that transition remain unknown. Here we analyzed the olfactory system of an early diverging tetrapod, the amphibian Xenopus laevis, and report for the first time the existence of two odor-processing streams, sharply segregated in the main olfactory bulb and partially segregated in the olfactory epithelium of pre-metamorphic larvae. A lateral odor-processing stream is formed by microvillous receptor neurons and is characterized by amino acid responses and Gαo/Gαi as probable signal transducers, whereas a medial stream formed by ciliated receptor neurons is characterized by responses to alcohols, aldehydes, and ketones, and Gαolf/cAMP as probable signal transducers. To reveal candidates for the olfactory receptors underlying these two streams, the spatial distribution of 12 genes from four olfactory receptor gene families was determined. Several class II and some class I odorant receptors (ORs) mimic the spatial distribution observed for the medial stream, whereas a trace amine-associated receptor closely parallels the spatial pattern of the lateral odor-processing stream. Other olfactory receptors (some class I odorant receptors and vomeronasal type 1 receptors) and odor responses (to bile acids, amines) were not lateralized, the latter not even in the olfactory bulb, suggesting an incomplete segregation. Thus, the olfactory system of X. laevis exhibits an intermediate stage of segregation and as such appears well suited to investigate the molecular driving forces behind olfactory regionalization.

  13. The toxicity and teratogenicity of gibberellic acid (GA3) based on the frog embryo teratogenesis assay-Xenopus (FETAX)

    OpenAIRE

    BOĞA, Ayper; BİNOKAY, Seçil; SERTDEMİR, Yaşar

    2009-01-01

    This study investigated the developmental toxicity of a plant growth regulator (a type of pesticide) using the frog embryo teratogenesis assay-Xenopus (FETAX). Xenopus laevis embryos were exposed to 11 different concentrations of gibberellic acid (GA3), from stage 8 to 11, for 96 h under static renewal test conditions. The median lethal concentration (LC50), malformation (EC50), non-observed adverse effect concentration (NOAEC), and lowest observed adverse effect concentration (LOAEC) were ca...

  14. Evolution of Heat Sensors Drove Shifts in Thermosensation between Xenopus Species Adapted to Different Thermal Niches.

    Science.gov (United States)

    Saito, Shigeru; Ohkita, Masashi; Saito, Claire T; Takahashi, Kenji; Tominaga, Makoto; Ohta, Toshio

    2016-05-20

    Temperature is one of the most critical environmental factors affecting survival, and thus species that inhabit different thermal niches have evolved thermal sensitivities suitable for their respective habitats. During the process of shifting thermal niches, various types of genes expressed in diverse tissues, including those of the peripheral to central nervous systems, are potentially involved in the evolutionary changes in thermosensation. To elucidate the molecular mechanisms behind the evolution of thermosensation, thermal responses were compared between two species of clawed frogs (Xenopus laevis and Xenopus tropicalis) adapted to different thermal environments. X. laevis was much more sensitive to heat stimulation than X. tropicalis at the behavioral and neural levels. The activity and sensitivity of the heat-sensing TRPA1 channel were higher in X. laevis compared with those of X. tropicalis The thermal responses of another heat-sensing channel, TRPV1, also differed between the two Xenopus species. The species differences in Xenopus TRPV1 heat responses were largely determined by three amino acid substitutions located in the first three ankyrin repeat domains, known to be involved in the regulation of rat TRPV1 activity. In addition, Xenopus TRPV1 exhibited drastic species differences in sensitivity to capsaicin, contained in chili peppers, between the two Xenopus species. Another single amino acid substitution within Xenopus TRPV1 is responsible for this species difference, which likely alters the neural and behavioral responses to capsaicin. These combined subtle amino acid substitutions in peripheral thermal sensors potentially serve as a driving force for the evolution of thermal and chemical sensation.

  15. Four-dimensional imaging of cytoskeletal dynamics in Xenopus oocytes and eggs.

    Science.gov (United States)

    Bement, William M; Sokac, Anna M; Mandato, Craig A

    2003-12-01

    The Xenopus laevis (African clawed frog) system has long been popular for studies of both developmental and cell biology, based on a variety of its intrinsic features including the large size of Xenopus oocytes, eggs, and embryos, and the relative ease of manipulation. Unfortunately, the large size has also been considered a serious impediment for high-resolution light microscopy, as has the heavy pigmentation. However, the recent development and exploitation of 4D imaging approaches, and the fact that much of what is of most interest to cell and developmental biologists takes place near the cell surface, indicates that such concerns are no longer valid. Consequently, the Xenopus system in many respects is now as good as other model systems considered to be ideal for microscopy-based studies. Here, 4D imaging and its recent applications to cytoskeletal imaging in Xenopus oocytes and eggs are discussed.

  16. Xenopus pancreas development.

    Science.gov (United States)

    Pearl, Esther J; Bilogan, Cassandra K; Mukhi, Sandeep; Brown, Donald D; Horb, Marko E

    2009-06-01

    Understanding how the pancreas develops is vital to finding new treatments for a range of pancreatic diseases, including diabetes and pancreatic cancer. Xenopus is a relatively new model organism for the elucidation of pancreas development, and has already made contributions to the field. Recent studies have shown benefits of using Xenopus for understanding both early patterning and lineage specification aspects of pancreas organogenesis. This review focuses specifically on Xenopus pancreas development, and covers events from the end of gastrulation, when regional specification of the endoderm is occurring, right through metamorphosis, when the mature pancreas is fully formed. We have attempted to cover pancreas development in Xenopus comprehensively enough to assist newcomers to the field and also to enable those studying pancreas development in other model organisms to better place the results from Xenopus research into the context of the field in general and their studies specifically. Developmental Dynamics 238:1271-1286, 2009. (c) 2009 Wiley-Liss, Inc.

  17. Observation of nuclei reassembled from demembranated Xenopus sperm nuclei and analysis of their lamina components

    Institute of Scientific and Technical Information of China (English)

    QUJIAN; CHUANMAOZHANG; 等

    1994-01-01

    A cell-free preparation obtained from extracts of activated Xenopus laevis eggs induced chromatin decondensation and nuclear formation from demembranated Xenopus sperm nuclei.Electron microscopy revealed that the reassembled nucleus had a double-layered nuclear memblane,nuclear pore complexes,and decondensed chromatin etc.Indirect immunofluorescence analysis demonstrated the presence of lamina in newly assembled nuclei.Western-blotting results showed that lamin LII was present in egg extracts and in lamina of the reassembled nuclei which were previously reported to contain only egg derived lamin LIII.

  18. The Genome of the Western Clawed Frog Xenopus tropicalis

    Energy Technology Data Exchange (ETDEWEB)

    Hellsten, Uffe; Harland, Richard M.; Gilchrist, Michael J.; Hendrix, David; Jurka, Jerzy; Kapitonov, Vladimir; Ovcharenko, Ivan; Putnam, Nicholas H.; Shu, Shengqiang; Taher, Leila; Blitz, Ira L.; Blumberg, Bruce; Dichmann, Darwin S.; Dubchak, Inna; Amaya, Enrique; Detter, John C.; Fletcher, Russell; Gerhard, Daniela S.; Goodstein, David; Graves, Tina; Grigoriev, Igor V.; Grimwood, Jane; Kawashima, Takeshi; Lindquist, Erika; Lucas, Susan M.; Mead, Paul E.; Mitros, Therese; Ogino, Hajime; Ohta, Yuko; Poliakov, Alexander V.; Pollet, Nicolas; Robert, Jacques; Salamov, Asaf; Sater, Amy K.; Schmutz, Jeremy; Terry, Astrid; Vize, Peter D.; Warren, Wesley C.; Wells, Dan; Wills, Andrea; Wilson, Richard K.; Zimmerman, Lyle B.; Zorn, Aaron M.; Grainger, Robert; Grammer, Timothy; Khokha, Mustafa K.; Richardson, Paul M.; Rokhsar, Daniel S.

    2009-10-01

    The western clawed frog Xenopus tropicalis is an important model for vertebrate development that combines experimental advantages of the African clawed frog Xenopus laevis with more tractable genetics. Here we present a draft genome sequence assembly of X. tropicalis. This genome encodes over 20,000 protein-coding genes, including orthologs of at least 1,700 human disease genes. Over a million expressed sequence tags validated the annotation. More than one-third of the genome consists of transposable elements, with unusually prevalent DNA transposons. Like other tetrapods, the genome contains gene deserts enriched for conserved non-coding elements. The genome exhibits remarkable shared synteny with human and chicken over major parts of large chromosomes, broken by lineage-specific chromosome fusions and fissions, mainly in the mammalian lineage.

  19. Calcium Signaling and Meiotic Exit at Fertilization in Xenopus Egg

    Directory of Open Access Journals (Sweden)

    Alexander A. Tokmakov

    2014-10-01

    Full Text Available Calcium is a universal messenger that mediates egg activation at fertilization in all sexually reproducing species studied. However, signaling pathways leading to calcium generation and the mechanisms of calcium-induced exit from meiotic arrest vary substantially among species. Here, we review the pathways of calcium signaling and the mechanisms of meiotic exit at fertilization in the eggs of the established developmental model, African clawed frog, Xenopus laevis. We also discuss calcium involvement in the early fertilization-induced events in Xenopus egg, such as membrane depolarization, the increase in intracellular pH, cortical granule exocytosis, cortical contraction, contraction wave, cortical rotation, reformation of the nuclear envelope, sperm chromatin decondensation and sister chromatid segregation.

  20. Triclosan exposure alters postembryonic development in a Pacific tree frog (Pseudacris regilla) Amphibian Metamorphosis Assay (TREEMA)

    Energy Technology Data Exchange (ETDEWEB)

    Marlatt, Vicki L. [Nautilus Environmental, 8864 Commerce Court, Burnaby, B.C. V5A 4N7 (Canada); Veldhoen, Nik [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, B.C. V8W 3P6 (Canada); Lo, Bonnie P. [Nautilus Environmental, 8864 Commerce Court, Burnaby, B.C. V5A 4N7 (Canada); Bakker, Dannika; Rehaume, Vicki; Vallee, Kurtis [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, B.C. V8W 3P6 (Canada); Haberl, Maxine; Shang, Dayue; Aggelen, Graham C. van; Skirrow, Rachel C. [Pacific and Yukon Laboratory for Environmental Testing, Emergencies Operational Analytical Laboratories and Research Support Division, Environment Canada, 2645 Dollarton Highway, North Vancouver, B.C. V7H 1B1 (Canada); Elphick, James R. [Nautilus Environmental, 8864 Commerce Court, Burnaby, B.C. V5A 4N7 (Canada); Helbing, Caren C., E-mail: chelbing@uvic.ca [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, B.C. V8W 3P6 (Canada)

    2013-01-15

    The Amphibian Metamorphosis Assay (AMA), developed for Xenopus laevis, is designed to identify chemicals that disrupt thyroid hormone (TH)-mediated biological processes. We adapted the AMA for use on an ecologically-relevant North American species, the Pacific tree frog (Pseudacris regilla), and applied molecular endpoints to evaluate the effects of the antibacterial agent, triclosan (TCS). Premetamorphic (Gosner stage 26-28) tadpoles were immersed for 21 days in solvent control, 1.5 {mu}g/L thyroxine (T{sub 4}), 0.3, 3 and 30 {mu}g/L (nominal) TCS, or combined T{sub 4}/TCS treatments. Exposure effects were scored by morphometric (developmental stage, wet weight, and body, snout-vent and hindlimb lengths) and molecular (mRNA abundance using quantitative real time polymerase chain reaction) criteria. T{sub 4} treatment alone accelerated development concomitant with altered levels of TH receptors {alpha} and {beta}, proliferating cell nuclear antigen, and gelatinase B mRNAs in the brain and tail. We observed TCS-induced perturbations in all of the molecular and morphological endpoints indicating that TCS exposure disrupts coordination of postembryonic tadpole development. Clear alterations in molecular endpoints were evident at day 2 whereas the earliest morphological effects appeared at day 4 and were most evident at day 21. Although TCS alone (3 and 30 {mu}g/L) was protective against tadpole mortality, this protection was lost in the presence of T{sub 4}. The Pacific tree frog is the most sensitive species examined to date displaying disruption of TH-mediated development by a common antimicrobial agent.

  1. Mechanical, electrical, and morphological characteristics of skeletal muscle fibers from Xenopus and other species of frogs.

    Science.gov (United States)

    Oba, T; Yamamoto, M; Aoki, T; Hotta, K

    1983-01-01

    Mechanical, electrical, and morphological properties of iliofibularis or semitendinosus of Xenopus laevis, Rana catesbeiana, and Rana nigromaculata were investigated in an attempt to find out the differences between them which will give the basic knowledge for the study of excitation-contraction coupling. With application of electrical stimulation, a single muscle fiber from Xenopus contracted at a faster rate of rise than did the other muscles tested. The maximum rate of rise (Tmax) of tension was in the order of Xenopus, R. catesbeiana, and R. nigromaculata. Ca2+ sensitivity and Tmax of mechanically skinned fibers of Xenopus resembled those of R. catesbeiana. Xenopus muscle had a small cross-sectional area of T-tubule compared with that in other species and the action potential exhibited a small positive-going hump. The volume density of the terminal cisternae of sarcoplasmic reticulum (SR) to the myofibril was the largest in the Xenopus muscle, with a statistically significant difference. Therefore, the Xenopus muscle appears to be good material for investigation of mechanisms related to Ca2+ release from SR, as elicited by the excitation of T-tubules.

  2. Effects of 4-ter-Octylphenol on Xenopus tropicalis in a Long Term Exposure

    Science.gov (United States)

    2011-03-17

    tubules of control animals were lined with spermatocysts containing spermatogonia, spermatocytes and spermatids at various stages of spermatogenesis ...sloughing was seen in 1 µg/L and 36 µg/LOP exposed frogs, indicating that OP exposure may be disrupting spermatogenesis , but is not sufficient to reduce...disrupts spermatogenesis in Xenopus laevis frogs. Toxicol.Sci 84, 394-407. Lei, B., Huang, S., Zhou, Y., Wang, D., and Wang, Z., 2009. Levels of six

  3. High-Magnification In Vivo Imaging of Xenopus Embryos for Cell and Developmental Biology

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Esther K. Kieserman, Chanjae Lee, Ryan S. Gray, Tae Joo Park and John B. Wallingford Corresponding author ([]()). ### INTRODUCTION Embryos of the frog *Xenopus laevis* are an ideal model system for in vivo imaging of dynamic biological processes, from the inner workings of individual cells to the reshaping of tissues during embryogenesis. Their externally developing embryos are more amenable to in vivo analysis than in...

  4. Endoscopy in Amphibians.

    Science.gov (United States)

    Chai, Norin

    2015-09-01

    Despite advances in exotic animal endoscopy, descriptions involving amphibians are scarce. Amphibian endoscopy shares some similarities with reptiles, especially in lizards. Selected procedures are discussed, including stomatoscopy, gastroscopy, coelioscopy, and biopsy of coelomic organs and lesions. This short overview provides the practitioner with pragmatic advice on how to conduct safe and effective endoscopic examinations in amphibians.

  5. Real-time automated measurement of Xenopus leavis tadpole behavior and behavioral response following triphenyltin exposure using the multispecies freshwater biomonitor (MFB)

    NARCIS (Netherlands)

    Schriks, M.; Hoorn, van M.K.; Faassen, E.J.; Dam, van J.W.; Murk, A.J.

    2006-01-01

    The present study examines whether behavior of Xenopus laevis tadpoles, when measured with the multispecies freshwater biomonitor (MFB), can be a sensitive and practical parameter for quantification of behavioral effects induced by toxic compounds. The MFB system is capable of automated simultaneous

  6. A Novel Trypsin Inhibitor-Like Cysteine-Rich Peptide from the Frog Lepidobatrachus laevis Containing Proteinase-Inhibiting Activity.

    Science.gov (United States)

    Wang, Yu-Wei; Tan, Ji-Min; Du, Can-Wei; Luan, Ning; Yan, Xiu-Wen; Lai, Ren; Lu, Qiu-Min

    2015-08-01

    Various bio-active substances in amphibian skins play important roles in survival of the amphibians. Many protease inhibitor peptides have been identified from amphibian skins, which are supposed to negatively modulate the activity of proteases to avoid premature degradation or release of skin peptides, or to inhibit extracellular proteases produced by invading bacteria. However, there is no information on the proteinase inhibitors from the frog Lepidobatrachus laevis which is unique in South America. In this work, a cDNA encoding a novel trypsin inhibitor-like (TIL) cysteine-rich peptide was identified from the skin cDNA library of L. laevis. The 240-bp coding region encodes an 80-amino acid residue precursor protein containing 10 half-cysteines. By sequence comparison and signal peptide prediction, the precursor was predicted to release a 55-amino acid mature peptide with amino acid sequence, IRCPKDKIYKFCGSPCPPSCKDLTPNCIAVCKKGCFCRDGTVDNNHGKCVKKENC. The mature peptide was named LL-TIL. LL-TIL shares significant domain similarity with the peptides from the TIL supper family. Antimicrobial and trypsin-inhibitory abilities of recombinant LL-TIL were tested. Recombinant LL-TIL showed no antimicrobial activity, while it had trypsin-inhibiting activity with a Ki of 16.5178 μM. These results suggested there was TIL peptide with proteinase-inhibiting activity in the skin of frog L. laevis. To the best of our knowledge, this is the first report of TIL peptide from frog skin.

  7. High-throughput transgenesis in Xenopus using I-SceI meganuclease.

    Science.gov (United States)

    Ogino, Hajime; McConnell, William B; Grainger, Robert M

    2006-01-01

    In this report we describe an easy, highly efficient transgenesis method for Xenopus. The method is very simple; a commercially available meganuclease, I-SceI, is incubated with a transgene construct carrying its recognition sites, and is subsequently microinjected into fertilized eggs. Approximately 30% (in Xenopus tropicalis) or 20% (in Xenopus laevis) of injected embryos exhibit non-mosaic, promoter-dependent transgene expression, and transgenes from the founder animals are transmitted to offspring. The method is compatible with mRNA or antisense morpholino oligonucleotide injection, and these secondary reagents can be introduced simultaneously or sequentially with a transgene to test their interaction. This high-throughput transgenic technique will be a powerful tool for studying the complex wiring of regulatory networks at the genome-wide level, as well as for facilitating genetic studies in the rapidly breeding diploid frog, X. tropicalis.

  8. Differential regulation of two period genes in the Xenopus eye.

    Science.gov (United States)

    Zhuang, M; Wang, Y; Steenhard, B M; Besharse, J C

    2000-10-20

    The recent identification and analysis of mammalian homologues of the well characterized Drosophila circadian clock gene, Period (Per), has led to the idea that key features of vertebrate circadian rhythmicity are conserved at the molecular level. The Xenopus laevis retina contains a circadian clock mechanism that can be studied in vitro. To study the rhythmic expression of Per in the Xenopus retina, we used a degenerate RT-PCR strategy to obtain cDNA clones covering the entire 1427 amino acid coding region of a Xenopus homologue of Per2 and a partial cDNA sequence for a Xenopus homologue of Per1. Northern blot analysis shows that xPer1 and xPer2 transcripts are expressed most abundantly in the eye and the brain. However, rhythmic expression of xPer2 transcripts in the retina and retinal pigment epithelium (RPE) is light dependent and occurs only under 12 h light/12 h dark (LD) conditions, not in constant dark (DD). In contrast, xPer1 mRNA accumulation is rhythmic under both LD and DD conditions. Light dependent regulation of xPer2 mRNA and circadian regulation of xPer1 mRNA in the Xenopus retina differs from that in Drosophila and mammals. Light dependence of xPer2 mRNA levels and the offset phase relationship of the xPer2 rhythm to that for xPer1 suggests a role for xPer2 in circadian entrainment.

  9. Conservation Biology of Xenopus Longipes

    Science.gov (United States)

    Quock, R.; Blackburn, D. C.; Ghose, S.

    2014-12-01

    For the past 9 months, we have been studying the presence of disease and genetic variation in the Cameroonian species Xenopus longipes, found only in a lake on Mount Oku. During research trips to this lake (Lake Oku) over the past decade, mortalities of this species have been observed, and in addition there may be evidence of declines in other frog species in these mountains. It is well understood that in many parts of the world, amphibians are currently declining due to disease caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), and possibly also by the iridovirus ranavirus. A previous study suggested that ranavirus could be found in Lake Oku, and also that Bd may be present. Using 25 X. longipes liver samples collected during the summer of 2013 and 10 samples collected during the summer of 2011, we screened for Ranavirus through PCR amplification and sequencing, and screened for Bd in our 25 samples from 2013 through quantitative PCR. We also PCR amplified and sequenced 1950bp of the X. longipes 16S gene to look for genetic variation. We did not find ranavirus present on these frogs, and we found low prevalence (4%) of Bd. Through our analysis of 16S data, we found low genetic variation among the X. longipes, with a maximum divergence of 0.37% observed between any two individuals. Time is of the essence and it is crucial that the causes of these die offs be identified. While there have been observed mortalities of X. longipes since 2006, and this species remains on the Critically Endangered List, the cause of these mortalities is still unknown. If and when a cause can be identified, it would be monumental for this species' population and can hopefully be used to preserve and save these frogs.

  10. Cranial muscles in amphibians: development, novelties and the role of cranial neural crest cells.

    Science.gov (United States)

    Schmidt, Jennifer; Piekarski, Nadine; Olsson, Lennart

    2013-01-01

    Our research on the evolution of the vertebrate head focuses on understanding the developmental origins of morphological novelties. Using a broad comparative approach in amphibians, and comparisons with the well-studied quail-chicken system, we investigate how evolutionarily conserved or variable different aspects of head development are. Here we review research on the often overlooked development of cranial muscles, and on its dependence on cranial cartilage development. In general, cranial muscle cell migration and the spatiotemporal pattern of cranial muscle formation appears to be very conserved among the few species of vertebrates that have been studied. However, fate-mapping of somites in the Mexican axolotl revealed differences in the specific formation of hypobranchial muscles (tongue muscles) in comparison to the chicken. The proper development of cranial muscles has been shown to be strongly dependent on the mostly neural crest-derived cartilage elements in the larval head of amphibians. For example, a morpholino-based knock-down of the transcription factor FoxN3 in Xenopus laevis has drastic indirect effects on cranial muscle patterning, although the direct function of the gene is mostly connected to neural crest development. Furthermore, extirpation of single migratory streams of cranial neural crest cells in combination with fate-mapping in a frog shows that individual cranial muscles and their neural crest-derived connective tissue attachments originate from the same visceral arch, even when the muscles attach to skeletal components that are derived from a different arch. The same pattern has also been found in the chicken embryo, the only other species that has been thoroughly investigated, and thus might be a conserved pattern in vertebrates that reflects the fundamental nature of a mechanism that keeps the segmental order of the head in place despite drastic changes in adult anatomy. There is a need for detailed comparative fate-mapping of pre

  11. Chaperons expressions and search for new gravity-related genes in the embryos of crabs and amphibians

    Science.gov (United States)

    Gusev, O.; Kashiwagi, A.; Saigusa, M.

    Molecular mechanism of influence of gravity on living system is a subject of controversy for many years. Influence of gravity directly or indirectly affects to wide variety of biological processes, including biological clocks and general patterns in development of vertebrates and invertebrates. cDNA subtraction method was used for detection of the genes related to the hatching of the embryos semi-terrestrial crab Chiromantes haematocheir. Timing of the hatching of the embryos is highly synchronized with Moon phase and tides. While no new genes were found, we found that expression of chaperon hsp-90 increase in the embryos within two days before hatching, while expression of other stress proteins doesn't show any significant difference. Another model we used -- is a development of amphibian embryos. In order to clarify the effect of high gravity environment on development of Xenopus laevis, embryos on several developmental stages were subjected to the short-time high-gravity pulses (3G, 5G, and 9G). Analysis of stress-protein expression level and cDNA subtraction among high-gravity stressed embryos and control group revealed some changes in level of RNA expression of stress-proteins in experimental group. At the same time, we found two new genes expressed exclusively in the embryos under high gravity stress. The expression of the genes dramatically increased within several hours after the gravity stress, while the expression of the typical chaperons showed just slight difference. The genes expression pattern and its comparison with previously reported chaperons let us assume the presence physiological mechanism of specific gravity-stress response using previously unreported, special type of chaperons.

  12. Surgery in Amphibians.

    Science.gov (United States)

    Chai, Norin

    2016-01-01

    Amphibian surgery has been especially described in research. Since the last decade, interest for captive amphibians has increased, so have the indications for surgical intervention. Clinicians should not hesitate to advocate such manipulations. Amphibian surgeries have no overwhelming obstacles. These patients heal well and tolerate blood loss more than higher vertebrates. Most procedures described in reptiles (mostly lizards) can be undertaken in most amphibians if equipment can be matched to the patients' size. In general, the most difficult aspect would be the provision of adequate anesthesia.

  13. Introducing Environmental Toxicology in Instructional Labs: The Use of a Modified Amphibian Developmental Toxicity Assay to Support Inquiry-Based Student Projects

    Science.gov (United States)

    Sauterer, Roger; Rayburn, James R.

    2012-01-01

    Introducing students to the process of scientific inquiry is a major goal of high school and college labs. Environmental toxins are of great concern and public interest. Modifications of a vertebrate developmental toxicity assay using the frog Xenopus laevis can support student-initiated toxicology experiments that are relevant to humans. Teams of…

  14. Behavioral Repertoire of Xenopus tropicalis: Baseline Female-male Interactions during Spawning Events and Male Vocal Communication

    Science.gov (United States)

    The aquatic frog, Xenopus tropicalis, is being developed for use as a model amphibian species for inclusion in the EPA’s Endocrine Disruptor Screening Program. Current toxicity test designs do not incorporate measures of fecundity due to high variability in the responses of frog...

  15. Climate change and amphibians

    Directory of Open Access Journals (Sweden)

    Corn, P. S.

    2005-01-01

    Full Text Available Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines in Central America to climate relies solely on correlations, and the mechanisms underlying the declines are not understood. Connections between embryo mortality and declines in abundance have not been demonstrated. Analyses of existing data have generally failed to find a link between climate and amphibian declines. It is likely, however, that future climate change will cause further declines of some amphibian species. Reduced soil moisture could reduce prey species and eliminate habitat. Reduced snowfall and increased summer evaporation could have dramatic effects on the duration or occurrence of seasonal wetlands, which are primary habitat for many species of amphibians. Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species

  16. Subcellular localization of class I histone deacetylases in the developing Xenopus tectum

    Directory of Open Access Journals (Sweden)

    Xia eGuo

    2016-01-01

    Full Text Available Histone deacetylases (HDACs are thought to localize in the nucleus to regulate gene transcription and play pivotal roles in neurogenesis, apoptosis and plasticity. However, the subcellular distribution of class I HDACs in the developing brain remains unclear. Here, we show that HDAC1 and HDAC2 are located in both the mitochondria and the nucleus in the Xenopus laevis stage 34 tectum and are mainly restricted to the nucleus following further brain development. HDAC3 is widely present in the mitochondria, nucleus and cytoplasm during early tectal development and is mainly distributed in the nucleus in stage 45 tectum. In contrast, HDAC8 is broadly located in the mitochondria, nucleus and cytoplasm during tectal development. These data demonstrate that HDAC1, HDAC2 and HDAC3 are transiently localized in the mitochondria and that the subcellular distribution of class I HDACs in the Xenopus tectum is heterogeneous. Furthermore, we observed that spherical mitochondria accumulate in the cytoplasm at earlier stages, whereas elongated mitochondria are evenly distributed in the tectum at later stages. The activity of histone acetylation (H4K12 remains low in mitochondria during tectal development. Pharmacological blockades of HDACs using a broad spectrum HDAC inhibitor of Trichostatin A (TSA or specific class I HDAC inhibitors of MS-275 and MGCD0103 decrease the number of mitochondria in the tectum at stage 34. These findings highlight a link between the subcellular distribution of class I HDACs and mitochondrial dynamics in the developing optic tectum of Xenopus laevis.

  17. AMPHIBIAN POPULATION DYNAMICS

    Science.gov (United States)

    Agriculture has contributed to loss of vertebrate biodiversity in many regions, including the U.S. Corn Belt. Amphibian populations, in particular, have experienced widespread and often inexplicable declines, range reductions, and extinctions. However, few attempts have been made...

  18. Deficient induction response in a Xenopus nucleocytoplasmic hybrid.

    Directory of Open Access Journals (Sweden)

    Patrick Narbonne

    2011-11-01

    Full Text Available Incompatibilities between the nucleus and the cytoplasm of sufficiently distant species result in developmental arrest of hybrid and nucleocytoplasmic hybrid (cybrid embryos. Several hypotheses have been proposed to explain their lethality, including problems in embryonic genome activation (EGA and/or nucleo-mitochondrial interactions. However, conclusive identification of the causes underlying developmental defects of cybrid embryos is still lacking. We show here that while over 80% of both Xenopus laevis and Xenopus (Silurana tropicalis same-species androgenetic haploids develop to the swimming tadpole stage, the androgenetic cybrids formed by the combination of X. laevis egg cytoplasm and X. tropicalis sperm nucleus invariably fail to gastrulate properly and never reach the swimming tadpole stage. In spite of this arrest, these cybrids show quantitatively normal EGA and energy levels at the stage where their initial gastrulation defects are manifested. The nucleocytoplasmic incompatibility between these two species instead results from a combination of factors, including a reduced emission of induction signal from the vegetal half, a decreased sensitivity of animal cells to induction signals, and differences in a key embryonic protein (Xbra concentration between the two species, together leading to inefficient induction and defective convergence-extension during gastrulation. Indeed, increased exposure to induction signals and/or Xbra signalling partially rescues the induction response in animal explants and whole cybrid embryos. Altogether, our study demonstrates that the egg cytoplasm of one species may not support the development promoted by the nucleus of another species, even if this nucleus does not interfere with the cytoplasmic/maternal functions of the egg, while the egg cytoplasm is also capable of activating the genome of that nucleus. Instead, our results provide evidence that inefficient signalling and differences in the

  19. Modulation of voltage-gated Na+ and K+ channels by pumiliotoxin 251D: a "joint venture" alkaloid from arthropods and amphibians.

    Science.gov (United States)

    Vandendriessche, Thomas; Abdel-Mottaleb, Yousra; Maertens, Chantal; Cuypers, Eva; Sudau, Alexander; Nubbemeyer, Udo; Mebs, Dietrich; Tytgat, Jan

    2008-03-01

    Certain amphibians provide themselves with a chemical defense by accumulating lipophilic alkaloids into skin glands from dietary arthropods. Examples of such alkaloids are pumiliotoxins (PTXs). In general, PTXs are known as positive modulators of voltage-gated sodium channels (VGSCs). Unlike other PTXs, PTX 251D does not share this characteristic. However, mice and insect studies showed that PTX 251D is highly toxic and to date the basis of its toxicity remains unknown. In this work, we searched for the possible target of PTX 251D. The toxin was therefore made synthetically and tested on four VGSCs (mammalian rNa(v)1.2/beta(1), rNa(v)1.4/beta(1), hNa(v)1.5/beta(1) and insect Para/tipE) and five voltage-gated potassium channels (VGPCs) (mammalian rK(v)1.1-1.2, hK(v)1.3, hK(v)11.1 (hERG) and insect Shaker IR) expressed heterologously in Xenopus laevis oocytes, using the two-electrode voltage clamp technique. PTX 251D not only inhibited the Na(+) influx through the mammalian VGSCs but also affected the steady-state activation and inactivation. Interestingly, in the insect ortholog, the inactivation process was dramatically affected. Additionally, PTX 251D inhibited the K(+) efflux through all five tested VGPCs and slowed down the deactivation kinetics of the mammalian VGPCs. hK(v)1.3 was the most sensitive channel, with an IC(50) value 10.8+/-0.5 microM. To the best of our knowledge this is the first report of a PTX affecting VGPCs.

  20. Visualizing and Analyzing Branching Microtubule Nucleation Using Meiotic Xenopus Egg Extracts and TIRF Microscopy

    Science.gov (United States)

    King, Matthew; Petry, Sabine

    2016-01-01

    Mitotic and meiotic spindles consist primarily of microtubules, which originate from centrosomes and within the vicinity of chromatin. Indirect evidence suggested that microtubules also originate throughout the spindle, but the high microtubule density within the spindle precludes the direct observation of this phenomenon. By using meiotic Xenopus laevis egg extract and employing total internal reflection (TIRF) microscopy, microtubule nucleation from preexisting microtubules could be demonstrated and analyzed. Branching microtubule nucleation is an ideal mechanism to assemble and maintain a mitotic spindle, because microtubule numbers are amplified while preserving their polarity. Here, we describe the assays that made these findings possible and the experiments that helped identify the key molecular players involved. PMID:27193844

  1. Simple and inexpensive hardware and software method to measure volume changes in Xenopus oocytes expressing aquaporins.

    Science.gov (United States)

    Dorr, Ricardo; Ozu, Marcelo; Parisi, Mario

    2007-04-15

    Water channels (aquaporins) family members have been identified in central nervous system cells. A classic method to measure membrane water permeability and its regulation is to capture and analyse images of Xenopus laevis oocytes expressing them. Laboratories dedicated to the analysis of motion images usually have powerful equipment valued in thousands of dollars. However, some scientists consider that new approaches are needed to reduce costs in scientific labs, especially in developing countries. The objective of this work is to share a very low-cost hardware and software setup based on a well-selected webcam, a hand-made adapter to a microscope and the use of free software to measure membrane water permeability in Xenopus oocytes. One of the main purposes of this setup is to maintain a high level of quality in images obtained at brief intervals (shorter than 70 ms). The presented setup helps to economize without sacrificing image analysis requirements.

  2. Adaptive colouration in amphibians.

    Science.gov (United States)

    Rudh, Andreas; Qvarnström, Anna

    2013-01-01

    Amphibians, i.e. salamanders, frogs and caecilians show a wide range of bright colours in combination with contrasting patterns. There is variation among species, populations and also within species and populations. Furthermore, individuals often change colours during developmental stages or in response to environmental factors. This extraordinary variation means that there are excellent opportunities to test hypotheses of the adaptive significance of colours using amphibian species as models. We review the present view of functions of colouration in amphibians with the main focus on relatively unexplored topics. Variation in colouration has been found to play a role in thermoregulation, UV protection, predator avoidance and sexual signalling. However, many proposed cases of adaptive functions of colouration in amphibians remain virtually scientifically unexplored and surprisingly few genes influencing pigmentation or patterning have been detected. We would like to especially encourage more studies that take advantage of recent developments in measurement of visual properties of several possible signalling receivers (e.g. predators, competitors or mates). Future investigations on interactions between behaviour, ecology and vision have the potential to challenge our current view of the adaptive function of colouration in amphibians.

  3. Thyroid-stimulating Hormone (TSH): Measurement of Intracellular, Secreted, and Circulating Hormone in Xenopus laevis and Xenopus tropicalis.

    Science.gov (United States)

    Thyroid Stimulating Hormone (TSH) is a hormone produced in the pituitary that stimulates the thyroid gland to grow and produce thyroid hormone (TH). The concentration of TH controls developmental changes that take place in a wide variety of organisms. Many use the metaphoric ch...

  4. Conservation and divergence of ADAM family proteins in the Xenopus genome

    Directory of Open Access Journals (Sweden)

    Shah Anoop

    2010-07-01

    Full Text Available Abstract Background Members of the disintegrin metalloproteinase (ADAM family play important roles in cellular and developmental processes through their functions as proteases and/or binding partners for other proteins. The amphibian Xenopus has long been used as a model for early vertebrate development, but genome-wide analyses for large gene families were not possible until the recent completion of the X. tropicalis genome sequence and the availability of large scale expression sequence tag (EST databases. In this study we carried out a systematic analysis of the X. tropicalis genome and uncovered several interesting features of ADAM genes in this species. Results Based on the X. tropicalis genome sequence and EST databases, we identified Xenopus orthologues of mammalian ADAMs and obtained full-length cDNA clones for these genes. The deduced protein sequences, synteny and exon-intron boundaries are conserved between most human and X. tropicalis orthologues. The alternative splicing patterns of certain Xenopus ADAM genes, such as adams 22 and 28, are similar to those of their mammalian orthologues. However, we were unable to identify an orthologue for ADAM7 or 8. The Xenopus orthologue of ADAM15, an active metalloproteinase in mammals, does not contain the conserved zinc-binding motif and is hence considered proteolytically inactive. We also found evidence for gain of ADAM genes in Xenopus as compared to other species. There is a homologue of ADAM10 in Xenopus that is missing in most mammals. Furthermore, a single scaffold of X. tropicalis genome contains four genes encoding ADAM28 homologues, suggesting genome duplication in this region. Conclusions Our genome-wide analysis of ADAM genes in X. tropicalis revealed both conservation and evolutionary divergence of these genes in this amphibian species. On the one hand, all ADAMs implicated in normal development and health in other species are conserved in X. tropicalis. On the other hand, some

  5. Purification of a Ni sup 2+ -binding protein, pNiXa, from Xenopus ovary

    Energy Technology Data Exchange (ETDEWEB)

    Beck, B.L.; Makowski, G.S.; Nomoto, S.; Sunderman, F.W. (Univ. of Connecticut, Farmington (United States))

    1991-03-11

    Previous research on nickel-induced teratogenesis in Xenopus laevis identified several Ni{sup 2+}-binding proteins, including pNiXa in Xenopus ovaries, unfertilized eggs, and embryos. A major goal of this research project is elucidating the role of pNiXa in the uptake, embryotoxicity, and teratogenicity of Ni{sup 2+} in Xenopus. To purify and identify pNiXa, ovarian tissue from mature Xenopus females was homogenized in 3 vol of Tris buffer and centrifuged. The supernatant was centrifuged; the ultracentrifugal supernatant was batch-adsorbed onto DEAE-cellulose. The pNiSa remained unbound and was subsequently adsorbed on phosphocellulose and eluted by a step-wise NaCl gradient. The pNiXa was eluted in 0.25 M NaCl; this fraction was concentrated, and further purified by reverse phase chromatography on a 5 {mu}m C-8 column, with a linear trifluoroacetic acid/acetonitrile gradient. The pNiXa was eluted at {approximately}56% acetonitrile, yielding a single protein band with mol wt {approximately}47 kD,based on SDS-PAGE analysis. Comparison of the amino acid composition of pNiXa versus the results obtained by automated Edman degradation indicated that the N-terminus of pNiXa was blocked. Sequencing of peptide fragments of pNiXa is underway.

  6. ATP4 and ciliation in the neuroectoderm and endoderm of Xenopus embryos and tadpoles

    Directory of Open Access Journals (Sweden)

    Peter Walentek

    2015-09-01

    Full Text Available During gastrulation and neurulation, foxj1 expression requires ATP4a-dependent Wnt/β-catenin signaling for ciliation of the gastrocoel roof plate (Walentek et al. Cell Rep. 1 (2012 516–527. and the mucociliary epidermis (Walentek et al. Dev. Biol. (2015 of Xenopus laevis embryos. These data suggested that ATP4a and Wnt/β-catenin signaling regulate foxj1 throughout Xenopus development. Here we analyzed whether foxj1 expression was also ATP4a-dependent in other ciliated tissues of the developing Xenopus embryo and tadpole. We found that in the floor plate of the neural tube ATP4a-dependent canonical Wnt signaling was required for foxj1 expression, downstream of or in parallel to Hedgehog signaling. In the developing tadpole brain, ATP4-function was a prerequisite for the establishment of cerebrospinal fluid flow. Furthermore, we describe foxj1 expression and the presence of multiciliated cells in the developing tadpole gastrointestinal tract. Our work argues for a general requirement of ATP4-dependent Wnt/β-catenin signaling for foxj1 expression and motile ciliogenesis throughout Xenopus development.

  7. Plakophilin-3 is required for late embryonic amphibian development, exhibiting roles in ectodermal and neural tissues.

    Directory of Open Access Journals (Sweden)

    William A Munoz

    Full Text Available The p120-catenin family has undergone a significant expansion during the evolution of vertebrates, resulting in varied functions that have yet to be discerned or fully characterized. Likewise, members of the plakophilins, a related catenin subfamily, are found throughout the cell with little known about their functions outside the desmosomal plaque. While the plakophilin-3 (Pkp3 knockout mouse resulted in skin defects, we find larger, including lethal effects following its depletion in Xenopus. Pkp3, unlike some other characterized catenins in amphibians, does not have significant maternal deposits of mRNA. However, during embryogenesis, two Pkp3 protein products whose temporal expression is partially complimentary become expressed. Only the smaller of these products is found in adult Xenopus tissues, with an expression pattern exhibiting distinctions as well as overlaps with those observed in mammalian studies. We determined that Xenopus Pkp3 depletion causes a skin fragility phenotype in keeping with the mouse knockout, but more novel, Xenopus tailbud embryos are hyposensitive to touch even in embryos lacking outward discernable phenotypes, and we additionally resolved disruptions in certain peripheral neural structures, altered establishment and migration of neural crest, and defects in ectodermal multiciliated cells. The use of two distinct morpholinos, as well as rescue approaches, indicated the specificity of these effects. Our results point to the requirement of Pkp3 in amphibian embryogenesis, with functional roles in a number of tissue types.

  8. A conserved mechanism for vertebrate mesoderm specification in urodele amphibians and mammals.

    Science.gov (United States)

    Swiers, Gemma; Chen, Yi-Hsien; Johnson, Andrew D; Loose, Matthew

    2010-07-01

    Understanding how mesoderm is specified during development is a fundamental issue in biology, and it has been studied intensively in embryos from Xenopus. The gene regulatory network (GRN) for Xenopus is surprisingly complex and is not conserved in vertebrates, including mammals, which have single copies of the key genes Nodal and Mix. Why the Xenopus GRN should express multiple copies of Nodal and Mix genes is not known. To understand how these expanded gene families evolved, we investigated mesoderm specification in embryos from axolotls, representing urodele amphibians, since urodele embryology is basal to amphibians and was conserved during the evolution of amniotes, including mammals. We show that single copies of Nodal and Mix are required for mesoderm specification in axolotl embryos, suggesting the ancestral vertebrate state. Furthermore, we uncovered a novel genetic interaction in which Mix induces Brachyury expression, standing in contrast to the relationship of these molecules in Xenopus. However, we demonstrate that this functional relationship is conserved in mammals by showing that it is involved in the production of mesoderm from mouse embryonic stem cells. From our results, we produced an ancestral mesoderm (m)GRN, which we suggest is conserved in vertebrates. The results are discussed within the context of a theory in which the evolution of mechanisms governing early somatic development is constrained by the ancestral germ line-soma relationship, in which germ cells are produced by epigenesis.

  9. Rainforest: Reptiles and Amphibians

    Science.gov (United States)

    Olson, Susanna

    2006-01-01

    Rainforest reptiles and amphibians are a vibrantly colored, multimedia art experience. To complete the entire project one may need to dedicate many class periods to production, yet in each aspect of the project a new and important skill, concept, or element is being taught or reinforced. This project incorporates the study of warm and cool color…

  10. Responding to Amphibian Loss

    NARCIS (Netherlands)

    Mendelson III, J.R.; Lips, K.R.; Gagliardo, R.W.; Rabb, G.B.; Collins, J.P.; Diffendorfer, J.E.; Daszak, P.; Ibáñez D., R.; Zippel, K.C.; Lawson, D.P.; Wright, K.M.; Stuart, S.N.; Gascon, C.; da Silva, H.R.; Burrowes, P.A.; Joglar, R.L.; La Marca, E.; Lötters, S.; du Preez, L.H.; Weldon, C.; Hyatt, A.; Rodriguez-Mahecha, J.V.; Hunt, S.; Robertson, H.; Lock, B.; Raxworthy, C.J.; Frost, D.R.; Lacy, R.C.; Alford, R.A.; Campbell, J.A.; Parra-Olea, G.; Bolaños, F.; Calvo Domingo, J.J.; Halliday, T.; Murphy, J.B.; Wake, M.H.; Coloma, L.A.; Kuzmin, S.L.; Price, M.S.; Howell, K.M.; Lau, M.; Pethiyagoda, R.; Boone, M.; Lannoo, M.J.; Blaustein, A.R.; Dobson, A.; Griffiths, R.A.; Crump, M.L.; Wake, D.B.; Brodie Jr, E.D.

    2006-01-01

    In their Policy Forum "Confronting amphibian declines and extinctions" (7 July, p. 48), J. R. Mendelson III and colleagues offer a strategy for "stopping" the widespread losses of frogs, toads, and salamanders. Disease research and captive breeding figure prominently in their call for action.

  11. FUNCION DE SOX2 EN LA REGENERACION DE LA MEDULA ESPINAL DE XONOPUS LAEVIS

    OpenAIRE

    2010-01-01

    Los mamíferos presentan una limitada capacidad de regeneración frente a una lesión de la médula espinal, lo que impide una correcta recuperación locomotriz. Sin embargo, los renacuajos de Xenopus laevis sí son capaces de regenerar la médula espinal, pero se desconocen los mecanismos involucrados en este proceso. Es posible que esta regeneración proceda a través de la activación de células madre y progenitores neurales. Sox2 es un factor de transcripción que se expresa en las cé...

  12. Genetics, Morphology, Advertisement Calls, and Historical Records Distinguish Six New Polyploid Species of African Clawed Frog (Xenopus, Pipidae) from West and Central Africa.

    Science.gov (United States)

    Evans, Ben J; Carter, Timothy F; Greenbaum, Eli; Gvoždík, Václav; Kelley, Darcy B; McLaughlin, Patrick J; Pauwels, Olivier S G; Portik, Daniel M; Stanley, Edward L; Tinsley, Richard C; Tobias, Martha L; Blackburn, David C

    2015-01-01

    African clawed frogs, genus Xenopus, are extraordinary among vertebrates in the diversity of their polyploid species and the high number of independent polyploidization events that occurred during their diversification. Here we update current understanding of the evolutionary history of this group and describe six new species from west and central sub-Saharan Africa, including four tetraploids and two dodecaploids. We provide information on molecular variation, morphology, karyotypes, vocalizations, and estimated geographic ranges, which support the distinctiveness of these new species. We resurrect Xenopus calcaratus from synonymy of Xenopus tropicalis and refer populations from Bioko Island and coastal Cameroon (near Mt. Cameroon) to this species. To facilitate comparisons to the new species, we also provide comments on the type specimens, morphology, and distributions of X. epitropicalis, X. tropicalis, and X. fraseri. This includes significantly restricted application of the names X. fraseri and X. epitropicalis, the first of which we argue is known definitively only from type specimens and possibly one other specimen. Inferring the evolutionary histories of these new species allows refinement of species groups within Xenopus and leads to our recognition of two subgenera (Xenopus and Silurana) and three species groups within the subgenus Xenopus (amieti, laevis, and muelleri species groups).

  13. Effects of S-adenosylmethionine decarboxylase, polyamines, amino acids, and weak bases (amines and ammonia) on development and ribosomal RNA synthesis in Xenopus embryos.

    Science.gov (United States)

    Shiokawa, Koichiro; Aso, Mai; Kondo, Takeshi; Takai, Jun-Ichi; Yoshida, Junki; Mishina, Takamichi; Fuchimukai, Kota; Ogasawara, Tsukasa; Kariya, Taro; Tashiro, Kosuke; Igarashi, Kazuei

    2010-02-01

    We have been studying control mechanisms of gene expression in early embryogenesis in a South African clawed toad Xenopus laevis, especially during the period of midblastula transition (MBT), or the transition from the phase of active cell division (cleavage stage) to the phase of extensive morphogenesis (post-blastular stages). We first found that ribosomal RNA synthesis is initiated shortly after MBT in Xenopus embryos and those weak bases, such as amines and ammonium ion, selectively inhibit the initiation and subsequent activation of rRNA synthesis. We then found that rapidly labeled heterogeneous mRNA-like RNA is synthesized in embryos at pre-MBT stage. We then performed cloning and expression studies of several genes, such as those for activin receptors, follistatin and aldolases, and then reached the studies of S-adenosylmethionine decarboxylase (SAMDC), a key enzyme in polyamine metabolism. Here, we cloned a Xenopus SAMDC cDNA and performed experiments to overexpress the in vitro-synthesized SAMDC mRNA in Xenopus early embryos, and found that the maternally preset program of apoptosis occurs in cleavage stage embryos, which is executed when embryos reach the stage of MBT. In the present article, we first summarize results on SAMDC and the maternal program of apoptosis, and then describe our studies on small-molecular-weight substances like polyamines, amino acids, and amines in Xenopus embryos. Finally, we summarize our studies on weak bases, especially on ammonium ion, as the specific inhibitor of ribosomal RNA synthesis in Xenopus embryonic cells.

  14. Evaluation of the toxicity and teratogenity of six commercial textile dyes using the frog embryo teratogenesis assay-Xenopus.

    Science.gov (United States)

    Birhanli, Ayse; Ozmen, Murat

    2005-01-01

    Potential developmental toxicities of six different textile dyes were evaluated using the frog embryo teratogenesis assay-Xenopus (FETAX). Xenopus laevis embryos were exposed to astrazon red FBL, astrazon blue FGRL, remazol red RR, remazol turquoise blue G-A, cibacron red FN-3G, and cibacron blue FN-R from stage 8 to 11 for a 96-h exposure period in static renewal test conditions. A minimum of 17 concentration-response tests were performed with tested dyes, excluding a control group for each dye. Median lethal concentration (LC50), malformation (EC50), non observed adverse effect concentration (NOAEC), and lowest observed adverse effect concentration (LOAEC) were calculated. Also, teratogenic index (TI), minimum concentration to inhibit growth (MCIG), and MCIG/LC50 values were determined for each of the tested dyes. Characteristic abnormalities induced by a given test material were determined by the relationship between concentration and dye in the study. Results from these studies suggested that each tested dye is teratogenic for X. laevis embryos. The lowest LC50 was determined for astrazon red exposure corresponding to a value of 4.73 mg/L. The LC50 value was similar for this dye and astrazon blue; the highest TI was calculated for astrazon blue exposure. Tests with X. laevis indicated that each of the tested compounds possessed teratogenic potential with varying degrees of potency: astrazon blue FGRL > remazol turquoise blue G-A > astrazon red FBL > cibacron blue FN-R > cibacron red FN-3G > remazol red RR. Different types of malformations occurred in the embryos, depending on concentration and dye. From these results, we can suggest that astrazon blue is the most toxic compound, but that the others are also highly toxic and teratogenic substances for X. laevis embryos. Results of the study confirmed that the FETAX assay can be useful in an integrated biological hazard assesment for the preliminary screening of textile dye stuff.

  15. Field Surveys of Amphibian Populations.

    Science.gov (United States)

    Brodman, Robert

    2000-01-01

    Describes a course on amphibian research for environmental science majors. Involves students in field studies and introduces them to investigative research. Evaluates the course. (Contains 19 references.) (YDS)

  16. Trialkyltin rexinoid-X receptor agonists selectively potentiate thyroid hormone induced programs of xenopus laevis metamorphosis

    NARCIS (Netherlands)

    Mengeling, Brenda J.; Murk, Albertinka J.; Furlow, J.D.

    2016-01-01

    The trialkyltins tributyltin (TBT) and triphenyltin (TPT) can function as rexinoid-X receptor (RXR) agonists. We recently showed that RXR agonists can alter thyroid hormone (TH) signaling in a mammalian pituitary TH-responsive reporter cell line, GH3.TRE-Luc. The prevalence of TBT and TPT in the

  17. The effect of DDD on single ranvier nodes of Xenopus laevis

    NARCIS (Netherlands)

    Bercken, J. van den

    1969-01-01

    Membrane potentials of single Ranvier nodes of myelinated nerve fibres were measured. DDD suppressed the rising phase of the action potential, probably by a reduction of the inward sodium current. This effect is in sharp contrast to that of DDT, which does not affect the rising phase but slows down

  18. Study of XHEP33 during the heart embryonic development of Xenopus laevis

    OpenAIRE

    Jesus, Ana Catarina de

    2011-01-01

    Dissertação de mest., Engenharia Biológica, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2011 A necessidade de identificar genes que são expressos distintamente em células de embrião e coração embrionário é indispensável para compreender os processos complexos do desenvolvimento de coração. A natureza química e molecular do desenvolvimento cardíaco é fundamental para entender a relação entre os aspectos morfológicos e genéticos da formação do coração. Assim, o laboratório de Em...

  19. Rapid sulfation of 3,3',5'-triiodothyronine in native Xenopus laevis oocytes

    NARCIS (Netherlands)

    E.C.H. Friesema (Edith); R. Docter (Roel); E.P. Krenning (Eric); M.E. Everts (Maria); G. Hennemann; T.J. Visser (Theo)

    1998-01-01

    textabstractSulfation is an important metabolic pathway facilitating the degradation of thyroid hormone by the type I iodothyronine deiodinase. Different human and rat tissues contain cytoplasmic sulfotransferases that show a substrate preference for 3,3'-diiodothyronin

  20. Developing Xenopus Laevis as a Model to Screen Drugs for Fragile X Syndrome

    Science.gov (United States)

    2014-06-01

    Gordon Research Seminar and Conference: Fragile X and Autism –Related Disorders , May 31-June 6, 2014 Dysregulation of Fragile X Mental Retardation...loss of FMRP. We tested the effect of knocking down FMPR expression on visually guided behavior , seizure and brain development. We established a...demonstrated the capacity to rescue the decreased FMRP expression by gene delivery. We characterized an innate visually-guided avoidance behavior in tadpoles

  1. Expression-dependent pharmacology of transient receptor potential vanilloid subtype 1 channels in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Rivera-Acevedo, Ricardo E; Pless, Stephan Alexander; Schwarz, Stephan K W;

    2013-01-01

    Transient receptor potential vanilloid subfamily member 1 channels are polymodal sensors of noxious stimuli and integral players in thermosensation, inflammation and pain signaling. It has been shown previously that under prolonged stimulation, these channels show dynamic pore dilation, providing...

  2. IDENTIFICATION AND MOLECULAR CLONING OF XENOPUS LAEVIS SP22, A PROTEIN ASSOCIATED WITH FERTILIZATION IN MAMMALS

    Science.gov (United States)

    ABSTRACTSP22 is a protein that has been characterized in rats where it has been related with fertility. SP22 homologues have been studied in mouse and man and a definitive role for the protein has not been assigned yet. By means of a polyclonal IgG to recombinant rat SP22...

  3. Actions of Tefluthrin on Rat Nav1.7 Voltage-Gated Sodium Channels Expressed in Xenopus Oocytes

    OpenAIRE

    Tan, Jianguo; Soderlund, David M.

    2011-01-01

    In rats expression of the Nav1.7 voltage-gated sodium channel isoform is restricted to the peripheral nervous system and is abundant in the sensory neurons of the dorsal root ganglion. We expressed the rat Nav1.7 sodium channel α subunit together with the rat auxiliary β1 and β2 subunits in Xenopus laevis oocytes and assessed the effects of the pyrethroid insecticide tefluthrin on the expressed currents using the two-electrode voltage clamp method. Tefluthrin at 100 µM modified of Nav1.7 chan...

  4. Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis.

    Science.gov (United States)

    Nakayama, Takuya; Fish, Margaret B; Fisher, Marilyn; Oomen-Hajagos, Jamina; Thomsen, Gerald H; Grainger, Robert M

    2013-12-01

    We have assessed the efficacy of the recently developed CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system for genome modification in the amphibian Xenopus tropicalis. As a model experiment, targeted mutations of the tyrosinase gene were verified, showing the expected albinism phenotype in injected embryos. We further tested this technology by interrupting the six3 gene, which is required for proper eye and brain formation. Expected eye and brain phenotypes were observed when inducing mutations in the six3 coding regions, as well as when deleting the gene promoter by dual targeting. We describe here a standardized protocol for genome editing using this system. This simple and fast method to edit the genome provides a powerful new reverse genetics tool for Xenopus researchers.

  5. Stability of maternal mRNA in Xenopus embryos: role of transcription and translation.

    Science.gov (United States)

    Duval, C; Bouvet, P; Omilli, F; Roghi, C; Dorel, C; LeGuellec, R; Paris, J; Osborne, H B

    1990-08-01

    The first 12 cell divisions of Xenopus laevis embryos do not require gene transcription. This means that the regulation of gene expression during this period is controlled at post transcriptional levels and makes Xenopus early development a potentially interesting biological system with which to study the mechanisms involved. We describe here the stability characteristics of several maternal Xenopus mRNAs which are deadenylated soon after fertilisation (J. Paris and M. Philippe, Dev. Biol., in press). We show that these mRNAs were only degraded in the embryo after the midblastula transition (MBT), when gene transcription was initiated. The kinetics with which the deadenylated maternal mRNAs decreased in the post-MBT embryos showed sequence specificity. The degradation of these mRNAs after the MBT was inhibited by cycloheximide but was not affected by dactinomycin. Therefore, the destabilization of these mRNAs does not appear to be initiated by new embryonic gene transcripts. Sequence comparisons of the 3' untranslated region of these mRNAs identified several motifs which may be involved in the posttranscriptional control of these gene products.

  6. Sex determination in amphibians.

    Science.gov (United States)

    Nakamura, Masahisa

    2009-05-01

    The heterogametic sex is male in all mammals, whereas it is female in almost all birds. By contrast, there are two heterogametic types (XX/XY and ZZ/ZW) for genetic sex determination in amphibians. Though the original heterogametic sex was female in amphibians, the two heterogametic types were probably interchangeable, suggesting that sex chromosomes evolved several times in this lineage. Indeed, the frog Rana rugosa has the XX/XY and ZZ/ZW sex-determining systems within a single species, depending on the local population in Japan. The XY and ZW geographic forms with differentiated sex chromosomes probably have a common origin as undifferentiated sex chromosomes resulted from the hybridization between the primary populations of West Japan and Kanto forms. It is clear that the sex chromosomes are still undergoing evolution in this species group. Regardless of the presence of a sex-determining gene in amphibians, the gonadal sex of some species can be changed by sex steroids. Namely, sex steroids can induce the sex reversal, with estrogens inducing the male-to-female sex reversal, whereas androgens have the opposite effect. In R. rugosa, gonadal activity of CYP19 (P450 aromatase) is correlated with the feminization of gonads. Of particular interest is that high levels of CYP19 expression are observed in indifferent gonads at time before sex determination. Increases in the expression of CYP19 in female gonads and CYP17 (P450 17alpha-hydroxylase/C17-20 lyase) in male gonads suggest that the former plays an important role in phenotypic female determination, whereas the latter is needed for male determination. Thus, steroids could be the key factor for sex determination in R. rugosa. In addition to the role of sex steroids in gonadal sex determination in this species, Foxl2 and Sox3 are capable of promoting CYP19 expression. Since both the genes are autosomal, another factor up-regulating CYP19 expression must be recruited. The factor, which may be located on the X or W

  7. DNA barcoding amphibians and reptiles.

    Science.gov (United States)

    Vences, Miguel; Nagy, Zoltán T; Sonet, Gontran; Verheyen, Erik

    2012-01-01

    Only a few major research programs are currently targeting COI barcoding of amphibians and reptiles (including chelonians and crocodiles), two major groups of tetrapods. Amphibian and reptile species are typically old, strongly divergent, and contain deep conspecific lineages which might lead to problems in species assignment with incomplete reference databases. As far as known, there is no single pair of COI primers that will guarantee a sufficient rate of success across all amphibian and reptile taxa, or within major subclades of amphibians and reptiles, which means that the PCR amplification strategy needs to be adjusted depending on the specific research question. In general, many more amphibian and reptile taxa have been sequenced for 16S rDNA, which for some purposes may be a suitable complementary marker, at least until a more comprehensive COI reference database becomes available. DNA barcoding has successfully been used to identify amphibian larval stages (tadpoles) in species-rich tropical assemblages. Tissue sampling, DNA extraction, and amplification of COI is straightforward in amphibians and reptiles. Single primer pairs are likely to have a failure rate between 5 and 50% if taxa of a wide taxonomic range are targeted; in such cases the use of primer cocktails or subsequent hierarchical usage of different primer pairs is necessary. If the target group is taxonomically limited, many studies have followed a strategy of designing specific primers which then allow an easy and reliable amplification of all samples.

  8. Developing Xenopus embryos recover by compacting and expelling single wall carbon nanotubes.

    Science.gov (United States)

    Holt, Brian D; Shawky, Joseph H; Dahl, Kris Noel; Davidson, Lance A; Islam, Mohammad F

    2016-04-01

    Single wall carbon nanotubes are high aspect ratio nanomaterials being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 µm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one- to two-cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call "boluses." Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes.

  9. Dihidrochalconas en corteza de iryanthera laevis

    Directory of Open Access Journals (Sweden)

    Juan C. Martínez V.

    2010-07-01

    Full Text Available Del extracto bencénico de la corteza de Iryanthera laevis (Myristicaceae, se aislaron e identificaron cuatro dihidrochalconas que corresponden a: 2', 4'-dihidroxl-4,6'-dimetoxidihidrochalcona,2',4'-dihidroxi-3.4-metilenodioxi-6'-metoxidihidrochalcona, 2',4'-dihidroxi-3,4,6'-trimetoxidihidrochalcona y 3'-(1",4"-di-phidroxifenil-2",3"-dimetilbutil-2',4'-dihidroxi-4,6'-dimetoxidihidrochalcona. Las estructuras fueron establecidas por métodos espectroscópicos.

  10. Expression of Xenopus XlSALL4 during limb development and regeneration.

    Science.gov (United States)

    Neff, Anton W; King, Michael W; Harty, Mark W; Nguyen, Trent; Calley, John; Smith, Rosamund C; Mescher, Anthony L

    2005-06-01

    The multi-C2H2 zinc-finger domain containing transcriptional regulators of the spalt (SAL) family plays important developmental regulatory roles. In a competitive subtractive hybridization screen of genes expressed in Xenopus laevis hindlimb regeneration blastemas, we identified a SAL family member that, by phylogenetic analysis, falls in the same clade as human SALL4 and have designated it as XlSALL4. Mutations of human SALL4 have been linked to Okihiro syndrome, which includes preaxial (anterior) limb defects. The expression pattern of XlSALL4 transcripts during normal forelimb and hindlimb development and during hindlimb regeneration at the regeneration-competent and regeneration-incompetent stages is temporally and regionally dynamic. We show for the first time that a SAL family member (XlSALL4) is expressed at the right place and time to play a role regulating both digit identity along the anterior/posterior axis and epimorphic limb regeneration.

  11. Dynamic Properties of Electrotonic Coupling between Cells of Early Xenopus Embryos.

    Science.gov (United States)

    Dicaprio, R A; French, A S; Sanders, E J

    1974-05-01

    Frequency response functions were measured between the cells of Xenopus laevis embryos during the first two cleavage stages. Linear systems theory was then used to produce electronic models which account for the electrical behavior of the systems. Coupling between the cells may be explained by models which have simple resistive elements joining each cell to its neighbors. The vitelline, or fertilization, membrane which surrounds the embryos has no detectable resistance to the passage of electric current. The electrical properties of the four-cell embryo can only be explained by the existence of individual junctions linking each pair of cells. This arrangement suggests that electrotonic coupling is important in the development of the embryos, at least until the four-cell stage.

  12. Identification of inhibitor of apoptosis specific DNase in Xenopus egg extract

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    When added with cytochrome c, Xenopus laevis egg extract XS-150 can induce exogenous nuclei undergoing apoptosis. Apoptosis specific DNase XAD was activated during this process, and cut chromatin between nucleosome,leading to DNA Ladder in electrophoresis. Our results showed that an inhibitor of XAD, IXAD, exists abundantly in normal egg extract, its molecular weight is about 40 ku.Normally, IXAD exists either in the form of dimmer or in complex with XAD. It was degraded during apoptosis, releasing active XAD. The results of Western assay and cross-inhibition showed that IXAD was likely homologous to DFF45 in structure and function. At the same time, these results also indicated that the pathway in apoptosis was conserved in evolution.``

  13. Mitigating amphibian chytridiomycosis in nature

    Science.gov (United States)

    Garner, Trenton W. J.; Schmidt, Benedikt R.; Martel, An; Pasmans, Frank; Muths, Erin L.; Cunningham, Andrew A.; Weldon, Che; Fisher, Matthew C.; Bosch, Jaime

    2016-01-01

    Amphibians across the planet face the threat of population decline and extirpation caused by the disease chytridiomycosis. Despite consensus that the fungal pathogens responsible for the disease are conservation issues, strategies to mitigate their impacts in the natural world are, at best, nascent. Reducing risk associated with the movement of amphibians, non-amphibian vectors and other sources of infection remains the first line of defence and a primary objective when mitigating the threat of disease in wildlife. Amphibian-associated chytridiomycete fungi and chytridiomycosis are already widespread, though, and we therefore focus on discussing options for mitigating the threats once disease emergence has occurred in wild amphibian populations. All strategies have shortcomings that need to be overcome before implementation, including stronger efforts towards understanding and addressing ethical and legal considerations. Even if these issues can be dealt with, all currently available approaches, or those under discussion, are unlikely to yield the desired conservation outcome of disease mitigation. The decision process for establishing mitigation strategies requires integrated thinking that assesses disease mitigation options critically and embeds them within more comprehensive strategies for the conservation of amphibian populations, communities and ecosystems.

  14. Retinoic acid-activated Ndrg1a represses Wnt/β-catenin signaling to allow Xenopus pancreas, oesophagus, stomach, and duodenum specification.

    Directory of Open Access Journals (Sweden)

    Tiejun Zhang

    Full Text Available How cells integrate multiple patterning signals to achieve early endoderm regionalization remains largely unknown. Between gastrulation and neurulation, retinoic acid (RA signaling is required, while Wnt/β-catenin signaling has to be repressed for the specification of the pancreas, oesophagus, stomach, and duodenum primordia in Xenopus embryos. In attempt to screen for RA regulated genes in Xenopus endoderm, we identified a direct RA target gene, N-myc downstream regulated gene 1a (ndrg1a that showed expression early in the archenteron roof endoderm and late in the developing pancreas, oesophagus, stomach, and duodenum. Both antisense morpholino oligonucleotide mediated knockdown of ndrg1a in Xenopus laevis and the transcription activator-like effector nucleases (TALEN mediated disruption of ndrg1 in Xenopus tropicalis demonstrate that like RA signaling, Ndrg1a is specifically required for the specification of Xenopus pancreas, oesophagus, stomach, and duodenum primordia. Immunofluorescence data suggest that RA-activated Ndrg1a suppresses Wnt/β-catenin signaling in Xenopus archenteron roof endoderm cells. Blocking Wnt/β-catenin signaling rescued Ndrg1a knockdown phenotype. Furthermore, overexpression of the putative Wnt/β-catenin target gene Atf3 phenocopied knockdown of Ndrg1a or inhibition of RA signaling, while Atf3 knockdown can rescue Ndrg1a knockdown phenotype. Lastly, the pancreas/stomach/duodenum transcription factor Pdx1 was able to rescue Atf3 overexpression or Ndrg1a knockdown phenotype. Together, we conclude that RA activated Ndrg1a represses Wnt/β-catenin signaling to allow the specification of pancreas, oesophagus, stomach, and duodenum progenitor cells in Xenopus embryos.

  15. The history and development of FETAX (ASTM standard guide, E-1439 on conducting the frog embryo teratogenesis Assay-Xenopus)

    Science.gov (United States)

    Dumont, J.N.; Bantle, J.A.; Linder, G.; ,

    2003-01-01

    The energy crisis of the 1970's and 1980's prompted the search for alternative sources of fuel. With development of alternate sources of energy, concerns for biological resources potentially adversely impacted by these alternative technologies also heightened. For example, few biological tests were available at the time to study toxic effects of effluents on surface waters likely to serve as receiving streams for energy-production facilities; hence, we began to use Xenopus laevis embryos as test organisms to examine potential toxic effects associated with these effluents upon entering aquatic systems. As studies focused on potential adverse effects on aquatic systems continued, a test procedure was developed that led to the initial standardization of FETAX. Other .than a limited number of aquatic toxicity tests that used fathead minnows and cold-water fishes such as rainbow trout, X. laevis represented the only other aquatic vertebrate test system readily available to evaluate complex effluents. With numerous laboratories collaborating, the test with X. laevis was refined, improved, and developed as ASTM E-1439, Standard Guide for the Conducting Frog Embryo Teratogenesis Assay-Xenopus (FETAX). Collabrative work in the 1990s yielded procedural enhancements, for example, development of standard test solutions and exposure methods to handle volatile organics and hydrophobic compounds. As part of the ASTM process, a collaborative interlaboratory study was performed to determine the repeatability and reliability of FETAX. Parallel to these efforts, methods were also developed to test sediments and soils, and in situ test methods were developed to address "lab-to-field extrapolation errors" that could influence the method's use in ecological risk assessments. Additionally, a metabolic activation system composed of rat liver microsomes was developed which made FETAX more relevant to mammalian studies.

  16. An evaluation of 2,4-dichlorophenoxyacetic acid in the Amphibian Metamorphosis Assay and the Fish Short-Term Reproduction Assay.

    Science.gov (United States)

    Coady, Katherine; Marino, Troy; Thomas, Johnson; Sosinski, Lindsay; Neal, Barbara; Hammond, Larry

    2013-04-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) was evaluated in both the Amphibian Metamorphosis Assay (AMA) and the Fish Short Term Reproduction Assay (FSTRA). In the AMA, tadpoles were exposed to mean measured 2,4-D concentrations of 0 (water control), 0.273, 3.24, 38.0 and 113 mg acid equivalents (ae)/L for either seven or 21 days. In the FSTRA, fathead minnows were exposed to mean measured 2,4-D concentrations of 0 (water control), 0.245, 3.14, 34.0, and 96.5 mg ae/L for 21 days. The respective concentrations of 2,4-D were not overtly toxic to either Xenopus laevis tadpoles or fathead minnows (Pimephales promelas). In the AMA, there were no signs of either advanced or delayed development, asynchronous development, or significant histopathological effects of the thyroid gland among 2,4-D exposed tadpoles evaluated on either day seven or day 21 of the exposure. Therefore, following the AMA decision logic, 2,4-D is considered "likely thyroid inactive" in the AMA with a No Observable Effect Concentration (NOEC) of 113 mg ae 2,4-D/L. In the FSTRA, there were no significant differences between control and 2,4-D exposed fish in regard to fertility, wet weight, length, gonado-somatic indices, tubercle scores, or blood plasma concentrations of vitellogenin. Furthermore, there were no treatment-related histopathologic changes in the testes or ovaries in any 2,4-D exposed group. The only significant effect was a decrease in fecundity among fish exposed to 96.5 mg ae 2,4-D/L. The cause of the reduced fecundity at the highest concentration of 2,4-D tested in the assay was most likely due to a generalized stress response in the fish, and not due to a specific endocrine mode of action of 2,4-D. Based on fish reproduction, the NOEC in the FSTRA was 34.0 mg ae 2,4-D/L.

  17. HDAC1 regulates the proliferation of radial glial cells in the developing Xenopus tectum.

    Directory of Open Access Journals (Sweden)

    Yi Tao

    Full Text Available In the developing central nervous system (CNS, progenitor cells differentiate into progeny to form functional neural circuits. Radial glial cells (RGs are a transient progenitor cell type that is present during neurogenesis. It is thought that a combination of neural trophic factors, neurotransmitters and electrical activity regulates the proliferation and differentiation of RGs. However, it is less clear how epigenetic modulation changes RG proliferation. We sought to explore the effect of histone deacetylase (HDAC activity on the proliferation of RGs in the visual optic tectum of Xenopus laevis. We found that the number of BrdU-labeled precursor cells along the ventricular layer of the tectum decrease developmentally from stage 46 to stage 49. The co-labeling of BrdU-positive cells with brain lipid-binding protein (BLBP, a radial glia marker, showed that the majority of BrdU-labeled cells along the tectal midline are RGs. BLBP-positive cells are also developmentally decreased with the maturation of the brain. Furthermore, HDAC1 expression is developmentally down-regulated in tectal cells, especially in the ventricular layer of the tectum. Pharmacological blockade of HDACs using Trichostatin A (TSA or Valproic acid (VPA decreased the number of BrdU-positive, BLBP-positive and co-labeling cells. Specific knockdown of HDAC1 by a morpholino (HDAC1-MO decreased the number of BrdU- and BLBP-labeled cells and increased the acetylation level of histone H4 at lysine 12 (H4K12. The visual deprivation-induced increase in BrdU- and BLBP-positive cells was blocked by HDAC1 knockdown at stage 49 tadpoles. These data demonstrate that HDAC1 regulates radial glia cell proliferation in the developing optical tectum of Xenopus laevis.

  18. North American amphibians: distribution and diversity

    Science.gov (United States)

    : Green, David M.; Weir, Linda A.; Casper, Gary S.; Lannoo, Michael

    2014-01-01

    Some 300 species of amphibians inhabit North America. The past two decades have seen an enormous growth in interest about amphibians and an increased intensity of scientific research into their fascinating biology and continent-wide distribution. This atlas presents the spectacular diversity of North American amphibians in a geographic context. It covers all formally recognized amphibian species found in the United States and Canada, many of which are endangered or threatened with extinction. Illustrated with maps and photos, the species accounts provide current information about distribution, habitat, and conservation. Researchers, professional herpetologists, and anyone intrigued by amphibians will value North American Amphibians as a guide and reference.

  19. Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs.

    Science.gov (United States)

    Smits, Arne H; Lindeboom, Rik G H; Perino, Matteo; van Heeringen, Simon J; Veenstra, Gert Jan C; Vermeulen, Michiel

    2014-09-01

    While recent developments in genomic sequencing technology have enabled comprehensive transcriptome analyses of single cells, single cell proteomics has thus far been restricted to targeted studies. Here, we perform global absolute protein quantification of fertilized Xenopus laevis eggs using mass spectrometry-based proteomics, quantifying over 5800 proteins in the largest single cell proteome characterized to date. Absolute protein amounts in single eggs are highly consistent, thus indicating a tight regulation of global protein abundance. Protein copy numbers in single eggs range from tens of thousands to ten trillion copies per cell. Comparison between the single-cell proteome and transcriptome reveal poor expression correlation. Finally, we identify 439 proteins that significantly change in abundance during early embryogenesis. Downregulated proteins include ribosomal proteins and upregulated proteins include basal transcription factors, among others. Many of these proteins do not show regulation at the transcript level. Altogether, our data reveal that the transcriptome is a poor indicator of the proteome and that protein levels are tightly controlled in X. laevis eggs.

  20. Expression of Caenorhabditis elegans neurotransmitter receptors and ion channels in Xenopus oocytes

    Science.gov (United States)

    Martínez-Torres, Ataúlfo; Miledi, Ricardo

    2006-01-01

    Injection of Caenorhabditis elegans polyA RNA into Xenopus laevis oocytes led to the expression of neurotransmitter receptors that generated some unique responses, including ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors as well as receptors that coupled to G proteins, such as those to octopamine, norepinephrine, and angiotensin, which activated the oocyte’s own phosphatidylinositol system and calcium-gated chloride channels. The oocytes also expressed chloride-conducting glutamate receptors, muscarinic acetylcholine receptors, and voltage-operated calcium channels. Unexpectedly, serotonin (5-hydroxytryptamine), dopamine, GABA, and kainate did not generate ionic currents, suggesting that the corresponding receptors were not expressed or were not functional in the oocytes. The use of X. laevis oocytes for expressing worm RNA demonstrates that there are many molecular components whose role remains to be clarified in the nematode. Among them are the nature of the endogenous agonists for the octopamine and angiotensin receptors and the subunits that compose the ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and the norepinephrine receptors that couple to the phosphoinositide cascade. PMID:16549772

  1. Risks of hormonally active pharmaceuticals to amphibians: a growing concern regarding progestagens.

    Science.gov (United States)

    Säfholm, Moa; Ribbenstedt, Anton; Fick, Jerker; Berg, Cecilia

    2014-11-19

    Most amphibians breed in water, including the terrestrial species, and may therefore be exposed to water-borne pharmaceuticals during critical phases of the reproductive cycle, i.e. sex differentiation and gamete maturation. The objectives of this paper were to (i) review available literature regarding adverse effects of hormonally active pharmaceuticals on amphibians, with special reference to environmentally relevant exposure levels and (ii) expand the knowledge on toxicity of progestagens in amphibians by determining effects of norethindrone (NET) and progesterone (P) exposure to 0, 1, 10 or 100 ng l(-1) (nominal) on oogenesis in the test species Xenopus tropicalis. Very little information was found on toxicity of environmentally relevant concentrations of pharmaceuticals on amphibians. Research has shown that environmental concentrations (1.8 ng l(-1)) of the pharmaceutical oestrogen ethinylestradiol (EE2) cause developmental reproductive toxicity involving impaired spermatogenesis in frogs. Recently, it was found that the progestagen levonorgestrel (LNG) inhibited oogenesis in frogs by interrupting the formation of vitellogenic oocytes at an environmentally relevant concentration (1.3 ng l(-1)). Results from the present study revealed that 1 ng NET l(-1) and 10 ng P l(-1) caused reduced proportions of vitellogenic oocytes and increased proportions of previtellogenic oocytes compared with the controls, thereby indicating inhibited vitellogenesis. Hence, the available literature shows that the oestrogen EE2 and the progestagens LNG, NET and P impair reproductive functions in amphibians at environmentally relevant exposure concentrations. The progestagens are of particular concern given their prevalence, the range of compounds and that several of them (LNG, NET and P) share the same target (oogenesis) at environmental exposure concentrations, indicating a risk for adverse effects on fertility in exposed wild amphibians.

  2. NH2-terminal cleavage of xenopus fibroblast growth factor 3 is necessary for optimal biological activity and receptor binding.

    Science.gov (United States)

    Antoine, M; Daum, M; Köhl, R; Blecken, V; Close, M J; Peters, G; Kiefer, P

    2000-11-01

    Fibroblast growth factor 3 (FGF3) was originally identified as the mouse proto-oncogene Int-2, which is activated by proviral insertion in tumors induced by mouse mammary tumor virus. To facilitate the biological characterization of the ligand, we have analyzed its homologue in Xenopus laevis, XFGF3. Here we confirm that the X. laevis genome contains two distinct FGF3 alleles, neither of which is capable of encoding the NH2-terminally extended forms specified by the mouse and human FGF3 genes. Unlike the mammalian proteins, XFGF3 is efficiently secreted as a Mr 31,000 glycoprotein, gp31, which undergoes proteolytic cleavage to produce an NH2-terminally truncated product, gp27. Processing removes a segment of 18 amino acids immediately distal to the signal peptide that is not present in the mammalian homologues. By inserting an epitope-tag adjacent to the cleavage site, we show that a substantial amount of the gp27 is generated intracellularly, although processing can also occur in the extracellular matrix. Two residues are also removed from the COOH terminus. To compare the biological properties of the different forms, cDNAs were constructed that selectively give rise to the larger, gp31, or smaller, gp27, forms of XFGF3. As judged by their ability to cause morphological transformation of NIH3T3 cells, their mitogenicity on specific cell types, and their affinity for the IIIb and IIIc isoforms of Xenopus FGF receptors, gp27 has a much higher biological activity than gp31. Sequence comparison revealed an intriguing similar cleavage motif immediately downstream of the signal peptide cleavage site in the NH2-terminus of mouse and human FGF3. Analysis of secreted mutant mouse FGF3 confirmed an additional NH2-terminal processing at the corresponding sequence motif. NH2-terminal trimming of Xenopus and mammalian FGF3s may therefore be a prerequisite of optimal biological activity.

  3. Understanding Amphibian Declines Through Geographic Approaches

    Science.gov (United States)

    Gallant, Alisa

    2006-01-01

    Growing concern over worldwide amphibian declines warrants serious examination. Amphibians are important to the proper functioning of ecosystems and provide many direct benefits to humans in the form of pest and disease control, pharmaceutical compounds, and even food. Amphibians have permeable skin and rely on both aquatic and terrestrial ecosystems during different seasons and stages of their lives. Their association with these ecosystems renders them likely to serve as sensitive indicators of environmental change. While much research on amphibian declines has centered on mysterious causes, or on causes that directly affect humans (global warming, chemical pollution, ultraviolet-B radiation), most declines are the result of habitat loss and habitat alteration. Improving our ability to characterize, model, and monitor the interactions between environmental variables and amphibian habitats is key to addressing amphibian conservation. In 2000, the U.S. Geological Survey (USGS) initiated the Amphibian Research and Monitoring Initiative (ARMI) to address issues surrounding amphibian declines.

  4. Louisiana ESI: REPTILES (Reptile and Amphibian Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for reptiles and amphibians in coastal Louisiana. Vector polygons represent reptile and amphibian habitats,...

  5. BIOTIC FACTORS IN AMPHIBIAN POPULATION DECLINES

    Science.gov (United States)

    Amphibians evolved in, and continue to exist in, habitats that are replete with many other organisms. Some of these organisms serve as prey for amphibians and others interact with amphibians as predators, competitors, pathogens, or symbionts. Still other organisms in their enviro...

  6. A lectin-based glycomic approach to identify characteristic features of Xenopus embryogenesis.

    Directory of Open Access Journals (Sweden)

    Yasuko Onuma

    Full Text Available Cell surface glycans show dynamic changes during cell differentiation. Several glycans are useful biomarkers of tumors, stem cells, and embryogenesis. Glycomic studies have been performed using liquid chromatography and mass spectrometry, which are powerful tools for glycan structural analysis but are difficult to use for small sample sizes. Recently, a lectin microarray system was developed for profiling cell surface glycome changes to terminal carbohydrate chains and branch types, using sample sizes of a few micrograms. In this study, we used the lectin microarray system for the first time to investigate stage-specific glycomes in Xenopus laevis embryos. Unsupervised cluster analysis of lectin microarray data indicated that glycan profiles changed sequentially during development. Nine lectin probes showed significantly different signals between early and the late-stage embryos: 4 showed higher signals in the early stages, and 5 exhibited higher signals in the late stages. The gene expression profiles of relevant glycosyltransferase genes support the lectin microarray data. Therefore, we have shown that lectin microarray is an effective tool for high-throughput glycan analysis in Xenopus embryogenesis, allowing glycan profiling of early embryos and small biopsy specimens.

  7. Highly efficient transgenesis in Xenopus tropicalis using I-SceI meganuclease.

    Science.gov (United States)

    Ogino, Hajime; McConnell, William B; Grainger, Robert M

    2006-02-01

    In this study, we report a highly efficient transgenesis technique for Xenopus tropicalis based on a method described first for Medaka. This simple procedure entails co-injection of meganuclease I-SceI and a transgene construct flanked by two I-SceI sites into fertilized eggs. Approximately 30% of injected embryos express transgenes in a promoter-dependent manner. About 1/3 of such embryos show incorporation of the transgene at the one-cell stage and the remainder are 'half-transgenics' suggesting incorporation at the two-cell stage. Transgenes from both classes of embryos are shown to be transmitted and expressed in offspring. The procedure also works efficiently in Xenopus laevis. Because the needle injection procedure does not significantly damage embryos, a high fraction develop normally and can, as well, be injected with a second reagent, for example an mRNA or antisense morpholino oligonucleotide, thus allowing one to perform several genetic manipulations on embryos at one time. This simple and efficient technique will be a powerful tool for high-throughput transgenesis assays in founder animals, and for facilitating genetic studies in the fast-breeding diploid frog, X. tropicalis.

  8. Generation of transgenic frogs.

    Science.gov (United States)

    Loeber, Jana; Pan, Fong Cheng; Pieler, Tomas

    2009-01-01

    The possibility of generating transgenic animals is of obvious advantage for the analysis of gene function in development and disease. One of the established vertebrate model systems in developmental biology is the amphibian Xenopus laevis. Different techniques have been successfully applied to create Xenopus transgenics; in this chapter, the so-called meganuclease method is described. This technique is not only technically simple, but also comparably efficient and applicable to both Xenopus laevis and Xenopus tropicalis. The commercially available endonuclease I-SceI (meganuclease) mediates the integration of foreign DNA into the frog genome after coinjection into fertilized eggs. Tissue-specific gene expression, as well as germline transmission, has been observed.

  9. A revised model of Xenopus dorsal midline development: differential and separable requirements for Notch and Shh signaling.

    Science.gov (United States)

    Peyrot, Sara M; Wallingford, John B; Harland, Richard M

    2011-04-15

    The development of the vertebrate dorsal midline (floor plate, notochord, and hypochord) has been an area of classical research and debate. Previous studies in vertebrates have led to contrasting models for the roles of Shh and Notch signaling in specification of the floor plate, by late inductive or early allocation mechanisms, respectively. Here, we show that Notch signaling plays an integral role in cell fate decisions in the dorsal midline of Xenopus laevis, similar to that observed in zebrafish and chick. Notch signaling promotes floor plate and hypochord fates over notochord, but has variable effects on Shh expression in the midline. In contrast to previous reports in frog, we find that Shh signaling is not required for floor plate vs. notochord decisions and plays a minor role in floor plate specification, where it acts in parallel to Notch signaling. As in zebrafish, Shh signaling is required for specification of the lateral floor plate in the frog. We also find that the medial floor plate in Xenopus comprises two distinct populations of cells, each dependent upon different signals for its specification. Using expression analysis of several midline markers, and dissection of functional relationships, we propose a revised allocation mechanism of dorsal midline specification in Xenopus. Our model is distinct from those proposed to date, and may serve as a guide for future studies in frog and other vertebrate organisms.

  10. Functional study of the effect of phosphatase inhibitors on KCNQ4 channels expressed in Xenopus oocytes

    Institute of Scientific and Technical Information of China (English)

    Tzu-rong SU; Cay-huyen CHEN; Shih-jen HUANG; Chun-yi LEE; Mao-chang SU; Gwan-hong CHEN; Shuan-yow LI; Jiann-jou YANG; Min-jon LIN

    2009-01-01

    Aim: KCNQ4 channels play an important part in adjusting the function of cochlear outer hair cells. The aim of this study was to investigate the effects of ser/thr phosphatase inhibitors on human KCNQ4 channels expressed in Xenopus laevis oocytes. Methods: Synthetic cRNA encoding human KCNQ4 channels was injected into Xenopus oocytes. We used a two-electrode voltage clamp to measure the ion currents in the oocytes. Results: Wild-type KCNQ4 expressed in Xenopus oocytes showed the typical properties of slow activation kinetics and low threshold activation. The outward K~+ current was almost completely blocked by a KCNQ4 blocker, linopirdine (0.25 mmol/L). BIMI (a PKC inhibitor) prevented the effects of PMA (a PKC activator) on the KCNQ4 current, indicating that PKC may be involved in the regulation of KCNQ4 expressed in the Xenopus oocyte system. Treatment with the ser/thr phosphatase inhibitors, cyclosporine (2 μmoVL), calyculin A (2 μmol/L) or okadaic acid (1 μmol/L), caused a significant positive shift in V_(1/2) and a decrease in the conductance of KCNQ4 chan-nels. The V_(1/2) was shifted from-14.6±0.5 to-6.4±0.4 mV by cyclosporine, -18.8±0.5 to-9.2±0.4 mV by calyculin A, and-14.1±0.5 to -0.7±0.6 mV by okadaic acid. Moreover, the effects of these phosphatase inhibitors (okadaic acid or calyculin A) on the induction of a positive shift of V_(1/2) were augmented by further addition of PMA. Conclusion: These results indicate that ser/thr phosphatase inhibitors can induce a shift to more positive potentials of the activation curve of the KCNQ4 current. It is highly likely that the phosphatase functions to balance the phosphorylated state of substrate protein and thus has an important role in the regulation of human KCNQ4 channels expressed in Xenopus oocytes.

  11. Growth-arrest-specific protein 2 inhibits cell division in Xenopus embryos.

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    Full Text Available BACKGROUND: Growth-arrest-specific 2 gene was originally identified in murine fibroblasts under growth arrest conditions. Furthermore, serum stimulation of quiescent, non-dividing cells leads to the down-regulation of gas2 and results in re-entry into the cell cycle. Cytoskeleton rearrangements are critical for cell cycle progression and cell division and the Gas2 protein has been shown to co-localize with actin and microtubules in interphase mammalian cells. Despite these findings, direct evidence supporting a role for Gas2 in the mechanism of cell division has not been reported. METHODOLOGY AND PRINCIPAL FINDINGS: To determine whether the Gas2 protein plays a role in cell division, we over-expressed the full-length Gas2 protein and Gas2 truncations containing either the actin-binding CH domain or the tubulin-binding Gas2 domain in Xenopus laevis embryos. We found that both the full-length Gas2 protein and the Gas2 domain, but not the CH domain, inhibited cell division and resulted in multinucleated cells. The observation that Gas2 domain alone can arrest cell division suggests that Gas2 function is mediated by microtubule binding. Gas2 co-localized with microtubules at the cell cortex of Gas2-injected Xenopus embryos using cryo-confocal microscopy and co-sedimented with microtubules in cytoskeleton co-sedimentation assays. To investigate the mechanism of Gas2-induced cell division arrest, we showed, using a wound-induced contractile array assay, that Gas2 stabilized microtubules. Finally, electron microscopy studies demonstrated that Gas2 bundled microtubules into higher-order structures. CONCLUSION AND SIGNIFICANCE: Our experiments show that Gas2 inhibits cell division in Xenopus embryos. We propose that Gas2 function is mediated by binding and bundling microtubules, leading to cell division arrest.

  12. Metabolic and immune impairments induced by the endocrine disruptors benzo[a]pyrene and triclosan in Xenopus tropicalis.

    Science.gov (United States)

    Regnault, Christophe; Willison, John; Veyrenc, Sylvie; Airieau, Antinéa; Méresse, Patrick; Fortier, Marlène; Fournier, Michel; Brousseau, Pauline; Raveton, Muriel; Reynaud, Stéphane

    2016-07-01

    Despite numerous studies suggesting that amphibians are highly sensitive to cumulative anthropogenic stresses, the role played by endocrine disruptors (EDs) in the decline of amphibian populations remains unclear. EDs have been extensively studied in adult amphibians for their capacity to disturb reproduction by interfering with the sexual hormone axis. Here, we studied the in vivo responses of Xenopus tropicalis males exposed to environmentally relevant concentrations of each ED, benzo[a]pyrene (BaP) and triclosan (TCS) alone (10 μg L(-1)) or a mixture of the two (10 μg L(-1) each) over a 24 h exposure period by following the modulation of the transcription of key genes involved in metabolic, sexual and immunity processes and the cellular changes in liver, spleen and testis. BaP, TCS and the mixture of the two all induced a marked metabolic disorder in the liver highlighted by insulin resistance-like and non-alcoholic fatty liver disease (NAFLD)-like phenotypes together with hepatotoxicity due to the impairment of lipid metabolism. For TCS and the mixture, these metabolic disorders were concomitant with modulation of innate immunity. These results confirmed that in addition to the reproductive effects induced by EDs in amphibians, metabolic disorders and immune system disruption should also be considered.

  13. Ecopathology of ranaviruses infecting amphibians.

    Science.gov (United States)

    Miller, Debra; Gray, Matthew; Storfer, Andrew

    2011-11-01

    Ranaviruses are capable of infecting amphibians from at least 14 families and over 70 individual species. Ranaviruses infect multiple cell types, often culminating in organ necrosis and massive hemorrhaging. Subclinical infections have been documented, although their role in ranavirus persistence and emergence remains unclear. Water is an effective transmission medium for ranaviruses, and survival outside the host may be for significant duration. In aquatic communities, amphibians, reptiles and fish may serve as reservoirs. Controlled studies have shown that susceptibility to ranavirus infection and disease varies among amphibian species and developmental stages, and likely is impacted by host-pathogen coevolution, as well as, exogenous environmental factors. Field studies have demonstrated that the likelihood of epizootics is increased in areas of cattle grazing, where aquatic vegetation is sparse and water quality is poor. Translocation of infected amphibians through commercial trade (e.g., food, fish bait, pet industry) contributes to the spread of ranaviruses. Such introductions may be of particular concern, as several studies report that ranaviruses isolated from ranaculture, aquaculture, and bait facilities have greater virulence (i.e., ability to cause disease) than wild-type isolates. Future investigations should focus on the genetic basis for pathogen virulence and host susceptibility, ecological and anthropogenic mechanisms contributing to emergence, and vaccine development for use in captive populations and species reintroduction programs.

  14. Ecopathology of Ranaviruses Infecting Amphibians

    Directory of Open Access Journals (Sweden)

    Andrew Storfer

    2011-11-01

    Full Text Available Ranaviruses are capable of infecting amphibians from at least 14 families and over 70 individual species. Ranaviruses infect multiple cell types, often culminating in organ necrosis and massive hemorrhaging. Subclinical infections have been documented, although their role in ranavirus persistence and emergence remains unclear. Water is an effective transmission medium for ranaviruses, and survival outside the host may be for significant duration. In aquatic communities, amphibians, reptiles and fish may serve as reservoirs. Controlled studies have shown that susceptibility to ranavirus infection and disease varies among amphibian species and developmental stages, and likely is impacted by host-pathogen coevolution, as well as, exogenous environmental factors. Field studies have demonstrated that the likelihood of epizootics is increased in areas of cattle grazing, where aquatic vegetation is sparse and water quality is poor. Translocation of infected amphibians through commercial trade (e.g., food, fish bait, pet industry contributes to the spread of ranaviruses. Such introductions may be of particular concern, as several studies report that ranaviruses isolated from ranaculture, aquaculture, and bait facilities have greater virulence (i.e., ability to cause disease than wild-type isolates. Future investigations should focus on the genetic basis for pathogen virulence and host susceptibility, ecological and anthropogenic mechanisms contributing to emergence, and vaccine development for use in captive populations and species reintroduction programs.

  15. Amphibians as models for studying environmental change.

    Science.gov (United States)

    Hopkins, William A

    2007-01-01

    The use of amphibians as models in ecological research has a rich history. From an early foundation in studies of amphibian natural history sprang generations of scientists who used amphibians as models to address fundamental questions in population and community ecology. More recently, in the wake of an environment that human disturbances rapidly altered, ecologists have adopted amphibians as models for studying applied ecological issues such as habitat loss, pollution, disease, and global climate change. Some of the characteristics of amphibians that make them useful models for studying these environmental problems are highlighted, including their trophic importance, environmental sensitivity, research tractability, and impending extinction. The article provides specific examples from the recent literature to illustrate how studies on amphibians have been instrumental in guiding scientific thought on a broad scale. Included are examples of how amphibian research has transformed scientific disciplines, generated new theories about global health, called into question widely accepted scientific paradigms, and raised awareness in the general public that our daily actions may have widespread repercussions. In addition, studies on amphibian declines have provided insight into the complexity in which multiple independent factors may interact with one another to produce catastrophic and sometimes unpredictable effects. Because of the complexity of these problems, amphibian ecologists have been among the strongest advocates for interdisciplinary research. Future studies of amphibians will be important not only for their conservation but also for the conservation of other species, critical habitats, and entire ecosystems.

  16. Responses of Squalius cephalus intestinal mucous cells to Pomphorhynchus laevis.

    Science.gov (United States)

    Bosi, Giampaolo; Sayyaf Dezfuli, Bahram

    2015-04-01

    Intestinal mucous cell numbers and their glycoconjugate composition were investigated by histochemical methods in uninfected chub, Squalius cephalus, and in conspecifics naturally parasitised with the acanthocephalan Pomphorhynchus laevis. A sub-population of 42 chub from the River Tiber (Perugia, Italy) were sampled and screened for ecto and endoparasites. No parasites were found in gills and in other visceral organs of chub and P. laevis appeared to be the only enteric worm encountered. In all infected chub (twenty-eight out of 42) this acanthocephalan was encountered mainly in the mid-gut. In situ, an excessive yellowish mucus or catarrh was observed around each acanthocephalan. Hyperplasia and hypertrophy of the mucous cells were only evident near the site of P. laevis attachment where the total number of mucous cells and the number of those containing acidic, particularly non-sulphated mucins, or mixed glycoconjugates were significantly higher. In intestinal regions of infected fish far away from the point of parasite attachment, there were no statistical differences in the density of mucous cells in comparison to uninfected fish. Interestingly, in parasitised chub, the length of intestinal folds was significantly larger close to the sites at which P. laevis attach when compared to the length of the intestinal folds located further away from the acanthocephalans and/or in uninfected intestines. The effect of P. laevis on intestinal mucous cells of S. cephalus was compared to other parasite-host systems and the role of enhanced mucus production in parasitized intestines was discussed.

  17. High-sensitivity Mass Spectrometry for Probing Gene Translation in Single Embryonic Cells in the Early Frog (Xenopus Embryo

    Directory of Open Access Journals (Sweden)

    Camille Lombard-Banek

    2016-10-01

    Full Text Available Direct measurement of protein expression with single-cell resolution promises to deepen the understanding of basic molecular processes during normal and impaired development. High-resolution mass spectrometry provides detailed coverage of the proteomic composition of large numbers of cells. Here we discuss recent mass spectrometry developments based on single-cell capillary electrophoresis that extend discovery proteomics to sufficient sensitivity to enable the measurement of proteins in single cells. The single-cell mass spectrometry system is used to detect a large number of proteins in single embryonic cells in blastomeres in the 16-cell embryo of the South African clawed frog (Xenopus laevis that give rise to distinct tissue types. Single-cell measurements of protein expression provide complementary information on gene transcription during early development of the vertebrate embryo, raising a potential to understand how differential gene expression coordinates normal cell heterogeneity during development.

  18. Single-Cell Mass Spectrometry for Discovery Proteomics: Quantifying Translational Cell Heterogeneity in the 16-Cell Frog (Xenopus) Embryo.

    Science.gov (United States)

    Lombard-Banek, Camille; Moody, Sally A; Nemes, Peter

    2016-02-12

    We advance mass spectrometry from a cell population-averaging tool to one capable of quantifying the expression of diverse proteins in single embryonic cells. Our instrument combines capillary electrophoresis (CE), electrospray ionization, and a tribrid ultrahigh-resolution mass spectrometer (HRMS) to enable untargeted (discovery) proteomics with ca. 25 amol lower limit of detection. CE-μESI-HRMS enabled the identification of 500-800 nonredundant protein groups by measuring 20 ng, or frog (Xenopus laevis) embryo, amounting to a total of 1709 protein groups identified between n=3 biological replicates. By quantifying ≈150 nonredundant protein groups between all blastomeres and replicate measurements, we found significant translational cell heterogeneity along multiple axes of the embryo at this very early stage of development when the transcriptional program of the embryo has yet to begin.

  19. Endoparasites in some Swedish Amphibians

    DEFF Research Database (Denmark)

    Cedhagen, Tomas

    1988-01-01

    A study was made of the endoparasites in specimens of Rana arvalis and R. temporaria collected on two occasions from a locality of southern Sweden. Some frogs were investigated directly after capture while other frogs were kept hibernating and the composition of the parasites as well as the behav...... not previously been reported from Sweden. The late Prof. O. Nybelin's unpublished records of parasites found in Swedish amphibians are also given....

  20. Survey for the amphibian chytrid Batrachochytrium dendrobatidis in Hong Kong in native amphibians and in the international amphibian trade.

    Science.gov (United States)

    Rowley, Jodi J L; Chan, Simon Kin Fung; Tang, Wing Sze; Speare, Richard; Skerratt, Lee F; Alford, Ross A; Cheung, Ka Shing; Ho, Ching Yee; Campbell, Ruth

    2007-12-13

    Chytridiomycosis, caused by the pathogen Batrachochytrium dendrobatidis, is responsible for many amphibian declines and has been identified in wild amphibian populations on all continents where they exist, except for Asia. In order to assess whether B. dendrobatidis is present on the native amphibians of Hong Kong, we sampled wild populations of Amolops hongkongensis, Paa exilispinosa, P. spinosa and Rana chloronota during 2005-2006. Amphibians infected with B. dendrobatidis have been found in the international trade, so we also examined the extent and nature of the amphibian trade in Hong Kong during 2005-2006, and assessed whether B. dendrobatidis was present in imported amphibians. All 274 individuals of 4 native amphibian species sampled tested negative for B. dendrobatidis, giving an upper 95% confidence limit for prevalence of 1.3%. Approximately 4.3 million amphibians of 45 species from 11 countries were imported into Hong Kong via air over 12 mo; we did not detect B. dendrobatidis on any of 137 imported amphibians sampled. As B. dendrobatidis generally occurs at greater than 5% prevalence in infected populations during favorable environmental conditions, native amphibians in Hong Kong appear free of B. dendrobatidis, and may be at severe risk of impact if it is introduced. Until it is established that the pathogen is present in Hong Kong, management strategies should focus on preventing it from being imported and decreasing the risk of it escaping into the wild amphibian populations if imported. Further research is needed to determine the status of B. dendrobatidis in Hong Kong with greater certainty.

  1. Xenopus egg cytoplasm with intact actin.

    Science.gov (United States)

    Field, Christine M; Nguyen, Phuong A; Ishihara, Keisuke; Groen, Aaron C; Mitchison, Timothy J

    2014-01-01

    We report optimized methods for preparing Xenopus egg extracts without cytochalasin D, that we term "actin-intact egg extract." These are undiluted egg cytoplasm that contains abundant organelles, and glycogen which supplies energy, and represents the least perturbed cell-free cytoplasm preparation we know of. We used this system to probe cell cycle regulation of actin and myosin-II dynamics (Field et al., 2011), and to reconstitute the large, interphase asters that organize early Xenopus embryos (Mitchison et al., 2012; Wühr, Tan, Parker, Detrich, & Mitchison, 2010). Actin-intact Xenopus egg extracts are useful for analysis of actin dynamics, and interaction of actin with other cytoplasmic systems, in a cell-free system that closely mimics egg physiology, and more generally for probing the biochemistry and biophysics of the egg, zygote, and early embryo. Detailed protocols are provided along with assays used to check cell cycle state and tips for handling and storing undiluted egg extracts.

  2. Amphibian haematology: Metamorphosis-related changes in blood cells

    DEFF Research Database (Denmark)

    Rosenkilde, Per; Sørensen, Inger; Ussing, Anne Phaff

    1995-01-01

    Zoofysiologi, Amphibian metamorphosis, Haematology, Immunosuppression, Immunological Tolerance, Protozoan Infection, metamorfose, springpadder, ontogenese, halepadder.......Zoofysiologi, Amphibian metamorphosis, Haematology, Immunosuppression, Immunological Tolerance, Protozoan Infection, metamorfose, springpadder, ontogenese, halepadder....

  3. Cardiac specific expression of Xenopus Popeye-1.

    Science.gov (United States)

    Hitz, Marc P; Pandur, Petra; Brand, Thomas; Kühl, Michael

    2002-07-01

    Popeye genes code for putative transmembrane proteins that are predominantly expressed in heart and skeletal muscle. Here we report on the isolation and expression of a previously unknown Xenopus member of this family, Xenopus Popeye-1 (Xpop-1). Xpop-1 is 60-65% identical to other vertebrate Pop-1 genes at the protein level. Whole-mount in situ hybridization studies revealed a highly specific expression of Xpop-1 whose transcripts are restricted to the embryonic heart and become enriched in the forming ventricle. Interestingly, unlike other known vertebrate Popeye genes, Xpop-1 is exclusively expressed in cardiac tissue and absent from skeletal muscle.

  4. Neuroendocrine-immune system interactions in amphibians: implications for understanding global amphibian declines.

    Science.gov (United States)

    Rollins-Smith, L A

    2001-01-01

    Amphibians are ancient creatures valued by biologists and naturalists around the world. They share with all other vertebrates a complex neuroendocrine system that enables them to flourish in a variety of aquatic and semiaquatic environments. Studies from a number of laboratories have demonstrated that the immune system of amphibian species is nearly as complex as that of mammals. Yet for reasons that are not well understood, amphibian species are facing greater survival challenges than in the recent past. This article will review our current understanding of the neuroendocrine immune system interactions in amphibians and address the question of whether environmental stressors may contribute to immunosuppression and amphibian declines.

  5. Xnrs and activin regulate distinct genes during Xenopus development: activin regulates cell division.

    Directory of Open Access Journals (Sweden)

    Joana M Ramis

    Full Text Available BACKGROUND: The mesoderm of the amphibian embryo is formed through an inductive interaction in which vegetal cells of the blastula-staged embryo act on overlying equatorial cells. Candidate mesoderm-inducing factors include members of the transforming growth factor type beta family such as Vg1, activin B, the nodal-related proteins and derrière. METHODOLOGY AND PRINCIPLE FINDINGS: Microarray analysis reveals different functions for activin B and the nodal-related proteins during early Xenopus development. Inhibition of nodal-related protein function causes the down-regulation of regionally expressed genes such as chordin, dickkopf and XSox17alpha/beta, while genes that are mis-regulated in the absence of activin B tend to be more widely expressed and, interestingly, include several that are involved in cell cycle regulation. Consistent with the latter observation, cells of the involuting dorsal axial mesoderm, which normally undergo cell cycle arrest, continue to proliferate when the function of activin B is inhibited. CONCLUSIONS/SIGNIFICANCE: These observations reveal distinct functions for these two classes of the TGF-beta family during early Xenopus development, and in doing so identify a new role for activin B during gastrulation.

  6. Amphibians at risk? Susceptibility of terrestrial amphibian life stages to pesticides.

    Science.gov (United States)

    Brühl, Carsten A; Pieper, Silvia; Weber, Brigitte

    2011-11-01

    Current pesticide risk assessment does not specifically consider amphibians. Amphibians in the aquatic environment (aquatic life stages or postmetamorphic aquatic amphibians) and terrestrial living juvenile or adult amphibians are assumed to be covered by the risk assessment for aquatic invertebrates and fish, or mammals and birds, respectively. This procedure has been evaluated as being sufficiently protective regarding the acute risk posed by a number of pesticides to aquatic amphibian life stages (eggs, larvae). However, it is unknown whether the exposure and sensitivity of terrestrial living amphibians are comparable to mammalian and avian exposure and sensitivity. We reviewed the literature on dermal pesticide absorption and toxicity studies for terrestrial life stages of amphibians, focusing on the dermal exposure pathway, that is, through treated soil or direct overspray. In vitro studies demonstrated that cutaneous absorption of chemicals is significant and that chemical percutaneous passage, P (cm/h), is higher in amphibians than in mammals. In vivo, the rapid and substantial uptake of the herbicide atrazine from treated soil by toads (Bufo americanus) has been described. Severe toxic effects on various amphibian species have been reported for field-relevant application rates of different pesticides. In general, exposure and toxicity studies for terrestrial amphibian life stages are scarce, and the reported data indicate the need for further research, especially in light of the global amphibian decline.

  7. The complexity of amphibian population declines: understanding the role of cofactors in driving amphibian losses.

    Science.gov (United States)

    Blaustein, Andrew R; Han, Barbara A; Relyea, Rick A; Johnson, Pieter T J; Buck, Julia C; Gervasi, Stephanie S; Kats, Lee B

    2011-03-01

    Population losses and extinctions of species are occurring at unprecedented rates, as exemplified by declines and extinctions of amphibians worldwide. However, studies of amphibian population declines generally do not address the complexity of the phenomenon or its implications for ecological communities, focusing instead on single factors affecting particular amphibian species. We argue that the causes for amphibian population declines are complex; may differ among species, populations, and life stages within a population; and are context dependent with multiple stressors interacting to drive declines. Because amphibians are key components of communities, we emphasize the importance of investigating amphibian declines at the community level. Selection pressures over evolutionary time have molded amphibian life history characteristics, such that they may remain static even in the face of strong, recent human-induced selection pressures.

  8. Novel Cl- currents elicited by follicle stimulating hormone and acetylcholine in follicle-enclosed Xenopus oocytes

    Science.gov (United States)

    1993-01-01

    Voltage-clamp techniques were used to study the membrane currents elicited by follicle stimulating hormone (FSH) and acetylcholine (ACh) in follicle-enclosed oocytes of Xenopus laevis (follicles). Both agonists caused complex responses that were more evident when the follicles were in hypotonic Ringer solution (HR; 190.4 mosM). In this medium, currents activated by FSH regularly showed three phases whereas currents activated by ACh displayed three to six phases. At a holding potential of -60 mV, FSH, and ACh responses involved combinations of inward and outward currents. Both FSH and ACh responses included a slow smooth inward component that was associated with an increase in membrane conductance, mainly to Cl- (S(in)). This current was strongly dependent on the osmolarity of the external solution: an increase in osmolarity of the HR solution of 18-20 mosM caused a 50% decrease in S(in). In contrast, a fast and transient Cl- current (F(in)) specifically elicited by ACh was not dependent on osmolarity. Both, F(in) and S(in) currents required the presence of follicular cells, since defolliculation using three different methods abolished all the response to FSH and at least four components of the ACh responses. The membrane channels carrying F(in) and oscillatory Cl- currents elicited by stimulation of ACh or serum receptors, were much more permeable to I- and Br- than Cl-, whereas S(in) channels were equally permeable to these anions. Unlike the oscillatory Cl- currents generated in the oocyte itself, S(in) and F(in) currents in follicle-enclosed oocytes were not abolished by chelation of intracellular Ca2+, either with EGTA or BAPTA, which suggests that intracellular Ca2+ does not play a critical role in the activation of these currents. Our experiments show that S(in) and F(in) currents are quite distinct from the previously characterized oscillatory Cl- responses of oocytes. Moreover, the results strongly suggest that the FSH and ACh receptors, the Cl- channels

  9. Evidence for an RNA polymerization activity in axolotl and Xenopus egg extracts.

    Directory of Open Access Journals (Sweden)

    Hélène Pelczar

    Full Text Available We have previously reported a post-transcriptional RNA amplification observed in vivo following injection of in vitro synthesized transcripts into axolotl oocytes, unfertilized (UFE or fertilized eggs. To further characterize this phenomenon, low speed extracts (LSE from axolotl and Xenopus UFE were prepared and tested in an RNA polymerization assay. The major conclusions are: i the amphibian extracts catalyze the incorporation of radioactive ribonucleotide in RNase but not DNase sensitive products showing that these products correspond to RNA; ii the phenomenon is resistant to α-amanitin, an inhibitor of RNA polymerases II and III and to cordycepin (3'dAMP, but sensitive to cordycepin 5'-triphosphate, an RNA elongation inhibitor, which supports the existence of an RNA polymerase activity different from polymerases II and III; the detection of radiolabelled RNA comigrating at the same length as the exogenous transcript added to the extracts allowed us to show that iii the RNA polymerization is not a 3' end labelling and that iv the radiolabelled RNA is single rather than double stranded. In vitro cell-free systems derived from amphibian UFE therefore validate our previous in vivo results hypothesizing the existence of an evolutionary conserved enzymatic activity with the properties of an RNA dependent RNA polymerase (RdRp.

  10. Inbreeding Ratio and Genetic Relationships among Strains of the Western Clawed Frog, Xenopus tropicalis.

    Directory of Open Access Journals (Sweden)

    Takeshi Igawa

    Full Text Available The Western clawed frog, Xenopus tropicalis, is a highly promising model amphibian, especially in developmental and physiological research, and as a tool for understanding disease. It was originally found in the West African rainforest belt, and was introduced to the research community in the 1990s. The major strains thus far known include the Nigerian and Ivory Coast strains. However, due to its short history as an experimental animal, the genetic relationship among the various strains has not yet been clarified, and establishment of inbred strains has not yet been achieved. Since 2003 the Institute for Amphibian Biology (IAB, Hiroshima University has maintained stocks of multiple X. tropicalis strains and conducted consecutive breeding as part of the National BioResource Project. In the present study we investigated the inbreeding ratio and genetic relationship of four inbred strains at IAB, as well as stocks from other institutions, using highly polymorphic microsatellite markers and mitochondrial haplotypes. Our results show successive reduction of heterozygosity in the genome of the IAB inbred strains. The Ivory Coast strains clearly differed from the Nigerian strains genetically, and three subgroups were identified within both the Nigerian and Ivory Coast strains. It is noteworthy that the Ivory Coast strains have an evolutionary divergent genetic background. Our results serve as a guide for the most effective use of X. tropicalis strains, and the long-term maintenance of multiple strains will contribute to further research efforts.

  11. Temperature dependence of locomotor performance in the tropical clawed frog, Xenopus tropicalis.

    Science.gov (United States)

    Herrel, Anthony; Bonneaud, Camille

    2012-07-15

    Amphibians are ideal taxa with which to investigate the effects of climate change on physiology, dispersal capacity and distributional ranges as their physiological performance and fitness is highly dependent on temperature. Moreover, amphibians are among the most endangered vertebrate taxa. Here we use the tropical clawed frog, Xenopus tropicalis, as a model system to explore effects of temperature on locomotor performance. Our analyses show that locomotion is thermally sensitive, as illustrated by significant effects of temperature on terrestrial exertion capacity (time until exhaustion) and aquatic burst speed (maximal burst swimming velocity and maximal burst swimming acceleration capacity). Exertion performance measures had relatively lower temperature optima and narrower performance breadth ranges than measures of burst speed. The narrow 80% performance breadths confirm predictions that animals from stable environments should display high thermal sensitivity and, combined with the divergent temperature optima for exertion capacity and burst speed, underscore the vulnerability of tropical species such as X. tropicalis to even relatively small temperature changes. The temperature sensitivity of locomotor performance traits in X. tropicalis suggests that tropical ectotherms may be impacted by predicted changes in climate.

  12. ZWY Sex Determination in Xenopus tropicalis

    Science.gov (United States)

    Most vertebrate species with described genetic sex determination are either male (XY) or female (ZW) heterogametic. To date, studies with Xenopus species indicate that members of this genus operate under a ZW sex determination system. We used two different approaches and demonst...

  13. Fire and amphibians in North America

    Science.gov (United States)

    Pilliod, D.S.; Bury, R.B.; Hyde, E.J.; Pearl, C.A.; Corn, P.S.

    2003-01-01

    Information on amphibian responses to fire and fuel reduction practices is critically needed due to potential declines of species and the prevalence of new, more intensive fire management practices in North American forests. The goals of this review are to summarize the known and potential effects of fire and fuels management on amphibians and their aquatic habitats, and to identify information gaps to help direct future scientific research. Amphibians as a group are taxonomically and ecologically diverse; in turn, responses to fire and associated habitat alteration are expected to vary widely among species and among geographic regions. Available data suggest that amphibian responses to fire are spatially and temporally variable and incompletely understood. Much of the limited research has addressed short-term (1-3 years) effects of prescribed fire on terrestrial life stages of amphibians in the southeastern United States. Information on the long-term negative effects of fire on amphibians and the importance of fire for maintaining amphibian communities is sparse for the majority of taxa in North America. Given the size and severity of recent wildland fires and the national effort to reduce fuels on federal lands, future studies are needed to examine the effects of these landscape disturbances on amphibians. We encourage studies to address population-level responses of amphibians to fire by examining how different life stages are affected by changes in aquatic, riparian, and upland habitats. Research designs need to be credible and provide information that is relevant for fire managers and those responsible for assessing the potential effects of various fuel reduction alternatives on rare, sensitive, and endangered amphibian species. ?? 2003 Elsevier Science B.V. All rights reserved.

  14. Gremlin1 induces anterior-posterior limb bifurcations in developing Xenopus limbs but does not enhance limb regeneration.

    Science.gov (United States)

    Wang, Yi-Hsuan; Keenan, Samuel R; Lynn, Jeremy; McEwan, James C; Beck, Caroline W

    2015-11-01

    Gremlin1 (grem1) has been previously identified as being significantly up-regulated during regeneration of Xenopus laevis limbs. Grem1 is an antagonist of bone morphogenetic proteins (BMPs) with a known role in limb development in amniotes. It forms part of a self-regulating feedback loop linking epithelial (FGF) and mesenchymal (shh) signalling centres, thereby controlling outgrowth, anterior posterior and proximal distal patterning. Spatiotemporal regulation of the same genes in developing and regenerating Xenopus limb buds supports conservation of this mechanism. Using a heat shock inducible grem1 (G) transgene to created temperature regulated stable lines, we have shown that despite being upregulated in regeneration, grem1 overexpression does not enhance regeneration of tadpole hindlimbs. However, both the regenerating and contralateral, developing limb of G transgenics developed skeletal defects, suggesting that overexpressing grem1 negatively affects limb patterning. When grem1 expression was targeted earlier in limb bud development, we saw dramatic bifurcations of the limbs resulting in duplication of anterior posterior (AP) pattern, forming a phenotypic continuum ranging from duplications arising at the level of the femoral head to digit bifurcations, but never involving the pelvis. Intriguingly, the original limbs have AP pattern inversion due to de-restricted Shh signalling. We discuss a possible role for Grem1 regulation of limb BMPs in regulation of branching pattern in the limbs.

  15. Development of a new approach for targeted gene editing in primordial germ cells using TALENs in Xenopus

    Directory of Open Access Journals (Sweden)

    Keisuke Nakajima

    2015-02-01

    Full Text Available A gene of interest can be efficiently modified using transcription activator-like effector nucleases (TALENs (Christian et al., 2010;Li et al., 2011. However, if a target gene is essential for development, growth and fertility, use of TALENs with high mutagenic activity in F0 frogs could result in developmental disorders or sterility, which would reduce the number of F1 progeny and make F1 phenotypical analysis difficult. We used the 3′ untranslated region of DEADSouth gene (DS-3′ of Xenopus tropicalis to solve this problem, because the addition of the DS-3′ to mRNA is known to induce primordial germ cell (PGC-specific expression and reduce the stability in somatic cells of mRNA in Xenopus laevis. At first, we inserted the X. tropicalis DS-3′ downstream of the EGFP termination codon and confirmed that the EGFP expression was specifically detected in PGCs for three weeks. Therefore, we inserted the DS-3′ downstream of the termination codon of the TALEN coding sequence. The tyrosinase gene was selected as the target gene for TALEN because the bi-allelic mutation of this gene is easily discernible by the albino phenotype. When fertilized eggs were microinjected with TALEN mRNAs fused to the DS-3′, their sperm and oocytes had a high rate (84–100% of target-gene modification in contrast to the lower rate (0–45% of nucleotide alteration observed in somatic cells.

  16. Species-specific loss of sexual dimorphism in vocal effectors accompanies vocal simplification in African clawed frogs (Xenopus).

    Science.gov (United States)

    Leininger, Elizabeth C; Kitayama, Ken; Kelley, Darcy B

    2015-03-01

    Phylogenetic studies can reveal patterns of evolutionary change, including the gain or loss of elaborate courtship traits in males. Male African clawed frogs generally produce complex and rapid courtship vocalizations, whereas female calls are simple and slow. In a few species, however, male vocalizations are also simple and slow, suggesting loss of male-typical traits. Here, we explore features of the male vocal organ that could contribute to loss in two species with simple, slow male calls. In Xenopus boumbaensis, laryngeal morphology is more robust in males than in females. Larynges are larger, have a more complex cartilaginous morphology and contain more muscle fibers. Laryngeal muscle fibers are exclusively fast-twitch in males but are both fast- and slow-twitch in females. The laryngeal electromyogram, a measure of neuromuscular synaptic strength, shows greater potentiation in males than in females. Male-specific physiological features are shared with X. laevis, as well as with a species of the sister clade, Silurana tropicalis, and thus are likely ancestral. In X. borealis, certain aspects of laryngeal morphology and physiology are sexually monomorphic rather than dimorphic. In both sexes, laryngeal muscle fibers are of mixed-twitch type, which limits the production of muscle contractions at rapid intervals. Muscle activity potentiation and discrete tension transients resemble female rather than male X. boumbaensis. The de-masculinization of these laryngeal features suggests an alteration in sensitivity to the gonadal hormones that are known to control the sexual differentiation of the larynx in other Xenopus and Silurana species.

  17. Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus.

    Science.gov (United States)

    Inoue, Yasuhiro; Suzuki, Makoto; Watanabe, Tadashi; Yasue, Naoko; Tateo, Itsuki; Adachi, Taiji; Ueno, Naoto

    2016-12-01

    Neural tube closure is an important and necessary process during the development of the central nervous system. The formation of the neural tube structure from a flat sheet of neural epithelium requires several cell morphogenetic events and tissue dynamics to account for the mechanics of tissue deformation. Cell elongation changes cuboidal cells into columnar cells, and apical constriction then causes them to adopt apically narrow, wedge-like shapes. In addition, the neural plate in Xenopus is stratified, and the non-neural cells in the deep layer (deep cells) pull the overlying superficial cells, eventually bringing the two layers of cells to the midline. Thus, neural tube closure appears to be a complex event in which these three physical events are considered to play key mechanical roles. To test whether these three physical events are mechanically sufficient to drive neural tube formation, we employed a three-dimensional vertex model and used it to simulate the process of neural tube closure. The results suggest that apical constriction cued the bending of the neural plate by pursing the circumference of the apical surface of the neural cells. Neural cell elongation in concert with apical constriction further narrowed the apical surface of the cells and drove the rapid folding of the neural plate, but was insufficient for complete neural tube closure. Migration of the deep cells provided the additional tissue deformation necessary for closure. To validate the model, apical constriction and cell elongation were inhibited in Xenopus laevis embryos. The resulting cell and tissue shapes resembled the corresponding simulation results.

  18. Dynamic Regulation of Histone Modifications in Xenopus Oocytes through Histone Exchange

    Science.gov (United States)

    Stewart, M. David; Sommerville, John; Wong, Jiemin

    2006-01-01

    Histone H3 lysine 9 (H3K9) methylation has broad roles in transcriptional repression, gene silencing, maintenance of heterochromatin, and epigenetic inheritance of heterochromatin. Using Xenopus laevis oocytes, we have previously shown that targeting G9a, an H3K9 histone methyltransferase, to chromatin increases H3K9 methylation and consequently represses transcription. Here we report that treatment with trichostatin A induces histone acetylation and is sufficient to activate transcription repressed by G9a, and this activation is accompanied by a reduction in dimethyl H3K9 (H3K9me2). We tested the possibility that the reduction in H3K9me2 was due to the replacement of methylated H3 with unmethylated H3.3. Surprisingly, we found that both free H3 and H3.3 are continually exchanged with chromatin-associated histones. This dynamic exchange of chromatin-associated H3 with free H3/H3.3 was not affected by alterations in transcriptional activity, elongation, acetylation, H3K9 methylation, or DNA replication. In support of this continual histone exchange model, we show that maintenance of H3K9 methylation at a specific site requires the continual presence of an H3K9 histone methyltransferase. Upon dissociation of the methyltransferase, H3K9 methylation decreases. Taken together, our data suggest that chromatin-associated and non-chromatin-associated histones are continually exchanged in the Xenopus oocyte, creating a highly dynamic chromatin environment. PMID:16943430

  19. Stage-specific histone modification profiles reveal global transitions in the Xenopus embryonic epigenome.

    Directory of Open Access Journals (Sweden)

    Tobias D Schneider

    Full Text Available Vertebrate embryos are derived from a transitory pool of pluripotent cells. By the process of embryonic induction, these precursor cells are assigned to specific fates and differentiation programs. Histone post-translational modifications are thought to play a key role in the establishment and maintenance of stable gene expression patterns underlying these processes. While on gene level histone modifications are known to change during differentiation, very little is known about the quantitative fluctuations in bulk histone modifications during development. To investigate this issue we analysed histones isolated from four different developmental stages of Xenopus laevis by mass spectrometry. In toto, we quantified 59 modification states on core histones H3 and H4 from blastula to tadpole stages. During this developmental period, we observed in general an increase in the unmodified states, and a shift from histone modifications associated with transcriptional activity to transcriptionally repressive histone marks. We also compared these naturally occurring patterns with the histone modifications of murine ES cells, detecting large differences in the methylation patterns of histone H3 lysines 27 and 36 between pluripotent ES cells and pluripotent cells from Xenopus blastulae. By combining all detected modification transitions we could cluster their patterns according to their embryonic origin, defining specific histone modification profiles (HMPs for each developmental stage. To our knowledge, this data set represents the first compendium of covalent histone modifications and their quantitative flux during normogenesis in a vertebrate model organism. The HMPs indicate a stepwise maturation of the embryonic epigenome, which may be causal to the progressing restriction of cellular potency during development.

  20. The acrylamide (S)-2 as a positive and negative modulator of Kv7 channels expressed in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Blom, Sigrid Marie; Schmitt, Nicole; Jensen, Henrik Sindal

    2009-01-01

    Kv7.2-5, is now in clinical trial phase III for the treatment of partial onset seizures. One of the main obstacles in developing Kv7 channel active drugs has been to identify compounds that can discriminate between the neuronal subtypes, a feature that could help diminish side effects and increase...... into pharmacological activation of Kv7 channels, add to the understanding of small molecule interactions with the channels and may contribute to the design of subtype selective modulators....

  1. Dependency of the force-velocity relationships on Mg ATP in different types of muscle fibers from Xenopus laevis.

    OpenAIRE

    Stienen, G J; Laarse, W. J. van der; Elzinga, G.

    1988-01-01

    MgATP binding to the actomyosin complex is followed by the dissociation of actin and myosin. The rate of this dissociation process was determined from the relationship between the maximum velocity of shortening and the MgATP concentration. It is shown here that the overall dissociation rate is rather similar in different types of muscle fibers. The relation between MgATP concentration and the maximum shortening velocity was investigated in fast and slow fibers and bundles of myofibrils of the...

  2. Toxicity of CuO nanoparticles and Cu ions to tight epithelial cells from Xenopus laevis (A6)

    DEFF Research Database (Denmark)

    Thit, Amalie; Selck, Henriette; Bjerregaard, Henning F.

    2013-01-01

    ) was used to investigate toxicity of copper (Cu) in 3 different forms; Cu ions (Cu2+), CuO NPs (6 nm) and poly-dispersed CuO NPs (100 nm, poly-CuO). Continuous exposures at concentrations of 143–200 μM demonstrated that cytotoxicity differed among the 3 Cu forms tested and that the effects depend on cell...... state (dividing or differentiated). Dividing cells treated with poly-CuO, CuO NPs (6 nm) or Cu2+ showed cell cycle arrest and caused significant increase in cell death via apoptosis after 48 h, 6 and 7 days of treatment, respectively. Treatment with either CuO NPs (6 nm) or Cu2+ caused significant...... decrease in cell proliferation. Treatments of differentiated cells, revealed the same patterns of toxicity for Cu forms tested, but after shorter exposure periods....

  3. First evidence of amphibian chytrid fungus (Batrachochytrium dendrobatidis) and ranavirus in Hong Kong amphibian trade.

    Science.gov (United States)

    Kolby, Jonathan E; Smith, Kristine M; Berger, Lee; Karesh, William B; Preston, Asa; Pessier, Allan P; Skerratt, Lee F

    2014-01-01

    The emerging infectious amphibian diseases caused by amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) and ranaviruses are responsible for global amphibian population declines and extinctions. Although likely to have been spread by a variety of activities, transcontinental dispersal appears closely associated with the international trade in live amphibians. The territory of Hong Kong reports frequent, high volume trade in amphibians, and yet the presence of Bd and ranavirus have not previously been detected in either traded or free-ranging amphibians. In 2012, a prospective surveillance project was conducted to investigate the presence of these pathogens in commercial shipments of live amphibians exported from Hong Kong International Airport. Analysis of skin (Bd) and cloacal (ranavirus) swabs by quantitative PCR detected pathogen presence in 31/265 (11.7%) and in 105/185 (56.8%) of amphibians, respectively. In addition, the water in which animals were transported tested positive for Bd, demonstrating the risk of pathogen pollution by the disposal of untreated wastewater. It is uncertain whether Bd and ranavirus remain contained within Hong Kong's trade sector, or if native amphibians have already been exposed. Rapid response efforts are now urgently needed to determine current pathogen distribution in Hong Kong, evaluate potential trade-associated exposure to free-ranging amphibians, and identify opportunities to prevent disease establishment.

  4. First evidence of amphibian chytrid fungus (Batrachochytrium dendrobatidis and ranavirus in Hong Kong amphibian trade.

    Directory of Open Access Journals (Sweden)

    Jonathan E Kolby

    Full Text Available The emerging infectious amphibian diseases caused by amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd and ranaviruses are responsible for global amphibian population declines and extinctions. Although likely to have been spread by a variety of activities, transcontinental dispersal appears closely associated with the international trade in live amphibians. The territory of Hong Kong reports frequent, high volume trade in amphibians, and yet the presence of Bd and ranavirus have not previously been detected in either traded or free-ranging amphibians. In 2012, a prospective surveillance project was conducted to investigate the presence of these pathogens in commercial shipments of live amphibians exported from Hong Kong International Airport. Analysis of skin (Bd and cloacal (ranavirus swabs by quantitative PCR detected pathogen presence in 31/265 (11.7% and in 105/185 (56.8% of amphibians, respectively. In addition, the water in which animals were transported tested positive for Bd, demonstrating the risk of pathogen pollution by the disposal of untreated wastewater. It is uncertain whether Bd and ranavirus remain contained within Hong Kong's trade sector, or if native amphibians have already been exposed. Rapid response efforts are now urgently needed to determine current pathogen distribution in Hong Kong, evaluate potential trade-associated exposure to free-ranging amphibians, and identify opportunities to prevent disease establishment.

  5. Ossification sequence heterochrony among amphibians.

    Science.gov (United States)

    Harrington, Sean M; Harrison, Luke B; Sheil, Christopher A

    2013-01-01

    Heterochrony is an important mechanism in the evolution of amphibians. Although studies have centered on the relationship between size and shape and the rates of development, ossification sequence heterochrony also may have been important. Rigorous, phylogenetic methods for assessing sequence heterochrony are relatively new, and a comprehensive study of the relative timing of ossification of skeletal elements has not been used to identify instances of sequence heterochrony across Amphibia. In this study, a new version of the program Parsimov-based genetic inference (PGi) was used to identify shifts in ossification sequences across all extant orders of amphibians, for all major structural units of the skeleton. PGi identified a number of heterochronic sequence shifts in all analyses, the most interesting of which seem to be tied to differences in metamorphic patterns among major clades. Early ossification of the vomer, premaxilla, and dentary is retained by Apateon caducus and members of Gymnophiona and Urodela, which lack the strongly biphasic development seen in anurans. In contrast, bones associated with the jaws and face were identified as shifting late in the ancestor of Anura. The bones that do not shift late, and thereby occupy the earliest positions in the anuran cranial sequence, are those in regions of the skull that undergo the least restructuring throughout anuran metamorphosis. Additionally, within Anura, bones of the hind limb and pelvic girdle were also identified as shifting early in the sequence of ossification, which may be a result of functional constraints imposed by the drastic metamorphosis of most anurans.

  6. Sperm storage in caecilian amphibians

    Directory of Open Access Journals (Sweden)

    Kuehnel Susanne

    2012-06-01

    Full Text Available Abstract Background Female sperm storage has evolved independently multiple times among vertebrates to control reproduction in response to the environment. In internally fertilising amphibians, female salamanders store sperm in cloacal spermathecae, whereas among anurans sperm storage in oviducts is known only in tailed frogs. Facilitated through extensive field sampling following historical observations we tested for sperm storing structures in the female urogenital tract of fossorial, tropical caecilian amphibians. Findings In the oviparous Ichthyophis cf. kohtaoensis, aggregated sperm were present in a distinct region of the posterior oviduct but not in the cloaca in six out of seven vitellogenic females prior to oviposition. Spermatozoa were found most abundantly between the mucosal folds. In relation to the reproductive status decreased amounts of sperm were present in gravid females compared to pre-ovulatory females. Sperm were absent in females past oviposition. Conclusions Our findings indicate short-term oviductal sperm storage in the oviparous Ichthyophis cf. kohtaoensis. We assume that in female caecilians exhibiting high levels of parental investment sperm storage has evolved in order to optimally coordinate reproductive events and to increase fitness.

  7. Developmental toxicity, uptake and distribution of sodium chromate assayed by frog embryo teratogenesis assay-Xenopus(FETAX)

    Energy Technology Data Exchange (ETDEWEB)

    Bosisio, Stefano [Via Giuseppe Garibaldi, 21, 21020, Casciago (Italy); Fortaner, Salvador, E-mail: salvador.fortaner@jrc.it [European Commission, ECVAM Unit, Institute for Health and Consumer Protection, Joint Research Centre, via Fermi 2749, 21027, Ispra (Italy); Bellinetto, Sonia [Via Gisora, 5, 21039, Bedero Valcuvia (Italy); Farina, Massimo; Del Torchio, Riccardo [European Commission, ECVAM Unit, Institute for Health and Consumer Protection, Joint Research Centre, via Fermi 2749, 21027, Ispra (Italy); Prati, Mariangela; Gornati, Rosalba; Bernardini, Giovanni [Department of Biotechnology and Molecular Sciences, University of Insubria, Via Dunant, 3, 21100, Varese (Italy); Sabbioni, Enrico [CeSI, Ageing Research Center, ' G. d' Annunzio' University Foundation, Via Colle dell' Ara, 66100, Chieti (Italy)

    2009-09-01

    The embryotoxicity and teratogenicity of Cr(VI) on the survival and morphology of the anuran Xenopus laevis have been assessed by frog embryo teratogenesis assay-Xenopus (FETAX). The lethal median (LC{sub 50}) and teratogenic median (TC{sub 50}) concentration values of Cr(VI) were 890 {mu}M and 260 {mu}M, respectively. The calculated teratogenic index (TI) value was 3.42, suggesting that hexavalent chromium has a teratogenic potential. Malformations of embryos included lifting of the body, coiling of the tail and body oedema. Furthermore, the chromium salt caused significant growth retardation at 25 {mu}M exposure concentrations. The use of radiolabelled {sup 51}Cr(VI) allowed the determination of the time course uptake of Cr in Xenopus exposed to concentrations ranging from 0.025 to 500 {mu}M. The evaluation of its distribution into the body (head-abdomen-tail) was evaluated at different exposure times. Chromium is taken up at 24 h by Xenopus embryos for all concentrations tested. At 48 h post fertilization (stage of larva) the amount of Cr accumulated by the two-day-old larva ranged from 0.42 to 580 pg mg{sup -1} wet weight at 0.025 and 500 {mu}M respectively. These amounts were lower than those at 24 h (2.77 to 11016 pg mg{sup -1} wet weight embryo) reaching values of the same order of magnitude at 120 h (five-days-old larva). Since at 48 h Xenopus development leads to a swimming embryo, the observed uptake at 24 h could be the result of the binding of Cr to jelly coat compounds surrounding the embryo body as confirmed by gel filtration experiments on {sup 51}Cr-jelly coat. The interaction of Cr with jelly coat is in agreement with the role of jelly coat in protecting the embryo against pathogen and chemical toxins to ensure fertilization. This work further supports the hypothesis that Cr contamination of surface waters could contribute to explain the reported worldwide depletion of frog population.

  8. Developmental toxicity, uptake and distribution of sodium chromate assayed by frog embryo teratogenesis assay-Xenopus(FETAX).

    Science.gov (United States)

    Bosisio, Stefano; Fortaner, Salvador; Bellinetto, Sonia; Farina, Massimo; Del Torchio, Riccardo; Prati, Mariangela; Gornati, Rosalba; Bernardini, Giovanni; Sabbioni, Enrico

    2009-09-01

    The embryotoxicity and teratogenicity of Cr(VI) on the survival and morphology of the anuran Xenopus laevis have been assessed by frog embryo teratogenesis assay-Xenopus (FETAX). The lethal median (LC(50)) and teratogenic median (TC(50)) concentration values of Cr(VI) were 890 microM and 260 microM, respectively. The calculated teratogenic index (TI) value was 3.42, suggesting that hexavalent chromium has a teratogenic potential. Malformations of embryos included lifting of the body, coiling of the tail and body oedema. Furthermore, the chromium salt caused significant growth retardation at 25 microM exposure concentrations. The use of radiolabelled (51)Cr(VI) allowed the determination of the time course uptake of Cr in Xenopus exposed to concentrations ranging from 0.025 to 500 microM. The evaluation of its distribution into the body (head-abdomen-tail) was evaluated at different exposure times. Chromium is taken up at 24 h by Xenopus embryos for all concentrations tested. At 48 h post fertilization (stage of larva) the amount of Cr accumulated by the two-day-old larva ranged from 0.42 to 580 pg mg(-1) wet weight at 0.025 and 500 microM respectively. These amounts were lower than those at 24 h (2.77 to 11016 pg mg(-1) wet weight embryo) reaching values of the same order of magnitude at 120 h (five-days-old larva). Since at 48 h Xenopus development leads to a swimming embryo, the observed uptake at 24 h could be the result of the binding of Cr to jelly coat compounds surrounding the embryo body as confirmed by gel filtration experiments on (51)Cr-jelly coat. The interaction of Cr with jelly coat is in agreement with the role of jelly coat in protecting the embryo against pathogen and chemical toxins to ensure fertilization. This work further supports the hypothesis that Cr contamination of surface waters could contribute to explain the reported worldwide depletion of frog population.

  9. Dedifferentiation and the role of sall4 in reprogramming and patterning during amphibian limb regeneration.

    Science.gov (United States)

    Neff, Anton W; King, Michael W; Mescher, Anthony L

    2011-05-01

    A central feature of epimorphic regeneration during amphibian limb regeneration is cellular dedifferentiation. Two questions are discussed. First, what is the origin and nature of the soluble factors involved in triggering local cellular and tissue dedifferentiation? Secondly, what role does the key stem cell transcription factor Sall4 play in reprogramming gene expression during dedifferentiation? The pattern of Sall4 expression during Xenopus hindlimb regeneration is consistent with the hypothesis that Sall4 plays a role in dedifferentiation (reprogramming) and in maintaining limb blastema cells in an undifferentiated state. Sall4 is involved in maintenance of ESC pluripotency, is a major repressor of differentiation, plays a major role in reprogramming differentiated cells into iPSCs, and is a component of the stemness regulatory circuit of pluripotent ESCs and iPSCs. These functions suggest Sall4 as an excellent candidate to regulate reprogramming events that produce and maintain dedifferentiated blastema cells required for epimorphic regeneration.

  10. [Perspective on gravitational biology of amphibians].

    Science.gov (United States)

    Yamashita, Masamichi; Naitoh, Tomio; Wassersug, Richard J

    2002-12-01

    We review here the scientific significance of the use of amphibians for research in gravitational biology. Since amphibian eggs are quite large, yet develop rapidly and externally, it is easy to observe their development. Consequently amphibians were the first vertebrates to have their early developmental processes investigated in space. Though several deviations from normal embryonic development occur when amphibians are raised in microgravity, their developmental program is robust enough to return the organisms to an ostensibly normal morphology by the time they hatch. Evolutionally, amphibians were the first vertebrate animal to come out of the water and onto land. Subsequently they diversified and have adaptively radiated to various habitats. They now inhabit aquatic, terrestrial, arboreal and fossorial niches. This diversity can be used to help study the biological effects of gravity at the organismal level, where macroscopic phenomena are associated with gravitational loading. By choosing different amphibian models and using a comparative approach one can effectively identify the action of gravity on biological systems, and the adaptation that vertebrates have made to this loading. Advances in cellular and molecular biology provide powerful tools for the study in many fields, including gravitational biology, and amphibians have proven to be good models for studies at those levels as well. The low metabolic rates of amphibians make them convenient organisms to work with (compared to birds and mammals) in the difficult and confined spaces on orbiting research platforms. We include here a review of what is known about and the potential for further behavioral and physiological researches in space using amphibians.

  11. Chytridiomycosis: a global threat to amphibians.

    Science.gov (United States)

    Pereira, P L L; Torres, A M C; Soares, D F M; Hijosa-Valsero, M; Bécares, E

    2013-12-01

    Chytridiomycosis, which is caused by Batrachochytrium dendrobatidis, is an emerging infectious disease of amphibians. The disease is one of the main causes of the global decline in amphibians. The aetiological agent is ubiquitous, with worldwide distribution, and affects a large number of amphibian species in several biomes. In the last decade, scientific research has substantially increased knowledge of the aetiological agent and the associated infection. However, important epidemiological aspects of the environment-mediated interactions between the aetiological agent and the host are not yet clear. The objective of the present review is to describe chytridiomycosis with regard to the major features of the aetiological agent, the host and the environment.

  12. Cardiovascular physiology and diseases of amphibians.

    Science.gov (United States)

    Heinz-Taheny, Kathleen M

    2009-01-01

    The class Amphibia includes three orders of amphibians: the anurans (frogs and toads), urodeles (salamanders, axolotls, and newts), and caecilians. The diversity of lifestyles across these three orders has accompanying differences in the cardiovascular anatomy and physiology allowing for adaptations to aquatic or terrestrial habitats, pulmonic or gill respiration, hibernation, and body elongation (in the caecilian). This article provides a review of amphibian cardiovascular anatomy and physiology with discussion of unique species adaptations. In addition, amphibians as cardiovascular animal models and commonly encountered natural diseases are covered.

  13. Gene structure, transcripts and calciotropic effects of the PTH family of peptides in Xenopus and chicken

    Directory of Open Access Journals (Sweden)

    Power Deborah M

    2010-12-01

    Full Text Available Abstract Background Parathyroid hormone (PTH and PTH-related peptide (PTHrP belong to a family of endocrine factors that share a highly conserved N-terminal region (amino acids 1-34 and play key roles in calcium homeostasis, bone formation and skeletal development. Recently, PTH-like peptide (PTH-L was identified in teleost fish raising questions about the evolution of these proteins. Although PTH and PTHrP have been intensively studied in mammals their function in other vertebrates is poorly documented. Amphibians and birds occupy unique phylogenetic positions, the former at the transition of aquatic to terrestrial life and the latter at the transition to homeothermy. Moreover, both organisms have characteristics indicative of a complex system in calcium regulation. This study investigated PTH family evolution in vertebrates with special emphasis on Xenopus and chicken. Results The PTH-L gene is present throughout the vertebrates with the exception of placental mammals. Gene structure of PTH and PTH-L seems to be conserved in vertebrates while PTHrP gene structure is divergent and has acquired new exons and alternative promoters. Splice variants of PTHrP and PTH-L are common in Xenopus and chicken and transcripts of the former have a widespread tissue distribution, although PTH-L is more restricted. PTH is widely expressed in fish tissue but from Xenopus to mammals becomes largely restricted to the parathyroid gland. The N-terminal (1-34 region of PTH, PTHrP and PTH-L in Xenopus and chicken share high sequence conservation and the capacity to modify calcium fluxes across epithelia suggesting a conserved role in calcium metabolism possibly via similar receptors. Conclusions The parathyroid hormone family contains 3 principal members, PTH, PTHrP and the recently identified PTH-L. In teleosts there are 5 genes which encode PTHrP (2, PTH (2 and PTH-L and in tetrapods there are 3 genes (PTHrP, PTH and PTH-L, the exception is placental mammals which

  14. Molecular machinery for vasotocin-dependent transepithelial water movement in amphibians: aquaporins and evolution.

    Science.gov (United States)

    Suzuki, Masakazu; Shibata, Yuki; Ogushi, Yuji; Okada, Reiko

    2015-08-01

    Amphibians represent the first vertebrates to adapt to terrestrial environments, and are successfully distributed around the world. The ventral skin, kidney, and urinary bladder are important osmoregulatory organs for adult anuran amphibians. Water channel proteins, called aquaporins (AQPs), play key roles in transepithelial water absorption/reabsorption in these organs. At least 43 types of AQPs were identified in anurans; a recent phylogenetic analysis categorized anuran AQPs among 16 classes (AQP0-14, 16). Anuran-specific AQPa2 was assigned to AQP6, then was further subdivided into the ventral skin-type (AQP6vs; AQPa2S), whose expression is confined to the ventral skin, and the urinary bladder-type (AQP6ub; AQPa2U), which is basically expressed in the urinary bladder. For the osmoregulatory organs, AQP3 is constitutively located in the basolateral plasma membrane of tight-junctioned epithelial cells. AQP6vs, AQP2 and/or AQP6ub are also expressed in these epithelial cells and are translocated to the apical membrane in response to arginine vasotocin, thereby regulating water absorption/reabsorption. It was suggested recently that two subtypes of AQP6vs contribute to cutaneous water absorption in Ranid species. In addition, AQP5 (AQP5a) and AQP5L (AQP5b) were identified from Xenopus tropicalis Gray, 1864, and AQP5 was localized to the apical membrane of luminal epithelial cells of the urinary bladder in dehydrated Xenopus. This finding suggested that AQP5 may be involved in water reabsorption from this organ under dehydration. Based on the hitherto reported information, we propose models for the evolution of water-absorbing/reabsorbing mechanisms in anuran osmoregulatory organs in association with AQPs.

  15. Folate receptor alpha is necessary for neural plate cell apical constriction during Xenopus neural tube formation.

    Science.gov (United States)

    Balashova, Olga A; Visina, Olesya; Borodinsky, Laura N

    2017-03-02

    Folate supplementation prevents up to 70% of neural tube defects (NTDs), which result from a failure of neural tube closure during embryogenesis. The elucidation of the mechanisms underlying folate action has been challenging. This study introduces Xenopus laevis as a model to determine the cellular and molecular mechanisms involved in folate action during neural tube formation. We show that knockdown of folate receptor-α (FRα) impairs neural tube formation and leads to NTDs. FRα knockdown in neural plate cells only is necessary and sufficient to induce NTDs. FRα-deficient neural plate cells fail to constrict, resulting in widening of the neural plate midline and defective neural tube closure. Pharmacological inhibition of folate action by methotrexate during neurulation induces NTDs by inhibiting folate interaction with its uptake systems. Our findings support a model for folate receptor interacting with cell adhesion molecules, thus regulating apical cell membrane remodeling and cytoskeletal dynamics necessary for neural plate folding. Further studies in this organism may unveil novel cellular and molecular events mediated by folate and lead to new means for preventing NTDs.

  16. Phenol increases intracellular [Ca2+] during twitch contractions in intact Xenopus skeletal myofibers.

    Science.gov (United States)

    Nogueira, Leonardo; Hogan, Michael C

    2010-11-01

    Phenol is a neurolytic agent used for management of spasticity in patients with either motoneuron lesions or stroke. In addition, compounds that enhance muscle contractility (i.e., polyphenols, etc.) may affect muscle function through the phenol group. However, the effects of phenol on muscle function are unknown, and it was, therefore, the purpose of the present investigation to examine the effects of phenol on tension development and Ca(2+) release in intact skeletal muscle fibers. Dissected intact muscle fibers from Xenopus laevis were electrically stimulated, and cytosolic Ca(2+) concentration ([Ca(2+)](c)) and tension development were recorded. During single twitches and unfused tetani, phenol significantly increased [Ca(2+)](c) and tension without affecting myofilament Ca(2+) sensitivity. To investigate the phenol effects on Ca(2+) channel/ryanodine receptors, single fibers were treated with different concentrations of caffeine in the presence and absence of phenol. Low concentrations of phenol significantly increased the caffeine sensitivity (P twitch contractions in muscle fibers without altering myofilament Ca(2+) sensitivity and may be used as a new agent to study skeletal muscle Ca(2+) handling.

  17. Development of voltage-dependent calcium, sodium, and potassium currents in Xenopus spinal neurons.

    Science.gov (United States)

    O'Dowd, D K; Ribera, A B; Spitzer, N C

    1988-03-01

    Action potentials of embryonic nerve and muscle cells often have a different ionic dependence and longer duration than those of mature cells. The action potential of spinal cord neurons from Xenopus laevis exhibits a prominent calcium component at early stages of development that diminishes with age as the impulse becomes principally sodium dependent. Whole-cell voltage-clamp analysis has been undertaken to characterize the changes in membrane currents during development of these neurons in culture. Four voltage-dependent currents of cells were identified and examined during the first day in vitro, when most of the change in the action potential occurs. There are no changes in the peak density of the calcium current (ICa), its voltage dependence, or time to half-maximal activation; a small increase in inactivation is apparent. The major change in sodium current (INa) is a 2-fold increase in its density. In addition, more subtle changes in the kinetics of the macroscopic sodium current were noted. The peak density of voltage-dependent potassium current (IKv) increases 3-fold, and this current becomes activated almost twice as fast. No changes were noted in the extent of its inactivation. The calcium-dependent potassium current (IKc) consists of an inactivating and a sustained component. The former increases 2-fold in peak current density, and the latter increases similarly at less depolarized voltages. The changes in these currents contribute to the decrease in duration and the change in ionic dependence of the impulse.

  18. Optogenetics in Developmental Biology: using light to control ion flux-dependent signals in Xenopus embryos.

    Science.gov (United States)

    Spencer Adams, Dany; Lemire, Joan M; Kramer, Richard H; Levin, Michael

    2014-01-01

    Developmental bioelectricity, electrical signaling among non-excitable cells, is now known to regulate proliferation, apoptosis, gene expression, and patterning during development. The extraordinary temporal and spatial resolution offered by optogenetics could revolutionize the study of bioelectricity the same way it has revolutionized neuroscience. There is, however, no guide to adapting optogenetics to patterning systems. To fill this gap, we used optogenetic reagents, both proteins and photochemical switches, to vary steady-state bioelectrical properties of non-spiking embryonic cells in Xenopus laevis. We injected mRNA for various proteins, including Channelrhodopsins and Archaerhodopsin, into 1-8 cell embryos, or soaked embryos in media containing photochemical switches, then examined the effect of light and dark on membrane voltage (Vmem) using both electrodes and fluorescent membrane voltage reporters. We also scored tadpoles for known effects of varying Vmem, including left-right asymmetry disruption, hyperpigmentation, and craniofacial phenotypes. The majority of reagents we tested caused a significant increase in the percentage of light-exposed tadpoles showing relevant phenotypes; however, the majority of reagents also induced phenotypes in controls kept in the dark. Experiments on this "dark phenotype" yielded evidence that the direction of ion flux via common optogenetic reagents may be reversed, or unpredictable in non-neural cells. When used in combination with rigorous controls, optogenetics can be a powerful tool for investigating ion-flux based signaling in non-excitable systems. Nonetheless, it is crucial that new reagents be designed with these non-neural cell types in mind.

  19. Report of Amphibian Development Group

    Science.gov (United States)

    Malacinski, G.

    1985-01-01

    Amphibian and fish embryos are extremely well suited for studies on pattern specification, whereas other systems (e.g., avian or mammalian) might be just as well suited for studies on differentiation or growth. Those distinctions are important for at least two reasons: (1) More precise focus regarding underlying mechanisms is called for when those distinctions are made. That facilitates the formulation of specific models or hypotheses; and (2) stress effects (i.e., the effects of weightlessness on structures (e.g., bones) which normally bear a load) are distinguished as being indirect, in contrast to direct effects of microgravity, which would be expected to act on pattern specification. That is, direct gravity effects are distinguished from indirect stress effects.

  20. Monoclonal Antibodies Against Xenopus Greatwall Kinase

    OpenAIRE

    WANG Ling; Fisher, Laura A.; Wahl, James K.; Peng, Aimin

    2011-01-01

    Mitosis is known to be regulated by protein kinases, including MPF, Plk1, Aurora kinases, and so on, which become active in M-phase and phosphorylate a wide range of substrates to control multiple aspects of mitotic entry, progression, and exit. Mechanistic investigations of these kinases not only provide key insights into cell cycle regulation, but also hold great promise for cancer therapy. Recent studies, largely in Xenopus, characterized a new mitotic kinase named Greatwall (Gwl) that pla...

  1. Monoclonal Antibodies Against Xenopus Greatwall Kinase

    Science.gov (United States)

    Wang, Ling; Fisher, Laura A.; Wahl, James K.

    2011-01-01

    Mitosis is known to be regulated by protein kinases, including MPF, Plk1, Aurora kinases, and so on, which become active in M-phase and phosphorylate a wide range of substrates to control multiple aspects of mitotic entry, progression, and exit. Mechanistic investigations of these kinases not only provide key insights into cell cycle regulation, but also hold great promise for cancer therapy. Recent studies, largely in Xenopus, characterized a new mitotic kinase named Greatwall (Gwl) that plays essential roles in both mitotic entry and maintenance. In this study, we generated a panel of mouse monoclonal antibodies (MAbs) specific for Xenopus Gwl and characterized these antibodies for their utility in immunoblotting, immunoprecipitation, and immunodepletion in Xenopus egg extracts. Importantly, we generated an MAb that is capable of neutralizing endogenous Gwl. The addition of this antibody into M-phase extracts results in loss of mitotic phosphorylation of Gwl, Plk1, and Cdk1 substrates. These results illustrate a new tool to study loss-of-function of Gwl, and support its essential role in mitosis. Finally, we demonstrated the usefulness of the MAb against human Gwl/MASTL. PMID:22008075

  2. Evolution of Life Cycles in Early Amphibians

    Science.gov (United States)

    Schoch, Rainer R.

    2009-05-01

    Many modern amphibians have biphasic life cycles with aquatic larvae and terrestrial adults. The central questions are how and when this complicated ontogeny was established, and what is known about the lives of amphibians in the Paleozoic. Fossil evidence has accumulated that sheds light on the life histories of early amphibians, the origin of metamorphosis, and the transition to a fully terrestrial existence. The majority of early amphibians were aquatic or amphibious and underwent only gradual ontogenetic changes. Developmental plasticity played a major role in some taxa but was restricted to minor modification of ontogeny. In the Permo-Carboniferous dissorophoids, a condensation of crucial ontogenetic steps into a short phase (metamorphosis) is observed. It is likely that the origin of both metamorphosis and neoteny falls within these taxa. Fossil evidence also reveals the sequence of evolutionary changes: apparently, the ontogenetic change in feeding, not the transition to a terrestrial existence per se, made a drastic metamorphosis necessary.

  3. Redescription and family status of the Magellanic Isopod Janthopsis laevis Menzies, 1962 (Asellota: Acanthaspidiidae)

    NARCIS (Netherlands)

    Winkler, Holger

    1992-01-01

    A redescription of Janthopsis laevis Menzies, 1962 (Isopoda: Asellota: Acanthaspidiidae) is presented and new localities are added to literature. The taxonomic status of the genus Janthopsis is discussed.

  4. Amphibians and Reptiles of Los Alamos County

    Energy Technology Data Exchange (ETDEWEB)

    Teralene S. Foxx; Timothy K. Haarmann; David C. Keller

    1999-10-01

    Recent studies have shown that amphibians and reptiles are good indicators of environmental health. They live in terrestrial and aquatic environments and are often the first animals to be affected by environmental change. This publication provides baseline information about amphibians and reptiles that are present on the Pajarito Plateau. Ten years of data collection and observations by researchers at Los Alamos National Laboratory, the University of New Mexico, the New Mexico Department of Game and Fish, and hobbyists are represented.

  5. The axolotl (Ambystoma mexicanum), a neotenic amphibian, expresses functional thyroid hormone receptors.

    Science.gov (United States)

    Safi, Rachid; Bertrand, Stéphanie; Marchand, Oriane; Duffraisse, Marilyne; de Luze, Amaury; Vanacker, Jean-Marc; Maraninchi, Marie; Margotat, Alain; Demeneix, Barbara; Laudet, Vincent

    2004-02-01

    Neotenic amphibians such as the axolotl (Ambystoma mexicanum) are often unable to undergo metamorphosis under natural conditions. It is thought that neoteny represents a deviation from the standard course of amphibian ontogeny, affecting the thyroid axis at different levels from the central nervous system to peripheral organs. Thyroid hormone receptors (TRs) that bind the thyroid hormone (TH) T(3) have been described in axolotl. However, the full sequences of TR were needed to better characterize the TH response and to be able to assess their functional capacity at the molecular level. We report that each of the alpha and beta axolotl TRs bind both DNA and TH, and they activate transcription in response to TH in a mammalian cell-based transient transfection assay. Moreover, both TRs are expressed in axolotl tissues. Interestingly, each TR gene generates alternatively spliced isoforms, harboring partial or total deletions of the ligand-binding domain, which are expressed in vivo. Further, we found that in the axolotl, TH regulates the expression of stromelysin 3 and collagenase 3, which are TH target genes in Xenopus. Taken together, these results suggest that axolotl TRs are functional and that the molecular basis of neoteny in the axolotl is not linked to a major defect in TH response in peripheral tissues.

  6. Evolution of the vertebrate bone matrix: an expression analysis of the network forming collagen paralogues in amphibian osteoblasts.

    Science.gov (United States)

    Aldea, Daniel; Hanna, Patricia; Munoz, David; Espinoza, Javier; Torrejon, Marcela; Sachs, Laurent; Buisine, Nicolas; Oulion, Silvan; Escriva, Hector; Marcellini, Sylvain

    2013-09-01

    The emergence of vertebrates is closely associated to the evolution of mineralized bone tissue. However, the molecular basis underlying the origin and subsequent diversification of the skeletal mineralized matrix is still poorly understood. One efficient way to tackle this issue is to compare the expression, between vertebrate species, of osteoblastic genes coding for bone matrix proteins. In this work, we have focused on the evolution of the network forming collagen family which contains the Col8a1, Col8a2, and Col10a1 genes. Both phylogeny and synteny reveal that these three paralogues are vertebrate-specific and derive from two independent duplications in the vertebrate lineage. To shed light on the evolution of this family, we have analyzed the osteoblastic expression of the network forming collagens in endochondral and intramembraneous skeletal elements of the amphibian Xenopus tropicalis. Remarkably, we find that amphibian osteoblasts express Col10a1, a gene strongly expressed in osteoblasts in actinopterygians but not in amniotes. In addition, while Col8a1 is known to be robustly expressed in mammalian osteoblasts, the expression levels of its amphibian orthologue are dramatically reduced. Our work reveals that while a skeletal expression of network forming collagen members is widespread throughout vertebrates, osteoblasts from divergent vertebrate lineages express different combinations of network forming collagen paralogues.

  7. An examination of amphibian sensitivity to environmental contaminants: are amphibians poor canaries?

    Science.gov (United States)

    Kerby, Jacob L; Richards-Hrdlicka, Kathryn L; Storfer, Andrew; Skelly, David K

    2010-01-01

    Nearly two decades ago, the global biodiversity crisis was catapulted to the front pages of newspapers with the recognition of worldwide amphibian declines. Amphibians earned their appellation, 'canaries in a coal mine', because of apparent high sensitivity to human-mediated environmental change. The most frequently cited causes for high susceptibility include permeable skin, a dual aquatic-terrestrial life cycle and a relatively rudimentary immune system. While some researchers have questioned the basis for the canary assertion, there has been no systematic evaluation of amphibian sensitivity to environmental challenges relative to other taxa. Here, we apply a database representing thousands of toxicity tests to compare the responses of amphibians relative to that of other taxonomic groups. The use of standardized methods combined with large numbers of identical challenges enables a particularly powerful test of relative effect size. Overall, we found that amphibians only exhibit moderate relative responses to water-borne toxins. Our findings imply that, as far as chemical contaminants are concerned, amphibians are not particularly sensitive and might more aptly be described as 'miners in a coal mine'. To the extent that amphibian declines have been mediated by chemical contaminants, our findings suggest that population losses and extinctions may have already occurred in a variety of taxa much more sensitive than amphibians.

  8. Endosulfan-alpha Induces CYP26 and CYP3A4 by Activating the Pregnane X Receptor But Not the Constitutive Androstane Receptor

    Science.gov (United States)

    2006-01-01

    of cadmium, endosulfan, and atrazine in adrenal steroidogenic cells of two amphibian species, Xenopus laevis and Rana catesbeiana. Environ Toxicol...1519. Dai D, Cao Y, Falls G, Levi PE, Hodgson E and Rose RL (2001) Modulation of mouse P450 isoforms CYP 1A2, CYP2B 10, CYP2E1, and CYP3A by the

  9. The coding sequence of amyloid-beta precursor protein APP contains a neural-specific promoter element.

    NARCIS (Netherlands)

    Collin, R.W.J.; Martens, G.J.M.

    2006-01-01

    The amyloid-beta precursor protein APP is generally accepted to be involved in the pathology of Alzheimer's disease. Since its physiological role is still unclear, we decided to study the function of APP via stable transgenesis in the amphibian Xenopus laevis. However, the application of constructs

  10. Gene expression profiling of pituitary melanotrope cells during their physiological activation.

    NARCIS (Netherlands)

    Kuribara, M.; Bakel, N.H. van; Ramekers, D.; Gouw, D. de; Neijts, R.; Roubos, E.W.; Scheenen, W.J.; Martens, G.J.M.; Jenks, B.G.

    2012-01-01

    The pituitary melanotrope cells of the amphibian Xenopus laevis are responsible for the production of the pigment-dispersing peptide alpha-melanophore-stimulating hormone, which allows the animal to adapt its skin color to its environment. During adaptation to a dark background the melanotrope cells

  11. Countryside biogeography of Neotropical reptiles and amphibians.

    Science.gov (United States)

    Mendenhall, Chase D; Frishkoff, Luke O; Santos-Barrera, Georgina; Pacheco, Jesús; Mesfun, Eyobed; Mendoza Quijano, Fernando; Ehrlich, Paul R; Ceballos, Gerardo; Daily, Gretchen C; Pringle, Robert M

    2014-04-01

    The future of biodiversity and ecosystem services depends largely on the capacity of human-dominated ecosystems to support them, yet this capacity remains largely unknown. Using the framework of countryside biogeography, and working in the Las Cruces system of Coto Brus, Costa Rica, we assessed reptile and amphibian assemblages within four habitats that typify much of the Neotropics: sun coffee plantations (12 sites), pasture (12 sites), remnant forest elements (12 sites), and a larger, contiguous protected forest (3 sites in one forest). Through analysis of 1678 captures of 67 species, we draw four primary conclusions. First, we found that the majority of reptile (60%) and amphibian (70%) species in this study used an array of habitat types, including coffee plantations and actively grazed pastures. Second, we found that coffee plantations and pastures hosted rich, albeit different and less dense, reptile and amphibian biodiversity relative to the 326-ha Las Cruces Forest Reserve and neighboring forest elements. Third, we found that the small ribbons of "countryside forest elements" weaving through farmland collectively increased the effective size of a 326-ha local forest reserve 16-fold for reptiles and 14-fold for amphibians within our 236-km2 study area. Therefore, countryside forest elements, often too small for most remote sensing techniques to identify, are contributing -95% of the available habitat for forest-dependent reptiles and amphibians in our largely human-dominated study region. Fourth, we found large and pond-reproducing amphibians to prefer human-made habitats, whereas small, stream-reproducing, and directly developing species are more dependent on forest elements. Our investigation demonstrates that tropical farming landscapes can support substantial reptile and amphibian biodiversity. Our approach provides a framework for estimating the conservation value of the complex working landscapes that constitute roughly half of the global land surface

  12. The expression pattern of Xenopus Mox-2 implies a role in initial mesodermal differentiation.

    Science.gov (United States)

    Candia, A F; Wright, C V

    1995-07-01

    We have isolated a Xenopus homolog of the murine Mox-2 gene. As is the case for the mouse homolog, mesoderm specific expression of Xenopus Mox-2 (X. Mox-2) expression begins during gastrulation. Using whole mount in situ hybridization, we show that X. Mox-2 is expressed in undifferentiated dorsal, lateral and ventral mesoderm in the posterior of neurula/tailbud embryos, with expression more anteriorly detected in the dermatomes. In the tailbud tadpole, X. Mox-2 is expressed in tissues of the tailbud itself that represent a site of continued gastrulation-like processes resulting in mesoderm formation. X. Mox-2 is not expressed in the marginal zone of blastula, nor in the dorsal lip of gastrula, nor midline tissues (i.e. prospective notochord). Treatments that affect mesodermal patterning during embryonic development, including LiCl and ultraviolet light, and injection of mRNAs encoding BMP-4, or dominant negative activin and FGF receptors, produce changes in X. Mox-2 expression consistent with the types of tissues affected by these manipulations. X. Mox-2 expression is induced more in animal caps treated with FGF than those treated with activin. Together with the fact that X. Mox-2 activation in animal caps requires protein synthesis, our data suggest that X. Mox-2 is involved in initial mesodermal differentiation, downstream of molecules affecting mesoderm induction and determination such as Brachyury and goosecoid, and upstream of factors controlling terminal differentiation such as MyoD and myf5. X. Mox-2, therefore, is another useful marker for understanding the formation of mesoderm in amphibian development.

  13. Transcriptional regulators in the Hippo signaling pathway control organ growth in Xenopus tadpole tail regeneration.

    Science.gov (United States)

    Hayashi, Shinichi; Ochi, Haruki; Ogino, Hajime; Kawasumi, Aiko; Kamei, Yasuhiro; Tamura, Koji; Yokoyama, Hitoshi

    2014-12-01

    The size and shape of tissues are tightly controlled by synchronized processes among cells and tissues to produce an integrated organ. The Hippo signaling pathway controls both cell proliferation and apoptosis by dual signal-transduction states regulated through a repressive kinase cascade. Yap1 and Tead, transcriptional regulators that act downstream of the Hippo signaling kinase cascade, have essential roles in regulating cell proliferation. In amphibian limb or tail regeneration, the local tissue outgrowth terminates when the correct size is reached, suggesting that organ size is strictly controlled during epimorphic organ-level regeneration. We recently demonstrated that Yap1 is required for the regeneration of Xenopus tadpole limb buds (Hayashi et al., 2014, Dev. Biol. 388, 57-67), but the molecular link between the Hippo pathway and organ size control in vertebrate epimorphic regeneration is not fully understood. To examine the requirement of Hippo pathway transcriptional regulators in epimorphic regeneration, including organ size control, we inhibited these regulators during Xenopus tadpole tail regeneration by overexpressing a dominant-negative form of Yap (dnYap) or Tead4 (dnTead4) under a heat-shock promoter in transgenic animal lines. Each inhibition resulted in regeneration defects accompanied by reduced cell mitosis and increased apoptosis. Single-cell gene manipulation experiments indicated that Tead4 cell-autonomously regulates the survival of neural progenitor cells in the regenerating tail. In amphibians, amputation at the proximal level of the tail (deep amputation) results in faster regeneration than that at the distal level (shallow amputation), to restore the original-sized tail with similar timing. However, dnTead4 overexpression abolished the position-dependent differential growth rate of tail regeneration. These results suggest that the transcriptional regulators in the Hippo pathway, Tead4 and Yap1, are required for general vertebrate

  14. Comparison of TALEN scaffolds in Xenopus tropicalis

    OpenAIRE

    Keisuke Nakajima; Yoshio Yaoita

    2013-01-01

    Summary Transcription activator-like effector nucleases (TALENs) are facile and potent tools used to modify a gene of interest for targeted gene knockout. TALENs consist of an N-terminal domain, a DNA-binding domain, and a C-terminal domain, which are derived from a transcription activator-like effector, and the non-specific nuclease domain of FokI. Using Xenopus tropicalis (X. tropicalis), we compared the toxicities and somatic mutation activities of four TALEN architectures in a side-by-...

  15. Amphibians do not follow Bergmann's rule.

    Science.gov (United States)

    Adams, Dean C; Church, James O

    2008-02-01

    The tendency for organisms to be larger in cooler climates (Bergmann's rule) is widely observed in endotherms, and has been reputed to apply to some ectotherms including amphibians. However, recent reports provide conflicting support for the pattern, questioning whether Bergmann's clines are generally present in amphibians. In this study, we measured 96,996 adult Plethodon from 3974 populations to test for the presence of Bergmann's clines in these salamanders. Only three Plethodon species exhibited a significant negative correlation between body size and temperature consistent with Bergmann's rule, whereas 37 of 40 species did not display a pattern consistent with this prediction. Further, a phylogenetic comparative analysis found no relationship between body size and temperature among species. A meta-analysis combining our data with the available data for other amphibian species revealed no support for Bergmann's rule at the genus (Plethodon), order (Caudata), or class (Amphibia) levels. Our findings strongly suggest that negative thermal body size clines are not common in amphibians, and we conclude that Bergmann's rule is not generally applicable to these taxa. Thus, evolutionary explanations of Bergmann's clines in other tetrapods need not account for unique life-history attributes of amphibians.

  16. Amphibians used in research and teaching.

    Science.gov (United States)

    O'Rourke, Dorcas P

    2007-01-01

    Amphibians have long been utilized in scientific research and in education. Historically, investigators have accumulated a wealth of information on the natural history and biology of amphibians, and this body of information is continually expanding as researchers describe new species and study the behaviors of these animals. Amphibians evolved as models for a variety of developmental and physiological processes, largely due to their unique ability to undergo metamorphosis. Scientists have used amphibian embryos to evaluate the effects of toxins, mutagens, and teratogens. Likewise, the animals are invaluable in research due to the ability of some species to regenerate limbs. Certain species of amphibians have short generation times and genetic constructs that make them desirable for transgenic and knockout technology, and there is a current national focus on developing these species for genetic and genomic research. This group of vertebrates is also critically important in the investigation of the inter-relationship of humans and the environment based on their sensitivity to climatic and habitat changes and environmental contamination.

  17. Distortion product otoacoustic emissions in the amphibian ear

    NARCIS (Netherlands)

    Van Dijk, Pim; Meenderink, Sebastiaan W. F.; Nuttal, AL

    2006-01-01

    By comparing the range of emission frequencies with that of neural characteristic frequencies of the amphibian and basilar papillae, the emission generation site may be inferred. Spontaneous otoacoustic emissions in the amphibian car seem to originate from the amphibian papilla. In contrast, distort

  18. Diversity and distribution of amphibians in Romania

    Directory of Open Access Journals (Sweden)

    Dan Cogălniceanu

    2013-04-01

    Full Text Available Nineteen species of amphibians inhabit Romania, 9 of which reach their range limit on this territory. Based on published occurrence reports, museum collections and our own data we compiled a national database of amphibian occurrences. We georeferenced 26779 amphibian species occurrences, and performed an analysis of their spatial patterns, checking for hotspots and patterns of species richness. The results of spatial statistic analyses supported the idea of a biased sampling for Romania, with clear hotspots of increased sampling efforts. The sampling effort is biased towards species with high detectability, protected areas, and large cities. Future sampling efforts should be focused mostly on species with a high rarity score in order to accurately map their range. Our results are an important step in achieving the long-term goals of increasing the efficiency of conservation efforts and evaluating the species range shifts under climate change scenarios.

  19. Amphibian monitoring in the Atchafalaya Basin

    Science.gov (United States)

    Waddle, Hardin

    2011-01-01

    Amphibians are a diverse group of animals that includes frogs, toads, and salamanders. They are adapted to living in a variety of habitats, but most require water for at least one life stage. Amphibians have recently become a worldwide conservation concern because of declines and extinctions even in remote protected areas previously thought to be safe from the pressures of habitat loss and degradation. Amphibians are an important part of ecosystem dynamics because they can be quite abundant and serve both as a predator of smaller organisms and as prey to a suite of vertebrate predators. Their permeable skin and aquatic life history also make them useful as indicators of ecosystem health. Since 2002, the U.S. Geological Survey has been studying the frog and toad species inhabiting the Atchafalaya Basin to monitor for population declines and to better understand how the species are potentially affected by disease, environmental contaminants, and climate change.

  20. Effects of Roads on Amphibian Populations

    DEFF Research Database (Denmark)

    Hels, T.

    to have experienced the wonders of early summer sunrises in the field - and the joy of thawing out frozen fingers after hours of field work around freezing point. Amphibian populations are declining. This worrying fact is what has initiated this work. Some fifty years ago, the life history of frogs...... is the result of my three year PhD study at the National Environmental Research Institute, Kalø, and University of Copenhagen. Funded by NERI, the Danish Research Academy, and the Danish Road Directorate, it has dealt mainly with the effects of traffic and roads on amphibian populations. The Spadefoot toad...... of Spadefoot toads (Pelobates fuscus Laur.) II The effect of road kills on amphibian populations III Simulating viability of a Spadefoot toad (P. fuscus) metapopulation in a landscape fragmented by a road The manuscripts are preceded by a synopsis which sums up the work and puts it into a broader perspective...

  1. Where to look when identifying roadkilled amphibians?

    Directory of Open Access Journals (Sweden)

    Marc Franch

    2015-12-01

    Full Text Available Roads have multiple effects on wildlife; amphibians are one of the groups more intensely affected by roadkills. Monitoring roadkills is expensive and time consuming. Automated mapping systems for detecting roadkills, based on robotic computer vision techniques, are largely necessary. Amphibians can be recognised by a set of features as shape, size, colouration, habitat and location. This species identification by using multiple features at the same time is known as “jizz”. In a similar way to human vision, computer vision algorithms must incorporate a prioritisation process when analysing the objects in an image. Our main goal here was to give a numerical priority sequence of particular characteristics of roadkilled amphibians to improve the computing and learning process of algorithms. We asked hundred and five amateur and professional herpetologists to answer a simple test of five sets with ten images each of roadkilled amphibians, in order to determine which body parts or characteristics (body form, colour, and other patterns are used to identify correctly the species. Anura was the group most easily identified when it was roadkilled and Caudata was the most difficult. The lower the taxonomic level of amphibian, the higher the difficulty of identifying them, both in Anura and Caudata. Roadkilled amphibians in general and Anura group were mostly identified by the Form, by the combination of Form and Colour, and finally by Colour. Caudata was identified mainly on Form and Colour and on Colour. Computer vision algorithms must incorporate these combinations of features, avoiding to work exclusively in one specific feature.

  2. Examining the impact of multi-layer graphene using cellular and amphibian models

    Science.gov (United States)

    Muzi, Laura; Mouchet, Florence; Cadarsi, Stéphanie; Janowska, Izabela; Russier, Julie; Ménard-Moyon, Cécilia; Risuleo, Gianfranco; Soula, Brigitte; Galibert, Anne-Marie; Flahaut, Emmanuel; Pinelli, Eric; Gauthier, Laury; Bianco, Alberto

    2016-06-01

    In the last few years, graphene has been defined as the revolutionary material showing an incredible expansion in industrial applications. Different graphene forms have been applied in several contexts, spreading from energy technologies and electronics to food and agriculture technologies. Graphene showed promises also in the biomedical field. Hopeful results have been already obtained in diagnostic, drug delivery, tissue regeneration and photothermal cancer ablation. In view of the enormous development of graphene-based technologies, a careful assessment of its impact on health and environment is demanded. It is evident how investigating the graphene toxicity is of fundamental importance in the context of medical purposes. On the other hand, the nanomaterial present in the environment, likely to be generated all along the industrial life-cycle, may have harmful effects on living organisms. In the present work, an important contribution on the impact of multi-layer graphene (MLG) on health and environment is given by using a multifaceted approach. For the first purpose, the effect of the material on two mammalian cell models was assessed. Key cytotoxicity parameters were considered such as cell viability and inflammatory response induction. This was combined with an evaluation of MLG toxicity towards Xenopus laevis, used as both in vivo and environmental model organism.

  3. [Evolution of brain development in amphibians].

    Science.gov (United States)

    Savel'ev, S V

    2009-01-01

    Principal events in the early embryonic development of the nervous system, from neurulation to primary differentiation, are considered in different amphibian species. Attention is paid to numerous interspecific differences in the structure of neuroepithelium and the patterns of neurulation and embryonic brain segmentation. The data presented indicate that similarity in brain developmental patterns is apparently explained by universality of morphogenetic mechanisms rather than by the common origin of particular species. A hypothesis is proposed that similarity in the shape of the developing amphibian brain is determined by mechanisms of coding positional information necessary for histogenetic differentiation.

  4. Amphibians as model to study endocrine disrupters.

    Science.gov (United States)

    Kloas, Werner; Lutz, Ilka

    2006-10-13

    Environmental compounds can interfere with endocrine systems of wildlife and humans. These so-called endocrine disrupters (ED) are known to affect reproductive biology and thyroid system. The classical model species for these endocrine systems are amphibians and therefore they can serve as sentinels for detection of the modes of action (MOAs) of ED. Recently, amphibians are being reviewed as suitable models to assess (anti)estrogenic and (anti)androgenic MOAs influencing reproductive biology as well as (anti)thyroidal MOAs interfering with the thyroid system. The development of targeted bioassays in combination with adequate chemical analyses is the prerequisite for a concise risk assessment of ED.

  5. The state of amphibians in the United States

    Science.gov (United States)

    Muths, E.; Adams, M.J.; Grant, E.H.C.; Miller, D.; Corn, P.S.; Ball, L.C.

    2012-01-01

    More than 25 years ago, scientists began to identify unexplained declines in amphibian populations around the world. Much has been learned since then, but amphibian declines have not abated and the interactions among the various threats to amphibians are not clear. Amphibian decline is a problem of local, national, and international scope that can affect ecosystem function, biodiversity, and commerce. This fact sheet provides a snapshot of the state of the amphibians and introduces examples to illustrate the range of issues in the United States.

  6. Changes in the inflammatory response to injury and its resolution during the loss of regenerative capacity in developing Xenopus limbs.

    Directory of Open Access Journals (Sweden)

    Anthony L Mescher

    Full Text Available Tissue and organ regeneration, unlike development, involves an injury that in postembryonic animals triggers inflammation followed by resolution. How inflammation affects epimorphic regeneration is largely uninvestigated. Here we examine inflammation and its resolution in Xenopus laevis hindlimb regeneration, which declines during larval development. During the first 5 days postamputation, both regeneration-competent stage 53 and regeneration-deficient stage 57 hindlimbs showed very rapid accumulation of leukocytes and cells expressing interleukin-1β and matrix metalloproteinase 9. Expression of genes for factors mediating inflammatory resolution appeared more persistent at stages 55 and 57 than at stage 53, suggesting changes in this process during development. FoxP3, a marker for regulatory T cells, was upregulated by amputation in limbs at all three stages but only persisted at stage 57, when it was also detected before amputation. Expression of genes for cellular reprogramming, such as SALL4, was upregulated in limbs at all 3 stages, but markers of limb patterning, such as Shh, were expressed later and less actively after amputation in regeneration-deficient limbs. Topical application of specific proinflammatory agents to freshly amputated limbs increased interleukin-1β expression locally. With aqueous solutions of the proinflammatory metal beryllium sulfate, this effect persisted through 7 days postamputation and was accompanied by inhibition of regeneration. In BeSO4-treated limbs expression of markers for both inflammation and resolution, including FoxP3, was prolonged, while genes for cellular reprogramming were relatively unaffected and those for limb patterning failed to be expressed normally. These data imply that in Xenopus hindlimbs postamputation inflammation and its resolution change during development, with little effect on cellular dedifferentiation or reprogramming, but potentially interfering with the expression of genes

  7. Changes in the inflammatory response to injury and its resolution during the loss of regenerative capacity in developing Xenopus limbs.

    Science.gov (United States)

    Mescher, Anthony L; Neff, Anton W; King, Michael W

    2013-01-01

    Tissue and organ regeneration, unlike development, involves an injury that in postembryonic animals triggers inflammation followed by resolution. How inflammation affects epimorphic regeneration is largely uninvestigated. Here we examine inflammation and its resolution in Xenopus laevis hindlimb regeneration, which declines during larval development. During the first 5 days postamputation, both regeneration-competent stage 53 and regeneration-deficient stage 57 hindlimbs showed very rapid accumulation of leukocytes and cells expressing interleukin-1β and matrix metalloproteinase 9. Expression of genes for factors mediating inflammatory resolution appeared more persistent at stages 55 and 57 than at stage 53, suggesting changes in this process during development. FoxP3, a marker for regulatory T cells, was upregulated by amputation in limbs at all three stages but only persisted at stage 57, when it was also detected before amputation. Expression of genes for cellular reprogramming, such as SALL4, was upregulated in limbs at all 3 stages, but markers of limb patterning, such as Shh, were expressed later and less actively after amputation in regeneration-deficient limbs. Topical application of specific proinflammatory agents to freshly amputated limbs increased interleukin-1β expression locally. With aqueous solutions of the proinflammatory metal beryllium sulfate, this effect persisted through 7 days postamputation and was accompanied by inhibition of regeneration. In BeSO4-treated limbs expression of markers for both inflammation and resolution, including FoxP3, was prolonged, while genes for cellular reprogramming were relatively unaffected and those for limb patterning failed to be expressed normally. These data imply that in Xenopus hindlimbs postamputation inflammation and its resolution change during development, with little effect on cellular dedifferentiation or reprogramming, but potentially interfering with the expression of genes required for blastema

  8. Functional analysis of human Na~+/K~+-ATPase familial or sporadic hemiplegic migraine mutations expressed in Xenopus oocytes

    Institute of Scientific and Technical Information of China (English)

    Susan; Spiller; Thomas; Friedrich

    2014-01-01

    AIM: Functional characterization of ATP1A2 mutations that are related to familial or sporadic hemiplegic migraine(FHM2, SHM). METHODS: cRNA of human Na+/K+-ATPase α2- and β1-subunits were injected in Xenopus laevis oocytes. FHM2 or SHM mutations of residues located in putative α/β interaction sites or in the α2-subunit’s C-terminal region were investigated. Mutants were analyzed by the twoelectrode voltage-clamp(TEVC) technique on Xenopus oocytes. Stationary K+-induced Na+/K+ pump currents were measured, and the voltage dependence of apparent K+ affinity was investigated. Transient currents were recorded as ouabain-sensitive currents in Na+ buffers to analyze kinetics and voltage-dependent presteady state charge translocations. The expression of constructs was verified by preparation of plasma membrane and total membrane fractions of cRNA-injected oocytes. RESULTS: Compared to the wild-type enzyme, the mutants G900R and E902K showed no significant dif-ferences in the voltage dependence of K+-induced currents, and analysis of the transient currents indicated that the extracellular Na+ affinity was not affected. Mutant G855R showed no pump activity detectable by TEVC. Also for L994del and Y1009X, pump currents could not be recorded. Analysis of the plasma and total membrane fractions showed that the expressed proteins were not or only minimally targeted to the plasma membrane. Whereas the mutation K1003E had no impact on K+ interaction, D999H affected the voltage dependence of K+-induced currents. Furthermore, kinetics of the transient currents was altered compared to the wild-type enzyme, and the apparent affinity for extracellular Na+ was reduced. CONCLUSION: The investigated FHM2/SHM mutations influence protein function differently depending on the structural impact of the mutated residue.

  9. Species-specific loss of sexual dimorphism in vocal effectors accompanies vocal simplification in African clawed frogs (Xenopus)

    Science.gov (United States)

    Leininger, Elizabeth C.; Kitayama, Ken; Kelley, Darcy B.

    2015-01-01

    ABSTRACT Phylogenetic studies can reveal patterns of evolutionary change, including the gain or loss of elaborate courtship traits in males. Male African clawed frogs generally produce complex and rapid courtship vocalizations, whereas female calls are simple and slow. In a few species, however, male vocalizations are also simple and slow, suggesting loss of male-typical traits. Here, we explore features of the male vocal organ that could contribute to loss in two species with simple, slow male calls. In Xenopus boumbaensis, laryngeal morphology is more robust in males than in females. Larynges are larger, have a more complex cartilaginous morphology and contain more muscle fibers. Laryngeal muscle fibers are exclusively fast-twitch in males but are both fast- and slow-twitch in females. The laryngeal electromyogram, a measure of neuromuscular synaptic strength, shows greater potentiation in males than in females. Male-specific physiological features are shared with X. laevis, as well as with a species of the sister clade, Silurana tropicalis, and thus are likely ancestral. In X. borealis, certain aspects of laryngeal morphology and physiology are sexually monomorphic rather than dimorphic. In both sexes, laryngeal muscle fibers are of mixed-twitch type, which limits the production of muscle contractions at rapid intervals. Muscle activity potentiation and discrete tension transients resemble female rather than male X. boumbaensis. The de-masculinization of these laryngeal features suggests an alteration in sensitivity to the gonadal hormones that are known to control the sexual differentiation of the larynx in other Xenopus and Silurana species. PMID:25788725

  10. Prevalence of the amphibian pathogen Batrachochytrium dendrobatidis in stream and wetland amphibians in Maryland, USA

    Science.gov (United States)

    Campbell Grant, Evan H.; Bailey, Larissa L.; Ware, Joy L.; Duncan, Karen L.

    2008-01-01

    The amphibian chytrid fungus Batrachochytrium dendrobatidis, responsible for the potentially fatal amphibian disease chytridiomycosis, is known to occur in a large and ever increasing number of amphibian populations around the world. However, sampling has been biased towards stream- and wetland-breeding anurans, with little attention paid to stream-associated salamanders. We sampled three frog and three salamander species in the Chesapeake and Ohio Canal National Historic Park, Maryland, by swabbing animals for PCR analysis to detect DNA of B. dendrobatidis. Using PCR, we detected B. dendrobatidis DNA in both stream and wetland amphibians, and report here the first occurrence of the pathogen in two species of stream-associated salamanders. Future research should focus on mechanisms within habitats that may affect persistence and dissemination of B. dendrobatidis among stream-associated salamanders

  11. The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines.

    Science.gov (United States)

    Rollins-Smith, Louise A

    2009-08-01

    Amphibian species have experienced population declines and extinctions worldwide that are unprecedented in recent history. Many of these recent declines have been linked to a pathogenic skin fungus, Batrachochytrium dendrobatidis, or to iridoviruses of the genus Ranavirus. One of the first lines of defense against pathogens that enter by way of the skin are antimicrobial peptides synthesized and stored in dermal granular glands and secreted into the mucus following alarm or injury. Here, I review what is known about the capacity of amphibian antimicrobial peptides from diverse amphibians to inhibit B. dendrobatidis or ranavirus infections. When multiple species were compared for the effectiveness of their in vitro antimicrobial peptides defenses against B. dendrobatidis, non-declining species of rainforest amphibians had more effective antimicrobial peptides than species in the same habitat that had recently experienced population declines. Further, there was a significant correlation between the effectiveness of the antimicrobial peptides and resistance of the species to experimental infection. These studies support the hypothesis that antimicrobial peptides are an important component of innate defenses against B. dendrobatidis. Some amphibian antimicrobial peptides inhibit ranavirus infections and infection of human T lymphocytes by the human immunodeficiency virus (HIV). An effective antimicrobial peptide defense against skin pathogens appears to depend on a diverse array of genes expressing antimicrobial peptides. The production of antimicrobial peptides may be regulated by signals from the pathogens. However, this defense must also accommodate potentially beneficial microbes on the skin that compete or inhibit growth of the pathogens. How this delicate balancing act is accomplished is an important area of future research.

  12. Short historical survey of pattern formation in the endo-mesoderm and the neural anlage in the vertebrates: the role of vertical and planar inductive actions.

    Science.gov (United States)

    Nieuwkoop, P D

    1997-04-01

    After some introductory remarks about vertical versus horizontal inductive interactions and about planar versus homoiogenetic induction, the author discusses: a) the historical development of the more recently studied endo-mesoderm induction in the Urodeles and in the anuran Xenopus laevis, b) the possible causal relationship between endo-mesoderm induction and the initiation of the gastrulation process, and c) the older history of the regional neural induction as initially studied in the Urodeles and only recently analysed in the anuran Xenopus laevis. The essential vertical interaction in the neural induction process both in urodelian and in anuran amphibians is emphasized.

  13. Rapamycin treatment causes developmental delay, pigmentation defects, and gastrointestinal malformation on Xenopus embryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Yuki [Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529 (Japan); Ohata, Yoshihisa [Department of Education (Sciences), Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529 (Japan); Mori, Shoko [Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529 (Japan); Matsukawa, Shinya [Department of Education (Sciences), Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529 (Japan); Michiue, Tatsuo [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Asashima, Makoto [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Baien, Tsukuba, Ibaraki 305-8562 (Japan); Kuroda, Hiroki, E-mail: ehkurod@ipc.shizuoka.ac.jp [Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529 (Japan); Department of Education (Sciences), Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529 (Japan)

    2011-01-28

    Research highlights: {yields} Does famous anti-aging drug rapamycin work from the beginning of life? The answer is yes. {yields} This study shows that developmental speed of frog embryo was dose-dependently decreased by rapamycin treatment. {yields} In additions, morphogenetic effects such as less pigmentations and gut malformation are occurred by rapamycin. -- Abstract: Rapamycin is a drug working as an inhibitor of the TOR (target of rapamycin) signaling pathway and influences various life phenomena such as cell growth, proliferation, and life span extension in eukaryote. However, the extent to which rapamycin controls early developmental events of amphibians remains to be understood. Here we report an examination of rapamycin effects during Xenopus early development, followed by a confirmation of suppression of TOR downstream kinase S6K by rapamycin treatment. First, we found that developmental speed was declined in dose-dependent manner of rapamycin. Second, black pigment spots located at dorsal and lateral skin in tadpoles were reduced by rapamycin treatment. Moreover, in tadpole stages severe gastrointestinal malformations were observed in rapamycin-treated embryos. Taken together with these results, we conclude that treatment of the drug rapamycin causes enormous influences on early developmental period.

  14. Presence of the amphibian chytrid fungus Batrachochytrium dendrobatidis in native amphibians exported from Madagascar.

    Directory of Open Access Journals (Sweden)

    Jonathan E Kolby

    Full Text Available The emerging infectious disease chytridiomycosis is driven by the spread of amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd, a highly virulent pathogen threatening global amphibian biodiversity. Although pandemic in distribution, previous intensive field surveys have failed to detect Bd in Madagascar, a biodiversity hotspot home to hundreds of endemic amphibian species. Due to the presence of Bd in nearby continental Africa and the ecological crisis that can be expected following establishment in Madagascar, enhanced surveillance is imperative. I sampled 565 amphibians commercially exported from Madagascar for the presence of Bd upon importation to the USA, both to assist early detection efforts and demonstrate the conservation potential of wildlife trade disease surveillance. Bd was detected in three animals via quantitative PCR: a single Heterixalus alboguttatus, Heterixalus betsileo, and Scaphiophryne spinosa. This is the first time Bd has been confirmed in amphibians from Madagascar and presents an urgent call to action. Our early identification of pathogen presence prior to widespread infection provides the necessary tools and encouragement to catalyze a swift, targeted response to isolate and eradicate Bd from Madagascar. If implemented before establishment occurs, an otherwise likely catastrophic decline in amphibian biodiversity may be prevented.

  15. Presence of the amphibian chytrid fungus Batrachochytrium dendrobatidis in native amphibians exported from Madagascar.

    Science.gov (United States)

    Kolby, Jonathan E

    2014-01-01

    The emerging infectious