WorldWideScience

Sample records for amperometric biosensor based

  1. Current Trends in Nanomaterial-Based Amperometric Biosensors

    Directory of Open Access Journals (Sweden)

    Akhtar Hayat

    2014-12-01

    Full Text Available The last decade has witnessed an intensive research effort in the field of electrochemical sensors, with a particular focus on the design of amperometric biosensors for diverse analytical applications. In this context, nanomaterial integration in the construction of amperometric biosensors may constitute one of the most exciting approaches. The attractive properties of nanomaterials have paved the way for the design of a wide variety of biosensors based on various electrochemical detection methods to enhance the analytical characteristics. However, most of these nanostructured materials are not explored in the design of amperometric biosensors. This review aims to provide insight into the diverse properties of nanomaterials that can be possibly explored in the construction of amperometric biosensors.

  2. Novel amperometric glucose biosensor based on MXene nanocomposite

    KAUST Repository

    Rakhi, R. B.

    2016-11-10

    A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM−1 cm−2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors.

  3. An Effective Amperometric Biosensor Based on Gold Nanoelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Zhu Yingchun

    2008-01-01

    Full Text Available Abstract A sensitive amperometric biosensor based on gold nanoelectrode array (NEA was investigated. The gold nanoelectrode array was fabricated by template-assisted electrodeposition on general electrodes, which shows an ordered well-defined 3D structure of nanowires. The sensitivity of the gold NEA to hydrogen peroxide is 37 times higher than that of the conventional electrode. The linear range of the platinum NEA toward H2O2is from 1 × 10−6to 1 × 10−2 M, covering four orders of magnitudes with detection limit of 1 × 10−7 M and a single noise ratio (S/N of four. The enzyme electrode exhibits an excellent response performance to glucose with linear range from 1 × 10−5to 1 × 10−2 M and a fast response time within 8 s. The Michaelis–Menten constantkm and the maximum current densityi maxof the enzyme electrode were 4.97 mM and 84.60 μA cm−2, respectively. This special nanoelectrode may find potential application in other biosensors based on amperometric signals.

  4. A review of enzymatic uric acid biosensors based on amperometric detection.

    Science.gov (United States)

    Erden, Pınar Esra; Kılıç, Esma

    2013-03-30

    This review summarizes the studies carried on the development of amperometric uric acid biosensors over the past twenty years. Sensing principles, enzyme immobilization techniques, the electrode types, different approaches and various matrices used for biosensor fabrication are presented along with their benefits and limitations. Uric acid biosensors based on different modes of transducing devices such as optical, potentiometric, conductometric are also referred.

  5. Flow-injection amperometric glucose biosensors based on graphene/Nafion hybrid electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Bong Gill, E-mail: k1811@kaist.ac.kr [Department of Chemical and Biomolecular Engineering (BK21 Program), KAIST, Daejeon 305-701 (Korea, Republic of); Im, Jinkyu, E-mail: JINQ@paran.com [Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 1 Hoegidong, Dongdamoongu, Seoul (Korea, Republic of); Kim, Hoon Sik, E-mail: khs2004@khu.ac.kr [Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 1 Hoegidong, Dongdamoongu, Seoul (Korea, Republic of); Park, HoSeok, E-mail: phs0727@khu.ac.kr [Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1 Seochon-dong, Giheung-gu, Youngin-si, Gyeonggi-do 446-701 (Korea, Republic of)

    2011-11-30

    Graphical abstract: Amperometric biosensors based on graphene hybrids showed the fast, sensitive, and stable amperometric responses in the flow injection system for automatically monitoring glucose. Display Omitted Highlights: > Flow-injection amperometric glucose biosensors were fabricated using reduced graphene oxide/Nafion hybrids. > The electrochemical kinetics of biosensors were comprehensively investigated by analysing electron transfer rate, charge transfer resistance, and ion diffusion coefficient, respectively. > The biosensors exhibited the fast, sensitive, and stable amperometric responses in the flow injection system for detecting glucose. - Abstract: In this research, we demonstrated the fabrication of flow-injection amperometric glucose biosensors based on RGO/Nafion hybrids. The nanohybridization of the reduced graphene oxide (RGO) by Nafion provided the fast electron transfer (ET) for the sensitive amperometric biosensor platforms. The ET rate (k{sub s}) and the charge transfer resistance (R{sub CT}) of GOx-RGO/Nafion hybrids were evaluated to verify the accelerated ET. Moreover, hybrid biosensors revealed a quasi-reversible and surface controlled process, as confirmed by the low peak-to-peak ({Delta}E{sub p}) and linear relations between I{sub p} and scan rate ({nu}). Hybrid biosensors showed the fast response time of {approx}3 s, the sensitivity of 3.8 {mu}A mM{sup -1} cm{sup -2}, the limit of detection of 170 {mu}M, and the linear detection range of 2-20 mM for the flow-injection amperometric detection of glucose. Furthermore, interference effect of oxidizable species such as ascorbic acid (AA) and uric acid (UA) on the performance of hybrid biosensors was prevented at the operating potential of -0.20 V even under the flow injection mode. Therefore, the fast, sensitive, and stable amperometric responses of hybrid biosensors in the flow injection system make it highly suitable for automatically monitoring glucose.

  6. Microfabricated, amperometric, enzyme-based biosensors for in vivo applications.

    Science.gov (United States)

    Weltin, Andreas; Kieninger, Jochen; Urban, Gerald A

    2016-07-01

    Miniaturized electrochemical in vivo biosensors allow the measurement of fast extracellular dynamics of neurotransmitter and energy metabolism directly in the tissue. Enzyme-based amperometric biosensing is characterized by high specificity and precision as well as high spatial and temporal resolution. Aside from glucose monitoring, many systems have been introduced mainly for application in the central nervous system in animal models. We compare the microsensor principle with other methods applied in biomedical research to show advantages and drawbacks. Electrochemical sensor systems are easily miniaturized and fabricated by microtechnology processes. We review different microfabrication approaches for in vivo sensor platforms, ranging from simple modified wires and fibres to fully microfabricated systems on silicon, ceramic or polymer substrates. The various immobilization methods for the enzyme such as chemical cross-linking and entrapment in polymer membranes are discussed. The resulting sensor performance is compared in detail. We also examine different concepts to reject interfering substances by additional membranes, aspects of instrumentation and biocompatibility. Practical considerations are elaborated, and conclusions for future developments are presented. Graphical Abstract ᅟ.

  7. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite

    Directory of Open Access Journals (Sweden)

    Das G

    2015-08-01

    Full Text Available Gautam Das, Hyon Hee Yoon Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do, South Korea Abstract: An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 µA·cm-2·mM-1. The biosensor achieved a broad linear range of detection (0.12–12.3 mM with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection. Keywords: electrochemical deposition, sulfonated graphene oxide, urease

  8. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite.

    Science.gov (United States)

    Das, Gautam; Yoon, Hyon Hee

    2015-01-01

    An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 (μA · cm(-2)·mM(-1). The biosensor achieved a broad linear range of detection (0.12-12.3 mM) with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity) after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection.

  9. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite

    Science.gov (United States)

    Das, Gautam; Yoon, Hyon Hee

    2015-01-01

    An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 (μA · cm−2·mM−1. The biosensor achieved a broad linear range of detection (0.12–12.3 mM) with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity) after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection. PMID:26346240

  10. Disposable amperometric biosensor based on nanostructured bacteriophages for glucose detection

    Science.gov (United States)

    Kang, Yu Ri; Hwang, Kyung Hoon; Kim, Ju Hwan; Nam, Chang Hoon; Kim, Soo Won

    2010-10-01

    The selection of electrode material profoundly influences biosensor science and engineering, as it heavily influences biosensor sensitivity. Here we propose a novel electrochemical detection method using a working electrode consisting of bio-nanowires from genetically modified filamentous phages and nanoparticles. fd-tet p8MMM filamentous phages displaying a three-methionine (MMM) peptide on the major coat protein pVIII (designated p8MMM phages) were immobilized on the active area of an electrochemical sensor through physical adsorption and chemical bonding. Bio-nanowires composed of p8MMM phages and silver nanoparticles facilitated sensitive, rapid and selective detection of particular molecules. We explored whether the composite electrode with bio-nanowires was an effective platform to detect the glucose oxidase. The current response of the bio-nanowire sensor was high at various glucose concentrations (0.1 µm-0.1 mM). This method provides a considerable advantage to demonstrate analyte detection over low concentration ranges. Especially, phage-enabled bio-nanowires can serve as receptors with high affinity and specificity for the detection of particular biomolecules and provide a convenient platform for designing site-directed multifunctional scaffolds based on bacteriophages and may serve as a simple method for label-free detection.

  11. Critical evaluation of acetylthiocholine iodide and acetylthiocholine chloride as substrates for amperometric biosensors based on acetylcholinesterase.

    Science.gov (United States)

    Bucur, Madalina-Petruta; Bucur, Bogdan; Radu, Gabriel-Lucian

    2013-01-25

    Numerous amperometric biosensors have been developed for the fast analysis of neurotoxic insecticides based on inhibition of cholinesterase (AChE). The analytical signal is quantified by the oxidation of the thiocholine that is produced enzymatically by the hydrolysis of the acetylthiocholine pseudosubstrate. The pseudosubstrate is a cation and it is associated with chloride or iodide as corresponding anion to form a salt. The iodide salt is cheaper, but it is electrochemically active and consequently more difficult to use in electrochemical analytical devices. We investigate the possibility of using acetylthiocholine iodide as pseudosubstrate for amperometric detection. Our investigation demonstrates that operational conditions for any amperometric biosensor that use acetylthiocholine iodide must be thoroughly optimized to avoid false analytical signals or a reduced sensitivity. The working overpotential determined for different screen-printed electrodes was: carbon-nanotubes (360 mV), platinum (560 mV), gold (370 mV, based on a catalytic effect of iodide) or cobalt phthalocyanine (110 mV, but with a significant reduced sensitivity in the presence of iodide anions).

  12. Amperometric hydrogen peroxide biosensor based on cobalt ferrite-chitosan nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Yard Latin-Small-Letter-Dotless-I mc Latin-Small-Letter-Dotless-I , Feyza S.; Senel, Mehmet, E-mail: msenel@fatih.edu.tr; Baykal, Abduelhadi

    2012-02-01

    A novel H{sub 2}O{sub 2} biosensor based on horseradish peroxidase (HRP) immobilized into CoFe{sub 2}O{sub 4}-chitosan nanocomposite has been developed for the detection of hydrogen peroxide. The nanocomposite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). HRP has been entrapped into CoFe{sub 2}O{sub 4}-chitosan nanocomposite film and the immobilized enzyme could retain its bioactivity. This biosensor exhibited a fast amperometric response to hydrogen peroxide. The linear range for H{sub 2}O{sub 2} determination was from 3 Multiplication-Sign 10{sup -2} to 8 mM, with a detection limit of 2 Multiplication-Sign 10{sup -3} mM based on S/N = 3. The response time of the biosensor was 4 s. The effects of the pH and the temperature of the immobilized HRP electrode were also studied. - Highlights: Black-Right-Pointing-Pointer HRP biosensor based on CoFe{sub 2}O{sub 4}-chitosan nanocomposite has been developed for H{sub 2}O{sub 2} detection. Black-Right-Pointing-Pointer The biosensor seems to be simple to prepare, fast to respond, inexpensive and sensitive. Black-Right-Pointing-Pointer The biosensor had high sensitivity, good repeatability, reusability and long term stability.

  13. Development of urease based amperometric biosensors for the inhibitive determination of Hg (II).

    Science.gov (United States)

    Domínguez-Renedo, O; Alonso-Lomillo, M A; Ferreira-Gonçalves, L; Arcos-Martínez, M J

    2009-10-15

    Enzymatic amperometric procedures for measurement of Hg (II), based on the inhibitive action of this metal on urease enzyme activity, were developed. Screen-printed carbon electrodes (SPCEs) and gold nanoparticles modified screen-printed carbon electrodes (AuNPs/SPCEs) were used as supports for the cross-linking inmobilization of the enzyme urease. The amperometric response of urea was affected by the presence of Hg (II) ions which caused a decreasing in the current intensity. The optimum working conditions were found using experimental design methodology. Under these conditions, repeatability and reproducibility for both types of biosensors were determined, reaching values below 6% in terms of residual standard deviation. The detection limit obtained for Hg (II) was 4.2x10(-6)M for urease/SPCE biosensor and 5.6x10(-8)M for urease/AuNPs/SPCE biosensor. Analysis of the possible effect of the presence of foreign ions in the solution was performed. The method was applied to determine levels of Hg (II) in spiked human plasma samples.

  14. Amperometric biosensors for glucose, lactate, and glycolate based on oxidases and redox-modified siloxane polymers

    Science.gov (United States)

    Hale, Paul D.; Inagaki, Toru; Lee, Hung Sui; Skotheim, Terje A.; Karan, Hiroko I.; Okamoto, Yoshi

    1989-06-01

    Amperometric biosensors based on flavin-containing oxidases undergo several steps which produce a measurable current that is related to the concentration of substrate. In the initial step, the substrate converts the oxidized flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN) into the reduced form FADH sub 2 or FMNH sub 2. Because these cofactors are located well within the enzyme molecule, direct electron transfer to the surface of a conventional electrode does not occur to a measurable degree. A common method of facilitating this electron transfer is to introduce oxygen into the system because it is the natural acceptor for the oxidases; the oxygen is reduced by the FADH sub 2 or FMNH sub 2 to hydrogen peroxide, which can then be detected electrochemically. The major drawback to this approach is the fact that oxidation of hydrogen peroxide requires a large overpotential, thus making these sensors susceptible to interference from electroactive species. To lower the necessary applied potential, several non-physiological redox couples have been employed to shuttle electrons between the flavin moieties and the electrode. The present paper describes the development of amperometric biosensors based on flavin-containing enzymes and a family of polymeric mediators.

  15. Amperometric Biosensor for Hydrogen Peroxide Based on Electrodeposited Sub-micrometer Gold Modified Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    WANG,Shu-Qing(王树青); CHEN,Jun(陈峻); LIN,Xiang-Qin(林祥钦)

    2004-01-01

    A new type of hydrogen peroxide amperometric biosensor was fabricated based on electrochemically deposited sub-micrometer Au particles(sm-Au)on a glassy carbon electrode(GCE).Electrochemical deposition condition was optimized for obtaining uniformly distributed sub-micrometer sized Au array on the electrode surface.The hydrogen peroxide sensor was fabricated by adsorbing phenothiazine methylene blue(MB)molecules on the surface of sm-Au and covering a cross-linked horseradish peroxidase(HRP)layer,labeled as HRP/MB/sm-Au/GCE.The characteristics of this biosensor were evaluated with respect to applied potential and pH.The amperometric response of the sensor was linear to the H2O2 concentration over a wide range of 9.9×10-6-1.11×10-2 mol/L.A detection limit(s/n=3)of 3.0×10-6 mol/L H2O2 was estimated for a sampled chronoamperometric detection at 1.5 min after potential step of 200 to-400 mV vs.SCE.The immobilized MB molecules shuttled electrons at(=0.77 and an apparent electron transfer rate constant of =0.053 s-1.Interference of ascorbic acid,dopamine and uric acid was investigated.This sensor has very good stability and reproducibility for long-term use.

  16. Fabrication of amperometric xanthine biosensors based on direct chemistry of xanthine oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Gao Yansheng; Shen Chunping [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China); Di Junwei, E-mail: djw@suda.edu.cn [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China); Tu Yifeng [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China)

    2009-08-31

    The construction of amperometric xanthine biosensor by immobilization of xanthine oxidase (XOD) on the multi-wall carbon nanotubes (CNTs) modified glassy carbon (GC) electrode surface was investigated. The direct chemistry of XOD was accomplished and the formal potential was about - 0.465 V (vs SCE). The heterogeneous electron transfer rate constant was evaluated to be 2.0 {+-} 0.3 s{sup -1}. The xanthine biosensor based on XOD entrapped in silica sol-gel (SG) thin film on CNTs-modified GC electrode surface was also investigated. The XOD still maintains its activity to xanthine. The amperometric response to xanthine showed a linear relation in the range from 0.2 {mu}M to 10 {mu}M and a detection limit of 0.1 {mu}M (S/N = 3). The enzyme electrode retained 95% of its initial activity after 90 days of storage. The sensor exhibited high sensitivity, rapid response and good long-term stability.

  17. Development of an amperometric biosensor based on peroxidases to quantify citrinin in rice samples.

    Science.gov (United States)

    Zachetti, Vanesa Gimena Lourdes; Granero, Adrian Marcelo; Robledo, Sebastián Noel; Zon, María Alicia; Fernández, Héctor

    2013-06-01

    An amperometric biosensor based on horseradish peroxidase (EC1.11.1.7,H2O2-oxide-reductases) to determine the content of citrinin mycotoxin in rice samples is proposed by the first time. The method uses carbon paste electrodes filled up with multi-walled carbon nanotubes embedded in a mineral oil, horseradish peroxidase, and ferrocene as a redox mediator. The biosensor is covered externally with a dialysis membrane, which is fixed to the body side of the electrode with a Teflon laboratory film, and an O-ring. The reproducibility and the repeatability were of 7.0% and 3.0%, respectively, showing a very good biosensor performance. The calibration curve was linear in a concentration range from 1 to 11.6nM. The limits of detection and quantification were 0.25nM and 0.75nM, respectively. For comparison, the citrinin content in rice samples was also determined by fluorimetric measurements. A very good correlation was obtained between the electrochemical and spectrophotometric methods.

  18. Amperometric biosensors for glucose, lactate, and glycolate based on oxidases and redox-modified siloxane polymers

    Energy Technology Data Exchange (ETDEWEB)

    Hale, P.D.; Inagaki, Toru; Lee, Hung Sui; Skotheim, T.A.; Karan, Hiroko I.; Okamoto, Yoshi (Brookhaven National Lab., Upton, NY (USA); Medgar Evers Coll., Brooklyn, NY (USA). Div. of Natural Science and Mathematics; Polytechnic Univ., Brooklyn, NY (USA). Dept. of Chemistry)

    1989-01-01

    Amperometric biosensors based on flavin-containing oxidases undergo several steps which produce a measurable current that is related to the concentration of substrate. In the initial step, the substrate converts the oxidized flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN) into the reduced form (FADH{sub 2} or FMNH{sub 2}). Because these cofactors are located well within the enzyme molecule, direct electron transfer to the surface of a conventional electrode does not occur to a measurable degree. A common method of facilitating this electron transfer is to introduce oxygen into the system because it is the natural acceptor for the oxidases; the oxygen is reduced by the FADH{sub 2} or FMNH{sub 2} to hydrogen peroxide, which can then be detected electrochemically. The major drawback to this approach is the fact that oxidation of hydrogen peroxide requires a large overpotential, thus making these sensors susceptible to interference from electroactive species. To lower the necessary applied potential, several non-physiological redox couples have been employed to shuttle electrons between the flavin moieties and the electrode. For example, sensors based on the ferrocene/ferricinium redox couple and on electrodes consisting of conducting salts such as TTF-TCNQ (tetrathiafulvalene-tetracyanoquinodimethane) have previously been reported. Electron relays have also been attached directly to the enzyme molecule to facilitate electron transfer. More recently, these studies have been extended to include systems where the mediating redox species are covalently attached to polymers such as poly(pyrrole), poly(vinylpyridine), and poly(siloxane). The present paper describes the development of amperometric biosensors based on flavin-containing enzymes and this latter family of polymeric mediators. 9 refs., 5 figs.

  19. Amperometric inhibitive biosensor based on horseradish peroxidase-nanoporous gold for sulfide determination

    Science.gov (United States)

    Sun, Huihui; Liu, Zhuang; Wu, Chao; Xu, Ping; Wang, Xia

    2016-08-01

    As a well-known toxic pollutant, sulfide is harmful to human health. In this study, a simple and sensitive amperometric inhibitive biosensor was developed for the determination of sulfide in the environment. By immobilizing nanoporous gold (NPG) on glassy carbon electrode (GCE), and encapsulating horseradish peroxidase (HRP) onto NPG, a HRP/NPG/GCE bioelectrode for sulfide detection was successfully constructed based on the inhibition of sulfide on HRP activity with o-Phenylenediamine (OPD) as a substrate. The resulted HRP/NPG/GCE bioelectrode achieved a wide linear range of 0.1–40 μM in sulfide detection with a high sensitivity of 1720 μA mM‑1 cm‑2 and a low detection limit of 0.027 μM. Additionally, the inhibition of sulfide on HRP is competitive inhibition with OPD as a substrate by Michaelis-Menten analysis. Notably, the recovery of HRP activity was quickly achieved by washing the HRP/NPG/GCE bioelectrode using differential pulse voltammetry (DPV) technique in deaerated PBS (50 mM, pH 7.0) for only 60 s. Furthermore, the real sample analysis of sulfide by the HRP/NPG/GCE bioelectrode was achieved. Based on above results, the HRP/NPG/GCE bioelectrode could be a better choice for the real determination of sulfide compared to inhibitive biosensors previously reported.

  20. Rapid amperometric detection of trace metals by inhibition of an ultrathin polypyrrole-based glucose biosensor.

    Science.gov (United States)

    Ayenimo, Joseph G; Adeloju, Samuel B

    2016-02-01

    A sensitive and reliable inhibitive amperometric glucose biosensor is described for rapid trace metal determination. The biosensor utilises a conductive ultrathin (55 nm thick) polypyrrole (PPy) film for entrapment of glucose oxidase (GOx) to permit rapid inhibition of GOx activity in the ultrathin film upon exposure to trace metals, resulting in reduced glucose amperometric response. The biosensor demonstrates a relatively fast response time of 20s and does not require incubation. Furthermore, a complete recovery of GOx activity in the ultrathin PPy-GOx biosensor is quickly achieved by washing in 2mM EDTA for only 10s. The minimum detectable concentrations achieved with the biosensor for Hg(2+), Cu(2+), Pb(2+) and Cd(2+) by inhibitive amperometric detection are 0.48, 1.5, 1.6 and 4.0 µM, respectively. Also, suitable linear concentration ranges were achieved from 0.48-3.3 µM for Hg(2+), 1.5-10 µM for Cu(2+), 1.6-7.7 µM for Pb(2+) and 4-26 µM for Cd(2+). The use of Dixon and Cornish-Bowden plots revealed that the suppressive effects observed with Hg(2+) and Cu(2+) were via non-competitive inhibition, while those of Pb(2+) and Cd(2+) were due to mixed and competitive inhibition. The stronger inhibition exhibited by the trace metals on GOx activity in the ultrathin PPy-GOx film was also confirmed by the low inhibition constant obtained from this analysis. The biosensor was successfully applied to the determination of trace metals in tap water samples.

  1. Highly sensitive amperometric biosensor based on electrochemically-reduced graphene oxide-chitosan/hemoglobin nanocomposite for nitromethane determination.

    Science.gov (United States)

    Wen, Yunping; Wen, Wei; Zhang, Xiuhua; Wang, Shengfu

    2016-05-15

    Nitromethane (CH3NO2) is an important organic chemical raw material with a wide variety of applications as well as one of the most common pollutants. Therefore it is pretty important to establish a simple and sensitive detection method for CH3NO2. In our study, a novel amperometric biosensor for nitromethane (CH3NO2) based on immobilization of electrochemically-reduced graphene oxide (rGO), chitosan (CS) and hemoglobin (Hb) on a glassy carbon electrode (GCE) was constructed. Scanning electron microscopy, infrared spectroscopy and electrochemical methods were used to characterize the Hb-CS/rGO-CS composite film. The effects of scan rate and pH of phosphate buffer on the biosensor have been studied in detail and optimized. Due to the graphene and chitosan nanocomposite, the developed biosensor demonstrating direct electrochemistry with faster electron-transfer rate (6.48s(-1)) and excellent catalytic activity towards CH3NO2. Under optimal conditions, the proposed biosensor exhibited fast amperometric response (biosensor had high selectivity, reproducibility and stability, providing the possibility for monitoring CH3NO2 in complex real samples.

  2. Development of Amperometric Biosensors Based on Nanostructured Tyrosinase-Conducting Polymer Composite Electrodes

    Directory of Open Access Journals (Sweden)

    Francisco Javier del Campo

    2013-05-01

    Full Text Available Bio-composite coatings consisting of poly(3,4-ethylenedioxythiophene (PEDOT and tyrosinase (Ty were successfully electrodeposited on conventional size gold (Au disk electrodes and microelectrode arrays using sinusoidal voltages. Electrochemical polymerization of the corresponding monomer was carried out in the presence of various Ty amounts in aqueous buffered solutions. The bio-composite coatings prepared using sinusoidal voltages and potentiostatic electrodeposition methods were compared in terms of morphology, electrochemical properties, and biocatalytic activity towards various analytes. The amperometric biosensors were tested in dopamine (DA and catechol (CT electroanalysis in aqueous buffered solutions. The analytical performance of the developed biosensors was investigated in terms of linear response range, detection limit, sensitivity, and repeatability. A semi-quantitative multi-analyte procedure for simultaneous determination of DA and CT was developed. The amperometric biosensor prepared using sinusoidal voltages showed much better analytical performance. The Au disk biosensor obtained by 50 mV alternating voltage amplitude displayed a linear response for DA concentrations ranging from 10 to 300 μM, with a detection limit of 4.18 μM.

  3. Assembling Amperometric Biosensors for Clinical Diagnostics

    Directory of Open Access Journals (Sweden)

    Claudia Marina Lagier

    2007-02-01

    Full Text Available Clinical diagnosis and disease prevention routinely require the assessment ofspecies determined by chemical analysis. Biosensor technology offers several benefits overconventional diagnostic analysis. They include simplicity of use, specificity for the targetanalyte, speed to arise to a result, capability for continuous monitoring and multiplexing,together with the potentiality of coupling to low-cost, portable instrumentation. This workfocuses on the basic lines of decisions when designing electron-transfer-based biosensorsfor clinical analysis, with emphasis on the strategies currently used to improve the deviceperformance, the present status of amperometric electrodes for biomedicine, and the trendsand challenges envisaged for the near future.

  4. A novel amperometric catechol biosensor based on α-Fe2O3 nanocrystals-modified carbon paste electrode.

    Science.gov (United States)

    Sarika, C; Shivakumar, M S; Shivakumara, C; Krishnamurthy, G; Narasimha Murthy, B; Lekshmi, I C

    2017-05-01

    In this work, we designed an amperometric catechol biosensor based on α-Fe2O3 nanocrystals (NCs) incorporated carbon-paste electrode. Laccase enzyme is then assembled onto the modified electrode surface to form a nanobiocomposite enhancing the electron transfer reactions at the enzyme's active metal centers for catechol oxidation. The biosensor gave good sensitivity with a linear detection response in the range of 8-800 μM with limit of detection 4.28 μM. We successfully employed the sensor for real water sample analysis. The results illustrate that the metal oxide NCs have enormous potential in the construction of biosensors for sensitive determination of phenol derivatives.

  5. Amperometric Biosensors Based on Carbon Paste Electrodes Modified with Nanostructured Mixed-valence Manganese Oxides and Glucose Oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaoli; Liu, Guodong; Lin, Yuehe

    2005-06-01

    Nanostructured multivalent manganese oxides octahedral molecular sieve (OMS), including cryptomelane-type manganese oxides and todorokite-type manganese oxides, were synthesized and evaluated for chemical sensing and biosensing at low operating potential. Both cryptomelane-type manganese oxides and todorokite-type manganese oxides are nanofibrous crystals with sub-nanometer open tunnels that provide a unique property for sensing applications. The electrochemical and electrocatalytic performance of OMS for the oxidation of H2O2 have been compared. Both cryptomelane-type manganese oxides and todorokite-type manganese oxides can be used to fabricate sensitive H2O2 sensors. Amperometric glucose biosensors are constructed by bulk modification of carbon paste electrodes (CPEs) with glucose oxidase as a biocomponent and nanostructured OMS as a mediator. A Nafion thin film was applied as an immobilization/encapsulation and protective layer. The biosensors were evaluated as an amperometric glucose detector at phosphate buffer solution with a pH 7.4 at an operating potential of 0.3 V (vs. Ag/AgCl). The biosensor is characterized by a well-reproducible amperometric response, linear signal-to-glucose concentration range up to 3.5 mM and 1.75 mM, and detection limits (S/N = 3) of 0.1 mM and 0.05 mM for todorokite-type manganese oxide and cryptomelane-type manganese oxide modified electrodes, respectively. The biosensors based on OMS exhibit considerable good reproducibility and stability, and the construction and renewal are simple and inexpensive.

  6. Amperometric biosensors based on carbon paste electrodes modified with nanostructured mixed-valence manganese oxides and glucose oxidase.

    Science.gov (United States)

    Cui, Xiaoli; Liu, Guodong; Lin, Yuehe

    2005-06-01

    Nanostructured, multivalent, manganese-oxide octahedral molecular sieves (OMS), including cryptomelane-type manganese oxides and todorokite-type manganese oxides, were synthesized and evaluated for chemical sensing and biosensing at low operating potential. Both cryptomelane-type manganese oxides and todorokite-type manganese oxides are nanofibrous crystals with subnanometer open tunnels that provide a unique property for sensing applications. The electrochemical and electrocatalytic performance of OMS for the oxidation of H2O2 have been compared. Both cryptomelane-type manganese oxides and todorokite-type manganese oxides can be used to fabricate sensitive H2O2 sensors. With glucose oxidase (GOx) as an enzyme model, amperometric glucose biosensors are constructed by bulk modification of carbon paste electrodes with GOx as a biocomponent and nanostructured OMS as a mediator. A Nafion thin film was applied as an immobilization/encapsulation and protective layer. The biosensors were evaluated as an amperometric glucose detector at phosphate buffer solution with a pH 7.4 at an operating potential of 0.3 V (vs Ag/AgCl). The biosensor is characterized by a well-reproducible amperometric response, linear signal-to-glucose concentration range up to 3.5 mmol/L and 1.75 mmol/L, and detection limits (S/N = 3) of 0.1 mmol/L and 0.05 mmol/L for todorokite-type manganese oxide and cryptomelane-type manganese oxide-modified electrodes, respectively. The biosensors based on OMS exhibit considerable good reproducibility and stability, and the construction and renewal are simple and inexpensive.

  7. Amperometric Biosensors for Real Time Assays of Organophosphates

    Directory of Open Access Journals (Sweden)

    Kamil Kuca

    2008-09-01

    Full Text Available An amperometric biosensor based on acetylcholinesterase (AChE immobilized in gelatin was used to develop an assay for the organophosphate paraoxon. The more traditional manner employing preincubation was used for comparison between measurement procedures, although the aim of the study was to examine the performance of the biosensor for real time monitoring of organophosphates. The biosensor was immersed in a reaction chamber and paraoxon was injected inside. We were able to detect 200 pg of paraoxon within one minute or 2.5 ppb when the biosensor was preincubed in the sample solution for 15 minutes. The practical impact and expectations are discussed.

  8. Amperometric L-glutamate biosensor based on bacterial cell-surface displayed glutamate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Bo [Laboratory for Biosensing, Key Laboratory of Biofuels, and Shandong Provinicial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049 (China); Zhang, Shu [Laboratory for Biosensing, Key Laboratory of Biofuels, and Shandong Provinicial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Key Laboratory of Marine Chemistry Theory and Technology of Ministry of Education, Ocean University of China, 238 Songling Road, Qingdao 266100 (China); Lang, Qiaolin [Laboratory for Biosensing, Key Laboratory of Biofuels, and Shandong Provinicial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Song, Jianxia; Han, Lihui [Key Laboratory of Marine Chemistry Theory and Technology of Ministry of Education, Ocean University of China, 238 Songling Road, Qingdao 266100 (China); Liu, Aihua, E-mail: liuah@qibebt.ac.cn [Laboratory for Biosensing, Key Laboratory of Biofuels, and Shandong Provinicial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049 (China)

    2015-07-16

    Highlights: • E. coli surface-dispalyed Gldh exhibiting excellent enzyme activity and stability. • Sensitive amperometric biosensor for glutamate using Gldh-bacteria and MWNTs. • The glutamate biosensor exhibited high specificity and stability. - Abstract: A novel L-glutamate biosensor was fabricated using bacteria surface-displayed glutamate dehydrogenase (Gldh-bacteria). Here the cofactor NADP{sup +}-specific dependent Gldh was expressed on the surface of Escherichia coli using N-terminal region of ice nucleation protein (INP) as the anchoring motif. The cell fractionation assay and SDS-PAGE analysis indicated that the majority of INP-Gldh fusion proteins were located on the surface of cells. The biosensor was fabricated by successively casting polyethyleneimine (PEI)-dispersed multi-walled carbon nanotubes (MWNTs), Gldh-bacteria and Nafion onto the glassy carbon electrode (Nafion/Gldh-bacteria/PEI-MWNTs/GCE). The MWNTs could not only significantly lower the oxidation overpotential towards NAPDH, which was the product of NADP{sup +} involving in the oxidation of glutamate by Gldh, but also enhanced the current response. Under the optimized experimental conditions, the current–time curve of the Nafion/Gldh-bacteria/PEI-MWNTs/GCE was performed at +0.52 V (vs. SCE) by amperometry varying glutamate concentration. The current response was linear with glutamate concentration in two ranges (10 μM–1 mM and 2–10 mM). The low limit of detection was estimated to be 2 μM glutamate (S/N = 3). Moreover, the proposed biosensor is stable, specific, reproducible and simple, which can be applied to real samples detection.

  9. Determination of Patulin Using Amperometric Tyrosinase Biosensors Based on Electrodes Modified with Carbon Nanotubes and Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    R.M. Varlamova

    2016-06-01

    Full Text Available New amperometric biosensors based on platinum screen printed electrodes modified with multi-walled carbon nanotubes, gold nanoparticles, and immobilized enzyme – tyrosinase have been developed for determination of patulin in the concentrations of 1·10–6 – 8·10–12 mol/L with an error of no more than 0.063. The best conditions for obtaining gold nanoparticles have been chosen. The conditions for immobilization of multi-walled carbon nanotubes and gold nanoparticles on the surface of the planar electrode have been revealed. The conditions for functioning of the proposed biosensors have been identified. The results have been used to control the content of patulin in food products within and lower than the maximum allowable levels.

  10. Detection of Waterborne and Airborne Formaldehyde: From Amperometric Chemosensing to a Visual Biosensor Based on Alcohol Oxidase

    Directory of Open Access Journals (Sweden)

    Sasi Sigawi

    2014-02-01

    Full Text Available A laboratory prototype of a microcomputer-based analyzer was developed for quantitative determination of formaldehyde in liquid samples, based on catalytic chemosensing elements. It was shown that selectivity for the target analyte could be increased by modulating the working electrode potential. Analytical parameters of three variants of the amperometric analyzer that differed in the chemical structure/configuration of the working electrode were studied. The constructed analyzer was tested on wastewater solutions that contained formaldehyde. A simple low-cost biosensor was developed for semi-quantitative detection of airborne formaldehyde in concentrations exceeding the threshold level. This biosensor is based on a change in the color of a solution that contains a mixture of alcohol oxidase from the yeast Hansenula polymorpha, horseradish peroxidase and a chromogen, following exposure to airborne formaldehyde. The solution is enclosed within a membrane device, which is permeable to formaldehyde vapors. The most efficient and sensitive biosensor for detecting formaldehyde was the one that contained alcohol oxidase with an activity of 1.2 U·mL−1. The biosensor requires no special instrumentation and enables rapid visual detection of airborne formaldehyde at concentrations, which are hazardous to human health.

  11. Amperometric catechol biosensor based on laccase immobilized on nitrogen-doped ordered mesoporous carbon (N-OMC)/PVA matrix

    Science.gov (United States)

    Guo, Meiqing; Wang, Hefeng; Huang, Di; Han, Zhijun; Li, Qiang; Wang, Xiaojun; Chen, Jing

    2014-06-01

    A functionalized nitrogen-containing ordered mesoporous carbon (N-OMC), which shows good electrical properties, was synthesized by the carbonization of polyaniline inside a SBA-15 mesoporous silica template. Based on this, through entrapping laccase onto the N-OMC/polyvinyl alcohol (PVA) film a facilely fabricated amperometric biosensor was developed. Laccase from Trametes versicolor was assembled on a composite film of a N-OMC/PVA modified Au electrode and the electrochemical behavior was investigated. The results indicated that the N-OMC modified electrode exhibits electrical properties towards catechol. The optimum experimental conditions of a biosensor for the detection of catechol were studied in detail. Under the optimal conditions, the sensitivity of the biosensor was 0.29 A*M-1 with a detection limit of 0.31 μM and a linear detection range from 0.39 μM to 8.98 μM for catechol. The calibration curve followed the Michaelis-Menten kinetics and the apparent Michaelis-Menten \\left( K_{M}^{app} \\right) was 6.28 μM. This work demonstrated that the N-OMC/PVA composite provides a suitable support for laccase immobilization and the construction of a biosensor.

  12. Development of an amperometric sulfite biosensor based on SO(x)/PBNPs/PPY modified ITO electrode.

    Science.gov (United States)

    Rawal, Rachna; Pundir, C S

    2012-11-01

    A sulfite oxidase (SO(x)) (EC 1.8.3.1) purified from Syzygium cumini leaves was immobilized onto prussian blue nanoparticles/polypyrrole composite (PBNPs/PPY) electrodeposited onto the surface of indium tin oxide (ITO) electrode. An amperometric sulfite biosensor was fabricated using SO(x)/PBNPs/PPY/ITO electrode as working electrode, Ag/AgCl as standard and Pt wire as auxiliary electrode connected through a potentiostat. The working electrode was characterized by Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) before and after immobilization of SO(x). The biosensor showed optimum response within 2s, when operated at 20 mV s⁻¹ in 0.1M Tris-HCl buffer, pH 8.5 and at 35 °C. Linear range and minimum detection limit were 0.5-1000 μM and 0.12 μM (S/N=3) respectively. There was good correlation (r=0.99) between red wine samples sulfite value by standard DTNB method and the present method. The sensor was evaluated with 97% recovery of added sulfite in red wine samples and 2.2% and 4.3% within and between batch coefficients of variation respectively. The sensor was employed for determination of sulfite level in red and white wine samples. The enzyme electrode was used 200 times over a period of 3 months when stored at 4 °C.

  13. Non-invasive determination of glucose directly in raw fruits using a continuous flow system based on microdialysis sampling and amperometric detection at an integrated enzymatic biosensor.

    Science.gov (United States)

    Vargas, E; Ruiz, M A; Campuzano, S; Reviejo, A J; Pingarrón, J M

    2016-03-31

    A non-destructive, rapid and simple to use sensing method for direct determination of glucose in non-processed fruits is described. The strategy involved on-line microdialysis sampling coupled with a continuous flow system with amperometric detection at an enzymatic biosensor. Apart from direct determination of glucose in fruit juices and blended fruits, this work describes for the first time the successful application of an enzymatic biosensor-based electrochemical approach to the non-invasive determination of glucose in raw fruits. The methodology correlates, through previous calibration set-up, the amperometric signal generated from glucose in non-processed fruits with its content in % (w/w). The comparison of the obtained results using the proposed approach in different fruits with those provided by other method involving the same commercial biosensor as amperometric detector in stirred solutions pointed out that there were no significant differences. Moreover, in comparison with other available methodologies, this microdialysis-coupled continuous flow system amperometric biosensor-based procedure features straightforward sample preparation, low cost, reduced assay time (sampling rate of 7 h(-1)) and ease of automation.

  14. A novel amperometric biosensor based on gold nanoparticles-mesoporous silica composite for biosensing glucose

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We report a novel bienzyme biosensor based on the assembly of the glucose oxidase (GOD) and horseradish peroxidase (HRP) onto the gold nanoparticles encapsulated mesoporous silica SBA-15 composite (AuNPs-SBA-15). Electrochemical behavior of the bienzyme bioconjugates biosensor is studied by cyclic voltammetry and electrochemical impedance spectroscopy. The results indicate that the presence of mesoporous AuNPs-SBA-15 greatly enhanced the protein loadings, accelerated interfacial electron transfer of HRP and the electroconducting surface, resulting in the realization of direct electrochemistry of HRP. Owing to the electrocatalytic effect of AuNPs-SBA-15 composite, the biosensor exhibits a sensitive response to H2O2 generated from enzymatic reactions. Thus the bienzyme biosensor could be used for the detection of glucose without the addition of any mediator. The detection limit of glucose was 0.5 μM with a linear range from 1 to 48 μM.

  15. Amperometric urea biosensor based on urease and electropolymerized toluidine blue dye as a pH-sensitive redox probe.

    Science.gov (United States)

    Vostiar, Igor; Tkac, Jan; Sturdik, Ernest; Gemeiner, Peter

    2002-05-15

    The electropolymerized toluidine blue film deposited on the glassy carbon electrode show amperometrically detectable pH sensitivity. This feature of polytoluidine blue (PTOB) film was used for a construction of an amperometric urea biosensor. We have observed a linear shift of the formal redox potential with increasing pH value between 4 and 8 giving the slope of 81 mV(Delta) pH(-1). Polytoluidine blue film has had a significantly increased stability and higher electrochemical activity compared to the adsorbed monomeric dye. The polytoluidine blue urea biosensor has been operating at a working potential of -200 mV vs. SCE. The sensitivity of the biosensor was 980 nA mM(-1) cm(-2). The biosensor showed linearity in concentration range up to 0.8 mM with the detection limit of 0.02 mM (S/N=3).

  16. Amperometric inhibition biosensors based on horseradish peroxidase and gold sononanoparticles immobilized onto different electrodes for cyanide measurements.

    Science.gov (United States)

    Attar, Aisha; Cubillana-Aguilera, Laura; Naranjo-Rodríguez, Ignacio; de Cisneros, José Luis Hidalgo-Hidalgo; Palacios-Santander, José María; Amine, Aziz

    2015-02-01

    New biosensors based on inhibition for the detection of cyanide and the comparison of the analytical performances of nine enzyme biosensor designs by using three different electrodes: Sonogel-Carbon, glassy carbon and gold electrodes were discussed. Three different horseradish peroxidase immobilization procedures with and without gold sononanoparticles were studied. The amperometric measurements were performed at an applied potential of -0.15V vs. Ag/AgCl in 50mM sodium acetate buffer solution pH=5.0. The apparent kinetic parameters (Kmapp, Vmaxapp) of immobilized HRP were calculated in the absence of inhibitor (cyanide) by using caffeic acid, hydroquinone, and catechol as substrates. The presence of gold sononanoparticles enhanced the electron transfer reaction and improved the analytical performance of the biosensors. The HRP kinetic interactions reveal non-competitive binding of cyanide with an apparent inhibition constant (Ki) of 2.7μM and I50 of 1.3μM. The determination of cyanide can be achieved in a dynamic range of 0.1-58.6μM with a detection limit of 0.03μM which is lower than those reported by previous studies. Hence this biosensing methodology can be used as a new promising approach for detecting cyanide.

  17. A novel amperometric biosensor based on gold nanoparticles-mesoporous silica composite for biosensing glucose

    Institute of Scientific and Technical Information of China (English)

    ZHANG JingJing; ZHU JunJie

    2009-01-01

    We report a novel bienzyme bioseneor based on the assembly of the glucose oxidase (GOD) and horseradish peroxidase (HRP) onto the gold nanoparticles encapsulated mesoporous silica SBA-15 composite (AuNPs-SBA-15). Electrochemical behavior of the bienzyme bioconjugatse biosensor is studied by cyclic voltammetry and electrochemical impedance spectroscopy. The results indicate that the presence of mesoporous AuNPs-SBA-15 greatly enhanced the protein Ioadings, accelerated inter-facial electron transfer of HRP and the electroconducting surface, resulting in the realization of direct electrochemistry of HRP. Owing to the electrocatalytic effect of AuNPs-SBA-15 composite, the biosen-sor exhibits a sensitive response to H2O2 generated from enzymatic reactions. Thus the bienzyme biosensor could be used for the detection of glucose without the addition of any mediator. The detec-tion limit of glucose was 0.5 μM with a linear range from 1 to 48 μM.

  18. Self-assembled CNTs/CdS/dehydrogenase hybrid-based amperometric biosensor triggered by photovoltaic effect.

    Science.gov (United States)

    Tang, Longhua; Zhu, Yihua; Yang, Xiaoling; Sun, Jinjie; Li, Chunzhong

    2008-10-15

    A novel multi-components hybrid material, self-assembled quantum dots (CdS) and glutamate dehydrogenase (GDH) onto multiwall carbon nanotubes (CNTs), was designed for amperometric biosensing system. The zeta-potential and transmission electron microscopy (TEM) analyses confirmed the uniform growth of the CdS/GDH onto carboxyl-functionalized CNTs. Compared with the single CdS, the resulting hybrid material showed more efficient generation of photocurrent upon illumination. The incident light excites CdS and generates charge carriers, and then CNTs facilitates the charge transfer. For dehydrogenase-based biosensor, normally, the cofactor of beta-nicotinamide adenine dinucleotide (NAD(+)) or beta-nicotinamide adenine dinucleotide phosphate (NADP(+)) is necessary. Furthermore, we found the photovoltaic effect of CNTs/CdS/GDH can trigger the dehydrogenase enzymatic reaction in the absence of the NAD(+) or NADP(+) cofactors. The electrochemical experiment results also demonstrate that the cofactor-independent dehydrogenase biosensing system had series attractive characteristics, such as a good sensitivity (11.9 nA/microM), lower detection limit (up to 50 nM), an acceptable reproducibility and stability. These studies aid in understanding the combination of the semiconductor nanohybrids (CNTs/QDs, etc.) and biomolecules (enzymes, etc.), which has potential for the applications in biosensor, biofuel cell, biomedical and other bioelectronics field.

  19. Development of an amperometric glucose biosensor based on the immobilization of glucose oxidase in an ormosil-PVA matrix onto a Prussian Blue modified electrode

    Institute of Scientific and Technical Information of China (English)

    CHEN HaiLing; ZHAO Li; CHEN Xi; ZHUANG ZhiXia; WANG XiaoRu

    2009-01-01

    An amperometric glucose biosensor was developed based on the Immobilization of glucose oxidase in the organically modified silicate(ormosil)-polyvinyl acetate(PVA)matrix onto a Prussian Blue(PB)-modified glassy carbon electrode.A higher stability PB-modified electrode was prepared by the electrochemical deposition of FeCl3,K3[Fe(CN)6]and ethylenediamine tetrsacetic acid(EDTA)under cyclic voltammetric(CV)conditions.The effects of the potential range of CV conditions,electrolyte cations,applied potential,pH,temperature and co-existing substances were investigated.The detection limit of the glucose biosensor was 8.1 μmol·L-1(S/N=3)with a linear range from 20 μmol·L-1 to 2 mmol·L-1(R=0.9965).The biosensor presented a fast response and good selectivity.Additionally,excellent reproducibility and stability of the biosensor were observed.

  20. Urea biosensor based on amperometric pH-sensing with hematein as a pH-sensitive redox mediator.

    Science.gov (United States)

    Pizzariello, A; Stredanský, M; Stredanská, S; Miertus, S

    2001-05-30

    The natural dye hematein in water solution was used as a pH-sensitive redox-active mediator for amperometric pH-sensing. The electrochemical characteristics were studied using cyclic voltammetry and chronoamperometry. Several types of urea biosensors were constructed with urease on the surface of platinum and graphite composite electrodes or in the bulk of the graphite composite. They were used for the amperometric urea determination at a working potential of 0 mV (versus SCE) using 0.5 mM hematein. Detection limits and response linearity was in the micromolar range depending on the biosensor type, concentration and pH of buffers used. An interference study of various cations, anions, and substances, which may be present in real samples demonstrated good selectivity for the determination of urea. The biosensors showed good operational (>3 h) and storage (>3 months) stability. The results of urea determination in blood and urine obtained by biosensor correlated well with those obtained by a spectrophotometric reference method.

  1. Amperometric sulfide detection using Coprinus cinereus peroxidase immobilized on screen printed electrode in an enzyme inhibition based biosensor.

    Science.gov (United States)

    Savizi, Iman Shahidi Pour; Kariminia, Hamid-Reza; Ghadiri, Mohammad; Roosta-Azad, Reza

    2012-05-15

    In the present work, an amperometric inhibition biosensor for the determination of sulfide has been fabricated by immobilizing Coprinus cinereus peroxidase (CIP) on the surface of screen printed electrode (SPE). Chitosan/acrylamide was applied for immobilization of peroxidase on the working electrode. The amperometric measurement was performed at an applied potential of -150 mV versus Ag/AgCl with a scan rate of 100 mV in the presence of hydroquinone as electron mediator and 0.1M phosphate buffer solution of pH 6.5. The variables influencing the performance of sensor including the amount of substrate, mediator concentration and electrolyte pH were optimized. The determination of sulfide can be achieved in a linear range of 1.09-16.3 μM with a detection limit of 0.3 μM. Developed sensor showed quicker response to sulfide compared to the previous developed sulfide biosensors. Common anions and cations in environmental water did not interfere with sulfide detection by the developed biosensor. Cyanide interference on the enzyme inhibition caused 43.25% error in the calibration assay which is less than the amounts reported by previous studies. Because of high sensitivity and the low-cost of SPE, this inhibition biosensor can be successfully used for analysis of environmental water samples.

  2. Amperometric biosensor for Salmonella typhimurium detection in milk

    Science.gov (United States)

    This paper reports an amperometric biosensor for rapid and sensitive Salmonella Typhimurium detection in milk. The biosensor was assembled from the self-assembled monolayers technique on a gold surface. In this device, polyclonal antibodies were oriented by protein A. The biosensor structure was cha...

  3. Development of a novel biosensor based on a polypyrrole-dodecylbenzene sulphonate (PPy-DBS) film for the determination of amperometric cholesterol.

    Science.gov (United States)

    Özer, Bayram Oğuz; Çete, Servet

    2017-06-01

    Herein a novel amperometric biosensor based on a conducting polymer with anionic dopant modified electrode was successfully developed for detection of cholesterol. Polypyrrole is deposited on a platinum surface and the sodium dodecylbenzene sulphonate (DBS) ion-doped polypyrrole film was electrochemically prepared by scanning the electrode potential between -0.8 and +0.8 V at a scan rate of 20 mV/s. The present electrochemical biosensor was optimized in terms of working potential, number of cycles, concentrations of monomer, and anionic dopant. Cholesterol oxidase (ChOx) was physically entrapped in PPy-DBS to construct an amperometric cholesterol biosensor. Amperometric determination is based on the electrochemical detection of H2O2 generated in the enzymatic reaction of cholesterol. Kinetic parameters, operational and storage stabilities, pH, and temperature dependencies were determined. Km and Imax were calculated as 0.11 μM and 0.967 nM/min, respectively. The operational stability results showed that 90.0% of the response current was retained after 30 activity assays. Morphology of electrodes was characterized by SEM and AFM. Additionally, contact angle measurements were made with 1 μL water of polymer film and enzyme electrode. As a result, the cholesterol biosensor suggested in this study is easy to prepare and is highly cost-effective. This composite (PPy-DBS) can supply a biocompatible and electrochemical microenvironment for immobilization of the enzyme, making this material a good candidate for the fabrication of highly sensitive and selective cholesterol biosensors.

  4. Elaboration of new method of enzyme adsorption on silicalite and nano beta zeolite for amperometric biosensor creation

    Directory of Open Access Journals (Sweden)

    Soldatkin O. O.

    2014-07-01

    Full Text Available Aim. Optimization of a new method of enzyme immobilization for amperometric biosensor creation. Methods. The amperometric biosensor with glucose oxidase immobilized on zeolites as bioselective elements and platinum disk electrode as transducers of biochemical signal into the electric one was used in the work. Results. The biosensors based on glucose oxidase adsorbed on zeolites were characterized by a higher sensitivity to glucose and a better inter-reproducibility. The best analytical characteristics were obtained for the biosensors based on nano beta zeolite. It has been found that an increase in the amount of zeolite on the surface of amperometric transducer may change such biosensor parameters as sensitivity to the substrate and duration of the analysis. Conclusions. The proposed method of enzyme immobilization by adsorption on zeolites is shown to be quite promising in the development of amperometric biosensors and therefore should be further investigated.

  5. Amperometric bienzyme glucose biosensor based on carbon nanotube modified electrode with electropolymerized poly(toluidine blue O) film

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wenju [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Wang Fang [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong (Hong Kong)] [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Yao Yanli [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Hu Shengshui [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Shiu, Kwok-Keung, E-mail: kkshiu@hkbu.edu.h [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2010-09-30

    The amperometric bienzyme glucose biosensor utilizing horseradish peroxidase (HRP) and glucose oxidase (GOx) immobilized in poly(toluidine blue O) (PTBO) film was constructed on multi-walled carbon nanotube (MWNT) modified glassy carbon electrode. The HRP layer could be used to analyze hydrogen peroxide with toluidine blue O (TBO) mediators, while the bienzyme system (HRP + GOx) could be utilized for glucose determination. Glucose underwent biocatalytic oxidation by GOx in the presence of oxygen to yield H{sub 2}O{sub 2} which was further reduced by HRP at the MWNT-modified electrode with TBO mediators. In the absence of oxygen, glucose oxidation proceeded with electron transfer between GOx and the electrode mediated by TBO moieties without H{sub 2}O{sub 2} production. The bienzyme electrode offered high sensitivity for amperometric determination of glucose at low potential, displaying Michaelis-Menten kinetics. The bienzyme glucose biosensor displayed linear response from 0.1 to 1.2 mM with a sensitivity of 113 mA M{sup -1} cm{sup -2} at an applied potential of -0.10 V in air-saturated electrolytes.

  6. An amperometric penicillin biosensor with enhanced sensitivity based on co-immobilization of carbon nanotubes, hematein, and {beta}-lactamase on glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Chen Bi; Ma Ming [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China); Su Xiaoli, E-mail: xsu@hunnu.edu.cn [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China)

    2010-07-26

    An amperometric penicillin biosensor with enhanced sensitivity was successfully developed by co-immobilization of multi-walled carbon nanotubes (MWCNTs), hematein, and {beta}-lactamase on glassy carbon electrode using a layer-by-layer assembly technique. Under catalysis of the immobilized enzyme, penicillin was hydrolyzed, decreasing the local pH. The pH change was monitored amperometrically with hematein as a pH-sensitive redox probe. MWCNTs were used as an electron transfer enhancer as well as an efficient immobilization matrix for the sensitivity enhancement. The effects of immobilization procedure, working potential, enzyme quantity, buffer concentration, and sample matrix were investigated. The biosensor offered a minimum detection limit of 50 nM (19 {mu}g L{sup -1}) for penicillin V, lower than those of the conventional pH change-based biosensors by more than two orders of magnitude. The electrode-to-electrode variation of the response sensitivity was 7.0% RSD.

  7. An effective gold nanotubes electrode for amperometric biosensor.

    Science.gov (United States)

    Wang, Yunli; Zhu, Yingchun; Liu, Yanyan; Yang, Yu; Ruan, Qichao; Xu, Fangfang

    2010-12-01

    A sensitive and effective amperometric glucose biosensor based on gold nanotubes electrode (GNTE) was investigated. Gold nanotubes (GNTs), which were prepared by electroless plating of the metal within the pores of nanoporous polycarbonate (PC) track-etched membranes, were filled into a hollow teflon cylinder to construct a GNTE. Glucose oxidase (GOD) was immobilized on the electrode via glutaraldehyde cross-linkage method. The electrochemical properties were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The km value of the immobilized glucose oxidase on GNTE was 0.47 mM. The biosensor showed a linear range from 0.4 to 11 mM with excellent sensitivity of 8.77 microA cm(-2) mM(-1) and fast response time within 5 s.

  8. Amperometric Biosensor Based on Diamine Oxidase/Platinum Nanoparticles/Graphene/Chitosan Modified Screen-Printed Carbon Electrode for Histamine Detection.

    Science.gov (United States)

    Apetrei, Irina Mirela; Apetrei, Constantin

    2016-03-24

    This work describes the development and optimization studies of a novel biosensor employed in the detection and quantification of histamine in freshwater fish samples. The proposed biosensor is based on a modified carbon screen-printed electrode with diamineoxidase, graphene and platinum nanoparticles, which detects the hydrogen peroxide formed by the chemical process biocatalysed by the enzyme diamine oxidase and immobilized onto the nanostructurated surface of the receptor element. The amperometric measurements with the biosensor have been implemented in buffer solution of pH 7.4, applying an optimal low potential of +0.4 V. The novel biosensor shows high sensitivity (0.0631 μA·μM), low detection limit (2.54 × 10(-8) M) and a broad linear domain from 0.1 to 300 μM. The applicability in natural complex samples and the analytical parameters of this enzyme sensor have been performed in the quantification of histamine in freshwater fish. An excellent correlation among results achieved with the developed biosensor and results found with the standard method for all freshwater fish samples has been achieved.

  9. Disposable amperometric biosensors based on xanthine oxidase immobilized in the Prussian blue modified screen-printed three-electrode system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The screen-printed three-electrode system was applied to fabricate a new type of disposable amperometric xanthine oxidase biosensor.Carbon-working,carbon-counter and Ag/AgCl reference electrodes were all manually printed on the polyethylene terephthalate substrate forming the screen-printed three-electrode system by the conventional screen-printing process.As a mediator,Prussian blue could not only catalyze the electrochemical reduction of hydrogen peroxide produced from the enzyme reaction,but also keep the favorable potential around 0 V.The optimum operational conditions,including pH,potential and temperature,were investigated.The sensitivities of xanthine and hypoxanthine detections were 13.83 mA/M and 25.56 mA/M,respectively.A linear relationship was obtained in the concentration range between 0.10μM and 4.98μM for xanthine and between 0.50μM and 3.98μM for hypoxanthine.The small Michaelis-menten constant value of the xanthine oxidase biosensor was calculated to be 3.90 μM.The results indicate that the fabricated xanthine oxidase biosensor is effective and sensitive for the detection of xanthine and hypoxanthine.

  10. CHARACTERISTICS AND OPTIMAL WORKING CONDITIONS OF AMPEROMETRIC BIOSENSOR FOR ADENOSINE TRIPHOSPHATE DETERMINATION

    Directory of Open Access Journals (Sweden)

    Kucherenko I. S.

    2014-02-01

    Full Text Available Analytical characteristics of a biosensor based on glucose oxidase and hexokinase and intended for ATP determination were studied. Platinum disc electrodes were used as amperometric transducers. Range of working potentials for biosensor functioning was shown. An optimal time of enzymes immobilization was determined. Optimal conditions for biosensor functioning during work with biological fluids were selected. Biosensor work in three buffer solutions (PBS, tris and HEPES was investigated and it was shown that it was possible to obtain various operational characteristics of the biosensor depending on tasks that are assigned to it by varying the composition of sample. Reproducibility of biosensor responses to ATP and glucose during a day and of biosensor preparation was shown. The proposed biosensor can be further used for analysis of glucose and ATP content in water solutions.

  11. Development of an amperometric glucose biosensor based on the immobilization of glucose oxidase in an ormosil-PVA matrix onto a Prussian Blue modified electrode

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    An amperometric glucose biosensor was developed based on the immobilization of glucose oxidase in the organically modified silicate(ormosil)-polyvinyl acetate(PVA) matrix onto a Prussian Blue(PB)-modified glassy carbon electrode.A higher stability PB-modified electrode was prepared by the electrochemical deposition of FeCl3,K3[Fe(CN)6] and ethylenediamine tetraacetic acid(EDTA) under cyclic voltammetric(CV) conditions.The effects of the potential range of CV conditions,electrolyte cations,applied potential,pH,temperature and co-existing substances were investigated.The detection limit of the glucose biosensor was 8.1 μmol·L-1(S/N = 3) with a linear range from 20 μmol·L-1 to 2 mmol·L-1(R = 0.9965).The biosensor presented a fast response and good selectivity.Additionally,excellent reproducibility and stability of the biosensor were observed.

  12. Carbon Nanotube-Plasma Polymer-Based Amperometric Biosensors: Enzyme-Friendly Platform for Ultrasensitive Glucose Detection

    Science.gov (United States)

    Muguruma, Hitoshi; Matsui, Yasunori; Shibayama, Yu

    2007-09-01

    An amperometric enzyme biosensor fabricated with carbon nanotubes (CNTs) and plasma-polymerized thin films (PPFs) is reported. A mixture of the enzyme glucose oxidase (GOD) and a CNT film is sandwiched with 10-nm-thick acetonitrile PPFs. Under PPF layer was deposited onto a sputtered gold electrode. To facilitate the electrochemical communication between the CNT layer and GOD, CNT was treated with oxygen plasma. The device with single-walled CNTs showed a sensitivity higher than that of multiwalled CNTs. The glucose biosensor showed ultrasensitivity (a sensitivity of 40 μA mM-1 cm-2, a correlation coefficient of 0.992, a linear response range of 0.025-1.9 mM, a detection limit of 6.2 μM at S/N = 3, +0.8 V vs Ag/AgCl), and a rapid response (< 4 s in reaching 95% of maximum response). This high performance is attributed to the fact that CNTs have excellent electrocatalytic activity and enhance electron transfer, and that PPFs and/or the plasma process for CNTs are the enzyme-friendly platform, i.e., a suitable design of the interface between GOD and CNTs.

  13. Construction of amperometric uric acid biosensor based on uricase immobilized on PBNPs/cMWCNT/PANI/Au composite.

    Science.gov (United States)

    Rawal, Rachna; Chawla, Sheetal; Chauhan, Nidhi; Dahiya, Tulika; Pundir, C S

    2012-01-01

    A chitosan-glutaraldehyde crosslinked uricase was immobilized onto Prussian blue nanoparticles (PBNPs) absorbed onto carboxylated multiwalled carbon nanotube (c-MWCNT) and polyaniline (PANI) layer, electrochemically deposited on the surface of Au electrode. The nanohybrid-uricase electrode was characterized by scanning electron microscopic (SEM), Fourier transform infrared spectroscopy (FTIR) and cyclic voltammetry. An amperometric uric acid biosensor was fabricated using uricase/c-MWCNT/PBNPs/Au electrode as working electrode, Ag/AgCl as standard and Pt wire as auxiliary electrode connected through a potentiostat. The biosensor showed optimum response within 4s at pH 7.5 and 40°C, when operated at 0.4V vs. Ag/AgCl. The linear working range for uric acid was 0.005-0.8 mM, with a detection limit of 5 μM. The sensor was evaluated with 96% recovery of added uric acid in sera and 4.6 and 5.4% within and between batch of coefficient of variation respectively and a good correlation (r=0.99) with standard enzymic colorimetric method. This sensor measured uric acid in real serum samples. The sensor lost only 37% of its initial activity after its 400 uses over a period of 7 months, when stored at 4°C.

  14. An amperometric hydrogen peroxide biosensor based on Co{sub 3}O{sub 4} nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Kaçar, Ceren; Dalkiran, Berna; Erden, Pınar Esra, E-mail: erdenpe@gmail.com; Kiliç, Esma

    2014-08-30

    Highlights: • Hydrogen peroxide biosensor was constructed by combining the advantageous properties of MWCNTs and Co{sub 3}O{sub 4}. • Incorporating Co{sub 3}O{sub 4} nanoparticles into MWCNTs/gelatin film increased the electron transfer. • Co{sub 3}O{sub 4}/MWCNTs/gelatin/HRP/Nafion/GCE showed strong anti-interference ability. • Hydrogen peroxide was successfully determined in disinfector with an average recovery of 100.78 ± 0.89. - Abstract: In this work a new type of hydrogen peroxide biosensor was fabricated based on the immobilization of horseradish peroxidase (HRP) by cross-linking on a glassy carbon electrode (GCE) modified with Co{sub 3}O{sub 4} nanoparticles, multiwall carbon nanotubes (MWCNTs) and gelatin. The introduction of MWCNTs and Co{sub 3}O{sub 4} nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric detection of hydrogen peroxide was investigated by holding the modified electrode at −0.30 V (vs. Ag/AgCl). The biosensor showed optimum response within 5 s at pH 7.0. The optimized biosensor showed linear response range of 7.4 × 10{sup −7}–1.9 × 10{sup −5} M with a detection limit of 7.4 × 10{sup −7}. The applicability of the purposed biosensor was tested by detecting hydrogen peroxide in disinfector samples. The average recovery was calculated as 100.78 ± 0.89.

  15. Amperometric electrochemical microsystem for a miniaturized protein biosensor array.

    Science.gov (United States)

    Chao Yang; Yue Huang; Hassler, B L; Worden, R M; Mason, A J

    2009-06-01

    Protein-based bioelectrochemical interfaces offer great potential for rapid detection, continuous use, and miniaturized sensor arrays. This paper introduces a microsystem platform that enables multiple bioelectrochemical interfaces to be interrogated simultaneously by an onchip amperometric readout system. A post-complementary metal-oxide semiconductor (CMOS) fabrication procedure is described that permits the formation of planar electrode arrays and self assembly of biosensor interfaces on the electrodes. The onchip, 0.5-mum CMOS readout electronics include a compact potentiostat that supports a very broad range of input currents-6 pA to 10 muA-to accommodate diverse biosensor interfaces. The 2.3 times 2.2-mm chip operates from a 5-V supply at 0.6 mA. A prototype electrochemical sensor platform, including an onchip potentiostat and miniaturized biosensor array, was characterized by using cyclic voltammetry. The linear relationship between the oxidization peak values and the concentrations of target analytes in the solution verifies functionality of the system and demonstrates the potential for future implementations of this platform in high sensitivity, low cost, and onchip protein-based sensor arrays.

  16. A Biosensor Based on Immobilization of Horseradish Peroxidase in Chitosan Matrix Cross-linked with Glyoxal for Amperometric Determination of Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Gui-Xiang Wang

    2005-05-01

    Full Text Available An amperometric biosensor for hydrogen peroxide (H2O2 was developed viaan easy and effective enzyme immobilization method with the “sandwich” configuration:ferrocene-chitosan: HRP: chitosan-glyoxal using a glassy carbon electrode as the basicelectrode. In order to prevent the loss of immobilized HRP under optimized conditions,the biosensor surface was cross-linked with glyoxal. Ferrocene was selected andimmobilized on the glassy carbon electrode surface as a mediator. The fabricationprocedure was systematically optimized to improve the biosensor performance. Thebiosensor had a fast response of less than 10 s to H2O2, with a linear range of 3.5×10-5 to1.1×10-3 M, and a detection limit of 8.0×10-6 M based on S/N = 3.

  17. Microfluidics and nanoparticles based amperometric biosensor for the detection of cyanobacteria (Planktothrix agardhii NIVA-CYA 116) DNA.

    Science.gov (United States)

    Ölcer, Zehra; Esen, Elif; Ersoy, Aylin; Budak, Sinan; Sever Kaya, Dilek; Yağmur Gök, Mehmet; Barut, Serkan; Üstek, Duran; Uludag, Yildiz

    2015-08-15

    Some of the cyanobacteria produce protease inhibitor oligopeptides such as cyanopeptolins and cause drinking water contamination; hence, their detection has great importance to monitor the well-being of water sources that is used for human consumption. In the current study, a fast and sensitive nucleic acid biosensor assay has been described where cyanopeptolin coding region of one of the cyanobacteria (Planktothrix agardhii NIVA-CYA 116) genome has been used as target for monitoring of the fresh water resources. A biochip that has two sets of Au electrode arrays, each consist of shared reference/counter electrodes and 3 working electrodes has been used for the assay. The biochip has been integrated to a microfluidics system and all steps of the assay have been performed during the reagent flow to achieve fast and sensitive DNA detection. On-line hybridization of the target on to the capture probe immobilized surface resulted in a very short assay duration with respect to the conventional static assays. The binding of the avidin and enzyme modified Au nanoparticles to the biotinylated detection probe and the subsequent injection of the substrate enabled a real-time amperometric measurement with a detection limit of 6×10(-12) M target DNA (calibration curve r(2)=0.98). The developed assay enables fast and sensitive detection of cyanopeptolin producing cyanobacteria from freshwater samples and hence shows a promising technology for toxic microorganism detection from environmental samples.

  18. A new amperometric glucose biosensor based on screen printed carbon electrodes with rhenium(IV - oxide as a mediator

    Directory of Open Access Journals (Sweden)

    ALBANA VESELI

    2012-11-01

    Full Text Available Rhenium(IV-oxide, ReO2, was used as a mediator for carbon paste (CPE and screen printed carbon (SPCE electrodes for the catalytic amperometric determination of hydro-gen peroxide, whose overpotential for the reduction could be lowered to -0.1 V vs. Ag/AgCl in flow injection analysis (FIA using phosphate buffer (0.1 M, pH=7.5 as a carrier. For hydrogen peroxide a detection limit (3σ of 0.8 mg L-1 could be obtained.ReO2-modified SPCEs were used to design biosensors with a template enzyme, i.e. glucose oxidase, entrapped in a Nafion membrane. The resulting glucose sensor showed a linear dynamic range up to 200 mg L-1 glucose with a detection limit (3σ of 0.6 mg L-1. The repeatability was 2.1 % RSD (n = 5 measurements, the reproducibility 5.4 % (n = 5 sensors. The sensor could be applied for the determination of glucose in blood serum in good agreement with a reference method.

  19. A novel amperometric biosensor for superoxide anion based on superoxide dismutase immobilized on gold nanoparticle-chitosan-ionic liquid biocomposite film

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lu; Wen Wei; Xiong Huayu; Zhang Xiuhua; Gu Haoshuang [Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062 (China); Wang Shengfu, E-mail: wangsf@hubu.edu.cn [Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062 (China)

    2013-01-03

    Graphical abstract: Schematic representation of the assembly process of SOD/GNPs-CS-IL/GCE. Highlights: Black-Right-Pointing-Pointer SOD was immobilized in gold nanoparticles-chitosan-ionic liquid (GNPs-CS-IL) film. Black-Right-Pointing-Pointer The biosensor was constructed by one-step ultrasonic electrodeposition of GNPs-CS-IL onto GCE. Black-Right-Pointing-Pointer The biosensor showed excellent analytical performance for O{sub 2}{center_dot}{sup -} real-time analysis. - Abstract: A novel superoxide anion (O{sub 2}{center_dot}{sup -}) biosensor is proposed based on the immobilization of copper-zinc superoxide dismutase (SOD) in a gold nanoparticle-chitosan-ionic liquid (GNPs-CS-IL) biocomposite film. The SOD-based biosensor was constructed by one-step ultrasonic electrodeposition of GNP-CS-IL composite onto glassy carbon electrode (GCE), followed by immobilization of SOD on the modified electrode. Surface morphologies of a set of representative films were characterized by scanning electron microscopy. The electrochemical performance of the biosensor was evaluated by cyclic voltammetry and chronoamperometry. A pair of quasi-reversible redox peaks of SOD with a formal potential of 0.257 V was observed at SOD/GNPs-CS-IL/GCE in phosphate buffer solution (PBS, 0.1 M, pH 7.0). The effects of varying test conditions on the electrochemical behavior of the biosensor were investigated. Furthermore, several electrochemical parameters were calculated in detail. Based on the biomolecule recognition of the specific reactivity of SOD toward O{sub 2}{center_dot}{sup -}, the developed biosensor exhibited a fast amperometric response (<5 s), wide linear range (5.6-2.7 Multiplication-Sign 10{sup 3} nM), low detection limit (1.7 nM), and excellent selectivity for the real-time measurement of O{sub 2}{center_dot}{sup -}. The proposed method is promising for estimating quantitatively the dynamic changes of O{sub 2}{center_dot}{sup -} in biological systems.

  20. Amperometric uric acid biosensor based on poly(vinylferrocene)-gelatin-carboxylated multiwalled carbon nanotube modified glassy carbon electrode.

    Science.gov (United States)

    Erden, Pınar Esra; Kaçar, Ceren; Öztürk, Funda; Kılıç, Esma

    2015-03-01

    In this study, a new uric acid biosensor was constructed based on ferrocene containing polymer poly(vinylferrocene) (PVF), carboxylated multiwalled carbon nanotubes (c-MWCNT) and gelatin (GEL) modified glassy carbon electrode (GCE). Uricase enzyme (UOx) was immobilized covalently through N-ethyl-N'-(3-dimethyaminopropyl) carbodiimide (EDC) and N-hydroxyl succinimide (NHS) chemistry onto c-MWCNT/GEL/PVF/GCE. The c-MWCNT/GEL/PVF composite was characterized by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Various experimental parameters such as pH, applied potential, enzyme loading, PVF and c-MWCNT concentration were investigated in detail. Under the optimal conditions the dynamic linear range of uric acid was 2.0×10(-7) M-7.1×10(-4) M (R=0.9993) with the detection limit low to 2.3×10(-8) M. With good selectivity and sensitivity, the biosensor was successfully applied to determine the uric acid in human serum. The results of the biosensor were in good agreement with those obtained from standard method. Therefore, the presented biosensor could be a good promise for practical applications in real samples.

  1. Amperometric biosensor based on Laccase immobilized onto a screen-printed electrode by Matrix Assisted Pulsed Laser Evaporation.

    Science.gov (United States)

    Verrastro, Maria; Cicco, Nunzia; Crispo, Fabiana; Morone, Antonio; Dinescu, Maria; Dumitru, Marius; Favati, Fabio; Centonze, Diego

    2016-07-01

    A Laccase-based biosensor for the determination of phenolic compounds was developed by using Matrix Assisted Pulsed Laser Evaporation as an innovative enzyme immobilization technique. and the deriving biosensor was characterized and applied for the first time. Laccase was immobilized onto different substrates including screen printed carbon electrodes and spectroscopic, morphologic and electrochemical characterizations were carried out. A linear range from 1 to 60μM was achieved working at 5.5pH and -0.2V detection potential vs Ag pseudoreference. The limits of detection and quantification were found to be 1 and 5μM, respectively. A good fabrication reproducibility, stability of response and selectivity toward interferents were also found The potential of the developed biosensor was tested in the determination of total polyphenol content in real matrices (tea infusion, ethanolic extract from Muscari comosum bulbs and aqueous solution of a food supplement from black radish root and artichoke leaves) and the results were compared with those obtained by using the Folin-Ciocalteu method.

  2. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds.

    Science.gov (United States)

    Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md Rakibul

    2016-06-29

    A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075-10 µM and 10-55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  3. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds

    Science.gov (United States)

    Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md. Rakibul

    2016-01-01

    A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075–10 µM and 10–55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days. PMID:27367738

  4. Amperometric biosensor based on prussian blue and nafion modified screen-printed electrode for screening of potential xanthine oxidase inhibitors from medicinal plants.

    Science.gov (United States)

    El Harrad, Loubna; Amine, Aziz

    2016-04-01

    A simple and sensitive amperometric biosensor was developed for the screening of potential xanthine oxidase inhibitors from medicinal plants. This biosensor was prepared by immobilization of xanthine oxidase on the surface of prussian blue modified screen-printed electrodes using nafion and glutaraldehyde. The developed biosensor showed a linear amperometric response at an applied potential of +0.05 V toward the detection of hypoxanthine from 5 μM to 45 μM with a detection limit of 0.4 μM (S/N=3) and its sensitivity was found to be 600 mA M(-1) cm(-2). In addition, the biosensor exhibited a good storage stability. The inhibition of xanthine oxidase by allopurinol was studied under the optimized conditions. The linear range of allopurinol concentration is obtained up to 2.5 μM with an estimated 50% of inhibitionI50=1.8 μM. The developed biosensor was successfully applied to the screening of xanthine oxidase inhibitors from 13 medicinal plants belonging to different families. Indeed, Moroccan people traditionally use these plants as infusion for the treatment of gout and its related symptoms. For this purpose, water extracts obtained from the infusion of these plants were used for the experiments. In this work, 13 extracts were assayed and several of them demonstrated xanthine oxidase inhibitory effect, with an inhibition greater than 50% compared to spectrophotometry measurements that only few extracts showed an inhibition greater than 50%.

  5. An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Nidhi [Department of Biochemistry, M.D. University, Rohtak 124001, Haryana (India); Pundir, Chandra Shekhar, E-mail: pundircs@rediffmail.com [Department of Biochemistry, M.D. University, Rohtak 124001, Haryana (India)

    2011-09-02

    Graphical abstract: The stepwise amperometric biosensor fabrication process and immobilized acetylcholinesterase inhibition in pesticide solution. Highlights: {center_dot} Constructed a novel composite material using Fe{sub 3}O{sub 4}NP and c-MWCNT at Au electrode for electrocatalysis. {center_dot} The properties of nanoparticles modified electrodes were studied by SEM, FTIR, CVs and EIS. {center_dot} The biosensor exhibited good sensitivity (0.475 mA {mu}M{sup -1}) {center_dot} The half life of electrode was 2 months. {center_dot} The sensor was suitable for trace detection of OP pesticide residues in milk and water. - Abstract: An acetylcholinesterase (AChE) purified from maize seedlings was immobilized covalently onto iron oxide nanoparticles (Fe{sub 3}O{sub 4}NP) and carboxylated multi walled carbon nanotubes (c-MWCNT) modified Au electrode. An organophosphorus (OP) biosensor was fabricated using this AChE/Fe{sub 3}O{sub 4}/c-MWCNT/Au electrode as a working electrode, Ag/AgCl as standard and Pt wire as an auxiliary electrode connected through a potentiostat. The biosensor was based on inhibition of AChE by OP compounds/insecticides. The properties of nanoparticles modified electrodes were studied by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), cyclic voltammograms (CVs) and electrochemical impedance spectroscopy (EIS). The synergistic action of Fe{sub 3}O{sub 4}NP and c-MWCNT showed excellent electrocatalytic activity at low potential (+0.4 V). The optimum working conditions for the sensor were pH 7.5, 35 deg. C, 600 {mu}M substrate concentration and 10 min for inhibition by pesticide. Under optimum conditions, the inhibition rates of OP pesticides were proportional to their concentrations in the range of 0.1-40 nM, 0.1-50 nM, 1-50 nM and 10-100 nM for malathion, chlorpyrifos, monocrotophos and endosulfan respectively. The detection limits were 0.1 nM for malathion and chlorpyrifos, 1 nM for monocrotophos and 10 nM for endosulfan. The

  6. Determination of phenolic compounds by a polyphenol oxidase amperometric biosensor and artificial neural network analysis.

    Science.gov (United States)

    Gutés, A; Céspedes, F; Alegret, S; del Valle, M

    2005-02-15

    The determination of phenolic compounds is significant given its toxicity, even at very low concentration levels. Amperometric determination of phenols is a simple technique available. Direct oxidation of phenols can be used, but another possibility is the use of polyphenol oxidase (tyrosinase) enzyme biosensors that oxidises the phenolic compounds into their corresponding quinones. Reduction of the resulting quinones accomplishes the amplification of the amperometric signal, as long as the result of the reduction process is the corresponding cathecol, this being able to be oxidised again by the polyphenol oxidase immobilized on the surface of the biosensor. In this communication, simultaneous determination of different phenols was carried out combining biosensor measurements with chemometric tools, in what is known as electronic tongue. The departure information used was the overlapped reduction voltammogram generated with the amperometric biosensor based on polyphenol oxidase. Artificial Neural Networks (ANN) were used for extraction and quantification of each compound. Phenol, cathecol and m-cresol formed the three-analyte study case resolved in this work. Good prediction ability was attained, and so, the separate quantification of these three phenols was accomplished.

  7. A novel urea amperometric biosensor based on secretion of carnation petal cells modified on a graphite-epoxy composite electrode.

    Science.gov (United States)

    Pang, Chunyan; Zhu, Yongchun; Gao, Hongyan; Dong, Yue; Lu, Jie

    2011-02-21

    A new kind of biosensor for the detection of urea with a high selectivity, sensitivity and wide detection range was designed based on the secretion of carnation petals cells paste covered over a graphite-epoxy composite basic electrode surface. The carnation petal paste from mashed fresh carnation petals was tightly fixed on the basic electrode surface with Teflon thin film to keep it in contact with the electrode surface. Urea in aqueous solution was detected by differential pulse voltammetry based on the oxidation peak current at 0.316 V (vs. SCE) of the secreted species of carnation petal cells during the mashing process, which interacts with urea molecules and results in the decrease of the oxidation peak current. The oxidation peak current decreases linearly with the logarithm of urea concentration in the range of 1.3 × 10(-16)-4.57 × 10(-8) M and 3.4 × 10(-7)-1.3 × 10(-1) M with a detection limit of 7.5 × 10(-16) M. The biosensor was characterized by electrochemistry and fluorescent spectrometry, and applied to the determination of urea in waste water from a river around Shenyang Normal University campus with a recovery of 104.5% (RSD is 5.00%). The presence of larger amounts of ammonium ion and nitrate ion up to the molar ratio of 10(4) do not interfere with the urea detection.

  8. Poly(3,4-ethylenedioxythiophene)-based glucose biosensors

    NARCIS (Netherlands)

    Kros, A.; Hövell, W.F.M. van; Sommerdijk, N.A.J.M.; Nolte, R.J.M.

    2001-01-01

    Amperometric biosensors for the recognition of glucose oxidase (GOx) based on poly(3,4-ethylenedioxythiophene) (PEDOT) were fabricated for the first time. The resulting biosensor has potential applications for long-term glucose measurements.

  9. Amperometric cholesterol biosensor based on the direct electrochemistry of cholesterol oxidase and catalase on a graphene/ionic liquid-modified glassy carbon electrode.

    Science.gov (United States)

    Gholivand, Mohammad Bagher; Khodadadian, Mehdi

    2014-03-15

    Cholesterol oxidase (ChOx) and catalase (CAT) were co-immobilized on a graphene/ionic liquid-modified glassy carbon electrode (GR-IL/GCE) to develop a highly sensitive amperometric cholesterol biosensor. The H2O2 generated during the enzymatic reaction of ChOx with cholesterol could be reduced electrocatalytically by immobilized CAT to obtain a sensitive amperometric response to cholesterol. The direct electron transfer between enzymes and electrode surface was investigated by cyclic voltammetry. Both enzymes showed well-defined redox peaks with quasi-reversible behaviors. An excellent sensitivity of 4.163 mA mM(-1)cm(-2), a response time less than 6s, and a linear range of 0.25-215 μM (R(2)>0.99) have been observed for cholesterol determination using the proposed biosensor. The apparent Michaelis-Menten constant (KM(app)) was calculated to be 2.32 mM. The bienzymatic cholesterol biosensor showed good reproducibility (RSDsanalytical performance for the determination of free cholesterol in human serum samples.

  10. Thermally reduced graphene oxide: The study and use for reagentless amperometric D-fructose biosensors.

    Science.gov (United States)

    Šakinytė, Ieva; Barkauskas, Jurgis; Gaidukevič, Justina; Razumienė, Julija

    2015-11-01

    Aiming to create reagentless amperometric D-fructose biosensor, graphene based electrode materials have been synthesized by newly proposed thermal reduction of graphene oxide. The method allowed to separate and collect different fractions of thermally reduced graphene oxide (TRGO) with different physicochemical properties. The structural characteristics and surface morphologies of TRGO fractions were evaluated using SEM, XRD, TGA analysis, Raman spectroscopy and BET measurements. Three different fractions of TRGO were tested as electrode materials for D-fructose amperometric biosensors. The direct electron transfer (DET) from the active site of D-fructose dehydrogenase (FDH) to the electrode was achieved with all TRGO fractions. High values of the sensitivity (up to 14.5 μA mM(-1) cm(-2)) are of the same order as these for other D-fructose sensors based on the synergistic mediated processes. The relationships between the structure of TRGO fractions and the molecular processes determining the effect of DET in bioelectrocatalysis by FDH have been studied. Stability of the D-fructose biosensors was also assessed. The best results were achieved when immobilization of FDH was performed using a crosslinking with glutaraldehyde. For the best group, after a period of 5 days the sensitivity of the biosensor for D-fructose determination decreased by less than 20%.

  11. Automatic bionalyzer using an integrated amperometric biosensor for the determination of L-malic acid in wines.

    Science.gov (United States)

    Vargas, E; Ruiz, M A; Ferrero, F J; Campuzano, S; Ruiz-Valdepeñas Montiel, V; Reviejo, A J; Pingarrón, J M

    2016-09-01

    A new automatic bioanalyzer for L-malic acid using an integrated amperometric biosensor as detector is reported for the first time in this work. The biosensor is constructed by gold film sputtering deposition on a stainless steel disk electrode and co-immobilization of the enzymes malate dehydrogenase (MDH) and diaphorase (DP) together with the redox mediator tetrathiafulvalene (TTF) by means of dialysis membrane. The analytical performance of the biosensor was evaluated when it was used as amperometric detector in three different analytical methodologies: stirred solutions, semiautomatic FIA system and automatic bioanalyzer. The bienzyme biosensor exhibited great analytical performance in terms of sensitivity, selectivity and reproducibility of the measurements and its usefulness was demonstrated by analyzing wine reference materials with certified content of L-malic acid. The attractive analytical and operational characteristics demonstrated by the automatic bioanalyzer make it a promising simple, rapid and field-based tool for routine wine and fruit control.

  12. Amperometric choline biosensor based on multiwalled carbon nanotubes/zirconium oxide nanoparticles electrodeposited on glassy carbon electrode.

    Science.gov (United States)

    Pundir, S; Chauhan, N; Narang, J; Pundir, C S

    2012-08-01

    A bienzymatic choline biosensor was constructed by coimmobilizing acetylcholinesterase (AChE) and choline oxidase (ChO) onto nanocomposite of carboxylated multiwalled carbon nanotubes (c-MWCNTs) and zirconium oxide nanoparticles (ZrO(2)NPs) electrodeposited on the surface of a glassy carbon electrode (GCE) and using it (AChE-ChO/c-MWCNT/ZrO(2)NPs/GCE) as working electrode, Ag/AgCl as reference electrode, and Pt wire as auxiliary electrode connected through a potentiostat. The enzyme electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and cyclic voltammetry (CV) studies, optimized, and evaluated. The biosensor exhibited optimum response within 4 s at +0.2V, pH 7.4, and 25 °C. The detection limit and working range of the biosensor were 0.01 μM and 0.05 to 200 μM, respectively. The half-life of the enzyme electrode was 60 days at 4 °C. The serum choline level, as measured by the biosensor, was 9.0 to 12.8 μmol/L (with a mean of 10.81 μmol/L) in apparently healthy persons and 5.0 to 8.4 μmol/L (with a mean of 6.53 μmol/L) in persons suffering from Alzheimer's disease. The enzyme electrode was unaffected by a number of serum substances.

  13. Construction and application of an amperometric xanthine biosensor based on zinc oxide nanoparticles-polypyrrole composite film.

    Science.gov (United States)

    Devi, Rooma; Thakur, Manish; Pundir, C S

    2011-04-15

    Zinc oxide nanoparticles (ZnO-NPs) were synthesized from zinc nitrate by simple and efficient method in aqueous media at 55°C without any requirement of calcinations step. A mixture of ZnO-NPs and pyrrole was eletropolymerized on Pt electrode to form a ZnO-NPs-polypyrrole (PPy) composite film. Xanthine oxidase (XOD) was immobilized onto this nanocomposite film through physiosorption. The ZnO-NPs/polypyrrole/Pt electrode was characterized by Fourier transform infrared (FTIR), cyclic voltammetry (CV), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical impedance spectroscopy (EIS) before and after immobilization of XOD. The XOD/ZnO-NPs-PPy/Pt electrode as working electrode, Ag/AgCl as reference electrode and Pt wire as auxiliary electrode were connected through a potentiostat to construct a xanthine biosensor. The biosensor exhibited optimum response within 5s at pH 7.0, 35°C and linearity from 0.8 μM to 40 μM for xanthine with a detection limit 0.8 μM (S/E=3). Michaelis Menten constant (K(m)) for xanthine oxidase was 13.51 μM and I(max) 0.071 μA. The biosensor measured xanthine in fish meat and lost 40% of its initial activity after its 200 uses over 100 days, when stored at 4°C.

  14. Amperometric Choline Biosensor Fabricated through Electrostatic Assembly of Bienzyme/Polyelectrolyte Hybrid Layers on Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun; Liu, Guodong; Lin, Yuehe

    2006-03-01

    We report a flow injection amperometric choline biosensors based on the electrostatic assembly of an enzyme of choline oxidase (ChO) and a bi-enzyme of ChO and horseradish peroxidase (HRP) onto multi-wall carbon nanotubes (MWCNT) modified glassy carbon (GC) electrodes. These choline biosensors were fabricated by immobilization of enzymes on the negatively charged MWCNT surface through alternatively assembling a cationic polydiallydiimethylammonium chloride (PDDA) layer and an enzyme layer. Using this layer-by-layer assembling approach, bioactive nanocomposite film of a PDDA/ChO/PDDA/HRP/PDDA/CNT (ChO/HRP/CNT) and a PDDA/ChO/PDDA/ CNT (ChO/ CNT) were fabricated on GC surface, respectively. Owning to the electrocatalytic effect of carbon nanotubes, the measurement of faradic responses resulting from enzymatic reactions has been realized at low potential with acceptable sensitivity. It is found the ChO/HRP/CNT biosensor is more sensitive than the ChO/CNT one. Experimental parameters affecting the sensitivity of biosensors, e.g. applied potential, flow rate, etc. were optimized and potential interference was examined. The response time for this choline biosensor is fast (less than a few seconds). The linear range of detection for the choline biosensor is from 5 x 10-5 to 5 x 10-3 M and the detection limit is determined to be about 1.0 x 10-5 M.

  15. A screen-printed, amperometric biosensor for the determination of organophosphorus pesticides in water samples

    Institute of Scientific and Technical Information of China (English)

    Junfeng Dou; Fuqiang Fan; Aizhong Ding; Lirong Cheng; Raju Sekar; Hongting Wang; Shuairan Li

    2012-01-01

    An amperometric biosensor based on screen-printed electrodes (SPEs) was developed for the determination of organophosphorus pesticides in water samples.The extent of acetylcholinesterase (AChE) deactivation was determined and quantified for pesticideconcentrations in water samples.An enzyme immobilization adsorption procedure and polyacrylamide gel matrix polymerization were used for fabrication of the biosensor,with minimal losses in enzyme activity.The optimal conditions for enzyme catalytic reaction on the SPEs surfaces were acetylthiocholine chloride (ATChC(1)) concentration of 5 mmol/L,pH 7 and reaction time of 4 min.The detectionlimits for three organophosphorus pesticides (dichlorvos,monocrotophs and parathion) were in the range of 4 to 7 μg/L when an AChE amount of 0.1 U was used for immobilization.

  16. A New Amperometric Glucose Biosensor with Naphthol Green B as Mediator

    Institute of Scientific and Technical Information of China (English)

    Qin ZHAO; Ruo YUAN; Chang Li MO; Ya Qin CHAI; Xia ZHONG

    2004-01-01

    Naphthol green B was used, for the first time, as a new mediator in an amperometric glucose biosensor. It is a good mediator, promoting electron transfer from glucose oxidase to graphite electrode. The biosensor shows high sensitivity to glucose at low potential with response time of 30 seconds. The linear range is from 1.5 to 18 μmol/L glucose with detection limit of 0.5 μmol/L glucose.

  17. Ceramic Carbon/Polypyrrole Materials for the Construction of Bienzymatic Amperometric Biosensor for Glucose

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel amperometric glucose biosensor was constructed by electrochemical formation of a polypyrrole (PPy) membrane in the presence of glucose oxidase (GOD) on the surface of a horseradish peroxidase (HRP) modified ferrocenecarboxylic acid (FCA) mediated sol-gel derived ceramic carbon electrode. The amperometric detection of glucose was carried out at +0.16 V (vs. SCE) in 0.1 mol/L phosphate buffer solution (pH 6.9) with a linear response range between 8.0×10-5 and 1.3×10-3 mol/L of glucose. The biosensor showed a good suppression of inter- ference and a negligible deviation in the amperometric detection.

  18. A reagentless enzymatic amperometric biosensor using vertically aligned carbon nanofibers (VACNF)

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, Martha L [University of Tennessee, Knoxville (UTK); Rahman, Touhidur [ORNL; Frymier, Paul Dexter [ORNL; Islam, Syed K [University of Tennessee, Knoxville (UTK); McKnight, Timothy E [ORNL

    2008-01-01

    A reagentless amperometric enzymatic biosensor is constructed on a carbon substrate for detection of ethanol. Yeast alcohol dehydrogenase (YADH), an oxidoreductase, and its cofactor nicotinamide adenine dinucleotide (NAD+) are immobilized by adsorption and covalent attachment to the carbon substrate. Carbon nanofibers grown by plasma enhanced chemical vapor deposition (PECVD) are chosen as the electrode material due to their excellent structural and electrical properties. Electrochemical techniques are employed to test the functionality and performance of the biosensor using reduced form of nicotinamide adenine dinucleotide (NADH) which also determines the oxidation peak potential of NADH. Subsequently, amperometric measurements are conducted for detection of ethanol to determine the electrical current response due to the increase in analyte concentration. The detection range, storage stability, reusability, and response time of the biosensor are also examined.

  19. Fabrication of multiwalled carbon nanotube-polyaniline/platinum nanocomposite films toward improved performance for a cholesterol amperometric biosensor.

    Science.gov (United States)

    Xu, ZeHong; Cheng, XiaoDan; Tan, JianHong; Gan, Xianxue

    2016-11-01

    A simple and high sensitive cholesterol amperometric biosensor, which is based on in situ electropolymerization of multi-walled carbon nanotube-polyaniline (MWCNT-PANI) nanocomposite and electrodeposition of platinum nanoparticle (nano-Pt) films onto the glassy carbon electrode surface for cholesterol oxidase immobilization, was constructed in this study. The preparation process of the modified electrode was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, and chronoamperometry. Because of the synergistic electrocatalytic activity between MWCNT-PANI nanocomposites and nano-Pt, the cholesterol biosensor exhibited an excellent performance with a linear range of 2.0-510.0 µM, a detection limit of 0.8 µM (signal-to-noise ratio = 3), a high sensitivity of 109.9 µA mM(-1) , and a short response time within 5 Sec. Moreover, the reproducibility, stability, and selectivity of the biosensor were also investigated.

  20. Increasing amperometric biosensor sensitivity by length fractionated single-walled carbon nanotubes

    DEFF Research Database (Denmark)

    Tasca, Federico; Gorton, Lo; Wagner, Jakob Birkedal

    2008-01-01

    In this work the sensitivity-increasing effect of single-walled carbon nanotubes (SWCNTs) in amperometric biosensors, depending on their average length distribution, was studied. For this purpose the SWCNTs were oxidatively shortened and subsequently length separated by size exclusion chromatogra......In this work the sensitivity-increasing effect of single-walled carbon nanotubes (SWCNTs) in amperometric biosensors, depending on their average length distribution, was studied. For this purpose the SWCNTs were oxidatively shortened and subsequently length separated by size exclusion...... chromatography. Transmission electron micrographs of different fractions of SWCNTs were collected. Diaphorase ``wired'' to an osmium redox polymer was blended with the shortened SWCNTs of different lengths. Depending on the average length of the SWCNTs the sensitivity of the amperometric biosensor model system...... limit was 1 mu M. The biosensor exhibited excellent electrocatalytic properties. Even at relatively high NADH concentrations the oxidative current was limited by the diffusion rate of NADH. (C) 2008 Elsevier B.V. All rights reserved....

  1. Simultaneous topographic and amperometric membrane mapping using an AFM probe integrated biosensor.

    Science.gov (United States)

    Stanca, Sarmiza Elena; Csaki, Andrea; Urban, Matthias; Nietzsche, Sandor; Biskup, Christoph; Fritzsche, Wolfgang

    2011-02-15

    The investigation of the plasma membrane with intercorrelated multiparameter techniques is a prerequisite for understanding its function. Presented here, is a simultaneous electrochemical and topographic study of the cell membrane using a miniaturized amperometric enzymatic biosensor. The fabrication of this biosensor is also reported. The biosensor combines a scanning force microscopy (AFM) gold-coated cantilever and an enzymatic transducer layer of peroxidases (PODs). When these enzymes are brought in contact with the substrate, the specific redox reaction produces an electric current. The intensity of this current is detected simultaneously with the surface imaging. For sensor characterization, hydroquinone-2-carboxylic acid (HQ) is selected as an intrinsic source of H(2)O(2). HQ has been electrochemically regenerated by the reduction of antraquinone-2-carboxylic acid (AQ). The biosensor reaches the steady state value of the current intensity in 1 ± 0.2s.

  2. A Doped Polyaniline Modified Electrode Amperometric Biosensor for Gluconic Acid Determination in Grapes

    Directory of Open Access Journals (Sweden)

    Donatella Albanese

    2014-06-01

    Full Text Available In winemaking gluconic acid is an important marker for quantitative evaluation of grape infection by Botrytis cinerea. A screen-printed amperometric bienzymatic sensor for the determination of gluconic acid based on gluconate kinase (GK and 6-phospho-D-gluconate dehydrogenase (6PGDH coimmobilized onto polyaniline/poly (2-acrylamido-2-methyl-1-propanesulfonic acid; PANI-PAAMPSA is reported in this study. The conductive polymer electrodeposed on the working electrode surface allowed the detection of NADH at low potential (0.1 V with a linear range from 4 × 10−3 to 1 mM (R2 = 0.99 and a sensitivity of 419.44 nA∙mM−1. The bienzymatic sensor has been optimized with regard to GK/6PGDH enzymatic unit ratio and ATP/NADP+ molar ratio which resulted equal to 0.33 and 1.2, respectively. Under these conditions a sensitivity of 255.2 nA∙mM−1, a limit of detection of 5 μM and a Relative Standard Deviation (RSD of 4.2% (n = 5 have been observed. Finally, the biosensor has been applied for gluconic acid measurements in must grape samples and the matrix effect has been taken into consideration. The results have been compared with those obtained on the same samples with a commercial kit based on a spectrophotometric enzyme assay and were in good agreement, showing the capability of the bienzymatic PANI-PAAMPSA biosensor for gluconic acid measurements and thus for the evaluation of Botrytis cinerea infection in grapes.

  3. An amperometric enzyme biosensor for real-time measurements of cellobiohydrolase activity on insoluble cellulose

    DEFF Research Database (Denmark)

    Cruys-Bagger, Nicolaj; Guilin, Ren; Tatsumi, Hirosuke;

    2012-01-01

    An amperometric enzyme biosensor for continuous detection of cellobiose has been implemented as an enzyme assay for cellulases. We show that the initial kinetics for cellobiohydrolase I, Cel7A from Trichoderma reesei, acting on different types of cellulose substrates, semi-crystalline and amorphous......) and this provided experimental access to the transient kinetics of cellobiohydrolases acting on insoluble cellulose. The response from the CDH-biosensor during enzymatic hydrolysis was corrected for the specificity of PcCDH for the β-anomer of cello-oligosaccharides and the approach were validated against HPLC....... It is suggested that quantitative, real-time data on pure insoluble cellulose substrates will be useful in attempts to probe the molecular mechanism underlying enzymatic hydrolysis of cellulose...

  4. An Amperometric Biosensor for Uric Acid Determination Prepared From Uricase Immobilized in Polyaniline-Polypyrrole Film

    Directory of Open Access Journals (Sweden)

    Fatma Arslan

    2008-09-01

    Full Text Available A new amperometric uric acid biosensor was developed by immobilizing uricase by a glutaraldehyde crosslinking procedure on polyaniline-polypyrrole (pani-ppy composite film on the surface of a platinum electrode. Determination of uric acid was performed by the oxidation of enzymatically generated H2O2 at 0.4 V vs. Ag/AgCl. The linear working range of the biosensor was 2.5×10-6 – 8.5×10-5 M and the response time was about 70 s. The effects of pH, temperature were investigated and optimum parameters were found to be 9.0, 55 oC, respectively. The stability and reproducibility of the enzyme electrode have been also studied.

  5. Microfabricated biosensor for the simultaneous amperometric and luminescence detection and monitoring of Ochratoxin A.

    Science.gov (United States)

    Tria, Scherrine A; Lopez-Ferber, David; Gonzalez, Catherine; Bazin, Ingrid; Guiseppi-Elie, Anthony

    2016-05-15

    The low molecular weight hapten, Ochratoxin A (OTA), is a natural carcinogenic mycotoxin produced by Aspergillus and Penicillium fungi and so it commonly appears in wines, other foods, and in the environment. An amperometric biosensor has been developed that uses the immobilized synthetic peptide, NFO4; which possesses a high binding affinity and thus provides for molecular recognition of OTA; simulating the mycotoxin-specific antibody. Biotransducers were produced from a microlithographically fabricated electrochemical cell-on-a-chip that uses the microdisc electrode array working electrode format augmented with microporous graphitized carbon (MGC) that was electrodeposited within a poly(aniline-co-meta-aminoaniline) electroconductive polymer layer. A redox mediator, iron-nickel hexacyanoferrate (Fe|NiHCF) was amperometrically deposited onto the MGC. The device was then dip-coated with monomer cocktail that yielded poly(HEMA-co-AEMA) foam that was prepared in-situ by UV crosslinking and by sequentially freezing followed by freeze drying of the chip to yield a 3-D support for the chelation of Zn(2+) ions (ZnCl2) and the subsequent immobilization of N-terminus his-tagged peptide, NFO4. To conduct the biosensors assay, HRP conjugated OTA was added to the free OTA solutions and together competitively incubated on the biospecific MDEA ECC 5037-Pt|MGC|HCF|Hydrogel-NFO4 biotransducer. The amperometric response to peroxide was determined after 5 min of enzymatic reaction following addition of standard substrate H2O2/luminol. Simultaneous analysis of light emission signals (λmax=425 nm) allowed direct comparison of amperometric and luminescence performance. Using chitosan foam and a luminescence bioassay we obtained maximum inhibition at 10 μg L(-1) and half inhibition occurred at 2.1 μg L(-1). Using poly(HEMA-co-AEMA) hydrogel and an amperometric bioassay (50s) we obtained maximum inhibition at 10 μg L(-1) and half inhibition occurred at 2.8 μg L(-1).

  6. Development of a novel, sensitive amperometric-FIA glucose biosensor by packing up the amperometric cell with glucose oxidase modified anion exchange resin.

    Science.gov (United States)

    Su, Yuhua; Huang, Weixiong; Hu, Rongzong; Ding, Haodong; Hu, Kangkang

    2009-04-15

    In this work, the anion exchange resin (AER) was modified with a layer of glucose oxidase (GOD) and poly(diallyldimethylammonium chloride) (PDDA), respectively, via layer-by-layer electrostatic self-assembling strategy. The PDDA and GOD modified AER (PDDA/GOD/AER) was then packed into a home-made amperometric cell for flow injection analysis (FIA) of glucose. This design simplified the setup by integrating the enzyme reactor into the amperometric cell. And the AER in the cell behaved bifunctional, it was not only the support of enzymes, but also an anti-interference tool due to its retention effect toward ascorbic acid (AA) and uric acid (UA). A platinum modified porous titanium (Pt/PTi) electrode was utilized in the cell as the working electrode (WE), due to its large effective surface area it could increase the response by 8.3 times as compared with the planar pure platinum electrode. The proposed biosensor was very sensitive (22.4 microA cm(-2) mM(-1)) in glucose quantification, and the linear range was from 1 micromol L(-1) to 2 mmol L(-1) with the detection limit of 0.8 micromol L(-1). The biosensor was used for serum glucose determination, and the result obtained was satisfying. This work may have provided a reference design of the amperometric cell which could be adopted in other enzymatic-FIA biosensors.

  7. Amperometric biosensor for the determination of phenols using a crude extract of sweet potato

    Energy Technology Data Exchange (ETDEWEB)

    Cruz Vieira, I. da; Fatibello-Filho, O. [Universidade Federal de Sa Carlos (Brazil)

    1997-03-01

    An amperometric biosensor for the determination of phenols is proposed using a crude extract of sweet potato (Ipomoea batatas (L.) Lam.) as an enzymatic source of polyphenol oxidase (PPO; tyrosinase; catechol oxidase; EC 1.14.18.1). The biosensor is constructed by the immobilization of sweet potato crude extract with glutaraldehyde and bovine serum albumin onto an oxygen membrane. This biosensor provides a linear response for catechol, pyrogallol, phenol and p-cresol in the concentration ranges of 2.0 x 10{sup -5} -4.3 x 10{sup -4} mol L{sup -1}, 2.0 x 10{sup -5} -4.3 x 10{sup -4} mol L{sup -1}, 2.0 x 10{sup -5} -4.5 x 10{sup -4} mol L{sup -1} and 2.0 x 10{sup -5} -4.5 x 10{sup -4} mol L{sup -1}, respectively. The response time was about 3-5 min for the useful response range, and the lifetime of this electrode was excellent for fifteen days (over 220 determinations for each enzymatic membrane). Application of this biosensor for the determination of phenols in industrial wastewaters is presented.

  8. Electrochemical Based Biosensors

    OpenAIRE

    Chung Chiun Liu

    2012-01-01

    This editorial summarizes the general approaches of the electrochemical based biosensors described in the manuscripts published in this Special Issue. Electrochemical based biosensors are scientifically and economically important for the detection and early diagnosis of many diseases, and they will be increasing used and developed in the coming years. The importance of the selection of recognition processes, fabrication techniques and biosensor materials will be introduced.

  9. Dual enzymatic biosensor for simultaneous amperometric determination of histamine and putrescine.

    Science.gov (United States)

    Henao-Escobar, W; del Torno-de Román, L; Domínguez-Renedo, O; Alonso-Lomillo, M A; Arcos-Martínez, M J

    2016-01-01

    A disposable electrodic system consisting of two working electrodes connected in array mode has been developed for the simultaneous determination of histamine (His) and putrescine (Put). Histamine deshydrogenase and putrescine oxidase enzymes were respectively immobilized by crosslinking on each working screen-printed electrode, both modified with tetrathiafulvalene. The dual system allowed the simultaneous amperometric determination of both species by measuring the oxidation current of the mediator in each working electrode. The effect of other potentially interfering biogenic amines was also evaluated. The capability of detection was of 8.1 ± 0.7 for His and 10 ± 0.6 μM for Put. The precision in terms of relative standard deviation was of 3.5% and 6.7% for His and Put, respectively. The developed biosensor was successfully applied to the determination of His and Put in different food samples.

  10. Application of polyaniline/sol-gel derived tetraethylorthosilicate films to an amperometric lactate biosensor.

    Science.gov (United States)

    Chaubey, Asha; Pande, K K; Malhotra, B D

    2003-11-01

    The electrochemical entrapment of polyaniline (PANI) onto sol-gel derived tetraethylorthosilicate (TEOS) films deposited onto indium-tin-oxide (ITO) coated glass has been utilized for immobilization of lactate dehydrogenase (LDH). The performance of these sol-gel/PANI/LDH electrodes has been investigated as a function of the lactate concentration, applied potential, pH of the medium and interferents. The amperometric response of the electrodes under optimum conditions exhibited a linear relationship from 1 mM to 4 mM. An attempt has been made to extend the linearity up to 10 mM for lactate by coating an external layer of polyvinyl chloride (PVC) over the sol-gel/PANI/LDH electrodes with a correlation coefficient of 0.89. These sol-gel/PANI/LDH electrodes have a response time of about 60 s, a shelf life of about 8 weeks at 0-4 degrees C and have implications in a lactate biosensor.

  11. Electrochemical biosensors for hormone analyses.

    Science.gov (United States)

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed.

  12. Numerical model based on amperometric measurements

    OpenAIRE

    Daungruthai Jarukanont; Imelda Bonifas Arredondo; Ricardo Femat; Garcia, Martin E.

    2015-01-01

    Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. ...

  13. Surface stress-based biosensors.

    Science.gov (United States)

    Sang, Shengbo; Zhao, Yuan; Zhang, Wendong; Li, Pengwei; Hu, Jie; Li, Gang

    2014-01-15

    Surface stress-based biosensors, as one kind of label-free biosensors, have attracted lots of attention in the process of information gathering and measurement for the biological, chemical and medical application with the development of technology and society. This kind of biosensors offers many advantages such as short response time (less than milliseconds) and a typical sensitivity at nanogram, picoliter, femtojoule and attomolar level. Furthermore, it simplifies sample preparation and testing procedures. In this work, progress made towards the use of surface stress-based biosensors for achieving better performance is critically reviewed, including our recent achievement, the optimally circular membrane-based biosensors and biosensor array. The further scientific and technological challenges in this field are also summarized. Critical remark and future steps towards the ultimate surface stress-based biosensors are addressed.

  14. Graphene-based biosensors

    Science.gov (United States)

    Lebedev, A. A.; Davydov, V. Yu.; Novikov, S. N.; Litvin, D. P.; Makarov, Yu. N.; Klimovich, V. B.; Samoilovich, M. P.

    2016-07-01

    Results of developing and testing graphene-based sensors capable of detecting protein molecules are presented. The biosensor operation was checked using an immunochemical system comprising fluorescein dye and monoclonal antifluorescein antibodies. The sensor detects fluorescein concentration on a level of 1-10 ng/mL and bovine serum albumin-fluorescein conjugate on a level of 1-5 ng/mL. The proposed device has good prospects for use for early diagnostics of various diseases.

  15. A novel amperometric alcohol biosensor developed in a 3rd generation bioelectrode platform using peroxidase coupled ferrocene activated alcohol oxidase as biorecognition system.

    Science.gov (United States)

    Chinnadayyala, Somasekhar R; Kakoti, Ankana; Santhosh, Mallesh; Goswami, Pranab

    2014-05-15

    Alcohol oxidase (AOx) with a two-fold increase in efficiency (Kcat/Km) was achieved by physical entrapment of the activator ferrocene in the protein matrix through a simple microwave based partial unfolding technique and was used to develop a 3rd generation biosensor for improved detection of alcohol in liquid samples. The ferrocene molecules were stably entrapped in the AOx protein matrix in a molar ratio of ~3:1 through electrostatic interaction with the Trp residues involved in the functional activity of the enzyme as demonstrated by advanced analytical techniques. The sensor was fabricated by immobilizing ferrocene entrapped alcohol oxidase (FcAOx) and sol-gel chitosan film coated horseradish peroxidase (HRP) on a multi-walled carbon nanotube (MWCNT) modified glassy carbon electrode through layer-by-layer technique. The bioelectrode reactions involved the formation of H2O2 by FcAOx biocatalysis of substrate alcohol followed by HRP-catalyzed reduction of the liberated H2O2 through MWCNT supported direct electron transfer mechanism. The amperometric biosensor exhibited a linear response to alcohol in the range of 5.0 × 10(-6) to 30 × 10(-4)mol L(-1) with a detection limit of 2.3 × 10(-6) mol L(-1), and a sensitivity of 150 µA mM(-1) cm(-2). The biosensor response was steady for 28 successive measurements completed in a period of 5h and retained ~90% of the original response even after four weeks when stored at 4 °C. The biosensor was successfully applied for the determination of alcohol in commercial samples and its performance was validated by comparing with the data obtained by GC analyses of the samples.

  16. Xanthine Biosensor Based on Didodecyldimethylammonium Bromide Modified Pyrolytic Graphite Electrode

    Institute of Scientific and Technical Information of China (English)

    TANG,Ji-Lin(唐纪琳); HAN,Xiao-Jun(韩晓军); HUANG,Wei-Min(黄卫民); WANG,Er-Kang(汪尔康)

    2002-01-01

    The vesicle of didodecyldimethylammonium bromide (DDAB)which contained tetrathiafulvalene (TTF) was mixed with xanthine oxidase, and the mixture was cast on the pyrolytic graphite electrode. The lipid films were used to supply a biological environment resembling biomembrane on the surface of the electrode. TTF was used as a mediator because of its high electron-transfer efficiency. A novel xanthine biosensor based on cast DDAB film was developed. The effects of pH and operating potential were explored for optimum analytical performance by using the amperometric method. The response time of the biosensor was less than 10 s. The detection limit of the biosensor was 3.2 × 10-7 mol/L and the liner range was from 4 × 10-7 mol/L to 2.4 × 10-6 mol/L.

  17. Analytical Expressions for Steady-State Concentrations of Substrate and Oxidized and Reduced Mediator in an Amperometric Biosensor

    Directory of Open Access Journals (Sweden)

    Loghambal Shunmugham

    2013-01-01

    Full Text Available A mathematical model of modified enzyme-membrane electrode for steady-state condition is discussed. This model contains a nonlinear term related to enzyme kinetics reaction mechanism. The thickness dependence of an amperometric biosensor is presented both analytically and numerically where the biological layer is immobilized between a solid substrate and permeable electrode. The analytical expressions pertaining to the concentration of species and normalized current are obtained using the Adomian decomposition method (ADM. Simple and approximate polynomial expressions of concentrations of an oxidized mediator, substrate, and reduced mediator are derived for all possible values of parameters ϕO2 (Thiele modulus, BO (normalized surface concentration of oxidized mediator, and BS (normalized surface concentration of substrate. A comparison of the analytical approximation and numerical simulation is also presented. A good agreement between theoretical predictions and numerical results is observed.

  18. Biossensores amperométricos para determinação de compostos fenólicos em amostras de interesse ambiental Amperometric biosensors for phenolic compounds determination in the environmental interess samples

    Directory of Open Access Journals (Sweden)

    Simone Soares Rosatto

    2001-02-01

    Full Text Available Phenols are widely used in many areas and commonly found as industrial by-products. A great number of agricultural and industrial activities realise phenolic compounds in the environmental. Waste phenols are produced mainly by the wood-pulp industry and during production of synthetic polymers, drugs, plastics, dyes, pesticides and others. Phenols are also released into the environmental by the degradation of pesticides with phenolic skeleton. The phenols level control is very important for the environmental protection. Amperometric biosensor has shown the feasibility to complement laboratory-based analytical methods for the determination of phenolic compounds, providing alternatives to conventional methods which have many disadvantages. This brief review considers the evolution of an approach to amperometric measurement using the catalytic properties of some enzymes for phenolic compounds monitoring.

  19. Label-Free Electrical Detection Using Carbon Nanotube-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Kenzo Maehashi

    2009-07-01

    Full Text Available Label-free detections of biomolecules have attracted great attention in a lot of life science fields such as genomics, clinical diagnosis and practical pharmacy. In this article, we reviewed amperometric and potentiometric biosensors based on carbon nanotubes (CNTs. In amperometric detections, CNT-modified electrodes were used as working electrodes to significantly enhance electroactive surface area. In contrast, the potentiometric biosensors were based on aptamer-modified CNT field-effect transistors (CNTFETs. Since aptamers are artificial oligonucleotides and thus are smaller than the Debye length, proteins can be detected with high sensitivity. In this review, we discussed on the technology, characteristics and developments for commercialization in label-free CNT-based biosensors.

  20. Biosensors based on cantilevers.

    Science.gov (United States)

    Alvarez, Mar; Carrascosa, Laura G; Zinoviev, Kiril; Plaza, Jose A; Lechuga, Laura M

    2009-01-01

    Microcantilevers based-biosensors are a new label-free technique that allows the direct detection of biomolecular interactions in a label-less way and with great accuracy by translating the biointeraction into a nanomechanical motion. Low cost and reliable standard silicon technologies are widely used for the fabrication of cantilevers with well-controlled mechanical properties. Over the last years, the number of applications of these sensors has shown a fast growth in diverse fields, such as genomic or proteomic, because of the biosensor flexibility, the low sample consumption, and the non-pretreated samples required. In this chapter, we report a dedicated design and a fabrication process of highly sensitive microcantilever silicon sensors. We will describe as well an application of the device in the environmental field showing the immunodetection of an organic toxic pesticide as an example. The cantilever biofunctionalization process and the subsequent pesticide determination are detected in real time by monitoring the nanometer-scale bending of the microcantilever due to a differential surface stress generated between both surfaces of the device.

  1. Acetylcholinesterase Inhibition-Based Biosensor for Aluminum(III) Chronoamperometric Determination in Aqueous Media

    OpenAIRE

    2014-01-01

    A novel amperometric biosensor for the determination of Al(III) based on the inhibition of the enzyme acetylcholinesterase has been developed. The immobilization of the enzyme was performed on screen-printed carbon electrodes modified with gold nanoparticles. The oxidation signal of acetylthiocholine iodide enzyme substrate was affected by the presence of Al(III) ions leading to a decrease in the amperometric current. The developed system has a detection limit of 2.1 ± 0.1 μM for Al(III). The...

  2. A glucose biosensor based on partially unzipped carbon nanotubes.

    Science.gov (United States)

    Hu, Huifang; Feng, Miao; Zhan, Hongbing

    2015-08-15

    An amperometric glucose biosensor based on direct electron transfer of glucose oxidase (GOD) self-assembled on the surface of partially unzipped carbon nanotubes (PUCNTs) modified glassy carbon electrode (GCE) has been successfully fabricated. PUCNTs were synthesized via a facile chemical oxidative etching CNTs and used as a novel immobilization matrix for GOD. The cyclic voltammetric result of the PUCNT/GOD/GCE showed a pair of well-defined and quasi-reversible redox peaks with a formal potential of -0.470V and a peak to peak separation of 37mV, revealing that the fast direct electron transfer between GOD and the electrode has been achieved. It is notable that the glucose determination has been achieved in mediator-free condition. The developed biosensor displayed satisfactory analytical performance toward glucose including high sensitivity (19.50μA mM(-1)cm(-2)), low apparent Michaelis-Menten (5.09mM), a wide linear range of 0-17mM, and also preventing the interference from ascorbic acid, uric acid and dopamine usually coexisting with glucose in human blood. In addition, the biosensor acquired excellent storage stabilities. This facile, fast, environment-friendly and economical preparation strategy of PUCNT-GOD may provide a new platform for the fabrication of biocompatible glucose biosensors and other types of biosensors.

  3. Simultaneous amperometric detection of ascorbic acid and antioxidant capacity in orange, blueberry and kiwi juice, by a telemetric system coupled with a fullerene- or nanotubes-modified ascorbate subtractive biosensor.

    Science.gov (United States)

    Barberis, Antonio; Spissu, Ylenia; Fadda, Angela; Azara, Emanuela; Bazzu, Gianfranco; Marceddu, Salvatore; Angioni, Alberto; Sanna, Daniele; Schirra, Mario; Serra, Pier Andrea

    2015-05-15

    Four fullerenes- or nanotubes-modified graphite sensor-biosensor systems (SBs), coupled with a dual-channel telemetric device, based on an ascorbate oxidase (AOx) biosensor, were developed for on line simultaneous amperometric detection of ascorbic acid (AA) and antioxidant capacity in blueberry, kiwi and orange juice. Fullerene C60 (FC60), fullerene C70 (FC70), single-walled carbon nanotubes (SWCN) and multi-walled carbon nanotubes (MWCN) increased the sensitivity of graphite toward AA and phenols 1.2, 1.5, 5.1 and 5.1 times respectively. Fullerenes combined with AOx improved the selectivity toward AA more than nanotubes, being able to hold a higher number of AOx molecules on the biosensor surface. The SBs work at an applied potential of +500 mV, in a concentration range between the LOD and 20 μM, with a response time of two minutes. The LOD is 0.10, 0.13, 0.20 and 0.22 μM for SBs modified with FC60, FC70, SWCN and MWCN respectively. Biosensors register lower AA currents than the sensors due to the enzyme capability to oxidize AA before it reaches the transductor surface. Phenols currents registered by sensors and biosensors did not differ. Based on the difference between sensor and biosensor recorded currents a AA selectivity index was developed as an indicator of specificity toward AA and of the capacity to distinguish between AA and phenols contribution to the antioxidant capacity. This value is almost zero for fullerene-modified SBs, 0.13 and 0.22 for SWCN- and MWCN-modified SBs respectively. The results of juices analysis performed with SBs were in accordance with reference methods.

  4. Construction of an amperometric ascorbate biosensor using epoxy resin membrane bound Lagenaria siceraria fruit ascorbate oxidase.

    Science.gov (United States)

    Pundir, C S; Chauhan, Nidhi; Jyoti

    2011-06-01

    Ascorbate oxidase purified from Lagenaria siceraria fruit was immobilized onto epoxy resin "Araldite" membrane with 79.4% retention of initial activity of free enzyme. The biosensor showed optimum response within 15s at pH 5.8 and 35°C, which was directly proportional to ascorbate concentration ranging from 1-100μM. There was a good correlation (R(2) = 0.99) between serum ascorbic acid values by standard enzymic colorimetric method and the present method. The enzyme electrode was used for 200 times without considerable loss of activity during the span of 90 days when stored at 4°C.

  5. Hydrogen peroxide biosensor based on electrodeposition of zinc oxide nanoflowers onto carbon nanotubes film electrode

    Institute of Scientific and Technical Information of China (English)

    Hui Ping Bai; Xu Xiao Lu; Guang Ming Yang; Yun Hui Yang

    2008-01-01

    A new amperometric biosensor for hydrogen peroxide was developed based on adsorption of horseradish peroxidase at the glassy carbon electrode modified with zinc oxide nanoflowers produced by electrodeposition onto multi-walled carbon nanotubes (MWNTs) firm. The morphology of the MWNTs/nano-ZnO electrode has been investigated by scanning electron microscopy (SEM), and the electrochemical performance of the electrode has also been studied by amperometric method. The resulting electrode offered an excellent detection for hydrogen peroxide at -0.11 V with a linear response range of 9.9 × 10(-7) to 2.9 × 10(-3) mol/L with a correlation coefficient of 0.991, and response time <5 s. The biosensor displays rapid response and expanded linear response range, and excellent stability.

  6. Amperometric detection of gold by differential pulse voltammetry using a DNA biosensor

    Institute of Scientific and Technical Information of China (English)

    GAN Ning; WANG Zhiying; XU Weiming; PAN Jianguo

    2007-01-01

    A DNA biosensor with [Ru(DA-bpy)3]Cl2(DA-bpy:4,4'-diamino-2,2'-bipyridine) (RuL) as the electrochemical probe was prepared on pyrolytic graphite electrode (PGE) through the supramolecular interaction between RuL complex and DNA template. Cyclic voltammetry of RuL-DNA film showed a pair of stable and reversible peaks corresponding to the Ru(Ⅲ)/Ru(Ⅱ) redox potential of-0.165 V versus Ag|AgCl in pH 7.4 0.1 mol· L-1 Tris-HCl. The electron transfer was expected across the double-strand DNA by an "electron tunneling" mechanism. When the DNA biosensor was immerged in gold (Ⅲ) buffer solution, the current peak signal (Ⅰ) of the RuL-DNA supramolecular depressed and △Ⅰ was linear in the concentration range of Au ion from 1 × 10-7 to 2 × 10-5 mol·L-1 with a regression coefficient of 0.9879. The detection limit was 5 × 10-8 mol·L-1. The developed procedures were applied to the analysis of synthetic samples of real materials with good sensitivity and selectivity.

  7. Using flowerlike polymer-copper nanostructure composite and novel organic-inorganic hybrid material to construct an amperometric biosensor for hydrogen peroxide.

    Science.gov (United States)

    Wang, Jinfen; Yuan, Ruo; Chai, Yaqin; Li, Wenjuan; Fu, Ping; Min, Ligen

    2010-02-01

    A new type of amperometric hydrogen peroxide biosensor was fabricated by entrapping horseradish peroxidase (HRP) in the organic-inorganic hybrid material composed of zirconia-chitosan sol-gel and Au nanoparticles (ZrO2-CS-AuNPs). The sensitivity of the biosensor was enhanced by a flowerlike polymer-copper nanostructure composite (pPA-FCu) which was prepared from co-electrodeposition of CuSO4 solution and 2,6-pyridinediamine solution. Several techniques, including UV-vis absorption spectroscopy, scanning electron microscopy, cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy were employed to characterize the assembly process and performance of the biosensor. The results showed that this pPA-FCu nanostructure not only had excellent redox electrochemical activity, but also had good catalytic efficiency for hydrogen peroxide. Also the ZrO2-CS-AuNPs had good film forming ability, high stability and good retention of bioactivity of the immobilized enzyme. The resulting biosensors showed a linear range from 7.80 x 10(-7) to 3.7 x 10(-3) mol L(-1), with a detection limit of 3.2 x 10(-7) mol L(-1) (S/N=3) under optimized experimental conditions. The apparent Michaelis-Menten constant was determined to be 0.32 mM, showing good affinity. In addition, the biosensor which exhibits good analytical performance, acceptable stability and good selectivity, has potential for practical applications.

  8. Desarrollo de un Biosensor Amperométrico en Configuración plana para la Cuantificación de Colesterol Development of an Amperometric Biosensor in Planar Configuration for the Quantification of Cholesterol

    Directory of Open Access Journals (Sweden)

    Mónica Hernández

    2011-01-01

    Full Text Available Se presenta el desarrollo de un biosensor amperométrico de colesterol en configuración plana, el cual es fabricado mediante procesos serigráficos compatibles con metodologías de producción automatizadas. El dispositivo incorpora tetracianoquinodimetano, TCNQ, como mediador a fin de reducir el potencial de trabajo y minimizar las interferencias. Presenta un intervalo de respuesta lineal de 2- 12 mM con un límite de detección de 1.56 mM , requiriendo un volumen de muestra de solo 7.2 μ L. Sus características lo hacen adecuado para el análisis descentralizado de colesterol en suero sanguíneo y alimentos. La propuesta muestra que sin grandes recursos técnicos ni económicos es posible desarrollar biosensores con características de respuesta competitivas y compatibles con la producción en masa.The development of a cholesterol amperometric biosensor in planar configuration is presented. The device is constructed by screen printing processes that are compatible with automated production methods. The electrochemical transducer incorporates tetracyanoquinodimethane, TCNQ, as mediator in order to reduce the work potential and minimize interferences. The biosensor presents an interval of lineal answer of 2- 12 mM with a limit of detection of 1.56 mM , requiring a volume of sample of only 7.2 µL. Its characteristics make it adequate for the analysis of cholesterol in blood serum and foods. The designed cholesterol amperometric biosensor demonstrates that without major technical or economic resources it is possible to develop biosensors with response characteristics competitive and compatible with mass production.

  9. Multianalyte Biosensor for Simultaneous Determination of Glucose and Galactose Based on Micromachined Chamber-type Electrodes

    Institute of Scientific and Technical Information of China (English)

    JlA Neng-Qin贾能勤; ZHANG Zong-Rang章宗穰; ZHU Jiang-Zhong朱建中; ZHANG Guo-Xiong张国雄

    2004-01-01

    An amperometric multianalyte biosensor for the simultaneous determination of glucose and galactose was developed based on chamber-type electrodes, which were fabricated by micromachining technology. The dual chamber-type enzyme electrode with glucose and galactose sensor elements was integrated onto one microchip. The experimental parameters of this biosensor were optimized. The biosensor exhibited a linearity of up to 4.0 mol/L for glucose and 4.5 mol/L for galactose, and the response time was about 30 s for glucose and 40 s for galactose. No cross-talking behavior was investigated in the course of simultaneous measurement of the two analytes. Interference from electroactive species, such as ascorbic acid and uric acid, was minimized due to the permselectivity of Nation film. In addition, the biosensor displayed a storage stability of longer than one month.

  10. Measurement system for nitrous oxide based on amperometric gas sensor

    Science.gov (United States)

    Siswoyo, S.; Persaud, K. C.; Phillips, V. R.; Sneath, R.

    2017-03-01

    It has been well known that nitrous oxide is an important greenhouse gas, so monitoring and control of its concentration and emission is very important. In this work a nitrous oxide measurement system has been developed consisting of an amperometric sensor and an appropriate lab-made potentiostat that capable measuring picoampere current ranges. The sensor was constructed using a gold microelectrode as working electrode surrounded by a silver wire as quasi reference electrode, with tetraethyl ammonium perchlorate and dimethylsulphoxide as supporting electrolyte and solvent respectively. The lab-made potentiostat was built incorporating a transimpedance amplifier capable of picoampere measurements. This also incorporated a microcontroller based data acquisition system, controlled by a host personal computer using a dedicated computer program. The system was capable of detecting N2O concentrations down to 0.07 % v/v.

  11. Cell-Based Biosensors Principles and Applications

    CERN Document Server

    Wang, Ping

    2009-01-01

    Written by recognized experts the field, this leading-edge resource is the first book to systematically introduce the concept, technology, and development of cell-based biosensors. You find details on the latest cell-based biosensor models and novel micro-structure biosensor techniques. Taking an interdisciplinary approach, this unique volume presents the latest innovative applications of cell-based biosensors in a variety of biomedical fields. The book also explores future trends of cell-based biosensors, including integrated chips, nanotechnology and microfluidics. Over 140 illustrations hel

  12. Quantifying the release of lactose from polymer matrix tablets with an amperometric biosensor utilizing cellobiose dehydrogenase.

    Science.gov (United States)

    Knöös, Patrik; Schulz, Christopher; Piculell, Lennart; Ludwig, Roland; Gorton, Lo; Wahlgren, Marie

    2014-07-01

    The release of lactose (hydrophilic) from polymer tablets made with hydrophobically modified poly(acrylic acid) (HMPAA) have been studied and compared to the release of ibuprofen, a hydrophobic active substance. Lactose is one of the most used excipients for tablets, but lactose release has not been widely studied. One reason could be a lack of good analytical tools. A novel biosensor with cellobiose dehydrogenase (CDH) was used to detect the lactose release, which has a polydiallyldimethylammonium chloride (PDADMAC) layer that increases the response. A sample treatment using polyethylenimine (PEI) was developed to eliminate possible denaturants. The developed methodology provided a good approach to detect and quantify the released lactose. The release was studied with or without the presence of a model amphiphilic substance, sodium dodecyl sulphate (SDS), in the release medium. Ibuprofen showed very different release rates in the different media, which was attributed to hydrophobic interactions between the drug, the HMPAA and the SDS in the release medium. The release of hydrophilic lactose, which did not associate to any of the other components, was rapid and showed only minor differences. The new methodology provides a useful tool to further evaluate tablet formulations by a relatively simple set of experiments.

  13. Preparation and modification of carbon nanotubes electrodes by cold plasmas processes toward the preparation of amperometric biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Luais, E. [CEISAM, Universite de Nantes, CNRS, 2 rue de la Houssiniere, 44322 Nantes cedex 3 (France); IMN, Universite de Nantes, CNRS, 2 rue de la Houssiniere, 44322 Nantes cedex 3 (France); PCI, Universite du Maine, CNRS, rue Aristote, 72085 Le Mans cedex 9 (France); Thobie-Gautier, C. [CEISAM, Universite de Nantes, CNRS, 2 rue de la Houssiniere, 44322 Nantes cedex 3 (France); Tailleur, A.; Djouadi, M.-A.; Granier, A.; Tessier, P.Y. [IMN, Universite de Nantes, CNRS, 2 rue de la Houssiniere, 44322 Nantes cedex 3 (France); Debarnot, D.; Poncin-Epaillard, F. [PCI, Universite du Maine, CNRS, rue Aristote, 72085 Le Mans cedex 9 (France); Boujtita, M., E-mail: mohammed.boujtita@univ-nantes.f [CEISAM, Universite de Nantes, CNRS, 2 rue de la Houssiniere, 44322 Nantes cedex 3 (France)

    2010-11-30

    An electrochemical transducer based on vertically aligned carbon nanotubes (CNT) was prepared as a platform for biosensor development. Prior to enzyme immobilization, the CNT were treated using a microwave plasma system (CO{sub 2} and N{sub 2}/H{sub 2}) in order to functionalize the CNT surface with oxygenated and aminated groups. The morphological aspect of the electrode surface was examined by SEM and its chemical structure was also elucidated by XPS analysis. It was found out that microwave plasma system (CO{sub 2} and N{sub 2}/H{sub 2}) not only functionalizes the CNT but also permits to avoid the collapse phenomena retaining thus the alignment structure of the electrode surface. The electrochemical properties of the resulting new material based on CNT were carried out by cyclic voltammetry and were found suitable to develop high sensitive enzyme (HRP) biosensors operating on direct electron transfer process.

  14. Alginate cryogel based glucose biosensor

    Science.gov (United States)

    Fatoni, Amin; Windy Dwiasi, Dian; Hermawan, Dadan

    2016-02-01

    Cryogel is macroporous structure provides a large surface area for biomolecule immobilization. In this work, an alginate cryogel based biosensor was developed to detect glucose. The cryogel was prepared using alginate cross-linked by calcium chloride under sub-zero temperature. This porous structure was growth in a 100 μL micropipette tip with a glucose oxidase enzyme entrapped inside the cryogel. The glucose detection was based on the colour change of redox indicator, potassium permanganate, by the hydrogen peroxide resulted from the conversion of glucose. The result showed a porous structure of alginate cryogel with pores diameter of 20-50 μm. The developed glucose biosensor was showed a linear response in the glucose detection from 1.0 to 5.0 mM with a regression of y = 0.01x+0.02 and R2 of 0.994. Furthermore, the glucose biosensor was showed a high operational stability up to 10 times of uninterrupted glucose detections.

  15. Putrescine biosensor based on putrescine oxidase from Kocuria rosea.

    Science.gov (United States)

    Bóka, Beáta; Adányi, Nóra; Szamos, Jenő; Virág, Diána; Kiss, Attila

    2012-10-10

    The novel putrescine oxidase based amperometric biosensor selectively measures putrescine, which can be considered as an indicator of microbial spoilage. Putrescine oxidase (PUOX, EC 1.4.3.10) was isolated from Kocuria rosea (Micrococcus rubens) by an improved and simplified purification process. Cells were grown on brain heart infusion medium supplemented with putrescine. Cell-free extract was prepared in Tris buffer (pH 8.0) by Bead-beater. A newly elaborated step based on three-phase partitioning (TPP) was applied in the purification protocol of PUOX. The purified enzyme was immobilized on the surface of a spectroscopic graphite electrode in redox hydrogel with horseradish peroxidase, Os mediator and poly(ethylene glycol) (400) diglycidyl ether (PEGDGE) as crosslinking agent. This modified working electrode was used in wall-jet type amperometric cell together with the Ag/AgCl (0.1M KCl) reference electrode and a platinum wire as auxiliary electrode in flow injection analysis system (FIA). Hydrogel composition, pH and potential dependence were studied. Optimal working conditions were 0.45 mLmin(-1) flow rate of phosphate buffer (66 mM, pH 8.0) and +50 mV polarizing potential vs. Ag/AgCl. The linear measuring range of the method was 0.01-0.25 mM putrescine, while the detection limit was 5 μM. Beer samples were investigated by the putrescine biosensor and the results were compared by those of HPLC reference method.

  16. Biosensors based on nanomaterials and nanodevices

    CERN Document Server

    Li, Jun

    2013-01-01

    Biosensors Based on Nanomaterials and Nanodevices links interdisciplinary research from leading experts to provide graduate students, academics, researchers, and industry professionals alike with a comprehensive source for key advancements and future trends in nanostructured biosensor development. It describes the concepts, principles, materials, device fabrications, functions, system integrations, and applications of various types of biosensors based on signal transduction mechanisms, including fluorescence, photonic crystal, surface-enhanced Raman scattering, electrochemistry, electro-lumine

  17. Catalytic activity of iron hexacyanoosmate(II) towards hydrogen peroxide and nicotinamide adenine dinucleotide and its use in amperometric biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Kotzian, Petr; Janku, Tereza [Department of Analytical Chemistry, University of Pardubice, Nam. Cs. Legii 565, CZ-532 10 Pardubice (Czech Republic); Kalcher, Kurt [Institute of Chemistry - Analytical Chemistry, Karl-Franzens University, Universitaetsplatz 1, A-8010 Graz (Austria); Vytras, Karel [Department of Analytical Chemistry, University of Pardubice, Nam. Cs. Legii 565, CZ-532 10 Pardubice (Czech Republic)], E-mail: karel.vytras@upce.cz

    2007-09-19

    Hydrogen peroxide and nicotinamide adenine dinucleotide (NADH) may be determined amperometrically using screen-printed electrodes chemically modified with iron(III) hexacyanoosmate(II) (Osmium purple) in flow injection analysis (FIA). The determination is based on the exploitation of catalytic currents resulting from the oxidation/reduction of the modifier. The performance of the sensor was characterized and optimized by controlling several operational parameters (applied potential, pH and flow rate of the phosphate buffer). Comparison has been made with analogous complexes of ruthenium (Ruthenium purple) and iron (Prussian blue). Taking into account the sensitivity and stability of corresponding sensors, the best results were obtained with the use of Osmium purple. The sensor exhibited a linear increase of the amperometric signal with the concentration of hydrogen peroxide in the range of 0.1-100 mg L{sup -1} with a detection limit (evaluated as 3{sigma}) of 0.024 mg L{sup -1} with a R.S.D. 1.5% for 10 mg L{sup -1} H{sub 2}O{sub 2} under optimized flow rate of 0.4 mL min{sup -1} in 0.1 M phosphate buffer carrier (pH 6) and a working potential of +0.15 V versus Ag/AgCl. Afterwards, a biological recognition element - either glucose oxidase or ethanol dehydrogenase - was incorporated to achieve a sensor facilitating the determination of glucose or ethanol, respectively. The glucose sensor gave linearity between current and concentration in the range from 1 to 250 mg L{sup -1} with a R.S.D. 2.4% for 100 mg L{sup -1} glucose, detection limit 0.02 mg L{sup -1} (3{sigma}) and retained its original activity after 3 weeks when stored at 6 deg. C. Optimal parameters in the determination of ethanol were selected as: applied potential +0.45 V versus Ag/AgCl, flow rate 0.2 mL min{sup -1} in 0.1 M phosphate buffer carrier (pH 7). Different structural designs of the ethanol sensor were tested and linearity obtained was up to 1000 mg L{sup -1} with a maximum R.S.D. of 5

  18. A Glucose Biosensor Based on Immobilization of Glucose Oxidase in Chitosan Network Matrix

    Institute of Scientific and Technical Information of China (English)

    姚慧; 李楠; 徐锦忠; 朱俊杰

    2005-01-01

    A simple and promising glucose biosensor was constructed by successful entrapment of glucose oxidase (GOD) into chitosan matrix, which was cross-linked with glutaraldehyde (GA). This material provided good biocompatibility and the stabilizing microenvironment around the enzyme. The morphologies and properties of chitosan and chitosan/GOD were characterized by FTIR, UV-Vis and SEM techniques. This biosensor exhibited a fast amperometric response to glucose. The linear range for glucose determination was from 1×10-5 to 3.4×10-3 mol·L-1, with a detection limit of 5×10-6 mol·L-1 based on S/N=3. The biosensor could retain ca. 90% of its original activity after two weeks of storage under dry conditions at 4℃.

  19. Tiny Medicine: Nanomaterial-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Nelson Watts

    2009-11-01

    Full Text Available Tiny medicine refers to the development of small easy to use devices that can help in the early diagnosis and treatment of disease. Early diagnosis is the key to successfully treating many diseases. Nanomaterial-based biosensors utilize the unique properties of biological and physical nanomaterials to recognize a target molecule and effect transduction of an electronic signal. In general, the advantages of nanomaterial-based biosensors are fast response, small size, high sensitivity, and portability compared to existing large electrodes and sensors. Systems integration is the core technology that enables tiny medicine. Integration of nanomaterials, microfluidics, automatic samplers, and transduction devices on a single chip provides many advantages for point of care devices such as biosensors. Biosensors are also being used as new analytical tools to study medicine. Thus this paper reviews how nanomaterials can be used to build biosensors and how these biosensors can help now and in the future to detect disease and monitor therapies.

  20. Amperometric biosensors using poly-L-lysine/poly-(styrenesulfonate) membranes with immobilized enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, F.; Yabuki, S.; Hirata, Y. [National Institute of bioscience and Human-Technology, Tsukuba (Japan)

    1995-12-05

    Enzyme electrodes for L-lactic acid, choline and glucose were prepared by immobilizing lactate oxidase, choline oxidase and glucose oxidase into polygon complex membranes, respectively: an aqueous solution containing poly-L-lysine and each enzyme was placed on a glassy carbon electrode, then an aqueous solution of poly(4-styrenesulfonate) was added to the polycation/enzyme mixture and dried. The anodic current (at 1 V vs. Ag/AgCl) of each enzyme electrode increased after the addition of the corresponding analyte, due to the electrolytic oxidation of the hydrogen peroxide produced through the oxidase-catalyzed reaction in the membrane. The membrane showed permselectivity based on the solute size with the molecular cut-off of 110. For the L-lactate and choline-sensing electrodes, the permselectivity was effective in reducing the interferential response as compared to the response for the analyte: the permeation of interferents such as L-ascorbic acid, uric acid and acetaminophen, was restricted, whereas the analyte permeated easily to undergo the enzymatic reaction. In the case of the glucose oxidase/polyion complex layer, the restriction of glucose transport resulted in the enzyme electrode suitable for the determination of the analyze in high concentrations. Each enzyme electrode was highly stable, e.g., the glucose-sensing electrode could be used for more than 20 weeks. 23 refs., 7 figs., 1 tab.

  1. Enzyme-catalyzed O2 removal system for electrochemical analysis under ambient air: application in an amperometric nitrate biosensor.

    Science.gov (United States)

    Plumeré, Nicolas; Henig, Jörg; Campbell, Wilbur H

    2012-03-06

    Electroanalytical procedures are often subjected to oxygen interferences. However, achieving anaerobic conditions in field analytical chemistry is difficult. In this work, novel enzymatic systems were designed to maintain oxygen-free solutions in open, small volume electrochemical cells and implemented under field conditions. The oxygen removal system consists of an oxidase enzyme, an oxidase-specific substrate, and catalase for dismutation of hydrogen peroxide generated in the enzyme catalyzed oxygen removal reaction. Using cyclic voltammetry, three oxidase enzyme/substrate combinations with catalase were analyzed: glucose oxidase with glucose, galactose oxidase with galactose, and pyranose 2-oxidase with glucose. Each system completely removed oxygen for 1 h or more in unstirred open vessels. Reagents, catalysts, reaction intermediates, and products involved in the oxygen reduction reaction were not detected electrochemically. To evaluate the oxygen removal systems in a field sensing device, a model nitrate biosensor based on recombinant eukaryotic nitrate reductase was implemented in commercial screen-printed electrochemical cells with 200 μL volumes. The products of the aldohexose oxidation catalyzed by glucose oxidase and galactose oxidase deactivate nitrate reductase and must be quenched for biosensor applications. For general application, the optimum catalyst is pyranose 2-oxidase since the oxidation product does not interfere with the biorecognition element.

  2. Flow electrochemical biosensors based on enzymatic porous reactor and tubular detector of silver solid amalgam

    Energy Technology Data Exchange (ETDEWEB)

    Josypčuk, Bohdan, E-mail: josypcuk@jh-inst.cas.cz [J. Heyrovský Institute of Physical Chemistry of AS CR, v.v.i., Department of Biophysical Chemistry, Dolejskova 3, Prague (Czech Republic); Barek, Jiří [Charles University in Prague, Faculty of Science, University Center of Excellence UNCE “Supramolecular Chemistry”, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, CZ-128 43 Prague 2 (Czech Republic); Josypčuk, Oksana [J. Heyrovský Institute of Physical Chemistry of AS CR, v.v.i., Department of Biophysical Chemistry, Dolejskova 3, Prague (Czech Republic); Charles University in Prague, Faculty of Science, University Center of Excellence UNCE “Supramolecular Chemistry”, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, CZ-128 43 Prague 2 (Czech Republic)

    2013-05-17

    Graphical abstract: -- Highlights: •Flow amperometric enzymatic biosensor was constructed. •The biosensor is based on a reactor of a novel material – porous silver solid amalgam. •Tubular amalgam detector was used for determination of decrease of O{sub 2} concentration. •Covalent bonds amalgam−thiol−enzyme contributed to the sensor long-term stability. •LOD of glucose was 0.01 mmol L{sup −1} with RSD = 1.3% (n = 11). -- Abstract: A flow amperometric enzymatic biosensor for the determination of glucose was constructed. The biosensor consists of a flow reactor based on porous silver solid amalgam (AgSA) and a flow tubular detector based on compact AgSA. The preparation of the sensor and the determination of glucose occurred in three steps. First, a self-assembled monolayer of 11-mercaptoundecanoic acid (MUA) was formed at the porous surface of the reactor. Second, enzyme glucose oxidase (GOx) was covalently immobilized at MUA-layer using N-ethyl-N′-(3-dimethylaminopropyl) carboimide and N-hydroxysuccinimide chemistry. Finally, a decrease of oxygen concentration (directly proportional to the concentration of glucose) during enzymatic reaction was amperometrically measured on the tubular detector under flow injection conditions. The following parameters of glucose determination were optimized with respect to amperometric response: composition of the mobile phase, its concentration, the potential of detection and the flow rate. The calibration curve of glucose was linear in the concentration range of 0.02–0.80 mmol L{sup −1} with detection limit of 0.01 mmol L{sup −1}. The content of glucose in the sample of honey was determined as 35.5 ± 1.0 mass % (number of the repeated measurements n = 7; standard deviation SD = 1.2%; relative standard deviation RSD = 3.2%) which corresponds well with the declared values. The tested biosensor proved good long-term stability (77% of the current response of glucose was retained after 35 days)

  3. Acetylcholinesterase inhibition-based biosensor for aluminum(III) chronoamperometric determination in aqueous media.

    Science.gov (United States)

    Barquero-Quirós, Miriam; Domínguez-Renedo, Olga; Alonso-Lomillo, Maria Asunción; Arcos-Martínez, María Julia

    2014-05-07

    A novel amperometric biosensor for the determination of Al(III) based on the inhibition of the enzyme acetylcholinesterase has been developed. The immobilization of the enzyme was performed on screen-printed carbon electrodes modified with gold nanoparticles. The oxidation signal of acetylthiocholine iodide enzyme substrate was affected by the presence of Al(III) ions leading to a decrease in the amperometric current. The developed system has a detection limit of 2.1 ± 0.1 μM for Al(III). The reproducibility of the method is 8.1% (n = 4). Main interferences include Mo(VI), W(VI) and Hg(II) ions. The developed method was successfully applied to the determination of Al(III) in spiked tap water . The analysis of a certified standard reference material was also carried out. Both results agree with the certified values considering the respective associated uncertainties.

  4. Acetylcholinesterase Inhibition-Based Biosensor for Aluminum(III) Chronoamperometric Determination in Aqueous Media

    Science.gov (United States)

    Barquero-Quirós, Miriam; Domínguez-Renedo, Olga; Alonso-Lomillo, Maria Asunción; Arcos-Martínez, María Julia

    2014-01-01

    A novel amperometric biosensor for the determination of Al(III) based on the inhibition of the enzyme acetylcholinesterase has been developed. The immobilization of the enzyme was performed on screen-printed carbon electrodes modified with gold nanoparticles. The oxidation signal of acetylthiocholine iodide enzyme substrate was affected by the presence of Al(III) ions leading to a decrease in the amperometric current. The developed system has a detection limit of 2.1 ± 0.1 μM for Al(III). The reproducibility of the method is 8.1% (n = 4). Main interferences include Mo(VI), W(VI) and Hg(II) ions. The developed method was successfully applied to the determination of Al(III) in spiked tap water. The analysis of a certified standard reference material was also carried out. Both results agree with the certified values considering the respective associated uncertainties. PMID:24811076

  5. Acetylcholinesterase Inhibition-Based Biosensor for Aluminum(III Chronoamperometric Determination in Aqueous Media

    Directory of Open Access Journals (Sweden)

    Miriam Barquero-Quirós

    2014-05-01

    Full Text Available A novel amperometric biosensor for the determination of Al(III based on the inhibition of the enzyme acetylcholinesterase has been developed. The immobilization of the enzyme was performed on screen-printed carbon electrodes modified with gold nanoparticles. The oxidation signal of acetylthiocholine iodide enzyme substrate was affected by the presence of Al(III ions leading to a decrease in the amperometric current. The developed system has a detection limit of 2.1 ± 0.1 μM for Al(III. The reproducibility of the method is 8.1% (n = 4. Main interferences include Mo(VI, W(VI and Hg(II ions. The developed method was successfully applied to the determination of Al(III in spiked tap water . The analysis of a certified standard reference material was also carried out. Both results agree with the certified values considering the respective associated uncertainties.

  6. Polystyrene Based SPR Biosensor Chip for Use in Immunoassay

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Biosensors are widely used in immunoassay.The biosensor chip carries a receptor which is used in immunoassay and the chip properties have an important influence on the detecting sensitivity of the biosensor.This paper describes a polystyrene-based biosensor chip developed and used as part of a surface plasmon resonance (SPR) biosensor.The SPR biosensor has a much higher detecting sensitivity than enzyme-linked immunoserbent assay (ELISA).

  7. Nanostructured enzymatic biosensor based on fullerene and gold nanoparticles: preparation, characterization and analytical applications.

    Science.gov (United States)

    Lanzellotto, C; Favero, G; Antonelli, M L; Tortolini, C; Cannistraro, S; Coppari, E; Mazzei, F

    2014-05-15

    In this work a novel electrochemical biosensing platform based on the coupling of two different nanostructured materials (gold nanoparticles and fullerenols) displaying interesting electrochemical features, has been developed and characterized. Gold nanoparticles (AuNPs) exhibit attractive electrocatalytic behavior stimulating in the last years, several sensing applications; on the other hand, fullerene and its derivatives are a very promising family of electroactive compounds although they have not yet been fully employed in biosensing. The methodology proposed in this work was finalized to the setup of a laccase biosensor based on a multilayer material consisting in AuNPs, fullerenols and Trametes versicolor Laccase (TvL) assembled layer by layer onto a gold (Au) electrode surface. The influence of different modification step procedures on the electroanalytical performance of biosensors has been evaluated. Cyclic voltammetry, chronoamperometry, surface plasmon resonance (SPR) and scanning tunneling microscopy (STM) were used to characterize the modification of surface and to investigate the bioelectrocatalytic biosensor response. This biosensor showed fast amperometric response to gallic acid, which is usually considered a standard for polyphenols analysis of wines, with a linear range 0.03-0.30 mmol L(-1) (r(2)=0.9998), with a LOD of 0.006 mmol L(-1) or expressed as polyphenol index 5.0-50 mg L(-1) and LOD 1.1 mg L(-1). A tentative application of the developed nanostructured enzyme-based biosensor was performed evaluating the detection of polyphenols either in buffer solution or in real wine samples.

  8. Improved biosensor-based detection system

    DEFF Research Database (Denmark)

    2015-01-01

    Described is a new biosensor-based detection system for effector compounds, useful for in vivo applications in e.g. screening and selecting of cells which produce a small molecule effector compound or which take up a small molecule effector compound from its environment. The detection system...... comprises a protein or RNA-based biosensor for the effector compound which indirectly regulates the expression of a reporter gene via two hybrid proteins, providing for fewer false signals or less 'noise', tuning of sensitivity or other advantages over conventional systems where the biosensor directly...

  9. Development of a catalase based biosensor for alcohol determination in beer samples.

    Science.gov (United States)

    Akyilmaz, Erol; Dinçkaya, Erhan

    2003-10-17

    An amperometric biosensor based on catalase enzyme for alcohol determination was developed. To construct the biosensor catalase was immobilized by using gelatin and glutaraldehyde on a Clark type dissolved oxygen (DO) probe covered with a teflon membrane which is sensitive for oxygen. The working principle of the biosensor depends on two reactions, which one is related to another, catalyzed by catalase enzyme. In the first reaction catalase catalyzes the degradation of hydrogen peroxide and oxygen is produced and also a steady-state DO concentration occurs in a few minutes. When ethanol added to the medium catalase catalyzes the degradation of both hydrogen peroxide and ethanol and this results in a new steady-state DO concentration. Difference for first and the last steady-state DO concentration occurred in the interval surface of DO probe membrane, which related to ethanol concentration, are detected by the biosensor. The biosensor response depends linearly on ethanol concentration between 0.05 and 1.0 mM with a detection limit of 0.05 mM and a response time of 3 min. In the optimization studies of the biosensor phosphate buffer (pH 7.0; 50 mM) and 35 degrees C were established as providing the optimum working conditions. In the characterization studies of the biosensor some parameters such as reproducibility, substrate specificity, operational and storage stability were carried out. Finally, by using the biosensor developed and enzimatic-spectrophotometric method alcohol concentration of some alcoholic drinks were determined and results were compared.

  10. A Comprehensive Review of Glucose Biosensors Based on Nanostructured Metal-Oxides

    Directory of Open Access Journals (Sweden)

    Md. Mahbubur Rahman

    2010-05-01

    Full Text Available Nanotechnology has opened new and exhilarating opportunities for exploring glucose biosensing applications of the newly prepared nanostructured materials. Nanostructured metal-oxides have been extensively explored to develop biosensors with high sensitivity, fast response times, and stability for the determination of glucose by electrochemical oxidation. This article concentrates mainly on the development of different nanostructured metal-oxide [such as ZnO, Cu(I/(II oxides, MnO2, TiO2, CeO2, SiO2, ZrO2, and other metal-oxides] based glucose biosensors. Additionally, we devote our attention to the operating principles (i.e., potentiometric, amperometric, impedimetric and conductometric of these nanostructured metal-oxide based glucose sensors. Finally, this review concludes with a personal prospective and some challenges of these nanoscaled sensors.

  11. A comprehensive review of glucose biosensors based on nanostructured metal-oxides.

    Science.gov (United States)

    Rahman, Md Mahbubur; Ahammad, A J Saleh; Jin, Joon-Hyung; Ahn, Sang Jung; Lee, Jae-Joon

    2010-01-01

    Nanotechnology has opened new and exhilarating opportunities for exploring glucose biosensing applications of the newly prepared nanostructured materials. Nanostructured metal-oxides have been extensively explored to develop biosensors with high sensitivity, fast response times, and stability for the determination of glucose by electrochemical oxidation. This article concentrates mainly on the development of different nanostructured metal-oxide [such as ZnO, Cu(I)/(II) oxides, MnO(2), TiO(2), CeO(2), SiO(2), ZrO(2,) and other metal-oxides] based glucose biosensors. Additionally, we devote our attention to the operating principles (i.e., potentiometric, amperometric, impedimetric and conductometric) of these nanostructured metal-oxide based glucose sensors. Finally, this review concludes with a personal prospective and some challenges of these nanoscaled sensors.

  12. Nanostructured Metal Oxides Based Enzymatic Electrochemical Biosensors

    OpenAIRE

    Ansari, Anees A.; Alhoshan, M.; M. S. AlSalhi; Aldwayyan, A.S.

    2010-01-01

    The unique electrocatalytic properties of the metal oxides and the ease of metal oxide nanostructured fabrication make them extremely interesting materials for electrochemical enzymatic biosensor applications. The application of nanostructured metal oxides in such sensing devices has taken off rapidly and will surely continue to expand. This article provides a review on current research status of electrochemical enzymatic biosensors based on various new types of nanostructured metal oxides su...

  13. Development of electrochemical oxidase biosensors based on carbon nanotube-modified carbon film electrodes for glucose and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Gouveia-Caridade, Carla; Pauliukaite, Rasa; Brett, Christopher M.A. [Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra (Portugal)

    2008-10-01

    Functionalised multi-walled carbon nanotubes (MWCNTs) were cast on glassy carbon (GC) and carbon film electrodes (CFE), and were characterised electrochemically and applied in a glucose-oxidase-based biosensor. MWCNT-modified carbon film electrodes were then used to develop an alcohol oxidase (AlcOx) biosensor, in which AlcOx-BSA was cross-linked with glutaraldehyde and attached by drop-coating. The experimental conditions, applied potential and pH, for ethanol monitoring were optimised, and ethanol was determined amperometrically at -0.3 V vs. SCE at pH 7.5. Electrocatalytic effects of MWCNT were observed with respect to unmodified carbon film electrodes. The sensitivity obtained was 20 times higher at carbon film/MWCNT-based biosensors than without MWCNT. (author)

  14. Fiber optic-based biosensor

    Science.gov (United States)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  15. Graphene-Based Optical Biosensors and Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhiwen; He, Shijiang; Pei, Hao; Du, Dan; Fan, Chunhai; Lin, Yuehe

    2014-01-13

    This chapter focuses on the design, fabrication and application of graphene based optical nanobiosensors. The emerging graphene based optical nanobiosensors demonstrated the promising bioassay and biomedical applications thanking to the unique optical features of graphene. According to the different applications, the graphene can be tailored to form either fluorescent emitter or efficient fluorescence quencher. The exceptional electronic feature of graphene makes it a powerful platform for fabricating the SPR and SERS biosensors. Today the graphene based optical biosensors have been constructed to detect various targets including ions, small biomolecules, DNA/RNA and proteins. This chapter reviews the recent progress in graphene-based optical biosensors and discusses the opportunities and challenges in this field.

  16. Ferrocenium hexafluorophosphate-induced nanofibrillarity of polyaniline-polyvinyl sulfonate electropolymer and application in an amperometric enzyme biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Ndangili, Peter M. [SensorLab, Department of Chemistry, University of the Western Cape, P. Bag X17, Bellville 7535 (South Africa); Waryo, Tesfaye T., E-mail: twaryo@uwc.ac.z [SensorLab, Department of Chemistry, University of the Western Cape, P. Bag X17, Bellville 7535 (South Africa); Muchindu, Munkombwe; Baker, Priscilla G.L. [SensorLab, Department of Chemistry, University of the Western Cape, P. Bag X17, Bellville 7535 (South Africa); Ngila, Catherine J. [School of Chemistry, University of KwaZulu-Natal, P. Bag X541001 Westville, Durban 4000 (South Africa); Iwuoha, Emmanuel I. [SensorLab, Department of Chemistry, University of the Western Cape, P. Bag X17, Bellville 7535 (South Africa)

    2010-05-30

    The formation of nanofibrillar polyaniline-polyvinyl sulfonate (Pani-PVS) composite by electropolymerization of aniline in the presence of ferrocenium hexafluorophophate (FcPF{sub 6}) and its application in mediated-enzyme biosensor using the horseradish peroxidase/hydrogen peroxide (HRP/H{sub 2}O{sub 2}) enzyme-substrate system is reported. The electropolymerization was carried out at glassy carbon electrodes (GCE) and screen printed carbon electrodes (SPCE) in a strongly acidic medium (HCl). Scanning electron microscopy (SEM) images showed that 100 nm diameter nanofibrils were formed on the SPCE in contrast to the 800-1000 nm cauliflower-shaped clusters which were formed in the absence of FcPF{sub 6}. A model biosensor (GCE//Pani-PVS/BSA/HRP/Glu), consisting of horseradish peroxidase (HRP) immobilized by drop coating atop the GCE//Pani-PVS in the presence of bovine serum albumin (BSA) and glutaraldehyde (glu) in the enzyme layer casting solution, exhibited voltammetric responses characteristic of a mediated-enzyme system. The biosensor response to H{sub 2}O{sub 2} was very fast (5 s) and it exhibited a detection limit of 30 muM (3sigma) and a linearity of up to 2 mM (R{sup 2} = 0.998). The relatively high apparent Michaelis-Menten constant value (K{sub M}{sup app}=1.7mM) of the sensor indicated that the immobilized enzyme was in a biocompatible microenvironment. The freshly prepared biosensor was successfully applied in the determination of the H{sub 2}O{sub 2} content of a commercial tooth whitening gel with a very good recovery rate (97%).

  17. Amperometric screen-printed algal biosensor with flow injection analysis system for detection of environmental toxic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Shitanda, Isao [Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan)], E-mail: shitanda@rs.noda.tus.ac.jp; Takamatsu, Satoshi; Watanabe, Kunihiro; Itagaki, Masayuki [Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan)

    2009-08-30

    A screen-printed algal biosensor was fabricated for evaluation of toxicity of chemicals. An algal ink was prepared by mixing unicellular microalga Chlorella vulgaris cells, carbon nanotubes and sodium alginate solution. The algal ink was immobilized directly on a screen-printed carbon electrode surface using screen-printing technique. Photosynthetically generated oxygen of the immobilized algae was monitored amperometically. Responses of the algal biosensor to four toxic compounds, 6-chloro-N-ethyl-N-isopropyl-1,3,5-triazine-2,4-diamine (atrazine) and 3-(3,4-dichlorophenyl)-1,1-diethylurea (DCMU) were evaluated as inhibition ratios of the reduction current. The concentrations that gave 50% inhibition of the oxygen reduction current (IC{sup '}{sub 50}) for atrazine and DCMU were 12 and 1 {mu}mol dm{sup -3}, respectively. In comparison with the conventional algal biosensors, in which the algal cells were entrapped in an alginate gel and immobilized on the surface of a transparent indium tin oxide electrode, the present sensor is much smaller and less expensive, with the shorter assay time.

  18. Fabrication of a glucose biosensor based on inserted barrel plating gold electrodes.

    Science.gov (United States)

    Hsu, Cheng-Teng; Chung, Hsieh-Hsun; Tsai, Dong-Mung; Fang, Mei-Yen; Hsiao, Hung-Chan; Zen, Jyh-Myng

    2009-01-01

    We demonstrate here the application of barrel plating gold electrodes for fabricating a new type of disposable amperometric glucose biosensor. It is prepared by inserting two barrel plating gold electrodes onto an injection molding plastic base followed by immobilizing with a bioreagent layer and membrane on the electrode surface. The primary function of barrel plating is to provide an economical way to electroplate manufactured parts. The manufacture procedure is simple and can increase the fabrication precision for automation in mass production. At the two-electrode system, the detection of glucose is linear up to 800 mg/dL (i.e., 44.5 mM, r(2) > 0.99) in pH 7.4 PBS with a sensitivity of 0.71 microA/mM. Excellent sensor-to-sensor reproducibility shows coefficients of variation of only 0.8-1.4% for the detection of 56.5-561.0 mg/dL glucose. In laboratory trials 176 capillary blood samples with a range of 30-572 mg/dL glucose are used to evaluate the clinical application of the biosensor. A good linear correlation is observed between the measured values of the proposed biosensor and laboratory reference. Error grid analysis verifies that the proposed technique is promising in fabricating biosensor strips on a mass scale. As successfully demonstrated by using whole blood glucose as a model analyte, the fabrication technique can extend into other barrel plating noble metal electrodes for various applications.

  19. Superior long-term stability of a glucose biosensor based on inserted barrel plating gold electrodes.

    Science.gov (United States)

    Hsu, Cheng-Teng; Hsiao, Hung-Chan; Fang, Mei-Yen; Zen, Jyh-Myng

    2009-10-15

    Disposable one shot usage blood glucose strips are routinely used in the diagnosis and management of diabetes mellitus and their performance can vary greatly. In this paper we critically evaluated the long-term stability of glucose strips made of barrel plating gold electrodes. Compared to other glucose biosensing platforms of vapor deposited palladium and screen printed carbon electrodes, the proposed glucose biosensor was found to show the best stability among the three biosensing platforms in thermal acceleration experiments at 40 degrees C for 6 months with an average bias of 3.4% at glucose concentrations of 5-20 mM. The precision test of this barrel plating gold glucose biosensor also showed the best performance (coefficients of variation in the range of 1.4-2.4%) in thermal acceleration experiments at 40 degrees C, 50 degrees C and 70 degrees C for 27 days. Error grid analysis revealed that all measurements fell in zone A and zone B. Regression analysis showed no significant difference between the proposed biosensor and the reference method at 99% confidence level. The amperometric glucose biosensor fabricated by inserting two barrel plating gold electrodes onto an injection-molding plastic base followed by immobilizing with a bio-reagent layer and membrane was very impressive with a long-term stability up to 2.5 years at 25 degrees C. Overall, these results indicated that the glucose oxidase/barrel plating gold biosensing platform is ideal for long-term accurate glycemic control.

  20. Whole cell-enzyme hybrid amperometric biosensor for direct determination of organophosphorous nerve agents with p-nitrophenyl substituent.

    Science.gov (United States)

    Lei, Yu; Mulchandani, Priti; Chen, Wilfred; Wang, Joseph; Mulchandani, Ashok

    2004-03-30

    In this paper, we reported the construction of a hybrid biosensor for direct, highly selective, sensitive, and rapid quantitative determination of organophosphate pesticides with p-nitrophenyl substituent using purified organophosphorus hydrolase (OPH) for the initial hydrolysis and Arthrobacter sp. JS443 for subsequent p-nitrophenol oxidation. The biocatalytic layer was prepared by co-immobilizing Arthrobacter sp. JS443 and OPH on a carbon paste electrode. OPH catalyzed the hydrolysis of organophosphorus pesticides with p-nitrophenyl substituent such as paraoxon and methyl parathion to release p-nitrophenol that was oxidized by the enzymatic machinery of Arthrobacter sp. JS443 to carbon dioxide through electroactive intermediates 4-nitrocatechol and 1,2,4-benzenetriol. The oxidization current of the intermediates was measured and correlated to the concentration of organophosphates. The best sensitivity and response time were obtained using a sensor constructed with 0.06 mg dry weight of cell and 965 IU of OPH operating at 400 mV applied potential (vs. Ag/AgCl reference) in 50 mM citrate-phosphate pH 7.5 buffer at room temperature. Using these conditions, the biosensor measured as low as 2.8 ppb (10 nM) of paraoxon and 5.3 ppb (20 nM) of methyl parathion without interference from phenolic compounds, carbamate pesticides, triazine herbicides, and organophosphate pesticides that do not have the p-nitrophenyl substituent. The biosensor had excellent operational life-time stability with no decrease in response for more than 40 repeated uses over a 12-h period when stored at room temperature, while its storage life was approximately 2 days when stored in the operating buffer at 4 degrees C.

  1. Biosensors.

    Science.gov (United States)

    Rechnitz, Garry A.

    1988-01-01

    Describes theory and principles behind biosensors that incorporate biological components as part of a sensor or probe. Projects major applications in medicine and veterinary medicine, biotechnology, food and agriculture, environmental studies, and the military. Surveys current use of biosensors. (ML)

  2. A new PANI biosensor based on catalase for cyanide determination.

    Science.gov (United States)

    Özcan, Hakkı Mevlüt; Aydin, Tuba

    2016-01-01

    Cyanide is one of the most widespread of compounds measured in environmental analysis due to their toxic effects on environment and health. We report a highly sensitive, reliable, selective amperometric sensor for determination of cyanide, using a polyaniline conductive polymer. The enzyme catalase was immobilized by electropolymerization. The steps during the immobilization were controlled by electrochemical impedance spectroscopy. Optimum pH, temperature, aniline concentration, enzyme concentration, and the number of scans obtained during electropolymerization, were investigated. In addition, the cyanide present in artificial waste water samples was determined. In the characterization studies of the biosensor, some parameters such as reproducibility and storage stability, were analyzed.

  3. Third-generation biosensor for lactose based on newly discovered cellobiose dehydrogenase.

    Science.gov (United States)

    Stoica, Leonard; Ludwig, Roland; Haltrich, Dietmar; Gorton, Lo

    2006-01-15

    The present paper describes the principle and characteristics of a biosensor for lactose based on a third-generation design involving cellobiose dehydrogenase. As resulted from a previous comparative study (submitted manuscript), the novelty of this lactose biosensor is based on highly efficient direct electron transfer between two newly discovered cellobiose dehydrogenases (CDH), from the white rot fungi Trametes villosa and Phanerochaete sordida, and a solid spectrographic graphite electrode. CDH was immobilized on the electrode surface (0.073 cm2) by simple physical adsorption, and the CDH-modified electrode was next inserted into a wall-jet amperometric cell connected on-line to a flow injection setup (0.5 mL x min(-1)). The P. sordida CDH-based lactose biosensor, proved to be the better one, has a detection limit for lactose of 1 microM, a sensitivity of 1100 microA x mM(-1) x cm(-2), a response time of 4 s (the time required to obtain the maximum peak current), and a linear range from 1 to 100 microM lactose (correlation coefficient 0.998). The simplicity of construction and analytical characteristics make this CDH-based lactose biosensor an excellent alternative to previous lactose biosensors reported in the literature or commercially available. The CDH-lactose sensor was used to quantify the content of lactose in pasteurized milk, buttermilk, and low-lactose milk, using the standard addition method. No effects of the samples matrixes were observed. The operational stability of the sensor was tested for 11 h by continuous injection of 100 microM lactose (290 injections). The final signal of the sensor was maintained at 98% of its initial signal, with a low standard deviation of 1.72 (RSD 2.41%).

  4. Optimization of bioselective membrane of amperometric enzyme sensor on basis of glucose oxidase using NH2-modified multi-wall carbone nanotubes

    Directory of Open Access Journals (Sweden)

    Korpan Ya. I.

    2010-02-01

    Full Text Available Aim. To investigate a possibility of application of multi-wall carbone nanotubes modified with NH2-groups (MWCNT-NH2 for creation of sensitive elements of the amperometric biosensor based on immobilized oxidoreductases, in particular, glucose oxidase (GOD. To study electrochemical properties of the membranes obtained. Methods. Experiments were carried out with amperometric methods using the ìStat 200 device («DropSens», Spain. The enzymes were immobilised in glutaraldehyde vapour. Results. The method of formation of bioselective matrix based on immobilised GOD with MNP-NH2 on the surface of gold amperometric electrodes was optimised. Optimal working conditions of the biosensor developed were determined. Conclusion. MWCNT integration into a bioselective matrix improves the biosensor analytical characteristics which means: higher signal value, wider linear range of glucose analysis, and possibility of substrate determination in wide range of working potential.

  5. Vesicle Motion during Sustained Exocytosis in Chromaffin Cells: Numerical Model Based on Amperometric Measurements.

    Science.gov (United States)

    Jarukanont, Daungruthai; Bonifas Arredondo, Imelda; Femat, Ricardo; Garcia, Martin E

    2015-01-01

    Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles' arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We also show that

  6. Vesicle Motion during Sustained Exocytosis in Chromaffin Cells: Numerical Model Based on Amperometric Measurements.

    Directory of Open Access Journals (Sweden)

    Daungruthai Jarukanont

    Full Text Available Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles' arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We

  7. Nanoparticles Modified ITO Based Biosensor

    Science.gov (United States)

    Khan, M. Z. H.

    2017-04-01

    Incorporation of nanomaterials with controlled molecular architecture shows great promise in improving electronic communication between biomolecules and the electrode substrate. In electrochemical applications metal nanoparticles (NPs) modified electrodes have been widely used and are emerging as candidates to develop highly sensitive electrochemical sensors. There has been a growing technological interest in modified indium tin oxide (ITO) electrodes due to their prominent optoelectronic properties and their wide use as a transducing platform. The introduction of NPs into the transducing platform is commonly achieved by their adsorption onto conventional electrode surfaces in various forms, including that of a composite. The aim of this review is to discuss the role of metallic NPs for surface fabrication of ITO thin films leading to detection of specific biomolecules and applications as a biosensor platform.

  8. Nanoparticles Modified ITO Based Biosensor

    Science.gov (United States)

    Khan, M. Z. H.

    2016-12-01

    Incorporation of nanomaterials with controlled molecular architecture shows great promise in improving electronic communication between biomolecules and the electrode substrate. In electrochemical applications metal nanoparticles (NPs) modified electrodes have been widely used and are emerging as candidates to develop highly sensitive electrochemical sensors. There has been a growing technological interest in modified indium tin oxide (ITO) electrodes due to their prominent optoelectronic properties and their wide use as a transducing platform. The introduction of NPs into the transducing platform is commonly achieved by their adsorption onto conventional electrode surfaces in various forms, including that of a composite. The aim of this review is to discuss the role of metallic NPs for surface fabrication of ITO thin films leading to detection of specific biomolecules and applications as a biosensor platform.

  9. Nanomaterial-Based Electrochemical Biosensors and Bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guodong; Mao, Xun; Gurung, Anant; Baloda, Meenu; Lin, Yuehe; He, Yuqing

    2010-08-31

    This book chapter summarizes the recent advance in nanomaterials for electrochemical biosensors and bioassays. Biofunctionalization of nanomaterials for biosensors fabrication and their biomedical applications are discussed.

  10. Thin-film amperometric multibiosensor for simultaneous determination of lactate and glucose in wine.

    Science.gov (United States)

    Shkotova, Lyudmyla V; Piechniakova, Nataliia Y; Kukla, Oleksandr L; Dzyadevych, Sergei V

    2016-04-15

    An amperometric multi-biosensor based on lactate and glucose oxidases has been developed for determination of lactate and glucose in wine. Gold thin-film amperometric electrodes were used as multi-transducers. Analytical characteristics of the multi-biosensor developed were studied. The minimum detectable concentration was 5×10(-6) mol/l for both glucose and lactate. High reproducibility and storage stability of the multi-biosensor are demonstrated in this paper. Lactate and glucose were determined in wine, and a good correlation was obtained with concentrations determined using high-performance liquid chromatography (correlation coefficient for glucose R(2)=0.998, for lactate R(2)=0.718).

  11. Thiamine biosensor based on oxidative trapping of enzyme-substrate intermediate.

    Science.gov (United States)

    Halma, Matilte; Doumèche, Bastien; Hecquet, Laurence; Prévot, Vanessa; Mousty, Christine; Charmantray, Franck

    2017-01-15

    In the present work, we describe a new thiamine amperometric biosensor based on thiamine pyrophosphate (ThDP)-dependent transketolase (TK)-catalyzed reaction, followed by the oxidative trapping of TK intermediate α,β-dihydroxyethylthiamine diphosphate (DHEThDP) within the enzymatic active site. For the biosensor design purpose, TK from Escherichia coli (TKec) was immobilized in Mg2Al-NO3 Layered Double Hydroxides (LDH) and the electrochemical detection was achieved with the TKec/LDH modified glassy carbon electrode (GCE). The transduction process was based on the ability of Fe(CN)6(3-) to oxidize DHEThDP to glycolic acid along with ThDP regeneration. The released Fe(CN)6(4-) was re-oxidized at +0.5V vs Ag-AgCl and the reaction was followed by chronoamperometry. The TKec/LDH/GCE biosensor was optimized using the best TK donor substrates, namely l-erythrulose and d-fructose-6-phosphate. ThDP was assayed with great sensitivity (3831mAM(-1)cm(-2)) over 20-400nM linear range.

  12. Characterization of Biosensors Based on Recombinant Glutamate Oxidase: Comparison of Crosslinking Agents in Terms of Enzyme Loading and Efficiency Parameters.

    Science.gov (United States)

    Ford, Rochelle; Quinn, Susan J; O'Neill, Robert D

    2016-01-01

    Amperometric l-glutamate (Glu) biosensors, based on both wild-type and a recombinant form of l-glutamate oxidase (GluOx), were designed and characterized in terms of enzyme-kinetic, sensitivity and stability parameters in attempts to fabricate a real-time Glu monitoring device suitable for future long-term detection of this amino acid in biological and other complex media. A comparison of the enzyme from these two sources showed that they were similar in terms of biosensor performance. Optimization of the loading of the polycationic stabilization agent, polyethyleneimine (PEI), was established before investigating a range of crosslinking agents under different conditions: glutaraldehyde (GA), polyethylene glycol (PEG), and polyethylene glycol diglycidyl ether (PEGDE). Whereas PEI-free biosensor designs lost most of their meager Glu sensitivity after one or two days, configurations with a 2:5 ratio of dip-evaporation applications of PEI(1%):GluOx(400 U/mL) displayed a 20-fold increase in their initial sensitivity, and a decay half-life extended to 10 days. All the crosslinkers studied had no effect on initial Glu sensitivity, but enhanced biosensor stability, provided the crosslinking procedure was carried out under well-defined conditions. The resulting biosensor design based on the recombinant enzyme deposited on a permselective layer of poly-(ortho-phenylenediamine), PoPD/PEI₂/GluOx₅/PEGDE, displayed good sensitivity (LOD term monitoring of Glu concentration dynamics in complex media.

  13. Direct electrochemistry of cytochrome c immobilized on titanium nitride/multi-walled carbon nanotube composite for amperometric nitrite biosensor.

    Science.gov (United States)

    Haldorai, Yuvaraj; Hwang, Seung-Kyu; Gopalan, Anantha-Iyengar; Huh, Yun Suk; Han, Young-Kyu; Voit, Walter; Sai-Anand, Gopalan; Lee, Kwang-Pill

    2016-05-15

    In this report, titanium nitride (TiN) nanoparticles decorated multi-walled carbon nanotube (MWCNTs) nanocomposite is fabricated via a two-step process. These two steps involve the decoration of titanium dioxide nanoparticles onto the MWCNTs surface and a subsequent thermal nitridation. Transmission electron microscopy shows that TiN nanoparticles with a mean diameter of ≤ 20 nm are homogeneously dispersed onto the MWCNTs surface. Direct electrochemistry and electrocatalysis of cytochrome c immobilized on the MWCNTs-TiN composite modified on a glassy carbon electrode for nitrite sensing are investigated. Under optimum conditions, the current response is linear to its concentration from 1 µM to 2000 µM with a sensitivity of 121.5 µA µM(-1)cm(-2) and a low detection limit of 0.0014 µM. The proposed electrode shows good reproducibility and long-term stability. The applicability of the as-prepared biosensor is validated by the successful detection of nitrite in tap and sea water samples.

  14. Development of printable membrane electrode assembly for a passive direct methanol fuel cell-based biosensor

    OpenAIRE

    Koiramäki, Vesa

    2016-01-01

    This bachelor’s thesis was carried out in co-operation with VTT at Micronova (Centre for Micro and Nanotechnology) in Dr Maria Smolander’s research team (printed sensors and electronic devices) as part of the European Union co-funded Symbiotic project under the Future and Emerging Technologies (FET) programme. Biosensors are important tools for recognising specific biomarkers that can be used to determine a person’s state of health. A common problem is that amperometric biosensors require...

  15. Biosensor de Glucosa basado en un Biocompósito disperso de Grafito-Epoxi-Platino-Glucosa Oxidasa Glucose Biosensor based on a Graphite-Epoxy-Platimum- Glucose Oxidase dispersed Biocomposite

    Directory of Open Access Journals (Sweden)

    José L Montañez

    2011-01-01

    Full Text Available El objetivo del trabajo consistió en desarrollar un biosensor de glucosa basado en las propiedades electroquímicas de un compósito grafito-epoxi-platino-glucosa oxidasa. La industria de alimentos y bebidas demanda métodos analíticos rápidos, precisos y confiables para evaluar y asegurar la calidad de sus productos y optimizar sus procesos. El desarrollo de biosensores enzimáticos amperométricos representa una opción viable que satisface estos requerimientos. El potencial de trabajo y la caracterización de la respuesta del biosensor desarrollado se determinaron por voltamperometría de barrido lineal y amperometría, respectivamente. La respuesta del biosensor fue máxima a 600 mV, su tiempo de respuesta fue de 20 segundos en un intervalo de concentración de respuesta lineal de 0.1 a 5 mM de glucosa y sensibilidad de 1.4 μA/mM. La estabilidad y vida útil del biosensor desarrollado dependen de la frecuencia de uso y el biocompósito actúa como reservorio de enzimas y de mediador electroquímico.The aim of this work was to develop a glucose biosensor based on electrochemical properties of a graphite-epoxy-platinum- glucose oxidase composite. The food and beverage industry demand fast, precise and reliable analytical methods to evaluate and to assure the quality of its products and to optimize its processes. The development of amperometric enzyme biosensors represents a viable option that satisfies these requirements. The working potential and the characterization of the response of the biosensor were determined by cyclic voltammetry and amperometry, respectively. The biosensor response was máximum at 600 mV, with a response time of 20 seconds within the concentration range of linear response from 0.1 to 5 mM glucose and sensitivity of 1.4 μA/mM. The stability and lifetime of the proposed biosensor depend on the frequency of use, where the biocomposite acts as a reservoir of enzymes and electrochemical mediator.

  16. Mathematical Modeling of Biosensors Based on an Array of Enzyme Microreactors

    Directory of Open Access Journals (Sweden)

    Juozas Kulys

    2006-04-01

    Full Text Available This paper presents a two-dimensional-in-space mathematical model ofbiosensors based on an array of enzyme microreactors immobilised on a single electrode.The modeling system acts under amperometric conditions. The microreactors were modeledby particles and by strips. The model is based on the diffusion equations containing a non-linear term related to the Michaelis-Menten kinetics of the enzymatic reaction. The modelinvolves three regions: an array of enzyme microreactors where enzyme reaction as well asmass transport by diffusion takes place, a diffusion limiting region where only the diffusiontakes place, and a convective region, where the analyte concentration is maintained constant.Using computer simulation, the influence of the geometry of the microreactors and of thediffusion region on the biosensor response was investigated. The digital simulation wascarried out using the finite difference technique.

  17. Cantilever-Based Biosensors in CMOS Technology

    CERN Document Server

    Kirstein, K -U; Zimmermann, M; Vancura, C; Volden, T; Song, W H; Lichtenberg, J; Hierlemannn, A

    2011-01-01

    Single-chip CMOS-based biosensors that feature microcantilevers as transducer elements are presented. The cantilevers are functionalized for the capturing of specific analytes, e.g., proteins or DNA. The binding of the analyte changes the mechanical properties of the cantilevers such as surface stress and resonant frequency, which can be detected by an integrated Wheatstone bridge. The monolithic integrated readout allows for a high signal-to-noise ratio, lowers the sensitivity to external interference and enables autonomous device operation.

  18. Sensitive-cell-based fish chromatophore biosensor

    Science.gov (United States)

    Plant, Thomas K.; Chaplen, Frank W.; Jovanovic, Goran; Kolodziej, Wojtek; Trempy, Janine E.; Willard, Corwin; Liburdy, James A.; Pence, Deborah V.; Paul, Brian K.

    2004-07-01

    A sensitive biosensor (cytosensor) has been developed based on color changes in the toxin-sensitive colored living cells of fish. These chromatophores are highly sensitive to the presence of many known and unknown toxins produced by microbial pathogens and undergo visible color changes in a dose-dependent manner. The chromatophores are immobilized and maintained in a viable state while potential pathogens multiply and fish cell-microbe interactions are monitored. Low power LED lighting is used to illuminate the chromatophores which are magnified using standard optical lenses and imaged onto a CCD array. Reaction to toxins is detected by observing changes is the total area of color in the cells. These fish chromatophores are quite sensitive to cholera toxin, Staphococcus alpha toxin, and Bordatella pertussis toxin. Numerous other toxic chemical and biological agents besides bacterial toxins also cause readily detectable color effects in chromatophores. The ability of the chromatophore cell-based biosensor to distinguish between different bacterial pathogens was examined. Toxin producing strains of Salmonella enteritis, Vibrio parahaemolyticus, and Bacillus cereus induced movement of pigmented organelles in the chromatophore cells and this movement was measured by changes in the optical density over time. Each bacterial pathogen elicited this measurable response in a distinctive and signature fashion. These results suggest a chromatophore cell-based biosensor assay may be applicable for the detection and identification of virulence activities associated with certain air-, food-, and water-borne bacterial pathogens.

  19. A H2O2 Biosensor Based on Immobilization of HorseradishPeroxidase in a Gelatine Network Matrix

    Directory of Open Access Journals (Sweden)

    Jun-Jie Zhu

    2005-05-01

    Full Text Available A simple and promising H2O2 biosensor has been developed by successfulentrapment of horseradish peroxidase (HRP in a gelatine matrix which was cross-linkedwith formaldehyde. The large microscopic surface area and porous morphology of thegelatine matrix lead to high enzyme loading and the enzyme entrapped in this matrix canretain its bioactivity. This biosensor exhibited a fast amperometric response to hydrogenperoxide (H2O2. The linear range for H2O2 determination was from 2.5×10-5 to2.5×10-3 M, with a detection limit of 2.0×10-6 M based on S / N = 3. This biosensorpossessed very good reproducibility.

  20. Recent advances in biosensor based endotoxin detection.

    Science.gov (United States)

    Das, A P; Kumar, P S; Swain, S

    2014-01-15

    Endotoxins also referred to as pyrogens are chemically lipopolysaccharides habitually found in food, environment and clinical products of bacterial origin and are unavoidable ubiquitous microbiological contaminants. Pernicious issues of its contamination result in high mortality and severe morbidities. Standard traditional techniques are slow and cumbersome, highlighting the pressing need for evoking agile endotoxin detection system. The early and prompt detection of endotoxin assumes prime importance in health care, pharmacological and biomedical sectors. The unparalleled recognition abilities of LAL biosensors perched with remarkable sensitivity, high stability and reproducibility have bestowed it with persistent reliability and their possible fabrication for commercial applicability. This review paper entails an overview of various trends in current techniques available and other possible alternatives in biosensor based endotoxin detection together with its classification, epidemiological aspects, thrust areas demanding endotoxin control, commercially available detection sensors and a revolutionary unprecedented approach narrating the influence of omics for endotoxin detection.

  1. Electronic Biosensors Based on III-Nitride Semiconductors.

    Science.gov (United States)

    Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-01-01

    We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

  2. A Hydrogen Peroxide Biosensor Combined HRP Doped Polypyrrole with Ferrocene Modified Sol-gel Derived Composite Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel amperometric biosensor for the detection of hydrogen peroxide is described.The biosensor was constructed by electrodepositing HRP/PPy membrane on the surface of ferrocenecarboxylic acid mediated sol-gel derived composite carbon electrode. The biosensor gives response to hydrogen peroxide in a few seconds with detection limit of 5×l0-7 mol · L-1(based on signal: noise=3). Linear range is up to 0.2 mmol · L-1.

  3. A Novel Amperometric Hydrogen Peroxide Biosensor Based on Thionine- Carbon Nanotube Modified Glassy Carbon Electrode%基于硫堇/碳纳米管修饰电极的新型过氧化氢电化学传感器

    Institute of Scientific and Technical Information of China (English)

    邓春艳; 阳明辉

    2012-01-01

    Based on the synergic effect of multi-walled carbon nanotubes(CNTs) and thionine(Th) , a novel hydrogen peroxide electrode ( HRP/GA - Th/CNTs/GC ) was fabricated by immobilizing horseradish peroxidase( HRP) onto the thionine(Th) /multi-walled carbon nanolubes modified electrode via glutaradehyde( GA) cross-linking. The introduction of CNTs into the electrode is helpful for the further immobilization of Th and the catalysis to H2O2. Furthermore, Th immobilized on CNTs by electrostatic adsorption not only can transfer electrons between the electrode and the redox activity center of the enzyme, but also can enable amine group( NH2) in Th to provide convenience for the immobilization of HRP enzyme via glutaradehyde cross-linking. Additionally, effects of various ex-perimental parameters on H2O2 sensing, including applied potential, pH value and electroactive in-terferent, were investigated. At an optimal potential of - 0. 3 V, the current response of the biosen-sor in phosphate buffer( pH 7. 0) was linear with H2O2 concentration from 5 μmol· L-1 to 40 μmol . L-1 , with a good detection limit (0. 3μmol L-1), a short response time (within 5 s) and a good anti-interferent ability.%基于碳纳米管(CNTs)和硫堇(Th)的协同效应,将辣根过氧化物酶(HRP)通过戊二醛(GA)交联作用固定在硫堇( Th)/CNTs修饰电极上,构造了一种新型酶电极(HRP/GA -Th/CNTs/GC).CNTs静电吸附正电荷的Th,而Th不仅可以促进电极和酶的氧化还原活性中心之间的电子传递,而且能使CNTs氨基(-NH2)功能化,从而利于HRP的固定.基于HRP/GA - Th/CNTs/GC电极的过氧化氢传感器具有较好的传感性能,且检出限低(0.3μmol·L-1)、响应时间短(5s内)、抗干扰能力强.

  4. Recent advances in biosensors based on enzyme inhibition.

    Science.gov (United States)

    Amine, A; Arduini, F; Moscone, D; Palleschi, G

    2016-02-15

    Enzyme inhibitors like drugs and pollutants are closely correlated to human and environmental health, thus their monitoring is of paramount importance in analytical chemistry. Enzymatic biosensors represent cost-effective, miniaturized and easy to use devices; particularly biosensors based on enzyme inhibition are useful analytical tools for fast screening and monitoring of inhibitors. The present review will highlight the research carried out in the last 9 years (2006-2014) on biosensors based on enzyme inhibition. We underpin the recent advances focused on the investigation in new theoretical approachs and in the evaluation of biosensor performances for reversible and irreversible inhibitors. The use of nanomaterials and microfluidic systems as well as the applications of the various biosensors in real samples is critically reviewed, demonstrating that such biosensors allow the development of useful devices for a fast and reliable alarm system.

  5. CMOS-Based Biosensor Arrays

    CERN Document Server

    Thewes, R; Schienle, M; Hofmann, F; Frey, A; Brederlow, R; Augustyniak, M; Jenkner, M; Eversmann, B; Schindler-Bauer, P; Atzesberger, M; Holzapfl, B; Beer, G; Haneder, T; Hanke, H -C

    2011-01-01

    CMOS-based sensor array chips provide new and attractive features as compared to today's standard tools for medical, diagnostic, and biotechnical applications. Examples for molecule- and cell-based approaches and related circuit design issues are discussed.

  6. A catechol biosensor based on electrospun carbon nanofibers

    Directory of Open Access Journals (Sweden)

    Dawei Li

    2014-03-01

    Full Text Available Carbon nanofibers (CNFs were prepared by combining electrospinning with a high-temperature carbonization technique. And a polyphenol biosensor was fabricated by blending the obtained CNFs with laccase and Nafion. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR and field emission scanning electron microscope (FE-SEM were, respectively, employed to investigate the structures and morphologies of the CNFs and of the mixtures. Cyclic voltammetry and chronoamperometry were employed to study the electrocatalysis of the catechol biosensor. The results indicated that the sensitivity of the biosensor was 41 µA·mM−1, the detection limit was 0.63 µM, the linear range was 1–1310 µM and the response time was within 2 seconds, which excelled most other laccase-based biosensor reported. Furthermore, the biosensor showed good repeatability, reproducibility, stability and tolerance to interferences. This novel biosensor also demonstrated its promising application in detecting catechol in real water samples.

  7. A catechol biosensor based on electrospun carbon nanofibers

    Science.gov (United States)

    Li, Dawei; Pang, Zengyuan; Chen, Xiaodong; Luo, Lei; Cai, Yibing

    2014-01-01

    Summary Carbon nanofibers (CNFs) were prepared by combining electrospinning with a high-temperature carbonization technique. And a polyphenol biosensor was fabricated by blending the obtained CNFs with laccase and Nafion. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscope (FE-SEM) were, respectively, employed to investigate the structures and morphologies of the CNFs and of the mixtures. Cyclic voltammetry and chronoamperometry were employed to study the electrocatalysis of the catechol biosensor. The results indicated that the sensitivity of the biosensor was 41 µA·mM−1, the detection limit was 0.63 µM, the linear range was 1–1310 µM and the response time was within 2 seconds, which excelled most other laccase-based biosensor reported. Furthermore, the biosensor showed good repeatability, reproducibility, stability and tolerance to interferences. This novel biosensor also demonstrated its promising application in detecting catechol in real water samples. PMID:24778958

  8. The interference of HEPES buffer during amperometric detection of ATP in clinical applications.

    Science.gov (United States)

    Masson, Jean-Francois; Gauda, Estelle; Mizaikoff, Boris; Kranz, Christine

    2008-04-01

    HEPES-based biological buffer is subject to photooxidation upon exposure to fluorescent illumination. Thereby hydrogen peroxide is generated, which interferes with amperometric oxidoreductase-based biosensors for glucose or adenosine triphosphate (ATP). These biosensors operate at an oxidation potential above 500 mV vs. the standard calomel electrode (SCE) and involve hydrogen peroxide as the electroactive molecule detected at the electrode surface. False-positive detection of ATP was observed in HEPES buffer utilizing an amperometric microbiosensor based on the co-immobilization of glucose oxidase and hexokinase for detection of ATP in biological specimens. Electrochemical, mass spectrometric, (31)P NMR, and (1)H NMR studies indicate that complexation of ATP and HEPES induced by the presence of Ca(2+) in HEPES buffer decreases the photooxidation of HEPES. Consequently, the hydrogen peroxide background concentration is reduced, thereby leading to erroneous ATP detection at the dual-enzyme microbiosensor, which determines an increase in ATP via a reduced hydrogen peroxide signal.

  9. An electrochemical biosensor for fructosyl valine for glycosylated hemoglobin detection based on core-shell magnetic bionanoparticles modified gold electrode.

    Science.gov (United States)

    Chawla, Sheetal; Pundir, Chandra Shekhar

    2011-04-15

    A high-performance amperometric fructosyl valine (FV) biosensor was developed, based on immobilization of fructosyl amino-acid oxidase (FAO) on core-shell magnetic bionanoparticles modified gold electrode. Chitosan was used to introduce amino groups onto the surface of core-shell magnetic bionanoparticles (MNPs). With FAO as an enzyme model, a new fructosyl valine biosensor was fabricated. The biosensor showed optimum response, when operated at 50 mVs(-1) in 0.1M potassium phosphate buffer, pH 7.5 and 35°C. The biosensor exhibited excellent sensitivity [the detection limit is down to 0.1mM for FV], fast response time (less than 4s), wide linear range (from 0 to 2mM). Analytical recovery of added FV was 95.00-98.50%. Within batch and between batch coefficients of variation were <2.58% and <5.63%, respectively. The enzyme electrode was used 250 times over 3 months, when stored at 4°C.

  10. Bacterium-based NO2- biosensor for environmental applications

    NARCIS (Netherlands)

    Nielsen, M.; Larsen, L.H.; Jetten, M.S.M.; Revsbech, N.P.

    2004-01-01

    A sensitive NO2- biosensor that is based on bacterial reduction of NO2- to N2O and subsequent detection of the N2O by a built-in electrochemical N2O sensor was developed. Four different denitrifying organisms lacking NO3- reductase activity were assessed for use in the biosensor. The relevant physio

  11. Acetylcholinesterase biosensor for carbaryl detection based on interdigitated array microelectrodes.

    Science.gov (United States)

    Gong, Zhili; Guo, Yemin; Sun, Xia; Cao, Yaoyao; Wang, Xiangyou

    2014-10-01

    In this study, an acetylcholinesterase (AChE) biosensor with superior accuracy and sensitivity was successfully developed based on interdigitated array microelectrodes (IAMs). IAMs have a series of parallel microband electrodes with alternating microbands connected together. Chitosan was used as the enzyme immobilization material, and AChE was used as the model enzyme for carbaryl detection to fabricate AChE biosensor. Electrochemical impedance spectroscopy was used in conjunction with the fabricated biosensor to detect pesticide residues. Based on the inhibition of pesticides on the AChE activity, using carbaryl as model compounds, the biosensor exhibited a wide range, low detection limit, and high stability. Moreover, the biosensor can also be used as a new promising tool for pesticide residue analysis.

  12. Biosensor method and system based on feature vector extraction

    Science.gov (United States)

    Greenbaum, Elias [Knoxville, TN; Rodriguez, Jr., Miguel; Qi, Hairong [Knoxville, TN; Wang, Xiaoling [San Jose, CA

    2012-04-17

    A method of biosensor-based detection of toxins comprises the steps of providing at least one time-dependent control signal generated by a biosensor in a gas or liquid medium, and obtaining a time-dependent biosensor signal from the biosensor in the gas or liquid medium to be monitored or analyzed for the presence of one or more toxins selected from chemical, biological or radiological agents. The time-dependent biosensor signal is processed to obtain a plurality of feature vectors using at least one of amplitude statistics and a time-frequency analysis. At least one parameter relating to toxicity of the gas or liquid medium is then determined from the feature vectors based on reference to the control signal.

  13. Amperometric Noise at Thin Film Band Electrodes

    DEFF Research Database (Denmark)

    Larsen, Simon T.; Heien, Michael L.; Taboryski, Rafael

    2012-01-01

    Background current noise is often a significant limitation when using constant-potential amperometry for biosensor application such as amperometric recordings of transmitter release from single cells through exocytosis. In this paper, we fabricated thin-film electrodes of gold and conductive...

  14. New amperometric glucose biosensor by entrapping glucose oxidase into chitosan/nanoporous ZrO2/multiwalled carbon nanotubes nanocomposite film

    Institute of Scientific and Technical Information of China (English)

    WEI Wan-zhi; ZHAI Xiu-rong; ZENG Jin-xiang; GAO Yan-ping; GONG Shu-guo

    2007-01-01

    A new nanocomposite material for construction of glucose biosensor was prepared. The biosensor was formed by entrapping glucose oxidase(Gox) into chitosan/nanoporous ZrO2/multiwalled carbon nanotubes nanocomposite film.In this biosensing thin film.the multiwalled carbon nanotubes can effectively catalyze hydrogen peroxide and nanoporous ZrO2, can enhance the stability of the immobilized enzyme. The resulting biosensor provides a very effective matrix for the immobilization of glucose oxidase and exhibits a wide linear response range from 8 μmol/L to 3 mmol/L with a correlation coefficient of 0.994 for the detection of glucose.And the response time and detection limit of the biosensor are determined to be 6 S and 3.5 μmaol/L.respectively. Another attractive characteristic is that the biosensor is inexpensive. stable and reliable.

  15. Aptamer Based Microsphere Biosensor for Thrombin Detection

    Directory of Open Access Journals (Sweden)

    Xudong Fan

    2006-08-01

    Full Text Available We have developed an optical microsphere resonator biosensor using aptamer asreceptor for the measurement of the important biomolecule thrombin. The sphere surface ismodified with anti-thrombin aptamer, which has excellent binding affinity and selectivityfor thrombin. Binding of the thrombin at the sphere surface is monitored by the spectralposition of the microsphere’s whispering gallery mode resonances. A detection limit on theorder of 1 NIH Unit/mL is demonstrated. Control experiments with non-aptameroligonucleotide and BSA are also carried out to confirm the specific binding betweenaptamer and thrombin. We expect that this demonstration will lead to the development ofhighly sensitive biomarker sensors based on aptamer with lower cost and higher throughputthan current technology.

  16. Cell-based biosensors: Towards the development of cellular monitoring

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Cell-based biosensors (CBBs), a research hotspot of biosensors, which treat living cells as sensing elements, can detect the functional information of biologically active analytes. They characterize with high sensitivity, excellent selectivity and rapid response, and have been applied in many fields, such as biomedicine, environmental monitoring and pharmaceutical screening. Recently cell-cultured technology, silicon microfabrication technology and genetic technology have promoted exploration of CBBs dramatically. To elucidate the novel research findings and applications of cell- based biosensors, this paper summarizes various research approaches, presents some challenges and proposes the research trends.

  17. Highly selective and stable microdisc biosensors for l-glutamate monitoring

    OpenAIRE

    Govindarajan, Sridhar; McNeil, Calum J.; Lowry, John P.; McMahon, Colm P.; O'Neill, Robert D.

    2013-01-01

    Glutamate mediates most of the excitatory synaptic transmission in the brain, and its abnormal regulation is considered a key factor underlying the appearance and progression of many neurodegenerative and psychiatric diseases. In this work, a microdisc-based amperometric biosensor for glutamate detection with highly enhanced selectivity and good stability is proposed. The biosensor utilizes the enzyme glutamate oxidase which was dip-coated onto 125 um diameter platinum discs. To i...

  18. Flow-Injection Amperometric Determination of Tacrine based on Ion Transfer across a Water–Plasticized Polymeric Membrane Interface

    OpenAIRE

    Rueda, C.; Joaquin A. Ortuño

    2007-01-01

    A flow-injection pulse amperometric method for determining tacrine, based on ion transfer across a plasticized poly(vinyl chloride) (PVC) membrane, was developed. A four-electrode potentiostat with ohmic drop compensation was used, while a flow-through cell incorporated the four electrodes and the membrane, which contained tetrabutylammonium tetraphenylborate. The influence of the applied potential and of the flow-injection variables on the determination of tacrine was studied. In the selecte...

  19. Highly sensitive biosensors based on water-soluble conjugated polymers

    Institute of Scientific and Technical Information of China (English)

    XU Hui; WU Haiping; FAN Chunhai; LI Wenxin; ZHANG Zhizhou; HE Lin

    2004-01-01

    Conjugated, conductive polymers are a kind of important organic macromolecules, which has found applications in a variety of areas. The application of conjugated polymers in developing fluorescent biosensors represents the merge of polymer sciences and biological sciences. Conjugated polymers are very good light harvesters as well as fluorescent polymers, and they are also "molecular wires". Through elaborate designs, these important features, i.e. efficient light harvesting and electron/energy transfer, can be used as signal amplification in fluorescent biosensors. This might significantly improve the sensitivity of conjugated polymer-based biosensors. In this article, we reviewed the application of conjugated polymers, via either electron transfer or energy transfer, to detections of gene targets, antibodies or enzymes. We also reviewed recent efforts in conjugated polymer-based solid-state sensor designs as well as chip-based multiple target detection. Possible directions in this conjugated polymer-based biosensor area are also discussed.

  20. A novel nonenzymatic biosensor for evaluation of oxidative stress based on nanocomposites of graphene blended with CuI.

    Science.gov (United States)

    Li, Changhui; Liu, Xiaoli; Zhang, Yuanyuan; Chen, Yun; Du, Tianyu; Jiang, Hui; Wang, Xuemei

    2016-08-24

    A high-sensitive nonenzymatic hydrogen peroxide (H2O2) biosensor based on cuprous iodide and graphene (CuI/Gr) composites has been explored for the detection of H2O2 released by living cells and monitoring the oxidative stress of cells under excellular stimulation. The biosensor properties were evaluated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), amperometric i-t curve, and the redox-competition mode of scanning electrochemical microscopy (SECM). Our observations demonstrate that the CuI/Gr nanocomposites modified glassy carbon electrode (GCE) exhibits excellent catalytic activity for H2O2 with relatively low detection limit and a wide linear range from 0.5 μM to 3 mM. Moreover, the redox-competition mode of SECM imaging study further illustrates the improved electrochemical catalytic capability for H2O2 reduction with CuI/Gr nanocomposites deposited on graphite electrode. Hence, the as-prepared nonenzymatic H2O2 biosensor could be used to detect H2O2 release from different kinds of living cells under stimulation while eliminating the interference of ascorbic acid.

  1. Polymer Based Biosensors for Medical Applications

    DEFF Research Database (Denmark)

    Cherré, Solène; Rozlosnik, Noemi

    2015-01-01

    The objective of this chapter is to give an overview about the newest developments in biosensors made of polymers for medical applications. Biosensors are devices that can recognize and detect a target with high selectivity. They are widely used in many fields such as medical diagnostic......, environmental monitoring and food safety. The detected element varies from a single molecule (such as glucose), a biopolymer (such as DNA or a protein) to a whole organism (such as bacteria). Due to their easy use and possible miniaturization, biosensors have a high potential to come out of the lab...... and be available for use by everybody. To fulfil these purposes, polymers represent very appropriate materials. Many nano- and microfabrication methods for polymers are available, allowing a fast and cheap production of devices. This chapter will present the general concept of a biosensor in a first part...

  2. Non-antibody protein-based biosensors

    Science.gov (United States)

    2016-01-01

    Biosensors that depend on a physical or chemical measurement can be adversely affected by non-specific interactions. For example, a biosensor designed to measure specifically the levels of a rare analyte can give false positive results if there is even a small amount of interaction with a highly abundant but irrelevant molecule. To overcome this limitation, the biosensor community has frequently turned to antibody molecules as recognition elements because they are renowned for their exquisite specificity. Unfortunately antibodies can often fail when immobilised on inorganic surfaces, and alternative biological recognition elements are needed. This article reviews the available non-antibody-binding proteins that have been successfully used in electrical and micro-mechanical biosensor platforms. PMID:27365032

  3. Gold nanoparticle-based electrochemical biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain)

    2008-08-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated. (author)

  4. Cantilever-Based Microwave Biosensors: Analysis, Designs and Optimizations

    DEFF Research Database (Denmark)

    Jiang, Chenhui; Johansen, Tom Keinicke; Jónasson, Sævar Þór;

    2011-01-01

    This paper presents a novel microwave readout scheme for measuring deflection of cantilevers in nanometer range. The cantilever deflection can be sensed by the variation of transmission levels or resonant frequencies of microwave signals. The sensitivity of the cantilever biosensor based on LC...... resonators is at first theoretically analyzed. A LC resonator based biosensor with beams is designed and optimized by using 3D electromagnetic (EM) simulations, where the beam is a typical variation of cantilevers. The sensitivity of the lossless biosensor is predicted as 4.6MHz/nm. The 3-dB bandwidths...... of the resonances are narrowed for improving the resolution of distinguishing resonances by reducing conductive loss of electrodes. The lossy biosensor can achieve the highest sensitivity as 5.6 MHz/nm and narrowest 3-dB bandwidth as 5 GHz....

  5. An amperometric chloramphenicol immunosensor based on cadmium sulfide nanoparticles modified-dendrimer bonded conducting polymer.

    Science.gov (United States)

    Kim, Dong-Min; Rahman, Md Aminur; Do, Minh Hien; Ban, Changill; Shim, Yoon-Bo

    2010-03-15

    An amperometric chloramphenicol (CAP) immunosensor was fabricated by covalently immobilizing anti-chloramphenicol acetyl transferase (anti-CAT) antibody on cadmium sulfide nanoparticles (CdS) modified-dendrimer that was bonded to the conducting polymer (poly 5, 2': 5', 2''-terthiophene-3'-carboxyl acid (poly-TTCA)) layer. The AuNPs, dendrimers, and CdS nanoparticles were deposited onto the polymer layer in order to enhance the sensitivity of the sensor probes. The particle sizes were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The immobilization of dendrimers, CdS, and anti-CAT were confirmed using energy disruptive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and quartz crystal microbalance (QCM) techniques. The detection of CAP was based on the competitive immuno-interaction between the free- and labeled-CAP for active sites of the anti-CAT. Hydrazine was used as the label for CAP, and it electrochemically catalyzed the reduction of H(2)O(2) at -0.35 V vs. Ag/AgCl. Under optimized conditions, the proposed immunosensor exhibited a linear range of CAP detection between 50 pg/mL and 950 pg/mL, and the detection limit was 45 pg/mL. The immunosensor was examined in real meat samples for the analysis of CAP.

  6. Amperometric Enzyme-based Gas Sensor for Formaldehyde: Impact of Possible Interferences

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2007-02-01

    Full Text Available In this work, cross-sensitivities and environmental influences on the sensitivityand the functionality of an enzyme-based amperometric sensor system for the directdetection of formaldehyde from the gas phase are studied. The sensor shows a linearresponse curve for formaldehyde in the tested range (0 - 15 vppm with a sensitivity of1.9 μA/ppm and a detection limit of about 130 ppb. Cross-sensitivities by environmentalgases like CO2, CO, NO, H2, and vapors of organic solvents like methanol and ethanol areevaluated as well as temperature and humidity influences on the sensor system. The sensorshowed neither significant signal to CO, H2, methanol or ethanol nor to variations in thehumidity of the test gas. As expected, temperature variations had the biggest influence onthe sensor sensitivity with variations in the sensor signal of up to 10 % of the signal for 5vppm CH2O in the range of 25 - 30 °C.

  7. Last Advances in Silicon-Based Optical Biosensors.

    Science.gov (United States)

    Fernández Gavela, Adrián; Grajales García, Daniel; Ramirez, Jhonattan C; Lechuga, Laura M

    2016-02-24

    We review the most important achievements published in the last five years in the field of silicon-based optical biosensors. We focus specially on label-free optical biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on developments demonstrating the capability of the devices for real bioanalytical applications. We report on novel transducers and materials, improvements of existing transducers, new and improved biofunctionalization procedures as well as the prospects for near future commercialization of these technologies.

  8. Enzyme-based electrochemical biosensors for food safety: a review

    OpenAIRE

    Kumar, Harish; Neelam

    2016-01-01

    Harish Kumar, Rani Neelam Electrochemistry Laboratory, Department of Chemistry, Chaudhary Devi Lal University, Sirsa, Haryana, India Abstract: In recent years, food storage environment safety has been a major concern for food and health scientists. There is growing interest in electrochemical biosensors due to their high sensitivity and rapid response. The aim of this review article is to provide details regarding the development of enzyme-based electrochemical biosensors, and their use in t...

  9. Feasibility Studies on Si-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Marcella Renis

    2009-05-01

    Full Text Available The aim of this paperis to summarize the efforts carried out so far in the fabrication of Si-based biosensors by a team of researchers in Catania, Italy. This work was born as a collaboration between the Catania section of the Microelectronic and Microsystem Institute (IMM of the CNR, the Surfaces and Interfaces laboratory (SUPERLAB of the Consorzio Catania Ricerche and two departments at the University of Catania: the Biomedical Science and the Biological Chemistry and Molecular Biology Departments. The first goal of our study was the definition and optimization of an immobilization protocol capable of bonding the biological sensing element on a Si-based surface via covalent chemical bonds. We chose SiO2 as the anchoring surface due to its biocompatibility and extensive presence in microelectronic devices. The immobilization protocol was tested and optimized, introducing a new step, oxide activation, using techniques compatible with microelectronic processing. The importance of the added step is described by the experimental results. We also tested different biological molecule concentrations in the immobilization solutions and the effects on the immobilized layer. Finally a MOS-like structure was designed and fabricated to test an electrical transduction mechanism. The results obtained so far and the possible evolution of the research field are described in this review paper.

  10. Modeling of Amperometric Immunosensor for CMOS Integration

    Institute of Scientific and Technical Information of China (English)

    Ce Li; Haigang Yang; Shanhong Xia; Chao Bian

    2006-01-01

    A circuit model of the Amperometric immunosensor for use in the biosensor system-on-chip simulation is proposed in this paper. The model parameters are extracted with several methods and verified by MATLAB and SPICE simulation. A CMOS potentiostat circuit required for conditioning the Amperometric immunosensor is also included in the circuit model. The mean square error norm of the simulated curve against the measured one is 8.65 × 10-17. The whole circuit has been fabricated in a 0.35am CMOS process.

  11. Progress in chemical luminescence-based biosensors: A critical review.

    Science.gov (United States)

    Roda, Aldo; Mirasoli, Mara; Michelini, Elisa; Di Fusco, Massimo; Zangheri, Martina; Cevenini, Luca; Roda, Barbara; Simoni, Patrizia

    2016-02-15

    Biosensors are a very active research field. They have the potential to lead to low-cost, rapid, sensitive, reproducible, and miniaturized bioanalytical devices, which exploit the high binding avidity and selectivity of biospecific binding molecules together with highly sensitive detection principles. Of the optical biosensors, those based on chemical luminescence detection (including chemiluminescence, bioluminescence, electrogenerated chemiluminescence, and thermochemiluminescence) are particularly attractive, due to their high-to-signal ratio and the simplicity of the required measurement equipment. Several biosensors based on chemical luminescence have been described for quantitative, and in some cases multiplex, analysis of organic molecules (such as hormones, drugs, pollutants), proteins, and nucleic acids. These exploit a variety of miniaturized analytical formats, such as microfluidics, microarrays, paper-based analytical devices, and whole-cell biosensors. Nevertheless, despite the high analytical performances described in the literature, the field of chemical luminescence biosensors has yet to demonstrate commercial success. This review presents the main recent advances in the field and discusses the approaches, challenges, and open issues, with the aim of stimulating a broader interest in developing chemical luminescence biosensors and improving their commercial exploitation.

  12. Bioethanol in Biofuels Checked by an Amperometric Organic Phase Enzyme Electrode (OPEE Working in “Substrate Antagonism” Format

    Directory of Open Access Journals (Sweden)

    Mauro Tomassetti

    2016-08-01

    Full Text Available The bioethanol content of two samples of biofuels was determined directly, after simple dilution in decane, by means of an amperometric catalase enzyme biosensor working in the organic phase, based on substrate antagonisms format. The results were good from the point of view of accuracy, and satisfactory for what concerns the recovery test by the standard addition method. Limit of detection (LOD was on the order of 2.5 × 10−5 M.

  13. Optical biosensors

    OpenAIRE

    Damborský, Pavel; Švitel, Juraj; Katrlík, Jaroslav

    2016-01-01

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biose...

  14. Roughness effect on the efficiency of dimer antenna based biosensor

    Directory of Open Access Journals (Sweden)

    Dominique Barchiesi

    2012-08-01

    Full Text Available The fabrication process of nanodevices is continually improved. However, most of the nanodevices, such as biosensors present rough surfaces with mean roughness of some nanometers even if the deposition rate of material is more controlled. The effect of roughness on performance of biosensors was fully addressed for plane biosensors and gratings, but rarely addressed for biosensors based on Local Plasmon Resonance. The purpose of this paper is to evaluate numerically the influence of nanometric roughness on the efficiency of a dimer nano-biosensor (two levels of roughness are considered. Therefore, we propose a general numerical method, that can be applied to any other nanometric shape, to take into account the roughness in a three dimensional model. The study focuses on both the far-field, which corresponds to the experimental detected data, and the near-field, responsible for exciting and then detecting biological molecules. The results suggest that the biosensor efficiency is highly sensitive to the surface roughness. The roughness can produce important shifts of the extinction efficiency peak and a decrease of its amplitude resulting from changes in the distribution of near-field and absorbed electric field intensities.

  15. Third Generation Horseradish Peroxidase Biosensor Based on Self-assembling Carbon Nanotubes to Gold Electrode Surface

    Institute of Scientific and Technical Information of China (English)

    Jing Juan XU; Gang WANG; Qing ZHANG; Xing Hua XIA; Hong Yuan CHEN

    2005-01-01

    A third-generation horseradish peroxidase (HRP) biosensor has been developed by adsorbing HRP on multi-wall carbon nanotube (MWNTs) monolayer modified gold electrode surface. The assembly process was investigated by electrochemical and spectroscopic techniques.Results showed that the immobilized HRP exhibited direct electrochemical behavior toward the reduction of H2O2. The resulting biosensor shows a fast amperometric response (<2 s) to H2O2.The linear response range was from 5.0×10-7~1.0×10-5 mol/L with a detection limit of1.0×10-7mol/L. Moreover, the biosensor has a good reproducibility, and long-term stability.

  16. Biosensor based on inhibition of monoamine oxidases A and B for detection of β-carbolines.

    Science.gov (United States)

    Radulescu, Maria-Cristina; Bucur, Madalina-Petruta; Bucur, Bogdan; Radu, Gabriel Lucian

    2015-05-01

    β-Carbolines are inhibitors of monoamine oxidases (MAO-A and MAO-B) and can be found in foods, hallucinogenic plant or various drugs. We have developed a fast analysis method for β-carbolines based on the inhibition of MAO. The enzymes were immobilized on screen-printed electrodes modified with a stabilized film of Prussian blue that contain also copper. We have used benzylamine as substrate for the enzymatic reaction and the hydrogen peroxide was measured amperometrically at -50 mV. The detection limits obtained were 5.0 µM for harmane and 2.5 µM for both harmaline and norharmane. The MAO-A is inhibited by all three tested β-carbolines (harmane, norharmane, and harmaline) while MAO-B is inhibited only by norharmane. The presence of norharmane in mixtures of β-carbolines can be identified based on the difference between the cumulative inhibition of MAO-A by all β-carbolines and MAO-B inhibition. The developed biosensors were used for food analysis.

  17. Mass Transfer in Amperometric Biosensors Based on Nanocomposite Thin Films of Redox Polymers and Oxidoreductases

    Directory of Open Access Journals (Sweden)

    Aleksandr L. Simonian

    2002-03-01

    Full Text Available Mass transfer in nanocomposite hydrogel thin films consisting of alternating layers of an organometallic redox polymer (RP and oxidoreductase enzymes was investigated. Multilayer nanostructures were fabricated on gold surfaces by the deposition of an anionic self-assembled monolayer of 11-mercaptoundecanoic acid, followed by the electrostatic binding of a cationic redox polymer, poly[vinylpyridine Os(bis-bipyridine2Clco-allylamine], and an anionic oxidoreductase. Surface plasmon resonance spectroscopy, Fourier transform infrared external reflection spectroscopy (FTIR-ERS, ellipsometry and electrochemistry were employed to characterize the assembly of these nanocomposite films. Simultaneous SPR/electrochemistry enabled real time observation of the assembly of sensing components, changes in film structure with electrode potential, and the immediate, in situ electrochemical verification of substrate-dependent current upon the addition of enzyme to the multilayer structure. SPR and FTIR-ERS studies also showed no desorption of polymer or enzyme from the nanocomposite structure when stored in aqueous environment occurred over the period of three weeks, suggesting that decreasing in substrate sensitivity were due to loss of enzymatic activity rather than loss of film compounds from the nanostructure.

  18. Amperometric Metronidazole Sensor Based on the Supermolecular Recognition by Metalloporphyrin Incorporated In Carbon Paste Electrode

    Directory of Open Access Journals (Sweden)

    Ru-Qin Yu

    2003-03-01

    Full Text Available An amperometric metronidazole (MTZ sensor using a glycosylated metalloporphyrin as a recognition element, which was incorporated in a carbon paste electrode, is reported. For the preparation of a MTZ-sensitive active material, 5, 10, 15, 20-tetrakis [2-(2, 3, 4, 6-tetraacetyl-β-D-glucopyranosyl-1-O-phenyl]porphyrin (T(oglu PPH2 and its Mn(III complex MnT(o-gluPPCl were synthesized from the reaction of pyrrole with ortho-acetylglycosylated benzaldehyde by Lindsay’s method. The MnT(oglu PPCl-modified electrode showed excellent selectivity toward MTZ with respect to a number of interferents and exhibited stable response. The calibration graph obtained with the proposed sensor was linear over the range of 2.9×10-3-5.8×10-8 M/L, with a detection limit of 5.8×10-8 M/L for MTZ. Cyclic voltammetric measurements indicated that MnT(oglu PPCl included in graphite-epoxy resin matrices could efficiently mediate electron transfer from the base electrode to MTZ causing a decrease of reduction potential for MTZ detection. The sensor could be regenerated by simply polishing with an alumina paper, with an excellent reproducibility (RSD=1.6%. The experimental conditions such as pH and applied working potential were optimized. The prepared sensor is applied for the determination of MTZ in pharmaceutical preparations and the results agreed with the values obtained by the pharmacopoeia method.

  19. Printable Ultrathin Metal Oxide Semiconductor-Based Conformal Biosensors.

    Science.gov (United States)

    Rim, You Seung; Bae, Sang-Hoon; Chen, Huajun; Yang, Jonathan L; Kim, Jaemyung; Andrews, Anne M; Weiss, Paul S; Yang, Yang; Tseng, Hsian-Rong

    2015-12-22

    Conformal bioelectronics enable wearable, noninvasive, and health-monitoring platforms. We demonstrate a simple and straightforward method for producing thin, sensitive In2O3-based conformal biosensors based on field-effect transistors using facile solution-based processing. One-step coating via aqueous In2O3 solution resulted in ultrathin (3.5 nm), high-density, uniform films over large areas. Conformal In2O3-based biosensors on ultrathin polyimide films displayed good device performance, low mechanical stress, and highly conformal contact determined using polydimethylsiloxane artificial skin having complex curvilinear surfaces or an artificial eye. Immobilized In2O3 field-effect transistors with self-assembled monolayers of NH2-terminated silanes functioned as pH sensors. Functionalization with glucose oxidase enabled d-glucose detection at physiologically relevant levels. The conformal ultrathin field-effect transistor biosensors developed here offer new opportunities for future wearable human technologies.

  20. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors.

    Science.gov (United States)

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-07-18

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process.

  1. Graphene Based Electrochemical Sensors and Biosensors: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yuyan; Wang, Jun; Wu, Hong; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2010-05-01

    Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass production). This article selectively reviews recent advances in graphene-based electrochemical sensors and biosensors. In particular, graphene for direct electrochemistry of enzyme, its electrocatalytic activity toward small biomolecules (hydrogen peroxide, NADH, dopamine, etc.), and graphene-based enzyme biosensors have been summarized in more detail; Graphene-based DNA sensing and environmental analysis have been discussed. Future perspectives in this rapidly developing field are also discussed.

  2. Laccase Biosensor Based on Electrospun Copper/Carbon Composite Nanofibers for Catechol Detection

    Directory of Open Access Journals (Sweden)

    Jiapeng Fu

    2014-02-01

    Full Text Available The study compared the biosensing properties of laccase biosensors based on carbon nanofibers (CNFs and copper/carbon composite nanofibers (Cu/CNFs. The two kinds of nanofibers were prepared by electrospinning and carbonization under the same conditions. Scanning electron microscopy (SEM, X-ray diffraction (XRD and Raman spectroscopy were employed to investigate the morphologies and structures of CNFs and Cu/CNFs. The amperometric results indicated that the Cu/CNFs/laccase(Lac/Nafion/glass carbon electrode (GCE possessed reliable analytical performance for the detection of catechol. The sensitivity of the Cu/CNFs/Lac/Nafion/GCE reached 33.1 μA/mM, larger than that of CNFs/Lac/Nafion/GCE. Meanwhile, Cu/CNFs/Lac/Nafion/GCE had a wider linear range from 9.95 × 10−6 to 9.76 × 10−3 M and a lower detection limit of 1.18 μM than CNFs/Lac/Nafion/GCE. Moreover, it exhibited a good repeatability, reproducibility, selectivity and long-term stability, revealing that electrospun Cu/CNFs have great potential in biosensing.

  3. Laccase Biosensor Based on Electrospun Copper/Carbon Composite Nanofibers for Catechol Detection

    Science.gov (United States)

    Fu, Jiapeng; Qiao, Hui; Li, Dawei; Luo, Lei; Chen, Ke; Wei, Qufu

    2014-01-01

    The study compared the biosensing properties of laccase biosensors based on carbon nanofibers (CNFs) and copper/carbon composite nanofibers (Cu/CNFs). The two kinds of nanofibers were prepared by electrospinning and carbonization under the same conditions. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy were employed to investigate the morphologies and structures of CNFs and Cu/CNFs. The amperometric results indicated that the Cu/CNFs/laccase(Lac)/Nafion/glass carbon electrode (GCE) possessed reliable analytical performance for the detection of catechol. The sensitivity of the Cu/CNFs/Lac/Nafion/GCE reached 33.1 μA/mM, larger than that of CNFs/Lac/Nafion/GCE. Meanwhile, Cu/CNFs/Lac/Nafion/GCE had a wider linear range from 9.95 × 10−6 to 9.76 × 10−3 M and a lower detection limit of 1.18 μM than CNFs/Lac/Nafion/GCE. Moreover, it exhibited a good repeatability, reproducibility, selectivity and long-term stability, revealing that electrospun Cu/CNFs have great potential in biosensing. PMID:24561403

  4. Transient Convection, Diffusion, and Adsorption in Surface-Based Biosensors

    DEFF Research Database (Denmark)

    Hansen, Rasmus; Bruus, Henrik; Callisen, Thomas H.

    2012-01-01

    This paper presents a theoretical and computational investigation of convection, diffusion, and adsorption in surface-based biosensors. In particular, we study the transport dynamics in a model geometry of a surface plasmon resonance (SPR) sensor. The work, however, is equally relevant for other...... microfluidic surface-based biosensors, operating under flow conditions. A widely adopted approximate quasi-steady theory to capture convective and diffusive mass transport is reviewed, and an analytical solution is presented. An expression of the Damköhler number is derived in terms of the nondimensional...... concentration to the maximum surface capacity is critical for reliable use of the quasi-steady theory. Finally, our results provide users of surface-based biosensors with a tool for correcting experimentally obtained adsorption rate constants....

  5. Electrochemical sensors and biosensors based on less aggregated graphene.

    Science.gov (United States)

    Bo, Xiangjie; Zhou, Ming; Guo, Liping

    2017-03-15

    As a novel single-atom-thick sheet of sp(2) hybridized carbon atoms, graphene (GR) has attracted extensive attention in recent years because of its unique and remarkable properties, such as excellent electrical conductivity, large theoretical specific surface area, and strong mechanical strength. However, due to the π-π interaction, GR sheets are inclined to stack together, which may seriously degrade the performance of GR with the unique single-atom layer. In recent years, an increasing number of GR-based electrochemical sensors and biosensors are reported, which may reflect that GR has been considered as a kind of hot and promising electrode material for electrochemical sensor and biosensor construction. However, the active sites on GR surface induced by the irreversible GR aggregations would be deeply secluded inside the stacked GR sheets and therefore are not available for the electrocatalysis. So the alleviation or the minimization of the aggregation level for GR sheets would facilitate the exposure of active sites on GR and effectively upgrade the performance of GR-based electrochemical sensors and biosensors. Less aggregated GR with low aggregation and high dispersed structure can be used in improving the electrochemical activity of GR-based electrochemical sensors or biosensors. In this review, we summarize recent advances and new progress for the development of electrochemical sensors based on less aggregated GR. To achieve such goal, many strategies (such as the intercalation of carbon materials, surface modification, and structural engineering) have been applied to alleviate the aggregation level of GR in order to enhance the performance of GR-based electrochemical sensors and biosensors. Finally, the challenges associated with less aggregated GR-based electrochemical sensors and biosensors as well as related future research directions are discussed.

  6. Vertically Aligned Carbon Nanofiber based Biosensor Platform for Glucose Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Al Mamun, Khandaker A.; Tulip, Fahmida S.; MacArthur, Kimberly; McFarlane, Nicole; Islam, Syed K.; Hensley, Dale

    2014-03-01

    Vertically aligned carbon nanofibers (VACNFs) have recently become an important tool for biosensor design. Carbon nanofibers (CNF) have excellent conductive and structural properties with many irregularities and defect sites in addition to exposed carboxyl groups throughout their surfaces. These properties allow a better immobilization matrix compared to carbon nanotubes and offer better resolution when compared with the FET-based biosensors. VACNFs can be deterministically grown on silicon substrates allowing optimization of the structures for various biosensor applications. Two VACNF electrode architectures have been employed in this study and a comparison of their performances has been made in terms of sensitivity, sensing limitations, dynamic range, and response time. The usage of VACNF platform as a glucose sensor has been verified in this study by selecting an optimum architecture based on the VACNF forest density. Read More: http://www.worldscientific.com/doi/abs/10.1142/S0129156414500062

  7. Double electrochemical covalent coupling method based on click chemistry and diazonium chemistry for the fabrication of sensitive amperometric immunosensor.

    Science.gov (United States)

    Qi, Honglan; Li, Min; Zhang, Rui; Dong, Manman; Ling, Chen

    2013-08-20

    A double electrochemical covalent coupling method based on click chemistry and diazonium chemistry for the fabrication of sensitive amperometric immunosensor was developed. As a proof-of-concept, a designed alkyne functionalized human IgG was used as a capture antibody and a HRP-labeled rabbit anti-goat IgG was used as signal antibody for the determination of the anti-human IgG using the sandwich model. The immunosensor was fabricated by electrochemically grafting a phenylazide on the surface of a glassy carbon electrode, and then, by coupling the alkyne functionalized human IgG with the phenylazide group through an electro-click chemistry in the presence of Cu(II). The amperometric measurement for the determination of the anti-human IgG was performed after the fabricated immunosensor was incubated with the target anti-human IgG and then with the HRP-labeled anti-goat IgG at -0.25V in 0.10M PBS (pH 7.0) containing 0.1mM hydroquinone and 2.0mM H2O2. The results showed that the increased current was linear with the logarithm of the concentration of the anti-human IgG in the range from 1.0×10(-10)g mL(-1) to 1.0×10(-8)g mL(-1) with a detection limit of 3×10(-11)g mL(-1). Furthermore, the feasibility of the double electrochemical covalent coupling method proposed in this work for fabricating the amperometric immunosensor array was explored. This work demonstrates that the double electrochemical covalent coupling method is a promising approach for the fabrication of the immunosensor and immunosensor array.

  8. Recent advances in nanomaterial-based biosensors for antibiotics detection.

    Science.gov (United States)

    Lan, Lingyi; Yao, Yao; Ping, Jianfeng; Ying, Yibin

    2017-05-15

    Antibiotics are able to be accumulated in human body by food chain and may induce severe influence to human health and safety. Hence, the development of sensitive and simple methods for rapid evaluation of antibiotic levels is highly desirable. Nanomaterials with excellent electronic, optical, mechanical, and thermal properties have been recognized as one of the most promising materials for opening new gates in the development of next-generation biosensors. This review highlights the current advances in the nanomaterial-based biosensors for antibiotics detection. Different kinds of nanomaterials including carbon nanomaterials, metal nanomaterials, magnetic nanoparticles, up-conversion nanoparticles, and quantum dots have been applied to the construction of biosensors with two main signal-transducing mechanisms, i.e. optical and electrochemical. Furthermore, the current challenges and future prospects in this field are also included to provide an overview for future research directions.

  9. Titanium dioxide-cellulose hybrid nanocomposite based conductometric glucose biosensor

    Science.gov (United States)

    Maniruzzaman, Mohammad; Mahadeva, Suresha K.; Khondoker, Abu Hasan; Kim, Jaehwan

    2012-04-01

    This paper investigates the feasibility of conductometric glucose biosensor based on glucose oxidase (GOx) immobilized TiO2-cellulose hybrid nanocomposite. TiO2 nanoparticles were blended with cellulose solution prepared by dissolving cotton pulp with lithium chloride/N, N-dimethylacetamide solvent to fabricate TiO2-cellulose hybrid nanocomposite. The enzyme (GOx) was immobilized into this hybrid material by physical adsorption method. The successful immobilization of GOx into TiO2-cellulose hybrid nanocomposite via covalent bonding between TiO2 and GOx was confirmed by X-ray photoelectron analysis. The linear response of our propose glucose biosensor is obtained in the range of 1-10mM with correlation coefficient of 0.93. Our study demonstrates TiO2-cellulose hybrid material as a potential candidate for an inexpensive, flexible and disposable glucose biosensor.

  10. Last Advances in Silicon-Based Optical Biosensors

    Directory of Open Access Journals (Sweden)

    Adrián Fernández Gavela

    2016-02-01

    Full Text Available We review the most important achievements published in the last five years in the field of silicon-based optical biosensors. We focus specially on label-free optical biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on developments demonstrating the capability of the devices for real bioanalytical applications. We report on novel transducers and materials, improvements of existing transducers, new and improved biofunctionalization procedures as well as the prospects for near future commercialization of these technologies.

  11. Development of biosensor based on imaging ellipsometry and biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Jin, G., E-mail: gajin@imech.ac.c [NML, Institute of Mechanics, Chinese Academy of Sciences, 15 Bei-si-huan west Rd., Beijing 100190 (China); Meng, Y.H.; Liu, L.; Niu, Y.; Chen, S. [NML, Institute of Mechanics, Chinese Academy of Sciences, 15 Bei-si-huan west Rd., Beijing 100190 (China); Cai, Q.; Jiang, T.J. [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2011-02-28

    So far, combined with a microfluidic reactor array system, an engineering system of biosensor based on imaging ellipsometry is installed for biomedical applications, such as antibody screen, hepatitis B markers detection, cancer markers spectrum and virus recognition, etc. Furthermore, the biosensor in total internal reflection (TIR) mode has be improved by a spectroscopic light, optimization settings of polarization and low noise CCD which brings an obvious improvement of 10 time increase in the sensitivity and SNR, and 50 times lower concentration in the detection limit with a throughput of 48 independent channels and the time resolution of 0.04 S.

  12. Single-walled carbon nanotubes covalently functionalized with polytyrosine: A new material for the development of NADH-based biosensors.

    Science.gov (United States)

    Eguílaz, Marcos; Gutierrez, Fabiana; González-Domínguez, Jose Miguel; Martínez, María T; Rivas, Gustavo

    2016-12-15

    We report for the first time the use of single-walled carbon nanotubes (SWCNT) covalently functionalized with polytyrosine (Polytyr) (SWCNT-Polytyr) as a new electrode material for the development of nicotinamide adenine dinucleotide (NADH)-based biosensors. The oxidation of glassy carbon electrodes (GCE) modified with SWCNT-Polytyr at potentials high enough to oxidize the tyrosine residues have allowed the electrooxidation of NADH at low potentials due to the catalytic activity of the quinones generated from the primary oxidation of tyrosine without any additional redox mediator. The amperometric detection of NADH at 0.200V showed a sensitivity of (217±3)µAmM(-1)cm(-2) and a detection limit of 7.9nM. The excellent electrocatalytic activity of SWCNT-Polytyr towards NADH oxidation has also made possible the development of a sensitive ethanol biosensor through the immobilization of alcohol dehydrogenase (ADH) via Nafion entrapment, with excellent analytical characteristics (sensitivity of (5.8±0.1)µAmM(-1)cm(-2), detection limit of 0.67µM) and very successful application for the quantification of ethanol in different commercial beverages.

  13. Indicator Based and Indicator - Free Electrochemical DNA Biosensors

    Science.gov (United States)

    2007-11-02

    of genomic material from infectious organisms. Methylene blue (MB) is an aromatic heterocycle that binds strongly to DNA via intercalation. MB...detection of disease- related point mutation in the guanine bases of the cyanobacteria . The resulting biosensors offer great promise for mismatch

  14. A Novel Amperometric Nitric Oxide Sensor Based on Polythionine /Nation Modified Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel amperometric sensor for the determination of nitric oxide was developed by coating polythionine / nafion on a glassy carbon electrode. This sensor exhibited a great enhancement to the oxidation of nitric oxide. The oxidation peak currents were linear to the concentration of nitric oxide over the wide range from 3.6×10-7 to 6.8×10-5 mol. L-1, and the detection limit was 7.2×10-8 mol. L-1. Experimental results showed that this nitric oxide sensor possessed excellent selectivity and longer stability. NO releasing from rat kidney was monitored by this sensor.

  15. Study on Rhizoma Chuanxiong based on capillary electrophoresis with amperometric detection

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A high-performance capillary electrophoresis with amperometric detection(CE-AD) method has been developed for the analysis of seven bioactive ingredients,namely ferulic acid(FA),vanillin,vanillic acid,p-hydroxybenzoic acid,caffeic acid,gallic acid and protocatechuic acid,in Rhizoma Chuanxiong.The effects of several factors such as the acidity and concentration of running buffer,the separation voltage,the applied potential to working electrode and the injection time were investigated.Under the optimum con...

  16. Electrochemical DNA Biosensor Based on a Tetrahedral Nanostructure Probe for the Detection of Avian Influenza A (H7N9) Virus.

    Science.gov (United States)

    Dong, Shibiao; Zhao, Rongtao; Zhu, Jiangong; Lu, Xiao; Li, Yang; Qiu, Shaofu; Jia, Leili; Jiao, Xiong; Song, Shiping; Fan, Chunhai; Hao, RongZhang; Song, HongBin

    2015-04-29

    A DNA tetrahedral nanostructure-based electrochemical biosensor was developed to detect avian influenza A (H7N9) virus through recognizing a fragment of the hemagglutinin gene sequence. The DNA tetrahedral probe was immobilized onto a gold electrode surface based on self-assembly between three thiolated nucleotide sequences and a longer nucleotide sequence containing complementary DNA to hybridize with the target single-stranded (ss)DNA. The captured target sequence was hybridized with a biotinylated-ssDNA oligonucleotide as a detection probe, and then avidin-horseradish peroxidase was introduced to produce an amperometric signal through the interaction with 3,3',5,5'-tetramethylbenzidine substrate. The target ssDNA was obtained by asymmetric polymerase chain reaction (PCR) of the cDNA template, reversely transcribed from the viral lysate of influenza A (H7N9) virus in throat swabs. The results showed that this electrochemical biosensor could specifically recognize the target DNA fragment of influenza A (H7N9) virus from other types of influenza viruses, such as influenza A (H1N1) and (H3N2) viruses, and even from single-base mismatches of oligonucleotides. Its detection limit could reach a magnitude of 100 fM for target nucleotide sequences. Moreover, the cycle number of the asymmetric PCR could be reduced below three with the electrochemical biosensor still distinguishing the target sequence from the negative control. To the best of our knowledge, this is the first report of the detection of target DNA from clinical samples using a tetrahedral DNA probe functionalized electrochemical biosensor. It displays that the DNA tetrahedra has a great potential application as a probe of the electrochemical biosensor to detect avian influenza A (H7N9) virus and other pathogens at the gene level, which will potentially aid the prevention and control of the disease caused by such pathogens.

  17. Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials.

    Science.gov (United States)

    Song, Yang; Luo, Yanan; Zhu, Chengzhou; Li, He; Du, Dan; Lin, Yuehe

    2016-02-15

    Graphene as a star among two-dimensional nanomaterials has attracted tremendous research interest in the field of electrochemistry due to their intrinsic properties, including the electronic, optical, and mechanical properties associated with their planar structure. The marriage of graphene and electrochemical biosensors has created many ingenious biosensing strategies for applications in the areas of clinical diagnosis and food safety. This review provides a comprehensive overview of the recent advances in the development of graphene based electrochemical biosensors. Special attention is paid to graphene-based enzyme biosensors, immunosensors, and DNA biosensors. Future perspectives on high-performance graphene-based electrochemical biosensors are also discussed.

  18. Optical biosensors

    Science.gov (United States)

    Damborský, Pavel; Švitel, Juraj

    2016-01-01

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. PMID:27365039

  19. Label-free biosensor based on long period grating

    Science.gov (United States)

    Baldini, Francesco; Chiavaioli, Francesco; Giannetti, Ambra; Brenci, Massimo; Trono, Cosimo

    2013-03-01

    Long period gratings have been recently proposed as label-free optical devices for biochemical sensing. A biochemical interaction along the grating region changes the biolayer refractive index and a change in the fiber transmission spectrum occurs. The fiber biofunctionalization was performed with a novel chemistry using Eudragit L100 copolymer as opposed to the commonly-used silanization procedure. An IgG/anti-IgG bioassay was carried out for studying the antigen/antibody interaction. The biosensor was fully characterized, monitoring the kinetics during the antibody immobilization and achieving the calibration curve of the assay. To compare the biosensor performance, two LPG-based biosensors with distinct grating periods were characterized following the same bioassay protocol. Experimental results demonstrated an enhancement of the biosensor performance when the fundamental core mode of a single-mode fiber couples with a higher order cladding mode. Considering an LPG manufactured on a bare optical fiber, in which the coupling occurs with the 7-th cladding mode, a dynamic signal range of 0.33 nm, a working range of 1.7 - 1450 mg L-1 and a LOD of 500 μg L-1 were achieved

  20. Conductometric biosensor for ethanol detection based on whole yeast cells.

    Science.gov (United States)

    Korpan, Y I; Dzyadevich, S V; Zharova, V P; El'skaya, A V

    1994-01-01

    The quantification of ethanol in alcoholic beverages was performed by yeast cell-based conductometric biosensor. A membrane with yeast cells immobilized in 2% Ca-alginate gel was attached on gold planar electrodes. Changes in conductivity due to the specific consumption of ethanol by yeast cells were registered by the computer-controlled sensor system. The response time of the constructed microbial sensor was less than 5 min, linearity (in a logarithmic scale) was observed in the range of 5-100 mM alcohol concentration. It was established that pH value in their region from 5 to 8 did not influence the levels of initial signal. The increase of a buffer capacity in the sample results in the decrease of the biosensor output. The minimal detectable level of ethanol was 1 mM and the relative standard deviation appeared to be 10-12% for 15 repeated assays. When the system was operated and stored at 20-25 degrees C, the biosensor response was stable for only 3 days. However, when the microbial sensor was stored at 4 degrees C, the system was stable up to 12 days. Good correlation between the results obtained by a conductometric cell-biosensor and gas chromatograph was observed.

  1. Miniaturized flow system based on enzyme modified PMMA microreactor for amperometric determination of glucose.

    Science.gov (United States)

    Cerdeira Ferreira, Luís Marcos; da Costa, Eric Tavares; do Lago, Claudimir Lucio; Angnes, Lúcio

    2013-09-15

    This paper describes the development of a microfluidic system having as main component an enzymatic reactor constituted by a microchannel assembled in poly(methyl methacrylate) (PMMA) substrate connected to an amperometric detector. A CO2 laser engraving machine was used to make the channels, which in sequence were thermally sealed. The internal surfaces of the microchannels were chemically modified with polyethyleneimine (PEI), which showed good effectiveness for the immobilization of the glucose oxidase enzyme using glutaraldehyde as crosslinking agent, producing a very effective microreactor for the detection of glucose. The hydrogen peroxide generated by the enzymatic reaction was detected in an electrochemical flow cell localized outside of the reactor using a platinum disk as the working electrode. The proposed system was applied to the differential amperometric determination of glucose content in soft drinks showing good repeatability (DPR=1.72%, n=50), low detection limit (1.40×10(-6)molL(-1)), high sampling frequency (calculated as 345 samples h(-1)), and relatively good stability for long-term use. The results were in close agreement with those obtained by the classical spectrophotometric method utilized to quantify glucose in biological fluids.

  2. Recent progress in design of protein-based fluorescent biosensors and their cellular applications.

    Science.gov (United States)

    Tamura, Tomonori; Hamachi, Itaru

    2014-12-19

    Protein-based fluorescent biosensors have emerged as key bioanalytical tools to visualize and quantify a wide range of biological substances and events in vitro, in cells, and even in vivo. On the basis of the construction method, the protein-based fluorescent biosensors can be principally classified into two classes: (1) genetically encoded fluorescent biosensors harnessing fluorescent proteins (FPs) and (2) semisynthetic biosensors comprised of protein scaffolds and synthetic fluorophores. Recent advances in protein engineering and chemical biology not only allowed the further optimization of conventional biosensors but also facilitated the creation of novel biosensors based on unique strategies. In this review, we survey the recent studies in the development and improvement of protein-based fluorescent biosensors and highlight the successful applications to live cell and in vivo imaging. Furthermore, we provide perspectives on possible future directions of the technique.

  3. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    Science.gov (United States)

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-03

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  4. Simultaneous determination of cadaverine and putrescine using a disposable monoamine oxidase based biosensor.

    Science.gov (United States)

    Henao-Escobar, Wilder; Domínguez-Renedo, Olga; Asunción Alonso-Lomillo, M; Julia Arcos-Martínez, M

    2013-12-15

    The selective and simultaneous amperometric determination of putrescine (Put) and cadaverine (Cad) has been carried out using a novel design of screen-printed carbon electrode (SPCE) with two working electrodes connected in array mode. A mixture of 3% of tetrathiafulvalene (TTF), as mediator, and carbon ink was used for the construction of the screen-printed working electrode. The employment of different amounts of monoamine oxidase (MAO) enzyme on these modified TTF/SPCEs and the use of gold nanoparticles (AuNPs) allowed performing the simultaneous determination of both analytes. The amperometric detection has been performed by measuring the oxidation current of the mediator at a potential of+250 mV vs. screen-printed Ag/AgCl reference electrode. A linear response in the Cad concentration range from 19.6 till 107.1 µM and from 9.9 till 74.1 μM for Put was obtained at the MAO/AuNPs/TTF/SPCE biosensor. This device showed a capability of detection of 9.9 and 19.9±0.9 µM (n=4 α=β=0.05) and a precision of 4.9% and 10.3% in terms of relative standard deviation for Put and Cad, respectively. The developed biosensor was successfully applied to the simultaneous determination of Put and Cad in octopus samples.

  5. One-step fabrication of integrated disposable biosensor based on ADH/NAD+/meldola's blue/graphitized mesoporous carbons/chitosan nanobiocomposite for ethanol detection.

    Science.gov (United States)

    Hua, Erhui; Wang, Li; Jing, Xiaoying; Chen, Changtao; Xie, Guoming

    2013-07-15

    A novel strategy to simplify the dehydrogenase-based electrochemical biosensor fabrication through one-step drop-coating nanobiocomposite on a screen printed electrode (SPE) was developed. The nanobiocomposite was prepared by successively adding graphitized mesoporous carbons (GMCs), meldola's blue (MDB), alcohol dehydrogenase (ADH) and cofactor nicotinamide adenine dinucleotide (NAD(+)) in chitosan (CS) solution. MDB/GMCs/CS film was prepared. Cyclic voltammetry measurements demonstrated that MDB was strongly adsorbed on GMCs. After optimizing the concentration of MDB and the working potential, the MDB/GMCs/CS film presented a fast amperometric response (5s), excellent sensitivity (10.36 nA μM(-1)), wide linear range (10-410 μM) toward NADH and without any other interference signals (such as AA, UA, DA, H2O2 and metal ions). Furthermore, concentrations of ADH and NAD(+) in nanobiocomposite and the detection conditions (temperature and pH) were also optimized. The constructed disposable ethanol biosensor showed an excellent linear response ranged from 0.5 to 15 mM with high sensitivity (67.28 nA mM(-1)) and a low limit of detection (80 μM) and a remarkable long-term stability (40 days). The intra-batch and inter-batch variation coefficients were both less than 5% (n=5). The ethanol recovery test demonstrated that the proposed biosensor offered a remarkable and accurate method for ethanol detection in the real blood samples.

  6. ZnO nanowire-based glucose biosensors with different coupling agents

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Juneui [Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Lim, Sangwoo, E-mail: swlim@yonsei.ac.kr [Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Fabrication of ZnO nanowire-based glucose biosensors using different coupling agents. Black-Right-Pointing-Pointer Highest sensitivity for (3-aminopropyl)methyldiethoxysilane-treated biosensor. Black-Right-Pointing-Pointer Larger amount of glucose oxidase and lower electron transfer resistance for (3-aminopropyl)methyldiethoxysilane-treated biosensor. - Abstract: ZnO-nanowire-based glucose biosensors were fabricated by immobilizing glucose oxidase (GOx) onto a linker attached to ZnO nanowires. Different coupling agents were used, namely (3-aminopropyl)trimethoxysilane (APTMS), (3-aminopropyl)triethoxysilane (APTES), and (3-aminopropyl)methyldiethoxysilane (APS), to increase the affinity of GOx binding to ZnO nanowires. The amount of GOx immobilized on the ZnO nanowires, the performance, sensitivity, and Michaelis-Menten constant of each biosensor, and the electron transfer resistance through the biosensor were all measured in order to investigate the effect of the coupling agent on the ZnO nanowire-based biosensor. Among the different biosensors, the APS-treated biosensor had the highest sensitivity (17.72 {mu}A cm{sup -2} mM{sup -1}) and the lowest Michaelis-Menten constant (1.37 mM). Since APS-treated ZnO nanowires showed the largest number of C-N groups and the lowest electron transfer resistance through the biosensor, we concluded that these properties were the key factors in the performance of APS-treated glucose biosensors.

  7. MEMS-based biosensors for environmental monitoring

    Science.gov (United States)

    Endo, Tatsuro; Morita, Yasutaka; Tamiya, Eiichi

    2004-03-01

    Biosensors in connection with enzyme linked immunosorbent assay (ELISA) can be applied in many fields of research. In this paper, the reduction in the size of ELISA utilizing micro-chemical reaction is described in a microchamber array chip, and also a micro-flow antibody chip. The chips were fabricated by micro electromechanical system (MEMS) technology. The quantitative determination of dioxins was performed by using the chips. Glass or polystyrene beads were used for immobilization of an antibody at these chips. The antibody-immobilized beads were introduced into micro-flow channel or microchamber. As a competitive ELISA, sample solution mixed with horseradish peroxidase (HRP)-conjugated antigen, and non-HRP conjugated antigen was allowed to react in the microchamber or flow channel. As a sandwich assay, sample solution and HRP-conjugated antibody were sequentially added to the chamber. After the antigen-antibody reaction, addition of PBS buffer, hydrogen peroxide, and fluorogenic substrate produced the fluorescent dye. The resulting change in the fluorescence intensity was monitored by a fluorescence microscope.

  8. Micro amperometric immunosensor for the detection of salmonella typhimurium

    Science.gov (United States)

    Sun, Jizhou; Xia, Shanhong; Bian, Chao; Qu, Lan

    2008-12-01

    In this paper, a micro amperometric immunosensor based on Micro-Electro-Mechanical Systems technology for the detection of Salmonella typhimurium (S. typhimurium) was constructed by immobilizing a polyclonal antibody (the bio-molecular recognition element) onto the surface of polypyrrole(PPy) /staphylococcal protein A(SPA) modified Pt electrode. Pyrrole doped with SPA was co-electropolymerized onto the working electrode surface by cyclic voltammetry in 10 minutes for orientation-controlled immobilization of salmonella capture antibodies. S. typhimurium with the concentration of 102cfu/ml could be detected by this immunosensor with a controllable and convenient manipulation to effectively modify the sensing surface more rapidly with less consumption of reagent (10µL), which showed the good property of the sensor. It is potential to develop a micro biosensor that can be used for convenient, accurate, cost-effective and real-time sensing of pathogens in food products.

  9. Amperometric Determination of Indole-3-acetic Acid Based on Platinum Nanowires and Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Ruo Zhong WANG; Lang Tao XIAO; Ming Hui YANG; Jun Hui DING; Feng Li QU; Guo Li SHEN

    2006-01-01

    Platinum nanowire (PtNW) can be grown by electrodeposition in polycarbonate membrane, with the average diameter of the nanowires about 250 nm. The PtNW and multiwalled carbon nanotubes (CNT) are then dispersed into chitosan (CHIT) solution. The resulting PtNW-CNT-CHIT material brings new capabilities for electrochemical devices by using the synergistic action of the electrocatalytic activity of PtNW and CNT. By dropping the PtNW-CNT-CHIT film onto the glassy carbon (GC) electrode surface, and after evaporationan amperometric sensor for the determination of indole-3-acetic acid (IAA) was developed. The oxidation current of IAA increased significantly at the PtNW-CNT-CHIT film coated GC electrode,in contrast to that at the CNT-CHIT modified GC. The linear response of the sensor is from 50ng/ml to 50 μg/ml with a detection limit of 25 ng/mL.

  10. Design and characterization of a lactate biosensor based on immobilized lactate oxidase onto gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Parra, A. [Departamento de Quimica Analitica y Analisis Instrumental, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Casero, E. [Departamento de Quimica Analitica y Analisis Instrumental, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Vazquez, L. [Instituto de Ciencia de Materiales de Madrid (CSIC), C/Sor Juana Ines de la Cruz, No 3, 28049 Madrid (Spain); Pariente, F. [Departamento de Quimica Analitica y Analisis Instrumental, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Lorenzo, E. [Departamento de Quimica Analitica y Analisis Instrumental, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain)]. E-mail: encarnacion.lorenzo@uam.es

    2006-01-12

    The design and characterization of a lactate biosensor and its application to the determination of this analyte in wine and beer are described. The biosensor is developed through the immobilization of lactate oxidase (LOx) using two different strategies including direct adsorption and covalent binding. The characterization of the resulting lactate oxidase monolayers was performed in aqueous phosphate buffer solutions using atomic force microscopy (AFM) and quartz crystal microbalance (QCM) techniques. In presence of lactate and using hydroxymethylferrocene as a redox mediator, biosensors obtained by either direct adsorption or by covalent binding exhibit a clear electrocatalytic activity, and lactate could be determined amperometrically at 300 mV versus SSCE. Results obtained under these conditions give a linear current response versus lactate concentration up to 0.3 mM, with a detection limit of 10 {mu}M of lactate and a sensitivity of 0.77 {+-} 0.08 {mu}A mM{sup -1}. Finally, biosensors were applied to the determination of lactate in wine and beer. The results obtained are in good agreement with those obtained by a well-established enzymatic-spectrophotometric assay kit.

  11. Glucose biosensor based on glucose oxidase immobilized at gold nanoparticles decorated graphene-carbon nanotubes.

    Science.gov (United States)

    Devasenathipathy, Rajkumar; Mani, Veerappan; Chen, Shen-Ming; Huang, Sheng-Tung; Huang, Tsung-Tao; Lin, Chun-Mao; Hwa, Kuo-Yuan; Chen, Ting-Yo; Chen, Bo-Jun

    2015-10-01

    Biopolymer pectin stabilized gold nanoparticles were prepared at graphene and multiwalled carbon nanotubes (GR-MWNTs/AuNPs) and employed for the determination of glucose. The formation of GR-MWNTs/AuNPs was confirmed by scanning electron microscopy, X-ray diffraction, UV-vis and FTIR spectroscopy methods. Glucose oxidase (GOx) was successfully immobilized on GR-MWNTs/AuNPs film and direct electron transfer of GOx was investigated. GOx exhibits highly enhanced redox peaks with formal potential of -0.40 V (vs. Ag/AgCl). The amount of electroactive GOx and electron transfer rate constant were found to be 10.5 × 10(-10) mol cm(-2) and 3.36 s(-1), respectively, which were significantly larger than the previous reports. The fabricated amperometric glucose biosensor sensitively detects glucose and showed two linear ranges: (1) 10 μM - 2 mM with LOD of 4.1 μM, (2) 2 mM - 5.2 mM with LOD of 0.95 mM. The comparison of the biosensor performance with reported sensors reveals the significant improvement in overall sensor performance. Moreover, the biosensor exhibited appreciable stability, repeatability, reproducibility and practicality. The other advantages of the fabricated biosensor are simple and green fabrication approach, roughed and stable electrode surface, fast in sensing and highly reproducible.

  12. A PKD Channel-based Biosensor for Taste Transduction

    Science.gov (United States)

    Wu, Chunsheng; Du, Liping; Hu, Liang; Zhang, Wei; Zhao, Luhang; Wang, Ping

    2011-09-01

    This study describes a micro electrode array (MEA)-based biosensor for taste transduction using heterologous expressed taste polycystic kidney disease-like (PKD) channels as molecular sensors. Taste PKD1L3/2L1 channels were expressed on the plasma membrane of human embryo kidney (HEK)-293 cells [1]. Then the cells were cultured on the surface of MEA chip [2] to record the responses of PKD channels to sour stimulations by monitoring membrane potential. The results indicate this MEA-based biosensor can record the special off-responses of PKD channels to sour stimulation in a non-invasive manner for a long term. It may provide an alternative tool for the research of taste transduction, especially for the characterization of taste ion channels.

  13. Glutamate monitoring in vitro and in vivo: recent progress in the field of glutamate biosensors

    DEFF Research Database (Denmark)

    Rieben, Nathalie Ines; Rose, Nadia Cherouati; Martinez, Karen Laurence

    2009-01-01

    , and different techniques have been developed to this end. This review presents and discusses these techniques, especially the recent progress in the field of glutamate biosensors, as well as the great potential of nanotechnology in glutamate sensing. Microdialysis coupled to analytical detection techniques...... is currently the most common method for in vivo glutamate sampling. However, the recent development and improvement of enzyme-based amperometric glutamate biosensors makes them a promising alternative to microdialysis for in vivo applications, as well as valuable devices for in vitro applications in basic...... neurobiological research. Another interesting group of biosensors for glutamate are fluorescence-based glutamate biosensors, which have unsurpassed spatio-temporal resolution and are therefore important tools for investigating glutamate dynamics during signaling. Adding to this list are biosensors based on nano...

  14. Determination of uric acid level by polyaniline and poly (allylamine: Based biosensor

    Directory of Open Access Journals (Sweden)

    Nasrul Wathoni

    2014-01-01

    Full Text Available The uric acid biosensor has been much developed by immobilizing uricase enzyme into the membrane of conductive polymer and the membrane of polyelectrolyte such as polyaniline (PANI and poly (allylamine (PAA respectively. The purpose of this research was to create a new amperometric uric acid biosensor by immobilization of uricase in combination between PANI and PAA membranes. The working electrode was Pt plate (0.5 mm. The auxiliary and the reference electrode were Pt wire 0.4 mm and Ag/AgCl respectively. Uricase, uric acid, PAA, pyrrole and glutaraldehyde were supplied from Sigma. All other chemical was obtained from Merck. The biosensor was created by immobilizing of uricase by a glutaraldehyde crosslinking procedure on PANI composite film on the surface of a platinum electrode while the polyelectrolyte layer of PAA were prepared via layer-by-layer assembly on the electrode, functioning as H 2 O 2 -selective film. Standard of deviation, coefficient of variation (CV and coefficient of correlation (r analysis were used in this study. The biosensor had a good linearity with a correlation coefficient of 0.993 and it could be used up to 27 times with the CV value of 3.97%. The presence of other compounds such as glucose and ascorbic acid gave 1.3 ± 1.13% and 3.27 ± 2.29% respectively on the interference effect toward the current response of uric acid biosensor. The polymer combination of PANI and PAA can be used as a selective matrix of uric acid biosensor.

  15. A Nanofluidic Biosensor Based on Nanoreplica Molding Photonic Crystal

    Science.gov (United States)

    Peng, Wang; Chen, Youping; Ai, Wu; Zhang, Dailin

    2016-09-01

    A nanofluidic biosensor based on nanoreplica molding photonic crystal (PC) was proposed. UV epoxy PC was fabricated by nanoreplica molding on a master PC wafer. The nanochannels were sealed between the gratings on the PC surface and a taped layer. The resonance wavelength of PC-based nanofluidic biosensor was used for testing the sealing effect. According to the peak wavelength value of the sensor, an initial label-free experiment was realized with R6g as the analyte. When the PC-based biosensor was illuminated by a monochromatic light source with a specific angle, the resonance wavelength of the sensor will match with the light source and amplified the electromagnetic field. The amplified electromagnetic field was used to enhance the fluorescence excitation result. The enhancement effect was used for enhancing fluorescence excitation and emission when matched with the resonance condition. Alexa Fluor 635 was used as the target dye excited by 637-nm laser source on a configured photonic crystal enhanced fluorescence (PCEF) setup, and an initial PCEF enhancement factor was obtained.

  16. A New Application of Carbon Nanotubes Constructing Biosensor

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Carbon nanotubes used for constructing biosensor was described for the first time. Single-wall carbon nanotubes (SWNTs) functionalized with carboxylic acid groups were used to immobilize glucose oxidase forming a glucose biosensor. The biosensor response can be determined by amperometric method at a low applied potential (0.40 V).

  17. Effects of food surface topography on phage-based magnetoelastic biosensor detection

    Science.gov (United States)

    Horikawa, Shin; Chai, Yating; Zhao, Ruiting; Wikle, Howard C.; Chin, Bryan A.

    2014-05-01

    Phage-based magnetoelastic (ME) biosensors have proven useful in rapidly and inexpensively detecting food surface con- tamination. These biosensors are wireless, mass-sensitive biosensors and can be placed directly on food surfaces to detect the presence of target pathogens. Previously, millimeter-scale strip-shaped ME biosensors have been used to demonstrate direct detection of Salmonella Typhimurium on various fresh produce surfaces, including tomatoes, shell eggs, watermel- ons, and spinach leaves. Since the topography of these produce surfaces are different, and the biosensor must come into direct contact with Salmonella bacteria, food surfaces with large roughness and curvatures (e.g., spinach leaf surfaces) may allow the bacteria to avoid direct contact, thereby avoiding detection. The primary objective of this paper is, hence, to investigate the effects of food surface topography on the detection capabilities of the biosensors. Spinach leaf surfaces were selected as model surfaces, and detection experiments were conducted with differently sized biosensors (2 mm, 0.5 mm, and 150 μm in length). Spinach leaf roughness and curvatures of both adaxial (top) and abaxial (underside) surfaces were measured using a confocal laser scanning microscope. The experimental results showed that in spinach as the sen- sor was made smaller, the physical contact between the biosensors and bacteria were improved. Smaller sensors thereby enhance detection capabilities. When proper numbers of biosensors are used, micron-scale biosensors are anticipated to yield improved limits of detection over previously investigated millimeter-scale biosensors.

  18. Nanomaterial-Based Biosensors for Detection of Pesticides and Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun; Lin, Yuehe

    2009-01-01

    In this chapter, we describe nanomaterial-based biosensors for detecting OP pesticides and explosives. CNTs and functionalized silica nanoparticles have been chosen for this study. The biosensors were combined with the flow-injection system, providing great advantages for onsite, real-time, and continuous detection of environmental pollutants such as OPs and TNT. The sensors take advantage of the electrocatalytic properties of CNTs, which makes it feasible to achieve a sensitive electrochemical detection of the products from enzymatic reactions at low potential. This approach uses a large aspect ratio of silica nanoparticles, which can be used as a carrier for loading a large amount of electroactive species, such as poly(guanine), for amplified detection of explosives. These methods offer a new environmental monitoring tool for rapid, inexpensive, and highly sensitive detection of OPs or TNT compounds.

  19. DNA nanostructures based biosensor for the determination of aromatic compounds.

    Science.gov (United States)

    Gayathri, S Baby; Kamaraj, P; Arthanareeswari, M; Devikala, S

    2015-10-15

    Graphite electrode was modified using multi-walled carbon nanotubes (MWCNT), chitosan (CS), glutaraldehyde (GTA) and DNA nanostructures (nsDNA). DNA nanostructures of 50 nm in size were produced from single DNA template sequence using a simple two step procedure and were confirmed using TEM and AFM analysis. The modified electrode was applied to the electrochemical detection of aromatic compounds using EIS. The modified electrode was characterized using differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). For comparison, electrochemical results derived from single stranded (50 bp length) and double stranded (50 bp length) DNA based biosensors were used. The results indicate that the modified electrode prior to nsDNA immobilization provides a viable platform that effectively promotes electron transfer between nsDNA and the electrode. The mode of binding between the nsDNA and aromatic compounds was investigated using EIS, indicating that the dominant interaction is non-covalent. nsDNA based biosensor was observed to act as an efficient biosensor in selective and sensitive identification of aromatic compounds.

  20. Electrochemical biosensors and logic devices based on aptamers

    Institute of Scientific and Technical Information of China (English)

    Zuo Xiaolei; Lin Meihua; Fan Chunhai

    2013-01-01

    Aptamers are molecular recognition elements with high specificity that are selected from deoxyribonucleic acid/ribonucleic acid (DNA/RNA) library.Compared with the traditional protein recognition elements,aptamers have excellent properties such as cost-effective,stable,easy for synthesis and modification.In recent years,electrochemistry plays an important role in biosensor field because of its high sensitivity,high stability,fast response and easy miniaturization.Through the combination of these two technologies and our rational design,we constructed a series of biosensors and biochips that are simple,fast,cheap and miniaturized.Firstly,we designed an adenosine triphosphate (ATP) electrochemical biosensor based on the strand displacement strategy.We can detect as low as 10 nmol/L of ATP both in pure solution and complicated cell lysates.Secondly,we creatively split the aptamers into two fragments and constructed the sandwich assay platform only based on single aptamer sequence.We successfully transferred this design on biochips with multiple micro electrodes (6×6) and accomplished multiplex detection.In the fields of biochips and biocomputers,we designed several DNA logic gates with electric (electrochemical) signal as output which paves a new way for the development of DNA computer.

  1. Non-enzymatic hydrogen peroxide biosensor based on rose-shaped FeMoO{sub 4} nanostructures produced by convenient microwave-hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongying, E-mail: liuhongying@hdu.edu.cn [College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Zhejiang, Hangzhou 310018 (China); Gu, Chunchuan [Department of Clinical Laboratory, Hangzhou Cancer Hospital, Zhejiang, Hangzhou 310002 (China); Li, Dujuan; Zhang, Mingzhen [College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Zhejiang, Hangzhou 310018 (China)

    2015-04-15

    Graphical abstract: A non-enzymatic H{sub 2}O{sub 2} sensor with high selectivity and sensitivity based on rose-shaped FeMoO{sub 4} synthesized by the convenient microwave-assisted hydrothermal method, was fabricated. - Highlights: • Rose-shaped FeMoO{sub 4} is synthesized within 10 min via microwave-assisted hydrothermal approach. • Non-enzymatic hydrogen peroxide biosensor based on FeMoO{sub 4} nanomaterials is fabricated. • The biosensor exhibits good performance. - Abstract: In this work, we demonstrated a simple, rapid and reliable microwave-assisted hydrothermal approach to synthesize the uniform rose-shaped FeMoO{sub 4} within 10 min. The morphologies of the synthesized materials were characterized by X-ray powder diffraction and scanning electron microscopy. Moreover, a non-enzymatic amperometric sensor for the detection of hydrogen peroxide (H{sub 2}O{sub 2}) was fabricated on the basis of the FeMoO{sub 4} as electrocatalysis. The resulting FeMoO{sub 4} exhibited high sensitivity and good stability for the detection of H{sub 2}O{sub 2}, which may be attributed to the rose-shaped structure of the material and the catalytic property of FeMoO{sub 4}. Amperometric response showed that the modified electrode had a good response for H{sub 2}O{sub 2} with a linear range from 1 μM to 1.6 mM, a detection limit of 0.5 μM (S/N = 3), high selectivity and short response time. Additionally, good recoveries of analytes in real milk samples confirm the reliability of the prepared sensor in practical applications.

  2. Papers Based Electrochemical Biosensors: From Test Strips to Paper-Based Microfluidics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bingwen; Du, Dan; Hua, Xin; Yu, Xiao-Ying; Lin, Yuehe

    2014-05-08

    Papers based biosensors such as lateral flow test strips and paper-based microfluidic devices (or paperfluidics) are inexpensive, rapid, flexible, and easy-to-use analytical tools. An apparent trend in their detection is to interpret sensing results from qualitative assessment to quantitative determination. Electrochemical detection plays an important role in quantification. This review focuses on electrochemical (EC) detection enabled biosensors. The first part provides detailed examples in paper test strips. The second part gives an overview of paperfluidics engaging EC detections. The outlook and recommendation of future directions of EC enabled biosensors are discussed in the end.

  3. Aptamer-based Field-Effect Biosensor for Tenofovir Detection

    Science.gov (United States)

    Aliakbarinodehi, N.; Jolly, P.; Bhalla, N.; Miodek, A.; De Micheli, G.; Estrela, P.; Carrara, S.

    2017-01-01

    During medical treatment it is critical to maintain the circulatory concentration of drugs within their therapeutic range. A novel biosensor is presented in this work to address the lack of a reliable point-of-care drug monitoring system in the market. The biosensor incorporates high selectivity and sensitivity by integrating aptamers as the recognition element and field-effect transistors as the signal transducer. The drug tenofovir was used as a model small molecule. The biointerface of the sensor is a binary self-assembled monolayer of specific thiolated aptamer and 6-mercapto-1-hexanol (MCH), whose ratio was optimized by electrochemical impedance spectroscopy measurements to enhance the sensitivity towards the specific target. Surface plasmon resonance, performed under different buffer conditions, shows optimum specific and little non-specific binding in phosphate buffered saline. The dose-response behavior of the field-effect biosensor presents a linear range between 1 nM and 100 nM of tenofovir and a limit of detection of 1.2 nM. Two non-specific drugs and one non-specific aptamer, tested as stringent control candidates, caused negligible responses. The applications were successfully extended to the detection of the drug in human serum. As demonstrated by impedance measurements, the aptamer-based sensors can be used for real-time drug monitoring. PMID:28294122

  4. A liquid-crystal-based DNA biosensor for pathogen detection

    Science.gov (United States)

    Khan, Mashooq; Khan, Abdur Rahim; Shin, Jae-Ho; Park, Soo-Young

    2016-03-01

    A liquid-crystal (LC)-filled transmission electron microscopy (TEM) grid cell coated with the cationic surfactant dodecyltrimethylammonium bromide (DTAB), to which a single-stranded deoxyribonucleic acid probe (ssDNAprobe) was adsorbed at the LC/aqueous interface (TEMDTAB/DNA), was applied for the highly specific detection of target DNA molecules. The DTAB-coated E7 (used LC mixture) in the TEM grid (TEMDTAB) exhibited a homeotropic orientation, and changed to a planar orientation upon adsorption of the ssDNAprobe. The TEMDTAB/DNA was then exposed to complementary (target) ssDNA, which resulted in a planar-to-homeotropic configurational change of E7 that could be observed through a polarized optical microscope under crossed polarizers. The optimum adsorption density (2 μM) of ssDNAprobe enabled the detection of ≥0.05 nM complementary ssDNA. This TEMDTAB/DNA biosensor could differentiate complementary ssDNA from mismatched ssDNA as well as double-stranded DNA. It also successfully detected the genomic DNAs of the bacterium Erwinia carotovora and the fungi Rhazictonia solani. Owe to the high specificity, sensitivity, and label-free detection, this biosensor may broaden the applications of LC-based biosensors to pathogen detection.

  5. Amperometric Immunosensor Based on a Protein A/Deposited Gold Nanocrystals Modified Electrode for Carbofuran Detection

    Directory of Open Access Journals (Sweden)

    Xia Sun

    2011-12-01

    Full Text Available In this paper, an amperometric immunosensor modified with protein A/deposited gold nanocrystals (DpAu was developed for the ultrasensitive detection of carbofuran residues. First, DpAu were electrodeposited onto the Au electrode surface to absorb protein A (PA and improve the electrode conductivity. Then PA was dropped onto the surface of DpAu film, used for binding antibody Fc fragments. Next, anti-carbofuran monoclonal antibody was immobilized on the PA modified electrode. Finally, bovine serum albumin (BSA was employed to block the possible remaining active sites avoiding any nonspecific adsorption. The fabrication procedure of the immunosensor was characterized by electrochemical impedance spectroscopy (EIS and cyclic voltammetry (CV, respectively. With the excellent electroconductivity of DpAu and the PA’s oriented immobilization of antibodies, a highly efficient immuno-reaction and detection sensitivity could be achieved. The influences of the electrodeposition time of DpAu, pH of the detection solution and incubation time on the current response of the fabricated immunosensor were investigated. Under optimized conditions, the current response was proportional to the concentration of carbofuran which ranged from 1 to 100 ng/mL and 100 ng/mL to 100 μg/mL. The detection limit was 0.1924 ng/mL. The proposed carbofuran immnuosensor exhibited high specificity, reproducibility, stability and regeneration performance, which may open a new door for ultrasensitive detection of carbofuran residues in vegetables and fruits.

  6. Amperometric immunosensor based on a protein A/deposited gold nanocrystals modified electrode for carbofuran detection.

    Science.gov (United States)

    Sun, Xia; Zhu, Ying; Wang, Xiangyou

    2011-01-01

    In this paper, an amperometric immunosensor modified with protein A/deposited gold nanocrystals (DpAu) was developed for the ultrasensitive detection of carbofuran residues. First, DpAu were electrodeposited onto the Au electrode surface to absorb protein A (PA) and improve the electrode conductivity. Then PA was dropped onto the surface of DpAu film, used for binding antibody Fc fragments. Next, anti-carbofuran monoclonal antibody was immobilized on the PA modified electrode. Finally, bovine serum albumin (BSA) was employed to block the possible remaining active sites avoiding any nonspecific adsorption. The fabrication procedure of the immunosensor was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), respectively. With the excellent electroconductivity of DpAu and the PA's oriented immobilization of antibodies, a highly efficient immuno-reaction and detection sensitivity could be achieved. The influences of the electrodeposition time of DpAu, pH of the detection solution and incubation time on the current response of the fabricated immunosensor were investigated. Under optimized conditions, the current response was proportional to the concentration of carbofuran which ranged from 1 to 100 ng/mL and 100 ng/mL to 100 μg/mL. The detection limit was 0.1924 ng/mL. The proposed carbofuran immnuosensor exhibited high specificity, reproducibility, stability and regeneration performance, which may open a new door for ultrasensitive detection of carbofuran residues in vegetables and fruits.

  7. Highly Sensitive and Selective Amperometric Sensor for Iodate Based on 9,10-Phenanthrenequinone Derived Graphene

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-juan; CHENG Na-na; YANG Xiao-yang; LI Xiao-meng; ZHU Lian-de

    2013-01-01

    We reported on a new amperometric sensor for the sensitive and selective determination of iodate in table salt.The iodate sensor was constructed by the integration of a novel nanocomposite which was made from 9,10-phenanthrenequinone(PQ) and graphene(GP) with a glassy carbon electrode(GCE).The synthesized graphene and the nanocomposite were well characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM),Fourier transform infrared(FTIR) spectroscopy and Raman spectroscopy.We fully studied the electrochemical behavior and kinetic characteristics of the PQ/GP nanocomposite at GCE.The PQ/GP electrode shows a good electrochemical catalytic activity towards the reduction of iodate,which makes itself a sensitive and selective electrochemical sensor for iodate.The iodate sensor displays a high sensitivity(1.04 μA·μmol.L-1),a low detection limit(1.0× 10-8mol/L),a rapid response(less than 2 s),and a broad linear range(from 5.0× 10-8 mol/L to 6.0× 10-3 mol/L).In addition,the sensor is interference free.The practical application of the proposed sensor was tested by the detection of iodate in table salt.

  8. Nonenzymatic amperometric sensor for ascorbic acid based on hollow gold/ruthenium nanoshells.

    Science.gov (United States)

    Jo, Ara; Kang, Minkyung; Cha, Areum; Jang, Hye Su; Shim, Jun Ho; Lee, Nam-Suk; Kim, Myung Hwa; Lee, Youngmi; Lee, Chongmok

    2014-03-28

    We report a new nonenzymatic amperometric detection of ascorbic acid (AA) using a glassy carbon (GC) disk electrode modified with hollow gold/ruthenium (hAu-Ru) nanoshells, which exhibited decent sensing characteristics. The hAu-Ru nanoshells were prepared by the incorporation of Ru on hollow gold (hAu) nanoshells from Co nanoparticle templates, which enabled AA selectivity against glucose without aid of enzyme or membrane. The structure and electrocatalytic activities of the hAu-Ru catalysts were characterized by spectroscopic and electrochemical techniques. The hAu-Ru loaded on GC electrode (hAu-Ru/GC) showed sensitivity of 426 μA mM(-1) cm(-2) (normalized to the GC disk area) for the linear dynamic range of <5 μM to 2 mM AA at physiological pH. The response time and detection limit were 1.6 s and 2.2 μM, respectively. Furthermore, the hAu-Ru/GC electrode displayed remarkable selectivity for ascorbic acid over all potential biological interferents, including glucose, uric acid (UA), dopamine (DA), 4-acetamidophenol (AP), and nicotinamide adenine dinucleotide (NADH), which could be especially good for biological sensing.

  9. Development of mercury (II) ion biosensors based on mercury-specific oligonucleotide probes.

    Science.gov (United States)

    Li, Lanying; Wen, Yanli; Xu, Li; Xu, Qin; Song, Shiping; Zuo, Xiaolei; Yan, Juan; Zhang, Weijia; Liu, Gang

    2016-01-15

    Mercury (II) ion (Hg(2+)) contamination can be accumulated along the food chain and cause serious threat to the public health. Plenty of research effort thus has been devoted to the development of fast, sensitive and selective biosensors for monitoring Hg(2+). Thymine was demonstrated to specifically combine with Hg(2+) and form a thymine-Hg(2+)-thymine (T-Hg(2+)-T) structure, with binding constant even higher than T-A Watson-Crick pair in DNA duplex. Recently, various novel Hg(2+) biosensors have been developed based on T-rich Mercury-Specific Oligonucleotide (MSO) probes, and exhibited advanced selectivity and excellent sensitivity for Hg(2+) detection. In this review, we explained recent development of MSO-based Hg(2+) biosensors mainly in 3 groups: fluorescent biosensors, colorimetric biosensors and electrochemical biosensors.

  10. A novel biosensor method for surfactant determination based on acetylcholinesterase inhibition

    Science.gov (United States)

    Kucherenko, I. S.; Soldatkin, O. O.; Arkhypova, V. M.; Dzyadevych, S. V.; Soldatkin, A. P.

    2012-06-01

    A novel enzyme biosensor based on acetylcholinesterase inhibition for the determination of surfactants in aqueous solutions is described. Acetylcholinesterase-based bioselective element was deposited via glutaraldehyde on the surface of conductometric transducers. Different variants of inhibitory analysis of surfactants were tested, and finally surfactant's concentration was evaluated by measuring initial rate of acetylcholinesterase inhibition. Besides, we studied the effect of solution characteristics on working parameters of the biosensor for direct measurement of acetylcholine and for inhibitory determination of surfactants. The biosensor's sensitivity to anionic and cationic surfactants (0.35 mg l-1) was tested. The high operational stability of the biosensor during determination of acetylcholine (RSD 2%) and surfactants (RSD 11%) was shown. Finally, we discussed the selectivity of the biosensor toward surfactants and other AChE inhibitors. The proposed biosensor can be used as a component of the multibiosensor for ecological monitoring of toxicants.

  11. A novel PDMS micro membrane biosensor based on the analysis of surface stress.

    Science.gov (United States)

    Sang, Shengbo; Witte, Hartmut

    2010-07-15

    The biological and medical application of biosensors is more and more important with the development of technology and society. Detection of cells and biological molecules utilizing biosensors based on the analysis of surface stress would facilitate inexpensive and high-throughput test and diagnosis. This paper presents a biocompatible surface stress-based polydimethylsiloxane (PDMS) micro membrane biosensor. Each biosensor chip consists of two available PDMS micro membranes, one acts as active membrane and the other as reference. Biosensors were functionalized using different functional materials respectively: MUA (11 Mercapto 1 undecanoicacid), MUO (11 Mercapto 1 undecanol) and DOT (Dodecane thiol). Two biosensor test systems were built based on a white light interferometer and a fiber optic interferometer respectively. Finally, testing experiments using Escherichia coli (E. coli) were performed based on the biosensor test systems we built. The results of the experiments showed that the MUA is a better functional material to functionalize the biosensor membranes than MUO and DOT for E. coli detection, some properties of E. coli, such as healthily living and dead status, can be analyzed based on the PDMS micro membrane biosensors.

  12. Lab-on-a-chip based biosensor for the real-time detection of aflatoxin.

    Science.gov (United States)

    Uludag, Yıldız; Esen, Elif; Kokturk, Guzin; Ozer, Hayrettin; Muhammad, Turghun; Olcer, Zehra; Basegmez, H Imge Oktay; Simsek, Senay; Barut, Serkan; Gok, M Yagmur; Akgun, Mete; Altintas, Zeynep

    2016-11-01

    Polymers were synthesized and utilized for aflatoxin detection coupled with a novel lab-on-a-chip biosensor: MiSens and high performance liquid chromatography (HPLC). Non-imprinted polymers (NIPs) were preferred to be designed and used due to the toxic nature of aflatoxin template and also to avoid difficult clean-up protocols. Towards an innovative miniaturized automated system, a novel biochip has been designed that consists of 6 working electrodes (1mm diameter) with shared reference and counter electrodes. The aflatoxin detection has been achieved by a competition immunoassay that has been performed using the new biochips and the automated MiSens electrochemical biosensor device. For the assay, aflatoxin antibody has been captured on the Protein A immobilized electrode. Subsequently the sample and the enzyme-aflatoxin conjugate mixture has been injected to the electrode surfaces. The final injection of the enzyme substrate results in an amperometric signal. The sensor assays for aflatoxin B1 (AFB1) in different matrices were also performed using enzyme link immunosorbent assay (ELISA) and HPLC for confirmation. High recovery was successfully achieved in spiked wheat samples using NIP coupled HPLC and NIP coupled MiSens biosensor [2ppb of aflatoxin was determined as 1.86ppb (93% recovery), 1.73ppb (86.5% recovery), 1.96ppb (98% recovery) and 1.88ppb (94.0% recovery) for immunoaffinity column (IAC)-HPLC, NIP-HPLC, Supel™ Tox SPE Cartridges (SUP)-HPLC and NIP-MiSens, respectively]. Aflatoxin detection in fig samples were also investigated with MiSens biosensor and the results were compared with HPLC method. The new biosensor allows real-time and on-site detection of AFB1 in foods with a rapid, sensitive, fully automated and miniaturized system and expected to have an immense economic impact for food industry.

  13. Cholesterol Biosensor Based on Entrapment of Monoenzyme and Multienzymes in Clay/Chitosan Hybrid Matrix

    Institute of Scientific and Technical Information of China (English)

    Dan Shan; YanNa Wang; HuaiGuo Xue; En Han

    2009-01-01

    @@ This work aimed at showing the interest of the composite material based on layered double hydroxides(LDHs) and chitosan (CHT) as suitable host matrix likely to immobilize enzyme onto electrode surface for amperometric biosensing application.This hybrid material combined the advantages of inorganic LDHs and organic biopolymer,CHT.

  14. Nanoparticle-Based Biosensors and Bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guodong; Wang, Jun; Lin, Yuehe; Wang, Joseph

    2007-10-11

    In this book chapter, we review the recent advances in nanoparticles based bioassay. The nanoparticles include quantum dots, silica nanoparticles and apoferritin nanoparticles. The new nanoparticles-based labels hold great promise for multiplex protein and DNA detection and for enhancing the sensitivity of other bioassays.

  15. A capacitive biosensor based on an interdigitated electrode with nanoislands.

    Science.gov (United States)

    Jung, Ha-Wook; Chang, Young Wook; Lee, Ga-yeon; Cho, Sungbo; Kang, Min-Jung; Pyun, Jae-Chul

    2014-09-24

    A capacitive biosensor based on an interdigitated electrode (IDE) with nanoislands was developed for label-free detection of antigen-antibody interactions. To enable sensitive capacitive detection of protein adsorption, the nanoislands were fabricated between finger electrodes of the IDE. The effect of the nanoislands on the sensitive capacitive measurement was estimated using horseradish peroxidase (HRP) as a model protein. Additionally, a parylene-A film was coated on the IDE with nanoislands to improve the efficiency of protein immobilization. By using HRP and hepatitis B virus surface antigen (HBsAg) as model analytes, the effect of the parylene-A film on the capacitive detection of protein adsorption was demonstrated.

  16. Gallium nitride electrodes for membrane-based electrochemical biosensors.

    Science.gov (United States)

    Schubert, T; Steinhoff, G; von Ribbeck, H-G; Stutzmannn, M; Eickhoff, M; Tanaka, M

    2009-10-01

    We report on the deposition of planar lipid bilayers (supported membranes) on gallium nitride (GaN) electrodes for potential applications as membrane-based biosensors. The kinetics of the lipid membrane formation upon vesicle fusion were monitored by simultaneous measurements of resistance and capacitance of the membrane using AC impedance spectroscopy in the frequency range between 50 mHz and 50 kHz. We could identify a two-step process of membrane spreading and self-healing. Despite its relatively low resistance, the membrane can be modeled by a parallel combination of an ideal resistor and capacitor, indicating that the membrane efficiently blocks the diffusion of ions.

  17. Photonic Crystal Biosensor Based on Optical Surface Waves

    Directory of Open Access Journals (Sweden)

    Giovanni Dietler

    2013-02-01

    Full Text Available A label-free biosensor device based on registration of photonic crystal surface waves is described. Angular interrogation of the optical surface wave resonance is used to detect changes in the thickness of an adsorbed layer, while an additional simultaneous detection of the critical angle of total internal reflection provides independent data of the liquid refractive index. The abilities of the device are demonstrated by measuring of biotin molecule binding to a streptavidin monolayer, and by measuring association and dissociation kinetics of immunoglobulin G proteins. Additionally, deposition of PSS / PAH polyelectrolytes is recorded in situ resulting calculation of PSS and PAH monolayer thicknesses separately.

  18. Electroanalytical biosensors and their potential for food pathogen and toxin detection.

    Science.gov (United States)

    Palchetti, Ilaria; Mascini, Marco

    2008-05-01

    The detection and identification of foodborne pathogens continue to rely on conventional culturing techniques. These are very elaborate, time-consuming, and have to be completed in a microbiology laboratory and are therefore not suitable for on-site monitoring. The need for a more rapid, reliable, specific, and sensitive method of detecting a target analyte, at low cost, is the focus of a great deal of research. Biosensor technology has the potential to speed up the detection, increase specificity and sensitivity, enable high-throughput analysis, and to be used for monitoring of critical control points in food production. This article reviews food pathogen detection methods based on electrochemical biosensors, specifically amperometric, potentiometric, and impedimetric biosensors. The underlying principles and application of these biosensors are discussed with special emphasis on new biorecognition elements, nanomaterials, and lab on a chip technology.

  19. Electrochemical H2O2 biosensor composed of myoglobin on MoS2 nanoparticle-graphene oxide hybrid structure.

    Science.gov (United States)

    Yoon, Jinho; Lee, Taek; Bapurao G, Bharate; Jo, Jinhee; Oh, Byung-Keun; Choi, Jeong-Woo

    2017-07-15

    In this research, the electrochemical biosensor composed of myoglobin (Mb) on molybdenum disulfide nanoparticles (MoS2 NP) encapsulated with graphene oxide (GO) was fabricated for the detection of hydrogen peroxide (H2O2). Hybrid structure composed of MoS2 NP and GO (GO@MoS2) was fabricated for the first time to enhance the electrochemical signal of the biosensor. As a sensing material, Mb was introduced to fabricate the biosensor for H2O2 detection. Formation and immobilization of GO@MoS2 was confirmed by transmission electron microscopy, ultraviolet-visible spectroscopy, scanning electron microscopy, and scanning tunneling microscopy. Immobilization of Mb, and electrochemical property of biosensor were investigated by cyclic voltammetry and amperometric i-t measurements. Fabricated biosensor showed the electrochemical signal enhanced redox current as -1.86μA at an oxidation potential and 1.95μA at a reduction potential that were enhanced relative to those of electrode prepared without GO@MoS2. Also, this biosensor showed the reproducibility of electrochemical signal, and retained the property until 9 days from fabrication. Upon addition of H2O2, the biosensor showed enhanced amperometric response current with selectivity relative to that of the biosensor prepared without GO@MoS2. This novel hybrid material-based biosensor can suggest a milestone in the development of a highly sensitive detecting platform for biosensor fabrication with highly sensitive detection of target molecules other than H2O2.

  20. Prediction of wastewater quality using amperometric bioelectronic tongues.

    Science.gov (United States)

    Czolkos, Ilja; Dock, Eva; Tønning, Erik; Christensen, Jakob; Winther-Nielsen, Margrethe; Carlsson, Charlotte; Mojzíková, Renata; Skládal, Petr; Wollenberger, Ulla; Nørgaard, Lars; Ruzgas, Tautgirdas; Emnéus, Jenny

    2016-01-15

    Wastewater samples from a Swedish chemi-thermo-mechanical pulp (CTMP) mill collected at different purification stages in a wastewater treatment plant (WWTP) were analyzed with an amperometric enzyme-based biosensor array in a flow-injection system. In order to resolve the complex composition of the wastewater, the array consists of several sensing elements which yield a multidimensional response. We used principal component analysis (PCA) to decompose the array's responses, and found that wastewater with different degrees of pollution can be differentiated. With the help of partial least squares regression (PLS-R), we could link the sensor responses to the Microtox® toxicity parameter, as well as to global organic pollution parameters (COD, BOD, and TOC). From investigating the influences of individual sensors in the array, it was found that the best models were in most cases obtained when all sensors in the array were included in the PLS-R model. We find that fast simultaneous determination of several global environmental parameters characterizing wastewaters is possible with this kind of biosensor array, in particular because of the link between the sensor responses and the biological effect onto the ecosystem into which the wastewater would be released. In conjunction with multivariate data analysis tools, there is strong potential to reduce the total time until a result is yielded from days to a few minutes.

  1. Numerical simulation on development of a SAW based biosensor

    Science.gov (United States)

    Ten, S. T.; Hashim, U.; Sudin, A.; Arshad, M. K. Md.; Liu, W. W.; Foo, K. L.; Voon, C. H.; Wee, F. H.; Lee, Y. S.; Salleh, N. H. M.; Nazwa, T.

    2016-07-01

    Surface acoustic waves can be generated at the free surface of an elastic solid. For this property, surface acoustic based devices were initially developed for the telecommunication purpose such as signal filters and resonators. The acoustic energy is strongly confined on the surface of the surface acoustic waves (SAW) based devices and consequent their ultra-sensitivity to the surface perturbation. This has made SAW permits the highly sensitive detection of utterly diminutive charges on the surface. Hence, SAW based devices have been modified to be sensors for the mass loading effect on its surface and this is perfectly for biosensor development. There have been a lot of complicated theoretical models for the SAW devices development since 1960 as signal filters and resonators such as from delta function model, equivalent circuit model, to the current SAW models such as coupling-of-modes (COM) model, P-matrix model and Computer Simulation Technology Studio Suite (CST). However, these models are more tailored for the telecommunication application purposes and very complex. Thus, this paper presents the finite element analysis (FEA) modeling, COMSOL Multiphysics which is used to study the mass loading effect on SAW which will be used as biosensor. This study managed to simulate the mass loading sensitivity of 8.71×107 kHz/g mm-2.

  2. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms

    Science.gov (United States)

    Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei

    2015-08-01

    We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone’s LED flash, while the light from the end faces of the lead-out fibers is detected by the phone’s camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

  3. Hydrogen peroxide biosensor based on gold nanoparticles/thionine/gold nanoparticles/multi-walled carbon nanotubes-chitosans composite film-modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Li Shenfeng; Zhu Xiaoying; Zhang Wei; Xie Guoming [Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); Feng Wenli, E-mail: fengwlcqmu@sina.com [Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China)

    2012-01-15

    In this paper, an amperometric electrochemical biosensor for the detection of hydrogen peroxide (H{sub 2}O{sub 2}), based on gold nanoparticles (GNPs)/thionine (Thi)/GNPs/multi-walled carbon nanotubes (MWCNTs)-chitosans (Chits) composite film was developed. MWCNTs-Chits homogeneous composite was first dispersed in acetic acid solution and then the GNPs were in situ synthesized at the composite. The mixture was dripped on the glassy carbon electrode (GCE) and then the Thi was deposited by electropolymerization by Au-S or Au-N covalent bond effect and electrostatic adsorption effect as an electron transfer mediator. Finally, the mixture of GNPs and horseradish peroxidase (HRP) was assembled onto the modified electrode by covalent bond. The electrochemical behavior of the modified electrode was investigated by scanning electron microscope, cyclic voltammetry and chronoamperometry. This study introduces the in situ-synthesized GNPs on the other surface of the modified materials in H{sub 2}O{sub 2} detection. The linear response range of the biosensor to H{sub 2}O{sub 2} concentration was from 5 Multiplication-Sign 10{sup -7} mol L{sup -1} to 1.5 Multiplication-Sign 10{sup -3} mol L{sup -1} with a detection limit of 3.75 Multiplication-Sign 10{sup -8} mol L{sup -1} (based on S/N = 3).

  4. Poly 3,4-ethylenedioxythiophene as an entrapment support for amperometric enzyme sensor

    OpenAIRE

    Fabiano, Silvia; Tran-Minh, Canh; Piro, Benoît; Anh Dang, Lan; Chau Pham, Minh; Vittori, Olivier

    2002-01-01

    International audience; A conducting polymer of poly 3,4-ethylenedioxythiophene (PEDT) was used as a matrix for entrapment of enzymes onto a platinum electrode surface in order to construct amperometric biosensors. Glucose oxidase (GOD) was used as an example, and it was entrapped in the polymer during the electrochemical polymerization. Glucose in oxygenated solutions was tested by amperometric measurements at +650 mV (vs. SCE) in a batch system. The influence of several experimental paramet...

  5. Simultaneous Determination of the Main Peanut Allergens in Foods Using Disposable Amperometric Magnetic Beads-Based Immunosensing Platforms

    Directory of Open Access Journals (Sweden)

    Víctor Ruiz-Valdepeñas Montiel

    2016-06-01

    Full Text Available In this work, a novel magnetic beads (MBs-based immunosensing approach for the rapid and simultaneous determination of the main peanut allergenic proteins (Ara h 1 and Ara h 2 is reported. It involves the use of sandwich-type immunoassays using selective capture and detector antibodies and carboxylic acid-modified magnetic beads (HOOC-MBs. Amperometric detection at −0.20 V was performed using dual screen-printed carbon electrodes (SPdCEs and the H2O2/hydroquinone (HQ system. This methodology exhibits high sensitivity and selectivity for the target proteins providing detection limits of 18.0 and 0.07 ng/mL for Ara h 1 and Ara h 2, respectively, with an assay time of only 2 h. The usefulness of the approach was evaluated by detecting the endogenous content of both allergenic proteins in different food extracts as well as trace amounts of peanut allergen (0.0001% or 1.0 mg/kg in wheat flour spiked samples. The developed platform provides better Low detection limits (LODs in shorter assay times than those claimed for the allergen specific commercial ELISA kits using the same immunoreagents and quantitative information on individual food allergen levels. Moreover, the flexibility of the methodology makes it readily translate to the detection of other food-allergens.

  6. Development of Biosensors Based on Carbon Nanotube Nanoelectrode Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yuehe; Tu, Yi; Lu, Fang; Ren, Zhifeng

    2004-12-28

    The fabrication, electrochemical characterization, and sensing applications of low-site density carbon nanotubes based nanoelectrode arrays (CNT-NEAs) are reported in this work. Spin-coating of an epoxy resin provides a new way to create the electrode passivation layer that effectively reduces the current leakage and eliminates the electrode capacitance by sealing the side-wall of CNTs. The CNT-NEAs fabricated in our work effectively use the open ends of CNTs for electrochemical sensing. The open ends of the CNTs have fast electron transfer rates similar to a graphite edge-plane electrode, while the side-walls present very slow electron transfer rates similar to the graphitic basal plane. Cyclic voltammetry showed the sigmoidal shape curves with low capacitive current and scan-rate-independent limiting current. The successful development of a glucose biosensor based on CNT-NEAs for the selective detection of glucose is also described. Glucose oxidase was covalently immobilized on the CNTs tips via carbodiimide chemistry by forming amide linkages between the amine residues and carboxylic acid groups on the open ends of CNTs. The biosensor effectively performs selective electrochemical detections of glucose in the presence of common interferences.

  7. Micro-photonic cylindrical waveguide based protein biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Padigi, Sudhaprasanna Kumar [Department of Electrical and Computer Engineering, Portland State University, 160-11 FAB, 1900 SW Fourth Avenue, Portland, OR 97201 (United States); Asante, Kofi [Department of Physics, Portland State University, Portland, OR 97201 (United States); Kovvuri, Vijay Sekhar Reddy [Department of Electrical and Computer Engineering, Portland State University, 160-11 FAB, 1900 SW Fourth Avenue, Portland, OR 97201 (United States); Reddy, Ravi Kiran Kondama [Department of Electrical and Computer Engineering, Portland State University, 160-11 FAB, 1900 SW Fourth Avenue, Portland, OR 97201 (United States); Rosa, Andres La [Department of Physics, Portland State University, Portland, OR 97201 (United States); Prasad, Shalini [Department of Electrical and Computer Engineering, Portland State University, 160-11 FAB, 1900 SW Fourth Avenue, Portland, OR 97201 (United States)

    2006-09-14

    In this paper we experimentally demonstrate the fabrication and operation of a rapidly prototyped optical cylindrical micro-waveguide based biosensor. This device works on the principle of variation to the light intensity and path of coupled input light due to the binding of protein bio-molecules onto the micro-waveguide surface as a method of physical transduction. The variation to the coupled light intensity and path is dependent on the nature of the bio-molecule and the density of the bio-molecules. This technique has been used to identify protein biomarkers for inflammation and thrombosis, namely myeloperoxidase (MPO) and C-reactive protein (CRP). The detection limit that has been demonstrated is pg ml{sup -1}. The detection speed is of the order of seconds from the time of injection of the bio-molecule. The optical signature that is obtained to identify a protein bio-molecule is entirely dependent on the nature of adsorption of the bio-molecule on to the cylindrical cavity surfaces. This in turn is dependent on the protein conformation and the surface charge of the bio-molecules. Hence a specific protein bio-molecule generates a unique optical identifier based on the nature of binding/adsorption to the cavity surface. This physical phenomenon is exploited to identify individual proteins. This technique is a demonstration of detection of nano-scale protein bio-molecules using the optical biosensor technique with unprecedented sensitivity.

  8. Angle-resolved diffraction grating biosensor based on porous silicon

    Science.gov (United States)

    Lv, Changwu; Jia, Zhenhong; Liu, Yajun; Mo, Jiaqing; Li, Peng; Lv, Xiaoyi

    2016-03-01

    In this study, an optical biosensor based on a porous silicon composite structure was fabricated using a simple method. This structure consists of a thin, porous silicon surface diffraction grating and a one-dimensional porous silicon photonic crystal. An angle-resolved diffraction efficiency spectrum was obtained by measuring the diffraction efficiency at a range of incident angles. The angle-resolved diffraction efficiency of the 2nd and 3rd orders was studied experimentally and theoretically. The device was sensitive to the change of refractive index in the presence of a biomolecule indicated by the shift of the diffraction efficiency spectrum. The sensitivity of this sensor was investigated through use of an 8 base pair antifreeze protein DNA hybridization. The shifts of the angle-resolved diffraction efficiency spectrum showed a relationship with the change of the refractive index, and the detection limit of the biosensor reached 41.7 nM. This optical device is highly sensitive, inexpensive, and simple to fabricate. Using shifts in diffraction efficiency spectrum to detect biological molecules has not yet been explored, so this study establishes a foundation for future work.

  9. Photonic crystal waveguide-based biosensor for detection of diseases

    Science.gov (United States)

    Chopra, Harshita; Kaler, Rajinder S.; Painam, Balveer

    2016-07-01

    A biosensor is a device that is used to detect the analytes or molecules of a sample by means of a binding mechanism. A two-dimensional photonic crystal waveguide-based biosensor is designed with a diamond-shaped ring resonator and two waveguides: a bus waveguide and a drop waveguide. The sensing mechanism is based on change in refractive index of the analytes, leading to a shift in the peak resonant wavelength. This mechanism can be used in the field of biomedical treatment where different body fluids such as blood, tears, saliva, or urine can be used as the analyte in which different components of the fluid can be detected. It can also be used to differentiate between the cell lines of a normal and an unhealthy human being. Average value of quality factor for this device comes out to be 1082.2063. For different analytes used, the device exhibits enhanced sensitivity and, hence, it is useful for the detection of diseases.

  10. Optical Biosensors Based on Semiconductor Nanostructures

    Directory of Open Access Journals (Sweden)

    Raúl J. Martín-Palma

    2009-06-01

    Full Text Available The increasing availability of semiconductor-based nanostructures with novel and unique properties has sparked widespread interest in their use in the field of biosensing. The precise control over the size, shape and composition of these nanostructures leads to the accurate control of their physico-chemical properties and overall behavior. Furthermore, modifications can be made to the nanostructures to better suit their integration with biological systems, leading to such interesting properties as enhanced aqueous solubility, biocompatibility or bio-recognition. In the present work, the most significant applications of semiconductor nanostructures in the field of optical biosensing will be reviewed. In particular, the use of quantum dots as fluorescent bioprobes, which is the most widely used application, will be discussed. In addition, the use of some other nanometric structures in the field of biosensing, including porous semiconductors and photonic crystals, will be presented.

  11. Waveguide-Based Biosensors for Pathogen Detection

    Directory of Open Access Journals (Sweden)

    Nile Hartman

    2009-07-01

    Full Text Available Optical phenomena such as fluorescence, phosphorescence, polarization, interference and non-linearity have been extensively used for biosensing applications. Optical waveguides (both planar and fiber-optic are comprised of a material with high permittivity/high refractive index surrounded on all sides by materials with lower refractive indices, such as a substrate and the media to be sensed. This arrangement allows coupled light to propagate through the high refractive index waveguide by total internal reflection and generates an electromagnetic wave—the evanescent field—whose amplitude decreases exponentially as the distance from the surface increases. Excitation of fluorophores within the evanescent wave allows for sensitive detection while minimizing background fluorescence from complex, “dirty” biological samples. In this review, we will describe the basic principles, advantages and disadvantages of planar optical waveguide-based biodetection technologies. This discussion will include already commercialized technologies (e.g., Corning’s EPIC® Ô, SRU Biosystems’ BIND™, Zeptosense®, etc. and new technologies that are under research and development. We will also review differing assay approaches for the detection of various biomolecules, as well as the thin-film coatings that are often required for waveguide functionalization and effective detection. Finally, we will discuss reverse-symmetry waveguides, resonant waveguide grating sensors and metal-clad leaky waveguides as alternative signal transducers in optical biosensing.

  12. Graphene- and aptamer-based electrochemical biosensor.

    Science.gov (United States)

    Xu, Ke; Meshik, Xenia; Nichols, Barbara M; Zakar, Eugene; Dutta, Mitra; Stroscio, Michael A

    2014-05-23

    This study investigated the effectiveness of a graphene- and aptamer-based field-effect-transistor-like (FET-like) sensor in detecting lead and potassium ions. The sensor consists of a graphene-covered Si/SiO2 wafer with thrombin binding aptamer (TBA) attached to the graphene layer and terminated by a methylene blue (MB) molecule. K(+) and Pb(2+) both bind to TBA and cause a conformational change, which results in MB moving closer to the graphene surface and donating an electron. Thus, the abundance of K(+) and Pb(2+) can be determined by monitoring the current across the source and drain channel. Device transfer curves were obtained with ambipolar field effect observed. Current readings were taken for K(+) concentrations of 100 μM to 50 mM and Pb(2+) concentrations of 10 μM to 10 mM. As expected, I d decreased as ion concentration increased. In addition, there was a negative shift in V Dirac in response to increased ion concentration.

  13. RNA aptamer-based electrochemical biosensor for selective and label-free analysis of dopamine

    DEFF Research Database (Denmark)

    Farjami, Elahe; Campos, Rui; Nielsen, Jesper Sejrup

    2013-01-01

    , including dopamine precursors and metabolites and other neurotransmitters (NT). Here we report an electrochemical RNA aptamer-based biosensor for analysis of dopamine in the presence of other NT. The biosensor exploits a specific binding of dopamine by the RNA aptamer, immobilized at a cysteamine...

  14. Imaging real-time HIV-1 virion fusion with FRET-based biosensors

    Science.gov (United States)

    Jones, Daniel M.; Padilla-Parra, Sergi

    2015-01-01

    We have produced a novel, simple and rapid method utilising genetically encodable FRET-based biosensors to permit the detection of HIV-1 virion fusion in living cells. These biosensors show high sensitivity both spatially and temporally, and allow the real-time recovery of HIV-1 fusion kinetics in both single cells and cell populations simultaneously. PMID:26300212

  15. A novel Laccase Biosensor based on Laccase immobilized Graphene-Cellulose Microfiber Composite modified Screen-Printed Carbon Electrode for Sensitive Determination of Catechol

    Science.gov (United States)

    Palanisamy, Selvakumar; Ramaraj, Sayee Kannan; Chen, Shen-Ming; Yang, Thomas C. K.; Yi-Fan, Pan; Chen, Tse-Wei; Velusamy, Vijayalakshmi; Selvam, Sonadevi

    2017-01-01

    In the present work, we demonstrate the fabrication of laccase biosensor to detect the catechol (CC) using laccase immobilized on graphene-cellulose microfibers (GR-CMF) composite modified screen printed carbon electrode (SPCE). The direct electrochemical behavior of laccase was investigated using laccase immobilized different modified SPCEs, such as GR/SPCE, CMF/SPCE and GR-CMF/SPCE. Compared with laccase immobilized GR and CMF modified SPCEs, a well-defined redox couple of CuI/CuII for laccase was observed at laccase immobilized GR-CMF composite modified SPCE. Cyclic voltammetry results show that the as-prepared biosensor has 7 folds higher catalytic activity with lower oxidation potential towards CC than SPCE modified with GR-CMF composite. Under optimized conditions, amperometric i-t method was used for the quantification of CC, and the amperometric response of the biosensor was linear over the concertation of CC ranging from 0.2 to 209.7 μM. The sensitivity, response time and the detection limit of the biosensor for CC is 0.932 μMμA−1 cm−2, 2 s and 0.085 μM, respectively. The biosensor has high selectivity towards CC in the presence of potentially active biomolecules and phenolic compounds. The biosensor also accessed for the detection of CC in different water samples and shows good practicality with an appropriate repea. PMID:28117357

  16. A novel Laccase Biosensor based on Laccase immobilized Graphene-Cellulose Microfiber Composite modified Screen-Printed Carbon Electrode for Sensitive Determination of Catechol.

    Science.gov (United States)

    Palanisamy, Selvakumar; Ramaraj, Sayee Kannan; Chen, Shen-Ming; Yang, Thomas C K; Yi-Fan, Pan; Chen, Tse-Wei; Velusamy, Vijayalakshmi; Selvam, Sonadevi

    2017-01-24

    In the present work, we demonstrate the fabrication of laccase biosensor to detect the catechol (CC) using laccase immobilized on graphene-cellulose microfibers (GR-CMF) composite modified screen printed carbon electrode (SPCE). The direct electrochemical behavior of laccase was investigated using laccase immobilized different modified SPCEs, such as GR/SPCE, CMF/SPCE and GR-CMF/SPCE. Compared with laccase immobilized GR and CMF modified SPCEs, a well-defined redox couple of Cu(I)/Cu(II) for laccase was observed at laccase immobilized GR-CMF composite modified SPCE. Cyclic voltammetry results show that the as-prepared biosensor has 7 folds higher catalytic activity with lower oxidation potential towards CC than SPCE modified with GR-CMF composite. Under optimized conditions, amperometric i-t method was used for the quantification of CC, and the amperometric response of the biosensor was linear over the concertation of CC ranging from 0.2 to 209.7 μM. The sensitivity, response time and the detection limit of the biosensor for CC is 0.932 μMμA(-1) cm(-2), 2 s and 0.085 μM, respectively. The biosensor has high selectivity towards CC in the presence of potentially active biomolecules and phenolic compounds. The biosensor also accessed for the detection of CC in different water samples and shows good practicality with an appropriate repea.

  17. A novel Laccase Biosensor based on Laccase immobilized Graphene-Cellulose Microfiber Composite modified Screen-Printed Carbon Electrode for Sensitive Determination of Catechol

    Science.gov (United States)

    Palanisamy, Selvakumar; Ramaraj, Sayee Kannan; Chen, Shen-Ming; Yang, Thomas C. K.; Yi-Fan, Pan; Chen, Tse-Wei; Velusamy, Vijayalakshmi; Selvam, Sonadevi

    2017-01-01

    In the present work, we demonstrate the fabrication of laccase biosensor to detect the catechol (CC) using laccase immobilized on graphene-cellulose microfibers (GR-CMF) composite modified screen printed carbon electrode (SPCE). The direct electrochemical behavior of laccase was investigated using laccase immobilized different modified SPCEs, such as GR/SPCE, CMF/SPCE and GR-CMF/SPCE. Compared with laccase immobilized GR and CMF modified SPCEs, a well-defined redox couple of CuI/CuII for laccase was observed at laccase immobilized GR-CMF composite modified SPCE. Cyclic voltammetry results show that the as-prepared biosensor has 7 folds higher catalytic activity with lower oxidation potential towards CC than SPCE modified with GR-CMF composite. Under optimized conditions, amperometric i-t method was used for the quantification of CC, and the amperometric response of the biosensor was linear over the concertation of CC ranging from 0.2 to 209.7 μM. The sensitivity, response time and the detection limit of the biosensor for CC is 0.932 μMμA‑1 cm‑2, 2 s and 0.085 μM, respectively. The biosensor has high selectivity towards CC in the presence of potentially active biomolecules and phenolic compounds. The biosensor also accessed for the detection of CC in different water samples and shows good practicality with an appropriate repea.

  18. NiO nanoparticle-based urea biosensor.

    Science.gov (United States)

    Tyagi, Manisha; Tomar, Monika; Gupta, Vinay

    2013-03-15

    NiO nanoparticles (NiO-NPs) have been exploited successfully for the fabrication of a urea biosensor. A thin film of NiO nanoparticles deposited on an indium tin oxide (ITO) coated glass substrate serves as an efficient matrix for the immobilisation of urease (Ur), the specific enzyme for urea detection. The prepared bioelectrode (Ur/NiO-NP/ITO/glass) is utilised for urea sensing using cyclic voltammetry and UV-visible spectroscopy. NiO nanoparticles act as electro-catalytic species that are based on the shuttling of electrons between Ni(2+) and Ni(3+) in the octahedral site and result in an enhanced electrochemical current response. The prepared bioelectrode (Ur/NiO-NPs/ITO/glass) exhibits a high sensitivity of 21.3 μA/(mM (*) cm(2)) and a good linearity in a wide range (0.83-16.65 Mm) of urea concentrations with fast response time of 5s. The low value of the Michaelis-Menten constant (K(m)=0.34 mM) indicates the high affinity of Ur towards the analyte (urea). The high catalytic activity, along with the redox behaviour of NiO-NPs, makes it an efficient matrix for the realisation of a urea biosensor.

  19. Escherichia coli bacteria detection by using graphene-based biosensor.

    Science.gov (United States)

    Akbari, Elnaz; Buntat, Zolkafle; Afroozeh, Abdolkarim; Zeinalinezhad, Alireza; Nikoukar, Ali

    2015-10-01

    Graphene is an allotrope of carbon with two-dimensional (2D) monolayer honeycombs. A larger detection area and higher sensitivity can be provided by graphene-based nanosenor because of its 2D structure. In addition, owing to its special characteristics, including electrical, optical and physical properties, graphene is known as a more suitable candidate compared to other materials used in the sensor application. A novel model employing a field-effect transistor structure using graphene is proposed and the current-voltage (I-V) characteristics of graphene are employed to model the sensing mechanism. This biosensor can detect Escherichia coli (E. coli) bacteria, providing high levels of sensitivity. It is observed that the graphene device experiences a drastic increase in conductance when exposed to E. coli bacteria at 0-10(5) cfu/ml concentration. The simple, fast response and high sensitivity of this nanoelectronic biosensor make it a suitable device in screening and functional studies of antibacterial drugs and an ideal high-throughput platform which can detect any pathogenic bacteria. Artificial neural network and support vector regression algorithms have also been used to provide other models for the I-V characteristic. A satisfactory agreement has been presented by comparison between the proposed models with the experimental data.

  20. A simple enzyme based biosensor on flexible plastic substrate

    Science.gov (United States)

    Kanakamedala, Senaka K.; Alshakhouri, Haidar T.; Agarwal, Mangilal; Fang, Ji; DeCoster, Mark A.

    2010-08-01

    An enzyme based biosensor was fabricated by employing a simple, inexpensive and rapid xurography fabrication process. The electrodes and channel were made from the conducting polymer poly(3,4-ethyelenedioxythiphene) poly(styrene sulfonate) (PEDOT:PSS). PEDOT:PSS was selectively deposited using a polyimide tape mask. The tape mask was peeled off from the substrate after annealing the polymer in vacuum. Polymer wells of defined dimensions were made and were attached to the device to accommodate the solutions. This sensor utilizes the change in current as a parameter to measure different analyte concentrations. Initial experiments were done by using the sensor for glucose detection. The sensor is able to detect the glucose concentrations approximately from 1 μM to 10 mM range covering glucose in human saliva (8-210 μM). The glucose oxidase activity was independently measured using colorimetric method and the results indicate that the sensor retains the enzyme activity and can be used as a biosensor to detect various analytes. The analyte of interest can be measured by preloading the corresponding enzyme into the wells.

  1. A global benchmark study using affinity-based biosensors

    DEFF Research Database (Denmark)

    Rich, Rebecca L; Papalia, Giuseppe A; Flynn, Peter J

    2009-01-01

    To explore the variability in biosensor studies, 150 participants from 20 countries were given the same protein samples and asked to determine kinetic rate constants for the interaction. We chose a protein system that was amenable to analysis using different biosensor platforms as well as by users...... the remaining panel of participants was 620 pM with a standard deviation of 980 pM. These results demonstrate that when this biosensor assay was designed and executed appropriately, the reported rate constants were consistent, and independent of which protein was immobilized and which biosensor was used....

  2. [Enzyme biosensors for penicillin determination based on conductometric planar electrodes and pH-sensitive field effect transistor].

    Science.gov (United States)

    Arkhipova, V N; Dziadevich, S V; Soldatkin, A P; El'skaia, A V

    1996-01-01

    The enzyme biosensors for penicillin determination based on conductometric planar electrodes and pH-sensitive field effect transistors have been described and their working parameters have been compared. The influence of pH, buffer capacity and ionic strength of the samples on the biosensors response has been studied. Short response time and high operational stability are characteristics of the developed biosensors.

  3. A novel conductometric biosensor based on hexokinase for determination of adenosine triphosphate.

    Science.gov (United States)

    Kucherenko, I S; Kucherenko, D Yu; Soldatkin, O O; Lagarde, F; Dzyadevych, S V; Soldatkin, A P

    2016-04-01

    The paper presents a simple and inexpensive reusable biosensor for determination of the concentration of adenosine-5'-triphosphate (ATP) in aqueous samples. The biosensor is based on a conductometric transducer which contains two pairs of gold interdigitated electrodes. An enzyme hexokinase was immobilized onto one pair of electrodes, and bovine serum albumin-onto another pair (thus, a differential mode of measurement was used). Conditions of hexokinase immobilization on the transducer by cross-linking via glutaraldehyde were optimized. Influence of experimental conditions (concentration of magnesium ions, ionic strength and concentration of the working buffer) on the biosensor work was studied. The reproducibility of biosensor responses and operational stability of the biosensor were checked during one week. Dry storage at -18 °C was shown to be the best conditions to store the biosensor. The biosensor was successfully applied for measurements of ATP concentration in pharmaceutical samples. The proposed biosensor may be used in future for determination of ATP and/or glucose in water samples.

  4. A global benchmark study using affinity-based biosensors

    NARCIS (Netherlands)

    Rich, Rebecca L.; Papalia, Giusseppe A.; Krishnamoorthy, Ganeshram; Beusink, Bianca; Pak, Brian J.; Myszka, David G.; more, more

    2009-01-01

    To explore the variability in biosensor studies, 150 participants from 20 countries were given the same protein samples and asked to determine kinetic rate constants for the interaction. We chose a protein system that was amenable to analysis using different biosensor platforms as well as by users o

  5. Laccase biosensors based on different enzyme immobilization strategies for phenolic compounds determination.

    Science.gov (United States)

    Casero, E; Petit-Domínguez, M D; Vázquez, L; Ramírez-Asperilla, I; Parra-Alfambra, A M; Pariente, F; Lorenzo, E

    2013-10-15

    Different enzyme immobilization approaches of Trametes versicolor laccase (TvL) onto gold surfaces and their influence on the performance of the final bioanalytical platforms are described. The laccase immobilization methods include: (i) direct adsorption onto gold electrodes (TvL/Au), (ii) covalent attachment to a gold surface modified with a bifunctional reagent, 3,3'-Dithiodipropionic acid di (N-succinimidyl ester) (DTSP), and (iii) integration of the enzyme into a sol-gel 3D polymeric network derived from (3-mercaptopropyl)-trimethoxysilane (MPTS) previously formed onto a gold surface (TvL/MPTS/Au). The characterization and applicability of these biosensors are described. Characterization is performed in aqueous acetate buffer solutions using atomic force microscopy (AFM), providing valuable information concerning morphological data at the nanoscale level. The response of the three biosensing platforms developed, TvL/Au, TvL/DTSP/Au and TvL/MPTS/Au, is evaluated in the presence of hydroquinone (HQ), used as a phenolic enzymatic substrate. All systems exhibit a clear electrocatalytic activity and HQ can be amperometrically determined at -0.10 V versus Ag/AgCl. However, the performance of biosensors - evaluated in terms of sensitivity, detection limit, linear response range, reproducibility and stability - depends clearly on the enzyme immobilization strategy, which allows establishing its influence on the enzyme catalytic activity.

  6. Amperometric immunosensor for {alpha}-fetoprotein antigen in human serum based on co-immobilizing dinuclear copper complex and gold nanoparticle doped chitosan film

    Energy Technology Data Exchange (ETDEWEB)

    Gan Ning; Meng Linghua; Wang Feng [State Key Laboratory Base of Novel Functional Materials and Preparation science, Faculty of Material Science and Chemical Engineering of Ninbo University, Ningbo, 315211 (China)], E-mail: ganning@nbu.edu.cn

    2009-09-01

    A sensitive amperometric immunosensor for {alpha}-fetoprotein (AFP), a tumor marker for the diagnosis of hepatocellular carcinoma (HCC), was constructed, The immunosensor is prepared by co-immobilizing [Cu{sub 2}(phen){sub 2}Cl{sub 2}] ({mu}-Cl){sub 2} (CuL), nano-Au/Chitosan(Chit) composite, horseradish peroxidase (HRP) and AFP antibody(anti-AFP) on a glassy carbon electrode (GCE). Firstly, CuL was irreversibly absorb on GCE electrode through {pi}-{pi} stacking interaction; then nano-Au/Chit composite was immobilized onto the electrode because of its excellent membrane-forming ability, finally HRP and anti-AFP was adsorbed onto the surface of the gold nanoparticles to construct GCE | CuL/nanoAu-chit/HRP/anti-AFP immunosensor. The preparation procedure of the electrode was characterized by electrochemical and spectroscopy method. The results showed that this immunosensor exhibited an excellent electrocatalytic response to the reduction of hydrogen peroxide (H{sub 2}O{sub 2}) without the aid of an electron mediator, offers a high-sensitivity (1710 nA {center_dot} ng{sup -1} {center_dot} ml{sup -1}) for the detection of AFP and has good correlation for detection of AFP in the range of 0.2 to 120.0 ng/ml with a detection limit of 0.05 ng/ml. The biosensor showed high selectivity as well as good stability and reproductivity.

  7. Diagnosis of Dengue Infection Using Conventional and Biosensor Based Techniques

    Directory of Open Access Journals (Sweden)

    Om Parkash

    2015-10-01

    Full Text Available Dengue is an arthropod-borne viral disease caused by four antigenically different serotypes of dengue virus. This disease is considered as a major public health concern around the world. Currently, there is no licensed vaccine or antiviral drug available for the prevention and treatment of dengue disease. Moreover, clinical features of dengue are indistinguishable from other infectious diseases such as malaria, chikungunya, rickettsia and leptospira. Therefore, prompt and accurate laboratory diagnostic test is urgently required for disease confirmation and patient triage. The traditional diagnostic techniques for the dengue virus are viral detection in cell culture, serological testing, and RNA amplification using reverse transcriptase PCR. This paper discusses the conventional laboratory methods used for the diagnosis of dengue during the acute and convalescent phase and highlights the advantages and limitations of these routine laboratory tests. Subsequently, the biosensor based assays developed using various transducers for the detection of dengue are also reviewed.

  8. Dual detection biosensor based on porous silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Simion, Monica, E-mail: moni304ro@yahoo.com; Kusko, Mihaela; Mihalache, Iuliana; Brăgaru, Adina

    2013-11-20

    Due to the high surface-to-volume ratio (hundreds of m{sup 2}/cm{sup 3}) porous silicon became during the last years a good candidate material as substrate for biosensor application. Moreover, the versatility of surface chemistry allows different functionalization approaches and large number of molecules to be captured on well-defined areas. This paper reports a dual detection method for protein recognition processes developed on different nanostructured porous silicon (PS) substrates, based on using two complementary spectroscopic techniques: fluorescence and electrochemical impedance. The structures were tested for biomolecular recognition – biotin–strepavidin couples – in order to achieve an optimum surface for protein's immobilizations. Comparative analyses of the attachment degree and preservation of the biomolecules activity on the porous silicon surfaces and silicon slides are also described.

  9. Ultrasensitive electrochemical cocaine biosensor based on reversible DNA nanostructure.

    Science.gov (United States)

    Sheng, Qinglin; Liu, Ruixiao; Zhang, Sai; Zheng, Jianbin

    2014-01-15

    We proposed an ultrasensitive electrochemical cocaine biosensor based on the three-dimensional (3D) DNA structure conversion of nanostructure from Triangular Pyramid Frustum (TPFDNA) to Equilateral Triangle (ETDNA). The presence of cocaine triggered the aptamer-composed DNA nanostructure change from "Close" to "Open", leading to obvious faradaic impedance changes. The unique properties with excellent stability and specific rigid structure of the 3D DNA nanostructure made the biosensing functions stable, sensitive, and regenerable. The Faradaic impedance responses were linearly related to cocaine concentration between 1.0 nM and 2.0 μM with a correlation coefficient of 0.993. The limit of detection was calculated to be 0.21 nM following IUPAC recommendations (3Sb/b). It is expected that the distinctive features of DNA nanostructure would make it potentially advantageous for a broad range of biosensing, bionanoelectronics, and therapeutic applications.

  10. Function-based Biosensor for Hazardous Waste Toxin Detection

    Energy Technology Data Exchange (ETDEWEB)

    James J Hickman

    2008-07-09

    There is a need for new types of toxicity sensors in the DOE and other agencies that are based on biological function as the toxins encountered during decontamination or waste remediation may be previously unknown or their effects subtle. Many times the contents of the environmental waste, especially the minor components, have not been fully identified and characterized. New sensors of this type could target unknown toxins that cause death as well as intermediate levels of toxicity that impair function or cause long term impairment that may eventually lead to death. The primary question posed in this grant was to create an electronically coupled neuronal cellular circuit to be used as sensor elements for a hybrid non-biological/biological toxin sensor system. A sensor based on the electrical signals transmitted between two mammalian neurons would allow the marriage of advances in solid state electronics with a functioning biological system to develop a new type of biosensor. Sensors of this type would be a unique addition to the field of sensor technology but would also be complementary to existing sensor technology that depends on knowledge of what is to be detected beforehand. We integrated physics, electronics, surface chemistry, biotechnology, and fundamental neuroscience in the development of this biosensor. Methods were developed to create artificial surfaces that enabled the patterning of discrete cells, and networks of cells, in culture; the networks were then aligned with transducers. The transducers were designed to measure electromagnetic fields (EMF) at low field strength. We have achieved all of the primary goals of the project. We can now pattern neurons routinely in our labs as well as align them with transducers. We have also shown the signals between neurons can be modulated by different biochemicals. In addition, we have made another significant advance where we have repeated the patterning results with adult hippocampal cells. Finally, we

  11. Nanoelectrode and nanoparticle based biosensors for environmental and health monitoring

    Science.gov (United States)

    Syed, Lateef Uddin

    Reduction in electrode size down to nanometers dramatically enhances the detection sensitivity and temporal resolution. Here we explore nanoelectrode arrays (NEAs) and nanoparticles in building high performance biosensors. Vertically aligned carbon nanofibers (VACNFs) of diameter ˜100 nm were grown on a Si substrate using plasma enhanced chemical vapor deposition. SiO2 embedded CNF NEAs were then fabricated using techniques like chemical vapor deposition, mechanical polishing, and reactive ion etching, with CNF tips exposed at the final step. The effect of the interior structure of CNFs on electron transfer rate (ETR) was investigated by covalently attaching ferrocene molecules to the exposed end of CNFs. Anomalous differences in the ETR were observed between DC voltammetry (DCV) and AC voltammetry (ACV). The findings from this study are currently being extended to develop an electrochemical biosensor for the detection of cancerous protease (legumain). Preliminary results with standard macro glassy carbon electrodes show a significant decrease in ACV signal, which is encouraging. In another study, NEA was employed to capture and detect pathogenic bacteria using AC dielectrophoresis (DEP) and electrochemical impedance spectroscopy (EIS). A nano-DEP device was fabricated using photolithography processes to define a micro patterned exposed active region on NEA and a microfluidic channel on macro-indium tin oxide electrode. Enhanced electric field gradient at the exposed CNF tips was achieved due to the nanometer size of the electrodes, because of which each individual exposed tip can act as a potential DEP trap to capture the pathogen. Significant decrease in the absolute impedance at the NEA was also observed by EIS experiments. In a final study, we modified gold nanoparticles (GNPs) with luminol to develop chemiluminescence (CL) based blood biosensor. Modified GNPs were characterized by UV-Vis, IR spectroscopy and TEM. We have applied this CL method for the

  12. BOD biosensor based on the yeast Debaryomyces hansenii immobilized in poly(vinyl alcohol) modified by N-vinylpyrrolidone.

    Science.gov (United States)

    Arlyapov, V A; Yudina, N Yu; Asulyan, L D; Alferov, S V; Alferov, V A; Reshetilov, A N

    2013-09-10

    An amperometric biosensor for assessing the biochemical oxygen demand (BOD) was formed by immobilizing Debaryomyces hansenii VKM Y-2482 yeast cells in poly(vinyl alcohol) modified by N-vinylpyrrolidone. Modification provided for a high sensitivity and stability of the bioreceptor. A high oxidative activity of the receptor element and the absence of any toxic effect of assayed compounds were shown for 34 substrates (alcohols, carbohydrates, carboxylic acids, amino acids, nitrophenols and surfactants) that may occur in wastewaters. Estimates of the measurement range and region of the linear dependence of signals on the BOD level, pH and temperature sensitivities, dependences of signals on concentrations of salts, stability, Michaelis kinetic constants and assay rates were obtained. The BOD values determined by the biosensor in assayed wastewater samples were shown to have a high correlation with those obtained by the standard dilution method.

  13. Biosensors based on enzyme field-effect transistors for determination of some substrates and inhibitors.

    Science.gov (United States)

    Dzyadevych, Sergei V; Soldatkin, Alexey P; Korpan, Yaroslav I; Arkhypova, Valentyna N; El'skaya, Anna V; Chovelon, Jean-Marc; Martelet, Claude; Jaffrezic-Renault, Nicole

    2003-10-01

    This paper is a review of the authors' publications concerning the development of biosensors based on enzyme field-effect transistors (ENFETs) for direct substrates or inhibitors analysis. Such biosensors were designed by using immobilised enzymes and ion-selective field-effect transistors (ISFETs). Highly specific, sensitive, simple, fast and cheap determination of different substances renders them as promising tools in medicine, biotechnology, environmental control, agriculture and the food industry. The biosensors based on ENFETs and direct enzyme analysis for determination of concentrations of different substrates (glucose, urea, penicillin, formaldehyde, creatinine, etc.) have been developed and their laboratory prototypes were fabricated. Improvement of the analytical characteristics of such biosensors may be achieved by using a differential mode of measurement, working solutions with different buffer concentrations and specific agents, negatively or positively charged additional membranes, or genetically modified enzymes. These approaches allow one to decrease the effect of the buffer capacity influence on the sensor response in an aim to increase the sensitivity of the biosensors and to extend their dynamic ranges. Biosensors for the determination of concentrations of different toxic substances (organophosphorous pesticides, heavy metal ions, hypochlorite, glycoalkaloids, etc.) were designed on the basis of reversible and/or irreversible enzyme inhibition effect(s). The conception of an enzymatic multibiosensor for the determination of different toxic substances based on the enzyme inhibition effect is also described. We will discuss the respective advantages and disadvantages of biosensors based on the ENFETs developed and also demonstrate their practical application.

  14. Functionalization and Characterization of Nanomaterial Gated Field-Effect Transistor-Based Biosensors and the Design of a Multi-Analyte Implantable Biosensing Platform

    Science.gov (United States)

    Croce, Robert A., Jr.

    Advances in semiconductor research and complementary-metal-oxide semiconductor fabrication allow for the design and implementation of miniaturized metabolic monitoring systems, as well as advanced biosensor design. The first part of this dissertation will focus on the design and fabrication of nanomaterial (single-walled carbon nanotube and quantum dot) gated field-effect transistors configured as protein sensors. These novel device structures have been functionalized with single-stranded DNA aptamers, and have shown sensor operation towards the protein Thrombin. Such advanced transistor-based sensing schemes present considerable advantages over traditional sensing methodologies in view of its miniaturization, low cost, and facile fabrication, paving the way for the ultimate realization of a multi-analyte lab-on-chip. The second part of this dissertation focuses on the design and fabrication of a needle-implantable glucose sensing platform which is based solely on photovoltaic powering and optical communication. By employing these powering and communication schemes, this design negates the need for bulky on-chip RF-based transmitters and batteries in an effort to attain extreme miniaturization required for needle-implantable/extractable applications. A complete single-sensor system coupled with a miniaturized amperometric glucose sensor has been demonstrated to exhibit reality of this technology. Furthermore, an optical selection scheme of multiple potentiostats for four different analytes (glucose, lactate, O 2 and CO2) as well as the optical transmission of sensor data has been designed for multi-analyte applications. The last part of this dissertation will focus on the development of a computational model for the amperometric glucose sensors employed in the aforementioned implantable platform. This model has been applied to single-layer single-enzyme systems, as well as multi-layer (single enzyme) systems utilizing glucose flux limiting layer-by-layer assembled

  15. Graphene oxide- thionine and gold nanoparticles- functionalized amperometric biosensor for determination of glucose%氧化石墨烯-硫堇及纳米金修饰玻碳电极电流型葡萄糖生物传感器的研究

    Institute of Scientific and Technical Information of China (English)

    李岩; 唐点平

    2011-01-01

    以玻碳电极为基底,在电极表面修饰一层氧化石墨烯-硫堇(GO -Th)薄膜,通过层层自组装方式,将纳米金和葡萄糖氧化酶(GOD)固定在玻碳电极表面,制得一种新型电流型葡萄糖生物传感器.在优化的实验条件下,该生物传感器对葡萄糖的线性响应范围为1.0×10-9 ~5.7×10-5 mol·L-1,检测下限为5.0×10-10mol·L-1.该传感器具有制备方法简单、灵敏度高、稳定性好等特点.%A new amperometric biosensor for the determination of glucose was proposed by using gold nanoparticles and graphene oxide - thionine conjugates as matrices. Thionine molecules were initially adsorbed onto the surface of graphene oxide via π -π binding reaction, then the thionine - graphene conjugations were immobilized on a glassy carbon electrode, which were used for the adsorption of gold nanoparticles, and then glucose oxidase was conjugated onto the gold nanoparticles. Under optimal conditions, the biosensor exhibited a wide linear range of 1.0×10-9 ~5.7×10-5 mol ? L-1 with a low detection limit of 5.2 ×10-10 mol ? L-1 glucose (at S/N = 3). In addition, the stability, repro ducibility and stability of the biosensor was acceptable.

  16. Bi nanowire-based thermal biosensor for the detection of salivary cortisol using the Thomson effect

    Science.gov (United States)

    Lee, Seunghyun; Hyun Lee, Jung; Kim, MinGin; Kim, Jeongmin; Song, Min-Jung; Jung, Hyo-Il; Lee, Wooyoung

    2013-09-01

    We present a study of a thermal biosensor based on bismuth nanowire that is fabricated for the detection of the human stress hormone cortisol using the Thomson effect. The Bi nanowire was grown using the On-Film Formation of Nanowires (OFF-ON) method. The thermal device was fabricated using photolithography, and the sensing area was modified with immobilized anti-cortisol antibodies conjugated with protein G for the detection of cortisol. The voltages were measured with two probe tips during surface modification to investigate the biochemical reactions in the fabricated thermal biosensor. The Bi nanowire-based thermal biosensor exhibited low detection limit and good selectivity for the detection of cortisol.

  17. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Sun, Ying; Ma, Pinyi; Zhang, Di; Li, Shuo; Wang, Xinghua; Song, Daqian, E-mail: songdq@jlu.edu.cn

    2016-03-24

    A new high-sensitivity surface plasmon resonance (SPR) biosensor based on biofunctional gold nanostars (AuNSs) and carboxyl-functionalized graphene oxide (cGO) sheets was described. Compared with spherical gold nanoparticles (AuNPs), the anisotropic structure of AuNSs, which concentrates the electric charge density on its sharp tips, could enhance the local electromagnetic field and the electronic coupling effect significantly. cGO was obtained by a diazonium reaction of graphene oxide (GO) with 4-aminobenzoic acid. Compared with GO, cGO could immobilize more antibodies due to the abundant carboxylic groups on its surface. Testing results show that there are fairly large improvements in the analytical performance of the SPR biosensor using cGO/AuNSs-antigen conjugate, and the detection limit of the proposed biosensor is 0.0375 μg mL{sup −1}, which is 32 times lower than that of graphene oxide-based biosensor. - Highlights: • A sensitive and versatile SPR biosensor was constructed for detection of pig IgG. • Biofunctional gold nanostars were used to amplify the response signals. • The strategy employed carboxyl-functionalized graphene oxide as biosensing substrate. • The detection limit of the proposed biosensor is 32 times lower than that of graphene oxide-based biosensor.

  18. Optical detection of sepsis markers using liquid crystal based biosensors

    Science.gov (United States)

    McCamley, Maureen K.; Artenstein, Andrew W.; Opal, Steven M.; Crawford, Gregory P.

    2007-02-01

    A liquid crystal based biosensor for the detection and diagnosis of sepsis is currently in development. Sepsis, a major clinical syndrome with a significant public health burden in the US due to a large elderly population, is the systemic response of the body to a localized infection and is defined as the combination of pathologic infection and physiological changes. Bacterial infections are responsible for 90% of cases of sepsis in the US. Currently there is no bedside diagnostic available to positively identify sepsis. The basic detection scheme employed in a liquid crystal biosensor contains attributes that would find value in a clinical setting, especially for the early detection of sepsis. Utilizing the unique properties of liquid crystals, such as birefringence, a bedside diagnostic is in development which will optically report the presence of biomolecules. In a septic patient, an endotoxin known as lipopolysaccharide (LPS) is released from the outer membrane of Gram-negative bacteria and can be found in the blood stream. It is hypothesized that this long chained molecule will cause local disruptions to the open surface of a sensor containing aligned liquid crystal. The bulk liquid crystal ampli.es these local changes at the surface due to the presence of the sepsis marker, providing an optical readout through polarizing microscopy images. Liquid crystal sensors consisting of both square and circular grids, 100-200 μm in size, have been fabricated and filled with a common liquid crystal material, 5CB. Homeotropic alignment was confirmed using polarizing microscopy. The grids were then contacted with either saline only (control), or saline with varying concentrations of LPS. Changes in the con.guration of the nematic director of the liquid crystal were observed through the range of concentrations tested (5mg/mL - 1pg/mL) which have been confirmed by a consulting physician as clinically relevant levels.

  19. Electrochemical affinity biosensors for detection of mycotoxins: A review.

    Science.gov (United States)

    Vidal, Juan C; Bonel, Laura; Ezquerra, Alba; Hernández, Susana; Bertolín, Juan R; Cubel, Carlota; Castillo, Juan R

    2013-11-15

    This review discusses the current state of electrochemical biosensors in the determination of mycotoxins in foods. Mycotoxins are highly toxic secondary metabolites produced by molds. The acute toxicity of these results in serious human and animal health problems, although it has been only since early 1960s when the first studied aflatoxins were found to be carcinogenic. Mycotoxins affect a broad range of agricultural products, most important cereals and cereal-based foods. A majority of countries, mentioning especially the European Union, have established preventive programs to control contamination and strict laws of the permitted levels in foods. Official methods of analysis of mycotoxins normally requires sophisticated instrumentation, e.g. liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. For about sixteen years, the use of simpler and faster analytical procedures based on affinity biosensors has emerged in scientific literature as a very promising alternative, particularly electrochemical (i.e., amperometric, impedance, potentiometric or conductimetric) affinity biosensors due to their simplicity and sensitivity. Typically, electrochemical biosensors for mycotoxins use specific antibodies or aptamers as affinity ligands, although recombinant antibodies, artificial receptors and molecular imprinted polymers show potential utility. This article deals with recent advances in electrochemical affinity biosensors for mycotoxins and covers complete literature from the first reports about sixteen years ago.

  20. A Nafion®-based co-planar electrode amperometric sensor for methanol determination in the gas phase

    Indian Academy of Sciences (India)

    K Wallgren; S Sotiropoulos

    2009-09-01

    A co-planar electrode device, fabricated with all electrodes (working, counter and reference) on the same face of a Nafion® polymer electrolyte membrane, is proposed for the amperometric detection of gaseous methanol using Pt as the working electrode. Clear voltammetry is obtained for methanol oxidation from its vapours in equilibrium with methanol aqueous solutions, both in the absence and presence of oxygen in the gas stream. Using an appropriate pulse sequence to keep the indicator electrode active, methanol vapours in the 1-13 Torr partial pressure range (in equilibrium with methanol aqueous solutions in the 1-10% w/w concentration range) could be determined, in a constant potential, amperometric mode. The methanol detector could be operated both in a nitrogen stream and (in what is essential for practical applications) in an air atmosphere too, with estimated detection limits of 1.2 and 1.4 Torr respectively.

  1. Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications.

    Science.gov (United States)

    Kurbanoglu, Sevinc; Ozkan, Sibel A; Merkoçi, Arben

    2017-03-15

    In recent years great progress has been made in applying nanomaterials to design novel biosensors. Use of nanomaterials offers to biosensing platforms exceptional optical, electronic and magnetic properties. Nanomaterials can increase the surface of the transducing area of the sensors that in turn bring an increase in catalytic behaviors. They have large surface-to-volume ratio, controlled morphology and structure that also favor miniaturization, an interesting advantage when the sample volume is a critical issue. Biosensors have great potential for achieving detect-to-protect devices: devices that can be used in detections of pollutants and other treating compounds/analytes (drugs) protecting citizens' life. After a long term focused scientific and financial efforts/supports biosensors are expected now to fulfill their promise such as being able to perform sampling and analysis of complex samples with interest for clinical or environment fields. Among all types of biosensors, enzymatic biosensors, the most explored biosensing devices, have an interesting property, the inherent inhibition phenomena given the enzyme-substrate complex formation. The exploration of such phenomena is making remarkably important their application as research and applied tools in diagnostics. Different inhibition biosensor systems based on nanomaterials modification has been proposed and applied. The role of nanomaterials in inhibition-based biosensors for the analyses of different groups of drugs as well as contaminants such as pesticides, phenolic compounds and others, are discussed in this review. This deep analysis of inhibition-based biosensors that employ nanomaterials will serve researchers as a guideline for further improvements and approaching of these devices to real sample applications so as to reach society needs and such biosensor market demands.

  2. Oligonucleotide-based biosensors for in vitro diagnostics and environmental hazard detection.

    Science.gov (United States)

    Jung, Il Young; Lee, Eun Hee; Suh, Ah Young; Lee, Seung Jin; Lee, Hyukjin

    2016-04-01

    Oligonucleotide-based biosensors have drawn much attention because of their broad applications in in vitro diagnostics and environmental hazard detection. They are particularly of interest to many researchers because of their high specificity as well as excellent sensitivity. Recently, oligonucleotide-based biosensors have been used to achieve not only genetic detection of targets but also the detection of small molecules, peptides, and proteins. This has further broadened the applications of these sensors in the medical and health care industry. In this review, we highlight various examples of oligonucleotide-based biosensors for the detection of diseases, drugs, and environmentally hazardous chemicals. Each example is provided with detailed schematics of the detection mechanism in addition to the supporting experimental results. Furthermore, future perspectives and new challenges in oligonucleotide-based biosensors are discussed.

  3. The progress of olfactory transduction and biomimetic olfactory-based biosensors

    Institute of Scientific and Technical Information of China (English)

    WU ChunSheng; WANG LiJiang; ZHOU Jun; ZHAO LuHang; WANG Ping

    2007-01-01

    Olfaction is a very important sensation for all animals. Recently great progress has been made in the research of olfactory transduction. Especially the novel finding of the gene superfamily encoding olfactory receptors has led to rapid advances in olfactory transduction. These advances also promoted the research of biomimetic olfactory-based biosensors and some obvious achievements have been obtained due to their potential commercial prospects and promising industrial applications. This paper briefly introduces the biological basis of olfaction, summarizes the progress of olfactory signal transduction in the olfactory neuron, the olfactory bulb and the olfactory cortex, outlines the latest developments and applications of biomimetic olfactory-based biosensors. Finally, the olfactory biosensor based on light addressable potentiometric sensor (LAPS) is addressed in detail based on our recent work and the research trends of olfactory biosensors in future are discussed.

  4. A Bioanalytical Chemistry Experiment for Undergraduate Students: Biosensors Based on Metal Nanoparticles

    Science.gov (United States)

    Niagi, John; Warner, John; Andreesco, Silvana

    2007-01-01

    The study describes the development of new biosensors based on metal nanoparticles because of its high surface area and large binding ability. The adopted procedure is extremely simple and versatile and can be used in various applications of electrochemistry.

  5. Electrochemical and optical biosensors based on nanomaterials and nanostructures: a review.

    Science.gov (United States)

    Li, Ming; Li, Rui; Li, Chang Ming; Wu, Nianqiang

    2011-06-01

    Nanomaterials and nanostructures exhibit unique size-tunable and shape-dependent physicochemical properties that are different from those of bulk materials. Advances of nanomaterials and nanostructures open a new door to develop various novel biosensors. The present work has reviewed the recent progress in electrochemical, surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS) and fluorescent biosensors based on nanomaterials and nanostructures. An emphasis is put on the research that demonstrates how the performance of biosensors such as the limit of detection, sensitivity and selectivity is improved by the use of nanomaterials and nanostructures.

  6. Whole-cell Gluconobacter oxydans biosensor for 2-phenylethanol biooxidation monitoring.

    Science.gov (United States)

    Schenkmayerová, Andrea; Bertóková, Anikó; Sefčovičová, Jana; Stefuca, Vladimír; Bučko, Marek; Vikartovská, Alica; Gemeiner, Peter; Tkáč, Ján; Katrlík, Jaroslav

    2015-01-07

    A microbial biosensor for 2-phenylethanol (2-PE) based on the bacteria Gluconobacter oxydans was developed and applied in monitoring of a biotechnological process. The cells of G. oxydans were immobilized within a disposable polyelectrolyte complex gel membrane consisting of sodium alginate, cellulose sulphate and poly(methylene-co-guanidine) attached onto a miniaturized Clark oxygen electrode, forming whole cell amperometric biosensor. Measured changes in oxygen concentration were proportional to changes in 2-PE concentration. The biosensor sensitivity was 864 nA mM(-1) (RSD=6%), a detection limit of 1 μM, and the biosensor response towards 2-PE was linear in the range 0.02-0.70 mM. The biosensor preserved 93% of its initial sensitivity after 7h of continuous operation and exhibited excellent storage stability with loss of only 6% of initial sensitivity within two months, when stored at 4°C. The developed system was designed and successfully used for an off-line monitoring of whole course of 2-PE biooxidation process producing phenylacetic acid (PA) as industrially valuable aromatic compound. The biosensor measurement did not require the use of hazardous organic solvent. The biosensor response to 2-PE was not affected by interferences from PA and phenylacetaldehyde at concentrations present in real samples during the biotransformation and the results were in a very good agreement with those obtained via gas chromatography.

  7. Immune biosensors based on the SPR and TIRE: efficiency of their application for bacteria determination

    Science.gov (United States)

    Starodub, N. F.; Ogorodniichuk, J.; Lebedeva, T.; Shpylovyy, P.

    2013-11-01

    In this work we have designed high-specific biosensors for Salmonella typhimurium detection based on the surface plasmon resonance (SPR) and total internal reflection ellipsometry (TIRE). It has been demonstrated high selectivity and sensitivity of analysis. As a registering part for our experiments the Spreeta (USA) and "Plasmonotest" (Ukraine) with flowing cell have been applied among of SPR device. Previous researches confirmed an efficiency of SPR biosensors using for detecting of specific antigen-antibody interactions therefore this type of reactions with some previous preparations of surface binding layer was used as reactive part. It has been defined that in case with Spreeta sensitivity was on the level 103 - 107 cells/ml. Another biosensor based on the SPR has shown the sensitivity within 101 - 106 cells/ml. Maximal sensitivity was on the level of several cells in 10 ml (up to the fact that less than 5 cells) which has been obtained using the biosensor based on TIRE.

  8. Surface plasmon resonance based biosensor: A new platform for rapid diagnosis of livestock diseases

    Directory of Open Access Journals (Sweden)

    Pravas Ranjan Sahoo

    2016-12-01

    Full Text Available Surface plasmon resonance (SPR based biosensors are the most advanced and developed optical label-free biosensor technique used for powerful detection with vast applications in environmental protection, biotechnology, medical diagnostics, drug screening, food safety, and security as well in livestock sector. The livestock sector which contributes the largest economy of India, harbors many bacterial, viral, and fungal diseases impacting a great loss to the production and productive potential which is a major concern in both small and large ruminants. Hence, an accurate, sensitive, and rapid diagnosis is required for prevention of these above-mentioned diseases. SPR based biosensor assay may fulfill the above characteristics which lead to a greater platform for rapid diagnosis of different livestock diseases. Hence, this review may give a detail idea about the principle, recent development of SPR based biosensor techniques and its application in livestock sector.

  9. Bioelectrochemical response of a choline biosensor fabricated by using polyaniline

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    On the basis of the isoelectric point of an enzyme and the doping principle of conducting polymers,choline oxidase was doped in a polyaniline film to form a biosensor. The amperometric detection of choline is based on the oxidation of the H2O2 enzymatically produced on the choline biosensor. The response current of the biosensor as a function of temperature was determined from 3 to 40℃. An apparent activation energy of 22.8 kJ·mol-1 was obtained. The biosensor had a wide linear response range from 5 × 10-7 to 1 × 10-4 M choline with a correlation coefficient of 0.9999 and a detection limit of 0.2 μM,and had a high sensitivity of 61.9 mA·M-1·cm-2 at 0.50 V and at pH 8.0. The apparent Michaelis constant and the optimum pH for the immobilized enzyme are 1.4 mM choline and 8.4,respectively,which are very close to those of choline oxidase in solution. The effect of selected organic compounds on the response of the choline biosensor was studied.

  10. Electrochemical biosensors based on nanofibres for cardiac biomarker detection: A comprehensive review.

    Science.gov (United States)

    Rezaei, Babak; Ghani, Mozhdeh; Shoushtari, Ahmad Mousavi; Rabiee, Mohammad

    2016-04-15

    The vital importance of early and accurate diagnosis of cardiovascular diseases (CVDs) to prevent the irreversible damage or even death of patients has driven the development of biosensor devices for detection and quantification of cardiac biomarkers. Electrochemical biosensors offer rapid sensing, low cost, portability and ease of use. Over the past few years, nanotechnology has contributed to a tremendous improvement in the sensitivity of biosensors. In this review, the authors summarise the state-of-the-art of the application of one particular type of nanostructured material, i.e. nanofibres, for use in electrochemical biosensors for the ultrasensitive detection of cardiac biomarkers. A new way of classifying the nanofibre-based electrochemical biosensors according to the electrical conductance and the type of nanofibres is presented. Some key data from each article reviewed are highlighted, including the mechanism of detection, experimental conditions and the response range of the biosensor. The primary aim of this review is to emphasise the prospects for nanofibres for the future development of biosensors in diagnosis of CVDs as well as considering how to improve their characteristics for application in medicine.

  11. Enzyme-linked, aptamer-based, competitive biolayer interferometry biosensor for palytoxin.

    Science.gov (United States)

    Gao, Shunxiang; Zheng, Xin; Hu, Bo; Sun, Mingjuan; Wu, Jihong; Jiao, Binghua; Wang, Lianghua

    2017-03-15

    In this study, we coupled biolayer interferometry (BLI) with competitive binding assay through an enzyme-linked aptamer and developed a real-time, ultra-sensitive, rapid quantitative method for detection of the marine biotoxin palytoxin. Horseradish peroxidase-labeled aptamers were used as biorecognition receptors to competitively bind with palytoxin, which was immobilized on the biosensor surface. The palytoxin: horseradish peroxidase-aptamer complex was then submerged in a 3,3'-diaminobenzidine solution, which resulted in formation of a precipitated polymeric product directly on the biosensor surface and a large change in the optical thickness of the biosensor layer. This change could obviously shift the interference pattern and generate a response profile on the BLI biosensor. The biosensor showed a broad linear range for palytoxin (200-700pg/mL) with a low detection limit (0.04pg/mL). Moreover, the biosensor was applied to the detection of palytoxin in spiked extracts and showed a high degree of selectivity for palytoxin, good reproducibility, and stability. This enzyme-linked, aptamer-based, competitive BLI biosensor offers a promising method for rapid and sensitive detection of palytoxin and other analytes.

  12. FLOW INJECTION AMPEROMETRIC DETECTION OF OP NERVE AGENTS BASED ON AN ORGANOPHOSPHORUS-HYDROLASE BIOSENSOR DETECTOR. (R828160)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  13. Amperometric Biosensors Sensitive to Organic Peroxides Based on Immobilization of Redox Organic Dyes and Horseradish Peroxidase in Polyester Ionomer Film

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Peroxides Based on Immobilization of Redox Organic Dyes and Horseradish Peroxidase in Polyester Ionomer FilmTX1IntroductionOrg...

  14. A Hydrogen Peroxide Sensor Prepared by Electropolymerization of Pyrrole Based on Screen-Printed Carbon Paste Electrodes

    OpenAIRE

    Hui Xu; You Wang; Guang Li

    2007-01-01

    A disposable amperometric biosensor for commercial use to detect hydrogen peroxide has been developed. The sensor is based on screen-printed carbon paste electrodes modified by electropolymerization of pyrrole with horseradish peroxidase (HRP) entrapped. The facture techniques of fabricating the enzyme electrodes are suitable for mass production and quality control. The biosensor shows a linear amperometric response to H2O2 from 0.1 to 2.0 mM, with a sensitivity of 33.24 µA mM-1 cm-2. Differe...

  15. A Hydrogen Peroxide Sensor Prepared by Electropolymerization of Pyrrole Based on Screen-Printed Carbon Paste Electrodes

    Directory of Open Access Journals (Sweden)

    Hui Xu

    2007-03-01

    Full Text Available A disposable amperometric biosensor for commercial use to detect hydrogenperoxide has been developed. The sensor is based on screen-printed carbon paste electrodesmodified by electropolymerization of pyrrole with horseradish peroxidase (HRP entrapped.The facture techniques of fabricating the enzyme electrodes are suitable for mass productionand quality control. The biosensor shows a linear amperometric response to H2O2 from 0.1to 2.0 mM, with a sensitivity of 33.24 μA mM-1 cm-2. Different operational parameters ofelectropolymerization are evaluated and optimized.

  16. Fundamental Aspects of Biosensors

    Directory of Open Access Journals (Sweden)

    K.Sowjanya

    2016-06-01

    Full Text Available A biosensor is an analytical device which converts a biological response into an electrical signal. The term 'biosensor' is often used to cover sensor devices used in order to determine the concentration of substances and other parameters of biological interest even where they do not utilize a biological system directly. This very broad definition is used by some scientific journals (e.g. Biosensors, Elsevier Applied Science but will not be applied to the coverage here. The emphasis of this Chapter concerns enzymes as the biologically responsive material, but it should be recognized that other biological systems may be utilized by biosensors, for example, whole cell metabolism, ligand binding and the antibody-antigen reaction. Biosensors represent a rapidly expanding field, at the present time, with an estimated 60% annual growth rate; the major impetus coming from the health-care industry (e.g. 6% of the western world are diabetic and would benefit from the availability of a rapid, accurate and simple biosensor for glucose but with some pressure from other areas, such as food quality appraisal and environmental monitoring. The estimated world analytical market is about 12,000,000,000 year- 1 of which 30% is in the health care area. There is clearly a vast market expansion potential as less than 0.1% of this market is currently using biosensors. Research and development in this field is wide and multidisciplinary, spanning biochemistry, bioreactor science, physical chemistry, electrochemistry, electronics and software engineering. Most of this current endeavour concerns potentiometric and amperometric biosensors and colorimetric paper enzyme strips. However, all the main transducer types are likely to be thoroughly examined, for use in biosensors, over the next few years.

  17. Detection of Cardiac Biomarkers Using Single Polyaniline Nanowire-Based Conductometric Biosensors

    Directory of Open Access Journals (Sweden)

    Minhee Yun

    2012-05-01

    Full Text Available The detection of myoglobin (Myo, cardiac troponin I (cTnI, creatine kinase-MB (CK-MB, and b-type natriuretic peptide (BNP plays a vital role in diagnosing cardiovascular diseases. Here we present single site-specific polyaniline (PANI nanowire biosensors that can detect cardiac biomarkers such as Myo, cTnI, CK-MB, and BNP with ultra-high sensitivity and good specificity. Using single PANI nanowire-based biosensors integrated with microfluidic channels, very low concentrations of Myo (100 pg/mL, cTnI (250 fg/mL, CK-MB (150 fg/mL, and BNP (50 fg/mL were detected. The single PANI nanowire-based biosensors displayed linear sensing profiles for concentrations ranging from hundreds (fg/mL to tens (ng/mL. In addition, devices showed a fast (few minutes response satisfying respective reference conditions for Myo, cTnI, CK-MB, and BNP diagnosis of heart failure and for determining the stage of the disease. This single PANI nanowire-based biosensor demonstrated superior biosensing reliability with the feasibility of label free detection and improved processing cost efficiency due to good biocompatibility of PANI to monoclonal antibodies (mAbs. Therefore, this development of single PANI nanowire-based biosensors can be applied to other biosensors for cancer or other diseases.

  18. Detection of cardiac biomarkers using single polyaniline nanowire-based conductometric biosensors.

    Science.gov (United States)

    Lee, Innam; Luo, Xiliang; Huang, Jiyong; Cui, Xinyan Tracy; Yun, Minhee

    2012-05-14

    The detection of myoglobin (Myo), cardiac troponin I (cTnI), creatine kinase-MB (CK-MB), and b-type natriuretic peptide (BNP) plays a vital role in diagnosing cardiovascular diseases. Here we present single site-specific polyaniline (PANI) nanowire biosensors that can detect cardiac biomarkers such as Myo, cTnI, CK-MB, and BNP with ultra-high sensitivity and good specificity. Using single PANI nanowire-based biosensors integrated with microfluidic channels, very low concentrations of Myo (100 pg/mL), cTnI (250 fg/mL), CK-MB (150 fg/mL), and BNP (50 fg/mL) were detected. The single PANI nanowire-based biosensors displayed linear sensing profiles for concentrations ranging from hundreds (fg/mL) to tens (ng/mL). In addition, devices showed a fast (few minutes) response satisfying respective reference conditions for Myo, cTnI, CK-MB, and BNP diagnosis of heart failure and for determining the stage of the disease. This single PANI nanowire-based biosensor demonstrated superior biosensing reliability with the feasibility of label free detection and improved processing cost efficiency due to good biocompatibility of PANI to monoclonal antibodies (mAbs). Therefore, this development of single PANI nanowire-based biosensors can be applied to other biosensors for cancer or other diseases.

  19. Enhanced Response of a Proteinase K-Based Conductometric Biosensor Using Nanoparticles

    OpenAIRE

    2014-01-01

    Proteinases are involved in a multitude of important physiological processes, such as protein metabolism. For this reason, a conductometric enzyme biosensor based on proteinase K was developed using two types of nanoparticles (gold and magnetic). The enzyme was directly adsorbed on negatively charged nanoparticles and then deposited and cross-linked on a planar interdigitated electrode (IDE). The biosensor was characterized with bovine serum albumin (BSA) as a standard protein. Higher sensiti...

  20. [Development of conductometric biosensor based on alkaline phosphatase for determining concentration of cadmium ions].

    Science.gov (United States)

    Sosovs'ka, O F; Berezhets'kyĭ, A L

    2007-01-01

    The paper describes a novel conductometric biosensor sensitive to cadmium ions based on alkaline phosphatase immobilized on gold planar microelectrodes used as transducers. Assays have been carried out with paranitrophenyl phosphate as substrate for the immobilized enzyme. Various parameters such as reticulation time, along with pH, ionic strength and buffer concentration of the measuring solution were studied. The optimized biosensor was stable, reproducible and it exhibited a detection limit of 4.45 microM for cadmium ions.

  1. Reducing the temperature sensitivity of SOI waveguide-based biosensors

    Science.gov (United States)

    Gylfason, Kristinn B.; Mola Romero, Albert; Sohlström, Hans

    2012-06-01

    Label-free photonic biosensors fabricated on silicon-on-insulator (SOI) can provide compact size, high evanescent field strength at the silicon waveguide surface, and volume fabrication potential. However, due to the large thermo optic coefficient of water-based biosamples, the sensors are temperature-sensitive. Consequently, active temperature control is usually used. However, for low cost applications, active temperature control is often not feasible. Here, we use the opposite polarity of the thermo-optic coefficients of silicon and water to demonstrate a photonic slot waveguide with a distribution of power between sample and silicon that aims to give athermal operation in water. Based on simulations, we made three waveguide designs close to the athermal point, and asymmetric integrated Mach- Zehnder interferometers for their characterization. The devices were fabricated on SOI with a 220 nm device layer and 2 μm buried oxide, by electron beam lithography of hydrogen silsesquioxane (HSQ) resist, and etching in a Cl2/HBr/O2/He plasma. With Cargile 50350 fused silica matching oil as top cladding, the group index of the three guides varies from 1.9 to 2.8 at 1550 nm. The temperature sensitivity of the devices varied from -70 to -160 pm/K under the same conditions. A temperature sensitivity of -2 pm/K is projected with water as top cladding.

  2. Analytical investigation of bilayer lipid biosensor based on graphene.

    Science.gov (United States)

    Akbari, Elnaz; Buntat, Zolkafle; Shahraki, Elmira; Parvaz, Ramtin; Kiani, Mohammad Javad

    2016-01-01

    Graphene is another allotrope of carbon with two-dimensional monolayer honeycomb. Owing to its special characteristics including electrical, physical and optical properties, graphene is known as a more suitable candidate compared to other materials to be used in the sensor application. It is possible, moreover, to use biosensor by using electrolyte-gated field effect transistor based on graphene (GFET) to identify the alterations in charged lipid membrane properties. The current article aims to show how thickness and charges of a membrane electric can result in a monolayer graphene-based GFET while the emphasis is on the conductance variation. It is proposed that the thickness and electric charge of the lipid bilayer (LLP and QLP) are functions of carrier density, and to find the equation relating these suitable control parameters are introduced. Artificial neural network algorithm as well as support vector regression has also been incorporated to obtain other models for conductance characteristic. The results comparison between analytical models, artificial neural network and support vector regression with the experimental data extracted from previous work show an acceptable agreement.

  3. Urea biosensor based on an extended-base bipolar junction transistor.

    Science.gov (United States)

    Sun, Tai-Ping; Shieh, Hsiu-Li; Liu, Chun-Lin; Chen, Chung-Yuan

    2014-01-01

    In this study, a urea biosensor was prepared by the immobilization of urease onto the sensitive membrane of an extended-base bipolar junction transistor. The pH variation was used to detect the concentration of urea. The SnO2/ITO glass, fabricated by sputtering SnO2 on the conductive ITO glass, was used as a pH-sensitive membrane, which was connected with a commercial bipolar junction transistor device. The gels, fabricated by the poly vinyl alcohol with pendent styrylpyridinium groups, were used to immobilize the urease. This readout circuit, fabricated in a 0.35-um CMOS 2P4M process, operated at 3.3V supply voltage. This circuit occupied an area of 1.0 mm × 0.9 mm. The dynamic range of the urea biosensor was from 1.4 to 64 mg/dl at the 10 mM phosphate buffer solution and the sensitivity of this range was about 65.8 mV/pUrea. The effect of urea biosensors with different pH values was considered, and the characteristics of urea biosensors based on EBBJT were described.

  4. Using silver nanoparticle to enhance current response of biosensor.

    Science.gov (United States)

    Ren, Xiangling; Meng, Xianwei; Chen, Dong; Tang, Fangqiong; Jiao, Jun

    2005-09-15

    In this paper, we present a simple procedure to increase the sensitivity of a glucose biosensor. The feasibility of an amperometric glucose biosensor based on immobilization of glucose oxidase (GOx) in silver (Ag) sol was investigated for the first time. GOx was simply mixed with Ag nanoparticles and cross-linked with a polyvinyl butyral (PVB) medium by glutaraldehyde. Then a platinum electrode was coated with the mixed solution. The effects of the amount of the Ag particles used, with respect to the current response for enzyme electrodes, were studied. A set of experimental results indicate that the current response for the enzyme electrode containing hydrophobic Ag sol increased from 0.531 to 31.17 microA in the solution of 10 mmol/L beta-D glucose. The time reaching the steady-state current response reduced from 60 to 20s, three times less than those without Ag particles involved.

  5. Surface grafted polymer brushes: potential applications in dengue biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Baratela, Fernando Jose Costa; Higa, Olga Zazuco, E-mail: ozahiga@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Faria, Henrique Antonio Mendonca de; Queiroz, Alvaro Antonio Alencar de, E-mail: alencar@unifei.edu.br [Universidade Federal de Itajuba (UNIFEI), Itajuba, MG (Brazil). Instituto de Fisica e Quimica

    2013-07-01

    A polymer brush membrane-based ultrasensitive biosensor for dengue diagnosis was constructed using poly(hydroxyethyl methacrylate) (PHEMA) brushes immobilized onto low density polyethylene (LDPE) films. LDPE surface films were initially modified by Ar{sup +} ion irradiation to activate the polymer surface. Subsequently, graft polymerization of 2-hydroxyethyl methacrylate onto the activated LDPE surface was carried out under aqueous conditions to create patterned polymer brushes of PHEMA. The grafted PHEMA brushes were characterized by Fourier transform-infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and contact angle analysis. The SEM observations showed that selective surface activation with Ar+ implantation and graft polymerization on the selectively activated surface had occurred. The PHEMA brushes were electrically characterized in the presence of concentrations of human immunoglobulin (IgG). The proposed amperometric biosensor was successfully used for determination of IgG in physiologic samples with excellent responses. (author)

  6. Development of a microscale NOx- biosensor for the study of nitrogen cycling in marine sediment

    DEFF Research Database (Denmark)

    Marzocchi, Ugo

    -) microscale biosensor matches these requirements. In fact, it can be constructed with a tip diameter ranging between 25 and 100 µm. Its functioning is based on the reduction of NOx- to N2O by denitrifying bacteria and the subsequent detection of N2O by means of an amperometric microsensor. The sensitivity...... of the biosensor can be amplified by the electrophoretic sensitivity control system (ESC) which positively polarizes the inner side of the sensor against an external reference inserted into the analyzed medium, inducing the migration of NOx- anions into the bacterial chamber. However, nowadays the widespread...... application of this microscale biosensor is constrained mainly because of a short lifetime caused by the fragility of some of its components. Moreover a detailed study characterizing the ESC efficiency under different condition is still missing. The aims of this thesis are: (i) to contribute...

  7. Plasmonic Biosensors

    OpenAIRE

    Hill, Ryan T.

    2014-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and ...

  8. Response enhancement of olfactory sensory neurons-based biosensors for odorant detection

    Institute of Scientific and Technical Information of China (English)

    Chun-sheng WU; Pei-hua CHEN; Qing YUAN; Ping WANG

    2009-01-01

    This paper presents a novel strategy for the response enhancement of olfactory sensory neurons (OSNs)-based bio-sensors by monitoring the enhancive responses of OSNs to odorants. An OSNs-based biosensor was developed on the basis of the light addressable potentiometric sensor (LAPS), in which rat OSNs were cultured on the surface of LAPS chip and served as sensing elements. LY294002, the specific inhibitor ofphosphatidylinositol 3-kinase (PI3K), was used to enhance the responses of OSNs to odorants. The responses of OSNs to odorants with and without the treatment of LY294002 were recorded by LAPS. The results show that the enhancive effect of LY294002 was recorded efficiently by LAPS and the responses of this OSNs-LAPS hybrid biosensor were enhanced by LY294002 by about 1.5-fold. We conclude that this method can enhance the responses of OSNs-LAPS hybrid biosensors, which may provide a novel strategy for the bioelectrical signal monitor of OSNs in biosensors. It is also suggested that this strategy may be applicable to other kinds of OSNs-based biosensors for cellular activity detection, such as microelectrode array (MEA) and field effect transistor (FET).

  9. New biosensor for detection of copper ions in water based on immobilized genetically modified yeast cells.

    Science.gov (United States)

    Vopálenská, Irena; Váchová, Libuše; Palková, Zdena

    2015-10-15

    Contamination of water by heavy metals represents a potential risk for both aquatic and terrestrial organisms, including humans. Heavy metals in water resources can come from various industrial activities, and drinking water can be ex-post contaminated by heavy metals such as Cu(2+) from house fittings (e.g., water reservoirs) and pipes. Here, we present a new copper biosensor capable of detecting copper ions at concentrations of 1-100 μM. This biosensor is based on cells of a specifically modified Saccharomyces cerevisiae strain immobilized in alginate beads. Depending on the concentration of copper, the biosensor beads change color from white, when copper is present in concentrations below the detection limit, to pink or red based on the increase in copper concentration. The biosensor was successfully tested in the determination of copper concentrations in real samples of water contaminated with copper ions. In contrast to analytical methods or other biosensors based on fluorescent proteins, the newly designed biosensor does not require specific equipment and allows the quick detection of copper in many parallel samples.

  10. Micromachined Amperometric Nitrate Sensor

    OpenAIRE

    Dohyun Kim; Ira Goldberg; Jack Judy

    2003-01-01

    A nitrate-sensing system that consists of a micromachined sensor substrate, nitrate-permeable membrane, integrated microfluidic channels, and standard fluidic connectors has been designed, fabricated, assembled, and tested. Our microsensor was designed for in-situ monitoring of nitrate concentrations in ground water. A silver electrode was patterned for amperometric nitrate detection. An electrochemically oxidized silver electrode was used as a reference electrode. Microfluidic channels were ...

  11. Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli

    DEFF Research Database (Denmark)

    Siedler, Solvej; Stahlhut, Steen Gustav; Malla, Sailesh

    2014-01-01

    This study describes the construction of two flavonoid biosensors, which can be applied for metabolic engineering of Escherichia coli strains. The biosensors are based on transcriptional regulators combined with autofluorescent proteins. The transcriptional activator FdeR from Herbaspirillum...... seropedicae SmR1 responds to naringenin, while the repressor QdoR from Bacillus subtilis is inactivated by quercetin and kaempferol. Both biosensors showed over a 7-fold increase of the fluorescent signal after addition of their specific effectors, and a linear correlation between the fluorescence intensity...... and externally added flavonoid concentration. The QdoR-biosensor was successfully applied for detection of kaempferol production in vivo at the single cell level by fluorescence-activated cell sorting. Furthermore, the amount of kaempferol produced highly correlated with the specific fluorescence of E. coli...

  12. New Trends in the Design of Enzyme-based Biosensors for Medical Applications.

    Science.gov (United States)

    Palchetti, Ilaria

    2016-01-01

    A biosensor is a self-contained integrated device, which is capable of providing specific quantitative or semiquantitative analytical information using a biological (or biomimetic) recognition element, which is retained in direct spatial contact with an electrochemical transduction element. One of the main features of biosensors is the remarkable selectivity that their biological components confer on them. Enzymes are the most common and well-developed recognition system of the family known as catalytic biosensors. This mini-review is focused on enzyme-based biosensors for medical applications. In particular, the new trends for the technology are described. A special emphasis is devoted to the non-invasive and painless monitoring of body metabolites, such as glucose.

  13. Monitoring of Glucose in Beer Brewing by a Carbon Nanotubes Based Nylon Nanofibrous Biosensor

    Directory of Open Access Journals (Sweden)

    Marco Mason

    2016-01-01

    Full Text Available This work presents the design, preparation, and characterization of a novel glucose electrochemical biosensor based on the immobilization of glucose oxidase (GOX into a nylon nanofibrous membrane (NFM prepared by electrospinning and functionalized with multiwalled carbon nanotubes (CNT. A disc of such GOX/CNT/NFM membrane (40 μm in thickness was used for coating the surface of a glassy carbon electrode. The resulting biosensor was characterized by cyclic voltammetry and chronoamperometry, with ferrocene methanol as mediator. The binding of GOX around the CNT/NFM greatly enhances the electron transfer, which results in a biosensor with a current five times higher than without CNT. The potential usefulness of the proposed biosensor was demonstrated with the analysis of glucose in commercial beverages and along the monitoring of the brewing process for making beer, from the mashing to the fermentation steps.

  14. Future of biosensors: a personal view.

    Science.gov (United States)

    Scheller, Frieder W; Yarman, Aysu; Bachmann, Till; Hirsch, Thomas; Kubick, Stefan; Renneberg, Reinhard; Schumacher, Soeren; Wollenberger, Ulla; Teller, Carsten; Bier, Frank F

    2014-01-01

    Biosensors representing the technological counterpart of living senses have found routine application in amperometric enzyme electrodes for decentralized blood glucose measurement, interaction analysis by surface plasmon resonance in drug development, and to some extent DNA chips for expression analysis and enzyme polymorphisms. These technologies have already reached a highly advanced level and need minor improvement at most. The dream of the "100-dollar" personal genome may come true in the next few years provided that the technological hurdles of nanopore technology or of polymerase-based single molecule sequencing can be overcome. Tailor-made recognition elements for biosensors including membrane-bound enzymes and receptors will be prepared by cell-free protein synthesis. As alternatives for biological recognition elements, molecularly imprinted polymers (MIPs) have been created. They have the potential to substitute antibodies in biosensors and biochips for the measurement of low-molecular-weight substances, proteins, viruses, and living cells. They are more stable than proteins and can be produced in large amounts by chemical synthesis. Integration of nanomaterials, especially of graphene, could lead to new miniaturized biosensors with high sensitivity and ultrafast response. In the future individual therapy will include genetic profiling of isoenzymes and polymorphic forms of drug-metabolizing enzymes especially of the cytochrome P450 family. For defining the pharmacokinetics including the clearance of a given genotype enzyme electrodes will be a useful tool. For decentralized online patient control or the integration into everyday "consumables" such as drinking water, foods, hygienic articles, clothing, or for control of air conditioners in buildings and cars and swimming pools, a new generation of "autonomous" biosensors will emerge.

  15. Electrophoretically deposited multiwalled carbon nanotube based amperometric genosensor for E.coli detection

    Science.gov (United States)

    Bhardwaj, Hema; Solanki, Shipra; Sumana, Gajjala

    2016-04-01

    This work reports on a sensitive and selective genosensor fabrication method for Escherichia coli (E.coli) detection. The functionalized multiwalled carbon nanotubes (MWCNT) synthesized via chemical vapour deposition have been deposited electrophoretically onto indium tin oxide coated glass surface and have been utilized as matrices for the covalent immobilization of E.coli specific probe oligonucleotide that was identified from the 16s rRNA coding region of the E.coli genome. This fabricated functionalized MWCNT based platform sought to provide improved fundamental characteristics to electrode interface in terms of electro-active surface area and diffusion coefficient. Electrochemical cyclic voltammetry revealed that this genosensor exhibits a linear response to complementary DNA in the concentration range of 10-7 to 10-12 M with a detection limit of 1×10-12 M.

  16. Determination of L- and D-fucose using amperometric electrodes based on diamond paste.

    Science.gov (United States)

    Stefan-van Staden, Raluca-Ioana; Nejem, R'afat Mahmoud; van Staden, Jacobus Frederick; Aboul-Enein, Hassan Y

    2012-02-21

    Monocrystalline diamond (natural diamond, synthetic-1 and synthetic-2) based electrochemical electrodes were designed for the analysis of L- and D-fucose. Response characteristics of the electrochemical electrodes were determined using cyclic voltammetry and differential pulse voltammetry (DPV). L-fucose was determined using DPV with electrodes based on natural diamond, synthetic-1 and synthetic-2, respectively, at 240 mV using NaCl as the electrolyte (pH 3.0); at 160 mV using KNO(3) (pH 10.0) and at 80 mV using KCl as the electrolyte (pH 10.0) while D-fucose was analyzed at 120 mV using KCl as the electrolyte (pH 1.0); at 140 mV using KNO(3) as the electrolyte (pH 1.0) and at 160 mV using NaNO(3) as the electrolyte (pH 3.0). The linear concentration ranges for L-fucose were between 10(-13) and 10(-9) mol L(-1) (natural diamond), 10(-11) and 10(-8) mol L(-1) (synthetic-1) and 10(-6) and 10(-3) mol L(-1) (synthetic-2) with detection limits of 10(-14), 10(-12) and 10(-8) mol L(-1) magnitude order, respectively. For D-fucose, the linear concentration ranges were 10(-6) to 10(-3) mol L(-1) (natural diamond), 10(-5) to 10(-3) mol L(-1) (synthetic-1) and 10(-9) to 10(-3) mol L(-1) (synthetic-2) with detection limits of 10(-7), 10(-7) and 10(-10) mol L(-1) magnitude order, respectively. The sensors were used for the assay of L-fucose in serum and urine samples.

  17. REMOTE BIOSENSOR FOR IN SITU MONITORING OF ORGANOPHOSPHATE NERVE AGENTS. (R823663)

    Science.gov (United States)

    A remote electrochemical biosensor for field monitoring of organophosphate nerve agents is described. The new sensor relies on the coupling of the effective biocatalytic action of organophosphorus hydrolase (OPH) with a submersible amperometric probe design. This combination resu...

  18. Quantum dot-based microfluidic biosensor for cancer detection

    Energy Technology Data Exchange (ETDEWEB)

    Ghrera, Aditya Sharma [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi-110012 (India); School of Engineering and Technology, ITM University, Gurgaon-122017 (India); Pandey, Chandra Mouli; Ali, Md. Azahar [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi-110012 (India); Malhotra, Bansi Dhar, E-mail: bansi.malhotra@gmail.com [Department of Biotechnology, Delhi Technological University, Delhi-110042 (India)

    2015-05-11

    We report results of the studies relating to fabrication of an impedimetric microfluidic–based nucleic acid sensor for quantification of DNA sequences specific to chronic myelogenous leukemia (CML). The sensor chip is prepared by patterning an indium–tin–oxide (ITO) coated glass substrate via wet chemical etching method followed by sealing with polydimethylsiloxane (PDMS) microchannel for fluid control. The fabricated microfluidic chip comprising of a patterned ITO substrate is modified by depositing cadmium selenide quantum dots (QCdSe) via Langmuir–Blodgett technique. Further, the QCdSe surface has been functionalized with specific DNA probe for CML detection. The probe DNA functionalized QCdSe integrated miniaturized system has been used to monitor target complementary DNA concentration by measuring the interfacial charge transfer resistance via hybridization. The presence of complementary DNA in buffer solution significantly results in decreased electro-conductivity of the interface due to presence of a charge barrier for transport of the redox probe ions. The microfluidic DNA biosensor exhibits improved linearity in the concentration range of 10{sup −15} M to 10{sup −11} M.

  19. A Graphene-Based Biosensing Platform Based on Regulated Release of an Aptameric DNA Biosensor.

    Science.gov (United States)

    Mao, Yu; Chen, Yongli; Li, Song; Lin, Shuo; Jiang, Yuyang

    2015-11-09

    A novel biosensing platform was developed by integrating an aptamer-based DNA biosensor with graphene oxide (GO) for rapid and facile detection of adenosine triphosphate (ATP, as a model target). The DNA biosensor, which is locked by GO, is designed to contain two sensing modules that include recognition site for ATP and self-replication track that yields the nicking domain for Nt.BbvCI. By taking advantage of the different binding affinity of single-stranded DNA, double-stranded DNA and aptamer-target complex toward GO, the DNA biosensor could be efficiently released from GO in the presence of target with the help of a complementary DNA strand (CPDNA) that partially hybridizes to the DNA biosensor. Then, the polymerization/nicking enzyme synergetic isothermal amplification could be triggered, leading to the synthesis of massive DNA amplicons, thus achieving an enhanced sensitivity with a wide linear dynamic response range of four orders of magnitude and good selectivity. This biosensing strategy expands the applications of GO-DNA nanobiointerfaces in biological sensing, showing great potential in fundamental research and biomedical diagnosis.

  20. A novel amperometric sensor for peracetic acid based on a polybenzimidazole-modified gold electrode

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Mu-Yi, E-mail: huamy@mail.cgu.edu.t [Green Research Center, Department of Chemical and Materials Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kuei-Shan, Tao-Yuan 33302, Taiwan (China); Biosensor Group, Biomedical Engineering Research Center, Chang Gung University, 259 Wen-Hwa 1st Rd., Kuei-Shan, Tao-Yuan 33302, Taiwan (China); Chen, Hsiao-Chien [Green Research Center, Department of Chemical and Materials Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kuei-Shan, Tao-Yuan 33302, Taiwan (China); Biosensor Group, Biomedical Engineering Research Center, Chang Gung University, 259 Wen-Hwa 1st Rd., Kuei-Shan, Tao-Yuan 33302, Taiwan (China); Tsai, Rung-Ywan [Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, 195, Sec. 4, Chung Hsing Rd., Hsinchu 31040, Taiwan (China); Lin, Yu-Chen [Green Research Center, Department of Chemical and Materials Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kuei-Shan, Tao-Yuan 33302, Taiwan (China); Biosensor Group, Biomedical Engineering Research Center, Chang Gung University, 259 Wen-Hwa 1st Rd., Kuei-Shan, Tao-Yuan 33302, Taiwan (China)

    2011-04-30

    We have developed a peracetic acid (PAA) sensor based on a polybenzimidazole-modified gold (PBI/Au) electrode. Fourier transform infrared and X-ray photoelectron spectroscopy indicated that PAA oxidized 69.4% of the imine in PBI to form PBI N-oxide, increasing the electrochemical reduction current during cyclic voltammetry. The chemical oxidation of the PBI/Au electrode by PAA, followed by its electrochemical reduction, allowed PAA to be detected directly and consecutively by assessing its reduction current. The PAA sensor had a broad linear detection range (3.1 {mu}M-1.5 mM) and a rapid response time (3.9 s) at an applied potential of -0.3 V. Potentially interfering substances, such as hydrogen peroxide, acetic acid, and oxygen, had no effect on the ability of the probe to detect PAA, indicating high selectivity of the probe. Furthermore, the detection range, response time, and sensitivity of the sensor could all be improved by modification of the smooth planar electrode surface to a porous three-dimensional configuration. When compared to the analytical characteristics of other PAA sensors operating under optimal conditions, the three-dimensional PBI/Au electrode offers a rapid detection time, a usable linear range, and a relatively low detection limit.

  1. Design and characterization of auxotrophy-based amino acid biosensors.

    Directory of Open Access Journals (Sweden)

    Felix Bertels

    Full Text Available Efficient and inexpensive methods are required for the high-throughput quantification of amino acids in physiological fluids or microbial cell cultures. Here we develop an array of Escherichia coli biosensors to sensitively quantify eleven different amino acids. By using online databases, genes involved in amino acid biosynthesis were identified that - upon deletion - should render the corresponding mutant auxotrophic for one particular amino acid. This rational design strategy suggested genes involved in the biosynthesis of arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, threonine, tryptophan, and tyrosine as potential genetic targets. A detailed phenotypic characterization of the corresponding single-gene deletion mutants indeed confirmed that these strains could neither grow on a minimal medium lacking amino acids nor transform any other proteinogenic amino acid into the focal one. Site-specific integration of the egfp gene into the chromosome of each biosensor decreased the detection limit of the GFP-labeled cells by 30% relative to turbidometric measurements. Finally, using the biosensors to determine the amino acid concentration in the supernatants of two amino acid overproducing E. coli strains (i.e. ΔhisL and ΔtdcC both turbidometrically and via GFP fluorescence emission and comparing the results to conventional HPLC measurements confirmed the utility of the developed biosensor system. Taken together, our study provides not only a genotypically and phenotypically well-characterized set of publicly available amino acid biosensors, but also demonstrates the feasibility of the rational design strategy used.

  2. Biosensor measurements of polar phenolics for the assessment of the bitterness and pungency of virgin olive oil.

    Science.gov (United States)

    Busch, Johanneke L H C; Hrncirik, Karel; Bulukin, Emily; Boucon, Claire; Mascini, Marco

    2006-06-14

    Bitterness and pungency, sensory quality attributes of virgin olive oil, are related to the presence of phenolic compounds. Fast and reliable alternatives for the evaluation of sensory attributes and phenolic content are desirable, as sensory and traditional analytical methods are time-consuming and expensive. In this study, two amperometric enzyme-based biosensors (employing tyrosinase or peroxidase) for rapid measurement of polar phenolics of olive oil were tested. The biosensor was constructed using disposable screen-printed carbon electrodes with the enzyme as biorecognition element. The sensor was coupled with a simple extraction procedure and optimized for use in flow injection analysis. The performance of the biosensor was assessed by measuring a set of virgin olive oils and comparing the results with data obtained by the reference HPLC method and sensory scores. The correlations between the tyrosinase- and peroxidase-based biosensors and phenolic content in the samples were high (r = 0.82 and 0.87, respectively), which, together with a good repeatability (rsd = 6%), suggests that these biosensors may represent a promising tool in the analysis of the total content of phenolics in virgin olive oils. The correlation with sensory quality attributes of virgin olive oil was lower, which illustrates the complexity of sensory perception. The two biosensors possessed different specificities toward different groups of phenolics, affecting bitterness and pungency prediction. The peroxidase-based biosensor showed a significant correlation (r = 0.66) with pungency.

  3. Carbon nanotube composites for glucose biosensor incorporated with reverse iontophoresis function for noninvasive glucose monitoring

    Directory of Open Access Journals (Sweden)

    Tai-Ping Sun

    2010-05-01

    Full Text Available Tai-Ping Sun1,2,5, Hsiu-Li Shieh2, Congo Tak-Shing Ching1,2,5, Yan-Dong Yao3, Su-Hua Huang4, Chia-Ming Liu1, Wei-Hao Liu1, Chung-Yuan Chen21Graduate Institute of Biomedicine and Biomedical Technology, 2Department of Electrical Engineering, National Chi Nan University, Nantou, Taiwan, ROC; 3Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; 4Department of Biotechnology, Asia University, Taichung, Taiwan, ROC; 5These authors contributed equally to this workAbstract: This study aims to develop an amperometric glucose biosensor, based on carbon nanotubes material for reverse iontophoresis, fabricated by immobilizing a mixture of glucose oxidase (GOD and multiwalled carbon nanotubes (MWCNT epoxy-composite, on a planar screen-printed carbon electrode. MWCNT was employed to ensure proper incorporation into the epoxy mixture and faster electron transfer between the GOD and the transducer. Results showed this biosensor possesses a low detection potential (+500 mV, good sensitivity (4 μA/mM and an excellent linear response range (r2 = 0.999; 0–4 mM of glucose detection at +500 mV (versus Ag/AgCl. The response time of the biosensor was about 25 s. In addition, the biosensor could be used in conjunction with reverse iontophoresis technique. In an actual evaluation model, an excellent linear relationship (r2 = 0.986 was found between the glucose concentration of the actual model and the biosensor’s current response. Thus, a glucose biosensor based on carbon nanotube composites and incorporated with reverse iontophoresis function was developed.Keywords: amperometric, carbon nanotubes, glucose monitoring, biosensors, reverse iontophoresis

  4. Single walled carbon nanotube-based electrical biosensor for the label-free detection of pathogenic bacteria

    DEFF Research Database (Denmark)

    Yoo, S. M.; Baek, Y. K.; Shin, S.

    2016-01-01

    We herein describe the development of a single-walled carbon nanotube (SWNT)-based electrical biosensor consisting of a two-terminal resistor, and report its use for the specific, label-free detection of pathogenic bacteria via changes in conductance. The ability of this biosensor to recognize....... This SWNT-based electrical biosensor will prove useful for the development of highly sensitive and specific handheld pathogen detectors....

  5. Fabrication of Biosensor Based on Polyaniline/Gold Nanorod Composite

    Directory of Open Access Journals (Sweden)

    Uğur Tamer

    2011-01-01

    Full Text Available This present paper describes a new approach to fabricate a new amperometric sensor for the determination of glucose. Polyaniline (PANI film doped with colloidal gold nanorod particles has been used to immobilize glucose oxidase by glutaraldehyde. The polyaniline/gold nanorod composite structure gave an excellent matrix for enzyme immobilization due to the large specific surface area and higher electroactivity. The composite has been characterized by cyclic voltammetry (CV, scanning electron microscopy (SEM, and surface-enhanced Raman spectroscopy (SERS. The SERS spectrum of the surface-immobilized glucose oxidase and the spectrum of the native enzyme indicate that the main feature of the native structure of glucose oxidase was conserved after being immobilized on the polymer matrix. The amperometric response was measured as a function of concentration of glucose at a potential of 0.6 V versus Ag/AgCl in 0.1 M phosphate buffer at pH 6.4. Linear range of the calibration curve was from 17.6 μM to 1 mM with a sensitivity of 13.8 μA⋅mM−1⋅cm−2 and a limit of detection (LOD of 5.8 μM. The apparent Michaelis-Menten constant KM was calculated as 1.0 mM and the response time was less than 3 seconds.

  6. Biosensor based on Butyrylcholinesterase for Detection of Carbofuran

    Science.gov (United States)

    Dey, Mousumi; Bhuvanagayathri, R.; Daniel, David K.

    2015-04-01

    Esterase enzymes play an important role in biology because they are responsible for the hydrolysis of choline esters. In their absence, the original state of the post synaptic membranes cannot be reestablished. Therefore, the aim of the work is to study the inhibiting action exerted by the group of compounds on these enzymes. Among these class of inhibiting compounds, pesticides are important because of the potential danger as a result of their large scale use in agriculture. Pesticides are generally determined using liquid or gas chromatography methods with various detection techniques. These methods are very sensitive and discriminating, however they require sample pretreatment such as extraction, preconcentration and clean up, which are skilled techniques and high cost treatment and also time consuming. In this study, acetyl cholinesterase and butyrylcholinesterase based biosensors have emerged as a promising tool for the detection and characterization of pesticides which are inhibitors of these enzymes. Although the physiological function of butyrylcholinesterase in comparison with acetyl cholinesterase is ambiguous, it has larger substrate specificity towards choline esters. Therefore, the development of a more selective electrode against choline, can lead to more sensitive determination of the inhibitor being investigated. Hence in the present work, a method based on inhibition of butyrylcholinesterase was attempted for quantification of carbofuran on the basis of cholinesterase inhibition. Butyrylcholinesterase with an activity of 10.2 units/mg was immobilized on a solid surface by cross linking with glutaraldehyde. The immobilized system was calibrated by correlating the inhibition of the butyrylcholinesterase activity with varying concentrations of the butyryl choline chloride and carbofuran. The sensing mechanism was investigated for its response to carbofuran concentrations ranging from 125 to 1,000 ppm. The effects of butyryl choline chloride

  7. An ethanol biosensor based on a bacterial cell-immobilized eggshell membrane

    Institute of Scientific and Technical Information of China (English)

    Guang Ming Wen; Shao Min Shuang; Chuan Dong; Martin M.F. Choi

    2012-01-01

    An ethanol biosensor was fabricated based on a Methylobacterium organophilium-immobilized eggshell membrane and an oxygen (O2) electrode.A linear response for ethanol was obtained in the range of 0.050-7.5 mmol/L with a detection limit of 0.025 mmol/L (S/N =3) and a R.S.D.of 2.1%.The response time was less than 100 s at room temperature and ambient pressure.The optimal loading of bacterial cells on the biosensor membrane is 40 mg (wet weight).The optimal working conditions for the microbial biosensor are pH 7.0 phosphate buffer (50 mmol/L) at 20-25 ℃.The interference test,operational and storage stability of the biosensor are studied in detail.Finally,the biosensor is applied to determine the ethanol contents in various alcohol samples and the results are comparable to that obtained by gas chromatographic method and the results are satisfactory.Our proposed biosensor provides a convenient,simple and reliable method to determine ethanol content in alcoholic drinks.

  8. Fluorescence-based biosensors from concepts to applications

    CERN Document Server

    Morris, May C

    2013-01-01

    One of the major challenges of modern biology and medicine consists in finding means to visualize biomolecules in their natural environment with the greatest level of accuracy, so as to gain insight into their properties and behaviour in a physiological and pathological setting. This has been achieved thanks to the design of novel imaging agents, in particular to fluorescent biosensors. Fluorescence Biosensors comprise a large set of tools which are useful for fundamental purposes as well as for applications in biomedicine, drug discovery and biotechnology. These tools have been designed a

  9. Amperometric Immunosensor for Carbofuran Detection Based on MWCNTs/GS-PEI-Au and AuNPs-Antibody Conjugate

    Directory of Open Access Journals (Sweden)

    Xiangyou Wang

    2013-04-01

    Full Text Available In this paper, an amperometric immunosensor for the detection of carbofuran was developed. Firstly, multiwall carbon nanotubes (MWCNTs and graphene sheets-ethyleneimine polymer-Au (GS-PEI-Au nanocomposites were modified onto the surface of a glass carbon electrode (GCE via self-assembly. The nanocomposites can increase the surface area of the GCE to capture a large amount of antibody, as well as produce a synergistic effect in the electrochemical performance. Then the modified electrode was coated with gold nanoparticles-antibody conjugate (AuNPs-Ab and blocked with BSA. The monoclonal antibody against carbofuran was covalently immobilized on the AuNPs with glutathione as a spacer arm. The morphologies of the GS-PEI-Au nanocomposites and the fabrication process of the immunosensor were characterized by X-ray diffraction (XRD, ultraviolet and visible absorption spectroscopy (UV-vis and scanning electron microscopy (SEM, respectively. Under optimal conditions, the immunosensor showed a wide linear range, from 0.5 to 500 ng/mL, with a detection limit of 0.03 ng/mL (S/N = 3. The as-constructed immunosensor exhibited notable performance features such as high specificity, good reproducibility, acceptable stability and regeneration performance. The results are mainly due to the excellent properties of MWCNTs, GS-PEI-Au nanocomposites and the covalent immobilization of Ab with free hapten binding sites for further immunoreaction. It provides a new avenue for amperometric immunosensor fabrication.

  10. Amperometric immunosensor for carbofuran detection based on MWCNTs/GS-PEI-Au and AuNPs-antibody conjugate.

    Science.gov (United States)

    Zhu, Ying; Cao, Yaoyao; Sun, Xia; Wang, Xiangyou

    2013-04-19

    In this paper, an amperometric immunosensor for the detection of carbofuran was developed. Firstly, multiwall carbon nanotubes (MWCNTs) and graphene sheets-ethyleneimine polymer-Au (GS-PEI-Au) nanocomposites were modified onto the surface of a glass carbon electrode (GCE) via self-assembly. The nanocomposites can increase the surface area of the GCE to capture a large amount of antibody, as well as produce a synergistic effect in the electrochemical performance. Then the modified electrode was coated with gold nanoparticles-antibody conjugate (AuNPs-Ab) and blocked with BSA. The monoclonal antibody against carbofuran was covalently immobilized on the AuNPs with glutathione as a spacer arm. The morphologies of the GS-PEI-Au nanocomposites and the fabrication process of the immunosensor were characterized by X-ray diffraction (XRD), ultraviolet and visible absorption spectroscopy (UV-vis) and scanning electron microscopy (SEM), respectively. Under optimal conditions, the immunosensor showed a wide linear range, from 0.5 to 500 ng/mL, with a detection limit of 0.03 ng/mL (S/N = 3). The as-constructed immunosensor exhibited notable performance features such as high specificity, good reproducibility, acceptable stability and regeneration performance. The results are mainly due to the excellent properties of MWCNTs, GS-PEI-Au nanocomposites and the covalent immobilization of Ab with free hapten binding sites for further immunoreaction. It provides a new avenue for amperometric immunosensor fabrication.

  11. Graphene Electronic Device Based Biosensors and Chemical Sensors

    Science.gov (United States)

    Jiang, Shan

    Two-dimensional layered materials, such as graphene and MoS2, are emerging as an exciting material system for a new generation of atomically thin electronic devices. With their ultrahigh surface to volume ratio and excellent electrical properties, 2D-layered materials hold the promise for the construction of a generation of chemical and biological sensors with unprecedented sensitivity. In my PhD thesis, I mainly focus on graphene based electronic biosensors and chemical sensors. In the first part of my thesis, I demonstrated the fabrication of graphene nanomesh (GNM), which is a graphene thin film with a periodic array of holes punctuated in it. The periodic holes introduce long periphery active edges that provide a high density of functional groups (e.g. carboxylic groups) to allow for covalent grafting of specific receptor molecules for chemical and biosensor applications. After covalently functionalizing the GNM with glucose oxidase, I managed to make a novel electronic sensor which can detect glucose as well as pH change. In the following part of my thesis I demonstrate the fabrication of graphene-hemin conjugate for nitric oxide detection. The non-covalent functionalization through pi-pi stacking interaction allows reliable immobilization of hemin molecules on graphene without damaging the graphene lattice to ensure the highly sensitive and specific detection of nitric oxide. The graphene-hemin nitric oxide sensor is capable of real-time monitoring of nitric oxide concentrations, which is of central importance for probing the diverse roles of nitric oxide in neurotransmission, cardiovascular systems, and immune responses. Our studies demonstrate that the graphene-hemin sensors can respond rapidly to nitric oxide in physiological environments with sub-nanomolar sensitivity. Furthermore, in vitro studies show that the graphene-hemin sensors can be used for the detection of nitric oxide released from macrophage cells and endothelial cells, demonstrating their

  12. A micro amperometric immunosensor for detection of human immunoglobulin

    Institute of Scientific and Technical Information of China (English)

    XU Yuanyuan; XIA Shanhong; BIAN Chao; CHEN Shaofeng

    2006-01-01

    A novel amperometric immunosensor based on the micro electromechanical systems (MEMS) technology, using protein A and self-assembled monolayers (SAMs) for the orientation-controlled immobilization of antibodies, has been developed. Using MEMS technology, an "Au, Pt, Pt" three-microelectrode system enclosed in a SU-8 micro pool was fabricated. Employing SAMs, a monolayer of protein A was immobilized on the cysteamine modified Au electrode to achieve the orientation-controlled immobilization of the human immunoglobulin (HIgG) antibody. The immunosensor aimed at low unit cost, small dimension, high level of integration and the prospect of a biosensor system-on-a-chip. Cyclic voltammetry and chronoamperometry were conducted to characterize the immunosensor. Compared with the traditional immunosensor using bulky gold electrode or screen-printed electrode and the procedure directly binding protein A to electrode for immobilization of antibodies, it had attractive advantages, such as miniaturization, compatibility with CMOS technology, fast response (30 s), broad linear range (50-400μg/L) and low detection limit (10μg/L) for HIgG. In addition, this immunosensor was easy to be designed into micro array and to realize the simultaneously multi-parameter detection.

  13. A novel sensitive cell-based Love Wave biosensor for marine toxin detection.

    Science.gov (United States)

    Zhang, Xi; Fang, Jiaru; Zou, Ling; Zou, Yingchang; Lang, Lang; Gao, Fan; Hu, Ning; Wang, Ping

    2016-03-15

    A novel HepG2 cell-based biosensor using Love Wave sensor was developed to implement the real-time and sensitive detection of a diarrheic shellfish poisoning (DSP) toxin, Okadaic acid (OA). Detachable Love Wave sensor unit and miniaturized 8-channel recording instrument were designed for the convenient experimental preparation and sensor response signal measurement. The Love Wave sensor, whose synchronous frequency is around 160 MHz, was fabricated with ST-cut quartz substrate. To establish a cell-based biosensor, HepG2 cells as sensing elements were cultured onto the Love Wave sensor surface, and the cell attachment process was recorded by this biosensor. Results showed this sensor could monitor the cell attachment process in real time and response signals were related to the initial cell seeding densities. Furthermore, cell-based Love Wave sensor was treated with OA toxin. This biosensor presented a good performance to various OA concentrations, with a wide linear detection range (10-100 μg/L). Based on the ultrasensitive acoustic wave platform, this cell-based biosensor will be a promising tool for real-time and convenient OA screening.

  14. The development and application of FET-based biosensors

    NARCIS (Netherlands)

    Bergveld, P.

    1986-01-01

    After having considered the general definition of biosensors, the specifications of one type are discussed here in more detail, namely the pH-sensitive ISFET, which is at present being clinically investigated for intravascular blood pH recording. Results, advantages and possible improvements will be

  15. A global benchmark study using affinity-based biosensors

    Science.gov (United States)

    Rich, Rebecca L.; Papalia, Giuseppe A.; Flynn, Peter J.; Furneisen, Jamie; Quinn, John; Klein, Joshua S.; Katsamba, Phini S.; Waddell, M. Brent; Scott, Michael; Thompson, Joshua; Berlier, Judie; Corry, Schuyler; Baltzinger, Mireille; Zeder-Lutz, Gabrielle; Schoenemann, Andreas; Clabbers, Anca; Wieckowski, Sebastien; Murphy, Mary M.; Page, Phillip; Ryan, Thomas E.; Duffner, Jay; Ganguly, Tanmoy; Corbin, John; Gautam, Satyen; Anderluh, Gregor; Bavdek, Andrej; Reichmann, Dana; Yadav, Satya P.; Hommema, Eric; Pol, Ewa; Drake, Andrew; Klakamp, Scott; Chapman, Trevor; Kernaghan, Dawn; Miller, Ken; Schuman, Jason; Lindquist, Kevin; Herlihy, Kara; Murphy, Michael B.; Bohnsack, Richard; Andrien, Bruce; Brandani, Pietro; Terwey, Danny; Millican, Rohn; Darling, Ryan J.; Wang, Liann; Carter, Quincy; Dotzlaf, Joe; Lopez-Sagaseta, Jacinto; Campbell, Islay; Torreri, Paola; Hoos, Sylviane; England, Patrick; Liu, Yang; Abdiche, Yasmina; Malashock, Daniel; Pinkerton, Alanna; Wong, Melanie; Lafer, Eileen; Hinck, Cynthia; Thompson, Kevin; Primo, Carmelo Di; Joyce, Alison; Brooks, Jonathan; Torta, Federico; Bagge Hagel, Anne Birgitte; Krarup, Janus; Pass, Jesper; Ferreira, Monica; Shikov, Sergei; Mikolajczyk, Malgorzata; Abe, Yuki; Barbato, Gaetano; Giannetti, Anthony M.; Krishnamoorthy, Ganeshram; Beusink, Bianca; Satpaev, Daulet; Tsang, Tiffany; Fang, Eric; Partridge, James; Brohawn, Stephen; Horn, James; Pritsch, Otto; Obal, Gonzalo; Nilapwar, Sanjay; Busby, Ben; Gutierrez-Sanchez, Gerardo; Gupta, Ruchira Das; Canepa, Sylvie; Witte, Krista; Nikolovska-Coleska, Zaneta; Cho, Yun Hee; D’Agata, Roberta; Schlick, Kristian; Calvert, Rosy; Munoz, Eva M.; Hernaiz, Maria Jose; Bravman, Tsafir; Dines, Monica; Yang, Min-Hsiang; Puskas, Agnes; Boni, Erica; Li, Jiejin; Wear, Martin; Grinberg, Asya; Baardsnes, Jason; Dolezal, Olan; Gainey, Melicia; Anderson, Henrik; Peng, Jinlin; Lewis, Mark; Spies, Peter; Trinh, Quyhn; Bibikov, Sergei; Raymond, Jill; Yousef, Mohammed; Chandrasekaran, Vidya; Feng, Yuguo; Emerick, Anne; Mundodo, Suparna; Guimaraes, Rejane; McGirr, Katy; Li, Yue-Ji; Hughes, Heather; Mantz, Hubert; Skrabana, Rostislav; Witmer, Mark; Ballard, Joshua; Martin, Loic; Skladal, Petr; Korza, George; Laird-Offringa, Ite; Lee, Charlene S.; Khadir, Abdelkrim; Podlaski, Frank; Neuner, Phillippe; Rothacker, Julie; Rafique, Ashique; Dankbar, Nico; Kainz, Peter; Gedig, Erk; Vuyisich, Momchilo; Boozer, Christina; Ly, Nguyen; Toews, Mark; Uren, Aykut; Kalyuzhniy, Oleksandr; Lewis, Kenneth; Chomey, Eugene; Pak, Brian J.; Myszka, David G.

    2013-01-01

    To explore the variability in biosensor studies, 150 participants from 20 countries were given the same protein samples and asked to determine kinetic rate constants for the interaction. We chose a protein system that was amenable to analysis using different biosensor platforms as well as by users of different expertise levels. The two proteins (a 50-kDa Fab and a 60-kDa glutathione S-transferase [GST] antigen) form a relatively high-affinity complex, so participants needed to optimize several experimental parameters, including ligand immobilization and regeneration conditions as well as analyte concentrations and injection/dissociation times. Although most participants collected binding responses that could be fit to yield kinetic parameters, the quality of a few data sets could have been improved by optimizing the assay design. Once these outliers were removed, the average reported affinity across the remaining panel of participants was 620 pM with a standard deviation of 980 pM. These results demonstrate that when this biosensor assay was designed and executed appropriately, the reported rate constants were consistent, and independent of which protein was immobilized and which biosensor was used. PMID:19133223

  16. Nuclear track-based biosensors with the enzyme laccase

    Energy Technology Data Exchange (ETDEWEB)

    García-Arellano, H. [Departamento de Ciencias Ambientales, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Lerma, Av. de las Garzas No. 10, Col. El Panteón, Lerma de Villada, Municipio de Lerma, Estado de México, C.P. 52005 (Mexico); Fink, D., E-mail: fink@xanum.uam.mx [Division de Ciencias Naturales e Ingeneria, Universidad Autónoma Metropolitana-Cuajimalpa, Artificios 40, Col. Hidalgo, Del. Álvaro Obregón C.P. 01120, México, D.F. (Mexico); Nuclear Physics Institute, 25068 Řež (Czech Republic); Muñoz Hernández, G. [Division de Ciencias Naturales e Ingeneria, Universidad Autónoma Metropolitana-Cuajimalpa, Artificios 40, Col. Hidalgo, Del. Álvaro Obregón C.P. 01120, México, D.F. (Mexico); Departamento de Fisica, Universidad Autónoma Metropolitana-Iztapalapa, PO Box 55-534, 09340 México, D.F. (Mexico); Vacík, J.; Hnatowicz, V. [Nuclear Physics Institute, 25068 Řež (Czech Republic); Alfonta, L. [Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 84105 (Israel)

    2014-08-15

    Highlights: • We construct a biosensor using polymer foils with laccase-clad etched nuclear tracks. • We use the biosensor for quantitation of phenolic compounds. • The biosensor can detect picomolar concentrations for some phenolic compounds. - Abstract: A new type of biosensors for detecting phenolic compounds is presented here. These sensors consist of thin polymer foils with laccase-clad etched nuclear tracks. The presence of suitable phenolic compounds in the sensors leads to the formation of enzymatic reaction products in the tracks, which differ in their electrical conductivities from their precursor materials. These differences correlate with the concentrations of the phenolic compounds. Corresponding calibration curves have been established for a number of compounds. The sensors thus produced are capable to cover between 5 and 9 orders of magnitude in concentration – in the best case down to some picomoles. The sensor's detection sensitivity strongly depends on the specific compound. It is highest for caffeic acid and acid blue 74, followed by ABTS and ferulic acid.

  17. A novel urea conductometric biosensor based on zeolite immobilized urease.

    Science.gov (United States)

    Kirdeciler, Salih Kaan; Soy, Esin; Oztürk, Seçkin; Kucherenko, Ivan; Soldatkin, Oleksandr; Dzyadevych, Sergei; Akata, Burcu

    2011-09-15

    A new approach was developed for urea determination where a thin film of silicalite and zeolite Beta deposited onto gold electrodes of a conductometric biosensor was used to immobilize the enzyme. Biosensor responses, operational and storage stabilities were compared with results obtained from the standard membrane methods for the same measurements. For this purpose, different surface modification techniques, which are simply named as Zeolite Membrane Transducers (ZMTs) and Zeolite Coated Transducers (ZCTs) were compared with Standard Membrane Transducers (SMTs). Silicalite and zeolite Beta with Si/Al ratios 40, 50 and 60 were used to modify the conductometric electrodes and to study the biosensor responses as a function of changing zeolitic parameters. During the measurements using ZCT electrodes, there was no need for any cross-linker to immobilize urease, which allowed the direct evaluation of the effect of changing Si/Al ratio for the same type of zeolite on the biosensor responses for the first time. It was seen that silicalite and zeolite Beta added electrodes in all cases lead to increased responses with respect to SMTs. The responses obtained from ZCTs were always higher than ZMTs as well. The responses obtained from zeolite Beta modified ZMTs and ZCTs increased as a function of increasing Si/Al ratio, which might be due to the increased hydrophobicity and/or the acid strength of the medium.

  18. Theoretical and Experimental Analysis of Adsorption in Surface-based Biosensors

    DEFF Research Database (Denmark)

    Hansen, Rasmus

    The present Ph.D. dissertation concerns the application of surface plasmon resonance (SPR) spectroscopy, which is a surface-based biosensor technology, for studies of adsorption dynamics. The thesis contains both experimental and theoretical work. In the theoretical part we develop the theory...... for convection, diffusion, and adsorption in surface-based biosensors in general. In particular, we study the transport dynamics in a model geometry of a Biacore SPR sensor. An approximate quasi-steady theory, which has been widely adopted in the SPR literature to capture convective and diffusive mass transport...... is critical for reliable use of the quasi-steady theory. Our theoretical results provide users of surface-based biosensors with a tool of correcting experimentally obtained adsorption rate constants, based on the quasisteady theory. Finally, the consequence of adsorption on all surfaces present in the flow...

  19. Flow-Injection Amperometric Determination of Tacrine based on Ion Transfer across a Water–Plasticized Polymeric Membrane Interface

    Directory of Open Access Journals (Sweden)

    C. Rueda

    2007-07-01

    Full Text Available A flow-injection pulse amperometric method for determining tacrine, based onion transfer across a plasticized poly(vinyl chloride (PVC membrane, was developed. Afour-electrode potentiostat with ohmic drop compensation was used, while a flow-throughcell incorporated the four electrodes and the membrane, which containedtetrabutylammonium tetraphenylborate. The influence of the applied potential and of theflow-injection variables on the determination of tacrine was studied. In the selectedconditions, a linear relationship between peak height and tacrine concentration was foundup to 4x10-5M tacrine. The detection limit was 1x10-7M. Good repeatability was obtained.Some common ions and pharmaceutical excipients did not interfere.

  20. Graphitized carbon nanofiber-Pt nanoparticle hybrids as sensitive tool for preparation of screen printing biosensors. Detection of lactate in wines and ciders.

    Science.gov (United States)

    Loaiza, Oscar A; Lamas-Ardisana, Pedro J; Añorga, Larraitz; Jubete, Elena; Ruiz, Virginia; Borghei, Maryam; Cabañero, Germán; Grande, Hans J

    2015-02-01

    This work describes the fabrication of a new lactate biosensor. The strategy is based on the use of a novel hybrid nanomaterial for amperometric biosensors i.e. platinum nanoparticles (PtNps) supported on graphitized carbon nanofibers (PtNps/GCNF) prepared by chemical reduction of the Pt precursor at GCNF surfaces. The biosensors were constructed by covalent immobilization of lactate oxidase (LOx) onto screen printed carbon electrodes (SPCEs) modified with PtNps (PtNps/GCNF-SPCEs) using polyethyleneimine (PEI) and glutaraldehyde (GA). Experimental variables concerning both the biosensor design and the detection process were investigated for an optimal analytical performance. Lactate biosensors show good reproducibility (RSD 4.9%, n=10) and sensitivity (41,302±546) μA/Mcm(2), with a good limit of detection (6.9μM). Covalent immobilization of the enzyme allows the reuse of the biosensor for several measurements, converting them in a cheap alternative to the solid electrodes. The long-term stability of the biosensors was also evaluated. 90% of the signal was kept after 3months of storage at room temperature (RT), while 95% was retained after 18months at -20°C. These results demonstrate that the method provides sensitive electrochemical lactate biosensors where the stability of the enzymatic activity can be preserved for a long period of time in adequate storage conditions.

  1. Natural polyhydroxyalkanoate–gold nanocomposite based biosensor for detection of antimalarial drug artemisinin

    Energy Technology Data Exchange (ETDEWEB)

    Phukon, Pinkee [Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam (India); Radhapyari, Keisham [Analytical Chemistry Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam (India); Konwar, Bolin Kumar [Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam (India); Nagaland University (Central), Lumami, Zunheboto, Nagaland 798627 (India); Khan, Raju, E-mail: khan.raju@gmail.com [Analytical Chemistry Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam (India)

    2014-04-01

    The worrisome trend of antimalarial resistance has already highlighted the importance of artemisinin as a potent antimalarial agent. The current investigation aimed at fabricating a biosensor based on natural polymer polyhydroxyalkanoate–gold nanoparticle composite mounting on an indium-tin oxide glass plate for the analysis of artemisinin. The biosensor was fabricated using an adsorbing horse-radish peroxidase enzyme on the electrode surface for which cyclic voltammetry was used to monitor the electro-catalytic reduction of artemisinin under diffusion controlled conditions. Electrochemical interfacial properties and immobilization of enzyme onto a polyhydroxyalkanoate–gold nanoparticle film were evaluated, and confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The differential pulse voltammetric peak current for artemisinin was increased linearly (concentration range of 0.01–0.08 μg mL{sup −1}) with sensitivity of 0.26 μA μg mL{sup −1}. The greater sensitivity of the fabricated biosensor to artemisinin (optimum limits of detection were 0.0035 μg mL{sup −1} and 0.0036 μg mL{sup −1} in bulk and spiked human serum, respectively) could be of much aid in medical diagnosis. - Highlights: • Extraction of PHA from indigenously isolated Pseudomonas aeruginosa BPC2 • Developed PHA/AuNPs/HRP/ITO based biosensor without the use of chemical cross linker • Detection of antimalarial drug artemisinin using the nanocomposite based biosensor.

  2. Microfabricated Electrochemical Cell-Based Biosensors for Analysis of Living Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2012-04-01

    Full Text Available Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA, the electric cell-substrate impedance sensing (ECIS technique, and the light addressable potentiometric sensor (LAPS. The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

  3. Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: A review.

    Science.gov (United States)

    Saidur, M R; Aziz, A R Abdul; Basirun, W J

    2017-04-15

    The presence of heavy metal in food chains due to the rapid industrialization poses a serious threat on the environment. Therefore, detection and monitoring of heavy metals contamination are gaining more attention nowadays. However, the current analytical methods (based on spectroscopy) for the detection of heavy metal contamination are often very expensive, tedious and can only be handled by trained personnel. DNA biosensors, which are based on electrochemical transduction, is a sensitive but inexpensive method of detection. The principles, sensitivity, selectivity and challenges of electrochemical biosensors are discussed in this review. This review also highlights the major advances of DNA-based electrochemical biosensors for the detection of heavy metal ions such as Hg(2+), Ag(+), Cu(2+) and Pb(2+).

  4. Optical waveguide biosensor based on cascaded Mach-Zehnder interferometer and ring resonator with Vernier effect

    Science.gov (United States)

    Jiang, Xianxin; Tang, Longhua; Song, Jinyan; Li, Mingyu; He, Jian-Jun

    2014-03-01

    Optical waveguide biosensors based on silicon-on-insulator (SOI) have been extensively investigated owing to its various advantages and many potential applications. In this article, we demonstrate a novel highly sensitive biosensor based on cascaded Mach-Zehnder interferometer (MZI) and ring resonator with the Vernier effect using wavelength interrogation. The experimental results show that the sensitivity reached 1,960 nm/RIU and 19,100 nm/RIU for sensors based on MZI alone and cascaded MZI-ring with Vernier effect, respectively. A biosensing application was also demonstrated by monitoring the interaction between goat and antigoat immunoglobulin G (IgG) pairs. This integrated high sensitivity biosensor has great potential for medical diagnostic applications.

  5. Electrochemiluminescence Biosensor Based on Thioglycolic Acid-Capped CdSe QDs for Sensing Glucose

    Directory of Open Access Journals (Sweden)

    Eun-Young Jung

    2016-01-01

    Full Text Available In order to detect low level glucose concentration, an electrochemiluminescence (ECL biosensor based on TGA-capped CdSe quantum dots (QDs was fabricated by the immobilization of CdSe QDs after modifying the surface of a glassy carbon electrode (GCE with 4-aminothiophenol diazonium salts by the electrochemical method. For the detection of glucose concentration, glucose oxidase (GOD was immobilized onto the fabricated CdSe QDs-modified electrode. The fabricated ECL biosensor based on TGA-capped CdSe QDs was characterized using a scanning electron microscope (SEM, UV-vis spectrophotometry, transmission electron microscopy (TEM, a fluorescence spectrometer (PL, and cyclic voltammetry (CV. The fabricated ECL biosensor based on TGA-capped CdSe QDs is suitable for the detection of glucose concentrations in real human blood samples.

  6. Studies Regarding the Membranous Support of a Glucose Biosensor Based on Gox

    Directory of Open Access Journals (Sweden)

    Otilia Bizerea-Spiridon

    2010-05-01

    Full Text Available To obtain glucose biosensors based on glucose oxidase (GOx, the enzyme can be immobilized on the sensitive surface of a glass electrode by different techniques: deposition on membranous support (cellophane or other macromolecular material or entrapment in a matrix. Deposition on membranous support also involves cross-linking with glutaraldehyde or entrapment in silica gel, following the sol-gel procedure. The aim of this preliminary work was to study the influence of cellophane replacement with a PVA based membranous support on the glucose biosensor performance. The data obtained at pH measurements of buffer solutions with cellophane and PVA membranous supports respectively, show that the PVA based membrane assures superior performances of the biosensor for low glucose concentrations determination (about 10-4 M. These results allow the transition to an improved immobilization technique, namely the enzyme entrapment in membranous material.

  7. A sensitive glucose biosensor based on Ag@C core–shell matrix

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan; Dai, Xingxin; Li, Jianguo [College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); Long, Yumei, E-mail: yumeilong@suda.edu.cn [College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou (China); Li, Weifeng, E-mail: liweifeng@suda.edu.cn [College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); Tu, Yifeng [College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou (China)

    2015-04-01

    Nano-Ag particles were coated with colloidal carbon (Ag@C) to improve its biocompatibility and chemical stability for the preparation of biosensor. The core–shell structure was evidenced by transmission electron microscope (TEM) and the Fourier transfer infrared (FTIR) spectra revealed that the carbon shell is rich of function groups such as − OH and − COOH. The as-prepared Ag@C core–shell structure can offer favorable microenvironment for immobilizing glucose oxidase and the direct electrochemistry process of glucose oxidase (GOD) at Ag@C modified glassy carbon electrode (GCE) was realized. The modified electrode exhibited good response to glucose. Under optimum experimental conditions the biosensor linearly responded to glucose concentration in the range of 0.05–2.5 mM, with a detection limit of 0.02 mM (S/N = 3). The apparent Michaelis–Menten constant (K{sub M}{sup app}) of the biosensor is calculated to be 1.7 mM, suggesting high enzymatic activity and affinity toward glucose. In addition, the GOD-Ag@C/Nafion/GCE shows good reproducibility and long-term stability. These results suggested that core–shell structured Ag@C is an ideal matrix for the immobilization of the redox enzymes and further the construction of the sensitive enzyme biosensor. - Highlights: • Enhanced direct electrochemistry of GOD was achieved at Ag@C modified electrode. • A novel glucose biosensor based on Ag@C core–shell structure was developed. • The designed GOD-Ag@C/Nafion/GCE biosensor showed favorable analysis properties. • The biosensor is easy to prepare and can be applied for real sample assay.

  8. Alkaline phosphatase inhibition based conductometric biosensor for phosphate estimation in biological fluids.

    Science.gov (United States)

    Upadhyay, Lata Sheo Bachan; Verma, Nishant

    2015-06-15

    Determination of phosphate ions concentration is very important from both, environmental and clinical point of view. In this study, a simple and novel conductometric biosensor for indirect determination of the phosphate ions in aqueous solution has been developed. The developed biosensor is based on the inhibition of immobilized alkaline phosphatase activity, in the presence of the phosphate ions. This is the first time we developed a mono-enzymatic biosensor for indirect estimation of phosphate ions. The developed biosensor showed a broad linear response (as compared to other reported biosensors) for phosphate ions in the range of 0.5-5.0 mM (correlation coefficient=0.995), with a detection limit of 50 µM. Different optimized parameters were obtained as the buffer concentration of 30 mM, substrate concentration of 1.0mM, and a pH of 9.0. All the optimized parameters were analyzed by analysis of variance, and were found to be statistically significant at a level of α=0.05. The developed biosensor is also suitable to determine the serum phosphate concentration, with a recovery of 86-104%, while a recovery of 102% was obtained from the water samples that were spiked with 500 µM phosphate. A relative standard deviation in the conductance response for five successive measurements (n=5) did not exceed 7%, with a shelf life of 30 days. With a lower detection limit and a higher recovery, the biosensor provides a facile approach for phosphate estimation in biological fluids.

  9. A biosensor for urea from succinimide-modified acrylic microspheres based on reflectance transduction.

    Science.gov (United States)

    Ulianas, Alizar; Heng, Lee Yook; Ahmad, Musa

    2011-01-01

    New acrylic microspheres were synthesised by photopolymerisation where the succinimide functional group was incorporated during the microsphere preparation. An optical biosensor for urea based on reflectance transduction with a large linear response range to urea was successfully developed using this material. The biosensor utilized succinimide-modified acrylic microspheres immobilized with a Nile blue chromoionophore (ETH 5294) for optical detection and urease enzyme was immobilized on the surface of the microspheres via the succinimide groups. No leaching of the enzyme or chromoionophore was observed. Hydrolysis of the urea by urease changes the pH and leads to a color change of the immobilized chromoionophore. When the color change was monitored by reflectance spectrophotometry, the linear response range of the biosensor to urea was from 0.01 to 1,000 mM (R2 = 0.97) with a limit of detection of 9.97 μM. The biosensor response showed good reproducibility (relative standard deviation = 1.43%, n = 5) with no interference by major cations such as Na+, K+, NH4+ and Mg2+. The use of reflectance as a transduction method led to a large linear response range that is better than that of many urea biosensors based on other optical transduction methods.

  10. Detection of parathyroid hormone using an electrochemical impedance biosensor based on PAMAM dendrimers.

    Science.gov (United States)

    Özcan, Hakkı Mevlüt; Sezgintürk, Mustafa Kemal

    2015-01-01

    This paper presents a novel hormone-based impedimetric biosensor to determine parathyroid hormone (PTH) level in serum for diagnosis and monitoring treatment of hyperparathyroidism, hypoparathyroidism and thyroid cancer. The interaction between PTH and the biosensor was investigated by an electrochemical method. The biosensor was based on the gold electrode modified by 12-mercapto dodecanoic (12MDDA). Antiparathyroid hormone (anti-PTH) was covalently immobilized on to poly amidoamine dendrimer (PAMAM) which was bound to a 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) couple, self-assembled monolayer structure from one of the other NH2 sites. The immobilization of anti-PTH was monitored by electrochemical impedance spectroscopy, cyclic voltammetry and scanning electron microscope techniques. After the optimization studies of immobilization materials such as 12MDDA, EDC-NHS, PAMAM, and glutaraldehyde, the performance of the biosensor was investigated in terms of linearity, sensitivity, repeatability, and reproducibility. PTH was detected within a linear range of 10-60 fg/mL. Finally the described biosensor was used to monitor PTH levels in artificial serum samples.

  11. A Biosensor for Urea from Succinimide-Modified Acrylic Microspheres Based on Reflectance Transduction

    Directory of Open Access Journals (Sweden)

    Musa Ahmad

    2011-08-01

    Full Text Available New acrylic microspheres were synthesised by photopolymerisation where the succinimide functional group was incorporated during the microsphere preparation. An optical biosensor for urea based on reflectance transduction with a large linear response range to urea was successfully developed using this material. The biosensor utilized succinimide-modified acrylic microspheres immobilized with a Nile blue chromoionophore (ETH 5294 for optical detection and urease enzyme was immobilized on the surface of the microspheres via the succinimide groups. No leaching of the enzyme or chromoionophore was observed. Hydrolysis of the urea by urease changes the pH and leads to a color change of the immobilized chromoionophore. When the color change was monitored by reflectance spectrophotometry, the linear response range of the biosensor to urea was from 0.01 to 1,000 mM (R2 = 0.97 with a limit of detection of 9.97 mM. The biosensor response showed good reproducibility (relative standard deviation = 1.43%, n = 5 with no interference by major cations such as Na+, K+, NH4+ and Mg2+. The use of reflectance as a transduction method led to a large linear response range that is better than that of many urea biosensors based on other optical transduction methods.

  12. Luminescent Iridium(III) Complex Labeled DNA for Graphene Oxide-Based Biosensors.

    Science.gov (United States)

    Zhao, Qingcheng; Zhou, Yuyang; Li, Yingying; Gu, Wei; Zhang, Qi; Liu, Jian

    2016-02-02

    There has been growing interest in utilizing highly photostable iridium(III) complexes as new luminescent probes for biotechnology and life science. Herein, iridium(III) complex with carboxyl group was synthesized and activated with N-hydroxysuccinimide, followed by tagging to the amino terminate of single-stranded DNA (ssDNA). The Ir-ssDNA probe was further combined with graphene oxide (GO) nanosheets to develop a GO-based biosensor for target ssDNA detection. The quenching efficiency of GO, and the photostability of iridium(III) complex and GO-Ir-ssDNA biosensor, were also investigated. On the basis of the high luminescence quenching efficiency of GO toward iridium(III) complex, the GO-Ir-ssDNA biosensor exhibited minimal background signals, while strong emission was observed when Ir-ssDNA desorbed from GO nanosheets and formed a double helix with the specific target, leading to a high signal-to-background ratio. Moreover, it was found that luminescent intensities of iridium(III) complex and GO-Ir-ssDNA biosensor were around 15 and 3 times higher than those of the traditional carboxyl fluorescein (FAM) dye and the GO-FAM-ssDNA biosensor after UV irradiation, respectively. Our study suggested the sensitive and selective Ir-ssDNA probe was suitable for the development of highly photostable GO-based detection platforms, showing promise for application beyond the OLED (organic light emitting diode) area.

  13. Electrochemical Biosensor Based on Boron-Doped Diamond Electrodes with Modified Surfaces

    Directory of Open Access Journals (Sweden)

    Yuan Yu

    2012-01-01

    Full Text Available Boron-doped diamond (BDD thin films, as one kind of electrode materials, are superior to conventional carbon-based materials including carbon paste, porous carbon, glassy carbon (GC, carbon nanotubes in terms of high stability, wide potential window, low background current, and good biocompatibility. Electrochemical biosensor based on BDD electrodes have attracted extensive interests due to the superior properties of BDD electrodes and the merits of biosensors, such as specificity, sensitivity, and fast response. Electrochemical reactions perform at the interface between electrolyte solutions and the electrodes surfaces, so the surface structures and properties of the BDD electrodes are important for electrochemical detection. In this paper, the recent advances of BDD electrodes with different surfaces including nanostructured surface and chemically modified surface, for the construction of various electrochemical biosensors, were described.

  14. Label-free DNA biosensor based on resistance change of platinum nanoparticles assemblies.

    Science.gov (United States)

    Skotadis, Evangelos; Voutyras, Konstantinos; Chatzipetrou, Marianneza; Tsekenis, Georgios; Patsiouras, Lampros; Madianos, Leonidas; Chatzandroulis, Stavros; Zergioti, Ioanna; Tsoukalas, Dimitris

    2016-07-15

    A novel nanoparticle based biosensor for the fast and simple detection of DNA hybridization events is presented. The sensor utilizes hybridized DNA's charge transport properties, combining them with metallic nanoparticle networks that act as nano-gapped electrodes. The DNA hybridization events can be detected by a significant reduction in the sensor's resistance due to the conductive bridging offered by hybridized DNA. By modifying the nanoparticle surface coverage, which can be controlled experimentally being a function of deposition time, and the structural properties of the electrodes, an optimized biosensor for the in situ detection of DNA hybridization events is ultimately fabricated. The fabricated biosensor exhibits a wide response range, covering four orders of magnitude, a limit of detection of 1nM and can detect a single base pair mismatch between probe and complementary DNA.

  15. Tetrahedral DNA nanostructure-based microRNA biosensor coupled with catalytic recycling of the analyte.

    Science.gov (United States)

    Miao, Peng; Wang, Bidou; Chen, Xifeng; Li, Xiaoxi; Tang, Yuguo

    2015-03-25

    MicroRNAs are not only important regulators of a wide range of cellular processes but are also identified as promising disease biomarkers. Due to the low contents in serum, microRNAs are always difficult to detect accurately . In this study, an electrochemical biosensor for ultrasensitive detection of microRNA based on tetrahedral DNA nanostructure is developed. Four DNA single strands are engineered to form a tetrahedral nanostructure with a pendant stem-loop and modified on a gold electrode surface, which largely enhances the molecular recognition efficiency. Moreover, taking advantage of strand displacement polymerization, catalytic recycling of microRNA, and silver nanoparticle-based solid-state Ag/AgCl reaction, the proposed biosensor exhibits high sensitivity with the limit of detection down to 0.4 fM. This biosensor shows great clinical value and may have practical utility in early diagnosis and prognosis of certain diseases.

  16. Development of conductometric biosensors based on alkaline phosphatases for the water quality control

    Science.gov (United States)

    Berezhetskyy, A.

    2008-09-01

    Researches are focused on the elaboration of enzymatic microconductometric device for heavy metal ions detection in water solutions. The manuscript includes a general introduction, the first chapter contains bibliographic review, the second chapter described the fundamentals of conductometric transducers, the third chapter examining the possibility to create and to optimize conductometric biosensor based on bovine alkaline phosphatase for heavy metals ions detection, the fourth chapter devoted to creation and optimization of conductometric biosensor based on alkaline phosphatase active microalgae and sol gel technology, the last chapter described application of the proposed algal biosensor for measurements of heavy metal ions toxicity of waste water, general conclusions stating the progresses achieved in the field of environmental monitoring

  17. Development of conductometric biosensors based on alkaline phosphatases for the water quality control

    CERN Document Server

    Berezhetskyy, A

    2008-01-01

    Researches are focused on the elaboration of enzymatic microconductometric device for heavy metal ions detection in water solutions. The manuscript includes a general introduction, the first chapter contains bibliographic review, the second chapter described the fundamentals of conductometric transducers, the third chapter examining the possibility to create and to optimize conductometric biosensor based on bovine alkaline phosphatase for heavy metals ions detection, the fourth chapter devoted to creation and optimization of conductometric biosensor based on alkaline phosphatase active microalgae and sol gel technology, the last chapter described application of the proposed algal biosensor for measurements of heavy metal ions toxicity of waste water, general conclusions stating the progresses achieved in the field of environmental monitoring

  18. Diamond-based protective layer for optical biosensors

    Science.gov (United States)

    Majchrowicz, D.; Ficek, M.; Baran, T.; WÄ sowicz, M.; Struk, P.; Jedrzejewska-Szczerska, M.

    2016-09-01

    Optical biosensors have become a powerful alternative to the conventional ways of measurement owing to their great properties, such as high sensitivity, high dynamic range, cost effectiveness and small size. Choice of an optical biosensor's materials is an important factor and impacts the quality of the obtained spectra. Examined biological objects are placed on a cover layer which may react with samples in a chemical, biological and mechanical way, therefore having a negative impact on the measurement reliability. Diamond, a metastable allotrope of carbon with sp3 hybridization, shows outstanding properties such as: great chemical stability, bio-compatibility, high thermal conductivity, wide bandgap and optical transparency. Additionally it possesses great mechanical durability, which makes it a long-lasting material. The protective diamond thin films were deposited on the substrate using Microwave Plasma Assisted Chemical Vapor Deposition (MW PA CVD) system. The surface morphology and roughness was assessed with atomic force microscopy and profilometry. We have performed a series of measurements to assess the biocompatibility of diamond thin films with whole blood. The results show that thin diamond protective layer does not affect the red blood cells, while retaining the sensors high resolution and dynamic range of measurement. Therefore, we conclude that diamond thin films are a viable protective coating for optical biosensors, which allows to examine many biological elements. We project that it can be particularly useful not only for biological objects but also under extreme conditions like radioactive or chemically aggressive environments and high temperatures.

  19. Creatinine and urea biosensors based on a novel ammonium ion-selective copper-polyaniline nano-composite.

    Science.gov (United States)

    Zhybak, M; Beni, V; Vagin, M Y; Dempsey, E; Turner, A P F; Korpan, Y

    2016-03-15

    The use of a novel ammonium ion-specific copper-polyaniline nano-composite as transducer for hydrolase-based biosensors is proposed. In this work, a combination of creatinine deaminase and urease has been chosen as a model system to demonstrate the construction of urea and creatinine biosensors to illustrate the principle. Immobilisation of enzymes was shown to be a crucial step in the development of the biosensors; the use of glycerol and lactitol as stabilisers resulted in a significant improvement, especially in the case of the creatinine, of the operational stability of the biosensors (from few hours to at least 3 days). The developed biosensors exhibited high selectivity towards creatinine and urea. The sensitivity was found to be 85 ± 3.4 mAM(-1)cm(-2) for the creatinine biosensor and 112 ± 3.36 mAM(-1)cm(-2) for the urea biosensor, with apparent Michaelis-Menten constants (KM,app), obtained from the creatinine and urea calibration curves, of 0.163 mM for creatinine deaminase and 0.139 mM for urease, respectively. The biosensors responded linearly over the concentration range 1-125 µM, with a limit of detection of 0.5 µM and a response time of 15s. The performance of the biosensors in a real sample matrix, serum, was evaluated and a good correlation with standard spectrophotometric clinical laboratory techniques was found.

  20. New urea biosensor based on urease enzyme obtained from Helycobacter pylori.

    Science.gov (United States)

    Dindar, Bahar; Karakuş, Emine; Abasıyanık, Fatih

    2011-11-01

    The urease enzyme of Helicobacter pylori was isolated from biopsy sample obtained from antrum big curvature cell extracts. A new urea biosensor was prepared by immobilizing urease enzyme isolated from Helicobacter pylori on poly(vinylchloride) (PVC) ammonium membrane electrode by using nonactine as an ammonium ionophore. The effect of pH, buffer concentration, and temperature for the biosensor prepared with urease from H. pylori were obtained as 6.0, 5 mM, and 25 °C, respectively. We also investigated urease concentration, stirring rate, and enzyme immobilization procedures in response to urea of the enzyme electrode. The linear working range of the biosensor extends from 1 × 10(-5) to 1 × 10(-2) M and they showed an apparent Nernstian response within this range. Urea enzyme electrodes prepared with urease enzymes obtained from H. pylori and Jack bean based on PVC membrane ammonium-selective electrode showed very good analytical parameters: high sensitivity, dynamic stability over 2 months with less decrease of sensitivity, response time 1-2 min. The analytical characteristics were investigated and were compared those of the urea biosensor prepared with urease enzyme isolated from Jack bean prepared at the same conditions. It was observed that rapid determinations of human serum urea amounts were also made possible with both biosensors.

  1. Disposable bioluminescence-based biosensor for detection of bacterial count in food.

    Science.gov (United States)

    Luo, Jinping; Liu, Xiaohong; Tian, Qing; Yue, Weiwei; Zeng, Jing; Chen, Guangquan; Cai, Xinxia

    2009-11-01

    A biosensor for rapid detection of bacterial count based on adenosine 5'-triphosphate (ATP) bioluminescence has been developed. The biosensor is composed of a key sensitive element and a photomultiplier tube used as a detector element. The disposable sensitive element consists of a sampler, a cartridge where intracellular ATP is chemically extracted from bacteria, and a microtube where the extracted ATP reacts with the luciferin-luciferase reagent to produce bioluminescence. The bioluminescence signal is transformed into relevant electrical signal by the detector and further measured with a homemade luminometer. Parameters affecting the amount of the extracted ATP, including the types of ATP extractants, the concentrations of ATP extractant, and the relevant neutralizing reagent, were optimized. Under the optimal experimental conditions, the biosensor showed a linear response to standard bacteria in a concentration range from 10(3) to 10(8) colony-forming units (CFU) per milliliter with a correlation coefficient of 0.925 (n=22) within 5min. Moreover, the bacterial count of real food samples obtained by the biosensor correlated well with those by the conventional plate count method. The proposed biosensor, with characteristics of low cost, easy operation, and fast response, provides potential application to rapid evaluation of bacterial contamination in the food industry, environment monitoring, and other fields.

  2. Nanomaterial-based biosensors using dual transducing elements for solution phase detection.

    Science.gov (United States)

    Li, Ning; Su, Xiaodi; Lu, Yi

    2015-05-07

    Biosensors incorporating nanomaterials have demonstrated superior performance compared to their conventional counterparts. Most reported sensors use nanomaterials as a single transducer of signals, while biosensor designs using dual transducing elements have emerged as new approaches to further improve overall sensing performance. This review focuses on recent developments in nanomaterial-based biosensors using dual transducing elements for solution phase detection. The review begins with a brief introduction of the commonly used nanomaterial transducers suitable for designing dual element sensors, including quantum dots, metal nanoparticles, upconversion nanoparticles, graphene, graphene oxide, carbon nanotubes, and carbon nanodots. This is followed by the presentation of the four basic design principles, namely Förster Resonance Energy Transfer (FRET), Amplified Fluorescence Polarization (AFP), Bio-barcode Assay (BCA) and Chemiluminescence (CL), involving either two kinds of nanomaterials, or one nanomaterial and an organic luminescent agent (e.g. organic dyes, luminescent polymers) as dual transducers. Biomolecular and chemical analytes or biological interactions are detected by their control of the assembly and disassembly of the two transducing elements that change the distance between them, the size of the fluorophore-containing composite, or the catalytic properties of the nanomaterial transducers, among other property changes. Comparative discussions on their respective design rules and overall performances are presented afterwards. Compared with the single transducer biosensor design, such a dual-transducer configuration exhibits much enhanced flexibility and design versatility, allowing biosensors to be more specifically devised for various purposes. The review ends by highlighting some of the further development opportunities in this field.

  3. A disposable biosensor based on immobilization of laccase with silica spheres on the MWCNTs-doped screen-printed electrode

    Directory of Open Access Journals (Sweden)

    Li Yuanting

    2012-09-01

    Full Text Available Abstract Background Biosensors have attracted increasing attention as reliable analytical instruments in in situ monitoring of public health and environmental pollution. For enzyme-based biosensors, the stabilization of enzymatic activity on the biological recognition element is of great importance. It is generally acknowledged that an effective immobilization technique is a key step to achieve the construction quality of biosensors. Results A novel disposable biosensor was constructed by immobilizing laccase (Lac with silica spheres on the surface of multi-walled carbon nanotubes (MWCNTs-doped screen-printed electrode (SPE. Then, it was characterized in morphology and electrochemical properties by scanning electron microscopy (SEM and cyclic voltammetry (CV. The characterization results indicated that a high loading of Lac and a good electrocatalytic activity could be obtained, attributing to the porous structure, large specific area and good biocompatibility of silica spheres and MWCNTs. Furthermore, the electrochemical sensing properties of the constructed biosensor were investigated by choosing dopamine (DA as the typical model of phenolic compounds. It was shown that the biosensor displays a good linearity in the range from 1.3 to 85.5 μM with a detection limit of 0.42 μM (S/N = 3, and the Michaelis-Menten constant (Kmapp was calculated to be 3.78 μM. Conclusion The immobilization of Lac was successfully achieved with silica spheres to construct a disposable biosensor on the MWCNTs-doped SPE (MWCNTs/SPE. This biosensor could determine DA based on a non-oxidative mechanism in a rapid, selective and sensitive way. Besides, the developed biosensor could retain high enzymatic activity and possess good stability without cross-linking reagents. The proposed immobilization approach and the constructed biosensor offer a great potential for the fabrication of the enzyme-based biosensors and the analysis of phenolic compounds.

  4. A Multi-Walled Carbon Nanotube-based Biosensor for Monitoring Microcystin-LR in Sources of Drinking Water Supplies

    Science.gov (United States)

    A multi-walled carbon nanotube-based electrochemical biosensor is developed for monitoring microcystin-LR (MC-LR), a toxic cyanobacterial toxin, in sources of drinking water supplies. The biosensor electrodes are fabricated using dense, mm-long multi-walled CNT (MWCNT) arrays gro...

  5. Enzyme biosensor for urea based on a novel pH bulk optode membrane.

    Science.gov (United States)

    Koncki, R; Mohr, G J; Wolfbeis, O S

    1995-01-01

    A new, absorbance-based enzymatic biosensor membrane for determination of urea is described. A lipophilic, fully LED- and diode laser-compatible pH sensitive dye was incorporated into a plasticized, carboxylated poly(vinyl chloride) membrane and served as the optical transducer of the sensor. Urease was covalently linked to the surface of the pH bulk optode membrane to form a very thin cover. The resulting biosensor membrane allows rapid determination of urea over the 0.3 to 100 mM range. The reproducibility, stability, and effects of pH and buffer concentration on the response of sensor are reported. The preparation of the pH transducer and the immobilization of the enzyme are simple and may easily be adopted to other biosensor types.

  6. The detection of Salmonella typhimurium on shell eggs using a phage-based biosensor

    Science.gov (United States)

    Chai, Yating; Li, Suiqiong; Horikawa, Shin; Shen, Wen; Park, Mi-Kyung; Vodyanoy, Vitaly J.; Chin, Bryan A.

    2011-06-01

    This paper presents the direct detection of Salmonella typhimurium on shell eggs using a phage-based magnetoelastic (ME) biosensor. The ME biosensor consists of a ME resonator as the sensor platform and E2 phage as the biorecognition element that is genetically engineered to specifically bind with Salmonella typhimurium. The ME biosensor, which is a wireless sensor, vibrates with a characteristic resonant frequency under an externally applied magnetic field. Multiple sensors can easily be remotely monitored. Multiple measurement and control sensors were placed on the shell eggs contaminated by Salmonella typhimurium solutions with different known concentrations. The resonant frequency of sensors before and after the exposure to the spiked shell eggs was measured. The frequency shift of the measurement sensors was significantly different than the control sensors indicating Salmonella contamination. Scanning electron microscopy was used to confirm binding of Salmonella to the sensor surface and the resulting frequency shift results.

  7. Probing the sensitivity of nanowire-based biosensors using liquid-gating

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ming-Pei; Yang, Yuh-Shyong [National Nano Device Laboratories, Hsinchu 300, Taiwan (China); Hsiao, Cheng-Yun; Lai, Wen-Tsan, E-mail: mingpei.lu@gmail.com, E-mail: ysyang@faculty.nctu.edu.tw [Institute of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2010-10-22

    We have used liquid-gating to investigate the sensitivity of nanowire (NW)-based biosensors for application in the field of ultrasensitive biodetection. We developed an equivalent capacitance model of the biosensor system to explore the dependence of the sensitivity on the liquid-gate voltage (V{sub lg}), which was influenced by capacitive competition between the NW capacitance and the thin oxide capacitance. NW biosensors with highest sensitivity were obtained when we operated the device in the subthreshold regime while applying an appropriate value of V{sub lg}; the influence of leakage paths through the ionic solutions led, however, to significant sensitivity degradation and narrowed the operating window in the subthreshold regime.

  8. Electrochemical biosensors and nanobiosensors.

    Science.gov (United States)

    Hammond, Jules L; Formisano, Nello; Estrela, Pedro; Carrara, Sandro; Tkac, Jan

    2016-06-30

    Electrochemical techniques have great promise for low-cost miniaturised easy-to-use portable devices for a wide range of applications-in particular, medical diagnosis and environmental monitoring. Different techniques can be used for biosensing, with amperometric devices taking the central role due to their widespread application in glucose monitoring. In fact, glucose biosensing takes an approximately 70% share of the biosensor market due to the need for diabetic patients to monitor their sugar levels several times a day, making it an appealing commercial market.In this review, we present the basic principles of electrochemical biosensor devices. A description of the different generations of glucose sensors is used to describe in some detail the operation of amperometric sensors and how the introduction of mediators can enhance the performance of the sensors. Electrochemical impedance spectroscopy is a technique being increasingly used in devices due to its ability to detect variations in resistance and capacitance upon binding events. Novel advances in electrochemical sensors, due to the use of nanomaterials such as carbon nanotubes and graphene, are presented as well as future directions that the field is taking.

  9. Francisella tularensis detection using magnetic labels and a magnetic biosensor based on frequency mixing

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Martin H.F. [Institute for Pharmaceutical Chemistry, Philipps-Universitaet Marburg (Germany); Krause, Hans-Joachim [Institute of Bio-and Nanosystems (IBN-2), Research Center Juelich (Germany); Hartmann, Markus [Institute for Pharmaceutical Chemistry, Philipps-Universitaet Marburg (Germany); Miethe, Peter [SENOVA GmbH, Jena (Germany); Oster, Juergen [chemagen GmbH, Baesweiler (Germany); Keusgen, Michael [Institute for Pharmaceutical Chemistry, Philipps-Universitaet Marburg (Germany)]. E-mail: Keusgen@staff.uni-marburg.de

    2007-04-15

    A biosensor that uses resonant coils with a special frequency-mixing technique and magnetic beads as detectable labels has been established for the detection of Francisella tularensis, the causative agent for tularemia. The detection principle is based on a sandwich immunoassay using an anti-Ft antibody for immunofiltration immobilized to ABICAP[reg] polyethylene filters, and biotinylated with streptavidin-coated magnetic beads as labels. The linear detection range of this biosensor was found to be 10{sup 4}-10{sup 6} cfu F. tularensis lipopolysaccharide (LPS) per ml. Tested sample matrices were physiological PBS buffer and rabbit serum.

  10. Carbon Nanotubes-Based Potentiometric Bio-Sensors for Determination of Urea

    Directory of Open Access Journals (Sweden)

    Ewa Jaworska

    2015-07-01

    Full Text Available The possibility of using disposable plastic-carbon potentiometric sensors as enzyme biosensors was examined. Urease enzyme was immobilized on poly(vinyl chloride based H+- or NH4+-selective membranes using cellulose acetate. This approach has resulted in a potentiometric response on changing the pH of the solution or NH4+ ion content due to an enzymatic reaction that occurs between urease and urea. Both types of potentiometric biosensors for urea were characterized by good analytical parameters as high sensitivity and fast response time.

  11. Nanostructured silicon-based biosensors for the selective identification of analytes of social interest

    Energy Technology Data Exchange (ETDEWEB)

    D' Auria, Sabato [Institute of Protein Biochemistry, CNR, Via Pietro Castellino, 111 80131 Naples (Italy); Champdore, Marcella de [Institute of Protein Biochemistry, CNR, Via Pietro Castellino, 111 80131 Naples (Italy); Aurilia, Vincenzo [Institute of Protein Biochemistry, CNR, Via Pietro Castellino, 111 80131 Naples (Italy); Parracino, Antonietta [Institute of Protein Biochemistry, CNR, Via Pietro Castellino, 111 80131 Naples (Italy); Staiano, Maria [Institute of Protein Biochemistry, CNR, Via Pietro Castellino, 111 80131 Naples (Italy); Vitale, Annalisa [Institute of Protein Biochemistry, CNR, Via Pietro Castellino, 111 80131 Naples (Italy); Rossi, Mose [Institute of Protein Biochemistry, CNR, Via Pietro Castellino, 111 80131 Naples (Italy); Rea, Ilaria [Institute for Microelectronics and Microsystems, CNR-Department of Naples, Via Pietro Castellino 111, 80131 Naples (Italy); Rotiroti, Lucia [Institute for Microelectronics and Microsystems, CNR-Department of Naples, Via Pietro Castellino 111, 80131 Naples (Italy); Rossi, Andrea M [Istituto Nazionale di Ricerca Metrologica-INRIM, Via Strada delle Cacce 91, 10100 Turin (Italy); Borini, Stefano [Istituto Nazionale di Ricerca Metrologica-INRIM, Via Strada delle Cacce 91, 10100 Turin (Italy); Rendina, Ivo [Institute for Microelectronics and Microsystems, CNR-Department of Naples, Via Pietro Castellino 111, 80131 Naples (Italy); Stefano, Luca De [Institute for Microelectronics and Microsystems, CNR-Department of Naples, Via Pietro Castellino 111, 80131 Naples (Italy)

    2006-08-23

    Small analytes such as glucose, L-glutamine (Gln), and ammonium nitrate are detected by means of optical biosensors based on a very common nanostructured material, porous silicon (PSi). Specific recognition elements, such as protein receptors and enzymes, were immobilized on hydrogenated PSi wafers and used as probes in optical sensing systems. The binding events were optically transduced as wavelength shifts of the porous silicon reflectivity spectrum or were monitored via changes of the fluorescence emission. The biosensors described in this article suggest a general approach for the development of new sensing systems for a wide range of analytes of high social interest.

  12. Modeling a nanocantilever based biosensor using a stochastically perturbed harmonic oscillator

    CERN Document Server

    Snyder, Patrick; Serna, Juan D

    2013-01-01

    A nanoscale biosensor most suitable for clinical purposes could be based on the use of nanocantilevers. These microscopic `diving boards' are coated with binding probes that have an affinity to a specific amino acid, enzyme or protein in the body. The binding probes on the silicon cantilever attract target particles, and as target biomolecules bind to the cantilever, it changes the vibrating frequency of the cantilever. The process of target binding is a random process and hence creates fluctuations in the frequency and damping mechanism of the cantilever. The effect of such fluctuations are given in our model calculations to provide a broader quantitative understanding of nanocantilever biosensors.

  13. Voltammetric detection of As(III) with Porphyridium cruentum based modified carbon paste electrode biosensor.

    Science.gov (United States)

    Zaib, M; Saeed, A; Hussain, I; Athar, M M; Iqbal, M

    2014-12-15

    A novel biosensor based on carbon paste electrode modified with Porphyridium cruentum biomass was developed for the determination of As(III) in contaminated water. As(III) was first biosorbed-accumulated on the electrode surface at open circuit potential and then stripped off by applying anodic scan range of -0.8 to +0.8 V using differential pulse anodic stripping voltammetric technique. The best result was obtained at pH 6.0 with 0.1M HNO3 solution as stripping medium, allowing biosorption-accumulation time of 8 min using 5% P. cruentum biomass in graphite-mineral oil paste. Linear range for As(III) detection with the modified electrode-biosensor was observed between 2.5 and 20 µg L(-1). The FTIR spectrum of P. cruentum biomass confirmed the presence of active functional groups that participate in the binding of As(III). Scanning Electron Microscopy (SEM) indulged the surface morphology of modified electrode-biosensor before and after As(III) adsorption. Similarly, Atomic Force Microscopy (AFM) showed that the average roughness of the modified electrode decreased indicating the successful incorporation of P. cruentum biomass. Efficiency of the biosensor in the presence of different interfering metal (Na(+), K(+), Ca(2+), and Mg(2+)) ions were also evaluated. The application of P. cruentum modified biosensor was successfully used for the detection of As(III) in the binary metal (Fe(3+), Mn(2+), Cd(2+), Cu(2+), Ni(2+), Hg(2+), and Pb(2+)) contaminated system. The accuracy of application of biosorption based biosensor for the detection of As(III) is as low as 2.5 µg L(-1).

  14. Fabrication of nanostructures and nanostructure based interfaces for biosensor application

    Science.gov (United States)

    Srivastava, Devesh

    Nanoparticles have applications from electronics, composites, drug-delivery, imaging and sensors etc. Fabricating and controlling shape and size of nanoparticles and also controlling the positioning of these particles in 1, 2 or 3-d structures is of most interest. The underlying theme of this study is to develop simple and efficient techniques to fabricate nanoparticles from polymers, and also achieve control in shape, size and functionalization of nanoparticles, while applying them in biosensor applications. First part of the dissertation studies the fabrication of nanostructures using anodized alumina membrane as template. It discusses the fabrication design for injecting polystyrene nanoparticles inside the pores of anodized alumina membranes and heating the membrane to coalesce the particles into tapered nanoparticles. Various parameters like temperature and amount of injected particles can vary the size and shape of fabricated nanoparticles. Later it focuses on the fabrication of metallic nanostructures using the alumina membranes without the aid of the injection system. It utilizes the difference in the functionality of the pore edges of cleaved alumina membrane with respect to the pore walls to first deposit charged polymers using layer-by-layer deposition followed by deposition of nickel. Second part of this study involves immobilization of enzymes for biosensor applications. It describes a biosensor interface developed by immobilization of tyrosinase using layer-by-layer (LBL) deposition process. The interface was modified with functional nanoparticles and their influence on the response of biosensor was studied. Tyrosinase sensor was further extended to develop a novel biosensor which was used to study real time inhibition of NEST, a subunit of the medically relevant membrane protein, neuropathy target esterase. The biosensor was developed to give real time monitoring of dose dependent decrease in activity of NEST. Final part of this study emphasizes on

  15. Biosensor platform based on carbon nanotubes covalently modified with aptamers

    Science.gov (United States)

    Komarov, I. A.; Rubtsova, E. I.; Golovin, A. V.; Bobrinetskiy, I. I.

    2016-12-01

    We developed a new platform for biosensing applications. Aptamers as sensitive agents have a great potential and gives us possibility to have highest possible selectivity among other sensing agents like enzymes or antibodies. We covalently bound aptamers to the functional groups of c-CNTs and then put this system on the surface of polymer substrate. Thus we got high sensitive flexible transparent biological sensors. We also suggest that by varying aptamer type we can make set of biosensors for disease detection which can be integrated into self-healthcare systems and gadgets.

  16. Fabrication of polyimide based microfluidic channels for biosensor devices

    DEFF Research Database (Denmark)

    Zulfiqar, Azeem; Pfreundt, Andrea; Svendsen, Winnie Edith

    2015-01-01

    The ever-increasing complexity of the fabrication process of Point-of-care (POC) devices, due to high demand of functional versatility, compact size and ease-of-use, emphasizes the need of multifunctional materials that can be used to simplify this process. Polymers, currently in use for the fabr...... in uniformity of PI is also compared to the most commonly used SU8 polymer, which is a near UV sensitive epoxy resin. The potential applications of PI processing are POC and biosensor devices integrated with microelectronics....

  17. Fluorescence-based biosensor for monitoring of environmental pollutants: From concept to field application.

    Science.gov (United States)

    Bidmanova, Sarka; Kotlanova, Marketa; Rataj, Tomas; Damborsky, Jiri; Trtilek, Martin; Prokop, Zbynek

    2016-10-15

    An advanced optical biosensor was developed based on the enzymatic reaction with halogenated aliphatic hydrocarbons that is accompanied by the fluorescence change of pH indicator. The device is applicable for the detection of halogenated contaminants in water samples with pH ranging from 4 to 10 and temperature ranging from 5 to 60°C. Main advantages of the developed biosensor are small size (60×30×190mm(3)) and portability, which together with short measurement time of 1min belong to crucial attributes of analytical technique useful for routine environmental monitoring. The biosensor was successfully applied for the detection of several important halogenated pollutants under laboratory conditions, e.g., 1,2-dichloroethane, 1,2,3-trichloropropane and γ-hexachlorocyclohexane, with the limits of detection of 2.7, 1.4 and 12.1mgL(-1), respectively. The continuous monitoring was demonstrated by repetitive injection of halogenated compound into measurement solution. Consequently, field trials under environmental settings were performed. The presence of 1,2-dichloroethane (10mgL(-1)) was proved unambiguously on one of three potentially contaminated sites in Czech Republic, and the same contaminant was monitored on contaminated locality in Serbia. Equipped by Global Positioning System, the biosensor was used for creation of a precise map of contamination. Concentrations determined by biosensor and by gas chromatograph coupled with mass spectrometer exhibited the correlation coefficient of 0.92, providing a good confidence for the routine use of the biosensor system in both field screening and monitoring.

  18. New directions in medical biosensors employing poly(3,4-ethylenedioxy thiophene) derivative-based electrodes

    DEFF Research Database (Denmark)

    Rozlosnik, Noemi

    2009-01-01

    production and they are suitable for biosensor applications. Conducting polymer-based electrochemical sensors have shown numerous advantages in a number of areas related to human health, such as the diagnosis of infectious diseases, genetic mutations, drug discovery, forensics and food technology, due...

  19. Performance Improvement by Layout Designs of Conductive Polymer Microelectrode Based Impedimetric Biosensors

    DEFF Research Database (Denmark)

    Rosati, Giulio; Daprà, Johannes; Cherré, Solène

    2014-01-01

    In this work we present a theoretical, computational, and experimental evaluation of the performance of an impedimetric biosensor based on interdigitated conductive polymer (PEDOT:TsO) microelectrodes in a microfluidic system. The influence of the geometry of the electrodes and microchannels...

  20. Biosensor for laboratory and lander-based analysis of benthicnitrate plus nitrite distribution in marine environments

    DEFF Research Database (Denmark)

    Revsbech, N. P.; Glud, Ronnie Nøhr

    2009-01-01

    We present a psychotropic bacteria–based biosensor that can be used in low–temperature seawater for the analysis of nitrate + nitrite (NOx –). The sensor can be used to resolve concentrations below 1 µmol L–1 at low temperature (

  1. Fabrication of an electrochemical DNA-based biosensor for Bacillus cereus detection in milk and infant formula.

    Science.gov (United States)

    Izadi, Zahra; Sheikh-Zeinoddin, Mahmoud; Ensafi, Ali A; Soleimanian-Zad, Sabihe

    2016-06-15

    This paper describes fabrication of a DNA-based Au-nanoparticle modified pencil graphite electrode (PGE) biosensor for detection of Bacillus cereus, causative agent of two types of food-borne disease, i.e., emetic and diarrheal syndrome. The sensing element of the biosensor was comprised of gold nanoparticles (GNPs) self-assembled with single-stranded DNA (ssDNA) of nheA gene immobilized with thiol linker on the GNPs modified PGE. The size, shape and dispersion of the GNPs were characterized by field emission scanning electron microscope (FESEM). Detection of B. cereus was carried out based on an increase in the charge transfer resistance (Rct) of the biosensor due to hybridization of the ss-DNA with target DNA. An Atomic force microscope (AFM) was used to confirm the hybridization. The biosensor sensitivity in pure cultures of B. cereus was found to be 10(0) colony forming units per milliliter (CFU/mL) with a detection limit of 9.4 × 10(-12) mol L(-1). The biosensor could distinguish complementary from mismatch DNA sequence. The proposed biosensor exhibited a rapid detection, low cost, high sensitivity to bacterial contamination and could exclusively and specifically detect the target DNA sequence of B. cereus from other bacteria that can be found in dairy products. Moreover, the DNA biosensor exhibited high reproducibility and stability, thus it may be used as a suitable biosensor to detect B. cereus and to become a portable system for food quality control.

  2. Biosensors. A quarter of a century of R&D experience

    Directory of Open Access Journals (Sweden)

    Soldatkin A. P.

    2013-05-01

    Full Text Available The paper is a review of the researches of Biomolecular Electronics Laboratory concerning the development of biosensors based on electrochemical transducers (amperometric and conductometric electrodes, potentiometric pH-sensitive field effect transistors and different biorecognition molecules (enzymes, cells, antibodies, biomimics (molecularly imprinted polymers, as sensitive elements for direct analysis of substrates or inhibitory analysis of toxicants. Highly specific, sensitive, simple, fast and cheap detection of different substances renders them as promising tools for needs of health care, environmental control, biotechnology, agriculture and food industries. Diverse biosensor formats for direct determination of different analytes and inhibitory enzyme analysis of a number of toxins have been designed and developed. Improvement of their analytical characteristics may be achieved by using differential mode of measurement, negatively or positively charged additional semipermeable membranes, nanomaterials of different origin, genetically modified enzymes. These approaches have been aimed at increasing the sensitivity, selectivity and stability of the biosensors and extending their dynamic ranges. During the last 25 years more than 50 laboratory prototypes of biosensor systems based on mono- and multibiosensors for direct determination of a variety of metabolites and inhibitory analysis of different toxic substances were created. Some of them were tested in real samples analysis. The advantages and disadvantages of the biosensors developed are discussed. The possibility of their practical application is considered

  3. A sensitive label-free amperometric CEA immunosensor based on graphene-nafion nanocomposite film as an enhanced sensing platform.

    Science.gov (United States)

    Li, Yan; Yang, Wei-Kang; Fan, Man-Qi; Liu, Ao

    2011-01-01

    A novel approach to fabricate a label-free amperometric immunosensor for the detection of carcinoembryonic antigen (CEA) was described. Herein, methylene blue (MB), gold nanoparticles (AuNPs) and carcinoembryonic antibody (anti-CEA) were layer-by-layer assembled on the graphene-Nafion nanocomposite film-modified electrode by means of a self-assembling technique and the opposite-charged adsorption. Subsequently, the stepwise self-assembling procedure of the immunosensor was further characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The factors influencing the performance of the resulting immunosensor were studied in detail. The developed procedure showed improved features, including larger amount and higher immunoactivity of the immobilized antibody and repeatable regeneration of the sensor, as well as direct, rapid and simple determination for the antigen without multiple separation and labeling steps. The immunosensor could detect the target protein in a range of 0.5 to 120 ng/mL with a limit of 0.17 ng/mL (at 3σ). Finally, the immunosensing system was evaluated on several clinical samples. Analytical results were found to be in satisfactory agreement with those detected by the enzyme-linked immunosorbent assay (ELISA) method, indicating that this new method was a promising alternative tool for clinical diagnosis.

  4. Amperometric detection of carbohydrates based on the glassy carbon electrode modified with gold nano-flake layer

    Directory of Open Access Journals (Sweden)

    Huy Du Nguyen

    2015-09-01

    Full Text Available An electro-deposition approach was established to incorporate the gold nano-flakes onto the glassy carbon electrode in electrochemical cells (nano-Au/GC/ECCs. Using pulsed amperometric detection (PAD without any gold oxidation for cleaning (non-oxidative PAD, the nano-Au/GC/ECCs were able to maintain their activity for oxidizing of carbohydrates in a normal alkaline medium. The reproducibility of peak area was about 2 relative standard deviation (RSD,% for 6 consecutive injections. A dynamic range of carbohydrates was obtained over a concentration range of 5–80 mg L−1 and the limits of detection (LOD were of 2 mg L−1 for fructose and lactose and 1 mg L−1 for glucose and galactose. Moreover, the nano-Au/GC/ECC using the non-oxidative PAD was able to combine with the internal standard method for determination of lactose in fresh cow milk sample.

  5. Fast Determination of Clenbuterol and Salbutamol in Feed and Meat Products Based on Miniaturized Capillary Electrophoresis with Amperometric Detection

    Institute of Scientific and Technical Information of China (English)

    CHU Qing-Cui; GENG Cheng-Huai; ZHOU Hui; YE Jian-Nong

    2007-01-01

    The fast separation capability of a novel miniaturized capillary electrophoresis with an amperometric detection (μCE-AD) system was demonstrated by determining clenbuterol and salbutamol in real samples.The effects of several factors such as the acidity and concentration of the running buffer,the separation voltage,the applied potential and the injection time on CE-AD were examined and optimized.Under the optimum conditions,the two β-agonists could be baseline separated within 60 s at a separation voltage of 2 kV in a 90 mmol/L H3BO3-Na2B4O7 running buffer (pH 7.4),which was not interfered by ascorbic acid and uric acid.Highly linear response was obtained for above compounds over three orders of magnitude with detection limits ranging from 1.20 × 10-7 to 6.50× 10-8 mol/L (S/N=3).This method was successfully used in the analysis of feed and meat products with relatively simple extraction procedures.

  6. Sensitive amperometric determination of methimazole based on the electrocatalytic effect of rutin/multi-walled carbon nanotube film.

    Science.gov (United States)

    Dorraji, Parisa S; Jalali, Fahimeh

    2015-02-01

    Electrochemical deposition was used to prepare a glassy carbon electrode modified with multi-walled carbon nanotubes and the glycosidic compound, rutin (R/MWCNTs/GCE). Cyclic voltammetry of the modified electrode in aqueous solution (pH8) showed a pair of well-defined, stable and reversible redox peaks with surface confined characteristics. The catechol moiety of rutin produced the voltammetric peaks via a 2 electron, 2 proton mechanism in the range of 0.0-0.4V (vs. Ag/AgCl). The transfer coefficient (α), heterogeneous electron transfer rate constant (ks), and surface concentration (Γ) for R/MWCNTs/GCE were calculated by using the cyclic voltammetric data. The modified electrode showed excellent catalytic activity toward oxidation of methimazole. Fixed-potential amperometry was used for sub-micromolar determination of methimazole at pH8. Linear dependence of anodic current to methimazole concentration was obtained in the range of 0.1-26μM of the drug with a limit of detection at 18nM. The modified electrode retained its initial response for at least 2weeks if stored in dry ambient conditions. The electrode was used for the amperometric determination of methimazole in formulations and spiked blood serum samples, successfully.

  7. Biosensor for dopamine based on stabilized lipid films with incorporated resorcin[4]arene receptor.

    Science.gov (United States)

    Nikolelis, Dimitrios P; Theoharis, George

    2003-04-01

    This work reports a technique for the stabilization after storage in air of a lipid film with incorporated resorcin[4]arene receptor based biosensor for dopamine. Microporous filters composed of glass fibers (nominal pore sizes, 0.7 and 1.0 microm) were used as supports for the formation and stabilization of these devices and the lipid film is formed on the filter by polymerization prior its use. Methacrylic acid was the functional monomer, ethylene glycol dimethacrylate was the crosslinker and 2,2'-azobis-(2-methylpropionitrile) was the initiator. The stability of the lipid films by incorporation of a receptor for the preparation of stabilized lipid film biosensor is studied throughout this work. The response towards dopamine of the present stabilized for repetitive uses lipid membrane biosensor composed of dipalmitoyl phosphatidylcholine and dipalmitoyl phosphatidic acid was compared with planar freely suspended bilayer lipid membranes (BLMs). The stabilized lipid membranes provided similar artificial ion gating events as BLMs in the form of transient signals and can function for repetitive uses after storage in air. However, the response of the stabilized lipid films was slower than that of the freely suspended BLMs. This will allow the practical use of the techniques for chemical sensing based on lipid films and commercialization of these devices, because it is now possible to prepare stabilized lipid film based biosensors and store them in the air.

  8. A luminescent hybridoma-based biosensor for rapid detection of V. cholerae upon induction of calcium signaling pathway.

    Science.gov (United States)

    Zamani, Parichehr; Sajedi, Reza H; Hosseinkhani, Saman; Zeinoddini, Mehdi; Bakhshi, Bita

    2016-05-15

    In this study, a hybridoma based biosensor was developed for rapid, sensitive and selective detection of Vibrio cholerae O1 which converts the antibody-antigen binding to bioluminescence light. After investigation on hybridoma performance, the biosensor was constructed by transfecting specific hybridoma cells with aequorin reporter gene and the bioluminescence activities of stable biosensor were measured. The sensitivity of biosensor was as few as 50 CFU/ml and it showed no responses to other entric bacteria. Moreover, the response time of biosensor was estimated in 7th second which means this method is considerably faster than many available detection assays. In addition, this biosensor was successfully applied to V. cholerae detection in environmental samples with no significant loss in sensitivity, demonstrating our proposed biosensor provides a sensitive and reliable method for detection of V. cholerae in natural samples. The application of whole hybridoma cell directly as a sensing element in biosensor construction which mentioned for the first time in present study suggests that hybridoma cells could provide a valuable tool for future studies in both basic and diagnostic sciences and could be considered as a fast and specific sensing element for detection of other pathogens in different applications.

  9. Affinity and enzyme-based biosensors: recent advances and emerging applications in cell analysis and point-of-care testing.

    Science.gov (United States)

    Liu, Ying; Matharu, Zimple; Howland, Michael C; Revzin, Alexander; Simonian, Aleksandr L

    2012-09-01

    The applications of biosensors range from environmental testing and biowarfare agent detection to clinical testing and cell analysis. In recent years, biosensors have become increasingly prevalent in clinical testing and point-of-care testing. This is driven in part by the desire to decrease the cost of health care, to shift some of the analytical tests from centralized facilities to "frontline" physicians and nurses, and to obtain more precise information more quickly about the health status of a patient. This article gives an overview of recent advances in the field of biosensors, focusing on biosensors based on enzymes, aptamers, antibodies, and phages. In addition, this article attempts to describe efforts to apply these biosensors to clinical testing and cell analysis.

  10. A Novel Conductometric Urea Biosensor with Improved Analytical Characteristic Based on Recombinant Urease Adsorbed on Nanoparticle of Silicalite

    Science.gov (United States)

    Velychko, T. P.; Soldatkin, O. O.; Melnyk, V. G.; Marchenko, S. V.; Kirdeciler, S. K.; Akata, B.; Soldatkin, A. P.; El'skaya, A. V.; Dzyadevych, S. V.

    2016-02-01

    Development of a conductometric biosensor for the urea detection has been reported. It was created using a non-typical method of the recombinant urease immobilization via adsorption on nanoporous particles of silicalite. It should be noted that this biosensor has a number of advantages, such as simple and fast performance, the absence of toxic compounds during biosensor preparation, and high reproducibility (RSD = 5.1 %). The linear range of urea determination by using the biosensor was 0.05-15 mM, and a lower limit of urea detection was 20 μM. The bioselective element was found to be stable for 19 days. The characteristics of recombinant urease-based biomembranes, such as dependence of responses on the protein and ion concentrations, were investigated. It is shown that the developed biosensor can be successfully used for the urea analysis during renal dialysis.

  11. Novel phenol biosensor based on laccase immobilized on reduced graphene oxide supported palladium-copper alloyed nanocages.

    Science.gov (United States)

    Mei, Li-Ping; Feng, Jiu-Ju; Wu, Liang; Zhou, Jia-Ying; Chen, Jian-Rong; Wang, Ai-Jun

    2015-12-15

    Developing new nanomaterials is of key importance to improve the analytical performances of electrochemical biosensors. In this work, palladium-copper alloyed nanocages supported on reduced graphene oxide (RGO-PdCu NCs) were facilely prepared by a simple one-pot solvothermal method. A novel phenol biosensor based on laccase has been constructed for rapid detection of catachol, using RGO-PdCu NCs as electrode material. The as-developed phenol biosensor greatly enhanced the electrochemical signals for catechol. Under the optimal conditions, the biosensor has two linear ranges from 0.005 to 1.155 mM and 1.655 to 5.155 mM for catachol detection at 0.6 V, the sensitivity of 12.65 µA mM(-1) and 5.51 µA mM(-1), respectively. This biosensor showed high selectivity, low detection limit, good reproducibility, and high anti-interference ability.

  12. A novel thermal biosensor based on enzyme reaction for pesticides measurement

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yi-hua; HUA Tse-chao; XU Fei

    2005-01-01

    A novel thermal biosensor based on enzyme reaction for pesticides detection has been developed. This biosensor is a flow injection analysis system and consists of two channels with enzyme reaction column and identical reference column, which is set for eliminating the unspecific heat. The enzyme reaction takes place in the enzyme reaction column at a constant temperature(40℃ ) realized by a thermoelectric thermostat. Thermosensor based on the thermoelectric module containing 127 serial BiTe-thermocouples is used to monitor the temperature difference between two effluents from enzyme reaction column and reference column. The ability of this biosensor to detect pesticides is demonstrated by the decreased degree of the hydrolytic heat in two types of thermosensor mode. The hydrolytic reaction is inhibited by 36% at 1 mg/L DDVP and 50 % at 10 mg/L DDVP when cell-typed thermosensor is used. The percent inhibition is 30% at 1 mg/L DDVP and 42% at 10 mg/L DDVP in tube-typed thermosensor mode. The detection for real sample shows that this biosensor can be used for detection of organophosphate pesticides residue.

  13. Investigation of a Photoelectrochemical Passivated ZnO-Based Glucose Biosensor

    Directory of Open Access Journals (Sweden)

    Yao-Jung Lee

    2011-04-01

    Full Text Available A vapor cooling condensation system was used to deposit high quality intrinsic ZnO thin films and intrinsic ZnO nanorods as the sensing membrane of extended-gate field-effect-transistor (EGFET glucose biosensors. The sensing sensitivity of the resulting glucose biosensors operated in the linear range was 13.4 μA mM−1 cm−2. To improve the sensing sensitivity of the ZnO-based glucose biosensors, the photoelectrochemical method was utilized to passivate the sidewall surfaces of the ZnO nanorods. The sensing sensitivity of the ZnO-based glucose biosensors with passivated ZnO nanorods was significantly improved to 20.33 μA mM−1 cm−2 under the same measurement conditions. The experimental results verified that the sensing sensitivity improvement was the result of the mitigation of the Fermi level pinning effect caused by the dangling bonds and the surface states induced on the sidewall surface of the ZnO nanorods.

  14. In situ microbial fuel cell-based biosensor for organic carbon

    DEFF Research Database (Denmark)

    de Jesus dos Santos Peixoto, Luciana; Min, Booki; Martins, Gilberto

    2011-01-01

    The biological oxygen demand (BOD) may be the most used test to assess the amount of pollutant organic matter in water; however, it is time and labor consuming, and is done ex-situ. A BOD biosensor based on the microbial fuel cell principle was tested for online and in situ monitoring of biodegra......The biological oxygen demand (BOD) may be the most used test to assess the amount of pollutant organic matter in water; however, it is time and labor consuming, and is done ex-situ. A BOD biosensor based on the microbial fuel cell principle was tested for online and in situ monitoring...... to 78±7.6mg O2/L. The current generation from the BOD biosensor was dependent on the measurement conditions such as temperature, conductivity, and pH. Thus, a correction factor should be applied to measurements done under different environmental conditions from the ones used in the calibration....... These results provide useful information for the development of a biosensor for real-time in situ monitoring of wastewater quality....

  15. Detection of Salmonella Typhimurium on Spinach Using Phage-Based Magnetoelastic Biosensors

    Directory of Open Access Journals (Sweden)

    Fengen Wang

    2017-02-01

    Full Text Available Phage-based magnetoelastic (ME biosensors have been studied as an in-situ, real-time, wireless, direct detection method of foodborne pathogens in recent years. This paper investigates an ME biosensor method for the detection of Salmonella Typhimurium on fresh spinach leaves. A procedure to obtain a concentrated suspension of Salmonella from contaminated spinach leaves is described that is based on methods outlined in the U.S. FDA Bacteriological Analytical Manual for the detection of Salmonella on leafy green vegetables. The effects of an alternative pre-enrichment broth (LB broth vs. lactose broth, incubation time on the detection performance and negative control were investigated. In addition, different blocking agents (BSA, Casein, and Superblock were evaluated to minimize the effect of nonspecific binding. None of the blocking agents was found to be superior to the others, or even better than none. Unblocked ME biosensors were placed directly in a concentrated suspension and allowed to bind with Salmonella cells for 30 min before measuring the resonant frequency using a surface-scanning coil detector. It was found that 7 h incubation at 37 °C in LB broth was necessary to detect an initial spike of 100 cfu/25 g S. Typhimurium on spinach leaves with a confidence level of difference greater than 95% (p < 0.05. Thus, the ME biosensor method, on both partly and fully detection, was demonstrated to be a robust and competitive method for foodborne pathogens on fresh products.

  16. A Potentiometric Formaldehyde Biosensor Based on Immobilization of Alcohol Oxidase on Acryloxysuccinimide-modified Acrylic Microspheres

    Directory of Open Access Journals (Sweden)

    Lee Yook Heng

    2010-11-01

    Full Text Available A new alcohol oxidase (AOX enzyme-based formaldehyde biosensor based on acrylic microspheres has been developed. Hydrophobic poly(n-butyl acrylate-N-acryloxy-succinimide [poly(nBA-NAS] microspheres, an enzyme immobilization matrix, was synthesized using photopolymerization in an emulsion form. AOX-poly(nBA-NAS microspheres were deposited on a pH transducer made from a layer of photocured and self-plasticized polyacrylate membrane with an entrapped pH ionophore coated on a Ag/AgCl screen printed electrode (SPE. Oxidation of formaldehyde by the immobilized AOX resulted in the production of protons, which can be determined via the pH transducer. Effects of buffer concentrations, pH and different amount of immobilization matrix towards the biosensor’s analytical performance were investigated. The formaldehyde biosensor exhibited a dynamic linear response range to formaldehyde from 0.3–316.2 mM and a sensitivity of 59.41 ± 0.66 mV/decade (R2 = 0.9776, n = 3. The lower detection limit of the biosensor was 0.3 mM, while reproducibility and repeatability were 3.16% RSD (relative standard deviation and 1.11% RSD, respectively (n = 3. The use of acrylic microspheres in the potentiometric formaldehyde biosensor improved the biosensor’s performance in terms of response time, linear response range and long term stability when compared with thick film immobilization methods.

  17. Towards an integrated biosensor array for simultaneous and rapid multi-analysis of endocrine disrupting chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Scognamiglio, Viviana, E-mail: viviana.scognamiglio@mlib.ic.cnr.it [IC-CNR Istituto di Cristallografia, AdR1 Dipartimento Agroalimentare - Via Salaria Km 29.3 00015, Rome (Italy); Pezzotti, Italo; Pezzotti, Gianni; Cano, Juan; Manfredonia, Ivano [Biosensor S.r.l. - Via degli Olmetti 44 00060 Formello, Rome (Italy); Buonasera, Katia [IC-CNR Istituto di Cristallografia, AdR1 Dipartimento Agroalimentare - Via Salaria Km 29.3 00015, Rome (Italy); Arduini, Fabiana; Moscone, Danila; Palleschi, Giuseppe [Universita di Roma Tor Vergata, Dipartimento di Scienze e Tecnologie Chimiche - Via della Ricerca Scientifica 00133, Rome (Italy); Giardi, Maria Teresa [IC-CNR Istituto di Cristallografia, AdR1 Dipartimento Agroalimentare - Via Salaria Km 29.3 00015, Rome (Italy)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer A multitask biosensor for the detection of endocrine disrupting chemicals is proposed. Black-Right-Pointing-Pointer The sensing system employ an array of biological recognition elements. Black-Right-Pointing-Pointer Amperometric and optical transduction methods are provided in an integrated biosensor together with flow control systems. Black-Right-Pointing-Pointer The biosensing device results in an integrated, automatic and portable system for environmental and agrifood application. - Abstract: In this paper we propose the construction and application of a portable multi-purpose biosensor array for the simultaneous detection of a wide range of endocrine disruptor chemicals (EDCs), based on the recognition operated by various enzymes and microorganisms. The developed biosensor combines both electrochemical and optical transduction systems, in order to increase the number of chemical species which can be monitored. Considering to the maximum residue level (MRL) of contaminants established by the European Commission, the biosensor system was able to detect most of the chemicals analysed with very high sensitivity. In particular, atrazine and diuron were detected with a limit of detection of 0.5 nM, with an RSD% less than 5%; paraoxon and chlorpyrifos were revealed with a detection of 5 {mu}M and 4.5 {mu}M, respectively, with an RSD% less than 6%; catechol and bisphenol A were identified with a limit of detection of 1 {mu}M and 35 {mu}M respectively, with an RSD% less than 5%.

  18. Biosensor for direct determination of fenitrothion and EPN using recombinant Pseudomonas putida JS444 with surface-expressed organophosphorous hydrolase. 2. Modified carbon paste electrode.

    Science.gov (United States)

    Lei, Yu; Mulchandani, Priti; Chen, Wilfred; Mulchandani, Ashok

    2007-03-01

    A whole cell-based amperometric biosensor for highly selective, sensitive, rapid, and cost-effective determination of the organophosphate pesticides fenitrothion and ethyl p-nitrophenol thio-benzene phosphonate (EPN) is discussed. The biosensor comprised genetically engineered p-nitrophenol (PNP)-degrading bacteria Pseudomonas putida JS444 anchoring and displaying organophosphorous hydrolase (OPH) on its cell surface as biological sensing element and carbon paste electrode as the amperometric transducer. Surface-expressed OPH catalyzed the hydrolysis of organophosphorous pesticides such as fenitrothion and EPN to release PNP and 3-methyl-4- nitrophenol, respectively, which were subsequently degraded by the enzymatic machinery of P. putida JS444 through electrochemically active intermediates to the TCA cycle. The electro-oxidization current of the intermediates was measured and correlated to the concentration of organophosphates. Operating at optimum conditions, 0.086 mg dry wt of cell operating at 600 mV of applied potential (vs Ag/AgCl reference) in 50 mM citrate phosphate buffer, pH 7.5, with 50 muM CoCl2 at room temperature, the biosensor measured as low as 1.4 ppb of fenitrothion and 1.6 ppb of EPN. There was no interference from phenolic compounds, carbamate pesticides, triazine herbicides, or organophosphate pesticides without nitrophenyl substituent. The service life of the biosensor and the applicability to lake water were also demonstrated.

  19. Speciation of chromium using chronoamperometric biosensors based on screen-printed electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Calvo-Pérez, Ana, E-mail: anacp@ubu.es; Domínguez-Renedo, Olga, E-mail: olgado@ubu.es; Alonso-Lomillo, MAsunción, E-mail: malomillo@ubu.es; Arcos-Martínez, MJulia, E-mail: jarcos@ubu.es

    2014-06-23

    Highlights: • Chronoamperometric determination of Cr(III) on tyrosinase based biosensors using SPCEs. • Chronoamperometric determination of Cr(VI) on GOx based biosensors using SPCEs. • High degree of sensitivity and selectivity in the analysis of both chromium species. • Bipotentiostatic chronoamperometric determination of both chromium species in the same sample. - Abstract: Chronoamperometric assays based on tyrosinase and glucose oxidase (GOx) inactivation have been developed for the monitoring of Cr(III) and Cr(VI). Tyrosinase was immobilized by crosslinking on screen-printed carbon electrodes (SPCEs) containing tetrathiafulvalene (TTF) as electron transfer mediator. The tyrosinase/SPC{sub TTF}E response to pyrocatechol is inhibited by Cr(III). This process, that is not affected by Cr(VI), allows the determination of Cr(III) with a capability of detection of 2.0 ± 0.2 μM and a reproducibility of 5.5%. GOx modified screen-printed carbon platinised electrodes (SPC{sub Pt}Es) were developed for the selective determination of Cr(VI) using ferricyanide as redox mediator. The biosensor was able to discriminate two different oxidation states of chromium being able to reject Cr(III) and to detect the toxic species Cr(VI). Chronoamperometric response of the biosensor towards glucose decreases with the presence of Cr(VI), with a capability of detection of 90.5 ± 7.6 nM and a reproducibility of 6.2%. A bipotentiostatic chronoamperometric biosensor was finally developed using a tyrosinase/SPC{sub TTF}E and a GOx/SPC{sub Pt}E connected in array mode for the simultaneous determination of Cr(III) and Cr(VI) in spiked tap water and in waste water from a tannery factory samples.

  20. Nuclear track-based biosensors with the enzyme laccase

    Science.gov (United States)

    García-Arellano, H.; Fink, D.; Muñoz Hernández, G.; Vacík, J.; Hnatowicz, V.; Alfonta, L.

    2014-08-01

    A new type of biosensors for detecting phenolic compounds is presented here. These sensors consist of thin polymer foils with laccase-clad etched nuclear tracks. The presence of suitable phenolic compounds in the sensors leads to the formation of enzymatic reaction products in the tracks, which differ in their electrical conductivities from their precursor materials. These differences correlate with the concentrations of the phenolic compounds. Corresponding calibration curves have been established for a number of compounds. The sensors thus produced are capable to cover between 5 and 9 orders of magnitude in concentration - in the best case down to some picomoles. The sensor's detection sensitivity strongly depends on the specific compound. It is highest for caffeic acid and acid blue 74, followed by ABTS and ferulic acid.

  1. Plasmon based biosensor for distinguishing different peptides mutation states

    KAUST Repository

    Das, Gobind

    2013-05-08

    Periodic and reproducible gold nanocuboids with various matrix dimensions and with different inter-particle gaps were fabricated by means of top-down technique. Rhodamine 6G was used as a probe molecule to optimize the design and the fabrication of the cuboid nanostructures. The electric field distribution for the nanocuboids with varying matrix dimensions/inter-particle gap was also investigated. These SERS devices were employed as biosensors through the investigation of both myoglobin and wild/mutated peptides. The results demonstrate the probing and the screening of wild/mutated BRCA1 peptides, thus opening a path for the fabrication of simple and cheap SERS device capable of early detection of several diseases.

  2. Synthesis and application of quantum dots-based biosensor

    Science.gov (United States)

    Hai Nguyen, Ngoc; Giang Duong, Thi; Hoang, Van Nong; Thang Pham, Nam; Cao Dao, Tran; Nga Pham, Thu

    2015-03-01

    Trichlorfon (TF) is one of the organophosphorus pesticides used widely in agriculture. The content of this paper includes the exploitation of dominant optical properties of the quantum dots consisting of a core and multilayer shell CdSe/ZnSe/ZnS (QD). A biosensor was fabricated on the basis of this QD for rapidly detecting the residues of trichlofon pesticide with concentrations of 0.01 ppm to 5 ppm. The measurements were carried out to examine the morphology of the QD structure and fluorescent properties such as transmission electron microscopy, x-ray diffraction, absorption spectroscopy and fluorescence spectroscopy. The linking mechanism among biological agents and the specificity of the acetylcholinesterase enzymes in hydrolysis reaction of acetylthiolcholine was applied to create the changes in surroundings, affecting the fluorescence of the QD. In particular, the mechanism of bioluminescence resonance energy transfer (BRET) is discussed to clearly explain the recombination of electrons and holes in the QD.

  3. A FRET Biosensor for ROCK Based on a Consensus Substrate Sequence Identified by KISS Technology.

    Science.gov (United States)

    Li, Chunjie; Imanishi, Ayako; Komatsu, Naoki; Terai, Kenta; Amano, Mutsuki; Kaibuchi, Kozo; Matsuda, Michiyuki

    2017-01-11

    Genetically-encoded biosensors based on Förster/fluorescence resonance energy transfer (FRET) are versatile tools for studying the spatio-temporal regulation of signaling molecules within not only the cells but also tissues. Perhaps the hardest task in the development of a FRET biosensor for protein kinases is to identify the kinase-specific substrate peptide to be used in the FRET biosensor. To solve this problem, we took advantage of kinase-interacting substrate screening (KISS) technology, which deduces a consensus substrate sequence for the protein kinase of interest. Here, we show that a consensus substrate sequence for ROCK identified by KISS yielded a FRET biosensor for ROCK, named Eevee-ROCK, with high sensitivity and specificity. By treating HeLa cells with inhibitors or siRNAs against ROCK, we show that a substantial part of the basal FRET signal of Eevee-ROCK was derived from the activities of ROCK1 and ROCK2. Eevee-ROCK readily detected ROCK activation by epidermal growth factor, lysophosphatidic acid, and serum. When cells stably-expressing Eevee-ROCK were time-lapse imaged for three days, ROCK activity was found to increase after the completion of cytokinesis, concomitant with the spreading of cells. Eevee-ROCK also revealed a gradual increase in ROCK activity during apoptosis. Thus, Eevee-ROCK, which was developed from a substrate sequence predicted by the KISS technology, will pave the way to a better understanding of the function of ROCK in a physiological context.

  4. Zirconia-poly(propylene imine) dendrimer nanocomposite based electrochemical urea biosensor.

    Science.gov (United States)

    Shukla, Sudheesh K; Mishra, Ajay K; Mamba, Bhekie B; Arotiba, Omotayo A

    2014-11-01

    In this article we report a selective urea electrochemical biosensor based on electro-co-deposited zirconia-polypropylene imine dendrimer (ZrO2-PPI) nanocomposite modified screen printed carbon electrode (SPCE). ZrO2 nanoparticles, prepared by modified sol-gel method were dispersed in PPI solution, and electro-co-deposited by cyclic voltammetry onto a SPCE surface. The material and the modified electrodes were characterised using FTIR, electron microscopy and electrochemistry. The synergistic effect of the high active surface area of both materials, i.e. PPI and ZrO2 nanoparticles, gave rise to a remarkable improvement in the electrocatalytic properties of the biosensor and aided the immobilisation of the urease enzyme. The biosensor has an ampereometric response time of ∼4 s in urea concentration ranging from 0.01 mM to 2.99 mM with a correlation coefficient of 0.9985 and sensitivity of 3.89 μA mM(-1) cm(-2). The biosensor was selective in the presence of interferences. Photochemical study of the immobilised enzyme revealed high stability and reactivity.

  5. Characterization of an organic phase peroxide biosensor based on horseradish peroxidase immobilized in Eastman AQ.

    Science.gov (United States)

    Konash, Anastassija; Magner, Edmond

    2006-07-15

    Due to their frequent occurrence in food, cosmetics and pharmaceutical products, and their poor solubility in water, the detection of peroxides in organic solvents has aroused significant interest. For diagnostics or on-site testing, a fast and specific experimental approach is required. Although aqueous peroxide biosensors are well known, they are usually not suitable for nonaqueous applications due to their instability. Here we describe an organic phase biosensor for hydrogen peroxide based on horseradish peroxidase immobilized in an Eastman AQ 55 polymer matrix. Rotating disc amperometry was used to examine the effect of the solvent properties, the amount and pH of added buffer, the concentration of peroxide and ferrocene dimethanol, and the amount of Eastman AQ 55 and of enzyme on the response of the biosensor to hydrogen peroxide. The response of the biosensor was limited by diffusion. Linear responses (with detection limits to hydrogen peroxide given in parentheses) were obtained in methanol (1.2 microM), ethanol (0.6 microM), 1-propanol (2.8 microM), acetone (1.4 microM), acetonitrile (2.6 microM), and ethylene glycol (13.6 microM). The rate of diffusion of ferrocene dimethanol was more constrained than the rate of diffusion of hydrogen peroxide, resulting in a comparatively narrow linear range. The main advantages of the sensor are its ease of use and a high degree of reproducibility, together with good operational and storage stability.

  6. Development of novel conductometric biosensors based on immobilised whole cell Chlorella vulgaris microalgae.

    Science.gov (United States)

    Chouteau, Celine; Dzyadevych, Sergei; Chovelon, Jean-Marc; Durrieu, Claude

    2004-04-15

    A novel biosensor based on immobilised whole cell Chlorella vulgaris microalgae as a bioreceptor and interdigitated conductometric electrodes as a transducer has been developed and tested for alkaline phosphatase activity (APA) analysis. These sensors were also used for the detection of toxic compounds, namely cadmium ions, in aquatic habitats. Algae were immobilised inside bovine serum albumin (BSA) membranes cross-linked with glutaraldehyde vapours. The detection of the local conductivity variations caused by algae enzymatic reactions could be achieved. The inhibition of C. vulgaris microalgae Alkaline phosphatase activities in presence of cadmium ions was measured. These results were compared with measurements in bioassays. It finally appeared that conductometric biosensors using algae seemed more sensitive than bioassays to detect low levels of cadmium ions (the detection limit for the first experiments was 1 ppb of Cd2+). The main advantages of these alkaline phosphatase biosensors consist of their high specificity in regard to the toxic compounds they enable to detect, but also on their high stability since contrary to enzymatic biosensors, they use whole algae cells with APs on their walls.

  7. A Novel Cell-Based Hybrid Acoustic Wave Biosensor with Impedimetric Sensing Capabilities

    Directory of Open Access Journals (Sweden)

    Ioana Voiculescu

    2013-03-01

    Full Text Available A novel multiparametric biosensor system based on living cells will be presented. The biosensor system includes two biosensing techniques on a single device: resonant frequency measurements and electric cell-substrate impedance sensing (ECIS. The multiparametric sensor system is based on the innovative use of the upper electrode of a quartz crystal microbalance (QCM resonator as working electrode for the ECIS technique. The QCM acoustic wave sensor consists of a thin AT-cut quartz substrate with two gold electrodes on opposite sides. For integration of the QCM with the ECIS technique a semicircular counter electrode was fabricated near the upper electrode on the same side of the quartz crystal. Bovine aortic endothelial live cells (BAECs were successfully cultured on this hybrid biosensor. Finite element modeling of the bulk acoustic wave resonator using COMSOL simulations was performed. Simultaneous gravimetric and impedimetric measurements performed over a period of time on the same cell culture were conducted to validate the device’s sensitivity. The time necessary for the BAEC cells to attach and form a compact monolayer on the biosensor was 35~45 minutes for 1.5 × 104 cells/cm2 BAECs; 60 minutes for 2.0 × 104 cells/cm2 BAECs; 70 minutes for 3.0 × 104 cells/cm2 BAECs; and 100 minutes for 5.0 × 104 cells/cm2 BAECs. It was demonstrated that this time is the same for both gravimetric and impedimetric measurements. This hybrid biosensor will be employed in the future for water toxicity detection.

  8. A naphthoquinone/SAM-mediated biosensor for olive oil polyphenol content.

    Science.gov (United States)

    Hammami, Asma; Kuliček, Jaroslav; Raouafi, Noureddine

    2016-10-15

    We report on the design of an amperometric tyrosinase-based biosensor using a self-assembled monolayer of ω-mercaptopropyl naphthoquinone on gold electrode as an electron mediator. Under optimal conditions (i.e. pH=7.4 and E=-0.35V vs. KCl), the chronoamperometric response of the naphthoquinone-modified bioelectrode to successive additions of phenol was evaluated. The biosensor exhibits sensitive bioelectrocatalytic response at a working potential of -0.35V vs. Ag/AgCl (sat.KCl), reaching the steady-state current within 40s after each addition of phenol solution with a range of 0-135μM and a limit of detection and quantification which are 0.019μM and 0.0633μM, respectively. The bioelectrode was used to determine the content in polyphenol in a local virgin olive oil.

  9. Protein-Based Graphene Biosensors: Optimizing Artificial Chemoreception in Bilayer Lipid Membranes.

    Science.gov (United States)

    Siontorou, Christina G; Georgopoulos, Konstantinos N; Nikoleli, Georgia-Paraskevi; Nikolelis, Dimitrios P; Karapetis, Stefanos K; Bratakou, Spyridoula

    2016-09-07

    Proteinaceous moieties are critical elements in most detection systems, including biosensing platforms. Their potential is undoubtedly vast, yet many issues regarding their full exploitation remain unsolved. On the other hand, the biosensor formats with the higher marketability probabilities are enzyme in nature and electrochemical in concept. To no surprise, alternative materials for hosting catalysis within an electrode casing have received much attention lately to demonstrate a catalysis-coated device. Graphene and ZnO are presented as ideal materials to modify electrodes and biosensor platforms, especially in protein-based detection. Our group developed electrochemical sensors based on these nanomaterials for the sensitive detection of cholesterol using cholesterol oxidase incorporated in stabilized lipid films. A comparison between the two platforms is provided and discussed. In a broader sense, the not-so-remote prospect of quickly assembling a protein-based flexible biosensing detector to fulfill site-specific requirements is appealing to both university researchers and industry developers.

  10. Analytical modeling of label free biosensor using charge plasma based gate underlap dielectric modulated MOSFET

    Science.gov (United States)

    Chanda, Manash; Das, Rahul; Kundu, Atanu; Sarkar, Chandan K.

    2017-04-01

    In this paper charge plasma based dielectric modulated four gated MOSFET (CP-GUDM-MOSFET) has been proposed for the efficacy of label free electrical detection of the biomolecules. To achieve low thermal budgeting, charge-plasma concept is employed using appropriate metal work function electrodes. Extensive simulations have been done using the Sentaurus TCAD to validate the proposed architecture. An analytical modeling has also been done on surface potential and drain current to consolidate the feasibility of the structure. Significant improvements in the on current (ION) and threshold voltage have been observed in presence of the charged biomolecules. The performance of proposed structure is found to be sensitive to gate-oxide thickness variations. High sensitivity of the proposed CP-GUDM-MOSFET based biosensor with low thermal budgeting scheme; simple structure and its compatibility with the existing CMOS processes make it an exciting alternative to the conventional FET-based biosensors.

  11. Protein-Based Graphene Biosensors: Optimizing Artificial Chemoreception in Bilayer Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Christina G. Siontorou

    2016-09-01

    Full Text Available Proteinaceous moieties are critical elements in most detection systems, including biosensing platforms. Their potential is undoubtedly vast, yet many issues regarding their full exploitation remain unsolved. On the other hand, the biosensor formats with the higher marketability probabilities are enzyme in nature and electrochemical in concept. To no surprise, alternative materials for hosting catalysis within an electrode casing have received much attention lately to demonstrate a catalysis-coated device. Graphene and ZnO are presented as ideal materials to modify electrodes and biosensor platforms, especially in protein-based detection. Our group developed electrochemical sensors based on these nanomaterials for the sensitive detection of cholesterol using cholesterol oxidase incorporated in stabilized lipid films. A comparison between the two platforms is provided and discussed. In a broader sense, the not-so-remote prospect of quickly assembling a protein-based flexible biosensing detector to fulfill site-specific requirements is appealing to both university researchers and industry developers.

  12. Ascorbate oxidase electrochemical biosensor based on the biocompatible poly(3, 4-ethylenedioxythiophene) matrices for agricultural application in crops

    Institute of Scientific and Technical Information of China (English)

    Yang Ping Wen; Li Min Lu; Dong Li; Ming Liu; Hao Hua He; Jing Kun Xu

    2012-01-01

    The vitamin C (VC) in crops was successfully determined using ascorbate oxidase (AO) electrochemical biosensor based on the biocompatible poly(3,4-ethylenedioxythiophene) (PEDOT) matrices,which was easily prepared by one-step electrodeposition technique in ionic liquid microemulsions.The fabricated biosensor displayed excellent bioelectrocatalytic performance to the oxidation of VC,wide linear range,low detection limit,fast response time,good operational and storage stability,the good results of the determination of VC in vegetable crops indicated that the fabricated biosensor will be a good candidate for the physiological and biochemical studies of crops in near future.

  13. Development of novel enzyme potentiometric biosensor based on pH-sensitive field-effect transistors for aflatoxin B1 analysis in real samples.

    Science.gov (United States)

    Stepurska, K V; Soldatkin, O O; Arkhypova, V M; Soldatkin, A P; Lagarde, F; Jaffrezic-Renault, N; Dzyadevych, S V

    2015-11-01

    This study aimed at the development and optimization of a potentiometric biosensor based on pH-sensitive field-effect transistors and acetylcholinesterase for aflatoxin B1 determination in real samples. Optimal conditions for bioselective elements operation were defined and analytical characteristics of the proposed biosensor were studied. The proposed biosensor characterized high operational stability and reproducibility of signal. Selectivity of acetylcholinesterase-biosensor to aflatoxins in relation to other groups of toxic substances was analyzed. The developed biosensor was applied to the determination of aflatoxin B1 in real samples (sesame, walnut and pea).

  14. Electrochemical impedimetric biosensor based on a nanostructured polycarbonate substrate

    Directory of Open Access Journals (Sweden)

    Chen YS

    2012-01-01

    Full Text Available Yu-Shan Chen1, Chia-Che Wu1, Jaw-Ji Tsai2, Gou-Jen Wang1,31Department of Mechanical Engineering, National Chung-Hsing University, 2Department of Medical Education and Research, Taichung Veterans General Hospital, 3Graduate Institute of Biomedical Engineering, National Chung-Hsing University, Taichung, TaiwanAbstract: This study integrates the techniques of nanoelectroforming, hot-embossing, and electrochemical deposition to develop a disposable, low-cost, and high sensitivity nanostructure biosensor. A modified anodic aluminum oxide barrier-layer surface was used as the template for thin nickel film deposition. After etching the anodic aluminum oxide template off, a three-dimensional mold of the concave nanostructure array was created. The fabricated three-dimensional nickel mold was further used for replica molding of a nanostructure polycarbonate substrate by hot-embossing. A thin gold film was then sputtered onto the polycarbonate substrate to form the electrode, followed by deposition of an orderly and uniform gold nanoparticle layer on the three-dimensional gold electrode using electrochemical deposition. Finally, silver nanoparticles were deposited on the uniformly deposited gold nanoparticles to enhance the conductivity of the sensor. Electrochemical impedance spectroscopy analysis was then used to detect the concentration of the target element. The sensitivity of the proposed scheme on the detection of the dust mite antigen, Der p2, reached 0.1 pg/mL.Keywords: nanoelectroforming, nanostructure polycarbonate substrate, gold nanoparticles, silver nanoparticles, electrochemical impedance spectroscopy

  15. A Urea Potentiometric Biosensor Based on a Thiophene Copolymer

    Directory of Open Access Journals (Sweden)

    Cheng-Yuan (Kevin Lai

    2017-03-01

    Full Text Available A potentiometric enzyme biosensor is a convenient detector for quantification of urea concentrations in industrial processes, or for monitoring patients with diabetes, kidney damage or liver malfunction. In this work, poly(3-hexylthiophene-co-3-thiopheneacetic acid (P(3HT-co-3TAA was chemically synthesized, characterized and spin-coated onto conductive indium tin oxide (ITO glass electrodes. Urease (Urs was covalently attached to the smooth surface of this copolymer via carbodiimide coupling. The electrochemical behavior and stability of the modified Urs/P(3HT-co-3TAA/ITO glass electrode were investigated by cyclic voltammetry, and the bound enzyme activity was confirmed by spectrophotometry. Potentiometric response studies indicated that this electrode could determine the concentration of urea in aqueous solutions, with a quasi-Nernstian response up to about 5 mM. No attempt was made to optimize the response speed; full equilibration occurred after 10 min, but the half-time for response was typically <1 min.

  16. Fabrication of polyimide based microfluidic channels for biosensor devices

    Science.gov (United States)

    Zulfiqar, Azeem; Pfreundt, Andrea; Svendsen, Winnie Edith; Dimaki, Maria

    2015-03-01

    The ever-increasing complexity of the fabrication process of Point-of-care (POC) devices, due to high demand of functional versatility, compact size and ease-of-use, emphasizes the need of multifunctional materials that can be used to simplify this process. Polymers, currently in use for the fabrication of the often needed microfluidic channels, have limitations in terms of their physicochemical properties. Therefore, the use of a multipurpose biocompatible material with better resistance to the chemical, thermal and electrical environment, along with capability of forming closed channel microfluidics is inevitable. This paper demonstrates a novel technique of fabricating microfluidic devices using polyimide (PI) which fulfills the aforementioned properties criteria. A fabrication process to pattern microfluidic channels, using partially cured PI, has been developed by using a dry etching method. The etching parameters are optimized and compared to those used for fully cured PI. Moreover, the formation of closed microfluidic channel on wafer level by bonding two partially cured PI layers or a partially cured PI to glass with high bond strength has been demonstrated. The reproducibility in uniformity of PI is also compared to the most commonly used SU8 polymer, which is a near UV sensitive epoxy resin. The potential applications of PI processing are POC and biosensor devices integrated with microelectronics.

  17. Transcription factor-based biosensors enlightened by the analyte.

    Directory of Open Access Journals (Sweden)

    Raul eFernandez-Lopez

    2015-07-01

    Full Text Available Whole cell biosensors (WCBs have multiple applications for environmental monitoring, detecting a wide range of pollutants. WCBs depend critically on the sensitivity and specificity of the transcription factor (TF used to detect the analyte. We describe the mechanism of regulation and the structural and biochemical properties of TF families that are used, or could be used, for the development of environmental WCBs. Focusing on the chemical nature of the analyte, we review TFs that respond to aromatic compounds (XylS-AraC, XylR-NtrC and LysR, metal ions (MerR, ArsR, DtxR, Fur and NikR or antibiotics (TetR and MarR. Analyzing the structural domains involved in DNA recognition, we highlight the similitudes in the DNA binding domains (DBDs of these TF families. Opposite to DBDs, the wide range of analytes detected by TFs results in a diversity of structures at the effector binding domain (EBD. The modular architecture of TFs opens the possibility of engineering TFs with hybrid DNA and effector specificities. Yet, the lack of a crisp correlation between structural domains and specific functions makes this a challenging task.

  18. Aptamer-based microcantilever biosensor for ultrasensitive detection of tumor marker nucleolin.

    Science.gov (United States)

    Li, Huiyan; Bai, Xiaojing; Wang, Nan; Chen, Xuejuan; Li, Jing; Zhang, Zhe; Tang, Jilin

    2016-01-01

    We present an aptamer-based microcantilever biosensor for label-free detection of nucleolin. The sensor cantilevers in the microcantilever array were functionalized with nucleolin aptamer (AS1411) while the reference cantilevers were modified by 6-mercapto-1-hexanol (MCH) to eliminate environmental disturbances. The interaction between nucleolin and AS1411 induced surface stress changes, resulting in a differential deflection between sensor and reference cantilevers. The amplitude of differential cantilever deflection had a good linear relationship with the nucleolin concentration ranging from 10 nM to 250 nM with a correlation coefficient of 0.999. The detection limit was about 1.0 nM, at a signal-to-noise ratio of 3. The aptamer-based microcantilever sensor demonstrated good selectivity and was facile, rapid, and reagentless. Our results show the potential for the application of microcantilever biosensor system as a powerful tool to detect tumor markers with high sensitivity and specificity.

  19. Simple method of enzyme immobilization for pH-ISFET-based urea biosensors

    Science.gov (United States)

    Pijanowska, Dorota; Torbicz, Wladislaw

    1997-02-01

    In this paper, a simple chemical method of urease immobilization on silicon nitride surface is described. As a basic structure to construct urea-biosensor, a pH-sensitive Si3N4-gate ISFET was used. The developed method of chemical immobilization of urease is based on Schiff's base formation. The developed EnFET type urea biosensor are characterized by the following parameters: (1) maximum analytical signal: 120 divided by 140 mV in 10 mM phosphate buffer solution, (2) linear range of the (Delta) Ugs equals f(logCurea): pCurea(2 divided by 3.5) in 10 mM phosphate buffer, (3) response time: 80 s and (4) lifetime: 35 days with the stable analytical signal then after 52 days this signal decreased by at least 40%. The influence of the concentration as well as the pH of the buffer solution on EnFET response were investigated.

  20. Design of Microcantilever-Based Biosensor with Digital Feedback Control Circuit

    Directory of Open Access Journals (Sweden)

    Jayu P. Kalambe

    2012-01-01

    Full Text Available This paper present the design of cantilever-based biosensors with new readout, which hold promises as fast and cheap “point of care” device as well as interesting research tools. The fabrication process and related issues of the cantilever based bio-sensor are discussed. Coventorware simulation is carried out to analyze the device behavior. A fully integrated control circuit has been designed to solve manufacturing challenge which will take care of positioning of the cantilever instead of creating nanometer gap between the electrodes. The control circuit will solve the manufacturing challenge faced by the readout methods where it is essential to maintain precise gap between the electrodes. The circuit can take care of variation obtained due to fabrication process and maintain the precise gap between the electrodes by electrostatic actuation. The control circuit consist of analog and digital modules. The reliability issues of the sensor are also discussed.

  1. Biosensor-based microRNA detection: techniques, design, performance, and challenges.

    Science.gov (United States)

    Johnson, Blake N; Mutharasan, Raj

    2014-04-07

    The current state of biosensor-based techniques for amplification-free microRNA (miRNA) detection is critically reviewed. Comparison with non-sensor and amplification-based molecular techniques (MTs), such as polymerase-based methods, is made in terms of transduction mechanism, associated protocol, and sensitivity. Challenges associated with miRNA hybridization thermodynamics which affect assay selectivity and amplification bias are briefly discussed. Electrochemical, electromechanical, and optical classes of miRNA biosensors are reviewed in terms of transduction mechanism, limit of detection (LOD), time-to-results (TTR), multiplexing potential, and measurement robustness. Current trends suggest that biosensor-based techniques (BTs) for miRNA assay will complement MTs due to the advantages of amplification-free detection, LOD being femtomolar (fM)-attomolar (aM), short TTR, multiplexing capability, and minimal sample preparation requirement. Areas of future importance in miRNA BT development are presented which include focus on achieving high measurement confidence and multiplexing capabilities.

  2. Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis.

    Science.gov (United States)

    Soler, Maria; Mesa-Antunez, Pablo; Estevez, M-Carmen; Ruiz-Sanchez, Antonio Jesus; Otte, Marinus A; Sepulveda, Borja; Collado, Daniel; Mayorga, Cristobalina; Torres, Maria Jose; Perez-Inestrosa, Ezequiel; Lechuga, Laura M

    2015-04-15

    A label-free biosensing strategy for amoxicillin (AX) allergy diagnosis based on the combination of novel dendrimer-based conjugates and a recently developed nanoplasmonic sensor technology is reported. Gold nanodisks were functionalized with a custom-designed thiol-ending-polyamido-based dendron (d-BAPAD) peripherally decorated with amoxicilloyl (AXO) groups (d-BAPAD-AXO) in order to detect specific IgE generated in patient's serum against this antibiotic during an allergy outbreak. This innovative strategy, which follows a simple one-step immobilization procedure, shows exceptional results in terms of sensitivity and robustness, leading to a highly-reproducible and long-term stable surface which allows achieving extremely low limits of detection. Moreover, the viability of this biosensor approach to analyze human biological samples has been demonstrated by directly analyzing and quantifying specific anti-AX antibodies in patient's serum without any sample pretreatment. An excellent limit of detection (LoD) of 0.6ng/mL (i.e. 0.25kU/L) has been achieved in the evaluation of clinical samples evidencing the potential of our nanoplasmonic biosensor as an advanced diagnostic tool to quickly identify allergic patients. The results have been compared and validated with a conventional clinical immunofluorescence assay (ImmunoCAP test), confirming an excellent correlation between both techniques. The combination of a novel compact nanoplasmonic platform and a dendrimer-based strategy provides a highly sensitive label free biosensor approach with over two times better detectability than conventional SPR. Both the biosensor device and the carrier structure hold great potential in clinical diagnosis for biomarker analysis in whole serum samples and other human biological samples.

  3. On the Physical Design of Molecular Communication Receiver Based on Nanoscale Biosensors

    OpenAIRE

    2015-01-01

    1 On the Physical Design of Molecular Communication Receiver Based on Nanoscale Biosensors Murat Kuscu, Student Member, IEEE and Ozgur B. Akan, Fellow, IEEE Abstract—Molecular communications (MC), where molecules are used to encode, transmit, and receive information, is a promising means of enabling the coordination of nanoscale devices. The paradigm has been extensively studied from var-ious aspects, including channel modeling and noise analysis. Comparatively l...

  4. Development of conductometric biosensors based on alkaline phosphatases for the water quality control

    OpenAIRE

    2008-01-01

    Researches are focused on the elaboration of enzymatic microconductometric device for heavy metal ions detection in water solutions. The manuscript includes a general introduction, the first chapter contains bibliographic review, the second chapter described the fundamentals of conductometric transducers, the third chapter examining the possibility to create and to optimize conductometric biosensor based on bovine alkaline phosphatase for heavy metals ions detection, the fourth chapter devote...

  5. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi Jun; Mandelis, Andreas, E-mail: mandelis@mie.utoronto.ca [Department of Mechanical and Industrial Engineering, Center for Advanced Diffusion-Wave Technologies (CADIFT), University of Toronto, Toronto, Ontario M5S 3G8 (Canada); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9 (Canada); Guo, Xinxin [Department of Mechanical and Industrial Engineering, Center for Advanced Diffusion-Wave Technologies (CADIFT), University of Toronto, Toronto, Ontario M5S 3G8 (Canada)

    2015-11-15

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  6. An electrochemical DNA biosensor based on Oracet Blue as a label for detection of Helicobacter pylori.

    Science.gov (United States)

    Hajihosseini, Saeedeh; Nasirizadeh, Navid; Hejazi, Mohammad Saeid; Yaghmaei, Parichereh

    2016-10-01

    An innovative method of a DNA electrochemical biosensor based on Oracet Blue (OB) as an electroactive label and gold electrode (AuE) for detection of Helicobacter pylori, was offered. A single-stranded DNA probe with a thiol modification was covalently immobilized on the surface of the AuE by forming an Au-S bond. Differential pulse voltammetry (DPV) was used to monitor DNA hybridization by measuring the electrochemical signals of reduction of the OB binding to double-stranded DNA (ds-DNA). Our results showed that OB-based DNA biosensor has a decent potential for detection of single-base mismatch in target DNA. Selectivity of the proposed DNA biosensor was further confirmed in the presence of non-complementary and complementary DNA strands. Under optimum conditions, the electrochemical signal had a linear relationship with the concentration of the target DNA ranging from 0.3nmolL(-1) to 240.0nmolL(-1), and the detection limit was 0.17nmolL(-1), whit a promising reproducibility and repeatability.

  7. A cell-based biosensor for nanomaterials cytotoxicity assessment in three dimensional cell culture.

    Science.gov (United States)

    Dubiak-Szepietowska, Monika; Karczmarczyk, Aleksandra; Winckler, Thomas; Feller, Karl-Heinz

    2016-08-31

    Nanoparticles (NPs) are widely used in consumer and medicinal products. The high prevalence of nanoparticles in the environment raises concerns regarding their effects on human health, but there is limited knowledge about how NPs interact with cells or tissues. Because the European Union has called for a substantial reduction of animal experiments for scientific purposes (Directive 2010/63), increased efforts are required to develop in vitro models to evaluate potentially hazardous agents. Here, we describe a new cell-based biosensor for the evaluation of NPs cytotoxicity. The new biosensor is based on transgenic human hepatoblastoma cells (HepG2) that express a secreted form of alkaline phosphatase (SEAP) as a reporter protein whose expression is induced upon activation of a stress response pathway controlled by the transcription regulator nuclear factor-κB (NF-κB). The NF-κB_HepG2 sensor cells were cultured in a Matrigel-based three dimensional environment to simulate the in vivo situation. The new biosensor cells offer the advantage of generating fast and reproducible readout at lower concentrations and shorter incubation time than conventional viability assays, avoid possible interaction between nanomaterials and assay compounds, therefore, minimize generation of false positive or negative results and indicate mechanism of toxicity through NF-κB signaling.

  8. Transcription factor-based biosensors in biotechnology: current state and future prospects.

    Science.gov (United States)

    Mahr, Regina; Frunzke, Julia

    2016-01-01

    Living organisms have evolved a plethora of sensing systems for the intra- and extracellular detection of small molecules, ions or physical parameters. Several recent studies have demonstrated that these principles can be exploited to devise synthetic regulatory circuits for metabolic engineering strategies. In this context, transcription factors (TFs) controlling microbial physiology at the level of transcription play a major role in biosensor design, since they can be implemented in synthetic circuits controlling gene expression in dependency of, for example, small molecule production. Here, we review recent progress on the utilization of TF-based biosensors in microbial biotechnology highlighting different areas of application. Recent advances in metabolic engineering reveal TF-based sensors to be versatile tools for strain and enzyme development using high-throughput (HT) screening strategies and adaptive laboratory evolution, the optimization of heterologous pathways via the implementation of dynamic control circuits and for the monitoring of single-cell productivity in live cell imaging studies. These examples underline the immense potential of TF-based biosensor circuits but also identify limitations and room for further optimization.

  9. Ultrasensitive cDNA detection of dengue virus RNA using electrochemical nanoporous membrane-based biosensor.

    Directory of Open Access Journals (Sweden)

    Varun Rai

    Full Text Available A nanoporous alumina membrane-based ultrasensitive DNA biosensor is constructed using 5'-aminated DNA probes immobilized onto the alumina channel walls. Alumina nanoporous membrane-like structure is carved over platinum wire electrode of 76 µm diameter dimension by electrochemical anodization. The hybridization of complementary target DNA with probe DNA molecules attached inside the pores influences the pore size and ionic conductivity. The biosensor demonstrates linear range over 6 order of magnitude with ultrasensitive detection limit of 9.55×10(-12 M for the quantification of ss-31 mer DNA sequence. Its applicability is challenged against real time cDNA PCR sample of dengue virus serotype1 derived from asymmetric PCR. Excellent specificity down to one nucleotide mismatch in target DNA sample of DENV3 is also demonstrated.

  10. Lead-Free Piezoelectric Diaphragm Biosensors Based on Micro-Machining Technology and Chemical Solution Deposition.

    Science.gov (United States)

    Li, Xiaomeng; Wu, Xiaoqing; Shi, Peng; Ye, Zuo-Guang

    2016-01-12

    In this paper, we present a new approach to the fabrication of integrated silicon-based piezoelectric diaphragm-type biosensors by using sodium potassium niobate-silver niobate (0.82KNN-0.18AN) composite lead-free thin film as the piezoelectric layer. The piezoelectric diaphragms were designed and fabricated by micro-machining technology and chemical solution deposition. The fabricated device was very sensitive to the mass changes caused by various targets attached on the surface of diaphragm. The measured mass sensitivity value was about 931 Hz/μg. Its good performance shows that the piezoelectric diaphragm biosensor can be used as a cost-effective platform for nucleic acid testing.

  11. A sensitive biosensor for the fluorescence detection of the acetylcholinesterase reaction system based on carbon dots.

    Science.gov (United States)

    Ren, Xiangling; Wei, Jianfei; Ren, Jun; Qiang, Li; Tang, Fangqiong; Meng, Xianwei

    2015-01-01

    The carbon dots (C-dots) with high fluorescence quantum yield were prepared using hydrothermal method. C-dots have been adopted as probes for the fluorescence turn-off detection of H2O2 based on the special sensibility for the hydroxyl radical. And then the biosensors for the detection of substrate and enzymes activities were established in the acetylcholinesterase reaction system, which were related to the production of H2O2. Specifically, the proposed fluorescent biosensor was successfully applied to detect the concentration of choline (in the range from 0.025 to 50 μM) and acetylcholine (in the range from 0.050 to 50 μM), and the activity of choline oxidase (in the range from 1 to 75 U/L) and acetylcholinesterase (1 to 80 U/L). These results showed a sensitive, universal, nontoxic and eco-friendly detecting technique has been developed.

  12. Enhanced Response of a Proteinase K-Based Conductometric Biosensor Using Nanoparticles

    Directory of Open Access Journals (Sweden)

    Wided Nouira

    2014-07-01

    Full Text Available Proteinases are involved in a multitude of important physiological processes, such as protein metabolism. For this reason, a conductometric enzyme biosensor based on proteinase K was developed using two types of nanoparticles (gold and magnetic. The enzyme was directly adsorbed on negatively charged nanoparticles and then deposited and cross-linked on a planar interdigitated electrode (IDE. The biosensor was characterized with bovine serum albumin (BSA as a standard protein. Higher sensitivity was obtained using gold nanoparticles. The linear range for BSA determination was then from 0.5 to 10 mg/L with a maximum response of 154 µs. These results are greater than that found without any nanoparticles (maximum response of 10 µs. The limit of detection (LOD was 0.3 mg/L. An inter-sensor reproducibility of 3.5% was obtained.

  13. Enhanced response of a proteinase K-based conductometric biosensor using nanoparticles.

    Science.gov (United States)

    Nouira, Wided; Maaref, Abderrazak; Elaissari, Hamid; Vocanson, Francis; Siadat, Maryam; Jaffrezic-Renault, Nicole

    2014-07-23

    Proteinases are involved in a multitude of important physiological processes, such as protein metabolism. For this reason, a conductometric enzyme biosensor based on proteinase K was developed using two types of nanoparticles (gold and magnetic). The enzyme was directly adsorbed on negatively charged nanoparticles and then deposited and cross-linked on a planar interdigitated electrode (IDE). The biosensor was characterized with bovine serum albumin (BSA) as a standard protein. Higher sensitivity was obtained using gold nanoparticles. The linear range for BSA determination was then from 0.5 to 10 mg/L with a maximum response of 154 µs. These results are greater than that found without any nanoparticles (maximum response of 10 µs). The limit of detection (LOD) was 0.3 mg/L. An inter-sensor reproducibility of 3.5% was obtained.

  14. Lead-Free Piezoelectric Diaphragm Biosensors Based on Micro-Machining Technology and Chemical Solution Deposition

    Directory of Open Access Journals (Sweden)

    Xiaomeng Li

    2016-01-01

    Full Text Available In this paper, we present a new approach to the fabrication of integrated silicon-based piezoelectric diaphragm-type biosensors by using sodium potassium niobate-silver niobate (0.82KNN-0.18AN composite lead-free thin film as the piezoelectric layer. The piezoelectric diaphragms were designed and fabricated by micro-machining technology and chemical solution deposition. The fabricated device was very sensitive to the mass changes caused by various targets attached on the surface of diaphragm. The measured mass sensitivity value was about 931 Hz/μg. Its good performance shows that the piezoelectric diaphragm biosensor can be used as a cost-effective platform for nucleic acid testing.

  15. Aptamer biosensors for label-free colorimetric detection of human IgE based on polydiacetylene (PDA) supramolecules.

    Science.gov (United States)

    Kim, Jun Pyo; Park, Cheol Hee; Sim, Sang Jun

    2011-05-01

    In this study, we demonstrate an aptamer-based biosensor (apta-biosensor) using PDA liposomes for label-free detection of allergy diagnosis by hIgE detection. In order to detect the target hIgE, the surface of PDA liposome were functionalized with hIgE antibody and anti-hIgE aptamer as a receptor, and the target hIgE onto the receptors was detected by the change of fluorescence signal. The hIgE antibody-modified PDA liposome biosensor had a serious problem that the immune reaction between receptor and target could not powerfully affect the change of florescence signal on PDA liposome. In order to solve this problem, the anti-hIgE aptamer which was far smaller than whole antibody was introduced as the receptor for the PDA liposome system. An aptamer-based PDA liposome biosensor was able to measure a quantity of target protein with various concentrations and at this time the detection limit was 141 ng/mL of the hIgE concentration. These results enabled diagnosis of allergy disease by an aptamer-based PDA liposome biosensor because real allergic patients showed high concentration of hIgE in serum (greater than 290 ng/mL). Therefore, we suggest that aptamer-modified PDA supramolecules as promising candidates for development of label-free colorimetric biosensors.

  16. Detection of Interferon gamma using graphene and aptamer based FET-like electrochemical biosensor.

    Science.gov (United States)

    Farid, Sidra; Meshik, Xenia; Choi, Min; Mukherjee, Souvik; Lan, Yi; Parikh, Devanshi; Poduri, Shripriya; Baterdene, Undarmaa; Huang, Ching-En; Wang, Yung Yu; Burke, Peter; Dutta, Mitra; Stroscio, Michael A

    2015-09-15

    One of the primary goals in the scientific community is the specific detection of proteins for the medical diagnostics and biomedical applications. Interferon-gamma (IFN-γ) is associated with the tuberculosis susceptibility, which is one of the major health problems globally. We have therefore developed a DNA aptamer-based electrochemical biosensor that is used for the detection of IFN-γ with high selectivity and sensitivity. A graphene monolayer-based FET-like structure is incorporated on a PDMS substrate with the IFN-γ aptamer attached to graphene. Addition of target molecule induces a change in the charge distribution in the electrolyte, resulting in increase in electron transfer efficiency that was actively sensed by monitoring the change in current from the device. Change in current appears to be highly sensitive to the IFN-γ concentrations ranging from nanomolar (nM) to micromolar (μM) range. The detection limit of our IFN-γ electrochemical biosensor is found to be 83 pM. Immobilization of aptamer on graphene surface is verified using unique structural approach by Atomic Force Microscopy. Such simple and sensitive electrochemical biosensor has potential applications in infectious disease monitoring, immunology and cancer research in the future.

  17. Detection of Salmonella Typhimurium on Spinach Using Phage-Based Magnetoelastic Biosensors

    Science.gov (United States)

    Wang, Fengen; Horikawa, Shin; Hu, Jiajia; Wikle, Howard C.; Chen, I-Hsuan; Du, Songtao; Liu, Yuzhe; Chin, Bryan A.

    2017-01-01

    Phage-based magnetoelastic (ME) biosensors have been studied as an in-situ, real-time, wireless, direct detection method of foodborne pathogens in recent years. This paper investigates an ME biosensor method for the detection of Salmonella Typhimurium on fresh spinach leaves. A procedure to obtain a concentrated suspension of Salmonella from contaminated spinach leaves is described that is based on methods outlined in the U.S. FDA Bacteriological Analytical Manual for the detection of Salmonella on leafy green vegetables. The effects of an alternative pre-enrichment broth (LB broth vs. lactose broth), incubation time on the detection performance and negative control were investigated. In addition, different blocking agents (BSA, Casein, and Superblock) were evaluated to minimize the effect of nonspecific binding. None of the blocking agents was found to be superior to the others, or even better than none. Unblocked ME biosensors were placed directly in a concentrated suspension and allowed to bind with Salmonella cells for 30 min before measuring the resonant frequency using a surface-scanning coil detector. It was found that 7 h incubation at 37 °C in LB broth was necessary to detect an initial spike of 100 cfu/25 g S. Typhimurium on spinach leaves with a confidence level of difference greater than 95% (p foodborne pathogens on fresh products. PMID:28212322

  18. Nicking enzyme-assisted biosensor for Salmonella enteritidis detection based on fluorescence resonance energy transfer.

    Science.gov (United States)

    Song, Yang; Li, Wenkai; Duan, Yingfen; Li, Zhongjie; Deng, Le

    2014-05-15

    Salmonella enteritidis (S. enteritidis) outbreaks continue to occur, and have increased public awareness of this pathogen. Nicking endonuclease Nb.BbvC I is widely used for the detection of biomolecules and displays activity for specific double-stranded DNA (dsDNA). In this study, we developed a biosensor to detect S. enteritidis based on fluorescence resonance energy transfer (FRET) using nicking enzyme and carbon nanoparticles (CNPs). Because of the quenching effect of black hole quencher 1 (BHQ 1), the CNPs do not fluoresce in the reaction system. When the target bacteria are added, the nicking enzyme recognizes and cleaves the dsDNA fabricated by the interaction between probe and target. As a result, the CNPs dissociate from BHQ 1 and emit strong fluorescence. Using the nicking enzyme, the fluorescence signals of the biosensor are greatly amplified. The biosensor exhibited a linear relationship with the concentration of S. enteritidis ranging from 10(2) to 3 × 10(3)CFU/mL in water and from 1.5 × 10(2) to 3 × 10(3)CFU/mL in milk. The present results indicate that our FRET-based detection system can be widely employed for the effective detection of pathogens.

  19. Electrochemical Affinity Biosensors Based on Disposable Screen-Printed Electrodes for Detection of Food Allergens.

    Science.gov (United States)

    Vasilescu, Alina; Nunes, Gilvanda; Hayat, Akhtar; Latif, Usman; Marty, Jean-Louis

    2016-11-05

    Food allergens are proteins from nuts and tree nuts, fish, shellfish, wheat, soy, eggs or milk which trigger severe adverse reactions in the human body, involving IgE-type antibodies. Sensitive detection of allergens in a large variety of food matrices has become increasingly important considering the emergence of functional foods and new food manufacturing technologies. For example, proteins such as casein from milk or lysozyme and ovalbumin from eggs are sometimes used as fining agents in the wine industry. Nonetheless, allergen detection in processed foods is a challenging endeavor, as allergen proteins are degraded during food processing steps involving heating or fermentation. Detection of food allergens was primarily achieved via Enzyme-Linked Immuno Assay (ELISA) or by chromatographic methods. With the advent of biosensors, electrochemical affinity-based biosensors such as those incorporating antibodies and aptamers as biorecognition elements were also reported in the literature. In this review paper, we highlight the success achieved in the design of electrochemical affinity biosensors based on disposable screen-printed electrodes towards detection of protein allergens. We will discuss the analytical figures of merit for various disposable screen-printed affinity sensors in relation to methodologies employed for immobilization of bioreceptors on transducer surface.

  20. Label-free detection of glycated haemoglobin in human blood using silicon-based photonic crystal nanocavity biosensor

    Science.gov (United States)

    Olyaee, Saeed; Seifouri, Mahmood; Mohsenirad, Hamideh

    2016-07-01

    In this paper, we describe a two-dimensional photonic crystal-based biosensor that consists of a waveguide and a nanocavity with high sensitivity. A new method is employed for increasing sensitivity of the biosensor. The simulation results show that biosensor is highly sensitive to the refractive index (RI) variations due to injected biomaterials, like glycated haemoglobin, into the sensing surface. The proposed biosensor is designed for the wavelength range of 1514.4-1896.3 nm. The sensitivity and the quality factor are calculated to be 3000 and 272.43 nm/RIU, respectively. The designed structure can detect a 0.002 change in the RI via resonant wavelength shift of 0.9 nm. The band diagram and transmission spectra are computed using plane wave expansion and finite difference time domain methods.

  1. Feasibility of application of conductometric biosensor based on acetylcholinesterase for the inhibitory analysis of toxic compounds of different nature.

    Science.gov (United States)

    Stepurska, K V; Soldatkin, Capital O Cyrillic О; Kucherenko, I S; Arkhypova, V M; Dzyadevych, S V; Soldatkin, A P

    2015-01-07

    This study was aimed at the development of a conductometric biosensor based on acetylcholinesterase considering the feasibility of its application for the inhibitory analysis of various toxicants. In this paper, the optimum conditions for enzyme immobilization on the transducer surface are selected as well as the optimum concentration of substrate for inhibitory analysis. Sensitivity of the developed biosensor to different classes of toxic compounds (organophosphorus pesticides, heavy metal ions, surfactants, aflatoxin, glycoalkaloids) was tested. It is shown that the developed biosensor can be successfully used for the analysis of pesticides and mycotoxins, as well as for determination of total toxicity of the samples. A new method of biosensor analysis of toxic substances of different classes in complex multicomponent aqueous samples is proposed.

  2. Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene.

    Science.gov (United States)

    Zheng, Chao; Huang, Le; Zhang, Hong; Sun, Zhongyue; Zhang, Zhiyong; Zhang, Guo-Jun

    2015-08-12

    Most graphene field-effect transistor (G-FET) biosensors are fabricated through a routine process, in which graphene is transferred onto a Si/SiO2 substrate and then devices are subsequently produced by micromanufacture processes. However, such a fabrication approach can introduce contamination onto the graphene surface during the lithographic process, resulting in interference for the subsequent biosensing. In this work, we have developed a novel directional transfer technique to fabricate G-FET biosensors based on chemical-vapor-deposition- (CVD-) grown single-layer graphene (SLG) and applied this biosensor for the sensitive detection of DNA. A FET device with six individual array sensors was first fabricated, and SLG obtained by the CVD-growth method was transferred onto the sensor surface in a directional manner. Afterward, peptide nucleic acid (PNA) was covalently immobilized on the graphene surface, and DNA detection was realized by applying specific target DNA to the PNA-functionalized G-FET biosensor. The developed G-FET biosensor was able to detect target DNA at concentrations as low as 10 fM, which is 1 order of magnitude lower than those reported in a previous work. In addition, the biosensor was capable of distinguishing the complementary DNA from one-base-mismatched DNA and noncomplementary DNA. The directional transfer technique for the fabrication of G-FET biosensors is simple, and the as-constructed G-FET DNA biosensor shows ultrasensitivity and high specificity, indicating its potential application in disease diagnostics as a point-of-care tool.

  3. Disposable urea biosensor based on nanoporous ZnO film fabricated from omissible polymeric substrate.

    Science.gov (United States)

    Rahmanian, Reza; Mozaffari, Sayed Ahmad; Abedi, Mohammad

    2015-12-01

    In the present study, a facile and simple fabrication method of a semiconductor based urea biosensor was reported via three steps: (i) producing a ZnO-PVA composite film by means of a polymer assisted electrodeposition of zinc oxide (ZnO) on the F-doped SnO2 conducting glass (FTO) using water soluble polyvinyl alcohol (PVA), (ii) obtaining a nanoporous ZnO film by PVA omission via a subsequent post-treatment by annealing of the ZnO-PVA film, and (iii) preparation of a FTO/ZnO/Urs biosensor by exploiting a nanoporous ZnO film as an efficient and excellent platform area for electrostatic immobilization of urease enzyme (Urs) which was forced by the difference in their isoelectric point (IEP). The characterization techniques focused on the analysis of the ZnO-PVA film surfaces before and after annealing, which had a prominent effect on the porosity of the prepared ZnO film. The surface characterization of the nanostructured ZnO film by a field emission-scanning electron microscopy (FE-SEM), exhibited a film surface area as an effective bio-sensing matrix for enzyme immobilization. The structural characterization and monitoring of the biosensor fabrication was performed using UV-Vis, Fourier Transform Infrared (FT-IR), Raman Spectroscopy, Thermogravimetric Analysis (TGA), Cyclic Voltammetry (CV), and Electrochemical Impedance Spectroscopy (EIS) techniques. The impedimetric results of the FTO/ZnO/Urs biosensor showed a high sensitivity for urea detection within 8.0-110.0mg dL(-1) with the limit of detection as 5.0mg dL(-1).

  4. Conducting polymer based DNA biosensor for the detection of the Bacillus cereus group species

    Science.gov (United States)

    Velusamy, Vijayalakshmi; Arshak, Khalil; Korostynska, Olga; Oliwa, Kamila; Adley, Catherine

    2009-05-01

    Biosensor designs are emerging at a significant rate and play an increasingly important role in foodborne pathogen detection. Conducting polymers are excellent tools for the fabrication of biosensors and polypyrrole has been used in the detection of biomolecules due to its unique properties. The prime intention of this paper was to pioneer the design and fabrication of a single-strand (ss) DNA biosensor for the detection of the Bacillus cereus (B.cereus) group species. Growth of B. cereus, results in production of several highly active toxins. Therefore, consumption of food containing >106 bacteria/gm may results in emetic and diarrhoeal syndromes. The most common source of this bacterium is found in liquid food products, milk powder, mixed food products and is of particular concern in the baby formula industry. The electrochemical deposition technique, such as cyclic voltammetry, was used to develop and test a model DNA-based biosensor on a gold electrode electropolymerized with polypyrrole. The electrically conducting polymer, polypyrrole is used as a platform for immobilizing DNA (1μg) on the gold electrode surface, since it can be more easily deposited from neutral pH aqueous solutions of pyrrolemonomers. The average current peak during the electrodeposition event is 288μA. There is a clear change in the current after hybridization of the complementary oligonucleotide (6.35μA) and for the noncomplementary oligonucleotide (5.77μA). The drop in current after each event was clearly noticeable and it proved to be effective.

  5. Biosensor based on Prussian blue nanocubes/reduced graphene oxide nanocomposite for detection of organophosphorus pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lin; Zhang, Aidong; Du, Dan; Lin, Yuehe

    2012-07-13

    We demonstrate a facile procedure to efficiently prepare Prussian blue nanocubes/reduced graphene oxide (PBNCs/rGO) nanocomposite by directly mixing Fe3+ and [Fe(CN)6]3 in the presence of GO in polyethyleneimine aqueous solution, resulting in a novel acetylcholinesterase (AChE) biosensor for detection of organophosphorus pesticides (OPs). The obtained nanocomposite was characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) microanalysis. It was clearly observed that the nanosheet has been decorated with cubic PB nanoparticles and nearly all the nanoparticles are distributed uniformly only on the surface of the reduced GO. No isolated PB nanoparticles were observed, indicating the strong interaction between PB nanocubes and the reduced GO and the formation of PBNCs/rGO nanocomposite. The obtained PBNCs/rGO based AChE biosensor make the peak potential shift negatively to 220 mV. The AChE biosensor shows rapid response and high sensitivity for detection of monocrotophos. These results suggest that the PBNCs/rGO hybrids nanocomposite exhibited high electrocatalytic activity towards the oxidation of thiocholine, which lead to the sensitive detection of OP pesticides.

  6. A novel silicon based mags-biosensor for nucleic acid detection by magnetoelectronic transduction

    Directory of Open Access Journals (Sweden)

    Maria Eloisa Castagna

    2015-12-01

    Full Text Available We developed a novel silicon biosensor based on magnetoelectronic transduction (MAGS for nucleic acid detection. The mags-biosensor is a planar device composed by a primary micro-coil, and two secondary coils which produce a differential voltage due to the induced magnetic field. The presence of magnetic material over one of the secondary coils causes variations of induced magnetic field density that in turn results in a total output voltage different from zero. The voltage variation, therefore, is a measure of the amount of magnetic material present in the active zone. A device sensitivity of 5.1 mV/ng and a resolution of 0.008 ng have been observed. The biosensor also presents a micro-heater and a thermal sensor respectively to set and read-out the chip temperature: this aspect enables the device to be used for several biochemical applications that need temperature control and activation such for example nucleic acid amplification (real-time PCR, antigen- antibody detection (immune-assay and SNP detection.

  7. Interdigitated microelectrode based impedance biosensor for detection of salmonella enteritidis in food samples

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G [National Institute of Agricultural Engineering, 249 Seodun-dong, Suwon, Republic of Korea, 441-100 (Korea, Republic of); Morgan, M; Hahm, B K; Bhunia, A [Department of Food Science, Purdue University, West Lafayette, IN 47907 (United States); Mun, J H; Om, A S [Department of Food and Nutrient, Hanyang University, 17 Haengdang-dong, Seoul, Republic of Korea, 133-791 (Korea, Republic of)], E-mail: giyoungkim@rda.go.kr

    2008-03-15

    Salmonella enteritidis outbreaks continue to occur, and S. enteritidis-related outbreaks from various food sources have increased public awareness of this pathogen. Conventional methods for pathogens detection and identification are labor-intensive and take days to complete. Some immunological rapid assays are developed, but these assays still require prolonged enrichment steps. Recently developed biosensors have shown great potential for the rapid detection of foodborne pathogens. To develop the biosensor, an interdigitated microelectrode (IME) was fabricated by using semiconductor fabrication process. Anti-Salmonella antibodies were immobilized based on avidin-biotin binding on the surface of the IME to form an active sensing layer. To increase the sensitivity of the sensor, three types of sensors that have different electrode gap sizes (2 {mu}m, 5 {mu}m, 10 {mu}m) were fabricated and tested. The impedimetric biosensor could detect 10{sup 3} CFU/mL of Salmonella in pork meat extract with an incubation time of 5 minutes. This method may provide a simple, rapid and sensitive method to detect foodborne pathogens.

  8. Interdigitated microelectrode based impedance biosensor for detection of salmonella enteritidis in food samples

    Science.gov (United States)

    Kim, G.; Morgan, M.; Hahm, B. K.; Bhunia, A.; Mun, J. H.; Om, A. S.

    2008-03-01

    Salmonella enteritidis outbreaks continue to occur, and S. enteritidis-related outbreaks from various food sources have increased public awareness of this pathogen. Conventional methods for pathogens detection and identification are labor-intensive and take days to complete. Some immunological rapid assays are developed, but these assays still require prolonged enrichment steps. Recently developed biosensors have shown great potential for the rapid detection of foodborne pathogens. To develop the biosensor, an interdigitated microelectrode (IME) was fabricated by using semiconductor fabrication process. Anti-Salmonella antibodies were immobilized based on avidin-biotin binding on the surface of the IME to form an active sensing layer. To increase the sensitivity of the sensor, three types of sensors that have different electrode gap sizes (2 μm, 5 μm, 10 μm) were fabricated and tested. The impedimetric biosensor could detect 103 CFU/mL of Salmonella in pork meat extract with an incubation time of 5 minutes. This method may provide a simple, rapid and sensitive method to detect foodborne pathogens.

  9. An ultrasensitive supersandwich electrochemical DNA biosensor based on gold nanoparticles decorated reduced graphene oxide.

    Science.gov (United States)

    Wang, Jiao; Shi, Anqi; Fang, Xian; Han, Xiaowei; Zhang, Yuzhong

    2015-01-15

    In this article, a supersandwich-type electrochemical biosensor for sequence-specific DNA detection is described. In design, single-strand DNA labeled with methylene blue (MB) was used as signal probe, and auxiliary probe was designed to hybridize with two different regions of signal probe. The biosensor construction contained three steps: (i) capture DNA labeled with thiol was immobilized on the surface of gold nanoparticles decorated reduced graphene oxide (Au NPs/rGO); (ii) the sandwich structure formation contained "capture-target-signal probe"; and (iii) auxiliary probe was introduced to produce long concatamers containing signal molecule MB. Differential pulse voltammetry (DPV) was used to monitor the DNA hybridization event using peak current changes of MB in phosphate-buffered saline (PBS) containing 1.0M NaClO4. Under optimal conditions, the peak currents of MB were linear with the logarithm of the concentration of target DNA in the range of 0.1μM to 0.1fM with a detection limit of 35aM (signal/noise=3). In addition, this biosensor exhibited good selectivity even for single-base mismatched target DNA detection.

  10. Modification of polypyrrole nanowires array with platinum nanoparticles and glucose oxidase for fabrication of a novel glucose biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Xu Guangqing [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Churchill, Victoria 3842 (Australia); School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Adeloju, Samuel B., E-mail: Sam.Adeloju@monash.edu [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Churchill, Victoria 3842 (Australia); Wu Yucheng [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zhang Xinyi [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Churchill, Victoria 3842 (Australia)

    2012-11-28

    Highlights: Black-Right-Pointing-Pointer Fabrication of well aligned PPyNWA of 20 nm diameter within AAO template. Black-Right-Pointing-Pointer Improvement of electrochemical properties by decoration with PtNPs. Black-Right-Pointing-Pointer Sensitive amperometric and potentiometric detection of glucose by adsorption of GOx on PPyNWA-PtNPs. Black-Right-Pointing-Pointer Detection of as little as 5.6 {mu}M glucose with potentiometric detection. Black-Right-Pointing-Pointer Comparable or better detection limit and sensitivity than some glucose biosensors fabricated with nanomaterials. - Abstract: A novel glucose biosensor, based on the modification of well-aligned polypyrrole nanowires array (PPyNWA) with Pt nanoparticles (PtNPs) and subsequent surface adsorption of glucose oxidase (GOx), is described. The distinct differences in the electrochemical properties of PPyNWA-GOx, PPyNWA-PtNPs, and PPyNWA-PtNPs-GOx electrodes were revealed by cyclic voltammetry. In particular, the results obtained for PPyNWA-PtNPs-GOx biosensor showed evidence of direct electron transfer due mainly to modification with PtNPs. Optimum fabrication of the PPyNWA-PtNPs-GOx biosensor for both potentiometric and amperometric detection of glucose were achieved with 0.2 M pyrrole, applied current density of 0.1 mA cm{sup -2}, polymerization time of 600 s, cyclic deposition of PtNPs from -200 mV to 200 mV, scan rate of 50 mV s{sup -1}, and 20 cycles. A sensitivity of 40.5 mV/decade and a linear range of 10 {mu}M to 1000 {mu}M (R{sup 2} = 0.9936) were achieved for potentiometric detection, while for amperometric detection a sensitivity of 34.7 {mu}A cm{sup -2} mM{sup -1} at an applied potential of 700 mV and a linear range of 0.1-9 mM (R{sup 2} = 0.9977) were achieved. In terms of achievable detection limit, potentiometric detection achieved 5.6 {mu}M of glucose, while amperometric detection achieved 27.7 {mu}M.

  11. Towards the conception of an amperometric sensor of L-tyrosine based on Hemin/PAMAM/MWCNT modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ma Qiang [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Ai Shiyun, E-mail: ashy@sdau.edu.c [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Yin Huanshun [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Chen Quanpeng; Tang Tiantian [College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong (China)

    2010-09-01

    A novel amperometric sensor was fabricated based on the immobilization of hemin onto the poly (amidoamine)/multi-walled carbon nanotube (PAMAM/MWCNT) nanocomposite film modified glassy carbon electrode (GCE). Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and ultraviolet visible (UV-vis) adsorption spectroscopy were used to investigate the possible state and electrochemical activity of the immobilized hemin. In the Hemin/PAMAM/MWCNT nanocomposite film, MWCNT layer possessed excellent inherent conductivity to enhance the electron transfer rate, while the layer of PAMAM greatly enlarged the surface average concentration of hemin ({Gamma}) on the modified electrode. Therefore, the nanocomposite film showed enhanced electrocatalytical activity towards the oxidation of L-tyrosine. The kinetic parameters of the modified electrode were investigated. In pH 7.0 phosphate buffer solution (PBS), the sensor exhibits a wide linear range from 0.1 {mu}M to 28.8 {mu}M L-tyrosine with a detection limit of 0.01 {mu}M and a high sensitivity of 0.31 {mu}A {mu}M{sup -1} cm{sup -2}. In addition, the response time of the L-tyrosine sensor is less than 5 s. The excellent performance of the sensor is largely attributed to the electro-generated high reactive oxoiron (IV) porphyrin (O = Fe{sup IV}-P) which effectively catalyzed the oxidation of L-tyrosine. A mechanism was herein proposed for the catalytic oxidation of L-tyrosine by oxoiron (IV) porphyrin complexes.

  12. Photolithographically patterned enzyme membranes for the detection of pesticides and copper(II) based on enzyme inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Zuern, A. (Inst. fuer Analytik und Umweltchemie, Univ. Halle, FB Chemie, Merseburg (Germany)); Mueller, H. (Inst. fuer Analytik und Umweltchemie, Univ. Halle, FB Chemie, Merseburg (Germany))

    A non-aqueous and an aqueous photopolymer system with an enzyme are used to prepare photolithographically patterned enzyme membranes for amperometric (thinfilm platinum electrode) and potentiometric (ISFET) sensors based on enzyme inhibition. Flow methods for enzyme inhibition tests are described. The decrease in enzyme (AChE) activity after incubation in a solution of dichlorvos as inhibitor is detected amperometrically. The enzyme urease is immobilized onto the pH-sensitive gate area of an ISFET. Such a biosensor is able to detect copper(II) in water in the ppm-range without preconcentration. (orig.)

  13. Simultaneous determination of pH, urea, acetylcholine and heavy metals using array-based enzymatic optical biosensor.

    Science.gov (United States)

    Tsai, Hsiao-chung; Doong, Ruey-an

    2005-03-15

    An array-based optical biosensor for the simultaneous analysis of multiple samples in the presence of unrelated multi-analytes was fabricated. Urease and acetylcholinesterase (AChE) were used as model enzymes and were co-entrapped with the sensing probe, FITC-dextran, in the sol-gel matrix to measure pH, urea, acetylcholine (ACh) and heavy metals (enzyme inhibitors). Environmental and biological samples spiked with metal ions were also used to evaluate the application of the array biosensor to real samples. The biosensor exhibited high specificity in identifying multiple analytes. No obvious cross-interference was observed when a 50-spot array biosensor was used for simultaneous analysis of multiple samples in the presence of multiple analytes. The sensing system can determine pH over a dynamic range from 4 to 8.5. The limits of detection (LODs) of 2.5-50 microM with a dynamic range of 2-3 orders of magnitude for urea and ACh measurements were obtained. Moreover, the urease-encapsulated array biosensor was used to detect heavy metals. The analytical ranges of Cd(II), Cu(II), and Hg(II) were between 10 nM and 100 mM. When real samples were spiked with heavy metals, the array biosensor also exhibited potential effectiveness in screening enzyme inhibitors.

  14. Fabrication of fluorescence-based biosensors from functionalized CdSe and CdTe quantum dots for pesticide detection

    Science.gov (United States)

    Tran, Thi Kim Chi; Chinh Vu, Duc; Dieu Thuy Ung, Thi; Yen Nguyen, Hai; Hai Nguyen, Ngoc; Cao Dao, Tran; Nga Pham, Thu; Liem Nguyen, Quang

    2012-09-01

    This paper presents the results on the fabrication of highly sensitive fluorescence biosensors for pesticide detection. The biosensors are actually constructed from the complex of quantum dots (QDs), acetylcholinesterase (AChE) and acetylthiocholine (ATCh). The biosensor activity is based on the change of luminescence from CdSe and CdTe QDs with pH, while the pH is changed with the hydrolysis rate of ATCh catalyzed by the enzyme AChE, whose activity is specifically inhibited by pesticides. Two kinds of QDs were used to fabricate our biosensors: (i) CdSe QDs synthesized in high-boiling non-polar organic solvent and then functionalized by shelling with two monolayers (2-ML) of ZnSe and eight monolayers (8-ML) of ZnS and finally capped with 3-mercaptopropionic acid (MPA) to become water soluble; and (ii) CdTe QDs synthesized in aqueous phase then shelled with CdS. For normal checks the fabricated biosensors could detect parathion methyl (PM) pesticide at very low contents of ppm with the threshold as low as 0.05 ppm. The dynamic range from 0.05 ppm to 1 ppm for the pesticide detection could be expandable by increasing the AChE amount in the biosensor.

  15. Porous Silicon-Based Biosensors: Towards Real-Time Optical Detection of Target Bacteria in the Food Industry

    Science.gov (United States)

    Massad-Ivanir, Naama; Shtenberg, Giorgi; Raz, Nitzan; Gazenbeek, Christel; Budding, Dries; Bos, Martine P.; Segal, Ester

    2016-11-01

    Rapid detection of target bacteria is crucial to provide a safe food supply and to prevent foodborne diseases. Herein, we present an optical biosensor for identification and quantification of Escherichia coli (E. coli, used as a model indicator bacteria species) in complex food industry process water. The biosensor is based on a nanostructured, oxidized porous silicon (PSi) thin film which is functionalized with specific antibodies against E. coli. The biosensors were exposed to water samples collected directly from process lines of fresh-cut produce and their reflectivity spectra were collected in real time. Process water were characterized by complex natural micro-flora (microbial load of >107 cell/mL), in addition to soil particles and plant cell debris. We show that process water spiked with culture-grown E. coli, induces robust and predictable changes in the thin-film optical interference spectrum of the biosensor. The latter is ascribed to highly specific capture of the target cells onto the biosensor surface, as confirmed by real-time polymerase chain reaction (PCR). The biosensors were capable of selectively identifying and quantifying the target cells, while the target cell concentration is orders of magnitude lower than that of other bacterial species, without any pre-enrichment or prior processing steps.

  16. Mesoporous carbon nitride based biosensor for highly sensitive and selective analysis of phenol and catechol in compost bioremediation.

    Science.gov (United States)

    Zhou, Yaoyu; Tang, Lin; Zeng, Guangming; Chen, Jun; Cai, Ye; Zhang, Yi; Yang, Guide; Liu, Yuanyuan; Zhang, Chen; Tang, Wangwang

    2014-11-15

    Herein, we reported here a promising biosensor by taking advantage of the unique ordered mesoporous carbon nitride material (MCN) to convert the recognition information into a detectable signal with enzyme firstly, which could realize the sensitive, especially, selective detection of catechol and phenol in compost bioremediation samples. The mechanism including the MCN based on electrochemical, biosensor assembly, enzyme immobilization, and enzyme kinetics (elucidating the lower detection limit, different linear range and sensitivity) was discussed in detail. Under optimal conditions, GCE/MCN/Tyr biosensor was evaluated by chronoamperometry measurements and the reduction current of phenol and catechol was proportional to their concentration in the range of 5.00 × 10(-8)-9.50 × 10(-6)M and 5.00 × 10(-8)-1.25 × 10(-5)M with a correlation coefficient of 0.9991 and 0.9881, respectively. The detection limits of catechol and phenol were 10.24 nM and 15.00 nM (S/N=3), respectively. Besides, the data obtained from interference experiments indicated that the biosensor had good specificity. All the results showed that this material is suitable for load enzyme and applied to the biosensor due to the proposed biosensor exhibited improved analytical performances in terms of the detection limit and specificity, provided a powerful tool for rapid, sensitive, especially, selective monitoring of catechol and phenol simultaneously. Moreover, the obtained results may open the way to other MCN-enzyme applications in the environmental field.

  17. Immobilization free electrochemical biosensor for folate receptor in cancer cells based on terminal protection.

    Science.gov (United States)

    Ni, Jiancong; Wang, Qingxiang; Yang, Weiqiang; Zhao, Mengmeng; Zhang, Ying; Guo, Longhua; Qiu, Bin; Lin, Zhenyu; Yang, Huang-Hao

    2016-12-15

    The determination of folate receptor (FR) that over expressed in vast quantity of cancerous cells frequently is significant for the clinical diagnosis and treatment of cancers. Many DNA-based electrochemical biosensors have been developed for FR detection with high selectivity and sensitivity, but most of them need complicated immobilization of DNA on the electrode surface firstly, which is tedious and therefore results in the poor reproducibility. In this study, a simple, sensitive, and selective electrochemical FR biosensor in cancer cells has been proposed, which combines the advantages of the convenient immobilization-free homogeneous indium tin oxide (ITO)-based electrochemical detection strategy and the high selectivity of the terminal protection of small molecule linked DNA. The small molecule of folic acid (FA) and an electroactive molecule of ferrocence (Fc) were tethered to 3'- and 5'-end of an arbitrary single-stranded DNA (ssDNA), respectively, forming the FA-ssDNA-Fc complex. In the absence of the target FR, the FA-ssDNA-Fc was degraded by exonuclease I (Exo I) from 3'-end and produced a free Fc, diffusing freely to the ITO electrode surface and resulting in strong electrochemical signal. When the target FR was present, the FA-ssDNA-Fc was bound to FR through specific interaction with FA anchored at the 3'-end, effectively protecting the ssDNA strand from hydrolysis by Exo I. The FR-FA-ssDNA-Fc could not diffuse easily to the negatively charged ITO electrode surface due to the electrostatic repulsion between the DNA strand and the negatively charged ITO electrode, so electrochemical signal reduced. The decreased electrochemical signal has a linear relationship with the logarithm of FR concentration in range of 10fM to 10nM with a detection limit of 3.8fM (S/N=3). The proposed biosensor has been applied to detect FR in HeLa cancer cells, and the decreased electrochemical signal has a linear relationship with the logarithm of cell concentration ranging

  18. Disposable urea biosensor based on nanoporous ZnO film fabricated from omissible polymeric substrate

    Energy Technology Data Exchange (ETDEWEB)

    Rahmanian, Reza; Mozaffari, Sayed Ahmad, E-mail: mozaffari@irost.ir; Abedi, Mohammad

    2015-12-01

    In the present study, a facile and simple fabrication method of a semiconductor based urea biosensor was reported via three steps: (i) producing a ZnO–PVA composite film by means of a polymer assisted electrodeposition of zinc oxide (ZnO) on the F-doped SnO{sub 2} conducting glass (FTO) using water soluble polyvinyl alcohol (PVA), (ii) obtaining a nanoporous ZnO film by PVA omission via a subsequent post-treatment by annealing of the ZnO–PVA film, and (iii) preparation of a FTO/ZnO/Urs biosensor by exploiting a nanoporous ZnO film as an efficient and excellent platform area for electrostatic immobilization of urease enzyme (Urs) which was forced by the difference in their isoelectric point (IEP). The characterization techniques focused on the analysis of the ZnO–PVA film surfaces before and after annealing, which had a prominent effect on the porosity of the prepared ZnO film. The surface characterization of the nanostructured ZnO film by a field emission-scanning electron microscopy (FE–SEM), exhibited a film surface area as an effective bio-sensing matrix for enzyme immobilization. The structural characterization and monitoring of the biosensor fabrication was performed using UV–Vis, Fourier Transform Infrared (FT-IR), Raman Spectroscopy, Thermogravimetric Analysis (TGA), Cyclic Voltammetry (CV), and Electrochemical Impedance Spectroscopy (EIS) techniques. The impedimetric results of the FTO/ZnO/Urs biosensor showed a high sensitivity for urea detection within 8.0–110.0 mg dL{sup −1} with the limit of detection as 5.0 mg dL{sup −1}. - Highlights: • Novel disposable impedimetric urea biosensor fabrication based on ZnO–nanoporous transducer • Exploiting omissible PVA polymer as a simple strategy for ZnO–nanoporous film preparation • ZnO–nanoporous film as a good pore framework with large surface area/volume for enzyme immobilization • Application of impedimetric measurement for urea monitoring due to its rapidity, sensitivity, and

  19. Glucose oxidase-modified carbon-felt-reactor coupled with peroxidase-modified carbon-felt-detector for amperometric flow determination of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yue [School of Chemical Engineering, University of Science and Technology LiaoNing, 185 Qianshan Middle Road, High-tech Zone, Anshan, LiaoNing, 114501 (China); Hasebe, Yasushi, E-mail: hasebe@sit.ac.jp [Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293 (Japan)

    2012-04-01

    Glucose oxidase (GOx) and horseradish peroxidase (HRP) were covalently immobilized on a porous carbon-felt (CF) by using cyanuric chloride (CC) as a linking reagent. The resulting GOx-modified-CF (GOx-ccCF) was used as column-type enzyme reactor and placed on upstream of the HRP-ccCF-based H{sub 2}O{sub 2} flow-detector to fabricate amperometric flow-biosensor for glucose. Sensor setting conditions and the operational conditions were optimized, and the analytical performance characteristics of the resulting flow-biosensor were evaluated. The chemical modification of the GOx via CC was found to be effective to obtain larger catalytic activity as compared with the physical adsorption. Under the optimized conditions (i.e., volume ratio of the GOx-ccCF-reactor to the HRP-ccCF-detector is 1.0; applied potential is - 0.12 V vs. Ag/AgCl; carrier pH is 6.5; and carrier flow rate is 4.3 ml/min), highly selective and quite reproducible peak current responses toward glucose were obtained: the RSD for 30 consecutive injections of 3 mM glucose was 1.04%, and no serious interferences were observed for fructose, ethanol, uric acid, urea and tartaric acid for the amperometric measurements of glucose. The magnitude of the cathodic peak currents for glucose was linear up to 5 mM (sensitivity, 6.38 {+-} 0.32 {mu}A/{mu}M) with the limit detection of 9.4 {mu}M (S/N = 3, noise level, 20 nA). The present GOx-ccCF-reactor and HRP-ccCF-detector-coupled flow-glucose biosensor was utilized for the determination of glucose in beverages and liquors, and the analytical results by the sensor were in fairly good agreement with those by the conventional spectrophotometry. - Highlights: Black-Right-Pointing-Pointer Glucose oxidase (GOx) and peroxidase (HRP) were modified on carbon-felt. Black-Right-Pointing-Pointer GOx-CF reactor and HRP-CF detector-coupled flow glucose biosensor was developed. Black-Right-Pointing-Pointer This flow biosensor enabled the determination of glucose in beverages and

  20. An ultrasensitive electrochemical DNA biosensor based on a copper oxide nanowires/single-walled carbon nanotubes nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mei [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Hou, Changjun, E-mail: houcj@cqu.edu.cn [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); National Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology, Chongqing University, Chongqing 400044 (China); Huo, Danqun [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); National Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology, Chongqing University, Chongqing 400044 (China); Yang, Mei [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Fa, Huanbao [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China)

    2016-02-28

    Graphical abstract: A novel and sensitive electrochemical biosensor based on hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH) was first developed for the detection of the specific-sequence target DNA. This schematic represents the fabrication procedure of our DNA biosensor. - Highlights: • An ultrasensitive DNA electrochemical biosensor was developed. • CuO NWs entangled with the SWCNTs formed a mesh structure with good conductivity. • It is the first time use of CuONWs-SWCNTs hybrid nanocomposite for DNA detection. • The biosensor is simple, selective, stable, and sensitive. • The biosensor has great potential for use in analysis of real samples. - Abstract: Here, we developed a novel and sensitive electrochemical biosensor to detect specific-sequence target DNA. The biosensor was based on a hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH). The resulting CuO NWs/SWCNTs layers exhibited a good differential pulse voltammetry (DPV) current response for the target DNA sequences, which we attributed to the properties of CuO NWs and SWCNTs. CuO NWs and SWCNTs hybrid composites with highly conductive and biocompatible nanostructure were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cyclic voltammetry (CV). Immobilization of the probe DNA on the electrode surface was largely improved due to the unique synergetic effect of CuO NWs and SWCNTs. DPV was applied to monitor the DNA hybridization event, using adriamycin as an electrochemical indicator. Under optimal conditions, the peak currents of adriamycin were linear with the logarithm of target DNA concentrations (ranging from 1.0 × 10{sup −14} to 1.0 × 10{sup −8} M), with a detection limit of 3.5 × 10{sup −15} M (signal/noise ratio of 3). The biosensor also showed high

  1. Kinetics of Antibody Binding to Membranes of Living Bacteria Measured by a Photonic Crystal-Based Biosensor

    Science.gov (United States)

    Rostova, Ekaterina; Ben Adiba, Carine; Dietler, Giovanni; Sekatskii, Sergey K.

    2016-01-01

    Optical biosensors based on photonic crystal surface waves (PC SWs) offer a possibility to study binding interactions with living cells, overcoming the limitation of rather small evanescent field penetration depth into a sample medium that is characteristic for typical optical biosensors. Besides this, simultaneous excitation of s- and p-polarized surface waves with different penetration depths is realized here, permitting unambiguous separation of surface and volume contributions to the measured signal. PC-based biosensors do not require a bulk signal correction, compared to widely used surface plasmon resonance-based devices. We developed a chitosan-based protocol of PC chip functionalization for bacterial attachment and performed experiments on antibody binding to living bacteria measured in real time by the PCSW-based biosensor. Data analysis reveals specific binding and gives the value of the dissociation constant for monoclonal antibodies (IgG2b) against bacterial lipopolysaccharides equal to KD = 6.2 ± 3.4 nM. To our knowledge, this is a first demonstration of antibody-binding kinetics to living bacteria by a label-free optical biosensor. PMID:27727183

  2. An improved sensitive assay for the detection of PSP toxins with neuroblastoma cell-based impedance biosensor.

    Science.gov (United States)

    Zou, Ling; Wu, Chunsheng; Wang, Qin; Zhou, Jie; Su, Kaiqi; Li, Hongbo; Hu, Ning; Wang, Ping

    2015-05-15

    Paralytic shellfish poisoning (PSP) toxins are well-known sodium channel-blocking marine toxins, which block the conduction of nerve impulses and lead to a series of neurological disorders symptoms. However, PSP toxins can inhibit the cytotoxicity effect of compounds (e.g., ouabain and veratridine). Under the treatment of ouabain and veratridine, neuroblastoma cell will swell and die gradually, since veratridine causes the persistent inflow of Na(+) and ouabain inhibits the activity of Na(+)/K(+)-ATPases. Therefore, PSP toxins with antagonism effect can raise the chance of cell survival by blocking inflow of Na(+). Based on the antagonism effect of PSP toxins, we designed an improved cell-based assay to detect PSP toxins using a neuroblastoma cell-based impedance biosensor. The results demonstrated that this biosensor showed high sensitivity and good specificity for saxitoxins detection. The detection limit of this biosensor was as low as 0.03 ng/ml, which was lower than previous reported cell-based assays and mouse bioassays. With the improvement of biosensor performance, the neuroblastoma cell-based impedance biosensor has great potential to be a universal PSP screening method.

  3. Facile Fabrication of 3D Layer-by-layer Graphene-gold Nanorod Hybrid Architecture for Hydrogen Peroxide Based Electrochemical Biosensor

    Science.gov (United States)

    2015-01-01

    Facile fabrication of 3D layer-by-layer graphene-gold nanorod hybrid architecture for hydrogen peroxide based electrochemical biosensor Chenming Xue...the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). 1. Introduction Electrochemical biosensors are highly effective in...measurement techniques such as radioisotope tracing, NMR spectroscopy, and microfluorometry assay [12,25,18]. In recent years, electrochemical biosensors

  4. Electrochemical paper-based peptide nucleic acid biosensor for detecting human papillomavirus.

    Science.gov (United States)

    Teengam, Prinjaporn; Siangproh, Weena; Tuantranont, Adisorn; Henry, Charles S; Vilaivan, Tirayut; Chailapakul, Orawon

    2017-02-01

    A novel paper-based electrochemical biosensor was developed using an anthraquinone-labeled pyrrolidinyl peptide nucleic acid (acpcPNA) probe (AQ-PNA) and graphene-polyaniline (G-PANI) modified electrode to detect human papillomavirus (HPV). An inkjet printing technique was employed to prepare the paper-based G-PANI-modified working electrode. The AQ-PNA probe baring a negatively charged amino acid at the N-terminus was immobilized onto the electrode surface through electrostatic attraction. Electrochemical impedance spectroscopy (EIS) was used to verify the AQ-PNA immobilization. The paper-based electrochemical DNA biosensor was used to detect a synthetic 14-base oligonucleotide target with a sequence corresponding to human papillomavirus (HPV) type 16 DNA by measuring the electrochemical signal response of the AQ label using square-wave voltammetry before and after hybridization. It was determined that the current signal significantly decreased after the addition of target DNA. This phenomenon is explained by the rigidity of PNA-DNA duplexes, which obstructs the accessibility of electron transfer from the AQ label to the electrode surface. Under optimal conditions, the detection limit of HPV type 16 DNA was found to be 2.3 nM with a linear range of 10-200 nM. The performance of this biosensor on real DNA samples was tested with the detection of PCR-amplified DNA samples from the SiHa cell line. The new method employs an inexpensive and disposable device, which easily incinerated after use and is promising for the screening and monitoring of the amount of HPV-DNA type 16 to identify the primary stages of cervical cancer.

  5. Photoelectrochemical enzymatic biosensors.

    Science.gov (United States)

    Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-06-15

    Enzymatic biosensors have been valuable bioanalytical devices for analysis of diverse targets in disease diagnosis, biological and biomedical research, etc. Photoelectrochemical (PEC) bioanalysis is a recently emerged method that promptly becoming a subject of new research interests due to its attractive potential for future bioanalysis with high sensitivity and specificity. PEC enzymatic biosensors integrate the inherent sensitivities of PEC bioanalysis and the selectivity of enzymes and thus share their both advantages. Currently, PEC enzymatic biosensors have become a hot topic of significant research and the recent impetus has grown rapidly as demonstrated by increased research papers. Given the pace of advances in this area, this review will make a thorough discussion and survey on the fundamentals, sensing strategies, applications and the state of the art in PEC enzymatic biosensors, followed by future prospects based on our own opinions. We hope this work could provide an accessible introduction to PEC enzymatic biosensors for any scientist.

  6. Amperometric immunosensor for rapid detection of Mycobacterium tuberculosis

    Science.gov (United States)

    Hiraiwa, Morgan; Kim, Jong-Hoon; Lee, Hyun-Boo; Inoue, Shinnosuke; Becker, Annie L.; Weigel, Kris M.; Cangelosi, Gerard A.; Lee, Kyong-Hoon; Chung, Jae-Hyun

    2015-05-01

    Tuberculosis (TB) has been a major public health problem, which can be better controlled by using accurate and rapid diagnosis in low-resource settings. A simple, portable, and sensitive detection method is required for point-of-care (POC) settings. This paper studies an amperometric biosensor using a microtip immunoassay for a rapid and low-cost detection of Mycobacterium tuberculosis (MTB) in sputum. MTB in sputum is specifically captured on the functionalized microtip surface and detected by electric current. According to the numerical study, the current signal on the microtip surface is linearly changed with increasing immersion depth. Using a reference microtip, the immersion depth is compensated for a sensing microtip. On the microtip surface, target bacteria are concentrated and organized by a coffee-ring effect, which amplifies the electric current. To enhance the signal-to-noise ratio, both the sample processing and rinsing steps are presented with the use of deionized water as a medium for the amperometric measurement. When applied to cultured MTB cells spiked into human sputum, the detection limit was 100 CFU mL-1, comparable to a more labor-intensive fluorescence detection method reported previously.

  7. Apta-biosensors for nonlabeled real time detection of human IgE based on carbon nanotube field effect transistors.

    Science.gov (United States)

    Kim, Jun Pyo; Hong, Seunghun; Sim, Sang Jun

    2011-05-01

    In this study, we demonstrated the aptamer-based biosensor (apta-biosensor) using CNT-FET devices for label free detection of allergy diagnosis by IgE detection. In order to detect the IgE, two kinds of receptor (monoclonal IgE antibody and anti-IgE aptamer)-modified CNT-FET devices were fabricated. The binding event of the target IgE onto receptors was detected by monitoring the gating effect caused by the charges of the target proteins. Since the CNT-FET biosensors were used in buffer solution, it was crucial to use small-size receptors like aptamers than whole antibodies so that the charged target IgE could approach the CNT surface within the Debye length distance to give a large gating effect. The results show that CNT-FET biosensors using monoclonal IgE antibody had very low sensitivity (minimum detectable level 1000 ng/mL), while those based on anti-IgE aptamer could detect 50 ng/mL. Moreover, the aptamer-modified CNT-FET herein could successfully block non-target proteins and could selectively detect the target protein in an environment similar to human serum electrolyte. Therefore, aptamer-based CNT-FET devices enable the production of label-free ultrasensitive electronic biosensors to detect clinically important biomarkers for disease diagnosis.

  8. Real-time determination of intracellular oxygen in bacteria using a genetically encoded FRET-based biosensor

    Directory of Open Access Journals (Sweden)

    Potzkei Janko

    2012-03-01

    Full Text Available Abstract Background Molecular oxygen (O2 is one of the key metabolites of all obligate and facultative aerobic pro- and eukaryotes. It plays a fundamental role in energy homeostasis whereas oxygen deprivation, in turn, broadly affects various physiological and pathophysiological processes. Therefore, real-time monitoring of cellular oxygen levels is basically a prerequisite for the analysis of hypoxia-induced processes in living cells and tissues. Results We developed a genetically encoded Förster resonance energy transfer (FRET-based biosensor allowing the observation of changing molecular oxygen concentrations inside living cells. This biosensor named FluBO (fluorescent protein-based biosensor for oxygen consists of the yellow fluorescent protein (YFP that is sensitive towards oxygen depletion and the hypoxia-tolerant flavin-binding fluorescent protein (FbFP. Since O2 is essential for the formation of the YFP chromophore, efficient FRET from the FbFP donor domain to the YFP acceptor domain only occurs in the presence but not in the absence of oxygen. The oxygen biosensor was used for continuous real-time monitoring of temporal changes of O2 levels in the cytoplasm of Escherichia coli cells during batch cultivation. Conclusions FluBO represents a unique FRET-based oxygen biosensor which allows the non-invasive ratiometric readout of cellular oxygen. Thus, FluBO can serve as a novel and powerful probe for investigating the occurrence of hypoxia and its effects on a variety of (pathophysiological processes in living cells.

  9. Asymmetric Mach-Zehnder Interferometer Based Biosensors for Aflatoxin M1 Detection.

    Science.gov (United States)

    Chalyan, Tatevik; Guider, Romain; Pasquardini, Laura; Zanetti, Manuela; Falke, Floris; Schreuder, Erik; Heideman, Rene G; Pederzolli, Cecilia; Pavesi, Lorenzo

    2016-01-06

    In this work, we present a study of Aflatoxin M1 detection by photonic biosensors based on Si₃N₄ Asymmetric Mach-Zehnder Interferometer (aMZI) functionalized with antibodies fragments (Fab'). We measured a best volumetric sensitivity of 10⁴ rad/RIU, leading to a Limit of Detection below 5 × 10(-7) RIU. On sensors functionalized with Fab', we performed specific and non-specific sensing measurements at various toxin concentrations. Reproducibility of the measurements and re-usability of the sensor were also investigated.

  10. Fabrication and characterization of spiral interdigitated electrodes based biosensor for salivary glucose detection

    Science.gov (United States)

    Adelyn, P. Y. P.; Hashim, U.; Arshad, M. K. Md; Voon, C. H.; Liu, Wei-Wen; Kahar, S. M.; Huda, A. R. N.; Lee, H. Cheun

    2017-03-01

    This work introduces the non-invasive glucose monitoring technique by using the Complementary Metal Oxide Semiconductor (CMOS) technologically fabricated spiral Interdigitated Electrodes (IDE) based biosensor. Scanning Electron Microscopy (SEM) image explores the morphology of spiral IDE while Energy Dispersive X-Ray (EDX) determines the elements induced in spiral IDE. Oral saliva of two patients are collected and tested on the spiral IDE sensor with electrical characterization as glucose detection results. However, both patients exhibit their glucose level characteristics inconsistently. Therefore, this work could be extended and enhanced by adding Glutaraldehyde in between 3-Aminoproply)triethoxysilane (APTES) modified and glucose oxidase (GOD) enzyme immobilized layer with FTIR validation for bonding attachment.

  11. A Low-Cost Smartphone-Based Electrochemical Biosensor for Point-of-Care Diagnostics

    OpenAIRE

    2014-01-01

    This paper describes the development of a smartphone-based electrochemical biosensor module. The module contains a low power potentiostat that interfaces and harvests power from a smartphone through the phone’s audio jack. A prototype with two different potentiostat designs was constructed and used to conduct proof of concept cyclic voltammetry experiments with potassium ferro-/ferricyanide (K4[Fe(CN)6] / K3[Fe(CN)6]) in a side-by-side comparison with a laboratory grade instrument. Results sh...

  12. Optical biosensor based on liquid crystal droplets for detection of cholic acid

    Science.gov (United States)

    Niu, Xiaofang; Luo, Dan; Chen, Rui; Wang, Fei; Sun, Xiaowei; Dai, Haitao

    2016-12-01

    A highly sensitive cholic acid biosensor based on 4-cyano-4‧-penthlbiphenyl (5CB) Liquid crystal droplets in phosphate buffer saline solution was reported. A radial-to-bipolar transition of 5CB droplet would be triggered during competitive reaction of CA at the sodium dodecyl sulfate surfactant-laden 5CB droplet surface. Our liquid crystal droplet sensor is a low-cost, simple and fast method for CA detection. The detection limit (5 μM) of our method is 2.4 times lower than previously report by using liquid crystal film to detection of CA.

  13. Thin-Film Transistor-Based Biosensors for Determining Stoichiometry of Biochemical Reactions

    Science.gov (United States)

    Wang, Yi-Wen; Chen, Ting-Yang; Yang, Tsung-Han; Chang, Cheng-Chung; Yang, Tsung-Lin; Lo, Yu-Hwa

    2016-01-01

    The enzyme kinetic in a biochemical reaction is critical to scientific research and drug discovery but can hardly be determined experimentally from enzyme assays. In this work, a charge-current transducer (a transistor) is proposed to evaluate the status of biochemical reaction by monitoring the electrical charge changes. Using the malate-aspartate shuttle as an example, a thin-film transistor (TFT)-based biosensor with an extended gold pad is demonstrated to detect the biochemical reaction between NADH and NAD+. The drain current change indicates the status of chemical equilibrium and stoichiometry. PMID:28033412

  14. Homo-FRET Based Biosensors and Their Application to Multiplexed Imaging of Signalling Events in Live Cells

    Science.gov (United States)

    Warren, Sean C.; Margineanu, Anca; Katan, Matilda; Dunsby, Chris; French, Paul M. W.

    2015-01-01

    Multiplexed imaging of Förster Resonance Energy Transfer (FRET)-based biosensors potentially presents a powerful approach to monitoring the spatio-temporal correlation of signalling pathways within a single live cell. Here, we discuss the potential of homo-FRET based biosensors to facilitate multiplexed imaging. We demonstrate that the homo-FRET between pleckstrin homology domains of Akt (Akt-PH) labelled with mCherry may be used to monitor 3′-phosphoinositide accumulation in live cells and show how global analysis of time resolved fluorescence anisotropy measurements can be used to quantify this accumulation. We further present multiplexed imaging readouts of calcium concentration, using fluorescence lifetime measurements of TN-L15-a CFP/YFP based hetero-FRET calcium biosensor-with 3′-phosphoinositide accumulation. PMID:26133241

  15. Sol-Gel-Based Titania-Silica Thin Film Overlay for Long Period Fiber Grating-Based Biosensors.

    Science.gov (United States)

    Chiavaioli, Francesco; Biswas, Palas; Trono, Cosimo; Jana, Sunirmal; Bandyopadhyay, Somnath; Basumallick, Nandini; Giannetti, Ambra; Tombelli, Sara; Bera, Susanta; Mallick, Aparajita; Baldini, Francesco

    2015-12-15

    An evanescent wave optical fiber biosensor based on titania-silica-coated long period grating (LPG) is presented. The chemical overlay, which increases the refractive index (RI) sensitivity of the sensor, consists of a sol-gel-based titania-silica thin film, deposited along the sensing portion of the fiber by means of the dip-coating technique. Changing both the sol viscosity and the withdrawal speed during the dip-coating made it possible to adjust the thickness of the film overlay, which is a crucial parameter for the sensor performance. After the functionalization of the fiber surface using a methacrylic acid/methacrylate copolymer, an antibody/antigen (IgG/anti-IgG) assay was carried out to assess the performance of sol-gel based titania-silica-coated LPGs as biosensors. The analyte concentration was determined from the wavelength shift at the end of the binding process and from the initial binding rate. This is the first time that a sol-gel based titania-silica-coated LPG is proposed as an effective and feasible label-free biosensor. The specificity of the sensor was validated by performing the same model assay after spiking anti-IgG into human serum. With this structured LPG, detection limits of the order of tens of micrograms per liter (10(-11) M) are attained.

  16. Fabrication LSPR sensor chip of Ag NPs and their biosensor application based on interparticle coupling

    Energy Technology Data Exchange (ETDEWEB)

    Ghodselahi, T., E-mail: t_ghodselahi@yahoo.com [Nano Mabna Iranian Inc., PO Box 1676664116, Tehran (Iran, Islamic Republic of); School of Physics, Institute for Research in Fundamental Sciences, PO Box 19395-5531, Tehran (Iran, Islamic Republic of); Neishaboorynejad, T. [School of Physics, Institute for Research in Fundamental Sciences, PO Box 19395-5531, Tehran (Iran, Islamic Republic of); Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Arsalani, S. [School of Physics, Institute for Research in Fundamental Sciences, PO Box 19395-5531, Tehran (Iran, Islamic Republic of); School of Medicine, Bam University of Medical Sciences, Bam (Iran, Islamic Republic of)

    2015-07-15

    Highlights: • Localized surface plasmon resonance (LSPR) sensor of silver nanoparticles on hydrogenated amorphous carbon thin film were synthetized by co-deposition of RF-sputtering and RF-PECVD. • Samples were characterized by XRD, XPS, AFM, and UV visible. • DNA primer at fM concentration was detected based on breaking of inter-particles coupling. • Dipolar plasmon of isolated Ag NPs, coupled Ag NPs plasmons, in-plane and out-plane coupling, and quadrupole plasmon modes were considered to explain biosensor properties. • The initial response, wavelength shift sensitivity, and response time of LSPR sensors were compared by morphology. - Abstract: We introduce a simple method to synthesize localized surface plasmon resonance (LSPR) sensor chip of Ag NPs on the hydrogenated amorphous carbon by co-deposition of RF-Sputtering and RF-PECVD. The X-ray photoelectron spectroscopy revealed the content of Ag and C atoms. X-ray diffraction profile and atomic force microscopy indicate that the Ag NPs have fcc crystal structure and spherical shape and by increasing deposition time, particle sizes do not vary and only Ag NPs aggregation occurs, resulting in LSPR wavelength shift. Firstly, by increasing Ag NPs content, in-plan interparticles coupling is dominant and causes redshift in LSPR. At the early stage of agglomeration, out-plane coupling occurs and in-plane coupling is reduced, resulting a blueshift in the LSPR. By further increasing of Ag NPs content, agglomeration is completed on the substrate and in-plan coupling rises, resulting significant redshift in the LSPR. Results were used to implement biosensor application of chips. Detection of DNA primer at fM concentration was achieved based on breaking interparticles coupling of Ag NPs. A significant wavelength shift sensitivity of 30 nm and a short response time of 30 min were obtained, where both of these are prerequisite for biosensor applications.

  17. Stimulus-response mesoporous silica nanoparticle-based chemiluminescence biosensor for cocaine determination.

    Science.gov (United States)

    Chen, Zhonghui; Tan, Yue; Xu, Kefeng; Zhang, Lan; Qiu, Bin; Guo, Longhua; Lin, Zhenyu; Chen, Guonan

    2016-01-15

    Mesoporous silica nanoparticles (MSN) based controlled release system had been coupled with diverse detection technologies to establish biosensors for different targets. Chemiluminescence (CL) system of luminol/H2O2 owns the characters of simplicity, low cost and high sensitivity, but the targets of which are mostly focused on some oxidants or which can participate in a chemical reaction that yields a product with a role in the CL reaction. In this study, chemiluminescent detection technique had been coupled with mesoporous silica-based controlled released system for the first time to develop a sensitive biosensor for the target which does not cause effect to the CL system itself. Cocaine had been chosen a model target, the MSN support was firstly loaded with glucose, then the positively charged MSN interacted with negatively charged oligonucleotides (the aptamer cocaine) to close the mesopores of MSN. At the present of target, cocaine binds with its aptamer with high affinity; the flexible linear aptamer structured will become stems structured through currently well-defined non-Waston-Crick interactions and causes the releasing of entrapped glucose into the solution. With the assistant of glucose oxidase (GOx), the released glucose can react with the dissolved oxgen to produce gluconic acid and H2O2, the latter can enhance the CL of luminol in the NaOH solution. The enhanced CL intensity has a relationship with the cocaine concentration in the range of 5.0-60μM with the detection limit of 1.43μM. The proposed method had been successfully applied to detect cocaine in serum samples with high selectivity. The same strategy can be applied to develop biosensors for different targets.

  18. A label-free and high sensitive aptamer biosensor based on hyperbranched polyester microspheres for thrombin detection

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Chong [Jiangsu Key Laboratory of Biofunctional Materials, Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Han, Qiaorong [Jiangsu Key Laboratory of Biofunctional Materials, Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Wang, Daoying; Xu, Weimin [Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Wang, Weijuan [Jiangsu Key Laboratory of Biofunctional Materials, Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Zhao, Wenbo, E-mail: zhaowenbo@njnu.edu.cn [Jiangsu Key Laboratory of Biofunctional Materials, Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Zhou, Min, E-mail: zhouminnju@126.com [Department of Vascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008 (China)

    2014-11-19

    Highlights: • A label-free thrombin aptamer biosensor applied in whole blood has been developed. • The aptamer biosensor showed a wide detection range and a low detection limit. • The antibiofouling idea utilized for biosensor is significant for diagnostics. - Abstract: In this paper, we have synthesized hyperbranched polyester microspheres with carboxylic acid functional groups (HBPE-CA) and developed a label-free electrochemical aptamer biosensor using thrombin-binding aptamer (TBA) as receptor for the measurement of thrombin in whole blood. The indium tin oxide (ITO) electrode surface modified with HBPE-CA microspheres was grafted with TBA, which has excellent binding affinity and selectivity for thrombin. Binding of the thrombin at the modified ITO electrode surface greatly restrained access of electrons for a redox probe of [Fe(CN){sub 6}]{sup 3−/4−}. Moreover, the aptamer biosensor could be used for detection of thrombin in whole blood, a wide detection range (10 fM–100 nM) and a detection limit on the order of 0.90 fM were demonstrated. Control experiments were also carried out by using bull serum albumin (BSA) and lysozyme in the absence of thrombin. The good stability and repeatability of this aptamer biosensor were also proved. We expect that this demonstration will lead to the development of highly sensitive label-free sensors based on aptamer with lower cost than current technology. The integration of the technologies, which include anticoagulant, sensor and nanoscience, will bring significant input to high-performance biosensors relevant to diagnostics and therapy of interest for human health.

  19. An ultrasensitive electrochemical DNA biosensor based on a copper oxide nanowires/single-walled carbon nanotubes nanocomposite

    Science.gov (United States)

    Chen, Mei; Hou, Changjun; Huo, Danqun; Yang, Mei; Fa, Huanbao

    2016-02-01

    Here, we developed a novel and sensitive electrochemical biosensor to detect specific-sequence target DNA. The biosensor was based on a hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH). The resulting CuO NWs/SWCNTs layers exhibited a good differential pulse voltammetry (DPV) current response for the target DNA sequences, which we attributed to the properties of CuO NWs and SWCNTs. CuO NWs and SWCNTs hybrid composites with highly conductive and biocompatible nanostructure were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cyclic voltammetry (CV). Immobilization of the probe DNA on the electrode surface was largely improved due to the unique synergetic effect of CuO NWs and SWCNTs. DPV was applied to monitor the DNA hybridization event, using adriamycin as an electrochemical indicator. Under optimal conditions, the peak currents of adriamycin were linear with the logarithm of target DNA concentrations (ranging from 1.0 × 10-14 to 1.0 × 10-8 M), with a detection limit of 3.5 × 10-15 M (signal/noise ratio of 3). The biosensor also showed high selectivity to single-base mismatched target DNA. Compared with other electrochemical DNA biosensors, we showed that the proposed biosensor is simple to implement, with good stability and high sensitivity.

  20. Nanomembrane-Based, Thermal-Transport Biosensor for Living Cells.

    Science.gov (United States)

    ElAfandy, Rami T; AbuElela, Ayman F; Mishra, Pawan; Janjua, Bilal; Oubei, Hassan M; Büttner, Ulrich; Majid, Mohammed A; Ng, Tien Khee; Merzaban, Jasmeen S; Ooi, Boon S

    2017-02-01

    Knowledge of materials' thermal-transport properties, conductivity and diffusivity, is crucial for several applications within areas of biology, material science and engineering. Specifically, a microsized, flexible, biologically integrated thermal transport sensor is beneficial to a plethora of applications, ranging across plants physiological ecology and thermal imaging and treatment of cancerous cells, to thermal dissipation in flexible semiconductors and thermoelectrics. Living cells pose extra challenges, due to their small volumes and irregular curvilinear shapes. Here a novel approach of simultaneously measuring thermal conductivity and diffusivity of different materials and its applicability to single cells is demonstrated. This technique is based on increasing phonon-boundary-scattering rate in nanomembranes, having extremely low flexural rigidities, to induce a considerable spectral dependence of the bandgap-emission over excitation-laser intensity. It is demonstrated that once in contact with organic or inorganic materials, the nanomembranes' emission spectrally shift based on the material's thermal diffusivity and conductivity. This NM-based technique is further applied to differentiate between different types and subtypes of cancer cells, based on their thermal-transport properties. It is anticipated that this novel technique to enable an efficient single-cell thermal targeting, allow better modeling of cellular thermal distribution and enable novel diagnostic techniques based on variations of single-cell thermal-transport properties.