WorldWideScience

Sample records for ampa receptor endocytosis

  1. AMPA Receptor Endocytosis in Rat Perirhinal Cortex Underlies Retrieval of Object Memory

    Science.gov (United States)

    Cazakoff, Brittany N.; Howland, John G.

    2011-01-01

    Mechanisms consistent with long-term depression in the perirhinal cortex (PRh) play a fundamental role in object recognition memory; however, whether AMPA receptor endocytosis is involved in distinct phases of recognition memory is not known. To address this question, we used local PRh infusions of the cell membrane-permeable Tat-GluA2[subscript…

  2. Regulated RalBP1 binding to RalA and PSD-95 controls AMPA receptor endocytosis and LTD.

    Directory of Open Access Journals (Sweden)

    Kihoon Han

    2009-09-01

    Full Text Available Long-term depression (LTD is a long-lasting activity-dependent decrease in synaptic strength. NMDA receptor (NMDAR-dependent LTD, an extensively studied form of LTD, involves the endocytosis of AMPA receptors (AMPARs via protein dephosphorylation, but the underlying mechanism has remained unclear. We show here that a regulated interaction of the endocytic adaptor RalBP1 with two synaptic proteins, the small GTPase RalA and the postsynaptic scaffolding protein PSD-95, controls NMDAR-dependent AMPAR endocytosis during LTD. NMDAR activation stimulates RalA, which binds and translocates widespread RalBP1 to synapses. In addition, NMDAR activation dephosphorylates RalBP1, promoting the interaction of RalBP1 with PSD-95. These two regulated interactions are required for NMDAR-dependent AMPAR endocytosis and LTD and are sufficient to induce AMPAR endocytosis in the absence of NMDAR activation. RalA in the basal state, however, maintains surface AMPARs. We propose that NMDAR activation brings RalBP1 close to PSD-95 to promote the interaction of RalBP1-associated endocytic proteins with PSD-95-associated AMPARs. This suggests that scaffolding proteins at specialized cellular junctions can switch their function from maintenance to endocytosis of interacting membrane proteins in a regulated manner.

  3. Uncompetitive antagonism of AMPA receptors

    DEFF Research Database (Denmark)

    Andersen, Trine F; Tikhonov, Denis B; Bølcho, Ulrik;

    2006-01-01

    Philanthotoxins are uncompetitive antagonists of Ca2+-permeable AMPA receptors presumed to bind to the pore-forming region, but a detailed molecular mechanism for this interaction is missing. Here a small library of novel philanthotoxins was designed and synthesized using a solid-phase strategy. ...... polyamine toxins antagonize the AMPA receptor ion channel and provide the basis for rational development of uncompetitive antagonists of AMPA receptors....

  4. AMPA receptor pHluorin-GluA2 reports NMDA receptor-induced intracellular acidification in hippocampal neurons

    DEFF Research Database (Denmark)

    Rathje, Mette; Fang, Huaqiang; Bachman, Julia L;

    2013-01-01

    NMDA receptor activation promotes endocytosis of AMPA receptors, which is an important mechanism underlying long-term synaptic depression. The pH-sensitive GFP variant pHluorin fused to the N terminus of GluA2 (pH-GluA2) has been used to assay NMDA-mediated AMPA receptor endocytosis and recycling...

  5. Regulation of AMPA receptors in spinal nociception

    Directory of Open Access Journals (Sweden)

    Lin Qing

    2010-01-01

    Full Text Available Abstract The functional properties of α-amino-3-hydroxy-5-methy-4-isoxazole propionate (AMPA receptors in different brain regions, such as hippocampus and cerebellum, have been well studied in vitro and in vivo. The AMPA receptors present a unique characteristic in the mechanisms of subunit regulation during LTP (long-term potentiation and LTD (long-term depression, which are involved in the trafficking, altered composition and phosphorylation of AMPA receptor subunits. Accumulated data have demonstrated that spinal AMPA receptors play a critical role in the mechanism of both acute and persistent pain. However, less is known about the biochemical regulation of AMPA receptor subunits in the spinal cord in response to painful stimuli. Recent studies have shown that some important regulatory processes, such as the trafficking of AMPA receptor subunit, subunit compositional changes, phosphorylation of AMPA receptor subunits, and their interaction with partner proteins may contribute to spinal nociceptive transmission. Of all these regulation processes, the phosphorylation of AMPA receptor subunits is the most important since it may trigger or affect other cellular processes. Therefore, these study results may suggest an effective strategy in developing novel analgesics targeting AMPA receptor subunit regulation that may be useful in treating persistent and chronic pain without unacceptable side effects in the clinics.

  6. AMPA receptor ligands

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Mellor, Ian

    2004-01-01

    polyamines are known to modulate the function of these receptors in vivo. In this study, recent developments in the medicinal chemistry of polyamine-based ligands are given, particularly focusing on the use of solid-phase synthesis (SPS) as a tool for the facile generation of libraries of polyamine toxin...

  7. Agonist discrimination between AMPA receptor subtypes

    DEFF Research Database (Denmark)

    Coquelle, T; Christensen, J K; Banke, T G;

    2000-01-01

    The lack of subtype-selective compounds for AMPA receptors (AMPA-R) led us to search for compounds with such selectivity. Homoibotenic acid analogues were investigated at recombinant GluR1o, GluR2o(R), GluR3o and GluR1o + 3o receptors expressed in Sf9 insect cells and affinities determined in [3H......]AMPA radioligand binding experiments. (S)-4-bromohomoibotenic acid (BrHIBO) exhibited a 126-fold selectivity for GluR1o compared to GluR3o. Xenopus laevis oocytes were used to express functional homomeric and heteromeric recombinant AMPA-R and to determine BrHIBO potency (EC50) at these channels. (R......,S)-BrHIBO exhibited a 37-fold selectivity range amongst the AMPA-R. It is hoped that BrHIBO can be used as a lead structure for the development of other subtype-selective compounds....

  8. Endocytosis of Receptor Tyrosine Kinases

    Science.gov (United States)

    Goh, Lai Kuan

    2013-01-01

    Endocytosis is the major regulator of signaling from receptor tyrosine kinases (RTKs). The canonical model of RTK endocytosis involves rapid internalization of an RTK activated by ligand binding at the cell surface and subsequent sorting of internalized ligand-RTK complexes to lysosomes for degradation. Activation of the intrinsic tyrosine kinase activity of RTKs results in autophosphorylation, which is mechanistically coupled to the recruitment of adaptor proteins and conjugation of ubiquitin to RTKs. Ubiquitination serves to mediate interactions of RTKs with sorting machineries both at the cell surface and on endosomes. The pathways and kinetics of RTK endocytic trafficking, molecular mechanisms underlying sorting processes, and examples of deviations from the standard trafficking itinerary in the RTK family are discussed in this work. PMID:23637288

  9. AMPA receptor inhibition by synaptically released zinc.

    Science.gov (United States)

    Kalappa, Bopanna I; Anderson, Charles T; Goldberg, Jacob M; Lippard, Stephen J; Tzounopoulos, Thanos

    2015-12-22

    The vast amount of fast excitatory neurotransmission in the mammalian central nervous system is mediated by AMPA-subtype glutamate receptors (AMPARs). As a result, AMPAR-mediated synaptic transmission is implicated in nearly all aspects of brain development, function, and plasticity. Despite the central role of AMPARs in neurobiology, the fine-tuning of synaptic AMPA responses by endogenous modulators remains poorly understood. Here we provide evidence that endogenous zinc, released by single presynaptic action potentials, inhibits synaptic AMPA currents in the dorsal cochlear nucleus (DCN) and hippocampus. Exposure to loud sound reduces presynaptic zinc levels in the DCN and abolishes zinc inhibition, implicating zinc in experience-dependent AMPAR synaptic plasticity. Our results establish zinc as an activity-dependent, endogenous modulator of AMPARs that tunes fast excitatory neurotransmission and plasticity in glutamatergic synapses.

  10. Calcyon is Necessary for Activity Dependent AMPA Receptor Internalization and LTD in CA1 Neurons of Hippocampus

    OpenAIRE

    Davidson, Heather Trantham; Xiao, Jiping; Dai, Rujuan; Bergson, Clare

    2009-01-01

    Calcyon is a single transmembrane endocytic protein that regulates clathrin assembly and clathrin mediated endocytosis in brain. Ultrastructural studies indicate that calcyon localizes to spines, but whether it regulates glutamate neurotransmission is not known. Here, we show that deletion of the calcyon gene in mice inhibits agonist stimulated endocytosis of AMPA receptors, without altering basal surface levels of the GluR1 or GluR2 subunits. Whole cell patch clamp studies of hippocampal neu...

  11. Perampanel inhibition of AMPA receptor currents in cultured hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Chao-Yin Chen

    Full Text Available Perampanel is an aryl substituted 2-pyridone AMPA receptor antagonist that was recently approved as a treatment for epilepsy. The drug potently inhibits AMPA receptor responses but the mode of block has not been characterized. Here the action of perampanel on AMPA receptors was investigated by whole-cell voltage-clamp recording in cultured rat hippocampal neurons. Perampanel caused a slow (τ∼1 s at 3 µM, concentration-dependent inhibition of AMPA receptor currents evoked by AMPA and kainate. The rates of block and unblock of AMPA receptor currents were 1.5×105 M-1 s-1 and 0.58 s-1, respectively. Perampanel did not affect NMDA receptor currents. The extent of block of non-desensitizing kainate-evoked currents (IC50, 0.56 µM was similar at all kainate concentrations (3-100 µM, demonstrating a noncompetitive blocking action. Parampanel did not alter the trajectory of AMPA evoked currents indicating that it does not influence AMPA receptor desensitization. Perampanel is a selective negative allosteric AMPA receptor antagonist of high-affinity and slow blocking kinetics.

  12. Prolonged adenosine A1 receptor activation in hypoxia and pial vessel disruption focal cortical ischemia facilitates clathrin-mediated AMPA receptor endocytosis and long-lasting synaptic inhibition in rat hippocampal CA3-CA1 synapses: differential regulation of GluA2 and GluA1 subunits by p38 MAPK and JNK.

    Science.gov (United States)

    Chen, Zhicheng; Xiong, Cherry; Pancyr, Cassandra; Stockwell, Jocelyn; Walz, Wolfgang; Cayabyab, Francisco S

    2014-07-16

    Activation of presynaptic adenosine A1 receptors (A1Rs) causes substantial synaptic depression during hypoxia/cerebral ischemia, but postsynaptic actions of A1Rs are less clear. We found that A1Rs and GluA2-containing AMPA receptors (AMPARs) form stable protein complexes from hippocampal brain homogenates and cultured hippocampal neurons from Sprague Dawley rats. In contrast, adenosine A2A receptors (A2ARs) did not coprecipitate or colocalize with GluA2-containing AMPARs. Prolonged stimulation of A1Rs with the agonist N(6)-cyclopentyladenosine (CPA) caused adenosine-induced persistent synaptic depression (APSD) in hippocampal brain slices, and APSD levels were blunted by inhibiting clathrin-mediated endocytosis of GluA2 subunits with the Tat-GluA2-3Y peptide. Using biotinylation and membrane fractionation assays, prolonged CPA incubation showed significant depletion of GluA2/GluA1 surface expression from hippocampal brain slices and cultured neurons. Tat-GluA2-3Y peptide or dynamin inhibitor Dynasore prevented CPA-induced GluA2/GluA1 internalization. Confocal imaging analysis confirmed that functional A1Rs, but not A2ARs, are required for clathrin-mediated AMPAR endocytosis in hippocampal neurons. Pharmacological inhibitors or shRNA knockdown of p38 MAPK and JNK prevented A1R-mediated internalization of GluA2 but not GluA1 subunits. Tat-GluA2-3Y peptide or A1R antagonist 8-cyclopentyl-1,3-dipropylxanthine also prevented hypoxia-mediated GluA2/GluA1 internalization. Finally, in a pial vessel disruption cortical stroke model, a unilateral cortical lesion compared with sham surgery reduced hippocampal GluA2, GluA1, and A1R surface expression and also caused synaptic depression in hippocampal slices that was consistent with AMPAR downregulation and decreased probability of transmitter release. Together, these results indicate a previously unknown mechanism for A1R-induced persistent synaptic depression involving clathrin-mediated GluA2 and GluA1 internalization that

  13. Synthesis and enantiopharmacology of new AMPA-kainate receptor agonists

    DEFF Research Database (Denmark)

    Conti, P; De Amici, M; De Sarro, G;

    1999-01-01

    , and the rat cortical wedge preparation. CIP-A showed a good affinity for both 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) and kainic acid (KAIN) receptors. These results were confirmed in the cortical slice model where CIP-A displayed an EC(50) value very close to that of AMPA...

  14. PACSIN1 regulates the dynamics of AMPA receptor trafficking.

    Science.gov (United States)

    Widagdo, Jocelyn; Fang, Huaqiang; Jang, Se Eun; Anggono, Victor

    2016-01-01

    Dynamic trafficking of AMPA receptors (AMPARs) into and out of synapses plays an important role in synaptic plasticity. We previously reported that the protein kinase C and casein kinase II substrate in neurons (PACSIN) forms a complex with AMPARs through its interaction with the protein interacting with C-kinase 1 (PICK1) to regulate NMDA receptor (NMDAR)-induced AMPAR endocytosis and cerebellar long-term depression. However, the molecular mechanism by which PACSIN regulates the dynamics of AMPAR trafficking remains unclear. Using a pH-sensitive green fluorescent protein, pHluorin, tagged to the extracellular domain of the GluA2 subunit of AMPARs, we demonstrate dual roles for PACSIN1 in controlling the internalization and recycling of GluA2 after NMDAR activation. Structure and function analysis reveals a requirement for the PACSIN1 F-BAR and SH3 domains in controlling these NMDAR-dependent processes. Interestingly, the variable region, which binds to PICK1, is not essential for NMDAR-dependent GluA2 internalization and is required only for the correct recycling of AMPARs. These results indicate that PACSIN is a versatile membrane deformation protein that links the endocytic and recycling machineries essential for dynamic AMPAR trafficking in neurons. PMID:27488904

  15. PACSIN1 regulates the dynamics of AMPA receptor trafficking

    Science.gov (United States)

    Widagdo, Jocelyn; Fang, Huaqiang; Jang, Se Eun; Anggono, Victor

    2016-01-01

    Dynamic trafficking of AMPA receptors (AMPARs) into and out of synapses plays an important role in synaptic plasticity. We previously reported that the protein kinase C and casein kinase II substrate in neurons (PACSIN) forms a complex with AMPARs through its interaction with the protein interacting with C-kinase 1 (PICK1) to regulate NMDA receptor (NMDAR)-induced AMPAR endocytosis and cerebellar long-term depression. However, the molecular mechanism by which PACSIN regulates the dynamics of AMPAR trafficking remains unclear. Using a pH-sensitive green fluorescent protein, pHluorin, tagged to the extracellular domain of the GluA2 subunit of AMPARs, we demonstrate dual roles for PACSIN1 in controlling the internalization and recycling of GluA2 after NMDAR activation. Structure and function analysis reveals a requirement for the PACSIN1 F-BAR and SH3 domains in controlling these NMDAR-dependent processes. Interestingly, the variable region, which binds to PICK1, is not essential for NMDAR-dependent GluA2 internalization and is required only for the correct recycling of AMPARs. These results indicate that PACSIN is a versatile membrane deformation protein that links the endocytic and recycling machineries essential for dynamic AMPAR trafficking in neurons. PMID:27488904

  16. Actin-dependent mechanisms in AMPA receptor trafficking

    Directory of Open Access Journals (Sweden)

    Jonathan G Hanley

    2014-11-01

    Full Text Available The precise regulation of AMPA receptor (AMPAR number and subtype at the synapse is crucial for the regulation of excitatory neurotransmission, synaptic plasticity and the consequent formation of appropriate neural circuits during learning and memory. AMPAR trafficking involves the dynamic processes of exocytosis, endocytosis and endosomal recycling, all of which involve the actin cytoskeleton. The actin cytoskeleton is highly dynamic and highly regulated by an abundance of actin-binding proteins and upstream signalling pathways that modulate actin polymerization and depolymerisation. Actin dynamics generate forces that manipulate membranes in the process of vesicle biogenesis, and also for propelling vesicles through the cytoplasm to reach their destination. In addition, trafficking mechanisms exploit more stable aspects of the actin cytoskeleton by using actin-based motor proteins to traffic vesicular cargo along actin filaments. Numerous studies have shown that actin dynamics are critical for AMPAR localization and function. The identification of actin-binding proteins that physically interact with AMPAR subunits, and research into their mode of action is starting to shed light on the mechanisms involved. Such proteins either regulate actin dynamics to modulate mechanical forces exerted on AMPAR-containing membranes, or associate with actin filaments to target or transport AMPAR-containing vesicles to specific subcellular regions. In addition, actin-regulatory proteins that do not physically interact with AMPARs may influence AMPAR trafficking by regulating the local actin environment in the dendritic spine.

  17. Mechanism of Positive Allosteric Modulators Acting on AMPA Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Jin,R.; Clark, S.; Weeks, A.; Dudman, J.; Gouaux, E.; Partin, K.

    2005-01-01

    Ligand-gated ion channels involved in the modulation of synaptic strength are the AMPA, kainate, and NMDA glutamate receptors. Small molecules that potentiate AMPA receptor currents relieve cognitive deficits caused by neurodegenerative diseases such as Alzheimer's disease and show promise in the treatment of depression. Previously, there has been limited understanding of the molecular mechanism of action for AMPA receptor potentiators. Here we present cocrystal structures of the glutamate receptor GluR2 S1S2 ligand-binding domain in complex with aniracetam [1-(4-methoxybenzoyl)-2-pyrrolidinone] or CX614 (pyrrolidino-1, 3-oxazino benzo-1, 4-dioxan-10-one), two AMPA receptor potentiators that preferentially slow AMPA receptor deactivation. Both potentiators bind within the dimer interface of the nondesensitized receptor at a common site located on the twofold axis of molecular symmetry. Importantly, the potentiator binding site is adjacent to the 'hinge' in the ligand-binding core 'clamshell' that undergoes conformational rearrangement after glutamate binding. Using rapid solution exchange, patch-clamp electrophysiology experiments, we show that point mutations of residues that interact with potentiators in the cocrystal disrupt potentiator function. We suggest that the potentiators slow deactivation by stabilizing the clamshell in its closed-cleft, glutamate-bound conformation.

  18. Extensive phosphorylation of AMPA receptors in neurons.

    Science.gov (United States)

    Diering, Graham H; Heo, Seok; Hussain, Natasha K; Liu, Bian; Huganir, Richard L

    2016-08-16

    Regulation of AMPA receptor (AMPAR) function is a fundamental mechanism controlling synaptic strength during long-term potentiation/depression and homeostatic scaling. AMPAR function and membrane trafficking is controlled by protein-protein interactions, as well as by posttranslational modifications. Phosphorylation of the GluA1 AMPAR subunit at S845 and S831 play especially important roles during synaptic plasticity. Recent controversy has emerged regarding the extent to which GluA1 phosphorylation may contribute to synaptic plasticity. Here we used a variety of methods to measure the population of phosphorylated GluA1-containing AMPARs in cultured primary neurons and mouse forebrain. Phosphorylated GluA1 represents large fractions from 12% to 50% of the total population under basal and stimulated conditions in vitro and in vivo. Furthermore, a large fraction of synapses are positive for phospho-GluA1-containing AMPARs. Our results support the large body of research indicating a prominent role of GluA1 phosphorylation in synaptic plasticity. PMID:27482106

  19. 3-Substituted phenylalanines as selective AMPA- and kainate receptor ligands

    DEFF Research Database (Denmark)

    Szymanska, Ewa; Pickering, Darryl S; Nielsen, Birgitte;

    2009-01-01

    On the basis of X-ray structures of ionotropic glutamate receptor constructs in complex with amino acid-based AMPA and kainate receptor antagonists, a series of rigid as well as flexible biaromatic alanine derivatives carrying selected hydrogen bond acceptors and donors have been synthesized in o...

  20. Interaction among Saccharomyces cerevisiae pheromone receptors during endocytosis

    Directory of Open Access Journals (Sweden)

    Chien-I Chang

    2014-03-01

    Full Text Available This study investigates endocytosis of Saccharomyces cerevisiae α-factor receptor and the role that receptor oligomerization plays in this process. α-factor receptor contains signal sequences in the cytoplasmic C-terminal domain that are essential for ligand-mediated endocytosis. In an endocytosis complementation assay, we found that oligomeric complexes of the receptor undergo ligand-mediated endocytosis when the α-factor binding site and the endocytosis signal sequences are located in different receptors. Both in vitro and in vivo assays suggested that ligand-induced conformational changes in one Ste2 subunit do not affect neighboring subunits. Therefore, recognition of the endocytosis signal sequence and recognition of the ligand-induced conformational change are likely to be two independent events.

  1. Positioning of AMPA Receptor-Containing Endosomes Regulates Synapse Architecture

    NARCIS (Netherlands)

    Esteves da Silva, Marta; Adrian, Max; Schätzle, Philipp; Lipka, Joanna; Watanabe, Takuya; Cho, Sukhee; Futai, Kensuke; Wierenga, Corette J; Kapitein, Lukas C; Hoogenraad, Casper C

    2015-01-01

    Lateral diffusion in the membrane and endosomal trafficking both contribute to the addition and removal of AMPA receptors (AMPARs) at postsynaptic sites. However, the spatial coordination between these mechanisms has remained unclear, because little is known about the dynamics of AMPAR-containing en

  2. Are AMPA receptor positive allosteric modulators potential pharmacotherapeutics for addiction?

    Science.gov (United States)

    Watterson, Lucas R; Olive, M Foster

    2013-01-01

    Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release of brain-derived neurotrophic factor (BDNF) in an activity-dependent manner. Through these mechanisms, AMPA PAMs have shown promise as broad spectrum pharmacotherapeutics in preclinical and clinical studies for various neurodegenerative and psychiatric disorders. In recent years, a small collection of preclinical animal studies has also shown that AMPA PAMs may have potential as pharmacotherapeutic adjuncts to extinction-based or cue-exposure therapies for the treatment of drug addiction. The present paper will review this preclinical literature, discuss novel data collected in our laboratory, and recommend future research directions for the possible development of AMPA PAMs as anti-addiction medications. PMID:24380895

  3. The adhesion modulation protein, AmpA localizes to an endocytic compartment and influences substrate adhesion, actin polymerization and endocytosis in vegetative Dictyostelium cells

    Directory of Open Access Journals (Sweden)

    Noratel Elizabeth F

    2012-11-01

    Full Text Available Abstract Background AmpA is a secreted 24Kd protein that has pleiotropic effects on Dictyostelium development. Null mutants delay development at the mound stage with cells adhering too tightly to the substrate. Prestalk cells initially specify as prespore cells and are delayed in their migration to the mound apex. Extracellular AmpA can rescue these defects, but AmpA is also necessary in a cell autonomous manner for anterior like cells (ALCs to migrate to the upper cup. The ALCs are only 10% of the developing cell population making it difficult to study the cell autonomous effect of AmpA on the migration of these cells. AmpA is also expressed in growing cells, but, while it contains a hydrophobic leader sequence that is cleaved, it is not secreted from growing cells. This makes growing cells an attractive system for studying the cell autonomous function of AmpA. Results In growing cells AmpA plays an environment dependent role in cell migration. Excess AmpA facilitates migration on soft, adhesive surfaces but hinders migration on less adhesive surfaces. AmpA also effects the level of actin polymerization. Knockout cells polymerize less actin while over expressing cells polymerize more actin than wild type. Overexpression of AmpA also causes an increase in endocytosis that is traced to repeated formation of multiple endocytic cups at the same site on the membrane. Immunofluorescence analysis shows that AmpA is found in the Golgi and colocalizes with calnexin and the slow endosomal recycling compartment marker, p25, in a perinuclear compartment. AmpA is found on the cell periphery and is endocytically recycled to the perinuclear compartment. Conclusion AmpA is processed through the secretory pathway and traffics to the cell periphery where it is endocytosed and localizes to what has been defined as a slow endosomal recycling compartment. AmpA plays a role in actin polymerization and cell substrate adhesion. Additionally AmpA influences cell

  4. Direct imaging of lateral movements of AMPA receptors inside synapses

    CERN Document Server

    Tardin, Catherine; Bats, Cécile; Lounis, Brahim; Choquet, Daniel

    2003-01-01

    Trafficking of AMPA receptors in and out of synapses is crucial for synaptic plasticity. Previous studies have focused on the role of endo/exocytosis processes or that of lateral diffusion of extra-synaptic receptors. We have now directly imaged AMPAR movements inside and outside synapses of live neurons using single-molecule fluorescence microscopy. Inside individual synapses, we found immobile and mobile receptors, which display restricted diffusion. Extra-synaptic receptors display free diffusion. Receptors could also exchange between these membrane compartments through lateral diffusion. Glutamate application increased both receptor mobility inside synapses and the fraction of mobile receptors present in a juxtasynaptic region. Block of inhibitory transmission to favor excitatory synaptic activity induced a transient increase in the fraction of mobile receptors and a decrease in the proportion of juxtasynaptic receptors. Altogether, our data show that rapid exchange of receptors between a synaptic and ext...

  5. AMPA receptor potentiation can prevent ethanol-induced intoxication.

    Science.gov (United States)

    Jones, Nicholas; Messenger, Marcus J; O'Neill, Michael J; Oldershaw, Anna; Gilmour, Gary; Simmons, Rosa M A; Iyengar, Smriti; Libri, Vincenzo; Tricklebank, Mark; Williams, Steve C R

    2008-06-01

    We present a substantial series of behavioral and imaging experiments, which demonstrate, for the first time, that increasing AMPA receptor-mediated neurotransmission via administration of potent and selective biarylsulfonamide AMPA potentiators LY404187 and LY451395 reverses the central effects of an acutely intoxicating dose of ethanol in the rat. Using pharmacological magnetic resonance imaging (phMRI), we observed that LY404187 attenuated ethanol-induced reductions in blood oxygenation level dependent (BOLD) in the anesthetized rat brain. A similar attenuation was apparent when measuring local cerebral glucose utilization (LCGU) via C14-2-deoxyglucose autoradiography in freely moving conscious rats. Both LY404187 and LY451395 significantly and dose-dependently reversed ethanol-induced deficits in both motor coordination and disruptions in an operant task where animals were trained to press a lever for food reward. Both prophylactic and acute intervention treatment with LY404187 reversed ethanol-induced deficits in motor coordination. Given that LY451395 and related AMPA receptor potentiators/ampakines are tolerated in both healthy volunteers and elderly patients, these data suggest that such compounds may form a potential management strategy for acute alcohol intoxication.

  6. Seizure control by decanoic acid through direct AMPA receptor inhibition.

    Science.gov (United States)

    Chang, Pishan; Augustin, Katrin; Boddum, Kim; Williams, Sophie; Sun, Min; Terschak, John A; Hardege, Jörg D; Chen, Philip E; Walker, Matthew C; Williams, Robin S B

    2016-02-01

    The medium chain triglyceride ketogenic diet is an established treatment for drug-resistant epilepsy that increases plasma levels of decanoic acid and ketones. Recently, decanoic acid has been shown to provide seizure control in vivo, yet its mechanism of action remains unclear. Here we show that decanoic acid, but not the ketones β-hydroxybutryate or acetone, shows antiseizure activity in two acute ex vivo rat hippocampal slice models of epileptiform activity. To search for a mechanism of decanoic acid, we show it has a strong inhibitory effect on excitatory, but not inhibitory, neurotransmission in hippocampal slices. Using heterologous expression of excitatory ionotropic glutamate receptor AMPA subunits in Xenopus oocytes, we show that this effect is through direct AMPA receptor inhibition, a target shared by a recently introduced epilepsy treatment perampanel. Decanoic acid acts as a non-competitive antagonist at therapeutically relevant concentrations, in a voltage- and subunit-dependent manner, and this is sufficient to explain its antiseizure effects. This inhibitory effect is likely to be caused by binding to sites on the M3 helix of the AMPA-GluA2 transmembrane domain; independent from the binding site of perampanel. Together our results indicate that the direct inhibition of excitatory neurotransmission by decanoic acid in the brain contributes to the anti-convulsant effect of the medium chain triglyceride ketogenic diet. PMID:26608744

  7. Discovery of the First α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor Antagonist Dependent upon Transmembrane AMPA Receptor Regulatory Protein (TARP) γ-8.

    Science.gov (United States)

    Gardinier, Kevin M; Gernert, Douglas L; Porter, Warren J; Reel, Jon K; Ornstein, Paul L; Spinazze, Patrick; Stevens, F Craig; Hahn, Patric; Hollinshead, Sean P; Mayhugh, Daniel; Schkeryantz, Jeff; Khilevich, Albert; De Frutos, Oscar; Gleason, Scott D; Kato, Akihiko S; Luffer-Atlas, Debra; Desai, Prashant V; Swanson, Steven; Burris, Kevin D; Ding, Chunjin; Heinz, Beverly A; Need, Anne B; Barth, Vanessa N; Stephenson, Gregory A; Diseroad, Benjamin A; Woods, Tim A; Yu, Hong; Bredt, David; Witkin, Jeffrey M

    2016-05-26

    Transmembrane AMPA receptor regulatory proteins (TARPs) are a family of scaffolding proteins that regulate AMPA receptor trafficking and function. TARP γ-8 is one member of this family and is highly expressed within the hippocampus relative to the cerebellum. A selective TARP γ-8-dependent AMPA receptor antagonist (TDAA) is an innovative approach to modulate AMPA receptors in specific brain regions to potentially increase the therapeutic index relative to known non-TARP-dependent AMPA antagonists. We describe here, for the first time, the discovery of a noncompetitive AMPA receptor antagonist that is dependent on the presence of TARP γ-8. Three major iteration cycles were employed to improve upon potency, CYP1A2-dependent challenges, and in vivo clearance. An optimized molecule, compound (-)-25 (LY3130481), was fully protective against pentylenetetrazole-induced convulsions in rats without the motor impairment associated with non-TARP-dependent AMPA receptor antagonists. Compound (-)-25 could be utilized to provide proof of concept for antiepileptic efficacy with reduced motor side effects in patients. PMID:27067148

  8. DCP-LA stimulates AMPA receptor exocytosis through CaMKII activation due to PP-1 inhibition.

    Science.gov (United States)

    Kanno, Takeshi; Yaguchi, Takahiro; Nagata, Tetsu; Tanaka, Akito; Nishizaki, Tomoyuki

    2009-10-01

    The linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) activated Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) by inhibiting protein phosphatase-1 (PP-1). DCP-LA induced a transient huge facilitation of synaptic transmission monitored from the CA1 region of rat hippocampal slices, which was largely inhibited by the CaMKII inhibitor KN-93. DCP-LA potentiated kainate-evoked whole-cell membrane currents for Xenopus oocytes expressing alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors composed of the GluR1, GluR3, GluR1/GluR2, GluR1/GluR3, and GluR1/GluR2/GluR3 subunits, and the potentiation was significantly inhibited by KN-93. A similar potentiation was still found with mutant GluR1 (S831A) receptor lacking CaMKII phosphorylation site. The GluR1 and GluR2 subunits formed AMPA receptors in the rat hippocampus, and DCP-LA increased expression of both the subunits on the plasma membrane. The DCP-LA action was blocked by KN-93 and the exocytosis inhibitor botulinum toxin type A, but not by the endocytosis inhibitor phenylarsine oxide. DCP-LA, thus, appears to activate CaMKII through PP-1 inhibition, that stimulates AMPA receptor exocytosis to increase expression of the receptors on the plasma membrane, responsible for potentiate AMPA receptor responses and facilitation of hippocampal synaptic transmission. PMID:19492412

  9. DCP-LA stimulates AMPA receptor exocytosis through CaMKII activation due to PP-1 inhibition.

    Science.gov (United States)

    Kanno, Takeshi; Yaguchi, Takahiro; Nagata, Tetsu; Tanaka, Akito; Nishizaki, Tomoyuki

    2009-10-01

    The linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) activated Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) by inhibiting protein phosphatase-1 (PP-1). DCP-LA induced a transient huge facilitation of synaptic transmission monitored from the CA1 region of rat hippocampal slices, which was largely inhibited by the CaMKII inhibitor KN-93. DCP-LA potentiated kainate-evoked whole-cell membrane currents for Xenopus oocytes expressing alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors composed of the GluR1, GluR3, GluR1/GluR2, GluR1/GluR3, and GluR1/GluR2/GluR3 subunits, and the potentiation was significantly inhibited by KN-93. A similar potentiation was still found with mutant GluR1 (S831A) receptor lacking CaMKII phosphorylation site. The GluR1 and GluR2 subunits formed AMPA receptors in the rat hippocampus, and DCP-LA increased expression of both the subunits on the plasma membrane. The DCP-LA action was blocked by KN-93 and the exocytosis inhibitor botulinum toxin type A, but not by the endocytosis inhibitor phenylarsine oxide. DCP-LA, thus, appears to activate CaMKII through PP-1 inhibition, that stimulates AMPA receptor exocytosis to increase expression of the receptors on the plasma membrane, responsible for potentiate AMPA receptor responses and facilitation of hippocampal synaptic transmission.

  10. Ionotropic excitatory amino acid receptor ligands. Synthesis and pharmacology of a new amino acid AMPA antagonist

    DEFF Research Database (Denmark)

    Madsen, U; Sløk, F A; Stensbøl, T B;

    2000-01-01

    We have previously described the potent and selective (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor agonist, (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA), and the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4-isoxa...

  11. Stereostructure-activity studies on agonists at the AMPA and kainate subtypes of ionotropic glutamate receptors

    DEFF Research Database (Denmark)

    Johansen, Tommy N; Greenwood, Jeremy R; Frydenvang, Karla Andrea;

    2003-01-01

    -methyl-4-isoxazolyl)propionic acid (AMPA) receptor subtype of ionotropic Glu receptors in the presence or absence of an agonist has provided important information about ligand-receptor interaction mechanisms. The availability of these binding domain crystal structures has formed the basis for rational...... design of ligands, especially for the AMPA and kainate subtypes of ionotropic Glu receptors. This mini-review will focus on structure-activity relationships on AMPA and kainate receptor agonists with special emphasis on stereochemical and three-dimensional aspects....

  12. The ubiquitin ligase RPM-1 and the p38 MAPK PMK-3 regulate AMPA receptor trafficking.

    Directory of Open Access Journals (Sweden)

    Eun Chan Park

    Full Text Available Ubiquitination occurs at synapses, yet its role remains unclear. Previous studies demonstrated that the RPM-1 ubiquitin ligase organizes presynaptic boutons at neuromuscular junctions in C. elegans motorneurons. Here we find that RPM-1 has a novel postsynaptic role in interneurons, where it regulates the trafficking of the AMPA-type glutamate receptor GLR-1 from synapses into endosomes. Mutations in rpm-1 cause the aberrant accumulation of GLR-1 in neurites. Moreover, rpm-1 mutations enhance the endosomal accumulation of GLR-1 observed in mutants for lin-10, a Mint2 ortholog that promotes GLR-1 recycling from Syntaxin-13 containing endosomes. As in motorneurons, RPM-1 negatively regulates the pmk-3/p38 MAPK pathway in interneurons by repressing the protein levels of the MAPKKK DLK-1. This regulation of PMK-3 signaling is critical for RPM-1 function with respect to GLR-1 trafficking, as pmk-3 mutations suppress both lin-10 and rpm-1 mutations. Positive or negative changes in endocytosis mimic the effects of rpm-1 or pmk-3 mutations, respectively, on GLR-1 trafficking. Specifically, RAB-5(GDP, an inactive mutant of RAB-5 that reduces endocytosis, mimics the effect of pmk-3 mutations when introduced into wild-type animals, and occludes the effect of pmk-3 mutations when introduced into pmk-3 mutants. By contrast, RAB-5(GTP, which increases endocytosis, suppresses the effect of pmk-3 mutations, mimics the effect of rpm-1 mutations, and occludes the effect of rpm-1 mutations. Our findings indicate a novel specialized role for RPM-1 and PMK-3/p38 MAPK in regulating the endosomal trafficking of AMPARs at central synapses.

  13. Rational Design of a Novel AMPA Receptor Modulator through a Hybridization Approach

    Science.gov (United States)

    2015-01-01

    The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a family of glutamate ion channels of considerable interest in excitatory neurotransmission and associated disease processes. Here, we demonstrate how exploitation of the available X-ray crystal structure of the receptor ligand binding domain enabled the development of a new class of AMPA receptor positive allosteric modulators (7) through hybridization of known ligands (5 and 6), leading to a novel chemotype with promising pharmacological properties. PMID:25893038

  14. Hormonal regulation of AMPA receptor trafficking and memory formation

    Directory of Open Access Journals (Sweden)

    Harmen J Krugers

    2009-10-01

    Full Text Available Humans and rodents retain memories for stressful events very well. The facilitated retention of these memories is normally very useful. However, in susceptible individuals a variety of pathological conditions may develop in which memories related to stressful events remain inappropriately present, such as in post-traumatic stress disorder. The memory enhancing effects of stress are mediated by hormones, such as norepinephrine and glucocorticoids which are released during stressful experiences. Here we review recently identified molecular mechanisms that underlie the effects of stress hormones on synaptic efficacy and learning and memory. We discuss AMPA receptors as major target for stress hormones and describe a model in which norepinephrine and glucocorticoids are able to strengthen and prolong different phases of stressful memories.

  15. Constitutive Endocytosis of VEGFR2 Protects the Receptor against Shedding.

    Science.gov (United States)

    Basagiannis, Dimitris; Christoforidis, Savvas

    2016-08-01

    VEGFR2 plays a fundamental role in blood vessel formation and in life threatening diseases, such as cancer angiogenesis and cardiovascular disorders. Although inactive growth factor receptors are mainly localized at the plasma membrane, VEGFR2 undergoes constitutive endocytosis (in the absence of ligand) and recycling. Intriguingly, the significance of these futile transport cycles of VEGFR2 remains unclear. Here we found that, unexpectedly, the function of constitutive endocytosis of VEGFR2 is to protect the receptor against plasma membrane cleavage (shedding), thereby preserving the functional state of the receptor until the time of activation by VEGF. Inhibition of constitutive endocytosis of VEGFR2, by interference with the function of clathrin, dynamin, or Rab5, increases dramatically the cleavage/shedding of VEGFR2. Shedding of VEGFR2 produces an N-terminal soluble fragment (100 kDa, s100), which is released in the extracellular space, and a residual C-terminal part (130 kDa, p130) that remains integrated at the plasma membrane. The released soluble fragment (s100) co-immunoprecipitates with VEGF, in line with the topology of the VEGF-binding domain at the N terminus of VEGFR2. Increased shedding of VEGFR2 (via inhibition of constitutive endocytosis) results in reduced response to VEGF, consistently with the loss of the VEGF-binding domain from the membrane remnant of VEGFR2. These data suggest that constitutive internalization of VEGFR2 protects the receptor against shedding and provides evidence for an unprecedented mechanism via which endocytosis can regulate the fate and activity of growth factor receptors. PMID:27298320

  16. Differential trafficking of AMPA receptors following activation of NMDA receptors and mGluRs

    Directory of Open Access Journals (Sweden)

    Sanderson Thomas M

    2011-07-01

    Full Text Available Abstract The removal of AMPA receptors from synapses is a major component of long-term depression (LTD. How this occurs, however, is still only partially understood. To investigate the trafficking of AMPA receptors in real-time we previously tagged the GluA2 subunit of AMPA receptors with ecliptic pHluorin and studied the effects of NMDA receptor activation. In the present study we have compared the effect of NMDA receptor and group I mGluR activation, using GluA2 tagged with super ecliptic pHluorin (SEP-GluA2 expressed in cultured hippocampal neurons. Surprisingly, agonists of the two receptors, which are both able to induce chemical forms of LTD, had clearly distinct effects on AMPA receptor trafficking. In agreement with our previous work we found that transient NMDA receptor activation results in an initial decrease in surface GluA2 from extrasynaptic sites followed by a delayed reduction in GluA2 from puncta (putative synapses. In contrast, transient activation of group I mGluRs, using DHPG, led to a pronounced but more delayed decrease in GluA2 from the dendritic shafts. Surprisingly, there was no average change in the fluorescence of the puncta. Examination of fluorescence at individual puncta, however, indicated that alterations did take place, with some puncta showing an increase and others a decrease in fluorescence. The effects of DHPG were, like DHPG-induced LTD, prevented by treatment with a protein tyrosine phosphatase (PTP inhibitor. The electrophysiological correlate of the effects of DHPG in the SEP-GluA2 infected cultures was a reduction in mEPSC frequency with no change in amplitude. The implications of these findings for the initial mechanisms of expression of both NMDA receptor- and mGluR-induced LTD are discussed.

  17. Modulation of glutamat AMPA receptors by adenosine, in physiological and hypoxic/ischemic conditions

    OpenAIRE

    Dias, Raquel Alice da Silva Baptista, 1983-

    2011-01-01

    Tese de doutoramento, Ciências Biomédicas (Neurociências), Universidade de Lisboa, Faculdade de Medicina, 2011 Most of the fast excitatory transmission in the brain is conveyed by ionotropic glutamate a-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid (AMPA) receptors, formed by tetrameric assemblies of different subunit (GluR1-GluR4) composition. Modulation of AMPA receptors enables profound changes in synaptic efficiency, underlying the maturation of neuronal networks t...

  18. Structural and pharmacological characterization of phenylalanine-based AMPA receptor antagonists at kainate receptors

    DEFF Research Database (Denmark)

    Venskutonyte, Raminta; Frydenvang, Karla; Valadés, Elena Antón;

    2012-01-01

    . A new series of phenylalanine derivatives that target iGluRs was reported to bind AMPA receptors. Herein we report our studies of these compounds at the kainate receptors GluK1-3. Several compounds bind with micromolar affinity at GluK1 and GluK3, but do not bind GluK2. The crystal structure of the most...

  19. Targeted gene delivery via N-acetylglucosamine receptor mediated endocytosis.

    Science.gov (United States)

    Singh, Bijay; Maharjan, Sushila; Kim, You-Kyoung; Jiang, Tai; Islam, Mohammad Ariful; Kang, Sang-Kee; Cho, Myung-Haing; Choi, Yun-Jaie; Cho, Chong-Su

    2014-11-01

    Receptor-mediated endocytosis is a promising approach of gene delivery into the target cells via receptor-ligand interaction. Vimentins at the cell surface are recently known to bind N-acetylglucosamine (GlcNAc) residue, therefore, the cell surfaces of vimentin-expressing cells could be targeted by using the GlcNAc residue as a specific ligand for receptor-mediated gene delivery. Here, we have developed polymeric gene delivery vectors, based on poly(ethylene oxide)(PEO) and poly(aspartamide), namely poly[(aspartamide)(diethylenetriamine)]-b-[PEO-(GlcNAc)] (PADPG) and poly[(aspartamide)(diethylenetriamine)]-b-[PEO] (PADP) to elucidate the efficiency of GlcNAc ligand for gene delivery through receptor mediated endocytosis. To determine the efficiency of these polymeric vectors for specific gene delivery, the DNA condensation ability of PADPG and PADP and the subsequent formation of polymeric nanoparticles were confirmed by gel retardation assay and transmission electron microscopy respectively. Both PADPG and PADP had lower cytotoxicity than polyethylenimine 25 K (PEI 25 K). However, their transfection efficiency was comparatively lower than PEI 25 K due to hydrophilic property of PEO in the vectors. To observe the stability of polymeric nanoparticles, the transfection of PADPG and PADP was carried out in the presence of serum. Favorably, the interfering effect of serum on the transfection efficiency of PADPG and PADP was also very low. Finally, when the cell specificity of these polymeric vectors was investigated, PADPG had high gene transfection in vimentin-expressing cells than vimentin-deficiency cells. The high transfection efficiency of PADPG was attributed to the GlcNAc in the polymeric vector which interact specifically with vimentin in the cells for the receptor-mediated endocytosis. The competitive inhibition assay further proved the receptor-mediated endocytosis of PADPG. Thus, this study demonstrates that conjugation of GlcNAc is an effective and rational

  20. Autoinactivation of the stargazin-AMPA receptor complex: subunit-dependency and independence from physical dissociation.

    Directory of Open Access Journals (Sweden)

    Artur Semenov

    Full Text Available Agonist responses and channel kinetics of native α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA receptors are modulated by transmembrane accessory proteins. Stargazin, the prototypical accessory protein, decreases desensitization and increases agonist potency at AMPA receptors. Furthermore, in the presence of stargazin, the steady-state responses of AMPA receptors show a gradual decline at higher glutamate concentrations. This "autoinactivation" has been assigned to physical dissociation of the stargazin-AMPA receptor complex and suggested to serve as a protective mechanism against overactivation. Here, we analyzed autoinactivation of GluA1-A4 AMPA receptors (all flip isoform expressed in the presence of stargazin. Homomeric GluA1, GluA3, and GluA4 channels showed pronounced autoinactivation indicated by the bell-shaped steady-state dose response curves for glutamate. In contrast, homomeric GluA2i channels did not show significant autoinactivation. The resistance of GluA2 to autoinactivation showed striking dependence on the splice form as GluA2-flop receptors displayed clear autoinactivation. Interestingly, the resistance of GluA2-flip containing receptors to autoinactivation was transferred onto heteromeric receptors in a dominant fashion. To examine the relationship of autoinactivation to physical separation of stargazin from the AMPA receptor, we analyzed a GluA4-stargazin fusion protein. Notably, the covalently linked complex and separately expressed proteins expressed a similar level of autoinactivation. We conclude that autoinactivation is a subunit and splice form dependent property of AMPA receptor-stargazin complexes, which involves structural rearrangements within the complex rather than any physical dissociation.

  1. An ultrasensitive sorting mechanism for EGF Receptor Endocytosis

    Directory of Open Access Journals (Sweden)

    Dikic Ivan

    2008-04-01

    Full Text Available Abstract Background The Epidermal Growth Factor (EGF receptor has been shown to internalize via clathrin-independent endocytosis (CIE in a ligand concentration dependent manner. From a modeling point of view, this resembles an ultrasensitive response, which is the ability of signaling networks to suppress a response for low input values and to increase to a pre-defined level for inputs exceeding a certain threshold. Several mechanisms to generate this behaviour have been described theoretically, the underlying assumptions of which, however, have not been experimentally demonstrated for the EGF receptor internalization network. Results Here, we present a mathematical model of receptor sorting into alternative pathways that explains the EGF-concentration dependent response of CIE. The described mechanism involves a saturation effect of the dominant clathrin-dependent endocytosis pathway and implies distinct steady-states into which the system is forced for low vs high EGF stimulations. The model is minimal since no experimentally unjustified reactions or parameter assumptions are imposed. We demonstrate the robustness of the sorting effect for large parameter variations and give an analytic derivation for alternative steady-states that are reached. Further, we describe extensibility of the model to more than two pathways which might play a role in contexts other than receptor internalization. Conclusion Our main result is that a scenario where different endocytosis routes consume the same form of receptor corroborates the observation of a clear-cut, stimulus dependent sorting. This is especially important since a receptor modification discriminating between the pathways has not been found experimentally. The model is not restricted to EGF receptor internalization and might account for ultrasensitivity in other cellular contexts.

  2. Positioning of AMPA Receptor-Containing Endosomes Regulates Synapse Architecture

    Directory of Open Access Journals (Sweden)

    Marta Esteves da Silva

    2015-11-01

    Full Text Available Lateral diffusion in the membrane and endosomal trafficking both contribute to the addition and removal of AMPA receptors (AMPARs at postsynaptic sites. However, the spatial coordination between these mechanisms has remained unclear, because little is known about the dynamics of AMPAR-containing endosomes. In addition, how the positioning of AMPAR-containing endosomes affects synapse organization and functioning has never been directly explored. Here, we used live-cell imaging in hippocampal neuron cultures to show that intracellular AMPARs are transported in Rab11-positive recycling endosomes, which frequently enter dendritic spines and depend on the microtubule and actin cytoskeleton. By using chemically induced dimerization systems to recruit kinesin (KIF1C or myosin (MyosinV/VI motors to Rab11-positive recycling endosomes, we controlled their trafficking and found that induced removal of recycling endosomes from spines decreases surface AMPAR expression and PSD-95 clusters at synapses. Our data suggest a mechanistic link between endosome positioning and postsynaptic structure and composition.

  3. 1,2,3-triazolyl amino acids as AMPA receptor ligands

    DEFF Research Database (Denmark)

    Stanley, Nathan J.; Pedersen, Daniel Sejer; Nielsen, Birgitte;

    2010-01-01

    The central nervous system glutamate receptors are an important target for drug discovery. Herein we report initial investigations into the synthesis and glutamate receptor activity of 1,2,3-triazolyl amino acids. Two compounds were found to be selective AMPA receptor ligands, which warrant further...

  4. Cytosolic PLA2(alpha) activation in Purkinje neurons and its role in AMPA-receptor trafficking.

    Science.gov (United States)

    Mashimo, Masato; Hirabayashi, Tetsuya; Murayama, Toshihiko; Shimizu, Takao

    2008-09-15

    Cytosolic phospholipase A(2)alpha (cPLA(2)alpha) selectively releases arachidonic acid from membrane phospholipids and has been proposed to be involved in the induction of long-term depression (LTD), a form of synaptic plasticity in the cerebellum. This enzyme requires two events for its full activation: Ca(2+)-dependent translocation from the cytosol to organelle membranes in order to access phospholipids as substrates, and phosphorylation by several kinases. However, the subcellular distribution and activation of cPLA(2)alpha in Purkinje cells and the role of arachidonic acid in cerebellar LTD have not been fully elucidated. In cultured Purkinje cells, stimulation of AMPA receptors, but not metabotropic glutamate receptors, triggered translocation of cPLA(2)alpha to the somatic and dendritic Golgi compartments. This translocation required Ca(2+) influx through P-type Ca(2+) channels. AMPA plus PMA, a chemical method for inducing LTD, released arachidonic acid via phosphorylation of cPLA(2)alpha. AMPA plus PMA induced a decrease in surface GluR2 for more than 2 hours. Interestingly, this reduction was occluded by a cPLA(2)alpha-specific inhibitor. Furthermore, PMA plus arachidonic acid caused the prolonged internalization of GluR2 without activating AMPA receptors. These results suggest that cPLA(2)alpha regulates the persistent decrease in the expression of AMPA receptors, underscoring the role of cPLA(2)alpha in cerebellar LTD. PMID:18713832

  5. Dual-specific Phosphatase-6 (Dusp6) and ERK Mediate AMPA Receptor-induced Oligodendrocyte Death*

    Science.gov (United States)

    Domercq, Maria; Alberdi, Elena; Sánchez-Gómez, Maria Victoria; Ariz, Usue; Pérez-Samartín, Alberto; Matute, Carlos

    2011-01-01

    Oligodendrocytes, the myelinating cells of the CNS, are highly vulnerable to glutamate excitotoxicity, a mechanism involved in tissue damage in multiple sclerosis. Thus, understanding oligodendrocyte death at the molecular level is important to develop new therapeutic approaches to treat the disease. Here, using microarray analysis and quantitative PCR, we observed that dual-specific phosphatase-6 (Dusp6), an extracellular regulated kinase-specific phosphatase, is up-regulated in oligodendrocyte cultures as well as in optic nerves after AMPA receptor activation. In turn, Dusp6 is overexpressed in optic nerves from multiple sclerosis patients before the appearance of evident damage in this structure. We further analyzed the role of Dusp6 and ERK signaling in excitotoxic oligodendrocyte death and observed that AMPA receptor activation induces a rapid increase in ERK1/2 phosphorylation. Blocking Dusp6 expression, which enhances ERK1/2 phosphorylation, significantly diminished AMPA receptor-induced oligodendrocyte death. In contrast, MAPK/ERK pathway inhibition with UO126 significantly potentiates excitotoxic oligodendrocyte death and increases cytochrome c release, mitochondrial depolarization, and mitochondrial calcium overload produced by AMPA receptor stimulation. Upstream analysis demonstrated that MAPK/ERK signaling alters AMPA receptor properties. Indeed, Dusp6 overexpression as well as incubation with UO126 produced an increase in AMPA receptor-induced inward currents and cytosolic calcium overload. Together, these data suggest that levels of phosphorylated ERK, controlled by Dusp6 phosphatase, regulate glutamate receptor permeability and oligodendroglial excitotoxicity. Therefore, targeting Dusp6 may be a useful strategy to prevent oligodendrocyte death in multiple sclerosis and other diseases involving CNS white matter. PMID:21300799

  6. Glycine Potentiates AMPA Receptor Function through Metabotropic Activation of GluN2A-Containing NMDA Receptors

    Science.gov (United States)

    Li, Li-Jun; Hu, Rong; Lujan, Brendan; Chen, Juan; Zhang, Jian-Jian; Nakano, Yasuko; Cui, Tian-Yuan; Liao, Ming-Xia; Chen, Jin-Cao; Man, Heng-Ye; Feng, Hua; Wan, Qi

    2016-01-01

    NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs), but not GluN2B-containing NMDA receptors (GluN2BRs), to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation.

  7. Hierarchical classification strategy for Phenotype extraction from epidermal growth factor receptor endocytosis screening

    NARCIS (Netherlands)

    L. Cao (Lu); M. Graauw (Marjo de); K. Yan (Kuan); L.C.J. Winkel (Leah C.J.); F.J. Verbeek (Fons)

    2016-01-01

    textabstractBackground: Endocytosis is regarded as a mechanism of attenuating the epidermal growth factor receptor (EGFR) signaling and of receptor degradation. There is increasing evidence becoming available showing that breast cancer progression is associated with a defect in EGFR endocytosis. In

  8. CPG2 Recruits Endophilin B2 to the Cytoskeleton for Activity-Dependent Endocytosis of Synaptic Glutamate Receptors.

    Science.gov (United States)

    Loebrich, Sven; Benoit, Marc Robert; Konopka, Jaclyn Aleksandra; Cottrell, Jeffrey Richard; Gibson, Joanne; Nedivi, Elly

    2016-02-01

    Internalization of glutamate receptors at the postsynaptic membrane via clathrin-mediated endocytosis (CME) is a key mechanism for regulating synaptic strength. A role for the F-actin cytoskeleton in CME is well established, and recently, PKA-dependent association of candidate plasticity gene 2 (CPG2) with the spine-cytoskeleton has been shown to mediate synaptic glutamate receptor internalization. Yet, how the endocytic machinery is physically coupled to the actin cytoskeleton to facilitate glutamate receptor internalization has not been demonstrated. Moreover, there has been no distinction of endocytic-machinery components that are specific to activity-dependent versus constitutive glutamate receptor internalization. Here, we show that CPG2, through a direct physical interaction, recruits endophilin B2 (EndoB2) to F-actin, thus anchoring the endocytic machinery to the spine cytoskeleton and facilitating glutamate receptor internalization. Regulation of CPG2 binding to the actin cytoskeleton by protein kinase A directly impacts recruitment of EndoB2 and clathrin. Specific disruption of EndoB2 or the CPG2-EndoB2 interaction impairs activity-dependent, but not constitutive, internalization of both NMDA- and AMPA-type glutamate receptors. These results demonstrate that, through direct interactions with F-actin and EndoB2, CPG2 physically bridges the spine cytoskeleton and the endocytic machinery, and this tripartite association is critical specifically for activity-dependent CME of synaptic glutamate receptors. PMID:26776730

  9. Removal of Synaptic Ca2+-Permeable AMPA Receptors during Sleep.

    OpenAIRE

    Ulrich, Daniel; ROWAN, MICHAEL

    2011-01-01

    PUBLISHED here is accumulating evidence that sleep contributes to memory formation and learning, but the underlying cellular mechanisms are incompletely understood. To investigate the impact of sleep on excitatory synaptic transmission, we obtained whole-cell patch-clamp recordings from layer V pyramidal neurons in acute slices of somatosensory cortex of juvenile rats (postnatal days 21-25). In animals after the dark period, philanthotoxin 74 (PhTx)-sensitive calcium-permeable AMPA recepto...

  10. C-terminal interactors of the AMPA receptor auxiliary subunit Shisa9.

    Directory of Open Access Journals (Sweden)

    Anna R Karataeva

    Full Text Available Shisa9 (initially named CKAMP44 has been identified as auxiliary subunit of the AMPA-type glutamate receptors and was shown to modulate its physiological properties. Shisa9 is a type-I transmembrane protein and contains a C-terminal PDZ domain that potentially interacts with cytosolic proteins. In this study, we performed a yeast two-hybrid screening that yielded eight PDZ domain-containing interactors of Shisa9, which were independently validated. The identified interactors are known scaffolding proteins residing in the neuronal postsynaptic density. To test whether C-terminal scaffolding interactions of Shisa9 affect synaptic AMPA receptor function in the hippocampus, we disrupted these interactions using a Shisa9 C-terminal mimetic peptide. In the absence of scaffolding interactions of Shisa9, glutamatergic AMPA receptor-mediated synaptic currents in the lateral perforant path of the mouse hippocampus had a faster decay time, and paired-pulse facilitation was reduced. Furthermore, disruption of the PDZ interactions between Shisa9 and its binding partners affected hippocampal network activity. Taken together, our data identifies novel interaction partners of Shisa9, and shows that the C-terminal interactions of Shisa9 through its PDZ domain interaction motif are important for AMPA receptor synaptic and network functions.

  11. Studies on Aryl-Substituted Phenylalanines: Synthesis, Activity, and Different Binding Modes at AMPA Receptors

    DEFF Research Database (Denmark)

    Szymanska, Ewa; Frydenvang, Karla Andrea; Pickering, Darryl S;

    2016-01-01

    A series of racemic aryl-substituted phenylalanines was synthesized and evaluated in vitro at recombinant rat GluA1−3, at GluK1−3, and at native AMPA receptors. The individual enantiomers of two target compounds, (RS)-2-amino-3-(3,4-dichloro-5-(5-hydroxypyridin-3-yl)phenyl)- propanoic acid (37...

  12. Differential effect of NMDA and AMPA receptor blockade on protein synthesis in the rat infarct borderzone

    DEFF Research Database (Denmark)

    Christensen, Thomas; Bruhn, T; Frank, L;

    1996-01-01

    We investigated whether the known neuroprotective effects of two selective glutamate receptor antagonists, the NMDA antagonist MK-801 and the AMPA antagonist NBQX, are reflected in the regional cerebral protein synthesis rates (CPSR) in rats with middle cerebral artery occlusion (MCAO). Rats trea...

  13. Increased NMDA and AMPA receptor densities in the anterior cingulate cortex in schizophrenia

    International Nuclear Information System (INIS)

    Full text: The anterior cingulate cortex (ACC) is a brain area of potential importance to our understanding of the pathophysiology of schizophrenia. Since a disturbed balance between excitatory and inhibitory activity is suggested to occur in the ACC in schizophrenia, the present study has focused on the analysis of binding of [3H]MK801, [3H]AMPA and [3H]kainate, radioligands which respectively label the NMDA, AMPA and kainate receptors of the ionotropic glutamate receptor family in the ACC of 10 schizophrenia patients and 10 matched controls, using quantitative autoradiography. AMPA receptor densities were higher in cortical layer II whereas NMDA receptor densities were higher in cortical layers II-III in the ACC of both control and schizophrenia group. In contrast, kainate receptors displayed the highest density in cortical layer V. [3H]AMPA binding was significantly increased by 25% in layer II in the schizophrenia group as compared to the control group. Similarly, a significant 17% increase of [3H]MK801 binding was observed in layers II-III in the schizophrenia group. No statistically significant differences were observed for [3H] kainate binding between the two groups. These results suggest that ionotropic glutamate receptors are differentially altered in the ACC of schizophrenia. The increase in [3H]AMPA and [3H]MK801 binding points to a postsynaptic compensation for impaired glutamatergic neurotransmission in the ACC in schizophrenia. Such abnormality could lead to an imbalance between the excitatory and inhibitory neurotransmission in this brain area that may contribute to the emergence of some schizophrenia symptoms. Copyright (2002) Australian Neuroscience Society

  14. Opposite modulation of brain stimulation reward by NMDA and AMPA receptors in the ventral tegmental area.

    Directory of Open Access Journals (Sweden)

    Charles eDucrot

    2013-10-01

    Full Text Available Previous studies have shown that blockade of ventral midbrain (VM glutamate N-Methyl-D-Aspartate (NMDA receptors induces reward, stimulates forward locomotion and enhances brain stimulation reward. Glutamate induces two types of excitatory response on VM neurons, a fast and short lasting depolarisation mediated by a-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA receptors and a longer lasting depolarization mediated by NMDA receptors. A role for the two glutamate receptors in modulation of VM neuronal activity is evidenced by the functional change in AMPA and NMDA synaptic responses that result from repeated exposure to reward. Since both receptors contribute to the action of glutamate on VM neuronal activity, we studied the effects of VM AMPA and NMDA receptor blockade on reward induced by electrical brain stimulation. Experiments were performed on rats trained to self-administer electrical pulses in the medial posterior mesencephalon. Reward thresholds were measured with the curve-shift paradigm before and for two hours after bilateral VM microinjections of the AMPA antagonist, NBQX (2,3,-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo(fquinoxaline-7-sulfonamide, 0, 80, and 800 pmol/0.5ul/side and of a single dose (0.825 nmol/0.5ul/side of the NMDA antagonist, PPPA (2R,4S-4-(3-Phosphonopropyl-2-piperidinecarboxylic acid. NBQX produced a dose-dependent increase in reward threshold with no significant change in maximum rate of responding. Whereas PPPA injected at the same VM sites produced a significant time dependent decrease in reward threshold and increase in maximum rate of responding. We found a negative correlation between the magnitude of the attenuation effect of NBQX and the enhancement effect of PPPA; moreover, NBQX and PPPA were most effective when injected respectively into the anterior and posterior VM. These results suggest that glutamate acts on different receptor sub-types, most likely located on different VM neurons, to modulate

  15. Signalling mechanism for somatostatin receptor 5-mediated suppression of AMPA responses in rat retinal ganglion cells.

    Science.gov (United States)

    Deng, Qin-Qin; Sheng, Wen-Long; Zhang, Gong; Weng, Shi-Jun; Yang, Xiong-Li; Zhong, Yong-Mei

    2016-08-01

    Somatostatin (SRIF) is involved in a variety of physiological functions via the activation of five subtypes of specific receptors (sst1-5). Here, we investigated the effects of SRIF on AMPA receptor (AMPAR)-mediated currents (AMPA currents) in isolated rat retinal ganglion cells (GCs) using patch-clamp techniques. Immunofluorescence double labelling demonstrated the expression of sst5 in rat GCs. Consistent to this, whole cell AMPA currents of GCs were dose-dependently suppressed by SRIF, and the effect was reversed by the sst5 antagonist BIM-23056. Intracellular dialysis of GDP-β-S or pre-incubation with the Gi/o inhibitor pertussis toxin (PTX) abolished the SRIF effect. The SRIF effect was mimicked by the administration of either 8-Br-cAMP or forskolin, but was eliminated by the protein kinase A (PKA) antagonists H-89/KT5720/Rp-cAMP. Moreover, SRIF increased intracellular Ca(2+) levels and did not suppress the AMPA currents when GCs were infused with an intracellular Ca(2+)-free solution or in the presence of ryanodine receptor modulators caffeine/ryanodine. Furthermore, the SRIF effect was eliminated when the activity of calmodulin (CaM), calcineurin and protein phosphatase 1 (PP1) was blocked with W-7, FK-506 and okadaic acid, respectively. SRIF persisted to suppress the AMPA currents when cGMP-protein kinase G (PKG) and phosphatidylinositol (PI)-/phosphatidylcholine (PC)-phospholipase C (PLC) signalling pathways were blocked. In rat flat-mount retinas, SRIF suppressed AMPAR-mediated light-evoked excitatory postsynaptic currents (L-EPSCs) in GCs. We conclude that a distinct Gi/o/cAMP-PKA/ryanodine/Ca(2+)/CaM/calcineurin/PP1 signalling pathway comes into play due to the activation of sst5 to mediate the SRIF effect on GCs. PMID:26969240

  16. Synergy of AMPA and NMDA Receptor Currents in Dopaminergic Neurons: A Modeling Study.

    Science.gov (United States)

    Zakharov, Denis; Lapish, Christopher; Gutkin, Boris; Kuznetsov, Alexey

    2016-01-01

    Dopaminergic (DA) neurons display two modes of firing: low-frequency tonic and high-frequency bursts. The high frequency firing within the bursts is attributed to NMDA, but not AMPA receptor activation. In our models of the DA neuron, both biophysical and abstract, the NMDA receptor current can significantly increase their firing frequency, whereas the AMPA receptor current is not able to evoke high-frequency activity and usually suppresses firing. However, both currents are produced by glutamate receptors and, consequently, are often co-activated. Here we consider combined influence of AMPA and NMDA synaptic input in the models of the DA neuron. Different types of neuronal activity (resting state, low frequency, or high frequency firing) are observed depending on the conductance of the AMPAR and NMDAR currents. In two models, biophysical and reduced, we show that the firing frequency increases more effectively if both receptors are co-activated for certain parameter values. In particular, in the more quantitative biophysical model, the maximal frequency is 40% greater than that with NMDAR alone. The dynamical mechanism of such frequency growth is explained in the framework of phase space evolution using the reduced model. In short, both the AMPAR and NMDAR currents flatten the voltage nullcline, providing the frequency increase, whereas only NMDA prevents complete unfolding of the nullcline, providing robust firing. Thus, we confirm a major role of the NMDAR in generating high-frequency firing and conclude that AMPAR activation further significantly increases the frequency. PMID:27252643

  17. Effects of visual deprivation during brain development on expression of AMPA receptor subunits in rat’s hippocampus

    Directory of Open Access Journals (Sweden)

    Sayyed Alireza Talaei

    2015-06-01

    Conclusion: Dark rearing of rats during critical period of brain development changes the relative expression and also arrangement of both AMPA receptor subunits, GluR1 and GluR2 in the hippocampus, age dependently.

  18. Endocytosis of adiponectin receptor 1 through a clathrin-and Rab5-dependent pathway

    Institute of Scientific and Technical Information of China (English)

    Qiurong Ding; Zhenzhen Wang; Yan Chen

    2009-01-01

    In eukaryotic cells, receptor endocytosis is a key event regulating signaling transduction. Adiponectin receptors belong to a new receptor family that is distinct from G-protein-coupled receptors and has critical roles in the pathogen-esis of diabetes and metabolic syndrome. Here, we analyzed the endocytosis of adiponectin and adiponectin receptor 1 (AdipoR1) and found that they are both internalized into transferrin-positive compartments that follow similar traffic routes. Blocking clathrin-mediated endocytosis by expressing Epsl5 mutants or depleting K+ trapped AdipoRl at the plasma membrane, and K+ depletion abolished adiponectin internalization, indicating that the endocytosis of AdipoRl and adiponectin is clathrin-dependent. Depletion of K+ and overexpression of Eps15 mutants enhance adiponectin-stimulated AMP-activated protein kinase phosphorylation, suggesting that the endocytosis of AdipoR1 might down-regulate adiponectin signaling. In addition, AdipoR1 colocalizes with the small GTPase Rab5, and a dominant negative Rab5 abrogates AdipoR1 endocytosis. These data indicate that AdipoRl is internalized through a clathrin- and Rab5-dependent pathway and that endocytosis may play a role in the regulation of adiponectin signaling.

  19. Bi-directional modulation of AMPA receptor unitary conductance by synaptic activity

    Directory of Open Access Journals (Sweden)

    Matthews Paul

    2004-11-01

    Full Text Available Abstract Background Knowledge of how synapses alter their efficiency of communication is central to the understanding of learning and memory. The most extensively studied forms of synaptic plasticity are long-term potentiation (LTP and its counterpart long-term depression (LTD of AMPA receptor-mediated synaptic transmission. In the CA1 region of the hippocampus, it has been shown that LTP often involves a rapid increase in the unitary conductance of AMPA receptor channels. However, LTP can also occur in the absence of any alteration in AMPA receptor unitary conductance. In the present study we have used whole-cell dendritic recording, failures analysis and non-stationary fluctuation analysis to investigate the mechanism of depotentiation of LTP. Results We find that when LTP involves an increase in unitary conductance, subsequent depotentiation invariably involves the return of unitary conductance to pre-LTP values. In contrast, when LTP does not involve a change in unitary conductance then depotentiation also occurs in the absence of any change in unitary conductance, indicating a reduction in the number of activated receptors as the most likely mechanism. Conclusions These data show that unitary conductance can be bi-directionally modified by synaptic activity. Furthermore, there are at least two distinct mechanisms to restore synaptic strength from a potentiated state, which depend upon the mechanism of the previous potentiation.

  20. Effects of intrathecal NMDA and AMPA receptors agonists or antagonists on antinociception of propofol

    Institute of Scientific and Technical Information of China (English)

    Ai-junXU; Shi-mingDUAN; Yin-mingZENG

    2004-01-01

    AIM: To study the effects of intrathecal (it) agonists and antagonists of N-methyl-D-aspartate (NMDA) and alphaamino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors and NMDAR1 antisense oligodeoxynucleotides (AS ODN) on the antinociception of propofol. METHODS: Hot-plate test (HPPT) and acetic acid-induced writhing test were used to measure the nociceptive thresholds in mice. The effects of intrathecal NMDA, AMPA, MK-801, NBQX, or NMDAR1 AS ODN on the antinociception of propofol were observed.RESULTS: Propofol (25, 50 mg/kg, ip) displayed an appreciable antinociceptive effect in hot-plate test and acetic acid-induced writhing test. NMDA (12.5, 25 ng, it) or AMPA (1.25, 2.5 ng, it) exhibited no effects on the behavior but decreased HPPT significantly compared with basal HPPT and aCSF group (P<0.05, P<0.01). No effects on behavior and HPPT were obtained in NMDA (6.25 ng, it) or AMPA (0.625 ng, it) groups. NMDA (6.25, 12.5, and 25 ng, it) dose-dependently decreased the HPPT in propofol-treated group. AMPA (1.25, 2.5 ng, it) also decreased HPPT significantly. MK-801 (0.25, 0.5 μg, it) or NBQX (0.25, 0.5 μg, it) groups had no behavioral changes, two antagonists 0.5 μg but not 0.25 μg increased HPPT in conscious or propofol-treated mice. AS ODN (5, 10, and 20 μg, it) groups exhibited dose-dependent increased in HPPT in propofol-treated groups compared with aCSF group(P<0.05, P<0.01). CONCLUSION: Both agonists NMDA and AMPA reversed the antinociception of propofol.MK-801, NBQX, and NMDAR1 AS ODN potentiated the antinociceptive effects of propofol. Propofol produced antinociception through an interaction with spinal NMDA and AMPA receptors in mice.

  1. Intracellular Ca2+ release through ryanodine receptors contributes to AMPA receptor-mediated mitochondrial dysfunction and ER stress in oligodendrocytes

    Science.gov (United States)

    Ruiz, A; Matute, C; Alberdi, E

    2010-01-01

    Overactivation of ionotropic glutamate receptors in oligodendrocytes induces cytosolic Ca2+ overload and excitotoxic death, a process that contributes to demyelination and multiple sclerosis. Excitotoxic insults cause well-characterized mitochondrial alterations and endoplasmic reticulum (ER) dysfunction, which is not fully understood. In this study, we analyzed the contribution of ER-Ca2+ release through ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) to excitotoxicity in oligodendrocytes in vitro. First, we observed that oligodendrocytes express all previously characterized RyRs and IP3Rs. Blockade of Ca2+-induced Ca2+ release by TMB-8 following α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor-mediated insults attenuated both oligodendrocyte death and cytosolic Ca2+ overload. In turn, RyR inhibition by ryanodine reduced as well the Ca2+ overload whereas IP3R inhibition was ineffective. Furthermore, AMPA-triggered mitochondrial membrane depolarization, oxidative stress and activation of caspase-3, which in all instances was diminished by RyR inhibition. In addition, we observed that AMPA induced an ER stress response as revealed by α subunit of the eukaryotic initiation factor 2α phosphorylation, overexpression of GRP chaperones and RyR-dependent cleavage of caspase-12. Finally, attenuating ER stress with salubrinal protected oligodendrocytes from AMPA excitotoxicity. Together, these results show that Ca2+ release through RyRs contributes to cytosolic Ca2+ overload, mitochondrial dysfunction, ER stress and cell death following AMPA receptor-mediated excitotoxicity in oligodendrocytes. PMID:21364659

  2. Chronic ethanol consumption in rats produces opioid antinociceptive tolerance through inhibition of mu opioid receptor endocytosis.

    Directory of Open Access Journals (Sweden)

    Li He

    Full Text Available It is well known that the mu-opioid receptor (MOR plays an important role in the rewarding properties of ethanol. However, it is less clear how chronic ethanol consumption affects MOR signaling. Here, we demonstrate that rats with prolonged voluntary ethanol consumption develop antinociceptive tolerance to opioids. Signaling through the MOR is controlled at many levels, including via the process of endocytosis. Importantly, agonists at the MOR that promote receptor endocytosis, such as the endogenous peptides enkephalin and β-endorphin, show a reduced propensity to promote antinociceptive tolerance than do agonists, like morphine, which do not promote receptor endocytosis. These observations led us to examine whether chronic ethanol consumption produced opioid tolerance by interfering with MOR endocytosis. Indeed, here we show that chronic ethanol consumption inhibits the endocytosis of MOR in response to opioid peptide. This loss of endocytosis was accompanied by a dramatic decrease in G protein coupled receptor kinase 2 (GRK2 protein levels after chronic drinking, suggesting that loss of this component of the trafficking machinery could be a mechanism by which endocytosis is lost. We also found that MOR coupling to G-protein was decreased in ethanol-drinking rats, providing a functional explanation for loss of opioid antinociception. Together, these results suggest that chronic ethanol drinking alters the ability of MOR to endocytose in response to opioid peptides, and consequently, promotes tolerance to the effects of opioids.

  3. Role of TARP interaction in S-SCAM-mediated regulation of AMPA receptors

    OpenAIRE

    Danielson, Eric; Metallo, Jacob; Lee, Sang H.

    2012-01-01

    Scaffolding proteins are involved in the incorporation, anchoring, maintenance, and removal of AMPA receptors (AMPARs) at synapses, either through a direct interaction with AMPARs or via indirect association through auxiliary subunits of transmembrane AMPAR regulatory proteins (TARPs). Synaptic scaffolding molecule (S-SCAM) is a newly characterized member of the scaffolding proteins critical for the regulation and maintenance of AMPAR levels at synapses, and directly binds to TARPs through a ...

  4. AMPA Receptors Commandeer an Ancient Cargo Exporter for Use as an Auxiliary Subunit for Signaling

    OpenAIRE

    Nadine Harmel; Barbara Cokic; Gerd Zolles; Henrike Berkefeld; Veronika Mauric; Bernd Fakler; Valentin Stein; Nikolaj Klöcker

    2012-01-01

    Fast excitatory neurotransmission in the mammalian central nervous system is mainly mediated by ionotropic glutamate receptors of the AMPA subtype (AMPARs). AMPARs are protein complexes of the pore-lining alpha-subunits GluA1-4 and auxiliary beta-subunits modulating their trafficking and gating. By a proteomic approach, two homologues of the cargo exporter cornichon, CNIH-2 and CNIH-3, have recently been identified as constituents of native AMPARs in mammalian brain. In heterologous reconstit...

  5. AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging

    OpenAIRE

    Henley JM; Wilkinson KA

    2013-01-01

    Even in healthy individuals there is an inexorable agerelated decline in cognitive function. This is due, in large part, to reduced synaptic plasticity caused by changes in the molecular composition of the postsynaptic membrane. AMPA receptors (AMPARs) are glutamate-gated cation channels that mediate the overwhelming majority of fast excitatory transmission in the brain. Changes in AMPAR number and/or function are a core feature of synaptic plasticity and age-related cognitive decline, AMPARs...

  6. [Molecular physiology of receptor mediated endocytosis and its role in overcoming multidrug resistance].

    Science.gov (United States)

    Severin, E S; Posypanova, G A

    2011-06-01

    Receptor-mediated endocytosis plays important role in the selective uptake of proteins at the plasma membrane of eukaryotic cells. Endocytosis regulates many processes of cell signalling by controlling the number of functional receptors on the cell surface. The article reviews the mechanism of clathrin-dependent endocytosis and the possibility of using this phenomenon for the targeted delivery of drugs. Use of certain proteins as targeting component of drug delivery systems can significantly improve the selectivity of this drug, as well as to overcome the multidrug resistance of cells resulting from the activity of the ABC-transporters. PMID:21874867

  7. Agmatine produces antidepressant-like effects by activating AMPA receptors and mTOR signaling.

    Science.gov (United States)

    Neis, Vivian Binder; Moretti, Morgana; Bettio, Luis Eduardo B; Ribeiro, Camille M; Rosa, Priscila Batista; Gonçalves, Filipe Marques; Lopes, Mark William; Leal, Rodrigo Bainy; Rodrigues, Ana Lúcia S

    2016-06-01

    The activation of AMPA receptors and mTOR signaling has been reported as mechanisms underlying the antidepressant effects of fast-acting agents, specially the NMDA receptor antagonist ketamine. In the present study, oral administration of agmatine (0.1mg/kg), a neuromodulator that has been reported to modulate NMDA receptors, caused a significant reduction in the immobility time of mice submitted to the tail suspension test (TST), an effect prevented by the administration of DNQX (AMPA receptor antagonist, 2.5μg/site, i.c.v.), BDNF antibody (1μg/site, i.c.v.), K-252a (TrkB receptor antagonist, 1μg/site, i.c.v.), LY294002 (PI3K inhibitor, 10nmol/site, i.c.v.) or rapamycin (selective mTOR inhibitor, 0.2nmol/site, i.c.v.). Moreover, the administration of lithium chloride (non-selective GSK-3β inhibitor, 10mg/kg, p.o.) or AR-A014418 (selective GSK-3β inhibitor, 0.01μg/site, i.c.v.) in combination with a sub-effective dose of agmatine (0.0001mg/kg, p.o.) reduced the immobility time in the TST when compared with either drug alone. Furthermore, increased immunocontents of BDNF, PSD-95 and GluA1 were found in the prefrontal cortex of mice just 1h after agmatine administration. These results indicate that the antidepressant-like effect of agmatine in the TST may be dependent on the activation of AMPA and TrkB receptors, PI3K and mTOR signaling as well as inhibition of GSK-3β, and increase in synaptic proteins. The results contribute to elucidate the complex signaling pathways involved in the antidepressant effect of agmatine and reinforce the pivotal role of these molecular targets for antidepressant responses. PMID:27061850

  8. Functional characterization of Tet-AMPA [tetrazolyl-2-amino-3-(3-hydroxy-5-methyl- 4-isoxazolyl)propionic acid] analogues at ionotropic glutamate receptors GluR1-GluR4. The molecular basis for the functional selectivity profile of 2-Bn-Tet-AMPA

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Christesen, Thomas; Bølcho, Ulrik;

    2007-01-01

    Four 2-substituted Tet-AMPA [Tet = tetrazolyl, AMPA = 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid] analogues were characterized functionally at the homomeric AMPA receptors GluR1i, GluR2Qi, GluR3i, and GluR4i in a Fluo-4/Ca2+ assay. Whereas 2-Et-Tet-AMPA, 2-Pr-Tet-AMPA, and 2-iPr...

  9. Endocytosis as a biological response in receptor pharmacology: evaluation by fluorescence microscopy.

    Directory of Open Access Journals (Sweden)

    Víctor M Campa

    Full Text Available The activation of G-protein coupled receptors by agonist compounds results in diverse biological responses in cells, such as the endocytosis process consisting in the translocation of receptors from the plasma membrane to the cytoplasm within internalizing vesicles or endosomes. In order to functionally evaluate endocytosis events resulted from pharmacological responses, we have developed an image analysis method -the Q-Endosomes algorithm- that specifically discriminates the fluorescent signal originated at endosomes from that one observed at the plasma membrane in images obtained from living cells by fluorescence microscopy. Mu opioid (MOP receptor tagged at the carboxy-terminus with yellow fluorescent protein (YFP and permanently expressed in HEK293 cells was used as experimental model to validate this methodology. Time-course experiments performed with several agonists resulted in different sigmoid curves depending on the drug used to initiate MOP receptor endocytosis. Thus, endocytosis resulting from the simultaneous activation of co-expressed MOP and serotonin 5-HT2C receptors by morphine plus serotonin was significantly different, in kinetics as well as in maximal response parameters, from the one caused by DAMGO, sufentanyl or methadone. Therefore, this analytical tool permits the pharmacological characterization of receptor endocytosis in living cells with functional and temporal resolution.

  10. Trypanosoma cruzi: antigen-receptor mediated endocytosis of antibody

    Directory of Open Access Journals (Sweden)

    Judith Abelha

    1981-06-01

    Full Text Available Trypanomastigote forms of Trypanosoma cruzi were derived from tissue culture and incubated with immune and non-immune human sera. All immune sera showed high titers of specific humoral antibodies of the IgM or the IgG type. Agglutination and swelling of parasites were observed after incubation at 37ºC, but many trypomastigotes remained free-swimming in the sera for two to three days. The quantitiy of immune serum capable of lysing a maximum of 10 x 10 [raised to the power of 6] sensitized red cells was not capable of lysing 4 x 10 [raised to the power of 3] tripomastigotes. Typically, the parasites underwent cyclical changes with the formation of clumps of amastigotes and the appearance of epimastigote forms. Multiplication of the parasites was observed in immune sera. Further, the infectivity of the parasites to susceptible mice was not lost. All sera used produced similar general effects on the growth of the parasite. The antibody bound to T. cruzi appeard to enter cells by antigen-receptor mediated endocytosis. The ferritin-conjugated antibody was internalized and delivered to phagolysosomes where they might be completely degraded to amino-acids. This seemed to be a coupled process by which the immunoglobulin is first bound to specific parasite surface receptor and then rapidly endocytosed by the cell.Formas tripomastigotas de Trypanosoma cruzi derivadas de cultura de tecido foram encubadas com soros humanos imunes e não-imunes.Todos os soros humanos usados tinham títulos elevados de anticorpos das classes IgM ou IgG. Aglutinação e entumescimento dos parasitos eram observados apos encubação a 37ºC mas muitos tripomastigotas permaneceram circulando livremente nos soros por dois a três dias. A quantidade de soro imune capaz de lisar um máximo de 10 x 10 [elevado a 6] hemácias sensibilizadas não foi capaz de lisar 4 x 10 [elevado a 3] tripomastigotas. Tipicamente, os parasitos apresentavam alterações cíclicas com formação de

  11. Competitive antagonism of AMPA receptors by ligands of different classes

    DEFF Research Database (Denmark)

    Hogner, Anders; Greenwood, Jeremy R; Liljefors, Tommy;

    2003-01-01

    Ionotropic glutamate receptors (iGluRs) constitute a family of ligand-gated ion channels that are essential for mediating fast synaptic transmission in the central nervous system. This study presents a high-resolution X-ray structure of the competitive antagonist (S)-2-amino-3-[5-tert-butyl-3-(ph...

  12. Going Mobile: AMPA Receptors Move Synapse to Synapse In Vivo

    OpenAIRE

    Rongo, Christopher

    2013-01-01

    Plasticity models invoke the synaptic delivery of AMPARs, yet we know little about how receptors move in vivo. In this issue of Neuron, Hoerndli et al. show that lateral diffusion and kinesin-mediated transport move AMPARs between synapses in vivo.

  13. The AMPA receptor subunit GluR1 regulates dendritic architecture of motor neurons

    Science.gov (United States)

    Inglis, Fiona M.; Crockett, Richard; Korada, Sailaja; Abraham, Wickliffe C.; Hollmann, Michael; Kalb, Robert G.

    2002-01-01

    The morphology of the mature motor neuron dendritic arbor is determined by activity-dependent processes occurring during a critical period in early postnatal life. The abundance of the AMPA receptor subunit GluR1 in motor neurons is very high during this period and subsequently falls to a negligible level. To test the role of GluR1 in dendrite morphogenesis, we reintroduced GluR1 into rat motor neurons at the end of the critical period and quantitatively studied the effects on dendrite architecture. Two versions of GluR1 were studied that differed by the amino acid in the "Q/R" editing site. The amino acid occupying this site determines single-channel conductance, ionic permeability, and other essential electrophysiologic properties of the resulting receptor channels. We found large-scale remodeling of dendritic architectures in a manner depending on the amino acid occupying the Q/R editing site. Alterations in the distribution of dendritic arbor were not prevented by blocking NMDA receptors. These observations suggest that the expression of GluR1 in motor neurons modulates a component of the molecular substrate of activity-dependent dendrite morphogenesis. The control of these events relies on subunit-specific properties of AMPA receptors.

  14. (S)-homo-AMPA, a specific agonist at the mGlu6 subtype of metabotropic glutamic acid receptors

    DEFF Research Database (Denmark)

    Ahmadian, H; Nielsen, B; Bräuner-Osborne, Hans;

    1997-01-01

    Our previous publication (J. Med. Chem. 1996, 39, 3188-3194) described (RS)-2-amino-4-(3-hydroxy-5-methylisoxazol-4-yl)butyric acid (Homo-AMPA) as a highly selective agonist at the mGlu6 subtype of metabotropic excitatory amino acid (EAA) receptors. Homo-AMPA has already become a standard agonist...... of the spectroscopic configurational assignments. The activities of 6 and 7 at ionotropic EAA (iGlu) receptors and at mGlu1-7 were studied. (S)-Homo-AMPA (6) was shown to be a specific agonist at mGlu6 (EC50 = 58 +/- 11 microM) comparable in potency with the endogenous mGlu agonist (S)-glutamic acid (EC50 = 20 +/- 3...... microM). Although Homo-AMPA did not show significant effects at iGlu receptors, (R)-Homo-AMPA (7), which was inactive at mGlu1-7, turned out to be a weak N-methyl-D-aspartic acid (NMDA) receptor antagonist (IC50 = 131 +/- 18 microM)....

  15. Basal Levels of AMPA Receptor GluA1 Subunit Phosphorylation at Threonine 840 and Serine 845 in Hippocampal Neurons

    Science.gov (United States)

    Babiec, Walter E.; Guglietta, Ryan; O'Dell, Thomas J.

    2016-01-01

    Dephosphorylation of AMPA receptor (AMPAR) GluA1 subunits at two sites, serine 845 (S845) and threonine 840 (T840), is thought to be involved in NMDA receptor-dependent forms of long-term depression (LTD). Importantly, the notion that dephosphorylation of these sites contributes to LTD assumes that a significant fraction of GluA1 subunits are…

  16. AMPA and GABA receptor antagonists and their interaction in rats with a genetic form of absence epilepsy

    NARCIS (Netherlands)

    Kaminski, R.M.; Rijn, C.M. van; Turski, W.A.; Czuczwar, S.J.; Luijtelaar, E.L.J.M. van

    2001-01-01

    The effects of combined and single administration of the -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, 7,8-methylenedioxy-1-(4-aminophenyl)-4-methyl-3-acetyl-4,5-dihydro-2,3 -benzodiazepine (LY 300164), and of the GABAB receptor antagonist -aminopropyl-n-butyl-phosp

  17. Structural basis for AMPA receptor activation and ligand selectivity

    DEFF Research Database (Denmark)

    Hogner, A; Kastrup, Jette Sandholm Jensen; Jin, R;

    2002-01-01

    and binding experiments, has been used to increase our knowledge concerning the ionotropic glutamate receptor GluR2 at the molecular level. Five high-resolution X-ray structures of the ligand-binding domain of GluR2 (S1S2J) complexed with the three agonists (S)-2-amino-3-[3-hydroxy-5-(2-methyl-2H-tetrazol-5...

  18. Estrous Cycle-Dependent Phasic Changes in the Stoichiometry of Hippocampal Synaptic AMPA Receptors in Rats

    OpenAIRE

    Hirobumi Tada; Mayu Koide; Wakana Ara; Yusuke Shibata; Toshiya Funabashi; Kumiko Suyama; Takahisa Goto; Takuya Takahashi

    2015-01-01

    Cognitive function can be affected by the estrous cycle. However, the effect of the estrous cycle on synaptic functions is poorly understood. Here we show that in female rats, inhibitory-avoidance (IA) task (hippocampus-dependent contextual fear-learning task) drives GluA2-lacking Ca2+-permeable AMPA receptors (CP-AMPARs) into the hippocampal CA3-CA1 synapses during all periods of the estrous cycle except the proestrous period, when estrogen levels are high. In addition, IA task failed to dri...

  19. Facilitation of AMPA receptor synaptic delivery as a molecular mechanism for cognitive enhancement.

    Directory of Open Access Journals (Sweden)

    Shira Knafo

    2012-02-01

    Full Text Available Cell adhesion molecules and downstream growth factor-dependent signaling are critical for brain development and synaptic plasticity, and they have been linked to cognitive function in adult animals. We have previously developed a mimetic peptide (FGL from the neural cell adhesion molecule (NCAM that enhances spatial learning and memory in rats. We have now investigated the cellular and molecular basis of this cognitive enhancement, using biochemical, morphological, electrophysiological, and behavioral analyses. We have found that FGL triggers a long-lasting enhancement of synaptic transmission in hippocampal CA1 neurons. This effect is mediated by a facilitated synaptic delivery of AMPA receptors, which is accompanied by enhanced NMDA receptor-dependent long-term potentiation (LTP. Both LTP and cognitive enhancement are mediated by an initial PKC activation, which is followed by persistent CaMKII activation. These results provide a mechanistic link between facilitation of AMPA receptor synaptic delivery and improved hippocampal-dependent learning, induced by a pharmacological cognitive enhancer.

  20. Odor Preference Learning and Memory Modify GluA1 Phosphorylation and GluA1 Distribution in the Neonate Rat Olfactory Bulb: Testing the AMPA Receptor Hypothesis in an Appetitive Learning Model

    Science.gov (United States)

    Cui, Wen; Darby-King, Andrea; Grimes, Matthew T.; Howland, John G.; Wang, Yu Tian; McLean, John H.; Harley, Carolyn W.

    2011-01-01

    An increase in synaptic AMPA receptors is hypothesized to mediate learning and memory. AMPA receptor increases have been reported in aversive learning models, although it is not clear if they are seen with memory maintenance. Here we examine AMPA receptor changes in a cAMP/PKA/CREB-dependent appetitive learning model: odor preference learning in…

  1. The SOL-2/Neto auxiliary protein modulates the function of AMPA-subtype ionotropic glutamate receptors.

    Science.gov (United States)

    Wang, Rui; Mellem, Jerry E; Jensen, Michael; Brockie, Penelope J; Walker, Craig S; Hoerndli, Frédéric J; Hauth, Linda; Madsen, David M; Maricq, Andres V

    2012-09-01

    The neurotransmitter glutamate mediates excitatory synaptic transmission by gating ionotropic glutamate receptors (iGluRs). AMPA receptors (AMPARs), a subtype of iGluR, are strongly implicated in synaptic plasticity, learning, and memory. We previously discovered two classes of AMPAR auxiliary proteins in C. elegans that modify receptor kinetics and thus change synaptic transmission. Here, we have identified another auxiliary protein, SOL-2, a CUB-domain protein that associates with both the related auxiliary subunit SOL-1 and with the GLR-1 AMPAR. In sol-2 mutants, behaviors dependent on glutamatergic transmission are disrupted, GLR-1-mediated currents are diminished, and GLR-1 desensitization and pharmacology are modified. Remarkably, a secreted variant of SOL-1 delivered in trans can rescue sol-1 mutants, and this rescue depends on in cis expression of SOL-2. Finally, we demonstrate that SOL-1 and SOL-2 have an ongoing role in the adult nervous system to control AMPAR-mediated currents.

  2. Auxiliary Subunit GSG1L Acts to Suppress Calcium-Permeable AMPA Receptor Function

    Science.gov (United States)

    McGee, Thomas P.; Bats, Cécile

    2015-01-01

    AMPA-type glutamate receptors are ligand-gated cation channels responsible for a majority of the fast excitatory synaptic transmission in the brain. Their behavior and calcium permeability depends critically on their subunit composition and the identity of associated auxiliary proteins. Calcium-permeable AMPA receptors (CP-AMPARs) contribute to various forms of synaptic plasticity, and their dysfunction underlies a number of serious neurological conditions. For CP-AMPARs, the prototypical transmembrane AMPAR regulatory protein stargazin, which acts as an auxiliary subunit, enhances receptor function by increasing single-channel conductance, slowing channel gating, increasing calcium permeability, and relieving the voltage-dependent block by endogenous intracellular polyamines. We find that, in contrast, GSG1L, a transmembrane auxiliary protein identified recently as being part of the AMPAR proteome, acts to reduce the weighted mean single-channel conductance and calcium permeability of recombinant CP-AMPARs, while increasing polyamine-dependent rectification. To examine the effects of GSG1L on native AMPARs, we manipulated its expression in cerebellar and hippocampal neurons. Transfection of GSG1L into mouse cultured cerebellar stellate cells that lack this protein increased the inward rectification of mEPSCs. Conversely, shRNA-mediated knockdown of endogenous GSG1L in rat cultured hippocampal pyramidal neurons led to an increase in mEPSC amplitude and in the underlying weighted mean single-channel conductance, revealing that GSG1L acts to suppress current flow through native CP-AMPARs. Thus, our data suggest that GSG1L extends the functional repertoire of AMPAR auxiliary subunits, which can act not only to enhance but also diminish current flow through their associated AMPARs. SIGNIFICANCE STATEMENT Calcium-permeable AMPA receptors (CP-AMPARs) are an important group of receptors for the neurotransmitter glutamate. These receptors contribute to various forms of

  3. AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging.

    Science.gov (United States)

    Henley, Jeremy M; Wilkinson, Kevin A

    2013-03-01

    Even in healthy individuals there is an inexorable agerelated decline in cognitive function. This is due, in large part, to reduced synaptic plasticity caused by changes in the molecular composition of the postsynaptic membrane. AMPA receptors (AMPARs) are glutamate-gated cation channels that mediate the overwhelming majority of fast excitatory transmission in the brain. Changes in AMPAR number and/or function are a core feature of synaptic plasticity and age-related cognitive decline, AMPARs are highly dynamic proteins that are subject to highly controlled trafficking, recycling, and/or degradation and replacement. This active regulation of AMPAR synthesis, targeting, synaptic dwell time, and degradation is fundamentally important for memory formation and storage. Further, aberrant AMPAR trafficking and consequent detrimental changes in synapses are strongly implicated in many brain diseases, which represent a vast social and economic burden. The purpose of this article is to provide an overview of the molecular and cellular AMPA receptor trafficking events that control synaptic responsiveness and plasticity, and highlight what is known currently known about how these processes change with age and disease. PMID:23576886

  4. Estrous Cycle-Dependent Phasic Changes in the Stoichiometry of Hippocampal Synaptic AMPA Receptors in Rats.

    Directory of Open Access Journals (Sweden)

    Hirobumi Tada

    Full Text Available Cognitive function can be affected by the estrous cycle. However, the effect of the estrous cycle on synaptic functions is poorly understood. Here we show that in female rats, inhibitory-avoidance (IA task (hippocampus-dependent contextual fear-learning task drives GluA2-lacking Ca2+-permeable AMPA receptors (CP-AMPARs into the hippocampal CA3-CA1 synapses during all periods of the estrous cycle except the proestrous period, when estrogen levels are high. In addition, IA task failed to drive CP-AMPARs into the CA3-CA1 synapses of ovariectomized rats only when estrogen was present. Thus, changes in the stoichiometry of AMPA receptors during learning depend on estrogen levels. Furthermore, the induction of long-term potentiation (LTP after IA task was prevented during the proestrous period, while intact LTP is still expressed after IA task during other period of the estrous cycle. Consistent with this finding, rats conditioned by IA training failed to acquire hippocampus-dependent Y-maze task during the proestrous period. On the other hand, during other estrous period, rats were able to learn Y-maze task after IA conditioning. These results suggest that high estrogen levels prevent the IA learning-induced delivery of CP-AMPARs into hippocampal CA3-CA1 synapses and limit synaptic plasticity after IA task, thus preventing the acquisition of additional learning.

  5. Estrous Cycle-Dependent Phasic Changes in the Stoichiometry of Hippocampal Synaptic AMPA Receptors in Rats.

    Science.gov (United States)

    Tada, Hirobumi; Koide, Mayu; Ara, Wakana; Shibata, Yusuke; Funabashi, Toshiya; Suyama, Kumiko; Goto, Takahisa; Takahashi, Takuya

    2015-01-01

    Cognitive function can be affected by the estrous cycle. However, the effect of the estrous cycle on synaptic functions is poorly understood. Here we show that in female rats, inhibitory-avoidance (IA) task (hippocampus-dependent contextual fear-learning task) drives GluA2-lacking Ca2+-permeable AMPA receptors (CP-AMPARs) into the hippocampal CA3-CA1 synapses during all periods of the estrous cycle except the proestrous period, when estrogen levels are high. In addition, IA task failed to drive CP-AMPARs into the CA3-CA1 synapses of ovariectomized rats only when estrogen was present. Thus, changes in the stoichiometry of AMPA receptors during learning depend on estrogen levels. Furthermore, the induction of long-term potentiation (LTP) after IA task was prevented during the proestrous period, while intact LTP is still expressed after IA task during other period of the estrous cycle. Consistent with this finding, rats conditioned by IA training failed to acquire hippocampus-dependent Y-maze task during the proestrous period. On the other hand, during other estrous period, rats were able to learn Y-maze task after IA conditioning. These results suggest that high estrogen levels prevent the IA learning-induced delivery of CP-AMPARs into hippocampal CA3-CA1 synapses and limit synaptic plasticity after IA task, thus preventing the acquisition of additional learning. PMID:26121335

  6. Endocytosis of activated receptors and clathrin-coated pit formation: deciphering the chicken or egg relationship

    OpenAIRE

    1996-01-01

    The fundamental mechanisms by which receptors once targeted for endocytosis are found in coated pits is an important yet unresolved question. Specifically, are activated receptors simply trapped on encountering preexisting coated pits, subsequently being rapidly internalized? Or do the receptors themselves, by active recruitment, gather soluble coat and cytosolic components and initiate the rapid assembly of new coated pits that then mediate their internalization? To explore this question, we...

  7. Effects of 2,3-benzodiazepine AMPA receptor antagonists on dopamine turnover in the striatum of rats with experimental parkinsonism.

    Science.gov (United States)

    Megyeri, Katalin; Marko, Bernadett; Sziray, Nora; Gacsalyi, Istvan; Juranyi, Zsolt; Levay, Gyorgy; Harsing, Laszlo G

    2007-03-15

    Although levodopa is the current "gold standard" for treatment of Parkinson's disease, there has been disputation on whether AMPA receptor antagonists can be used as adjuvant therapy to improve the effects of levodopa. Systemic administration of levodopa, the precursor of dopamine, increases brain dopamine turnover rate and this elevated turnover is believed to be essential for successful treatment of Parkinson's disease. However, long-term treatment of patients with levodopa often leads to development of dyskinesia. Therefore, drugs that feature potentiation of dopamine turnover rate and are able to reduce daily levodopa dosages might be used as adjuvant in the treatment of patients suffering from Parkinson's disease. To investigate such combined treatment, we have examined the effects of two non-competitive AMPA receptor antagonists, GYKI-52466 and GYKI-53405, alone or in combination with levodopa on dopamine turnover rate in 6-hydroxydopamine-lesioned striatum of the rat. We found here that repeated administration of levodopa, added with the peripheral DOPA decarboxylase inhibitor carbidopa, increased dopamine turnover rate after lesioning the striatum with 6-hydroxydopamine. Moreover, combination of levodopa with GYKI-52466 or GYKI-53405 further increased dopamine turnover enhanced by levodopa administration while the AMPA receptor antagonists by themselves failed to influence striatal dopamine turnover. We concluded from the present data that potentiation observed between levodopa and AMPA receptor antagonists may reflect levodopa-sparing effects in clinical treatment indicating the therapeutic potential of such combination in the management of Parkinson's disease.

  8. Brain Region-Specific Effects of cGMP-Dependent Kinase II Knockout on AMPA Receptor Trafficking and Animal Behavior

    Science.gov (United States)

    Kim, Seonil; Pick, Joseph E.; Abera, Sinedu; Khatri, Latika; Ferreira, Danielle D. P.; Sathler, Matheus F.; Morison, Sage L.; Hofmann, Franz; Ziff, Edward B.

    2016-01-01

    Phosphorylation of GluA1, a subunit of AMPA receptors (AMPARs), is critical for AMPAR synaptic trafficking and control of synaptic transmission. cGMP-dependent protein kinase II (cGKII) mediates this phosphorylation, and cGKII knockout (KO) affects GluA1 phosphorylation and alters animal behavior. Notably, GluA1 phosphorylation in the KO…

  9. The essential role of AMPA receptor GluR2 subunit RNA editing in the normal and diseased brain

    Directory of Open Access Journals (Sweden)

    Amanda Lorraine Wright

    2012-04-01

    Full Text Available AMPA receptors are comprised of different combinations of GluR1-GluR4 (also known as GluA1-GluA4 and GluR-A to GluR-D subunits. The GluR2 subunit is subject to Q/R site RNA editing by the ADAR2 enzyme, which converts a codon for glutamine (Q, present in the GluR2 gene, to a codon for arginine (R found in the mRNA. AMPA receptors are calcium (Ca2+-permeable if they contain the unedited GluR2(Q subunit or if they lack the GluR2 subunit. While most AMPA receptors in the brain contain the edited GluR2(R subunit and are therefore Ca2+-impermeable, recent evidence suggests that Ca2+-permeable GluR2-lacking AMPA receptors are important in synaptic plasticity and learning. However, the presence of Ca2+-permeable AMPA receptors containing unedited GluR2 leads to excitotoxic cell loss. Recent studies have indicated that RNA editing of GluR2 is deregulated in diseases, such as amyotrophic lateral sclerosis (ALS, as well in acute neurodegenerative conditions, such as ischemia. More recently, studies have investigated the regulation of RNA editing and possible causes for its deregulation during disease. In this review, we will explore the role of GluR2 RNA editing in the healthy and diseased brain and outline new insights into the mechanisms that control this process.

  10. Effects of Exposure to Aluminum on Long-term Potentiation and AMPA Receptor Subunits in Ratsin vivo

    Institute of Scientific and Technical Information of China (English)

    SONG Jing; LIU Ying; ZHANG Hui Fang; ZHANG Qin Li; NIU Qiao

    2014-01-01

    ObjectiveTo explore the effects of exposure to aluminum(Al) on long-term potentiation(LTP) and AMPA receptor subunits in rats in vivo. MethodsDifferent dosages of aluminum-maltolate complex[Al(mal)3] were given to rats via acute intracerebroventricular (i.c.v.)injection and subchronic intraperitoneal (i.p.) injection. Following Al exposure, the hippocampal LTP were recorded by field potentiation techniquein vivo and the expression of AMPAR subunit proteins (GluR1 and GluR2) in both total and membrane-enriched extracts from the CA1 area of rat hippocampus were detected by Western blot assay. ResultsAcute Al treatment produced dose-dependent suppression of LTP in the rat hippocampus and dose-dependent decreases of GluR1and GluR2in membrane extracts; however, no similar changes were found in the total cell extracts, which suggests decreased trafficking of AMPA receptor subunits from intracellular pools to synaptic sites in the hippocampus. Thedose-dependent suppressive effects on LTP and the expression of AMPA receptor subunits both in the membrane and in total extracts were found after subchronic Al treatment, indicating a decrease in AMPA receptor subunit trafficking from intracellular poolsto synaptic sites and an additional reduction in the expression of the subunits. ConclusionAl(mal)3obviously and dose-dependently suppressed LTP in the rat hippocampal CA1 region in vivo, and this suppression may be related to both trafficking and decreases in the expression of AMPA receptor subunit proteins. However, the mechanisms underlying these observations need further investigation.

  11. Non-Ligand-Induced Dimerization is Sufficient to Initiate the Signalling and Endocytosis of EGF Receptor

    OpenAIRE

    Kourouniotis, George; Wang, Yi; Pennock, Steven; Chen, Xinmei; Wang, Zhixiang

    2016-01-01

    The binding of epidermal growth factor (EGF) to EGF receptor (EGFR) stimulates cell mitogenesis and survival through various signalling cascades. EGF also stimulates rapid EGFR endocytosis and its eventual degradation in lysosomes. The immediate events induced by ligand binding include receptor dimerization, activation of intrinsic tyrosine kinase and autophosphorylation. However, in spite of intensified efforts, the results regarding the roles of these events in EGFR signalling and internali...

  12. Non-Ligand-Induced Dimerization is Sufficient to Initiate the Signalling and Endocytosis of EGF Receptor

    Science.gov (United States)

    Kourouniotis, George; Wang, Yi; Pennock, Steven; Chen, Xinmei; Wang, Zhixiang

    2016-01-01

    The binding of epidermal growth factor (EGF) to EGF receptor (EGFR) stimulates cell mitogenesis and survival through various signalling cascades. EGF also stimulates rapid EGFR endocytosis and its eventual degradation in lysosomes. The immediate events induced by ligand binding include receptor dimerization, activation of intrinsic tyrosine kinase and autophosphorylation. However, in spite of intensified efforts, the results regarding the roles of these events in EGFR signalling and internalization is still very controversial. In this study, we constructed a chimeric EGFR by replacing its extracellular domain with leucine zipper (LZ) and tagged a green fluorescent protein (GFP) at its C-terminus. We showed that the chimeric LZ-EGFR-GFP was constitutively dimerized. The LZ-EGFR-GFP dimer autophosphorylated each of its five well-defined C-terminal tyrosine residues as the ligand-induced EGFR dimer does. Phosphorylated LZ-EGFR-GFP was localized to both the plasma membrane and endosomes, suggesting it is capable of endocytosis. We also showed that LZ-EGFR-GFP activated major signalling proteins including Src homology collagen-like (Shc), extracellular signal-regulated kinase (ERK) and Akt. Moreover, LZ-EGFR-GFP was able to stimulate cell proliferation. These results indicate that non-ligand induced dimerization is sufficient to activate EGFR and initiate cell signalling and EGFR endocytosis. We conclude that receptor dimerization is a critical event in EGF-induced cell signalling and EGFR endocytosis. PMID:27463710

  13. Non-Ligand-Induced Dimerization is Sufficient to Initiate the Signalling and Endocytosis of EGF Receptor

    Directory of Open Access Journals (Sweden)

    George Kourouniotis

    2016-07-01

    Full Text Available The binding of epidermal growth factor (EGF to EGF receptor (EGFR stimulates cell mitogenesis and survival through various signalling cascades. EGF also stimulates rapid EGFR endocytosis and its eventual degradation in lysosomes. The immediate events induced by ligand binding include receptor dimerization, activation of intrinsic tyrosine kinase and autophosphorylation. However, in spite of intensified efforts, the results regarding the roles of these events in EGFR signalling and internalization is still very controversial. In this study, we constructed a chimeric EGFR by replacing its extracellular domain with leucine zipper (LZ and tagged a green fluorescent protein (GFP at its C-terminus. We showed that the chimeric LZ-EGFR-GFP was constitutively dimerized. The LZ-EGFR-GFP dimer autophosphorylated each of its five well-defined C-terminal tyrosine residues as the ligand-induced EGFR dimer does. Phosphorylated LZ-EGFR-GFP was localized to both the plasma membrane and endosomes, suggesting it is capable of endocytosis. We also showed that LZ-EGFR-GFP activated major signalling proteins including Src homology collagen-like (Shc, extracellular signal-regulated kinase (ERK and Akt. Moreover, LZ-EGFR-GFP was able to stimulate cell proliferation. These results indicate that non-ligand induced dimerization is sufficient to activate EGFR and initiate cell signalling and EGFR endocytosis. We conclude that receptor dimerization is a critical event in EGF-induced cell signalling and EGFR endocytosis.

  14. Elucidation of AMPA receptor-stargazin complexes by cryo-electron microscopy.

    Science.gov (United States)

    Twomey, Edward C; Yelshanskaya, Maria V; Grassucci, Robert A; Frank, Joachim; Sobolevsky, Alexander I

    2016-07-01

    AMPA-subtype ionotropic glutamate receptors (AMPARs) mediate fast excitatory neurotransmission and contribute to high cognitive processes such as learning and memory. In the brain, AMPAR trafficking, gating, and pharmacology is tightly controlled by transmembrane AMPAR regulatory proteins (TARPs). Here, we used cryo-electron microscopy to elucidate the structural basis of AMPAR regulation by one of these auxiliary proteins, TARP γ2, or stargazin (STZ). Our structures illuminate the variable interaction stoichiometry of the AMPAR-TARP complex, with one or two TARP molecules binding one tetrameric AMPAR. Analysis of the AMPAR-STZ binding interfaces suggests that electrostatic interactions between the extracellular domains of AMPAR and STZ play an important role in modulating AMPAR function through contact surfaces that are conserved across AMPARs and TARPs. We propose a model explaining how TARPs stabilize the activated state of AMPARs and how the interactions between AMPARs and their auxiliary proteins control fast excitatory synaptic transmission. PMID:27365450

  15. Intracellular Ca2+ and not the extracellular matrix determines surface dynamics of AMPA-type glutamate receptors on aspiny neurons

    OpenAIRE

    Klueva, Julia; Gundelfinger, Eckart D; Frischknecht, R. Renato; Heine, Martin

    2014-01-01

    The perisynaptic extracellular matrix (ECM) contributes to the control of the lateral mobility of AMPA-type glutamate receptors (AMPARs) at spine synapses of principal hippocampal neurons. Here, we have studied the effect of the ECM on the lateral mobility of AMPARs at shaft synapses of aspiny interneurons. Single particle tracking experiments revealed that the removal of the hyaluronan-based ECM with hyaluronidase does not affect lateral receptor mobility on the timescale of seconds. Similar...

  16. Synthesis and in vitro pharmacology at AMPA and kainate preferring glutamate receptors of 4-heteroarylmethylidene glutamate analogues

    DEFF Research Database (Denmark)

    Valgeirsson, Jon; Christensen, Jeppe K; Kristensen, Anders S;

    2003-01-01

    affinity for the GluR2 subtype of AMPA receptors. As an attempt to develop new pharmacological tools for studies of GluR5 receptors, (S)-E-4-(2-thiazolylmethylene)glutamic acid (4a) was designed as a structural hybrid between 1 and 3. 4a was shown to be a potent GluR5 agonist and a high affinity ligand...

  17. Reinforcement-related regulation of AMPA glutamate receptor subunits in the ventral tegmental area enhances motivation for cocaine.

    Science.gov (United States)

    Choi, Kwang Ho; Edwards, Scott; Graham, Danielle L; Larson, Erin B; Whisler, Kimberly N; Simmons, Diana; Friedman, Allyson K; Walsh, Jessica J; Rahman, Zia; Monteggia, Lisa M; Eisch, Amelia J; Neve, Rachael L; Nestler, Eric J; Han, Ming-Hu; Self, David W

    2011-05-25

    Chronic cocaine use produces numerous biological changes in brain, but relatively few are functionally associated with cocaine reinforcement. Here we show that daily intravenous cocaine self-administration, but not passive cocaine administration, induces dynamic upregulation of the AMPA glutamate receptor subunits GluR1 and GluR2 in the ventral tegmental area (VTA) of rats. Increases in GluR1 protein and GluR1(S845) phosphorylation are associated with increased GluR1 mRNA in self-administering animals, whereas increased GluR2 protein levels occurred despite substantial decreases in GluR2 mRNA. We investigated the functional significance of GluR1 upregulation in the VTA on cocaine self-administration using localized viral-mediated gene transfer. Overexpression of GluR1(WT) in rat VTA primarily infected dopamine neurons (75%) and increased AMPA receptor-mediated membrane rectification in these neurons with AMPA application. Similar GluR1(WT) overexpression potentiated locomotor responses to intra-VTA AMPA, but not NMDA, infusions. In cocaine self-administering animals, overexpression of GluR1(WT) in the VTA markedly increased the motivation for cocaine injections on a progressive ratio schedule of cocaine reinforcement. In contrast, overexpression of protein kinase A-resistant GluR1(S845A) in the VTA reduced peak rates of cocaine self-administration on a fixed ratio reinforcement schedule. Neither viral vector altered sucrose self-administration, and overexpression of GluR1(WT) or GluR1(S845A) in the adjacent substantia nigra had no effect on cocaine self-administration. Together, these results suggest that dynamic regulation of AMPA receptors in the VTA during cocaine self-administration contributes to cocaine addiction by acting to facilitate subsequent cocaine use.

  18. Impaired associative fear learning in mice with complete loss or haploinsufficiency of AMPA GluR1 receptors

    Directory of Open Access Journals (Sweden)

    Michael Feyder

    2007-12-01

    Full Text Available There is compelling evidence that L-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA glutamate receptors containing the GluR1 subunit contribute to the molecular mechanisms associated with learning. AMPA GluR1 glutamate receptor knockout mice (KO exhibit abnormal hippocampal and amygdala plasticity, and deficits on various assays for cognition including Pavlovian fear conditioning. Here we examined associative fear learning in mice with complete absence (KO or partial loss (heterozygous mutant, HET of GluR1 on multiple fear conditioning paradigms. After multi-trial delay or trace conditioning, KO displayed impaired tone and context fear recall relative to WT, whereas HET were normal. After one-trial delay conditioning, both KO and HET showed impaired tone and context recall. HET and KO showed normal nociceptive sensitivity in the hot plate and tail flick tests. These data demonstrate that the complete absence of GluR1 subunit-containing receptors prevents the formation of associative fear memories, while GluR1 haploinsufficiency is sufficient to impair one-trial fear learning. These findings support growing evidence of a major role for GluR1-containing AMPA receptors in amygdalamediated forms of learning and memory.

  19. Endocytosis and Trafficking of Natriuretic Peptide Receptor-A: Potential Role of Short Sequence Motifs

    Directory of Open Access Journals (Sweden)

    Kailash N. Pandey

    2015-07-01

    Full Text Available The targeted endocytosis and redistribution of transmembrane receptors among membrane-bound subcellular organelles are vital for their correct signaling and physiological functions. Membrane receptors committed for internalization and trafficking pathways are sorted into coated vesicles. Cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP bind to guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA and elicit the generation of intracellular second messenger cyclic guanosine 3',5'-monophosphate (cGMP, which lowers blood pressure and incidence of heart failure. After ligand binding, the receptor is rapidly internalized, sequestrated, and redistributed into intracellular locations. Thus, NPRA is considered a dynamic cellular macromolecule that traverses different subcellular locations through its lifetime. The utilization of pharmacologic and molecular perturbants has helped in delineating the pathways of endocytosis, trafficking, down-regulation, and degradation of membrane receptors in intact cells. This review describes the investigation of the mechanisms of internalization, trafficking, and redistribution of NPRA compared with other cell surface receptors from the plasma membrane into the cell interior. The roles of different short-signal peptide sequence motifs in the internalization and trafficking of other membrane receptors have been briefly reviewed and their potential significance in the internalization and trafficking of NPRA is discussed.

  20. Natural reward experience alters AMPA and NMDA receptor distribution and function in the nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Kyle K Pitchers

    Full Text Available Natural reward and drugs of abuse converge upon the mesolimbic system which mediates motivation and reward behaviors. Drugs induce neural adaptations in this system, including transcriptional, morphological, and synaptic changes, which contribute to the development and expression of drug-related memories and addiction. Previously, it has been reported that sexual experience in male rats, a natural reward behavior, induces similar neuroplasticity in the mesolimbic system and affects natural reward and drug-related behavior. The current study determined whether sexual experience causes long-lasting changes in mating, or ionotropic glutamate receptor trafficking or function in the nucleus accumbens (NAc, following 3 different reward abstinence periods: 1 day, 1 week, or 1 month after final mating session. Male Sprague Dawley rats mated during 5 consecutive days (sexual experience or remained sexually naïve to serve as controls. Sexually experienced males displayed facilitation of initiation and performance of mating at each time point. Next, intracellular and membrane surface expression of N-methyl-D-aspartate (NMDA: NR1 subunit and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA: GluA1, GluA2 subunits receptors in the NAc was determined using a bis(sulfosuccinimidylsuberate (BS(3 protein cross-linking assay followed by Western Blot analysis. NR1 expression was increased at 1 day abstinence both at surface and intracellular, but decreased at surface at 1 week of abstinence. GluA2 was increased intracellularly at 1 week and increased at the surface after 1 month of abstinence. Finally, whole-cell patch clamp electrophysiological recordings determined reduced AMPA/NMDA ratio of synaptic currents in NAc shell neurons following stimulation of cortical afferents in sexually experienced males after all reward abstinence periods. Together, these data show that sexual experience causes long-term alterations in glutamate receptor expression and

  1. AMPA receptors commandeer an ancient cargo exporter for use as an auxiliary subunit for signaling.

    Directory of Open Access Journals (Sweden)

    Nadine Harmel

    Full Text Available Fast excitatory neurotransmission in the mammalian central nervous system is mainly mediated by ionotropic glutamate receptors of the AMPA subtype (AMPARs. AMPARs are protein complexes of the pore-lining α-subunits GluA1-4 and auxiliary β-subunits modulating their trafficking and gating. By a proteomic approach, two homologues of the cargo exporter cornichon, CNIH-2 and CNIH-3, have recently been identified as constituents of native AMPARs in mammalian brain. In heterologous reconstitution experiments, CNIH-2 promotes surface expression of GluAs and modulates their biophysical properties. However, its relevance in native AMPAR physiology remains controversial. Here, we have studied the role of CNIH-2 in GluA processing both in heterologous cells and primary rat neurons. Our data demonstrate that CNIH-2 serves an evolutionarily conserved role as a cargo exporter from the endoplasmic reticulum (ER. CNIH-2 cycles continuously between ER and Golgi complex to pick up cargo protein in the ER and then to mediate its preferential export in a coat protein complex (COP II dependent manner. Interaction with GluA subunits breaks with this ancestral role of CNIH-2 confined to the early secretory pathway. While still taking advantage of being exported preferentially from the ER, GluAs recruit CNIH-2 to the cell surface. Thus, mammalian AMPARs commandeer CNIH-2 for use as a bona fide auxiliary subunit that is able to modify receptor signaling.

  2. A novel dualistic profile of an allosteric AMPA receptor modulator identified through studies on recombinant receptors, mouse hippocampal synapses and crystal structures

    DEFF Research Database (Denmark)

    Christiansen, G B; Harbak, Barbara; Hede, S E;

    2015-01-01

    Positive allosteric modulators (PAMs) of 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptors receive increasing interest as therapeutic drugs and have long served as important experimental tools in the study of the molecular mechanisms underlying glutamate-mediated neurotra...

  3. AMPA and NMDA glutamate receptors are found in both peptidergic and non-peptidergic primary afferent neurons in the rat

    OpenAIRE

    Willcockson, Helen; Valtschanoff, Juli

    2008-01-01

    Two distinct classes of nociceptive primary afferents, peptidergic and non-peptidergic, respond similarly to acute noxious stimulation; however the peptidergic afferents are more likely to play a role in inflammatory pain, while the non-peptidergic afferents may be more characteristically involved in neuropathic pain. Using multiple immunofluorescence, we determined the proportions of neurons in the rat L4 dorsal root ganglion (DRG) that co-express AMPA or NMDA glutamate receptors and markers...

  4. Membrane glycoprotein M6A promotes μ-opioid receptor endocytosis and facilitates receptor sorting into the recycling pathway

    Institute of Scientific and Technical Information of China (English)

    Ying-Jian Liang; Dai-Fei Wu; Ralf Stumm; Volker H(o)llt; Thomas Koch

    2008-01-01

    The interaction of μ-opioid receptor (MOPr) with the neuronal membrane glycoprotein M6a is known to facilitate MOPr endocytosis in human embryonic kidney 293 (HEK293) cells. To further study the role of M6a in the post-endocytotic sorting of MOPr, we investigated the agonist-induced co-internalization of MOPr and M6a and protein targeting after internalization in HEK293 cells that co-expressed HA-tagged MOPr and Myc-tagged M6a. We found that M6a, MOPr, and Rab 11, a marker for recycling endosomes, co-localized in endocytotic vesicles, indicating that MOPr and M6a are primarily targeted to recycling endosomes after endocytosis. Furthermore, co-expression of M6a augmented the post-endocytotic sorting of δ-opioid receptors into the recycling pathway, indicating that M6a might have a more general role in opioid receptor post-ndocytotic sorting. The enhanced post-endocytotic sorting of MOPr into the recycling pathway was accompanied by a decrease in agonist-induced receptor down-regulation of M6a in co-expressing cells. We tested the physiological relevance of these findings in primary cultures of cortical neurons and found that co-expression of M6a markedly increased the translocation of MOPrs from the plasma membrane to intracellular vesicles at steady state and significantly enhanced both constitutive and agonist-induced receptor endocytosis. In conclusion, our results strongly indicate that M6a modulates MOPr endocytosis and post-endocytotic sorting and has an important role in receptor regulation.

  5. Endocytosis of a functionally enhanced GFP-tagged transferrin receptor in CHO cells.

    Directory of Open Access Journals (Sweden)

    Qi He

    Full Text Available The endocytosis of transferrin receptor (TfR has served as a model to study the receptor-targeted cargo delivery system for cancer therapy for many years. To accurately evaluate and optically measure this TfR targeting delivery in vitro, a CHO cell line with enhanced green fluorescent protein (EGFP-tagged human TfR was established. A chimera of the hTfR and EGFP was engineered by fusing EGFP to the amino terminus of hTfR. Data were provided to demonstrate that hTfR-EGFP chimera was predominantly localized on the plasma membrane with some intracellular fluorescent structures on CHO cells and the EGFP moiety did not affect the endocytosis property of hTfR. Receptor internalization occurred similarly to that of HepG2 cells expressing wild-type hTfR. The internalization percentage of this chimeric receptor was about 81 ± 3% of wild type. Time-dependent co-localization of hTfR-EGFP and PE-conjugated anti-hTfR mAb in living cells demonstrated the trafficking of mAb-receptor complexes through the endosomes followed by segregation of part of the mAb and receptor at the late stages of endocytosis. The CHO-hTfR cells preferentially took up anti-hTfR mAb conjugated nanoparticles. This CHO-hTfR cell line makes it feasible for accurate evaluation and visualization of intracellular trafficking of therapeutic agents conjugated with transferrin or Abs targeting the hTfRs.

  6. Alpha-synuclein promotes clathrin-mediated endocytosis of NMDA receptors in dopaminergic cells

    Institute of Scientific and Technical Information of China (English)

    Shun Yu; Furong Cheng; Xin Li; Yaohua Li; Tao Wang; Guangwei Liu; Andrius Baskys

    2012-01-01

    Loss of dopaminergic i a compensatory increase in nput to the striatum associated with Parkinson' s disease brings about glutamate release onto the dopaminergic cell bodies in the substantia nigra pars compacta (SNpc)[1] Glutamate over-activation of NMDA receptors on these cells can cause excitotoxicity and contribute to their further loss. NMDA receptor-mediated neuronal death is reduced by group I mGluR-mediated up-regulation of endocytosis protein RAB5B[2.3] Among proteins shown to interact with RAB5 proteins is a-synuclein

  7. Role of coated vesicles, microfilaments, and calmodulin in receptor- mediated endocytosis by cultured B lymphoblastoid cells

    OpenAIRE

    1980-01-01

    Cell surface receptor IgM molecules of cultured human lymlphoblastoid cells (WiL2) patch and redistribute into a cap over the Golgi region of the cell after treatment with multivalent anti-IgM antibodies. During and after the redistribution, ligand-receptor clusters are endocytosed into coated pits and coated vesicles. Morphometric analysis of the distribution of ferritin-labeled ligand at EM resolution reveals the following sequence of events in the endocytosis of cell surface IgM: (a) bindi...

  8. Investigation of the receptor-mediated endocytosis of transcobalamin/intrinsic factor-vitamin B12 complexes

    DEFF Research Database (Denmark)

    Beedholm, Rasmus; Grissom, Charles B.; Fedosov, Sergey N.;

    receptor structure. This receptor is suggested to be regulated by the vitamin B12 level in the cells, which is interesting in relation to cancer growth. The cellular endocytosis of TC- B12 complex by this unknown receptor is being investigated, using confocal microscopy. Fluorescently labeled B12 molecules...

  9. Role of TARP interaction in S-SCAM-mediated regulation of AMPA receptors.

    Science.gov (United States)

    Danielson, Eric; Metallo, Jacob; Lee, Sang H

    2012-01-01

    Scaffolding proteins are involved in the incorporation, anchoring, maintenance, and removal of AMPA receptors (AMPARs) at synapses, either through a direct interaction with AMPARs or via indirect association through auxiliary subunits of transmembrane AMPAR regulatory proteins (TARPs). Synaptic scaffolding molecule (S-SCAM) is a newly characterized member of the scaffolding proteins critical for the regulation and maintenance of AMPAR levels at synapses, and directly binds to TARPs through a PDZ interaction. However, the functional significance of S-SCAM-TARP interaction in the regulation of AMPARs has not been tested. Here we show that overexpression of the C-terminal peptide of TARP-γ2 fused to EGFP abolished the S-SCAM-mediated enhancement of surface GluA2 expression. Conversely, the deletion of the PDZ-5 domain of S-SCAM that binds TARPs greatly attenuated the S-SCAM-induced increase of surface GluA2 expression. In contrast, the deletion of the guanylate kinase domain of S-SCAM did not show a significant effect on the regulation of AMPARs. Together, these results suggest that S-SCAM is regulating AMPARs through TARPs. PMID:22878254

  10. Shisa6 traps AMPA receptors at postsynaptic sites and prevents their desensitization during synaptic activity.

    Science.gov (United States)

    Klaassen, Remco V; Stroeder, Jasper; Coussen, Françoise; Hafner, Anne-Sophie; Petersen, Jennifer D; Renancio, Cedric; Schmitz, Leanne J M; Normand, Elisabeth; Lodder, Johannes C; Rotaru, Diana C; Rao-Ruiz, Priyanka; Spijker, Sabine; Mansvelder, Huibert D; Choquet, Daniel; Smit, August B

    2016-03-02

    Trafficking and biophysical properties of AMPA receptors (AMPARs) in the brain depend on interactions with associated proteins. We identify Shisa6, a single transmembrane protein, as a stable and directly interacting bona fide AMPAR auxiliary subunit. Shisa6 is enriched at hippocampal postsynaptic membranes and co-localizes with AMPARs. The Shisa6 C-terminus harbours a PDZ domain ligand that binds to PSD-95, constraining mobility of AMPARs in the plasma membrane and confining them to postsynaptic densities. Shisa6 expressed in HEK293 cells alters GluA1- and GluA2-mediated currents by prolonging decay times and decreasing the extent of AMPAR desensitization, while slowing the rate of recovery from desensitization. Using gene deletion, we show that Shisa6 increases rise and decay times of hippocampal CA1 miniature excitatory postsynaptic currents (mEPSCs). Shisa6-containing AMPARs show prominent sustained currents, indicating protection from full desensitization. Accordingly, Shisa6 prevents synaptically trapped AMPARs from depression at high-frequency synaptic transmission.

  11. Phosphorylation of AMPA receptors is required for sensory deprivation-induced homeostatic synaptic plasticity.

    Science.gov (United States)

    Goel, Anubhuti; Xu, Linda W; Snyder, Kevin P; Song, Lihua; Goenaga-Vazquez, Yamila; Megill, Andrea; Takamiya, Kogo; Huganir, Richard L; Lee, Hey-Kyoung

    2011-01-01

    Sensory experience, and the lack thereof, can alter the function of excitatory synapses in the primary sensory cortices. Recent evidence suggests that changes in sensory experience can regulate the synaptic level of Ca(2+)-permeable AMPA receptors (CP-AMPARs). However, the molecular mechanisms underlying such a process have not been determined. We found that binocular visual deprivation, which is a well-established in vivo model to produce multiplicative synaptic scaling in visual cortex of juvenile rodents, is accompanied by an increase in the phosphorylation of AMPAR GluR1 (or GluA1) subunit at the serine 845 (S845) site and the appearance of CP-AMPARs at synapses. To address the role of GluR1-S845 in visual deprivation-induced homeostatic synaptic plasticity, we used mice lacking key phosphorylation sites on the GluR1 subunit. We found that mice specifically lacking the GluR1-S845 site (GluR1-S845A mutants), which is a substrate of cAMP-dependent kinase (PKA), show abnormal basal excitatory synaptic transmission and lack visual deprivation-induced homeostatic synaptic plasticity. We also found evidence that increasing GluR1-S845 phosphorylation alone is not sufficient to produce normal multiplicative synaptic scaling. Our study provides concrete evidence that a GluR1 dependent mechanism, especially S845 phosphorylation, is a necessary pre-requisite step for in vivo homeostatic synaptic plasticity.

  12. Phosphorylation of AMPA receptors is required for sensory deprivation-induced homeostatic synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Anubhuti Goel

    Full Text Available Sensory experience, and the lack thereof, can alter the function of excitatory synapses in the primary sensory cortices. Recent evidence suggests that changes in sensory experience can regulate the synaptic level of Ca(2+-permeable AMPA receptors (CP-AMPARs. However, the molecular mechanisms underlying such a process have not been determined. We found that binocular visual deprivation, which is a well-established in vivo model to produce multiplicative synaptic scaling in visual cortex of juvenile rodents, is accompanied by an increase in the phosphorylation of AMPAR GluR1 (or GluA1 subunit at the serine 845 (S845 site and the appearance of CP-AMPARs at synapses. To address the role of GluR1-S845 in visual deprivation-induced homeostatic synaptic plasticity, we used mice lacking key phosphorylation sites on the GluR1 subunit. We found that mice specifically lacking the GluR1-S845 site (GluR1-S845A mutants, which is a substrate of cAMP-dependent kinase (PKA, show abnormal basal excitatory synaptic transmission and lack visual deprivation-induced homeostatic synaptic plasticity. We also found evidence that increasing GluR1-S845 phosphorylation alone is not sufficient to produce normal multiplicative synaptic scaling. Our study provides concrete evidence that a GluR1 dependent mechanism, especially S845 phosphorylation, is a necessary pre-requisite step for in vivo homeostatic synaptic plasticity.

  13. Fc receptor endocytosis is controlled by a cytoplasmic domain determinant that actively prevents coated pit localization

    OpenAIRE

    1992-01-01

    Macrophages and B-lymphocytes express two major isoforms of Fc receptor (FcRII-B2 and FcRII-B1) that exhibit distinct capacities for endocytosis. This difference in function reflects the presence of an in- frame insertion of 47 amino acids in the cytoplasmic domain of the lymphocyte isoform (FcRII-B1) due to alternative mRNA splicing. By expressing wild type and mutant FcRII cDNAs in fibroblasts, we have now examined the mechanism by which the insertion acts to prevent coated pit localization...

  14. MAGI-1 modulates AMPA receptor synaptic localization and behavioral plasticity in response to prior experience.

    Directory of Open Access Journals (Sweden)

    Lesley Emtage

    Full Text Available It is well established that the efficacy of synaptic connections can be rapidly modified by neural activity, yet how the environment and prior experience modulate such synaptic and behavioral plasticity is only beginning to be understood. Here we show in C. elegans that the broadly conserved scaffolding molecule MAGI-1 is required for the plasticity observed in a glutamatergic circuit. This mechanosensory circuit mediates reversals in locomotion in response to touch stimulation, and the AMPA-type receptor (AMPAR subunits GLR-1 and GLR-2, which are required for reversal behavior, are localized to ventral cord synapses in this circuit. We find that animals modulate GLR-1 and GLR-2 localization in response to prior mechanosensory stimulation; a specific isoform of MAGI-1 (MAGI-1L is critical for this modulation. We show that MAGI-1L interacts with AMPARs through the intracellular domain of the GLR-2 subunit, which is required for the modulation of AMPAR synaptic localization by mechanical stimulation. In addition, mutations that prevent the ubiquitination of GLR-1 prevent the decrease in AMPAR localization observed in previously stimulated magi-1 mutants. Finally, we find that previously-stimulated animals later habituate to subsequent mechanostimulation more rapidly compared to animals initially reared without mechanical stimulation; MAGI-1L, GLR-1, and GLR-2 are required for this change in habituation kinetics. Our findings demonstrate that prior experience can cause long-term alterations in both behavioral plasticity and AMPAR localization at synapses in an intact animal, and indicate a new, direct role for MAGI/S-SCAM proteins in modulating AMPAR localization and function in the wake of variable sensory experience.

  15. Drug-driven AMPA receptor redistribution mimicked by selective dopamine neuron stimulation.

    Directory of Open Access Journals (Sweden)

    Matthew T C Brown

    Full Text Available BACKGROUND: Addictive drugs have in common that they cause surges in dopamine (DA concentration in the mesolimbic reward system and elicit synaptic plasticity in DA neurons of the ventral tegmental area (VTA. Cocaine for example drives insertion of GluA2-lacking AMPA receptors (AMPARs at glutamatergic synapes in DA neurons. However it remains elusive which molecular target of cocaine drives such AMPAR redistribution and whether other addictive drugs (morphine and nicotine cause similar changes through their effects on the mesolimbic DA system. METHODOLOGY/PRINCIPAL FINDINGS: We used in vitro electrophysiological techniques in wild-type and transgenic mice to observe the modulation of excitatory inputs onto DA neurons by addictive drugs. To observe AMPAR redistribution, post-embedding immunohistochemistry for GluA2 AMPAR subunit was combined with electron microscopy. We also used a double-floxed AAV virus expressing channelrhodopsin together with a DAT Cre mouse line to selectively express ChR2 in VTA DA neurons. We find that in mice where the effect of cocaine on the dopamine transporter (DAT is specifically blocked, AMPAR redistribution was absent following administration of the drug. Furthermore, addictive drugs known to increase dopamine levels cause a similar AMPAR redistribution. Finally, activating DA VTA neurons optogenetically is sufficient to drive insertion of GluA2-lacking AMPARs, mimicking the changes observed after a single injection of morphine, nicotine or cocaine. CONCLUSIONS/SIGNIFICANCE: We propose the mesolimbic dopamine system as a point of convergence at which addictive drugs can alter neural circuits. We also show that direct activation of DA neurons is sufficient to drive AMPAR redistribution, which may be a mechanism associated with early steps of non-substance related addictions.

  16. ANTIDEPRESSANT-LIKE EFFECTS OF LOW KETAMINE DOSE IS ASSOCIATED WITH INCREASED HIPPOCAMPAL AMPA/NMDA RECEPTOR DENSITY RATIO IN FEMALE WISTAR-KYOTO RATS

    Science.gov (United States)

    Tizabi, Yousef; Bhatti, Babur H; Manaye, Kebreten F; Das, Jharna R; Akinfiresoye, Luli

    2012-01-01

    Preclinical as well as limited clinical studies indicate that ketamine, a non-competitive glutamate NMDA receptor antagonist, may exert a quick and prolonged antidepressant effect. It has been postulated that ketamine action is due to inhibition of NMDA and stimulation of AMPA receptors. Here, we sought to determine whether ketamine would exert antidepressant effects in Wistar-Kyoto (WKY) rats, a putative animal model of depression and whether this effect would be associated with changes in AMPA/NMDA receptor densities in the hippocampus. Adult female WKY rats and their control Wistar rats were subjected to acute and chronic ketamine doses and their locomotor activity (LMA) and immobility in the forced swim test (FST) were evaluated. Hippocampal AMPA and NMDA receptor densities were also measured following a chronic ketamine dose. Ketamine, both acutely (0.5–5.0 mg/kg ip) and chronically (0.5–2.5 mg/kg daily for 10 days) resulted in a dose-dependent and prolonged decrease in immobility in the FST in WKY rats only, suggesting an antidepressant-like effect in this model. Chronic treatment with an effective dose of ketamine also resulted in an increase in AMPA/NMDA receptor density ratio in the hippocampus of WKY rats. LMA was not affected by any ketamine treatment in either strain. These results indicate a rapid and lasting antidepressant-like effect of a low ketamine dose in WKY rat model of depression. Moreover, the increase in AMPA/NMDA receptor density in hippocampus could be a contributory factor to behavioral effects of ketamine. These findings suggest potential therapeutic benefit in simultaneous reduction of central NMDA and elevation of AMPA receptor function in treatment of depression. PMID:22521815

  17. Specific Endocytosis Blockade of Trypanosoma cruzi Exposed to a Poly-LAcNAc Binding Lectin Suggests that Lectin-Sugar Interactions Participate to Receptor-Mediated Endocytosis

    Science.gov (United States)

    Brosson, Sébastien; Fontaine, Frédéric; Vermeersch, Marjorie; Perez-Morga, David; Pays, Etienne; Bousbata, Sabrina; Salmon, Didier

    2016-01-01

    Trypanosoma cruzi is a protozoan parasite transmitted by a triatomine insect, and causing human Chagas disease in South America. This parasite undergoes a complex life cycle alternating between non-proliferative and dividing forms. Owing to their high energy requirement, replicative epimastigotes of the insect midgut display high endocytic activity. This activity is mainly restricted to the cytostome, by which the cargo is taken up and sorted through the endosomal vesicular network to be delivered to reservosomes, the final lysosomal-like compartments. In African trypanosomes tomato lectin (TL) and ricin, respectively specific to poly-N-acetyllactosamine (poly-LacNAc) and β-D-galactose, allowed the identification of giant chains of poly-LacNAc in N-glycoproteins of the endocytic pathway. We show that in T. cruzi epimastigote forms also, glycoproteins of the endocytic pathway are characterized by the presence of N-linked glycans binding to both ricin and TL. Affinity chromatography using both TL and Griffonia simplicifolia lectin II (GSLII), specific to non-reducing terminal residue of N-acetylglucosamine (GlcNAc), led to an enrichment of glycoproteins of the trypanosomal endocytic pathway. Incubation of live parasites with TL, which selectively bound to the cytostome/cytopharynx, specifically inhibited endocytosis of transferrin (Tf) but not dextran, a marker of fluid endocytosis. Taken together, our data suggest that N-glycan modification of endocytic components plays a crucial role in receptor-mediated endocytosis of T. cruzi. PMID:27685262

  18. Synthesis of AMPA Receptor Antagonist NS1209%AMPA受体拮抗剂NS1209的合成

    Institute of Scientific and Technical Information of China (English)

    杨海超; 葛敏

    2011-01-01

    A AMPA receptor antagonist, NS1209, was synthesized from 5-bromo-isoquinoline by a nine-step reaction in overall yield of 37.3%. The structure was confirmed by 1H NMR and MS.%以5-溴异喹啉为起始原料,经过9步反应合成了AMPA受体拮抗剂——NS1209,总产率37.3%,其结构经1H NMR和MS确证.

  19. Hypothermia rescues hippocampal CA1 neurons and attenuates down-regulation of the AMPA receptor GluR2 subunit after forebrain ischemia

    OpenAIRE

    Colbourne, Frederick; Grooms, Sonja Y.; Zukin, R. Suzanne; Buchan, Alastair M.; Bennett, Michael V. L.

    2003-01-01

    Brief forebrain ischemia in rodents induces selective and delayed neuronal death, particularly of hippocampal CA1 pyramidal neurons. Neuronal death is preceded by down-regulation specific to CA1 of GluR2, the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit that limits Ca2+ influx. This alteration is hypothesized to cause neurodegeneration by permitting a lethal influx of Ca2+ and/or Zn2+ through newly formed GluR2-lacking AMPA receptors. Two days of mild hypotherm...

  20. The nuclear architectural protein HMGA1a triggers receptor-mediated endocytosis.

    Science.gov (United States)

    Wu, Wuwei; Wan, Wei; Li, Alexander D Q

    2009-11-01

    High mobility group proteins A (HMGA), nuclear architectural factors, locate in the cell nuclei and mostly execute gene-regulation function. However, our results reveal that a HMGA member (HMGA1a) has a unique plasma membrane receptor; this receptor specifically binds to HMGA-decorated species, effectively mediates endocytosis, and internalizes extracellular HMGA-functionalized cargoes. Indeed, dyes or nanoparticles labeled with HMGA1a protein readily enter Hela cells. Using a stratagem chemical cross-linker, we covalently bonded the HMGA receptor to the HMGA1a-GFP fusion protein, thus capturing the plasma membrane receptor. Subsequent Western blots and SDS-PAGE gel revealed that the HMGA receptor is a 26-kDa protein. Confocal live-cell microscopic imaging was used to monitor the whole endocytic process, in which the internalized HMGA1a-decorated species are transported by motor proteins on microtubules and eventually arrive at the late endosomes/lysosomes. Cell viability assays also suggested that extracellular HMGA1a protein directly influences the survival ability of Hela cells in a dose-dependent manner, implying versatility of HMGA1a protein and its potent role to suppress cancer cell survivability and to regulate growth. PMID:19739099

  1. Polypeptide hormone receptor phosphorylation: is there a role in receptor-mediated endocytosis of human growth hormone

    International Nuclear Information System (INIS)

    To determine whether receptor phosphorylation is a critical step in the internalization of polypeptide hormones and their receptors, the authors have studied a model system wherein insulin stimulates phosphorylation of its receptor and is also internalized. Using insulin as a positive control, they found that it stimulated a partially purified plasma membrane preparation of IM-9 lymphocytes to autophosphorylate its receptor and to catalyze the phosphorylation of a tyrosine-containing substrate. The human GH (hGH) receptor of the IM-9 lymphocytes, when coupled to [125I]iodo-hGH, migrated as a 140,000-dalton protein on polyacrylamide gel electrophoresis. This protein, in contrast to the insulin receptor, was not phosphorylated by the addition of hGH, nor did hGH stimulate this preparation to phosphorylate the tyrosine-containing substrate poly-(GluNa,Tyr)4:1, casein, or histone f2b under a variety of conditions. The authors conclude that receptor phosphorylation is not a critical intermediate in the receptor-mediated endocytosis of hGH and probably other polypeptide hormones and growth factors

  2. Deficiency of Lipoprotein Lipase in Neurons Decreases AMPA Receptor Phosphorylation and Leads to Neurobehavioral Abnormalities in Mice.

    Directory of Open Access Journals (Sweden)

    Tian Yu

    Full Text Available Alterations in lipid metabolism have been found in several neurodegenerative disorders, including Alzheimer's disease. Lipoprotein lipase (LPL hydrolyzes triacylglycerides in lipoproteins and regulates lipid metabolism in multiple organs and tissues, including the central nervous system (CNS. Though many brain regions express LPL, the functions of this lipase in the CNS remain largely unknown. We developed mice with neuron-specific LPL deficiency that became obese on chow by 16 wks in homozygous mutant mice (NEXLPL-/- and 10 mo in heterozygous mice (NEXLPL+/-. In the present study, we show that 21 mo NEXLPL+/- mice display substantial cognitive function decline including poorer learning and memory, and increased anxiety with no difference in general motor activities and exploratory behavior. These neurobehavioral abnormalities are associated with a reduction in the 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl propanoic acid (AMPA receptor subunit GluA1 and its phosphorylation, without any alterations in amyloid β accumulation. Importantly, a marked deficit in omega-3 and omega-6 polyunsaturated fatty acids (PUFA in the hippocampus precedes the development of the neurobehavioral phenotype of NEXLPL+/- mice. And, a diet supplemented with n-3 PUFA can improve the learning and memory of NEXLPL+/- mice at both 10 mo and 21 mo of age. We interpret these findings to indicate that LPL regulates the availability of PUFA in the CNS and, this in turn, impacts the strength of synaptic plasticity in the brain of aging mice through the modification of AMPA receptor and its phosphorylation.

  3. The carboxyl terminus of human cytomegalovirus-encoded 7 transmembrane receptor US28 camouflages agonism by mediating constitutive endocytosis

    DEFF Research Database (Denmark)

    Waldhoer, Maria; Casarosa, Paola; Rosenkilde, Mette M;

    2003-01-01

    US28 is one of four 7 transmembrane (7TM) chemokine receptors encoded by human cytomegalovirus and has been shown to both signal and endocytose in a ligand-independent, constitutively active manner. Here we show that the constitutive activity and constitutive endocytosis properties of US28 are se...

  4. Role of AMPA and GluR5 kainate receptors in the development and expression of amygdala kindling in the mouse.

    Science.gov (United States)

    Rogawski, M A; Kurzman, P S; Yamaguchi, S I; Li, H

    2001-01-01

    The role of AMPA and GluR5-containing kainate receptors in the development and expression of amygdala kindling was examined using the selective 2,3-benzodiazepine AMPA receptor antagonist GYKI 52466 [(1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2, 3-benzodiazepine] and the decahydroisoquinoline mixed AMPA receptor and GluR5 kainate receptor antagonist LY293558 {(3S,4aR,6R, 8aR)-6-[2-(1(2)H-tetrazole-5-yl)ethyl]decahydroisoquinoline- 3-carboxy lic acid)}. Administration of GYKI 52466 (5-40 mg/kg, intraperitoneally) and LY293558 (10-40 mg/kg, intraperitoneally) prior to daily kindling stimulation in mice produced a dose-dependent suppression of the rate of development of behavioral kindled seizure activity and reduced the duration of the stimulation-induced electrographic afterdischarge. In drug-free stimulation sessions after the initial drug-treatment sessions, there was an acceleration in the rate of kindling development compared with the rate during the preceding drug-administration period; the "rebound" rate was also greater than the kindling rate in saline-treated control animals. In fully kindled animals, both GYKI 52466 and LY293558 produced a dose-dependent suppression of evoked seizures (ED(50), 19.3 and 16.7 mg/kg, respectively). Although AMPA receptors appear to be critical to the expression of kindled seizures, since kindling development progressed despite the suppression of behavioral seizure activity, AMPA receptors are less important to the kindling process. LY293558 was modestly less effective at suppressing behavioral seizures during kindling and was not superior to GYKI 52466 in retarding the overall extent of kindling development, indicating that GluR5 kainate receptors do not contribute to epileptogenesis in this model.

  5. Phenobarbital but not diazepam reduces AMPA/Kainate receptor mediated currents and exerts opposite actions on initial seizures in the neonatal rat hippocampus

    Directory of Open Access Journals (Sweden)

    Romain eNardou

    2011-07-01

    Full Text Available Diazepam (DZP and phenobarbital (PB are extensively used as first and second line drugs to treat acute seizures in neonates and their actions are thought to be mediated by increasing the actions of GABAergic signals. Yet, their efficacy is variable with occasional failure or even aggravation of recurrent seizures questioning whether other mechanisms are not involved in their actions. We have now compared the effects of DZP and PB on ictal-like events (ILEs in an in vitro model of mirror focus (MF. Using the three-compartment chamber with the two immature hippocampi and their commissural fibers placed in 3 different compartments, kainate was applied to one hippocampus and PB or DZP to the contralateral one, either after one ILE or after many recurrent ILEs that produce an epileptogenic MF. We report that in contrast to PB, DZP aggravated propagating ILEs from the start and did not prevent the formation of MF. PB reduced and DZP increased the network driven Giant Depolarising Potentials suggesting that PB may exert additional actions that are not mediated by GABA signalling. In keeping with this, PB but not DZP reduced field potentials recorded in the presence of GABA and NMDA receptor antagonists. These effects are mediated by a direct action on AMPA/Kainate receptors since PB: i reduced AMPA/Kainate receptor mediated currents induced by focal applications of glutamate ; ii reduced the amplitude and the frequency of AMPA but not NMDA receptor mediated miniature EPSCs; iii augmented the number of AMPA receptor mediated EPSCs failures evoked by minimal stimulation. These effects persisted in MF. Therefore, PB exerts its anticonvulsive actions partly by reducing AMPA/Kainate receptors mediated EPSCs in addition to the pro-GABA effects. We suggest that PB may have advantage over DZP in the treatment of initial neonatal seizures since the additional reduction of glutamate receptors mediated signals may reduce the severity of neonatal seizures.

  6. Endocytosis of pro-inflammatory cytokine receptors and its relevance for signal transduction.

    Science.gov (United States)

    Hermanns, Heike M; Wohlfahrt, Julia; Mais, Christine; Hergovits, Sabine; Jahn, Daniel; Geier, Andreas

    2016-08-01

    The pro-inflammatory cytokines tumor necrosis factor (TNF), interleukin-1 (IL-1) and interleukin-6 (IL-6) are key players of the innate and adaptive immunity. Their activity needs to be tightly controlled to allow the initiation of an appropriate immune response as defense mechanism against pathogens or tissue injury. Excessive or sustained signaling of either of these cytokines leads to severe diseases, including rheumatoid arthritis, inflammatory bowel diseases (Crohn's disease, ulcerative colitis), steatohepatitis, periodic fevers and even cancer. Studies carried out in the last 30 years have emphasized that an elaborate control system for each of these cytokines exists. Here, we summarize what is currently known about the involvement of receptor endocytosis in the regulation of these pro-inflammatory cytokines' signaling cascades. Particularly in the last few years it was shown that this cellular process is far more than a mere feedback mechanism to clear cytokines from the circulation and to shut off their signal transduction. PMID:27071147

  7. The overexpressed human 46-kDa mannose 6-phosphate receptor mediates endocytosis and sorting of β-glucuronidase

    International Nuclear Information System (INIS)

    The authors studied the function of the human small (46-kDa) mannose 6-phosphate receptor (SMPR) in transfected mouse L cells that do not express the larger insulin-like growth factor II/mannose 6-phosphate receptor. Cells overexpressing human SMPR were studied for enzyme binding to cell surface receptors, for binding to intracellular receptors in permeabilized cells, and for receptor-mediated endocytosis of recombinant human β-glucuronidase. Specific binding to human SMPR in permeabilized cells showed a pH optimum between pH 6.0 and pH 6.5. Binding was significant in the present of EDTA but was enhanced by added divalent cations. Up to 2.3% of the total functional receptor could be detected on the cell surface by enzyme binding. They present experiments showing that at very high levels of overexpression, and at pH 6.5, human SMPR mediated the endocytosis of β-glucuronidase. At pH 7.5, the rate of endocytosis was only 14% the rate seen at pH 6.5. Cells overexpressing human SMPR also showed reduced secretion of newly synthesized β-glucuronidase when compared to cells transfected with vector only, suggesting that overexpressed human SMPR can participate in sorting of newly synthesized β-glucuronidase and partially correct the sorting defect in mouse L cells that do not express the insulin-like growth factor II/mannose 6-phosphate receptor

  8. Intracellular Ca2+ and not the extracellular matrix determines surface dynamics of AMPA-type glutamate receptors on aspiny neurons

    Science.gov (United States)

    Klueva, Julia; Gundelfinger, Eckart D.; Frischknecht, R. Renato; Heine, Martin

    2014-01-01

    The perisynaptic extracellular matrix (ECM) contributes to the control of the lateral mobility of AMPA-type glutamate receptors (AMPARs) at spine synapses of principal hippocampal neurons. Here, we have studied the effect of the ECM on the lateral mobility of AMPARs at shaft synapses of aspiny interneurons. Single particle tracking experiments revealed that the removal of the hyaluronan-based ECM with hyaluronidase does not affect lateral receptor mobility on the timescale of seconds. Similarly, cross-linking with specific antibodies against the extracellular domain of the GluA1 receptor subunit, which affects lateral receptor mobility on spiny neurons, does not influence receptor mobility on aspiny neurons. AMPARs on aspiny interneurons are characterized by strong inward rectification indicating a significant fraction of Ca2+-permeable receptors. Therefore, we tested whether Ca2+ controls AMPAR mobility in these neurons. Application of the membrane-permeable Ca2+ chelator BAPTA-AM significantly increased the lateral mobility of GluA1-containing synaptic and extrasynaptic receptors. These data indicate that the perisynaptic ECM affects the lateral mobility differently on spiny and aspiny neurons. Although ECM structures on interneurons appear much more prominent, their influence on AMPAR mobility seems to be negligible at short timescales. PMID:25225098

  9. C-C chemokine receptor-7 mediated endocytosis of antibody cargoes into intact cells

    Directory of Open Access Journals (Sweden)

    Xavier eCharest-Morin

    2013-09-01

    Full Text Available The C-C chemokine receptor-7 (CCR7 is a G protein coupled receptor that has a role in leukocyte homing, but that is also expressed in aggressive tumor cells. Preclinical research supports that CCR7 is a valid target in oncology. In view of the increasing availability of therapeutic monoclonal antibodies that carry cytotoxic cargoes, we studied the feasibility of forcing intact cells to internalize known monoclonal antibodies by exploiting the cycle of endocytosis and recycling triggered by the CCR7 agonist CCL19. Firstly, an anti-CCR7 antibody (CD197; clone 150503 labeled surface recombinant CCR7 expressed in intact HEK 293a cells and the fluorescent antibody was internalized following CCL19 treatment. Secondly, a recombinant myc-tagged CCL19 construction was exploited along the anti-myc monoclonal antibody 4A6. The myc-tagged ligand was produced as a conditioned medium of transfected HEK 293a cells that contained the equivalent of 430 ng/ml of immunoreactive CCL19 (average value, ELISA determination. CCL19-myc, but not authentic CCL19, carried the fluorophore-labeled antibody 4A6 into other recipient cells that expressed recombinant CCR7 (microscopy, cytofluorometry. The immune complexes were apparent in endosomal structures, colocalized well with the small GTPase Rab5 and progressed toward Rab7-positive endosomes. A dominant negative form of Rab5 (GDP-locked inhibited this endocytosis. Further, endosomes in CCL19-myc- or CCL19-stimulated cells were positive for β-arrestin2, but rarely for β-arrestin1. Following treatment with CCL19-myc and the 4A6 antibody, the melanoma cell line A375 that expresses endogenous CCR7 was specifically stained using a secondary peroxidase-conjugated antibody. Agonist-stimulated CCR7 can transport antibody-based cargoes, with possible therapeutic applications in oncology.

  10. Importance of GluA1 subunit-containing AMPA glutamate receptors for morphine state-dependency.

    Directory of Open Access Journals (Sweden)

    Teemu Aitta-aho

    Full Text Available In state-dependency, information retrieval is most efficient when the animal is in the same state as it was during the information acquisition. State-dependency has been implicated in a variety of learning and memory processes, but its mechanisms remain to be resolved. Here, mice deficient in AMPA-type glutamate receptor GluA1 subunits were first conditioned to morphine (10 or 20 mg/kg s.c. during eight sessions over four days using an unbiased procedure, followed by testing for conditioned place preference at morphine states that were the same as or different from the one the mice were conditioned to. In GluA1 wildtype littermate mice the same-state morphine dose produced the greatest expression of place preference, while in the knockout mice no place preference was then detected. Both wildtype and knockout mice expressed moderate morphine-induced place preference when not at the morphine state (saline treatment at the test; in this case, place preference was weaker than that in the same-state test in wildtype mice. No correlation between place preference scores and locomotor activity during testing was found. Additionally, as compared to the controls, the knockout mice showed unchanged sensitization to morphine, morphine drug discrimination and brain regional μ-opioid receptor signal transduction at the G-protein level. However, the knockout mice failed to show increased AMPA/NMDA receptor current ratios in the ventral tegmental area dopamine neurons of midbrain slices after a single injection of morphine (10 mg/kg, s.c., sliced prepared 24 h afterwards, in contrast to the wildtype mice. The results indicate impaired drug-induced state-dependency in GluA1 knockout mice, correlating with impaired opioid-induced glutamate receptor neuroplasticity.

  11. Requirement of AMPA receptor stimulation for the sustained antidepressant activity of ketamine and LY341495 during the forced swim test in rats.

    Science.gov (United States)

    Koike, Hiroyuki; Chaki, Shigeyuki

    2014-09-01

    Ketamine, a non-competitive N-methyl-d-aspartate receptor antagonist, and group II metabotropic glutamate (mGlu2/3) receptor antagonists produce antidepressant effects in animal models of depression, which last for at least 24h, through the transient increase in glutamate release, leading to activation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptor. Both ketamine and an mGlu2/3 receptor antagonist reportedly increase the expression of GluR1, an AMPA receptor subunit, within 24h, which may account for the sustained enhancement of excitatory synaptic transmission following ketamine administration. However, whether the sustained increase in AMPA receptor-mediated synaptic transmission is associated with the antidepressant effects of ketamine and mGlu2/3 receptor antagonists has not yet been investigated. In the present study, to address this question, we tested whether AMPA receptor stimulation at 24h after a single injection of ketamine or an mGlu2/3 receptor antagonist, (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl)propanoic acid (LY341495) was necessary for the antidepressant effect of these compounds using a forced swim test in rats. A single injection of ketamine or LY341495 at 24h before the test significantly decreased the immobility time. An AMPA receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX), administered 30min prior to the test significantly and dose-dependently reversed the antidepressant effects of ketamine and LY341495, while NBQX itself had no effect on the immobility time. Our findings suggest that AMPA receptor stimulation at 24h after a single injection of ketamine or LY341495 is required to produce the anti-immobility effects of these compounds. Moreover, the present results provide additional evidence that an mGlu2/3 receptor antagonist may share some of neural mechanisms with ketamine to exert antidepressant effects.

  12. A new phenylalanine derivative acts as an antagonist at the AMPA receptor GluA2 and introduces partial domain closure

    DEFF Research Database (Denmark)

    Szymanska, Ewa; Frydenvang, Karla; Contreras-Sanz, Alberto;

    2011-01-01

    In order to map out molecular determinants for competitive blockade of AMPA receptor subtypes, a series of 2-carboxyethylphenylalanine derivatives has been synthesized and pharmacologically characterized in vitro. One compound in this series, (RS)-3h, showed micromolar affinity for GluA1(o) and G...

  13. Duffy antigen receptor for chemokines mediates chemokine endocytosis through a macropinocytosis-like process in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Yani Zhao

    Full Text Available The Duffy antigen receptor for chemokines (DARC shows high affinity binding to multiple inflammatory CC and CXC chemokines and is expressed by erythrocytes and endothelial cells. Recent evidence suggests that endothelial DARC facilitates chemokine transcytosis to promote neutrophil recruitment. However, the mechanism of chemokine endocytosis by DARC remains unclear.We investigated the role of several endocytic pathways in DARC-mediated ligand internalization. Here we report that, although DARC co-localizes with caveolin-1 in endothelial cells, caveolin-1 is dispensable for DARC-mediated (125I-CXCL1 endocytosis as knockdown of caveolin-1 failed to inhibit ligand internalization. (125I-CXCL1 endocytosis by DARC was also independent of clathrin and flotillin-1 but required cholesterol and was, in part, inhibited by silencing Dynamin II expression.(125I-CXCL1 endocytosis was inhibited by amiloride, cytochalasin D, and the PKC inhibitor Gö6976 whereas Platelet Derived Growth Factor (PDGF enhanced ligand internalization through DARC. The majority of DARC-ligand interactions occurred on the endothelial surface, with DARC identified along plasma membrane extensions with the appearance of ruffles, supporting the concept that DARC provides a high affinity scaffolding function for surface retention of chemokines on endothelial cells.These results show DARC-mediated chemokine endocytosis occurs through a macropinocytosis-like process in endothelial cells and caveolin-1 is dispensable for CXCL1 internalization.

  14. Lipid raft-dependent FcepsilonRI ubiquitination regulates receptor endocytosis through the action of ubiquitin binding adaptors.

    Directory of Open Access Journals (Sweden)

    Rosa Molfetta

    Full Text Available The best characterized role for ubiquitination of membrane receptors is to negatively regulate signaling by targeting receptors for lysosomal degradation. The high affinity receptor for IgE (FcepsilonRI expressed on mast cells and basophils is rapidly ubiquitinated upon antigen stimulation. However, the nature and the role of this covalent modification are still largelly unknown. Here, we show that FcepsilonRI subunits are preferentially ubiquitinated at multiple sites upon stimulation, and provide evidence for a role of ubiquitin as an internalization signal: under conditions of impaired receptor ubiquitination a decrease of receptor entry is observed by FACS analysis and fluorescence microscopy. We also used biochemical approaches combined with fluorescence microscopy, to demonstrate that receptor endocytosis requires the integrity of specific membrane domains, namely lipid rafts. Additionally, by RNA interference we demonstrate the involvement of ubiquitin-binding endocytic adaptors in FcepsilonRI internalization and sorting. Notably, the triple depletion of Eps15, Eps15R and Epsin1 negatively affects the early steps of Ag-induced receptor endocytosis, whereas Hrs depletion retains ubiquitinated receptors into early endosomes and partially prevents their sorting into lysosomes for degradation. Our results are compatible with a scenario in which the accumulation of engaged receptor subunits into lipid rafts is required for receptor ubiquitination, a prerequisite for efficient receptor internalization, sorting and delivery to a lysosomal compartment.

  15. Anti-AMPA-Receptor Encephalitis Presenting as a Rapid-Cycling Bipolar Disorder in a Young Woman with Turner Syndrome.

    Science.gov (United States)

    Quaranta, Giuseppe; Maremmani, Angelo Giovanni Icro; Perugi, Giulio

    2015-01-01

    Background. Autoimmune encephalitis is a disorder characterised by the subacute onset of seizures, short-term memory loss, and psychiatric and behavioural symptoms. Initially, it was recognised as a paraneoplastic disorder, but recently a subgroup of patients without systemic cancer was identified. Case Description. We describe a 20-year-old woman with Turner syndrome presenting with a treatment-resistant rapid cycling bipolar disorder with cognitive impairment. She was diagnosed with anti-AMPA-receptor encephalitis. She showed marked improvement after starting memantine and valproic acid. Conclusion. This case description emphasises the importance of timely recognition of autoimmune limbic encephalitis in patients with psychiatric manifestations and a possible predisposition to autoimmune conditions, in order to rule out malignancy and to quickly initiate treatment. PMID:26495149

  16. Anti-AMPA-Receptor Encephalitis Presenting as a Rapid-Cycling Bipolar Disorder in a Young Woman with Turner Syndrome

    Directory of Open Access Journals (Sweden)

    Giuseppe Quaranta

    2015-01-01

    Full Text Available Background. Autoimmune encephalitis is a disorder characterised by the subacute onset of seizures, short-term memory loss, and psychiatric and behavioural symptoms. Initially, it was recognised as a paraneoplastic disorder, but recently a subgroup of patients without systemic cancer was identified. Case Description. We describe a 20-year-old woman with Turner syndrome presenting with a treatment-resistant rapid cycling bipolar disorder with cognitive impairment. She was diagnosed with anti-AMPA-receptor encephalitis. She showed marked improvement after starting memantine and valproic acid. Conclusion. This case description emphasises the importance of timely recognition of autoimmune limbic encephalitis in patients with psychiatric manifestations and a possible predisposition to autoimmune conditions, in order to rule out malignancy and to quickly initiate treatment.

  17. Anti-AMPA-Receptor Encephalitis Presenting as a Rapid-Cycling Bipolar Disorder in a Young Woman with Turner Syndrome

    Science.gov (United States)

    Quaranta, Giuseppe; Maremmani, Angelo Giovanni Icro; Perugi, Giulio

    2015-01-01

    Background. Autoimmune encephalitis is a disorder characterised by the subacute onset of seizures, short-term memory loss, and psychiatric and behavioural symptoms. Initially, it was recognised as a paraneoplastic disorder, but recently a subgroup of patients without systemic cancer was identified. Case Description. We describe a 20-year-old woman with Turner syndrome presenting with a treatment-resistant rapid cycling bipolar disorder with cognitive impairment. She was diagnosed with anti-AMPA-receptor encephalitis. She showed marked improvement after starting memantine and valproic acid. Conclusion. This case description emphasises the importance of timely recognition of autoimmune limbic encephalitis in patients with psychiatric manifestations and a possible predisposition to autoimmune conditions, in order to rule out malignancy and to quickly initiate treatment. PMID:26495149

  18. Receptor-mediated endocytosis of lysozyme in renal proximal tubules of the frog Rana temporaria

    Directory of Open Access Journals (Sweden)

    E.V. Seliverstova

    2015-04-01

    Full Text Available The mechanism of protein reabsorption in the kidney of lower vertebrates remains insufficiently investigated in spite of raising interest to the amphibian and fish kidneys as a useful model for physiological and pathophysiological examinations. In the present study, we examined the renal tubular uptake and the internalization rote of lysozyme after its intravenous injection in the wintering frog Rana temporaria using immunohisto- and immunocytochemistry and specific markers for some endocytic compartments. The distinct expression of megalin and cubilin in the proximal tubule cells of lysozyme-injected frogs was revealed whereas kidney tissue of control animals showed no positive immunoreactivity. Lysozyme was detected in the apical endocytic compartment of the tubular cells and colocalized with clathrin 10 min after injection. After 20 min, lysozyme was located in the subapical compartment negative to clathrin (endosomes, and intracellular trafficking of lysozyme was coincided with the distribution of megalin and cubilin. However, internalized protein was retained in the endosomes and did not reach lysosomes within 30 min after treatment that may indicate the inhibition of intracellular trafficking in hibernating frogs. For the first time, we provided the evidence that lysozyme is filtered through the glomeruli and absorbed by receptor-mediated clathrin-dependent endocytosis in the frog proximal tubule cells. Thus, the protein uptake in the amphibian mesonephros is mediated by megalin and cubilin that confirms a critical role of endocytic receptors in the renal reabsorption of proteins in amphibians as in mammals.

  19. Resolution, configurational assignment, and enantiopharmacology of 2-amino-3-[3-hydroxy-5-(2-methyl-2H- tetrazol-5-yl)isoxazol-4-yl]propionic acid, a potent GluR3- and GluR4-preferring AMPA receptor agonist

    DEFF Research Database (Denmark)

    Vogensen, S B; Jensen, H S; Stensbøl, T B;

    2000-01-01

    We have previously shown that (RS)-2-amino-3-[3-hydroxy-5-(2-methyl-2H-tetrazol-5-yl)isoxazol -4-yl] propionic acid (2-Me-Tet-AMPA) is a selective agonist at (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors, markedly more potent than AMPA itself, whereas the isomeric...

  20. The Prefrontal Dectin-1/AMPA Receptor Signaling Pathway Mediates The Robust and Prolonged Antidepressant Effect of Proteo-β-Glucan from Maitake

    Science.gov (United States)

    Bao, Hongkun; Ran, Pengzhan; Zhu, Ming; Sun, Lijuan; Li, Bai; Hou, Yangyang; Nie, Jun; Shan, Liping; Li, Hongliang; Zheng, Shangyong; Xu, Xiufeng; Xiao, Chunjie; Du, Jing

    2016-01-01

    Proteo-β-glucan from Maitake (PGM) is a strong immune regulator, and its receptor is called Dectin-1. Cumulative evidence suggests that AMPA receptors are important for the treatment of depression. Here, we report that PGM treatment leads to a significant antidepressant effect in the tail suspension test and forced swim test after sixty minutes of treatment in mice. After five consecutive days of PGM treatment, this antidepressant effect remained. PGM treatment did not show a hyperactive effect in the open field test. PGM significantly enhanced the expression of its receptor Dectin-1, as well as p-GluA1(S845) and GluA1, but not GluA2 or GluA3 in the prefrontal cortex (PFC) after five days of treatment. The Dectin-1 inhibitor Laminarin was able to block the antidepressant effect of PGM. At the synapses of PFC, PGM treatment significantly up-regulated the p-GluA1(S845), GluA1, GluA2, and GluA3 levels. Moreover, PGM’s antidepressant effects and the increase of p-GluA1(S845)/GluA1 lasted for 3 days after stopping treatment. The AMPA-specific antagonist GYKI 52466 was able to block the antidepressant effect of PGM. This study identified PGM as a novel antidepressant with clinical potential and a new antidepressant mechanism for regulating prefrontal Dectin-1/AMPA receptor signalling. PMID:27329257

  1. Estudio computacional de las relaciones evolutivas de los receptores ionotrópicos NMDA, AMPA y kainato en cuatro especies de primates

    Directory of Open Access Journals (Sweden)

    Francy Johanna Moreno-Pedraza

    2010-12-01

    Full Text Available Computational study of the evolutionary relationships of the ionotropic receptors NMDA, AMPA and kainate in four species ofprimates. Objective. To identify the influence of changes on the secondary structure and evolutionary relationship of NMDA, AMPA andkainate receptors in Homo sapiens, Pan troglodytes, Pongo pygmaeus and Macaca mulatta. Materials and methods. We identified 91sequences for NMDA, AMPA and kainate receptors and analyzed with software for predicting secondary structure, phosphorylation sites,multiple alignments, selection of protein evolution models and phylogenetic prediction. Results. We found that subunits GLUR5, NR2A,NR2C and NR3A showed structural changes in the C-terminal region and formation or loss of phosphorylation sites in this zone.Additionally the phylogenetic prediction suggests that the NMDA NR2 subunits are the closest to the ancestral node that gives rise to theother subunits. Conclusions. Changes in structure and phosphorylation sites in GLUR5, NR2A, NR2C and NR3A subunits suggestvariations in the interaction of the C-terminal region with kinase proteins and with proteins with PDZ domains, which could affect thetrafficking and anchoring of the subunits. On the other hand, the phylogenetic prediction suggests that the changes that occurred in the NR2subunits gave rise to the other subunits of glutamate ionotropic receptors, primarily because the NMDA and particularly the NR2D subunitsare the most closely related to the ancestral node that possibly gave rise to the iGluRs.

  2. Alteration of AMPA Receptor-Mediated Synaptic Transmission by Alexa Fluor 488 and 594 in Cerebellar Stellate Cells.

    Science.gov (United States)

    Maroteaux, Matthieu; Liu, Siqiong June

    2016-01-01

    The fluorescent dyes, Alexa Fluor 488 and 594 are commonly used to visualize dendritic structures and the localization of synapses, both of which are critical for the spatial and temporal integration of synaptic inputs. However, the effect of the dyes on synaptic transmission is not known. Here we investigated whether Alexa Fluor dyes alter the properties of synaptic currents mediated by two subtypes of AMPA receptors (AMPARs) at cerebellar stellate cell synapses. In naive mice, GluA2-lacking AMPAR-mediated synaptic currents displayed an inwardly rectifying current-voltage (I-V) relationship due to blockade by cytoplasmic spermine at depolarized potentials. We found that the inclusion of 100 µm Alexa Fluor dye, but not 10 µm, in the pipette solution led to a gradual increase in the amplitude of EPSCs at +40 mV and a change in the I-V relationship from inwardly rectifying to more linear. In mice exposed to an acute stress, AMPARs switched to GluA2-containing receptors, and 100 µm Alexa Fluor 594 did not alter the I-V relationship of synaptic currents. Therefore, a high concentration of Alexa Fluor dye changed the I-V relationship of EPSCs at GluA2-lacking AMPAR synapses.

  3. Alteration of AMPA Receptor-Mediated Synaptic Transmission by Alexa Fluor 488 and 594 in Cerebellar Stellate Cells.

    Science.gov (United States)

    Maroteaux, Matthieu; Liu, Siqiong June

    2016-01-01

    The fluorescent dyes, Alexa Fluor 488 and 594 are commonly used to visualize dendritic structures and the localization of synapses, both of which are critical for the spatial and temporal integration of synaptic inputs. However, the effect of the dyes on synaptic transmission is not known. Here we investigated whether Alexa Fluor dyes alter the properties of synaptic currents mediated by two subtypes of AMPA receptors (AMPARs) at cerebellar stellate cell synapses. In naive mice, GluA2-lacking AMPAR-mediated synaptic currents displayed an inwardly rectifying current-voltage (I-V) relationship due to blockade by cytoplasmic spermine at depolarized potentials. We found that the inclusion of 100 µm Alexa Fluor dye, but not 10 µm, in the pipette solution led to a gradual increase in the amplitude of EPSCs at +40 mV and a change in the I-V relationship from inwardly rectifying to more linear. In mice exposed to an acute stress, AMPARs switched to GluA2-containing receptors, and 100 µm Alexa Fluor 594 did not alter the I-V relationship of synaptic currents. Therefore, a high concentration of Alexa Fluor dye changed the I-V relationship of EPSCs at GluA2-lacking AMPAR synapses. PMID:27280156

  4. S-SCAM/MAGI-2 is an essential synaptic scaffolding molecule for the GluA2-containing maintenance pool of AMPA receptors

    OpenAIRE

    Danielson, Eric; Zhang, Nanyan; Metallo, Jacob; Kaleka, Kanwardeep; Shin, Seung Min; Gerges, Nashaat; Lee, Sang H.

    2012-01-01

    Synaptic plasticity, the cellular basis of learning and memory, involves the dynamic trafficking of AMPA receptors (AMPARs) into and out of synapses. One of the remaining key unanswered aspects of AMPAR trafficking is the mechanism by which synaptic strength is preserved in spite of protein turnover. In particular, the identity of AMPAR scaffolding molecule(s) involved in the maintenance of GluA2-containing AMPARs is completely unknown. Here we report that Synaptic scaffolding molecule (S-SCA...

  5. Caloric Restriction Eliminates the Aging-related Declines of NMDA and AMPA Receptor Subunits in the Rat Hippocampus and Induces Homeostasis

    OpenAIRE

    Shi, Lei; Adams, Michelle M.; Linville, M. Constance; Newton, Isabel G.; Forbes, M. Elizabeth; Long, Ashley; Riddle, David R.; Brunso-Bechtold, Judy K.

    2007-01-01

    Caloric restriction (CR) extends lifespan and ameliorates the aging-related decline in hippocampal-dependent cognitive function. In the present study, we compared subunit levels of NMDA and AMPA types of the glutamate receptor and quantified total synapses and multiple spine bouton (MSB) synapses in hippocampal CA1 from young (10 months), middle-aged (18 months), and old (29 months) Fischer 344 x Brown Norway rats that were ad libitum (AL) fed or caloric restricted (CR) from 4 months of age. ...

  6. Alteration of AMPA Receptor-Mediated Synaptic Transmission by Alexa Fluor 488 and 594 in Cerebellar Stellate Cells1 2 3

    OpenAIRE

    Maroteaux, Matthieu; Liu, Siqiong June

    2016-01-01

    Abstract The fluorescent dyes, Alexa Fluor 488 and 594 are commonly used to visualize dendritic structures and the localization of synapses, both of which are critical for the spatial and temporal integration of synaptic inputs. However, the effect of the dyes on synaptic transmission is not known. Here we investigated whether Alexa Fluor dyes alter the properties of synaptic currents mediated by two subtypes of AMPA receptors (AMPARs) at cerebellar stellate cell synapses. In naive mice, GluA...

  7. Post-transcriptional mechanisms of regulation of AMPA receptors : regulation of GluA1 expression by the contactin associated protein 1

    OpenAIRE

    Fernandes, Dominique Moreira

    2011-01-01

    No sistema nervoso central, a maior parte da neurotransmissão excitatória é mediada por receptores de glutamato do tipo AMPA que possuem papéis fundamentais na plasticidade sináptica, o fenómeno celular na base de processos de aprendizagem e memória. Modificações no tráfego destes receptores e na sua inserção ao nível das sinapses, bem como na estabilidade do RNA mensageiro das subunidades dos receptores ou no seu decaimento, são cruciais para induzir alterações de longo prazo ...

  8. Dynamic Regulation of N-Methyl-d-aspartate (NMDA) and α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors by Posttranslational Modifications.

    Science.gov (United States)

    Lussier, Marc P; Sanz-Clemente, Antonio; Roche, Katherine W

    2015-11-27

    Many molecular mechanisms underlie the changes in synaptic glutamate receptor content that are required by neuronal networks to generate cellular correlates of learning and memory. During the last decade, posttranslational modifications have emerged as critical regulators of synaptic transmission and plasticity. Notably, phosphorylation, ubiquitination, and palmitoylation control the stability, trafficking, and synaptic expression of glutamate receptors in the central nervous system. In the current review, we will summarize some of the progress made by the neuroscience community regarding our understanding of phosphorylation, ubiquitination, and palmitoylation of the NMDA and AMPA subtypes of glutamate receptors. PMID:26453298

  9. Intracellular receptor sorting during endocytosis: Comparative immunoelectron microscopy of multiple receptors in rat liver

    NARCIS (Netherlands)

    Slot, J.W.; Geuze, H.J.; Strous, G.J.A.M.; Peppard, J.; Figura, K. von; Hasilik, A.; Schwartz, A.L.

    1984-01-01

    Using double-label quantitative immunoelectron microscopy on ultrathin cryosections of rat liver, we have compared the endocytotic pathways of the receptors for asialoglycoprotein (ASGP-R), mannose-6-phosphate ligands (MP-R), and polymeric IgA (IgA-R). All three were found within the Golgi complex,

  10. Activation of AMPA receptor promotes TNF-α release via the ROS-cSrc-NFκB signaling cascade in RAW264.7 macrophages

    International Nuclear Information System (INIS)

    The relationship between glutamate signaling and inflammation has not been well defined. This study aimed to investigate the role of AMPA receptor (AMPAR) in the expression and release of tumor necrosis factor-alpha (TNF-α) from macrophages and the underlying mechanisms. A series of approaches, including confocal microscopy, immunofluorescency, flow cytometry, ELISA and Western blotting, were used to estimate the expression of AMPAR and downstream signaling molecules, TNF-α release and reactive oxygen species (ROS) generation in the macrophage-like RAW264.7 cells. The results demonstrated that AMPAR was expressed in RAW264.7 cells. AMPA significantly enhanced TNF-α release from RAW264.7 cells, and this effect was abolished by CNQX (AMPAR antagonist). AMPA also induced elevation of ROS production, phosphorylation of c-Src and activation of nuclear factor (NF)-κB in RAW264.7 cells. Blocking c-Src by PP2, scavenging ROS by glutathione (GSH) or inhibiting NF-κB activation by pyrrolidine dithiocarbamate (PDTC) decreased TNF-α production from RAW264.7 cells. We concluded that AMPA promotes TNF-α release in RAW264.7 macrophages likely through the following signaling cascade: AMPAR activation → ROS generation → c-Src phosphorylation → NF-κB activation → TNF-α elevation. The study suggests that AMPAR may participate in macrophage activation and inflammation. - Highlights: • AMPAR is expressed in RAW264.7 macrophages and is upregulated by AMPA stimulation. • Activation of AMPAR stimulates TNF-α release in macrophages through the ROS-cSrc-NFκB signaling cascade. • Macrophage AMPAR signaling may play an important role in inflammation

  11. Activation of AMPA receptor promotes TNF-α release via the ROS-cSrc-NFκB signaling cascade in RAW264.7 macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xiu-Li [Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing (China); Ding, Fan [Office of Scientific R& D, Tsinghua University, Beijing (China); Li, Hui; Tan, Xiao-Qiu [Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing (China); Liu, Xiao [Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing (China); Cao, Ji-Min, E-mail: caojimin@126.com [Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing (China); Gao, Xue, E-mail: longlongnose@163.com [Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing (China)

    2015-05-29

    The relationship between glutamate signaling and inflammation has not been well defined. This study aimed to investigate the role of AMPA receptor (AMPAR) in the expression and release of tumor necrosis factor-alpha (TNF-α) from macrophages and the underlying mechanisms. A series of approaches, including confocal microscopy, immunofluorescency, flow cytometry, ELISA and Western blotting, were used to estimate the expression of AMPAR and downstream signaling molecules, TNF-α release and reactive oxygen species (ROS) generation in the macrophage-like RAW264.7 cells. The results demonstrated that AMPAR was expressed in RAW264.7 cells. AMPA significantly enhanced TNF-α release from RAW264.7 cells, and this effect was abolished by CNQX (AMPAR antagonist). AMPA also induced elevation of ROS production, phosphorylation of c-Src and activation of nuclear factor (NF)-κB in RAW264.7 cells. Blocking c-Src by PP2, scavenging ROS by glutathione (GSH) or inhibiting NF-κB activation by pyrrolidine dithiocarbamate (PDTC) decreased TNF-α production from RAW264.7 cells. We concluded that AMPA promotes TNF-α release in RAW264.7 macrophages likely through the following signaling cascade: AMPAR activation → ROS generation → c-Src phosphorylation → NF-κB activation → TNF-α elevation. The study suggests that AMPAR may participate in macrophage activation and inflammation. - Highlights: • AMPAR is expressed in RAW264.7 macrophages and is upregulated by AMPA stimulation. • Activation of AMPAR stimulates TNF-α release in macrophages through the ROS-cSrc-NFκB signaling cascade. • Macrophage AMPAR signaling may play an important role in inflammation.

  12. Mutations in ionotropic AMPA receptor 3 alter channel properties and are associated with moderate cognitive impairment in humans.

    Science.gov (United States)

    Wu, Ye; Arai, Amy C; Rumbaugh, Gavin; Srivastava, Anand K; Turner, Gillian; Hayashi, Takashi; Suzuki, Erika; Jiang, Yuwu; Zhang, Lilei; Rodriguez, Jayson; Boyle, Jackie; Tarpey, Patrick; Raymond, F Lucy; Nevelsteen, Joke; Froyen, Guy; Stratton, Mike; Futreal, Andy; Gecz, Jozef; Stevenson, Roger; Schwartz, Charles E; Valle, David; Huganir, Richard L; Wang, Tao

    2007-11-13

    Ionotropic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (iGluRs) mediate the majority of excitatory synaptic transmission in the CNS and are essential for the induction and maintenance of long-term potentiation and long-term depression, two cellular models of learning and memory. We identified a genomic deletion (0.4 Mb) involving the entire GRIA3 (encoding iGluR3) by using an X-array comparative genomic hybridization (CGH) and four missense variants (G833R, M706T, R631S, and R450Q) in functional domains of iGluR3 by sequencing 400 males with X-linked mental retardation (XLMR). Three variants were found in males with moderate MR and were absent in 500 control males. Expression studies in HEK293 cells showed that G833R resulted in a 78% reduction of iGluR3 due to protein misfolding. Whole-cell recording studies of iGluR3 homomers in HEK293 cells revealed that neither iGluR3-M706T (S2 domain) nor iGluR3-R631S (near channel core) had substantial channel function, whereas R450Q (S1 domain) was associated with accelerated receptor desensitization. When forming heteromeric receptors with iGluR2 in HEK293 cells, all four iGluR3 variants had altered desensitization kinetics. Our study provides the genetic and functional evidence that mutant iGluR3 with altered kinetic properties is associated with moderate cognitive impairment in humans.

  13. Embryonic expression of zebrafish AMPA receptor genes: zygotic gria2alpha expression initiates at the midblastula transition.

    Science.gov (United States)

    Lin, Wei-Hsiang; Wu, Chan-Hwa; Chen, Yu-Chia; Chow, Wei-Yuan

    2006-09-19

    The AMPA-preferring receptors (AMPARs) mediate rapid excitatory synaptic transmission in the central nervous system of vertebrates. Expression profiles of 8 AMPAR genes were studied by RT-PCR analyses to elucidate the properties of AMPARs during early zebrafish development. Transcripts of all AMPAR genes are detected at the time of fertilization, suggesting maternal transcriptions of zebrafish AMPAR genes. The amounts of gria1 and gria2 transcripts are several-fold higher than that of gria3 and gria4 between 10 and 72 hpf (hour postfertilization). The edited gria2alpha transcript decreases during gastrulation period, suggesting that zygotic expression of gria2alpha begins around the time of midblastula transition. Relative to the amount of beta-actin, the amounts of AMPAR transcripts increase significantly after the completion of neurulation. The amounts of gria2 transcripts exceed the total amounts of the remaining AMPAR transcripts after 36 hpf, suggesting increases in the representation of low Ca2+ permeable AMPARs during neuronal maturation. Many but not all of the known mammalian protein-protein interaction motifs are preserved in the C-terminal domains (CTD) of zebrafish AMPARs. Before 16 hpf, the embryos express predominantly the alternative splice forms encoding longer CTD. Representations of the short CTD splice forms of gria2 and gria4alpha increase after 24 hpf, when neurulation is nearly completed.

  14. Synthetic and endogenous cannabinoids protect retinal neurons from AMPA excitotoxicity in vivo, via activation of CB1 receptors: Involvement of PI3K/Akt and MEK/ERK signaling pathways.

    Science.gov (United States)

    Kokona, Despina; Thermos, Kyriaki

    2015-07-01

    Cannabinoids have been suggested to protect retinal ganglion cells in different models of toxicity, but their effects on other retinal neurons are poorly known. We investigated the neuroprotective actions of the endocannabinoid N-arachidonoyl ethanolamine (Anandamide/AEA) and the synthetic cannabinoids R1-Methanandamide (MethAEA) and HU-210, in an in vivo retinal model of AMPA excitotoxicity, and the mechanisms involved in the neuroprotection. Sprague-Dawley rats were intravitreally injected with PBS or AMPA in the absence or presence of the cannabinoid agonists. Brain nitric oxide synthase (bNOS) and choline acetyltransferase (ChAT) immunoreactivity (IR), as well as TUNEL staining, assessed the AMPA-induced retinal amacrine cell loss and the dose-dependent neuroprotection afforded by cannabinoids. The CB1 receptor selective antagonist AM251 and the PI3K/Akt inhibitor wortmannin reversed the cannabinoid-induced neuroprotection, suggesting the involvement of CB1 receptors and the PI3K/Akt pathway in cannabinoids' actions. Experiments with the CB2 agonist JWH015 and [(3)H]CP55940 radioligand binding suggested that the CB2 receptor is not involved in the neuroprotection. AEA and HU-210 induced phosphorylation of Akt but only AEA induced phosphorylation of ERK1/2 kinases, as revealed by western blot analysis. To investigate the role of caspase-3 in the AMPA-induced cell death, the caspase-3 inhibitor Z-DEVD-FMK was co-injected with AMPA. Z-DEVD-FMK had no effect on AMPA excitotoxicity. Moreover, no difference was observed in the phosphorylation of SAPK/JNK kinases between PBS- and AMPA-treated retinas. These results suggest that endogenous and synthetic cannabinoids protect retinal amacrine neurons from AMPA excitotoxicity in vivo via a mechanism involving the CB1 receptors, and the PI3K/Akt and/or MEK/ERK1/2 signaling pathways.

  15. Differential expression of postsynaptic NMDA and AMPA receptor subunits in the hippocampus and prefrontal cortex of the flinders sensitive line rat model of depression.

    Science.gov (United States)

    Treccani, Giulia; Gaarn du Jardin, Kristian; Wegener, Gregers; Müller, Heidi Kaastrup

    2016-11-01

    Glutamatergic abnormalities have recently been implicated in the pathophysiology of depression, and the ionotropic glutamate receptors in particular have been suggested as possible underlying molecular determinants. The Flinders Sensitive Line (FSL) rats constitute a validated model of depression with dysfunctional regulation of glutamate transmission relatively to their control strain Flinders Resistant Line (FRL). To gain insight into how signaling through glutamate receptors may be altered in the FSL rats, we investigated the expression and phosphorylation of AMPA and NMDA receptor subunits in an enriched postsynaptic fraction of the hippocampus and prefrontal cortex. Compared to the hippocampal postsynaptic fractions of FRL rats, FSL rats exhibited decreased and increased levels of the NMDA receptor subunits GluN2A and GluN2B, respectively, causing a lower ratio of GluN2A/GluN2B. The GluA2/GluA3 AMPA receptor subunit ratio was significantly decreased while the expression of the individual GluA1, GluA2, and GluA3 subunits were unaltered including phosphorylation levels of GluA1 at S831 and S845. There were no changes in the prefrontal cortex. These results support altered expression of postsynaptic glutamate receptors in the hippocampus of FSL rats, which may contribute to the depressive-like phenotype of these rats. PMID:27262028

  16. Cis and trans regulatory mechanisms control AP2-mediated B cell receptor endocytosis via select tyrosine-based motifs.

    Directory of Open Access Journals (Sweden)

    Kathleen Busman-Sahay

    Full Text Available Following antigen recognition, B cell receptor (BCR-mediated endocytosis is the first step of antigen processing and presentation to CD4+ T cells, a crucial component of the initiation and control of the humoral immune response. Despite this, the molecular mechanism of BCR internalization is poorly understood. Recently, studies of activated B cell-like diffuse large B cell lymphoma (ABC DLBCL have shown that mutations within the BCR subunit CD79b leads to increased BCR surface expression, suggesting that CD79b may control BCR internalization. Adaptor protein 2 (AP2 is the major mediator of receptor endocytosis via clathrin-coated pits. The BCR contains five putative AP2-binding YxxØ motifs, including four that are present within two immunoreceptor tyrosine-based activation motifs (ITAMs. Using a combination of in vitro and in situ approaches, we establish that the sole mediator of AP2-dependent BCR internalization is the membrane proximal ITAM YxxØ motif in CD79b, which is a major target of mutation in ABC DLBCL. In addition, we establish that BCR internalization can be regulated at a minimum of two different levels: regulation of YxxØ AP2 binding in cis by downstream ITAM-embedded DCSM and QTAT regulatory elements and regulation in trans by the partner cytoplasmic domain of the CD79 heterodimer. Beyond establishing the basic rules governing BCR internalization, these results illustrate an underappreciated role for ITAM residues in controlling clathrin-dependent endocytosis and highlight the complex mechanisms that control the activity of AP2 binding motifs in this receptor system.

  17. Differences in rat dorsal striatal NMDA and AMPA receptors following acute and repeated cocaine-induced locomotor activation.

    Directory of Open Access Journals (Sweden)

    Dorothy J Yamamoto

    Full Text Available Sprague-Dawley rats can be classified as low or high cocaine responders (LCRs or HCRs, respectively based on their locomotor activity induced by an acute low dose of cocaine. Upon repeated cocaine exposure, LCRs display greater locomotor sensitization, reward, and reinforcement than HCRs. Altered glutamate receptor expression in the brain reward pathway has been linked to locomotor sensitization and addiction. To determine if such changes contribute to the differential development of locomotor sensitization, we examined protein levels of total, phosphorylated, and cell surface glutamate N-methyl D-aspartate (NMDA and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA receptors (Rs following acute or repeated cocaine (10 mg/kg, i.p. in LCRs, HCRs and saline controls. Three areas involved in the development and expression of locomotor sensitization were investigated: the ventral tegmental area (VTA, nucleus accumbens (NAc and dorsal striatum (dSTR. Our results revealed differences only in the dSTR, where we found that after acute cocaine, GluN2B(Tyr-1472 phosphorylation was significantly greater in LCRs, compared to HCRs and controls. Additionally in dSTR, after repeated cocaine, we observed significant increases in total GluA1, phosphorylated GluA1(Ser-845, and cell surface GluA1 in all cocaine-treated animals vs. controls. The acute cocaine-induced increases in NMDARs in dSTR of LCRs may help to explain the more ready development of locomotor sensitization and susceptibility to addiction-like behaviors in rats that initially exhibit little or no cocaine-induced activation, whereas the AMPAR increases after repeated cocaine may relate to recruitment of more dorsal striatal circuits and maintenance of the marked cocaine-induced locomotor activation observed in all of the rats.

  18. Effects of receptor-mediated endocytosis and tubular protein composition on volume retention in experimental glomerulonephritis

    DEFF Research Database (Denmark)

    Kastner, Christian; Pohl, Marcus; Sendeski, Mauricio;

    2009-01-01

    and channels involved in volume regulation were altered in GN, and 2) proximal tubular endocytosis may influence locally as well as downstream expressed tubular transporters and channels. Effects of anti-glomerular basement membrane GN were studied in controls and megalin-deficient mice with blunted proximal...

  19. Colocalization of neurokinin-1, NMDA, and AMPA receptors on neurons of the rat nucleus tractus solitarii

    OpenAIRE

    Lin, L. H.; Taktakishvili, O. M.; Talman, W. T.

    2008-01-01

    Substance P (SP) and glutamate are implicated in cardiovascular regulation by the nucleus tractus solitarii (NTS). Our earlier studies suggest that SP, which acts at neurokinin 1 (NK1) receptors, is not a baroreflex transmitter while glutamate is. On the other hand, our recent studies showed that loss of NTS neurons expressing NK1 receptors leads to loss of baroreflex responses and increased blood pressure lability. Furthermore, studies have suggested that SP may interact with glutamate in th...

  20. NMDA and AMPA/kainate glutamatergic receptors in the prelimbic medial prefrontal cortex modulate the elaborated defensive behavior and innate fear-induced antinociception elicited by GABAA receptor blockade in the medial hypothalamus.

    Science.gov (United States)

    de Freitas, Renato Leonardo; Salgado-Rohner, Carlos José; Biagioni, Audrey Francisco; Medeiros, Priscila; Hallak, Jaime Eduardo Cecílio; Crippa, José Alexandre S; Coimbra, Norberto Cysne

    2014-06-01

    The aim of the present study was to investigate the involvement of N-methyl-d-aspartate (NMDA) and amino-3-hydroxy-5-methyl-isoxazole-4-proprionate (AMPA)/kainate receptors of the prelimbic (PL) division of the medial prefrontal cortex (MPFC) on the panic attack-like reactions evoked by γ-aminobutyric acid-A receptor blockade in the medial hypothalamus (MH). Rats were pretreated with NaCl 0.9%, LY235959 (NMDA receptor antagonist), and NBQX (AMPA/kainate receptor antagonist) in the PL at 3 different concentrations. Ten minutes later, the MH was treated with bicuculline, and the defensive responses were recorded for 10 min. The antagonism of NMDA receptors in the PL decreased the frequency and duration of all defensive behaviors evoked by the stimulation of the MH and reduced the innate fear-induced antinociception. However, the pretreatment of the PL cortex with NBQX was able to decrease only part of defensive responses and innate fear-induced antinociception. The present findings suggest that the NMDA-glutamatergic system of the PL is critically involved in panic-like responses and innate fear-induced antinociception and those AMPA/kainate receptors are also recruited during the elaboration of fear-induced antinociception and in panic attack-related response. The activation of the glutamatergic neurotransmission of PL division of the MPFC during the elaboration of oriented behavioral reactions elicited by the chemical stimulation of the MH recruits mainly NMDA receptors in comparison with AMPA/kainate receptors. PMID:23349224

  1. Investigating the influence of PFC transection and nicotine on dynamics of AMPA and NMDA receptors of VTA dopaminergic neurons

    Directory of Open Access Journals (Sweden)

    Chen Ting

    2011-10-01

    Full Text Available Abstract Background All drugs of abuse, including nicotine, activate the mesocorticolimbic system that plays critical roles in nicotine reward and reinforcement development and triggers glutamatergic synaptic plasticity on the dopamine (DA neurons in the ventral tegmental area (VTA. The addictive behavior and firing pattern of the VTA DA neurons are thought to be controlled by the glutamatergic synaptic input from prefrontal cortex (PFC. Interrupted functional input from PFC to VTA was shown to decrease the effects of the drug on the addiction process. Nicotine treatment could enhance the AMPA/NMDA ratio in VTA DA neurons, which is thought as a common addiction mechanism. In this study, we investigate whether or not the lack of glutamate transmission from PFC to VTA could make any change in the effects of nicotine. Methods We used the traditional AMPA/NMDA peak ratio, AMPA/NMDA area ratio, and KL (Kullback-Leibler divergence analysis method for the present study. Results Our results using AMPA/NMDA peak ratio showed insignificant difference between PFC intact and transected and treated with saline. However, using AMPA/NMDA area ratio and KL divergence method, we observed a significant difference when PFC is interrupted with saline treatment. One possible reason for the significant effect that the PFC transection has on the synaptic responses (as indicated by the AMPA/NMDA area ratio and KL divergence may be the loss of glutamatergic inputs. The glutamatergic input is one of the most important factors that contribute to the peak ratio level. Conclusions Our results suggested that even within one hour after a single nicotine injection, the peak ratio of AMPA/NMDA on VTA DA neurons could be enhanced.

  2. Towards predicting the lung fibrogenic activity of MWCNT: Key role of endocytosis, kinase receptors and ERK 1/2 signaling.

    Science.gov (United States)

    Vietti, Giulia; Ibouraadaten, Saloua; Palmai-Pallag, Mihaly; Yakoub, Yousof; Piret, Jean-Pascal; Marbaix, Etienne; Lison, Dominique; van den Brule, Sybille

    2016-01-01

    Carbon nanotubes (CNT) have been reported to induce lung inflammation and fibrosis in rodents. We investigated the direct and indirect cellular mechanisms mediating the fibrogenic activity of multi-wall (MW) CNT on fibroblasts. We showed that MWCNT indirectly stimulate lung fibroblast (MLg) differentiation, via epithelial cells and macrophages, whereas no direct effect of MWCNT on fibroblast differentiation or collagen production was detected. MWCNT directly stimulated the proliferation of fibroblasts primed with low concentrations of growth factors, such as PDGF, TGF-β or EGF. MWCNT prolonged ERK 1/2 phosphorylation induced by low concentrations of PDGF or TGF-β in fibroblasts. This phenomenon and the proliferative activity of MWCNT on fibroblasts was abrogated by the inhibitors of ERK 1/2, PDGF-, TGF-β- and EGF-receptors. This activity was also reduced by amiloride, an endocytosis inhibitor. Finally, the lung fibrotic response to several MWCNT samples (different in length and diameter) correlated with their in vitro capacity to stimulate the proliferation of fibroblasts and to prolong ERK 1/2 signaling in these cells. Our findings point to a crosstalk between MWCNT, kinase receptors, ERK 1/2 signaling and endocytosis which stimulates the proliferation of fibroblasts. The mechanisms of action identified in this study contribute to predict the fibrogenic potential of MWCNT.

  3. Domain architecture of a calcium-permeable AMPA receptor in a ligand-free conformation

    Directory of Open Access Journals (Sweden)

    Charles R. Midgett

    2012-01-01

    Full Text Available Ligand-gated ion channels couple the free energy of agonist binding to the gating of selective transmembrane ion pores, permitting cells to regulate ion flux in response to external chemical stimuli. However, the stereochemical mechanisms responsible for this coupling remain obscure. In the case of the ionotropic glutamate receptors (iGluRs, the modular nature of receptor subunits has facilitated structural analysis of the N-terminal domain (NTD, and of multiple conformations of the ligand-binding domain (LBD. Recently, the crystallographic structure of an antagonist-bound form of the receptor was determined. However, disulfide trapping of this conformation blocks channel opening, suggesting that channel activation involves additional quaternary packing arrangements. To explore the conformational space available to iGluR channels, we report here a second, clearly distinct domain architecture of homotetrameric, calcium-permeable AMPARs, determined by single-particle electron microscopy of untagged and fluorescently tagged constructs in a ligand-free state. It reveals a novel packing of NTD dimers, and a separation of LBD dimers across a central vestibule. In this arrangement, which reconciles diverse functional observations, agonist-induced cleft closure across LBD dimers can be converted into a twisting motion that provides a basis for receptor activation.

  4. Involvement of AMPA/kainate and GABAA receptors in topiramate neuroprotective effects against methylphenidate abuse sequels involving oxidative stress and inflammation in rat isolated hippocampus.

    Science.gov (United States)

    Motaghinejad, Majid; Motevalian, Manijeh

    2016-08-01

    Abuses of methylphenidate (MPH) as psychostimulant cause neural damage of brain cells. Neuroprotective properties of topiramate (TPM) have been indicated in several studies but its exact mechanism of action remains unclear. The current study evaluates protective role of various doses of TPM and its mechanism of action in MPH induced oxidative stress and inflammation. The neuroprotective effects of various doses of TPM against MPH induced oxidative stress and inflammation were evaluated and then the action of TPM was studied in presence of domoic acid (DOM), as AMPA/kainate receptor agonist and bicuculline (BIC) as GABAA receptor antagonist, in isolated rat hippocampus. Open Field Test (OFT) was used to investigate motor activity changes. Oxidative, antioxidant and inflammatory factors were measured in isolated hippocampus. TPM (70 and 100mg/kg) decreased MPH induced motor activity disturbances and inhibit MPH induced oxidative stress and inflammation. On the other hand pretreatment of animals with DOM or BIC, inhibit this effect of TPM and potentiate MPH induced motor activity disturbances and increased lipid peroxidation, mitochondrial oxidized form of glutathione (GSSG) level, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in isolated hippocampal cells and decreased reduced form of glutathione (GSH) level, superoxide dismutase, glutathione peroxidase and glutathione reductase activity. It seems that TPM can protect cells of hippocampus from oxidative stress and neuroinflammation and it could be partly by activation of GABAA receptor and inhibition of AMPA/kainite receptor. PMID:27105819

  5. Involvement of AMPA/kainate and GABAA receptors in topiramate neuroprotective effects against methylphenidate abuse sequels involving oxidative stress and inflammation in rat isolated hippocampus.

    Science.gov (United States)

    Motaghinejad, Majid; Motevalian, Manijeh

    2016-08-01

    Abuses of methylphenidate (MPH) as psychostimulant cause neural damage of brain cells. Neuroprotective properties of topiramate (TPM) have been indicated in several studies but its exact mechanism of action remains unclear. The current study evaluates protective role of various doses of TPM and its mechanism of action in MPH induced oxidative stress and inflammation. The neuroprotective effects of various doses of TPM against MPH induced oxidative stress and inflammation were evaluated and then the action of TPM was studied in presence of domoic acid (DOM), as AMPA/kainate receptor agonist and bicuculline (BIC) as GABAA receptor antagonist, in isolated rat hippocampus. Open Field Test (OFT) was used to investigate motor activity changes. Oxidative, antioxidant and inflammatory factors were measured in isolated hippocampus. TPM (70 and 100mg/kg) decreased MPH induced motor activity disturbances and inhibit MPH induced oxidative stress and inflammation. On the other hand pretreatment of animals with DOM or BIC, inhibit this effect of TPM and potentiate MPH induced motor activity disturbances and increased lipid peroxidation, mitochondrial oxidized form of glutathione (GSSG) level, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in isolated hippocampal cells and decreased reduced form of glutathione (GSH) level, superoxide dismutase, glutathione peroxidase and glutathione reductase activity. It seems that TPM can protect cells of hippocampus from oxidative stress and neuroinflammation and it could be partly by activation of GABAA receptor and inhibition of AMPA/kainite receptor.

  6. Central nitric oxide modulates hindquarter vasodilation elicited by AMPA receptor stimulation in the NTS of conscious rats.

    Science.gov (United States)

    Dias, Ana Carolina Rodrigues; Colombari, Eduardo

    2006-05-01

    Microinjection of S-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) in the nucleus of the solitary tract (NTS) of conscious rats causes hypertension, bradycardia, and vasoconstriction in the renal, mesenteric, and hindquarter vascular beds. In the hindquarter, the initial vasoconstriction is followed by vasodilation with AMPA doses >5 pmol/100 nl. To test the hypothesis that this vasodilation is caused by activation of a nitroxidergic pathway in the NTS, we examined the effect of pretreatment with the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 10 nmol/100 nl, microinjected into the NTS) on changes in mean arterial pressure, heart rate, and regional vascular conductance (VC) induced by microinjection of AMPA (10 pmol/100 nl in the NTS) in conscious rats. AMPA increased hindquarter VC by 18 +/- 4%, but after pretreatment with L-NAME, AMPA reduced hindquarter VC by 16 +/- 7% and 17 +/- 9% (5 and 15 min after pretreatment, P NTS activates both vasodilatatory and vasoconstrictor mechanisms and that the vasodilatatory mechanism depends on production of nitric oxide in the NTS.

  7. Acute stress causes rapid synaptic insertion of Ca2+ -permeable AMPA receptors to facilitate long-term potentiation in the hippocampus.

    Science.gov (United States)

    Whitehead, Garry; Jo, Jihoon; Hogg, Ellen L; Piers, Thomas; Kim, Dong-Hyun; Seaton, Gillian; Seok, Heon; Bru-Mercier, Gilles; Son, Gi Hoon; Regan, Philip; Hildebrandt, Lars; Waite, Eleanor; Kim, Byeong-Chae; Kerrigan, Talitha L; Kim, Kyungjin; Whitcomb, Daniel J; Collingridge, Graham L; Lightman, Stafford L; Cho, Kwangwook

    2013-12-01

    The neuroendocrine response to episodes of acute stress is crucial for survival whereas the prolonged response to chronic stress can be detrimental. Learning and memory are particularly susceptible to stress with cognitive deficits being well characterized consequences of chronic stress. Although there is good evidence that acute stress can enhance cognitive performance, the mechanism(s) for this are unclear. We find that hippocampal slices, either prepared from rats following 30 min restraint stress or directly exposed to glucocorticoids, exhibit an N-methyl-d-aspartic acid receptor-independent form of long-term potentiation. We demonstrate that the mechanism involves an NMDA receptor and PKA-dependent insertion of Ca2+ -permeable AMPA receptors into synapses. These then trigger the additional NMDA receptor-independent form of LTP during high frequency stimulation.

  8. Efecto neuroprotector de los cannabinoides sobre la muerte neuronal inducida por Ampa en la médula espinal: Activación conjunta de los receptores CB1 y CB2

    Directory of Open Access Journals (Sweden)

    Carmen Guaza

    2005-03-01

    Full Text Available La sobreactivación de receptores de glutamato, como el receptor AMPA, induce la muerte neural por un proceso denominado excitotoxicidad, el cual ha sido claramente implicado en enfermedades agudas del sistema nerviso central (SNC, particularmente con daño axonal.

  9. AMPA receptor trafficking in inflammation-induced dorsal horn central sensitization

    Institute of Scientific and Technical Information of China (English)

    Yuan-Xiang Tao

    2012-01-01

    Activity-dependent postsynaptic receptor trafficking is critical for long-term synaptic plasticity in the brain,but it is unclear whether this mechanism actually mediates the spinal cord dorsal horn central sensitization (a specific form of synaptic plasticity) that is associated with persistent pain.Recent studies have shown that peripheral inflammation drives changes in α-amino-3-hydroxy-5-methy1-4-isoxazolepropionic acid receptor (AMPAR) subunit trafficking in the dorsal horn and that such changes contribute to the hypersensitivity that underlies persistent pain.Here,we review current evidence to illustrate how spinal cord AMPARs participate in the dorsal horn central sensitization associated with persistent pain.Understanding these mechanisms may allow the development of novel therapeutic strategies for treating persistent pain.

  10. Structural proof of a dimeric positive modulator bridging two identical AMPA receptor-binding sites

    DEFF Research Database (Denmark)

    Kaae, Birgitte Høiriis; Harpsøe, Kasper; Kastrup, Jette Sandholm Jensen;

    2007-01-01

    have dramatically increased potencies, more than three orders of magnitude higher than the corresponding monomers. Dimer (R,R)-2a was cocrystallized with the GluR2-S1S2J construct, and an X-ray crystallographic analysis showed (R,R)-2a to bridge two identical binding pockets on two neighboring GluR2...... subunits. Thus, this is biostructural evidence of a homomeric dimer bridging two identical receptor-binding sites....

  11. The antidepressant-like effects of glutamatergic drugs ketamine and AMPA receptor potentiator LY 451646 are preserved in bdnf⁺/⁻ heterozygous null mice.

    Science.gov (United States)

    Lindholm, Jesse S O; Autio, Henri; Vesa, Liisa; Antila, Hanna; Lindemann, Lothar; Hoener, Marius C; Skolnick, Phil; Rantamäki, Tomi; Castrén, Eero

    2012-01-01

    Accumulating evidence suggests that biogenic amine-based antidepressants act, at least in part, via regulation of brain-derived neurotrophic factor (BDNF) signaling. Biogenic amine-based antidepressants increase BDNF synthesis and activate its signaling pathway through TrkB receptors. Moreover, the antidepressant-like effects of these molecules are abolished in BDNF deficient mice. Glutamate-based drugs, including the NMDA antagonist ketamine, and the AMPA receptor potentiator LY 451646, mimic the effects of antidepressants in preclinical tests with high predictive validity. In humans, a single intravenous dose of ketamine produces an antidepressant effect that is rapid, robust and persistent. In this study, we examined the role of BDNF in expression of the antidepressant-like effects of ketamine and an AMPA receptor potentiator (LY 451646) in the forced swim test (FST). Ketamine and LY 451646 produced antidepressant-like effects in the FST in mice at 45 min after a single injection, but no effects were observed one week after a single ketamine injection. As previously reported, the effects of imipramine in the forced swim test were blunted in heterozygous BDNF knockout (bdnf(+/-)) mice. However ketamine and LY 451646 produced similar antidepressant-like responses in wildtype and bdnf(+/-) mice. Neither ketamine nor LY 451646 significantly influenced the levels BDNF or TrkB phosphorylation in the hippocampus when assessed at 45 min or 7 days after the drug administration. These data demonstrate that under the conditions tested, neither ketamine nor the AMPA-potentiator LY 451656 activate BDNF signaling, but produce a characteristic antidepressant-like response in heterozygous bdnf(+/-) mice. These data indicate that unlike biogenic amine-based agents, BDNF signaling does not play a pivotal role in the antidepressant effects of glutamate-based compounds. This article is part of a Special Issue entitled 'Anxiety and Depression'.

  12. Oligomeric amyloid-{beta} inhibits the proteolytic conversion of brain-derived neurotrophic factor (BDNF), AMPA receptor trafficking, and classical conditioning.

    Science.gov (United States)

    Zheng, Zhaoqing; Sabirzhanov, Boris; Keifer, Joyce

    2010-11-01

    Amyloid-β (Aβ) peptide is thought to have a significant role in the progressive memory loss observed in patients with Alzheimer disease and inhibits synaptic plasticity in animal models of learning. We previously demonstrated that brain-derived neurotrophic factor (BDNF) is critical for synaptic AMPA receptor delivery in an in vitro model of eyeblink classical conditioning. Here, we report that acquisition of conditioned responses was significantly attenuated by bath application of oligomeric (200 nm), but not fibrillar, Aβ peptide. Western blotting revealed that BDNF protein expression during conditioning is significantly reduced by treatment with oligomeric Aβ, as were phosphorylation levels of cAMP-response element-binding protein (CREB), Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), Ca(2+)/calmodulin-dependent protein kinase IV (CaMKIV), and ERK. However, levels of PKA and PKCζ/λ were unaffected, as was PDK-1. Protein localization studies using confocal imaging indicate that oligomeric Aβ, but not fibrillar or scrambled forms, suppresses colocalization of GluR1 and GluR4 AMPA receptor subunits with synaptophysin, indicating that trafficking of these subunits to synapses during the conditioning procedure is blocked. In contrast, coapplication of BDNF with oligomeric Aβ significantly reversed these findings. Interestingly, a tolloid-like metalloproteinase in turtle, tTLLs (turtle tolloid-like protein), which normally processes the precursor proBDNF into mature BDNF, was found to degrade oligomeric Aβ into small fragments. These data suggest that an Aβ-induced reduction in BDNF, perhaps due to interference in the proteolytic conversion of proBDNF to BDNF, results in inhibition of synaptic AMPA receptor delivery and suppression of the acquisition of conditioning.

  13. SYM 2206 (a potent non-competitive AMPA receptor antagonist) elevates the threshold for maximal electroshock-induced seizures in mice

    OpenAIRE

    Luszczki Jarogniew J.; Leszkowicz Magdalena; Kondrat-Wrobel Maria W.; Florek-Luszczki Magdalena

    2014-01-01

    The aim of this study was to determine the effect of SYM 2206 (a potent non-competitive AMPA receptor antagonist) on the threshold for maximal electroshock (MEST)-induced seizures in mice. Electroconvulsions were produced in mice by means of a current (sinewave, 50 Hz, maximum 500 V, strength from 4 to 14 mA, 0.2-s stimulus duration, tonic hind limb extension taken as the endpoint) delivered via ear-clip electrodes. SYM 2206 administered systemically (i.p.), 30 min before the MEST test, at do...

  14. Studies on an (S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor antagonist IKM-159

    DEFF Research Database (Denmark)

    Juknaite, Lina; Sugamata, Yutaro; Tokiwa, Kazuya;

    2013-01-01

    IKM-159 was developed and identified as a member of a new class of heterotricyclic glutamate analogs that act as AMPA receptor-selective antagonists. However, it was not known which enantiomer of IKM-159 was responsible for its pharmacological activities. Here, we report in vivo and in vitro...... neuronal activities of both enantiomers of IKM-159 prepared by enantioselective asymmetric synthesis. Employing (R)-2-amino-2-(4-methoxyphenyl)ethanol as a chiral auxiliary, (2R)-IKM-159 and the (2S)-counterpart were successfully synthesized in 0.70% and 1.5% yields, respectively, over total 18 steps. Both...

  15. The coronavirus transmissible gastroenteritis virus causes infection after receptor-mediated endocytosis and acid-dependent fusion with an intracellular compartment

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Delmas, B; Besnardeau, L;

    1998-01-01

    adsorption to the pAPN-MDCK cells. TGEV was also observed in endocytic pits and apical vesicles after 3 to 10 min of incubation at 38 degrees C. The number of pits and apical vesicles was increased by the TGEV incubation, indicating an increase in endocytosis. After 10 min of incubation, a distinct TGEV......-pAPN-containing population of large intracellular vesicles, morphologically compatible with endosomes, was found. A higher density of pAPN receptors was observed in the pits beneath the virus particles than in the surrounding plasma membrane, indicating that TGEV recruits pAPN receptors before endocytosis. Ammonium chloride...... and bafilomycin A1 markedly inhibited the TGEV infection as judged from virus production and protein biosynthesis analyses but did so only when added early in the course of the infection, i.e., about 1 h after the start of endocytosis. Together our results point to an acid intracellular compartment as the site...

  16. Subthreshold receptive fields and baseline excitability of "silent" S1 callosal neurons in awake rabbits: contributions of AMPA/kainate and NMDA receptors.

    Science.gov (United States)

    Swadlow, H A; Hicks, T P

    1997-07-01

    The contribution of NMDA and non-NMDA receptors to excitatory subthreshold receptive fields was examined in callosal efferent neurons (CC neurons) in primary somatosensory cortex of the fully awake rabbit. Only neurons showing no traditional (suprathreshold) receptive fields were examined. Subthreshold responses were examined by monitoring the thresholds of efferent neurons to juxtasomal current pulses (JSCPs) delivered through the recording microelectrode. Changes in threshold following a peripheral conditioning stimulus signify a subthreshold response. Using this method, excitatory postsynaptic potentials and inhibitory postsynaptic potentials are manifested as decreases and increases in JSCP threshold, respectively. NMDA and non-NMDA agonists and antagonists were administered iontophoretically via a multibarrel micropipette assembly attached to the recording/stimulating microelectrode. Receptor-selective doses of both AMPA/kainate and NMDA antagonists decreased the excitability of CC neurons in the absence of any peripheral stimulation. Threshold to JSCPs rose by a mean of 20% for both classes of antagonist. Despite the similar effects of NMDA and non-NMDA antagonists on baseline excitability, these antagonists had dramatically different effects on the subthreshold excitatory response to activation of the receptive field. Whereas receptor-selective doses of AMPA/kainate antagonists either eliminated or severely attenuated the subthreshold excitatory responses to peripheral stimulation, NMDA antagonists had little or no effect on the subthreshold evoked response. PMID:9262195

  17. Activation of the sigma receptor 1 modulates AMPA receptor-mediated light-evoked excitatory postsynaptic currents in rat retinal ganglion cells.

    Science.gov (United States)

    Liu, Lei-Lei; Deng, Qin-Qin; Weng, Shi-Jun; Yang, Xiong-Li; Zhong, Yong-Mei

    2016-09-22

    Sigma receptor (σR), a unique receptor family, is classified into three subtypes: σR1, σR2 and σR3. It was previously shown that σR1 activation induced by 1μM SKF10047 (SKF) suppressed N-methyl-d-aspartate (NMDA) receptor-mediated responses of rat retinal ganglion cells (GCs) and the suppression was mediated by a distinct Ca(2+)-dependent phospholipase C (PLC)-protein kinase C (PKC) pathway. In the present work, using whole-cell patch-clamp techniques in rat retinal slice preparations, we further demonstrate that SKF of higher dosage (50μM) significantly suppressed AMPA receptor (AMPAR)-mediated light-evoked excitatory postsynaptic currents (L-EPSCs) of retinal ON-type GCs (ON GCs), and the effect was reversed by the σR1 antagonist BD1047, suggesting the involvement of σR1. The SKF (50μM) effect was unlikely due to a change in glutamate release from bipolar cells, as suggested by the unaltered paired-pulse ratio (PPR) of AMPAR-mediated EPSCs of ON GCs. SKF (50μM) did not change L-EPSCs of ON GCs when the G protein inhibitor GDP-β-S or the protein kinase G (PKG) inhibitor KT5823 was intracellularly infused. Calcium imaging further revealed that SKF (50μM) did not change intracellular calcium concentration in GCs and persisted to suppress L-EPSCs when intracellular calcium was chelated by BAPTA. The SKF (50μM) effect was intact when protein kinase A (PKA) and phosphatidylinostiol (PI)-PLC signaling pathways were both blocked. We conclude that the SKF (50μM) effect is Ca(2+)-independent, PKG-dependent, but not involving PKA, PI-PLC pathways. PMID:27373906

  18. Editing for an AMPA receptor subunit RNA in prefrontal cortex and striatum in Alzheimer's disease, Huntington's disease and schizophrenia

    Science.gov (United States)

    Akbarian, S.; Smith, M. A.; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    Animal studies and cell culture experiments demonstrated that posttranscriptional editing of the transcript of the GluR-2 gene, resulting in substitution of an arginine for glutamine in the second transmembrane region (TM II) of the expressed protein, is associated with a reduction in Ca2+ permeability of the receptor channel. Thus, disturbances in GluR-2 RNA editing with alteration of intracellular Ca2+ homeostasis could lead to neuronal dysfunction and even neuronal degeneration. The present study determined the proportions of edited and unedited GluR-2 RNA in the prefrontal cortex of brains from patients with Alzheimer's disease, in the striatum of brains from patients with Huntington's disease, and in the same areas of brains from age-matched schizophrenics and controls, by using reverse transcriptase-polymerase chain reaction, restriction endonuclease digestion, gel electrophoresis and scintillation radiometry. In the prefrontal cortex of controls, 99.9% were edited; in the prefrontal cortex both of schizophrenics and of Alzheimer's patients approximately 1.0% of all GluR-2 RNA molecules were unedited and 99% were edited. In the striatum of controls and of schizophrenics, approximately 0.5% of GluR-2 RNA molecules were unedited and 99.5% were edited; in the striatum of Huntington's patients nearly 5.0% of GluR-2 RNA was unedited. In the prefrontal white matter of controls, approximately 7.0% of GluR-2 RNA was unedited. In the normal human prefrontal cortex and striatum, the large majority of GluR-2 RNA molecules contains a CGG codon for arginine in the TMII coding region; this implies that the corresponding AMPA receptors have a low Ca2+ permeability, as previously demonstrated for the rat brain. The process of GluR-2 RNA editing is compromised in a region-specific manner in schizophrenia, in Alzheimer's disease and Huntington's Chorea although in each of these disorders there is still a large excess of edited GluR-2 RNA molecules. Disturbances of GluR-2 RNA

  19. Identification of an ionotropic glutamate receptor AMPA1/GRIA1 polymorphism in crossbred beef cows differing in fertility.

    Science.gov (United States)

    Cushman, R A; Miles, J R; Rempel, L A; McDaneld, T G; Kuehn, L A; Chitko-McKown, C G; Nonneman, D; Echternkamp, S E

    2013-06-01

    A proposed functional polymorphism in the ionotropic glutamate receptor AMPA1 (GRIA1) has been reported to influence antral follicle numbers and fertility in cows. Repeat breeder cows that fail to produce a calf in multiple seasons have been reported to have reduced numbers of small (1 to 3 mm) antral follicles in their ovaries. Therefore, we tested the hypothesis that this GRIA1 polymorphism was affecting antral follicle numbers in repeat breeder cows. Repeat breeder cows (n = 64) and control cows (n = 72) that had always produced a calf were housed in a dry lot and observed twice daily for behavioral estrus. Blood samples were collected, and cows were genotyped for this GRIA1 polymorphism and for a polymorphism in the GnRH receptor (GnRHR) that was proposed to influence age at puberty. On d 3 to 8 after estrus cows were slaughtered, and reproductive organs were collected to determine antral follicle count, ovary size, and uterine horn diameter. Repeat breeder cows were older at first calving than control cows (P = 0.006). The length (P = 0.03) and height (P = 0.02) of the ovary contralateral to the corpus luteum (CL) were greater in control cows than repeat breeder cows. The endometrial diameter in the horn ipsilateral to the CL was greater in the control cows than the repeat breeder cows. Repeat breeder cows had fewer small (1 to 5 mm) antral follicles than control cows (P = 0.003); however, there was no association between GRIA1 genotype and antral follicle number. The GnRHR polymorphism was associated with age at first calving because cows that were homozygous for the C allele had a greater age at first calving than heterozygous cows or cows that were homozygous for the T allele (P = 0.01). In the granulosa cells from small (1 to 5 mm) antral follicles, mRNA abundances of 2 markers of oocyte quality, anti-Müllerian hormone and pentraxin 3, did not differ between fertility groups (P ≥ 0.12). We conclude that this GRIA1 polymorphism exists in beef cows but

  20. Calcium-permeable AMPA receptors in the VTA and nucleus accumbens after cocaine exposure: When, how and why?

    Directory of Open Access Journals (Sweden)

    Marina E Wolf

    2012-06-01

    Full Text Available In animal models of drug addiction, cocaine exposure has been shown to increase levels of calcium-permeable AMPA receptors (CP-AMPARs in two brain regions that are critical for motivation and reward - the ventral tegmental area (VTA and the nucleus accumbens (NAc. This review compares CP-AMPAR plasticity in the two brain regions and addresses its functional significance. In VTA dopamine neurons, cocaine exposure results in synaptic insertion of high conductance CP-AMPARs in exchange for lower conductance calcium-impermeable AMPARs (CI-AMPARs. This plasticity is rapid (hours, GluA2-dependent, and can be observed with a single cocaine injection. In addition to strengthening synapses and altering Ca2+ signaling, CP-AMPAR insertion affects subsequent induction of plasticity at VTA synapses. However, CP-AMPAR insertion is unlikely to mediate the increased dopamine cell activity that occurs during early withdrawal from cocaine exposure. Within the VTA, the group I metabotropic glutamate receptor mGluR1 exerts a negative influence on CP-AMPAR accumulation. Acutely, mGluR1 stimulation elicits a form of LTD resulting from CP-AMPAR removal and CI-AMPAR insertion. In medium spiny neurons (MSNs of the NAc, extended access cocaine self-administration is required to increase CP-AMPAR levels. This is first detected after approximately a month of withdrawal and then persists. Once present in NAc synapses, CP-AMPARs mediate the expression of incubation of cue-induced cocaine craving. The mechanism of their accumulation may be GluA1-dependent, which differs from that observed in the VTA. However, similar to VTA, mGluR1 stimulation removes CP-AMPARs from MSN synapses. Loss of mGluR1 tone during cocaine withdrawal may contribute to CP-AMPAR accumulation in the NAc. Thus, results in both brain regions point to the possibility of using positive modulators of mGluR1 as a treatment for cocaine addiction.

  1. A Computational Model for the AMPA Receptor Phosphorylation Master Switch Regulating Cerebellar Long-Term Depression.

    Science.gov (United States)

    Gallimore, Andrew R; Aricescu, A Radu; Yuzaki, Michisuke; Calinescu, Radu

    2016-01-01

    The expression of long-term depression (LTD) in cerebellar Purkinje cells results from the internalisation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) from the postsynaptic membrane. This process is regulated by a complex signalling pathway involving sustained protein kinase C (PKC) activation, inhibition of serine/threonine phosphatase, and an active protein tyrosine phosphatase, PTPMEG. In addition, two AMPAR-interacting proteins-glutamate receptor-interacting protein (GRIP) and protein interacting with C kinase 1 (PICK1)-regulate the availability of AMPARs for trafficking between the postsynaptic membrane and the endosome. Here we present a new computational model of these overlapping signalling pathways. The model reveals how PTPMEG cooperates with PKC to drive LTD expression by facilitating the effect of PKC on the dissociation of AMPARs from GRIP and thus their availability for trafficking. Model simulations show that LTD expression is increased by serine/threonine phosphatase inhibition, and negatively regulated by Src-family tyrosine kinase activity, which restricts the dissociation of AMPARs from GRIP under basal conditions. We use the model to expose the dynamic balance between AMPAR internalisation and reinsertion, and the phosphorylation switch responsible for the perturbation of this balance and for the rapid plasticity initiation and regulation. Our model advances the understanding of PF-PC LTD regulation and induction, and provides a validated extensible platform for more detailed studies of this fundamental synaptic process. PMID:26807999

  2. A Computational Model for the AMPA Receptor Phosphorylation Master Switch Regulating Cerebellar Long-Term Depression.

    Directory of Open Access Journals (Sweden)

    Andrew R Gallimore

    2016-01-01

    Full Text Available The expression of long-term depression (LTD in cerebellar Purkinje cells results from the internalisation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs from the postsynaptic membrane. This process is regulated by a complex signalling pathway involving sustained protein kinase C (PKC activation, inhibition of serine/threonine phosphatase, and an active protein tyrosine phosphatase, PTPMEG. In addition, two AMPAR-interacting proteins-glutamate receptor-interacting protein (GRIP and protein interacting with C kinase 1 (PICK1-regulate the availability of AMPARs for trafficking between the postsynaptic membrane and the endosome. Here we present a new computational model of these overlapping signalling pathways. The model reveals how PTPMEG cooperates with PKC to drive LTD expression by facilitating the effect of PKC on the dissociation of AMPARs from GRIP and thus their availability for trafficking. Model simulations show that LTD expression is increased by serine/threonine phosphatase inhibition, and negatively regulated by Src-family tyrosine kinase activity, which restricts the dissociation of AMPARs from GRIP under basal conditions. We use the model to expose the dynamic balance between AMPAR internalisation and reinsertion, and the phosphorylation switch responsible for the perturbation of this balance and for the rapid plasticity initiation and regulation. Our model advances the understanding of PF-PC LTD regulation and induction, and provides a validated extensible platform for more detailed studies of this fundamental synaptic process.

  3. Involvement of hippocampal AMPA glutamate receptor changes and the cAMP/protein kinase A/CREB-P signalling pathway in memory consolidation of an avoidance task in rats

    Directory of Open Access Journals (Sweden)

    Bernabeu R.

    1997-01-01

    Full Text Available Training in step-down inhibitory avoidance (0.3-mA footshock is followed by biochemical changes in rat hippocampus that strongly suggest an involvement of quantitative changes in glutamate AMPA receptors, followed by changes in the dopamine D1 receptor/cAMP/protein kinase A (PKA/CREB-P signalling pathway in memory consolidation. AMPA binding to its receptor and levels of the AMPA receptor-specific subunit GluR1 increase in the hippocampus within the first 3 h after training (20-70%. Binding of the specific D1 receptor ligand, SCH23390, and cAMP levels increase within 3 or 6 h after training (30-100%. PKA activity and CREB-P levels show two peaks: a 35-40% increase 0 h after training, and a second increase 3-6 h later (35-60%. The results correlate with pharmacological findings showing an early post-training involvement of AMPA receptors, and a late involvement of the D1/cAMP/PKA/CREB-P pathway in memory consolidation of this task

  4. A role for calcium-permeable AMPA receptors in synaptic plasticity and learning.

    Directory of Open Access Journals (Sweden)

    Brian J Wiltgen

    Full Text Available A central concept in the field of learning and memory is that NMDARs are essential for synaptic plasticity and memory formation. Surprisingly then, multiple studies have found that behavioral experience can reduce or eliminate the contribution of these receptors to learning. The cellular mechanisms that mediate learning in the absence of NMDAR activation are currently unknown. To address this issue, we examined the contribution of Ca(2+-permeable AMPARs to learning and plasticity in the hippocampus. Mutant mice were engineered with a conditional genetic deletion of GluR2 in the CA1 region of the hippocampus (GluR2-cKO mice. Electrophysiology experiments in these animals revealed a novel form of long-term potentiation (LTP that was independent of NMDARs and mediated by GluR2-lacking Ca(2+-permeable AMPARs. Behavioral analyses found that GluR2-cKO mice were impaired on multiple hippocampus-dependent learning tasks that required NMDAR activation. This suggests that AMPAR-mediated LTP interferes with NMDAR-dependent plasticity. In contrast, NMDAR-independent learning was normal in knockout mice and required the activation of Ca(2+-permeable AMPARs. These results suggest that GluR2-lacking AMPARs play a functional and previously unidentified role in learning; they appear to mediate changes in synaptic strength that occur after plasticity has been established by NMDARs.

  5. Changes of AMPA receptor properties in the neocortex and hippocampus following pilocarpine-induced status epilepticus in rats.

    Science.gov (United States)

    Malkin, Sergey L; Amakhin, Dmitry V; Veniaminova, Ekaterina A; Kim, Kira Kh; Zubareva, Olga E; Magazanik, Lev G; Zaitsev, Aleksey V

    2016-07-01

    Temporal lobe epilepsy (TLE) is the most common type of epilepsy in humans. The lithium-pilocarpine model in rodents reproduces some of the main features of human TLE. Three-week-old Wistar rats were used in this study. The changes in AMPA receptor subunit composition were investigated in several brain areas, including the medial prefrontal cortex (mPFC), the temporal cortex (TC), and the dorsal (DH) and ventral hippocampus (VH) during the first week following pilocarpine-induced status epilepticus (PILO-induced SE). In the hippocampus, GluA1 and GluA2 mRNA expression slightly decreased after PILO-induced SE and returned to the initial level on the seventh day. We did not detect any significant changes in mRNA expression of the GluA1 and GluA2 subunits in the TC, whereas in the mPFC we observed a significant increase of GluA1 mRNA expression on the third day and a decrease in GluA2 mRNA expression during the entire first week. Accordingly, the GluA1/GluA2 expression ratio increased in the mPFC, and the functional properties of the pyramidal cell excitatory synapses were disturbed. Using whole-cell voltage-clamp recordings, we found that on the third day following PILO-induced SE, isolated mPFC pyramidal neurons showed an inwardly rectifying current-voltage relation of kainate-evoked currents, suggesting the presence of GluA2-lacking calcium-permeable AMPARs (CP-AMPARs). IEM-1460, a selective antagonist of CP-AMPARs, significantly reduced the amplitude of evoked EPSC in pyramidal neurons from mPFC slices on the first and third days, but not on the seventh day. The antagonist had no effects on EPSC amplitude in slices from control animals. Thus, our data demonstrate that PILO-induced SE affects subunit composition of AMPARs in different brain areas, including the mPFC. SE induces transient (up to few days) incorporation of CP-AMPARs in the excitatory synapses of mPFC pyramidal neurons, which may disrupt normal circuitry functions. PMID:27109923

  6. Intracellular Ca²⁺ and not the extracellular matrix determines surface dynamics of AMPA-type glutamate receptors on aspiny neurons.

    Science.gov (United States)

    Klueva, Julia; Gundelfinger, Eckart D; Frischknecht, R Renato; Heine, Martin

    2014-10-19

    The perisynaptic extracellular matrix (ECM) contributes to the control of the lateral mobility of AMPA-type glutamate receptors (AMPARs) at spine synapses of principal hippocampal neurons. Here, we have studied the effect of the ECM on the lateral mobility of AMPARs at shaft synapses of aspiny interneurons. Single particle tracking experiments revealed that the removal of the hyaluronan-based ECM with hyaluronidase does not affect lateral receptor mobility on the timescale of seconds. Similarly, cross-linking with specific antibodies against the extracellular domain of the GluA1 receptor subunit, which affects lateral receptor mobility on spiny neurons, does not influence receptor mobility on aspiny neurons. AMPARs on aspiny interneurons are characterized by strong inward rectification indicating a significant fraction of Ca(2+)-permeable receptors. Therefore, we tested whether Ca(2+) controls AMPAR mobility in these neurons. Application of the membrane-permeable Ca(2+) chelator BAPTA-AM significantly increased the lateral mobility of GluA1-containing synaptic and extrasynaptic receptors. These data indicate that the perisynaptic ECM affects the lateral mobility differently on spiny and aspiny neurons. Although ECM structures on interneurons appear much more prominent, their influence on AMPAR mobility seems to be negligible at short timescales. PMID:25225098

  7. Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1)

    NARCIS (Netherlands)

    Russinova, E.T.; Borst, J.W.; Kwaaitaal, M.A.C.J.; Yanhai Yin, Y.; Caño-Delgrado, A.; Chory, J.; Vries, de S.C.

    2004-01-01

    In Arabidopsis thaliana brassinosteroid (BR), perception is mediated by two Leu-rich repeat receptor-like kinases, BRASSINOSTEROID INSENSITIVE1 (BRI1) and BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1) (Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR-like KINASE3 [AtSERK3]). Genetic, biochemical, and yeast (Sac

  8. Enhanced Long-Term and Impaired Short-Term Spatial Memory in GluA1 AMPA Receptor Subunit Knockout Mice: Evidence for a Dual-Process Memory Model

    Science.gov (United States)

    Sanderson, David J.; Good, Mark A.; Skelton, Kathryn; Sprengel, Rolf; Seeburg, Peter H.; Rawlins, J. Nicholas P.; Bannerman, David M.

    2009-01-01

    The GluA1 AMPA receptor subunit is a key mediator of hippocampal synaptic plasticity and is especially important for a rapidly-induced, short-lasting form of potentiation. GluA1 gene deletion impairs hippocampus-dependent, spatial working memory, but spares hippocampus-dependent spatial reference memory. These findings may reflect the necessity of…

  9. Pentosan polysulfate regulates scavenger receptor-mediated, but not fluid-phase, endocytosis in immortalized cerebral endothelial cells.

    Science.gov (United States)

    Deli, M A; Abrahám, C S; Takahata, H; Katamine, S; Niwa, M

    2000-12-01

    1. Effects of pentosan polysulfate (PPS) and the structurally related sulfated polyanions dextran sulfate, fucoidan, and heparin on the scavenger receptor-mediated and fluidphase endocytosis in GP8 immortalized rat brain endothelial cells were investigated. 2. Using 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarboxyamine perchlorate-labeled acetylated low-density lipoprotein (DiI-AcLDL), we found a binding site with high affinity and low binding capacity, and another one with low affinity and high binding capacity. Increasing ligand concentrations could not saturate DiI-AcLDL uptake. DiI-AcLDL uptake, but not binding, was sensitive to pretreatment with filipin, an inhibitor of caveola formation. 3. PPS (20-200 microg/ml) significantly reduced the binding of DiI-AcLDL after coincubation for 3 hr, though this effect was less expressed after 18 hr. Among other polyanions, only fucoidan decreased the DiI-AcLDL binding after 3 hr, whereas dextran sulfate significantly increased it after 18 hr. PPS treatment induced an increase in DiI-AcLDL uptake, whereas other polysulfated compounds caused a significant reduction. 4. Fluid-phase endocytosis determined by the accumulation of Lucifer yellow was concentration and time dependent in GP8 cells. Coincubation with PPS or other sulfated polyanions could not significantly alter the rate of Lucifer yellow uptake. 5. In conclusion. PPS decreased the binding and increased the uptake of DiI-AcLDL in cerebral endothelial cells, an effect not mimicked by the other polyanions investigated.

  10. Role of GluR2 expression in AMPA-induced toxicity in cultured murine cerebral cortical neurons

    DEFF Research Database (Denmark)

    Jensen, J B; Lund, Trine Meldgaard; Timmermann, D B;

    2001-01-01

    of the Mg(2+) block of the NMDA receptor on AMPA-R stimulation. The involvement of Ca(2+) influx through AMPA-R was also examined. The number of neurons possessing Ca(2+)-permeable AMPA-R increased during culture development, concurrently with an increasing susceptibility for AMPA-induced toxicity during...

  11. Agonist-dependent endocytosis of γ-aminobutyric acid type A (GABAA) receptors revealed by a γ2(R43Q) epilepsy mutation.

    Science.gov (United States)

    Chaumont, Severine; André, Caroline; Perrais, David; Boué-Grabot, Eric; Taly, Antoine; Garret, Maurice

    2013-09-27

    GABA-gated chloride channels (GABAARs) trafficking is involved in the regulation of fast inhibitory transmission. Here, we took advantage of a γ2(R43Q) subunit mutation linked to epilepsy in humans that considerably reduces the number of GABAARs on the cell surface to better understand the trafficking of GABAARs. Using recombinant expression in cultured rat hippocampal neurons and COS-7 cells, we showed that receptors containing γ2(R43Q) were addressed to the cell membrane but underwent clathrin-mediated dynamin-dependent endocytosis. The γ2(R43Q)-dependent endocytosis was reduced by GABAAR antagonists. These data, in addition to a new homology model, suggested that a conformational change in the extracellular domain of γ2(R43Q)-containing GABAARs increased their internalization. This led us to show that endogenous and recombinant wild-type GABAAR endocytosis in both cultured neurons and COS-7 cells can be amplified by their agonists. These findings revealed not only a direct relationship between endocytosis of GABAARs and a genetic neurological disorder but also that trafficking of these receptors can be modulated by their agonist.

  12. Episodic sucrose intake during food restriction increases synaptic abundance of AMPA receptors in nucleus accumbens and augments intake of sucrose following restoration of ad libitum feeding.

    Science.gov (United States)

    Peng, X-X; Lister, A; Rabinowitsch, A; Kolaric, R; Cabeza de Vaca, S; Ziff, E B; Carr, K D

    2015-06-01

    Weight-loss dieting often leads to loss of control, rebound weight gain, and is a risk factor for binge pathology. Based on findings that food restriction (FR) upregulates sucrose-induced trafficking of glutamatergic AMPA receptors to the nucleus accumbens (NAc) postsynaptic density (PSD), this study was an initial test of the hypothesis that episodic "breakthrough" intake of forbidden food during dieting interacts with upregulated mechanisms of synaptic plasticity to increase reward-driven feeding. Ad libitum (AL) fed and FR subjects consumed a limited amount of 10% sucrose, or had access to water, every other day for 10 occasions. Beginning three weeks after return of FR rats to AL feeding, when 24-h chow intake and rate of body weight gain had normalized, subjects with a history of sucrose intake during FR consumed more sucrose during a four week intermittent access protocol than the two AL groups and the group that had access to water during FR. In an experiment that substituted noncontingent administration of d-amphetamine for sucrose, FR subjects displayed an enhanced locomotor response during active FR but a blunted response, relative to AL subjects, during recovery from FR. This result suggests that the enduring increase in sucrose consumption is unlikely to be explained by residual enhancing effects of FR on dopamine signaling. In a biochemical experiment which paralleled the sucrose behavioral experiment, rats with a history of sucrose intake during FR displayed increased abundance of pSer845-GluA1, GluA2, and GluA3 in the NAc PSD relative to rats with a history of FR without sucrose access and rats that had been AL throughout, whether they had a history of episodic sucrose intake or not. A history of FR, with or without a history of sucrose intake, was associated with increased abundance of GluA1. A terminal 15-min bout of sucrose intake produced a further increase in pSer845-GluA1 and GluA2 in subjects with a history of sucrose intake during FR

  13. Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1)

    DEFF Research Database (Denmark)

    Russinova, Eugenia; Borst, Jan-Willem; Kwaaitaal, Mark Adrianus Cornelis J;

    2004-01-01

    (Saccharomyces cerevisiae) interaction studies suggested that the BRI1-BAK1 receptor complex initiates BR signaling, but the role of the BAK1 receptor is still not clear. Using transient expression in protoplasts of BRI1 and AtSERK3 fused to cyan and yellow fluorescent green fluorescent protein variants allowed...

  14. Epidermal growth factor receptor and cancer: control of oncogenic signalling by endocytosis

    DEFF Research Database (Denmark)

    Grandal, Michael Vibo; Madshus, I.H.

    2008-01-01

    The epidermal growth factor receptor (EGFR) and other members of the EGFR/ErbB receptor family of receptor tyrosine kinases (RTKs) are important regulators of proliferation, angiogenesis, migration, tumorigenesis and metastasis. Overexpression, mutations, deletions and production of autocrine...... prevents its down-regulation, underscoring the importance of the cellular background for EGFR effects. Signalling from ErbB proteins can either be terminated by dissociation of ligand resulting in dephosphorylation, or blunted by degradation of the receptors. Although proteasomal targeting of ErbB proteins...... ligands contribute to aberrant activation of the ErbB proteins. The signalling output from EGFR is complicated given that other ErbB proteins are often additionally expressed and activated in the same cell, resulting in formation of homo-and/or heterodimers. In particular, association of EGFR with ErbB2...

  15. Effects of ketamine-midazolam anesthesia on the expression of NMDA and AMPA receptor subunit in the peri-infarction of rat brain

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yue-lin; ZHANG Peng-bo; QIU Shu-dong; LIU Yong; TIAN Ying-fang; WANG Ying

    2006-01-01

    Background Activation of N-methyl-D-aspartate (NMDA) receptors and alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors play an important role in the neurons death induced by ischemia.The mitigating effect of intravenous anesthetics on ischemic neuron injury is related to their influence on NMDA receptors. This study was performed to investigate the effect of ketamine-midazolam anesthesia on the NMDA and AMPA receptor subunits expression in the peri-infarction of ischemic rat brain and explore its potential mechanism of neuroprotection.This study was supported by National Natural Science Foundation of China (NSFC) (No.30200291).Methods Thirty Sprague Dawley (SD) rats were subjected to permanent middle cerebral artery occlusion under ketamine/atropine (100/0.05 mg/kg) or ketamine-midazolam/atropine (60/50/0.05 mg/kg) intraperitoneal anesthesia (n=15 each). Twenty-four hours after ischemia, five rats in each group were killed by injecting the above dosage of ketamine or ketamine-midazolam intraperitoneally and infarct size was measured. Twenty-four and 72 hours after ischemia, four rats in each group were killed by injecting the above dosage of ketamine or ketamine-midazolam intraperitoneally. After staining the brain tissue slices with toluidine blue, the survived neurons in the peri-infarction were observed. Also, the expression level of NMDA receptors 1 (NR1), NMDA receptors 2A (NR2A), NMDA receptors 2B (NR2B) and AMPA (GluR1 subunit) were determined by grayscale analysis in immunohistochemical stained slices.Results Compared with ketamine anesthesia, ketamine-midazolam anesthesia produced not only smaller infarct size [(24.1±4.6)% vs (38.4±4.2)%, P<0.05], but also higher neuron density (24 hours: 846± 16 vs 756±24,P<0.05; 72 hours: 882±22 vs 785± 18, P<0.05) and lower NR2A (24 hours: 123.0±4.9 vs 95.0±2.5, P<0.05; 72 hours: 77.8±4.1 vs 54.2±3.9, P<0.05) and NR2B (24 hours: 98.5±2.7 vs 76.3±2.4, P<0.05; 72hours: 67.2

  16. Role of receptor-mediated endocytosis, endosomal acidification and cathepsin D in cholera toxin cytotoxicity.

    Science.gov (United States)

    El Hage, Tatiana; Merlen, Clémence; Fabrega, Sylvie; Authier, François

    2007-05-01

    Using the in situ liver model system, we have recently shown that, after cholera toxin binding to hepatic cells, cholera toxin accumulates in a low-density endosomal compartment, and then undergoes endosomal proteolysis by the aspartic acid protease cathepsin-D [Merlen C, Fayol-Messaoudi D, Fabrega S, El Hage T, Servin A, Authier F (2005) FEBS J272, 4385-4397]. Here, we have used a subcellular fractionation approach to address the in vivo compartmentalization and cytotoxic action of cholera toxin in rat liver parenchyma. Following administration of a saturating dose of cholera toxin to rats, rapid endocytosis of both cholera toxin subunits was observed, coincident with massive internalization of both the 45 kDa and 47 kDa Gsalpha proteins. These events coincided with the endosomal recruitment of ADP-ribosylation factor proteins, especially ADP-ribosylation factor-6, with a time course identical to that of toxin and the A subunit of the stimulatory G protein (Gsalpha) translocation. After an initial lag phase of 30 min, these constituents were linked to NAD-dependent ADP-ribosylation of endogenous Gsalpha, with maximum accumulation observed at 30-60 min postinjection. Assessment of the subsequent postendosomal fate of internalized Gsalpha revealed sustained endolysosomal transfer of the two Gsalpha isoforms. Concomitantly, cholera toxin increased in vivo endosome acidification rates driven by the ATP-dependent H(+)-ATPase pump and in vitro vacuolar acidification in hepatoma HepG2 cells. The vacuolar H(+)-ATPase inhibitor bafilomycin and the cathepsin D inhibitor pepstatin A partially inhibited, both in vivo and in vitro, the cAMP response to cholera toxin. This cathepsin D-dependent action of cholera toxin under the control of endosomal acidity was confirmed using cellular systems in which modification of the expression levels of cathepsin D, either by transfection of the cathepsin D gene or small interfering RNA, was followed by parallel changes in the cytotoxic

  17. Role of receptor-mediated endocytosis, endosomal acidification and cathepsin D in cholera toxin cytotoxicity.

    Science.gov (United States)

    El Hage, Tatiana; Merlen, Clémence; Fabrega, Sylvie; Authier, François

    2007-05-01

    Using the in situ liver model system, we have recently shown that, after cholera toxin binding to hepatic cells, cholera toxin accumulates in a low-density endosomal compartment, and then undergoes endosomal proteolysis by the aspartic acid protease cathepsin-D [Merlen C, Fayol-Messaoudi D, Fabrega S, El Hage T, Servin A, Authier F (2005) FEBS J272, 4385-4397]. Here, we have used a subcellular fractionation approach to address the in vivo compartmentalization and cytotoxic action of cholera toxin in rat liver parenchyma. Following administration of a saturating dose of cholera toxin to rats, rapid endocytosis of both cholera toxin subunits was observed, coincident with massive internalization of both the 45 kDa and 47 kDa Gsalpha proteins. These events coincided with the endosomal recruitment of ADP-ribosylation factor proteins, especially ADP-ribosylation factor-6, with a time course identical to that of toxin and the A subunit of the stimulatory G protein (Gsalpha) translocation. After an initial lag phase of 30 min, these constituents were linked to NAD-dependent ADP-ribosylation of endogenous Gsalpha, with maximum accumulation observed at 30-60 min postinjection. Assessment of the subsequent postendosomal fate of internalized Gsalpha revealed sustained endolysosomal transfer of the two Gsalpha isoforms. Concomitantly, cholera toxin increased in vivo endosome acidification rates driven by the ATP-dependent H(+)-ATPase pump and in vitro vacuolar acidification in hepatoma HepG2 cells. The vacuolar H(+)-ATPase inhibitor bafilomycin and the cathepsin D inhibitor pepstatin A partially inhibited, both in vivo and in vitro, the cAMP response to cholera toxin. This cathepsin D-dependent action of cholera toxin under the control of endosomal acidity was confirmed using cellular systems in which modification of the expression levels of cathepsin D, either by transfection of the cathepsin D gene or small interfering RNA, was followed by parallel changes in the cytotoxic

  18. Complex Determinants in Specific Members of the Mannose Receptor Family Govern Collagen Endocytosis

    DEFF Research Database (Denmark)

    Jürgensen, Henrik J; Johansson, Kristina; Madsen, Daniel H;

    2014-01-01

    Members of the well-conserved mannose receptor (MR) protein family have been functionally implicated in diverse biological and pathological processes. Importantly, a proposed common function is the internalization of collagen for intracellular degradation occurring during bone development, cancer...... in PLA2R or DEC-205. However, we also found that an active FN-II domain was not a sufficient determinant to allow collagen internalization through these receptors. Nevertheless, this ability could be acquired by the transfer of a larger segment of uPARAP/Endo180 (the Cys-rich domain, the FN-II domain...

  19. Archaeosomes varying in lipid composition differ in receptor-mediated endocytosis and differentially adjuvant immune responses to entrapped antigen

    Directory of Open Access Journals (Sweden)

    G. Dennis Sprott

    2003-01-01

    Full Text Available Archaeosomes prepared from total polar lipids extracted from six archaeal species with divergent lipid compositions had the capacity to deliver antigen for presentation via both MHC class I and class II pathways. Lipid extracts from Halobacterium halobium and from Halococcus morrhuae strains 14039 and 16008 contained archaetidylglycerol methylphosphate and sulfated glycolipids rich in mannose residues, and lacked archaetidylserine, whereas the opposite was found in Methanobrevibacter smithii, Methanosarcina mazei and Methanococcus jannaschii. Annexin V labeling revealed a surface orientation of phosphoserine head groups in M. smithii, M. mazei and M. jannaschii archaeosomes. Uptake of rhodamine-labeled M. smithii or M. jannaschii archaeosomes by murine peritoneal macrophages was inhibited by unlabeled liposomes containing phosphatidylserine, by the sulfhydryl inhibitor N-ethylmaleimide, and by ATP depletion using azide plus fluoride, but not by H. halobium archaeosomes. In contrast, N-ethylmaleimide failed to inhibit uptake of the four other rhodamine-labeled archaeosome types, and azide plus fluoride did not inhibit uptake of H. halobium or H. morrhuae archaeosomes. These results suggest endocytosis of archaeosomes rich in surface-exposed phosphoserine head groups via a phosphatidylserine receptor, and energy-independent surface adsorption of certain other archaeosome composition classes. Lipid composition affected not only the endocytic mechanism, but also served to differentially modulate the activation of dendritic cells. The induction of IL-12 secretion from dendritic cells exposed to H. morrhuae 14039 archaeosomes was striking compared with cells exposed to archaeosomes from 16008. Thus, archaeosome types uniquely modulate antigen delivery and dendritic cell activation.

  20. Stargazin regulates AMPA receptors trafficking-a new target for pain control%Stargazin调节使君子酸受体亚基转运和突触靶向——疼痛治疗的新靶点

    Institute of Scientific and Technical Information of China (English)

    郭瑞娟; 王云; 吴安石; 岳云

    2012-01-01

    Background α-amino-3-hydroxy-5 -methy-4-isoxazole propionate (AMPA)receptor mediates the most excitatory synaptic transmission in the central nervous system,and is involved in the pain signal transmission.As a member of trans-membrane AMPA receptor regulated protein family,Stargazin serves as a critical protein involved in the trafficking and synaptic targeting ofAMPA receptors and plays an important role in the AMPA receptor-mediated pain. Objective In this review,we will bring together the evidence that Stargazin controls the AMPA receptor subunits trafficking,synaptic insertion and regulates pain signal transmission.Content Stargazin is responsible for the AMPA receptor subunits trafficking into cellular membrane.The interaction between Stargazin and postsynaptic density-95 (PSD-95) controls the synaptic insertion of AMPA receptor subunits.The phosphrylation of Stargazin affects the interaction with PSD-95.Therefore,Stargazin may be implicated in pain transmission via regulating AMPA receptor function. Trend Downregulation of Stargazin expression or disrupting the postsynaptic interaction between stargazin and PSD-95 may be a new approach for pain control and deserves further investigation.%背景 使君子酸(α-amino-3 -hydroxy-5 -methy-4-isoxazole propionate,AMPA)受体是中介中枢神经系统兴奋性突触传递的主要受体,参与疼痛信号传递.Stargazin蛋白是一种AMPA受体调节蛋白,在AMPA受体中介的疼痛信号传递中扮演重要角色.目的 对Stargazin蛋白调节AMPA受体亚基在胞浆胞膜中的转运作用及与疼痛的关系作用进行回顾与总结.内容 Stargazin蛋白可调节AMPA受体不同亚基在胞浆胞膜转运,并通过与突触后膜致密蛋白-95 (postsynaptic density-95,PSD-95)的相互作用,促进AMPA受体亚基突触靶向;Stargazin还通过C末端自身磷酸化修饰改变与PSD-95蛋白相互作用的强度,控制AMPA受体的突触靶向.Stargazin通过调节AMPA受

  1. Preparation and characterization of folate-poly(ethylene glycol)-grafted-trimethylchitosan for intracellular transport of protein through folate receptor-mediated endocytosis.

    Science.gov (United States)

    Zheng, Yu; Song, Xiangrong; Darby, Michael; Liang, Yufeng; He, Ling; Cai, Zheng; Chen, Qiuhong; Bi, Yueqi; Yang, Xiaojuan; Xu, Jiapeng; Li, Yuanbo; Sun, Yiyi; Lee, Robert J; Hou, Shixiang

    2010-01-01

    To develop a receptor-mediated intracellular delivery system that can transport therapeutic proteins to specific tumor cells, folate-poly(ethylene glycol)-grafted-trimethylchitosan (folate-PEG-g-TMC) was synthesized. Nano-scaled spherical polyelectrolyte complexes between the folate-PEG-g-TMC and fluorescein isothiocyanate conjugated bovine serum albumin (FITC-BSA) were prepared under suitable weight ratio of copolymer to FITC-BSA by ionic interaction between the positively charged copolymers and the negatively charged FITC-BSA. Intracellular uptake of FITC-BSA was specifically enhanced in SKOV3 cells (folate receptor over-expressing cell line) through folate receptor-mediated endocytosis compared with A549 cells (folate receptor deficient cell line). Folate-PEG-g-TMC shows promise for intracellular transport of negatively charged therapeutic proteins into folate receptor over-expressing tumor cells.

  2. Endocytosis of influenza viruses

    OpenAIRE

    Lakadamyali, Melike; Rust, Michael J.; Zhuang, Xiaowei

    2004-01-01

    Receptor-mediated endocytosis is known to play an important role in the entry of many viruses into host cells. However, the exact internalization mechanism has, until recently, remained poorly understood for many medically important viruses, including influenza. Developments in real-time imaging of single viruses as well as the use of dominant negative mutants to selectively block specific endocytic pathways, have improved our understanding of the influenza infection process.

  3. Excitatory synapses are stronger in the hippocampus of Rett syndrome mice due to altered synaptic trafficking of AMPA-type glutamate receptors.

    Science.gov (United States)

    Li, Wei; Xu, Xin; Pozzo-Miller, Lucas

    2016-03-15

    Deficits in long-term potentiation (LTP) at central excitatory synapses are thought to contribute to cognitive impairments in neurodevelopmental disorders associated with intellectual disability and autism. Using the methyl-CpG-binding protein 2 (Mecp2) knockout (KO) mouse model of Rett syndrome, we show that naïve excitatory synapses onto hippocampal pyramidal neurons of symptomatic mice have all of the hallmarks of potentiated synapses. Stronger Mecp2 KO synapses failed to undergo LTP after either theta-burst afferent stimulation or pairing afferent stimulation with postsynaptic depolarization. On the other hand, basal synaptic strength and LTP were not affected in slices from younger presymptomatic Mecp2 KO mice. Furthermore, spine synapses in pyramidal neurons from symptomatic Mecp2 KO are larger and do not grow in size or incorporate GluA1 subunits after electrical or chemical LTP. Our data suggest that LTP is occluded in Mecp2 KO mice by already potentiated synapses. The higher surface levels of GluA1-containing receptors are consistent with altered expression levels of proteins involved in AMPA receptor trafficking, suggesting previously unidentified targets for therapeutic intervention for Rett syndrome and other MECP2-related disorders.

  4. Characterization of transferrin receptor-mediated endocytosis and cellular iron delivery of recombinant human serum transferrin from rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Zhang Deshui

    2012-11-01

    Full Text Available Abstract Background Transferrin (TF plays a critical physiological role in cellular iron delivery via the transferrin receptor (TFR-mediated endocytosis pathway in nearly all eukaryotic organisms. Human serum TF (hTF is extensively used as an iron-delivery vehicle in various mammalian cell cultures for production of therapeutic proteins, and is also being explored for use as a drug carrier to treat a number of diseases by employing its unique TFR-mediated endocytosis pathway. With the increasing concerns over the risk of transmission of infectious pathogenic agents of human plasma-derived TF, recombinant hTF is preferred to use for these applications. Here, we carry out comparative studies of the TFR binding, TFR-mediated endocytosis and cellular iron delivery of recombinant hTF from rice (rhTF, and evaluate its suitability for biopharmaceutical applications. Result Through a TFR competition binding affinity assay with HeLa human cervic carcinoma cells (CCL-2 and Caco-2 human colon carcinoma cells (HTB-37, we show that rhTF competes similarly as hTF to bind TFR, and both the TFR binding capacity and dissociation constant of rhTF are comparable to that of hTF. The endocytosis assay confirms that rhTF behaves similarly as hTF in the slow accumulation in enterocyte-like Caco-2 cells and the rapid recycling pathway in HeLa cells. The pulse-chase assay of rhTF in Caco-2 and HeLa cells further illustrates that rice-derived rhTF possesses the similar endocytosis and intracellular processing compared to hTF. The cell culture assays show that rhTF is functionally similar to hTF in the delivery of iron to two diverse mammalian cell lines, HL-60 human promyelocytic leukemia cells (CCL-240 and murine hybridoma cells derived from a Sp2/0-Ag14 myeloma fusion partner (HB-72, for supporting their proliferation, differentiation, and physiological function of antibody production. Conclusion The functional similarity between rice derived rhTF and native hTF in

  5. Autoimmune epilepsy: distinct subpopulations of epilepsy patients harbor serum autoantibodies to either glutamate/AMPA receptor GluR3, glutamate/NMDA receptor subunit NR2A or double-stranded DNA.

    Science.gov (United States)

    Ganor, Yonatan; Goldberg-Stern, Hadassa; Lerman-Sagie, Tally; Teichberg, Vivian I; Levite, Mia

    2005-06-01

    We studied 82 patients with different types of epilepsy and 49 neurologically intact non-epileptic controls, and identified three different subpopulations of epilepsy patients bearing significantly elevated levels of autoantibodies to either GluR3B-peptide of glutamate/AMPA receptor subtype 3 (17/82; 21% of patients), or to a peptide of NR2A subunit of glutamate/NMDA receptors (15/82; 18%), or to double-stranded (ds) DNA, the hallmark of systemic lupus erythematosus (13/80; 16%). Most patients had only one antibody type, arguing against cross-reactivity. Nearly all anti-dsDNA Ab-positive patients did not harbor anti-nuclear autoantibodies. Most patients had no history of brain damage, febrile convulsions, early onset epilepsy, acute epilepsy or intractable seizures. We suggest to measure the 'autoimmune-fingerprints' of epilepsy patients for diagnostic and therapeutic purposes. PMID:15978777

  6. SYM 2206 (a potent non-competitive AMPA receptor antagonist elevates the threshold for maximal electroshock-induced seizures in mice

    Directory of Open Access Journals (Sweden)

    Luszczki Jarogniew J.

    2014-06-01

    Full Text Available The aim of this study was to determine the effect of SYM 2206 (a potent non-competitive AMPA receptor antagonist on the threshold for maximal electroshock (MEST-induced seizures in mice. Electroconvulsions were produced in mice by means of a current (sinewave, 50 Hz, maximum 500 V, strength from 4 to 14 mA, 0.2-s stimulus duration, tonic hind limb extension taken as the endpoint delivered via ear-clip electrodes. SYM 2206 administered systemically (i.p., 30 min before the MEST test, at doses of 2.5 and 5 mg/kg, did not alter the threshold for maximal electroconvulsions in mice. In contrast, SYM 2206 at doses of 10 and 20 mg/kg significantly elevated the threshold for maximal electroconvulsions in mice (P<0.01 and P<0.001. Linear regression analysis of SYM 2206 doses and their corresponding threshold increases allowed for the determination of threshold increasing doses by 20% and 50% (TID20 and TID50 values that elevate the threshold in drug-treated animals over the threshold in control animals. The experimentally derived TID20 and TID50 values for SYM 2206 were 4.25 and 10.56 mg/kg, respectively. SYM 2206 dose-dependently increased the threshold for MEST-induced seizures, suggesting the anticonvulsant action of the compound in this seizure model in mice.

  7. Endocytosis of μ opioid receptors inhibits morphine tolerance%μ阿片受体的内吞抑制吗啡耐受的形成

    Institute of Scientific and Technical Information of China (English)

    吕庆琴; 陈霆隽; 洪炎国

    2012-01-01

    Opioids are the most effective analgesics. However, prolonged administration of morphine, the representative of opioids, results in tolerance, limiting the therapeutic utility of o-piate drugs. Studies have recently suggested that endocytosis of μ opioid receptors attenuates opioid tolerance. The ability of inducing endocytosis of opioid receptor is agonist-dependent. It has been shown that the endocytotic efficacy of opioids are negatively correlated with opioid tolerance. Receptor internalization reduced adaptive changes in signaling pathways that are involved in the development of opioid tolerance. Moreover, endocytosised μ-opioid receptors are rapidly recycled back to the cell membrane surface resuming their normal function. Therefore, tolerance does not occur. Thus, the study of receptor endocytosis and trafficking following the activation of the receptors can help the therapy for chronic pain.%阿片类药物是至今最有效的镇痛药,但是长期应用会产生药物耐受,大大限制了其临床应用.μ阿片受体和特定的激动剂结合后会出现内吞.研究发现,μ阿片受体是否内吞与耐受的发生有密切关系;加强μ阿片受体的内吞能够抑制受体耐受.不同的激动剂导致μ阿片受体内吞的能力是不同的;其导致耐受的能力和导致内吞的能力呈负相关.激动剂越容易引起μ受体内吞,就越不容易产生吗啡耐受.内吞的作用在于能抑制过度刺激μ受体而导致的环腺苷酸( cyclic adenosine monophosphate,cAMP)等兴奋性信号通路的激活,而内吞的μ受体也会很快回到细胞膜上,恢复和阿片类药物结合后激活抑制性GTP 结合蛋白的能力.因此,对受体的内吞和其后迁移过程展开研究,可能为慢性疼痛的治疗找到新的路径.

  8. S-SCAM/MAGI-2 is an essential synaptic scaffolding molecule for the GluA2-containing maintenance pool of AMPA receptors.

    Science.gov (United States)

    Danielson, Eric; Zhang, Nanyan; Metallo, Jacob; Kaleka, Kanwardeep; Shin, Seung Min; Gerges, Nashaat; Lee, Sang H

    2012-05-16

    Synaptic plasticity, the cellular basis of learning and memory, involves the dynamic trafficking of AMPA receptors (AMPARs) into and out of synapses. One of the remaining key unanswered aspects of AMPAR trafficking is the mechanism by which synaptic strength is preserved despite protein turnover. In particular, the identity of AMPAR scaffolding molecule(s) involved in the maintenance of GluA2-containing AMPARs is completely unknown. Here we report that the synaptic scaffolding molecule (S-SCAM; also called membrane-associated guanylate kinase inverted-2 and atrophin interacting protein-1) plays the critical role of maintaining synaptic strength. Increasing S-SCAM levels in rat hippocampal neurons led to specific increases in the surface AMPAR levels, enhanced AMPAR-mediated synaptic transmission, and enlargement of dendritic spines, without significantly effecting GluN levels or NMDA receptor (NMDAR) EPSC. Conversely, decreasing S-SCAM levels by RNA interference-mediated knockdown caused the loss of synaptic AMPARs, which was followed by a severe reduction in the dendritic spine density. Importantly, S-SCAM regulated synaptic AMPAR levels in a manner, dependent on GluA2 not GluA1, sensitive to N-ethylmaleimide-sensitive fusion protein interaction, and independent of activity. Further, S-SCAM increased surface AMPAR levels in the absence of PSD-95, while PSD-95 was dependent on S-SCAM to increase surface AMPAR levels. Finally, S-SCAM overexpression hampered NMDA-induced internalization of AMPARs and prevented the induction of long term-depression, while S-SCAM knockdown did not. Together, these results suggest that S-SCAM is an essential AMPAR scaffolding molecule for the GluA2-containing pool of AMPARs, which are involved in the constitutive pathway of maintaining synaptic strength. PMID:22593065

  9. Ca(2+ permeable AMPA receptor induced long-term potentiation requires PI3/MAP kinases but not Ca/CaM-dependent kinase II.

    Directory of Open Access Journals (Sweden)

    Suhail Asrar

    Full Text Available Ca(2+ influx via GluR2-lacking Ca(2+-permeable AMPA glutamate receptors (CP-AMPARs can trigger changes in synaptic efficacy in both interneurons and principle neurons, but the underlying mechanisms remain unknown. We took advantage of genetically altered mice with no or reduced GluR2, thus allowing the expression of synaptic CP-AMPARs, to investigate the molecular signaling process during CP-AMPAR-induced synaptic plasticity at CA1 synapses in the hippocampus. Utilizing electrophysiological techniques, we demonstrated that these receptors were capable of inducing numerous forms of long-term potentiation (referred to as CP-AMPAR dependent LTP through a number of different induction protocols, including high-frequency stimulation (HFS and theta-burst stimulation (TBS. This included a previously undemonstrated form of protein-synthesis dependent late-LTP (L-LTP at CA1 synapses that is NMDA-receptor independent. This form of plasticity was completely blocked by the selective CP-AMPAR inhibitor IEM-1460, and found to be dependent on postsynaptic Ca(2+ ions through calcium chelator (BAPTA studies. Surprisingly, Ca/CaM-dependent kinase II (CaMKII, the key protein kinase that is indispensable for NMDA-receptor dependent LTP at CA1 synapses appeared to be not required for the induction of CP-AMPAR dependent LTP due to the lack of effect of two separate pharmacological inhibitors (KN-62 and staurosporine on this form of potentiation. Both KN-62 and staurosporine strongly inhibited NMDA-receptor dependent LTP in control studies. In contrast, inhibitors for PI3-kinase (LY294002 and wortmannin or the MAPK cascade (PD98059 and U0126 significantly attenuated this CP-AMPAR-dependent LTP. Similarly, postsynaptic infusion of tetanus toxin (TeTx light chain, an inhibitor of exocytosis, also had a significant inhibitory effect on this form of LTP. These results suggest that distinct synaptic signaling underlies GluR2-lacking CP-AMPAR-dependent LTP, and reinforces

  10. Cortical kindling induces elevated levels of AMPA and GABA receptor subunit mRNA within the amygdala/piriform region and is associated with behavioral changes in the rat.

    Science.gov (United States)

    Henderson, Amy K; Galic, Michael A; Teskey, G Campbell

    2009-11-01

    Cortical kindling causes alterations within the motor cortex and results in long-standing motor deficits. Less attention has been directed to other regions that also participate in the epileptiform activity. We examined if cortical kindling could induce changes in excitatory and inhibitory receptor subunit mRNA in the amygdala/piriform regions and if such changes are associated with behavioral deficits. After cortical kindling, amygdala/piriform regions were dissected to analyze mRNA levels of NMDA, AMPA, and GABA receptor subunits using reverse transcription polymerase chain reaction, or rats were subjected to a series of behavioral tests. Kindled rats had significantly greater amounts of GluR1 and GluR2 AMPA receptor mRNA, and alpha1 and alpha2 GABA receptor subunit mRNA, compared with sham controls, which was associated with greater anxiety-like behaviors in the elevated plus maze and reduced freezing behaviors in the fear conditioning task. In summary, cortical kindling produces dynamic receptor subunit changes in regions in addition to the seizure focus.

  11. AMPA Receptor-mTOR Activation Is Required for the Antidepressant-like Effects of Sarcosine during the Forced Swim Test in rats: Insertion of AMPA Receptor may Play a Role

    Directory of Open Access Journals (Sweden)

    Kuang-Ti eChen

    2015-06-01

    Full Text Available Sarcosine, an endogenous amino acid, is a competitive inhibitor of the type I glycine transporter and an N-methyl-D-aspartate receptor (NMDAR coagonist. Recently, we found that sarcosine, an NMDAR enhancer, can improve depression-related behaviors in rodents and humans. This result differs from previous studies, which have reported antidepressant effects of NMDAR antagonists. The mechanisms underlying the therapeutic response of sarcosine remain unknown. This study examines the role of mammalian target of rapamycin (mTOR signaling and α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor (AMPAR activation, which are involved in the antidepressant-like effects of several glutamatergic system modulators. The effects of sarcosine in a forced swim test (FST and the expression levels of phosphorylated mTOR signaling proteins were examined in the absence or presence of mTOR and AMPAR inhibitors. In addition, the influence of sarcosine on AMPAR trafficking was determined by analyzing the phosphorylation of AMPAR subunit GluR1 at the PKA site (often considered an indicator for GluR1 membrane insertion in neurons. A single injection of sarcosine exhibited antidepressant-like effects in rats in the FST and rapidly activated the mTOR signaling pathway, which were significantly blocked by mTOR inhibitor rapamycin or the AMPAR inhibitor 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(fquinoxaline (NBQX pretreatment. Moreover, NBQX pretreatment eliminated the ability of sarcosine to stimulate the phosphorylated mTOR signaling proteins. Furthermore, GluR1 phosphorylation at its PKA site was significantly increased after an acute in vivo sarcosine treatment. The results demonstrated that sarcosine exerts antidepressant-like effects by enhancing AMPAR–mTOR signaling pathway activity and facilitating AMPAR membrane insertion.Highlights:- A single injection of sarcosine rapidly exerted antidepressant-like effects with a concomitant increase in the activation of the

  12. Enhanced long-term and impaired short-term spatial memory in GluA1 AMPA receptor subunit knockout mice: Evidence for a dual-process memory model

    OpenAIRE

    Sanderson, David J.; Good, Mark A.; Skelton, Kathryn; Sprengel, Rolf; Seeburg, Peter H.; Rawlins, J. Nicholas P.; Bannerman, David M.

    2009-01-01

    The GluA1 AMPA receptor subunit is a key mediator of hippocampal synaptic plasticity and is especially important for a rapidly-induced, short-lasting form of potentiation. GluA1 gene deletion impairs hippocampus-dependent, spatial working memory, but spares hippocampus-dependent spatial reference memory. These findings may reflect the necessity of GluA1-dependent synaptic plasticity for short-term memory of recently visited places, but not for the ability to form long-term associations betwee...

  13. AMPA Receptor-mTOR Activation is Required for the Antidepressant-Like Effects of Sarcosine during the Forced Swim Test in Rats: Insertion of AMPA Receptor may Play a Role.

    Science.gov (United States)

    Chen, Kuang-Ti; Tsai, Mang-Hung; Wu, Ching-Hsiang; Jou, Ming-Jia; Wei, I-Hua; Huang, Chih-Chia

    2015-01-01

    Sarcosine, an endogenous amino acid, is a competitive inhibitor of the type I glycine transporter and an N-methyl-d-aspartate receptor (NMDAR) coagonist. Recently, we found that sarcosine, an NMDAR enhancer, can improve depression-related behaviors in rodents and humans. This result differs from previous studies, which have reported antidepressant effects of NMDAR antagonists. The mechanisms underlying the therapeutic response of sarcosine remain unknown. This study examines the role of mammalian target of rapamycin (mTOR) signaling and α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor (AMPAR) activation, which are involved in the antidepressant-like effects of several glutamatergic system modulators. The effects of sarcosine in a forced swim test (FST) and the expression levels of phosphorylated mTOR signaling proteins were examined in the absence or presence of mTOR and AMPAR inhibitors. In addition, the influence of sarcosine on AMPAR trafficking was determined by analyzing the phosphorylation of AMPAR subunit GluR1 at the PKA site (often considered an indicator for GluR1 membrane insertion in neurons). A single injection of sarcosine exhibited antidepressant-like effects in rats in the FST and rapidly activated the mTOR signaling pathway, which were significantly blocked by mTOR inhibitor rapamycin or the AMPAR inhibitor 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX) pretreatment. Moreover, NBQX pretreatment eliminated the ability of sarcosine to stimulate the phosphorylated mTOR signaling proteins. Furthermore, GluR1 phosphorylation at its PKA site was significantly increased after an acute in vivo sarcosine treatment. The results demonstrated that sarcosine exerts antidepressant-like effects by enhancing AMPAR-mTOR signaling pathway activity and facilitating AMPAR membrane insertion. Highlights-A single injection of sarcosine rapidly exerted antidepressant-like effects with a concomitant increase in the activation of the mammalian

  14. Domoic Acid-Induced Neurotoxicity Is Mainly Mediated by the AMPA/KA Receptor: Comparison between Immature and Mature Primary Cultures of Neurons and Glial Cells from Rat Cerebellum

    Directory of Open Access Journals (Sweden)

    Helena T. Hogberg

    2011-01-01

    Full Text Available Domoic acid (DomA is a naturally occurring shellfish toxin that can induce brain damage in mammalians. Neonates have shown increased sensitivity to DomA-induced toxicity, and prenatal exposure has been associated with e.g. decreased brain GABA levels, and increased glutamate levels. Here, we evaluated DomA-induced toxicity in immature and mature primary cultures of neurons and glial cells from rat cerebellum by measuring the mRNA levels of selected genes. Moreover, we assessed if the induced toxicity was mediated by the activation of the AMPA/KA and/or the NMDA receptor. The expression of all studied neuronal markers was affected after DomA exposure in both immature and mature cultures. However, the mature cultures seemed to be more sensitive to the treatment, as the effects were observed at lower concentrations and at earlier time points than for the immature cultures. The DomA effects were completely prevented by the antagonist of the AMPA/KA receptor (NBQX, while the antagonist of the NMDA receptor (APV partly blocked the DomA-induced effects. Interestingly, the DomA-induced effect was also partly prevented by the neurotransmitter GABA. DomA exposure also affected the mRNA levels of the astrocytic markers in mature cultures. These DomA-induced effects were reduced by the addition of NBQX, APV, and GABA.

  15. 3-pyrazolone analogues of the 3-isoxazolol metabotropic excitatory amino acid receptor agonist homo-AMPA. Synthesis and pharmacological testing

    DEFF Research Database (Denmark)

    Zimmermann, D.; Janin, Y.L.; Brehm, L.;

    1999-01-01

    -4-(1,2-dihydro-5-methyl-3-oxo-3H-pyrazol-4-yl)butyric acid (1) and (RS)-2-amino-4-(1,2-dihydro-1,5-dimethyl-3-oxo-3H-pyrazol-4-yl)butyric acid (2). At a number of steps in the reaction sequences used, the reactions took unexpected courses and provided products which could not be transformed......We have previously shown that the higher homologue of (S)-glutamic acid [(S)-Glu], (S)-a-aminoadipic acid [(S)-a-AA] is selectively recognized by the mGlu and mGlu subtypes of the family of metabotropic glutamic acid (mGlu) receptors. Furthermore, a number of analogues of (S)-a-AA, in which...... the terminal carboxyl group has been replaced by various bioisosteric groups, such as phosphonic acid or 3-isoxazolol groups, have been shown to interact selectively with different subtypes of mGlu receptors. In this paper we report the synthesis of the 3-pyrazolone bioisosteres of a-AA, compounds (RS)-2-amino...

  16. Drosophila lipophorin receptors mediate the uptake of neutral lipids in oocytes and imaginal disc cells by an endocytosis-independent mechanism.

    Directory of Open Access Journals (Sweden)

    Esmeralda Parra-Peralbo

    Full Text Available Lipids are constantly shuttled through the body to redistribute energy and metabolites between sites of absorption, storage, and catabolism in a complex homeostatic equilibrium. In Drosophila, lipids are transported through the hemolymph in the form of lipoprotein particles, known as lipophorins. The mechanisms by which cells interact with circulating lipophorins and acquire their lipidic cargo are poorly understood. We have found that lipophorin receptor 1 and 2 (lpr1 and lpr2, two partially redundant genes belonging to the Low Density Lipoprotein Receptor (LDLR family, are essential for the efficient uptake and accumulation of neutral lipids by oocytes and cells of the imaginal discs. Females lacking the lpr2 gene lay eggs with low lipid content and have reduced fertility, revealing a central role for lpr2 in mediating Drosophila vitellogenesis. lpr1 and lpr2 are transcribed into multiple isoforms. Interestingly, only a subset of these isoforms containing a particular LDLR type A module mediate neutral lipid uptake. Expression of these isoforms induces the extracellular stabilization of lipophorins. Furthermore, our data indicate that endocytosis of the lipophorin receptors is not required to mediate the uptake of neutral lipids. These findings suggest a model where lipophorin receptors promote the extracellular lipolysis of lipophorins. This model is reminiscent of the lipolytic processing of triglyceride-rich lipoproteins that occurs at the mammalian capillary endothelium, suggesting an ancient role for LDLR-like proteins in this process.

  17. Orchestrated regulation of Nogo receptors, LOTUS, AMPA receptors and BDNF in an ECT model suggests opening and closure of a window of synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Max Nordgren

    Full Text Available Electroconvulsive therapy (ECT is an efficient and relatively fast acting treatment for depression. However, one severe side effect of the treatment is retrograde amnesia, which in certain cases can be long-term. The mechanisms behind the antidepressant effect and the amnesia are not well understood. We hypothesized that ECT causes transient downregulation of key molecules needed to stabilize synaptic structure and to prevent Ca2+ influx, and a simultaneous increase in neurotrophic factors, thus providing a short time window of increased structural synaptic plasticity. Here we followed regulation of NgR1, NgR3, LOTUS, BDNF, and AMPA subunits GluR1 and GluR2 flip and flop mRNA levels in hippocampus at 2, 4, 12, 24, and 72 hours after a single episode of induced electroconvulsive seizures (ECS in rats. NgR1 and LOTUS mRNA levels were transiently downregulated in the dentate gyrus 2, 4, 12 and 4, 12, 24 h after ECS treatment, respectively. GluR2 flip, flop and GluR1 flop were downregulated at 4 h. GluR2 flip remained downregulated at 12 h. In contrast, BDNF, NgR3 and GluR1 flip mRNA levels were upregulated. Thus, ECS treatment induces a transient regulation of factors important for neuronal plasticity. Our data provide correlations between ECS treatment and molecular events compatible with the hypothesis that both effects and side effects of ECT may be caused by structural synaptic rearrangements.

  18. Age-dependent modifications of AMPA receptor subunit expression levels and related cognitive effects in 3xTg-AD mice

    Directory of Open Access Journals (Sweden)

    Pamela eCantanelli

    2014-08-01

    Full Text Available GluA1, GluA2, GluA3, and GluA4 are the constitutive subunits of AMPA receptors (AMPARs, the major mediators of fast excitatory transmission in the mammalian central nervous system. Most AMPARs are Ca2+-impermeable because of the presence of the GluA2 subunit. GluA2 mRNA undergoes an editing process that results in a Q to R substitution, a key factor in the regulation of AMPAR Ca2+-permeability. AMPARs lacking GluA2 or containing the unedited subunit are permeable to Ca2+ and Zn2+. The phenomenon physiologically modulates synaptic plasticity while, in pathologic conditions, leads to increased vulnerability to excitotoxic neuronal death. Given the importance of these subunits, we have therefore evaluated possible associations between changes in expression levels of AMPAR subunits and development of cognitive deficits in 3xTg-AD mice, a widely investigated transgenic mouse model of Alzheimer’s disease. With qRT-PCR, we assayed hippocampal mRNA expression levels of GluA1-4 subunits occurring in young [3 months of age (m.o.a.] and old (12 m.o.a Tg-AD mice and made comparisons with levels found in age-matched wild type (WT mice. Efficiency of GluA2 RNA editing was also analyzed. All animals were cognitively tested for short- and long-term spatial memory with the Morris Water Maze (MWM navigation task. 3xTg-AD mice showed age-dependent decreases of mRNA levels for all the AMPAR subunits, with the exception of GluA2. Editing remained fully efficient with aging in 3xTg-AD and WT mice. A one-to-one correlation analysis between MWM performances and GluA1-4 mRNA expression profiles showed negative correlations between GluA2 levels and MWM performances in young 3xTg-AD mice. On the contrary, positive correlations between GluA2 mRNA and MWM performances were found in young WT mice. Our data suggest that increases of AMPARs that contain GluA1, GluA3, and GluA4 subunits may help in maintaining cognition in pre-symptomatic 3xTg-AD mice.

  19. Role of Site-Specific N-Glycans Expressed on GluA2 in the Regulation of Cell Surface Expression of AMPA-Type Glutamate Receptors.

    Directory of Open Access Journals (Sweden)

    Yusuke Takeuchi

    Full Text Available The AMPA-type glutamate receptor (AMPAR, which is a tetrameric complex composed of four subunits (GluA1-4 with several combinations, mediates the majority of rapid excitatory synaptic transmissions in the nervous system. Cell surface expression levels of AMPAR modulate synaptic plasticity, which is considered one of the molecular bases for learning and memory formation. To date, a unique trisaccharide (HSO3-3GlcAβ1-3Galβ1-4GlcNAc, human natural killer-1 (HNK-1 carbohydrate, was found expressed specifically on N-linked glycans of GluA2 and regulated the cell surface expression of AMPAR and the spine maturation process. However, evidence that the HNK-1 epitope on N-glycans of GluA2 directly affects these phenomena is lacking. Moreover, it is thought that other N-glycans on GluA2 also have potential roles in the regulation of AMPAR functions. In the present study, using a series of mutants lacking potential N-glycosylation sites (N256, N370, N406, and N413 within GluA2, we demonstrated that the mutant lacking the N-glycan at N370 strongly suppressed the intracellular trafficking of GluA2 from the endoplasmic reticulum (ER in HEK293 cells. Cell surface expression of GluA1, which is a major subunit of AMPAR in neurons, was also suppressed by co-expression of the GluA2 N370S mutant. The N370S mutant and wild-type GluA2 were co-immunoprecipitated with GluA1, suggesting that N370S was properly associated with GluA1. Moreover, we found that N413 was the main potential site of the HNK-1 epitope that promoted the interaction of GluA2 with N-cadherin, resulting in enhanced cell surface expression of GluA2. The HNK-1 epitope on N-glycan at the N413 of GluA2 was also involved in the cell surface expression of GluA1. Thus, our data suggested that site-specific N-glycans on GluA2 regulate the intracellular trafficking and cell surface expression of AMPAR.

  20. The CD20 homologue MS4A4 directs trafficking of KIT toward clathrin-independent endocytosis pathways and thus regulates receptor signaling and recycling.

    Science.gov (United States)

    Cruse, Glenn; Beaven, Michael A; Music, Stephen C; Bradding, Peter; Gilfillan, Alasdair M; Metcalfe, Dean D

    2015-05-01

    MS4A family members differentially regulate the cell cycle, and aberrant, or loss of, expression of MS4A family proteins has been observed in colon and lung cancer. However, the precise functions of MS4A family proteins and their mechanistic interactions remain unsolved. Here we report that MS4A4 facilitates trafficking of the receptor tyrosine kinase KIT through endocytic recycling rather than degradation pathways by a mechanism that involves recruitment of KIT to caveolin-1-enriched microdomains. Silencing of MS4A4 in human mast cells altered ligand-induced KIT endocytosis pathways and reduced receptor recycling to the cell surface, thus promoting KIT signaling in the endosomes while reducing that in the plasma membrane, as exemplified by Akt and PLCγ1 phosphorylation, respectively. The altered endocytic trafficking of KIT also resulted in an increase in SCF-induced mast cell proliferation and migration, which may reflect altered signaling in these cells. Our data reveal a novel function for MS4A family proteins in regulating trafficking and signaling, which could have implications in both proliferative and immunological diseases. PMID:25717186

  1. 2,8-Diazaspiro[4.5]decan-8-yl)pyrimidin-4-amine potent CCR4 antagonists capable of inducing receptor endocytosis.

    Science.gov (United States)

    Shukla, Lena; Ajram, Laura A; Begg, Malcolm; Evans, Brian; Graves, Rebecca H; Hodgson, Simon T; Lynn, Sean M; Miah, Afjal H; Percy, Jonathan M; Procopiou, Panayiotis A; Richards, Stephen A; Slack, Robert J

    2016-06-10

    A number of potent 2,8-diazaspiro[4.5]decan-8-yl)pyrimidin-4-amine CCR4 antagonists binding to the extracellular allosteric site were synthesised. (R)-N-(2,4-Dichlorobenzyl)-2-(2-(pyrrolidin-2-ylmethyl)-2,8-diazaspiro[4.5]decan-8-yl)pyrimidin-4-amine (R)-(18a) has high affinity in both the [(125)I]-TARC binding assay with a pKi of 8.8, and the [(35)S]-GTPγS functional assay with a pIC50 of 8.1, and high activity in the human whole blood actin polymerisation assay (pA2 = 6.7). The most potent antagonists were also investigated for their ability to induce endocytosis of CCR4 and were found to internalise about 60% of the cell surface receptors, a property which is not commonly shared by small molecule antagonists of chemokine receptors. PMID:26991939

  2. A single lysine of the two-lysine recognition motif of the D3 domain of receptor-associated protein is sufficient to mediate endocytosis by low-density lipoprotein receptor-related protein.

    Science.gov (United States)

    van den Biggelaar, Maartje; Sellink, Erica; Klein Gebbinck, Jacqueline W T M; Mertens, Koen; Meijer, Alexander B

    2011-03-01

    Ligand binding of the low-density lipoprotein (LDL) receptor family is mediated by complement-type repeats (CR) each comprising a binding pocket for a single basic amino acid residue. It has been proposed that at least two CRs are required for high-affinity interaction by utilising two spatially distinct lysine residues on the ligand surface. LDL receptor-related protein (LRP) mediates the cellular uptake of a multitude of ligands, some of which bind LRP with a relatively low affinity suggesting a suboptimal positioning of the two critical lysines. We now addressed the role of the two critical lysines not only in LRP binding but also in LRP-dependent endocytosis. Variants of the third domain (D3) of receptor-associated protein (RAP) were created carrying lysine to alanine or arginine replacements at the putative contact residues K253, K256 and K270. Surface plasmon resonance revealed that replacement of K253 did not affect high-affinity LRP binding at all, whereas replacement of either K256 or K270 markedly reduced the affinity by approximately 10-fold. Binding was abolished when both lysines were replaced. Substitution by either alanine or arginine exerted an almost identical effect on LRP binding. This suggests that despite their positive charge, arginine residues do not support receptor binding at all. Confocal microscopy and flow cytometry studies surprisingly revealed that the single mutants were still taken up and still competed for the uptake of full length RAP despite their receptor binding defect. We therefore propose that the presence of only one of the two critical lysines is sufficient to drive endocytosis. PMID:21144910

  3. Arabidopsis thaliana Somatic Embryogenesis Receptor Kinase 1 protein is present in sporophytic and gametophytic cells and undergoes endocytosis

    DEFF Research Database (Denmark)

    Kwaaitaal, Mark Adrianus Cornelis J; de Vries, S C; Russinova, E

    2005-01-01

    in diverse cell types including the epidermis and the vascular bundles. In some cells, fluorescent receptors were seen in small vesicle-like compartments. After application of the fungal toxin Brefeldin A, the fluorescent receptors were rapidly internalized in the root meristem and root vascular tissue. We...

  4. Mannose 6-phosphate receptor and sortilin mediated endocytosis of α-galactosidase A in kidney endothelial cells

    DEFF Research Database (Denmark)

    Prabakaran, Thaneas; Nielsen, Rikke Skovgaard; Satchell, Simon C;

    2012-01-01

    endothelial cells, in order to clarify if the recombinant enzyme is targeted to the lysosomes via the universal mannose 6-phosphate receptor (M6PR) and possibly other receptors. Immunohistochemical localization of infused recombinant α-Gal A in a renal biopsy from a classic Fabry disease patient showed...

  5. Differential modulation by AMPA of signals from red- and green-sensitive cones in carp retinal luminosity-type hori-zontal cells

    Institute of Scientific and Technical Information of China (English)

    杨如; 杨雄里

    2001-01-01

    Intracellular recordings were made from luminosity-type horizontal cells (LHCs) in the isolated superfused carp retina and the effect of AMPA (a-amino-3-hydroxy-5-methylisoxazole-4-propionic acid), a glutamate receptor agonist, on these cells was studied. AMPA suppressed the responses of LHCs driven by red-sensitive (R-) cones whereas it potentiated the responses driven by green-sensitive (G-) cones. The AMPA effect could be completely blocked by GYKI 53655, a specific AMPA receptor antagonist, indicating the exclusive involvement of AMPA-preferring receptors. The AMPA effect persisted in the presence of picrotoxin (PTX) or dihydrokainic acid (DHK), suggesting that the feedback from LHCs onto cones and glutamate transporters on cones may not be involved. It is suggested that there may exist different AMPA receptor subtypes with distinct characteristics on LHCs, which mediate signal transfer from R- and G-cones to LHCs, respectively.

  6. Forster Resonance Energy Transfer (FRET) Analysis of Dual CFP/YFP Labeled AMPA Receptors Reveals Structural Rearrangement within the C-Terminal Domain during Receptor Activation

    DEFF Research Database (Denmark)

    Zachariassen, Linda Grønborg; Katchan, Mila; Plested, Andrew;

    2014-01-01

    variants (CFP and YFP, respectively) of green fluorescent protein at various positions in the GluA2 AMPAR subunit to enable measurements of intra- receptor conformational changes using Fo¨ rster Resonance Energy Transfer (FRET) in live cells. We identify dual CFP/YFP-tagged GluA2 subunit con- structs that...... retain function and display intrareceptor FRET. This includes a construct (GluA2-6Y-10C) containing YFP in the intracellular loop between the M1 and M2 membrane-embedded segments and CFP inserted in the C-ter- minal domain (CTD). GluA2-6Y-10C displays FRET with an efficiency of 0.11 while retaining wild......-type receptor expression and kinetic properties. We have used GluA2-6Y-10C to study conformational changes in homomeric GluA2 receptors during receptor activation. Our results show that the FRET efficiency is dependent on functional state of GluA2-6Y-10C and hereby indi- cates that the intracellular CTD...

  7. Endocytosis of the ASGP receptor H1 is reduced by mutation of tyrosine-5 but still occurs via coated pits

    OpenAIRE

    Fuhrer, C; Geffen, I; Spiess, M.

    1991-01-01

    The clustering of plasma membrane receptors in clathrin-coated pits depends on determinants within their cytoplasmic domains. In several cases, individual tyrosine residues were shown to be necessary for rapid internalization. We have mutated the single tyrosine at position 5 in the cytoplasmic domain of the major subunit H1 of the asialoglycoprotein receptor to alanine. Expressed in fibroblasts cells, the mutant protein was accumulated in the plasma membrane, and its rate of internalization ...

  8. AMPA/NMDA cooperativity and integration during a single synaptic event.

    Science.gov (United States)

    Di Maio, Vito; Ventriglia, Francesco; Santillo, Silvia

    2016-10-01

    Coexistence of AMPA and NMDA receptors in glutamatergic synapses leads to a cooperative effect that can be very complex. This effect is dependent on many parameters including the relative and absolute number of the two types of receptors and biophysical parameters that can vary among synapses of the same cell. Herein we simulate the AMPA/NMDA cooperativity by using different number of the two types of receptors and considering the effect of the spine resistance on the EPSC production. Our results show that the relative number of NMDA with respect to AMPA produces a different degree of cooperation which depends also on the spine resistance. PMID:27299885

  9. Endocytosis in filamentous fungi

    OpenAIRE

    Kalkman, Edward R I C

    2007-01-01

    Endocytosis is little understood in filamentous fungi. For some time it has been controversial as to whether endocytosis occurs in filamentous fungi. A comparative genomics analysis between Saccharomyces cerevisiae and 10 genomes of filamentous fungal species showed that filamentous fungi possess complex endocytic machineries. The use of the endocytic marker dye FM4-64, and various vesicle trafficking inhibitors revealed many similarities between endocytosis in the filamentous ...

  10. Positive modulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors reverses subcronic PCP-induced deficits in the novel object recognition task in rats

    DEFF Research Database (Denmark)

    Nielsen, Trine Damgaard; Larsen, Dorrit Bjerg; Hansen, Suzanne Lisbet;

    2010-01-01

    Cognitive deficits are a major clinical unmet need in schizophrenia. The psychotomimetic drug phencyclicline (PCP) is widely applied in rodents to mimic symptoms of schizophrenia, including cognitive deficits. Precious studies have shown that sub-chronic PCP induces an enduring episodic memory...... deficit in female Lister hooded rats in teh novel object recognition (NOR) task. Here we show that positive modulation of AMPA receptor (AMPAR) mediated glutamate transmission alleviates cognitive deficits induced by sub-chronic PCP treatment. Female Lister hooded rats were treated sub......-cbronic PCP treatment induced a significant decrease in the discrimination index (DI) and both ampakines CX546 and CX516 were able to reverse this diruption of object memory in rats in the novel object recognition task. These data suggest that positive AMPAR modulation may represent a mechanism for treatment...

  11. Endosidin1 defines a compartment involved in endocytosis of the brassinosteroid receptor BRI1 and the auxin transporters PIN2 and AUX1.

    Science.gov (United States)

    Robert, Stéphanie; Chary, S Narasimha; Drakakaki, Georgia; Li, Shundai; Yang, Zhenbiao; Raikhel, Natasha V; Hicks, Glenn R

    2008-06-17

    Although it is known that proteins are delivered to and recycled from the plasma membrane (PM) via endosomes, the nature of the compartments and pathways responsible for cargo and vesicle sorting and cellular signaling is poorly understood. To define and dissect specific recycling pathways, chemical effectors of proteins involved in vesicle trafficking, especially through endosomes, would be invaluable. Thus, we identified chemicals affecting essential steps in PM/endosome trafficking, using the intensely localized PM transport at the tips of germinating pollen tubes. The basic mechanisms of this localized growth are likely similar to those of non-tip growing cells in seedlings. The compound endosidin 1 (ES1) interfered selectively with endocytosis in seedlings, providing a unique tool to dissect recycling pathways. ES1 treatment induced the rapid agglomeration of the auxin translocators PIN2 and AUX1 and the brassinosteroid receptor BRI1 into distinct endomembrane compartments termed "endosidin bodies"; however, the markers PIN1, PIN7, and other PM proteins were unaffected. Endosidin bodies were defined by the syntaxin SYP61 and the V-ATPase subunit VHA-a1, two trans-Golgi network (TGN)/endosomal proteins. Interestingly, brassinosteroid (BR)-induced gene expression was inhibited by ES1 and treated seedlings displayed a brassinolide (BL)-insensitive phenotype similar to a bri1 loss-of-function mutant. No effect was detected in auxin signaling. Thus, PIN2, AUX1, and BRI1 use interactive pathways involving an early SYP61/VHA-a1 endosomal compartment.

  12. 切口痛大鼠脊髓背角GluR1-AMPA受体和GluR2-AMPA受体胞浆至胞膜转运的变化%Changes in trafficking of GluR1-containing AMPA receptor and GluR2-containing AMPA receptor from cytoplasm to cell membrane in spinal dorsal horn in a rat model of incisional pain

    Institute of Scientific and Technical Information of China (English)

    郭瑞娟; 王云; 时蓉; 吴安石; 岳云

    2012-01-01

    Objective To investigate the changes in trafficking of GluRl-containing AMPA (GluR1-AMPA) receptor and GluR2-AMPA receptor from cytoplasm to cell membrane in the spinal cord dorsal horn in a rat model of incisional pain.Methods Thirty-two adult male SD rats aged 6-8 weeks weighing 280-300 g were randomly divided into 2 groups:control group (group C,n =8) and incisional pain group (group Ⅰ,n =24).An 1 cm long incision was made in the plautar surface of right hindpaw according to Brennan et al.in group Ⅰ.Cumulative pain score (CPS) and paw-withdrawal threshold to yon Frey stimuli (PWT) were measured at 3 h and day 1 and 3 afar incision ( T1,2,3 ).The animals were sacrificed after pain behavior assessment.Their lumbar segments of the spinal cord (L3-6) were removed.The expression of GluR1 and GluR2 in cell membrane and cytoplasm in spinal cord dorsal horn was determined by Western blot analysis.The co-expression of Stargazing with GluR1 and GluR2 in the spinal cord dorsal horn was examined by co-immuno-precipitation.Results The CPS was increased and PWT decreased; the GluR1 expression in cytoplasm was decreased while the expression of GluR1 in cell membrane and the co-expression of Stargazing with GluR1 were up-regulated in group Ⅰ as compared with group C.There was no significant change in the expression of GluR2 in cytoplasm and cell membrane and the co-expression of Stargazing with GluR2 in group Ⅰ as compared with group C.Conclusion GluR1-AMPA receptor transfers from cytoplasm to cell membrane but GluR2-AMPA receptor does not in rats with incisional pain.%目的 探讨切口痛大鼠脊髓背角含谷氨酸受体1亚基的使君子酸(GluR1-AMPA)受体和含谷氨酸受体2亚基的使君子酸(GluR2-AMPA)受体胞浆至胞膜转运的变化.方法 成年雄性清洁级SD大鼠32只,体重280~ 300 g,6~8周龄,采用随机数表法,将其随机分为2组:正常对照组(C组,n=8)和切口痛组(Ⅰ组,n=24).Ⅰ组大鼠制作右足底

  13. The matricellular receptor LRP1 forms an interface for signaling and endocytosis in modulation of the extracellular tumor environment

    Directory of Open Access Journals (Sweden)

    Bart eVan Gool

    2015-11-01

    Full Text Available The membrane protein low-density lipoprotein receptor related-protein 1 (LRP1 has been attributed a role in cancer. However, its presumably often indirect involvement is far from understood. LRP1 has both endocytic and signaling activities. As a matricellular receptor it is involved in regulation, mostly by clearing, of various extracellular matrix degrading enzymes including matrix metalloproteinases, serine proteases, protease-inhibitor complexes and the endoglycosidase heparanase. Furthermore, by binding extracellular ligands including growth factors and subsequent intracellular interaction with scaffolding and adaptor proteins it is involved in regulation of various signaling cascades. LRP1 expression levels are often downregulated in cancer and some studies consider low LRP1 levels a poor prognostic factor. On the contrary, upregulation in brain cancers has been noted and clinical trials explore the use of LRP1 as cargo receptor to deliver cytotoxic agents.This mini-review focuses on LRP1’s role in tumor growth and metastasis especially by modulation of the extracellular tumor environment. In relation to this role its diagnostic, prognostic and therapeutic potential will be discussed.

  14. Multiple Functions of Sterols in Yeast Endocytosis

    OpenAIRE

    Heese-Peck, Antje; Pichler, Harald; Zanolari, Bettina; Watanabe, Reika; Daum, Günther; Riezman, Howard

    2002-01-01

    Sterols are essential factors for endocytosis in animals and yeast. To investigate the sterol structural requirements for yeast endocytosis, we created a variety of ergΔ mutants, each accumulating a distinct set of sterols different from ergosterol. Mutant erg2Δerg6Δ and erg3Δerg6Δ cells exhibit a strong internalization defect of the α-factor receptor (Ste2p). Specific sterol structures are necessary for pheromone-dependent receptor hyperphosphorylation, a prerequisite for internalization. Th...

  15. Two-stage AMPA receptor trafficking in classical conditioning and selective role for glutamate receptor subunit 4 (tGluA4) flop splice variant.

    Science.gov (United States)

    Zheng, Zhaoqing; Sabirzhanov, Boris; Keifer, Joyce

    2012-07-01

    Previously, we proposed a two-stage model for an in vitro neural correlate of eyeblink classical conditioning involving the initial synaptic incorporation of glutamate receptor A1 (GluA1)-containing α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid type receptors (AMPARs) followed by delivery of GluA4-containing AMPARs that support acquisition of conditioned responses. To test specific elements of our model for conditioning, selective knockdown of GluA4 AMPAR subunits was used using small-interfering RNAs (siRNAs). Recently, we sequenced and characterized the GluA4 subunit and its splice variants from pond turtles, Trachemys scripta elegans (tGluA4). Analysis of the relative abundance of mRNA expression by real-time RT-PCR showed that the flip/flop variants of tGluA4, tGluA4c, and a novel truncated variant tGluA4trc1 are major isoforms in the turtle brain. Here, transfection of in vitro brain stem preparations with anti-tGluA4 siRNA suppressed conditioning, tGluA4 mRNA and protein expression, and synaptic delivery of tGluA4-containing AMPARs but not tGluA1 subunits. Significantly, transfection of abducens motor neurons by nerve injections of tGluA4 flop rescue plasmid prior to anti-tGluA4 siRNA application restored conditioning and synaptic incorporation of tGluA4-containing AMPARs. In contrast, treatment with rescue plasmids for tGluA4 flip or tGluA4trc1 failed to rescue conditioning. Finally, treatment with a siRNA directed against GluA1 subunits inhibited conditioning and synaptic delivery of tGluA1-containing AMPARs and importantly, those containing tGluA4. These data strongly support our two-stage model of conditioning and our hypothesis that synaptic incorporation of tGluA4-containing AMPARs underlies the acquisition of in vitro classical conditioning. Furthermore, they suggest that tGluA4 flop may have a critical role in conditioning mechanisms compared with the other tGluA4 splice variants.

  16. Role of Hippocampal 5-HT1A Receptor and Its Modulation to NMDA Receptor and AMPA Receptor in Depression Induced by Chronic Unpredictable Mild Stress%应激性抑郁样行为发生中海马5-羟色胺1A受体的作用及其对NMDA受体和AMPA受体的调节

    Institute of Scientific and Technical Information of China (English)

    问黎敏; 安书成; 刘慧

    2012-01-01

    为探讨慢性不可预见性温和应激(chronic unpredictable mild stress,CUMS)诱发抑郁样行为发生中海马5-羟色胺1A受体(5-hydroxytryptamine receptor 1A,5-HT1AR)表达与作用,及其对谷氨酸N-甲基-D-天冬氨酸(N-methyl-D-aspartic acid,NMDA)受体和α-氨基羟甲基异恶唑丙酸(α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid,AMPA)受体的影响.通过建立CUMS动物模型,给应激抑郁模型大鼠海马微量注射5-HT1A受体激动剂、给正常大鼠海马微量注射5-HT1A受体拮抗剂,测量大鼠体重变化率,并采用糖水偏爱测试、旷场实验和悬尾实验等方法对大鼠进行行为学检测,运用Western blot和ELISA方法检测大鼠海马组织中5-HT1AR和NMDAR和AMPAR的关键亚基的表达以及磷酸化水平.结果显示,与对照组相比,CUMS组大鼠表现出抑郁样行为,海马5-HT1AR、AMPA受体的GluR2/3亚基表达及磷酸化明显降低,NMDA受体的NR1和NR2B亚基表达及磷酸化显著增加;正常大鼠海马微量注射5-HT1A受体拮抗剂WAY100635,动物行为学表现及AMPA受体、NMDA受体表达及磷酸化水平均与CUMS组相同;注射5-HT1A受体激动剂8-OH-DPAT能逆转应激诱导的上述改变.以上结果表明,CUMS诱发抑郁榉行为与海马5-HT1AR表达下降,AMPAR表达量及磷酸化水平降低,NMDAR表达量及磷酸化水平升高有关.5-HT通过5-HT1AR产生抗抑郁作用.5-HT1AR激动剂抗抑郁作用与降低NMDAR表达量及磷酸化水平,提高AMPAR表达量及磷酸化水平密切相关.%Stressors markedly influence central neurochemical and hormonal processes and thus play a pivotal role in the occurrence of depressive illnesses. As the center for stress response and the potential target for stressfulprovocation, the hippocampus is becoming a focus in depression research. Although a large number of behavioral paradigms have been proposed as animal models of depression, only a few are considered potentially useful research tools with

  17. AMPA experimental communications systems

    Science.gov (United States)

    Beckerman, D.; Fass, S.; Keon, T.; Sielman, P.

    1982-01-01

    The program was conducted to demonstrate the satellite communication advantages of Adaptive Phased Array Technology. A laboratory based experiment was designed and implemented to demonstrate a low earth orbit satellite communications system. Using a 32 element, L-band phased array augmented with 4 sets of weights (2 for reception and 2 for transmission) a high speed digital processing system and operating against multiple user terminals and interferers, the AMPA system demonstrated: communications with austere user terminals, frequency reuse, communications in the face of interference, and geolocation. The program and experiment objectives are described, the system hardware and software/firmware are defined, and the test performed and the resultant test data are presented.

  18. Synthesis and biological evaluation of analogues of 7-chloro-4,5-dihydro-4- oxo-8-(1,2,4-triazol-4-yl)-1,2,4-triazolo[1,5-a]quinoxaline-2-carboxylic acid (TQX-173) as novel selective AMPA receptor antagonists.

    Science.gov (United States)

    Catarzi, Daniela; Colotta, Vittoria; Varano, Flavia; Calabri, Francesca Romana; Filacchioni, Guido; Galli, Alessandro; Costagli, Chiara; Carlà, Vincenzo

    2004-01-01

    In recent papers (Catarzi, D.; et al. J. Med. Chem. 2000, 43, 3824-3826; 2001, 44, 3157-3165) we reported chemical and biological studies on 4,5-dihydro-4-oxo-1,2,4-triazolo[1,5-a]quinoxaline-2-carboxylates (TQXs) bearing different nitrogen-containing heterocycles at position-8. In particular, from these studies it emerged that both the 7-chloro-4,5-dihydro-4-oxo-8-(1,2,4-triazol-4-yl)-1,2,4-triazolo[1,5-a] quinoxaline-2-carboxylic acid TQX-173 (compound B) and its corresponding ethyl ester (compound A) were the most active and selective compounds of this series. In pursuing our investigation on the structure-activity relationships of these TQX derivatives, different electron-withdrawing groups (CF(3), NO(2)) were introduced at position 7 on the TQX ring system, replacing the 7-chloro substituent of B and of other selected 8-heteroaryltriazoloquinoxaline-2-carboxylates previously described. All the newly synthesized compounds were biologically evaluated for their binding at the Gly/NMDA, AMPA, and KA high-affinity receptors. Gly/NMDA binding assays were performed to assess the selectivity of the reported compounds toward the AMPA receptor. Compounds endowed with micromolar binding affinity for the KA high-affinity binding site were also evaluated for their binding at the KA low-affinity receptor. Some selected compounds were also tested for their functional antagonist activity at the AMPA and NMDA receptor-ion channel complex. The results obtained in this study have pointed out that 4,5-dihydro-7-nitro-4-oxo-8-(3-carboxypyrrol-1-yl)-1,2,4-triazolo[1,5-a]quinoxaline-2-carboxylic acid (9b) and its corresponding ethyl ester (9a) are the most potent and selective AMPA receptor antagonists reported to date among the TQX series.

  19. Endocytosis via galactose receptors in vivo. Ligand size directs uptake by hepatocytes and/or liver macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Schlepper-Schaefer, J.; Huelsmann, D.; Djovkar, A.; Meyer, H.E.; Herbertz, L.; Kolb, H.; Kolb-Bachofen, V.

    1986-01-01

    The intrahepatic binding and uptake of variously sized ligands with terminal galactosyl residues is rat liver was followed. The ligands were administered to prefixed livers in binding studies and in vivo and in situ (serum-free perfused livers) in uptake studies. Gold sols with different particle diameters were prepared: 5 nm (Au/sub 5/), 17 nm (Au/sub 17/), 50 nm (Au/sub 50/) and coated with galactose exposing glycoproteins (asialofetuin (ASF) or lactosylated BSA (LacBSA)). Electron microscopy of mildly prefixed livers perfused with LacBSA-Au/sub 5/ in serum-free medium showed ligand binding to liver macrophages, hepatocytes and endothelial cells. Ligands bound to prefixed cell surfaces reflect the initial distribution of receptor activity: pre-aggregated clusters of ligands are found on liver macrophages, single particles statistically distributed on hepatocytes and pre-aggregated clusters of particles restricted to coated pits on endothelial cells. Ligand binding is prevented in the presence of 80 mM N-acetylgalactosamine (GalNAc), while N-acetylglucosamine (GlcNAc) is without effect. Electron microscopy of livers after ligand injection into the tail vein shows that in vivo uptake of electron-dense galactose particles by liver cells is size-dependent. In vivo uptake by liver macrophages is mediated by galactose-specific recognition as shown by inhibition with GalNAc.

  20. 鞘内注射NMDA和AMPA受体激动剂或拮抗剂对异丙酚抗伤害作用的影响%Effects of intrathecal NMDA and AMPA receptors agonists or antagonists on antinociception of propofol

    Institute of Scientific and Technical Information of China (English)

    许爱军; 段世明; 曾因明

    2004-01-01

    AIM: To study the effects of intrathecal (it) agonists and antagonists of N-methyl-D-aspartate (NMDA) and alphaamino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors and NMDAR1 antisenseoligodeoxynucleotides (AS ODN) on the antinociception of propofol. METHODS: Hot-plate test (HPPT) and acetic acid-induced writhing test were used to measure the nociceptive thresholds in mice. The effects of intrathecal NMDA, AMPA, MK-801, NBQX, or NMDAR1 AS ODN on the antinociception of propofol were observed.RESULTS: Propofol (25, 50 mg/kg, ip) displayed an appreciable antinociceptive effect in hot-plate test and acetic acid-induced writhing test. NMDA (12.5, 25 ng, it) or AMPA (1.25, 2.5 ng, it) exhibited no effects on the behavior but decreased HPPT significantly compared with basal HPPT and aCSF group (P<0.05, P<0.01). No effects on behavior and HPPT were obtained in NMDA (6.25 ng, it) or AMPA (0.625 ng, it) groups. NMDA (6.25, 12.5, and 25 ng, it) dose-dependently decreased the HPPT in propofol-treated group. AMPA (1.25, 2.5 ng, it) also decreased HPPT significantly. MK-801 (0.25, 0.5 μg, it) or NBQX (0.25, 0.5 μg, it) groups had no behavioral changes, two antagonists 0.5 μg but not 0.25 μg increased HPPT in conscious or propofol-treated mice. AS ODN (5, 10, and 20 μg, it) groups exhibited dose-dependent increased in HPPT in propofol-treated groups compared with aCSF group (P<0.05, P<0.01). CONCLUSION: Both agonists NMDA and AMPA reversed the antinociception of propofol.MK-801, NBQX, and NMDAR1 AS ODN potentiated the antinociceptive effects of propofol. Propofol produced antinociception through an interaction with spinal NMDA and AMPA receptors in mice.

  1. Synaptic vesicle endocytosis.

    Science.gov (United States)

    Saheki, Yasunori; De Camilli, Pietro

    2012-09-01

    Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization.

  2. Antidepressant Effects of AMPA and Ketamine Combination: Role of Hippocampal BDNF, Synapsin, and mTOR

    Science.gov (United States)

    Akinfiresoye, Luli; Tizabi, Yousef

    2013-01-01

    Rationale A number of preclinical and clinical studies suggest ketamine, a glutamate NMDA (N-methyl-D-aspartate) receptor antagonist, has a rapid and lasting antidepressant effect when administered either acutely or chronically. It has been postulated that this effect is due to stimulation of AMPA (alpha-amino-3-hydroxy-5-methyl–4-isoxazolepropionic acid) receptors. Objective In this study, we tested whether AMPA alone has an antidepressant effect and if the combination of AMPA and ketamine provides added benefit in Wistar-Kyoto (WKY) rats, a putative animal model of depression. Results Chronic AMPA treatment resulted in a dose dependent antidepressant effect in both the forced swim test (FST) and sucrose preference test. Moreover, chronic administration (10–11d) of combinations of AMPA and ketamine, at doses that were ineffective on their own, resulted in a significant antidepressant effect. The behavioral effects were associated with increases in hippocampal brain derived neurotrophic factor (BDNF), synapsin, and mammalian target of rapamycin (mTOR). Conclusion These findings are the first to provide evidence for an antidepressant effect of AMPA, and suggest the usefulness of AMPA-ketamine combination in treatment of depression. Furthermore, these effects appear to be associated with increases in markers of hippocampal neurogenesis and synaptogenesis, suggesting a mechanism of their action. PMID:23732839

  3. Long-term changes in brain following continuous phencyclidine administration: An autoradiographic study using flunitrazepam, ketanserin, mazindol, quinuclidinyl benzilate, piperidyl-3,4-{sup 3}H(N)-TCP, and AMPA receptor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, Gaylord; Keys, Alan; Noguchi, Kevin [Univ. of California Los Angeles, Dept. of Psychology, Los Angeles, CA (United States)

    1999-05-01

    Phencyclidine induces a model psychosis which can persist for prolonged periods and presents a strong drug model of schizophrenia. When given continuously for several days to rats, phencyclidine and other N-methyl-D-aspartate (NMDA) antagonists induce neural degeneration in a variety of limbic structures, including retrosplenial cortex, hippocampus, septohippocampal projections, and piriform cortex. In an attempt to further clarify the mechanisms underlying these degeneration patterns, autoradiographic studies using a variety of receptor ligands were conducted in animals 21 days after an identical dosage of the continuous phencyclidine administration employed in the previous degeneration studies. The results indicated enduring alterations in a number of receptors: these included decreased piperidyl-3,4-{sup 3}H(N)-TCP (TCP), flunitrazepam, and mazindol binding in many of the limbic regions in which degeneration has been reported previously. Quinuclidinyl benzilate and (AMPA) binding were decreased in anterior cingulate and piriform cortex, and in accumbens and striatum. Piperidyl-3,4-{sup 3}H(N)-TCP binding was decreased in most hippocampal regions. Many of these long-term alterations would not have been predicted by prior studies of the neurotoxic effects of continuous phencyclidine, and these results do not suggest a unitary source for the neurotoxicity. Whereas retrosplenial cortex, the structure which degenerates earliest, showed minimal alterations, some of the most consistent, long term alterations were in structures which evidence no immediate signs of neural degeneration, such as anterior cingulate cortex and caudate nucleus. In these structures, some of the receptor changes appeared to develop gradually (they were not present immediately after cessation of drug administration), and thus were perhaps due to changed input from regions evidencing neurotoxicity. Some of these findings, particularly in anterior cingulate, may have implications for models of

  4. Receptor-mediated endocytosis in ameloblasts%成釉细胞受体介导的内吞功能的研究

    Institute of Scientific and Technical Information of China (English)

    杨婷; 周涛; 高佳; 段小红

    2011-01-01

    目的:相对定量地研究成釉细胞的内吞功能,并在细胞水平上动态观察成釉细胞的内吞过程,以期为成釉细胞内吞功能研究提供2种新的可行的方法.方法:用视磺酸和地塞米粉(RA/DEX)诱导分泌期成釉细胞LS8细胞成熟,对照组细胞不经诱导处理.分别用激光共聚焦显微镜和活细胞工作站观察细胞内吞荧光标记的FITC-白蛋白的过程.结果:2种方法均显示RA/DEX诱导组细胞内吞活动较对照组强.结论:激光共聚焦显微镜和活细胞工作站都是研究成釉细胞内吞功能的有效方法.%Objective: To study the endocytosis function of ameloblasts relatively and quantitatively and to observe endocytosis process of ameloblasts at celluar level dynamicly.Methods: LS8 ameloblasts were induced by ratinoid acid and dexmethosone(RA/DEX) to be of maturation, and control cells were without treatment.Cells were cultured with FITC-Albumin at 0.1 mg/ml for 30 min.The endocytosis function of the cells was observed by confocal laser scanning microscope and live cell station respectively.Results: Both methods showed that the endocytosis function of RA/DEX group was stronger than that of the control.Conclusion: Both confocal laser scanning microscope and live cell station can be used to study endocytosis function of ameloblasts.

  5. Role of hippocampal AMPA receptors in antidepressant effect of ketamine in rats%海马AMPA受体在氯胺酮对大鼠抗抑郁效应中的作用

    Institute of Scientific and Technical Information of China (English)

    杨春; 高志勤; 杨春; 周志强; 杨建军; 徐建国

    2012-01-01

    Objective To evaluate the role of hippocampal AMPA receptors in the antidepressant effect of ketamine in rats.Methods Thirty male Wistar rats aged 2 months weighing 180-220 g were randomly divided into 3 groups (n =10 each):control group (group C); ketamine group (group K) and AMPA receptor antagonist NBQX group (group N).The animals were forced to swim for 15 min on the 1st day.On the 2nd day,NBQX 10 mg/kg was injected intrapefitoneally in group N; 30 min later,normal saline was injected intraperitoneally in group C,while ketamine 10 mg/kg was injected intraperitoneally in groups K and N.The forced swimming test was performed again for 5 min at 30 min after administration and the immobility time of the rats was recorded.Then the animals were sacrificed and the hippocampus was removed for determination of the expression of phosphorylated rapamycin (p-mTOR) and phosphorylated glutamate receptor 1 (p-GluR1).Results Compared with group C,the immobility time was significantly shortened and the expression of p-mTOR and p-GluR1 up-regulated in group K,and the immobility time was significantly shortened,the expression of p-mTOR up-regulated and the expression of p-GluR1 down-regulated in group N (P < 0.05).Compared with group K,the immobility time was significantly prolonged and the expression of p-mTOR and p-GluR1 down-regulated in group N (P < 0.05 ).Conclusion AMPA receptors in hippocampus are involved in the antidepressant effect of ketamine in rats and the inhibition of mTOR and GluR1 activities may be involved in the mechanism.%目的 评价海马α-氨基-3-羟基-5-甲基-4-异恶唑基丙酸(AMPA)受体在氯胺酮对大鼠抗抑郁效应中的作用.方法 雄性Wistar大鼠30只,2月龄,体重180~220 g,采用随机数字表法,将其随机均分为3组(n=10):对照组(C组)、氯胺酮组(K组)和AMPA受体拮抗剂NBQX组(N组).行强迫游泳实验15 min建立大鼠抑郁模型.于第2天N组腹腔注射NBQX 10 mg/kg;30 min

  6. Alterations in Hippocampal Oxidative Stress, Expression of AMPA Receptor GluR2 Subunit and Associated Spatial Memory Loss by Bacopa monnieri Extract (CDRI-08 in Streptozotocin-Induced Diabetes Mellitus Type 2 Mice.

    Directory of Open Access Journals (Sweden)

    Surya P Pandey

    Full Text Available Bacopa monnieri extract has been implicated in the recovery of memory impairments due to various neurological disorders in animal models and humans. However, the precise molecular mechanism of the role of CDRI-08, a well characterized fraction of Bacopa monnieri extract, in recovery of the diabetes mellitus-induced memory impairments is not known. Here, we demonstrate that DM2 mice treated orally with lower dose of CDRI-08 (50- or 100 mg/kg BW is able to significantly enhance spatial memory in STZ-DM2 mice and this is correlated with a significant decline in oxidative stress and up regulation of the AMPA receptor GluR2 subunit gene expression in the hippocampus. Treatment of DM2 mice with its higher dose (150 mg/kg BW or above shows anti-diabetic effect in addition to its ability to recover the spatial memory impairment by reversing the DM2-induced elevated oxidative stress and decreased GluR2 subunit expression near to their values in normal and CDRI-08 treated control mice. Our results provide evidences towards molecular basis of the memory enhancing and anti diabetic role of the Bacopa monnieri extract in STZ-induced DM2 mice, which may have therapeutic implications.

  7. Radiosynthesis and preliminary PET evaluation of (18)F-labeled 2-(1-(3-fluorophenyl)-2-oxo-5-(pyrimidin-2-yl)-1,2-dihydropyridin-3-yl)benzonitrile for imaging AMPA receptors.

    Science.gov (United States)

    Yuan, Gengyang; Jones, Graham B; Vasdev, Neil; Liang, Steven H

    2016-10-01

    To prompt the development of (18)F-labeled positron emission tomography (PET) tracers for the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, we have prepared (18)F-labeled 2-(1-(3-fluorophenyl)-2-oxo-5-(pyrimidin-2-yl)-1,2-dihydropyridin-3-yl)benzonitrile ([(18)F]8). The radiosynthesis was achieved by a one-pot two-step method that utilized a spirocyclic hypervalent iodine(III) mediated radiofluorination to prepare the (18)F-labeled 1-bromo-3-fluorobenzene ([(18)F]15) intermediate with K(18)F. A subsequent copper(I) iodide mediated coupling reaction was carried out with 2-(2-oxo-5-(pyrimidin-2-yl)-1,2-dihydropyridin-3-yl)benzonitrile (10) to [(18)F]8 in 10±2% uncorrected radiochemical yield relative to starting (18)F-fluoride with >99% radiochemical purity and 29.6±7.4Gbq/μmol specific activity at the time of injection. PET imaging studies with the title radiotracer in normal mice demonstrated good brain uptake (peak standardized uptake value (SUV)=2.3±0.1) and warrants further in vivo validation.

  8. Differential expression of postsynaptic NMDA and AMPA receptor subunits in the hippocampus and prefrontal cortex of the Flinders Sensitive Line rat model of depression

    DEFF Research Database (Denmark)

    Treccani, Giulia; du Jardin, Kristian Gaarn; Wegener, Gregers;

    2016-01-01

    "Using a subcellular fractionation approach for purification of the Triton-Insoluble postsynaptic Fraction (TIF), the authors show altered expression of NMDA receptor subunits in the hippocampus of the Flinders Sensitive Line rat model of depression. Altered composition of NMDA receptors may...... represent a critical component of the depressive-like behaviors observed in this model. " This article is protected by copyright. All rights reserved....

  9. Molecular Mechanisms of Endocytosis

    NARCIS (Netherlands)

    Riezman, H.; Woodman, P.G.; van Meer, G.; Marsh, M.

    1997-01-01

    Cells regulate their developmental and functional programs through their interaction with the external milieu, which requires communication across the plasma membrane. The plasma membrane is constantly being remodeled by endocytosis allowing cells to control how they respond to external stimuli. End

  10. Synaptically Released Matrix Metalloproteinase Activity in Control of Structural Plasticity and the Cell Surface Distribution of GluA1-AMPA Receptors

    OpenAIRE

    Zsuzsanna Szepesi; Eric Hosy; Blazej Ruszczycki; Monika Bijata; Marta Pyskaty; Arthur Bikbaev; Martin Heine; Daniel Choquet; Leszek Kaczmarek; Jakub Wlodarczyk

    2014-01-01

    Synapses are particularly prone to dynamic alterations and thus play a major role in neuronal plasticity. Dynamic excitatory synapses are located at the membranous neuronal protrusions called dendritic spines. The ability to change synaptic connections involves both alterations at the morphological level and changes in postsynaptic receptor composition. We report that endogenous matrix metalloproteinase (MMP) activity promotes the structural and functional plasticity of local synapses by its ...

  11. Modification of the philanthotoxin-343 polyamine moiety results in different structure-activity profiles at muscle nicotinic ACh, NMDA and AMPA receptors

    DEFF Research Database (Denmark)

    Mellor, I R; Brier, T J; Pluteanu, F;

    2003-01-01

    Voltage-dependent, non-competitive inhibition by philanthotoxin-343 (PhTX-343) analogues, with reduced charge or length, of nicotinic acetylcholine receptors (nAChR) of TE671 cells and ionotropic glutamate receptors (N-methyl-D-aspartate receptors (NMDAR) and alpha-amino-3-hydroxy-5-methyl-4...... of PhTX-343 were replaced by methylenes, was more potent than PhTX-343 (IC(50)=0.93 microM at -100 mV). Truncated analogues of PhTX-343 were less potent. Inhibition by all analogues was voltage-dependent. PhTX-343 (IC(50)=2.01 microM at -80 mV) was the most potent inhibitor of NMDAR. At AMPAR, most...... analogues were equipotent with PhTX-343 (IC(50)=0.46 microM at -80 mV), apart from PhTX-83, which was more potent (IC(50)=0.032 microM at -80 mV), and PhTX-(12) and 4,9-dioxa-PhTX-(12), which were less potent (IC(50)s>300 microM at -80 mV). These studies show that PhTX-(12) is a selective nAChR inhibitor...

  12. Transmembrane and ubiquitin-like domain-containing protein 1 (Tmub1/HOPS facilitates surface expression of GluR2-containing AMPA receptors.

    Directory of Open Access Journals (Sweden)

    Hyunjeong Yang

    Full Text Available Some ubiquitin-like (UBL domain-containing proteins are known to play roles in receptor trafficking. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs undergo constitutive cycling between the intracellular compartment and the cell surface in the central nervous system. However, the function of UBL domain-containing proteins in the recycling of the AMPARs to the synaptic surface has not yet been reported.Here, we report that the Transmembrane and ubiquitin-like domain-containing 1 (Tmub1 protein, formerly known as the Hepatocyte Odd Protein Shuttling (HOPS protein, which is abundantly expressed in the brain and which exists in a synaptosomal membrane fraction, facilitates the recycling of the AMPAR subunit GluR2 to the cell surface. Neurons transfected with Tmub1/HOPS-RNAi plasmids showed a significant reduction in the AMPAR current as compared to their control neurons. Consistently, the synaptic surface expression of GluR2, but not of GluR1, was significantly decreased in the neurons transfected with the Tmub1/HOPS-RNAi and increased in the neurons overexpressing EGFP-Tmub1/HOPS. The altered surface expression of GluR2 was speculated to be due to the altered surface-recycling of the internalized GluR2 in our recycling assay. Eventually, we found that GluR2 and glutamate receptor interacting protein (GRIP were coimmunoprecipitated by the anti-Tmub1/HOPS antibody from the mouse brain. Taken together, these observations show that the Tmub1/HOPS plays a role in regulating basal synaptic transmission; it contributes to maintain the synaptic surface number of the GluR2-containing AMPARs by facilitating the recycling of GluR2 to the plasma membrane.

  13. The AMPA receptor subunit GluR-B in its Q/R site-unedited form is not essential for brain development and function

    OpenAIRE

    Kask, Kalev; Zamanillo, Daniel; Rozov, Andrei; Burnashev, Nail; Sprengel, Rolf; Seeburg, Peter H.

    1998-01-01

    Calcium permeability of l-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) in excitatory neurons of the mammalian brain is prevented by coassembly of the GluR-B subunit, which carries an arginine (R) residue at a critical site of the channel pore. The codon for this arginine is created by site-selective adenosine deamination of an exonic glutamine (Q) codon at the pre-mRNA level. Thus, central neurons can potentially control the calcium permeability of AMPARs by the level o...

  14. Postsynaptic VAMP/Synaptobrevin Facilitates Differential Vesicle Trafficking of GluA1 and GluA2 AMPA Receptor Subunits.

    Science.gov (United States)

    Hussain, Suleman; Davanger, Svend

    2015-01-01

    Vertebrate organisms adapt to a continuously changing environment by regulating the strength of synaptic connections between brain cells. Excitatory synapses are believed to increase their strength by vesicular insertion of transmitter glutamate receptors into the postsynaptic plasma membrane. These vesicles, however, have never been demonstrated or characterized. For the first time, we show the presence of small vesicles in postsynaptic spines, often closely adjacent to the plasma membrane and PSD (postsynaptic density). We demonstrate that they harbor vesicle-associated membrane protein 2 (VAMP2/synaptobrevin-2) and glutamate receptor subunit 1 (GluA1). Disrupting VAMP2 by tetanus toxin treatment reduces the concentration of GluA1 in the postsynaptic plasma membrane. GluA1/VAMP2-containing vesicles, but not GluA2/VAMP2-vesicles, are concentrated in postsynaptic spines relative to dendrites. Our results indicate that small postsynaptic vesicles containing GluA1 are inserted directly into the spine plasma membrane through a VAMP2-dependent mechanism.

  15. Postsynaptic VAMP/Synaptobrevin Facilitates Differential Vesicle Trafficking of GluA1 and GluA2 AMPA Receptor Subunits.

    Directory of Open Access Journals (Sweden)

    Suleman Hussain

    Full Text Available Vertebrate organisms adapt to a continuously changing environment by regulating the strength of synaptic connections between brain cells. Excitatory synapses are believed to increase their strength by vesicular insertion of transmitter glutamate receptors into the postsynaptic plasma membrane. These vesicles, however, have never been demonstrated or characterized. For the first time, we show the presence of small vesicles in postsynaptic spines, often closely adjacent to the plasma membrane and PSD (postsynaptic density. We demonstrate that they harbor vesicle-associated membrane protein 2 (VAMP2/synaptobrevin-2 and glutamate receptor subunit 1 (GluA1. Disrupting VAMP2 by tetanus toxin treatment reduces the concentration of GluA1 in the postsynaptic plasma membrane. GluA1/VAMP2-containing vesicles, but not GluA2/VAMP2-vesicles, are concentrated in postsynaptic spines relative to dendrites. Our results indicate that small postsynaptic vesicles containing GluA1 are inserted directly into the spine plasma membrane through a VAMP2-dependent mechanism.

  16. How Ca2+-permeable AMPA receptors, the kinase PKA, and the phosphatase PP2B are intertwined in synaptic LTP and LTD.

    Science.gov (United States)

    Hell, Johannes W

    2016-04-26

    Both synaptic long-term potentiation (LTP) and long-term depression (LTD) are thought to be critical for memory formation. Dell'Acqua and co-workers now demonstrate that transient postsynaptic incorporation of Ca(2+)-permeable (CP) α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) is required for LTD in the exemplary hippocampal CA1 region in 2-week-old mice. Mechanistically, LTD depends on AKAP150-anchored protein kinase A (PKA) to promote the initial functional recruitment of CP-AMPARs during LTD induction and on AKAP150-anchored protein phosphatase 2B (PP2B) to trigger their subsequent removal as part of the lasting depression of synaptic transmission.

  17. Nuclear respiratory factor 1 co-regulates AMPA glutamate receptor subunit 2 and cytochrome c oxidase: tight coupling of glutamatergic transmission and energy metabolism in neurons.

    Science.gov (United States)

    Dhar, Shilpa S; Liang, Huan Ling; Wong-Riley, Margaret T T

    2009-03-01

    Neuronal activity, especially of the excitatory glutamatergic type, is highly dependent on energy from the oxidative pathway. We hypothesized that the coupling existed at the transcriptional level by having the same transcription factor to regulate a marker of energy metabolism, cytochrome c oxidase (COX) and an important subunit of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors, GluR2 (Gria2). Nuclear respiratory factor 1 (NRF-1) was a viable candidate because it regulates all COX subunits and potentially activates Gria2. By means of in silico analysis, electrophoretic mobility shift and supershift, chromatin immunoprecipitation, and promoter mutational assays, we found that NRF-1 functionally bound to Gria2 promoter. Silencing of NRF-1 with small interference RNA prevented the depolarization-stimulated up-regulation of Gria2 and COX, and over-expression of NRF-1 rescued neurons from tetrodotoxin-induced down-regulation of Gria2 and COX transcripts. Thus, neuronal activity and energy metabolism are tightly coupled at the molecular level, and NRF-1 is a critical agent in this process.

  18. Endocytosis of Integrin-Binding Human Picornaviruses

    Directory of Open Access Journals (Sweden)

    Pirjo Merilahti

    2012-01-01

    Full Text Available Picornaviruses that infect humans form one of the largest virus groups with almost three hundred virus types. They include significant enteroviral pathogens such as rhino-, polio-, echo-, and coxsackieviruses and human parechoviruses that cause wide range of disease symptoms. Despite the economic importance of picornaviruses, there are no antivirals. More than ten cellular receptors are known to participate in picornavirus infection, but experimental evidence of their role in cellular infection has been shown for only about twenty picornavirus types. Three enterovirus types and one parechovirus have experimentally been shown to bind and use integrin receptors in cellular infection. These include coxsackievirus A9 (CV-A9, echovirus 9, and human parechovirus 1 that are among the most common and epidemic human picornaviruses and bind to αV-integrins via RGD motif that resides on virus capsid. In contrast, echovirus 1 (E-1 has no RGD and uses integrin α2β1 as cellular receptor. Endocytosis of CV-A9 has recently been shown to occur via a novel Arf6- and dynamin-dependent pathways, while, contrary to collagen binding, E-1 binds inactive β1 integrin and enters via macropinocytosis. In this paper, we review what is known about receptors and endocytosis of integrin-binding human picornaviruses.

  19. Endocytosis of integrin-binding human picornaviruses.

    Science.gov (United States)

    Merilahti, Pirjo; Koskinen, Satu; Heikkilä, Outi; Karelehto, Eveliina; Susi, Petri

    2012-01-01

    Picornaviruses that infect humans form one of the largest virus groups with almost three hundred virus types. They include significant enteroviral pathogens such as rhino-, polio-, echo-, and coxsackieviruses and human parechoviruses that cause wide range of disease symptoms. Despite the economic importance of picornaviruses, there are no antivirals. More than ten cellular receptors are known to participate in picornavirus infection, but experimental evidence of their role in cellular infection has been shown for only about twenty picornavirus types. Three enterovirus types and one parechovirus have experimentally been shown to bind and use integrin receptors in cellular infection. These include coxsackievirus A9 (CV-A9), echovirus 9, and human parechovirus 1 that are among the most common and epidemic human picornaviruses and bind to αV-integrins via RGD motif that resides on virus capsid. In contrast, echovirus 1 (E-1) has no RGD and uses integrin α2β1 as cellular receptor. Endocytosis of CV-A9 has recently been shown to occur via a novel Arf6- and dynamin-dependent pathways, while, contrary to collagen binding, E-1 binds inactive β1 integrin and enters via macropinocytosis. In this paper, we review what is known about receptors and endocytosis of integrin-binding human picornaviruses.

  20. 7-Chloro-5-(furan-3-yl)-3-methyl-4H-benzo[e][1,2,4]thiadiazine 1,1-Dioxide as Positive Allosteric Modulator of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor. The End of the Unsaturated-Inactive Paradigm?

    Science.gov (United States)

    Citti, Cinzia; Battisti, Umberto M; Cannazza, Giuseppe; Jozwiak, Krzysztof; Stasiak, Natalia; Puja, Giulia; Ravazzini, Federica; Ciccarella, Giuseppe; Braghiroli, Daniela; Parenti, Carlo; Troisi, Luigino; Zoli, Michele

    2016-02-17

    5-Arylbenzothiadiazine type compounds acting as positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-PAMs) have received particular attention in the past decade for their nootropic activity and lack of the excitotoxic side effects of direct agonists. Recently, our research group has published the synthesis and biological activity of 7-chloro-5-(3-furanyl)-3-methyl-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide (1), one of the most active benzothiadiazine-derived AMPA-PAMs in vitro to date. However, 1 exists as two stereolabile enantiomers, which rapidly racemize in physiological conditions, and only one isomer is responsible for the pharmacological activity. In the present work, experiments carried out with rat liver microsomes show that 1 is converted by hepatic cytochrome P450 to the corresponding unsaturated derivative 2 and to the corresponding pharmacologically inactive benzenesulfonamide 3. Surprisingly, patch-clamp experiments reveal that 2 displays an activity comparable to that of the parent compound. Molecular modeling studies were performed to rationalize these results. Furthermore, mice cerebral microdialysis studies suggest that 2 is able to cross the blood-brain barrier and increases acetylcholine and serotonin levels in the hippocampus. The experimental data disclose that the achiral hepatic metabolite 2 possesses the same pharmacological activity of its parent compound 1 but with an enhanced chemical and stereochemical stability, as well as an improved pharmacokinetic profile compared with 1. PMID:26580317

  1. 芸苔属植物自交不亲和性S-受体激酶的内吞作用及信号传递网络%Endocytosis of S-Receptor Kinase and Signaling Networks of Self-Incompatibility in Brassica

    Institute of Scientific and Technical Information of China (English)

    杨佳; 李玉花; 蓝兴国

    2012-01-01

    This review highlights the recent progress toward understanding the pole of endocytosis of S-receptor kinase and intracellular signaling networks during self-incompatible responses in Brassica.%文章就芸苔属植物自交不亲和性反应中S-受体激酶的内吞作用以及下游信号传递网络的研究进展作一综述.

  2. OUABAIN AND INSULIN INDUCE SODIUM PUMP ENDOCYTOSIS IN RENAL EPITHELIUM

    OpenAIRE

    Gupta, Shalini; Yan, Yanling; Malhotra, Deepak; Liu, Jiang; Xie, Zijian; Najjar, Sonia M.; Shapiro, Joseph I

    2012-01-01

    Cardiotonic steroids signaling through the basolateral sodium pump (Na/KATPase) have been shown to alter renal salt handling in intact animals. As the relationship between renal salt handling and blood pressure is a key determinant of hypertension, and patients with insulin resistance are frequently hypertensive, we chose to examine whether there might be competition for resources necessary for receptor mediated endocytosis.

  3. The mechanochemistry of endocytosis.

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2009-09-01

    Full Text Available Endocytic vesicle formation is a complex process that couples sequential protein recruitment and lipid modifications with dramatic shape transformations of the plasma membrane. Although individual molecular players have been studied intensively, how they all fit into a coherent picture of endocytosis remains unclear. That is, how the proper temporal and spatial coordination of endocytic events is achieved and what drives vesicle scission are not known. Drawing upon detailed knowledge from experiments in yeast, we develop the first integrated mechanochemical model that quantitatively recapitulates the temporal and spatial progression of endocytic events leading to vesicle scission. The central idea is that membrane curvature is coupled to the accompanying biochemical reactions. This coupling ensures that the process is robust and culminates in an interfacial force that pinches off the vesicle. Calculated phase diagrams reproduce endocytic mutant phenotypes observed in experiments and predict unique testable endocytic phenotypes in yeast and mammalian cells. The combination of experiments and theory in this work suggest a unified mechanism for endocytic vesicle formation across eukaryotes.

  4. Bile acids reduce endocytosis of high-density lipoprotein (HDL in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Clemens Röhrl

    Full Text Available High-density lipoprotein (HDL transports lipids to hepatic cells and the majority of HDL-associated cholesterol is destined for biliary excretion. Cholesterol is excreted into the bile directly or after conversion to bile acids, which are also present in the plasma as they are effectively reabsorbed through the enterohepatic cycle. Here, we provide evidence that bile acids affect HDL endocytosis. Using fluorescent and radiolabeled HDL, we show that HDL endocytosis was reduced in the presence of high concentrations of taurocholate, a natural non-cell-permeable bile acid, in human hepatic HepG2 and HuH7 cells. In contrast, selective cholesteryl-ester (CE uptake was increased. Taurocholate exerted these effects extracellularly and independently of HDL modification, cell membrane perturbation or blocking of endocytic trafficking. Instead, this reduction of endocytosis and increase in selective uptake was dependent on SR-BI. In addition, cell-permeable bile acids reduced HDL endocytosis by farnesoid X receptor (FXR activation: chenodeoxycholate and the non-steroidal FXR agonist GW4064 reduced HDL endocytosis, whereas selective CE uptake was unaltered. Reduced HDL endocytosis by FXR activation was independent of SR-BI and was likely mediated by impaired expression of the scavenger receptor cluster of differentiation 36 (CD36. Taken together we have shown that bile acids reduce HDL endocytosis by transcriptional and non-transcriptional mechanisms. Further, we suggest that HDL endocytosis and selective lipid uptake are not necessarily tightly linked to each other.

  5. 高半胱氨酸对慢性应激性抑郁大鼠海马谷氨酸及其受体的调节%Modulation of hippocampal glutamate and NMDA/AMPA receptor by homocysteine in chronic unpredictable mild stress-induced rat depression

    Institute of Scientific and Technical Information of China (English)

    刘慧; 问黎敏; 乔卉; 安书成

    2013-01-01

    The study was to investigate the role of homocysteine (Hey) which was released by hippocampal glial cells and its relationship with NMDA receptor and AMPA receptor in depression induced by chronic unpredictable mild stress (CUMS), and explore the mechanism of changes of Glu/Glu receptor in glial cells and neurons. CUMS-induced depression model was established. The body weight of rats was weighed on the 1st, 7th, 14th, and 21st days during the experiment. The behavioral performances were observed by means of sucrose consumption test, open field test and tail suspension test. Intrahippocampal microinjection of Hcy, NMDA receptor antagonist MK-801 and AMPA receptor antagonist NBQX was performed under stereotaxic guide cannula. The concentration of Glu and the expression of its receptors' subunits were detected respectively by high performance liquid chromatography (HPLC) and Western blot. The Hey content and the levels of phosphorylation of NMDA receptor and AMPA receptor in hippocampus were separately determined by enzyme linked immunosorbent assay (ELISA). The results showed that CUMS significantly induced the depression-like behaviors in rats, and the content of Glu and Hcy, the expression of NMDA receptors' subunits NR1/NR2B and the level of phosphorylation of NMDA receptor (p-NMDAR) in hippocampus increased significantly, while the expression of AMPA receptors' subunits GluR2/3 and the level of phosphorylation of AMPA receptor (p-AMPAR) decreased significantly. Microinjection of Hcy into hippocampus resulted in similar animal depression-like behaviors and increased Glu content compared to the CON/SAL group, the expression of NRl/NR2B/GluR2/3 and the level of p-NMDAR increased significantly, but the level of p-AMPAR reduced observably. Intrahippocampal injections of MK-801 effectively improved the depression-like behaviors induced by CUMS and Hcy, and attenuated the elevation of Glu content induced by Hcy in hippocampus, whereas NBQX could not improve the

  6. The CD20 homologue MS4A4 directs trafficking of KIT toward clathrin-independent endocytosis pathways and thus regulates receptor signaling and recycling

    OpenAIRE

    Cruse, Glenn; Beaven, Michael A.; Music, Stephen C.; Bradding, Peter; Gilfillan, Alasdair M.; Dean D. Metcalfe

    2015-01-01

    MS4A family members differentially regulate the cell cycle, and aberrant, or loss of, expression of MS4A family proteins has been observed in colon and lung cancer. However, the precise functions of MS4A family proteins and their mechanistic interactions remain unsolved. Here we report that MS4A4 facilitates trafficking of the receptor tyrosine kinase KIT through endocytic recycling rather than degradation pathways by a mechanism that involves recruitment of KIT to caveolin-1–enriched microdo...

  7. Cell adhesion defines the topology of endocytosis and signaling.

    Science.gov (United States)

    Grossier, Jean-Philippe; Xouri, Georgia; Goud, Bruno; Schauer, Kristine

    2014-01-01

    Preferred sites of endocytosis have been observed in various cell types, but whether they occur randomly or are linked to cellular cues is debated. Here, we quantified the sites of endocytosis of transferrin (Tfn) and epidermal growth factor (EGF) in cells whose adhesion geometry was defined by micropatterns. 3D probabilistic density maps revealed that Tfn was enriched in adhesive sites during uptake, whereas EGF endocytosis was restricted to the dorsal cellular surface. This spatial separation was not due to distributions of corresponding receptors but was regulated by uptake mechanisms. Asymmetric uptake of Tfn resulted from the enrichment of clathrin and adaptor protein 2 at adhesive areas. Asymmetry in EGF uptake was strongly dependent on the actin cytoskeleton and led to asymmetry in EGF receptor activation. Mild alteration of actin dynamics abolished asymmetry in EGF uptake and decreased EGF-induced downstream signaling, suggesting that cellular adhesion cues influence signal propagation. We propose that restriction of endocytosis at distinct sites allows cells to sense their environment in an "outside-in" mechanism. PMID:24366944

  8. 钩藤碱对甲基苯丙胺条件性位置偏爱大鼠AMPA受体蛋白改变的影响%The effect of rhynchophylline on AMPA receptors expression in methamphetamine dependent rats

    Institute of Scientific and Technical Information of China (English)

    林晓亮; 汤伟; 陈文倩; 翁建霖; 莫志贤

    2010-01-01

    Objective To study changes of AMPA receptors expression in nucleus accumbens and hypothalamus of methamphetamine dependent rats,and the therapeutical effect of rhynchophylline.Methods SPF male rata were randomly divided into normal control group,model group of methamphetamine,low dose of rhynchophylline group and high dose of rhynchophylline group(n=8 in each group).Experiment of conditioned place preference(CPP)was used to build the model of methamphetamine dependent rata.Western blotting was used to examine the changes of GluR2/3 subunits expression.The time of staying in drug-paired compartment of rats was used independent-samples t test to gather statistics,and the photodensity of proteinum strap was used One-Way ANOVA to gather statistics.Results Compare with rats in normal control group(the time of staying in drug-paired compartment of rats was(383.00±38.20)s),the rats produced CPP after treated with methamphetamine(the time of staying in drug-paired compartment of rats was(536.20±57.49)s),and low(30mg/kg) and high (60 ms/kg)dose of rhynchophylline(the time of staying in drug-paired compartment of rats were(299.80±15.96)s and(189.40±59.02)s)both could eliminate CPP effect.Compare with rats in normal control group (the ratio of value of average gray scale were(0.54±0.04)INT·mm~2 and (0.70±0.04)INT·mm~2),GluR2/3 subunits expression in nucleus aecumbens increased significantly in model group(the ratio of value of average gray seale was(0.89±0.03)INT·mm~2)and low dose of rhynchophylline group(the ratio of value of average gray seale was (0.93±0.03)INT·mm~2,P0.05).Conclusion GluR2/3 subunits expression of methamphetamine-induced CPP rats increased in nucleus accumbens but decreased in hypothalamus.High dose of rhynchophylline can reverse such changes and rebound the expression to normal level.%目的 观察甲基苯丙胺成瘾大鼠伏隔核及下丘脑中AMPA受体表达的改变及钩藤碱对其的干预作用.方法 SPF级雄性SD大鼠分为空

  9. LDL receptor mediated endocytosis of plasma LDL-cholesterol%LDL受体介导的血浆低密度脂蛋白胆固醇的内吞

    Institute of Scientific and Technical Information of China (English)

    范丽娟; 李仲

    2014-01-01

    胆固醇是动物细胞细胞膜的重要组成成分,其做为细胞和环境之间的屏障调节细胞膜的流动性.胆固醇是体内所有的类固醇激素和胆酸合成的前体物质,参与体内代谢.同时胆固醇在神经系统的发育中也起着重要的作用.在血浆中胆固醇以低密度脂蛋白和高密度脂蛋白这两种胆固醇运载血脂蛋白的形式运输.动物细胞通过细胞表面的低密度脂蛋白受体(LDL receptor,LDLR)介导的内吞可以从血液中摄取富含胆固醇的低密度脂蛋白,当细胞表面的LDLR的功能缺陷时,可以导致高胆固醇血症,继而引起动脉粥样硬化、冠心病和中风等严重疾病.本文综述了LDL受体的概述及其通过内吞调节血液中低密度脂蛋白胆固醇水平的作用,并对LDL受体的调节进行了阐述.

  10. Clathrin- and dynamin-independent endocytosis of FGFR3--implications for signalling.

    Directory of Open Access Journals (Sweden)

    Ellen Margrethe Haugsten

    Full Text Available Endocytosis of tyrosine kinase receptors can influence both the duration and the specificity of the signal emitted. We have investigated the mechanisms of internalization of fibroblast growth factor receptor 3 (FGFR3 and compared it to that of FGFR1 which is internalized predominantly through clathrin-mediated endocytosis. Interestingly, we observed that FGFR3 was internalized at a slower rate than FGFR1 indicating that it may use a different endocytic mechanism than FGFR1. Indeed, after depletion of cells for clathrin, internalization of FGFR3 was only partly inhibited while endocytosis of FGFR1 was almost completely abolished. Similarly, expression of dominant negative mutants of dynamin resulted in partial inhibition of the endocytosis of FGFR3 whereas internalization of FGFR1 was blocked. Interfering with proposed regulators of clathrin-independent endocytosis such as Arf6, flotillin 1 and 2 and Cdc42 did not affect the endocytosis of FGFR1 or FGFR3. Furthermore, depletion of clathrin decreased the degradation of FGFR1 resulting in sustained signalling. In the case of FGFR3, both the degradation and the signalling were only slightly affected by clathrin depletion. The data indicate that clathrin-mediated endocytosis is required for efficient internalization and downregulation of FGFR1 while FGFR3, however, is internalized by both clathrin-dependent and clathrin-independent mechanisms.

  11. N-cadherin as a receptor for adhesion and endocytosis of Aspergillus fumigatus by human umbilical vein endothelial cells%N-钙黏蛋白在烟曲霉黏附及侵袭内皮细胞中的作用

    Institute of Scientific and Technical Information of China (English)

    徐小勇; 施毅; 张鹏鹏; 申玉英; 张峰; 宋勇

    2010-01-01

    Objective To study the receptor for adhesion and endocytosis of Aspergillus fumigatus hyphae by human umbilical vein endothelial cells (HUVEC). Methods Aspergillus fumigatus hyphae were incubated with the total protein of HUVEC for investigating the binding of N-cadherin and the fungus. After the model of adhesion and endocytosis of Aspergillus fumigatus by HUVEC was established, the capacity of adhesion and endocytosis was evaluated with the presence of the antibody to N-cadherin. Results Ncadherin sticked to the surface of Aspergillus fumigatus. Adhesion and endocytosis were inhibited with the presence of the antibody to N-cadherin. Conclusion N-cadherin is a receptor for adhesion and endocytosis of Aspergillus fumigatus by HUVEC.%目的 探讨N-钙黏蛋白在内皮细胞黏附吞噬烟曲霉过程中的作用.方法 观察提取人脐静脉内皮细胞蛋白与烟曲霉的结合过程,了解N-钙黏蛋白是否可与烟曲霉结合,建立内皮细胞黏附及吞噬烟曲霉的体外模型,通过单克隆抗体阻断上皮细胞膜受体N-钙黏蛋白,再次观察脐静脉内皮细胞黏附及吞噬烟曲霉情况.结果 脐静脉内皮细胞膜蛋白N-钙黏蛋白可与烟曲霉结合,抗体阻断N-钙黏蛋白后,脐静脉内皮细胞黏附和吞噬烟曲霉能力明显下降.结论 N-钙黏蛋白是脐静脉内皮细胞黏附吞噬烟曲霉孢子的相关受体.

  12. Hook-up of GluA2, GRIP and liprin-α for cholinergic muscarinic receptor-dependent LTD in the hippocampus

    Directory of Open Access Journals (Sweden)

    Wu Long-Jun

    2009-06-01

    Full Text Available Abstract The molecular mechanism underlying muscarinic acetylcholine receptor-dependent LTD (mAChR-LTD in the hippocampus is less studied. In a recent study, a novel mechanism is described. The induction of mAChR-LTD required the activation of protein tyrosine phosphatase (PTP, and the expression was mediated by AMPA receptor endocytosis via interactions between GluA2, GRIP and liprin-α. The hook-up of these proteins may result in the recruitment of leukocyte common antigen-related receptor (LAR, a PTP that is known to be involved in AMPA receptor trafficking. Interestingly, the similar molecular interaction cannot be applied to mGluR-LTD, despite the fact that the same G-protein involved in LTD is activated by both mAChR and mGluR. This discovery provides key molecular insights for cholinergic dependent cognitive function, and mAChR-LTD can serve as a useful cellular model for studying the roles of cholinergic mechanism in learning and memory.

  13. Cytosol- and clathrin-dependent stimulation of endocytosis in vitro by purified adaptors

    OpenAIRE

    1992-01-01

    Using stage-specific assays for receptor-mediated endocytosis of transferrin (Tfn) into perforated A431 cells we show that purified adaptors stimulate coated pit assembly and ligand sequestration into deeply invaginated coated pits. Late events in endocytosis involving membrane fission and coated vesicle budding which lead to the internalization of Tfn are unaffected. AP2, plasma membrane adaptors, are active at physiological concentrations, whereas AP1, Golgi adaptors, are inactive. Adaptor-...

  14. High-density lipoprotein endocytosis in endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Stefanie; Fruhwürth; Margit; Pavelka; Robert; Bittman; Werner; J; Kovacs; Katharina; M; Walter; Clemens; Rhrl; Herbert; Stangl

    2013-01-01

    AIM: To describe the way stations of high-density lipoprotein(HDL) uptake and its lipid exchange in endothelial cells in vitro and in vivo. METHODS: A combination of fluorescence microscopy using novel fluorescent cholesterol surrogates and electron microscopy was used to analyze HDL endocytosis in great detail in primary human endothelial cells. Further, HDL uptake was quantified using radio-labeled HDL particles. To validate the in vitro findings mice were injected with fluorescently labeled HDL and particle uptake in the liver was analyzed using fluorescencemicroscopy. RESULTS: HDL uptake occurred via clathrin-coated pits, tubular endosomes and multivesicular bodies in human umbilical vein endothelial cells. During uptake and resecretion, HDL-derived cholesterol was exchanged at a faster rate than cholesteryl oleate, resembling the HDL particle pathway seen in hepatic cells. In addition, lysosomes were not involved in this process and thus HDL degradation was not detectable. In vivo, we found HDL mainly localized in mouse hepatic endothelial cells. HDL was not detected in parenchymal liver cells, indicating that lipid transfer from HDL to hepatocytes occurs primarily via scavenger receptor, class B, type Ⅰ mediated selective uptake without concomitant HDL endocytosis. CONCLUSION: HDL endocytosis occurs via clathrincoated pits, tubular endosomes and multivesicular bodies in human endothelial cells. Mouse endothelial cells showed a similar HDL uptake pattern in vivo indicating that the endothelium is one major site of HDL endocytosis and transcytosis.

  15. Ultrasound Microbubble Treatment Enhances Clathrin-Mediated Endocytosis and Fluid-Phase Uptake through Distinct Mechanisms.

    Science.gov (United States)

    Fekri, Farnaz; Delos Santos, Ralph Christian; Karshafian, Raffi; Antonescu, Costin N

    2016-01-01

    Drug delivery to tumors is limited by several factors, including drug permeability of the target cell plasma membrane. Ultrasound in combination with microbubbles (USMB) is a promising strategy to overcome these limitations. USMB treatment elicits enhanced cellular uptake of materials such as drugs, in part as a result of sheer stress and formation of transient membrane pores. Pores formed upon USMB treatment are rapidly resealed, suggesting that other processes such as enhanced endocytosis may contribute to the enhanced material uptake by cells upon USMB treatment. How USMB regulates endocytic processes remains incompletely understood. Cells constitutively utilize several distinct mechanisms of endocytosis, including clathrin-mediated endocytosis (CME) for the internalization of receptor-bound macromolecules such as Transferrin Receptor (TfR), and distinct mechanism(s) that mediate the majority of fluid-phase endocytosis. Tracking the abundance of TfR on the cell surface and the internalization of its ligand transferrin revealed that USMB acutely enhances the rate of CME. Total internal reflection fluorescence microscopy experiments revealed that USMB treatment altered the assembly of clathrin-coated pits, the basic structural units of CME. In addition, the rate of fluid-phase endocytosis was enhanced, but with delayed onset upon USMB treatment relative to the enhancement of CME, suggesting that the two processes are distinctly regulated by USMB. Indeed, vacuolin-1 or desipramine treatment prevented the enhancement of CME but not of fluid phase endocytosis upon USMB, suggesting that lysosome exocytosis and acid sphingomyelinase, respectively, are required for the regulation of CME but not fluid phase endocytosis upon USMB treatment. These results indicate that USMB enhances both CME and fluid phase endocytosis through distinct signaling mechanisms, and suggest that strategies for potentiating the enhancement of endocytosis upon USMB treatment may improve targeted

  16. Atomic Force Microscopy-based Cell Nanostructure for Ligand-conjugated Quantum Dot Endocytosis

    Institute of Scientific and Technical Information of China (English)

    Yun-Long PAN; Ji-Ye CAI; Li QIN; Hao WANG

    2006-01-01

    While it has been well demonstrated that quantum dots (QDs) play an important role in biological labeling both in vitro and in vivo,there is no report describing the cellular nanostructure basis of receptor-mediated endocytosis. Here, nanostructure evolution responses to the endocytosis of transferrin force microscopy (AFM). AFM-based nanostructure analysis demonstrated that the Tf-conjugated QDs were specifically and tightly bound to the cell receptors rrelated with the cell membrane receptor-mediated transduction.Consistently, confocal microscopic and flow cytometry results have demonstrated the specificity and the internalization of Tf-QD is linearly related to time. Moreover, while the nanoparticles on the cell membrane increased, the endocytosis was still nanoparticles did not interfere sterically with the binding and function of receptors. Therefore, ligand-conjugated QDs are potentially useful in biological labeling of cells at a nanometer scale.

  17. 短时重复游泳调节SAM8鼠AMPA受体GluR1亚单位的磷酸化%A transient, but repeated swimming regulating the GluR1 phosphorylation of AMPA receptor in SAM8 mice

    Institute of Scientific and Technical Information of China (English)

    吕媛媛; 赵丽; 王德刚

    2012-01-01

    目的 观察短时重复游泳训练对SAM鼠AMPA受体GluR1亚单位磷酸化的影响,探讨运动改善脑功能的可能机制.方法 选取3月龄SAMP8(prone/8)亚系为研究对象,运动模型采用2w游泳方案:2次/d,每次6min的游泳,结束后给予浴巾擦干放回鼠笼;对照组则在相同时间每天给予两次相同的浴巾安抚刺激.采用Western印迹方法,检测SAM8鼠海马和皮层AMPA受体GluR1亚单位Ser831和Ser845位点的磷酸化水平的变化.结果 SAMP8海马、皮层中AMPA受体GluR1亚单位Ser831和Ser845磷酸化水平与对照组相比均增加(P<0.05).结论 2w的短时间重复游泳运动作为一种应激诱导剂促进了AMPA受体的活化,这可能是运动改善脑功能的机制之一.%Objective To investigate the effects of a transient, but repeated swimming on the GluRl phosphorylation of AMPA receptor in SAM8 mice, and explore the possible molecular mechanisms for exercise improving brain function. Methods 16 male SAM8 mice were equally randomized into normal and swimming groups. Swimming protocol was conducted twice a day for 6 min, each for a total of 14 days. After swimming, the mice were dried with a towel and placed back into their original cage. A control group of animals was handled for 6 s, wrapped in a towel twice a day for 14 days to simulate the handle after swimming. The phosphorylation of GluRl at Ser831 and Ser845 were measured by Western blot. Results Compared with normal group, both in cortex and in hippocampus, the phosphorylation degree of GluRl at Ser831 and Ser845 were significantly increased (all P <0. 01). Conclusions 2-week swimming protocol may be a stress inducer which lead to the activation of AMPA receptor, and that may be the one of mechanisms of exercise benefiting brain function.

  18. Human SCARB2-mediated entry and endocytosis of EV71.

    Directory of Open Access Journals (Sweden)

    Yi-Wen Lin

    Full Text Available Enterovirus (EV 71 infection is known to cause hand-foot-and-mouth disease (HFMD and in severe cases, induces neurological disorders culminating in fatality. An outbreak of EV71 in South East Asia in 1997 affected over 120,000 people and caused neurological disorders in a few individuals. The control of EV71 infection through public health interventions remains minimal and treatments are only symptomatic. Recently, human scavenger receptor class B, member 2 (SCARB2 has been reported to be a cellular receptor of EV71. We expressed human SCARB2 gene in NIH3T3 cells (3T3-SCARB2 to study the mechanisms of EV71 entry and infection. We demonstrated that human SCARB2 serves as a cellular receptor for EV71 entry. Disruption of expression of SCARB2 using siRNAs can interfere EV71 infection and subsequent inhibit the expression of viral capsid proteins in RD and 3T3-SCARB2 but not Vero cells. SiRNAs specific to clathrin or dynamin or chemical inhibitor of clathrin-mediated endocytosis were all capable of interfering with the entry of EV71 into 3T3-SCARB2 cells. On the other hand, caveolin specific siRNA or inhibitors of caveolae-mediated endocytosis had no effect, confirming that only clathrin-mediated pathway was involved in EV71 infection. Endocytosis of EV71 was also found to be pH-dependent requiring endosomal acidification and also required intact membrane cholesterol. In summary, the mechanism of EV71 entry through SCARB2 as the receptor for attachment, and its cellular entry is through a clathrin-mediated and pH-dependent endocytic pathway. This study on the receptor and endocytic mechanisms of EV71 infection is useful for the development of effective medications and prophylactic treatment against the enterovirus.

  19. Ricin transport into cells: studies of endocytosis and intercellular transport

    DEFF Research Database (Denmark)

    Sandvig, Kirsten; Grimmer, S.; Iversen, T.G.;

    2000-01-01

    Cell Biology, ricin, endocytosis, Golgi apparatus, cholesterol, clathrin, toxin, Rab, endoplasmic reticulum......Cell Biology, ricin, endocytosis, Golgi apparatus, cholesterol, clathrin, toxin, Rab, endoplasmic reticulum...

  20. Why does endocytosis in single cells care which side up?

    Science.gov (United States)

    Schauer, Kristine; Goud, Bruno

    2014-01-01

    Eukaryotic cells display an asymmetric distribution of cellular compartments relying on their adhesion and the underlying anisotropy of the actin and microtubule cytoskeleton. Studies using a minimal cell culture system based on confined adhesion on micropatterns have illustrated that trafficking compartments are well organized at the single cell level in response to the geometry of cellular adhesion cues. Expanding our analysis on cellular uptake processes, we have found that cellular adhesion additionally defines the topology of endocytosis and signaling. During endocytosis, transferrin (Tfn) and epidermal growth factor (EGF) concentrate at distinct cellular sites in micropatterned cells. Tfn is enriched in adhesive sites during uptake, whereas EGF endocytosis is restricted to the dorsal cellular surface. This unexpected dorsal/ventral asymmetry is regulated by uptake mechanisms and actin dynamics. Interestingly, restricted EGF uptake leads to asymmetry of EGF receptor activation that is required to sustain downstream signaling. Based on our results, we propose that differential sorting begins at the plasma membrane leading to spatially distinct intracellular trafficking routes that are well defined in space. We speculate that the intracellular positioning of trafficking compartments sustains an important coupling between the endocytic and signaling systems that allows cells to sense their environment. PMID:24717194

  1. Clathrin is Important for Normal Actin Dynamics and Progression of Sla2p-Containing Patches During Endocytosis in Yeast

    OpenAIRE

    Newpher, Thomas M.; Lemmon, Sandra K.

    2006-01-01

    Clathrin is a major vesicle coat protein involved in receptor-mediated endocytosis. In yeast and higher eukaryotes, clathrin is recruited to the plasma membrane during the early stage of endocytosis along with clathrin-associated adaptors. As coated pits undergo maturation, a burst of actin polymerization accompanies and helps drive vesicle internalization. Here, we investigate the dynamics of clathrin relative to the early endocytic patch protein Sla2p. We find that clathrin is recruited to ...

  2. A novel mechanism of hippocampal LTD involving muscarinic receptor-triggered interactions between AMPARs, GRIP and liprin-α

    Directory of Open Access Journals (Sweden)

    Dickinson Bryony A

    2009-06-01

    Full Text Available Abstract Background Long-term depression (LTD in the hippocampus can be induced by activation of different types of G-protein coupled receptors, in particular metabotropic glutamate receptors (mGluRs and muscarinic acethycholine receptors (mAChRs. Since mGluRs and mAChRs activate the same G-proteins and isoforms of phospholipase C (PLC, it would be expected that these two forms of LTD utilise the same molecular mechanisms. However, we find a distinct mechanism of LTD involving GRIP and liprin-α. Results Whilst both forms of LTD require activation of tyrosine phosphatases and involve internalisation of AMPARs, they use different molecular interactions. Specifically, mAChR-LTD, but not mGluR-LTD, is blocked by peptides that inhibit the binding of GRIP to the AMPA receptor subunit GluA2 and the binding of GRIP to liprin-α. Thus, different receptors that utilise the same G-proteins can regulate AMPAR trafficking and synaptic efficacy via distinct molecular mechanisms. Conclusion Our results suggest that mAChR-LTD selectively involves interactions between GRIP and liprin-α. These data indicate a novel mechanism of synaptic plasticity in which activation of M1 receptors results in AMPAR endocytosis, via a mechanism involving interactions between GluA2, GRIP and liprin-α.

  3. Excitotoxic effects of non-NMDA receptor agonists in organotypic corticostriatal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, B W; Noraberg, J; Jakobsen, B;

    1999-01-01

    The excitotoxic effects of the glutamate receptor agonists kainic acid (KA) and 2-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and the corresponding neuroprotective effects of the AMPA/KA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX) were examined...

  4. Exocytosis and endocytosis in juxtaglomerular cells

    DEFF Research Database (Denmark)

    Friis, U G; Jensen, B L; Hansen, Pernille B. Lærkegaard;

    2000-01-01

    ) or removal (endocytosis) of membrane material. With this technique we have shown that cAMP, which is a vasodilator and stimulates renin secretion, enhances net exocytosis at low concentrations, while at higher concentrations membrane retrieval processes are also stimulated. We suggest that both exocytosis...... and endocytosis are regulated processes in the JG-cells and both may be important for the long-term control of renin secretion at the single cell level....

  5. Rab8 modulates metabotropic glutamate receptor subtype 1 intracellular trafficking and signaling in a protein kinase C-dependent manner.

    Science.gov (United States)

    Esseltine, Jessica L; Ribeiro, Fabiola M; Ferguson, Stephen S G

    2012-11-21

    Metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors (GPCRs) that are activated by glutamate, the primary excitatory neurotransmitter in the CNS. Alterations in glutamate receptor signaling are implicated in neuropathologies such as Alzheimer's disease, ischemia, and Huntington's disease among others. Group 1 mGluRs (mGluR1 and mGluR5) are primarily coupled to Gα(q/11) leading to the activation of phospholipase C and the formation of diacylglycerol and inositol 1,4,5-trisphosphate, which results in the release of intracellular calcium stores and protein kinase C (PKC) activation. Desensitization, endocytosis, and recycling are major mechanisms of GPCR regulation, and the intracellular trafficking of GPCRs is linked to the Rab family of small G proteins. Rab8 is a small GTPase that is specifically involved in the regulation of secretory/recycling vesicles, modulation of the actin cytoskeleton, and cell polarity. Rab8 has been shown to regulate the synaptic delivery of AMPA receptors during long-term potentiation and during constitutive receptor recycling. We show here that Rab8 interacts with the C-terminal tail of mGluR1a in an agonist-dependent manner and plays a role in regulating of mGluR1a signaling and intracellular trafficking in human embryonic kidney 293 cells. Specifically, Rab8 expression attenuates mGluR1a-mediated inositol phosphate formation and calcium release from mouse neurons in a PKC-dependent manner, while increasing cell surface mGluR1a expression via decreased receptor endocytosis. These experiments provide us with an understanding of the role Rabs play in coordinated regulation of mGluR1a and how this impacts mGluR1a signaling.

  6. Synaptic plasticity, AMPA-R trafficking, and Ras-MAPK signaling

    Institute of Scientific and Technical Information of China (English)

    Yun GU; Ruth L STORNETTA

    2007-01-01

    Synaptic modification of transmission is a general phenomenon expressed at al-most every excitatory synapse in the mammalian brain. Over the last three decades,much has been discovered about the cellular, synaptic, molecular, and signalingmechanisms responsible for controlling synaptic transmission and plasticity. Here,we present a brief review of these mechanisms with emphasis on the currentunderstanding of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid recep-tor (AMPA-R) trafficking and Ras-mitogen-activated protein kinase (MAPK)signaling events involved in controlling synaptic transmission.

  7. Pharmacological properties of homomeric and heteromeric GluR1o and GluR3o receptors

    DEFF Research Database (Denmark)

    Nielsen, B S; Banke, T G; Schousboe, A;

    1998-01-01

    .1+/-2.9. The pharmacological profiles of these receptors resembled that of native rat brain AMPA receptors: AMPA analogues > L-glutamate > quinoxaline-2,3-diones > kainate. In the Xenopus oocyte expression system we had previously shown that the agonist (R,S)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionate (ACPA...

  8. How calcium makes endocytic receptors attractive

    DEFF Research Database (Denmark)

    Andersen, Christian B F; Moestrup, Søren K

    2014-01-01

    Nutrients, biological waste-products, toxins, pathogens, and other ligands for endocytosis are typically captured by multidomain receptors with multiligand specificity. Upon internalization, the receptor-ligand complex segregates, followed by lysosomal degradation of the ligand and recycling of t...

  9. Activity-dependent acceleration of endocytosis at a central synapse.

    Science.gov (United States)

    Wu, Wei; Xu, Jianhua; Wu, Xin-Sheng; Wu, Ling-Gang

    2005-12-14

    Accumulated evidence indicates the existence of rapid and slow endocytosis at many synapses. It has been proposed that rapid endocytosis is activated by intense stimulation when vesicle recycling needs to be speeded up to supply vesicles at hippocampal synapses. However, the evidence, as obtained with imaging techniques, which are somewhat indirect in indicating rapid endocytosis, is controversial. Furthermore, a slower time course of endocytosis is often found after more intense nerve activity, casting doubt on the role of rapid endocytosis at synapses. Here, we addressed this issue at a mammalian central synapse, the calyx of Held, using a capacitance measurement technique that provides a higher time resolution than imaging techniques. We found that rapid endocytosis with a time constant of approximately 1-2 s was activated during intense nerve activity. Reducing the presynaptic calcium current or buffering the intracellular calcium with EGTA significantly inhibited rapid endocytosis, suggesting that calcium triggers rapid endocytosis. During intense stimulation, rapid endocytosis retrieved up to approximately eight vesicles per second per active zone, approximately eightfold larger than reported in the hippocampus, and thus played a dominant role during and within 3 s after intense stimulation. Slow endocytosis became dominant 3 s after intense stimulation likely because of the fall of the intracellular calcium level that deactivated rapid endocytosis. These results underscore the importance of calcium-triggered rapid endocytosis, which offers the nerve terminal the plasticity to speed up vesicle cycling during intense nerve activity. PMID:16354926

  10. Endocytosis and intracellular processing of platelet microparticles by brain endothelial cells.

    Science.gov (United States)

    Faille, Dorothée; El-Assaad, Fatima; Mitchell, Andrew J; Alessi, Marie-Christine; Chimini, Giovanna; Fusai, Thierry; Grau, Georges E; Combes, Valéry

    2012-08-01

    Platelet-derived microparticles (PMP) bind and modify the phenotype of many cell types including endothelial cells. Recently, we showed that PMP were internalized by human brain endothelial cells (HBEC). Here we intend to better characterize the internalization mechanisms of PMP and their intracellular fate. Confocal microscopy analysis of PKH67-labelled PMP distribution in HBEC showed PMP in early endosome antigen 1 positive endosomes and in LysoTracker-labelled lysosomes, confirming a role for endocytosis in PMP internalization. No fusion of calcein-loaded PMP with HBEC membranes was observed. Quantification of PMP endocytosis using flow cytometry revealed that it was partially inhibited by trypsin digestion of PMP surface proteins and by extracellular Ca(2+) chelation by EDTA, suggesting a partial role for receptor-mediated endocytosis in PMP uptake. This endocytosis was independent of endothelial receptors such as intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 and was not increased by tumour necrosis factor stimulation of HBEC. Platelet-derived microparticle internalization was dramatically increased in the presence of decomplemented serum, suggesting a role for PMP opsonin-dependent phagocytosis. Platelet-derived microparticle uptake was greatly diminished by treatment of HBEC with cytochalasin D, an inhibitor of microfilament formation required for both phagocytosis and macropinocytosis, with methyl-β-cyclodextrin that depletes membrane cholesterol needed for macropinocytosis and with amiloride that inhibits the Na(+)/H(+) exchanger involved in macropinocytosis. In conclusion, PMP are taken up by active endocytosis in HBEC, involving mechanisms consistent with both phagocytosis and macropinocytosis. These findings identify new processes by which PMP could modify endothelial cell phenotype and functions.

  11. Multiple GTP-binding proteins participate in clathrin-coated vesicle- mediated endocytosis

    OpenAIRE

    1993-01-01

    We have examined the effects of various agonists and antagonists of GTP- binding proteins on receptor-mediated endocytosis in vitro. Stage- specific assays which distinguish coated pit assembly, invagination, and coat vesicle budding have been used to demonstrate requirements for GTP-binding protein(s) in each of these events. Coated pit invagination and coated vesicle budding are both stimulated by addition of GTP and inhibited by GDP beta S. Although coated pit invagination is resistant to ...

  12. E-cadherin mediates adhesion and endocytosis of Aspergillus fumigatus blastospores in human epithelial cells

    Institute of Scientific and Technical Information of China (English)

    XU Xiao-yong; SHI Yi; ZHANG Peng-peng; ZHANG Feng; SHEN Yu-ying; SU Xin; ZHAO Bei-lei

    2012-01-01

    Background Aspergillus fumigatus (A.fumigatus) is a ubiquitous saprophytic fungus responsible for the majority of invasive mold infections in patients undergoing chemotherapy,organ transplantation or with persistent neutropenia.This study aimed to determine the role of E-cadherin for adhesion and endocytosis of A.fumigatus blastospores in the human epithelial cell line A549.Methods A.fumigatus blastospores were incubated with the total protein of A549 to investigate the binding of E-cadherin and blastospores followed by an affinity purification procedure.After establishing the adhesion model,the adhesion and endocytosis of A.fumigatus blastospores by A549 cells were evaluated by down-regulating E-cadherin of A549 cells using blocking antibody or small interfering RNA (siRNA).Results E-cadherin was adhered to the surface of A.fumigatus blastospore.Adhesion and endocytosis of the blastospores were reduced by blocking or down-regulating E-cadherin in A549 cells.Conclusions E-cadherin is a receptor for adhesion and endocytosis of A.fumigatus blastospores in epithelial cells.This may open a new approach to treat this fungal infection.

  13. Endocytosis of HERG is clathrin-independent and involves arf6.

    Directory of Open Access Journals (Sweden)

    Rucha Karnik

    Full Text Available The hERG potassium channel is critical for repolarisation of the cardiac action potential. Reduced expression of hERG at the plasma membrane, whether caused by hereditary mutations or drugs, results in long QT syndrome and increases the risk of ventricular arrhythmias. Thus, it is of fundamental importance to understand how the density of this channel at the plasma membrane is regulated. We used antibodies to an extracellular native or engineered epitope, in conjunction with immunofluorescence and ELISA, to investigate the mechanism of hERG endocytosis in recombinant cells and validated the findings in rat neonatal cardiac myocytes. The data reveal that this channel undergoes rapid internalisation, which is inhibited by neither dynasore, an inhibitor of dynamin, nor a dominant negative construct of Rab5a, into endosomes that are largely devoid of the transferrin receptor. These results support a clathrin-independent mechanism of endocytosis and exclude involvement of dynamin-dependent caveolin and RhoA mechanisms. In agreement, internalised hERG displayed marked overlap with glycosylphosphatidylinositol-anchored GFP, a clathrin-independent cargo. Endocytosis was significantly affected by cholesterol extraction with methyl-β-cyclodextrin and inhibition of Arf6 function with dominant negative Arf6-T27N-eGFP. Taken together, we conclude that hERG undergoes clathrin-independent endocytosis via a mechanism involving Arf6.

  14. UEV-1 is an ubiquitin-conjugating enzyme variant that regulates glutamate receptor trafficking in C. elegans neurons.

    Directory of Open Access Journals (Sweden)

    Lawrence B Kramer

    Full Text Available The regulation of AMPA-type glutamate receptor (AMPAR membrane trafficking is a key mechanism by which neurons regulate synaptic strength and plasticity. AMPAR trafficking is modulated through a combination of receptor phosphorylation, ubiquitination, endocytosis, and recycling, yet the factors that mediate these processes are just beginning to be uncovered. Here we identify the ubiquitin-conjugating enzyme variant UEV-1 as a regulator of AMPAR trafficking in vivo. We identified mutations in uev-1 in a genetic screen for mutants with altered trafficking of the AMPAR subunit GLR-1 in C. elegans interneurons. Loss of uev-1 activity results in the accumulation of GLR-1 in elongated accretions in neuron cell bodies and along the ventral cord neurites. Mutants also have a corresponding behavioral defect--a decrease in spontaneous reversals in locomotion--consistent with diminished GLR-1 function. The localization of other synaptic proteins in uev-1-mutant interneurons appears normal, indicating that the GLR-1 trafficking defects are not due to gross deficiencies in synapse formation or overall protein trafficking. We provide evidence that GLR-1 accumulates at RAB-10-containing endosomes in uev-1 mutants, and that receptors arrive at these endosomes independent of clathrin-mediated endocytosis. UEV-1 homologs in other species bind to the ubiquitin-conjugating enzyme Ubc13 to create K63-linked polyubiquitin chains on substrate proteins. We find that whereas UEV-1 can interact with C. elegans UBC-13, global levels of K63-linked ubiquitination throughout nematodes appear to be unaffected in uev-1 mutants, even though UEV-1 is broadly expressed in most tissues. Nevertheless, ubc-13 mutants are similar in phenotype to uev-1 mutants, suggesting that the two proteins do work together to regulate GLR-1 trafficking. Our results suggest that UEV-1 could regulate a small subset of K63-linked ubiquitination events in nematodes, at least one of which is critical

  15. Theanine Depressed the Food Intake and Gastric Emptying in Female Mice via Lateral Hypothalamic AMPA and NMDA Receptor%茶氨酸经下丘脑腹外侧核抑制雌性小鼠摄食与胃排空作用研究

    Institute of Scientific and Technical Information of China (English)

    虞希冲; 杨伟; 吴波拉

    2013-01-01

    采用比色法观察脑室、核团内微注射和腹腔注射茶氨酸对外周胃排空的影响。结果表明,腹腔给予茶氨酸3~30 mg/kg后显著抑制摄食量和胃排空;脑室给药3~100 ng后,对胃排空的影响表现出V型曲线,3~30 ng茶氨酸剂量依赖性抑制胃排空,50、100 ng茶氨酸使胃排空恢复到正常水平。然而,腹腔注射同样量的茶氨酸并无抑制作用。在下丘脑外侧核内注射同量茶氨酸,出现与脑室内类似的抑制胃排空作用,在弓状核、下丘脑腹内侧核内注射却无明显的改变。在下丘脑外侧核内注射NMDA和AMPA后均能诱导摄食和胃排空的增加,而茶氨酸10、30、100 ng能抑制两者诱导的胃排空及 NMDA诱导的摄食,茶氨酸3~100 ng能抑制 AMPA诱导的摄食。上述结果表明茶氨酸抑制摄食和胃排空作用可能与抑制下丘脑外侧核的NMDA受体和AMPA受体有关。%In the present study, the food intake and gastric emptying of female mice were evaluated after theanine microinjection in cerebral ventrile, lateral hypothalamus, arcurate nuleius and ventromedial hypothalamic nucleus. Results showed that theanine 3~30 mg/kg intraperitoneal injection decreased food intake and gastric emptying;theanine 3~100 ng microinjection into cerebral ventrile induced “V” style effects on gastric, theanine 3~30 ng decreased gastric emptying dose-dependently while theanine 50 and 100 ng recovered gastric emptying. Theanine microinjection in lateral hypothalamus displayed similar effects on gastic emptying as theanine i.c.v while microinjection in arcurate nucleus and ventromedial hypothalamic nucleus did not alert gastric emptying. Theanine decreased food intake and gastric emptying induced by NMDA and AMPA microinjection in lateral hypothalamus. It was concluded that theanine depressed the food intake and gastric emptying after microinjection in lateral hypothalamus via NMDA and AMP receptor, partly.

  16. Effect of brain-derived neurotrophic factor on activity-regulated cytoskeleton-associated protein gene expression in primary frontal cortical neurons. Comparison with NMDA and AMPA.

    Science.gov (United States)

    El-Sayed, Mona; Hofman-Bang, Jacob; Mikkelsen, Jens D

    2011-06-25

    The effect of brain-derived neurotrophic factor (BDNF) on activity-regulated cytoskeleton-associated protein (Arc) mRNA levels in primary neuronal cultures of rat frontal cortex was characterized pharmacologically and compared to the effect on expression of c-fos, bdnf, neuritin, cox-2 as examples of other immediate early genes. BDNF induced a very strong increase (around 100 fold) in Arc mRNA and the maximal effect seen at 25 ng/ml. The effect was dose-dependent with EC50 around 1.6 ng/ml. The time profile revealed a significant effect after 25 min. BDNF also increased levels of c-Fos, neuritin and BDNF mRNA, but not COX-2 mRNA. The pharmacological profile of NMDA and AMPA-induced arc gene expression in frontal cortical neurons was compared to BDNF. NMDA and AMPA increased Arc mRNA but their maximal effect did not exceed 20-fold. The effect of AMPA was completely blocked by the NMDA receptor antagonist MK-801. Further, the relative amount of Arc mRNA compared to c-Fos mRNA was higher for BDNF, equal for NMDA and lower for AMPA. These results demonstrate BDNF to be a highly potent and efficient inducer of arc gene expression in vitro, emphasizing the role of this growth factor in synaptic plasticity in the frontal cortex. PMID:21515256

  17. Endocytosis of glycosylphosphatidylinositol-anchored proteins

    Directory of Open Access Journals (Sweden)

    Sabharanjak Shefali

    2009-10-01

    Full Text Available Abstract Glycosylphosphatidylinositol-anchored proteins (GPI-APs represent an interesting amalgamation of the three basic kinds of cellular macromolecules viz. proteins, carbohydrates and lipids. An unusually hybrid moiety, the GPI-anchor is expressed in a diverse range of organisms from parasites to mammalian cells and serves to anchor a large number of functionally diverse proteins and has been the center of attention in scientific debate for some time now. Membrane organization of GPI-APs into laterally-organized cholesterol-sphingolipid ordered membrane domains or "rafts" and endocytosis of GPI-APs has been intensely debated. Inclusion into or exclusion from these membrane domains seems to be the critical factor in determining the endocytic mechanisms and intracellular destinations of GPI-APs. The intracellular signaling as well as endocytic trafficking of GPI-APs is critically dependent upon the cell surface organization of GPI-APs, and the associations with these lipid rafts play a vital role during these processes. The mechanism of endocytosis for GPI-APs may differ from other cellular endocytic pathways, such as those mediated by clathrin-coated pits (caveolae, and is necessary for unique biological functions. Numerous intracellular factors are involved in and regulate the endocytosis of GPI-APs, and these may be variably dependent on cell-type. The central focus of this article is to describe the significance of the endocytosis of GPI-APs on a multitude of biological processes, ranging from nutrient-uptake to more complex immune responses. Ultimately, a thorough elucidation of GPI-AP mediated signaling pathways and their regulatory elements will enhance our understanding of essential biological processes and benefit as components of disease intervention strategies.

  18. Exocytosis and Endocytosis: Modes, Functions, and Coupling Mechanisms*

    Science.gov (United States)

    Wu, Ling-Gang; Hamid, Edaeni; Shin, Wonchul; Chiang, Hsueh-Cheng

    2016-01-01

    Vesicle exocytosis releases content to mediate many biological events, including synaptic transmission essential for brain functions. Following exocytosis, endocytosis is initiated to retrieve exocytosed vesicles within seconds to minutes. Decades of studies in secretory cells reveal three exocytosis modes coupled to three endocytosis modes: (a) full-collapse fusion, in which vesicles collapse into the plasma membrane, followed by classical endocytosis involving membrane invagination and vesicle reformation; (b) kiss-and-run, in which the fusion pore opens and closes; and (c) compound exocytosis, which involves exocytosis of giant vesicles formed via vesicle-vesicle fusion, followed by bulk endocytosis that retrieves giant vesicles. Here we review these exo- and endocytosis modes and their roles in regulating quantal size and synaptic strength, generating synaptic plasticity, maintaining exocytosis, and clearing release sites for vesicle replenishment. Furthermore, we highlight recent progress in understanding how vesicle endocytosis is initiated and is thus coupled to exocytosis. The emerging model is that calcium influx via voltage-dependent calcium channels at the calcium microdomain triggers endocytosis and controls endocytosis rate; calmodulin and synaptotagmin are the calcium sensors; and the exocytosis machinery, including SNARE proteins (synaptobrevin, SNAP25, and syntaxin), is needed to coinitiate endocytosis, likely to control the amount of endocytosis. PMID:24274740

  19. Exocytosis and endocytosis: modes, functions, and coupling mechanisms.

    Science.gov (United States)

    Wu, Ling-Gang; Hamid, Edaeni; Shin, Wonchul; Chiang, Hsueh-Cheng

    2014-01-01

    Vesicle exocytosis releases content to mediate many biological events, including synaptic transmission essential for brain functions. Following exocytosis, endocytosis is initiated to retrieve exocytosed vesicles within seconds to minutes. Decades of studies in secretory cells reveal three exocytosis modes coupled to three endocytosis modes: (a) full-collapse fusion, in which vesicles collapse into the plasma membrane, followed by classical endocytosis involving membrane invagination and vesicle reformation; (b) kiss-and-run, in which the fusion pore opens and closes; and (c) compound exocytosis, which involves exocytosis of giant vesicles formed via vesicle-vesicle fusion, followed by bulk endocytosis that retrieves giant vesicles. Here we review these exo- and endocytosis modes and their roles in regulating quantal size and synaptic strength, generating synaptic plasticity, maintaining exocytosis, and clearing release sites for vesicle replenishment. Furthermore, we highlight recent progress in understanding how vesicle endocytosis is initiated and is thus coupled to exocytosis. The emerging model is that calcium influx via voltage-dependent calcium channels at the calcium microdomain triggers endocytosis and controls endocytosis rate; calmodulin and synaptotagmin are the calcium sensors; and the exocytosis machinery, including SNARE proteins (synaptobrevin, SNAP25, and syntaxin), is needed to coinitiate endocytosis, likely to control the amount of endocytosis. PMID:24274740

  20. Ubiquitin-Mediated Regulation of Endocytosis by Proteins of the Arrestin Family

    Directory of Open Access Journals (Sweden)

    Michel Becuwe

    2012-01-01

    Full Text Available In metazoans, proteins of the arrestin family are key players of G-protein-coupled receptors (GPCRS signaling and trafficking. Following stimulation, activated receptors are phosphorylated, thus allowing the binding of arrestins and hence an “arrest” of receptor signaling. Arrestins act by uncoupling receptors from G proteins and contribute to the recruitment of endocytic proteins, such as clathrin, to direct receptor trafficking into the endocytic pathway. Arrestins also serve as adaptor proteins by promoting the recruitment of ubiquitin ligases and participate in the agonist-induced ubiquitylation of receptors, known to have impact on their subcellular localization and stability. Recently, the arrestin family has expanded following the discovery of arrestin-related proteins in other eukaryotes such as yeasts or fungi. Surprisingly, most of these proteins are also involved in the ubiquitylation and endocytosis of plasma membrane proteins, thus suggesting that the role of arrestins as ubiquitin ligase adaptors is at the core of these proteins' functions. Importantly, arrestins are themselves ubiquitylated, and this modification is crucial for their function. In this paper, we discuss recent data on the intricate connections between arrestins and the ubiquitin pathway in the control of endocytosis.

  1. Glutamate receptor antibodies in neurological diseases: anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies, anti-NMDA-NR2A/B antibodies, anti-mGluR1 antibodies or anti-mGluR5 antibodies are present in subpopulations of patients with either: epilepsy, encephalitis, cerebellar ataxia, systemic lupus erythematosus (SLE) and neuropsychiatric SLE, Sjogren's syndrome, schizophrenia, mania or stroke. These autoimmune anti-glutamate receptor antibodies can bind neurons in few brain regions, activate glutamate receptors, decrease glutamate receptor's expression, impair glutamate-induced signaling and function, activate blood brain barrier endothelial cells, kill neurons, damage the brain, induce behavioral/psychiatric/cognitive abnormalities and ataxia in animal models, and can be removed or silenced in some patients by immunotherapy.

    Science.gov (United States)

    Levite, Mia

    2014-08-01

    Glutamate is the major excitatory neurotransmitter of the Central Nervous System (CNS), and it is crucially needed for numerous key neuronal functions. Yet, excess glutamate causes massive neuronal death and brain damage by excitotoxicity--detrimental over activation of glutamate receptors. Glutamate-mediated excitotoxicity is the main pathological process taking place in many types of acute and chronic CNS diseases and injuries. In recent years, it became clear that not only excess glutamate can cause massive brain damage, but that several types of anti-glutamate receptor antibodies, that are present in the serum and CSF of subpopulations of patients with a kaleidoscope of human neurological diseases, can undoubtedly do so too, by inducing several very potent pathological effects in the CNS. Collectively, the family of anti-glutamate receptor autoimmune antibodies seem to be the most widespread, potent, dangerous and interesting anti-brain autoimmune antibodies discovered up to now. This impression stems from taking together the presence of various types of anti-glutamate receptor antibodies in a kaleidoscope of human neurological and autoimmune diseases, their high levels in the CNS due to intrathecal production, their multiple pathological effects in the brain, and the unique and diverse mechanisms of action by which they can affect glutamate receptors, signaling and effects, and subsequently impair neuronal signaling and induce brain damage. The two main families of autoimmune anti-glutamate receptor antibodies that were already found in patients with neurological and/or autoimmune diseases, and that were already shown to be detrimental to the CNS, include the antibodies directed against ionotorpic glutamate receptors: the anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies and anti-NMDA-NR2 antibodies, and the antibodies directed against Metabotropic glutamate receptors: the anti-mGluR1 antibodies and the anti-mGluR5 antibodies. Each type of these anti

  2. Glutamate receptor antibodies in neurological diseases: anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies, anti-NMDA-NR2A/B antibodies, anti-mGluR1 antibodies or anti-mGluR5 antibodies are present in subpopulations of patients with either: epilepsy, encephalitis, cerebellar ataxia, systemic lupus erythematosus (SLE) and neuropsychiatric SLE, Sjogren's syndrome, schizophrenia, mania or stroke. These autoimmune anti-glutamate receptor antibodies can bind neurons in few brain regions, activate glutamate receptors, decrease glutamate receptor's expression, impair glutamate-induced signaling and function, activate blood brain barrier endothelial cells, kill neurons, damage the brain, induce behavioral/psychiatric/cognitive abnormalities and ataxia in animal models, and can be removed or silenced in some patients by immunotherapy.

    Science.gov (United States)

    Levite, Mia

    2014-08-01

    Glutamate is the major excitatory neurotransmitter of the Central Nervous System (CNS), and it is crucially needed for numerous key neuronal functions. Yet, excess glutamate causes massive neuronal death and brain damage by excitotoxicity--detrimental over activation of glutamate receptors. Glutamate-mediated excitotoxicity is the main pathological process taking place in many types of acute and chronic CNS diseases and injuries. In recent years, it became clear that not only excess glutamate can cause massive brain damage, but that several types of anti-glutamate receptor antibodies, that are present in the serum and CSF of subpopulations of patients with a kaleidoscope of human neurological diseases, can undoubtedly do so too, by inducing several very potent pathological effects in the CNS. Collectively, the family of anti-glutamate receptor autoimmune antibodies seem to be the most widespread, potent, dangerous and interesting anti-brain autoimmune antibodies discovered up to now. This impression stems from taking together the presence of various types of anti-glutamate receptor antibodies in a kaleidoscope of human neurological and autoimmune diseases, their high levels in the CNS due to intrathecal production, their multiple pathological effects in the brain, and the unique and diverse mechanisms of action by which they can affect glutamate receptors, signaling and effects, and subsequently impair neuronal signaling and induce brain damage. The two main families of autoimmune anti-glutamate receptor antibodies that were already found in patients with neurological and/or autoimmune diseases, and that were already shown to be detrimental to the CNS, include the antibodies directed against ionotorpic glutamate receptors: the anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies and anti-NMDA-NR2 antibodies, and the antibodies directed against Metabotropic glutamate receptors: the anti-mGluR1 antibodies and the anti-mGluR5 antibodies. Each type of these anti

  3. Tyrosine phosphorylation of Eps15 is required for ligand-regulated, but not constitutive, endocytosis

    DEFF Research Database (Denmark)

    Confalonieri, S; Salcini, A E; Puri, C;

    2000-01-01

    for endocytosis of the epidermal growth factor receptor (EGFR), the prototypical ligand-inducible receptor, but not of the transferrin receptor (TfR), the prototypical constitutively internalized receptor. Eps15, an endocytic protein that is tyrosine phosphorylated by EGFR, is a candidate for such a function......Membrane receptors are internalized either constitutively or upon ligand engagement. Whereas there is evidence for differential regulation of the two processes, little is known about the molecular machinery involved. Previous studies have shown that an unidentified kinase substrate is required....... Here, we show that tyrosine phosphorylation of Eps15 is necessary for internalization of the EGFR, but not of the TfR. We mapped Tyr 850 as the major in vivo tyrosine phosphorylation site of Eps15. A phosphorylation-negative mutant of Eps15 acted as a dominant negative on the internalization...

  4. Behavioural and neuronal activation after microinjections of AMPA and NMDA into the perifornical lateral hypothalamus in rats.

    Science.gov (United States)

    Li, Frederick W; Deurveilher, Samuel; Semba, Kazue

    2011-10-31

    The perifornical lateral hypothalamic area (PeFLH), which houses orexin/hypocretin (OX) neurons, is thought to play an important role in arousal, feeding, and locomotor activity. The present study examined behavioural effects of activating PeFLH neurons with microinjections of ionotropic glutamate receptor agonists. Three separate unilateral microinjections of either (1) AMPA (1 and 2mM in 0.1 μL artificial cerebrospinal fluid, ACSF) and ACSF, or (2) NMDA (1 and 10mM in 0.1 μL ACSF), and ACSF were made into the PeFLH of adult male rats. Following each injection, the rats were placed into an open field for behavioural scoring for 45 min. Rats were perfused after the third injection for immunohistochemistry for c-Fos and OX to assess the level of activation of OX neurons. Behavioural analyses showed that, as compared to ACSF conditions, AMPA injections produced a dose-dependent increase in locomotion and rearing that persisted throughout the 45 min recording period, and an increase in drinking. Injection of NMDA at 10mM, but not 1mM, induced a transient increase in locomotion and an increase in feeding. Histological analyses showed that while both agonists increased the number of neurons immunoreactive for c-Fos in the PeFLH, only AMPA increased the number of neurons immunoreactive for both c-Fos and OX. There were positive correlations between the number of c-Fos/OX-immunoreactive neurons and the amounts of locomotion, rearing, and drinking. These results support the role of ionotropic glutamate receptors on OX and other neurons in the PeFLH in the regulation of locomotor and ingestive behaviours.

  5. Yeast Exocytic v-SNAREs Confer Endocytosis

    OpenAIRE

    Gurunathan, Sangiliyandi; Chapman-Shimshoni, Daphne; Trajkovic, Selena; Gerst, Jeffrey E.

    2000-01-01

    In yeast, homologues of the synaptobrevin/VAMP family of v-SNAREs (Snc1 and Snc2) confer the docking and fusion of secretory vesicles at the cell surface. As no v-SNARE has been shown to confer endocytosis, we examined whether yeast lacking the SNC genes, or possessing a temperature-sensitive allele of SNC1 (SNC1ala43), are deficient in the endocytic uptake of components from the cell surface. We found that both SNC and temperature-shifted SNC1ala43 yeast are d...

  6. L-Glutamate and its Ionotropic Receptors in the Nervous System of Cephalopods

    OpenAIRE

    Di Cosmo, A; Di Cristo, C; Messenger, JB

    2006-01-01

    In several species of cephalopod molluscs there is good evidence for the presence of L-glutamate in the central and peripheral nervous system and evidence for both classes of ionotropic receptor, AMPA/kainate and NMDA.

  7. Toxicity of AMPA to the earthworm Eisenia andrei Bouché, 1972 in tropical artificial soil

    OpenAIRE

    Anahí Domínguez; George Gardner Brown; Klaus Dieter Sautter; Cintia Mara Ribas de Oliveira; Eliane Carvalho Vasconcelos; Cintia Carla Niva; Marie Luise Carolina Bartz; José Camilo Bedano

    2016-01-01

    Aminomethylphosphonic acid (AMPA) - one of glyphosate’s main metabolites - has been classified as persistent in soils, raising concern regarding the widespread use of glyphosate in agriculture and forestry. Glyphosate may have negative or neutral effects on soil biota, but no information is available on the toxicity of AMPA to soil invertebrates. Therefore our aim was to study the effect of AMPA on mortality and reproduction of the earthworm species Eisenia andrei using standard soil ecotoxic...

  8. Exocytosis and endocytosis in juxtaglomerular cells.

    Science.gov (United States)

    Friis, U G; Jensen, B L; Hansen, P B; Andreasen, D; Skøtt, O

    2000-01-01

    The cellular events related to secretion of renin are not well understood. Here we review some of the evidence that has led to the current understanding of renin secretion as a process that involves exocytosis as the predominant mode of secretion. This is based on the observation of occasional fusion events between secretory granules and cell membrane and measurement of intermittent secretion of renin from single afferent arterioles, with a renin content of each secretion episode that corresponds to the renin content of one secretory granule. More recently it has been demonstrated that the afferent arterioles lose a large number of renin granules after acute stimulation without changing the average granular volume. Current electrophysiological techniques have now permitted direct measurements of cell membrane capacitance in juxtaglomerular (JG) cells as a measure of net addition (exocytosis) or removal (endocytosis) of membrane material. With this technique we have shown that cAMP, which is a vasodilator and stimulates renin secretion, enhances net exocytosis at low concentrations, while at higher concentrations membrane retrieval processes are also stimulated. We suggest that both exocytosis and endocytosis are regulated processes in the JG-cells and both may be important for the long-term control of renin secretion at the single cell level. PMID:10691785

  9. Kinetics of virus entry by endocytosis

    Science.gov (United States)

    Zhdanov, Vladimir P.

    2015-04-01

    Entry of virions into the host cells is either endocytotic or fusogenic. In both cases, it occurs via reversible formation of numerous relatively weak bonds resulting in wrapping of a virion by the host membrane with subsequent membrane rupture or scission. The corresponding kinetic models are customarily focused on the formation of bonds and do not pay attention to the energetics of the whole process, which is crucially dependent, especially in the case of endocytosis, on deformation of actin filaments forming the cytoskeleton of the host cell. The kinetic model of endocytosis, proposed by the author, takes this factor into account and shows that the whole process can be divided into a rapid initial transient stage and a long steady-state stage. The entry occurs during the latter stage and can be described as a first-order reaction. Depending on the details of the dependence of the grand canonical potential on the number of bonds, the entry can be limited either by the interplay of bond formation and membrane rupture (or scission) or by reaching a maximum of this potential.

  10. 丙泊酚对大鼠胶质瘤细胞侵袭和迁移能力的影响及ADAR2-AMPA受体GluR2通路在其中的作用%Effects of propofol on invasion and migration of glioma cells in rats and the role of ADAR2-AMPA receptor GluR2 pathway

    Institute of Scientific and Technical Information of China (English)

    王欣悦; 王海云; 王国林; 杨卓; 张涛

    2016-01-01

    目的 评价丙泊酚对大鼠胶质瘤细胞侵袭和迁移能力的影响及腺苷脱氨酶(ADAR2)-α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体GluR2通路在其中的作用.方法 传代培养大鼠C6胶质瘤细胞,采用随机数字表法分为4组(n=24):对照组(C组)、丙泊酚组(P组)、阴性siRNA转染+丙泊酚组(NP组)和ADAR2-siRNA转染+丙泊酚组(AP组).C组正常培养;NP组和AP组分别将阴性siRNA或ADAR2-siRNA转染至细胞内,48 h后处理同P组;P组加入丙泊酚,终浓度1.2 μg/ml,孵育6h后换为正常培养液,继续培养18h.采用MTT比色分析法检测细胞活力,Transwell侵袭实验测定侵袭细胞数,细胞划痕实验测定迁移率,Western blot法检测胞核ADAR2和胞膜GluR2的表达.结果 与C组比较,P组和NP组细胞活力、侵袭细胞数和迁移率降低,胞核A-DAR2及胞膜GluR2表达上调(P<0.05);与P组比较,AP组细胞活力、侵袭细胞数和迁移率升高,胞核ADAR2及胞膜GluR2表达下调(P<0.05);与NP组比较,AP组细胞活力、侵袭细胞数和迁移率升高,胞核ADAR2及胞膜GluR2表达下调(P<0.05).结论 丙泊酚可抑制大鼠胶质瘤细胞的侵袭和迁移能力,其机制与激活ADAR2-AMPA受体GluR2通路有关.%Objective To evaluate the effects of propofol on the invasion and migration of glioma cells in the rats and the role of adenosine deaminase acting on RNA 2 (ADAR2)-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subunit glutamate 2 (GluR2) pathway.Methods C6 glioma cells were subcuhured and randomly divided into 4 groups (n =24 each) using a random number table:control group (group C);propofol group (group P);negative siRNA transfection + propofol group (group NP);ADAR2-siRNA transfection + propofol group (group AP).The cells were cultured in the common culture medium in group C.In NP and AP groups,negative siRNA and ADAR2-siRNA were transfected into the cells,respectively,and 48 h later the other procedures were similar

  11. A new pyrrolyl-quinoxalinedione series of non-NMDA glutamate receptor antagonists: pharmacological characterization and comparison with NBQX and valproate in the kindling model of epilepsy.

    Science.gov (United States)

    Löscher, W; Lehmann, H; Behl, B; Seemann, D; Teschendorf, H J; Hofmann, H P; Lubisch, W; Höger, T; Lemaire, H G; Gross, G

    1999-01-01

    Antagonists at the ionotropic non-NMDA [AMPA (amino-methyl proprionic acid)/kainate] type of glutamate receptors have been suggested to possess several advantages compared to NMDA (N-methyl-D-aspartate) receptor antagonists, particularly in terms of risk/benefit ratio, but the non-NMDA receptor antagonists available so far have not fulfilled this promise. From a large series of pyrrolyl-quinoxalinedione derivatives, we selected six new competitive non-NMDA receptor antagonists. The basis of selection was high potency and selectivity for AMPA and/or kainate receptors, high in vivo potency after systemic administration, and an acceptable ratio between neuroprotective or anticonvulsant effects and adverse effects. Pharmacological characteristics of these novel compounds are described in this study with special emphasis on their effects in the kindling model of temporal lobe epilepsy, the most common type of epilepsy in humans. In most experiments, NBQX and the major antiepileptic drug valproate were used for comparison with the novel compounds. The novel non-NMDA receptor antagonists markedly differed in their AMPA and kainate receptor affinities from NBQX. Thus, while NBQX essentially did not bind to kainate receptors at relevant concentrations, several of the novel compounds exhibited affinity to rat brain kainate receptors or recombinant kainate receptor subtypes in addition to AMPA receptors. One compound, LU 97175, bound to native high affinity kainate receptors and rat GluR5-GluR7 subunits, i.e. low affinity kainate binding sites, with much higher affinities than to AMPA receptors. All compounds potently blocked AMPA-induced cell death in vitro and, except LU 97175, AMPA-induced convulsions in vivo. In the kindling model, compounds with a high affinity for GluR7 (LU 97175) or compounds (LU 115455, LU 136541) which potently bind to AMPA receptors and low affinity kainate receptor subunits were potent anticonvulsants in the kindling model, whereas the AMPA

  12. Differential requirements for actin during yeast and mammalian endocytosis.

    Science.gov (United States)

    Aghamohammadzadeh, Soheil; Ayscough, Kathryn R

    2009-08-01

    Key features of clathrin-mediated endocytosis have been conserved across evolution. However, endocytosis in Saccharomyces cerevisiae is completely dependent on a functional actin cytoskeleton, whereas actin appears to be less critical in mammalian cell endocytosis. We reveal that the fundamental requirement for actin in the early stages of yeast endocytosis is to provide a strong framework to support the force generation needed to direct the invaginating plasma membrane into the cell against turgor pressure. By providing osmotic support, pressure differences across the plasma membrane were removed and this reduced the requirement for actin-bundling proteins in normal endocytosis. Conversely, increased turgor pressure in specific yeast mutants correlated with a decreased rate of endocytic patch invagination. PMID:19597484

  13. Ouabain uptake by endocytosis in isolated guinea pig atria

    International Nuclear Information System (INIS)

    Mammalian cells specifically internalize some molecular species through receptor-mediated endocytosis (RME). The authors have used four different experimental protocols to investigate whether ouabain enters cardiac cells of guinea pig atrium through this pathway. First, by electron microscope morphometry the authors found that ouabain increased endocytic vesicles in atrial cells. Second, by scintillation counting they found that [3H]ouabain uptake by the tissue is decreased by three treatments that decrease RME, i.e., NH4Cl, trifluoperazine, and 16 mM [K+]0. Third, by radioautography at the electron microscope level, they checked that in preceding experiments [3H]ouabain was washed out of plasma membrane after 60-min rinse and interiorized into the cardiac cells. Fourth, isometric tension recordings showed that the positive inotropic effect of ouabain was diminished in the presence of inhibitors, whereas that of a hydrophobic analogue, ouabagenin, was not affected. These results suggest that ouabain enters cardiac cells through RME and also that an intracellular site may, at least in part, be responsible for its inotropic effect

  14. Tetrazolyl isoxazole amino acids as ionotropic glutamate receptor antagonists: synthesis, modelling and molecular pharmacology

    DEFF Research Database (Denmark)

    Frølund, Bente; Greenwood, Jeremy R; Holm, Mai Marie;

    2005-01-01

    and 1b were pharmacologically characterized in receptor binding assays, and electrophysiologically on homomeric AMPA receptors (GluR1-4), homomeric (GluR5 and GluR6) and heteromeric (GluR6/KA2) kainic acid receptors, using two-electrode voltage-clamped Xenopus laevis oocytes expressing these receptors...

  15. Clathrin-independent endocytosis: mechanisms and function

    DEFF Research Database (Denmark)

    Sandvig, Kirsten; Pust, Sascha; Skotland, Tore;

    2011-01-01

    having several functions of their own. This article aims at providing a brief update on the importance of clathrin-independent endocytic mechanisms, how the processes are regulated differentially, for instance on the poles of polarized cells, and the challenges in studying them.......It is now about 20 years since we first wrote reviews about clathrin-independent endocytosis. The challenge at the time was to convince the reader about its existence. Then the suggestion came up that caveolae might be responsible for the uptake. However, clearly this could not be the case since...... a large fraction of the clathrin-independent uptake is dynamin-independent. Today, two decades later, the field has developed considerably. New techniques have enabled a detailed analysis of several clathrin-independent endocytic mechanisms, and caveolae have been found to be mostly stable structures...

  16. Excitatory amino acid neurotoxicity and modulation of glutamate receptor expression in organotypic brain slice cultures

    DEFF Research Database (Denmark)

    Zimmer, J; Kristensen, Bjarne Winther; Jakobsen, B;

    2000-01-01

    Using organotypic slice cultures of hippocampus and cortex-striatum from newborn to 7 day old rats, we are currently studying the excitotoxic effects of kainic acid (KA), AMPA and NMDA and the neuroprotective effects of glutamate receptor blockers, like NBQX. For detection and quantitation...... and AMPA (and NMDA) in hippocampal slice cultures, and --b) KA and AMPA in corticostriatal slice cocultures, with demonstration of differentiated neuroprotective effects of NBQX in relation to cortex and striatum and KA and AMPA. A second set of studies include modulation of hippocampal KA......-induced excitotoxicity and KA-glutamate receptor subunit mRNA expression after long-term exposure to low, non-toxic doses of KA and NBQX. We conclude that organotypic brain slice cultures, combined with standardized procedures for quantitation of cell damage and receptor subunit changes is of great potential use...

  17. Bradykinin release avoids high molecular weight kininogen endocytosis.

    Directory of Open Access Journals (Sweden)

    Igor Z Damasceno

    Full Text Available Human H-kininogen (120 kDa plays a role in many pathophysiological processes and interacts with the cell surface through protein receptors and proteoglycans, which mediate H-kininogen endocytosis. In the present work we demonstrate that H-kininogen containing bradykinin domain is internalized and different endogenous kininogenases are present in CHO-K1 cells. We used CHO-K1 (wild type and CHO-745 (mutant deficient in proteoglycans biosynthesis cell lines. H-kininogen endocytosis was studied using confocal microscopy, and its hydrolysis by cell lysate fraction was determined by immunoblotting. Bradykinin release was also measured by radioimmunoassay. H-kininogen interaction with the cell surface of CHO-745 cells resulted in bradykinin release by serine proteases. In CHO-K1 cells, which produce heparan and chondroitin sulfate proteoglycans, internalization of H-kininogen through its bradykinin domain can occur on lipid raft domains/caveolae. Nevertheless bradykinin-free H-kininogen was not internalized by CHO-K1 cells. The H-kininogen present in acidic endosomal vesicles in CHO-K1 was approximately 10-fold higher than the levels in CHO-745. CHO-K1 lysate fractions were assayed at pH 5.5 and intact H-kininogen was totally hydrolyzed into a 62 kDa fragment. By contrast, at an assay pH 7.4, the remained fragments were 115 kDa, 83 kDa, 62 kDa and 48 kDa in size. The antipain-Sepharose chromatography separated endogenous kininogenases from CHO-K1 lysate fraction. No difference was detected in the assays at pH 5.5 or 7.4, but the proteins in the fraction bound to the resin released bradykinin from H-kininogen. However, the proteins in the unbound fraction cleaved intact H-kininogen at other sites but did not release bradykinin. H-kininogen can interact with extravascular cells, and is internalized dependent on its bradykinin domain and cell surface proteoglycans. After internalization, H-kininogen is proteolytically processed by intracellular

  18. Pengaruh Ampas Tebu sebagai Adsorbent pada Proses Pretreatment Minyak Jelantah terhadap Karakteristik Biodiesel

    Directory of Open Access Journals (Sweden)

    Ratno Ratno

    2013-09-01

    Full Text Available Telah dilakukan penelitian mengenai pengaruh ampas tebu pada proses pretreatment minyak jelantah terhadap karakteristik biodiesel. Proses pretreatment dilakukan sebelum minyak jelantah diolah menjadi biodiesel, yakni ampas tebu dengan ukuran partikel dan massa yang bervariasi direndam pada minyak tersebut selama 2 jam. Ukuran partikel ampas tebu yang digunakan adalah 80, 115, 170, dan 200 mesh, sedangkan massa ampas tebu divariasi untuk tiap ukuran partikel yaitu 25 gram, 37,5 gram, dan 50 gram. Penggunaan ampas tebu sebagai adsorbent dinilai cukup efektif menurunkan kadar asam lemak bebas (FFA minyak jelantah dengan penurunan terbesar 57,3% terjadi pada minyak jelantah yang telah mengalami pretreatment ampas tebu berukuran partikel 200 mesh sebanyak 50 gram. Biodiesel dibuat dengan mereaksikan minyak jelantah yang telah mengalami pretreatment ampas tebu dengan lauratan Methanol dan Kalium Hidroksida (KOH selama 1 jam pada suhu 55oC. Hasil karakterisasi  menunjukkan bahwa massa jenis, titik nyala, titik kabut, dan titik tuang biodiesel telah memenuhi standar SNI-04-7182-2006 kecuali sampel yang mengalami pretreatment dengan ampas tebu 80 mesh sebanyak 25 gram. Sedangkan viskositas kinematik terdapat 5 sampel yang memenuhi untuk standar yang sama.

  19. TGF-β Signaling Is Associated with Endocytosis at the Pocket Region of the Primary Cilium

    DEFF Research Database (Denmark)

    Clement, Christian Alexandro; Ajbro, Katrine Dalsgaard; Koefoed, Karen;

    2013-01-01

    Transforming growth factor β (TGF-β) signaling is regulated by clathrin-dependent endocytosis (CDE) for the control of cellular processes during development and in tissue homeostasis. The primary cilium coordinates several signaling pathways, and the pocket surrounding the base and proximal part...... of the cilium is a site for CDE. We report here that TGF-β receptors localize to the ciliary tip and endocytic vesicles at the ciliary base in fibroblasts and that TGF-β stimulation increases receptor localization and activation of SMAD2/3 and ERK1/2 at the ciliary base. Inhibition of CDE reduced TGF......-β-mediated signaling at the cilium, and TGF-β signaling and CDE activity are reduced at stunted primary cilia in Tg737(orpk) fibroblasts. Similarly, TGF-β signaling during cardiomyogenesis correlated with accumulation of TGF-β receptors and activation of SMAD2/3 at the ciliary base. Our results indicate...

  20. Water quality of the main tributaries of the Paraná Basin: glyphosate and AMPA in surface water and bottom sediments.

    Science.gov (United States)

    Ronco, A E; Marino, D J G; Abelando, M; Almada, P; Apartin, C D

    2016-08-01

    The Paraná River, the sixth largest in the world, is the receptor of pollution loads from tributaries traversing urban and industrialized areas plus agricultural expanses, particularly so in the river's middle and lower reaches along the Argentine sector. In the present study, we analyzed and discussed the main water quality parameters, sediment compositions, and content of the herbicide glyphosate plus its metabolite aminomethylphosphonic acid (AMPA) in water and sediments. Samples were obtained from distal positions in the principal tributaries of the Paraná and the main watercourse during surveys conducted in 2011 and 2012 to monitor the basin. Only 15 % of the water samples contained detectable concentrations of glyphosate at an average concentration of 0.60 μg/L, while no detectable levels of AMPA were observed. The herbicide and metabolite were primarily present in sediments of the middle and lower stretch's tributaries, there occurring at a respective average of 37 and 17 % in samples. The mean detectable concentrations measured were 742 and 521 μg/kg at mean, maximum, and minimum glyphosate/AMPA ratios of 2.76, 7.80, and 0.06, respectively. The detection of both compounds was correlated with the presence of sulfides and copper in the sediment matrix. PMID:27395359

  1. Effect of brain-derived neurotrophic factor on activity-regulated cytoskeleton-associated protein gene expression in primary frontal cortical neurons. Comparison with NMDA and AMPA

    DEFF Research Database (Denmark)

    El-Sayed, Mona; Hofman-Bang, Jacob; Mikkelsen, Jens D

    2011-01-01

    The effect of brain-derived neurotrophic factor (BDNF) on activity-regulated cytoskeleton-associated protein (Arc) mRNA levels in primary neuronal cultures of rat frontal cortex was characterized pharmacologically and compared to the effect on expression of c-fos, bdnf, neuritin, cox-2 as examples...... of other immediate early genes. BDNF induced a very strong increase (around 100 fold) in Arc mRNA and the maximal effect seen at 25 ng/ml. The effect was dose-dependent with EC50 around 1.6 ng/ml. The time profile revealed a significant effect after 25 min. BDNF also increased levels of c-Fos, neuritin...... and BDNF mRNA, but not COX-2 mRNA. The pharmacological profile of NMDA and AMPA-induced arc gene expression in frontal cortical neurons was compared to BDNF. NMDA and AMPA increased Arc mRNA but their maximal effect did not exceed 20-fold. The effect of AMPA was completely blocked by the NMDA receptor...

  2. A preliminary experimental study on the cardiac toxicity of glutamate and the role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor in rats

    Institute of Scientific and Technical Information of China (English)

    LIU Yan; ZHOU Lan; XU Hai-fei; YAN Li; DING Fan; HAO Wei; CAO Ji-min

    2013-01-01

    Background Monosodium L-glutamate (MSG) is a food flavour enhancer and its potential harmfulness to the heart remains controversial.We investigated whether MSG could induce cardiac arrhythmias and apoptosis via the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor.Methods Myocardial infarction (MI) was created by ligating the coronary artery and ventricular arrhythmias were monitored by electrocardiogram in the rat in vivo.Neonatal rat cardiomyocytes were isolated and cultured.Cell viability was estimated by 3-(4,5)-dimethylthiahiazo(-z-yl)-3,5-di-phenytetrazoliumromide (MTT) assay.Calcium mobilization was monitored by confocal microscopy.Cardiomyocyte apoptosis was evaluated by acridine orange staining,flow cytometry,DNA laddering,reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting.Results MSG (i.v.) decreased the heart rate at 0.5 g/kg and serious bradycardia at 1.5 g/kg,but could not induce ventricular tachyarrhythmias in normal rats in vivo.In rats with acute MI in vivo,however,MSG (1.5 g/kg,i.v.) induced ventricular tachyarrhythmias and these arrhythmias could be prevented by blocking the AMPA and N-methyl-d-aspartate (NMDA) receptors.Selectively activating the AMPA or NMDA receptor induced ventricular tachyarrhythmias in MI rats.At the cellular level,AMPA induced calcium mobilization,oxidative stress,mitochondrial dysfunction and apoptosis in cultured cardiomyocytes,especially when the AMPA receptor desensitization were blocked by cyclothiazide.The above toxic cellular effects of AMPA were abolished by AMPA receptor blockade or by H2O2 scavengers.Conclusions MSG induces bradycardia in normal rats,but triggers lethal tachyarrhythmias in myocardial infarcted rats probably by hindering AMPA receptors.AMPA receptor overstimulation also induces cardiomyocyte apoptosis,which may facilitate arrhythmia.

  3. Binding and endocytosis of monoterbium transferrin by K562 cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Using isotopic labeling of human serum apotransferrin, the binding and the endocytosis of monoterbium transferrin (TbC-apotransferrin, TbC-apotransferrin- FeN) by K562 cells, a human leukemic cell line, have been investigated. There are about (8.58±2.41)×105 binding sites per cell surface at 0℃. The association constant for TbC-apo- transferrin binding is 4.1×107 mol-1@L, for TbC-apo- transferrin-FeN 2.7×107 mol-1@L at 0℃. At pH 7.4, upon warming cells to 37℃, endocytosis starts. The rate constants for the endocytosis are about 0.97 min-1 and 0.31 min-1 and the endocytosis ratio reaches 56% and 80% for TbC-apo- transferrin and TbC-apotransferrin-FeN, respectively.

  4. Rapid endocytosis is triggered upon imbibition in Arabidopsis seeds

    OpenAIRE

    Pagnussat, Luciana; Burbach, Christian; Baluška, František; de la Canal, Laura

    2012-01-01

    During seed imbibition and embryo activation, rapid change from a metabolically resting state to the activation of diverse extracellular and/or membrane bound molecules is essential and, hence, endocytosis could be activated too. In fact, we have documented endocytic internalization of the membrane impermeable endocytic tracer FM4–64 already upon 30 min of imbibition of Arabidopsis seeds. This finding suggest that endocytosis is activated early during seed imbibition in Arabidopsis. Immunoloc...

  5. Exocyst Sec10 protects renal tubule cells from injury by EGFR/MAPK activation and effects on endocytosis.

    Science.gov (United States)

    Fogelgren, Ben; Zuo, Xiaofeng; Buonato, Janine M; Vasilyev, Aleksandr; Baek, Jeong-In; Choi, Soo Young; Chacon-Heszele, Maria F; Palmyre, Aurélien; Polgar, Noemi; Drummond, Iain; Park, Kwon Moo; Lazzara, Matthew J; Lipschutz, Joshua H

    2014-12-15

    Acute kidney injury is common and has a high mortality rate, and no effective treatment exists other than supportive care. Using cell culture models, we previously demonstrated that exocyst Sec10 overexpression reduced damage to renal tubule cells and speeded recovery and that the protective effect was mediated by higher basal levels of mitogen-activated protein kinase (MAPK) signaling. The exocyst, a highly-conserved eight-protein complex, is known for regulating protein trafficking. Here we show that the exocyst biochemically interacts with the epidermal growth factor receptor (EGFR), which is upstream of MAPK, and Sec10-overexpressing cells express greater levels of phosphorylated (active) ERK, the final step in the MAPK pathway, in response to EGF stimulation. EGFR endocytosis, which has been linked to activation of the MAPK pathway, increases in Sec10-overexpressing cells, and gefitinib, a specific EGFR inhibitor, and Dynasore, a dynamin inhibitor, both reduce EGFR endocytosis. In turn, inhibition of the MAPK pathway reduces ligand-mediated EGFR endocytosis, suggesting a potential feedback of elevated ERK activity on EGFR endocytosis. Gefitinib also decreases MAPK signaling in Sec10-overexpressing cells to levels seen in control cells and, demonstrating a causal role for EGFR, reverses the protective effect of Sec10 overexpression following cell injury in vitro. Finally, using an in vivo zebrafish model of acute kidney injury, morpholino-induced knockdown of sec10 increases renal tubule cell susceptibility to injury. Taken together, these results suggest that the exocyst, acting through EGFR, endocytosis, and the MAPK pathway is a candidate therapeutic target for acute kidney injury.

  6. Secretory phospholipase A2-mediated neuronal cell death involves glutamate ionotropic receptors

    DEFF Research Database (Denmark)

    de Turco, Elena B; Diemer, Nils Henrik; Bazan, Nicolas G;

    2002-01-01

    To define the significance of glutamate ionotropic receptors in sPLA -mediated neuronal cell death we used the NMDA receptor antagonist MK-801 and the AMPA receptor antagonist PNQX. In primary neuronal cell cultures both MK-801 and PNQX inhibited sPLA - and glutamate-induced neuronal death. [ H]A...

  7. L-(TH)glutamate binds to kainate-, NMDA- and AMPA-sensitive binding sites: an autoradiographic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Monaghan, D.T.; Yao, D.; Cotman, C.W.

    1985-08-12

    The anatomical distribution of L-(TH)glutamate binding sites was determined in the presence of various glutamate analogues using quantitative autoradiography. The binding of L-(TH)glutamate is accounted for by the presence of 3 distinct binding sites when measured in the absence of CaS , Cl and Na ions. The anatomical distribution and pharmacological specificity of these binding sites correspond to that reported for the 3 excitatory amino acid binding sites selectively labelled by D-(TH)2-amino-5-phosphonopentanoate (D-(TH)AP5), (TH)kainate ((TH)KA) and (TH) -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid ((TH)AMPA) which are thought to be selective ligands for the N-methyl-D-aspartate (NMDA), KA and quisqualate (QA) receptors, respectively. (Auth.). 29 refs.; 1 figure; 1 table.

  8. The human cytomegalovirus US28 protein is located in endocytic vesicles and undergoes constitutive endocytosis and recycling

    DEFF Research Database (Denmark)

    Fraile-Ramos, A; Kledal, T N; Pelchen-Matthews, A;

    2001-01-01

    expression in transfected HeLa and Cos cells. Immunofluorescence staining indicated that this viral protein accumulated intracellularly in vesicular structures in the perinuclear region of the cell and showed overlap with markers for endocytic organelles. By immunogold electron microscopy US28 was seen...... mostly to localize to multivesicular endosomes. A minor portion of the protein (at most 20%) was also expressed at the cell surface. Antibody-feeding experiments indicated that cell surface US28 undergoes constitutive ligand-independent endocytosis. Biochemical analysis with the use of iodinated ligands...... showed that US28 was rapidly internalized. The high-affinity ligand of US28, the CX(3)C-chemokine fractalkine, reduced the steady-state levels of US28 at the cell surface, apparently by inhibiting the recycling of internalized receptor. Endocytosis and cycling of HCMV US28 could play a role...

  9. Pharmacological attenuation of Paramecium fluid-phase endocytosis.

    Science.gov (United States)

    Wiejak, Jolanta; Surmacz, Liliana; Wyroba, Elzbieta

    2007-01-01

    Spectrophotometric quantification of fluid phase endocytosis in the presence of different pharmacological compounds was performed in the model unicellular eukaryote Paramecium. The kinetics of Lucifer Yellow Carbohydrazide (LY) uptake in cells exposed to forskolin and isoproterenol--known to stimulate phagocytosis in this cell--was analyzed. Reduction in both the rate of endocytosis and total accumulation of fluid phase marker was observed following the treatment. Forskolin diminished total LY accumulation by 11% and 21% after 5 min and 25 min of incubation, respectively, whereas the rate of uptake was lowered by 21% in comparison to control cells. The inhibitory effect ofisoproterenol was less pronounced than that of forskolin. The total accumulation of LY was decreased by 11% in 5 min as compared to the untreated cells and this effect was persistent upon further exposition to this reagent up to 25 min. To better understand these observations, the effect of inhibitors of PKA and cAMP phosphodiesterase on fluid phase uptake was tested. 3-isobutyl-1-methyl xanthine (IBMX) caused 12% decrease in LY accumulation after 5 min of incubation. In combination with isoproterenol or forskolin, IBMX enhanced their inhibitory effect on fluid endocytosis, which was lowered by 25% and 29%, respectively. The strongest inhibitory effect on fluid endocytosis was exerted by the 10 microM PKA inhibitor, which diminished endocytosis by 35% in 5 min. These results suggest that Paramecium fluid phase uptake may be regulated through activation of PKA, although the precise mechanism of this process has not yet been elucidated.

  10. Ankyrin-G Inhibits Endocytosis of Cadherin Dimers.

    Science.gov (United States)

    Cadwell, Chantel M; Jenkins, Paul M; Bennett, Vann; Kowalczyk, Andrew P

    2016-01-01

    Dynamic regulation of endothelial cell adhesion is central to vascular development and maintenance. Furthermore, altered endothelial adhesion is implicated in numerous diseases. Therefore, normal vascular patterning and maintenance require tight regulation of endothelial cell adhesion dynamics. However, the mechanisms that control junctional plasticity are not fully understood. Vascular endothelial cadherin (VE-cadherin) is an adhesive protein found in adherens junctions of endothelial cells. VE-cadherin mediates adhesion through trans interactions formed by its extracellular domain. Trans binding is followed by cis interactions that laterally cluster the cadherin in junctions. VE-cadherin is linked to the actin cytoskeleton through cytoplasmic interactions with β- and α-catenin, which serve to increase adhesive strength. Furthermore, p120-catenin binds to the cytoplasmic tail of cadherin and stabilizes it at the plasma membrane. Here we report that induced cis dimerization of VE-cadherin inhibits endocytosis independent of both p120 binding and trans interactions. However, we find that ankyrin-G, a protein that links membrane proteins to the spectrin-actin cytoskeleton, associates with VE-cadherin and inhibits its endocytosis. Ankyrin-G inhibits VE-cadherin endocytosis independent of p120 binding. We propose a model in which ankyrin-G associates with and inhibits the endocytosis of VE-cadherin cis dimers. Our findings support a novel mechanism for regulation of VE-cadherin endocytosis through ankyrin association with cadherin engaged in lateral interactions. PMID:26574545

  11. Intracellular Trafficking Network of Protein Nanocapsules: Endocytosis, Exocytosis and Autophagy

    Science.gov (United States)

    Zhang, Jinxie; Zhang, Xudong; Liu, Gan; Chang, Danfeng; Liang, Xin; Zhu, Xianbing; Tao, Wei; Mei, Lin

    2016-01-01

    The inner membrane vesicle system is a complex transport system that includes endocytosis, exocytosis and autophagy. However, the details of the intracellular trafficking pathway of nanoparticles in cells have been poorly investigated. Here, we investigate in detail the intracellular trafficking pathway of protein nanocapsules using more than 30 Rab proteins as markers of multiple trafficking vesicles in endocytosis, exocytosis and autophagy. We observed that FITC-labeled protein nanoparticles were internalized by the cells mainly through Arf6-dependent endocytosis and Rab34-mediated micropinocytosis. In addition to this classic pathway: early endosome (EEs)/late endosome (LEs) to lysosome, we identified two novel transport pathways: micropinocytosis (Rab34 positive)-LEs (Rab7 positive)-lysosome pathway and EEs-liposome (Rab18 positive)-lysosome pathway. Moreover, the cells use slow endocytosis recycling pathway (Rab11 and Rab35 positive vesicles) and GLUT4 exocytosis vesicles (Rab8 and Rab10 positive) transport the protein nanocapsules out of the cells. In addition, protein nanoparticles are observed in autophagosomes, which receive protein nanocapsules through multiple endocytosis vesicles. Using autophagy inhibitor to block these transport pathways could prevent the degradation of nanoparticles through lysosomes. Using Rab proteins as vesicle markers to investigation the detail intracellular trafficking of the protein nanocapsules, will provide new targets to interfere the cellular behaver of the nanoparticles, and improve the therapeutic effect of nanomedicine. PMID:27698943

  12. Distinct Functions of Endophilin Isoforms in Synaptic Vesicle Endocytosis

    Directory of Open Access Journals (Sweden)

    Jifeng Zhang

    2015-01-01

    Full Text Available Endophilin isoforms perform distinct characteristics in their interactions with N-type Ca2+ channels and dynamin. However, precise functional differences for the endophilin isoforms on synaptic vesicle (SV endocytosis remain unknown. By coupling RNA interference and electrophysiological recording techniques in cultured rat hippocampal neurons, we investigated the functional differences of three isoforms of endophilin in SV endocytosis. The results showed that the amplitude of normalized evoked excitatory postsynaptic currents in endophilin1 knockdown neurons decreased significantly for both single train and multiple train stimulations. Similar results were found using endophilin2 knockdown neurons, whereas endophilin3 siRNA exhibited no change compared with control neurons. Endophilin1 and endophilin2 affected SV endocytosis, but the effect of endophilin1 and endophilin2 double knockdown was not different from that of either knockdown alone. This result suggested that endophilin1 and endophilin2 functioned together but not independently during SV endocytosis. Taken together, our results indicate that SV endocytosis is sustained by endophilin1 and endophilin2 isoforms, but not by endophilin3, in primary cultured hippocampal neurons.

  13. Monitoring glyphosate and AMPA concentrations in wells and drains using the sorbicell passive sampler

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; de Jonge, Hubert; Møldrup, Per;

    2012-01-01

    Glyphosate is one of the world’s most extensively used weed control agents. Glyphosate, and its metabolite aminomethylphosphonic acid (AMPA), are suspected to be hazardous to human health and the aquatic environment. In Denmark, the extensive use has resulted in an increasing number of occurrences......Cell, will decrease the workload and number of samples freeing up funds for larger monitoring programs. When installed in a well the SorbiCell will continuously sample the water giving either a flux-weighed or time-weighted average measurement of the glyphosate/AMPA concentration throughout the sampling period....... It may therefore be possible to measure lower concentrations as the glyphosate/AMPA sorbed in the SorbiCell is an accumulated measurement. Also, glyphosate/AMPA associated with sudden flush events will be detected by the SorbiCells, while such events may pass between two consecutive grab samples...

  14. Glyphosate and AMPA in the estuaries of the Baltic Sea method optimization and field study.

    Science.gov (United States)

    Skeff, Wael; Neumann, Christine; Schulz-Bull, Detlef E

    2015-11-15

    Water samples from ten German Baltic estuaries were collected in 2012 in order to study the presence of the herbicide glyphosate, its primary metabolite AMPA and their potential transport to the marine environment. For the analyses an LC-MS/MS based analytical method after derivatization with FMOC-Cl was optimized and validated for marine water samples. All investigated estuarine stations were contaminated with AMPA and nine of them also with glyphosate. Concentration ranges observed were 28 to 1690ng/L and 45 to 4156ng/L for glyphosate and AMPA, respectively with strong spatial and temporal fluctuations. Both contaminants were found at inbound sampling sites in the stream Muehlenfliess and concentrations decreased along the salinity gradient to the estuaries of the Baltic Sea. The data obtained in this study clearly depict the transport of glyphosate and AMPA to the Baltic Sea. Hence, detailed fate and risk assessment for both contaminants in marine environments are required.

  15. Akt Links Insulin Signaling to Albumin Endocytosis in Proximal Tubule Epithelial Cells.

    Science.gov (United States)

    Coffey, Sam; Costacou, Tina; Orchard, Trevor; Erkan, Elif

    2015-01-01

    Diabetes mellitus (DM) has become an epidemic, causing a significant decline in quality of life of individuals due to its multisystem involvement. Kidney is an important target organ in DM accounting for the majority of patients requiring renal replacement therapy at dialysis units. Microalbuminuria (MA) has been a valuable tool to predict end-organ damage in DM but its low sensitivity has driven research efforts to seek other alternatives. Albumin is taken up by albumin receptors, megalin and cubilin in the proximal tubule epithelial cells. We demonstrated that insulin at physiological concentrations induce albumin endocytosis through activation of protein kinase B (Akt) in proximal tubule epithelial cells. Inhibition of Akt by a phosphorylation deficient construct abrogated insulin induced albumin endocytosis suggesting a role for Akt in insulin-induced albumin endocytosis. Furthermore we demonstrated a novel interaction between Akt substrate 160kDa (AS160) and cytoplasmic tail of megalin. Mice with type 1 DM (T1D) displayed decreased Akt, megalin, cubilin and AS160 expression in their kidneys in association with urinary cubilin shedding preceding significant MA. Patients with T1D who have developed MA in the EDC (The Pittsburgh Epidemiology of Diabetes Complications) study demonstrated urinary cubilin shedding prior to development of MA. We hypothesize that perturbed insulin-Akt cascade in DM leads to alterations in trafficking of megalin and cubilin, which results in urinary cubilin shedding as a prelude to MA in early diabetic nephropathy. We propose that utilization of urinary cubilin shedding, as a urinary biomarker, will allow us to detect and intervene in diabetic nephropathy (DN) at an earlier stage. PMID:26465605

  16. Akt Links Insulin Signaling to Albumin Endocytosis in Proximal Tubule Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Sam Coffey

    Full Text Available Diabetes mellitus (DM has become an epidemic, causing a significant decline in quality of life of individuals due to its multisystem involvement. Kidney is an important target organ in DM accounting for the majority of patients requiring renal replacement therapy at dialysis units. Microalbuminuria (MA has been a valuable tool to predict end-organ damage in DM but its low sensitivity has driven research efforts to seek other alternatives. Albumin is taken up by albumin receptors, megalin and cubilin in the proximal tubule epithelial cells. We demonstrated that insulin at physiological concentrations induce albumin endocytosis through activation of protein kinase B (Akt in proximal tubule epithelial cells. Inhibition of Akt by a phosphorylation deficient construct abrogated insulin induced albumin endocytosis suggesting a role for Akt in insulin-induced albumin endocytosis. Furthermore we demonstrated a novel interaction between Akt substrate 160kDa (AS160 and cytoplasmic tail of megalin. Mice with type 1 DM (T1D displayed decreased Akt, megalin, cubilin and AS160 expression in their kidneys in association with urinary cubilin shedding preceding significant MA. Patients with T1D who have developed MA in the EDC (The Pittsburgh Epidemiology of Diabetes Complications study demonstrated urinary cubilin shedding prior to development of MA. We hypothesize that perturbed insulin-Akt cascade in DM leads to alterations in trafficking of megalin and cubilin, which results in urinary cubilin shedding as a prelude to MA in early diabetic nephropathy. We propose that utilization of urinary cubilin shedding, as a urinary biomarker, will allow us to detect and intervene in diabetic nephropathy (DN at an earlier stage.

  17. Basic fibroblast growth factor increases the number of endogenous neural stem cells and inhibits the expression of amino methyl isoxazole propionic acid receptors in amyotrophic lateral sclerosis mice

    Institute of Scientific and Technical Information of China (English)

    Weihui Huang; Dawei Zang; Yi Lu; Ping Jiang

    2012-01-01

    This study aimed to investigate the number of amino methyl isoxazole propionic acid (AMPA) re-ceptors and production of endogenous neural stem cells in the SOD1G93AG1H transgenic mouse model of amyotrophic lateral sclerosis, at postnatal day 60 following administration of basic fibroblast growth factor (FGF-2). A radioligand binding assay and immunohistochemistry were used to estimate the number of AMPA receptors and endogenous neural stem cells respectively. Results showed that the number of AMPA receptors and endogenous neural stem cells in the brain stem and sensorimotor cortex were significantly increased, while motor function was significantly decreased at postnatal days 90 and 120. After administration of FGF-2 into mice, numbers of endogenous neural stem cells increased, while expression of AMPA receptors decreased, whilst motor functions were recovered. At postnatal day 120, the number of AMPA receptors was negatively correlated with the number of endogenous neural stem cells in model mice and FGF-2-treated mice. Our experimental findings indicate that FGF-2 can inhibit AMPA receptors and increase the number of endogenous neural stem cells, thus repairing neural injury in amyotrophic lateral sclerosis mice.

  18. EXPRESSION OF AMPA RECEPTORS AND RELATED PROTEIN IN IMMOBILIZATION STRESSED RATS AND EFFECT OF XIAOYAOSAN%AMPA受体和相关蛋白在束缚应激大鼠相关脑区的表达变化及逍遥散对其影响

    Institute of Scientific and Technical Information of China (English)

    岳广欣; 王竹风; 张巧丽; 赵歆; 岳利峰; 丁杰; 陈家旭

    2008-01-01

    目的:观察海马及杏仁核α-氨基羟甲基恶唑丙酸(AMPA)受体亚基和相关调节蛋白在束缚应激状态下蛋白表达变化及逍遥散的调节作用.方法:使用每天捆绑3 h的方法制作慢性束缚应激动物模型,并用逍遥散进行干预,分别于7 d后和21 d后用western blot方法检测各组大鼠海马CA1区、CA3区、齿状回(DG)和杏仁核的AMPA受体亚基GluR2/3及N-乙基顺丁烯二酰亚胺敏感性的融合蛋白(NSF)、PKC作用蛋白1(PICK1)蛋白表达的情况.结果:7 d应激可使DG和杏仁核的GluR2/3、NSF表达显著降低(P均<0.1315),使PICK1在CA1区的表达量显著增多(P<0.05),逍遥散对PICK1变化显示出一定调节作用.21 d应激可使CA1区的GluR2/3、NSF表达升高,其中GluR2/3有显著性差异(P<0.01),而在杏仁核表达有降低趋势,逍遥散对其均有显著调节作用(均为P<0.05),21 d应激使杏仁核PICK1表达量出现升高趋势,逍遥散可显著降低其表达(P<0.05).结论:AMPA受体在短期重复应激和慢性应激状态下反应不同,海马和杏仁核反应相反,逍遥散对慢性应激状态下AMPA受体表达的调节作用较短期重复应激强.

  19. Roles of Cortactin, an Actin Polymerization Mediator, in Cell Endocytosis

    Institute of Scientific and Technical Information of China (English)

    Li CHEN; Zhi-Wei WANG; Jian-wei ZHU; Xi ZHAN

    2006-01-01

    Cortactin, an actin-binding protein and a substrate of Src, is encoded by the EMS 1 oncogene.Cortactin is known to activate Arp2/3 complex-mediated actin polymerization and interact with dynamin, a large GTPase and proline rich domain-containing protein. Transferrin endocytosis was significantly reduced in cells by knock-down of cortactin expression as well as in vivo introduction of cortactin immunoreagents.Cortactin-dynamin interaction displayed morphologically dynamic co-distribution with a change in the endocytosis level in cells treated with an actin depolymerization reagent, cytochalasin D. In an in vitro beads assay, a branched actin network was recruited onto dynamin-coated beads in a cortactin Src homology domain 3 (SH3)-dependent manner. In addition, cortactin was found to function in the late stage of clathrin coated vesicle formation.Taken together, cortactin is required for optimal clathrin mediated endocytosis in a dynamin directed manner.

  20. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants.

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Maccario, Sophie; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-06-01

    We used a willow species (Salix miyabeana cultivar SX64) to examine the differential secondary-effects of glyphosate and aminomethylphosphonic acid (AMPA), the principal glyphosate by-product, on chlorophyll metabolism and photosynthesis. Willow plants were treated with different concentrations of glyphosate (equivalent to 0, 1.4, 2.1 and 2.8kgha(-1)) and AMPA (equivalent to 0, 0.28, 1.4 and 2.8kgha(-1)) and evaluations of pigment contents, chlorophyll fluorescence, and oxidative stress markers (hydrogen peroxide content and antioxidant enzyme activities) in leaves were performed after 12h of exposure. We observed that AMPA and glyphosate trigger different mechanisms leading to decreases in chlorophyll content and photosynthesis rates in willow plants. Both chemicals induced ROS accumulation in willow leaves although only glyphosate-induced oxidative damage through lipid peroxidation. By disturbing chlorophyll biosynthesis, AMPA induced decreases in chlorophyll contents, with consequent effects on photosynthesis. With glyphosate, ROS increases were higher than the ROS-sensitive threshold, provoking chlorophyll degradation (as seen by pheophytin accumulation) and invariable decreases in photosynthesis. Peroxide accumulation in both AMPA and glyphosate-treated plants was due to the inhibition of antioxidant enzyme activities. The different effects of glyphosate on chlorophyll contents and photosynthesis as described in the literature may be due to various glyphosate:AMPA ratios in those plants. PMID:27155486

  1. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants.

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Maccario, Sophie; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-06-01

    We used a willow species (Salix miyabeana cultivar SX64) to examine the differential secondary-effects of glyphosate and aminomethylphosphonic acid (AMPA), the principal glyphosate by-product, on chlorophyll metabolism and photosynthesis. Willow plants were treated with different concentrations of glyphosate (equivalent to 0, 1.4, 2.1 and 2.8kgha(-1)) and AMPA (equivalent to 0, 0.28, 1.4 and 2.8kgha(-1)) and evaluations of pigment contents, chlorophyll fluorescence, and oxidative stress markers (hydrogen peroxide content and antioxidant enzyme activities) in leaves were performed after 12h of exposure. We observed that AMPA and glyphosate trigger different mechanisms leading to decreases in chlorophyll content and photosynthesis rates in willow plants. Both chemicals induced ROS accumulation in willow leaves although only glyphosate-induced oxidative damage through lipid peroxidation. By disturbing chlorophyll biosynthesis, AMPA induced decreases in chlorophyll contents, with consequent effects on photosynthesis. With glyphosate, ROS increases were higher than the ROS-sensitive threshold, provoking chlorophyll degradation (as seen by pheophytin accumulation) and invariable decreases in photosynthesis. Peroxide accumulation in both AMPA and glyphosate-treated plants was due to the inhibition of antioxidant enzyme activities. The different effects of glyphosate on chlorophyll contents and photosynthesis as described in the literature may be due to various glyphosate:AMPA ratios in those plants.

  2. Toxicity of AMPA to the earthworm Eisenia andrei Bouché, 1972 in tropical artificial soil.

    Science.gov (United States)

    Domínguez, Anahí; Brown, George Gardner; Sautter, Klaus Dieter; de Oliveira, Cintia Mara Ribas; de Vasconcelos, Eliane Carvalho; Niva, Cintia Carla; Bartz, Marie Luise Carolina; Bedano, José Camilo

    2016-01-01

    Aminomethylphosphonic acid (AMPA) - one of glyphosate's main metabolites - has been classified as persistent in soils, raising concern regarding the widespread use of glyphosate in agriculture and forestry. Glyphosate may have negative or neutral effects on soil biota, but no information is available on the toxicity of AMPA to soil invertebrates. Therefore our aim was to study the effect of AMPA on mortality and reproduction of the earthworm species Eisenia andrei using standard soil ecotoxicological methods (ISO). Field-relevant concentrations of AMPA had no significant effects on mortality in acute or chronic assays. Except at the highest concentration tested, a significant biomass loss was observed compared to controls in the chronic assay. The number of juveniles and cocoons increased with higher concentrations of AMPA applied, but their mean weights decreased. This mass loss indicates higher sensitivity of juveniles than adults to AMPA. Our results suggest that earthworms coming from parents grown in contaminated soils may have reduced growth, limiting their beneficial roles in key soil ecosystem functions. Nevertheless, further research is needed to better understand the mechanisms underlying the sublethal effects observed here. PMID:26792548

  3. Ceftriaxone attenuates cocaine relapse after abstinence through modulation of nucleus accumbens AMPA subunit expression.

    Science.gov (United States)

    LaCrosse, Amber L; Hill, Kristine; Knackstedt, Lori A

    2016-02-01

    Using the extinction-reinstatement model of cocaine relapse, we and others have demonstrated that the antibiotic ceftriaxone attenuates cue- and cocaine-primed reinstatement of cocaine-seeking. Reinstatement is contingent on the release of glutamate in the nucleus accumbens core (NAc) and manipulations that reduce glutamate efflux or block post-synaptic glutamate receptors attenuate reinstatement. We have demonstrated that the mechanism of action by which ceftriaxone attenuates reinstatement involves increased NAc GLT-1 expression and a reduction in NAc glutamate efflux during reinstatement. Here we investigated the effects of ceftriaxone (100 and 200 mg/kg) on context-primed relapse following abstinence without extinction training and examined the effects of ceftriaxone on GluA1, GluA2 and GLT-1 expression. We conducted microdialysis during relapse to determine if an increase in NAc glutamate accompanies relapse after abstinence and whether ceftriaxone blunts glutamate efflux. We found that both doses of ceftriaxone attenuated relapse. While relapse was accompanied by an increase in NAc glutamate, ceftriaxone (200 mg/kg) was unable to significantly reduce NAc glutamate efflux during relapse despite its ability to upregulate GLT-1. GluA1 was reduced in the NAc by both doses of ceftriaxone while GluA2 expression was unchanged, indicating that ceftriaxone altered AMPA subunit composition following cocaine. Finally, GLT-1 was not altered in the PFC by ceftriaxone. These results indicate that it is possible to attenuate context-primed relapse to cocaine-seeking through modification of post-synaptic receptor properties without attenuating glutamate efflux during relapse. Furthermore, increasing NAc GLT-1 protein expression is not sufficient to attenuate glutamate efflux.

  4. Ceftriaxone attenuates cocaine relapse after abstinence through modulation of nucleus accumbens AMPA subunit expression.

    Science.gov (United States)

    LaCrosse, Amber L; Hill, Kristine; Knackstedt, Lori A

    2016-02-01

    Using the extinction-reinstatement model of cocaine relapse, we and others have demonstrated that the antibiotic ceftriaxone attenuates cue- and cocaine-primed reinstatement of cocaine-seeking. Reinstatement is contingent on the release of glutamate in the nucleus accumbens core (NAc) and manipulations that reduce glutamate efflux or block post-synaptic glutamate receptors attenuate reinstatement. We have demonstrated that the mechanism of action by which ceftriaxone attenuates reinstatement involves increased NAc GLT-1 expression and a reduction in NAc glutamate efflux during reinstatement. Here we investigated the effects of ceftriaxone (100 and 200 mg/kg) on context-primed relapse following abstinence without extinction training and examined the effects of ceftriaxone on GluA1, GluA2 and GLT-1 expression. We conducted microdialysis during relapse to determine if an increase in NAc glutamate accompanies relapse after abstinence and whether ceftriaxone blunts glutamate efflux. We found that both doses of ceftriaxone attenuated relapse. While relapse was accompanied by an increase in NAc glutamate, ceftriaxone (200 mg/kg) was unable to significantly reduce NAc glutamate efflux during relapse despite its ability to upregulate GLT-1. GluA1 was reduced in the NAc by both doses of ceftriaxone while GluA2 expression was unchanged, indicating that ceftriaxone altered AMPA subunit composition following cocaine. Finally, GLT-1 was not altered in the PFC by ceftriaxone. These results indicate that it is possible to attenuate context-primed relapse to cocaine-seeking through modification of post-synaptic receptor properties without attenuating glutamate efflux during relapse. Furthermore, increasing NAc GLT-1 protein expression is not sufficient to attenuate glutamate efflux. PMID:26706696

  5. Endocytosis of desmosomal plaques depends on intact actin filaments and leads to a nondegradative compartment

    DEFF Research Database (Denmark)

    Holm, Pernille K.; Hansen, Steen H.; Sandvig, Kirsten;

    1993-01-01

    Cellebiologi, human epithelial cell line, growth inhibition, desmosomes, clathrin-independent endocytosis, cytoskeleton, nondegradative compartment......Cellebiologi, human epithelial cell line, growth inhibition, desmosomes, clathrin-independent endocytosis, cytoskeleton, nondegradative compartment...

  6. Glyphosate-Resistant and Conventional Canola (Brassica napus L.) Responses to Glyphosate and Aminomethylphosphonic Acid (AMPA) Treatment.

    Science.gov (United States)

    Corrêa, Elza Alves; Dayan, Franck E; Owens, Daniel K; Rimando, Agnes M; Duke, Stephen O

    2016-05-11

    Glyphosate-resistant (GR) canola contains two transgenes that impart resistance to the herbicide glyphosate: (1) the microbial glyphosate oxidase gene (gox) encoding the glyphosate oxidase enzyme (GOX) that metabolizes glyphosate to aminomethylphosphonic acid (AMPA) and (2) cp4 that encodes a GR form of the glyphosate target enzyme 5-enolpyruvylshikimic acid-3-phosphate synthase. The objectives of this research were to determine the phytotoxicity of AMPA to canola, the relative metabolism of glyphosate to AMPA in GR and conventional non-GR (NGR) canola, and AMPA pool sizes in glyphosate-treated GR canola. AMPA applied at 1.0 kg ha(-1) was not phytotoxic to GR or NGR. At this AMPA application rate, NGR canola accumulated a higher concentration of AMPA in its tissues than GR canola. At rates of 1 and 3.33 kg ae ha(-1) of glyphosate, GR canola growth was stimulated. This stimulatory effect is similar to that of much lower doses of glyphosate on NGR canola. Both shikimate and AMPA accumulated in tissues of these glyphosate-treated plants. In a separate experiment in which young GR and NGR canola plants were treated with non-phytotoxic levels of [(14)C]-glyphosate, very little glyphosate was metabolized in NGR plants, whereas most of the glyphosate was metabolized to AMPA in GR plants at 7 days after application. Untreated leaves of GR plants accumulated only metabolites (mostly AMPA) of glyphosate, indicating that GOX activity is very high in the youngest leaves. These data indicate that more glyphosate is transformed to AMPA rapidly in GR canola and that the accumulated AMPA is not toxic to the canola plant. PMID:27092715

  7. Glyphosate-Resistant and Conventional Canola (Brassica napus L.) Responses to Glyphosate and Aminomethylphosphonic Acid (AMPA) Treatment.

    Science.gov (United States)

    Corrêa, Elza Alves; Dayan, Franck E; Owens, Daniel K; Rimando, Agnes M; Duke, Stephen O

    2016-05-11

    Glyphosate-resistant (GR) canola contains two transgenes that impart resistance to the herbicide glyphosate: (1) the microbial glyphosate oxidase gene (gox) encoding the glyphosate oxidase enzyme (GOX) that metabolizes glyphosate to aminomethylphosphonic acid (AMPA) and (2) cp4 that encodes a GR form of the glyphosate target enzyme 5-enolpyruvylshikimic acid-3-phosphate synthase. The objectives of this research were to determine the phytotoxicity of AMPA to canola, the relative metabolism of glyphosate to AMPA in GR and conventional non-GR (NGR) canola, and AMPA pool sizes in glyphosate-treated GR canola. AMPA applied at 1.0 kg ha(-1) was not phytotoxic to GR or NGR. At this AMPA application rate, NGR canola accumulated a higher concentration of AMPA in its tissues than GR canola. At rates of 1 and 3.33 kg ae ha(-1) of glyphosate, GR canola growth was stimulated. This stimulatory effect is similar to that of much lower doses of glyphosate on NGR canola. Both shikimate and AMPA accumulated in tissues of these glyphosate-treated plants. In a separate experiment in which young GR and NGR canola plants were treated with non-phytotoxic levels of [(14)C]-glyphosate, very little glyphosate was metabolized in NGR plants, whereas most of the glyphosate was metabolized to AMPA in GR plants at 7 days after application. Untreated leaves of GR plants accumulated only metabolites (mostly AMPA) of glyphosate, indicating that GOX activity is very high in the youngest leaves. These data indicate that more glyphosate is transformed to AMPA rapidly in GR canola and that the accumulated AMPA is not toxic to the canola plant.

  8. Diacylglycerol Guides the Hopping of Clathrin-Coated Pits along Microtubules for Exo-Endocytosis Coupling.

    Science.gov (United States)

    Yuan, Tianyi; Liu, Lin; Zhang, Yongdeng; Wei, Lisi; Zhao, Shiqun; Zheng, Xiaolu; Huang, Xiaoshuai; Boulanger, Jerome; Gueudry, Charles; Lu, Jingze; Xie, Lihan; Du, Wen; Zong, Weijian; Yang, Lu; Salamero, Jean; Liu, Yanmei; Chen, Liangyi

    2015-10-12

    Many receptor-mediated endocytic processes are mediated by constitutive budding of clathrin-coated pits (CCPs) at spatially randomized sites before slowly pinching off from the plasma membrane (60-100 s). In contrast, clathrin-mediated endocytosis (CME) coupled with regulated exocytosis in excitable cells occurs at peri-exocytic sites shortly after vesicle fusion (∼10 s). The molecular mechanism underlying this spatiotemporal coupling remains elusive. We show that coupled endocytosis makes use of pre-formed CCPs, which hop to nascent fusion sites nearby following vesicle exocytosis. A dynamic cortical microtubular network, anchored at the cell surface by the cytoplasmic linker-associated protein on microtubules and the LL5β/ELKS complex on the plasma membrane, provides the track for CCP hopping. Local diacylglycerol gradients generated upon exocytosis guide the direction of hopping. Overall, the CCP-cytoskeleton-lipid interaction demonstrated here mediates exocytosis-coupled fast recycling of both plasma membrane and vesicular proteins, and it is required for the sustained exocytosis during repetitive stimulations. PMID:26439397

  9. Dynamin- and Clathrin-Dependent Endocytosis in African Swine Fever Virus Entry▿

    Science.gov (United States)

    Hernaez, Bruno; Alonso, Covadonga

    2010-01-01

    African swine fever virus (ASFV) is a large DNA virus that enters host cells after receptor-mediated endocytosis and depends on acidic cellular compartments for productive infection. The exact cellular mechanism, however, is largely unknown. In order to dissect ASFV entry, we have analyzed the major endocytic routes using specific inhibitors and dominant negative mutants and analyzed the consequences for ASFV entry into host cells. Our results indicate that ASFV entry into host cells takes place by clathrin-mediated endocytosis which requires dynamin GTPase activity. Also, the clathrin-coated pit component Eps15 was identified as a relevant cellular factor during infection. The presence of cholesterol in cellular membranes, but not lipid rafts or caveolae, was found to be essential for a productive ASFV infection. In contrast, inhibitors of the Na+/H+ ion channels and actin polymerization inhibition did not significantly modify ASFV infection, suggesting that macropinocytosis does not represent the main entry route for ASFV. These results suggest a dynamin-dependent and clathrin-mediated endocytic pathway of ASFV entry for the cell types and viral strains analyzed. PMID:19939916

  10. Kinetics of cellular uptake of viruses and nanoparticles via clathrin-mediated endocytosis

    Science.gov (United States)

    Banerjee, Anand; Berezhkovskii, Alexander; Nossal, Ralph

    2016-02-01

    Several viruses exploit clathrin-mediated endocytosis to gain entry into host cells. This process is also used extensively in biomedical applications to deliver nanoparticles (NPs) to diseased cells. The internalization of these nano-objects is controlled by the assembly of a clathrin-containing protein coat on the cytoplasmic side of the plasma membrane, which drives the invagination of the membrane and the formation of a cargo-containing endocytic vesicle. Current theoretical models of receptor-mediated endocytosis of viruses and NPs do not explicitly take coat assembly into consideration. In this paper we study cellular uptake of viruses and NPs with a focus on coat assembly. We characterize the internalization process by the mean time between the binding of a particle to the membrane and its entry into the cell. Using a coarse-grained model which maps the stochastic dynamics of coat formation onto a one-dimensional random walk, we derive an analytical formula for this quantity. A study of the dependence of the mean internalization time on NP size shows that there is an upper bound above which this time becomes extremely large, and an optimal size at which it attains a minimum. Our estimates of these sizes compare well with experimental data. We also study the sensitivity of the obtained results on coat parameters to identify factors which significantly affect the internalization kinetics.

  11. Roles of AP-2 in clathrin-mediated endocytosis.

    Directory of Open Access Journals (Sweden)

    Emmanuel Boucrot

    Full Text Available BACKGROUND: The notion that AP-2 clathrin adaptor is an essential component of an endocytic clathrin coat appears to conflict with recent observations that substantial AP-2 depletion, using RNA interference with synthesis of AP-2 subunits, fails to block uptake of certain ligands known to internalize through a clathrin-based pathway. METHODOLOGY/PRINCIPAL FINDINGS: We report here the use of in vivo imaging data obtained by spinning-disk confocal microscopy to study the formation of clathrin-coated structures at the plasma membranes of BSC1 and HeLa cells depleted by RNAi of the clathrin adaptor, AP-2. Very few clathrin coats continue to assemble after AP-2 knockdown. Moreover, there is a total absence of clathrin-containing structures completely lacking AP-2 while all the remaining coats still contain a small amount of AP-2. These observations suggest that AP-2 is essential for endocytic coated-pit and coated-vesicle formation. We also find that AP-2 knockdown strongly inhibits light-density lipoprotein (LDL receptor-mediated endocytosis, as long as cells are maintained in complete serum and at 37 degrees C. If cells are first incubated with LDL at 4 degrees C, followed by warming, there is little or no decrease in LDL uptake with respect to control cells. LDL uptake at 37 degrees C is also not affected in AP-2 depleted cells first deprived of LDL by incubation with either serum-starved or LDL-starved cells for 24 hr. The LDL-deprived cells display a significant increase in endocytic structures enriched on deeply invaginated tubes that contain LDL and we suggest that under this condition of stress, LDL might enter through this alternative pathway. CONCLUSIONS/SIGNIFICANCE: These results suggest that AP-2 is essential for endocytic clathrin coated-pit and coated-vesicle formation. They also indicate that under normal conditions, functional endocytic clathrin coated pits are required for LDL internalization. We also show that under certain

  12. Bladder uptake of liposomes after intravesical administration occurs by endocytosis.

    Directory of Open Access Journals (Sweden)

    Bharathi Raja Rajaganapathy

    Full Text Available Liposomes have been used therapeutically and as a local drug delivery system in the bladder. However, the exact mechanism for the uptake of liposomes by bladder cells is unclear. In the present study, we investigated the role of endocytosis in the uptake of liposomes by cultured human UROtsa cells of urothelium and rat bladder. UROtsa cells were incubated in serum-free media with liposomes containing colloidal gold particles for 2 h either at 37°C or at 4°C. Transmission Electron Microscopy (TEM images of cells incubated at 37°C found endocytic vesicles containing gold inside the cells. In contrast, only extracellular binding was noticed in cells incubated with liposomes at 4°C. Absence of liposome internalization at 4°C indicates the need of energy dependent endocytosis as the primary mechanism of entry of liposomes into the urothelium. Flow cytometry analysis revealed that the uptake of liposomes at 37°C occurs via clathrin mediated endocytosis. Based on these observations, we propose that clathrin mediated endocytosis is the main route of entry for liposomes into the urothelial layer of the bladder and the findings here support the usefulness of liposomes in intravesical drug delivery.

  13. Cdk5 is essential for synaptic vesicle endocytosis

    DEFF Research Database (Denmark)

    Tan, Timothy C; Valova, Valentina A; Malladi, Chandra S;

    2003-01-01

    Synaptic vesicle endocytosis (SVE) is triggered by calcineurin-mediated dephosphorylation of the dephosphin proteins. SVE is maintained by the subsequent rephosphorylation of the dephosphins by unidentified protein kinases. Here, we show that cyclin-dependent kinase 5 (Cdk5) phosphorylates dynamin...

  14. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis

    Directory of Open Access Journals (Sweden)

    Li Q

    2013-07-01

    Full Text Available Qingli Li,1,2 Mark J Lambrechts,1 Qiuyang Zhang,1 Sen Liu,1 Dongxia Ge,1 Rutie Yin,2 Mingrong Xi,2 Zongbing You1 1Departments of Structural and Cellular Biology and Orthopaedic Surgery, Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane Center for Stem Cell Research and Regenerative Medicine, and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, USA; 2Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China Abstract: Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA, are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy. Keywords: serine hydroxymethyltransferase, prostate cancer, apoptosis

  15. The effects of AMPA blockade on the spectral profile of human early visual cortex recordings studied with non-invasive MEG.

    Science.gov (United States)

    Muthukumaraswamy, Suresh D; Routley, Bethany; Droog, Wouter; Singh, Krish D; Hamandi, Khalid

    2016-08-01

    The generation of gamma-band (>30 Hz) cortical activity is thought to depend on the reciprocal connections of excitatory glutamatergic principal cells with inhibitory GABAergic interneurons. Both in vitro and in vivo animal studies have shown that blockade of glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors reduces the amplitude of gamma-band activity. In this registered report, we hypothesised that similar effects would be observed in humans following administration of perampanel, a first in class AMPA antagonist, used in the treatment of epilepsy. In a single-blind placebo-controlled crossover study, 20 healthy male participants completed two study days. On one day participants were given a 6 mg dose of perampanel and on the other an inactive placebo. magnetoencephalography (MEG) recordings of brain activity were taken before and two hours after drug administration, with activity in the visual cortex probed using a stimulation protocol known to induce gamma-band activity in the primary visual cortex. As hypothesised, our results indicated a decrease in gamma-band amplitudes following perampanel administration. The decreases in gamma-band amplitudes observed were temporally restricted to the early time-period of stimulus presentation (up to 400 msec) with no significant effects observed on early evoked responses or alpha rhythms. This suggests that the early time-window of induced visual gamma-band activity, thought to reflect input to the visual cortex from the lateral geniculate nucleus, is most sensitive to AMPA blocking drugs. PMID:27209006

  16. Scavenging ROS dramatically increase NMDA receptor whole-cell currents in painted turtle cortical neurons.

    Science.gov (United States)

    Dukoff, David James; Hogg, David William; Hawrysh, Peter John; Buck, Leslie Thomas

    2014-09-15

    Oxygen deprivation triggers excitotoxic cell death in mammal neurons through excessive calcium loading via over-activation of N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. This does not occur in the western painted turtle, which overwinters for months without oxygen. Neurological damage is avoided through anoxia-mediated decreases in NMDA and AMPA receptor currents that are dependent upon a modest rise in intracellular Ca(2+) concentrations ([Ca(2+)]i) originating from mitochondria. Anoxia also blocks mitochondrial reactive oxygen species (ROS) generation, which is another potential signaling mechanism to regulate glutamate receptors. To assess the effects of decreased intracellular [ROS] on NMDA and AMPA receptor currents, we scavenged ROS with N-2-mercaptopropionylglycine (MPG) or N-acetylcysteine (NAC). Unlike anoxia, ROS scavengers increased NMDA receptor whole-cell currents by 100%, while hydrogen peroxide decreased currents. AMPA receptor currents and [Ca(2+)]i concentrations were unaffected by ROS manipulation. Because decreases in [ROS] increased NMDA receptor currents, we next asked whether mitochondrial Ca(2+) release prevents receptor potentiation during anoxia. Normoxic activation of mitochondrial ATP-sensitive potassium (mKATP) channels with diazoxide decreased NMDA receptor currents and was unaffected by subsequent ROS scavenging. Diazoxide application following ROS scavenging did not rescue scavenger-mediated increases in NMDA receptor currents. Fluorescent measurement of [Ca(2+)]i and ROS levels demonstrated that [Ca(2+)]i increases before ROS decreases. We conclude that decreases in ROS concentration are not linked to anoxia-mediated decreases in NMDA/AMPA receptor currents but are rather associated with an increase in NMDA receptor currents that is prevented during anoxia by mitochondrial Ca(2+) release.

  17. Transfer of glyphosate and its degradate AMPA to surface waters through urban sewerage systems.

    Science.gov (United States)

    Botta, Fabrizio; Lavison, Gwenaëlle; Couturier, Guillaume; Alliot, Fabrice; Moreau-Guigon, Elodie; Fauchon, Nils; Guery, Bénédicte; Chevreuil, Marc; Blanchoud, Hélène

    2009-09-01

    A study of glyphosate and aminomethyl phosphonic acid (AMPA) transfer in the Orge watershed (France) was carried out during 2007 and 2008. Water samples were collected in surface water, wastewater sewer, storm sewer and wastewater treatment plant (WWTP). These two molecules appeared to be the most frequently detected ones in the rivers and usually exceeded the European quality standard concentrations of 0.1microg L(-1) for drinking water. The annual glyphosate estimated load was 1.9 kg year(-1) upstream (agricultural zone) and 179.5 kg year(-1) at the catchment outlet (urban zone). This result suggests that the contamination of this basin by glyphosate is essentially from urban origin (road and railway applications). Glyphosate reached surface water prevalently through storm sewer during rainfall event. Maximum concentrations were detected in storm sewer just after a rainfall event (75-90 microg L(-1)). High concentrations of glyphosate in surface water during rainfall events reflected urban runoff impact. AMPA was always detected in the sewerage system. This molecule reached surface water mainly via WWTP effluent and also through storm sewer. Variations in concentrations of AMPA during hydrological episodes were minor compared to glyphosate variations. Our study highlights that AMPA and glyphosate origins in urban area are different. During dry period, detergent degradation seemed to be the major AMPA source in wastewater.

  18. Comparison on the Reception Property of Gunn Mounted ASRA and AMPA

    Directory of Open Access Journals (Sweden)

    Somnath Chatterjee

    2013-08-01

    Full Text Available A Gunn mounted active microstrip patch antenna (AMPA and active microstrip slot antenna (ASRA has been investigated for the reception of FM microwave signal. Current well/valley phenomenon has been successfully utilized to demodulate the modulation information. Reception poperty of the both antennas are studied in multi-channel environment. Because of its simple circuit configuration and similarity in transmitter and receiver architecture, active patch antenna as demonstrated is well suited for commercial and military application as a two-way microwave communication system. A comparative study on the role of AMPA and ASRA as a receiver shows that ASRA do better performances than AMPA. In case of ASRA the modulating signal are demodulated without any distortion. ASRA also has large locking range (29 MHz compare to AMPA (5 MHz. So the ASRA has broad band tuning capabilities than AMPA. With ASRA configuration demodulation bandwidth in excess of 14 MHz is realizable which can successfully accommodate a large number of voice or data channels.

  19. Endocytosis-inducer adhesins produced by enteropathogenic serogroups of Escherichia coli participate on bacterial attachment to infant enterocytes

    OpenAIRE

    João Ramos Costa Andrade; Carla Cavalheiro da Silva

    1987-01-01

    Enteropathogenic E. coli (EPEC) infection of Hep-2 cells preoceeds through bacterial attachment to cell surface and internalization of adhered bacteria. EPEC attachment is a prerequisite for cell infection and is mediated by adhesins that recognize carbohydrate-containing receptors on cell membrane. Such endocytosis-inducer adhesins (EIA) also promote EPEC binding to infant enterocytes, suggesting that EIA may have an important role on EPEC gastroenteritis.A infecção de células Hep-2 por E. c...

  20. Sources of aminomethylphosphonic acid (AMPA) in urban and rural catchments in Ontario, Canada: Glyphosate or phosphonates in wastewater?

    International Nuclear Information System (INIS)

    Correlation analysis suggests that occurrences of AMPA in streams of southern Ontario are linked mainly to glyphosate in both urban and rural settings, rather than to wastewater sources, as some previous studies have suggested. For this analysis the artificial sweetener acesulfame was analyzed as a wastewater indicator in surface water samples collected from urban and rural settings in southern Ontario, Canada. This interpretation is supported by the concurrence of seasonal fluctuations of glyphosate and AMPA concentrations. Herbicide applications in larger urban centres and along major transportation corridors appear to be important sources of glyphosate and AMPA in surface water, in addition to uses of this herbicide in rural and mixed use areas. Fluctuations in concentrations of acesulfame and glyphosate residues were found to be related to hydrologic events. - Highlights: • Widespread occurrence of glyphosate and AMPA in surface waters of southern Ontario. • Linked to applications of glyphosate in urban and rural settings. • Supported by lack of correlation between AMPA and the wastewater tracer acesulfame. • Contrasts with view that AMPA found in the environment is derived from wastewater. • AMPA more persistent than glyphosate and both fluctuated with hydrological cycles. - The occurrence of AMPA in streams in southern Ontario is linked mainly to glyphosate rather than wastewater sources

  1. Excitatory amino acid receptor antagonists

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B;

    1997-01-01

    We have previously shown that (RS)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA) is an antagonist at N-methyl-D-aspartic acid (NMDA) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors. We have now resolved ATAA via diastereomeric salt formation......)-phenylethylamine salt of N-BOC-(R)-ATAA. Like ATAA, neither (R)- nor (S)-ATAA significantly affected (IC50 > 100 microM) the receptor binding of tritiated AMPA, kainic acid, or (RS)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, the latter being a competitive NMDA antagonist. Electrophysiological experiments......, using the rat cortical wedge preparation, showed the NMDA antagonist effect as well as the AMPA antagonist effect of ATAA to reside exclusively in the (R)-enantiomer (Ki = 75 +/- 5 microM and 57 +/- 1 microM, respectively). Neither (R)- nor (S)-ATAA significantly reduced kainic acid-induced excitation...

  2. Functional Insights from Glutamate Receptor Ion Channel Structures

    Science.gov (United States)

    Kumar, Janesh; Mayer, Mark L.

    2014-01-01

    X-ray crystal structures for the soluble amino terminal and ligand binding domains of glutamate receptor ion channels, combined with a 3.6 Å resolution structure of the full length AMPA receptor GluA2 homotetramer, provide unique insights into the mechanisms of iGluR assembly and function. Increasingly sophisticated biochemical, computational and electrophysiological experiments are beginning to reveal the mechanism of action of partial agonists, and yield new models for the mechanism of action of allosteric modulators. Newly identified NMDA receptor ligands acting at novel sites offer hope for development of subtype selective modulators. Many issues remain unsolved, including the role of the ATD in AMPA receptor signaling, and the mechanisms by which auxiliary proteins regulate receptor activity. The structural basis for ion permeation and ion channel block also remain areas of uncertainty, and despite substantial progress, molecular dynamics simulations have yet to reveal how binding of glutamate opens the ion channel pore. PMID:22974439

  3. TGF-β Signaling Is Associated with Endocytosis at the Pocket Region of the Primary Cilium

    Directory of Open Access Journals (Sweden)

    Christian Alexandro Clement

    2013-06-01

    Full Text Available Transforming growth factor β (TGF-β signaling is regulated by clathrin-dependent endocytosis (CDE for the control of cellular processes during development and in tissue homeostasis. The primary cilium coordinates several signaling pathways, and the pocket surrounding the base and proximal part of the cilium is a site for CDE. We report here that TGF-β receptors localize to the ciliary tip and endocytic vesicles at the ciliary base in fibroblasts and that TGF-β stimulation increases receptor localization and activation of SMAD2/3 and ERK1/2 at the ciliary base. Inhibition of CDE reduced TGF-β-mediated signaling at the cilium, and TGF-β signaling and CDE activity are reduced at stunted primary cilia in Tg737orpk fibroblasts. Similarly, TGF-β signaling during cardiomyogenesis correlated with accumulation of TGF-β receptors and activation of SMAD2/3 at the ciliary base. Our results indicate that the primary cilium regulates TGF-β signaling and that the ciliary pocket is a compartment for CDE-dependent regulation of signal transduction.

  4. Membrane Mechanics of Endocytosis in Cells with Turgor

    CERN Document Server

    Dmitrieff, Serge

    2015-01-01

    Endocytosis is an essential process by which cells internalize a piece of plasma membrane and material from the outside. In cells with turgor, pressure opposes membrane defor- mations, and increases the amount of force that has to be generated by the endocytic machinery. To determine this force, and calculate the shape of the membrane, we used physical theory to model an elastic surface under pressure. Accurate fits of experimental profiles are obtained assuming that the coated membrane is highly rigid and preferentially curved at the endocytic site. The forces required from the actin machinery peaks at the onset of deformation, indicating that once invagination has been initiated, endocytosis is unlikely to stall before completion. Coat proteins do not lower the initiation force but may affect the process by the curvature they induce. In the presence of isotropic curvature inducers, pulling the tip of the invagination can trigger the formation of a neck at the base of the invagination. Hence direct neck cons...

  5. Aspects of dopamine and acetylcholine release induced by glutamate receptors; Aspectos das liberacoes de dopamina e acetilcolina mediadas por receptores de glutamato

    Energy Technology Data Exchange (ETDEWEB)

    Paes, Paulo Cesar de Arruda

    2002-07-01

    The basal ganglia play an important role in the motor control of rats and humans. This control involves different neurotransmitters and the mutual control of these key elements has been subject to several studies. In this work we determined the role of glutamate on the release of radioactively labelled dopamine and acetylcholine from chopped striatal tissue in vitro. The values of Effective Concentration 50% for glutamate, NMDA, kainic, quisqualic acids and AMPA on the release of dopamine and acetylcholine were obtained. The inhibitory effects of magnesium, tetrodotoxin, MK-801, AP5 and MCPG, as well as the effects of glycin were evaluated. The results suggested that dopamine is influenced by the NMDA type glutamate receptor while acetylcholine seems to be influenced by NMDA, kainate and AMPA receptors. Tetrodotoxin experiments suggested that kainate receptors are both present in cholinergic terminals and cell bodies while AMPA and NMDA receptors are preferentially distributed in cell bodies. Magnesium effectively blocked the NMDA stimulation and unexpectedly also AMPA- and quisqualate-induced acetylcholine release. The latter could not be blocked by MCPG ruling out the participation of methabotropic receptors. MK-801 also blocked NMDA-receptors. Results point out the importance of the glutamic acid control of dopamine and acetylcholine release in striatal tissue. (author)

  6. Mitochondrial superoxide production and MnSOD activity following exposure to an agonist and antagonists of ionotropic receptors in rat brain

    Directory of Open Access Journals (Sweden)

    Radenović Lidija Lj.

    2005-01-01

    Full Text Available The involvement of NMDA and AMPA/kainate receptors in the induction of superoxide production in the rat brain was examined after intrahippocampal injection of kainate, a non-NMDA receptor agonist; kainate plus CNQX, a selective AMPA/kainate receptor antagonist; or kainate plus APV, a selective NMDA receptor antagonist. The measurements took place at different times in the ipsi- and contralateral hippocampus, forebrain cortex, striatum, and cerebellum homogenates. The used glutamate antagonists both ensured sufficient neuroprotection in the sense of lowering superoxide production and raising MnSOD levels, but in the mechanisms and time dynamics of their effects were different. Our findings suggest that NMDA and AMPA/kainate receptors are differentially involved in superoxide production. UDC 612.815 612.82.

  7. Architectural remodeling of the tonoplast during fluid-phase endocytosis.

    Science.gov (United States)

    Etxeberria, Ed; Gonzalez, Pedro; Pozueta-Romero, Javier

    2013-07-01

    During fluid phase endocytosis (FPE) in plant storage cells, the vacuole receives a considerable amount of membrane and fluid contents. If allowed to accumulate over a period of time, the enlarging tonoplast and increase in fluids would invariably disrupt the structural equilibrium of the mature cells. Therefore, a membrane retrieval process must exist that will guarantee membrane homeostasis in light of tonoplast expansion by membrane addition during FPE. We examined the morphological changes to the vacuolar structure during endocytosis in red beet hypocotyl tissue using scanning laser confocal microscopy and immunohistochemistry. The heavily pigmented storage vacuole allowed us to visualize all architectural transformations during treatment. When red beet tissue was incubated in 200 mM sucrose, a portion of the sucrose accumulated entered the cell by means of FPE. The accumulation process was accompanied by the development of vacuole-derived vesicles which transiently counterbalanced the addition of surplus endocytic membrane during rapid rates of endocytosis. Topographic fluorescent confocal micrographs showed an ensuing reduction in the size of the vacuole-derived vesicles and further suggest their reincorporation into the vacuole to maintain vacuolar unity and solute concentration. PMID:23656870

  8. Signaling induced by hop/STI-1 depends on endocytosis

    International Nuclear Information System (INIS)

    The co-chaperone hop/STI-1 is a ligand of the cell surface prion protein (PrPC), and their interaction leads to signaling and biological effects. Among these, hop/STI-1 induces proliferation of A172 glioblastoma cells, dependent on both PrPC and activation of the Erk pathway. We tested whether clathrin-mediated endocytosis affects signaling induced by hop/STI-1. Both hyperosmolarity induced by sucrose and monodansyl-cadaverine blocked Erk activity induced by hop/STI-1, without affecting the high basal Akt activity typical of A172. The endocytosis inhibitors also affected the sub-cellular distribution of phosphorylated Erk, consistent with blockade of the latter's activity. The data indicate that signaling induced by hop/STI-1 depends on endocytosis. These findings are consistent with a role of sub-cellular trafficking in signal transduction following engagement by PrPC by ligands such as hop/STI-1, and may help help unravel both the functions of the prion protein, as well as possible loss-of-function components of prion diseases

  9. Pharmacological analysis of ionotropic glutamate receptor function in neuronal circuits of the zebrafish olfactory bulb.

    Directory of Open Access Journals (Sweden)

    Rico Tabor

    Full Text Available Although synaptic functions of ionotropic glutamate receptors in the olfactory bulb have been studied in vitro, their roles in pattern processing in the intact system remain controversial. We therefore examined the functions of ionotropic glutamate receptors during odor processing in the intact olfactory bulb of zebrafish using pharmacological manipulations. Odor responses of mitral cells and interneurons were recorded by electrophysiology and 2-photon Ca(2+ imaging. The combined blockade of AMPA/kainate and NMDA receptors abolished odor-evoked excitation of mitral cells. The blockade of AMPA/kainate receptors alone, in contrast, increased the mean response of mitral cells and decreased the mean response of interneurons. The blockade of NMDA receptors caused little or no change in the mean responses of mitral cells and interneurons. However, antagonists of both receptor types had diverse effects on the magnitude and time course of individual mitral cell and interneuron responses and, thus, changed spatio-temporal activity patterns across neuronal populations. Oscillatory synchronization was abolished or reduced by AMPA/kainate and NMDA receptor antagonists, respectively. These results indicate that (1 interneuron responses depend mainly on AMPA/kainate receptor input during an odor response, (2 interactions among mitral cells and interneurons regulate the total olfactory bulb output activity, (3 AMPA/kainate receptors participate in the synchronization of odor-dependent neuronal ensembles, and (4 ionotropic glutamate receptor-containing synaptic circuits shape odor-specific patterns of olfactory bulb output activity. These mechanisms are likely to be important for the processing of odor-encoding activity patterns in the olfactory bulb.

  10. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  11. A neurotoxic phospholipase A2 impairs yeast amphiphysin activity and reduces endocytosis.

    Directory of Open Access Journals (Sweden)

    Mojca Mattiazzi

    Full Text Available BACKGROUND: Presynaptically neurotoxic phospholipases A(2 inhibit synaptic vesicle recycling through endocytosis. PRINCIPAL FINDINGS: Here we provide insight into the action of a presynaptically neurotoxic phospholipase A(2 ammodytoxin A (AtxA on clathrin-dependent endocytosis in budding yeast. AtxA caused changes in the dynamics of vesicle formation and scission from the plasma membrane in a phospholipase activity dependent manner. Our data, based on synthetic dosage lethality screen and the analysis of the dynamics of sites of endocytosis, indicate that AtxA impairs the activity of amphiphysin. CONCLUSIONS: We identified amphiphysin and endocytosis as the target of AtxA intracellular activity. We propose that AtxA reduces endocytosis following a mechanism of action which includes both a specific protein-protein interaction and enzymatic activity, and which is applicable to yeast and mammalian cells. Knowing how neurotoxic phospholipases A(2 work can open new ways to regulate endocytosis.

  12. Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne Winther; Noraberg, J; Zimmer, J

    2001-01-01

    The excitotoxic profiles of (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propionic acid (ATPA), (RS)-2-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), kainic acid (KA) and N-methyl-D-aspartate (NMDA) were evaluated using cellular uptake of propidium iodide (PI) as a measure for...

  13. Endocytosis Is Crucial for Cell Polarity and Apical Membrane Recycling in the Filamentous Fungus Aspergillus oryzae▿

    OpenAIRE

    Higuchi, Yujiro; Shoji, Jun-ya; Arioka, Manabu; Kitamoto, Katsuhiko

    2008-01-01

    Establishing the occurrence of endocytosis in filamentous fungi was elusive in the past mainly due to the lack of reliable indicators of endocytosis. Recently, however, it was shown that the fluorescent dye N-(3-triethylammoniumpropyl)-4-(p-diethyl-aminophenyl-hexatrienyl)pyridinium dibromide (FM4-64) and the plasma membrane protein AoUapC (Aspergillus oryzae UapC) fused to enhanced green fluorescent protein (EGFP) were internalized from the plasma membrane by endocytosis. Although the occurr...

  14. A role for the dynamin-like protein Vps1 during endocytosis in yeast

    OpenAIRE

    Rooij, Iwona I. Smaczynska-de; Allwood, Ellen G.; Aghamohammadzadeh, Soheil; Hettema, Ewald H.; Goldberg, Martin W.; Ayscough, Kathryn R.

    2010-01-01

    Dynamins are a conserved family of proteins involved in membrane fusion and fission. Although mammalian dynamins are known to be involved in several membrane-trafficking events, the role of dynamin-1 in endocytosis is the best-characterised role of this protein family. Despite many similarities between endocytosis in yeast and mammalian cells, a comparable role for dynamins in yeast has not previously been demonstrated. The reported lack of involvement of dynamins in yeast endocytosis has rai...

  15. Protein Corona Modulates Uptake and Toxicity of Nanoceria via Clathrin-Mediated Endocytosis.

    Science.gov (United States)

    Mazzolini, Julie; Weber, Ralf J M; Chen, Hsueh-Shih; Khan, Abdullah; Guggenheim, Emily; Shaw, Robert K; Chipman, James K; Viant, Mark R; Rappoport, Joshua Z

    2016-08-01

    Particles present in diesel exhaust have been proposed as a significant contributor to the development of acute and chronic lung diseases, including respiratory infection and allergic asthma. Nanoceria (CeO2 nanoparticles) are used to increase fuel efficiency in internal combustion engines, are present in exhaust fumes, and could affect cells of the airway. Components from the environment such as biologically derived proteins, carbohydrates, and lipids can form a dynamic layer, commonly referred to as the "protein corona" which alters cellular nanoparticle interactions and internalization. Using confocal reflectance microscopy, we quantified nanoceria uptake by lung-derived cells in the presence and absence of a serum-derived protein corona. Employing mass spectrometry, we identified components of the protein corona, and demonstrated that the interaction between transferrin in the protein corona and the transferrin receptor is involved in mediating the cellular entry of nanoceria via clathrin-mediated endocytosis. Furthermore, under these conditions nanoceria does not affect cell growth, viability, or metabolism, even at high concentration. Alternatively, despite the antioxidant capacity of nanoceria, in serum-free conditions these nanoparticles induce plasma membrane disruption and cause changes in cellular metabolism. Thus, our results identify a specific receptor-mediated mechanism for nanoceria entry, and provide significant insight into the potential for nanoparticle-dependent toxicity.

  16. Exploring the GluR2 ligand-binding core in complex with the bicyclical AMPA analogue (S)-4-AHCP

    DEFF Research Database (Denmark)

    Nielsen, Bettina B; Pickering, Darryl S; Greenwood, Jeremy R;

    2005-01-01

    The X-ray structure of the ionotropic GluR2 ligand-binding core (GluR2-S1S2J) in complex with the bicyclical AMPA analogue (S)-2-amino-3-(3-hydroxy-7,8-dihydro-6H-cyclohepta[d]-4-isoxazolyl)propionic acid [(S)-4-AHCP] has been determined, as well as the binding pharmacology of this construct...... and of the full-length GluR2 receptor. (S)-4-AHCP binds with a glutamate-like binding mode and the ligand adopts two different conformations. The K(i) of (S)-4-AHCP at GluR2-S1S2J was determined to be 185 +/- 29 nM and at full-length GluR2(R)o it was 175 +/- 8 nM. (S)-4-AHCP appears to elicit partial agonism...... at GluR2 by inducing an intermediate degree of domain closure (17 degrees). Also, functionally (S)-4-AHCP has an efficacy of 0.38 at GluR2(Q)i, relative to (S)-glutamate. The proximity of bound (S)-4-AHCP to domain D2 prevents full D1-D2 domain closure, which is limited by steric repulsion, especially...

  17. Metabotropic glutamate receptors depress vagal and aortic baroreceptor signal transmission in the NTS.

    Science.gov (United States)

    Liu, Z; Chen, C Y; Bonham, A C

    1998-11-01

    We sought to determine whether metabotropic glutamate receptors contribute to frequency-dependent depression of vagal and aortic baroreceptor signal transmission in the nucleus of the solitary tract (NTS) in vivo. In alpha-chloralose-anesthetized rabbits, we determined the number of extracellular action potentials synaptically evoked by low (1 Hz)- or high-frequency vagal (3-20 Hz) or aortic depressor nerve (ADN) (6-80 Hz) stimulation and postsynaptically evoked by the ionotropic glutamate receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The metabotropic glutamate receptor agonist (2S,1'S, 2'S)-2-(carboxycyclopropyl)glycine (L-CCG-I) attenuated NTS responses monosynaptically evoked by 1-Hz vagus stimulation by 34% (n = 25; P = 0.011), while augmenting AMPA-evoked responses by 64% (n = 17; P = 0.026). The metabotropic glutamate receptor antagonist alpha-methyl-4-phosphonophenylglycine (MPPG) did not affect NTS responses to low-frequency vagal stimulation (n = 11) or AMPA (n = 10) but augmented responses to high-frequency stimulation by 50% (n = 25; P = 0.0001). MPPG also augmented NTS responses to high-frequency ADN stimulation by 35% (n = 9; P = 0.048) but did not affect responses to low-frequency stimulation (n = 9) or AMPA (n = 7). The results suggest that metabotropic glutamate receptors, presumably at presynaptic sites, contribute to frequency-dependent depression of vagal and aortic baroreceptor signal transmission in NTS. PMID:9815076

  18. Synthesis and structure-activity studies on acidic amino acids and related diacids as NMDA receptor ligands

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B;

    1994-01-01

    The 3-isoxazolol amino acids (S)-2-amino-3-(3-hydroxy-5-methyl-4- isoxazolyl)propionic acid [(S)-AMPA, 2] and (R,S)-2-amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)acetic acid (AMAA, 5a) (Figure 1) are potent and specific agonists at the AMPA and N-methyl-D-aspartic acid (NMDA) subtypes, respectively......, of (S)-glutamic acid (1) receptors. A number of amino acids and diacids structurally related to AMAA were synthesized and tested electrophysiologically and in receptor-binding assays. The hydroxymethyl analogue 7c of AMAA was an NMDA agonist approximately equipotent with AMAA in the [3H...

  19. Rapid endocytosis is triggered upon imbibition in Arabidopsis seeds.

    Science.gov (United States)

    Pagnussat, Luciana; Burbach, Christian; Baluška, František; de la Canal, Laura

    2012-03-01

    During seed imbibition and embryo activation, rapid change from a metabolically resting state to the activation of diverse extracellular and/or membrane bound molecules is essential and, hence, endocytosis could be activated too. In fact, we have documented endocytic internalization of the membrane impermeable endocytic tracer FM4-64 already upon 30 min of imbibition of Arabidopsis seeds. This finding suggest that endocytosis is activated early during seed imbibition in Arabidopsis. Immunolocalization of rhamnogalacturonan-II (RG-II) complexed with boron showed that whereas this pectin is localized only in the cell walls of dry seed embryos, it starts to be intracellular once the imbibition started. Brefeldin A (BFA) exposure resulted in recruitment of the intracellular RG-II pectin complexes into the endocytic BFA-induced compartments, confirming the endocytic origin of the RG-II signal detected intracellularly. Finally, germination was significantly delayed when Arabidopsis seeds were germinated in the presence of inhibitors of endocytic pathways, suggesting that trafficking of extracellular molecules might play an important role in the overcome of germination. This work constitutes the first demonstration of endocytic processes during germination and opens new perspectives about the role of the extracellular matrix and membrane components in seed germination. PMID:22476454

  20. Stretch-regulated Exocytosis/Endocytosis in Bladder Umbrella Cells

    Science.gov (United States)

    Truschel, Steven T.; Wang, Edward; Ruiz, Wily G.; Leung, Som-Ming; Rojas, Raul; Lavelle, John; Zeidel, Mark; Stoffer, David; Apodaca, Gerard

    2002-01-01

    The epithelium of the urinary bladder must maintain a highly impermeable barrier despite large variations in urine volume during bladder filling and voiding. To study how the epithelium accommodates these volume changes, we mounted bladder tissue in modified Ussing chambers and subjected the tissue to mechanical stretch. Stretching the tissue for 5 h resulted in a 50% increase in lumenal surface area (from ∼2900 to 4300 μm2), exocytosis of a population of discoidal vesicles located in the apical cytoplasm of the superficial umbrella cells, and release of secretory proteins. Surprisingly, stretch also induced endocytosis of apical membrane and 100% of biotin-labeled membrane was internalized within 5 min after stretch. The endocytosed membrane was delivered to lysosomes and degraded by a leupeptin-sensitive pathway. Last, we show that the exocytic events were mediated, in part, by a cyclic adenosine monophosphate, protein kinase A-dependent process. Our results indicate that stretch modulates mucosal surface area by coordinating both exocytosis and endocytosis at the apical membrane of umbrella cells and provide insight into the mechanism of how mechanical forces regulate membrane traffic in nonexcitable cells. PMID:11907265

  1. Arrestin-mediated endocytosis of yeast plasma membrane transporters.

    Science.gov (United States)

    Nikko, Elina; Pelham, Hugh R B

    2009-12-01

    Many plasma membrane transporters in yeast are endocytosed in response to excess substrate or certain stresses and degraded in the vacuole. Endocytosis invariably requires ubiquitination by the HECT domain ligase Rsp5. In the cases of the manganese transporter Smf1 and the amino acid transporters Can1, Lyp1 and Mup1 it has been shown that ubiquitination is mediated by arrestin-like adaptor proteins that bind to Rsp5 and recognize specific transporters. As yeast contains a large family of arrestins, this has been suggested as a general model for transporter regulation; however, analysis is complicated by redundancy amongst the arrestins. We have tested this model by removing all the arrestins and examining the requirements for endocytosis of four more transporters, Itr1 (inositol), Hxt6 (glucose), Fur4 (uracil) and Tat2 (tryptophan). This reveals functions for the arrestins Art5/Ygr068c and Art4/Rod1, and additional roles for Art1/Ldb19, Art2/Ecm21 and Art8/Csr2. It also reveals functional redundancy between arrestins and the arrestin-like adaptors Bul1 and Bul2. In addition, we show that delivery to the vacuole often requires multiple additional ubiquitin ligases or adaptors, including the RING domain ligase Pib1, and the adaptors Bsd2, Ear1 and Ssh4, some acting redundantly. We discuss the similarities and differences in the requirements for regulation of different transporters.

  2. Differential Use of the C-Type Lectins L-SIGN and DC-SIGN for Phlebovirus Endocytosis.

    Science.gov (United States)

    Léger, Psylvia; Tetard, Marilou; Youness, Berthe; Cordes, Nicole; Rouxel, Ronan N; Flamand, Marie; Lozach, Pierre-Yves

    2016-06-01

    Bunyaviruses represent a growing threat to humans and livestock globally. The receptors, cellular factors and endocytic pathways used by these emerging pathogens to infect cells remain largely unidentified and poorly characterized. DC-SIGN is a C-type lectin highly expressed on dermal dendritic cells that has been found to act as an authentic entry receptor for many phleboviruses (Bunyaviridae), including Rift Valley fever virus (RVFV), Toscana virus (TOSV) and Uukuniemi virus (UUKV). We found that these phleboviruses can exploit another C-type lectin, L-SIGN, for infection. L-SIGN shares 77% sequence homology with DC-SIGN and is expressed on liver sinusoidal endothelial cells. L-SIGN is required for UUKV binding but not for virus internalization. An endocytosis-defective mutant of L-SIGN was still able to mediate virus uptake and infection, indicating that L-SIGN acts as an attachment receptor for phleboviruses rather than an endocytic receptor. Our results point out a fundamental difference in the use of the C-type lectins L-SIGN and DC-SIGN by UUKV to enter cells, although both proteins are closely related in terms of molecular structure and biological function. This study sheds new light on the molecular mechanisms by which phleboviruses target the liver and also highlights the added complexity in virus-receptor interactions beyond attachment. PMID:26990254

  3. The TPLATE Adaptor Complex Drives Clathrin-Mediated Endocytosis in Plants

    NARCIS (Netherlands)

    Gadeyne, A.; Sanchez-Rodriguez, C.; Rubbo, Di S.; Ketelaar, T.

    2014-01-01

    Clathrin-mediated endocytosis is the major mechanism for eukaryotic plasma membrane-based proteome turn-over. In plants, clathrin-mediated endocytosis is essential for physiology and development, but the identification and organization of the machinery operating this process remains largely obscure.

  4. Endocytosis Pathways of the Folate Tethered Star-Shaped PEG-PCL Micelles in Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Yu-Lun Li

    2014-03-01

    Full Text Available This study reports on the cellular uptake of folate tethered micelles using a branched skeleton of poly(ethylene glycol and poly(ε-caprolactone. The chemical structures of the copolymers were characterized by proton nuclear magnetic resonance spectroscopy, and Fourier transform infrared spectroscopy. Doxorubicin (DOX was utilized as an anticancer drug. The highest drug loading efficiencies of DOX in the folate decorated micelle (DMCF and folate-free micelle (DMC were found to be 88.5% and 88.2%, respectively, depending on the segment length of the poly(ε-caprolactone in the copolymers. A comparison of fluorescent microscopic images of the endocytosis pathway in two cell lines, human breast cancer cells (MCF-7 and human oral cavity carcinoma cells (KB, revealed that the micelles were engulfed by KB and MCF-7 cells following in vitro incubation for one hour. Flow cytometric analysis revealed that free folic acid can inhibit the uptake of DOX by 48%–57% and 26%–39% in KB cells and MCF-7 cells, respectively. These results prove that KB cells are relatively sensitive to folate-tethered micelles. Upon administering methyl-β-cyclodextrin, an inhibitor of the caveolae-mediated endocytosis pathway, the uptake of DOX by KB cells was reduced by 69% and that by MCF-7 cells was reduced by 56%. This finding suggests that DMCF enters cells via multiple pathways, thus implying that the folate receptor is not the only target of tumor therapeutics.

  5. FERMENTASI CAIR AMPAS KELAPA SAWIT DAN KAPANG RHIZOPUS OLIGOSPORUS UNTUK MENGHASILKAN ASAM LEMAK OMEGA-3

    Directory of Open Access Journals (Sweden)

    Erwin Affandi

    2012-11-01

    :1, linoleic acid (18:2 and linolenic (18:3 increased. However, all fatty acid in low-carbon treatment decreased, except the linolenic-acid. The conclusion: The fermentation of palm-oil waste with Rhizopus oligosporus mold could increase the content of fat and produce fatty acid omega-3.   In addition, the high-carbon substrat could increase the production of unsaturated-fatty acid.  Submit : 19-12-2011  Review : 08-03-2012 Review : 12 -03-2012 revisi : 17–4-2012 56 Keywords: liquefied-fermentation, waste product of palm oil, R.oligosporus, fatty acid 0mega-3 Abstrak Latar belakang: Pemanfaatan kapang Rhizopus. oligosporus untuk menghasilkan asam lemak omega-3 pada substrat cair telah banyak dilakukan. Kandungan lemak ampas kelapa sawit 5,56 gram/100 gram masih berpotensi untuk menghasilkan asam lemak omega-3. Fermentasi padat pada substrat ampas tahu dan ampas kelapa sawit dengan kapang Rhizopus. oligosporus dapat meningkatkan kadar lemak: ampas tahu 34,4%, sedangkan pada substrat ampas kelapa sawit dengan formula tinggi karbon, kadar lemak meningkat 61,57%. Metoda: Sampel ampas sawit diambil dari pabrik industri minyak sawit. Pada penelitian ini ampas sawit dipakai sebagai substrat fermentasi dan kapang yang digunakan adalah R.oligosporus. Untuk bahan suplemen digunakan urea dan sukrosa Kontrol adalah ampas-sawit tanpa suplemen, sedangkan perlakuan ampas sawit ditambahkan urea sebagai sumber Nitrogen(N dan ampas sawit ditambah sukrosa sebagai sumber Karbon(C. Penambahan sumber N sebagai substrat rendah karbon dan sumber C sebagai substrat tinggi karbon. Fermentasi dilakukan selama 7 hari diatas shaker pada suhu ruang.  Produk hasil fermentasi dilakukan analisis: kadar air; abu, lemak, dan asam lemak omega-3. Hasil penelitian: Hasil menunjukkan bahwa kadar air  produk hasil fermentasi menurun pada kontrol dan semua perlakuan. Kadar abu meningkat untuk semua perlakuan. Kandungan lemak pada ampas kontrol dan ampas-sukrosa  meningkat 6,43% dan 31,67%, sedang substrat

  6. Development of calcium-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in cultured neocortical neurons visualized by cobalt staining

    DEFF Research Database (Denmark)

    Jensen, J B; Schousboe, A; Pickering, D S;

    1998-01-01

    -sulphamoylbenzo-[f]-quinoxaline-2,3-dione (NBQX) was able to prevent all staining at 5 and 8 DIV and most of the staining at 12 DIV, indicating that the non-NMDA ionotropic glutamate receptors are involved in cobalt uptake into the neurons. The AMPA receptor-selective antagonist GYKI 53655 was used...

  7. Glyphosate and AMPA contents in sediments produced by wind erosion of agricultural soils in Argentina

    Science.gov (United States)

    Aparicio, Virginia; Aimar, Silvia; De Gerónimo, Eduardo; Buschiazzo, Daniel; Mendez, Mariano; Costa, José Luis

    2014-05-01

    Wind erosion of soils is an important event in arid and semiarid regions of Argentina. The magnitude of wind erosion occurring under different management practices is relatively well known in this region but less information is available on the quality of the eroded material. Considering that the intensification of agriculture may increase the concentrations of substances in the eroded material, producing potential negative effects on the environment, we analyzed the amount of glyphosate and AMPA in sediments produced by wind erosion of agricultural soils of Argentina. Wind eroded materials were collected by means of BSNE samplers in two loess sites of the semiarid region of Argentina: Chaco and La Pampa. Samples were collected from 1 ha square fields at 13.5, 50 and 150 cm height. Results showed that at higher heights the concentrations of glyphosate and AMPA were mostly higher. The glyphosate concentration was more variable and higher in Chaco (0.66 to 313 µg kg-1) than in La Pampa (4.17 to 114 µg kg-1). These results may be due to the higher use of herbicides in Chaco, where the predominant crops are soybeans and corn, produced under no-tillage. Under these conditions the use of glyphosate for weeds control is a common practice. Conversely, AMPA concentrations were higher in La Pampa (13.1 to 101.3 µg kg-1) than in Chaco (1.3 to 83 µg kg-1). These preliminary results show high concentrations of glyphosate and AMPA in wind eroded materials of agricultural soils of Argentina. More research is needed to confirm these high concentrations in other conditions in order to detect the temporal and spatial distribution patterns of the herbicide.

  8. Interaction between small GTPase Rab7 and PI3KC3 links autophagy and endocytosis: A new Rab7 effector protein sheds light on membrane trafficking pathways.

    Science.gov (United States)

    Lin, Mary Grace; Zhong, Qing

    2011-03-01

    Endocytosis and autophagy are both membrane trafficking pathways vital for cell survival. Endocytosis, the primary means by which cells internalize material such as cell-surface receptors and their protein ligands, is essential for proper cell growth and communication. Autophagy is a catabolic process that degrades cargo ranging from organelles to protein aggregates to bacteria, and it is important for maintaining cellular homeostasis. Defects in both endosome and autophagosome maturation lead to an array of human diseases, including cancer; however, the molecular mechanisms underlying endosome and autophagosome maturation are not well characterized. In the case of endocytosis, small GTPases, key players in membrane organization, are required for endosome maturation. Specifically, activation of the small GTPase Rab7 is required for the initiation of the early-to-late endosome transition, although how this is regulated is largely unknown. Now recent findings from our laboratory show that Rubicon, a component of the PI3KC3 complex, inhibits endosome maturation by preventing activation of Rab7. Not only do our results clarify the molecular link between PI3KC3 and Rab7 function in endosome maturation, they lead us to propose new models for PI3KC3 involvement in membrane trafficking, particularly at the convergence between the endosome and autophagosome pathways.

  9. UBE3A Regulates Synaptic Plasticity and Learning and Memory by Controlling SK2 Channel Endocytosis

    Directory of Open Access Journals (Sweden)

    Jiandong Sun

    2015-07-01

    Full Text Available Gated solely by activity-induced changes in intracellular calcium, small-conductance potassium channels (SKs are critical for a variety of functions in the CNS, from learning and memory to rhythmic activity and sleep. While there is a wealth of information on SK2 gating, kinetics, and Ca2+ sensitivity, little is known regarding the regulation of SK2 subcellular localization. We report here that synaptic SK2 levels are regulated by the E3 ubiquitin ligase UBE3A, whose deficiency results in Angelman syndrome and overexpression in increased risk of autistic spectrum disorder. UBE3A directly ubiquitinates SK2 in the C-terminal domain, which facilitates endocytosis. In UBE3A-deficient mice, increased postsynaptic SK2 levels result in decreased NMDA receptor activation, thereby impairing hippocampal long-term synaptic plasticity. Impairments in both synaptic plasticity and fear conditioning memory in UBE3A-deficient mice are significantly ameliorated by blocking SK2. These results elucidate a mechanism by which UBE3A directly influences cognitive function.

  10. Facilitation of AMPA receptor synaptic delivery as a molecular mechanism for cognitive enhancement

    OpenAIRE

    Knafo, Shira; Sánchez-Puelles, Cristina; Franco, A; Esteban, José A.

    2012-01-01

    Cell adhesion molecules and downstream growth factor-dependent signaling are critical for brain development and synaptic plasticity, and they have been linked to cognitive function in adult animals. We have previously developed a mimetic peptide (FGL) from the neural cell adhesion molecule (NCAM) that enhances spatial learning and memory in rats. We have now investigated the cellular and molecular basis of this cognitive enhancement, using biochemical, morphological, electrophysiological, and...

  11. Role of the Ventral Tegmental Area in Methamphetamine Extinction: AMPA Receptor-Mediated Neuroplasticity

    Science.gov (United States)

    Chen Han-Ting; Chen, Jin-Chung

    2015-01-01

    The molecular mechanisms underlying drug extinction remain largely unknown, although a role for medial prefrontal cortex (mPFC) glutamate neurons has been suggested. Considering that the mPFC sends glutamate efferents to the ventral tegmental area (VTA), we tested whether the VTA is involved in methamphetamine (METH) extinction via conditioned…

  12. Sleep deprivation impairs spatial working memory and reduces hippocampal AMPA receptor phosphorylation

    NARCIS (Netherlands)

    Hagewoud, Roelina; Havekes, Robbert; Novati, Arianna; Keijser, Jan N.; van der Zee, Eddy A.; Meerlo, Peter

    2010-01-01

    Sleep is important for brain function and cognitive performance. Sleep deprivation (SD) may affect subsequent learning capacity and ability to form new memories, particularly in the case of hippocampus-dependent tasks. In the present study we examined whether SD for 6 or 12 h during the normal resti

  13. Differential role of AMPA receptors in mouse tests of antidepressant and anxiolytic action

    DEFF Research Database (Denmark)

    Andreasen, Jesper T; Fitzpatrick, Ciaran M; Larsen, Maria;

    2015-01-01

    and memory we also tested if GYKI-53655 disrupted performance in the V-maze test for attention-dependent behaviour, and the social transmission of food preference (STFP) test of long-term memory. LY451646 (3 mg/kg) showed an antidepressant-like profile in the FST and TST, and GYKI-53655 (≥ 5 mg/kg) had...... swim (FST) and tail suspension tests (TST), and anxiety-related behaviour using the elevated zero maze (EZM), marble burying (MB) and novelty-induced hypophagia (NIH) tests. The serotonin-selective antidepressant citalopram was included for comparison. Due to the importance of AMPARs in learning......-like effect in the FST (≥ 10 mg/kg), but not TST, an anxiolytic-like effect in the EZM (≥ 3 mg/kg) and MB test (≥ 2.5 mg/kg), and an anxiogenic-like effect in the NIH test (≥ 30 mg/kg). GYKI-53655 did not affect cognitive performance in the V-maze or STFP tests. Collectively, these findings suggest...

  14. Facilitation of AMPA receptor synaptic delivery as a molecular mechanism for cognitive enhancement

    DEFF Research Database (Denmark)

    Knafo, Shira; Venero, César; Sánchez-Puelles, Cristina;

    2012-01-01

    Cell adhesion molecules and downstream growth factor-dependent signaling are critical for brain development and synaptic plasticity, and they have been linked to cognitive function in adult animals. We have previously developed a mimetic peptide (FGL) from the neural cell adhesion molecule (NCAM)...

  15. Long-Term Potentiation: From CaMKII to AMPA Receptor Trafficking.

    Science.gov (United States)

    Herring, Bruce E; Nicoll, Roger A

    2016-01-01

    For more than 20 years, we have known that Ca(2+)/calmodulin-dependent protein kinase (CaMKII) activation is both necessary and sufficient for the induction of long-term potentiation (LTP). During this time, tremendous effort has been spent in attempting to understand how CaMKII activation gives rise to this phenomenon. Despite such efforts, there is much to be learned about the molecular mechanisms involved in LTP induction downstream of CaMKII activation. In this review, we highlight recent developments that have shaped our current thinking about the molecular mechanisms underlying LTP and discuss important questions that remain in the field. PMID:26863325

  16. Accumbens Shell AMPA Receptors Mediate Expression of Extinguished Reward Seeking through Interactions with Basolateral Amygdala

    Science.gov (United States)

    Millan, E. Zayra; McNally, Gavan P.

    2011-01-01

    Extinction is the reduction in drug seeking when the contingency between drug seeking behavior and the delivery of drug reward is broken. Here, we investigated a role for the nucleus accumbens shell (AcbSh). Rats were trained to respond for 4% (v/v) alcoholic beer in one context (Context A) followed by extinction in a second context (Context B).…

  17. A role for the dynamin-like protein Vps1 during endocytosis in yeast.

    Science.gov (United States)

    Smaczynska-de Rooij, Iwona I; Allwood, Ellen G; Aghamohammadzadeh, Soheil; Hettema, Ewald H; Goldberg, Martin W; Ayscough, Kathryn R

    2010-10-15

    Dynamins are a conserved family of proteins involved in membrane fusion and fission. Although mammalian dynamins are known to be involved in several membrane-trafficking events, the role of dynamin-1 in endocytosis is the best-characterised role of this protein family. Despite many similarities between endocytosis in yeast and mammalian cells, a comparable role for dynamins in yeast has not previously been demonstrated. The reported lack of involvement of dynamins in yeast endocytosis has raised questions over the general applicability of the current yeast model of endocytosis, and has also precluded studies using well-developed methods in yeast, to further our understanding of the mechanism of dynamin function during endocytosis. Here, we investigate the yeast dynamin-like protein Vps1 and demonstrate a transient burst of localisation to sites of endocytosis. Using live-cell imaging of endocytic reporters in strains lacking vps1, and also electron microscopy and biochemical approaches, we demonstrate a role for Vps1 in facilitating endocytic invagination. Vps1 mutants were generated, and analysis in several assays reveals a role for the C-terminal self-assembly domain in endocytosis but not in other membrane fission events with which Vps1 has previously been associated. PMID:20841380

  18. Endocytosis of VAMP is facilitated by a synaptic vesicle targeting signal

    Science.gov (United States)

    1996-01-01

    After synaptic vesicles fuse with the plasma membrane and release their contents, vesicle membrane proteins recycle by endocytosis and are targeted to newly formed synaptic vesicles. The membrane traffic of an epitope-tagged form of VAMP-2 (VAMP-TAg) was observed in transfected cells to identify sequence requirements for recycling of a synaptic vesicle membrane protein. In the neuroendocrine PC12 cell line VAMP-TAg is found not only in synaptic vesicles, but also in endosomes and on the plasma membrane. Endocytosis of VAMP-TAg is a rapid and saturable process. At high expression levels VAMP-TAg accumulates at the cell surface. Rapid endocytosis of VAMP-TAg also occurs in transfected CHO cells and is therefore independent of other synaptic proteins. The majority of the measured endocytosis is not directly into synaptic vesicles since mutations in VAMP-TAg that enhance synaptic vesicle targeting did not affect endocytosis. Nonetheless, mutations that inhibited synaptic vesicle targeting, in particular replacement of methionine-46 by alanine, inhibited endocytosis by 85% in PC12 cells and by 35% in CHO cells. These results demonstrate that the synaptic vesicle targeting signal is also used for endocytosis and can be recognized in cells lacking synaptic vesicles. PMID:8647886

  19. Analysis of receptor tyrosine kinase internalization using flow cytometry.

    Science.gov (United States)

    Li, Ning; Hill, Kristen S; Elferink, Lisa A

    2008-01-01

    The internalization of activated receptor tyrosine kinases (RTKs) by endocytosis and their subsequent down regulation in lysosomes plays a critical role in regulating the duration and intensity of downstream signaling events. Uncoupling of the RTK cMet from ligand-induced degradation was recently shown to correlate with sustained receptor signaling and increased cell tumorigenicity, suggesting that the corruption of these endocytic mechanisms could contribute to increased cMet signaling in metastatic cancers. To understand how cMet signaling for normal cell growth is controlled by endocytosis and how these mechanisms are dysregulated in metastatic cancers, we developed flow cytometry-based assays to examine cMet internalization.

  20. Size and receptor density of glutamatergic synapses: a viewpoint from left-right asymmetry of CA3-CA1 connections

    Directory of Open Access Journals (Sweden)

    Yoshiaki Shinohara

    2009-07-01

    Full Text Available Synaptic plasticity is considered to be the main mechanism for learning and memory. Excitatory synapses in the cerebral cortex and hippocampus undergo plastic changes during development and in response to electric stimulation. It is widely accepted that this process is mediated by insertion and elimination of various glutamate receptors. In a series of recent investigations on left-right asymmetry of hippocampal CA3-CA1 synapses, glutamate receptor subunits have been found to have distinctive expression patterns that depend on the postsynaptic density (PSD area. Particularly notable are the GluR1 AMPA receptor subunit and NR2B NMDA receptor subunit, where receptor density has either a supra-linear (GluR1 AMPA or inverse (NR2B NMDAR relationship to the PSD area. We review current understanding of structural and physiological synaptic plasticity and propose a scheme to classify receptor subtypes by their expression pattern with respect to PSD area.

  1. Clathrin and LRP-1-independent constitutive endocytosis and recycling of uPAR.

    Directory of Open Access Journals (Sweden)

    Katia Cortese

    Full Text Available BACKGROUND: The urokinase receptor (uPAR/CD87 is highly expressed in malignant tumours. uPAR, as a GPI anchored protein, is preferentially located at the cell surface, where it interacts with its ligands urokinase (uPA and the extracellular matrix protein vitronectin, thus promoting plasmin generation, cell-matrix interactions and intracellular signalling events. Interaction with a complex formed by uPA and its inhibitor PAI-1 induces cell surface down regulation and recycling of the receptor via the clathrin-coated pathway, a process dependent on the association to LRP-1. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have found that along with the ligand-induced down-regulation, uPAR also internalizes and recycles constitutively through a second pathway that is independent of LRP-1 and clathrin but shares some properties with macropinocytosis. The ligand-independent route is amiloride-sensitive, does not require uPAR partitioning into lipid rafts, is independent of the activity of small GTPases RhoA, Rac1 and Cdc42, and does not require PI3K activity. Constitutively endocytosed uPAR is found in EEA1 positive early/recycling endosomes but does not reach lysosomes in the absence of ligands. Electron microscopy analysis reveals the presence of uPAR in ruffling domains at the cell surface, in macropinosome-like vesicles and in endosomal compartments. CONCLUSIONS/SIGNIFICANCE: These results indicate that, in addition to the ligand-induced endocytosis of uPAR, efficient surface expression and membrane trafficking might also be driven by an uncommon macropinocytic mechanism coupled with rapid recycling to the cell surface.

  2. Sources and Input Pathways of Glyphosate and its Degradation Product AMPA

    Science.gov (United States)

    Bischofberger, S.; Hanke, I.; Wittmer, I.; Singer, H.; Stamm, C.

    2009-04-01

    Despite being the pesticide used in the largest quantities worldwide, the environmental relevance of glyphosate has been considered low for many years. Reasons for this assessment were the observations that glyphosate degrades quickly into its degradation product AMPA and that it sorbs strongly to soil particles. Hence, little losses to water bodies had been expected. Research during the last few years however contradicts this expectation. Although glyphosate is a dominant pesticide used in agriculture, recent studies on other pesticides revealed that urban sources may play a significant role for water quality. Therefore this study compares glyphosate input into streams from agricultural and urban sources. For that purpose, a catchment of an area of 25 km2 was selected. It has by about 12'000 inhabitants and about 15 % of the area is used as arable land. Four sampling sites were selected in the river system in order to reflect different urban and agricultural sources. Additionally, we sampled a combined sewer overflow, a rain sewer and the outflow of a waste water treatment plant. At each site discharge was measured continuously from March to November 2007. During 16 rain events samples were taken by automatic devices at a high temporal resolution. To analyze the concentration of glyphosate and its degradation product AMPA, the samples were derivatized with FMOC-Cl at low pH conditions and then filtrated. The solid phase extraction was conducted with Strata-X sorbent cartridge. Glyphosate and AMPA were detected with API 4000 after the chromatography with X bridge column C18. To assure the data quality, interne standards of Glyphosate and AMPA were added to every sample. The limit of detection and quantification for glyphosate and AMPA are bellow 1ng/l. We analyzed two rain events at a high resolution for all stations and several events at the outlet of the catchment. We measured high glyphosate concentration in urban and agriculture dominated catchments with up to

  3. Flavivirus Entry Receptors: An Update

    Directory of Open Access Journals (Sweden)

    Manuel Perera-Lecoin

    2013-12-01

    Full Text Available Flaviviruses enter host cells by endocytosis initiated when the virus particles interact with cell surface receptors. The current model suggests that flaviviruses use at least two different sets of molecules for infectious entry: attachment factors that concentrate and/or recruit viruses on the cell surface and primary receptor(s that bind to virions and direct them to the endocytic pathway. Here, we present the currently available knowledge regarding the flavivirus receptors described so far with specific attention to C-type lectin receptors and the phosphatidylserine receptors, T-cell immunoglobulin and mucin domain (TIM and TYRO3, AXL and MER (TAM. Their role in flavivirus attachment and entry as well as their implication in the virus biology will be discussed in depth.

  4. Phosphorylation of threonine 156 of the mu2 subunit of the AP2 complex is essential for endocytosis in vitro and in vivo.

    Science.gov (United States)

    Olusanya, O; Andrews, P D; Swedlow, J R; Smythe, E

    2001-06-01

    The clathrin-coated pit is the major port of entry for many receptors and pathogens and is the paradigm for membrane-based sorting events in higher cells [1]. Recently, it has been possible to reconstitute in vitro the events leading to assembly, invagination, and budding off of clathrin-coated vesicles, allowing dissection of the machinery required for sequestration of receptors into these structures [2-6]. The AP2 adaptor complex is a key element of this machinery linking receptors to the coat lattice, and it has previously been reported that AP2 can be phosphorylated both in vitro and in vivo [7-10]. However, the physiological significance of this has never been established. Here, we show that phosphorylation of a single threonine residue (Thr156) of the mu2 subunit of the AP2 complex is essential for efficient endocytosis of transferrin both in an in vitro coated-pit budding assay and in living cells. PMID:11516654

  5. Leaching of glyphosate and AMPA under two soil management practices in Burgundy vineyards (Vosne-Romanee, 21-France)

    International Nuclear Information System (INIS)

    Some drinking water reservoirs under the vineyards of Burgundy are contaminated with herbicides. Thus the effectiveness of alternative soil management practices, such as grass cover, for reducing the leaching of glyphosate and its metabolite, AMPA, through soils was studied. The leaching of both molecules was studied in structured soil columns under outdoor conditions for 1 year. The soil was managed under two vineyard soil practices: a chemically treated bare calcosol, and a vegetated calcosol. After 680 mm of rainfall, the vegetated calcosol leachates contained lower amounts of glyphosate and AMPA (0.02% and 0.03%, respectively) than the bare calcosol leachates (0.06% and 0.15%, respectively). No glyphosate and only low amounts of AMPA (<0.01%) were extracted from the soil. Glyphosate, and to a greater extent, AMPA, leach through the soils; thus, both molecules may be potential contaminants of groundwater. However, the alternative soil management practice of grass cover could reduce groundwater contamination by the pesticide. - Glyphosate and AMPA leached in greater amounts through a chemically treated bare calcosol than through a vegetated calcosol

  6. Kainate receptors mediate signaling in both transient and sustained OFF bipolar cell pathways in mouse retina.

    Science.gov (United States)

    Borghuis, Bart G; Looger, Loren L; Tomita, Susumu; Demb, Jonathan B

    2014-04-30

    A fundamental question in sensory neuroscience is how parallel processing is implemented at the level of molecular and circuit mechanisms. In the retina, it has been proposed that distinct OFF cone bipolar cell types generate fast/transient and slow/sustained pathways by the differential expression of AMPA- and kainate-type glutamate receptors, respectively. However, the functional significance of these receptors in the intact circuit during light stimulation remains unclear. Here, we measured glutamate release from mouse bipolar cells by two-photon imaging of a glutamate sensor (iGluSnFR) expressed on postsynaptic amacrine and ganglion cell dendrites. In both transient and sustained OFF layers, cone-driven glutamate release from bipolar cells was blocked by antagonists to kainate receptors but not AMPA receptors. Electrophysiological recordings from bipolar and ganglion cells confirmed the essential role of kainate receptors for signaling in both transient and sustained OFF pathways. Kainate receptors mediated responses to contrast modulation up to 20 Hz. Light-evoked responses in all mouse OFF bipolar pathways depend on kainate, not AMPA, receptors.

  7. Recording the dynamic endocytosis of single gold nanoparticles by AFM-based force tracing

    Science.gov (United States)

    Ding, Bohua; Tian, Yongmei; Pan, Yangang; Shan, Yuping; Cai, Mingjun; Xu, Haijiao; Sun, Yingchun; Wang, Hongda

    2015-04-01

    We utilized force tracing to directly record the endocytosis of single gold nanoparticles (Au NPs) with different sizes, revealing the size-dependent endocytosis dynamics and the crucial role of membrane cholesterol. The force, duration and velocity of Au NP invagination are accurately determined at the single-particle and microsecond level unprecedentedly.We utilized force tracing to directly record the endocytosis of single gold nanoparticles (Au NPs) with different sizes, revealing the size-dependent endocytosis dynamics and the crucial role of membrane cholesterol. The force, duration and velocity of Au NP invagination are accurately determined at the single-particle and microsecond level unprecedentedly. Electronic supplementary information (ESI) available: Details of the experimental procedures and the results of the control experiments. See DOI: 10.1039/c5nr01020a

  8. VAMP4 Is an Essential Cargo Molecule for Activity-Dependent Bulk Endocytosis.

    Science.gov (United States)

    Nicholson-Fish, Jessica C; Kokotos, Alexandros C; Gillingwater, Thomas H; Smillie, Karen J; Cousin, Michael A

    2015-12-01

    The accurate formation of synaptic vesicles (SVs) and incorporation of their protein cargo during endocytosis is critical for the maintenance of neurotransmission. During intense neuronal activity, a transient and acute accumulation of SV cargo occurs at the plasma membrane. Activity-dependent bulk endocytosis (ADBE) is the dominant SV endocytosis mode under these conditions; however, it is currently unknown how ADBE mediates cargo retrieval. We examined the retrieval of different SV cargo molecules during intense stimulation using a series of genetically encoded pH-sensitive reporters in neuronal cultures. The retrieval of only one reporter, VAMP4-pHluorin, was perturbed by inhibiting ADBE. This selective recovery was confirmed by the enrichment of endogenous VAMP4 in purified bulk endosomes formed by ADBE. VAMP4 was also essential for ADBE, with a cytoplasmic di-leucine motif being critical for this role. Therefore, VAMP4 is the first identified ADBE cargo and is essential for this endocytosis mode to proceed.

  9. Sensing the delivery and endocytosis of nanoparticles using magneto-photo-acoustic imaging

    Directory of Open Access Journals (Sweden)

    M. Qu

    2015-09-01

    Full Text Available Many biomedical applications necessitate a targeted intracellular delivery of the nanomaterial to specific cells. Therefore, a non-invasive and reliable imaging tool is required to detect both the delivery and cellular endocytosis of the nanoparticles. Herein, we demonstrate that magneto-photo-acoustic (MPA imaging can be used to monitor the delivery and to identify endocytosis of magnetic and optically absorbing nanoparticles. The relationship between photoacoustic (PA and magneto-motive ultrasound (MMUS signals from the in vitro samples were analyzed to identify the delivery and endocytosis of nanoparticles. The results indicated that during the delivery of nanoparticles to the vicinity of the cells, both PA and MMUS signals are almost linearly proportional. However, accumulation of nanoparticles within the cells leads to nonlinear MMUS-PA relationship, due to non-linear MMUS signal amplification. Therefore, through longitudinal MPA imaging, it is possible to monitor the delivery of nanoparticles and identify the endocytosis of the nanoparticles by living cells.

  10. Actin-Based Feedback Circuits in Cell Migration and Endocytosis

    Science.gov (United States)

    Wang, Xinxin

    In this thesis, we study the switch and pulse functions of actin during two important cellular processes, cell migration and endocytosis. Actin is an abundant protein that can polymerize to form a dendritic network. The actin network can exert force to push or bend the cell membrane. During cell migration, the actin network behaves like a switch, assembling mostly at one end or at the other end. The end with the majority of the actin network is the leading edge, following which the cell can persistently move in the same direction. The other end, with the minority of the actin network, is the trailing edge, which is dragged by the cell as it moves forward. When subjected to large fluctuations or external stimuli, the leading edge and the trailing edge can interchange and change the direction of motion, like a motion switch. Our model of the actin network in a cell reveals that mechanical force is crucial for forming the motion switch. We find a transition from single state symmetric behavior to switch behavior, when tuning parameters such as the force. The model is studied by both stochastic simulations, and a set of rate equations that are consistent with the simulations. Endocytosis is a process by which cells engulf extracellular substances and recycle the cell membrane. In yeast cells, the actin network is transiently needed to overcome the pressure difference across the cell membrane caused by turgor pressure. The actin network behaves like a pulse, which assembles and then disassembles within about 30 seconds. Using a stochastic model, we reproduce the pulse behaviors of the actin network and one of its regulatory proteins, Las17. The model matches green fluorescence protein (GFP) experiments for wild-type cells. The model also predicts some phenotypes that modify or diminish the pulse behavior. The phenotypes are verified with both experiments performed at Washington University and with other groups' experiments. We find that several feedback mechanisms are

  11. Molecular characterization of the haptoglobin.hemoglobin receptor CD163. Ligand binding properties of the scavenger receptor cysteine-rich domain region

    DEFF Research Database (Denmark)

    Madsen, Mette; Møller, Holger J; Nielsen, Marianne Jensby;

    2004-01-01

    CD163 is the macrophage receptor for endocytosis of haptoglobin.hemoglobin complexes. The extracellular region consisting of nine scavenger receptor cysteine rich (SRCR) domains also circulates in plasma as a soluble protein. By ligand binding analysis of a broad spectrum of soluble CD163...

  12. Bile Acids Reduce Endocytosis of High-Density Lipoprotein (HDL) in HepG2 Cells

    OpenAIRE

    Clemens Röhrl; Karin Eigner; Stefanie Fruhwürth; Herbert Stangl

    2014-01-01

    High-density lipoprotein (HDL) transports lipids to hepatic cells and the majority of HDL-associated cholesterol is destined for biliary excretion. Cholesterol is excreted into the bile directly or after conversion to bile acids, which are also present in the plasma as they are effectively reabsorbed through the enterohepatic cycle. Here, we provide evidence that bile acids affect HDL endocytosis. Using fluorescent and radiolabeled HDL, we show that HDL endocytosis was reduced in the presence...

  13. Mechanistic analysis of massive endocytosis in relation to functionally defined surface membrane domains

    OpenAIRE

    Hilgemann, Donald W.; Fine, Michael

    2011-01-01

    A large fraction of endocytosis in eukaryotic cells occurs without adaptors or dynamins. Here, we present evidence for the involvement of lipid domains in massive endocytosis (MEND) activated by both large Ca transients and amphipathic compounds in baby hamster kidney and HEK293 cells. First, we demonstrate functional coupling of the two MEND types. Ca transients can strongly facilitate detergent-activated MEND. Conversely, an amphipath with dual alkyl chains, ditridecylphthalate, is without ...

  14. Clathrin-mediated endocytosis at the synaptic terminal: bridging the gap between physiology and molecules

    OpenAIRE

    Royle, Stephen J; Lagnado, Leon

    2010-01-01

    It has long been known that the maintenance of fast communication between neurons requires that presynaptic terminals recycle the small vesicles from which neurotransmitter is released. But the mechanisms that retrieve vesicles from the cell surface are still not understood. Although we have a wealth of information about the molecular details of endocytosis in non-neuronal cells, it is clear that endocytosis at the synapse is faster and regulated in distinct ways. A satisfying understanding o...

  15. The molecular physiology of activity-dependent bulk endocytosis of synaptic vesicles.

    OpenAIRE

    Clayton, E. L.; Cousin, M. A.

    2009-01-01

    Central nerve terminals release neurotransmitter in response to a wide variety of stimuli. Because maintenance of neurotransmitter release is dependent on the continual supply of synaptic vesicles (SVs), nerve terminals possess an array of endocytosis modes to retrieve and recycle SV membrane and proteins. During mild stimulation conditions, single SV retrieval modes such as clathrin-mediated endocytosis predominate. However, during increased neuronal activity, additional SV retrieval capacit...

  16. The Molecular Physiology of Activity-Dependent Bulk Endocytosis of Synaptic Vesicles

    OpenAIRE

    Clayton, Emma L.; Cousin, Michael A

    2009-01-01

    Central nerve terminals release neurotransmitter in response to a wide variety of stimuli. Since maintenance of neurotransmitter release is dependent on the continual supply of synaptic vesicles (SVs), nerve terminals possess an array of endocytosis modes to retrieve and recycle SV membrane and proteins. During mild stimulation conditions single SV retrieval modes such as clathrin-mediated endocytosis (CME) predominate. However during increased neuronal activity additional SV retrieval capaci...

  17. Sources of aminomethylphosphonic acid (AMPA) in urban and rural catchments in Ontario, Canada: Glyphosate or phosphonates in wastewater?

    Science.gov (United States)

    Struger, J; Van Stempvoort, D R; Brown, S J

    2015-09-01

    Correlation analysis suggests that occurrences of AMPA in streams of southern Ontario are linked mainly to glyphosate in both urban and rural settings, rather than to wastewater sources, as some previous studies have suggested. For this analysis the artificial sweetener acesulfame was analyzed as a wastewater indicator in surface water samples collected from urban and rural settings in southern Ontario, Canada. This interpretation is supported by the concurrence of seasonal fluctuations of glyphosate and AMPA concentrations. Herbicide applications in larger urban centres and along major transportation corridors appear to be important sources of glyphosate and AMPA in surface water, in addition to uses of this herbicide in rural and mixed use areas. Fluctuations in concentrations of acesulfame and glyphosate residues were found to be related to hydrologic events.

  18. GABAB receptors modulate NMDA receptor calcium signals in dendritic spines.

    Science.gov (United States)

    Chalifoux, Jason R; Carter, Adam G

    2010-04-15

    Metabotropic GABA(B) receptors play a fundamental role in modulating the excitability of neurons and circuits throughout the brain. These receptors influence synaptic transmission by inhibiting presynaptic release or activating postsynaptic potassium channels. However, their ability to directly influence different types of postsynaptic glutamate receptors remains unresolved. Here we examine GABA(B) receptor modulation in layer 2/3 pyramidal neurons from the mouse prefrontal cortex. We use two-photon laser-scanning microscopy to study synaptic modulation at individual dendritic spines. Using two-photon optical quantal analysis, we first demonstrate robust presynaptic modulation of multivesicular release at single synapses. Using two-photon glutamate uncaging, we then reveal that GABA(B) receptors strongly inhibit NMDA receptor calcium signals. This postsynaptic modulation occurs via the PKA pathway and does not affect synaptic currents mediated by AMPA or NMDA receptors. This form of GABA(B) receptor modulation has widespread implications for the control of calcium-dependent neuronal function.

  19. A yeast t-SNARE involved in endocytosis.

    Science.gov (United States)

    Séron, K; Tieaho, V; Prescianotto-Baschong, C; Aust, T; Blondel, M O; Guillaud, P; Devilliers, G; Rossanese, O W; Glick, B S; Riezman, H; Keränen, S; Haguenauer-Tsapis, R

    1998-10-01

    The ORF YOL018c (TLG2) of Saccharomyces cerevisiae encodes a protein that belongs to the syntaxin protein family. The proteins of this family, t-SNAREs, are present on target organelles and are thought to participate in the specific interaction between vesicles and acceptor membranes in intracellular membrane trafficking. TLG2 is not an essential gene, and its deletion does not cause defects in the secretory pathway. However, its deletion in cells lacking the vacuolar ATPase subunit Vma2p leads to loss of viability, suggesting that Tlg2p is involved in endocytosis. In tlg2Delta cells, internalization was normal for two endocytic markers, the pheromone alpha-factor and the plasma membrane uracil permease. In contrast, degradation of alpha-factor and uracil permease was delayed in tlg2Delta cells. Internalization of positively charged Nanogold shows that the endocytic pathway is perturbed in the mutant, which accumulates Nanogold in primary endocytic vesicles and shows a greatly reduced complement of early endosomes. These results strongly suggest that Tlg2p is a t-SNARE involved in early endosome biogenesis. PMID:9763449

  20. Depth distribution of glyphosate and AMPA under diferent tillage system and soils in long-term experiments

    Science.gov (United States)

    Aparicio, Virginia; Costa, Jose Luis; De Geronimo, Eduardo

    2016-04-01

    Glyphosate (N-(phosphonomethyl glycine) is a post-emergence, non-selective, foliar herbicide. Around 200 million liters of this herbicide are applied every year in Argentina, where the main agricultural practice is no-till (NT), accounting for 78 % of the cultivated land. In this work, we studied the depth distribution of glyphosate in long-term experiments (more than 15 years) at different locations under NT and conventional tillage (CT). Samples from 0-2, 2-5, 5-10, 10-15, and 15-20 cm depth with four replication and two treatments NT CT at three locations: Balcarce (BA) a loam soil, Bordenave (BO) a sandy loam soil y Marcos Juarez a silty loam soil (MJ). The glyphosate concentration in the first 2 cm of soil was, on the average, 70% greater than in the next 2-5 cm. The mass of glyphosate in CT was higher at 2 to 10 cm depth. The depth concentration of AMPA follows the same trend than glyphosate, although its average concentration at 0-2 cm depth is 28 times higher than the glyphosate concentration at 2-5 cm (glyphosate = 147 ppb and AMPA = 4100 ppb). Beside the AMPA concentration at 0-2 cm depth is greater in NT than in CT, the mass of AMPA is higher in CT only for the Balcarce location. To our knowledge, this study is the first dealing with the depth distribution of glyphosate concentration in soils under different soil managements. In the present study, it was demonstrated that glyphosate and AMPA are present in soils under agricultural activity with maximum concentration in the first two cm of soil and the AMPA concentration at this depth is greater in NT than in CT.

  1. [Autoimmune mechanisms of modulation of the activity of glutamate receptors in children with epilepsy and craniocerebral injury].

    Science.gov (United States)

    Pinelis, V G; Sorokina, E G

    2008-01-01

    The role of glutamate receptors and their hyperstimulation in the development of autoimmune processes is discussed with reference to brain pathology associated with hypoxia and ischemia. Epilepsy, paroxismal condition, and craniocerebral injury (CCI) in children are shown to be accompanied by a rise in the levels of antibodies against AMPA and NMDA receptors of glutamate and nitric oxide markers (cGMP, nitrates + nitrites). Also enhanced in epilepsy and paroxismal condition are the levels of cGMP and antibodies against AMPA(GluR1) receptors of glutamate. Acute CCI period is characterized by a marked change in the levels of NO metabolites and antibodies to two subtypes of glutamate receptor, AMPA and NMDA. The levels of antibodies to NMDA(NR2A) receptors are significantly different within 1 day after CCI depending on its outcome. Unfavourable outcome of CCI is associated with the lowest level of antibodies and high NO metabolite content. Relationship between the levels of NO and antibodies against glutamate receptors is discussed with the use of experimental data. It is concluded that antibodies to glutamate receptors and receptor hyperstimulation play an important role in pathogenesis of hypoxia. PMID:19189459

  2. Pharmacological and structural characterization of conformationally restricted (S)-glutamate analogues at ionotropic glutamate receptors

    DEFF Research Database (Denmark)

    Juknaite, Lina; Venskutonyte, Raminta; Assaf, Zeinab;

    2012-01-01

    at NMDA receptors, where the introduction of the carbocyclic ring is expected to lead to a steric clash with binding site residues. CBG-IV was demonstrated to be an agonist at both GluA2 and the kainate receptor GluK1. CBG-IV showed high affinity binding to GluK1 compared to GluA2, GluK2 and GluK3, which......Conformationally restricted glutamate analogues have been pharmacologically characterized at AMPA and kainate receptors and the crystal structures have been solved of the ligand (2S,1'R,2'S)-2-(2'-carboxycyclobutyl)glycine (CBG-IV) in complex with the ligand binding domains of the AMPA receptor Glu......A2 and the kainate receptor GluK3. These structures show that CBG-IV interacts with the binding pocket in the same way as (S)-glutamate. The binding affinities reveal that CBG-IV has high affinity at the AMPA and kainate receptor subtypes. Appreciable binding affinity of CBG-IV was not observed...

  3. Study of uptake and endocytosis of gamma rays-irradiated crotoxin by mice peritoneal macrophages

    International Nuclear Information System (INIS)

    The purpose was to investigate the uptake and endocytosis of 2000 Gy 60Co irradiated crotoxin through mouse peritoneal macrophages, correlating with native one and another non related protein, the ovalbumin. Native (CTXN) or 2000 Gy 60 Co γ-rays (dose rate 540 Gy/hour) irradiated crotoxin (CTXI) or ovalbumin processed of same manner (OVAN - OVAI) were offered to mouse peritoneal macrophages and their uptake was evaluated by immunohistochemistry and quantitative in situ ELISA. The involvement of scavenger receptors (ScvR) was evaluated by using blockers drugs (Probuco-PBC or Dextran Sulfate - SD) or with nonspecific blocking using fetal calf serum (FBS). The morphology and viability of macrophages were preserved during the experiments. CTXI showed irradiation-induced aggregates and formation of oxidative changing were observed on this protein after gamma rays treatment. By immunohistochemistry we could observe heavy stained phagocytic vacuole on macrophages incubated with CTXI, as compared with CTXN. Quantitatively by in situ ELISA, the sema pattern was observed, displaying a 2-fold CTXI incorporation. In presence of PBC or SD we could find a significant decrease of CTXI uptake but not of CTXN. However the CTXN uptake was depressed by FBS, not observed with CTXI. OVA, after gamma rays treatment, underwent a high degradation suffering a potent incorporation and metabolism by macrophages, with a major uptake of OVAI in longer incubation (120 minutes). Gamma rays (60 Co) produced oxidative changes on CTX molecule, leading to a uptake by ScvR-mice peritoneal macrophages, suggesting that the relation antigen-presenting cells and gamma rays-modified proteins are responsible for the better immune response presented by irradiated antigens. (author)

  4. Recruitment of endocytosis in sonopermeabilization-mediated drug delivery: a real-time study

    Science.gov (United States)

    Derieppe, Marc; Rojek, Katarzyna; Escoffre, Jean-Michel; de Senneville, Baudouin Denis; Moonen, Chrit; Bos, Clemens

    2015-07-01

    Microbubbles (MBs) in combination with ultrasound (US) can enhance cell membrane permeability, and have the potential to facilitate the cellular uptake of hydrophilic molecules. However, the exact mechanism behind US- and MB-mediated intracellular delivery still remains to be fully understood. Among the proposed mechanisms are formation of transient pores and endocytosis stimulation. In our study, we investigated whether endocytosis is involved in US- and MB-mediated delivery of small molecules. Dynamic fluorescence microscopy was used to investigate the effects of endocytosis inhibitors on the pharmacokinetic parameters of US- and MB-mediated uptake of SYTOX Green, a 600 Da hydrophilic model drug. C6 rat glioma cells, together with SonoVue® MBs, were exposed to 1.4 MHz US waves at 0.2 MPa peak-negative pressure. Collection of the signal intensity in each individual nucleus was monitored during and after US exposure by a fibered confocal fluorescence microscope designed for real-time imaging. Exposed to US waves, C6 cells pretreated with chlorpromazine, an inhibitor of clathrin-mediated endocytosis, showed up to a 2.5-fold significant increase of the uptake time constant, and a 1.1-fold increase with genistein, an inhibitor of caveolae-mediated endocytosis. Both inhibitors slowed down the US-mediated uptake of SYTOX Green. With C6 cells and our experimental settings, these quantitative data indicate that endocytosis plays a role in sonopermeabilization-mediated delivery of small molecules with a more predominant contribution of clathrin-mediated endocytosis.

  5. β-Hydroxybutyrate supports synaptic vesicle cycling but reduces endocytosis and exocytosis in rat brain synaptosomes.

    Science.gov (United States)

    Hrynevich, Sviatlana V; Waseem, Tatyana V; Hébert, Audrey; Pellerin, Luc; Fedorovich, Sergei V

    2016-02-01

    The ketogenic diet is used as a prophylactic treatment for different types of brain diseases, such as epilepsy or Alzheimer's disease. In such a diet, carbohydrates are replaced by fats in everyday food, resulting in an elevation of blood-borne ketone bodies levels. Despite clinical applications of this treatment, the molecular mechanisms by which the ketogenic diet exerts its beneficial effects are still uncertain. In this study, we investigated the effect of replacing glucose by the ketone body β-hydroxybutyrate as the main energy substrate on synaptic vesicle recycling in rat brain synaptosomes. First, we observed that exposing presynaptic terminals to nonglycolytic energy substrates instead of glucose did not alter the plasma membrane potential. Next, we found that synaptosomes were able to maintain the synaptic vesicle cycle monitored with the fluorescent dye acridine orange when glucose was replaced by β-hydroxybutyrate. However, in presence of β-hydroxybutyrate, synaptic vesicle recycling was modified with reduced endocytosis. Replacing glucose by pyruvate also led to a reduced endocytosis. Addition of β-hydroxybutyrate to glucose-containing incubation medium was without effect. Reduced endocytosis in presence of β-hydroxybutyrate as sole energy substrate was confirmed using the fluorescent dye FM2-10. Also we found that replacement of glucose by ketone bodies leads to inhibition of exocytosis, monitored by FM2-10. However this reduction was smaller than the effect on endocytosis under the same conditions. Using both acridine orange in synaptosomes and the genetically encoded sensor synaptopHluorin in cortical neurons, we observed that replacing glucose by β-hydroxybutyrate did not modify the pH gradient of synaptic vesicles. In conclusion, the nonglycolytic energy substrates β-hydroxybutyrate and pyruvate are able to support synaptic vesicle recycling. However, they both reduce endocytosis. Reduction of both endocytosis and exocytosis together with

  6. Cytotoxicity mechanism of α-MMC in normal liver cells through LRP1 mediated endocytosis and JNK activation.

    Science.gov (United States)

    Wang, Ling; Shen, Fubing; Zhang, Min; He, Qianchuan; Zhao, Hui; Yu, Xiaoping; Yang, Shuxia; Liu, Yang; Deng, Nianhua; Zheng, Juecun; Zhu, Lixia; Liu, Xiaolan

    2016-05-16

    Alpha-momorcharin (α-MMC), a type I ribosome-inactivating protein isolated from Momordica charantia, is a potential drug candidate with strong anti-tumor activity. However, α-MMC has a severe hepatotoxicity when applied in vivo, which may greatly hinders its use in clinic in the future. The biological mechanism of hepatotoxicity induced by α-MMC is largely unknown, especially the mechanism by which α-MMC enters the hepatocytes. In this study, we investigated α-MMC-induced cytotoxicity in normal liver L02 cell line as well as the mechanism underlying it. As expected, α-MMC is more toxic in L02 cells than in various normal cells from other organs. The cytotoxic effect of α-MMC on L02 cells is found to be mediated through cell apoptosis as detected by flow cytometry and fluorescence microscopy. Importantly, α-MMC was shown to bind to a specific receptor on cell membrane, as the density of the cell membrane receptor is closely related to both the amount of α-MMC endocytosed and the cytotoxicity in different cell lines. By using LRP1 competitive inhibitor α2-M or siRNA targeting LRP1, we further identified that LRP1 protein served as the membrane receptor for α-MMC. Both α2-M and siRNA targeting LRP1 can significantly inhibit α-MMC's endocytosis as well as its cytotoxicity in L02 cells. In addition, it was found that α-MMC can activate the JNK signalling pathways via LRP1 in L02 cells. As JNK activation often leads to cell apoptosis, the activation of JNK may play an important role in α-MMC-induced cytotoxicity. To our knowledge, this is the first report showing that LRP1 mediates the cytotoxicity of α-MMC through (1) endocytosis and induced apoptosis and (2) the activation of the JNK pathway. Our findings shed light on the fundamental mechanism of hepatotoxicity of α-MMC and offer reference to understand its mechanism of lymphocytotoxicity and neurotoxicity. PMID:27262837

  7. Endocytosis-inducer adhesins produced by enteropathogenic serogroups of Escherichia coli participate on bacterial attachment to infant enterocytes

    Directory of Open Access Journals (Sweden)

    João Ramos Costa Andrade

    1987-03-01

    Full Text Available Enteropathogenic E. coli (EPEC infection of Hep-2 cells preoceeds through bacterial attachment to cell surface and internalization of adhered bacteria. EPEC attachment is a prerequisite for cell infection and is mediated by adhesins that recognize carbohydrate-containing receptors on cell membrane. Such endocytosis-inducer adhesins (EIA also promote EPEC binding to infant enterocytes, suggesting that EIA may have an important role on EPEC gastroenteritis.A infecção de células Hep-2 por E. coli enteropatogênicas (ECEP implica na aderência bacteriana e posterior interiorização dos microrganismos aderidos por um mecanismo de endocitose. A aderência das ECEP é pré-requisito para a infecção e é mediada por adesinas que reconhecem receptores inibidos por certas oses na membrana celular. Tais "adesinas indutoras da endocitose" (AIE também promovem a ligação bacteriana a enterócitos obtidos do intestino delgado de lactente, sugerindo que as AIE possam desempenhar algum papel nas diarréias causadas por ECEP.

  8. Membrane steroid-binding protein 1 (MSBP1) negatively regulates brassinosteroid signaling by enhancing the endocytosis of BAK1

    Institute of Scientific and Technical Information of China (English)

    Li Song; Qiu-Ming Shi; Xiao-Hua Yang; Zhi-Hong Xu; Hong-Wei Xue

    2009-01-01

    Brassinosteroids (BRs) are perceived by transmembrane receptors and play vital roles in plant growth and devel-opment, as well as cell in responses to environmental stimuli. The transmembrane receptor BRI1 can directly bind to brassinolide (BL), and BAK1 interacts with BRI1 to enhance the BRll-mediated BR signaling. Our previous studies indicated that a membrane steroid-binding protein 1 (MSBP1) could bind to BL in vitro and is negatively involved in BR signaling. To further elucidate the underlying mechanism, we here show that MSBP1 specifically interacts with the extracellular domain of BAKI in vivo in a BL-independent manner. Suppressed cell expansion and BR responses by increased expression of MSBPI can be recovered by overexpressing BAKI or its intracellular kinase domain, sug-gesting that MSBPI may suppress BR signaling through interacting with BAK1. Subcellular localization studies re-vealed that both MSBPI and BAKI are localized to plasma membrane and endocytic vesicles and MSBPI accelerates BAKI endocytosis, which results in suppressed BR signaling by shifting the equilibrium of BAKI toward endosomes. Indeed, enhanced MSBPI expression reduces the interaction between BRI1 and BAK1 in vivo, demonstrating that MSBPI acts as a negative factor at an early step of the BR signaling pathway.

  9. Structural mechanism of glutamate receptor activation and desensitization.

    Science.gov (United States)

    Meyerson, Joel R; Kumar, Janesh; Chittori, Sagar; Rao, Prashant; Pierson, Jason; Bartesaghi, Alberto; Mayer, Mark L; Subramaniam, Sriram

    2014-10-16

    Ionotropic glutamate receptors are ligand-gated ion channels that mediate excitatory synaptic transmission in the vertebrate brain. To gain a better understanding of how structural changes gate ion flux across the membrane, we trapped rat AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) and kainate receptor subtypes in their major functional states and analysed the resulting structures using cryo-electron microscopy. We show that transition to the active state involves a 'corkscrew' motion of the receptor assembly, driven by closure of the ligand-binding domain. Desensitization is accompanied by disruption of the amino-terminal domain tetramer in AMPA, but not kainate, receptors with a two-fold to four-fold symmetry transition in the ligand-binding domains in both subtypes. The 7.6 Å structure of a desensitized kainate receptor shows how these changes accommodate channel closing. These findings integrate previous physiological, biochemical and structural analyses of glutamate receptors and provide a molecular explanation for key steps in receptor gating. PMID:25119039

  10. Modelling fate and transport of glyphosate and AMPA in the Meuse catchment to assess the contribution of different pollution sources

    Science.gov (United States)

    Desmet, Nele; Seuntjens, Piet

    2013-04-01

    Large river basins have multiple sources of pesticides and usually the pollution sources are spread over the entire catchment. The cumulative effect of pesticides entering the river system in upstream areas and the formation of persistent degradation products can compromise downstream water use e.g. raw water quality for drinking water abstractions. For assessments at catchment scale pesticide fluxes coming from different sources and sub basins need to be taken into account. To improve management strategies, a sound understanding of the sources, emission routes, transport, environmental fate and conversion of pesticides is needed. In the Netherlands, the Meuse river basin is an important source for drinking water production. The river suffers from elevated concentrations of glyphosate and aminomethylphosphonic acid (AMPA). For AMPA it is rather unclear to what extent the pollution is related to glyphosate degradation and what is the contribution of other sources, especial phosphonates in domestic and industrial waste water. Based on the available monitoring data only it is difficult to distinguish between AMPA sources in such a large river basin. This hampers interpretation and decision making for water quality management in the Meuse catchment. Here, application of water quality models is very useful to obtain complementary information and insights. Modelling allows accounting for temporal and spatial variability in discharge and concentrations as well as distinguishing the contribution from conversion processes. In this study, a model for the river Meuse was developed and applied to assess the contribution of tributary and transnational influxes, glyphosate degradation and other sources to the AMPA pollution.

  11. Glyphosate-resistant and conventional canola (Brassica napus L.)responses to glyphosate and Aminomethylphosphonic Acid (AMPA) treatment

    Science.gov (United States)

    Glyphosate-resistant (GR) canola expresses two transgenes: 1) the microbial glyphosate oxidase gene (gox) encoding the glyphosate oxidase enzyme (GOX) that metabolizes glyphosate to aminomethylphosphonic acid (AMPA) and 2) cp4 that encodes a GR form of the glyphosate target enzyme 5-enolpyruvylshiki...

  12. Acoustic trauma slows AMPA receptor‐mediated EPSCs in the auditory brainstem, reducing GluA4 subunit expression as a mechanism to rescue binaural function

    Science.gov (United States)

    Pilati, Nadia; Linley, Deborah M.; Selvaskandan, Haresh; Uchitel, Osvaldo; Hennig, Matthias H.; Kopp‐Scheinpflug, Cornelia

    2016-01-01

    Key points Lateral superior olive (LSO) principal neurons receive AMPA receptor (AMPAR) ‐ and NMDA receptor (NMDAR)‐mediated EPSCs and glycinergic IPSCs.Both EPSCs and IPSCs have slow kinetics in prehearing animals, which during developmental maturation accelerate to sub‐millisecond decay time‐constants. This correlates with a change in glutamate and glycine receptor subunit composition quantified via mRNA levels.The NMDAR‐EPSCs accelerate over development to achieve decay time‐constants of 2.5 ms. This is the fastest NMDAR‐mediated EPSC reported.Acoustic trauma (AT, loud sounds) slow AMPAR‐EPSC decay times, increasing GluA1 and decreasing GluA4 mRNA.Modelling of interaural intensity difference suggests that the increased EPSC duration after AT shifts interaural level difference to the right and compensates for hearing loss.Two months after AT the EPSC decay times recovered to control values.Synaptic transmission in the LSO matures by postnatal day 20, with EPSCs and IPSCs having fast kinetics. AT changes the AMPAR subunits expressed and slows the EPSC time‐course at synapses in the central auditory system. Abstract Damaging levels of sound (acoustic trauma, AT) diminish peripheral synapses, but what is the impact on the central auditory pathway? Developmental maturation of synaptic function and hearing were characterized in the mouse lateral superior olive (LSO) from postnatal day 7 (P7) to P96 using voltage‐clamp and auditory brainstem responses. IPSCs and EPSCs show rapid acceleration during development, so that decay kinetics converge to similar sub‐millisecond time‐constants (τ, 0.87 ± 0.11 and 0.77 ± 0.08 ms, respectively) in adult mice. This correlated with LSO mRNA levels for glycinergic and glutamatergic ionotropic receptor subunits, confirming a switch from Glyα2 to Glyα1 for IPSCs and increased expression of GluA3 and GluA4 subunits for EPSCs. The NMDA receptor (NMDAR)‐EPSC decay τ accelerated from >40 ms in

  13. Clathrin to Lipid Raft-Endocytosis via Controlled Surface Chemistry and Efficient Perinuclear Targeting of Nanoparticle.

    Science.gov (United States)

    Chakraborty, Atanu; Jana, Nikhil R

    2015-09-17

    Nanoparticle interacts with live cells depending on their surface chemistry, enters into cell via endocytosis, and is commonly trafficked to an endosome/lysozome that restricts subcellular targeting options. Here we show that nanoparticle surface chemistry can be tuned to alter their cell uptake mechanism and subcellular trafficking. Quantum dot based nanoprobes of 20-30 nm hydrodynamic diameters have been synthesized with tunable surface charge (between +15 mV to -25 mV) and lipophilicity to influence their cellular uptake processes and subcellular trafficking. It is observed that cationic nanoprobe electrostatically interacts with cell membrane and enters into cell via clathrin-mediated endocytosis. At lower surface charge (between +10 mV to -10 mV), the electrostatic interaction with cell membrane becomes weaker, and additional lipid raft endocytosis is initiated. If a lipophilic functional group is introduced on a weakly anionic nanoparticle surface, the uptake mechanism shifts to predominant lipid raft-mediated endocytosis. In particular, the zwitterionic-lipophilic nanoprobe has the unique advantage as it weakly interacts with anionic cell membrane, migrates toward lipid rafts for interaction through lipophilic functional group, and induces lipid raft-mediated endocytosis. While predominate or partial clathrin-mediated entry traffics most of the nanoprobes to lysozome, predominate lipid raft-mediated entry traffics them to perinuclear region, particularly to the Golgi apparatus. This finding would guide in designing appropriate nanoprobe for subcellular targeting and delivery.

  14. Characterization of endocytosis and exocytosis of cationic nanoparticles in airway epithelium cells

    Energy Technology Data Exchange (ETDEWEB)

    Dombu, Christophe Youta; Kroubi, Maya; Zibouche, Rima; Matran, Regis; Betbeder, Didier, E-mail: dbetbeder@aol.com [EA 4483, IFR 114, Laboratoire de Physiologie, Faculte de Medecine Pole Recherche, Universite de Lille 2, 1 place de Verdun, 59045 Lille Cedex (France)

    2010-09-03

    A major challenge of drug delivery using colloids via the airway is to understand the mechanism implied in their interactions with epithelial cells. The purpose of this work was to characterize the process of endocytosis and exocytosis of cationic nanoparticles (NPs) made of maltodextrin which were developed as a delivery system for antigens in vaccine applications. Confocal microscopy demonstrated that these NP are rapidly endocytosed after as little as 3 min incubation, and that the endocytosis was also faster than NP binding since most of the NPs were found in the middle of the cells around the nuclei. A saturation limit was observed after a 40 min incubation, probably due to an equilibrium becoming established between endocytosis and exocytosis. Endocytosis was dramatically reduced at 4 deg. C compared with 37 deg. C, or by NaN{sub 3} treatment, both results suggesting an energy dependent process. Protamine pretreatment of the cells inhibited NPs uptake and we found that clathrin pathway is implied in their endocytosis. Cholesterol depletion increased NP uptake by 300% and this phenomenon was explained by the fact that cholesterol depletion totally blocked NP exocytosis. These results suggest that these cationic NPs interact with anionic sites, are quickly endocytosed via the clathrin pathway and that their exocytosis is cholesterol dependent, and are similar to those obtained in other studies with viruses such as influenza.

  15. ANALISA TEKNIS KEKUATAN MEKANIS MATERIAL KOMPOSIT BERPENGUAT SERAT AMPAS TEBU (BAGGASE DITINJAU DARI KEKUATAN TARIK DAN IMPAK

    Directory of Open Access Journals (Sweden)

    Hartono Yudo

    2012-04-01

    Full Text Available Serat ampas tebu (baggase merupakan limbah organik yang banyak dihasilkan di pabrik-pabrik pengolahan gula tebu di Indonesia. Serat ini memiliki nilai ekonomis yang cukup tinggi selain merupakan hasil limbah pabrik gula tebu, serat ini juga mudah didapat, murah, tidak membahayakan kesehatan, dapat terdegredasi secara alami (biodegradability sehingga nantinya dengan pemanfaatan sebagai serat penguat komposit mampu mengatasi permasalahan lingkungan. Dari pertimbangan diatas maka penelitian ini dilakukan untuk mendapatkan analisa teknis berupa kekuatan tarik dan impak dari komposit berpenguat serat ampas tebu (baggase dengan perlakuan pola anyaman variasi arah serat sudut arah serat sudut searah 00 dan bersilangan 450. sebagai penguat matrik resin polyester. Dari hasil pengujian spesimen dilakukan analisa kekuatan mekanis kemudian dibandingkan dengan nilai kekuatan mekanis yang disyaratkan/diizinkan oleh Biro Klasifikasi Indonesia (BKI sebagai tolak ukur standar ujinya. Pengujian komposit berpenguat serat ampas tebu membandingkan arah serat sudut 00 dan 450, perlakuan serat pola anyaman, fraksi volume 44% matrik polyester dan 56% serat ampas tebu, dengan metode hand lay up, hasil pengujian didapat harga kekuatan tarik tertinggi dimiliki oleh komposit dengan arah serat sudut searah 00. Hasil pengujian menunjukkan bahwa kekuatan tarik dan modulus elastisitas dari komposit berpenguat serat ampas tebu belum dapat memenuhi standar kekuatan tarik dan modulus elastisitas yang disyaratkan BKI yakni : untuk arah serat sudut searah 00 kekuatan tariknya sebesar 1.69 kg/mm2 dan modulus elastisitasnya sebesar 115.85 kg/mm2, untuk arah serat sudut bersilangan 450 kekuatan tariknya sebesar 1.34 kg/mm2 dan modulus elastisitasnya sebesar 108.40 kg/mm2.

  16. Cholinergic-mediated IP3-receptor activation induces long-lasting synaptic enhancement in CA1 pyramidal neurons

    OpenAIRE

    Fernández de Sevilla, D.; Núñez Molina, Ángel; Borde, M.; Malinow, R.; Buño, Washinton

    2008-01-01

    Cholinergic-glutamatergic interactions influence forms of synaptic plasticity that are thought to mediate memory and learning. We tested in vitro the induction of long-lasting synaptic enhancement at Schaffer collaterals by acetylcholine (ACh) at the apical dendrite of CA1 pyramidal neurons and in vivo by stimulation of cholinergic afferents. In vitro ACh induced a Ca2+ wave and synaptic enhancement mediated by insertion of AMPA receptors in spines. Activation of muscarinic ACh receptors (mAC...

  17. Glyphosate and AMPA in U.S. streams, groundwater, precipitation and soils

    Science.gov (United States)

    Battaglin, William A.; Meyer, Michael T.; Kuivila, Kathryn M.; Dietze, Julie E.

    2014-01-01

    Herbicides containing glyphosate are used in more than 130 countries on more than 100 crops. In the United States (U.S.), agricultural use of glyphosate [N-(phosphonomethyl)glycine] has increased from less than 10,000 metric tons per year (active ingredient) in 1993 to more than 70,000 metric tons per year in 2006. In 2006, glyphosate accounted for about 20 percent of all herbicide use (by weight of active ingredient). Glyphosate formulations such as Roundup® are used in homes and in agriculture. Part of the reason for the popularity of glyphosate is the perception that it is an “environmentally benign” herbicide that has low toxicity and little mobility or persistence in the environment. The U.S. Geological Survey developed an analytical method using liquid chromatography/tandem mass spectrometry that can detect small amounts of glyphosate and its primary degradation product aminomethylphosphonic acid (AMPA) in water and sediment. Results from more than 2,000 samples collected from locations distributed across the U.S. indicate that glyphosate is more mobile and occurs more widely in the environment than was previously thought. Glyphosate and AMPA were detected (reporting limits between 0.1 and 0.02 micrograms per liter) in samples collected from surface water, groundwater, rainfall, soil water, and soil, at concentrations from less than 0.1 to more than 100 micrograms per liter. Glyphosate was detected more frequently in rain (86%), ditches and drains (71%), and soil (63%); and less frequently in groundwater (3%) and large rivers (18%). AMPA was detected more frequently in rain (86%), soil (82%), and large rivers (78%); and less frequently in groundwater (8%) and wetlands or vernal pools (37%). Most observed concentrations of glyphosate were well below levels of concern for humans or wildlife, and none exceeded the U.S. Environmental Protection Agency’s Maximum Contaminant Level of 700 micrograms per liter. However, the ecosystem effects of chronic low

  18. Caveolae-mediated endocytosis of biocompatible gold nanoparticles in living Hela cells

    International Nuclear Information System (INIS)

    Efficient intracellular delivery of gold nanoparticles (AuNPs) and unraveling the mechanism underlying the intracellular delivery are essential for advancing the applications of AuNPs toward in vivo imaging and therapeutic interventions. We employed fluorescence microscopy to investigate the internalization mechanism of small-size AuNPs by living Hela cells. Herein, we found that the caveolae-mediated endocytosis was the dominant pathway for the intracellular delivery of small-size AuNPs. The intracellular delivery was suppressed when we depleted the cholesterol with methyl-β-cyclodextrin (MβCD); in contrast, the sucrose that disrupts the formation of clathrin-mediated endocytosis did not block the endocytosis of AuNPs. Meanwhile, we examined the intracellular localization of AuNPs in endocytic vesicles by fluorescent colocalization. This work would provide a potential technique to study the intracellular delivery of small-size nanoparticles for biomedical applications. (paper)

  19. Drosophila king tubby (ktub mediates light-induced rhodopsin endocytosis and retinal degeneration

    Directory of Open Access Journals (Sweden)

    Chen Shu-Fen

    2012-12-01

    Full Text Available Background The tubby (tub and tubby-like protein (tulp genes encode a small family of proteins found in many organisms. Previous studies have shown that TUB and TULP genes in mammalian involve in obesity, neural development, and retinal degeneration. The purpose of this study was to investigate the role of Drosophila king tubby (ktub in rhodopsin 1 (Rh1 endocytosis and retinal degeneration upon light stimulation. Results Drosophila ktub mutants were generated using imprecise excision. Wild type and mutant flies were raised in dark or constant light conditions. After a period of light stimulation, retinas were dissected, fixed and stained with anti-Rh1 antibody to reveal Rh1 endocytosis. Confocal and transmission electron microscope were used to examine the retinal degeneration. Immunocytochemical analysis shows that Ktub is expressed in the rhabdomere domain under dark conditions. When flies receive light stimulation, the Ktub translocates from the rhabdomere to the cytoplasm and the nucleus of the photoreceptor cells. Wild type photoreceptors form Rh1-immunopositive large vesicles (RLVs shortly after light stimulation. In light-induced ktub mutants, the majority of Rh1 remains at the rhabdomere, and only a few RLVs appear in the cytoplasm of photoreceptor cells. Mutation of norpA allele causes massive Rh1 endocytosis in light stimulation. In ktub and norpA double mutants, however, Rh1 endocytosis is blocked under light stimulation. This study also shows that ktub and norpA double mutants rescue the light-induced norpA retinal degeneration. Deletion constructs further demonstrate that the Tubby domain of the Ktub protein participates in an important role in Rh1 endocytosis. Conclusions The results in this study delimit the novel function of Ktub in Rh1 endocytosis and retinal degeneration.

  20. Clathrin-independent endocytosis: from nonexisting to an extreme degree of complexity

    DEFF Research Database (Denmark)

    Sandvig, Kirsten; Torgersen, Maria Lyngaas; Raa, Hilde Andersen;

    2008-01-01

    that clathrin-independent endocytosis can occur even when the cholesterol level in the membrane has been reduced to so low levels that caveolae are gone and clathrin-coated membrane areas are flat. Although new investigators in the field take it for granted that there is a multitude of entry mechanisms, it has...... taken a long time for this to become accepted. However, more work needs to be done, because one can still ask the question: How many endocytic mechanisms does a cell have, what are their function, and how are they regulated? This article describes some of the history of endocytosis research and attempts...

  1. Prominin-2 expression increases protrusions, decreases caveolae and inhibits Cdc42 dependent fluid phase endocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Raman Deep, E-mail: Takhter.Ramandeep@mayo.edu; Schroeder, Andreas S.; Scheffer, Luana; Holicky, Eileen L.; Wheatley, Christine L.; Marks, David L., E-mail: Marks.david@mayo.edu; Pagano, Richard E.

    2013-05-10

    Highlights: •Prominin-2 expression induced protrusions that co-localized with lipid raft markers. •Prominin-2 expression decreased caveolae, caveolar endocytosis and increased pCav1. •Prominin-2 expression inhibited fluid phase endocytosis by inactivation of Cdc42. •These endocytic effects can be reversed by adding exogenous cholesterol. •Caveolin1 knockdown restored fluid phase endocytosis in Prominin2 expressing cells. -- Abstract: Background: Membrane protrusions play important roles in biological processes such as cell adhesion, wound healing, migration, and sensing of the external environment. Cell protrusions are a subtype of membrane microdomains composed of cholesterol and sphingolipids, and can be disrupted by cholesterol depletion. Prominins are pentaspan membrane proteins that bind cholesterol and localize to plasma membrane (PM) protrusions. Prominin-1 is of great interest as a marker for stem and cancer cells, while Prominin-2 (Prom2) is reportedly restricted to epithelial cells. Aim: To characterize the effects of Prom-2 expression on PM microdomain organization. Methods: Prom2-fluorescent protein was transfected in human skin fibroblasts (HSF) and Chinese hamster ovary (CHO) cells for PM raft and endocytic studies. Caveolae at PM were visualized using transmission electron microscopy. Cdc42 activation was measured and caveolin-1 knockdown was performed using siRNAs. Results: Prom2 expression in HSF and CHO cells caused extensive Prom2-positive protrusions that co-localized with lipid raft markers. Prom2 expression significantly decreased caveolae at the PM, reduced caveolar endocytosis and increased caveolin-1 phosphorylation. Prom2 expression also inhibited Cdc42-dependent fluid phase endocytosis via decreased Cdc42 activation. Effects on endocytosis were reversed by addition of cholesterol. Knockdown of caveolin-1 by siRNA restored Cdc42 dependent fluid phase endocytosis in Prom2-expressing cells. Conclusions: Prom2 protrusions primarily

  2. Spatiotemporal analysis of endocytosis and membrane distribution of fluorescent sterols in living cells

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Faergeman, Nils J

    2008-01-01

    proximity to the cell membrane. Spatial surface intensity patterns of DHE as well as that of the lipid marker DiIC12 being assessed by statistical image analysis persisted over several minutes in cells having a constant overall curvature. Sites of sterol endocytosis appeared indistinguishable from other...... (CTL) combined with advanced image analysis were used to study spatiotemporal sterol distribution in living macrophages, adipocytes and fibroblasts. Sterol endocytosis was directly visualized by time-lapse imaging and noise-robust tracking revealing confined motion of DHE containing vesicles in close...

  3. Chlorotoxin Fused to IgG-Fc Inhibits Glioblastoma Cell Motility via Receptor-Mediated Endocytosis

    Directory of Open Access Journals (Sweden)

    Tomonari Kasai

    2012-01-01

    Full Text Available Chlorotoxin is a 36-amino acid peptide derived from Leiurus quinquestriatus (scorpion venom, which has been shown to inhibit low-conductance chloride channels in colonic epithelial cells. Chlorotoxin also binds to matrix metalloproteinase-2 and other proteins on glioma cell surfaces. Glioma cells are considered to require the activation of matrix metalloproteinase-2 during invasion and migration. In this study, for targeting glioma, we designed two types of recombinant chlorotoxin fused to human IgG-Fcs with/without a hinge region. Chlorotoxin fused to IgG-Fcs was designed as a dimer of 60 kDa with a hinge region and a monomer of 30 kDa without a hinge region. The monomeric and dimeric forms of chlorotoxin inhibited cell proliferation at 300 nM and induced internalization in human glioma A172 cells. The monomer had a greater inhibitory effect than the dimer; therefore, monomeric chlorotoxin fused to IgG-Fc was multivalently displayed on the surface of bionanocapsules to develop a drug delivery system that targeted matrix metalloproteinase-2. The target-dependent internalization of bionanocapsules in A172 cells was observed when chlorotoxin was displayed on the bionanocapsules. This study indicates that chlorotoxin fused to IgG-Fcs could be useful for the active targeting of glioblastoma cells.

  4. Receptor-mediated endocytosis of α-galactosidase A in human podocytes in Fabry disease

    DEFF Research Database (Denmark)

    Prabakaran, Thaneas; Nielsen, Rikke; Larsen, Jakob Vejby;

    2011-01-01

    Injury to the glomerular podocyte is a key mechanism in human glomerular disease and podocyte repair is an important therapeutic target. In Fabry disease, podocyte injury is caused by the intracellular accumulation of globotriaosylceramide. This study identifies in the human podocyte three endocy...

  5. Receptor-Mediated Endocytosis of α-Galactosidase A in Human Podocytes in Fabry Disease

    DEFF Research Database (Denmark)

    Prabakaran, Thaneas; Nielsen, Rikke; Larsen, Jakob Vejby;

    2011-01-01

    Injury to the glomerular podocyte is a key mechanism in human glomerular disease and podocyte repair is an important therapeutic target. In Fabry disease, podocyte injury is caused by the intracellular accumulation of globotriaosylceramide. This study identifies in the human podocyte three endocy...

  6. Receptor-mediated endocytosis of diphtheria toxin by cells in culture.

    OpenAIRE

    Keen, J H; Maxfield, F R; Hardegree, M C; Habig, W H

    1982-01-01

    The binding and uptake of fluorescently labeled diphtheria toxin by cells in culture has been examined by using epifluorescence video intensification microscopy. Rhodamine-labeled diphtheria toxin retained significant toxicity on bioassay and in cell culture and was tested for uptake by human WI-38 and mouse 3T3 fibroblasts grown in culture. When added to cells at 37 degrees C, toxin was observed to become concentrated and internalized in discrete vesicles in both cell lines. The appearance o...

  7. Coated vesicles participate in the receptor-mediated endocytosis of insulin

    OpenAIRE

    1983-01-01

    We have purified coated vesicles from rat liver by differential ultracentrifugation. Electron micrographs of these preparations reveal only the polyhedral structures typical of coated vesicles. SDS PAGE of the coated vesicle preparation followed by Coomassie Blue staining of proteins reveals a protein composition also typical of coated vesicles. We determined that these rat liver coated vesicles possess a latent insulin binding capability. That is, little if any specific binding of 125I-insul...

  8. Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae

    NARCIS (Netherlands)

    Fischer-Parton, S; Parton, R M; Hickey, P C; Dijksterhuis, J; Atkinson, H A; Read, N D

    2000-01-01

    Confocal microscopy of amphiphilic styryl dyes has been used to investigate endocytosis and vesicle trafficking in living fungal hyphae. Hyphae were treated with FM4-64, FM1-43 or TMA-DPH, three of the most commonly used membrane-selective dyes reported as markers of endocytosis. All three dyes were

  9. Study progress of cell endocytosis%细胞内吞作用的研究进展

    Institute of Scientific and Technical Information of China (English)

    Li Chen; Hui Li; Ren Zhao; jianwei Zhu

    2009-01-01

    Endocytosis is a process through which extracellular materials are transported into cell through membrane defor-mation. This process is not a simple step-by-step process in which a series of proteins function according to the chronological order, but rather a complex process comprising many members which are regulated precisely. The role of endocytosis is broadly divided into two categories, phagocytosis and pinocytosis, the latter is divided into four species in accordance with the size of endocytosis substances: dathrin dependent endocytosis, the diameter of dathrin-coated vesicle is 100-150 nm; caveolin dependent endocytosis, the diameter of caveolin protein-coated vesicle is 50-100 nm; macropinocytosis, the diam-eter of macropinocytosis is generally 0.5-2 μm, sometimes up to 5 pro; clathrin and caveolin independent endocytosis. Many proteins including endophilin A1, A2, A3, and endocytotic proteins B, Bla, and B1b as well as dynamin, acUn and Rab protein families are involved in endocytosis and play an important role in different stages. The abnormal endocytosis may be involved in the development of certain diseases.

  10. Transthyretin knockout mice display decreased susceptibility to AMPA-induced neurodegeneration

    DEFF Research Database (Denmark)

    Nunes, Ana Filipa; Montero, Maria; Franquinho, Filipa;

    2009-01-01

    Transthyretin (TTR) has been regarded as a neuroprotective protein given that TTR knockout (KO) mice display increased susceptibility for amyloid beta deposition and memory deficits during aging. In parallel, TTR KO mice have increased levels of neuropeptide Y (NPY), which promotes neuroprotection...... and neuroproliferation. In this work, we aimed at evaluating TTR neuroprotective effect against an excitotoxic insult that is known to be prevented by NPY action. We show that despite a putative neuroprotective role of TTR, hippocampal slice cultures from TTR KO mice display a decreased susceptibility to AMPA......-induced neurodegeneration. We also suggest that increased NPY levels in TTR KO mice are not associated with increased cell proliferation in the dentate gyrus or subventricular zone. In summary, the alleged neuroprotective role of TTR in the nervous system should be regarded with caution and should not be generalized to all...

  11. Losses of glyphosate and AMPA via drainflow in a typical Belgian residential area

    Science.gov (United States)

    Tang, Ting; Boënne, Wesley; van Griensven, Ann; Seuntjens, Piet; Bronders, Jan; Desmet, Nele

    2014-05-01

    Urban hard surfaces are considered as important facilitators for pesticide transport into urban streams. To obtain concurrent high-resolution data for a detailed investigation on the losses of pesticide runoff from hard surfaces, a monitoring campaign was performed in a typical Belgian residential area (9.5 ha) between 7 May and 7 August, 2013. The campaign yielded a concurrent dataset of rainfall (1-mm rainfall interval), discharge (1-min interval), glyphosate application by the residents and the occurrences of glyphosate and its major degradation product - aminomethylphosphonic acid (AMPA) in the separated storm drainage outflow during 12 rainfall events. In addition, detailed information was obtained on the spatial characteristics of the study area. The resulting dataset allows us to investigate the relevance of catchment hydrology, urban surface properties and pesticide application to the transport and losses of glyphosate in a residential environment. During the campaign, glyphosate was only applied by local residents, mainly on their private driveways. As a result of their continuous use, both glyphosate and AMPA were detected in all analysed outflow samples, with maximum concentrations of 6.1 μg/L and 5.8 μg/L, respectively. Overall, the storm drainage system collected 0.43% of the applied amount of glyphosate. However, this loss rate varied considerably among rainfall events, ranging from 0.04% to 23.36%. According to statistical analysis of the 12 rainfall events, the loss rate was significantly correlated with three factors: the application amount prior to a rainfall event (p glyphosate application and the start of the rainfall event (negatively, p glyphosate. Furthermore, three types of glyphosate runoff were classified by a clustering analysis based on these factors: events dominated by runoff availability (runoff-limited), dominated by glyphosate availability (pesticide-limited) and controlled by both runoff and glyphosate availability. To sum up

  12. Hyaluronic Acid Immobilized Polyacrylamide Nanoparticle Sensors for CD44 Receptor Targeting and pH Measurement in Cells

    DEFF Research Database (Denmark)

    Sun, Honghao; Benjaminsen, Rikke Vicki; Almdal, Kristoffer;

    2012-01-01

    Our ability to design receptor-targeted nanocarriers aimed at drug release after endocytosis is limited by the current knowledge of intracellular nanoparticle (NP) trafficking. It is not clear if NP size, surface chemistry, and/or targeting of cell surface receptors changes the intracellular fate...

  13. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands.

    Directory of Open Access Journals (Sweden)

    Lasse Henriksen

    Full Text Available The epidermal growth factor receptor (EGFR regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF and transforming growth factor-α (TGF-α. For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF or betacellulin (BTC was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown.

  14. Guanine nucleotide-binding protein (Gα) endocytosis by a cascade of ubiquitin binding domain proteins is required for sustained morphogenesis and proper mating in yeast.

    Science.gov (United States)

    Dixit, Gauri; Baker, Rachael; Sacks, Carly M; Torres, Matthew P; Dohlman, Henrik G

    2014-05-23

    Heterotrimeric G proteins are well known to transmit signals from cell surface receptors to intracellular effector proteins. There is growing appreciation that G proteins are also present at endomembrane compartments, where they can potentially interact with a distinct set of signaling proteins. Here, we examine the cellular trafficking function of the G protein α subunit in yeast, Gpa1. Gpa1 contains a unique 109-amino acid insert within the α-helical domain that undergoes a variety of posttranslational modifications. Among these is monoubiquitination, catalyzed by the NEDD4 family ubiquitin ligase Rsp5. Using a newly optimized method for G protein purification together with biophysical measures of structure and function, we show that the ubiquitination domain does not influence enzyme activity. By screening a panel of 39 gene deletion mutants, each lacking a different ubiquitin binding domain protein, we identify seven that are necessary to deliver Gpa1 to the vacuole compartment including four proteins (Ede1, Bul1, Ddi1, and Rup1) previously not known to be involved in this process. Finally, we show that proper endocytosis of the G protein is needed for sustained cellular morphogenesis and mating in response to pheromone stimulation. We conclude that a cascade of ubiquitin-binding proteins serves to deliver the G protein to its final destination within the cell. In this instance and in contrast to the previously characterized visual system, endocytosis from the plasma membrane is needed for proper signal transduction rather than for signal desensitization.

  15. [Studying specific effects of nootropic drugs on glutamate receptors in the rat brain].

    Science.gov (United States)

    Firstova, Iu Iu; Vasil'eva, E V; Kovalev, G I

    2011-01-01

    The influence of nootropic drugs of different groups (piracetam, phenotropil, nooglutil, noopept, semax, meclofenoxate, pantocalcine, and dimebon) on the binding of the corresponding ligands to AMPA, NMDA, and mGlu receptors of rat brain has been studied by the method of radio-ligand binding in vitro. It is established that nooglutil exhibits pharmacologically significant competition with a selective agonist of AMPA receptors ([G-3H]Ro 48-8587) for the receptor binding sites (with IC50 = 6.4 +/- 0.2 microM), while the competition of noopept for these receptor binding sites was lower by an order of magnitude (IC50 = 80 +/- 5.6 microM). The heptapeptide drug semax was moderately competitive with [G-3H]LY 354740 for mGlu receptor sites (IC50 = 33 +/- 2.4 microM). Dimebon moderately influenced the specific binding of the ligand of NMDA receptor channel ([G-3H]MK-801) at IC50 = 59 +/- 3.6 microM. Nootropic drugs of the pyrrolidone group (piracetam, phenotropil) as well as meclofenoxate, pantocalcine (pantogam) in a broad rage of concentrations (10(-4)-10(-10) M) did not affect the binding of the corresponding ligands to glutamate receptors (IC50 100 pM). Thus, the direct neurochemical investigation was used for the first time to qualitatively characterize the specific binding sites for nooglutil and (to a lower extent) noopept on AMPA receptors, for semax on metabotropic glutamate receptors, and for dimebon on the channel region of NMDA receptors. The results are indicative of a selective action of some nootropes on the glutamate family. PMID:21476267

  16. Acidification of the cytosol inhibits endocytosis from coated pits

    OpenAIRE

    1987-01-01

    Acidification of the cytosol of a number of different cell lines strongly reduced the endocytic uptake of transferrin and epidermal growth factor. The number of transferrin binding sites at the cell surface was increased in acidified cells. Electron microscopic studies showed that the number of coated pits at the cell surface was not reduced in cells with acidified cytosol. Experiments with transferrin- horseradish peroxidase conjugates and a monoclonal anti-transferrin receptor antibody demo...

  17. Endophilin mutations block clathrin-mediated endocytosis but not neurotransmitter release

    DEFF Research Database (Denmark)

    Verstreken, Patrik; Kjaerulff, Ole; Lloyd, Thomas E;

    2002-01-01

    We have identified mutations in Drosophila endophilin to study its function in vivo. Endophilin is required presynaptically at the neuromuscular junction, and absence of Endophilin dramatically impairs endocytosis in vivo. Mutant larvae that lack Endophilin fail to take up FM1-43 dye in synaptic...

  18. Lipid rafts-mediated endocytosis and physiology-based cell membrane traffic models of doxorubicin liposomes.

    Science.gov (United States)

    Li, Yinghuan; Gao, Lei; Tan, Xi; Li, Feiyang; Zhao, Ming; Peng, Shiqi

    2016-08-01

    The clathrin-mediated endocytosis is likely a major mechanism of liposomes' internalization. A kinetic approach was used to assess the internalization mechanism of doxorubicin (Dox) loaded cationic liposomes and to establish physiology-based cell membrane traffic mathematic models. Lipid rafts-mediated endocytosis, including dynamin-dependent or -independent endocytosis of noncaveolar structure, was a dominant process. The mathematic models divided Dox loaded liposomes binding lipid rafts (B) into saturable binding (SB) and nonsaturable binding (NSB) followed by energy-driven endocytosis. The intracellular trafficking demonstrated early endosome-late endosome-lysosome or early/late endosome-cytoplasm-nucleus pathways. The three properties of liposome structures, i.e., cationic lipid, fusogenic lipid, and pegylation, were investigated to compare their contributions to cell membrane and intracellular traffic. The results revealed great contribution of cationic lipid DOTAP and fusogenic lipid DOPE to cell membrane binding and internalization. The valid Dox in the nuclei of HepG2 and A375 cells treated with cationic liposomes containing 40mol% of DOPE were 1.2-fold and 1.5-fold higher than that in the nuclei of HepG2 and A375 cells treated with liposomes containing 20mol% of DOPE, respectively, suggesting the dependence of cell type. This tendency was proportional to the increase of cell-associated total liposomal Dox. The mathematic models would be useful to predict intracellular trafficking of liposomal Dox.

  19. Molecular components required for resting and stimulated endocytosis of botulinum neurotoxins by glutamatergic and peptidergic neurons.

    Science.gov (United States)

    Meng, Jianghui; Wang, Jiafu; Lawrence, Gary W; Dolly, J Oliver

    2013-08-01

    Proteins responsible for basal and stimulated endocytosis in nerves containing small clear synaptic vesicles (SCSVs) or large dense-core vesicles (LDCVs) are revealed herein, using probes that exploit surface-exposed vesicle proteins as acceptors for internalization. Basal uptake of botulinum neurotoxins (BoNTs) by both SCSV-releasing cerebellar granule neurons (CGNs) and LDCV-enriched trigeminal ganglionic neurons (TGNs) was found to require protein acceptors and acidic compartments. In addition, dynamin, clathrin, adaptor protein complex-2 (AP2), and amphiphysin contribute to the depolarization-evoked entry. For fast recycling of SCSVs, knockdown and knockout strategies demonstrated that CGNs use predominantly dynamin 1, whereas isoform 2 and, to a smaller extent, isoform 3 support a less rapid mode of stimulated endocytosis. Accordingly, proximity ligation assay confirmed that dynamin 1 and 2 colocalize with amphiphysin 1 in CGNs, and the latter copurified with both dynamins from cell extracts. In contrast, LDCV-releasing TGNs preferentially employ dynamins 2 and 3 and amphiphysin 1 for evoked endocytosis and lack the fast phase. Hence, stimulation recruits dynamin, clathrin, AP2, and amphiphysin to augment BoNT internalization, and neurons match endocytosis mediators to the different demands for locally recycling SCSVs or replenishing distally synthesized LDCVs. PMID:23640057

  20. The Na+/H+ Exchanger Regulatory Factor Stabilizes Epidermal Growth Factor Receptors at the Cell Surface

    OpenAIRE

    Lazar, Cheri S.; Cresson, Catherine M.; Lauffenburger, Douglas A.; Gill, Gordon N.

    2004-01-01

    Ligand binding to cell surface receptors initiates both signal transduction and endocytosis. Although signaling may continue within the endocytic compartment, down-regulation is the major mechanism that controls the concentration of cell surface receptors, their ability to receive environmental signals, and the ultimate strength of biological signaling. Internalization, recycling, and trafficking of receptor tyrosine kinases (RTKs) within the endosome compartment are each regulated to control...

  1. Interfering with interferon receptor sorting and trafficking: impact on signaling.

    Science.gov (United States)

    Claudinon, Julie; Monier, Marie-Noëlle; Lamaze, Christophe

    2007-01-01

    Interferons (IFNs) and their receptors (IFN-Rs) play fundamental roles in a multitude of biological functions. Many articles and reviews emphasize that the JAK/STAT machinery is obligatory for relay of the information transmitted by IFNs after binding to their cognate receptors at the plasma membrane. In contrast, very few studies have addressed the endocytosis and the intracellular trafficking of IFN-Rs, the immediate step following IFN binding. However, recent findings have shed light on the importance of IFN-R sorting and trafficking in the control of IFN signaling. Thus, IFN-Rs can be included in the growing family of signaling receptors for which regulation of biological activity critically involves endocytosis and trafficking. PMID:17493737

  2. Ubiquitin-dependent trafficking and turnover of ionotropic glutamate receptors

    Directory of Open Access Journals (Sweden)

    Marisa S Goo

    2015-10-01

    Full Text Available Changes in synaptic strength underlie the basis of learning and memory and are controlled, in part, by the insertion or removal of AMPA-type glutamate receptors at the postsynaptic membrane of excitatory synapses. Once internalized, these receptors may be recycled back to the plasma membrane by subunit-specific interactions with other proteins or by post-translational modifications such as phosphorylation. Alternatively, these receptors may be targeted for destruction by multiple degradation pathways in the cell. Ubiquitination, another post-translational modification, has recently emerged as a key signal that regulates the recycling and trafficking of glutamate receptors. In this review, we will discuss recent findings on the role of ubiquitination in the trafficking and turnover of ionotropic glutamate receptors and plasticity of excitatory synapses.

  3. Phosphorylation decreases ubiquitylation of the thiazide-sensitive cotransporter NCC and subsequent clathrin-mediated endocytosis.

    Science.gov (United States)

    Rosenbaek, Lena L; Kortenoeven, Marleen L A; Aroankins, Takwa S; Fenton, Robert A

    2014-05-01

    The thiazide-sensitive sodium chloride cotransporter, NCC, is the major NaCl transport protein in the distal convoluted tubule (DCT). The transport activity of NCC can be regulated by phosphorylation, but knowledge of modulation of NCC trafficking by phosphorylation is limited. In this study, we generated novel tetracycline-inducible Madin-Darby canine kidney type I (MDCKI) cell lines expressing NCC to examine the role of NCC phosphorylation and ubiquitylation on NCC endocytosis. In MDCKI-NCC cells, NCC was highly glycosylated at molecular weights consistent with NCC monomers and dimers. NCC constitutively cycles to the apical plasma membrane of MDCKI-NCC cells, with 20-30% of the membrane pool of NCC internalized within 30 min. The use of dynasore, PitStop2, methyl-β-cyclodextrin, nystatin, and filipin (specific inhibitors of either clathrin-dependent or -independent endocytosis) demonstrated that NCC is internalized via a clathrin-mediated pathway. Reduction of endocytosis resulted in greater levels of NCC in the plasma membrane. Immunogold electron microscopy confirmed the association of NCC with the clathrin-mediated internalization pathway in rat DCT cells. Compared with controls, inducing phosphorylation of NCC via low chloride treatment or mimicking phosphorylation by replacing Thr-53, Thr-58, and Ser-71 residues with Asp resulted in increased membrane abundance and reduced rates of NCC internalization. NCC ubiquitylation was lowest in the conditions with greatest NCC phosphorylation, thus providing a mechanism for the reduced endocytosis. In conclusion, our data support a model where NCC is constitutively cycled to the plasma membrane, and upon stimulation, it can be phosphorylated to both increase NCC activity and decrease NCC endocytosis, together increasing NaCl transport in the DCT. PMID:24668812

  4. The carbon isotope composition of herbicides in groundwater : the example of Glyphosate and its degradation by product AMPA

    OpenAIRE

    Widory, David; Kujawinski, Dorothea; Baran, Nicole; Amalric, Laurence; Jochmann, Maik; Schmidt, Torsten

    2011-01-01

    1. Introduction Glyphosate is the principal active substance of a weed-killer used worldwide. Its use and migration towards groundwater is of real concern. Both glyphosate and the aminomethyl phosphonic acid (AMPA), one of its degradation product, are among the 10-most observed pesticides or metabolites in France (SOeS, 2009), usually leading to the classification of the corresponding groundwater as having a bad quality status (in regard to the Water Framework Directive). Moreover, the glypho...

  5. Ethanol tachyphylaxis in spinal cord motorneurons: role of metabotropic glutamate receptors

    OpenAIRE

    Li, Hui-Fang; Wang, Meng-Ya; Knape, Jessica; Kendig, Joan J

    2003-01-01

    Ethanol (EtOH) tachyphylaxis (acute tolerance), a time-dependent decrease in apparent potency, is known in vivo and in some neuronal preparations. The present studies characterize EtOH tachyphylaxis in spinal motorneurons and test the hypothesis that metabotropic glutamate receptors (mGluRs) play a role.Patch clamp studies were carried out in motorneurons in rat spinal cord slices. Currents were evoked by pulses of glutamate, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) or ...

  6. Persistent inflammation-induced up-regulation of brain-derived neurotrophic factor (BDNF) promotes synaptic delivery of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor GluA1 subunits in descending pain modulatory circuits.

    Science.gov (United States)

    Tao, Wenjuan; Chen, Quan; Zhou, Wenjie; Wang, Yunping; Wang, Lu; Zhang, Zhi

    2014-08-01

    The enhanced AMPA receptor phosphorylation at GluA1 serine 831 sites in the central pain-modulating system plays a pivotal role in descending pain facilitation after inflammation, but the underlying mechanisms remain unclear. We show here that, in the rat brain stem, in the nucleus raphe magnus, which is a critical relay in the descending pain-modulating system of the brain, persistent inflammatory pain induced by complete Freund adjuvant (CFA) can enhance AMPA receptor-mediated excitatory postsynaptic currents and the GluA2-lacking AMPA receptor-mediated rectification index. Western blot analysis showed an increase in GluA1 phosphorylation at Ser-831 but not at Ser-845. This was accompanied by an increase in distribution of the synaptic GluA1 subunit. In parallel, the level of histone H3 acetylation at bdnf gene promoter regions was reduced significantly 3 days after CFA injection, as indicated by ChIP assays. This was correlated with an increase in BDNF mRNA levels and BDNF protein levels. Sequestering endogenous extracellular BDNF with TrkB-IgG in the nucleus raphe magnus decreased AMPA receptor-mediated synaptic transmission and GluA1 phosphorylation at Ser-831 3 days after CFA injection. Under the same conditions, blockade of TrkB receptor functions, phospholipase C, or PKC impaired GluA1 phosphorylation at Ser-831 and decreased excitatory postsynaptic currents mediated by GluA2-lacking AMPA receptors. Taken together, these results suggest that epigenetic up-regulation of BDNF by peripheral inflammation induces GluR1 phosphorylation at Ser-831 sites through activation of the phospholipase C-PKC signaling cascade, leading to the trafficking of GluA1 to pain-modulating neuronal synapses.

  7. Raft-dependent endocytosis of autocrine motility factor/phosphoglucose isomerase: a potential drug delivery route for tumor cells.

    Directory of Open Access Journals (Sweden)

    Liliana D Kojic

    Full Text Available BACKGROUND: Autocrine motility factor/phosphoglucose isomerase (AMF/PGI is the extracellular ligand for the gp78/AMFR receptor overexpressed in a variety of human cancers. We showed previously that raft-dependent internalization of AMF/PGI is elevated in metastatic MDA-435 cells, but not metastatic, caveolin-1-expressing MDA-231 cells, relative to non-metastatic MCF7 and dysplastic MCF10A cells suggesting that it might represent a tumor cell-specific endocytic pathway. METHODOLOGY/PRINCIPAL FINDINGS: Similarly, using flow cytometry, we demonstrate that raft-dependent endocytosis of AMF/PGI is increased in metastatic HT29 cancer cells expressing low levels of caveolin-1 relative to metastatic, caveolin-1-expressing, HCT116 colon cells and non-metastatic Caco-2 cells. Therefore, we exploited the raft-dependent internalization of AMF/PGI as a potential tumor-cell specific targeting mechanism. We synthesized an AMF/PGI-paclitaxel conjugate and found it to be as efficient as free paclitaxel in inducing cytotoxicity and apoptosis in tumor cells that readily internalize AMF/PGI compared to tumor cells that poorly internalize AMF/PGI. Murine K1735-M1 and B16-F1 melanoma cells internalize FITC-conjugated AMF/PGI and are acutely sensitive to AMF/PGI-paclitaxel mediated cytotoxicity in vitro. Moreover, following in vivo intratumoral injection, FITC-conjugated AMF/PGI is internalized in K1735-M1 tumors. Intratumoral injection of AMF/PGI-paclitaxel induced significantly higher tumor regression compared to free paclitaxel, even in B16-F1 cells, known to be resistant to taxol treatment. Treatment with AMF/PGI-paclitaxel significantly prolonged the median survival time of tumor bearing mice. Free AMF/PGI exhibited a pro-survival role, reducing the cytotoxic effect of both AMF/PGI-paclitaxel and free paclitaxel suggesting that AMF/PGI-paclitaxel targets a pathway associated with resistance to chemotherapeutic agents. AMF/PGI-FITC uptake by normal murine spleen

  8. Human transferrin receptor triggers an alternative Tacaribe virus internalization pathway.

    Science.gov (United States)

    Roldán, Julieta S; Martínez, María G; Forlenza, María B; Whittaker, Gary R; Candurra, Nélida A

    2016-02-01

    Tacaribe virus (TCRV) entry occurs by receptor-mediated endocytosis. To explore the entry mechanism used by TCRV, the inhibitory effects of drugs and dominant negative (DN) constructions affecting the main endocytic pathways were analyzed. In cells lacking the human transferrin receptor (hTfR), compounds and DN proteins that impair clathrin-mediated endocytosis were shown to reduce virus internalization without affecting virion binding. In contrast, in cells expressing the hTfR, compounds that affect clathrin-mediated endocytosis did not affect TCRV infection. Destabilization of cholesterol-rich plasma membrane microdomains by treatment with nystatin was not able to block virus entry in the presence of hTfR. However methyl-β-cyclodextrin, which extracts cholesterol from cell membranes, reduced virus internalization in cells expressing the hTfR. Inhibition of dynamin and neutralization of the pH of intracellular vesicles reduced virus internalization in all cell lines tested. Taken together, these results demonstrate that in cells expressing the hTfR, TCRV internalization depends on the presence of cholesterol, dynamin and acidic intracellular vesicles, while in the rest of the cell lines analyzed, clathrin-mediated endocytosis is the main TCRV entry pathway and, as expected, depends on dynamin and acidic intracellular vesicles. These results represent an important contribution to the characterization of the arenavirus replication cycle. PMID:26559962

  9. Angelman Syndrome Protein Ube3a Regulates Synaptic Growth and Endocytosis by Inhibiting BMP Signaling in Drosophila.

    Science.gov (United States)

    Li, Wenhua; Yao, Aiyu; Zhi, Hui; Kaur, Kuldeep; Zhu, Yong-Chuan; Jia, Mingyue; Zhao, Hui; Wang, Qifu; Jin, Shan; Zhao, Guoli; Xiong, Zhi-Qi; Zhang, Yong Q

    2016-05-01

    Altered expression of the E3 ubiquitin ligase UBE3A, which is involved in protein degradation through the proteasome-mediated pathway, is associated with neurodevelopmental and behavioral defects observed in Angelman syndrome (AS) and autism. However, little is known about the neuronal function of UBE3A and the pathogenesis of UBE3A-associated disorders. To understand the in vivo function of UBE3A in the nervous system, we generated multiple mutations of ube3a, the Drosophila ortholog of UBE3A. We found a significantly increased number of total boutons and satellite boutons in conjunction with compromised endocytosis in the neuromuscular junctions (NMJs) of ube3a mutants compared to the wild type. Genetic and biochemical analysis showed upregulation of bone morphogenetic protein (BMP) signaling in the nervous system of ube3a mutants. An immunochemical study revealed a specific increase in the protein level of Thickveins (Tkv), a type I BMP receptor, but not other BMP receptors Wishful thinking (Wit) and Saxophone (Sax), in ube3a mutants. Ube3a was associated with and specifically ubiquitinated lysine 227 within the cytoplasmic tail of Tkv, and promoted its proteasomal degradation in Schneider 2 cells. Negative regulation of Tkv by Ube3a was conserved in mammalian cells. These results reveal a critical role for Ube3a in regulating NMJ synapse development by repressing BMP signaling. This study sheds new light onto the neuronal functions of UBE3A and provides novel perspectives for understanding the pathogenesis of UBE3A-associated disorders. PMID:27232889

  10. Increased accuracy of ligand sensing by receptor diffusion on cell surface

    Science.gov (United States)

    Aquino, Gerardo; Endres, Robert G.

    2010-10-01

    The physical limit with which a cell senses external ligand concentration corresponds to the perfect absorber, where all ligand particles are absorbed and overcounting of same ligand particles does not occur. Here, we analyze how the lateral diffusion of receptors on the cell membrane affects the accuracy of sensing ligand concentration. Specifically, we connect our modeling to neurotransmission in neural synapses where the diffusion of glutamate receptors is already known to refresh synaptic connections. We find that receptor diffusion indeed increases the accuracy of sensing for both the glutamate α -Amino-3-hydroxy-5-Methyl-4-isoxazolePropionic Acid (AMPA) and N -Methyl-D-aspartic Acid (NMDA) receptor, although the NMDA receptor is overall much noisier. We propose that the difference in accuracy of sensing of the two receptors can be linked to their different roles in neurotransmission. Specifically, the high accuracy in sensing glutamate is essential for the AMPA receptor to start membrane depolarization, while the NMDA receptor is believed to work in a second stage as a coincidence detector, involved in long-term potentiation and memory.

  11. Internalization of FLAG-MOR in low or high receptor expressing mouse pituitary AtT20 cell lines

    International Nuclear Information System (INIS)

    Full text: Receptor endocytosis is a process that contributes to the desensitization of receptor mediated functional responses. We subcloned FLAG-tagged μopioid receptors (MOR)in mouse pituitary AtT20 cells and selected for a high and a low receptor expressing cell line. Using [3 H ]Naloxone binding to cell membranes,we were able to determine cell receptor number from Scatchard analysis. The high expressing cell line had 37,000 receptors/cell and the low expressing cell line had 8000 receptors/cell. Mouse AtT20 cells have endogenous calcium currents (ICa). (ICa) was reversibly inhibited by μ-opioid agonists in both cell lines. Inhibition of ICa by 1 μM DAMGO was 26 ±3% and 17 ±2% in high and low receptor cell lines, respectively. The selective MOR antagonist CTAP (1 μM)blocked DAMGO mediated inhibition of ICa .Endocytosis of FLAG-MOR was examined using immunohistochemistry and confocal microscopy. Opioid ligands of differing intrinsic efficacies were examined on FLAG-MOR endocytosis. Internalization of FLAG-MOR by 20 minute incubation at 37deg C following 10 μM DAMGO or 10 μM methadone binding at 4 deg C,resulted in an increase in intracellular immunoreactivity for high and low receptor expressing cells. Morphine (10 μM) and the opioid receptor antagonist,naloxone (1 μM), did not cause an increase in cytosolic immunoreactivity after a 20 minute incubation in either cell line. Comparison of time courses for receptor endocytosis and receptor mediated ICa desensitization for high and low receptor expressing cell lines will be discussed. Copyright (1998) Australian Neuroscience Society

  12. The Fate and Transport of Glyphosate and AMPA into Surface Waters of Agricultural Watersheds

    Science.gov (United States)

    Coupe, R.; Kalkhoff, S.; Capel, P.; Gregoire, C.

    2010-12-01

    Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops, but is particularly heavily used on crops which are genetically modified to be glyphosate tolerant: predominately soybeans, corn, potatoes, and cotton. Glyphosate is used extensively in almost all agricultural areas of the United States, and annual application has increased from less than 10,000 Mg in 1992 to more than 80,000 Mg in 2007. The greatest areal use is in the Midwest where glyphosate is applied on genetically modified corn and soybeans. Although use is increasing, the characterization of glyphosate transport on the watershed scale is lacking. Glyphosate, and its degradate AMPA [aminomethylphosphoric acid], was frequently detected in the surface waters of four agricultural watersheds. The load as a percent of use of glyphosate ranged from 0.009 to 0.86 percent and can be related to three factors: source strength, hydrology, and flowpath. Glyphosate use within a watershed results in some occurrence in surface water at the part per billion level; however watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff, and a flowpath that does not include transport through the soil.

  13. Synthesis, theoretical and structural analyses, and enantiopharmacology of 3-carboxy homologs of AMPA

    DEFF Research Database (Denmark)

    Brehm, Lotte; Greenwood, Jeremy R; Sløk, Frank A;

    2004-01-01

    in ACPA, we have now prepared the (S)- and (R)-enantiomers of ACPA by stereocontrolled syntheses using (1R,2R,5R)- and (1S,2S,5S)-2-hydroxy-3-pinanone, respectively, as chiral auxiliaries. Furthermore, the 5-ethyl analog of ACPA, Ethyl-ACPA, was synthesized, and (S)- and (R)-Ethyl-ACPA were also prepared...... using this method. The absolute configurations of (S)- and (R)-ACPA were established by X-ray crystallographic analysis of a protected (1S,2S,5S)-2-hydroxy-3-pinanone imine derivative of (R)-ACPA. The absolute stereochemistry of (S)- and (R)-Ethyl-ACPA was assigned on the basis of a comparison....... The lower homolog of ACPA, (RS)-2-amino-2-(3-carboxy-5-methyl-4-isoxazolyl)acetic acid (1), which is a Glu analog, was also synthesized. Affinities and neuroexcitatory effects were determined using rat brain membranes and cortical wedges, respectively, at native AMPA, KA, and N-methyl-D-aspartic acid (NMDA...

  14. Effects of intracerebroventricular NMDA and non-NMDA receptor agonists or antagonists on general anesthesia of propofol in mice

    Institute of Scientific and Technical Information of China (English)

    XU Aijun; DUAN Shiming; TIAN Yuke

    2007-01-01

    The efiects of intracerebroventricular(icv)agonists and antagonists of N-methyl-D-aspartate(NMDA)and alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors on the general anesthesia of propofol were studied.A tohal of 144 Kunming mice,male and female with body mass of(22±3)g,were used.Part One of the Experiment:a total of 104 Kunming mice,male and female,were randomly divided into 13 groups.Intracerebroventricular artificial cerebral fluid (aCSF)or different doses of NMDA,AMPA,MK-801 or NBOX was iniected immediately after intravenously administered propofol 25 mg/kg and the recovery time following the loss of righting reflex (LORR)was recorded.Part Two of the Experiment:a total of 40 Kunming female mice were divided randomly into 5 groups and iniected with icv aCSF or NMDA.AMPA.MK-801 or NBQX after intraperitoneally administered propofol 50 mg/kg.The pain threshold of the mice was then investigated by hot-plate test(HPPT).NMDA(0.05 or 0.075μg,icv)or AMPA(0.05 μg,icv)exhibited no effects on the LORR,but NMDA(0.1 μg,icv)or AMPA(0.075 or 0.1 μg,icv)prolonged the LORR significantly compared with the aCSF group(P<0.05,P<0.01).The LORR of the 2 μg MK-801 group had no changes,while those of the 4 or 8 μg MK-801 groups were prolonged significantly.The LORR of the 0.5,2 or 4 μg NBQX groups were all prolonged significantly.NMDA 0.05 μg or AMPA 0.05 μg decreased the pain threshold slightly but did not differ in effect compared with the aCSF group;2 μg MK-801 or 0.5 μg NBQX both increased the pain threshold significantly.Our results indicate that propofol produces general anesthesia partly through an interaction with brain NMDA and AMPA receptors in mice.

  15. Probing endocytosis from the enterocyte brush border using fluorescent lipophilic dyes

    DEFF Research Database (Denmark)

    Danielsen, E Michael

    2015-01-01

    The small intestinal brush border is a specialized cell membrane that needs to withstand the solubilizing effect of bile salts during assimilation of dietary nutrients and to achieve detergent resistance; it is highly enriched in glycolipids organized in lipid raft microdomains. In the present work......-toluenesulfonate), and CellMask Orange plasma membrane stain were used to study endocytosis from the enterocyte brush border of organ-cultured porcine mucosal explants. All the dyes readily incorporated into the brush border but were not detectably endocytosed by 5 min, indicating a slow uptake compared with other cell types....... At later time points, FM 1-43 clearly appeared in distinct punctae in the terminal web region, previously shown to represent early endosomes (TWEEs). In contrast, the other dyes were relatively "endocytosis resistant" to varying degrees for periods up to 2 h, indicating an active sorting of lipids...

  16. Endosomes derived from clathrin-independent endocytosis serve as precursors for endothelial lumen formation.

    Directory of Open Access Journals (Sweden)

    Natalie Porat-Shliom

    Full Text Available Clathrin-independent endocytosis (CIE is a form of bulk plasma membrane (PM endocytosis that allows cells to sample and evaluate PM composition. Once in endosomes, the internalized proteins and lipids can be recycled back to the PM or delivered to lysosomes for degradation. Endosomes arising from CIE contain lipid and signaling molecules suggesting that they might be involved in important biological processes. During vasculogenesis, new blood vessels are formed from precursor cells in a process involving internalization and accumulation of endocytic vesicles. Here, we found that CIE has a role in endothelial lumen formation. Specifically, we found that human vascular endothelial cells (HUVECs utilize CIE for internalization of distinct cargo molecules and that in three-dimensional cultures CIE membranes are delivered to the newly formed lumen.

  17. Endocytosis-dependent coordination of multiple actin regulators is required for wound healing.

    Science.gov (United States)

    Matsubayashi, Yutaka; Coulson-Gilmer, Camilla; Millard, Tom H

    2015-08-01

    The ability to heal wounds efficiently is essential for life. After wounding of an epithelium, the cells bordering the wound form dynamic actin protrusions and/or a contractile actomyosin cable, and these actin structures drive wound closure. Despite their importance in wound healing, the molecular mechanisms that regulate the assembly of these actin structures at wound edges are not well understood. In this paper, using Drosophila melanogaster embryos, we demonstrate that Diaphanous, SCAR, and WASp play distinct but overlapping roles in regulating actin assembly during wound healing. Moreover, we show that endocytosis is essential for wound edge actin assembly and wound closure. We identify adherens junctions (AJs) as a key target of endocytosis during wound healing and propose that endocytic remodeling of AJs is required to form "signaling centers" along the wound edge that control actin assembly. We conclude that coordination of actin assembly, AJ remodeling, and membrane traffic is required for the construction of a motile leading edge during wound healing.

  18. Endocytosis of Cytotoxic Granules Is Essential for Multiple Killing of Target Cells by T Lymphocytes.

    Science.gov (United States)

    Chang, Hsin-Fang; Bzeih, Hawraa; Schirra, Claudia; Chitirala, Praneeth; Halimani, Mahantappa; Cordat, Emmanuelle; Krause, Elmar; Rettig, Jens; Pattu, Varsha

    2016-09-15

    CTLs are serial killers that kill multiple target cells via exocytosis of cytotoxic granules (CGs). CG exocytosis is tightly regulated and has been investigated in great detail; however, whether CG proteins are endocytosed following exocytosis and contribute to serial killing remains unknown. By using primary CTLs derived from a knock-in mouse of the CG membrane protein Synaptobrevin2, we show that CGs are endocytosed in a clathrin- and dynamin-dependent manner. Following acidification, endocytosed CGs are recycled through early and late, but not recycling endosomes. CGs are refilled with granzyme B at the late endosome stage and polarize to subsequent synapses formed between the CTL and new target cells. Importantly, inhibiting CG endocytosis in CTLs results in a significant reduction of their cytotoxic activity. Thus, our data demonstrate that continuous endocytosis of CG membrane proteins is a prerequisite for efficient serial killing of CTLs and identify key events in this process.

  19. Structure-Activity Relationships of JMV4463, a Vectorized Cathepsin D Inhibitor with Antiproliferative Properties: The Unique Role of the AMPA-Based Vector.

    Science.gov (United States)

    Vezenkov, Lubomir L; Sanchez, Clément A; Bellet, Virginie; Martin, Vincent; Maynadier, Marie; Bettache, Nadir; Lisowski, Vincent; Martinez, Jean; Garcia, Marcel; Amblard, Muriel; Hernandez, Jean-François

    2016-02-01

    Cathepsin D (CathD) is overexpressed and secreted by several solid tumors and stimulates their growth, the mechanism of which is still not understood. In this context, the pepstatin bioconjugate JMV4463 [Ac-arg-O2 Oc-(Val)3-Sta-Ala-Sta-(AMPA)4-NH2; O2 Oc=8-amino-3,6-dioxaoctanoyl, Sta=statine, AMPA=ortho-aminomethylphenylacetyl], containing a new kind of cell-penetrating vector, was previously shown to exhibit potent antiproliferative effects in vitro and to delay the onset of tumors in vivo. In this study, we performed a structure-activity relationship analysis to evaluate the significance of the inhibitor and vector moieties of JMV4463. By modifying both statine residues of pepstatin we found that the antiproliferative activity is correlated with CathD inhibition, supporting a major role of the catalytic activity of intracellular CathD in cancer cell proliferation. Replacing the vector composed of four AMPA units with other vectors was found to abolish cytotoxicity, although all of the conjugates enabled pepstatin transport into cells. In addition, the AMPA4 vector must be localized at the C terminus of the bioconjugate. The unexpected importance of the vector structure and position for cytotoxic action suggests that AMPA4 enables pepstatin to inhibit the proteolysis of critical CathD substrates involved in cell proliferation via a unique mechanism of action. PMID:26639308

  20. An alternating GluN1-2-1-2 subunit arrangement in mature NMDA receptors.

    Directory of Open Access Journals (Sweden)

    Morgane Riou

    Full Text Available NMDA receptors (NMDARs form glutamate-gated ion channels that play a critical role in CNS physiology and pathology. Together with AMPA and kainate receptors, NMDARs are known to operate as tetrameric complexes with four membrane-embedded subunits associating to form a single central ion-conducting pore. While AMPA and some kainate receptors can function as homomers, NMDARs are obligatory heteromers composed of homologous but distinct subunits, most usually of the GluN1 and GluN2 types. A fundamental structural feature of NMDARs, that of the subunit arrangement around the ion pore, is still controversial. Thus, in a typical NMDAR associating two GluN1 and two GluN2 subunits, there is evidence for both alternating 1/2/1/2 and non-alternating 1/1/2/2 arrangements. Here, using a combination of electrophysiological and cross-linking experiments, we provide evidence that functional GluN1/GluN2A receptors adopt the 1/2/1/2 arrangement in which like subunits are diagonal to one another. Moreover, based on the recent crystal structure of an AMPA receptor, we show that in the agonist-binding and pore regions, the GluN1 subunits occupy a "proximal" position, closer to the central axis of the channel pore than that of GluN2 subunits. Finally, results obtained with reducing agents that differ in their membrane permeability indicate that immature (intracellular and functional (plasma-membrane inserted pools of NMDARs can adopt different subunit arrangements, thus stressing the importance of discriminating between the two receptor pools in assembly studies. Elucidating the quaternary arrangement of NMDARs helps to define the interface between the subunits and to understand the mechanism and pharmacology of these key signaling receptors.

  1. Capacitance measurements. An analysis of the phase detector technique used to study exocytosis and endocytosis.

    OpenAIRE

    Joshi, C.; Fernandez, J M

    1988-01-01

    We have studied the admittance of patch-clamped mast cells during exocytosis and found that they are adequately described by a four parameter equivalent circuit. On the basis of these measurements, we show that, contrary to current belief, when using a phase sensitive detector, small capacitance changes due to exocytosis or endocytosis should be studied by measuring current 90 degrees out of phase, relative to the component that corresponds to changes in series resistance. We have extended th...

  2. Analysis of occludin trafficking, demonstrating continuous endocytosis, degradation, recycling and biosynthetic secretory trafficking.

    Directory of Open Access Journals (Sweden)

    Sarah J Fletcher

    Full Text Available Tight junctions (TJs link adjacent cells and are critical for maintenance of apical-basolateral polarity in epithelial monolayers. The TJ protein occludin functions in disparate processes, including wound healing and Hepatitis C Virus infection. Little is known about steady-state occludin trafficking into and out of the plasma membrane. Therefore, we determined the mechanisms responsible for occludin turnover in confluent Madin-Darby canine kidney (MDCK epithelial monolayers. Using various biotin-based trafficking assays we observed continuous and rapid endocytosis of plasma membrane localised occludin (the majority internalised within 30 minutes. By 120 minutes a significant reduction in internalised occludin was observed. Inhibition of lysosomal function attenuated the reduction in occludin signal post-endocytosis and promoted co-localisation with the late endocytic system. Using a similar method we demonstrated that ∼20% of internalised occludin was transported back to the cell surface. Consistent with these findings, significant co-localisation between internalised occludin and recycling endosomal compartments was observed. We then quantified the extent to which occludin synthesis and transport to the plasma membrane contributes to plasma membrane occludin homeostasis, identifying inhibition of protein synthesis led to decreased plasma membrane localised occludin. Significant co-localisation between occludin and the biosynthetic secretory pathway was demonstrated. Thus, under steady-state conditions occludin undergoes turnover via a continuous cycle of endocytosis, recycling and degradation, with degradation compensated for by biosynthetic exocytic trafficking. We developed a mathematical model to describe the endocytosis, recycling and degradation of occludin, utilising experimental data to provide quantitative estimates for the rates of these processes.

  3. HIV-1 Vpu promotes release and prevents endocytosis of nascent retrovirus particles from the plasma membrane.

    Directory of Open Access Journals (Sweden)

    2006-05-01

    Full Text Available The human immunodeficiency virus (HIV type-1 viral protein U (Vpu protein enhances the release of diverse retroviruses from human, but not monkey, cells and is thought to do so by ablating a dominant restriction to particle release. Here, we determined how Vpu expression affects the subcellular distribution of HIV-1 and murine leukemia virus (MLV Gag proteins in human cells where Vpu is, or is not, required for efficient particle release. In HeLa cells, where Vpu enhances HIV-1 and MLV release approximately 10-fold, concentrations of HIV-1 Gag and MLV Gag fused to cyan fluorescent protein (CFP were initially detected at the plasma membrane, but then accumulated over time in early and late endosomes. Endosomal accumulation of Gag-CFP was prevented by Vpu expression and, importantly, inhibition of plasma membrane to early endosome transport by dominant negative mutants of Rab5a, dynamin, and EPS-15. Additionally, accumulation of both HIV and MLV Gag in endosomes required a functional late-budding domain. In human HOS cells, where HIV-1 and MLV release was efficient even in the absence of Vpu, Gag proteins were localized predominantly at the plasma membrane, irrespective of Vpu expression or manipulation of endocytic transport. While these data indicated that Vpu inhibits nascent virion endocytosis, Vpu did not affect transferrin endocytosis. Moreover, inhibition of endocytosis did not restore Vpu-defective HIV-1 release in HeLa cells, but instead resulted in accumulation of mature virions that could be released from the cell surface by protease treatment. Thus, these findings suggest that a specific activity that is present in HeLa cells, but not in HOS cells, and is counteracted by Vpu, traps assembled retrovirus particles at the cell surface. This entrapment leads to subsequent endocytosis by a Rab5a- and clathrin-dependent mechanism and intracellular sequestration of virions in endosomes.

  4. Rosiglitazone Balances Insulin-Induced Exo- And Endocytosis In Single 3t3-L1 Adipocytes

    OpenAIRE

    Velebit, Jelena; Chowdhury, Helena H.; Kreft, Marko; Zorec, Robert

    2011-01-01

    Abstract Rosiglitazone (Rosi) improves insulin sensitivity and increases the translocation of glucose transporter 4 (GLUT4) to the plasma membrane (PM). This involves the fusion of membrane-bound compartments with the plasma membrane, thus increasing the plasma membrane area. However, recent work has shown that in Rosi-pretreated 3T3-L1 adipocytes membrane area did not increase following insulin application, suggesting that the rates of exo- and endocytosis are balanced. Here we ex...

  5. Substrate-Induced Ubiquitylation and Endocytosis of Yeast Amino Acid Permeases

    OpenAIRE

    Ghaddar, Kassem; Merhi, Ahmad; Saliba, Elie; Krammer, Eva-Maria; Prévost, Martine; André, Bruno

    2014-01-01

    Many plasma membrane transporters are downregulated by ubiquitylation, endocytosis, and delivery to the lysosome in response to various stimuli. We report here that two amino acid transporters of Saccharomyces cerevisiae, the general amino acid permease (Gap1) and the arginine-specific permease (Can1), undergo ubiquitin-dependent downregulation in response to their substrates and that this downregulation is not due to intracellular accumulation of the transported amino acids but to transport ...

  6. Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination

    OpenAIRE

    Qiao, Bo; Sugianto, Priscilla; Fung, Eileen; del-Castillo-Rueda, Alejandro; Moran-Jimenez, Maria-Josefa; Ganz, Tomas; Nemeth, Elizabeta

    2012-01-01

    Ferroportin exports iron into plasma from absorptive enterocytes, erythrophagocytosing macrophages, and hepatic stores. The hormone hepcidin controls cellular iron export and plasma iron concentrations by binding to ferroportin and causing its internalization and degradation. We explored the mechanism of hepcidin-induced endocytosis of ferroportin, the key molecular event in systemic iron homeostasis. Hepcidin binding caused rapid ubiquitination of ferroportin in cell lines overexpressing fer...

  7. Sortilin-Mediated Endocytosis Determines Levels of the Fronto-Temporal Dementia Protein, Progranulin

    DEFF Research Database (Denmark)

    Hu, Fenghua; Padukkavidana, Thihan; Vægter, Christian Bjerggaard;

    2010-01-01

    The most common inherited form of Fronto-Temporal Lobar Degeneration (FTLD) known stems from Progranulin (GRN) mutation, and exhibits TDP-43 plus ubiquitin protein aggregates in brain. Despite the causative role of GRN haploinsufficiency in FTLD-TDP, the neurobiology of this secreted glycoprotein......, and is fully normalized by Sort1 ablation. Sortilin-mediated PGRN endocytosis is likely to play a central role in FTLD-TDP pathophysiology...

  8. Contributions of herpes simplex virus type 1 envelope proteins to entry by endocytosis

    Science.gov (United States)

    Herpes simplex virus (HSV) proteins specifically required for endocytic entry but not direct penetration have not been identified. HSVs deleted of gE, gG, gI, gJ, gM, UL45, or Us9 entered cells via either pH-dependent or pH-independent endocytosis and were inactivated by mildly acidic pH. Thus, the ...

  9. Parameter estimation with bio-inspired meta-heuristic optimization : modeling the dynamics of endocytosis.

    OpenAIRE

    Tashkova Katerina; Korošec Peter; Šilc Jurij; Todorovski Ljupčo; Džeroski Sašo

    2011-01-01

    Abstract Background We address the task of parameter estimation in models of the dynamics of biological systems based on ordinary differential equations (ODEs) from measured data, where the models are typically non-linear and have many parameters, the measurements are imperfect due to noise, and the studied system can often be only partially observed. A representative task is to estimate the parameters in a model of the dynamics of endocytosis, i.e., endosome maturation, reflected in a cut-ou...

  10. Modulation of the dimer interface at ionotropic glutamate-like receptor d2 by D-serine and extracellular calcium

    DEFF Research Database (Denmark)

    Hansen, Kasper Bø; Naur, Peter; Kurtkaya, Natalie L;

    2009-01-01

    that calcium binding stabilizes the dimer interface formed between two agonist-binding domains and increases GluRdelta2(Lc) currents. The data further suggest that d-serine binding induces rearrangements at the dimer interface to diminish GluRdelta2(Lc) currents by a mechanism that resembles desensitization...... at AMPA and kainate receptors. Thus, we propose that calcium and d-serine binding have opposing effects on the stability of the dimer interface. Furthermore, the effects of calcium are observed at concentrations that are within the physiological range, suggesting that the ability of native GluRdelta2...... to respond to ligand binding may be modulated by extracellular calcium. These findings place GluRdelta2 among AMPA and kainate receptors, where the dimer interface is not only a biologically important site for functional regulation, but also an important target for exogenous and endogenous ligands...

  11. LMTK2-mediated phosphorylation regulates CFTR endocytosis in human airway epithelial cells.

    Science.gov (United States)

    Luz, Simão; Cihil, Kristine M; Brautigan, David L; Amaral, Margarida D; Farinha, Carlos M; Swiatecka-Urban, Agnieszka

    2014-05-23

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl(-)-selective ion channel expressed in fluid-transporting epithelia. Lemur tyrosine kinase 2 (LMTK2) is a transmembrane protein with serine and threonine but not tyrosine kinase activity. Previous work identified CFTR as an in vitro substrate of LMTK2, suggesting a functional link. Here we demonstrate that LMTK2 co-immunoprecipitates with CFTR and phosphorylates CFTR-Ser(737) in human airway epithelial cells. LMTK2 knockdown or expression of inactive LMTK2 kinase domain increases cell surface density of CFTR by attenuating its endocytosis in human airway epithelial cells. Moreover, LMTK2 knockdown increases Cl(-) secretion mediated by the wild-type and rescued ΔF508-CFTR. Compared with the wild-type CFTR, the phosphorylation-deficient mutant CFTR-S737A shows increased cell surface density and decreased endocytosis. These results demonstrate a novel mechanism of the phospho-dependent inhibitory effect of CFTR-Ser(737) mediated by LMTK2 via endocytosis and inhibition of the cell surface density of CFTR Cl(-) channels. These data indicate that targeting LMTK2 may increase the cell surface density of CFTR Cl(-) channels and improve stability of pharmacologically rescued ΔF508-CFTR in patients with cystic fibrosis.

  12. Endocytosis of fluorescent cyclodextrins by intestinal Caco-2 cells and its role in paclitaxel drug delivery.

    Science.gov (United States)

    Réti-Nagy, Katalin; Malanga, Milo; Fenyvesi, Éva; Szente, Lajos; Vámosi, György; Váradi, Judit; Bácskay, Ildikó; Fehér, Pálma; Ujhelyi, Zoltán; Róka, Eszter; Vecsernyés, Miklós; Balogh, György; Vasvári, Gábor; Fenyvesi, Ferenc

    2015-12-30

    Cyclodextrins are widely used excipients in pharmaceutical formulations. They are mainly utilized as solubilizers and absorption enhancers, but recent results revealed their effects on cell membranes and pharmacological barriers. In addition to the growing knowledge on their interaction with plasma membranes, it was confirmed that cyclodextrins are able to enter cells by endocytosis. The number of the tested cyclodextrins was limited, and the role of this mechanism in drug absorption and delivery is not known. Our aim was to examine the endocytosis of fluorescently labeled hydroxypropyl-β-cyclodextrin, random methyl-β-cyclodextrin and soluble β-cyclodextrin polymer, and the cellular uptake of the fluorescent paclitaxel derivative-random methyl-β-cyclodextrin complex. The studied cyclodextrin derivatives were able to enter Caco-2 intestinal cells and localized in vesicles in the cytoplasm, while their permeability was very limited through Caco-2 monolayers. We demonstrated for the first time that the fluorescent paclitaxel derivative and rhodamine-labeled random methyl-β-cyclodextrin were detected in the same intracellular vesicles after treating cells with their inclusion complex. These results indicate that the endocytosis of cyclodextrin complexes can contribute to drug absorption processes.

  13. The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Li Wei; Chen Chunying; Ye Chang; Zhao Yuliang; Chen Zhen; Meng Huan; Gao Yuxi; Yuan Hui; Xing Genmei; Zhao Feng; Chai Zhifang [Laboratory for Bio-Environmental Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Nanotechnology of China and Institute of High Energy Physics, Chinese Academy of Science, Yuquan Road 19B, Beijing 100049 (China); Wei Taotao; Zhang Xujia; Yang Fuyu [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China); Lao Fang; Han Dong [National Center for Nanoscience and Technology of China, No 2, Ist North Street Zhongguancun, Beijing 100080 (China); Tang Xianhua; Zhang Yingge [Chinese Academy of Military Medical Sciences, Beijing 100039 (China)], E-mail: chenchy@nanoctr.cn, E-mail: weitt@moon.ibp.ac.cn, E-mail: zhaoyuliang@ihep.ac.cn

    2008-04-09

    Manufactured fullerene nanoparticles easily enter into cells and hence have been rapidly developed for biomedical uses. However, it is generally unknown which route the nanoparticles undergo when crossing cell membranes and where they localize to the intracellular compartments. Herein we have used both microscopic imaging and biological techniques to explore the processes of [C{sub 60}(C(COOH){sub 2}){sub 2}]{sub n} nanoparticles across cellular membranes and their intracellular translocation in 3T3 L1 and RH-35 living cells. The fullerene nanoparticles are quickly internalized by the cells and then routed to the cytoplasm with punctate localization. Upon entering the cell, they are synchronized to lysosome-like vesicles. The [C{sub 60}(C(COOH){sub 2}){sub 2}]{sub n} nanoparticles entering cells are mainly via endocytosis with time-, temperature- and energy-dependent manners. The cellular uptake of [C{sub 60}(C(COOH){sub 2}){sub 2}]{sub n} nanoparticles was found to be clathrin-mediated but not caveolae-mediated endocytosis. The endocytosis mechanism and the subcellular target location provide key information for the better understanding and predicting of the biomedical function of fullerene nanoparticles inside cells.

  14. The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis

    Science.gov (United States)

    Li, Wei; Chen, Chunying; Ye, Chang; Wei, Taotao; Zhao, Yuliang; Lao, Fang; Chen, Zhen; Meng, Huan; Gao, Yuxi; Yuan, Hui; Xing, Genmei; Zhao, Feng; Chai, Zhifang; Zhang, Xujia; Yang, Fuyu; Han, Dong; Tang, Xianhua; Zhang, Yingge

    2008-04-01

    Manufactured fullerene nanoparticles easily enter into cells and hence have been rapidly developed for biomedical uses. However, it is generally unknown which route the nanoparticles undergo when crossing cell membranes and where they localize to the intracellular compartments. Herein we have used both microscopic imaging and biological techniques to explore the processes of [C60(C(COOH)2)2]n nanoparticles across cellular membranes and their intracellular translocation in 3T3 L1 and RH-35 living cells. The fullerene nanoparticles are quickly internalized by the cells and then routed to the cytoplasm with punctate localization. Upon entering the cell, they are synchronized to lysosome-like vesicles. The [C60(C(COOH)2)2]n nanoparticles entering cells are mainly via endocytosis with time-, temperature- and energy-dependent manners. The cellular uptake of [C60(C(COOH)2)2]n nanoparticles was found to be clathrin-mediated but not caveolae-mediated endocytosis. The endocytosis mechanism and the subcellular target location provide key information for the better understanding and predicting of the biomedical function of fullerene nanoparticles inside cells.

  15. AP-2-complex-mediated endocytosis of Drosophila Crumbs regulates polarity by antagonizing Stardust.

    Science.gov (United States)

    Lin, Ya-Huei; Currinn, Heather; Pocha, Shirin Meher; Rothnie, Alice; Wassmer, Thomas; Knust, Elisabeth

    2015-12-15

    Maintenance of epithelial polarity depends on the correct localization and levels of polarity determinants. The evolutionarily conserved transmembrane protein Crumbs is crucial for the size and identity of the apical membrane, yet little is known about the molecular mechanisms controlling the amount of Crumbs at the surface. Here, we show that Crumbs levels on the apical membrane depend on a well-balanced state of endocytosis and stabilization. The adaptor protein 2 (AP-2) complex binds to a motif in the cytoplasmic tail of Crumbs that overlaps with the binding site of Stardust, a protein known to stabilize Crumbs on the surface. Preventing endocytosis by mutation of AP-2 causes expansion of the Crumbs-positive plasma membrane domain and polarity defects, which can be partially rescued by removing one copy of crumbs. Strikingly, knocking down both AP-2 and Stardust leads to the retention of Crumbs on the membrane. This study provides evidence for a molecular mechanism, based on stabilization and endocytosis, to adjust surface levels of Crumbs, which are essential for maintaining epithelial polarity.

  16. The Molecular Physiology of Activity-Dependent Bulk Endocytosis of Synaptic Vesicles

    Science.gov (United States)

    Clayton, Emma L.; Cousin, Michael A.

    2010-01-01

    Central nerve terminals release neurotransmitter in response to a wide variety of stimuli. Since maintenance of neurotransmitter release is dependent on the continual supply of synaptic vesicles (SVs), nerve terminals possess an array of endocytosis modes to retrieve and recycle SV membrane and proteins. During mild stimulation conditions single SV retrieval modes such as clathrin-mediated endocytosis (CME) predominate. However during increased neuronal activity additional SV retrieval capacity is required, which is provided by activity-dependent bulk endocytosis (ADBE). ADBE is the dominant SV retrieval mechanism during elevated neuronal activity. It is a high capacity SV retrieval mode that is immediately triggered during such stimulation conditions. This review will summarise the current knowledge regarding the molecular mechanism of ADBE, including molecules required for its triggering and subsequent steps, including SV budding from bulk endosomes. The molecular relationship between ADBE and the SV reserve pool will also be discussed. It is becoming clear that an understanding of the molecular physiology of ADBE will be of critical importance in attempts to modulate both normal and abnormal synaptic function during intense neuronal activity. PMID:19765184

  17. Substrate-induced ubiquitylation and endocytosis of yeast amino acid permeases.

    Science.gov (United States)

    Ghaddar, Kassem; Merhi, Ahmad; Saliba, Elie; Krammer, Eva-Maria; Prévost, Martine; André, Bruno

    2014-12-01

    Many plasma membrane transporters are downregulated by ubiquitylation, endocytosis, and delivery to the lysosome in response to various stimuli. We report here that two amino acid transporters of Saccharomyces cerevisiae, the general amino acid permease (Gap1) and the arginine-specific permease (Can1), undergo ubiquitin-dependent downregulation in response to their substrates and that this downregulation is not due to intracellular accumulation of the transported amino acids but to transport catalysis itself. Following an approach based on permease structural modeling, mutagenesis, and kinetic parameter analysis, we obtained evidence that substrate-induced endocytosis requires transition of the permease to a conformational state preceding substrate release into the cell. Furthermore, this transient conformation must be stable enough, and thus sufficiently populated, for the permease to undergo efficient downregulation. Additional observations, including the constitutive downregulation of two active Gap1 mutants altered in cytosolic regions, support the model that the substrate-induced conformational transition inducing endocytosis involves remodeling of cytosolic regions of the permeases, thereby promoting their recognition by arrestin-like adaptors of the Rsp5 ubiquitin ligase. Similar mechanisms might control many other plasma membrane transporters according to the external concentrations of their substrates.

  18. A dynamin-actin interaction is required for vesicle scission during endocytosis in yeast.

    Science.gov (United States)

    Palmer, Sarah E; Smaczynska-de Rooij, Iwona I; Marklew, Christopher J; Allwood, Ellen G; Mishra, Ritu; Johnson, Simeon; Goldberg, Martin W; Ayscough, Kathryn R

    2015-03-30

    Actin is critical for endocytosis in yeast cells, and also in mammalian cells under tension. However, questions remain as to how force generated through actin polymerization is transmitted to the plasma membrane to drive invagination and scission. Here, we reveal that the yeast dynamin Vps1 binds and bundles filamentous actin. Mutational analysis of Vps1 in a helix of the stalk domain identifies a mutant RR457-458EE that binds actin more weakly. In vivo analysis of Vps1 function demonstrates that the mutation disrupts endocytosis but not other functions of Vps1 such as vacuolar trafficking or peroxisome fission. The mutant Vps1 is stably expressed in cells and co-localizes with the endocytic reporters Abp1 and the amphiphysin Rvs167. Detailed analysis of individual endocytic patch behavior indicates that the mutation causes aberrant movements in later stages of endocytosis, consistent with a scission defect. Ultrastructural analysis of yeast cells using electron microscopy reveals a significant increase in invagination depth, further supporting a role for the Vps1-actin interaction during scission. In vitro analysis of the mutant protein demonstrates that--like wild-type Vps1--it is able to form oligomeric rings, but, critically, it has lost its ability to bundle actin filaments into higher-order structures. A model is proposed in which actin filaments bind Vps1 during invagination, and this interaction is important to transduce the force of actin polymerization to the membrane to drive successful scission.

  19. Mitochondrial Calcium Uptake Modulates Synaptic Vesicle Endocytosis in Central Nerve Terminals.

    Science.gov (United States)

    Marland, Jamie Roslin Keynes; Hasel, Philip; Bonnycastle, Katherine; Cousin, Michael Alan

    2016-01-29

    Presynaptic calcium influx triggers synaptic vesicle (SV) exocytosis and modulates subsequent SV endocytosis. A number of calcium clearance mechanisms are present in central nerve terminals that regulate intracellular free calcium levels both during and after stimulation. During action potential stimulation, mitochondria rapidly accumulate presynaptic calcium via the mitochondrial calcium uniporter (MCU). The role of mitochondrial calcium uptake in modulating SV recycling has been debated extensively, but a definitive conclusion has not been achieved. To directly address this question, we manipulated the expression of the MCU channel subunit in primary cultures of neurons expressing a genetically encoded reporter of SV turnover. Knockdown of MCU resulted in ablation of activity-dependent mitochondrial calcium uptake but had no effect on the rate or extent of SV exocytosis. In contrast, the rate of SV endocytosis was increased in the absence of mitochondrial calcium uptake and slowed when MCU was overexpressed. MCU knockdown did not perturb activity-dependent increases in presynaptic free calcium, suggesting that SV endocytosis may be controlled by calcium accumulation and efflux from mitochondria in their immediate vicinity.

  20. Redistribution of ionotropic glutamate receptors detected by laser microdissection of the rat dentate gyrus 48 h following LTP induction in vivo.

    Directory of Open Access Journals (Sweden)

    Jeremy T T Kennard

    Full Text Available The persistence and input specificity of long-term potentiation (LTP make it attractive as a mechanism of information storage. In its initial phase, both in vivo and in vitro studies have shown that LTP is associated with increased membrane localization of AMPA receptor subunits, but the molecular basis of LTP maintenance over the long-term is still unclear. We have previously shown that expression of AMPA and NMDA receptor subunits is elevated in whole homogenates prepared from dentate gyrus 48 h after LTP induction in vivo. In the present study, we utilized laser microdissection (LMD techniques to determine whether AMPA and NMDA receptor upregulation occurs specifically in the stimulated regions of the dentate gyrus dendritic arbor. Receptor proteins GluN1, GluA1 and GluA2, as well as postsynaptic density protein of 95 kDa and tubulin were detected by Western blot analysis in microdissected samples. Gradients of expression were observed for GluN1 and GluA2, decreasing from the inner to the outer zones of the molecular layer, and were independent of LTP. When induced at medial perforant path synapses, LTP was associated with an apparent specific redistribution of GluA1 and GluN1 to the middle molecular layer that contains these synapses. These data indicate that glutamate receptor proteins are delivered specifically to dendritic regions possessing LTP-expressing synapses, and that these changes are preserved for at least 48 h.