WorldWideScience

Sample records for amorphous-metals high-performance corrosion-resistant

  1. Iron-Based Amorphous Metals:The High Performance Corrosion Resistant Materials(HPCRM) Program

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J

    2007-07-09

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  2. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Material (HPCRM) Development

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Choi, J S; Saw, C; Haslam, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D' Amato, A; Aprigliano, L

    2008-01-09

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  3. Iron-Based Amorphous Metals:The High Performance Corrosion Resistant Materials(HPCRM) Program

    International Nuclear Information System (INIS)

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4) and SAM1651 (Fe48Mo14Cr15Y2C15B6) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and nickel-based materials, and are proving to have excellent wear

  4. Iron-Based Amorphous Metals: High-Performance Corrosion-Resistant Material Development

    Science.gov (United States)

    Farmer, Joseph; Choi, Jor-Shan; Saw, Cheng; Haslam, Jeffrey; Day, Dan; Hailey, Phillip; Lian, Tiangan; Rebak, Raul; Perepezko, John; Payer, Joe; Branagan, Daniel; Beardsley, Brad; D'Amato, Andy; Aprigliano, Lou

    2009-06-01

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was cosponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the U.S. Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition, materials synthesis, thermal stability, corrosion resistance, environmental cracking, mechanical properties, damage tolerance, radiation effects, and important potential applications. Amorphous alloys identified as SAM2X5 (Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4) and SAM1651 (Fe48Mo14Cr15Y2C15B6) have been produced as meltspun ribbons (MSRs), dropcast ingots, and thermal-spray coatings. Chromium (Cr), molybdenum (Mo), and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of MSRs and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently, thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests; good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while the open-circuit corrosion potentials (OCPs) were simultaneously monitored; reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber and suitable for criticality-control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and Ni-based materials, and are proving to have excellent wear

  5. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Materials (HPCRM) Development Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Choi, J; Saw, C; Haslem, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D' Amato, A; Aprigliano, L

    2009-03-16

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal make this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of these iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  6. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Materials (HPCRM) Development Final Report

    International Nuclear Information System (INIS)

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4) and SAM1651 (Fe48Mo14Cr15Y2C15B6) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal make this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of these iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and nickel-based materials, and are proving to have excellent wear

  7. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Choi, J; Haslam, J; Day, S; Yang, N; Headley, T; Lucadamo, G; Yio, J; Chames, J; Gardea, A; Clift, M; Blue, G; Peters, W; Rivard, J; Harper, D; Swank, D; Bayles, R; Lemieux, E; Brown, R; Wolejsza, T; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Lavernia, E; Schoenung, J; Ajdelsztajn, L; Dannenberg, J; Graeve, O; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Boudreau, J

    2007-09-20

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer

  8. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO and DOE OCRWM Co-Sponsored Advanced Materials Program

    International Nuclear Information System (INIS)

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent

  9. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

    2007-09-19

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.

  10. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings Evaluation of Corrosion Resistance FY05 HPCRM Annual Report No. Rev. 1DOE-DARPA Co-Sponsored Advanced Materials Program

    International Nuclear Information System (INIS)

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer

  11. Applications in the Nuclear Industry for Corrosion-Resistant Amorphous-Metal Thermal-Spray Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Choi, J

    2007-07-18

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Fe-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for container applications, though the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas atomized powders and applied as near full density, non-porous coatings with the high-velocity oxy-fuel process. This paper summarizes the performance of these coatings as corrosion-resistant barriers, and as neutron absorbers. Relevant corrosion models are also discussed, as well as a cost model to quantify the economic benefits possible with these new materials.

  12. DOE-DARPA High-Performance Corrosion-Resistant Materials (HPCRM), Annual HPCRM Team Meeting & Technical Review

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Brown, B; Bayles, B; Lemieux, T; Choi, J; Ajdelsztajn, L; Dannenberg, J; Lavernia, E; Schoenung, J; Branagan, D; Blue, C; Peter, B; Beardsley, B; Graeve, O; Aprigliano, L; Yang, N; Perepezko, J; Hildal, K; Kaufman, L; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Lewandowski, J; Boudreau, J

    2007-09-21

    The overall goal is to develop high-performance corrosion-resistant iron-based amorphous-metal coatings for prolonged trouble-free use in very aggressive environments: seawater & hot geothermal brines. The specific technical objectives are: (1) Synthesize Fe-based amorphous-metal coating with corrosion resistance comparable/superior to Ni-based Alloy C-22; (2) Establish processing parameter windows for applying and controlling coating attributes (porosity, density, bonding); (3) Assess possible cost savings through substitution of Fe-based material for more expensive Ni-based Alloy C-22; (4) Demonstrate practical fabrication processes; (5) Produce quality materials and data with complete traceability for nuclear applications; and (6) Develop, validate and calibrate computational models to enable life prediction and process design.

  13. Corrosion resistance of high-performance materials titanium, tantalum, zirconium

    CERN Document Server

    2012-01-01

    Corrosion resistance is the property of a material to resist corrosion attack in a particular aggressive environment. Although titanium, tantalum and zirconium are not noble metals, they are the best choice whenever high corrosion resistance is required. The exceptionally good corrosion resistance of these high–performance metals and their alloys results from the formation of a very stable, dense, highly adherent, and self–healing protective oxide film on the metal surface. This naturally occurring oxide layer prevents chemical attack of the underlying metal surface. This behavior also means, however, that high corrosion resistance can be expected only under neutral or oxidizing conditions. Under reducing conditions, a lower resistance must be reckoned with. Only very few inorganic and organic substances are able to attack titanium, tantalum or zirconium at ambient temperature. As the extraordinary corrosion resistance is coupled with an excellent formability and weldability these materials are very valua...

  14. Detonation gun and plasma spraying of amorphous metal coatings with improved corrosion resistance: Simulation and experiment

    International Nuclear Information System (INIS)

    Coating formation in detonation gun or plasma spraying involves direct contact of molten particles with cool metal of the substrate, which results in extra high cooling rates in the melt and enables synthesis of coatings with amorphous or metastable crystalline structure. Mathematical modeling of detonation gun and plasma spraying was carried out to determine the physical and engineering parameters for producing hard corrosion resistant coatings. For an iron-base (Fe-Cr-P-C) and a nickel-base (Ni-Cr-Si-B-C) eutectic alloy, spraying process parameters were determined theoretically. Purely amorphous or amorphous-crystalline coatings can be produced by detonation gun and plasma spraying with the use of values of individual layer thickness, pulse separation, powder feed rate, etc. thus obtained. The structure of these coatings whose hardness may be as high as 1,100 HV was described in more detail in a previous paper. Amorphous coatings are shown to outperform 304 stainless steel in resistance to corrosion in hydrochloric acid by no less than an order of magnitude

  15. Development, Processing, and Testing of High-Performance Corrosion-Resistant HVOF Coatings

    International Nuclear Information System (INIS)

    New amorphous-metal and ceramic coatings applied by the high-velocity oxy-fuel (HVOF) process may reduce the waste package materials cost of the Yucca Mountain high-level nuclear waste repository by over $4 billion (cost reduction of 27 to 42%). Two critical requirements that have been determined from design analysis are protection in brines that may evolve from the evaporative concentration of pore waters and protection for waste package welds, thereby preventing exposure to environments that might cause stress corrosion cracking (SCC). Our efforts are directed towards producing and evaluating these high-performance coatings for the development of lower cost waste packages, and will leverage a cost-effective collaboration with DARPA for applications involving marine corrosion

  16. Corrosion Resistance of High Performance Weathering Steel for Bridge Building Applications

    Institute of Scientific and Technical Information of China (English)

    CHENAi—hua; XUJian—qiu; LIRan; LIHua—long

    2012-01-01

    The mechanical properties, corrosion resistance and microstructures of high performance steel (HPS) was investigated by tensile testing machine, Charpy V-Notch (CVN) testing machine, cyclic immersion corrosion tester, XRD, optical microscopy (OM), scanning electron microscopy (SEM), and electron probe micro-analyzer (EPMA). The results showed that significant differences existed in the tensile strength, yield strength and impact toughness between HPS and PCS. After 72 h cyclic immersion accelerated corrosion test, the inner rust layer on HPS was com- posed of a-FeOOH phase and denser than that on PCS that was a mixture of a-FeOOH and Fe3 04. The rust formed on HPS provides better protection and HPS has lower corrosion rates than PCS. Copper and chromium in HPS en- rich in the rust layer and enhance the compactness of the rust layer. Based on the results of the accelerated corrosion tests and rust layer analysis, the roles of Cu and Cr against corrosion are discussed, providing HPS with chemical specification which has been industrially successful to produce weathering steel for bridge structure.

  17. Quantification of corrosion resistance of a new-class of criticality control materials: thermal-spray coatings of high-boron iron-based amorphous metals - Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Choi, J S; Shaw, C K; Rebak, R; Day, S D; Lian, T; Hailey, P; Payer, J H; Branagan, D J; Aprigliano, L F

    2007-03-28

    An iron-based amorphous metal, Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4} (SAM2X5), with very good corrosion resistance was developed. This material was produced as a melt-spun ribbon, as well as gas atomized powder and a thermal-spray coating. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation. The high boron content of this particular amorphous metal made it an effective neutron absorber, and suitable for criticality control applications. Earlier studies have shown that ingots and melt-spun ribbons of these materials have good passive film stability in these environments. Thermal spray coatings of these materials have now been produced, and have undergone a variety of corrosion testing, including both atmospheric and long-term immersion testing. The modes and rates of corrosion have been determined in the various environments, and are reported here.

  18. CVD of refractory amorphous metal alloys

    International Nuclear Information System (INIS)

    In this work, a novel process is described for the fabrication of multi-metallic amorphous metal alloy coatings using a chemical vapor deposition (CVD) technique. Of special interest in this work are amorphous metal alloys containing Mo and/or Cr which have high crystallization temperatures and readily available low decomposition temperature metal-bearing precursors. The conditions for amorphous alloy formation via CVD are described as well as the chemical properties of these materials. High temperature, aqueous corrosion tests have shown these materials (especially those containing Cr) are among the most corrosion resistant metal alloys known

  19. Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings

    International Nuclear Information System (INIS)

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Iron-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for container applications, though the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas atomized powders and applied as near full density, non-porous coatings with the high-velocity oxy-fuel process. This paper summarizes the performance of these coatings as corrosion-resistant barriers, and as neutron absorbers. Relevant corrosion models are also discussed, as well as a cost model to quantify the economic benefits possible with these new materials

  20. Corrosion resistant amorphous alloys

    International Nuclear Information System (INIS)

    A review of publication data on corrosion resistance of amorphous alloys and the methods of amorphization of surface layers of massive materials (laser treatment, iron implantation, detonation-gas spraying, cathode and ion sputtering, electrodeposition) was made. A study was made on corrosion properties of Fe66Cr11B10Si4 alloy in cast state and after laser irradiation, rendering the surface amorphous as well as the samples of Arenco iron and steel 20 with ion-plasma coatings of Fe-Cr-Ni-Ti alloy. It was established that amorphous coatings posses much higher corrosion resistance as compared to crystalline alloys on the same base

  1. Corrosion-resistant metal surfaces

    Science.gov (United States)

    Sugama, Toshifumi

    2009-03-24

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  2. Electrochemical Studies of Passive Film Stability on Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4 Amorphous Metal in Seawater at 90oCElectrochemical Studies of Passive Film Stability on Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4 Amorphous Metal in Seawater at 9

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Haslam, J; Day, S D; Lian, T; Saw, C K; Hailey, P D; Choi, J S; Rebak, R B; Yang, N; Payer, J H; Perepezko, J H; Hildal, K; Lavernia, E J; Ajdelsztajn, L; Branagan, D J; Buffa, E J; Aprigliano, L F

    2007-04-25

    An iron-based amorphous metal, Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4} (SAM2X5), with very good corrosion resistance was developed. This material was prepared as a melt-spun ribbon, as well as gas atomized powder and a thermal-spray coating. During electrochemical testing in several environments, including seawater at 90 C, the passive film stability was found to be comparable to that of high-performance nickel-based alloys, and superior to that of stainless steels, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. This material also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation. The high boron content of this particular amorphous metal made it an effective neutron absorber, and suitable for criticality control applications. This material and its parent alloy maintained corrosion resistance up to the glass transition temperature, and remained in the amorphous state during exposure to relatively high neutron doses.

  3. Amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-04-01

    Nanoelectromechanical (NEM) switch is an interesting ultra-low power option which can operate in the harsh environment and can be a complementary element in complex digital circuitry. Although significant advancement is happening in this field, report on ultra-low voltage (pull-in) switch which offers high switching speed and area efficiency is yet to be made. One key challenge to achieve such characteristics is to fabricate nano-scale switches with amorphous metal so the shape and dimensional integrity are maintained to achieve the desired performance. Therefore, we report a tungsten alloy based amorphous metal with fabrication process development of laterally actuated dual gated NEM switches with 100 nm width and 200 nm air-gap to result in <5 volts of actuation voltage (Vpull-in). © 2013 IEEE.

  4. HIGHWAY INFRASTRUCTURE FOCUS AREA NEXT-GENERATION INFRASTRUCTURE MATERIALS VOLUME I - TECHNICAL PROPOSAL & MANAGEMENTENHANCEMENT OF TRANSPORTATION INFRASTRUCTURE WITH IRON-BASED AMORPHOUS-METAL AND CERAMIC COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C

    2007-12-04

    The infrastructure for transportation in the United States allows for a high level of mobility and freight activity for the current population of 300 million residents, and several million business establishments. According to a Department of Transportation study, more than 230 million motor vehicles, ships, airplanes, and railroads cars were used on 6.4 million kilometers (4 million miles) of highways, railroads, airports, and waterways in 1998. Pipelines and storage tanks were considered to be part of this deteriorating infrastructure. The annual direct cost of corrosion in the infrastructure category was estimated to be approximately $22.6 billion in 1998. There were 583,000 bridges in the United States in 1998. Of this total, 200,000 bridges were steel, 235,000 were conventional reinforced concrete, 108,000 bridges were constructed using pre-stressed concrete, and the balance was made using other materials of construction. Approximately 15 percent of the bridges accounted for at this point in time were structurally deficient, primarily due to corrosion of steel and steel reinforcement. Iron-based amorphous metals, including SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been developed, and have very good corrosion resistance. These materials have been prepared as a melt-spun ribbons, as well as gas atomized powders and thermal-spray coatings. During electrochemical testing in several environments, including seawater at 90 C, the passive film stabilities of these materials were found to be comparable to that of more expensive high-performance alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. These materials also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation

  5. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  6. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  7. Corrosion Resistance Evaluation of HANA Claddings in Commercial PWR

    International Nuclear Information System (INIS)

    Korea Atomic Energy Research Institute (KAERI) in collaboration with KEPCO Nuclear Fuel (KNF) developed newly-advanced alloy which are named HANA (High-performance Alloy for Nuclear Application) for high burnup PWR nuclear fuel, showed an excellent out-pile corrosion resistance in PWR simulating loop conditions. And in-pile corrosion resistance of HANA claddings, which was examined at the first provisional inspection after -185 FPD of irradiation in the Halden Reactor, and also shown superior to the other references alloy. Also, other researches showed a much better corrosion resistance when compared to the other Zr-based alloy in various corrosion conditions. In this study, the LTA program for newly-developed fuel assembly (HIPER) with the HANA claddings was implemented to justify the performance for 3 cycles of operation schedule in Hanul nuclear power plant. The objective of this study is to compare corrosion properties of reference alloy with HANA claddings loaded in Hanul nuclear power plant.. For the examination procedures, the oxide thickness measurements method and equipment of PSE are described in detail as follow in measurement methods chapter. Finally, based on the above mentioned measurements method, the summarized oxide thickness data obtained from PSE are evaluated for the corrosion resistance in commercial nuclear power plant and some discussion for the corrosion resistance are described. In the past, corrosion resistance of HANA claddings was successfully conducted in test reactor. In this study, the corrosion characteristic of HANA claddings which are applied to HIPER is examined in the commercial nuclear power plant. HANA claddings in the HIPER showed a more improved corrosion resistance than reference alloy claddings and are evaluated well with meeting the oxide thickness criteria

  8. Corrosion-resistant coating development

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Kupp, D.M.; Martin, R.L. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    SiC-based heat exchangers have been identified as the prime candidate material for use as heat exchangers in advanced combined cycle power plants. Unfortunately, hot corrosion of the SiC-based materials created by alkali metal salts present in the combustion gases dictates the need for corrosion-resistant coatings. The well-documented corrosion resistance of CS-50 combined with its low (and tailorable) coefficient of thermal expansion and low modulus makes CS-50 an ideal candidate for this application. Coatings produced by gelcasting and traditional particulate processing have been evaluated.

  9. Corrosion resistant metallic bipolar plate

    Science.gov (United States)

    Brady, Michael P.; Schneibel, Joachim H.; Pint, Bruce A.; Maziasz, Philip J.

    2007-05-01

    A corrosion resistant, electrically conductive component such as a bipolar plate for a PEM fuel cell includes 20 55% Cr, balance base metal such as Ni, Fe, or Co, the component having thereon a substantially external, continuous layer of chromium nitride.

  10. LOCAL ATOMIC STRUCTURE OF AMORPHOUS METALS

    OpenAIRE

    Egami, T.; Maed, K.; Srolovitz, D.; Vitek, V.

    1980-01-01

    The local parameters are introduced to describe the local atomic structure of amorphous metals. They define the structural defects which facilitate the explanation of various properties, including the volume change by annealing.

  11. Influence of the microstructure on the corrosion behavior of magnetron sputter-quenched amorphous metallic alloys

    Science.gov (United States)

    Thakoor, A. P.; Khanna, S. K.; Williams, R. M.; Landel, R. F.

    1983-01-01

    The microstructure and corrosion behavior of magnetron sputter deposited amorphous metallic films of (Mo6ORu40)82B18 under varying sputtering atmospheres have been investigated. The microstructural details and topology of the films have been studied by scanning electron microscopy and correlated with the deposition conditions. By reducing the pressure of pure argon gas, the characteristic features of rough surface and columnar growth full of vertical voids can be converted into a mirror-smooth finish with very dense deposits. Films deposited in the presence of O2 or N2 exhibit columnar structure with vertical voids. Film deposited in pure argon at low pressure show remarkably high corrosion resistance due to the formation of a uniform passive surface layer. The influence of the microstructure and surface texture on the corrosion behavior is discussed.

  12. Laser surface treatment of amorphous metals

    Science.gov (United States)

    Katakam, Shravana K.

    Amorphous materials are used as soft magnetic materials and also as surface coatings to improve the surface properties. Furthermore, the nanocrystalline materials derived from their amorphous precursors show superior soft magnetic properties than amorphous counter parts for transformer core applications. In the present work, laser based processing of amorphous materials will be presented. Conventionally, the nanocrystalline materials are synthesized by furnace heat treatment of amorphous precursors. Fe-based amorphous/nanocrystalline materials due to their low cost and superior magnetic properties are the most widely used soft magnetic materials. However, achieving nanocrystalline microstructure in Fe-Si-B ternary system becomes very difficult owing its rapid growth rate at higher temperatures and sluggish diffusion at low temperature annealing. Hence, nanocrystallization in this system is achieved by using alloying additions (Cu and Nb) in the ternary Fe-Si-B system. Thus, increasing the cost and also resulting in reduction of saturation magnetization. laser processing technique is used to achieve extremely fine nanocrystalline microstructure in Fe-Si-B amorphous precursor. Microstructure-magnetic Property-laser processing co-relationship has been established for Fe-Si-B ternary system using analytical techniques. Laser processing improved the magnetic properties with significant increase in saturation magnetization and near zero coercivity values. Amorphous materials exhibit excellent corrosion resistance by virtue of their atomic structure. Fe-based amorphous materials are economical and due to their ease of processing are of potential interest to synthesize as coatings materials for wear and corrosion resistance applications. Fe-Cr-Mo-Y-C-B amorphous system was used to develop thick coatings on 4130 Steel substrate and the corrosion resistance of the amorphous coatings was improved. It is also shown that the mode of corrosion depends on the laser processing

  13. Corrosion resistance of titanium alloys for dentistry

    International Nuclear Information System (INIS)

    Titanium and its alloys belong to biomaterials which the application scope in medicine increases. Some properties of the alloys, such as high mechanical strength, low density, low Young's modulus, high corrosion resistance and good biotolerance decide about it. The main areas of the application of titanium and its alloys are: orthopedics and traumatology, cardiosurgery, faciomaxillary surgery and dentistry. The results of investigations concerning the corrosion resistance of the technical titanium and Ti6Al14V alloy and comparatively a cobalt alloy of the Vitallium type in the artificial saliva is presented in the work. Significantly better corrosion resistance of titanium and the Ti6Al14V than the Co-Cr-Mo alloy was found. (author)

  14. Plasma deposition of amorphous metal alloys

    International Nuclear Information System (INIS)

    Rapid solidification, sputtering and electroless chemical deposition have been used to produce amorphous metal alloys which possess excellent corrosion and abrasion resistance. This paper discusses a new technique for obtaining amorphous metal alloy coatings. Plasma decomposition of Ni(CO)4 and PH3 in argon and hydrogen carrier gases [Ni(CO4/PH3--8/1] yielded films that were black and silver, respectively, in appearance. Both films were amorphous as determined by transmission electron microscopy. Films deposited using a hydrogen carrier gas were three orders of magnitude more conductive than those deposited using an argon carrier gas. Analysis of both films using electron microprobe analysis and inductively-coupled plasma spectroscopy showed an enrichment of P in the films over the P content in the plasma gas mixtures. Reducing the P content of the plasma gas mixture [Ni(CO)4/PH3--17/11 yielded crystalline films with no P enrichment. The grain size in these films was --60Δ as determined by x-ray line-broadening

  15. Application of Neutron-Absorbing Structural-Amorphous metal (SAM) Coatings for Spent Nuclear Fuel (SNF) Container to Enhance Criticality Safety Controls

    OpenAIRE

    Choi, J.; Lee, C.(Institute of Physics, Academia Sinica, Taipei, Taiwan); Farmer, J.; Day, D.; Wall, M.; Saw, C.; Boussoufi, M.; Liu, H.B.; Egbert, H.; Branagan, D.; D'Amato, A.

    2006-01-01

    Spent nuclear fuel contains fissionable materials (235U, 239Pu, 241Pu, etc.). To prevent nuclear criticality in spent fuel storage, transportation, and during disposal, neutron-absorbing materials (or neutron poisons, such as borated stainless steel, BoralTM, MetamicTM, Ni-Gd, and others) would have to be applied. The success in demonstrating that the High-Performance Corrosion- Resistant Material (HPCRM)1 can be thermally applied as coating onto base metal to provide for corrosion resistance...

  16. NANOCOMPOSITE COATING FOR IMPROVED CORROSION RESISTANCE.

    Directory of Open Access Journals (Sweden)

    M.V.RAMANA

    2012-07-01

    Full Text Available Zn-Mg–ZnO nanocomposite electrodeposits have better corrosion resistance to sodium chloride in the atmospheric environment and better than that of other zinc alloys of equal thickness and therefore, provide a better alternative for corrosion protection. Nano zinc coatings are deposited on mild steel by electro deposition.Besides corrosion protection and decoration, nanocoatings sometimes impart to the surface, specific mechanical and physical properties such as wear resistance, hardness, electrical properties, oxidation – resistance and thermal-insulating properties. The effect of addition of ZnO nanoparticles on the morphology of crystal size on zinc deposited surface and corrosion properties are investigated. The results showed that addition of nano additives in the deposition process of zinc significantly increased the corrosion resistance. The surface morphology of the zinc deposits was studied by scanning electron microscopy (SEM.

  17. Pitting corrosion resistant austenite stainless steel

    Science.gov (United States)

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  18. NANOCOMPOSITE COATING FOR IMPROVED CORROSION RESISTANCE.

    OpenAIRE

    Ramana, M. V.; MADUNURI CHANDRA SEKHAR

    2012-01-01

    Zn-Mg–ZnO nanocomposite electrodeposits have better corrosion resistance to sodium chloride in the atmospheric environment and better than that of other zinc alloys of equal thickness and therefore, provide a better alternative for corrosion protection. Nano zinc coatings are deposited on mild steel by electro deposition.Besides corrosion protection and decoration, nanocoatings sometimes impart to the surface, specific mechanical and physical properties such as wear resistance, hardness, elec...

  19. Corrosion resistance of Elektron 21 magnesium alloy

    Directory of Open Access Journals (Sweden)

    A. Kiełbus

    2007-05-01

    Full Text Available Purpose: Elektron 21 magnesium alloy containing neodymium, gadolinium and zinc has high strength, good corrosion resistance and excellent castability. It is designed mainly for aerospace applications. The purpose of the investigation was to study the corrosion resistance of Elektron 21 magnesium alloy in as cast condition and after heat treatment in 3.5% NaCl saturated with Mg(OH2 solution.Design/methodology/approach: Solution treatment was performed at 525°C/8h/water, while ageing treatments at following conditions 250°C/4-96h/air. Immersion test was performed in 3.5% NaCl saturated with Mg(OH2 solution at room temperature. Specimens were placed in 3.5% NaCl solution for periods of time between one and 5 days. After immersion test, the microstructure and the appearances of the corroded structure were examined by optical microscopy (Olympus GX-70 and a scanning electron microscopy (Hitachi S3400.Findings: The corrosion rates of Elektron 21 alloy increased with increasing the exposure time and finally (after 5 days reached maximum value 0.092 mg/cm-2day-1. Solution treatment at 520°C for 8 h caused decrease in corrosion rate (0.072 mg cm-2 day-1 due to dissolving of intermetallic phase precipitates at matrix. Ageing at 200°C for 4h and 16h caused next decrease in corrosion rate to value 0.052 and 0,055 mg cm-2 day-1 respectively, while after ageing for 48h corrosion rate increase to value 0.067 mg cm-2 day-1, due to increase of volume fraction and size of β’ phase and precipitations of equilibrium β phase. It was also noticed that the longer time of ageing the higher corrosion rates were observed.Research limitations/implications: Future researches should include investigations of the influence of other environments on the corrosion resistance of Elektron 21 alloy.Practical implications: The improvement of corrosion resistance of Elektron 21 alloy can cause increase in it application in aerospace industry.Originality/value: The

  20. Superior corrosion resistance by niobium coating

    International Nuclear Information System (INIS)

    Niobium is a reactive metal which passivates spontaneously in many aggressive environments. Niobium metal also has favorable thermal and mechanical properties for use in the chemical process industries as process equipment or ancillary components which require high reliability and extensive service life. Niobium coatings can be used in applications where superior resistance against aqueous corrosion or erosion in hot-gases is needed. In this study the corrosion resistance of electrodeposited niobium on AISI 316 stainless steels in acid media has been studied. The structure and composition of niobium coatings are reviewed. The morphology, microstructure and defects were studied using a scanning electron microscope. In short term experiments the electrolyte was 30% H2SO4 at a temperature of 298 K and during long term measurements the electrolyte was 1 M H2SO4. Both Alternating Current (AC) and Direct Current (DC) electrochemical methods were used to characterize the corrosion behavior of base material and coating-base material system. Short term measurement procedure for coated samples consisted of four different measurements. Polarization resistance values measured by electrochemical impedance spectroscopy showed that the corrosion resistance of niobium coatings was related to the development of a passive layer on the niobium surface. The Long Cyclic Anodic Polarization curves showed that electrodeposited niobium coatings are capable of isolating the substrate material completely from the electrolyte. The Potentiostatic Exertion measurements showed that the corrosion resistance of electrodeposited niobium coatings was five orders of magnitude better than of the base material AISI 316 in 30 % H2SO2 electrolyte

  1. IMPROVED CORROSION RESISTANCE FOR ALUMINA REFRACTORY

    Energy Technology Data Exchange (ETDEWEB)

    John P. Hurley; Patty L. Kleven

    1999-04-30

    In order to increase the efficiency of advanced coal-fired power systems, higher working fluid temperatures must be reached. Some system surfaces will have to be protected by covering them with corrosion-resistant refractories. Corrosion is the degradation of the material surfaces or grain boundaries by chemical reactions with melts, liquids, or gases causing loss of material and, consequently, a decrease in the strength of the structure. In order to develop methods of reducing corrosion, the microstructure that is attacked must be identified along with the mechanism and rates of attack. Earlier tests with several commercially available high-temperature castable refractories showed that the fused-alumina aggregate grains within the materials had the highest corrosion resistance of any of the castable materials. However, the cement holding the grains was easily attacked. Therefore, to improve the corrosion resistance and thermomechanical properties of alumina-based refractories, we attempted to change the cement to a more corrosion- and erosion-resistant bonding material through the addition of rare-earth oxides (REO). Phase diagrams were used to identify stable high-melting-temperature materials within the lanthanide-alumina series that could modify the bonding phase of the alumina-based refractory. Two mechanisms of reducing corrosion were investigated. One was the formation of corrosion-resistant layers within the refractory. The other was increased sintering to increase strength and seal continuous pores that would reduce slag penetration. Garnets (Re{sub 3}Al{sub 5}O{sub 12}) and perovskites (ReAl{sub 2}O{sub 3}), where Re is the REO, are two of the stable high-melting-temperature materials identified that were believed could be formed in the refractory matrix to help reduce corrosion rates. For the base refractory, Plicast 99 made by Plibrico was chosen. It is a 99% alumina castable composed of fused alumina aggregate and a cement made primarily from Alphabond

  2. Amorphous metal distribution transformers: The energy-efficient alternative

    Energy Technology Data Exchange (ETDEWEB)

    Garrity, T.F. [GE Power Systems, Schenectady, NY (United States)

    1994-12-31

    Amorphous metal distribution transformers have been commercially available for the past 13 years. During that time, they have realized the promise of exceptionally high core efficiency as compared to silicon steel transformer cores. Utility planners today must consider all options available to meet the requirements of load growth. While additional generation capacity will be added, many demand-side initiatives are being undertaken as complementary programs to generation expansion. The efficiency improvement provided by amorphous metal distribution transformers deserves to be among the demand-side options. The key to understanding the positive impact of amorphous metal transformer efficiency is to consider the aggregate contribution those transformers can make towards demand reduction. It is estimated that distribution transformer core losses comprise at least 1% of the utility`s peak demand. Because core losses are continuous, any significant reduction in their magnitude is of great significance to the planner. This paper describes the system-wide economic contributions amorphous metal distribution transformers can make to a utility and suggests evaluation techniques that can be used. As a conservation tool, the amorphous metal transformer contributes to reduced power plant emissions. Calibration of those emissions reductions is also discussed in the paper.

  3. A wear and corrosion resistant α-ferrite toughened Fe9Cr9Si2 ternary intermetallic alloy

    International Nuclear Information System (INIS)

    Mechanical moving components working under corrosion or elevated temperature aggressive service conditions demand tribological materials having excellent combinations of wear and corrosion resistance. Most conventional high-performance wear resistant materials such as high Cr cast irons lack adequate corrosion resistance, while most corrosion resistant materials such as stainless steels are poor in resisting wear. In this paper, a novel α-ferrite toughened Fe9Cr9Si2 wear and corrosion resistant ternary intermetallic alloy was developed with a microstructure consisting of small amount of dispersive α particles well distributed in the continuous matrix of Fe9Cr9Si2 (referred as α/Fe9Cr9Si2 alloy). Corrosion properties were evaluated using the anodic polarization methods in H2SO4 and NaCl water solutions. Wear resistance was tested under room-temperature block-on-wheel dry sliding wear test conditions. Due to the unique chemical composition of both the Cr and Si highly alloyed α and the σ-phase Fe9Cr9Si2, the α/Fe9Cr9Si2 alloy exhibited outstanding corrosion resistance. Due to the excellent combination of high hardness and the strong covalent-dominant atomic bonds of σ-Fe9Cr9Si2, the excellent toughness and ductility of α and the unique chemical composition induced oxidation wear, the α-toughened Fe9Cr9Si2 σ-based alloy exhibited outstanding dry sliding wear resistance

  4. Corrosion resistance improvement of titanium base alloys

    Directory of Open Access Journals (Sweden)

    Mihai V. Popa

    2010-01-01

    Full Text Available The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy.

  5. Energy reversible switching from amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-08-01

    We report observation of energy reversible switching from amorphous metal based nanoelectromechanical (NEM) switch. For ultra-low power electronics, NEM switches can be used as a complementary switching element in many nanoelectronic system applications. Its inherent zero power consumption because of mechanical detachment is an attractive feature. However, its operating voltage needs to be in the realm of 1 volt or lower. Appropriate design and lower Young\\'s modulus can contribute achieving lower operating voltage. Therefore, we have developed amorphous metal with low Young\\'s modulus and in this paper reporting the energy reversible switching from a laterally actuated double electrode NEM switch. © 2013 IEEE.

  6. Amorphous Metal Composites for use in Long-Life, Low-Temperature Gearboxes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed concept is to explore the use of Amorphous Metals (AMs) and Amorphous Metal Composites (AMCs) (fabricated entirely at JPL) for use as gears and bearing...

  7. Improving pitting corrosion resistance of aluminum by anodizing process

    International Nuclear Information System (INIS)

    Summary: Anodizing of aluminum was studied in sulphuric/citric/boric acid electrolyte system to improve pitting corrosion resistance. Maximum oxide film thickness was obtained using 5% sulphuric acid, 3% citric acid and 0.5% boric acid electrolyte composition. The corrosion resistance of aluminum sample was determined to find the effectiveness of oxide coating by potentiodynamic polarization test. The surface morphology of aluminum samples was investigated using scanning electron microscope (SEM) before and after corrosion test. It was found that the coated aluminum sample obtained by anodizing in sulphuric/citric/boric acid electrolyte system exhibited better pitting corrosion resistance with no significant difference in surface morphology. (author)

  8. Increased corrosion resistance of basalt reinforced cement compositions with nanosilica

    OpenAIRE

    URKHANOVA Larisa Alekseevna; LKHASARANOV Solbon Aleksandrovich; ROZINA Victoria Yevgenievna; BUYANTUEV Sergey Lubsanovich; BARDAKHANOV Sergey Prokopievich

    2014-01-01

    Disperse fiber reinforcement is used to improve deformation and shrinkage characteristics, flexural strength of concrete. Basalt roving and thin staple fiber are often used as mineral fibers. The paper considers the problems of using thin basalt fiber produced by centrifugal-blow method. Evaluation of the corrosion resistance of basalt fiber as part of the cement matrix was performed. Nanodispersed silica produced by electron beam accelerator was used to increase corrosion resistance of ba...

  9. Increased corrosion resistance of basalt reinforced cement compositions with nanosilica

    Directory of Open Access Journals (Sweden)

    URKHANOVA Larisa Alekseevna

    2014-08-01

    Full Text Available Disperse fiber reinforcement is used to improve deformation and shrinkage characteristics, flexural strength of concrete. Basalt roving and thin staple fiber are often used as mineral fibers. The paper considers the problems of using thin basalt fiber produced by centrifugal-blow method. Evaluation of the corrosion resistance of basalt fiber as part of the cement matrix was performed. Nanodispersed silica produced by electron beam accelerator was used to increase corrosion resistance of basalt fiber.

  10. Features of exoelectron emission in amorphous metallic alloys

    CERN Document Server

    Veksler, A S; Morozov, I L; Semenov, A L

    2001-01-01

    The peculiarities of the photothermostimulated exoelectron emission in amorphous metallic alloys of the Fe sub 6 sub 4 Co sub 2 sub 1 B sub 1 sub 5 composition are studied. It is established that the temperature dependences of the exoelectron emission spectrum adequately reflect the two-stage character of the amorphous alloy transition into the crystalline state. The exoelectron emission spectrum is sensitive to the variations in the modes of the studied sample thermal treatment. The thermal treatment of the amorphous metallic alloy leads to growth in the intensity of the exoelectrons yield. The highest growth in the intensify of the exoelectron emission was observed in the alloys at the initial stage of their crystallization

  11. Coal Ash Corrosion Resistant Materials Testing

    Energy Technology Data Exchange (ETDEWEB)

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2007-12-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that

  12. Corrosion resistance testing of high-boron-content stainless steels

    International Nuclear Information System (INIS)

    Boron steels, i.e. stainless steels with boron contents of 0.2 to 2.25 wt.%, are employed in nuclear engineering for the manufacture of baskets or wells in which radioactive fissile materials are stored, mostly spent nuclear fuel elements. The resistance of such steels to intergranular corrosion and uniform corrosion was examined in the Strauss solution and in boric acid; the dependence of the corrosion rate of the steels on their chemical composition was investigated, and their resistance was compared with that of AISI 304 type steel. Corrosion resistance tests in actual conditions of ''wet'' compact storage (demineralized water or a weak boric acid solution) gave evidence that boron steels undergo nearly no uniform corrosion and, as electrochemical measurements indicated, match standard corrosion-resistant steels. Corrosion resistance was confirmed to decrease slightly with increasing boron content and to increase somewhat with increasing molybdenum content. (Z.S.). 3 tabs., 4 figs., 7 refs

  13. The corrosion resistance of zinc-nickel composite coatings

    OpenAIRE

    Panek, J; Bierska-Piech; M. Karolus

    2011-01-01

    Purpose: The aim of this work was to estimate the corrosion resistance of composite Zn+Ni and (Ni-Zn+Ni)/Zn coatings by salt spray test, electrochemical methods and grazing incidence X-ray diffraction (GIXD) method.Design/methodology/approach: The corrosion resistance properties of zinc-nickel coatings in 5% NaCl solution were investigated by salt spray test in 5% NaCl solution and electrochemical methods. Using Stern method the corrosion potential - Ecorr, corrosion current density - icorr,...

  14. Formation of Surface Corrosion-Resistant Nanocrystalline Structures on Steel.

    Science.gov (United States)

    Nykyforchyn, Hryhoriy; Kyryliv, Volodymyr; Maksymiv, Olha; Slobodyan, Zvenomyra; Tsyrulnyk, Oleksandr

    2016-12-01

    Engineering materials with nanocrystalline structure could be exploited under simultaneous action of mechanical loading and corrosion environments; therefore, their corrosion resistance is important. Surface nanocrystalline structure was generated on middle carbon steels by severe plastic deformation using the method of mechanical pulse friction treatment. This treatment additionally includes high temperature phase transformation and alloying. Using a complex of the corrosive, electrochemical and physical investigations, it was established that nanocrystalline structures can be characterized by lower or increased corrosion resistance in comparison with the reference material. It is caused by the action of two confronting factors: arising energy level and anticorrosive alloying of the surface layer. PMID:26831689

  15. Hot corrosion resistance of nickel-chromium-aluminum alloys

    Science.gov (United States)

    Santoro, G. J.; Barret, C. A.

    1977-01-01

    The hot corrosion resistance of nickel-chromium-aluminum alloys was examined by cyclically oxidizing sodium sulfate-coated specimens in still air at 900, 1000, and 1100 C. The compositions tested were within the ternary region: Ni, Ni-50 at.% Cr, and Ni-50 at.% Al. At each temperature the corrosion data were statistically fitted to a third order regression equation as a function of chromium and aluminum contents. From these equations corrosion isopleths were prepared. Compositional regions with the best hot corrosion resistance were identified.

  16. Improved Corrosion Resistance of Pulse Plated Nickel through Crystallisation Control

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Watanabe, Tohru; Andersen, Jens Enevold Thaulov; Bech-Nielsen, Gregers

    1995-01-01

    When electrodeposition of nickel is used for corrosion protection of steel two aspects are important. The porosity of the coating and the resistance against corrosion provided by the coating itself. Using simple pulsed current (PC) plating, the size of the deposited crystals can be significantly...... smaller, thereby reducing porosity correspondingly. This usually also leads to improved hardness of the coating. Introducing pulse reversal (PR) plating, the most active crystals are continuously dissolved during the anodic pulse, providing a coating with improved subsequent corrosion resistance in almost...... any corrosive environment. This correlation between film texture and corrosion resistance will be discussed....

  17. Formation of Surface Corrosion-Resistant Nanocrystalline Structures on Steel

    Science.gov (United States)

    Nykyforchyn, Hryhoriy; Kyryliv, Volodymyr; Maksymiv, Olha; Slobodyan, Zvenomyra; Tsyrulnyk, Oleksandr

    2016-02-01

    Engineering materials with nanocrystalline structure could be exploited under simultaneous action of mechanical loading and corrosion environments; therefore, their corrosion resistance is important. Surface nanocrystalline structure was generated on middle carbon steels by severe plastic deformation using the method of mechanical pulse friction treatment. This treatment additionally includes high temperature phase transformation and alloying. Using a complex of the corrosive, electrochemical and physical investigations, it was established that nanocrystalline structures can be characterized by lower or increased corrosion resistance in comparison with the reference material. It is caused by the action of two confronting factors: arising energy level and anticorrosive alloying of the surface layer.

  18. Corrosion-resistant alloys for extremely corrosive media

    International Nuclear Information System (INIS)

    On the basis of established regularities in a composition - structure - properties system the general principles of alloying are formulated, theoretically substantiated and experimentally supported for corrosion-resistant nickel base alloys. The principles developed are applied to designing corrosion-resistant workable and weldable Ni-Mo, Ni-Cr, Ni-Cr-Mo base alloys and bringing them into commercial practice. It is shown that rational application of these structural materials in highly aggressive environments at high temperatures and pressures permits a substantial increase (3-10 times) of service life of critical equipment

  19. Corrosion-resistant, electrically-conductive plate for use in a fuel cell stack

    Science.gov (United States)

    Carter, J. David; Mawdsley, Jennifer R.; Niyogi, Suhas; Wang, Xiaoping; Cruse, Terry; Santos, Lilia

    2010-04-20

    A corrosion resistant, electrically-conductive, durable plate at least partially coated with an anchor coating and a corrosion resistant coating. The corrosion resistant coating made of at least a polymer and a plurality of corrosion resistant particles each having a surface area between about 1-20 m.sup.2/g and a diameter less than about 10 microns. Preferably, the plate is used as a bipolar plate in a proton exchange membrane (PEMFC) fuel cell stack.

  20. Cladding of pressure vessel steel with corrosion resistant filler material

    International Nuclear Information System (INIS)

    Pressure vessels are often on the inside clad with corrosion resistant material. Of the various cladding processes surfacing by welding has proved to be most useful, especially for large thick-walled pressure vessels. Submerged arc welding with strip electrode is the most common method. Rather promising results have also been obtained by plasma hot wire welding. In general, Nb-alloyed austenitic stainless steel, over-alloyed with Cr and Ni, is used as filler material. Henceforth, also nickel alloys, e.g. Inconel 600, are used. The surfacing is made in one or several layers, following the requirements on the clad surface and the welding process used. The most dangerous welding defects in the surface are various types of cracks. The corrosion resistance of the cladding can show rather high local variations, depending on the composition of the filler material and various welding process factors. It is proved that the surface layer comparises areas with low chromium martensite. To ensure the corrosion resistance of the cladding, the generation of low-chromium martensite must be prevented by using suitable welding parameters, welding equipment and filler metal. It is also possible to eliminate the negative influence on the corrosion resistance from the low-chromium martensite, e.g. by welding in two layers. In the case of the high demands on quality a welding procedure test should always be made prior to production welding.(author)

  1. A study on new zirconium alloys with improved corrosion resistance

    International Nuclear Information System (INIS)

    In order to improve the corrosion resistance of zirconium alloys, corrosion mechanism of zirconium alloys has been systematically studied. By acquiring mastery of different existing theories, the new frame of theory system was established. And based on existing test results, seven new zirconium alloys were designed. For different alloy systems, different representative manufacturing processes were designed. And autoclave corrosion tests validated author's design theory. Finally, two new zirconium alloys were obtained which had improved corrosion resistance. The specimens were corroded in pure water and lithiated water at 360°C/18.6 MPa after 200 days exposure, two zirconium alloys with copper and silicon additions were better than other five zirconium alloys. And for the zirconium alloys with Nb content (0.8∼1.2) %, conventional low temperature annealing process should be used, which is beneficial to the corrosion resistance improvement. For the zirconium alloy with Nb content (0.2∼0.5) %, β water quenching process instead of intermediate annealing should be used, which can obviously improve the corrosion resistance of zirconium alloys. (author)

  2. Surface Corrosion Resistance in Turning of Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2015-01-01

    Full Text Available This work addresses the issues associated with implant surface modification. We propose a method to form the oxide film on implant surfaces by dry turning to generate heat and injecting oxygen-rich gas at the turning-tool flank. The morphology, roughness, composition, and thickness of the oxide films in an oxygen-rich atmosphere were characterized using scanning electron microscopy, optical profiling, and Auger electron spectroscopy. Electrochemical methods were used to study the corrosion resistance of the modified surfaces. The corrosion resistance trends, analyzed relative to the oxide film thickness, indicate that the oxide film thickness is the major factor affecting the corrosion resistance of titanium alloys in a simulated body fluid (SBF. Turning in an oxygen-rich atmosphere can form a thick oxide film on the implant surface. The thickness of surface oxide films processed at an oxygen concentration of 80% was improved to 4.6 times that of films processed at an oxygen concentration of 21%; the free corrosion potential shifted positively by 0.357 V, which significantly improved the corrosion resistance of titanium alloys in the SBF. Therefore, the proposed method may (partially replace the subsequent surface oxidation. This method is significant for biomedical development because it shortens the process flow, improves the efficiency, and lowers the cost.

  3. Structural Characterization of Highly Corrosion-resistant Steel

    Czech Academy of Sciences Publication Activity Database

    Lančok, Adriana; Kmjec, T.; Štefánik, M.; Sklenka, L.; Miglierini, M.

    2015-01-01

    Roč. 88, č. 4 (2015), s. 355-361. ISSN 0011-1643 R&D Projects: GA ČR(CZ) GA14-12449S Institutional support: RVO:61388980 Keywords : Mossbauer spectroscopy * corrosion -resistant steel * LC200 * CEMS Subject RIV: CA - Inorganic Chemistry Impact factor: 0.728, year: 2014

  4. Corrosion resistance of phosphated steels with plasma sprayed ceramic coatings

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Mastný, L.; Pokorný, P.

    Zagreb: Croatian Metallurgical Society (CMS), 2014 - (Mamuzić, I.). s. 401 ISBN N. [International Symposium of Croatian Metallurgical Society SHMD 2014/11./. 22.06.2014-26.06.2014, Šibenik] Institutional support: RVO:61389021 Keywords : steel phosphating * phosphate coatings * plasma spraying * ceramic coatings * corrosion resistance * bond strength of coatings Subject RIV: CA - Inorganic Chemistry

  5. High-temperature corrosion resistance of ceramics and ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, P.F.

    1996-06-01

    Ceramics and ceramic composites offer the potential to operate fossil energy systems at the higher temperatures necessary for improved energy efficiency and better environmental control. However, because many fossil fuel-derived processes contain sulfur, chlorine, and carbon, as well as oxygen, degradation from high-temperature corrosion and environmental effects arising from reactions of solids with gases and condensable products is a common life-determining factor in operating systems. Ceramic-based products are not immune to such degradation; adequate corrosion resistance must be assured to exploit the technical and economic potential of such materials. This is normally accomplished by using stable, sound oxides that exist in their bulk form, that naturally grow as surface layers upon exposure to an oxidizing environment, or that are deposited as a coating on a susceptible material. It is therefore important to examine the critical issues with respect to more environmental stability of ceramics that have the potential to be corrosion resistant in particular fossil environments. Key aspects include not only chemical compatibility, but the influence of the environment on the mechanical behavior of the ceramic materials. In addition, for coatings, the mechanical reliability of the ceramic is a key issue in that an otherwise corrosion-resistant surface layer must remain sound and adherent in order to provide protection to the underlying substrate. The purpose of this work is to support the development of advanced ceramics and ceramic composites for applications in fossil environments by examining critical issues related to high-temperature corrosion resistance. More specifically, the overall objective of this task is to examine the chemical compatibility and reliability of potentially corrosion-resistant ceramics being developed as protective overcoats and/or structural materials as parts of other work elements funded by the AR&TD Program.

  6. Characterization and properties of shock and corrosion resistant of titanium based coatings

    International Nuclear Information System (INIS)

    Thermal spraying technologies are an effective way to ensure surface protection against destructive effects of wear, corrosion and oxidizing phenomena. These technologies can be applied in majority of industrial sectors in order to improve properties of new parts or for reconditioning worn out parts technology. Ideally, it would be comfortable to have a material able to resist to all type of wear, but the work condition intricacy combined with economic reason have lead to the development of a big number of powder materials that are used in thermal spraying technologies. The titanium powders are suitable for coating layers which have a good behavior in 'metal on metal friction', toughness, shock and corrosion resistance. In particular, titanium layers obtained by plasma spraying are used in different aerospace and non aerospace applications due to the combination of low density, very good mechanical properties and high corrosion resistance. The accomplishment of new titanium thermal layers is effectively used in order to increase the lifetime of different engine parts securing the thermal protection in use, resistance to high corrosion and oxidizing phenomena. This paper deals about the mechanical properties of Ti based coatings applied by plasma spray process on steel substrates, the obtained results show the possibility to apply titanium coatings where special and high performance materials are needed. (author)

  7. Ion beam mixing in binary amorphous metallic alloys

    International Nuclear Information System (INIS)

    Ion beam mixing (IM) was measured in homogeneous amorphous metallic alloys of Cu-Er and Ni-Ti as a function of temperature using tracer impurities, i.e., the so-called ''marker geometry''. In Cu-Er, a strong temperature dependence in IM was observed between 80 and 3730K, indicating that radiation-enhanced diffusion mechanisms are operative in this metallic glass. Phase separation of the Cu-Er alloy was also observed under irradiation as Er segregated to the vacuum and SiO2 interfaces of the specimen. At low-temperatures, the amount of mixing in amorphous Ni-Ti is similar to that in pure Ni or Ti, but it is much greater in Cu-Er than in either Cu or Er

  8. Some aspects of hydrogen interaction with amorphous metallic materials

    International Nuclear Information System (INIS)

    For the first time is considered change of some properties of amorphous metallic materials (AMM) directly in the process of hydrogenation. A supposition is made that many found effects are consequence of accumulation and relief of internal stresses during hydrogenation, exposure or following annealing of AMM. Fe81B14Si15, Fe52Co20Si15B13, Fe5Co70Si15B10, Fe5Co58Ni10Si11B16, Co67Fe4Cr7Si8B1484KChSP, Ni60Nb35Ti5, Ni60Nb40 and Pd17,5Cu6Si16.5 AMM were investigated. 24 refs.; 4 figs

  9. Laser spot welding of cobalt-based amorphous metal foils

    International Nuclear Information System (INIS)

    The results concerning weldability of amorphous alloy (VAC 6025F) in shape of foils and the quality of laser-spot welded joints are presented in this paper. The aim of the research was the production of a high quality welding joint, by preserving the amorphous structure. The quality of the joint was tested by shear strength analysis and microhardness measuring. The metallographic studies were made by using optical microscope and SEM. The results show that (1) overlapped Co based amorphous metals foils can be welded with high-quality by a pulsed Nd: YAG-Laser, but only within a very narrow laser parameter window; (2) the laser welded spots show comparably high strength as the basic material; (3) the structure of the welded spot remains amorphous, so that the same characteristics as the base material can be achieved. (author)

  10. Enhancement of Corrosion Resistance of Zinc Coatings Using Green Additives

    Science.gov (United States)

    Punith Kumar, M. K.; Srivastava, Chandan

    2014-10-01

    In the present work, morphology, microstructure, and electrochemical behavior of Zn coatings containing non-toxic additives have been investigated. Zn coatings were electrodeposited over mild steel substrates using Zn sulphate baths containing four different organic additives: sodium gluconate, dextrose, dextrin, and saccharin. All these additives are "green" and can be derived from food contents. Morphological and structural characterization using electron microscopy, x-ray diffraction, and texture co-efficient analysis revealed an appreciable alteration in the morphology and texture of the deposit depending on the type of additive used in the Zn plating bath. All the Zn coatings, however, were nano-crystalline irrespective of the type of additive used. Polarization and electrochemical impedance spectroscopic analysis, used to investigate the effect of the change in microstructure and morphology on corrosion resistance behavior, illustrated an improved corrosion resistance for Zn deposits obtained from plating bath containing additives as compared to the pure Zn coatings.

  11. Corrosion Resistance of Zinc Coatings With Aluminium Additive

    Directory of Open Access Journals (Sweden)

    Votava Jiří

    2014-08-01

    Full Text Available This paper is focused on evaluation of anticorrosion protection of inorganic metal coatings such as hot-dipped zinc and zinc-galvanized coatings. The thickness and weight of coatings were tested. Further, the evaluation of ductile characteristics in compliance with the norm ČSN EN ISO 20482 was processed. Based on the scratch tests, there was evaluated undercorrosion in the area of artificially made cut. Corrosion resistance was evaluated in compliance with the norm ČSN EN ISO 9227 (salt-spray test. Based on the results of the anticorrosion test, there can be stated corrosion resistance of each individual protective coating. Tests were processed under laboratory conditions and may vary from tests processed under conditions of normal atmosphere.

  12. Comprehensive Properties of 400 MPa Grade Corrosion-Resistant Rebar

    Institute of Scientific and Technical Information of China (English)

    CHEN Ying; YANG Zhong-min; WANG Hui-min

    2012-01-01

    The corrosion resistance of the developed 400 MPa grade rebar was evaluated by a series of experiments, including cycles of corrosion-accelerating tests in the simulated concrete pore solution and reinforced concrete cube corrosion-accelerating tests and in situ exposure experiments in chloride ions condition. In addition, the tensile and bending properties and the connection adaptability of the developed rebar were investigated. The results verify that the comprehensive properties of the corrosion-resistant rebar are excellent. The tensile and bending properties of the rebar are up to the standard of GB1499-2007. The common welding method and the mechanical connection technology of knob-cut roiled parallel thread splicing are suitable for the rebar.

  13. The corrosion resistance of two non-noble alloys

    OpenAIRE

    Capelo, Sofia; Fernandes, JCS; Proença, L.; Fonseca, ITE

    2013-01-01

    Nickel-chromium and cobalt-chromium alloys are commonly used for crown and bridge castings. These non-noble dental alloys are much cheaper than noble dental alloys but on the other hand they have disadvantages related to their lower corrosion resistance and corrosion products (released ions), some of them recognized as toxic ions that may cause allergies and other oral pathologies. Therefore it is important to evaluate the corrosion behaviour of such alloys. This study aims to evaluate the...

  14. Corrosion resistance properties of sintered duplex stainless steel

    OpenAIRE

    L.A. Dobrzański; Z. Brytan; M. Actis Grande; M. Rosso

    2006-01-01

    Purpose: of this paper was to examine the corrosion resistance of duplex stainless steels using electrochemical methods in 1M NaCl solution. The influence of powder mixes preparation and cooling cycle after sintering on corrosion properties was evaluated.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, martensitic base powders by controlled addition of alloying elements, such as Cr, Ni, Mo and Cu. In the ...

  15. Corrosion resistance of Hf B2-δ compounds

    International Nuclear Information System (INIS)

    The corrosion characteristics of hafnium diboride (elaborated from two types of powder) have been measured in high temperature water (P= 15.5 MPa, T= 345 C). A significant improvement of the corrosion resistance has been obtained by elaboration of metal rich compounds; one of the samples keeps its integrity after 980 hours testing. Hafnium diboride could be a candidate to be used as a control rod absorber material in a new generation of Pressurized Water Reactors. 5 refs., 11 figs., 6 tabs

  16. Impurity control and corrosion resistance of magnesium-aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M. [GM China Lab; Song, GuangLing [ORNL

    2013-01-01

    The corrosion resistance of magnesium alloys is very sensitive to the contents of impurity elements such as iron. In this study, a series of diecast AXJ530 magnesium alloy samples were prepared with additions of Mn and Fe. Through a comprehensive phase diagram calculation and corrosion evaluation, the mechanisms for the tolerance limit of Fe in magnesium alloy are discussed. This adds a new dimension to control the alloying impurity in terms of alloying composition design and casting conditions.

  17. HIGH TEMPERATURE CORROSION RESISTANCE OF METALLIC MATERIALS IN HARSH CONDITIONS

    OpenAIRE

    Novello, Frederic; Dedry, Olivier; De Noose, Vincent; Lecomte-Beckers, Jacqueline

    2014-01-01

    Highly efficient energy recovery from renewable sources and from waste incineration causes new problems of corrosion at high temperature. A similar situation exists for new recycling processes and new energy storage units. These corrosions are generally considered to be caused by ashes or molten salts, the composition of which differs considerably from one plant to another. Therefore, for the assessment of corrosion-resistance of advanced materials, it is essential to precisely evaluate the c...

  18. Corrosion resistant coatings suitable for elevated temperature application

    Science.gov (United States)

    Chan, Kwai S.; Cheruvu, Narayana Sastry; Liang, Wuwei

    2012-07-31

    The present invention relates to corrosion resistance coatings suitable for elevated temperature applications, which employ compositions of iron (Fe), chromium (Cr), nickel (Ni) and/or aluminum (Al). The compositions may be configured to regulate the diffusion of metals between a coating and a substrate, which may then influence coating performance, via the formation of an inter-diffusion barrier layer. The inter-diffusion barrier layer may comprise a face-centered cubic phase.

  19. High rate sputtering of corrosion-resistant alloys

    International Nuclear Information System (INIS)

    High corrosion-resitant films of amorphous Fe sub(80-X)Cr sub(X)P sub(13)C sub(7), Fe45Cr30Mo5P13C7, Cr70C30, Cr75B25 and Ti75B25 were deposited by dc-triode sputtering on water-cooled copper substrate. X-ray diffractometry showed a few diffraction patterns that characterize the amorphous structure for deposited films. High sputtering rate of about 0.1 μm/min was achieved by applying high ion current densities to the sputtering target under 10-2 Torr of Ar gas. The high dense Ar plasma ions were produced using a plasma generator. The microhardness of amorphous Cr70C30, Cr75B25 and Ti75B25 were 1288, 1168 and 1081, respectively. The films, which contain high corrosion resitant alloying elements such as Cr and Ti, show extremely high corrosion resistance, particularly pitting corrosion resistance in IN HCI. The high corrosion resistance of these films is attributable to the enrichment of Cr and Ti in the passive films. (author)

  20. Electrodeposition and Corrosion Resistance of Ni-Graphene Composite Coatings

    Science.gov (United States)

    Szeptycka, Benigna; Gajewska-Midzialek, Anna; Babul, Tomasz

    2016-03-01

    The research on the graphene application for the electrodeposition of nickel composite coatings was conducted. The study assessed an important role of graphene in an increased corrosion resistance of these coatings. Watts-type nickel plating bath with low concentration of nickel ions, organic addition agents, and graphene as dispersed particles were used for deposition of the composite coatings nickel-graphene. The results of investigations of composite coatings nickel-graphene deposited from the bath containing 0.33, 0.5, and 1 g/dm3 graphene and one surface-active substance were shown. The contents of particles in coatings, the surface morphology, the cross-sectional structures of the coated samples, and their thickness and the internal stresses were studied. Voltammetric method was used for examination of the corrosion resistance of samples of composite coatings in 0.5 M NaCl. The obtained results suggest that the content of incorporated graphene particles increases with an increasing amount of graphene in plating bath. The application of organic compounds was advantageous because it caused compressive stresses in the deposited coatings. All of the nickel-graphene composite layers had better corrosion resistance than the nickel coating.

  1. Corrosion resistance diagnosing device for material of incore structure

    International Nuclear Information System (INIS)

    Corrosion resistance is easily diagnosed by judging the presense of stress corrosion crack sensitivity based on the degree of corrosion for incore structural materials in a BWR type reactor. Heretofore, visual detection by using a submerged TV camera has been popular as a detection means for incore structures. However, if the shape of the incore structures is complicate, limit is imposed on the detection and a detection for the strength of the materials themselves can not be conducted in a conventional method. The device of the present invention comprises a device for measuring corrosion sensitivity of materials to be diagnosed, a device for calculating the corrosion resistance based on the degree of corrosion obtained therefrom and a device for displaying the result of the calculation. With such a constitution, the corrosion resistance of the structural materials can be diagnosed based on the correlation between the increase of the degree of the corrosion caused by neutron irradiation and the increase of SCC sensitivity. (I.S.)

  2. The corrosion resistance of zinc-nickel composite coatings

    Directory of Open Access Journals (Sweden)

    J. Panek

    2011-04-01

    Full Text Available Purpose: The aim of this work was to estimate the corrosion resistance of composite Zn+Ni and (Ni-Zn+Ni/Zn coatings by salt spray test, electrochemical methods and grazing incidence X-ray diffraction (GIXD method.Design/methodology/approach: The corrosion resistance properties of zinc-nickel coatings in 5% NaCl solution were investigated by salt spray test in 5% NaCl solution and electrochemical methods. Using Stern method the corrosion potential - Ecorr, corrosion current density - icorr, and polarization resistance - Rp. have been determined as a measure of corrosion resistance. Phase composition of the corrosion products was determined by X-ray diffraction using Bragg-Brentano and grazing incidence X-ray diffraction (GIXD methods.Findings: The corrosion resistance of zinc-nickel coatings is dependent on Ni content and it grows with the increase in Ni percentage in the coatings. The higher corrosion resistance could be attributed to the presence of intermetallic Ni2Zn11 phase. The maximum protective ability is reached for the coatings above 40% Ni, where the content of this phase is the highest. The results of salt spray test exhibit the appearance of white rust corrosion, which is characteristic for zinc oxidation process. The main component of corrosion products was Zn5(OH8Cl2ּH2O phase. The products related to the nickel or steel substrate corrosion process were not found.The application of the GIXD technique has allowed to determine the changes in the phase composition of the corrosion products in the zinc and zinc-nickel coatings versus the penetration depth of the X-ray radiation. The presence of corrosion products on the electrode surface results in further improve in their protective ability and the limiting of the corrosion processes.Research limitations/implications: Special attachment for GIXD technique is required for the experiment.Practical implications: The zinc-nickel coatings could be applied as protective coatings for steel

  3. Development of high performance cladding

    International Nuclear Information System (INIS)

    The developments of superior next-generation light water reactor are requested on the basis of general view points, such as improvement of safety, economics, reduction of radiation waste and effective utilization of plutonium, until 2030 year in which conventional reactor plants should be renovate. Improvements of stainless steel cladding for conventional high burn-up reactor to more than 100 GWd/t, developments of manufacturing technology for reduced moderation-light water reactor (RMWR) of breeding ratio beyond 1.0 and researches of water-materials interaction on super critical pressure-water cooled reactor are carried out in Japan Atomic Energy Research Institute. Stable austenite stainless steel has been selected for fuel element cladding of advanced boiling water reactor (ABWR). The austenite stain less has the superiority for anti-irradiation properties, corrosion resistance and mechanical strength. A hard spectrum of neutron energy up above 0.1 MeV takes place in core of the reduced moderation-light water reactor, as liquid metal-fast breeding reactor (LMFBR). High performance cladding for the RMWR fuel elements is required to get anti-irradiation properties, corrosion resistance and mechanical strength also. Slow strain rate test (SSRT) of SUS 304 and SUS 316 are carried out for studying stress corrosion cracking (SCC). Irradiation tests in LMFBR are intended to obtain irradiation data for damaged quantity of the cladding materials. (M. Suetake)

  4. Corrosion Resistance of Amorphous Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4 coating - a new criticality-controlled material

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Choi, J S; Saw, C K; Rebak, R; Day, S D; Lian, T; Hailey, P; Payer, J H; Branagan, D J; Aprigliano, L F

    2007-03-28

    An iron-based amorphous metal with good corrosion resistance and a high absorption cross-section for thermal neutrons has been developed and is reported here. This amorphous alloy has the approximate formula Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4} and is known as SAM2X5. Chromium (Cr), molybdenum (Mo) and tungsten (W) were added to provide corrosion resistance, while boron (B) was added to promote glass formation and the absorption of thermal neutrons. Since this amorphous metal has a higher boron content than conventional borated stainless steels, it provides the nuclear engineer with design advantages for criticality control structures with enhanced safety. While melt-spun ribbons with limited practical applications were initially produced, large quantities (several tons) of gas atomized powder have now been produced on an industrial scale, and applied as thermal-spray coatings on prototypical half-scale spent nuclear fuel containers and neutron-absorbing baskets. These prototypes and other SAM2X5 samples have undergone a variety of corrosion testing, including both salt-fog and long-term immersion testing. Modes and rates of corrosion have been determined in various relevant environments, and are reported here. While these coatings have less corrosion resistance than melt-spun ribbons and optimized coatings produced in the laboratory, substantial corrosion resistance has been achieved.

  5. Effects Of Aluminum Sputtering On The Corrosion Resistance Of AZ91 Alloy

    Directory of Open Access Journals (Sweden)

    Ishibashi Y.

    2015-06-01

    Full Text Available The corrosion resistance of a Magnesium alloy is low and needs to be improved. This research aimed at corrosion-resistance improvement by supatterd deposition aluminium film, which is formed on the surface of AZ91 Magnesium-alloy. Corrosion resistance performed polarization curve measurement, was evaluated in quest of the corrosion rate using the Tafel extrapolation method, and conducted surface observation and EDS analysis by SEM. Although corrosion resistance is not improved only by film forming because of defects in film, corrosion resistance is improved by heat treatment for 3 hours by 553K after sputtering. In the case of heat treated at 623K and 673K for 3 hours, magnesium diffuses through the alminium film and reached the surface of the film. Thus, heat treatment at high temperature degrade the corrosion resistance of the film. The optimization of heat treatment after sputtering is important in this method.

  6. Improvement on Corrosion Resistance of Zirconia-Graphite Material for Powder Line of SEN

    Institute of Scientific and Technical Information of China (English)

    LI Hongxia; YANG Bin; YANG Jinsong; LIU Guoqi

    2003-01-01

    The influence of anti-oxidation additions and microstructure characters off used zirconia raw materials on the corrosion resistance of ZrO2-C were studied. The results show that BN addition can enhance the corrosion resistance of ZrO2-C due to the prevention of graphite oxidation,and zirconia raw material with good crystallization and densification will give better corrosion resistance by restrain the reaction between slag and zirconia.

  7. Corrosion resistance of metal materials for HLW canister

    International Nuclear Information System (INIS)

    In order to verify the materials as an important artificial barrier for canister of vitrified high-level waste from spent fuel reprocessing, data and reports were researched on corrosion resistance of the materials under conditions from glass form production to final disposal. Then, in this report, investigated subjects, improvement methods and future subjects are reviewed. It has become clear that there would be no problem on the inside and outside corrosion of the canister during glass production, but long term corrosion and radiation effect tests and the vitrification methods would be subjects in future on interim storage and final disposal conditions. (author)

  8. Development of weldable, corrosion-resistant iron-aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.; Goodwin, G.M.; Wang, X.L. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    Corrosion-resistant, weldable FeAl alloys have been developed with improved high-temperature strength industrial applications. Previous processing difficulties with these alloys led to their evaluation as weld-overlay claddings on conventional structural steels to take advantage of their good properties now. Simplified and better processing methods for monolithic FeAl components are also currently being developed so that components for industrial testing can be made. Other avenues for producing FeAl coatings are currently being explored. Neutron scattering experiments residual stress distributions in the FeAl weld-overlay cladding began in FY 1993 and continued this year.

  9. Increasing corrosion resistance of carbon steels by surface laser cladding

    Science.gov (United States)

    Polsky, V. I.; Yakushin, V. L.; Dzhumaev, P. S.; Petrovsky, V. N.; Safonov, D. V.

    2016-04-01

    This paper presents results of investigation of the microstructure, elemental composition and corrosion resistance of the samples of low-alloy steel widely used in the engineering, after the application of laser cladding. The level of corrosion damage and the corrosion mechanism of cladded steel samples were established. The corrosion rate and installed discharge observed at the total destruction of cladding were obtained. The regularities of structure formation in the application of different powder compositions were obtained. The optimal powder composition that prevents corrosion of samples of low-carbon low-alloy steel was established.

  10. Layered double hydroxides for aluminium alloys corrosion resistance

    OpenAIRE

    Rangel, C. M.; Travassos, Maria Antónia

    2007-01-01

    Layered Double Hydroxides (LDHμs), represented by the general formula [MII (1-x)MIIIx(OH)2[An-x/n].zH2O or [MIMIII2(OH)6[An-1/n].zH2O], where MI, MII, MIII are mono-, di- and tri-valent metal cations, are being researched as anion-exchange materials with interesting intercalation chemistry that accommodate a wide range of applications including corrosion resistance. In this work, layered double hydroxides containing a monovalent (Li+) and trivalent (Al3+) matrix cations, have ...

  11. Studies on broad spectrum corrosion resistant oxide coatings

    Indian Academy of Sciences (India)

    Someswar Datta

    2001-12-01

    The corrosion resistant oxide coatings, developed and applied by the conventional vitreous enamelling techniques, showed superior resistance to a range of mineral acids at various strengths and temperatures, alkaline solutions, boiling water and chrome plating solutions. These coatings possess considerable abrasion and impact resistance as well as high thermal shock resistance. The properties of the coating system have been studied in detail and found to be strongly dependent on composition and processing parameters. These coatings have been characterized by X-ray diffraction analysis and SEM studies. Some of the coating materials have been found to be biocompatible.

  12. Formation and Corrosion Resistance of Amorphous Ti Base Alloys

    OpenAIRE

    Naka, M.; Okada, T.; T. Matsui

    1996-01-01

    Corrosion resistant amorphous Ti-B and Ti-Si alloys were prepared on various substrates by RF sputtering. The alloying of B content of 8 at% or more stabilizes the amorphous structure. The corrosion properties of Ti alloys were evaluated by measuring the polarization curves in 1N HCl. Although the addition of B to crystalline bulky Ti shifts the corrosion potentials of Ti to the less nobles of -0.5 V(SCE) or less, that of B to amorphous sputtered Ti moves the corrosion potentials to the noble...

  13. Electrochemical Studies of Passive Film Stability on Fe48Mo14Cr15Y2C15B Amorphous Metal in Seawater at 90oC and 5M CaCl2 at 105oC

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Day, S D; Lian, T; Saw, C K; Hailey, P D; Blue, C A; Peters, W; Payer, J H; Perepezko, J H; Hildal, K; Branagan, D J; Buffa, E J; Aprigliano, L

    2007-04-25

    Several Fe-based amorphous metal formulations have been identified that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22 (UNS N06022), based on measurements of breakdown potential and corrosion rate in seawater. Both chromium (Cr) and molybdenum (Mo) provide corrosion resistance, boron (B) enables glass formation, and rare earths such as yttrium (Y) lower critical cooling rate (CCR). Amorphous Fe{sub 48.0}Cr{sub 15.0}Mo{sub 14.0}B{sub 6.0}C{sub 15.0}Y{sub 2.0} (SAM1651) has a low critical cooling rate (CCR) of less than 80 Kelvin per second, due to the addition of yttrium. The low CCR enables it to be rendered as a completely amorphous material in practical materials processes. While the yttrium enables a low CCR to be achieved, it makes the material relatively difficult to atomize, due to increases in melt viscosity. Consequently, the powders produced thus far have had irregular shape, which had made pneumatic conveyance during thermal spray deposition difficult.

  14. Corrosion resistance of kolsterised austenitic 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Abudaia, F. B., E-mail: fabudaia@yahoo.com; Khalil, E. O., E-mail: ekhalil9@yahoo.com; Esehiri, A. F., E-mail: Hope-eseheri@hotmail.co.uk; Daw, K. E., E-mail: Khawladaw@yahoo.com [University of Tripoli Department of Materials and Metallurgical Eng, Tripoli-Libya P.O.Box13589 (Libya)

    2015-03-30

    Austenitic stainless suffers from low wear resistance in applications where rubbing against other surfaces is encountered. This drawback can be overcome by surface treatment such as coating by hard materials. Other treatments such as carburization at relatively low temperature become applicable recently to improve hardness and wear resistance. Carburization heat treatment would only be justified if the corrosion resistance is unaffected. In this work samples of 304 stainless steels treated by colossal supersaturation case carburizing (known as Kolsterising) carried out by Bodycote Company was examined for pitting corrosion resistance at room temperature and at 50 °C. Comparison with results obtained for untreated samples in similar testing conditions show that there is no deterioration in the pitting resistance due to the Kolsterising heat treatment. X ray diffraction patterns obtained for Kolsterising sample showed that peaks correspond to the austenite phase has shifted to lower 2θ values compared with those of the untreated sample. The shift is an indication for expansion of austenite unit cells caused by saturation with diffusing carbon atoms. The XRD of Kolsterising samples also revealed additional peaks appeared in the patterns due to formation of carbides in the kolsterised layer. Examination of these additional peaks showed that these peaks are attributed to a type of carbide known as Hagg carbide Fe{sub 2}C{sub 5}. The absence of carbides that contain chromium means that no Cr depletion occurred in the layer and the corrosion properties are maintained. Surface hardness measurements showed large increase after Kolsterising heat treatment.

  15. PREFACE: 13th International Conference on Liquid and Amorphous Metals

    Science.gov (United States)

    Popel, Pjotr; Gelchinskii, Boris; Sidorov, Valeriy; Son, Leonid; Sabirzjanov, Alexandre

    2007-06-01

    The state of the art in the field of liquid and amorphous metals and alloys is regularly updated through two series of complementary international conferences, the LAM (Liquid and Amorphous Metals) and the RQ (Rapidly Quenched Materials). The first series of the conferences started as LM-1 in 1966 at Brookhaven for the basic understanding of liquid metals. The subsequent LM conferences were held in Tokyo (1972) and Bristol (1976). The conference was renewed in Grenoble (1980) as a LAM conference including amorphous metals and continued in Los Angeles (1983), Garmisch-Partenkirchen (1986), Kyoto (1989), Vienna (1992), Chicago (1995), Dortmund (1998), Yokohama (2001) and Metz (2004). The conferences are mainly devoted to liquid and amorphous metals and alloys. However, communications on some non-metallic systems such as semi conductors, quasicrystals etc, were accepted as well. The conference tradition strongly encourages the participation of junior researchers and graduate students. The 13th conference of the LAM series was organized in Ekaterinburg, Russia, by the Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences (IMet UB RAS) and Ural State Pedagogical University (USPU) and held on 8-13 July 2007 under the chairmanship of Professors Pjotr Popel (USPU) and Boris Gelchinskii (IMet UB RAS). There were 242 active and about 60 guest participants from 20 countries who attended the conference. There were no parallel sessions and all oral reports were separated into three groups: invited talks (40 min), full-scale (25 min) and brief (15 min) oral reports. The program included 10 sessions, ranging from purely theoretical subjects to technological application of molten and amorphous alloys. The following sessions took place: A) Electronic structure and transport, magnetic properties; B) Phase transitions; C) Structure; D) Atomic dynamics and transport; E) Thermodynamics; F) Modelling, simulation; G) Surface and interface; H) Mechanical properties

  16. [The corrosion resistance of aluminum and aluminum-based alloys studied in artificial model media].

    Science.gov (United States)

    Zhakhangirov, A Zh; Doĭnikov, A I; Aboev, V G; Iankovskaia, T A; Karamnova, V S; Sharipov, S M

    1991-01-01

    Samples of aluminum and its alloys, designed for orthodontic employment, were exposed to 4 media simulating the properties of biologic media. The corrosion resistance of the tested alloys was assessed from the degree of aluminum migration to simulation media solutions, which was measured by the neutron activation technique. Aluminum alloy with magnesium and titanium has shown the best corrosion resistance. PMID:1799002

  17. A high-specific-strength and corrosion-resistant magnesium alloy.

    Science.gov (United States)

    Xu, Wanqiang; Birbilis, Nick; Sha, Gang; Wang, Yu; Daniels, John E; Xiao, Yang; Ferry, Michael

    2015-12-01

    Ultra-lightweight alloys with high strength, ductility and corrosion resistance are desirable for applications in the automotive, aerospace, defence, biomedical, sporting and electronic goods sectors. Ductility and corrosion resistance are generally inversely correlated with strength, making it difficult to optimize all three simultaneously. Here we design an ultralow density (1.4 g cm(-3)) Mg-Li-based alloy that is strong, ductile, and more corrosion resistant than Mg-based alloys reported so far. The alloy is Li-rich and a solute nanostructure within a body-centred cubic matrix is achieved by a series of extrusion, heat-treatment and rolling processes. Corrosion resistance from the environment is believed to occur by a uniform lithium carbonate film in which surface coverage is much greater than in traditional hexagonal close-packed Mg-based alloys, explaining the superior corrosion resistance of the alloy. PMID:26480229

  18. Facile formation of superhydrophobic aluminum alloy surface and corrosion-resistant behavior

    Science.gov (United States)

    Feng, Libang; Yan, Zhongna; Qiang, Xiaohu; Liu, Yanhua; Wang, Yanping

    2016-03-01

    Superhydrophobic surface with excellent corrosion resistance was prepared on aluminum alloy via boiling water treatment and surface modification with stearic acid. Results suggested that the micro- and nanoscale hierarchical structure along with the hydrophobic chemical composition surface confers the aluminum alloy surface with good superhydrophobicity, and the water contact angle and the water sliding angle can reach 156.6° and 3°, respectively. The corrosion resistance of the superhydrophobic aluminum alloy was first characterized by potentiodynamic polarization, and then the long-term corrosion resistance was investigated by immersing the sample in NaCl solution for 90 days. The surface wettability, morphology, and composition before and after immersion were examined, and results showed that the superhydrophobic aluminum alloy surface possessed good corrosion resistance under the experimental conditions, which is favorable for its practical application as an engineering material in seawater corrosion conditions. Finally, the mechanism of the superhydrophobicity and excellent corrosion resistance is deduced.

  19. Corrosion resistance of 2195 aluminum alloy treated by multi-step-heating-rate controlled process

    Institute of Scientific and Technical Information of China (English)

    XU Yue; LIU Yu-feng; GENG Ji-ping

    2006-01-01

    2195 aluminum-lithium alloy was widely applied in the aviation and aerospace industry, but it is highly susceptible to pitting and intergranular corrosion undergoing sever corrosive circumstance and moisture atmosphere. To solve this problem and consequently to prolong its service life, a multi-step-heating-rate(MSRC) process was carried out. Investigations were carried out to find the effect of the MSRC process on the alloys corrosion resistance. It is found that the MSRC process is more favorable for the uniform phase precipitation by comparing the corrosion resistance of samples treated by traditional heat treatments. The potential difference between phases can be reduced and intergranular corrosion is able to be prohibited efficiently. Besides, the rare earth infiltration is beneficial to improving the corrosion resistance. As heating time increases, the corrosion resistance declines gradually,samples treated by artificial aging and solid solution also exhibit a better corrosion resistance.

  20. Corrosion resistance properties of sintered duplex stainless steel

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2006-09-01

    Full Text Available Purpose: of this paper was to examine the corrosion resistance of duplex stainless steels using electrochemical methods in 1M NaCl solution. The influence of powder mixes preparation and cooling cycle after sintering on corrosion properties was evaluated.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, martensitic base powders by controlled addition of alloying elements, such as Cr, Ni, Mo and Cu. In the studies behind the preparation of mixes, Schaeffler’s diagram was taken into consideration. Prepared mixes have been compacted at 800 MPa and sintered in a vacuum furnace with argon backfilling at 1260°C for 1 h. After sintering two different cooling cycles were applied: rapid cooling with an average cooling rate of 245 °C/min and slow cooling of 5 °C/min in argon atmosphere. Produced duplex stainless steels have been studied by scanning and optical microscopy and EDS chemical analysis of microstructure components. Corrosion properties have been studied through electrochemical methods in 1M NaCl water solutionFindings: According to achieved results, it was affirmed that applied sintering method as well as powder mixes preparation allows for manufacturing the sintered duplex steels with good corrosion properties which depends on austenite/ferrite ratio in the microstructure and elements partitioning between phases. Corrosion resistance of sintered stainless steels is strictly connected with the density and the pore morphology present in the microstructure too. The highest resistance to pitting corrosion in 1M NaCl solution was achieved for composition with approximate balance of ferrite and austenite in the microstructure.Research limitations/implications: According to the powders characteristic, the applied fast cooling rate seems to be a good compromise for corrosion properties and microstructures, nevertheless further tests should be carried out in

  1. Selection of Corrosion Resistant Materials for Nuclear Waste Repositories

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B

    2006-06-01

    Several countries are considering geological repositories to dispose of nuclear waste. The environment of most of the currently considered repositories will be reducing in nature, except for the repository in the US, which is going to be oxidizing. For the reducing repositories alloys such as carbon steel, stainless steels and titanium are being evaluated. For the repository in the US, some of the most corrosion resistant commercially available alloys are being investigated. This paper presents a summary of the behavior of the different materials under consideration for the repositories and the current understanding of the degradation modes of the proposed alloys in ground water environments from the point of view of general corrosion, localized corrosion and environmentally assisted cracking.

  2. CORROSION RESISTANCE OF ALUMINUM CANS IN CONTACT WITH BEER

    Directory of Open Access Journals (Sweden)

    Luiza Esteves

    2015-07-01

    Full Text Available Aluminum cans with an organic coating are used in Brazil as packaging for carbonated beverages (soft drinks, beer, which act as electrolyte solutions. These electrolytes, in contact with the inner metal can, initiate a corrosion process of aluminum. The presence of metallic ions can change the flavor of the beverage, compromising the product quality. This work aims to evaluate the corrosion resistance of aluminum in beer environment using the technique of Electrochemical Impedance Spectroscopy (EIS. The Scanning Electron Microscopy (SEM and the Energy Dispersive Spectroscopy (EDS were used to evaluate the metal surface. Two batches with different coating thickness were analyzed for the same date of manufacture. The electrolyte resistance and the aluminum charge transfer resistance in beer varied depending on the batch analyzed.

  3. Corrosion-resistant iridium dioxide-based anodes

    International Nuclear Information System (INIS)

    The most important results on corrosion-electrochemical behaviour of metal oxide anodes with an active coating (AC) on the basis of RuO2 and/or IrO2 have been analyzed. Stationary rates of corrosion and oxygen content in chlorine gas on the electrodes under conditions of chloric electrolysis have been ascertained, being 300 g/l NaCl, pH 2, T-87 deg. It has been detected that AC from IrO2 excels by two orders AC from RuO2, as regards its corrosion resistance. In contrast to RuO2 the rate of IrO2 dissolution depends but slightly on solution acidity. The anodes 30 mol.% (IrO2+RuO2)+70 mol.% TiO2 have been produced. 40 refs., 4 figs

  4. Selection of Corrosion Resistant Materials for Nuclear Waste Repositories

    International Nuclear Information System (INIS)

    Several countries are considering geological repositories to dispose of nuclear waste. The environment of most of the currently considered repositories will be reducing in nature, except for the repository in the US, which is going to be oxidizing. For the reducing repositories, alloys such as carbon steel, stainless steels and titanium are being evaluated. For the repository in the US, some of the most corrosion resistant commercially available alloys are being investigated. This paper presents a summary of the behavior of the different materials under consideration for the repositories and the current understanding of the degradation modes of the proposed alloys in ground water environments from the point of view of general corrosion, localized corrosion and environmentally assisted cracking

  5. Assessing resistance of stabilized corrosion resistant steels to intergranular corrosion

    International Nuclear Information System (INIS)

    Resistance to intergranular corrosion was determined for four types of titanium-stabilized steels from the coefficients of stabilization efficiency according to the degree the chemical composition was known. The ATA SUPER steel showed the highest resistance parameter value. The resistance of this type of steel of a specific composition, showing a relatively low value of mean nitrogen content was compared with steel of an optimized chemical composition and with low-carbon niobium stabilized, molybdenum modified steels. The comparison showed guarantees of a sufficient resistance of the steel to intergranular corrosion. The method of assessing the resistance to intergranular corrosion using the calculation of the minimum content of Cr', i.e., the effective chromium content, and the maximum effective carbon content C' giving the resistance parameter k seems to be prospective for practical use in the production of corrosion resistant steels. (author). 1 tab., 5 figs., 15 refs

  6. Structure and corrosion resistance of gradient and multilayer coatings

    OpenAIRE

    L.A. Dobrzański; K. Lukaszkowicz; J. Mikuła; D. Pakuła

    2006-01-01

    Purpose: Investigation of the structure and corrosion resistance of the TiN, TiN+multiTiAlSiN+TiN,TiN+TiAlSiN+TiN, TiN+TiAlSiN+AlSiTiN coatings deposited by PVD process and TiCN+TiN,TiCN+Al2O3+TiN, TiC+TiCN+Al2O3+TiN, TiN+Al2O3 coatings deposited by CVD process.Design/methodology/approach: The metallographic examinations (SEM), the examinations of thin foils(TEM), investigation of the electrochemical corrosion behavior of the samples in a PGP 201 Potentiostat/Galvanostat, in a three-electrode...

  7. Tailored Aluminium based Coatings for Optical Appearance and Corrosion Resistance

    DEFF Research Database (Denmark)

    Aggerbeck, Martin

    The current project investigated the possibility of designing aluminium based coatings focusing on the effect of composition and surface finish on the optical appearance and on the alkaline corrosion properties using titanium as the main alloying element. The main results and discussions of this...... the previously described magnetron sputtered Al-Ti coatings showed that 13 wt. % titanium and more improved the corrosion resistance at pH 13.5 and this was further improved by heat treatment, especially at 400 °C and more. The improved corrosion properties were ascribed to structural relaxation......, decreased galvanic potential differences in the microstructure, and protection from the network of the Al3Ti phases precipitated during the heat treatment. Laser surface cladding of aluminium containing up to 20 wt. % Ti6Al4V were studied focusing on the microstructure and the alkaline corrosion properties...

  8. Fatigue crack propagation properties on corrosion resistant welded joints

    International Nuclear Information System (INIS)

    Fatigue crack growth resistance properties are obtained through fatigue crack propagation tests. The results, obtained from a log-log plot presents three regions: region I, where the microstructure, mean stress and environment have a high influence. Region II, that presents a linear behavior and region III where the material reaches the fracture toughness and results in an instable fracture. In this work it is studied the behavior of corrosion resistant USI SAC 50 steel welded joints, using compact tension specimens with notch localized on the base metal, heat affected zone and melted zone. It is obtained stable crack propagation equations type Paris equation for the region II, with 95% confidence limit. It is observed that the heat-affected zone presents a major scatter. (authors)

  9. Corrosion resistance of Mg-RE-Zr alloys

    Directory of Open Access Journals (Sweden)

    A. Kiełbus

    2007-03-01

    Full Text Available Purpose: Magnesium alloys are widely used in the automotive and aerospace industries. Data concerning corrosion of Mg alloys are numerous, but those concerning Mg-RE alloys are scarce. In this paper, the corrosion behavior of cast magnesium alloys containing rare earth elements (WE54, WE43 and Elektron21 were investigated by immersion test in 3.5% NaCl for times up to 7 days.Design/methodology/approach: The study was conducted on WE54, WE43 and Elektron 21 alloys in the as-cast condition. Immersion test was performed using not deaerated 3.5% NaCl solution at room temperature. Several specimens were placed in 3.5% NaCl solution for periods of time between one and 7 days. The dissolution rates (mg/cm-2day-1 were determined by weight loss measurements.Findings: Elektron 21 alloy exhibits the highest corrosion rate during the immersion test, while WE54 and WE43 alloys had a similar corrosion behavior. The corrosion rates of WE54 and Elektron 21 alloys incresed lineally with increasing the exposure time in 3.5% NaCl, and that of WE43 was almost unchanged and finally reached maximum value 0.26 mg/cm-2day-1.Research limitations/implications: The knowledge about corrosion behavior of Mg-RE-Zr alloys is currently under evaluation on many speciality applications where lightweight connected with optimum corrosion resistance are requiredPractical implications: The comparative results of corrosion behavior of new Mg-RE-Zr alloys leads to optimum choice of alloy for application in automotive, aircraft and aerospace industries.Originality/value: This paper includes the comparative results of corrosion resistance investigations of new Mg-RE–Zr alloys.

  10. 77 FR 13093 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2012-03-05

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... administrative review of the countervailing duty (``CVD'') order on corrosion-resistant carbon steel flat... Review'' below. \\1\\ See Corrosion-Resistant Carbon Steel Flat Products from the Republic of...

  11. 77 FR 31877 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full Five...

    Science.gov (United States)

    2012-05-30

    ... COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full Five... duty order on corrosion-resistant carbon steel flat products from Korea and the antidumping duty orders on corrosion- resistant carbon steel flat products from Germany and Korea would be likely to lead...

  12. 78 FR 16832 - Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea: Revocation...

    Science.gov (United States)

    2013-03-19

    ...-Year (``Sunset'') Review, 77 FR 85 (January 3, 2012). \\2\\ See Corrosion-Resistant Carbon Steel Flat... Corrosion- Resistant Carbon Steel Flat Products From Germany and Korea, 77 FR 301 (January 4, 2012). As a... Steel Flat Products From Germany and Korea, 78 FR 15376 (March 11, 2013) and Corrosion-Resistant...

  13. 77 FR 24221 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Notice of Commission...

    Science.gov (United States)

    2012-04-23

    ... COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Notice of Commission... countervailing duty order on corrosion-resistant carbon steel flat products from Korea and the antidumping duty orders on corrosion- resistant carbon steel flat products from Germany and Korea would be likely to...

  14. Effect of silicate pretreatment, post-sealing and additives on corrosion resistance of phosphated galvanized steel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Sodium silicate (water glass) pretreatment before phosphating, silicate post-sealing after phosphating and adding silicate to a traditional phosphating solution were respectively carried out to obtain the improved phosphate coatings with high corrosion resistance and coverage on hot-dip galvanized(HDG) steel. The corrosion resistance, morphology and chemical composition of the coatings were investigated using neutral salt spray(NSS) tests, scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS). The results show that pretreatment HDG steel with silicate solutions, phosphate coatings with finer crystals and higher coverage are formed and the corrosion resistance is enhanced. Adding silicate to a traditional phosphating solution, the surface morphology of the coatings is nearly unchanged. The corrosion resistance of the coatings is mainly dependent on phosphating time.Phosphating for a longer time (such as 5 min), the corrosion resistance, increasing with concentration of silicate, is improved significantly. Post-sealing the phosphated HDG steel with silicate solutions, the pores among the zinc phosphate crystals are sealed with the films containing Si, P, O and Zn and the continuous composite coatings are formed. The corrosion resistance of the composite coatings, related to the pH value, contents of hydrated gel of silica and Si2O52- and post-sealing time, is increased markedly. The improved coatings with optimal corrosion resistance are obtained for phosphating 5 min and post-sealing with 5 g/L silicate solution for 10 min.

  15. Corrosion resistance of porous NiTi biomedical alloy in simulated body fluids

    Science.gov (United States)

    Stergioudi, F.; Vogiatzis, C. A.; Pavlidou, E.; Skolianos, S.; Michailidis, N.

    2016-09-01

    The corrosion performance of two porous NiTi in physiological and Hank’s solutions was investigated by potentiodynamic polarization, cyclic polarization and impedance spectroscopy. Electric models simulating the corrosion mechanism at early stages of immersion were proposed, accounting for both microstructural observations and electrochemical results. Results indicate that both porous samples were susceptible to localized corrosion. The porosity increase (from 7% to 18%) resulted in larger and wider pore openings, thus favoring the corrosion resistance of 18% porous NiTi. Strengthening of corrosion resistance was observed in Hank’s solution. The pore morphology and micro-galvanic corrosion phenomena were determining factors affecting the corrosion resistance.

  16. The comparison of corrosion resistance between Baosteel's alloy 690 tube and foreign alloy 690 tube

    International Nuclear Information System (INIS)

    Alloy 690 having excellent corrosion resistance is widely used for SG tubes. The intergranular corrosion and pitting corrosion resistance of Baosteel's alloy 690 tube, Country A alloy 690 tube and Country B alloy 690 tube have been analysed by comparison. It shows that: The intergranular corrosion of Baosteel's alloy 690 tube tested complied with ASTM G28 Standard could satisfy the technical requirement. However.some of Baosteel's alloy 690 tube in intergranular corrosion resistance had less performance than Country A. In addition, pitting corrosion tested with ASTM G48 Standard shown the Baosteel's alloy 690 tube better than Country B. (authors)

  17. Development of Custom 465® Corrosion-Resisting Steel for Landing Gear Applications

    Science.gov (United States)

    Daymond, Benjamin T.; Binot, Nicolas; Schmidt, Michael L.; Preston, Steve; Collins, Richard; Shepherd, Alan

    2016-04-01

    Existing high-strength low-alloy steels have been in place on landing gear for many years owing to their superior strength and cost performance. However, there have been major advances in improving the strength of high-performance corrosion-resisting steels. These materials have superior environmental robustness and remove the need for harmful protective coatings such as chromates and cadmium now on the list for removal under REACH legislation. A UK government-funded collaborative project is underway targeting a refined specification Custom 465® precipitation hardened stainless steel to replace the current material on Airbus A320 family aircraft main landing gear, a main fitting component developed by Messier-Bugatti-Dowty. This is a collaborative project between Airbus, Messier-Bugatti-Dowty, and Carpenter Technology Corporation. An extensive series of coupon tests on four production Heats of the material have been conducted, to obtain a full range of mechanical, fatigue, and corrosion properties. Custom 465® is an excellent replacement to the current material, with comparable tensile strength and fracture toughness, better ductility, and very good general corrosion and stress corrosion cracking resistance. Fatigue performance is the only significant area of deficit with respect to incumbent materials, fatigue initiation being often related to carbo-titanium-nitride particles and cleavage zones.

  18. Nano-composite coatings with improved mechanical properties and corrosion resistance by thermal spraying

    International Nuclear Information System (INIS)

    This paper reports the synthesis and characterization of nanostructured coatings. To improve the mechanical properties and oxidation resistance of the materials, two new types of nanostructured coatings including CoNiCrAlY-MoSi/sub 2/ and Ni60-TiB/sub 2/ were designed. The nanocrystalline feedstock powders were prepared by high energy ball milling (HEBM). The particle size, morphology and grain size of the feed stocks were investigated. The preparation, microstructure, mechanical properties, and anti-oxidation behavior of the nanostructured CoNiCrAlY-MoSi/sub 2/ and Ni60-TiB/sub 2/ coatings are presented. With a lamellar and compact structure, the optimized nano-composite CoNiCrAlY-MoSi/sub 2/ coatings is metallurgically bonded with the substrate. It exhibits low porosity, high fracture toughness and excellent thermal shock resistance. The nanostructured Ni60-TiB/sub 2/ composite coatings also exhibited better mechanical properties and wear-corrosion resistance than those of its conventional counterpart. This work is expected to play an important role in the preparation and application of high performance nanostructured coatings. (author)

  19. Nano-composite coatings with improved mechanical properties and corrosion resistance by thermal spraying

    International Nuclear Information System (INIS)

    This paper reports the synthesis and characterization of nanostructured coatings. To improve the mechanical properties and oxidation resistance of the materials, two new types of nanostructured coatings including CoNiCrAlY-MoSi2 and Ni60-TiB2 were designed. The nanocrystalline feedstock powders were prepared by high energy ball milling (HEBM). The particle size, morphology and grain size of the feed stocks were investigated. The preparation, microstructure, mechanical properties, and anti-oxidation behavior of the nanostructured CoNiCrAlY-MoSi2 and Ni60-TiB2 coatings are presented. With a lamellar and compact structure, the optimized nano-composite CoNiCrAlY-MoSi2 coatings is metallurgically bonded with the substrate. It exhibits low porosity, high fracture toughness and excellent thermal shock resistance. The nanostructured Ni60-TiB2 composite coatings also exhibited better mechanical properties and wear-corrosion resistance than those of its conventional counterpart. This work is expected to play an important role in the preparation and application of high performance nanostructured coatings

  20. Corrosion Resistant Cladding by YAG Laser Welding in Underwater Environment

    International Nuclear Information System (INIS)

    It is known that stress-corrosion cracking (SCC) will occur in nickel-base alloys used in Reactor Pressure Vessel (RPV) and Internals of nuclear power plants. A SCC sensitivity has been evaluated by IHI in each part of RPV and Internals. There are several water level instrumentation nozzles installed in domestic BWR RPV. In water level instrumentation nozzles, 182 type nickel-base alloys were used for the welding joint to RPV. It is estimated the SCC potential is high in this joint because of a higher residual stress than the yield strength (about 400 MPa). This report will describe a preventive maintenance method to these nozzles Heat Affected Zone (HAZ) and welds by a corrosion resistant cladding (CRC) by YAG Laser in underwater environment (without draining a reactor water). There are many kinds of countermeasures for SCC, for example, Induction Heating Stress Improvement (IHSI), Mechanical Stress Improvement Process (MSIP) and so on. A YAG laser CRC is one of them. In this technology a laser beam is used for heat source and irradiated through an optical fiber to a base metal and SCC resistant material is used for welding wires. After cladding the HAZ and welds are coated by the corrosion resistant materials so their surfaces are improved. A CRC by gas tungsten arc welding (GTAW) in an air environment had been developed and already applied to a couple of operating plants (16 Nozzles). This method was of course good but it spent much time to perform because of an installation of some water-proof working boxes to make a TIG-weldability environment. CRC by YAG laser welding in underwater environment has superior features comparing to this conventional TIG method as follows. At the viewpoint of underwater environment, (1) an outage term reduction (no drainage water). (2) a radioactive exposure dose reduction for personnel. At that of YAG laser welding, (1) A narrower HAZ. (2) A smaller distortion. (3) A few cladding layers. A YAG laser CRC test in underwater

  1. Structure and Corrosion Resistance of Microarc Oxidation Coatings on AZ91D Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    Cui Shihai; Han Jianmin; Li Weijing; Li Ronghua; Zhu Xiaowen; Wang Jinhua

    2004-01-01

    Magnesium alloys are widely used as shells of 3C (computer, mobile phone and consumer electronics) equipments for its impressive mechanical and physical properties, such as low density, good resistance to electromagnetic radiation, suitable for high pressure diecasting and easily recycling, etc. But poor corrosion resistance confines its extensively application. In this paper, protective coatings was successfully prepared on AZ91D magnesium alloys by micro-arc oxidation (MAO) and painting process. Microstructures and phases of MAO coatings were invesgated with scanning electron microscope (SEM) and X-Ray diffractometer. Mechanical properties of MAO coating, such as adhesive force and corrosion resistance, were also tested. Results showed that MAO coatings were a good base for painting process. MAO coatings with paint have good adhesive properties to base metal and excellent corrosion resistance. Micro-arc oxidation with painting process is a good kind of surface treatment to improve the corrosion resistance of mobile phone shell made of AZ91D magnesium alloys.

  2. Effect of temperature on structure and corrosion resistance for electroless NiWP coating

    Indian Academy of Sciences (India)

    M Q YU; Q QIAO; F YOU; C L LI; Y ZHAO; Z Z XIAO; H L LUO; Z F XU; KAZUHIRO MATSUGI; J K YU

    2016-04-01

    The effect of plating temperatures between 60 and 90$^{\\circ}$C on structure and corrosion resistance for electroless NiWP coatings on AZ91D magnesium alloy substrate was investigated. Results show that temperature has a significant influence on the surface morphology and corrosion resistance of the NiWP alloy coating. An increase in temperature will lead to an increase in coating thickness and form a more uniform and dense NiWP coatings. Moreover, cracks were observed by SEM in coating surface and interface at the plating temperature of 90$^{\\circ}$C. Coating corrosion resistance is highly dependent on temperature according to polarization curves. The optimum temperature isfound to be 80$^{\\circ}$C and the possible reasons of corrosion resistance for NiWP coating have been discussed.

  3. Effects of lanthanum addition on corrosion resistance of hot-dipped galvalume coating

    Institute of Scientific and Technical Information of China (English)

    YANG Dong; CHEN Jianshe; HAN Qing; LIU Kuiren

    2009-01-01

    Effects of La addition on corrosion resistance of hot-dipped galvalume coating steel wire were investigated. The corrosion resistance of Zn-Al-Si-La alloy coatings containing 0, 0.02wt.%, 0.05wt.%, 0.1wt.% and 0.2wt.% La were evaluated by various tests such as copper-accelerated acetic acid salt spray testing (CASS), immersion test in 3.5% NaCl solution, electrochemical tests including weak polarization curves and electrochemical impedance spectroscopy (EIS) tests, scanning electron microscope (SEM) test and X-ray diffraction (XRD) test. It was found that the corrosion resistance of galvalume coating could be improved by adding proper amounts of La. Meanwhile, the mechanism of the improvement of corrosion resistance by La addition was discussed.

  4. Corrosion resistance of zinc-magnesium coated steel

    International Nuclear Information System (INIS)

    A significant body of work exists in the literature concerning the corrosion behaviour of zinc-magnesium coated steel (ZMG), describing its enhanced corrosion resistance when compared to conventional zinc-coated steel. This paper begins with a review of the literature and identifies key themes in the reported mechanisms for the attractive properties of this material. This is followed by an experimental programme where ZMG was subjected to an automotive laboratory corrosion test using acidified NaCl solution. A 3-fold increase in time to red rust compared to conventional zinc coatings was measured. X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy were used to characterize the corrosion products formed. The corrosion products detected on ZMG included simonkolleite (Zn5Cl2(OH)8 . H2O), possibly modified by magnesium uptake, magnesium hydroxide (Mg(OH)2) and a hydroxy carbonate species. It is proposed that the oxygen reduction activity at the (zinc) cathodes is reduced by precipitation of alkali-resistant Mg(OH)2, which is gradually converted to more soluble hydroxy carbonates by uptake of atmospheric carbon dioxide. This lowers the surface pH sufficiently to allow thermodynamically for general precipitation of insoluble simonkolleite over the corroding surface thereby retarding the overall corrosion reactions, leaving only small traces of magnesium corrosion products behind. Such a mechanism is consistent with the experimental findings reported in the literature

  5. Predicted Fracture Behavior of Shaft Steels with Improved Corrosion Resistance

    Directory of Open Access Journals (Sweden)

    Goran Vukelic

    2016-02-01

    Full Text Available One of the crucial steps in the shaft design process is the optimal selection of the material. Two types of shaft steels with improved corrosion resistances, 1.4305 and 1.7225, were investigated experimentally and numerically in this paper in order to determine some of the material characteristics important for material selection in the engineering design process. Ultimate tensile strength and yield strength have been experimentally obtained, proving that steel 1.4305 has higher values of both. In addition, J-integral is numerically determined as a measure of crack driving force for finite element models of standardized fracture specimens (single-edge notched bend and disc compact tension. Obtained J values are plotted versus specimen crack growth size (Δa for different specimen geometries (a/W. Higher resulting values of J-integral for steel 1.4305 as opposed to 1.7225 can be noted. Results can be useful as a fracture parameter in fracture toughness assessment, although this procedure differs from experimental analysis.

  6. Structure and corrosion resistance of gradient and multilayer coatings

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2006-08-01

    Full Text Available Purpose: Investigation of the structure and corrosion resistance of the TiN, TiN+multiTiAlSiN+TiN,TiN+TiAlSiN+TiN, TiN+TiAlSiN+AlSiTiN coatings deposited by PVD process and TiCN+TiN,TiCN+Al2O3+TiN, TiC+TiCN+Al2O3+TiN, TiN+Al2O3 coatings deposited by CVD process.Design/methodology/approach: The metallographic examinations (SEM, the examinations of thin foils(TEM, investigation of the electrochemical corrosion behavior of the samples in a PGP 201 Potentiostat/Galvanostat, in a three-electrode chamber was done.Findings: Corrosion current density – corrosion rate - was determined by analysis of the potentiodynamicpolarization curves. Relationships of structure and corrosion properties has been presented.Research limitations/implications: Implication of the investigation results are researches of corrosionproperties in high temperature.Practical implications: Employment of the surface treatment technology for tools, made from tool materials,with the PVD and CVD methods, to obtain the high wear resistant coatings, makes it possible to improvethe properties of these materials in the dry-cutting conditions, by – among others – decreasing their frictioncoefficient, microhardness increase, improvement of the tribological contact conditions in the cutting toolmachinedworkpiece zone, and also to improve protection against the adhesion and diffusion wear.Originality/value: Original system of substrate/coating compositions.

  7. Corrosion resistance behavior of nitrogen ion-implanted in tantalum

    Science.gov (United States)

    Ramezani, Amir Hoshang; Hantehezadeh, Mohammad Reza; Ghoranneviss, Mahmood; Darabi, Elham

    2016-03-01

    This paper investigates the effect of nitrogen ion implantation on surface structure as well as resistance against tantalum corrosion. In this experiment, nitrogen ions which had energy of 30 keV and were in doses of 1 × 1017 to 9 × 1017 ions/cm2 were used. The X-ray diffraction analysis was applied for both the metallic analysis and the study of new structures having been created through the nitrogen ion implantation. Atomic force microscopy was also used to check the roughness variations prior to and also after the implantation phase. Moreover, the corrosion analysis apparatus was applied in order to compare resistance against tantalum corrosion in advance to and after the ion implantation. The results indicate that nitrogen ion implantation has a significant impact on increasing resistance against tantalum corrosion. After the corrosion test, the surface morphology of samples was analyzed by scanning electron microscopy. Also, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. The purpose of this article is to obtain the perfect condition of the formation of tantalum corrosion resistance. The corrosion potential curves and roughness values obviously indicate that corrosion potential variations caused by the different doses of nitrogen ion bombardment are proportional to surface roughness in an inverse manner. The EDX analysis demonstrates the existence of the elemental composition of nitrogen ion implantation in the samples.

  8. DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Angel Sanjurjo

    2004-05-01

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. A review of the literature indicated that the Fe- and Ni-based high-temperature alloys are susceptible to sulfidation attack unless they are fortified with high levels of Cr, Al, and Si. To impart corrosion resistance, these elements need not be in the bulk of the alloy and need only be present at the surface layers. We selected diffusion coatings of Cr and Al, and surface coatings of Si and Ti for the preliminary testing. These coatings will be applied using the fluidized bed chemical vapor deposition technique developed at SRI which is rapid and relatively inexpensive. We have procured coupons of typical alloys used in a gasifier. These coupons will be coated with Cr, Al, Si, and Ti. The samples will be tested in a bench-scale reactor using simulated coal gas compositions. In addition, we will be sending coated samples for insertion in the gas stream of the coal gasifier.

  9. A facile approach to fabricate superhydrophobic and corrosion resistant surface

    International Nuclear Information System (INIS)

    In the present study, we have fabricated superhydrophobic CuO nanostructured surfaces by a simple solution-immersion process and a subsequent chemical modification with various thiol groups. The morphology of the CuO nanostructures on the copper foil could be easily controlled by simply changing the reaction time. The influences of reaction time and the thiol groups on hydrophobic properties have been discussed in detail. It is shown that the chemically modified CuO nanostructured surfaces present remarkable superhydrophobic performance and non-sticking behaviour. Furthermore, a lower corrosion current density (icorr) and a higher corrosion potential (Ecorr) of the prepared superhydrophobic surface was observed in comparison with the bare Cu foil by immersing in a 3.5 wt% NaCl solution, indicating a good corrosion resistance capability. Our work provides a general, facile and low-cost route towards the preparation of superhydrophobic surface, which has potential applications in the fields of self-cleaning, anti-corrosion, and oil–water separation. (paper)

  10. A facile approach to fabricate superhydrophobic and corrosion resistant surface

    Science.gov (United States)

    Wei, Guijuan; Wang, Zhaojie; Zhao, Xixia; Feng, Juan; Wang, Shutao; Zhang, Jun; An, Changhua

    2015-01-01

    In the present study, we have fabricated superhydrophobic CuO nanostructured surfaces by a simple solution-immersion process and a subsequent chemical modification with various thiol groups. The morphology of the CuO nanostructures on the copper foil could be easily controlled by simply changing the reaction time. The influences of reaction time and the thiol groups on hydrophobic properties have been discussed in detail. It is shown that the chemically modified CuO nanostructured surfaces present remarkable superhydrophobic performance and non-sticking behaviour. Furthermore, a lower corrosion current density (icorr) and a higher corrosion potential (Ecorr) of the prepared superhydrophobic surface was observed in comparison with the bare Cu foil by immersing in a 3.5 wt% NaCl solution, indicating a good corrosion resistance capability. Our work provides a general, facile and low-cost route towards the preparation of superhydrophobic surface, which has potential applications in the fields of self-cleaning, anti-corrosion, and oil-water separation.

  11. Improvement of Microhardness and Corrosion Resistance of Stainless Steel by Nanocomposite Coating

    OpenAIRE

    Hiba Husam Ismail; Kareem Neamah Sallomi; Hamid S. Mahdi

    2014-01-01

    Stainless steel (AISI 304) has good electrical and thermal conductivities, good corrosion resistance at ambient temperature, apart from these it is cheap and abundantly available; but has good mechanical properties such as hardness. To improve the hardness and corrosion resistance of stainless steel its surface can be modified by developing nanocomposite coatings applied on its surface. The main objective of this paper is to study effect of electroco-deposition method on microhardness and cor...

  12. STUDY ON CORROSION RESISTANCE OF REBAR IN HYBRID GRINDING FLY ASH-LIME SILICATE CONCRETE

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The corrosion resistance of rebar in fly ash-lime sili cate concrete as well as its marco properties and pore distribution is investiga ted.The results show that the fly ash is activated, the compressive strength of the silicate concrete is strengthened and its pore structure is modified after f ly ash and lime being hybrid ground.Also the corrosion resistance of rebar in the silicate concrete is improved.

  13. A new high nitrogen super austenitic stainless steel with improved structure stability and corrosion resistance properties

    International Nuclear Information System (INIS)

    A new highly alloyed (Cr, Mo, W, N) super austenitic grade has been developed. This grade offers high mechanical properties combined with excellent corrosion resistance in chloride acid media. This grade is particularly designed for applications in chloride, oxidizing acid media encountered in the chemical, transportation, pollution control, offshore and pulp and paper industries. Mechanical properties, corrosion resistance and weldability of this grade are presented and compared to that of other stainless steels and nickel base alloys

  14. A new high nitrogen super austenitic stainless steel with improved structure stability and corrosion resistance properties

    Energy Technology Data Exchange (ETDEWEB)

    Gagnepain, J.C.; Charles, J.; Coudreuse, L.; Bonnefois, B. [Creusot-Loire Industrie, Le Creusot (France)

    1996-11-01

    A new highly alloyed (Cr, Mo, W, N) super austenitic grade has been developed. This grade offers high mechanical properties combined with excellent corrosion resistance in chloride acid media. This grade is particularly designed for applications in chloride, oxidizing acid media encountered in the chemical, transportation, pollution control, offshore and pulp and paper industries. Mechanical properties, corrosion resistance and weldability of this grade are presented and compared to that of other stainless steels and nickel base alloys.

  15. Corrosion Resistance of Metal and Alloy in Artificial Urine in Presence of Sodium Chloride

    OpenAIRE

    Nagalakshmi, R.; Rajendran, S.; J. Sathiyabama

    2013-01-01

    Corrosion resistance of two metals namely mild steel (MS), Nickel Titanium super elastic alloy has been evaluated in artificial urine in the absence and presence of sodium chloride. AC impedance spectra have been used to investigate the corrosion behaviour of these metals. The order of corrosion resistance of metals in artificial urine, in the absence and also in the presence of sodium chloride was Ni-Ti super elastic alloy> mild steel.

  16. The Corrosion Resistance of Nickel Electrocomposite Coating Containing BaFe12O19 Particles

    OpenAIRE

    S. T. Aruna; Savitha, G.; Jyothi Shedthi; V. K. William Grips

    2013-01-01

    Electroplating composite coating is an effective method to prepare composite coating through the codeposition of metallic, nonmetallic, or polymer particles with metal to improve properties such as corrosion resistance, hardness, and wear performance. This paper reports the synthesis of a novel Ni-BaFe12O19 magnetic nanocomposite coating exhibiting improved corrosion resistance. In the present paper, BaFe12O19 particles were synthesized by a single-step solution combustion method and characte...

  17. Is cell viability always directly related to corrosion resistance of stainless steels?

    Science.gov (United States)

    Salahinejad, E; Ghaffari, M; Vashaee, D; Tayebi, L

    2016-05-01

    It has been frequently reported that cell viability on stainless steels is improved by increasing their corrosion resistance. The question that arises is whether human cell viability is always directly related to corrosion resistance in these biostable alloys. In this work, the microstructure and in vitro corrosion behavior of a new class of medical-grade stainless steels were correlated with adult human mesenchymal stem cell viability. The samples were produced by a powder metallurgy route, consisting of mechanical alloying and liquid-phase sintering with a sintering aid of a eutectic Mn-Si alloy at 1050 °C for 30 and 60 min, leading to nanostructures. In accordance with transmission electron microscopic studies, the additive particles for the sintering time of 30 min were not completely melted. Electrochemical impedance spectroscopic experiments suggested the higher corrosion resistance for the sample sintered for 60 min; however, a better cell viability on the surface of the less corrosion-resistant sample was unexpectedly found. This behavior is explained by considering the higher ion release rate of the Mn-Si additive material, as preferred sites to corrosion attack based on scanning electron microscopic observations, which is advantageous to the cells in vitro. In conclusion, cell viability is not always directly related to corrosion resistance in stainless steels. Typically, the introduction of biodegradable and biocompatible phases to biostable alloys, which are conventionally anticipated to be corrosion-resistant, can be advantageous to human cell responses similar to biodegradable metals. PMID:26952444

  18. Corrosion resistance of Cr-Ni-Mo steel after sterilization process

    Directory of Open Access Journals (Sweden)

    Z. Paszenda

    2007-05-01

    Full Text Available Purpose: The aim of the work was to evaluate how the process of high pressure steam sterilization influences the pitting corrosion resistance of Cr-Ni-Mo steel used for implants production.Design/methodology/approach: Surfaces of samples were prepared by electrolytic polishing and chemical passivation. Samples were sterilized in steam with the use of different parameters of temperature, pressure and time. Corrosion resistance investigations were carried out with the use of potentiodynamic method. The test were realized in solution simulating human blood environment (artificial plasma at the temperature of 37±1ºC and pH = 7.2. Parameters describing the corrosion resistance have been determined on the basis of analysis of anodic polarization curves.Findings: High pressure steam sterilization process improves all parameters relating to pitting corrosion resistance of Cr-Ni-Mo implantation steel that is: corrosion potential Ecorr, breakdown potential Eb, polarization resistance Rp, corrosion current density icorr and corrosion rate. The increase of sterilization time for constant parameters of temperature and pressure of steam was the important factor which improved significantly the corrosion resistance of tested samples.Research limitations/implications: Further investigations of chemical composition of the layers formed during sterilization process are planed.Originality/value: The obtained results show the advantageous influence of passivation and high pressure steam sterilization on the pitting corrosion resistance of Cr-Ni-Mo steel in solution simulating human blood environment (artificial plasma.

  19. Corrosion resistance of several metals in plutonium nitrate solution

    International Nuclear Information System (INIS)

    Corrosion behavior of several metals exposed in plutonium nitrate solution was studied. Plutonium nitrate solution with the plutonium concentration ranging from 0.01 to 65g/l was used as a corrosive medium. Specimens made of type 304L (304L) stainless steel, type 310Nb (310Nb) stainless steel, titanium(Ti), titanium-5% tantalum alloy (Ti-5Ta) and zirconium(Zr) were used. Corrosion behavior of these metals in plutonium nitrate solution at the boiling point was evaluated through examining electrochemical characteristics and corrosion rates which were obtained by weight loss measurement. Three immersed corrosion tests, each being 96 hours long, were performed under conditions of continuous heating, no recharge of solution, and specific volume of 8 ml/cm2. Anodic and cathodic polarization curves were measured using a potentio-static method. Polarization was started from the corrosion potential of each metal up to 1.1V vs SCE at a sweep rate of 50 mV/min. The surface of the specimens after undergoing immersed corrosion tests were observed through a scanning electron microscope (SEM). From the results of the corrosion tests, it was found that the corrosion rate of stainless steel, namely 304L and 310Nb, was enhanced by co-existant plutonium in the nitric acid solution. The corrosion potential of stainless steel shifted to the noble region in proportion to the increase of plutonium concentration. It is thought that the shifts in corrosion potential of the stainless steel to the noble region caused an increase in anodic current which brought about an incremental increase in corrosion rate. Valve metals, namely Ti, Ti-5Ta and Zr, showed good corrosion resistance regardless of plutonium concentration. The stainless steel specimen surfaces observed by SEM became rough due to grain boundary corrosion in accordance with increases in plutonium concentration, whereas valve metals showed no signs of corrosion. (J.P.N.)

  20. Effect of Scandium Doping on The Corrosion Resistance and Mechanical Behavior of Al-3Mg Alloy in Neutral Chloride Solutions

    OpenAIRE

    Mohammad Abbas; Abdul Aleem B. Aleem; Zaki Ahmad

    2011-01-01

    Scandium addition significantly alters the corrosion resistance and mechanical strength of Al-3 Mg alloys. The addition of 0.3% - 0.4% scandium with 0.14% zirconium has a beneficial effect on the corrosion resistance of the alloy under smoothly stirred condition. Addition of 0.3% Sc significantly suppresses corrosion under dynamic flow conditions. It also creates an optimal strengthening effect on the alloys. The corrosion resistance is attributed to the strong passive layer of Sc2...

  1. Atomic simulation on evolution of nano-crystallizaion in amorphous metals

    Institute of Scientific and Technical Information of China (English)

    WANG Yu; WANG Xiu-xi; WANG Hai-long

    2006-01-01

    The deformation-induced nano-crystallization behavior of amorphous pure Ni was investigated by using a molecular dynamics simulation. The microevolution mechanism of the nano-crystallization,the crystallization process in the multicomponent amorphous Ni-Pd alloys and the temperature effect on the nano-crystallization behavior in amorphous metals were studied. The results show that the small nano-crystalline grain will nucleate and grow during the compression deformation. The deformation induces the growth of the ordered clusters in the amorphous metals and the nano-crystalline grain grows under the shearing combination and shearing deposition. The nano-crystalline grain will nucleate in a lower strain under a higher temperature. The combining severe plastic deformation with thermal annealing treatments presents a new opportunity for developing bulk nano-crystalline materials with controlled microstructures.

  2. Influence of pre-deformation and oxidation in high temperature water on corrosion resistance of type 304 stainless steel

    Science.gov (United States)

    Jinlong, Lv; Hongyun, Luo; Tongxiang, Liang

    2015-11-01

    The passivation properties of deformed 304 stainless steels after immersion in borate buffer solution containing 0.2821 mol/L Cl- at 288 °C were investigated. The spinel and magnetite oxides were formed on all the samples. However, the hematite oxides reduced significantly with the increasing of strain. The sample with maximum strain possessed the poorest corrosion resistance. The hematite oxide could offer high corrosion resistance, while magnetite evidently deteriorated corrosion resistance. Moreover, the influence of the donors in outer layer of oxide film on corrosion resistance was more important than that of the acceptors in inner layer.

  3. Corrosion-Resistant Container for Molten-Material Processing

    Science.gov (United States)

    Stern, Theodore G.; McNaul, Eric

    2010-01-01

    In a carbothermal process, gaseous methane is passed over molten regolith, which is heated past its melting point to a temperature in excess of 1,625 C. At this temperature, materials in contact with the molten regolith (or regolith simulant) corrode and lose their structural properties. As a result, fabricating a crucible to hold the molten material and providing a method of contact heating have been problematic. Alternative containment approaches use a large crucible and limit the heat zone of the material being processed, which is inefficient because of volume and mass constraints. Alternative heating approaches use non-contact heating, such as by laser or concentrated solar energy, which can be inefficient in transferring heat and thus require higher power heat sources to accomplish processing. The innovation is a combination of materials, with a substrate material having high structural strength and stiffness and high-temperature capability, and a coating material with a high corrosion resistance and high-temperature capability. The material developed is a molybdenum substrate with an iridium coating. Creating the containment crucible or heater jacket using this material combination requires only that the molybdenum, which is easily processed by conventional methods such as milling, electric discharge machining, or forming and brazing, be fabricated into an appropriate shape, and that the iridium coating be applied to any surfaces that may come in contact with the corrosive molten material. In one engineering application, the molybdenum was fashioned into a container for a heat pipe. Since only the end of the heat pipe is used to heat the regolith, the container has a narrowing end with a nipple in which the heat pipe is snugly fit, and the external area of this nipple, which contacts the regolith to transfer heat into it, is coated with iridium. At the time of this reporting, no single material has been found that can perform the functions of this combination

  4. The corrosion resistance of Nitinol alloy in simulated physiological solutions

    International Nuclear Information System (INIS)

    The corrosion behaviour of Nitinol alloy containing nearly equi-atomic composition of nickel and titanium and its constituent metals (nickel and titanium) was investigated in simulated Hanks physiological solution (pH value 7.5) and pH modified simulated Hanks physiological solution (pH values 4.5 and 6.5) and by electrochemical method of anodic potentiodynamic polarization at 37 °C. In this chloride-rich medium the corrosion stability of Nitinol is limited by the susceptibility to localized corrosion and is in that sense more similar to nickel than to titanium. The corrosion stability of Nitinol is strongly dependent on the surface preparation—grinding, polishing or chemical etching. Whereas a ground surface is not resistant to localized corrosion, polished and chemically etched surfaces are resistant to this type of corrosion attack. The reasons for this behaviour were investigated through metallurgical, topographical and chemical properties of the surface as a function of surface preparation. For that purpose, scanning electron microscopy combined with chemical analysis, confocal microscopy and X-ray photoelectron spectroscopy were used. The surface roughness decreased in the following order: chemically etched > ground > polished surface. Besides differences in topography, distinct differences in the chemical composition of the outermost surface are observed. Ground, rough surfaces comprised mainly titanium oxides and small amounts of nickel metal. Chemically etched and, especially, polished surfaces are composed of a mixture of titanium, nickel and titanium oxides, as studied by angle resolved X-ray photoelectron spectroscopy. These results emphasize the importance of detailed investigation of the metal surface since small differences in surface preparation may induce large differences in corrosion stability of material when exposed to corrosive environments. - Highlights: ► The corrosion resistance of Nitinol is dependent on the surface preparation.

  5. Effects of Alloying Elements on Corrosion Resistance and Microstructure of Fe-Cr Martensitic Stainless Steel

    International Nuclear Information System (INIS)

    The combined effects of austenite and ferrite stabilizers were investigated for the enhanced corrosion resistance in martensitic stainless steels. Addition of austenite stabilizers such as Ni and N suppressed the formation of ferrite phases while decreasing the Ms temperature leading to the formation of retained austenite. From the results of Schaeffler diagram, the effective compositions for enhanced corrosion resistance were suggested to exist in the range of Cr equivalent less than 19 and Ni equivalent of 12 to 16. Outside those ranges, ferrite and austenite phases were observed to form, the former decreasing both hardness and corrosion resistance, whereas the latter, hardness value only. With the increase of N content, the degree of constitutional distribution between the two phases decreased, leading to homogeneous distribution. Corrosion tests revealed that pits were formed at the interface of ferrite and martensite phases, followed by growing into the ferrite phase. The ferrite phase is believed to be a preferential attack site and cause decrease in corrosion resistance in the present alloys. The addition of N and Mo showed a remarkable improvement in corrosion resistance in more severe environments

  6. Corrosion resistance and microstructure characterization of rare-earth-transition metal-aluminum-magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Banczek, E.P.; Zarpelon, L.M.C.; Faria, R.N. [Centro de Ciencia e Tecnologia de Materiais, Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP, Av. Prof.Lineu Prestes, 2242, Cidade Universitaria, 05508-900 Sao Paulo -SP (Brazil); Costa, I. [Centro de Ciencia e Tecnologia de Materiais, Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP, Av. Prof.Lineu Prestes, 2242, Cidade Universitaria, 05508-900 Sao Paulo-SP (Brazil)], E-mail: icosta@ipen.br

    2009-06-24

    This paper reports the results of investigation carried out to evaluate the corrosion resistance and microstructure of some cast alloys represented by the general formula: La{sub 0.7-x}Pr{sub x}Mg{sub 0.3}Al{sub 0.3}Mn{sub 0.4}Co{sub 0.5}Ni{sub 3.8} (x = 0, 0.1, 0.3, 0.5, and 0.7). Scanning electron microscopy (SEM) and electrochemical methods, specifically, polarization curves and electrochemical impedance spectroscopy (EIS), have been employed in this study. The effects of Pr substitution on the composition of the various phases in the alloys and their corrosion resistance have been studied. The electrochemical results showed that the alloy without Pr and the one with total La substitution showed the highest corrosion resistance among the studied alloys. The corrosion resistance of the alloys decreased when Pr was present in the lowest concentrations (0.1 and 0.3), but for higher Pr concentrations (0.5 and 0.7), the corrosion resistance increased. Corrosion occurred preferentially in a Mg-rich phase.

  7. Optimization of friction stir welding parameters for improved corrosion resistance of AA2219 aluminum alloy joints

    Directory of Open Access Journals (Sweden)

    G. Rambabu

    2015-12-01

    Full Text Available The aluminium alloy AA2219 (Al–Cu–Mg alloy is widely used in the fabrication of lightweight structures with high strength-to-weight ratio and good corrosion resistance. Welding is main fabrication method of AA2219 alloy for manufacturing various engineering components. Friction stir welding (FSW is a recently developed solid state welding process to overcome the problems encountered in fusion welding. This process uses a non-consumable tool to generate frictional heat on the abutting surfaces. The welding parameters, such as tool pin profile, rotational speed, welding speed and axial force, play major role in determining the microstructure and corrosion resistance of welded joint. The main objective of this work is to develop a mathematical model to predict the corrosion resistance of friction stir welded AA2219 aluminium alloy by incorporating FSW process parameters. In this work a central composite design with four factors and five levels has been used to minimize the experimental conditions. Dynamic polarization testing was carried out to determine critical pitting potential in millivolt, which is a criteria for measuring corrosion resistance and the data was used in model. Further the response surface method (RSM was used to develop the model. The developed mathematical model was optimized using the simulated annealing algorithm optimizing technique to maximize the corrosion resistance of the friction stir welded AA2219 aluminium alloy joints.

  8. Corrosion Resistance Analysis of Sintered NdFeB Magnets Using Ultrasonic-Aided EDM Method

    Science.gov (United States)

    Li, L.; Wei, X. T.; Li, Z. Y.; Cheng, X.

    2015-01-01

    Sintered neodymium-iron-boron (NdFeB) permanent magnets are widely used in many fields because of their excellent magnetic property. However, their poor corrosion resistance has been cited as a potential problem that limits their extensive application. This paper presents an experimental investigation into the improvement of surface corrosion resistance with the ultrasonic-aided electrical discharge machining (U-EDM) method. A scanning electron microscope was used to analyze the surface morphology of recast layers formed through the EDM and U-EDM processes. The chemical structure and elements of these recast layers were characterized using x-ray diffraction and energy dispersive spectroscopy. Corrosion resistance was also studied by means of potentiodynamic polarization, electrochemical impedance spectroscopy, and immersion tests in 0.5 mol/L H2SO4 solution. Experimental results show that an amorphous structure was formed in the recast layer during the EDM and U-EDM processes and that this structure could improve the corrosion resistance of sintered NdFeB magnets. Moreover, the corrosion resistance of U-EDM-treated surface was better than that of the EDM-treated surface.

  9. Microstructure, tensile deformation mode and crevice corrosion resistance in Ti-10Mo-xFe alloys

    International Nuclear Information System (INIS)

    The microstructure, the tensile deformation mode at ambient temperature and the crevice corrosion resistance at a high temperature of 373 K were investigated in the Ti-10Mo-xFe (x = 0, 1, 3, 5) alloys. The stability of the β phase increased, and the formation of the α'' martensite and the athermal ω phase was suppressed by the increase in the Fe content. EPMA examinations indicated that the existence of the α'' martensite in the Ti-10Mo alloy was caused by the solidification segregation of Mo atoms. EBSD observations showed that the deformation mode changed from a {3 3 2} twinning to a slip by an increase in the Fe content, which coincided with the prediction by the electron/atom (e/a) ratio. The Ti-10Mo-3Fe alloy showed the highest yield strength of 935 MPa among all the alloys, while the Ti-10Mo-1Fe alloy showed the lowest value of 563 MPa due to the change in the deformation mode. On the other hand, all the alloys exhibited a high crevice corrosion resistance in a high chloride and high acidic solution at the high temperature, although the corrosion resistance decreased with an increase in the Fe content. The decrease in the corrosion resistance can be explained by the bond order (Bo). A good combination of tensile properties and crevice corrosion resistance may be obtainable through a further optimization of the Fe content by the e/a ratio and the Bo.

  10. Improved corrosion resistance of Mg-Y-RE alloy coated with niobium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Weihong; Wu, Guosong; Li, Penghui; Chu, Paul K., E-mail: paul.chu@cityu.edu.hk

    2014-12-01

    Biodegradable magnesium alloys have attracted much attention in recent years due to their potential applications in cardiovascular stents and bone implants. However, their inadequate corrosion resistance in the physiological environment is a major obstacle limiting wider application. In this work, a niobium nitride (NbN) film is deposited on Mg-Y-RE alloy (WE43) by reactive magnetron sputtering to improve the corrosion resistance. The structure of the nitride film is determined by grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy. The corrosion behavior of the uncoated and NbN-coated WE43 is evaluated in simulated body fluids by electrochemical impedance spectroscopy, polarization tests, and immersion tests. The surface morphology of the samples before and after the immersion tests is examined by scanning electron microscopy to assess the degree of corrosion. Our results indicate that the corrosion resistance is improved by the corrosion-resistant nitride film and the reasons are discussed. - Highlights: • Niobium nitride is deposited on magnesium alloy by reactive magnetron sputtering. • Niobium nitride enhances the corrosion resistance in simulated body fluids. • Corrosion products contain mainly Mg, O, and P.

  11. Improved corrosion resistance of Mg-Y-RE alloy coated with niobium nitride

    International Nuclear Information System (INIS)

    Biodegradable magnesium alloys have attracted much attention in recent years due to their potential applications in cardiovascular stents and bone implants. However, their inadequate corrosion resistance in the physiological environment is a major obstacle limiting wider application. In this work, a niobium nitride (NbN) film is deposited on Mg-Y-RE alloy (WE43) by reactive magnetron sputtering to improve the corrosion resistance. The structure of the nitride film is determined by grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy. The corrosion behavior of the uncoated and NbN-coated WE43 is evaluated in simulated body fluids by electrochemical impedance spectroscopy, polarization tests, and immersion tests. The surface morphology of the samples before and after the immersion tests is examined by scanning electron microscopy to assess the degree of corrosion. Our results indicate that the corrosion resistance is improved by the corrosion-resistant nitride film and the reasons are discussed. - Highlights: • Niobium nitride is deposited on magnesium alloy by reactive magnetron sputtering. • Niobium nitride enhances the corrosion resistance in simulated body fluids. • Corrosion products contain mainly Mg, O, and P

  12. Hot Corrosion Resistance and Mechanical Behavior of Atmospheric Plasma Sprayed Conventional and Nanostructured Zirconia Coatings

    Science.gov (United States)

    Saremi, Mohsen; Keyvani, Ahmad; Heydarzadeh Sohi, Mahmoud

    Conventional and nanostructured zirconia coatings were deposited on In-738 Ni super alloy by atmospheric plasma spray technique. The hot corrosion resistance of the coatings was measured at 1050°C using an atmospheric electrical furnace and a fused mixture of vanadium pent oxide and sodium sulfate respectively. According to the experimental results nanostructured coatings showed a better hot corrosion resistance than conventional ones. The improved hot corrosion resistance could be explained by the change of structure to a dense and more packed structure in the nanocoating. The evaluation of mechanical properties by nano indentation method showed the hardness (H) and elastic modulus (E) of the YSZ coating increased substantially after hot corrosion.

  13. Effect of Scandium on Corrosion Resistance of Welded Joint of Al-6Mg-Zr Alloy

    Institute of Scientific and Technical Information of China (English)

    Tao Binwu; Li Songmei; Liu Jianhua

    2005-01-01

    The corrosion resistance of welded joints of Al-6Mg-Sc-Zr alloy was studied by neutral salt spray and exfoliation corrosion methods. The microstructure of welded joints was investigated by using optical microscope and transmission electron micrograph (TEM). It is demonstrated that the welded joints of Al-6Mg-Sc-Zr alloy are more corrosion resistance, comparing with Al-6Mg-Zr alloy. The addition of scandium in the alloy results in (Al3Sc, Zr) particles, potently refined grains and restrained recrystallization process. The formation of homogeneous, discontinuous distribution of β-phase in welded joints improves the corrosion resistance of welded joints of Al-Mg-Zr alloy with high level content of magnesium.

  14. Preparation and Corrosion Resistance of Rare Earth Ceramic Film on AZ91 Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    Xu Yue; Guo Yuandong; Li Yingjie

    2004-01-01

    With the purpose of improving corrosion resistance and solving environmental pollution caused by traditional protective technique, rare earth ceramic film on AZ91 magnesium alloy was prepared by dip coating process, and technical parameters of preparation were defmed. Microstructure and composition of the film were studied and corrosion resistance was evaluated as well. The results show that rare earth ceramic film is uniform,dense, with strong cohesion and intact coverage. The film is mainly made up of CeO2 and MgCeO3. The results of corrosion experiments approve that the film acts as a barrier to isolate the contact of the substrate with corrosion media and decreas corrosion rate. Polarization curve of the coated sample shiftes to positive potential obvito 2.7 × 104 Ω. These facts indicate that rare earth ceramic film could effectively improve corrosion resistance of AZ91 magnesium alloy.

  15. The corrosion resistance and neutron-absorbing properties of coatings based on amorphous alloys

    Science.gov (United States)

    Sevryukov, O. N.; Polyansky, A. A.

    2016-04-01

    The object of the present study was the corrosion-resistant amorphizing alloys with an increased content of boron for cladding the surface of metals, rapidly quenched alloys without boron for protective coatings on a high-boron cladding layer, as well as steel samples with a protective coating with a high content of boron and without boron. The aim of the work is to investigate the corrosion resistance of a coating in water at the temperature of 40 °C in conditions of an open access of oxygen for 1000 h, as well as the features of the microstructure of clad samples before and after the corrosion tests. New data on the corrosion resistance of Cr18Ni10Ti steel samples with a protective layer from a rapidly quenched alloy Ni-19Cr-10Si (in wt.%) on a high-boron coating have been obtained.

  16. High Corrosion-Resistance Double-Layer Ni-P Coating on Steels

    Institute of Scientific and Technical Information of China (English)

    JIANG Hai; LIU Xian-li; JIANG Zhang-hao; LI Guang-yu; LIAN Jian-she; GU Chang-dong

    2004-01-01

    Double-layer Ni-P alloy coating with a thickness about 20 μm and different Ni-P layers was prepared by electroless deposition and its corrosion resistance was studied. The microstructure and corrosion-resistance of the coatings were analyzed by SEM, XRD, electrochemical polarization measurements and salt spray tests. The salt spray tests showed that the double-layer coating exhibits better corrosion resistance. The time of the emergence of the first red rust spot on the coating surface can reach 384 hours, and the gray rusts were firstly emergered during the salt spray tests. The electrochemical analysis revealed that the difference in the corrosion potential between the double layers plays a very important role in protecting the substrate from rusting.

  17. Effect of High Temperature Aging on the Corrosion Resistance of Iron Based Amorphous Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Day, S D; Haslam, J J; Farmer, J C; Rebak, R B

    2007-08-10

    Iron-based amorphous alloys can be more resistant to corrosion than polycrystalline materials of similar compositions. However, when the amorphous alloys are exposed to high temperatures they may recrystallize (or devitrify) thus losing their resistance to corrosion. Four different types of amorphous alloys melt spun ribbon specimens were exposed to several temperatures for short periods of time. The resulting corrosion resistance was evaluated in seawater at 90 C and compared with the as-prepared ribbons. Results show that the amorphous alloys can be exposed to 600 C for 1-hr. without losing the corrosion resistance; however, when the ribbons were exposed at 800 C for 1-hr. their localized corrosion resistance decreased significantly.

  18. Evaluation of the corrosion resistance of plasma nitrided austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Mareci, Daniel; Bolat, Georgiana [Technical Univ. Iasi (Romania). Faculty of Chemical Engineering and Environmental Protection; Strugaru, Sorin Iacob; Munteanu, Corneliu [Technical Univ. Iasi (Romania). Faculty of Mechanical Engineering; Souto, Ricardo M. [Univ. of La Laguna, Tenerife (Spain). Dept. of Chemistry

    2015-03-15

    Plasma nitriding at 500 C for 14 h was applied to austenitic 304 stainless steel for surface hardening. The effect of surface treatment on the corrosion resistance of the material was investigated in naturally-aerated 0.5 M NaCl solution for 30 days using linear potentiodynamic polarization and electrochemical impedance spectroscopy methods. Both as-cast and plasma nitrided stainless steel samples underwent spontaneous passivation, though the nitrided sample exhibited more positive zero current potential, higher breakdown potential, and lower anodic current densities than the as-cast material. Impedance spectra were interpreted in terms of a duplex passive film, corrosion resistance mainly arising from a thin inner compact layer, whereas the outer layer was more porous and less sealing. Capacitive behaviour and high corrosion resistance were observed in the low and medium frequency ranges for the nitrided samples.

  19. Stability and corrosion resistance of superhydrophobic surface on oxidized aluminum in NaCl aqueous solution

    Science.gov (United States)

    Lv, Damei; Ou, Junfei; Xue, Mingshan; Wang, Fajun

    2015-04-01

    Superhydrophobic surface (SHS) was fabricated on aluminum via surface roughening by NaClO and surface passivation by hexadecyltrimethoxysilane. The long-term durability for storing the sample in air and the chemical stability for contacting the sample with NaCl solution were investigated. The short-term corrosion resistance for immersing the sample in NaCl solution for 1 h was investigated by potentiodynamic polarization, and the long-term corrosion resistance for immersing the sample in NaCl solution for 7 days was investigated by variation analyses on surface wettability, surface morphology, and surface chemistry. All experimental results suggested that the so-obtained SHS possessed good stability and good corrosion resistance under the testing conditions.

  20. Development of corrosion resistant high silicon duplex stainless steel DP9 for reprocessing plants

    International Nuclear Information System (INIS)

    A new high silicon duplex stainless steel, DP 9, has been developed as a construction material for reprocessing plants dealing with used nuclear fuels. This alloy contain 23 % chrominum, 11 % nickel, 3.3 % silicon and 0.1 % nitrogen. It shows corrosion resistance to concentrated nitric acid at high temperatures superior to commercially available stainless steels. The mechanical properties, corrosion resistance, weldability, and physical properties of plates, pipe and joints made from this material were evaluated. Both base metal and welded joints showed excellent corrosion resistance to nitric acid with or without oxidizing Cr6+ ions at high concentrations and temperatures. Weldability, as evaluated by Varestraint test, restraint weld cracking test and weld joining test, was also good. In addition, proper welding conditions for good mechanical and corrosion properties are reported on. It was confirmed by trial manufacturing that plates, pipe, pipe joints, and welding material made of DP 9 are commercially applicable. (author)

  1. [Evaluation of the corrosion resistance of orthodontic wires by electrochemical measures and scanning electron microscopy (SEM)].

    Science.gov (United States)

    Zoghbi, André El; Klein, Lorena; Frateur, Isabelle

    2013-12-01

    The objective of this paper is to study the corrosion resistance of orthodontic wires made of different alloys (stainless steel, chrome-cobalt, nickel-titanium and β-titanium) and for the same alloy from different vendors (GAC(®), RMO(®), 3M(®) and ORMCO(®)). Different electrochemical techniques (corrosion potential monitoring as a function of immersion time, current-potential curves, electrochemical impedance spectroscopy (EIS)) were used. The wires' resistance to corrosion was measured and compared with the surface condition, assessed by scanning electron microscopy (SEM). Using the recorded data, a rating system based on the corrosion resistance of orthodontic wires was developed. The comparison of these data with the results of SEM shows that the surface chemical composition plays a primary role in the electrochemical behavior of the orthodontic wires and, unlike surface defects, is a key parameter for the corrosion resistance of the alloy. PMID:24280552

  2. Evaluation of the corrosion resistance of plasma nitrided austenitic stainless steel

    International Nuclear Information System (INIS)

    Plasma nitriding at 500 C for 14 h was applied to austenitic 304 stainless steel for surface hardening. The effect of surface treatment on the corrosion resistance of the material was investigated in naturally-aerated 0.5 M NaCl solution for 30 days using linear potentiodynamic polarization and electrochemical impedance spectroscopy methods. Both as-cast and plasma nitrided stainless steel samples underwent spontaneous passivation, though the nitrided sample exhibited more positive zero current potential, higher breakdown potential, and lower anodic current densities than the as-cast material. Impedance spectra were interpreted in terms of a duplex passive film, corrosion resistance mainly arising from a thin inner compact layer, whereas the outer layer was more porous and less sealing. Capacitive behaviour and high corrosion resistance were observed in the low and medium frequency ranges for the nitrided samples.

  3. Development of highly corrosion resistant 18-8 stainless steel for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Corrosion behavior of ultra low carbon 18-8 stainless steel was evaluated in boiling nitric acid environment. Although ultra low carbon stainless steel shows excellent corrosion resistance, it is, due to low carbon content, easily induced martensite by cold work. Increasing the strain induced martensite by cold work, the corrosion rate of 18-8 stainless steel increased. Corrosion rate is summarized as a function of stability factor with represents a resistance to martensite transformation induced by cold work and highly austenitic stabilized steel showed better corrosion resistance. Ultra low carbon 18-8 stainless steel which is highly stabilized austenite was designed and manufactured with commercial mill. The development steel showed an excellent corrosion resistance in boiling nitric acid even after cold work. The corrosion rate of the welded joint was also excellent as well as matrix

  4. Environmental Cracking of Corrosion Resistant Alloys in the Chemical Process Industry - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B

    2006-12-04

    A large variety of corrosion resistant alloys are used regularly in the chemical process industry (CPI). The most common family of alloys include the iron (Fe)-based stainless steels, nickel (Ni) alloys and titanium (Ti) alloys. There also other corrosion resistant alloys but their family of alloys is not as large as for the three groups mentioned above. All ranges of corrosive environments can be found in the CPI, from caustic solutions to hot acidic environments, from highly reducing to highly oxidizing. Stainless steels are ubiquitous since numerous types of stainless steels exist, each type tailored for specific applications. In general, stainless steels suffer stress corrosion cracking (SCC) in hot chloride environments while high Ni alloys are practically immune to this type of attack. High nickel alloys are also resistant to caustic cracking. Ti alloys find application in highly oxidizing solutions. Solutions containing fluoride ions, especially acid, seem to be aggressive to almost all corrosion resistant alloys.

  5. Development of corrosion-resistant improved Al-doped austenitic stainless steel

    Science.gov (United States)

    Kondo, Keietsu; Miwa, Yukio; Okubo, Nariaki; Kaji, Yoshiyuki; Tsukada, Takashi

    2011-10-01

    Aluminum-doped type 316L SS (316L/Al) has been developed for the purpose of suppressing the degradation of corrosion resistance induced by irradiation in austenitic stainless steels (SSs). The electrochemical corrosion properties of this material were estimated after Ni-ion irradiation at a temperature range from 330 °C to 550 °C. When irradiated at 550 °C up to 12 dpa, 316L/Al showed high corrosion resistance in the vicinity of grain boundaries (GBs) and in grains, while severe GB etching and local corrosion in grains were observed in irradiated 316L and 316 SS. It is supposed that aluminum enrichment was enhanced by high-temperature irradiation at GBs and in grains, to compensate for lost corrosion resistance induced by chromium depletion.

  6. Corrosion resistance of the welded AISI 316L after various surface treatments

    Directory of Open Access Journals (Sweden)

    Tatiana Liptáková

    2014-01-01

    Full Text Available The main aim of this work is to monitor the surface treatment impact on the corrosion resistance of the welded stainless steel AISI 316L to local corrosion forms. The excellent corrosion resistance of austenitic stainless steel is caused by the existence of stable, thin and well adhering passive layer which quality is strongly influenced by welding. Therefore surface treatment of stainless steel is very important with regard to its local corrosion susceptibility Surfaces of welded stainless steel were treated by various mechanical methods (grinding, garnet blasting. Surface properties were studied by SEM, corrosion resistance was evaluated after exposition tests in chlorides environment using weight and metalographic analysis. The experimental outcomes confirmed that the mechanical finishing has a significant effect on the corrosion behavior of welded stainless steel AISI 316L.

  7. Influence of inorganic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Blawert, C.; Scharnagl, N.;

    2009-01-01

    Surface contaminants as a result of thermo-mechanical processing of magnesium alloys, e.g. sheet rolling, can have a negative effect on the corrosion resistance of magnesium alloys. Especially contaminants such as Fe, Ni and Cu, left on the surface of magnesium alloys result in the formation...... of micro-galvanic couples and can therefore increase corrosion attack on these alloys. Due to this influence they should be removed to obtain good corrosion resistance. In this study, the effect of inorganic acid pickling on the corrosion behaviour of a commercial AZ31 magnesium alloy sheet...... cleaning the AZ31 sheet. However, to obtain reasonable corrosion resistance at least 5 mu m of the surface of AZ31 magnesium alloy sheet have to be removed....

  8. Microstructure and corrosion resistance of phytic acid conversion coatings for magnesium alloy

    International Nuclear Information System (INIS)

    In this paper, a new innoxious and pollution-free chemical protective coating for magnesium alloys, phytic acid conversion coating, was prepared. The conversion coatings are found to have high cover ratio and no cracks are found by atomic force microscopes (AFM) and scanning electron microscopy (SEM). The main elements of the conversion coatings are Mg, Al, O, P and C by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The chemical state of the elements in the coatings was also investigated by Fourier transform infrared spectroscopy (FTIR). AES depth profile analysis suggests that the thickness of the conversion coating is about 340 nm. The corrosion resistance of the coatings was evaluated by polarization curves. The results indicate that the corrosion resistance for the conversion coated AZ91D magnesium alloys in 3.5% NaCl solution increases markedly. The mechanisms of corrosion resistance and coatings formation are also discussed.

  9. Microstructure and corrosion resistance of phytic acid conversion coatings for magnesium alloy

    Science.gov (United States)

    Cui, Xiufang; Li, Qingfen; Li, Ying; Wang, Fuhui; Jin, Guo; Ding, Minghui

    2008-12-01

    In this paper, a new innoxious and pollution-free chemical protective coating for magnesium alloys, phytic acid conversion coating, was prepared. The conversion coatings are found to have high cover ratio and no cracks are found by atomic force microscopes (AFM) and scanning electron microscopy (SEM). The main elements of the conversion coatings are Mg, Al, O, P and C by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The chemical state of the elements in the coatings was also investigated by Fourier transform infrared spectroscopy (FTIR). AES depth profile analysis suggests that the thickness of the conversion coating is about 340 nm. The corrosion resistance of the coatings was evaluated by polarization curves. The results indicate that the corrosion resistance for the conversion coated AZ91D magnesium alloys in 3.5% NaCl solution increases markedly. The mechanisms of corrosion resistance and coatings formation are also discussed.

  10. Microstructure and corrosion resistance of phytic acid conversion coatings for magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Cui Xiufang [School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li Qingfen [School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Li Ying; Wang Fuhui [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Jin Guo [School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)], E-mail: jg97721@yahoo.com.cn; Ding Minghui [School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)

    2008-12-30

    In this paper, a new innoxious and pollution-free chemical protective coating for magnesium alloys, phytic acid conversion coating, was prepared. The conversion coatings are found to have high cover ratio and no cracks are found by atomic force microscopes (AFM) and scanning electron microscopy (SEM). The main elements of the conversion coatings are Mg, Al, O, P and C by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The chemical state of the elements in the coatings was also investigated by Fourier transform infrared spectroscopy (FTIR). AES depth profile analysis suggests that the thickness of the conversion coating is about 340 nm. The corrosion resistance of the coatings was evaluated by polarization curves. The results indicate that the corrosion resistance for the conversion coated AZ91D magnesium alloys in 3.5% NaCl solution increases markedly. The mechanisms of corrosion resistance and coatings formation are also discussed.

  11. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    Science.gov (United States)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip

    2015-06-01

    Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  12. Comparison of surface fractal dimensions of chromizing coating and P110 steel for corrosion resistance estimation

    International Nuclear Information System (INIS)

    Highlights: • Continuous chromizing coating was synthesized on P110 steel by pack cementation. • The chromizing coating showed better corrosion resistance. • Comparison of surface fractal dimensions can estimate corrosion resistance. - Abstract: In the field of corrosion research, mass gain/loss, electrochemical tests and comparing the surface elemental distributions, phase constitutions as well as surface morphologies before and after corrosion are extensively applied to investigate the corrosion behavior or estimate the corrosion resistance of materials that operated in various environments. Most of the above methods are problem oriented, complex and longer-period time-consuming. However from an object oriented point of view, the corroded surfaces of materials often have self-similar characterization: fractal property which can be employed to efficiently achieve damaged surface analysis. The present work describes a strategy of comparison of the surface fractal dimensions for corrosion resistance estimation: chromizing coating was synthesized on P110 steel surface to improve its performance via pack cementation. Scanning electron microscope (SEM) was used to investigate the surface morphologies of the original and corroded samples. Surface fractal dimensions of the detected samples were calculated by binary images related to SEM images of surface morphologies with box counting algorithm method. The results showed that both surface morphologies and surface fractal dimensions of P110 steel varied greatly before and after corrosion test, but the chromizing coating changed slightly. The chromizing coating indicated better corrosion resistance than P110 steel. Comparison of surface fractal dimensions of original and corroded samples can rapidly and exactly realize the estimation of corrosion resistance

  13. Comparison of surface fractal dimensions of chromizing coating and P110 steel for corrosion resistance estimation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Naiming, E-mail: lnmlz33@163.com [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Guo, Junwen [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Xie, Faqin [School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072 (China); Zou, Jiaojuan; Tian, Wei [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Yao, Xiaofei [School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710032 (China); Zhang, Hongyan; Tang, Bin [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2014-08-30

    Highlights: • Continuous chromizing coating was synthesized on P110 steel by pack cementation. • The chromizing coating showed better corrosion resistance. • Comparison of surface fractal dimensions can estimate corrosion resistance. - Abstract: In the field of corrosion research, mass gain/loss, electrochemical tests and comparing the surface elemental distributions, phase constitutions as well as surface morphologies before and after corrosion are extensively applied to investigate the corrosion behavior or estimate the corrosion resistance of materials that operated in various environments. Most of the above methods are problem oriented, complex and longer-period time-consuming. However from an object oriented point of view, the corroded surfaces of materials often have self-similar characterization: fractal property which can be employed to efficiently achieve damaged surface analysis. The present work describes a strategy of comparison of the surface fractal dimensions for corrosion resistance estimation: chromizing coating was synthesized on P110 steel surface to improve its performance via pack cementation. Scanning electron microscope (SEM) was used to investigate the surface morphologies of the original and corroded samples. Surface fractal dimensions of the detected samples were calculated by binary images related to SEM images of surface morphologies with box counting algorithm method. The results showed that both surface morphologies and surface fractal dimensions of P110 steel varied greatly before and after corrosion test, but the chromizing coating changed slightly. The chromizing coating indicated better corrosion resistance than P110 steel. Comparison of surface fractal dimensions of original and corroded samples can rapidly and exactly realize the estimation of corrosion resistance.

  14. Corrosion resistance of NiTi alloy in simulated body fluids

    Directory of Open Access Journals (Sweden)

    M. Kaczmarek

    2007-05-01

    Full Text Available Purpose: Corrosion resistance of an implant alloy is a very important determinant of its biocompatibility. The nature of an environment and surface treatments have a significant influence on corrosion. Most of the knowledge on the corrosion behavior of NiTi is from studies of “standard” corrosion tests. In fact, the knowledge of the corrosion behavior of NiTi inside the body is very limited. The main aim of the research was evaluation of corrosion resistance of NiTi alloy in various simulated body fluids.Design/methodology/approach: The evaluation of the electrochemical behavior of NiTi alloy was realized by recording of anodic polarization curves with the use of the potentiodynamic method. The tests were carried out for differently modified surfaces in diverse simulated body fluids.Findings: Surface condition of a metallic biomaterial determines its corrosion resistance. In the course of the work the good corrosion resistance of all the tested samples (with different surface conditions was observed.Research limitations/implications: The obtained results are the basis for the optimization of physicochemical properties of the NiTi alloy. The future research should be focused on selected specific implants specially with respect to their application features.Practical implications: On the basis of the obtained results it can be stated that the suggested surface treatment can be applicable for NiTi alloys due to the increase of the corrosion resistance.Originality/value: The paper presents the influence of various methods of the surface treatment on corrosion resistance of the NiTi alloy. The suggested surface treatment methods can be applied to implants intended for diverse medical applications, especially in cardiology and urology.

  15. Corrosion resistance and biocompatibility of titanium surface coated with amorphous tantalum pentoxide

    International Nuclear Information System (INIS)

    Tantalum pentoxide (Ta2O5) possesses good corrosion resistance and biocompatibility. This study aimed to improve the corrosion resistance and biocompatibility of titanium (Ti) by coating it with an amorphous Ta2O5 surface layer. An amorphous Ta2O5 layer was prepared on the Ti surface using a simple hydrolysis–condensation process at room temperature. The surface characteristics of the test specimens were analyzed using X-ray photoelectron spectroscopy, glancing angle X-ray diffraction, field emission scanning electron microscopy, and contact angle measurements. The corrosion resistance of the test specimens was evaluated from the potentiodynamic polarization curves and ion release measurements in simulated blood plasma (SBP). The biocompatibility of the test specimens was evaluated in terms of the protein (albumin) adsorption, cell adhesion, and cell growth of human bone marrow mesenchymal stem cells (hBMSCs). The amorphous Ta2O5 layer with a porous micro-/nano-scale topography, which was deposited on the Ti surface using a simple hydrolysis–condensation process, increased the corrosion resistance (i.e., increased the corrosion potential and decreased the anodic current and ion release) of the Ti in the SBP and improved the surface wettability, albumin adsorption, and cell adhesion. We conclude that the presence of an amorphous Ta2O5 layer on the Ti surface increased the corrosion resistance and biocompatibility of Ti. - Highlights: ► Amorphous Ta2O5 layer was coated on Ti using simple hydrolysis–condensation process. ► Ta2O5 surface layer showed a micro-/nano-scale porous topography. ► Ta2O5 layer enhanced wettability and corrosion resistance of Ti. ► Ta2O5 layer enhanced protein adsorption, cell adhesion, and cell proliferation of Ti

  16. Production of amorphous metal layers using ion implantation and investigation of the related modification of some surface properties

    International Nuclear Information System (INIS)

    Amorphous layers were produced by implanting B+ ions into Al at 50 keV. The modification of the electrochemical corrosion resistance and the mechanical strength of implanted specimen was investigated. (author). 2 refs, 1 tab, 2 figs

  17. High-temperature corrosion-resistance performance of electro-thermal explosion spraying coating

    Institute of Scientific and Technical Information of China (English)

    WEI Shi-cheng; XU Bin-shi; WANG Hai-dou; JIN Guo

    2005-01-01

    As a new spraying technology used in the remanufacturing engineering, electro-thermal explosion spraying holds a lot of advantages. Electro-thermal explosion spraying coating aliquation phenomena are reduced and non-crystal, micro-crystal and millimicron-crystal and other microstructure are formed. The corrosion-resistance a bility of electro-thermal explosion spraying coating in high temperature environment was surveyed respectively. SEM equipped with EDS was employed to analyze the microstructure of spraying coating before and after corrosion. The corrosion-resistance mechanism of the spraying coating was discussed.

  18. Effect of Heat Treatment on the Microstructure and Corrosion Resistance of Cu-Zn Alloy

    Institute of Scientific and Technical Information of China (English)

    Xu Tao; Zhang Hailong; Xiao Nianxin; Zhao Xiangling

    2007-01-01

    The microstructure of Cu-Zn alloy with different heat treatment conditions in 3.5% NaCl + NH3 solution were observed, and the average corrosion rates and electrochemical data of Cu-Zn alloy were measured, as well as the effect of heat treatment on microstructure and corrosion resistance of Cu-Zn alloy was analyzed. The results show that the microstructure of Cu-Zn alloy has been changed due to the heat treatment. As a results, the better corrosion resistance can be obtained for the Cu-Zn alloy quenched from 900℃ for 0.5h followed by tempered at 100℃ for 2h.

  19. Effect of Rare Earths on Corrosion Resisting Properties of Carbon-Manganese Clean Steels

    Institute of Scientific and Technical Information of China (English)

    郭锋; 林勤; 孙学义

    2004-01-01

    Electrochemistry experiments were made on carbon-manganese clean steel with rare earths Ce and La respectively to observe corrosion parameters such as corrosion current icorr, and characteristic potential of pitting Eb. The results indicate that the rare earths have effect on corrosion resisting properties of carbon-manganese clean steel, and the optimum contents of La is about 0.011% (mass fraction) and Ce about 0.014% (mass fraction) respectively. The change of corrosion resistance is related to the action of rare earths on microstructure and effect on surface state of samples in the process of polarization.

  20. Effect of electrodeposition temperature on grain orientation and corrosion resistance of nanocrystalline pure nickel

    Science.gov (United States)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang

    2016-08-01

    The nanocrystalline pure nickels with different grain orientations were fabricated by direct current electrodeposition process. The grain size slightly decreased with the increasing of electrodeposition solution temperature. However, grain orientation was affected significantly. Comparing with samples obtained at 50 °C and 80 °C, sample obtained at 20 °C had the strongest (111) orientation plane which increased electrochemical corrosion resistance of this sample. At the same time, the lowest (111) orientation plane deteriorated electrochemical corrosion resistance of sample obtained at 50 °C.

  1. Corrosion resistance of anodized AZ31 Mg alloy in borate solution containing titania sol

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yan; Wang Guixiang [Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Dong Guojun [Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)], E-mail: dgj1129@163.com; Gong Fan; Zhang Lili; Zhang Milin [Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)

    2008-09-08

    Anodic films were prepared on the AZ31 magnesium alloy in alkaline borate solution with or without addition of titania sol under the constant potential of 50 V (dc) for 10 min at room temperature. The morphology of the anodic films was observed by scanning electron microscope (SEM). The corrosion resistance of the anodic films was evaluated in 3.5% NaCl solution using fast anti-acid test, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The anodic film formed in borate solution with addition of 4% titania sol has superior uniform surface and higher corrosion resistance than in other conditions.

  2. A corrosion resistant cerium oxide based coating on aluminum alloy 2024 prepared by brush plating

    International Nuclear Information System (INIS)

    Cerium oxide based coatings were prepared on AA2024 Al alloy by brush plating. The characteristic of this technology is that hydrogen peroxide, which usually causes the plating solution to be unstable, is not necessary in the plating electrolyte. The coating showed laminated structures and good adhesive strength with the substrate. X-ray diffraction and X-ray photoelectron spectroscopy analysis showed that the coatings were composed of Ce(III) and Ce(IV) oxides. The brush plated coatings on Al alloys improved corrosion resistance. The influence of plating parameters on structure and corrosion resistance of the cerium oxide based coating was studied.

  3. Prediction of microsegregation and pitting corrosion resistance of austenitic stainless steel welds by modelling

    Energy Technology Data Exchange (ETDEWEB)

    Vilpas, M. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity

    1999-07-01

    The present study focuses on the ability of several computer models to accurately predict the solidification, microsegregation and pitting corrosion resistance of austenitic stainless steel weld metals. Emphasis was given to modelling the effect of welding speed on solute redistribution and ultimately to the prediction of weld pitting corrosion resistance. Calculations were experimentally verified by applying autogenous GTA- and laser processes over the welding speed range of 0.1 to 5 m/min for several austenitic stainless steel grades. Analytical and computer aided models were applied and linked together for modelling the solidification behaviour of welds. The combined use of macroscopic and microscopic modelling is a unique feature of this work. This procedure made it possible to demonstrate the effect of weld pool shape and the resulting solidification parameters on microsegregation and pitting corrosion resistance. Microscopic models were also used separately to study the role of welding speed and solidification mode in the development of microsegregation and pitting corrosion resistance. These investigations demonstrate that the macroscopic model can be implemented to predict solidification parameters that agree well with experimentally measured values. The linked macro-micro modelling was also able to accurately predict segregation profiles and CPT-temperatures obtained from experiments. The macro-micro simulations clearly showed the major roles of weld composition and welding speed in determining segregation and pitting corrosion resistance while the effect of weld shape variations remained negligible. The microscopic dendrite tip and interdendritic models were applied to welds with good agreement with measured segregation profiles. Simulations predicted that weld inhomogeneity can be substantially decreased with increasing welding speed resulting in a corresponding improvement in the weld pitting corrosion resistance. In the case of primary austenitic

  4. A corrosion resistant cerium oxide based coating on aluminum alloy 2024 prepared by brush plating

    Energy Technology Data Exchange (ETDEWEB)

    Tang Junlei; Han Zhongzhi [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zuo Yu, E-mail: zuoy@mail.buct.edu.cn [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Tang Yuming [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-01-15

    Cerium oxide based coatings were prepared on AA2024 Al alloy by brush plating. The characteristic of this technology is that hydrogen peroxide, which usually causes the plating solution to be unstable, is not necessary in the plating electrolyte. The coating showed laminated structures and good adhesive strength with the substrate. X-ray diffraction and X-ray photoelectron spectroscopy analysis showed that the coatings were composed of Ce(III) and Ce(IV) oxides. The brush plated coatings on Al alloys improved corrosion resistance. The influence of plating parameters on structure and corrosion resistance of the cerium oxide based coating was studied.

  5. Influence of Surface Treatment on the Corrosion Resistance of Stainless Steel in Simulated Human Body Environment

    Institute of Scientific and Technical Information of China (English)

    Esmaeil Jafari; Mohammad Jafar Hadianfard

    2009-01-01

    In the present research, the influence of chromium enrichment by surface treatment on corrosion resistance of type 316L stainless steel in body environment was investigated. For this study, weight loss test during 18 months, cyclic and liner polarization tests before and after surface treatment and metallography by electron and light microscopy were used to evaluate the effectiveness of the proposed method. In addition, X-ray photoelectron spectroscopy (XPS) method was used to determine the chromium concentration in the surface layer after surface treatment. Results show that the surface treatment has improved corrosion resistance of the type 316L stainless steel in body environment.

  6. Assessment of corrosion resistance of Nd–Fe–B magnets by silanization for orthodontic applications

    Energy Technology Data Exchange (ETDEWEB)

    Fabiano, F., E-mail: ffabiano@unime.it [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, Contrada di Dio, 98166 Messina (Italy); Department of Experimental, Specialized Medical-Surgical and Odontostomatological Sciences, Messina (Italy); Celegato, F. [INRIM Electromagnetism Division, Torino (Italy); Giordano, A. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, Contrada di Dio, 98166 Messina (Italy); Borsellino, C. [Department of Civil Engineering, Computing, Construction, Environmental and Applied Mathematics, Messina (Italy); Bonaccorsi, L.; Calabrese, L. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, Contrada di Dio, 98166 Messina (Italy); Tiberto, P. [INRIM Electromagnetism Division, Torino (Italy); Cordasco, G.; Matarese, G. [Department of Experimental, Specialized Medical-Surgical and Odontostomatological Sciences, Messina (Italy); Fabiano, V. [Department of Civil Engineering, Computing, Construction, Environmental and Applied Mathematics, Messina (Italy); Department of Experimental, Specialized Medical-Surgical and Odontostomatological Sciences, Messina (Italy); Azzerboni, B. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, Contrada di Dio, 98166 Messina (Italy)

    2014-02-15

    Nd–Fe–B permanent magnets are characterised by excellent magnetic properties. However, being extremely vulnerable to the attack of both climate and corrosive environments, their applications are limited. This paper describes how, at different thicknesses of N-propyl-trimetoxy-silane, the coating affects the magnetic force of nickel plated magnets. We also investigate if the corrosion resistance of silanized Nd–Fe–B magnets increases in mildly corrosive environments by immersing them in a synthetic saliva solution. It was found that the silanization treatment does not affect the strength of the magnetic force and provide an enhancement of the corrosion resistance of the substrate.

  7. Influence of surface roughness of stainless steel on microbial adhesion and corrosion resistance

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Bagge-Ravn, Dorthe; Kold, John;

    2003-01-01

    resistance was evaluated in a commercial disinfectant and in 1 M NaCl. Electropolished and grit 4000 polished steel proved more corrosion resistant as opposed to grit 80 and 120 polished surfaces. In conclusion, the surface finish did not influence bacterial attachment, colonisation, or removal, but is an...... was not affected by surface roughness (Ra) ranging from grit 4000 polished stainless steel (Ra <0.01) to ground stainless steel (Ra 0.9). Neither adhesion of Ps. aeruginosa nor its removal by an alkaline commercial cleaner in a flow system was affected by surface roughness. Pitting corrosion...... important parameter for the corrosion resistance of the surface....

  8. Corrosion Resistance of Plasma Sprayed Ceramic CompositeCoatings on Q235 Substrate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The corrosion resistance of SiO2/Al2O3, TiO2/Al2O3 and (SiO2+TiO2)/Al2O3 ceramic composite coatings on Q235 substrate fabricated by means of plasma spraying was investigated. The results show that Al2O3+13 wt pct TiO2 ceramic coating has the highest density, the lowest connected porosity and the best corrosion resistance. The corrosion mechanism of Q235 with ceramic coating has also been studied.

  9. Assessment of corrosion resistance of Nd–Fe–B magnets by silanization for orthodontic applications

    International Nuclear Information System (INIS)

    Nd–Fe–B permanent magnets are characterised by excellent magnetic properties. However, being extremely vulnerable to the attack of both climate and corrosive environments, their applications are limited. This paper describes how, at different thicknesses of N-propyl-trimetoxy-silane, the coating affects the magnetic force of nickel plated magnets. We also investigate if the corrosion resistance of silanized Nd–Fe–B magnets increases in mildly corrosive environments by immersing them in a synthetic saliva solution. It was found that the silanization treatment does not affect the strength of the magnetic force and provide an enhancement of the corrosion resistance of the substrate

  10. In-vitro evaluation of corrosion resistance of nitrogen ion implanted titanium simulated body fluid

    International Nuclear Information System (INIS)

    Titanium and its alloy Ti6Al4V enjoy widespread use in various biomedical applications because of favourable local tissue response, higher corrosion resistance and fatigue strength than the stainless steels and cobalt-chromium alloy previously used. The study reported in this paper aims to optimize the conditions of nitrogen ion implantation on commercially pure titanium and to correlate the implantation parameters to the corrosion resistance. X-ray photoelectron spectroscopy was used to analyse surface concentration and the implantation processes. An improvement in the electrochemical behaviour of the passive film was shown to occur with nitrogen ion implantation on titanium, in simulated body fluids. (UK)

  11. Protection of NdFeB magnets by corrosion resistance phytic acid conversion film

    Science.gov (United States)

    Nan, Haiyang; Zhu, Liqun; Liu, Huicong; Li, Weiping

    2015-11-01

    Phytic acid conversion film was prepared on NdFeB magnets by dipping the NdFeB into phytic acid solution. The morphology, composition, structure and corrosion resistance of the film were systematically investigated. The results showed that the phytic acid film was effective in improving the corrosion resistance of NdFeB magnets. XRD, TEM and FT-IR analyses revealed that the film was amorphous and had a strong peak of phosphate radical (PO43-). The formation mechanism of the film was also explored by XPS and the potential of zero charge (Epzc) measurement at the solution-metal interface.

  12. 77 FR 44213 - Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea...

    Science.gov (United States)

    2012-07-27

    ... Corrosion-Resistant Carbon Steel Flat Products from Germany, 71 FR 66163 (November 13, 2006). Analysis of... Steel Flat Products From Canada and Germany, 71 FR 14498 (March 22, 2006). \\7\\ See Notice of Final... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From Germany and the...

  13. 78 FR 55057 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2013-09-09

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea... antidumping duty order on corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea... Requests for Revocation in Part, 77 FR 59168 (September 26, 2012). \\2\\ The period of review (POR) ends...

  14. 76 FR 4291 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Partial Rescission of...

    Science.gov (United States)

    2011-01-25

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... administrative review of the countervailing duty order on corrosion- resistant carbon steel flat products from... FR 60078 (September 29, 2010) (Initiation). As a result of withdrawals of request for review, we...

  15. 77 FR 72827 - Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea: Final...

    Science.gov (United States)

    2012-12-06

    ... Carbon Steel Flat Products from Germany, 71 FR 66163 (November 13, 2006). Analysis of Comments Received... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic... on certain corrosion- resistant carbon steel flat products (``CORE'') from Germany and the...

  16. 78 FR 19210 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2013-03-29

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... carbon steel flat products from the Republic of Korea for the period January 1, 2010, through December 31...\\ See Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results...

  17. 76 FR 77775 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2011-12-14

    ... FR 54209 (August 31, 2011) (``Preliminary Results''). The final results were originally due no later... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea... countervailing duty order on corrosion-resistant carbon steel flat products from the Republic of Korea...

  18. Corrosion resistance of Ti-based metallic glass coating in concentrated nitric acid

    International Nuclear Information System (INIS)

    This paper investigated the corrosion resistance of a Ti-based metallic glass coating in concentrated HNO3 solution, and discovered the coating's superior corrosion resistance compared with 304 L substrate. The coating exhibited a fully amorphous and pore-free structure with the thickness of ∼380 μm. A relatively uniform and thick passivation film was formed on the surface of the coating as an oxygen diffusion barrier, leading to the much improved corrosion resistance. The Raman spectrum evidenced that the passivation film was mainly TiO2 with a mixed structure of anatase and rutile. We believe that the present findings will open up a new horizon for coatings in spent nuclear fuel reprocessing applications. - Highlights: • A fully amorphous Ti-based metallic glass coating was formed. • The amorphous coating exhibited superior corrosion resistance in HNO3. • A uniform and mix-structured TiO2 corrosion product was formed. • The coating may become the optimal candidate for nuclear applications

  19. Corrosion resistance and microstructure of alloy 625 weld overlay on ASTM A516 grade 70

    International Nuclear Information System (INIS)

    Nickel-based alloys are a crucial class of materials because of their excellent corrosion resistance. In the present study, single layer and two layers alloy 625 weld overlays were deposited by GTAW process on A516 grade 70 carbon steel. The dilution in terms of Fe, Ni, Mo and Nb content was calculated in 30 points of weld overlay. Microstructure observations showed that alloy 625 had austenitic structure with two types of Laves and NbC secondary phases. The uniform and pitting corrosion resistance of alloy 625 weld overlay as casted and as forged were evaluated in accordance with ASTM G48-2011 standard at different temperatures to determine the weight loss and critical pitting temperature. For achieving a better comparison, samples from alloy 625 as casted and as forged were tested under the same conditions. The results point out that single layer alloy 625 weld overlay is not suitable for chloride containing environments, two layers alloy 625 weld overlay and alloy 625 as casted have acceptable corrosion resistance and almost the same critical pitting temperature. Alloy 625 as forged has the best corrosion resistance and the highest critical pitting temperature among all test specimens. Also, the corrosion behavior was evaluated in accordance with ASTM G28 standard. The corrosion rate of single layer weld overlay was unacceptable. The average corrosion rate of two layers weld overlay and in casted condition were 35.82 and 33.01 mpy, respectively.

  20. Plasma nitrocarburizing process - a solution to improve wear and corrosion resistance

    International Nuclear Information System (INIS)

    To prevent wear and corrosion problems in steam turbines, coatings have proved to have an advantage of isolating the component substrate from the corrosive environment with minimal changes in turbine material and design. Diffusion based coatings like plasma nitriding and plasma nitrocarburizing have been used for improving the wear and corrosion resistance of components undergoing wear during their operation. In this study plasma nitrocarburizing process was carried out on ferritic alloys like ASTM A182 Grade F22 and ATM A105 alloy steels and austenitic stainless steels like AISI 304 and AISI 316 which are used to make trim parts of control valves used for high pressure and high temperature steam lines to enhance their wear and corrosion resistance properties. The corrosion rate was measured by a potentiodynamic set up and salt spray unit in two different environments viz., tap water and 5% NaCl solutions. The Tafel plots of ferritic alloys and austenitic stainless steels show that plasma nitrocarburizing process show better corrosion resistance compared to that of the untreated steel. It was found that after plasma nitrocarburizing process the hardness of the alloy steels increased by a factor of two. The corrosion resistance of all the steels mentioned above improved in comparison to the untreated steels. This improvement can be attributed to the nitrogen and carbon incorporation in the surface of the material. This process can be also applied to components used in nuclear industries to cater to the wear and corrosion problems. (author)

  1. The Enhancement of Mg Corrosion Resistance by Alloying Mn and Laser-Melting

    Directory of Open Access Journals (Sweden)

    Youwen Yang

    2016-03-01

    Full Text Available Mg has been considered a promising biomaterial for bone implants. However, the poor corrosion resistance has become its main undesirable property. In this study, both alloying Mn and laser-melting were applied to enhance the Mg corrosion resistance. The corrosion resistance, mechanical properties, and microstructure of rapid laser-melted Mg-xMn (x = 0–3 wt % alloys were investigated. The alloys were composed of dendrite grains, and the grains size decreased with increasing Mn. Moreover, Mn could dissolve and induce the crystal lattice distortion of the Mg matrix during the solidification process. Mn ranging from 0–2 wt % dissolved completely due to rapid laser solidification. As Mn contents further increased up to 3 wt %, a small amount of Mn was left undissolved. The compressive strength of Mg-Mn alloys increased first (up to 2 wt % and then decreased with increasing Mn, while the hardness increased continuously. The refinement of grains and the increase in corrosion potential both made contributions to the enhancement of Mg corrosion resistance.

  2. Nano zinc phosphate coatings for enhanced corrosion resistance of mild steel

    International Nuclear Information System (INIS)

    Highlights: • Nano zinc phosphate coating on mild steel was developed. • Nano zinc phosphate coatings on mild steel showed enhanced corrosion resistance. • The nano ZnO increases the number of nucleating sites for phosphating. • Faster attainment of steady state during nano zinc phosphating. - Abstract: Nano crystalline zinc phosphate coatings were developed on mild steel surface using nano zinc oxide particles. The chemical composition and morphology of the coatings were analyzed by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The particles size of the nano zinc phosphate coating developed was also characterized by TEM analysis. Potentiodynamic polarization and electrochemical impedance studies were carried out in 3.5% NaCl solution. Significant variations in the coating weight, morphology and corrosion resistance were observed as nano ZnO concentrations were varied from 0.25 to 2 g/L in the phosphating baths. The results showed that nano ZnO particles in the phosphating solution yielded phosphate coatings of higher coating weight, greater surface coverage and enhanced corrosion resistance than the normal zinc phosphate coatings (developed using normal ZnO particles in the phosphating baths). Better corrosion resistance was observed for coatings derived from phosphating bath containing 1.5 g/L nano ZnO. The activation effect brought about by the nano ZnO reduces the amount of accelerator (NaNO2) required for phosphating

  3. Atmospheric corrosion resistance of MnCuP weathering steel in simulated environments

    International Nuclear Information System (INIS)

    Highlights: → Atmospheric corrosion resistance of a low cost MnCuP weathering steel was investigated by simulated wet/dry cyclic tests. → The steel shows high corrosion resistance in simulated coastal, industrial, and coastal-industrial atmospheres. → Mn and Cu are identified in bivalent and univalent respectively, leading to cation-selectivity of the rust layer. → Phosphorus promotes the formation of non-soluble phosphates that may act as corrosion inhibitor in rust layer. - Abstract: In this work, atmospheric corrosion resistance of low cost MnCuP weathering steel in simulated coastal, industrial, and coastal-industrial atmospheric environments was investigated by wet/dry cyclic acceleration corrosion tests. The results indicate that MnCuP weathering steel exhibits high corrosion resistance in the three atmospheres. Besides, the alloying effect of Mn, Cu, and P elements on the anti-corrosion mechanism of MnCuP weathering steel was discussed by techniques of X-ray photoelectron spectroscopy, potential-pH diagram, and electron probe microanalysis.

  4. Electrolytic deposition and corrosion resistance of Zn–Ni coatings obtained from sulphate-chloride bath

    Indian Academy of Sciences (India)

    Katarzyna Wykpis; Magdalena Popczyk; Antoni Budniok

    2011-07-01

    Zn–Ni coatings were deposited under galvanostatic conditions on steel substrate (OH18N9). The influence of current density of deposition on the surface morphology, chemical and phase composition was investigated. The corrosion resistance of Zn–Ni coatings obtained at current density 10–25 mA cm-2 are measured, and are compared with that of metallic cadmium coating. Structural investigations were performed by the X-ray diffraction (XRD) method. The surface morphology and chemical composition of deposited coatings were studied using a scanning electron microscope (JEOL JSM-6480) with EDS attachment. Studies of electrochemical corrosion resistance were carried out in the 5% NaCl, using potentiodynamic and electrochemical impedance spectroscopy (EIS) methods. On the ground of these research, the possibility of deposition of Zn–Ni coatings contained 24–26% at. Ni was exhibited. It was stated, that surface morphology, chemical and phase composition of these coatings are practically independent on current density of deposition. On the basis of electrochemical investigations it was found that corrosion resistance of these Zn–Ni coatings is also independent of current density. These coatings are more corrosion resistant in 5% NaCl solution than metallic cadmium. It was suggested that the Zn–Ni coating may be used as a substitute for toxic cadmium.

  5. Development of wear and corrosion resistant surface systems; Entwicklungen von verschleiss- und korrosionsbestaendigen Oberflaechensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, H. [Technische Univ. Braunschweig (Germany). Inst. fuer Oberflaechentechnik und Plasmatechnische Werkstoffentwicklung; Pfohl, C. [Technische Univ. Braunschweig (Germany). Inst. fuer Oberflaechentechnik und Plasmatechnische Werkstoffentwicklung; Woehle, J. [Technische Univ. Braunschweig (Germany). Inst. fuer Oberflaechentechnik und Plasmatechnische Werkstoffentwicklung; Gebauer, A. [Fraunhofer-Institut fuer Schicht- und Oberflaechentechnik, Braunschweig (Germany); Biemer, S. [Technische Univ. Braunschweig (Germany). Inst. fuer Oberflaechentechnik und Plasmatechnische Werkstoffentwicklung; Bulak, A. [Technische Univ. Braunschweig (Germany). Inst. fuer Oberflaechentechnik und Plasmatechnische Werkstoffentwicklung; Menthe, E. [Technische Univ. Braunschweig (Germany). Inst. fuer Oberflaechentechnik und Plasmatechnische Werkstoffentwicklung; Rodriguez Cabeo, E. [Volkswagenwerk AG, Wolfsburg (Germany). Zentrallaboratorium; Stucky, T. [Technische Univ. Braunschweig (Germany). Inst. fuer Oberflaechentechnik und Plasmatechnische Werkstoffentwicklung

    1996-12-01

    In this study two methods are described to realize wear and corrosion resistant surface systems: plasma diffusion treatment (PDT) and plasma assisted CVD (PACVD). Plasma nitriding, plasma nitrocarburizing and plasma boriding are used to treat different kinds of substrates. The advances of PACVD and the development of low temperature PACVD and industrial applications of these techniques are explained. (orig.)

  6. Sputtering parameters affecting the corrosion resistance of CoCrPtTa thin film media

    International Nuclear Information System (INIS)

    Corrosion resistance of CoCrPtTa thin film media under high temperature and humidity environment (60 deg. C, 80 RH) was investigated. Effects of sputtering parameters, such as film thickness, Ar pressure, substrate bias, protective layer thickness and composition were studied. It is shown that Cr underlayer thickness and Ar pressure play important roles in the suppression of Co corrosion

  7. Surface modification and corrosion resistance of Ni-Ti alloy used for urological stents

    Directory of Open Access Journals (Sweden)

    W. Kajzer

    2007-01-01

    Full Text Available Purpose: The work presents the influence of the surface treatment of Ni-Ti alloy, intended for implants applied inurogenital surgery, on their corrosion resistance. The tests were carried out in the simulated urine at the temperature37±1ºC and pH = 5.6÷6.4. In particular, the pitting and crevice corrosion resistance tests were carried out.Design/methodology/approach: The corrosion tests were realized by recording of anodic polarization curveswith the use of the potentiodynamic method. The VoltaLab® PGP 201 system for electrochemical tests wasapplied. The tests were carried out in electrolyte simulating urine (pH = 5.6 ÷ 6.4 at the temperature of 37±1ºC.Findings: Surface condition of metallic biomaterial determines its corrosion resistance.Research limitations/implications: The obtained results are the basis for the optimization of physicochemicalproperties of the Ni-Ti alloy.Practical implications: On the basis of the obtained results it can be stated that Ni-Ti alloy can be applied in urology.Originality/value: The paper presents the influence of the surface treatment on corrosion resistance of Ni-Ti alloy.

  8. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance. PMID:26393523

  9. The influence of electropolishing on the corrosion resistance of 316L stainless steel.

    Science.gov (United States)

    Sutow, E J

    1980-09-01

    A study was conducted which examined the influence of electropolishing on the corrosion resistance of a cold rolled 316L stainless steel. Test specimens were surface prepared to a final mechanical finish of wetted 600 grit SiC paper, prior to electropolishing. An o-H3PO4/Glycerol/H2O electropolishing solution was employed for times of 15, 20, and 25 min. Control specimens were surface prepared only to the final mechanical finish. Anodic polarization tests were performed in a deaerated Ringer's solution (37 degrees C) which was acidified to pH 1, with HCl. The electropolished specimens demonstrated increased corrosion resistance, when compared to the control specimens. This was evidenced for the former by more anodic corrosion and breakdown potentials, and the absence of a dissolution peak which was observed for the control specimens at the initial polarization potentials. Surface hardness measurements indicated that this increase in corrosion resistance was produced, in part, by the removal of the cold worked surface layer produced by the mechanical finish. In terms of increasing corrosion resistance, no optimum electropolishing time was found within the 15-25 min treatment period. PMID:7349665

  10. KTA 625 alloy tube with excellent corrosion resistance and heat resistance

    International Nuclear Information System (INIS)

    The problems when seamless tubes are produced by using nickel base 625 alloy (61Ni-22Cr-9Mo-Cb) which is known as a corrosion resistant and heat resistant alloyF were examined, and the confirmation experiment was carried out on its corrosion resistance and heat resistance. Various difficulties have been experienced in the tube making owing to the characteristics due to the chemical composition, but they were able to be solved by the repeated experiments. As for the characteristics of the product, the corrosion resistance was excellent particularly in the environment containing high temperature, high concentration chloride, and also the heat resistance was excellent in the wide temperature range from normal temperature to 1000 deg C. From these facts, the wide fields of application are expected for these alloy tubes, including the evaporation and concentration equipment for radioactive wastes in atomic energy field. Expecting the increase of demand hereafter, Kobe Steel Ltd. examined the problems when seamless tubes are produced from the 625 alloy by Ugine Sejournet process. The aptitude for tube production such as the chemical composition, production process and the product characteristics, the corrosion resistance against chloride, hydrogen sulfide, polythionic and other acids,F the high temperature strength and oxidation resistance are reported. (Kako, I.)

  11. KTA 625 alloy tube with excellent corrosion resistance and heat resistance

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Kazuo (Kobe Steel Ltd. (Japan). Central Research and Development Lab.); Kadonaga, Toshiki; Kikuma, Seiji

    1982-11-01

    The problems when seamless tubes are produced by using nickel base 625 alloy (61Ni-22Cr-9Mo-Cb) which is known as a corrosion resistant and heat resistant alloy were examined, and the confirmation experiment was carried out on its corrosion resistance and heat resistance. Various difficulties have been experienced in the tube making owing to the characteristics due to the chemical composition, but they were able to be solved by the repeated experiments. As for the characteristics of the product, the corrosion resistance was excellent particularly in the environment containing high temperature, high concentration chloride, and also the heat resistance was excellent in the wide temperature range from normal temperature to 1000 deg C. From these facts, the wide fields of application are expected for these alloy tubes, including the evaporation and concentration equipment for radioactive wastes in atomic energy field. Expecting the increase of demand hereafter, Kobe Steel Ltd. examined the problems when seamless tubes are produced from the 625 alloy by Ugine Sejournet process. The aptitude for tube production such as the chemical composition, production process and the product characteristics, the corrosion resistance against chloride, hydrogen sulfide, polythionic and other acids, the high temperature strength and oxidation resistance are reported.

  12. Study on long-term corrosion behavior of high corrosion resistant metal overpack under reducing condition

    International Nuclear Information System (INIS)

    For repository container material of high-level radioactive wastes, titanium, nickel-based alloys, etc. have been investigated as high corrosion resistant metal. Titanium has excellent corrosion resistance under high chloride and oxidizing conditions and has many applications in general industries. However it has a possibility to absorb hydrogen generated by water reduction and cause hydrogen embrittlement under reducing condition of the repository. In this study, experimental investigation was carried out on hydrogen absorption behavior of titanium and influencing factors under reducing condition. In addition, previous studies were searched on the corrosion resistant material other than titanium. (1) Electrochemical acceleration tests of titanium were carried out to apply cathodic electric charge equivalent to the corrosion for 1000 years under reducing condition. The effects of parameters, processing rate, heat treatment conditions, applied stress and solution pH, on the hydrogen absorption rate were evaluated. (2) Sealed ampoule type immersion tests were conducted under reducing condition. Effects of pH on the hydrogen absorption rate were evaluated and furthermore, the surface hydrogen concentration was analyzed. (3) Hydrogen absorption/embrittlement models of titanium overpack were discussed and hydrogen concentration distribution after 1000 years was predicted. (4) Previous studies on corrosion behavior of high corrosion resistant alloys other than titanium were searched and organized. In addition, an investigation was conducted on the selection of waste package materials in the United States. (author)

  13. Corrosion Resistance of an electrodeposited Zinc Coating Containing CeO2 Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    HE Jian-ping; LUO Xin-yi; CHEN Su-jing; WANG Xian-you

    2004-01-01

    A Zinc coating containing CeO2 nanoparticles has been deposited by electrodeposition in a zinc plating bath.The content of CeO2 in the coating is 0.22 mass%. The results of weight loss experiments and electrochemistry tests show that corrosion resistance of the Zinc coating containing CeO2 nanoparticles is remarkably improved in contrast to the pure zinc coating in 0.5 M MgSO4 solution. The effects of CeO2 microparticles on the corrosion resistance of the zinc coating have been studied, the results show that CeO2 microparticles have no effect on the corrosion resistance of the zinc coating. SEM and XRD experiments suggest that the presence of CeO2 nanoparticles in the coating causes the modification of the surface morphology and preferential orientation of the crystal planes; therefore, the reason for the enhancement of corrosion resistance is mainly related to improvement of the structure of the coating.

  14. Influence of silicon addition on the mechanical properties and corrosion resistance of low-alloy steel

    Indian Academy of Sciences (India)

    M Hebda; H Dębecka; J Kazior

    2015-12-01

    The addition of silicon to low-alloy steel allows to modify the materials' microstructure and thus to improve their corrosion resistance and mechanical properties. The influence of adding different amounts of silicon on the properties (density, transverse rupture strength, microhardness and corrosion resistance) and microstructure of low-alloy steel was investigated. Samples were prepared via the mechanical alloying process, which is the most useful method to homogeneously introduce silicon to low-alloy steel. Sintering was performed by using the spark plasma sintering (SPS) technique. After the SPS process, half of each of the obtained samples was heat-treated in a vacuum furnace. The results show that high-density materials were achieved, and a homogeneous and fine microstructure was obtained. The investigated compositions containing 1 wt% of silicon had better corrosion resistance than samples with 3 wt% of silicon addition. Furthermore, corrosion resistance as well as the mechanical and plastic properties of the samples with 1 wt% of silicon can be further improved by applying heat treatment.

  15. Environmental Considerations in the Studies of Corrosion Resistant Alloys for High-Level Radioactive Waste Containment

    Energy Technology Data Exchange (ETDEWEB)

    Ilevbare, G O; Lian, T; Farmer, J C

    2001-11-26

    The corrosion resistance of Alloy 22 (UNS No.: N06022) was studied in simulated ground water of different pH values and ionic contents at various temperatures. Potentiodynamic polarization techniques were used to study the electrochemical behavior and measure the critical potentials in the various systems. Alloy 22 was found to be resistant to localized corrosion in the simulated ground waters tested.

  16. PRODUCTION OF POROUS POWDER MATERIALS OF SPHERICAL POWDERS OF CORROSION-RESISTANT STEEL

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevskij

    2012-01-01

    Full Text Available Production of porous powder materials from spherical powders of corrosion-resistant steel 12Х18н10Т with formation at low pressures 120–140 mpa in the mold with the subsequent activated sintering became possible due to increase of duration of process of spattering and formation of condensate particles (Si–C or (Mo–Si on surface.

  17. PRODUCTION OF POROUS POWDER MATERIALS OF SPHERICAL POWDERS OF CORROSION-RESISTANT STEEL

    OpenAIRE

    V. N. Kovalevskij; L. P. Pilincnich; A. V. Kovalevskaya; V. V. Savich; I. V. Fomihina; S. V. Grigorjev; A. E. Zhuk

    2012-01-01

    Production of porous powder materials from spherical powders of corrosion-resistant steel 12Х18н10Т with formation at low pressures 120–140 mpa in the mold with the subsequent activated sintering became possible due to increase of duration of process of spattering and formation of condensate particles (Si–C) or (Mo–Si) on surface.

  18. Corrosion resistant Zn–Co alloy coatings deposited using saw-tooth current pulse

    Indian Academy of Sciences (India)

    S Yogesha; A Chitharanjan Hegde

    2011-12-01

    Micro/nanostructured multilayer coatings of Zn–Co alloy were developed periodically on mild steel from acid chloride bath. Composition modulated multilayer alloy (CMMA) coatings, having gradual change in composition (in each layer) were developed galvanostatically using saw-tooth pulses through single bath technique (SBT). CMMA coatings were developed under different conditions of cyclic cathode current densities (CCCDs) and number of layers, and their corrosion resistances were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) method. Optimal configuration, represented as (Zn–Co)2.0/4.0/300 was found to exhibit ∼ 89 times better corrosion resistance compared to monolithic (Zn–Co)3.0 alloy deposited for same time, from same bath. The better corrosion resistance of CMMA coatings was attributed to changed interfacial dielectric properties, evidenced by dielectric spectroscopy. Improved corrosion resistance was attributed to formation of -type semiconductor film at the interface, supported by the Mott–Schottky plot. Further, the formation of multilayer and corrosion mechanism was analysed using scanning electron microscopy (SEM).

  19. Investigation of processing effects on the corrosion resistance of Ti20Mo alloy in saline solutions

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Alloy fabrication method affects both surface finish and corrosion resistance. • More porous surface finish and higher wettability produced by powder sintering. • Passive layer formed on sintered alloy breaks down in saline solution. • Increase in surface porosity facilitated electron transfer through the oxide film. • More corrosion resistant alloy produced by cold crucible levitation melting. - Abstract: The electrochemical properties of Ti20Mo alloys prepared using different fabrication procedures, namely cold crucible levitation melting (CCLM) and powder sintering, were investigated using linear potentiodynamic polarization and EIS measurements. The surface condition was established using AFM, with the observation of a more porous surface finish in the case of powder sintering. A major effect of surface conditioning on the corrosion resistance of Ti20Mo alloys was observed, where the compact finish exhibits a superior corrosion resistance in chloride-containing saline solutions. Less insulating surfaces towards electron exchange resulted for the more porous finish as revealed by scanning electrochemical microscopy (SECM)

  20. Effect of laser polishing on the surface roughness and corrosion resistance of Nitinol stents.

    Science.gov (United States)

    Park, Chan-Hee; Tijing, Leonard D; Pant, Hem Raj; Kim, Cheol Sang

    2015-01-01

    In this paper, we investigated the effect of laser polishing at different treatment times on the surface roughness and corrosion resistance of a biliary nickel-titanium (NiTi or Nitinol) stent. A specific area of the stent wire surface was checked for changes in roughness by scanning electron microscopy (SEM) and a noncontact profilometer. The corrosion resistance was assessed by potentiodynamic polarization test and electrochemical impedance spectroscopy. The surface characterization revealed that laser polishing reduced the surface roughness of stent by 34-64% compared to that of the as-received stent surface condition depending on the treatment time (i.e., 700-1600 μm). Measurements using potentiodynamic polarization in simulated body fluid solution showed better anti-corrosion performance of laser-polished stent compared to magnetically-polished stent and has comparable corrosion resistance with the as-received stent condition. In this paper, we have shown a preliminary study on the potential of laser polishing for the improvement of surface roughness of stent without affecting much its corrosion resistance. PMID:25585981

  1. Corrosion resistance of amorphous and crystalline Pd40Ni40P20 alloys in aqueous solutions

    DEFF Research Database (Denmark)

    Wu, Y.F.; Chiang, Wen-Chi; Chu, J.; Nieh, T.G.; Kawamura, Y.; Wu, J.K.

    2006-01-01

    The corrosion behaviors of amorphous and crystalline Pd40Ni40P20 alloys in various aqueous solutions are reported in this paper. The corrosion resistance of crystalline (annealed) Pd40Ni40P20 is better than that of amorphous Pd40Ni40P20 in various corrosive solutions, due to crystalline Pd40Ni40P...

  2. Improvement of Microhardness and Corrosion Resistance of Stainless Steel by Nanocomposite Coating

    Directory of Open Access Journals (Sweden)

    Hiba Husam Ismail

    2014-12-01

    Full Text Available Stainless steel (AISI 304 has good electrical and thermal conductivities, good corrosion resistance at ambient temperature, apart from these it is cheap and abundantly available; but has good mechanical properties such as hardness. To improve the hardness and corrosion resistance of stainless steel its surface can be modified by developing nanocomposite coatings applied on its surface. The main objective of this paper is to study effect of electroco-deposition method on microhardness and corrosion resistance of stainless steel, and to analyze effect of nanoparticles (Al2O3, ZrO2 , and SiC on properties of composite coatings. In this paper employed Electroco-deposition process to develop a composite coating with (Ni matrix and Ceramic oxide particles: Al2O3 (135nm, ZrO2 (40nm, and SiC (80nm as reinforcements. The coatings were developed with 10 g/L, and 20 g/L concentrations in bath, at four different current densities (0.5, 1, 2, 3 A/dm2 using Watts bath to study the effect of current density and particle concentration in bath, on structure and properties of the coatings developed. The surface morphology of nanocomposite coating was characterized by Scanning Electron Microscopy (SEM. The hardness of the nanocoating was carried out using Digital Vickers microhardness tester. The corrosion resistance property of nanocomposite coating was carried out in 3.5% NaCl solution used Open circuit potential (OCP and potentialastic polarization. The results showed the nanocomposites coating have a smooth and compact surface and have higher hardness than the uncoated stainless steel (2.3 times, and also found that the nanocomposite coating improves the corrosion resistance significantly (89.25%.

  3. Effect of heat treatment on corrosion resistance of WE54 alloy

    Directory of Open Access Journals (Sweden)

    T. Rzychoń

    2007-01-01

    Full Text Available Purpose: Poor corrosion resistance is one of the main causes to prevent magnesium alloys for wide applications.The addition of rare earth elements (RE is an effective way to improve corrosion resistance of magnesiumalloys. Heat treatment condition can also influence the corrosion behavior of magnesium alloys. The purpose ofthe investigation was to study the corrosion resistance of WE54 alloy after heat treatment.Design/methodology/approach: The study was conducted on WE54 alloy in the as-cast condition and after heattreatment at 250-300˚C for periods of time 4 – 96 h. Immersion test was performed using not deaerated 3.5%NaCl solution at room temperature. Specimens were placed in 3.5% NaCl solution for periods of time betweenone and 7 days. The dissolution rates (mg cm-2 day-1 were determined by weight loss measurements. Afterimmersion test, the microstructure and the appearances of the corroded structure were examined by scanningelectron microscopy.Findings: The corrosion rate of WE54 alloy strongly depends on heat treatment condition. WE54 alloy in theas-cast and after solution treated have similar corrosion behavior, different from that of aged specimens. Thecurves of corrosion rate for aged specimens were higher than that for as-cast and solution treated conditions. Itwas also noticed that the longer time of ageing the higher corrosion rates were observed.Research limitations/implications: The knowledge about corrosion behavior of Mg-RE-Zr alloys is currentlyunder evaluation on many speciality applications where lightweight connected with optimum corrosionresistance are required.Practical implications: The knowledge about corrosion behavior of Mg-RE-Zr alloys is currently underevaluation on many speciality applications where lightweight connected with optimum corrosion resistance arerequired.Originality/value: This paper includes the effect of heat treatment condition on corrosion resistance of WE54magnesium alloy.

  4. Characterization and wear- and corrosion-resistance of microarc oxidation ceramic coatings on aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wei Tongbo [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yan Fengyuan [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)]. E-mail: fyyan@ns.lzb.ac.cn; Tian Jun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2005-03-08

    Thick and hard ceramic coatings were prepared on Al-Cu-Mg alloy (2024 Al alloy) making use of microarc oxidation in an alkali-silicate electrolytic solution. The microstructure, phase composition, corrosion resistance friction and wear behaviors of the microarc oxidation coatings and the impact toughness of the impacted Al alloy blocks were investigated. Moreover, the corroded surfaces and the impacted surfaces and cross-sections of the microarc oxidation coatings were observed with a scanning electron microscope. The results show that the microarc oxidation coatings can be divided into a porous loose outer region consisting predominantly of {gamma}-Al{sub 2}O{sub 3} and Al-Si-O phase and a dense internal region consisting predominantly of {alpha}-Al{sub 2}O{sub 3}. They have excellent corrosion resistance, though the thicker coating shows somewhat poorer corrosion-resistance than the thinner one. The differences in the corrosion-resistance of the microarc oxidation coatings with different thicknesses are related to their different microstructures. The impact toughness of the Al alloy substrate is decreased after modification with the microarc oxidation coatings of extremely high hardness. This implies that the microarc oxidation coatings on the Al alloy substrate may not be suitable to impacting working condition. After abrasion away of the loose outer layer, the polished compact inner coatings possess excellent wear- and corrosion-resistance and strong adhesion to the substrate, and they show further significantly improved wear-resistance under the lubrication of a commercial 4838 lubricating oil. Namely, the friction coefficient and wear rate of the polished 100 {mu}m coating under the oil-lubricated-condition are reduced to be 1/10 and 1/1000 of that under dry sliding. The microarc oxidation coatings mainly composed of hard {alpha}-Al{sub 2}O{sub 3} could find promising application in preventing the corrosion and wear of Al alloy-based components.

  5. Effect of Surface Modification on Corrosion Resistance of Pure Titanium. An in Vivo Observation

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-mei; GUO Tian-wen; WANG Da-lin

    2006-01-01

    Objective: The aim of this experiment is to study the effect of three methods of surface modification on the corrosion resistance of commercial pure Titanium when used in oral environment for half a year. Method: 48 specimens of pure titanium were made and divided into four groups randomly, one group was selected randomly as Group Ⅰ(control group), the other three groups were treated by three methods of surface modification individually, Group Ⅱ: heating oxidation in air(400℃,30min.), Group Ⅲ : anodization(45 volts, 10 min.), Group Ⅳ: TiN coating(firing temperature 200℃ , total coating time 62min.). Six edentulous volunteers with healthy oral mucosa participated in the in vivo study. One testing piece from each group was selected and fixed in the polished surface of upper complete dentures. Dynamic polarization curves were traced with electrochemical method after the specimens were placed either in oral cavity or in air for 6 months. Results: After all specimens were used, Ecorr altered in every group , Ecorr from high to low were in turn: TiN coating group > heating oxidation group > anodization group >control group, no obvious passive potential Ep and Ip was found in control group.Heating oxidation in air exhibited similar Ep to anodization, but Ip was remarkably lower than that of anodization; TiN coating showed obviously different polarization curves compared with heating -oxidation group and anodization group, Ecorr was positive, and no Ep and Ip was found. Conclusion: Under present experimental condition, all the three treatment methods could enhance corrosion resistance of pure titanium in oral environment, heating oxidation in air exhibited better resistance to corrode than anodization, TiN coating possessed the most excellent corrosion resistance, even after exposed in oral condition for 6 months, there was little change of corrosion resistance. Therefore TiN coating could be adopted to improve corrosion resistance of pure titanium in

  6. Microstructures, mechanical properties and corrosion resistance of Hastelloy C22 coating produced by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qin-Ying; Zhang, Yang-Fei [Department of Materials Science and Engineering, HEDPS, Center for Applied Physics and Technology, LTCS, College of Engineering, Peking University, Beijing 100871 (China); Bai, Shu-Lin, E-mail: slbai@pku.edu.cn [Department of Materials Science and Engineering, HEDPS, Center for Applied Physics and Technology, LTCS, College of Engineering, Peking University, Beijing 100871 (China); Liu, Zong-De [Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, North China Electric Power University, Beijing 102206 (China)

    2013-03-15

    Highlights: ► Hastelloy C22 coatings were prepared by diode laser cladding technique. ► Higher laser speed resulted in smaller grain size. ► Size-effect played the key role in the hardness measurements by different ways. ► Coating with higher laser scanning speed displayed higher nano-scratch resistance. ► Small grain size was beneficial for improvement of coating corrosion resistance. -- Abstract: The Hastelloy C22 coatings H1 and H2 were prepared by laser cladding technique with laser scanning speeds of 6 and 12 mm/s, respectively. Their microstructures, mechanical properties and corrosion resistance were investigated. The microstructures and phase compositions were studied by metallurgical microscope, scanning electron microscope and X-ray diffraction analysis. The hardness and scratch resistance were measured by micro-hardness and nanoindentation tests. The polarization curves and electrochemical impedance spectroscopy were tested by electrochemical workstation. Planar, cellular and dendritic solidifications were observed in the coating cross-sections. The coatings metallurgically well-bonded with the substrate are mainly composed of primary phase γ-nickel with solution of Fe, W, Cr and grain boundary precipitate of Mo{sub 6}Ni{sub 6}C. The hardness and corrosion resistance of steel substrate are significantly improved by laser cladding Hastelloy C22 coating. Coating H2 shows higher micro-hardness than that of H1 by 34% and it also exhibits better corrosion resistance. The results indicate that the increase of laser scanning speed improves the microstuctures, mechanical properties and corrosion resistance of Hastelloy C22 coating.

  7. Three-dimensional shear transformation zone dynamics model for amorphous metals

    International Nuclear Information System (INIS)

    A fully three-dimensional (3D) mesoscale modeling framework for the mechanical behavior of amorphous metals is proposed. The model considers the coarse-grained action of shear transformation zones (STZs) as the fundamental deformation event. The simulations are controlled through the kinetic Monte Carlo algorithm and the mechanical response of the system is captured through finite-element analysis, where STZs are mapped onto a 3D finite-element mesh and are allowed to shear in any direction in three dimensions. Implementation of the technique in uniaxial creep tests over a wide range of conditions validates the model's ability to capture the expected behaviors of an amorphous metal, including high temperature flow conforming to the expected constitutive law and low temperature localization in the form of a nascent shear band. The simulation results are combined to construct a deformation map that is comparable to experimental deformation maps. The flexibility of the modeling framework is illustrated by performing a contact test (simulated nanoindentation) in which the model deforms through STZ activity in the region experiencing the highest shear stress

  8. Impact Ignition and Combustion Behavior of Amorphous Metal-Based Reactive Composites

    Science.gov (United States)

    Mason, Benjamin; Groven, Lori; Son, Steven

    2013-06-01

    Recently published molecular dynamic simulations have shown that metal-based reactive powder composites consisting of at least one amorphous component could lead to improved reaction performance due to amorphous materials having a zero heat of fusion, in addition to having high energy densities and potential uses such as structural energetic materials and enhanced blast materials. In order to investigate the feasibility of these systems, thermochemical equilibrium calculations were performed on various amorphous metal/metalloid based reactive systems with an emphasis on commercially available or easily manufactured amorphous metals, such as Zr and Ti based amorphous alloys in combination with carbon, boron, and aluminum. Based on the calculations and material availability material combinations were chosen. Initial materials were either mixed via a Resodyn mixer or mechanically activated using high energy ball milling where the microstructure of the milled material was characterized using x-ray diffraction, optical microscopy and scanning electron microscopy. The mechanical impact response and combustion behavior of select reactive systems was characterized using the Asay shear impact experiment where impact ignition thresholds, ignition delays, combustion velocities, and temperatures were quantified, and reported. Funding from the Defense Threat Reduction Agency (DTRA), Grant Number HDTRA1-10-1-0119. Counter-WMD basic research program, Dr. Suhithi M. Peiris, program director is gratefully acknowledged.

  9. Control of Fe(O,OH)6 nano-network structures of rust for high atmospheric-corrosion resistance

    International Nuclear Information System (INIS)

    A new-type of weathering steel containing 3.0 mass% Ni and 0.4 mass% Cu ('advanced weathering steel') exhibits good atmospheric-corrosion resistance in an atmosphere containing relatively high air-born salinity. Here, we show that the high performance was successfully achieved by controlling Fe(O,OH)6 nano-network structures of rust formed on their surfaces. A novel technique using synchrotron radiation has been developed for the in situ observation of rust-formation during wet-dry cycles. It has been revealed that the evolution of Fe(O,OH)6 nano-network structures of rust formed on the advanced weathering steel was more unique than those of conventional weathering steel and mild steel. At an early stage of reaction, Fe2NiO4 and CuO phases precipitate, which provide sites for the nucleation of the Fe(O,OH)6 nano-network resulting in the formation of rust composed of fine and dense-packed grains. The existence of Fe2NiO4 in the nano-network changes the ion-exchanging properties of rust from anion to cation selective. Then, the rust on the advanced weathering steel 'breathes out' chloride ions from the rust/steel interface, and protects steel for more than a century by reducing the life cycle maintenance cost in an environment-friendly manner

  10. Microstructure and corrosion resistance of Ti-Zr-Cu-Pd-Sn glassy and nanocrystalline alloys

    International Nuclear Information System (INIS)

    The microstructure and corrosion behavior of the Ti47.5Zr15Cu30Pd7.5Sn5 as-spun ribbons and as-cast rod have been investigated using HREM and potentiodynamic polarization study in simulated body fluids. The results of HREM reveal that, with decreasing cooling rate, the size and volume of nano-particles dispersed in glassy matrix increase for the Ti47.5Zr15Cu30Pd7.5Sn5 as-prepared samples. The as-spun ribbons with small size nano-particle show high corrosion resistance in PBS(-) and Hanks' solution, may be due to the formation of CuZr phase, resulting in the enrichment of Ti and Pd in the glassy matrix, which is helpful to form protective passive film. Comparatively, poor corrosion resistance is observed for the as-cast rod sample with larger nano-particles in both solutions. (author)

  11. Superhydrophobic surface fabricated on iron substrate by black chromium electrodeposition and its corrosion resistance property

    Science.gov (United States)

    Zhang, Bo; Feng, Haitao; Lin, Feng; Wang, Yabin; Wang, Liping; Dong, Yaping; Li, Wu

    2016-08-01

    The fabrication of superhydrophobic surface on iron substrate is carried out through 20 min black chromium electrodeposition, followed by immersing in 0.05 M ethanolic stearic acid solution for 12 h. The resultant superhydrophobic complex film is characterized by scanning electron microscope (SEM), disperse Spectrometer (EDS), atomic force microscope (AFM), water contact angle (CA), sliding angle (SA) and X-ray photoelectron spectroscope (XPS), and its corrosion resistance property is measured with cyclic voltammetry (CV), linear polarization and electrochemical impedance spectroscopy (EIS). The results show that the fabricated superhydrophobic film has excellent water repellency (CA, 158.8°; SA, 2.1°) and significantly high corrosion resistance (1.31 × 106 Ω cm-2) and excellent corrosion protection efficiency (99.94%).

  12. Improvement of corrosion resistance of M50 bearing steel by implantation with metal ions

    International Nuclear Information System (INIS)

    With the overall objective to improve the serivce life and reliability of gas turbine engine bearings by increasing their corrosion resistance and rolling contact fatigue life a collaborative project under the EEC BRITE/EURAM programme has been initiated. The projecty is aimed at developing an ion implantation technique to implant bearing components with metallic species and to optimise the process particularly for applications where salt-water contamination of the lubricating oil might occur. Prior to implanting into bearing components, test specimens of M50 bearing steel implanted with Cr+ and Ta+ at several doses have been characterised by various techniques. This article reports on the implantation work, the RBS and NRA analysis for depth profiling and independent dose measurement, and the corrosion resistance measurements which have been performed in order to determine the optimum treatment. (orig.)

  13. Corrosion resistance of titanium and some dental implant alloy in biological fluids

    International Nuclear Information System (INIS)

    The main purpose of this paper is the study of the long-term corrosion resistance of the titanium and dental alloy Ti-5Al-4V in physiological serum and artificial saliva of different pH values (acid and neutral) at 37 deg. C, reproducing the various biological environments that can be in contact with dental implants. The potentiostatic, potentiodynamic and linear polarisation measurements have been used to characterise the corrosion resistance of these materials during a period of about 1500 exposure hours. Also, the variation of open circuit potentials in time and with pH has been recorded for the same term. The potential gradients resulted from the pH changes were calculated; also, their variation in time were simulated for extreme, hypothetical conditions. The corrosion rates were determined. (authors)

  14. A comparative study of the corrosion resistance of incoloy MA 956 and PM 2000 superalloys

    Directory of Open Access Journals (Sweden)

    Maysa Terada

    2010-12-01

    Full Text Available Austenitic stainless steels, titanium and cobalt alloys are widely used as biomaterials. However, new medical devices require innovative materials with specific properties, depending on their application. The magnetic properties are among the properties of interest for some biomedical applications. However, due to the interaction of magnetic materials with Magnetic Resonance Image equipments they might used only as not fixed implants or for medical devices. The ferromagnetic superalloys, Incoloy MA 956 and PM 2000, produced by mechanical alloying, have similar chemical composition, high corrosion resistance and are used in high temperature applications. In this study, the corrosion resistance of these two ferritic superalloys was compared in a phosphate buffer solution. The electrochemical results showed that both superalloys are passive in this solution and the PM 2000 present a more protective passive film on it associated to higher impedances than the MA 956.

  15. Improvement on the Corrosion Resistance of AZ91D Magnesium Alloy by Aluminum Diffusion Coating

    Institute of Scientific and Technical Information of China (English)

    Hongwei HUO; Ying LI; Fuhui WANG

    2007-01-01

    By combination of magnetron sputtering deposition and vacuum annealing, an aluminum diffusion coating was prepared on the substrate of AZ91D alloy to improve its corrosion resistance. The microstructure and composition of the diffusion coating was investigated by scanning electron microscopy and X-ray diffraction. The diffusion coating was mainly comprised of β phase-Al12Mg17. The continuous immersion test in 3.5 wt pct neutral NaCl solution indicated that the specimen with diffusion coating had better corrosion resistance compared with the bare AZ91D alloy specimen. The potentiodynamic polarization measurement indicated that the diffusion coating could function as an effectively protective layer to reduce the corrosion rate of AZ91D alloy when exposed to 3.5 wt pct NaCl solution.

  16. Photoelectrochemical Study of Corrosion Resisting Property of Cupronickel B10 in Simulated Cooling Water

    Institute of Scientific and Technical Information of China (English)

    XU Qunjie; WAN Zongyue; ZHOU Guoding; YIN Renhe; CAO Weimin; LIN Changjian

    2009-01-01

    The corrosion behavior for cupronickel B10 electrode in simulated cooling water has been studied by using cyclic voltammetry, a photocurrent response method and electrochemical impedance spectroscopy (EIS). The cupronickel electrode shows a p-type photoresponse to positive and negative potential scan, which comes from Cu2O layer on its surface, but its Iph.max is less than that in borax buffer solution. The corrosion resisting property of the cupronickel B10 electrode appeared worse with the increase in the concentrations of Cl-, SO2-4 and S2 ions, as well as with increasing pH. The rise in the temperature may result in a photoresponse changes from p-type to n-type, and the corrosion resisting property fell simultaneously. The results of the EIS measurement agree well with those obtained by a photoelectrochemical method.

  17. Yttrium effect on corrosion resistance of the 12Kh18N10T steel welded joints

    International Nuclear Information System (INIS)

    Electrochemical method has been used to investigate the yttrium effect on corrosion resistance of the weld deposited metal and the welded joints of the 12Kh18H1DT chromium-nickel austenitic steel yttrium introduction in the metall of the weld is accomplished through the electrode coating. It is shown, that modification of the welded joints of the 12Kh18N10T steel with yttrium (0.010-O.027%) increases the corrosion resistance, promotes more complete transition of the alloying elements (chromium, nickel, aluminium, niobium) and decreases the content of bad impurities (S and O2) in the weld deposited metal. Yttrium transition factor when using alumoyttrium foundry alloy is 0.05-0.10

  18. Interfacial valence electron localization and the corrosion resistance of Al-SiC nanocomposite

    Science.gov (United States)

    Mosleh-Shirazi, Sareh; Hua, Guomin; Akhlaghi, Farshad; Yan, Xianguo; Li, Dongyang

    2015-01-01

    Microstructural inhomogeneity generally deteriorates the corrosion resistance of materials due to the galvanic effect and interfacial issues. However, the situation may change for nanostructured materials. This article reports our studies on the corrosion behavior of SiC nanoparticle-reinforced Al6061 matrix composite. It was observed that the corrosion resistance of Al6061 increased when SiC nanoparticles were added. Overall electron work function (EWF) of the Al-SiC nanocomposite increased, along with an increase in the corrosion potential. The electron localization function of the Al-SiC nanocomposite was calculated and the results revealed that valence electrons were localized in the region of SiC-Al interface, resulting in an increase in the overall work function and thus building a higher barrier to hinder electrons in the nano-composite to participate in corrosion reactions. PMID:26667968

  19. Standard guide for estimating the atmospheric corrosion resistance of low-alloy steels

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This guide presents two methods for estimating the atmospheric corrosion resistance of low-alloy weathering steels, such as those described in Specifications A242/A242M, A588/A588M, A606 Type 4, A709/A709M grades 50W, HPS 70W, and 100W, A852/A852M, and A871/A871M. One method gives an estimate of the long-term thickness loss of a steel at a specific site based on results of short-term tests. The other gives an estimate of relative corrosion resistance based on chemical composition. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

  20. Corrosion resistance of refractory metals and ceramics in lead-bismuth at 700 deg

    International Nuclear Information System (INIS)

    Corrosion tests of refractory metals and ceramics were carried out employing high-temperature LBI. Oxygen concentrations in this experiment were 6.8 x 10-7 wt.% for ceramics (SiC/SiC composites) and 5 x 10-6 wt.% for refractory metals (W, Mo and Nb) and ceramics (SiC and Ti3SiC2). All specimens were immersed in molten LBE at 700 deg C in a corrosion test pot for 1000 hours. The tungsten and molybdenum showed high corrosion resistance with no penetration of LBE into their matrices. Penetration of LBE into the matrix of the niobium was observed. The ceramic materials of SiC and Ti3SiC2 showed high corrosion resistance with no penetration of LBE into their matrices. The SiC/SiC composite showed LBE penetrated into the matrix due to high porosity of the material. (authors)

  1. The preparation and corrosion resistance of Ce and Nd modified anodic films on aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Li Qizheng; Tang Yuming [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zuo Yu, E-mail: zuoy@mail.buct.edu.cn [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2010-04-15

    Rare earth element Ce and Nd modified anodic films were prepared on aluminum surface by a relatively simple method: the aluminum samples were first immersed in Ni(NO{sub 3}){sub 2} solutions containing Ce or Nd salts at 90 deg. C, then were dried and anodized. The contents of Ce or Nd in the anodic films were from 0.5% to 0.9%, and about 4-5% Ni was also introduced in the films. The modified anodic films were more compact with much smaller pores and increased hardness. In neutral, acidic and basic NaCl solutions, the rare earth modified films showed obviously improved corrosion resistance. The Ce modified films showed better corrosion resistance than Nd modified films. The cracking resistance of the films under heating was also improved.

  2. Influence of carbon and nitrogen on corrosion resistance of high purity Fe-50mass% Cr alloys

    International Nuclear Information System (INIS)

    High purity Fe-50mass%Cr alloys containing (C+N) in the range of 30 to 500 mass ppm were prepared and their corrosion resistance was investigated. Pitting potential in a 3.5mass%NaCl solution at 343K rose with reducing (C+N) content. Alloys containing (C+N) at less than 100 mass ppm did not sustain pitting corrosion. However, alloys containing 500 mass ppm (C+N) corroded severely in 6%FeCl3+1/20N HCl solutions. Heat treatment at 923K was recognized as influencing corrosion resistance due to precipitation of carbonitrides only in the case of the alloy containing 500 mass ppm (C+N). (orig.)

  3. Influence of thermal history on corrosion resistance of duplex stainless steel linepipe

    International Nuclear Information System (INIS)

    Using NK CR22 duplex stainless steel 22%Cr-5.5%Ni-3%Mo, research has been carried out to analyze the influence of various thermal cycles on corrosion resistance. Special attention was paid to resistance to pitting corrosion in the weld heat affected zone (HAZ). The optimum range of welding heat input exists for the improvement of pitting corrosion resistance in the HAZ. Lower heat input brings about the deterioration of the resistance near the fusion line, higher one on the contrary degrades the HAZ apart from the fusion line. Both these phenomena are closely related to the sensitization of grain boundaries caused by the precipitation of chromium nitrides. Solution annealing is effective in giving pitting resistance in the HAZ. Annealing at temperatures over 11000C, increases susceptibility by sensitization of ferrite boundaries

  4. Electrodeposition, Structure and Corrosion Resistance of Nanocrystalline Ni-W Alloy

    Institute of Scientific and Technical Information of China (English)

    YANG, Fang-Zu(杨防祖); GUO, Yi-Fei(郭逸飞); HUANG, Ling(黄令); XU, Shu-Kai(许书楷); ZHOU, Shao-Min(周绍民)

    2004-01-01

    Ni-W alloy was electrodeposited from the electrolyte solution containing sodium tungstate, nickel sulfate and ammonium citrate. The electrodeposition, heat treatment, structure, surface morphology and corrosion resistance in w=0.03 NaCl solution, of Ni-W alloys were studied by means of DSC, XRD, SEM and electrochemical techniques. The results showed that the obtained Ni-W alloy electrodeposit with W weight content (wW=0.471) was presented in more typical nanocrystalline. After heat treatment at 400 ℃ for 1 h, the phase structure of the deposits was not obviously changed whereas the agglomerate for the reunion of tiny grains on deposit surface caused the granule in a more smooth morphology, the microhardness was slightly increased and the corrosion resistance was enhanced.

  5. Electroless Plating of Ni-Fe-P Alloy and Corrosion Resistance of the Deposit

    Institute of Scientific and Technical Information of China (English)

    Senlin WANG

    2005-01-01

    Electroless Ni-Fe-P alloys in an alkaline bath were plated. Theeffects of deposition parameters on the plating rate and the coating composition were examined. The weight loss test and the anodic polarization measurement of the deposits in 3.5 wt pct NaCl solution (pH7.0) showed that the deposits with the mole ratio of NiSO4/FeSO4 being 0.07:0.03, pH8.0 and 7.5 possess better corrosion resistance than that of the other deposits and the Ni-Fe-P deposits did not form passive films in this environment. In 5.0 wt pct NaOH solution, the Ni-Fe-P deposits have better corrosion resistance and formed passive films.

  6. Wear and Corrosion Resistance of Electroless Plating Ni-P Coating on P110 Steel

    Institute of Scientific and Technical Information of China (English)

    LIN Naiming; ZHOU Peng; ZOU Jiaojuan; XIE Faqin; TANG Bin

    2015-01-01

    In order to improve the surface performance and increase the lifetime of P110 oil casing tube steel during operation, electroless plating was conducted to form Ni-P coating onto its surface. The surface morphology/element distribution and phase constitution of the Ni-P coating were analyzed using scanning electron microscope (SEM) equipped with energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). Tribological and electrochemical measurement tests were applied to investigate the wear and corrosion resistance of P110 steel and the Ni-P coating. The results showed that a uniform and compact, high phosphorous Ni-P coating was formed. The obtained Ni-P coating indicated certain friction-reduction effect and lower mass loss during friction-wear tests. The Ni-P coating also exhibited higher corrosion resistance in comparison with bared P110 steel. The obtained Ni-P coating has signifi cantly improved the surface performance of P110 steel.

  7. Evaluating the corrosion resistance of UBM-deposited Cr/CrN multilayers

    Directory of Open Access Journals (Sweden)

    Yuri Lizbeth Chipatecua Godoy

    2011-05-01

    Full Text Available This work was aimed at evaluating the corrosion resistance of multilayer Cr/CrN coatings deposited by the unbalan-ced magnetron sputtering (UBM technique. Coatings were produced at room temperature using 400 mA discharge current, 9 sccm argon flow and 3 sccm nitrogen flow. The total thickness of coatings deposited on AISI 304 stainless steel and silicon (100 varied between 0.2 a 3 μm as bilayer period varied between 20 and 200 nm. Coating microstructure and chemical composition was stu-died through scanning electron microscopy (SEM and tex-ture and crystalline phases were analysed by X-ray diffraction (XRD before and after corrosion tests which were carried out by potentiodynamic polarisation using 0.5 M H2SO4 + 0.05M KSCN solution. Lower bilayer period coatings presented better corrosion resistance and their corrosion mechanism is discussed in this article.

  8. The preparation and corrosion resistance of Ce and Nd modified anodic films on aluminum

    International Nuclear Information System (INIS)

    Rare earth element Ce and Nd modified anodic films were prepared on aluminum surface by a relatively simple method: the aluminum samples were first immersed in Ni(NO3)2 solutions containing Ce or Nd salts at 90 deg. C, then were dried and anodized. The contents of Ce or Nd in the anodic films were from 0.5% to 0.9%, and about 4-5% Ni was also introduced in the films. The modified anodic films were more compact with much smaller pores and increased hardness. In neutral, acidic and basic NaCl solutions, the rare earth modified films showed obviously improved corrosion resistance. The Ce modified films showed better corrosion resistance than Nd modified films. The cracking resistance of the films under heating was also improved.

  9. Chromium, aluminium and titanium effect on nickel corrosion resistance in sodium sulfate and chloride melts

    International Nuclear Information System (INIS)

    The purpose of the study is to determine corrosion resistance of binary nickel alloys, alloyed with aluminium, titanium and chromium, in sodium sulfate and chloride melts. The content of aluminium, titanium and chromium varied from 0 up to 13,2; 21.4 and 36%, respectively. It was estabslished that resistance against slulfide corrosion grows in chromium-alloyed nickel and deoreases in nickel alloyed with aluminium and titanium. Nickel-chronium solid solutions containing > 16 to 17% Cr are characterized by the maximal stability in sodium sulfide melt and Ni3Al and Ni3Ti intermetallics -by the minimal one. Alloying nickel with aluminium titanium (up to 6 to 8%) and chromium (up to 10 to 12%) increases its resistance aginst sodium chloride melt. Binary Ni-Al-, Ni-Ti- and ternary Ni-Al-Ti-alloys possess a lower corrosion resistance in sodium sulfate as compared to sodium chloride

  10. Antibacterial and corrosion resistance of TiN/Ag multilayers by ion beam assisted deposition

    International Nuclear Information System (INIS)

    TiN/Ag multilayers were deposited on medical stainless steel 317L by ion beam assisted deposition (IBAD). Standard agar dilution method was used to test antibacterial ratio using E.coil and S.aureus. Electro-chemical method was used to test corrosion resistance of the film in Hank's simulated human plasma. The structure and depth profile of the elements were investigated by XPS, XRD and ALES. The results show that a strong antibacterial ratio (>99%) can be obtained when the modulation period of TiN/Ag multilayers is 8 nm (5 nm TiN and 3 nm Ag). Its corrosion resistance is better than medical stainless steel 317L, approaching monolayer TiN. (authors)

  11. Effect of Post Heat Treatment on Corrosion Resistance of Phytic Acid Conversion Coated Magnesium

    Institute of Scientific and Technical Information of China (English)

    R.K. Gupta; K. Mensah-Darkwa; D. Kumar

    2013-01-01

    An environment friendly chemical conversion coating for magnesium was obtained by using a phytic acid solution.The effect of post-coating 1heat treatment on the microstructures and corrosion properties of phytic acid conversion coated magnesium was investigated.It was observed that the microstructure and corrosion resistive properties were improved for the heat treated samples.The corrosion current density for bare magnesium,phytic acid conversion coated magnesium,and post-coating heat treated magnesium was calculated to be 2.48 × 10-5,1.18 × 10-6,and 9.27 × 10-7 A/cm2,respectively.The lowest corrosion current density for the heat treated sample indicated its highest corrosion resistive effect for the magnesium.The maximum corrosion protective nature of the heat treated sample was further confirmed by the largest value of impedance in electrochemical impedance spectroscopy studies.

  12. Effect of Micro Arc Oxidation Coatings on Corrosion Resistance of 6061-Al Alloy

    Science.gov (United States)

    Wasekar, Nitin P.; Jyothirmayi, A.; Rama Krishna, L.; Sundararajan, G.

    2008-10-01

    In the present study, the corrosion behavior of micro arc oxidation (MAO) coatings deposited at two current densities on 6061-Al alloy has been investigated. Corrosion in particular, simple immersion, and potentiodynamic polarization tests have been carried out in 3.5% NaCl in order to evaluate the corrosion resistance of MAO coatings. The long duration (up to 600 h) immersion tests of coated samples illustrated negligible change in weight as compared to uncoated alloy. The anodic polarization curves were found to exhibit substantially lower corrosion current and more positive corrosion potential for MAO-coated specimens as compared to the uncoated alloy. The electrochemical response was also compared with SS-316 and the hard anodized coatings. The results indicate that the overall corrosion resistance of the MAO coatings is significantly superior as compared to SS316 and comparable to hard anodized coating deposited on 6061 Al alloy.

  13. An electroless plating film of palladium on 304 stainless steel and its excellent corrosion resistance

    International Nuclear Information System (INIS)

    An uniform palladium film on 304 stainless steel was obtained by electroless plating. Scanning electronic microscopy, X-ray photoelectron spectroscopy, weight loss tests and electrochemical measurements were used to character the properties of the film. The palladium plated stainless steel samples showed excellent corrosion resistance in strong reductive corrosion mediums. In boiling dilute sulfuric acid solutions and boiling acetic/formic acids, corrosion rates of palladium plated 304 stainless steel samples were 3 or 4 orders of magnitude lower than the original 304 stainless steel samples. In solutions with NaCl concentration less that 0.1%, the palladium plated samples also showed better corrosion resistance. The function of palladium film on stainless steel is to raise the electrode potential and promote passivation of the steel in strong corrosive environments

  14. Melting of corrosion resistant steel in 100-t electric furnace using aluminium industry tails

    International Nuclear Information System (INIS)

    Procedure for melting of corrosion resistant steel (08Kh18N10T, 12Kh18N10T) in 100- t electric furnace using aluminium industry tails (AIT), possessing increased reductibility was suggested. Tails, containing up to 50% Al were added during charge melting (the 1 st version) and during slag reduction after flowing (the 2d version). t is shown that the use of AIT during melting of corrosion-resistant steels didn't result in change of aluminium and non-ferrous metal content in metal. The use of AIT enabled to decrease Cr, Mn, Ti losses with dump slags and reduce the consumption of silicon-containing materials. The introduction of the above procedure at Chelyabinsk metallurgical plant permit to obtain the benefit constituting 360.000 roubles

  15. Corrosion Resistance of High-Alumina Graphite Based Refractories to the Smelting Reduction Melts

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The corrosion resistance and microstructure of Al2O3-C based refractories in smelting reduction melts were studied and evaluated by the quasi-stationary immersion and rotary immersion test. The corrosion rate of the Al2O3-C based refractories is decreased with the addition of the graphite carbon and ZrO2. The test results showed that the ZrO2 containing bricks had much better corrosion resistance than the ZrO2-free bricks. The ZrO2 addition improved the oxidization resistance of the refractory and decreased the interaction rate between the melts and the refractory. The corrosion of the Al2O3-C based refractories is caused by both the interaction between melts and refractory and the dissolution of the refractory constituents into the melts.

  16. Effects of Nano Pigments on the Corrosion Resistance of Alkyd Coating

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Alkyd coatings embedded with nano-TiO2 and nano-ZnO pigments were prepared. The effects of nano pigments on anticorrosion performance of alkyd coatings were investigated using electrochemical impedance spectrum (EIS). For the sake of comparison, the corrosion protection of alkyd coatings with conventional TiO2 and ZnO was also studied. It was found that nano-TiO2 pigment improved the corrosion resistance as well as the hardness of alkyd coatings. The optimal amount of nano-TiO2 in a colored coating for corrosion resistance was 1%. The viscosities of alkyd coatings with nanometer TiO2 and ZnO and conventional TiO2 and ZnO pigments were measured and the relation between viscosity and anticorrosion performance was discussed.

  17. Influence of electropolishing and anodic oxidation on morphology, chemical composition and corrosion resistance of niobium

    International Nuclear Information System (INIS)

    The work presents results of the studies performed on electropolishing of pure niobium in a bath that contained: sulphuric acid, hydrofluoric acid, ethylene glycol and acetanilide. After the electropolishing, the specimens were subjected to anodic passivation in a 1 mol dm−3 phosphoric acid solution at various voltages. The surface morphology, thickness, roughness and chemical composition of the resulting oxide layers were analysed. Thusly prepared niobium samples were additionally investigated in terms of their corrosion resistance in Ringer's solution. The electropolished niobium surface was determined to be smooth and lustrous. The anodisation led to the growth of barrier-like oxide layers, which were enriched in phosphorus species. - Highlights: • Pure niobium was electropolished and subsequently anodised in a H3PO4 solution. • Phosphorus was successfully introduced into the oxide layers after the treatment. • Corrosion resistance of niobium in Ringer's solution was improved after anodising

  18. Corrosion resistance enhancement of WC-Co hard metal in NaOH solution

    International Nuclear Information System (INIS)

    SiC is a useful non-oxide ceramic material having unique physicochemical and mechanical properties such as high strength, excellent wear, and oxidation and corrosion resistance. These properties originate from the very strong covalent bond between silicon and carbon and its tetrahedral coordination. However, adhesion between the materials is a serious obstacle to the application of a SiC coating to WC-Co. Several techniques are used to improve the adhesion, such as sputtering, ion beam mixing (IBM), dynamic ion mixing and ion beam assisted deposition. Among those, IBM is a powerful tool. This paper demonstrates that SiC can be successfully coated on WC-Co through the IBM technique. The corrosion resistance of WC-Co in alkali solutions is greatly enhanced by the ion mixed SiC coating, as proven by potentiodynamic electrochemical experiments

  19. Corrosion resistance enhancement of WC-Co hard metal in NaOH solution

    Energy Technology Data Exchange (ETDEWEB)

    Yeo, Sun Mog; Park, Jae Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    SiC is a useful non-oxide ceramic material having unique physicochemical and mechanical properties such as high strength, excellent wear, and oxidation and corrosion resistance. These properties originate from the very strong covalent bond between silicon and carbon and its tetrahedral coordination. However, adhesion between the materials is a serious obstacle to the application of a SiC coating to WC-Co. Several techniques are used to improve the adhesion, such as sputtering, ion beam mixing (IBM), dynamic ion mixing and ion beam assisted deposition. Among those, IBM is a powerful tool. This paper demonstrates that SiC can be successfully coated on WC-Co through the IBM technique. The corrosion resistance of WC-Co in alkali solutions is greatly enhanced by the ion mixed SiC coating, as proven by potentiodynamic electrochemical experiments

  20. Enhanced corrosion resistance of strontium hydroxyapatite coating on electron beam treated surgical grade stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Gopi, D., E-mail: dhanaraj_gopi@yahoo.com [Department of Chemistry, Periyar University, Salem 636 011, Tamilnadu (India); Centre for Nanoscience and Nanotechnology, Periyar University, Salem 636 011, Tamilnadu (India); Rajeswari, D. [Department of Chemistry, Periyar University, Salem 636 011, Tamilnadu (India); Department of Physics, Periyar University, Salem 636 011, Tamilnadu (India); Ramya, S. [Department of Chemistry, Periyar University, Salem 636 011, Tamilnadu (India); Sekar, M. [Department of Chemistry, Periyar University, Salem 636 011, Tamilnadu (India); Department of Physics, Periyar University, Salem 636 011, Tamilnadu (India); R, Pramod; Dwivedi, Jishnu [Industrial and Medical Accelerator Section, Raja Ramanna Centre for Advanced Technology, Indore 452 013, Madhya Pradesh (India); Kavitha, L., E-mail: louiskavitha@yahoo.co.in [Centre for Nanoscience and Nanotechnology, Periyar University, Salem 636 011, Tamilnadu (India); Department of Physics, Periyar University, Salem 636 011, Tamilnadu (India); Ramaseshan, R. [Thin film and Coatings Section, Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India)

    2013-12-01

    The surface of 316L stainless steel (316L SS) is irradiated by high energy low current DC electron beam (HELCDEB) with energy of 500 keV and beam current of 1.5 mA followed by the electrodeposition of strontium hydroxyapatite (Sr-HAp) to enhance its corrosion resistance in physiological fluid. The coatings were characterised by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and High resolution scanning electron microscopy (HRSEM). The Sr-HAp coating on HELCDEB treated 316L SS exhibits micro-flower structure. Electrochemical results show that the Sr-HAp coating on HELCDEB treated 316L SS possesses maximum corrosion resistance in Ringer's solution.

  1. Influence of electropolishing and anodic oxidation on morphology, chemical composition and corrosion resistance of niobium

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Maciej; Greń, Katarzyna [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Kukharenko, Andrey I. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Mira str. 19 (Russian Federation); Korotin, Danila M. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Michalska, Joanna [Faculty of Materials Engineering and Metallurgy, Silesian University of Technology, Krasińskiego Street 8, 40-019 Katowice (Poland); Szyk-Warszyńska, Lilianna; Mosiałek, Michał [Jerzy Haber Institute of Catalysis and Surface Chemistry PAS, Niezapominajek Street 8, 30-239 Kraków (Poland); Żak, Jerzy [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Pamuła, Elżbieta [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza Avenue 30, 30-059 Kraków (Poland); Kurmaev, Ernst Z. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Cholakh, Seif O. [Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Mira str. 19 (Russian Federation); Simka, Wojciech, E-mail: wojciech.simka@polsl.pl [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland)

    2014-09-01

    The work presents results of the studies performed on electropolishing of pure niobium in a bath that contained: sulphuric acid, hydrofluoric acid, ethylene glycol and acetanilide. After the electropolishing, the specimens were subjected to anodic passivation in a 1 mol dm{sup −3} phosphoric acid solution at various voltages. The surface morphology, thickness, roughness and chemical composition of the resulting oxide layers were analysed. Thusly prepared niobium samples were additionally investigated in terms of their corrosion resistance in Ringer's solution. The electropolished niobium surface was determined to be smooth and lustrous. The anodisation led to the growth of barrier-like oxide layers, which were enriched in phosphorus species. - Highlights: • Pure niobium was electropolished and subsequently anodised in a H{sub 3}PO{sub 4} solution. • Phosphorus was successfully introduced into the oxide layers after the treatment. • Corrosion resistance of niobium in Ringer's solution was improved after anodising.

  2. Corrosion resistance of Ni-Cr-Mo alloys. Chemical composition and metallurgical condition's effects

    International Nuclear Information System (INIS)

    Ni-Cr-Mo alloys offer an outstanding corrosion resistance in a wide variety of highly-corrosive environments. This versatility is due to the excellent performance of nickel in hot alkaline solutions and the beneficial effect of chromium and molybdenum in oxidizing and reducing conditions, respectively. Alloy C-22 (22 % Cr-13 % Mo-3% W) is a well known versatile member of this family. Due to its excellent corrosion resistance in a wide variety of environments, Alloy C-22 has been selected for the fabrication of the corrosion-resistant outer shell of the high-level nuclear waste container. The increasing demand of the industry for corrosion resistant alloys with particular properties of corrosion and mechanical resistance has led to the development of new alloys. Alloy C-22HS (Ni-21 % Cr-17 % Mo) is a new high-strength corrosion resistant material recently developed and introduced into the market. This alloy provides a corrosion resistance comparable with that of other C-type alloys, and it can also be age hardened to effectively double its yield strength. HASTELLOY HYBRID-BC1 (Ni-22 % Mo-15 % Cr) is a new development intended for filling the gap between Ni-Mo and Ni-Cr-Mo alloys. This novel alloy is able to withstand HCl and H2SO4, even in the presence of dissolved oxygen and other oxidizing species. Its resistance to chloride-induced pitting corrosion, crevice corrosion and stress corrosion cracking is also remarkable. Thermal aging of Ni-Cr-Mo alloys leads to microstructure changes depending on the temperature range and exposure time at temperature. A Long Range Ordering (LRO) reaction can occur in the range of 350 C degrees to 600 C degrees, producing an ordered Ni2(Cr,Mo) phase. This ordering reaction does not seem to affect the corrosion resistance and produces only a slight loss in ductility. LRO transformation is homogeneous and has proven to be useful to fabricate the age-hard enable Alloy C22-HS. Tetrahedral Close Packed (TCP) phases, like μ, σ and P, may

  3. The role of nitrogen in improving pitting corrosion resistance of high-alloy austenitic and duplex stainless steel welds

    International Nuclear Information System (INIS)

    The effects of nitrogen alloyed shielding gas on weld nitrogen content and pitting corrosion resistance of super austenitic (6%Mo) and super duplex stainless steels have been studied with special emphasis on microsegregation behaviour of Cr, Mo and N. The measurements performed with the 6%Mo steel indicate that all these elements segregate interdendritically in the fully austenitic weld metal. With nitrogen addition to the shielding gas the enrichment of nitrogen to the interdendritic regions is more pronounced than to the dendrite cores due to which the pitting corrosion resistance of the dendrite cores increases only marginally. In the super duplex steel welds nitrogen enriches in austenite increasing its pitting corrosion resistance more effectively. In these welds the pitting corrosion resistance of the ferrite phase remains lower. (orig.)

  4. The role of nitrogen in improving pitting corrosion resistance of high-alloy austenitic and duplex stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Vilpas, M. [VTT Manuf. Technol. (Finland); Haenninen, H. [Helsinki Univ. of Technol., Espoo (Finland). Lab. of Eng. Mater.

    1999-07-01

    The effects of nitrogen alloyed shielding gas on weld nitrogen content and pitting corrosion resistance of super austenitic (6%Mo) and super duplex stainless steels have been studied with special emphasis on microsegregation behaviour of Cr, Mo and N. The measurements performed with the 6%Mo steel indicate that all these elements segregate interdendritically in the fully austenitic weld metal. With nitrogen addition to the shielding gas the enrichment of nitrogen to the interdendritic regions is more pronounced than to the dendrite cores due to which the pitting corrosion resistance of the dendrite cores increases only marginally. In the super duplex steel welds nitrogen enriches in austenite increasing its pitting corrosion resistance more effectively. In these welds the pitting corrosion resistance of the ferrite phase remains lower. (orig.)

  5. Laser cladding of Zr-based coating on AZ91D magnesium alloy for improvement of wear and corrosion resistance

    Indian Academy of Sciences (India)

    Kaijin Huang; Xin Lin; Changsheng Xie; T M Yue

    2013-02-01

    To improve the wear and corrosion resistance of AZ91D magnesium alloy, Zr-based coating made of Zr powder was fabricated on AZ91D magnesium alloy by laser cladding. The microstructure of the coating was characterized by XRD, SEM and TEM techniques. The wear resistance of the coating was evaluated under dry sliding wear test condition at room temperature. The corrosion resistance of the coating was tested in simulated body fluid. The results show that the coating mainly consists of Zr, zirconium oxides and Zr aluminides. The coating exhibits excellent wear resistance due to the high microhardness of the coating. The main wear mechanism of the coating and the AZ91D sample are different, the former is abrasive wear and the latter is adhesive wear. The coating compared to AZ91D magnesium alloy exhibits good corrosion resistance because of the good corrosion resistance of Zr, zirconium oxides and Zr aluminides in the coating.

  6. Phase constitution and steam corrosion resistance of binary Zr-S alloys

    International Nuclear Information System (INIS)

    The solubility limit of sulfur in alpha zirconium is about 20 ppm. This value is similar to the sulfur content leading to the maximum improvement in creep strength. In amounts up to 850 ppm, sulfur also has an extremely beneficial effect on the steam corrosion resistance at 400 deg. C. Thus, while sulfur in solid solution markedly enhances creep strength, the presence of sulfide precipitates has an additional favorable influence on the corrosion behavior

  7. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings

    OpenAIRE

    Jones, John Eric; Chen, Meng; Yu, Qingsong

    2014-01-01

    To improve their corrosion resistance and thus long-term biocompatibility, 316L stainless steel coronary artery stents were coated with trimethylsilane (TMS) plasma coatings of 20–25 nm in thickness. Both direct current (DC) and radio-frequency (RF) glow discharges were utilized for TMS plasma coatings and additional NH3/O2 plasma treatment to tailor the surface properties. X-ray photoelectron spectroscopy (XPS) was used to characterize the coating surface chemistry. It was found that both DC...

  8. Heat treatment influence on corrosion resistance of Fe3Al intermetallic phase based alloy

    Directory of Open Access Journals (Sweden)

    J. Cebulski

    2006-08-01

    Full Text Available Purpose: In this paper attention was paid to determine the corrosion resistance of Fe3Al intermetallic phasebased alloy in corrosive medium of liquid hydrochloric acid with 0.2% concentration and sulphuric acid with 3%concentration. Research of material susceptibility to surface activation in the pipeline of corrosion processes areconducted. Work is continuation of earlier research of corrosion resistance evaluation tests for FeAl intermetallicphase based alloy in liquid HCl and H2SO4 corrosive medium.Design/methodology/approach: In the corrosion research electrolyser, potentiostat „Solartron 1285” andcomputer with „CorrWare 2” software were used. Results of the research were worked out with „CorrView”software. The potentials values were determined in relation to normal hydrogen electrode (NEW. Thetemperature of the solutions was kept on 21ºC level. The recording of potential/density of current - time curvewas conducted for 300 s.Findings: The results of research conducted in 0.2% HCl solution, the best electrochemical corrosion resistancewere showed by samples after annealing during 72 hours. It was confirmed by the lowest value of corrosioncurrent density, low value of passive current density, pitting corrosion resistance much higher than in othersamples.Practical implications: The last feature is the reason to conduct the research for this group of materials ascorrosion resistance materials. Especially FeAl and Fe3Al intermetallic phase based alloys are objects ofresearch in Poland and all world during last years.Originality/value: The goal of this work was to determine the influence of homogenizing treatment timeon corrosion resistance of Fe28Al intermetallic phase based alloy in 0.2% HCl and 3% H2SO4 solutions.Homogenizing treatment was conducted in temperature of 1050ºC during: 24, 48, 72 and 96 h.

  9. CO2 corrosion resistance of carbon steel in relation with microstructure changes

    OpenAIRE

    Ochoa, Nathalie; Vega, Carlos; Pébère, Nadine; Lacaze, Jacques; Joaquín L. Brito

    2015-01-01

    International audience The microstructural effects on the corrosion resistance of an API 5L X42 carbon steel in 0.5 M NaCl solution saturated with CO2 was investigated. Four microstructures were considered: banded (B), normalized (N), quenched and tempered (Q&T), and annealed (A). Electrochemical measurements (polarization curves and electrochemical impedance spectroscopy) were coupled with surface analyses (scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS)) to ...

  10. Mechanical properties and corrosion resistance of some titanium alloys in marine environment

    OpenAIRE

    Dupuis Jennifer; Chenon M.; Faure S.; Razan F.; Gloriant T.

    2013-01-01

    Titanium alloys are used in several fields such as aerospace industry or biomedical. They are increasingly used in marine applications, a highly corrosive environment. We chose titanium alloys for their good properties such as high mech. strength, low d. and excellent corrosion resistance. This study is focused on titanium alloys potentially interesting to be used in marine transports, and mainly for the boats fittings such as a winch for example. [on SciFinder(R)

  11. Effect of Deleterious Phases on Corrosion Resistance of Duplex Stainless Steel (2205

    Directory of Open Access Journals (Sweden)

    AbdulKadar M. Godil

    2013-07-01

    Full Text Available Duplex stainless steel is a Ferritic(BCC-Austenitic(FCC steel, covers the advantages of both Austenitic and Ferritic Stainless steels. They having good mechanical and corrosion resistance properties are widely used in many industries like chemical plants, refineries for critical equipments such as pressure vessels, heatexchangers, water heaters. Major problem occurs with duplex steels when they are worked or heated above about temperature of 280°C. Detrimental phases like Sigma, Chi, Laves and Alpha prime form when the Duplex steels are treated above this temperature and they retard the properties of Duplex stainless steels. They also cause embrittlement above temperature of 475°C called “475°C embrittlement”. During welding of duplex steels, Secondary austenite also forms, which is also one of the harmful phases in duplex steels. Among all of these phases, Sigma (σ is extremely harmful to the corrosion resistance of steel. Due to these limitations duplexgrades are not used above certain temperature ranges. In this experimental work a plate of duplex grade 2205 in hot worked condition was procured from TCR Advanced Engineering Pvt. Ltd., GIDC, Vadodara. Initially chemical composition of the plate was checked with emission spectrometer, tensile test and hardness tests werecarried out for comparing with the standard data. As there was no Sigma phase detected when tested with ASTM 930 in the received sample, Sigma phase was intentionally produced by giving heat treatment in the range of 700-850°C. Sigma phases were quantified with ASTM 930 practice A, by electrolytic etching with 40% NaOH. The effect of Sigma phase on corrosion resistance was measured by ASTM G48. The pitting corrosion resistance was evaluated in terms of average pit depth and overall corrosion rate.

  12. Reducing heat tint effects on the corrosion resistance of austenitic stainless alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kearns, J.R. (Allegheny Ludlum Corp., Brackenridge, PA (United States)); Moller, G.E. (Allegheny Ludlum Corp., Evergreen, CO (United States))

    1994-05-01

    Arc welding can produce a heat tint on the surface of stainless and nickel-based alloys. In some services, a heat tint can decrease corrosion resistance. The conditions that cause heat tinting are discussed, and laboratory studies on post-weld cleaning procedures for removing this surface oxide scale from a 6% molybdenum super-austenitic alloy (UNS N08367) are reviewed. Cleaning can be done by either mechanical or chemical methods; a combination of both is recommended.

  13. Effect of Deleterious Phases on Corrosion Resistance of Duplex Stainless Steel (2205)

    OpenAIRE

    AbdulKadar M. Godil; Hitesh A. Narsia; M. N. Patel; Mr. Paresh U. Haribhakti

    2013-01-01

    Duplex stainless steel is a Ferritic(BCC)-Austenitic(FCC) steel, covers the advantages of both Austenitic and Ferritic Stainless steels. They having good mechanical and corrosion resistance properties are widely used in many industries like chemical plants, refineries for critical equipments such as pressure vessels, heatexchangers, water heaters. Major problem occurs with duplex steels when they are worked or heated above about temperature of 280°C. Detrimental phases like Sigma, Chi, Laves ...

  14. Corrosion resistance of sintered duplex stainless steel evaluated by electrochemical method

    OpenAIRE

    L.A. Dobrzański; Z. Brytan; M. Actis Grande; M. Rosso

    2006-01-01

    Purpose: Purpose of this paper was to examine the corrosion resistance of duplex stainless steels using electrochemical methods in 1M NaCl solution. The influence of powder mixes preparation and cooling cycle after sintering on corrosion properties was evaluated.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, martensitic base powders by controlled addition of alloying elements. In the studies behind the ...

  15. Characteristics of low nickel ferritic-austenitic corrosion resistant cast steel

    OpenAIRE

    B. Kalandyk; Zapała, R.; Sobula, S.; M. Górny; Ł. Boroń

    2014-01-01

    The article presents the results of microscopic examinations of corrosion resistant cast steel with reduced nickel content obtained in a test casting with varying wall thickness. Investigations were carried out in as-cast condition and after heat treatment. Regardless of the casting wall thickness, increasing the manganese and nitrogen content to about 5 % and 2 500 ppm, respectively, yields the material with a two-phase microstructure containing ferrite in an amount of 55,6 ÷ 57,2 % (magneti...

  16. Electrochemical characterisation of porosity and corrosion resistance in electrodeposited metal coatings

    OpenAIRE

    Walsh, F. C.; Ponce de León, C.; Kerr, C; Court, S; Barker, B.D.

    2008-01-01

    Electrochemical techniques for the assessment of porosity in electrodeposited metal coatings are reviewed. The determination of porosity and corrosion, resistance is illustrated by electrochemical data from three coating/substrate systems namely: electroless nickel on aluminium and steel and immersed gold coatings on an electroless copper-plated ABS polymer. Nickel coatings were up to 24 ?m thick while gold deposits had thickness between 75 and 190 nm. Tafel extrapolation and linear polarisat...

  17. Electrodeposition and Corrosion Resistance Properties of Zn-Ni/TiO2 Nano composite Coatings

    OpenAIRE

    B. M. Praveen; T. V. Venkatesha

    2011-01-01

    Nano sized TiO2 particles were prepared by sol-gel method. TiO2 nano particles were dispersed in zinc-nickel sulphate electrolyte and thin film of Zn-Ni-TiO2 composite was generated by electrodeposition on mild steel plates. The effect of TiO2 on the corrosion behavior and hardness of the composite coatings was investigated. The film was tested for its corrosion resistance ...

  18. Corrosion resistance of titanium-containing dental orthodontic wires in fluoride-containing artificial saliva

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.-H. [Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Wang, C.-C. [Department of Dental Laboratory Technology, Min-Hwei College of Health Care Management, Tainan County 736, Taiwan (China); Huang, T.-K. [College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, L.-K. [Department of Dentistry, Taipei City Hospital, Taipei 115, Taiwan (China); Chou, M.-Y. [Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Huang, H.-H., E-mail: hhhuang@ym.edu.t [Department of Dentistry, Taipei City Hospital, Taipei 115, Taiwan (China); Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China)

    2009-11-20

    This study was to investigate the corrosion resistance of different Ti-containing dental orthodontic wires (including Ni-Ti, Ni-Ti-Cu, Ti-Mo-Zr-Sn, and Ti-Nb alloys) in acidic fluoride-containing artificial saliva using cyclic potentiodynamic polarization curve measurements. Different NaF concentrations (0%, 0.2%, and 0.5%), simulating the fluoride contents in commercial toothpastes, were added to the artificial saliva. Surface characterization was analyzed using X-ray photoelectron spectrometry. Cyclic potentiodynamic polarization curves showed that the presence of fluoride ions, especially 0.5% NaF, was detrimental to the protective ability of the TiO{sub 2}-based film on the Ti-containing wires. This might lead to a decrease in the corrosion resistance of the tested alloys, i.e. an increase in the corrosion rate and anodic current density and a decrease in the passive film breakdown potential. Among the tested Ti-containing wires, the Ni-Ti and Ni-Ti-Cu wires containing mainly TiO{sub 2} on surface film were more susceptible to fluoride-enhanced corrosion, while the Ti-Mo-Zr-Sn and Ti-Nb wires containing MoO{sub 3}/ZrO{sub 2}/SnO and Nb{sub 2}O{sub 5}, respectively, along with TiO{sub 2} on surface film were pitting corrosion resistant and showed a lower susceptibility to fluoride-enhanced corrosion. The difference in corrosion resistance of the tested commercial Ti-containing dental orthodontic wires was significantly dependent on the passive film characteristics on wires' surface.

  19. Increased corrosion resistance of the AZ80 magnesium alloy by rapid solidification.

    Science.gov (United States)

    Aghion, E; Jan, L; Meshi, L; Goldman, J

    2015-11-01

    Magnesium (Mg) and Mg-alloys are being considered as implantable biometals. Despite their excellent biocompatibility and good mechanical properties, their rapid corrosion is a major impediment precluding their widespread acceptance as implantable biomaterials. Here, we investigate the potential for rapid solidification to increase the corrosion resistance of Mg alloys. To this end, the effect of rapid solidification on the environmental and stress corrosion behavior of the AZ80 Mg alloy vs. its conventionally cast counterpart was evaluated in simulated physiological electrolytes. The microstructural characteristics were examined by optical microscopy, SEM, TEM, and X-ray diffraction analysis. The corrosion behavior was evaluated by immersion, salt spraying, and potentiodynamic polarization. Stress corrosion resistance was assessed by Slow Strain Rate Testing. The results indicate that the corrosion resistance of rapidly solidified ribbons is significantly improved relative to the conventional cast alloy due to the increased Al content dissolved in the α-Mg matrix and the correspondingly reduced presence of the β-phase (Mg17 Al12 ). Unfortunately, extrusion consolidated solidified ribbons exhibited a substantial reduction in the environmental performance and stress corrosion resistance. This was mainly attributed to the detrimental effect of the extrusion process, which enriched the iron impurities and increased the internal stresses by imposing a higher dislocation density. In terms of immersion tests, the average corrosion rate of the rapidly solidified ribbons was <0.4 mm/year compared with ∼2 mm/year for the conventionally cast alloy and 26 mm/year for the rapidly solidified extruded ribbons. PMID:25491147

  20. Development of welding consumables for wet underwater welding of high-alloy corrosion-resistant steel

    OpenAIRE

    Kakhovskyi, Yurij; Kakhovskyi, Mykola

    2015-01-01

    This paper discusses a technology of mechanized wet underwater welding of high-alloy corrosion-resistance steel. The main aim of the investigation is development of self-shielded flux-cored wire for wet underwater welding for the first time in the world practice. A mathematical method of experiment design was used for determination of quantity and quality characteristics. Besides, quantitive and qualitative indices of welding-technological characteristics such as weld metal gas saturation, st...

  1. Corrosion resistance of titanium-containing dental orthodontic wires in fluoride-containing artificial saliva

    International Nuclear Information System (INIS)

    This study was to investigate the corrosion resistance of different Ti-containing dental orthodontic wires (including Ni-Ti, Ni-Ti-Cu, Ti-Mo-Zr-Sn, and Ti-Nb alloys) in acidic fluoride-containing artificial saliva using cyclic potentiodynamic polarization curve measurements. Different NaF concentrations (0%, 0.2%, and 0.5%), simulating the fluoride contents in commercial toothpastes, were added to the artificial saliva. Surface characterization was analyzed using X-ray photoelectron spectrometry. Cyclic potentiodynamic polarization curves showed that the presence of fluoride ions, especially 0.5% NaF, was detrimental to the protective ability of the TiO2-based film on the Ti-containing wires. This might lead to a decrease in the corrosion resistance of the tested alloys, i.e. an increase in the corrosion rate and anodic current density and a decrease in the passive film breakdown potential. Among the tested Ti-containing wires, the Ni-Ti and Ni-Ti-Cu wires containing mainly TiO2 on surface film were more susceptible to fluoride-enhanced corrosion, while the Ti-Mo-Zr-Sn and Ti-Nb wires containing MoO3/ZrO2/SnO and Nb2O5, respectively, along with TiO2 on surface film were pitting corrosion resistant and showed a lower susceptibility to fluoride-enhanced corrosion. The difference in corrosion resistance of the tested commercial Ti-containing dental orthodontic wires was significantly dependent on the passive film characteristics on wires' surface.

  2. Optimization of friction stir welding parameters for improved corrosion resistance of AA2219 aluminum alloy joints

    OpenAIRE

    G. Rambabu; D. Balaji Naik; C.H. Venkata Rao; K. Srinivasa Rao; G. Madhusudan Reddy

    2015-01-01

    The aluminium alloy AA2219 (Al–Cu–Mg alloy) is widely used in the fabrication of lightweight structures with high strength-to-weight ratio and good corrosion resistance. Welding is main fabrication method of AA2219 alloy for manufacturing various engineering components. Friction stir welding (FSW) is a recently developed solid state welding process to overcome the problems encountered in fusion welding. This process uses a non-consumable tool to generate frictional heat on the abutting surfac...

  3. Advanced Corrosion-Resistant Zr Alloys for High Burnup and Generation IV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Arthur Motta; Yong Hwan Jeong; R.J. Comstock; G.S. Was; Y.S. Kim

    2006-10-31

    The objective of this collaboration between four institutions in the US and Korea is to demonstrate a technical basis for the improvement of the corrosion resistance of zirconium-based alloys in more extreme operating environments (such as those present in severe fuel duty,cycles (high burnup, boiling, aggressive chemistry) andto investigate the feasibility (from the point of view of corrosion rate) of using advanced zirconium-based alloys in a supercritical water environment.

  4. Bioactive glass–ceramic coating for enhancing the in vitro corrosion resistance of biodegradable Mg alloy

    International Nuclear Information System (INIS)

    Highlights: ► Sol–gel derived 45S5 glass–ceramic coating was prepared on Mg alloy substrate. ► The corrosion resistance of glass–ceramic coated Mg alloy was markedly improved. ► The corrosion behavior of the coated sample varied due to the cracking of coating. - Abstract: In this work, a bioactive 45S5 glass–ceramic coating was synthesized on magnesium (Mg) alloy substrate by using a sol–gel dip-coating method, to improve the initial corrosion resistance of AZ31 Mg alloy. The surface morphology and phase composition of the glass–ceramic coating were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The coating composed of amorphous phase and crystalline phase Na2Ca2Si3O9, with the thickness of ∼1.0 μm, exhibited a uniform and crack-free surface morphology. The corrosion behavior of the uncoated and coated Mg alloy substrates was investigated by the electrochemical measurements and immersion tests in simulated body fluid (SBF). Potentiodynamic polarization tests recorded an increase of potential (Ecorr) form −1.60 V to −1.48 V, and a reduction of corrosion current density (icorr) from 4.48 μA cm−2 to 0.16 μA cm−2, due to the protection provided by the glass–ceramic coating. Immersion tests also showed the markedly improved corrosion resistance of the coated sample over the immersion period of 7 days. Moreover, after 14 days of immersion in SBF, the corrosion resistance of the coated sample declined due to the cracking of the glass–ceramic coating, which was confirmed by electrochemical impedance spectroscopy (EIS) analysis. The results suggested that the 45S5 glass–ceramic coated Mg alloy could provide a suitable corrosion behavior for use as degradable implants.

  5. Corrosion resistance and calcium–phosphorus precipitation of micro-arc oxidized magnesium for biomedical applications

    International Nuclear Information System (INIS)

    Highlights: • Hydroxyapatite (HA) powders were added to the electrolyte. • The HA powders have participated in the formation reactions of MAO coating. • The growth efficiency of MAO coating was greatly enhanced owing to the HA addition. • The specimen anodized in the HA-containing electrolyte has a better corrosion resistance. • The specimen anodized in the HA-containing electrolyte can more efficiently induce Ca–P precipitation. - Abstract: To improve the corrosion resistance of magnesium, micro-arc oxidation (MAO) coatings were prepared on magnesium substrates in an aqueous solution with and without hydroxyapatite (HA) powders addition. The micrographs of scanning electron microscopy (SEM), the energy dispersive spectrometer (EDS) spectra, and X-ray diffraction (XRD) analysis show that the HA powders added into the electrolyte have participated in the formation reactions of MAO coating and the growth efficiency of MAO coating is greatly enhanced. Potentiodynamic polarization tests and immersion tests in simulated body fluid (SBF) confirm that the specimen anodized in the HA-containing electrolyte has a better corrosion resistance than the specimen anodized in the HA-free electrolyte. Immersion tests also indicate that the specimen anodized in the HA-containing electrolyte can more efficiently induce Ca–P precipitation compared with the specimen anodized in the HA-free electrolyte

  6. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Cerium oxide nanorods were uniformly grown on diverse substrates. • Changes in growth conditions led to morphology evolution of cerium oxide nanostructures. • The grown cerium oxide nanostructures were single or poly crystalline. • Direct growth of cerium oxide nanorods made the diverse substrates superhydrophobic and anti-corrosive without any surface modifiers. - Abstract: Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields

  7. Ti addition to enhance corrosion resistance of Sn–Zn solder alloy by tailoring microstructure

    International Nuclear Information System (INIS)

    Highlights: • Trace amount of Ti was added to Sn–9Zn alloy. • Corrosion resistance of the modified alloy was significantly enhanced. • Zn-rich precipitates within the microstructure were effectively refined. • The enhanced corrosion resistance was attributed to the refined Zn-rich precipitates. - Abstract: The effect of trace addition of Ti on the corrosion behavior of Sn–9Zn (wt.%) solder alloy in NaCl solution was investigated using polarization and electrochemical impedance spectroscopy techniques. It is found that the corrosion resistance of Sn–9Zn alloy can be significantly enhanced by adding 0.05 wt.% of Ti, evidenced by much lower corrosion current density, lower passive current density and higher impedance. Such enhancement results from the refinement of Zn-rich precipitates within the microstructure, which is conducive to forming a relatively more protective passive film on the surface of the modified alloy. This would be an important finding in the design of novel Sn–Zn solder alloys in electronic assemblies operating under aggressive conditions

  8. Preparation of novel functional Mg/O/PCL/ZnO composite biomaterials and their corrosion resistance

    International Nuclear Information System (INIS)

    Highlights: • Novel functional Mg/O/PCL/ZnO composite biomaterials were prepared. • The biomaterials were prepared by anodization treatment and dip-coating technique. • The composite biomaterials were smooth and with low porosity. • The prepared biomaterials have good corrosion resistance in SBF. • The composite biomaterials can release zinc ion to promote bone formation. - Abstract: In this study, novel and functional Mg/O/PCL/ZnO (magnesium/anodic film/poly(ε-caprolactone)/zinc oxide) composite biomaterials for enhancing the bioactivity and biocompatibility of the implant was prepared by using anodization treatment and dip-coating technique. The surface morphology, microstructure, adhesion strength and corrosion resistance of the composite biomaterials were investigated using scanning electron microscopy (SEM), adhesion measurements, electrochemical tests and immersion tests respectively. In addition, the biocompatible properties of Mg (magnesium), Mg/PCL (magnesium/poly(ε-caprolactone)) and Mg/O/PCL (magnesium/anodic film/poly(ε-caprolactone)) samples were also investigated. The results show that the Mg/O/PCL/ZnO composite biomaterials were with low porosity and with the ZnO powders dispersed in PCL uniformly. The adhesion tests suggested that Mg/O/PCL/ZnO composite biomaterials had better adhesion strength than that of Mg/PCL composite biomaterials obviously. Besides, an in vitro test for corrosion demonstrated that the Mg/O/PCL/ZnO composite biomaterials had good corrosion resistance and zinc ion was released obviously in SBF

  9. Ti addition to enhance corrosion resistance of Sn–Zn solder alloy by tailoring microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian-Chun [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Zhang, Gong, E-mail: zhangg@tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Ma, Ju-Sheng [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Suganuma, Katsuaki [Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047 (Japan)

    2015-09-25

    Highlights: • Trace amount of Ti was added to Sn–9Zn alloy. • Corrosion resistance of the modified alloy was significantly enhanced. • Zn-rich precipitates within the microstructure were effectively refined. • The enhanced corrosion resistance was attributed to the refined Zn-rich precipitates. - Abstract: The effect of trace addition of Ti on the corrosion behavior of Sn–9Zn (wt.%) solder alloy in NaCl solution was investigated using polarization and electrochemical impedance spectroscopy techniques. It is found that the corrosion resistance of Sn–9Zn alloy can be significantly enhanced by adding 0.05 wt.% of Ti, evidenced by much lower corrosion current density, lower passive current density and higher impedance. Such enhancement results from the refinement of Zn-rich precipitates within the microstructure, which is conducive to forming a relatively more protective passive film on the surface of the modified alloy. This would be an important finding in the design of novel Sn–Zn solder alloys in electronic assemblies operating under aggressive conditions.

  10. MECHANIZM OF ANODE DISSOLVING OF CORROSION-RESISTING AND STRUCTURAL CARBON STEELS UNDER ELECTROPULSE POLISHING

    Directory of Open Access Journals (Sweden)

    I. Yunkovsky

    2013-01-01

    Full Text Available In this article were suggested the schemes of anode processes, taking into account the nature of metals, anion structure, pH solution of electrolyte and anode potential by electropulse polishing of corrosion- resisting and structural carbon steels.It is shown and experimentally confirmed, that under conditions of electropulse polishing of anode dissolving of metals, which are contained into corrosion-resisting and structural carbon steels, carried out according to mechanism of complex formation through a set of series and series-parallel of intermediate stages. In the 1st stage on the surface of metals adsorption complexes with participation of chemisorption molecules of water are formed. In the next stages anions of electrolyte’s solution and molecules of water take part. In final stage of dissolving on the surface of anode soluble compounds are formed, which by transition into solution into simple ions are dissociated. It is determined that by electrical-impulse polishing in dissolving of components of corrosion-resisting carbon steels the important role play chemical processes, and anode dissolving of metals take place in the field of mixed electrochemical and diffusion kinetics . Diffusion limitations appear as a result of difficult ion mass transfer through surface salt, oxide and hydro-oxide and absorption-phase coatings.

  11. Effect of nano-TiO2 particles size on the corrosion resistance of alkyd coating

    International Nuclear Information System (INIS)

    The coating system containing various sizes (∼10, 50, 100, 150 nm) of nano-TiO2 were prepared and investigated for corrosion protection of carbon steel in 1.0 M H2SO4 using polarization, EIS and transmission electron microscopy (TEM) techniques. It was found that nano-TiO2 particles improved the corrosion resistance of alkyd coatings. The corrosion resistance occurs via physical adhesion on the metal surface. O2 and H2O permeability of coating decreased with decrease in the nano-TiO2 size. The inhibition efficiency was found to increase with decreasing the size of nano-TiO2 and with decreasing the temperature. - Highlights: • Nano-TiO2 coating were prepared and used for corrosion protection of C-steel. • Nano-TiO2 particles in coating are effective to improve the corrosion resistance. • Nano-TiO2 coating inhibit both anodic and cathodic reactions. • Corrosion inhibition efficiency increases with decrease in the size of nano-TiO2. • O2 and H2O permeability of coating decreased with decrease in the nano-TiO2 size

  12. Corrosion resistance and electrochemical properties of welded joints of chromium-nickel steel in hydrochloric acid

    International Nuclear Information System (INIS)

    Effect of alloying elements coming into electrode materials on corrosion resistance of surfaced metal and electrochemical characteristics of welded joints of the 08Kh18N10T steel have been studied (0.08% C, 1.4% Mn; 0.6% Si; 17.5O% Cr; 10.0% Ni; 0.25% Cu; 0.64% Ti; 0.016% S; 0.028% P) in 5% solution of hydrochloric acid. Plates of 200x80x10 mm dimensions have been butt welded with different electrodes. It is shown that welded joints of 08Kh18N10T steel can be subjected to selective corrosion in solutions of hydrochloric acid. Alloying of surfaced metal with niobium (up to 1%) and vanadium (up to 2%) increases corrosion resistance, preserving selective character of joint welds failure. Alloying of surfaced metal with molybdenum (2.3%), molybdenum and vanadium (2.5% Mo and 0.52% V), molybdenum and niobium (2.4 % Mo and 0.8 % Nb) increases corrosion resistance of joint weld. Heat treatment - hardening of welded joints from 1050 deg C practically levels off values of electrode potentials of basic metal and welds, close in chemical composition, as well as additionally alloyed with niobium (0.98% Nb) and niobium and molybdenum (2.4% Mo+0.8% Nb)

  13. TOPICAL REVIEW: Corrosion resistance of Si–Al-bearing ultrafine-grained weathering steel

    Directory of Open Access Journals (Sweden)

    Toshiyasu Nishimura

    2008-01-01

    Full Text Available In the Ultra-steel project at the National Institute for Materials Science (NIMS, which run from 1996 to 2005, high-Si–Al-content ultrafine-grained (UFG weathering steel was developed by grain refinement and weathering guidance. It was found that this steel has excellent strength, toughness and corrosion resistance. Samples were prepared by multi pass warm rolling at temperatures between 773 and 873 K. The grain size of steel rolled at 873 K was about 1 μ m, and the tensile strength (TS and elongation (EL had excellent values of 800 MPa and 20%, respectively. In general, steels with high Si and Al contents exhibit inferior toughness to carbon steel (SM; however, the toughness of the developed sample was markedly improved by grain refinement. Cyclic corrosion tests in the presence of chloride ions confirmed that the developed steel exhibited excellent corrosion resistance, superior to that of SM. Electron probe microanalysis (EPMA and transmission electron microscopy (TEM analyses showed that Si and Al mainly exist in the inner rust layer. Si and Al were identified as existing in the Si2 + and Al3 + states in the nanoscale complex oxides constituting the inner rust layer. Electrochemical impedance spectroscopy(EIS measurement showed that the corrosion reaction resistance (Rt of the developed steel was much greater than that of SM. In the developed steel, the nanoscale complex oxides were formed in the inner rust layer, which increased Rt, and resulted in the excellent corrosion resistance.

  14. Corrosion resistance and electrical properties of carbon/chromium-titanium-nitride multilayer coatings on stainless steel

    Science.gov (United States)

    Feng, Kai; Li, Zhuguo; Lu, Fenggui; Huang, Jian; Cai, Xun; Wu, Yixiong

    2014-03-01

    High electrical conductivity and corrosion resistance are central to advances in wider application of metallic bipolar plates in polymer electrolyte membrane fuel cell (PEMFC). In this study, C/Cr-Ti-N multilayer coatings are deposited by physical vapor deposition and the effect of Cr:Ti ratio on the corrosion resistance and interfacial contact resistance (ICR) are systematically investigated. Scanning electron microscopy (SEM) result shows that the carbon layer is compact and uniform. Excellent corrosion resistance of 0.127 μA cm-2 current density at operating voltage in PEMFC cathode environment and low ICR of 2.03 mΩ-cm2 at compaction force of 150 N cm-2 are achieved when Cr:Ti ratio is 2:4 and 3:3, respectively. The significant enhancement in surface conductivity is probably because that the current comes from carbon paper is homogenized by two electrically conductive layers and flows to the passive film with much more contact area. After polarization, ICR increase to 3.07 mΩ-cm2 and 3.02 mΩ-cm2 in the simulated PEMFC cathode and anode environment, respectively. However, the Raman spectroscopy results disclose that the bonding type of top carbon film before and after polarization shows little difference. The results indicate that C/Cr-Ti-N multilayer coating with Cr:Ti ratio of 2:4 achieves the optimal composition.

  15. Preparation of novel functional Mg/O/PCL/ZnO composite biomaterials and their corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Zhongxian; Tan, Cui; Xu, Lan; Yang, Na; Li, Qing, E-mail: liqingdswu@163.com

    2015-10-01

    Highlights: • Novel functional Mg/O/PCL/ZnO composite biomaterials were prepared. • The biomaterials were prepared by anodization treatment and dip-coating technique. • The composite biomaterials were smooth and with low porosity. • The prepared biomaterials have good corrosion resistance in SBF. • The composite biomaterials can release zinc ion to promote bone formation. - Abstract: In this study, novel and functional Mg/O/PCL/ZnO (magnesium/anodic film/poly(ε-caprolactone)/zinc oxide) composite biomaterials for enhancing the bioactivity and biocompatibility of the implant was prepared by using anodization treatment and dip-coating technique. The surface morphology, microstructure, adhesion strength and corrosion resistance of the composite biomaterials were investigated using scanning electron microscopy (SEM), adhesion measurements, electrochemical tests and immersion tests respectively. In addition, the biocompatible properties of Mg (magnesium), Mg/PCL (magnesium/poly(ε-caprolactone)) and Mg/O/PCL (magnesium/anodic film/poly(ε-caprolactone)) samples were also investigated. The results show that the Mg/O/PCL/ZnO composite biomaterials were with low porosity and with the ZnO powders dispersed in PCL uniformly. The adhesion tests suggested that Mg/O/PCL/ZnO composite biomaterials had better adhesion strength than that of Mg/PCL composite biomaterials obviously. Besides, an in vitro test for corrosion demonstrated that the Mg/O/PCL/ZnO composite biomaterials had good corrosion resistance and zinc ion was released obviously in SBF.

  16. Corrosion resistance of Cr-Ni-Mo steel in simulated body fluids

    Directory of Open Access Journals (Sweden)

    W. Kajzer

    2006-08-01

    Full Text Available Purpose: The paper presents the comparison of corrosion resistance of Cr-Ni-Mo stainless steel in variouscorrosive media simulating human body fluids.Design/methodology/approach: The corrosion tests were realized by recording of anodic polarization curveswith the use of the potentiodynamic method. The VoltaLab® PGP 201 system for electrochemical tests wasapplied. The tests were carried out in electrolyte simulating urine (pH = 6 ÷ 6.4, Tyrode’s physiological solution(pH = 6.8 ÷ 7.4 and plasma (pH = 7.2 ÷ 7.6 at the temperature of 37±1°C.Findings: Surface condition of metallic biomaterial determines its corrosion resistance. The highest values ofbreakdown potentials are recorded for electropolished and chemically passivated samples tested in artificial urine.The lowest values of anodic current density were recorded for samples tested in Tyrode’s physiological solution.Research limitations/implications: The obtained results are the basis for the optimization of physicochemicalproperties of the metallic biomaterial.Practical implications: On the basis of the obtained results it can be stated that stainless steel can be applied inreconstruction surgery, operative cardiology and urology.Originality/value: The paper presents the influence of various corrosive media simulating human body fluidson corrosion resistance of Cr-Ni-Mo stainless steel.

  17. Ultrasonic irradiation and its application for improving the corrosion resistance of phosphate coatings on aluminum alloys.

    Science.gov (United States)

    Sheng, Minqi; Wang, Chao; Zhong, Qingdong; Wei, Yinyin; Wang, Yi

    2010-01-01

    In this paper, ultrasonic irradiation was utilized for improving the corrosion resistance of phosphate coatings on aluminum alloys. The chemical composition and morphology of the coatings were analyzed by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The effect of ultrasonic irradiation on the corrosion resistance of phosphate coatings was investigated by polarization curves and electrochemical impedance spectroscopy (EIS). Various effects of the addition of Nd(2)O(3) in phosphating bath on the performance of the coatings were also investigated. Results show that the composition of phosphate coating were Zn(3)(PO(4))(2).4H(2)O(hopeite) and Zn crystals. The phosphate coatings became denser with fewer microscopic holes by utilizing ultrasonic irradiation treatment. The addition of Nd(2)O(3) reduced the crystallinity of the coatings, with the additional result that the crystallites were increasingly nubby and spherical. The corrosion resistance of the coatings was also significantly improved by ultrasonic irradiation treatment; both the anodic and cathodic processes of corrosion taking place on the aluminum alloy substrate were suppressed consequently. In addition, the electrochemical impedance of the coatings was also increased by utilizing ultrasonic irradiation treatment compared with traditional treatment. PMID:19692286

  18. Effect of additives on corrosion resistance of Zirconium alloy for extended burn-up fuel cladding

    International Nuclear Information System (INIS)

    Sumitomo Metal Industries, Ltd. (SMI) supplies Zircaloy cladding tubes and has been developing high corrosion resistance Zr alloys for extended burn-up fuel claddings for BWR and PWR, respectively. For BWR cladding tube, small addition of IVb and Vb elements to Low Sn Zircaloy-2 improved nodular corrosion resistance. It was observed by Transmission Electron Microscopy that these additives complied with a Zr(Cr, Fe)2 type intermetallic compound and those size were finer than that precipitated in a conventional Zircaloy-2. That was assumed to result in suppressing nodular corrosion occurrence. For PWR cladding tube, small addition of Ni and Nb to extremely low Sn zirconium alloy improved uniform corrosion resistance and suppressed hydrogen pick-up. As this results Zr-1.0Sn-0.27Fe-0.16Cr-0.1Nb-0.01Ni were selected as a candidate alloy. In spite of extremely low Sn content, its mechanical properties were almost same as conventional Zircaloy-4. (author)

  19. Improvement on corrosion resistance of NiTi orthopedic materials by carbon plasma immersion ion implantation

    Science.gov (United States)

    Poon, Ray W. Y.; Ho, Joan P. Y.; Luk, Camille M. Y.; Liu, Xuanyong; Chung, Jonathan C. Y.; Chu, Paul K.; Yeung, Kelvin W. K.; Lu, William W.; Cheung, Kenneth M. C.

    2006-01-01

    Nickel-titanium shape memory alloys (NiTi) have potential applications as orthopedic implants because of their unique super-elastic properties and shape memory effects. However, the problem of out-diffusion of harmful Ni ions from the alloys during prolonged use inside a human body must be overcome before they can be widely used in orthopedic implants. In this work, we enhance the corrosion resistance of NiTi using carbon plasma immersion ion implantation and deposition (PIII&D). Our corrosion and simulated body fluid tests indicate that either an ion-mixed amorphous carbon coating fabricated by PIII&D or direct carbon PIII can drastically improve the corrosion resistance and block the out-diffusion of Ni from the materials. Results of atomic force microscopy (AFM) indicate that both C2H2-PIII&D and C2H2-PIII do not roughen the original flat surface to an extent that can lead to degradation in corrosion resistance.

  20. Corrosion resistance properties of reactive plasma-sprayed titanium composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Valente, T. [Rome Univ. (Italy). Dept. of ICMMPM; Galliano, F.P. [Department of DMTI, University of Florence, Via S. Marta, 3-50139, Florence (Italy)

    2000-05-01

    Among thermal spraying methods, an attractive technical possibility lies in the fabrication of protective coatings or free-standing components by means of reactive plasma spraying (RPS) techniques. Using reactive gases, such as nitrogen or methane, it is possible to synthesize hard nitride or carbide phases in reactive metals like Ti, Cr or Al. In this investigation composite titanium-nitrides/titanium coatings produced by RPS through a controlled atmosphere plasma spray system (CAPS), were electrochemically tested to evaluate their corrosion behaviour. Two environments were selected: a neutral (0.5 M NaCl) and an acid aqueous solution (0.5 M NaCl+1 M HCl). The influence of porosity and nitrogen content on the corrosion resistance has been investigated. Polarization curves of coated samples, detached coatings, AISI304 substrate and commercially pure titanium (grade 2), are also reported and discussed. The corrosion resistance of coated samples was found to be mainly dependent on porosity values, thus optimization of plasma spraying parameters assumes a fundamental role to obtain wear and corrosion resistant deposits. (orig.)

  1. An evaluation of corrosion resistant alloys by field corrosion test in Japanese refuse incineration plants

    International Nuclear Information System (INIS)

    As the first step for development of the corrosion resistant superheater tube materials of 500 C, 100 ata used in high efficient waste-to-energy plants, field corrosion tests of six conventional alloys were carried out at metal temperatures of 450 C and 550 C for 700 and 3,000 hours in four typical Japanese waste incineration plants. The test results indicate that austenitic alloys containing approximately 80 wt% [Cr+Ni] show excellent corrosion resistance. When the corrosive environment is severe, intergranular corrosion of 40∼200 microm depth occurs in stainless steel and high alloyed materials. It is confirmed quantitatively that corrosion behavior is influenced by environmental corrosion factors such as Cl concentration and thickness of deposits on tube surface, metal temperature, and flue gas temperature. The excellent corrosion resistance of high [Cr+Ni+Mo] alloys such as Alloy 625 is explained by the stability of its protective oxide, such that the time dependence of corrosion nearly obeys the parabolic rate law

  2. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo [School of Mechanical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Dong Rip, E-mail: dongrip@hanyang.ac.kr [School of Mechanical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-06-15

    Graphical abstract: - Highlights: • Cerium oxide nanorods were uniformly grown on diverse substrates. • Changes in growth conditions led to morphology evolution of cerium oxide nanostructures. • The grown cerium oxide nanostructures were single or poly crystalline. • Direct growth of cerium oxide nanorods made the diverse substrates superhydrophobic and anti-corrosive without any surface modifiers. - Abstract: Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  3. Effect of Boron and Cerium on Corrosion Resistance of Cu -Fe -P Alloy

    Science.gov (United States)

    Zou, Jin; Lu, Lei; Lu, De-ping; Liu, Ke-Ming; Chen, Zhi-bao; Zhai, Qi-jie

    2016-03-01

    The effects of B and Ce on the corrosion resistance of Cu-0.22Fe-0.06P alloy were investigated by salt spray and electrochemical tests. The corrosion morphology was studied by scanning electron microscopy. The corrosion products were characterized by energy-dispersive x-ray spectroscopy and x-ray diffraction analysis. The impurity content was determined by inductively coupled plasma mass spectrometry. The conductivity was measured using an eddy current conductivity meter. The grains of Cu-0.22Fe-0.06P alloy were refined by the addition of B and Ce. The electrochemical corrosion process of alloy is retarded due to purification effect of B and Ce. After the addition of a trace amount of B, the corrosion resistance of the alloy decreased. The corrosion resistance of Cu-0.22Fe-0.06P-0.025B-0.05Ce was better than that of Cu-0.22Fe-0.06P-0.025B due to the fact that the purification effect of Ce is better than that of B. The main corrosion products of the Cu-Fe-P alloys in a NaCl solution are Cu2Cl(OH)3 and Cu2O. The addition of trace amounts of B and Ce did not change the components of the corrosion product.

  4. Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings

    International Nuclear Information System (INIS)

    The corrosion performance of WE43-T6 and AZ91D magnesium alloys with and without treatment by plasma electrolytic oxidation (PEO) was investigated by electrochemical measurements in 3.5 wt.% NaCl solution. For untreated WE43-T6 alloy, formation of a uniform corrosion layer (Mg(OH)2) was accompanied by initial pits around magnesium-rare earth intermetallic compounds. The AZ91D alloy disclosed increased corrosion susceptibility, with localized corrosion around the β-phase, though the β-phase network phase acted as a barrier for corrosion progression. PEO treatment in alkaline phosphate electrolyte improved the corrosion resistance of WE43-T6 alloy only at the initial stages of immersion in the test solution. However, PEO-treated AZ91D alloy revealed a relatively high corrosion resistance for much increased immersion times, contrary to the relative corrosion resistances of the untreated alloys. The improved performance of the PEO-treated AZ91D alloy appears to be related to the formation of a more compact coating

  5. High corrosion resistance of austenitic stainless steel alloyed with nitrogen in an acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Metikos-Hukovic, M., E-mail: mmetik@fkit.h [Department of Electrochemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Savska 16, P.O. Box 177, 100000 Zagreb (Croatia); Babic, R. [Department of Electrochemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Savska 16, P.O. Box 177, 100000 Zagreb (Croatia); Grubac, Z. [Department of General and Inorganic Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split (Croatia); Petrovic, Z. [Department of Electrochemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Savska 16, P.O. Box 177, 100000 Zagreb (Croatia); Lajci, N. [Faculty of Mine and Metallurgy, University of Prishtina, 10000 Prishtina, Kosovo (Country Unknown)

    2011-06-15

    Highlights: {yields} ASS alloyed with nitrogen treated at 1150 {sup o}C exhibits microstructure homogeneity. {yields} Passivation peak of ASS corresponds to oxidation of metal and absorbed hydrogen. {yields} Transfer phenomena and conductivity depend on the film formation potential. {yields} Electronic structure of the passive film and its corrosion resistance correlate well. {yields} Passive film on ASS with nitrogen is low disordered and high corrosion resistant. - Abstract: Passivity of austenitic stainless steel containing nitrogen (ASS N25) was investigated in comparison with AISI 316L in deareated acid solution, pH 0.4. A peculiar nature of the passivation peak in a potentiodynamic curve and the kinetic parameters of formation and growth of the oxide film have been discussed. The electronic-semiconducting properties of the passive films have been correlated with their corrosion resistance. Alloying austenitic stainless steel with nitrogen increases its microstructure homogeneity and decreases the concentration of charge carriers, which beneficially affects the protecting and electronic properties of the passive oxide film.

  6. Corrosion resistance and blood compatibility of lanthanum ion implanted pure iron by MEVVA

    International Nuclear Information System (INIS)

    Pure iron is a potential material applying for coronary artery stents based on its biocorrodible and nontoxic properties. However, the degradation characteristics of pure iron in vivo could reduce the mechanical stability of iron stents prematurely. The purpose of this work was to implant the lanthanum ion into pure iron specimens by metal vapor vacuum arc (MEVVA) source at an extracted voltage of 40 kV to improve its corrosion resistance and biocompatibility. The implanted fluence was up to 5 x 1017 ions/cm2. The X-ray photoelectron spectroscopy (XPS) was used to characterize the chemical state and depth profiles of La, Fe and O elements. The results showed lanthanum existed in the +3 oxidation state in the surface layer, most of the oxygen combined with lanthanum and form a layer of oxides. The lanthanum ion implantation layer could effectively hold back iron ions into the immersed solution and obviously improved the corrosion resistance of pure iron in simulated body fluids (SBF) solution by the electrochemical measurements and static immersion tests. The systematic evaluation of blood compatibility, including in vitro platelets adhesion, prothrombin time (PT), thrombin time (TT), indicated that the number of platelets adhesion, activation, aggregation and pseudopodium on the surface of the La-implanted samples were remarkably decreased compared with pure iron and 316L stainless steel, the PT and TT were almost the same as the original plasma. It was obviously showed that lanthanum ion implantation could effectively improve the corrosion resistance and blood compatibility of pure iron.

  7. Wear and corrosion resistance of anti-bacterial Ti-Cu-N coatings on titanium implants

    Science.gov (United States)

    Wu, Haibo; Zhang, Xiangyu; He, Xiaojing; Li, Meng; Huang, Xiaobo; Hang, Ruiqiang; Tang, Bin

    2014-10-01

    Anti-bacterial coatings with excellent wear and corrosion resistance play a vital role in ensuring the durability of implant materials in constant use. To this end, a novel anti-bacterial surface modification by combining magnetron sputtering with plasma nitriding was adopted in this paper to fabricate Cu-bearing Ti-based nitrides coatings (Ti-Cu-N) on titanium surface. The anti-bacterial properties of Ti-Cu-N coatings were evaluated. The microstructures and composition of the coatings were investigated by using FESEM, EDS, GDOES, XRD. The wear and corrosion resistance of the coatings were investigated. The results confirmed that an anti-bacterial Ti-Cu-N coating with a thickness of 6 μm and good adhesive strength to substrate was successfully achieved on titanium surface. As implied by XRD, the coatings were consisted of TiN, Ti2N, TiN0.3 phases. The surface micro-hardness and wear resistance of Ti-Cu-N coatings were significantly enhanced after plasma nitriding treatment. The analysis of potentiodynamic polarization curves and Nyquist plots obtained in 0.9 wt.% NaCl solution suggested that the Ti-Cu-N coatings also exhibited an excellent corrosion resistance. As mentioned above, it can be concluded that the duplex-treatment reported here was a versatile approach to develop anti-bacterial Ti-Cu-N coatings with excellent comprehensive properties on titanium implants.

  8. High-strength economically alloyed corrosion-resistant steels with the structure of nitrogen martensite

    Science.gov (United States)

    Bannykh, O.; Blinov, V.; Lukin, E.

    2016-04-01

    The use of nitrogen as the main alloying element allowing one both to increase the corrosion resistance and mechanical properties of steels and to improve their processability is a new trend in physical metallurgy of high-strength corrosion resistant steels. The principles of alloying, which are developed for high-nitrogen steel in IMET RAS, ensure the formation of the structure, which contains predetermined amounts of martensite (70-80%) and austenite (20-30%) and is free from δ-ferrite, σ-phase, and Cr23C6 carbide. These principles were used as the base for the creation of new high-strength corrosion-resistant weldable and deformable 0Kh16AN5B, 06Kh16AN4FD, 08Kh14AN4MDB, 09Kh16AN3MF, 27Kh15AN3MD2, 40Kh13AN3M2, and 19Kh14AMB steels, which are operative at temperatures ranging from - 70 to 400°C. The developed nitrogen-containing steels compared with similar carbon steels are characterized by a higher resistance to pitting and crevice corrosion and are resistant to stress corrosion cracking. The new steels successfully passed trial tests as heavy duty articles.

  9. High corrosion resistance of austenitic stainless steel alloyed with nitrogen in an acid solution

    International Nuclear Information System (INIS)

    Highlights: → ASS alloyed with nitrogen treated at 1150 oC exhibits microstructure homogeneity. → Passivation peak of ASS corresponds to oxidation of metal and absorbed hydrogen. → Transfer phenomena and conductivity depend on the film formation potential. → Electronic structure of the passive film and its corrosion resistance correlate well. → Passive film on ASS with nitrogen is low disordered and high corrosion resistant. - Abstract: Passivity of austenitic stainless steel containing nitrogen (ASS N25) was investigated in comparison with AISI 316L in deareated acid solution, pH 0.4. A peculiar nature of the passivation peak in a potentiodynamic curve and the kinetic parameters of formation and growth of the oxide film have been discussed. The electronic-semiconducting properties of the passive films have been correlated with their corrosion resistance. Alloying austenitic stainless steel with nitrogen increases its microstructure homogeneity and decreases the concentration of charge carriers, which beneficially affects the protecting and electronic properties of the passive oxide film.

  10. Corrosion Resistance of Coating with Fe-based Metallic Glass Powders Fabricated by Laser Spraying

    Directory of Open Access Journals (Sweden)

    Wang Yingjie

    2013-01-01

    Full Text Available In order to improve their wearing resistance, some reinforced particles such as TiN and WC were usually inserted into Fe-based Metallic Glassy Coatings (Fe-MGC. In this study, a new Fe-MGC was fabricated with the powder mixtures of Fe-based metallic glass, NiCr alloy and WC particle by laser spraying. The corrosion resistance of Fe-MGC was investigated by potentiodynamic polarization tests in 1 M HCl, NaCl, H2SO4 and NaOH solutions, respectively. The microstructures were detected by X-ray diffraction and scanning electron microscope. The Fe-MGC of Fe68.5 C7.1 Si3.3 B5.5 P8.7 Cr2.3 Mo2.5 Al2.0+NiCr+tungsten carbon exhibits low corrosion current density of 10.6 and 3.3 μA, high corrosion potential of 326.4 and 367.5 mV in HCl and NaCl solutions, respectively. The results indicate Fe-MGC presents low porosity and high microhardness implying superior wearing properties, moreover, exhibits excellent corrosion resistance and no inferior than that of full amorphous coatings in various solutions. The excellent corrosion resistance and wearing properties demonstrates that Fe-based metallic glassy matrix powder is a viable engineering material as practical anti-corrosion and anti-wear coating applications.

  11. Hydroxyapatite/poly(epsilon-caprolactone) double coating on magnesium for enhanced corrosion resistance and coating flexibility.

    Science.gov (United States)

    Jo, Ji-Hoon; Li, Yuanlong; Kim, Sae-Mi; Kim, Hyoun-Ee; Koh, Young-Hag

    2013-11-01

    Hydroxyapatite was deposited on pure magnesium (Mg) with a flexible poly(ε-caprolactone) interlayer to reduce the corrosion rate of Mg and enhance coating flexibility. The poly(ε-caprolactone) interlayer was uniformly coated on Mg by a spraying method, followed by hydroxyapatite deposition on the poly(ε-caprolactone) using an aerosol deposition method. In scanning electron microscopy observations, inorganic/organic composite-like structure was observed between the hydroxyapatite and poly(ε-caprolactone) layers, resulting from the collisions of hydroxyapatite particles into the poly(ε-caprolactone) matrix at the initial stage of the aerosol deposition. The corrosion resistance of the coated Mg was examined using potentiodynamic polarization tests. The hydroxyapatite/poly(ε-caprolactone) double coating remarkably improved the corrosion resistance of Mg in Hank's solution. In the in vitro cell tests, the coated Mg showed better cell adhesion compared with the bare Mg due to the reduced corrosion rate and enhanced biocompatibility. The stability and flexibility of hydroxyapatite/poly(ε-caprolactone) double coating was investigated by scanning electron microscopy inspections after the coated Mg was deformed. The hydroxyapatite coating on the poly(ε-caprolactone) interlayer revealed enhanced coating stability and flexibility without cracking or delamination during bending and stretching compared with the hydroxyapatite single coating. These results demonstrated that the hydroxyapatite/poly(ε-caprolactone) double coating significantly improved the surface corrosion resistance of Mg and enhanced coating flexibility for use of Mg as a biodegradable implant. PMID:23241964

  12. Corrosion resistance and calcium–phosphorus precipitation of micro-arc oxidized magnesium for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lichen; Cui, Chunxiang, E-mail: hutcui@hebut.edu.cn; Wang, Xin; Liu, Shuangjin; Bu, Shaojing; Wang, Qingzhou; Qi, Yumin

    2015-03-01

    Highlights: • Hydroxyapatite (HA) powders were added to the electrolyte. • The HA powders have participated in the formation reactions of MAO coating. • The growth efficiency of MAO coating was greatly enhanced owing to the HA addition. • The specimen anodized in the HA-containing electrolyte has a better corrosion resistance. • The specimen anodized in the HA-containing electrolyte can more efficiently induce Ca–P precipitation. - Abstract: To improve the corrosion resistance of magnesium, micro-arc oxidation (MAO) coatings were prepared on magnesium substrates in an aqueous solution with and without hydroxyapatite (HA) powders addition. The micrographs of scanning electron microscopy (SEM), the energy dispersive spectrometer (EDS) spectra, and X-ray diffraction (XRD) analysis show that the HA powders added into the electrolyte have participated in the formation reactions of MAO coating and the growth efficiency of MAO coating is greatly enhanced. Potentiodynamic polarization tests and immersion tests in simulated body fluid (SBF) confirm that the specimen anodized in the HA-containing electrolyte has a better corrosion resistance than the specimen anodized in the HA-free electrolyte. Immersion tests also indicate that the specimen anodized in the HA-containing electrolyte can more efficiently induce Ca–P precipitation compared with the specimen anodized in the HA-free electrolyte.

  13. Cerium-based coating for enhancing the corrosion resistance of bio-degradable Mg implants

    International Nuclear Information System (INIS)

    Recently there has been interest in employing degradable metallic implants for internal fixation in bone fracture healing. The major purpose of using degradable implants is to avoid a second surgery for implant removal when bone healing has completed. However, the corrosion rate of Mg in vivo is too high. Thus increasing the corrosion resistance of Mg is the key problem to address in the development of degradable Mg implants. One possible route is by way of surface treatment, which would lower the corrosion rate at the initial phase of bone healing, the period during which the implant provides mechanical support for the broken bone. In the present study cerium oxide coating was prepared on pure Mg by cathodic deposition in cerium nitrate solution followed by hydrothermal treatment. The coated samples were characterized by SEM, EDS and XRD. The corrosion resistance in Hanks' solution (a simulated body fluid) was studied using polarization method and electrochemical impedance spectroscopy (EIS). The corrosion resistance of cerium oxide coated Mg in Hanks' solution at 37 deg. C and pH 7.4 was higher than that of bare Mg by about two orders of magnitude.

  14. Three-terminal nanoelectromechanical switch based on tungsten nitride—an amorphous metallic material

    Science.gov (United States)

    Mayet, Abdulilah M.; Hussain, Aftab M.; Hussain, Muhammad M.

    2016-01-01

    Nanoelectromechanical (NEM) switches inherently have zero off-state leakage current and nearly ideal sub-threshold swing due to their mechanical nature of operation, in contrast to semiconductor switches. A challenge for NEM switches to be practical for low-power digital logic application is their relatively large operation voltage which can result in higher dynamic power consumption. Herein we report a three-terminal laterally actuated NEM switch fabricated with an amorphous metallic material: tungsten nitride (WN x ). As-deposited WN x thin films have high Young’s modulus (300 GPa) and reasonably high hardness (3 GPa), which are advantageous for high wear resistance. The first prototype WN x switches are demonstrated to operate with relatively low control voltage, down to 0.8 V for an air gap thickness of 150 nm.

  15. Three-terminal nanoelectromechanical switch based on tungsten nitride--an amorphous metallic material.

    Science.gov (United States)

    Mayet, Abdulilah M; Hussain, Aftab M; Hussain, Muhammad M

    2016-01-22

    Nanoelectromechanical (NEM) switches inherently have zero off-state leakage current and nearly ideal sub-threshold swing due to their mechanical nature of operation, in contrast to semiconductor switches. A challenge for NEM switches to be practical for low-power digital logic application is their relatively large operation voltage which can result in higher dynamic power consumption. Herein we report a three-terminal laterally actuated NEM switch fabricated with an amorphous metallic material: tungsten nitride (WNx). As-deposited WN x thin films have high Young's modulus (300 GPa) and reasonably high hardness (3 GPa), which are advantageous for high wear resistance. The first prototype WN x switches are demonstrated to operate with relatively low control voltage, down to 0.8 V for an air gap thickness of 150 nm. PMID:26636189

  16. Electrophoretically applied dielectrics for amorphous metal foils used in pulsed power saturable reactors

    International Nuclear Information System (INIS)

    Amorphous metal foil-wound inductors have been tested as ferromagnetic saturable inductive elements for pulse-power (multi-terawatt) switching nodules. Saturation switching may provide large 100 ns current bursts necessary to accelerate ion beams for the fusion fuel pellet implosion required, for example, in PBFA (particle beam fusion accelerator) operation. In simulated capacitor testing premature dielectric breakdown of thin polyethylene terephthalate film insulation in the inductor windings occurs at considerably below 2500 V. This appears to be due to inadvertent dielectric damage from micro-spikes on the amorphous foil surface. Electron micrographs and dielectric breakdown data illustrate that electrophoretically-applied dielectric coatings, deposited from organic aqueous colloid dispersions, can be used to provide insulating coatings on the foil which provide a 240% improvement (6000 V) in the breakdown strength of wound amorphous foil inductors. The theory and operation of a dedicated electrophoretic continuous coating system is described

  17. Ion beam mixing in binary amorphous metallic alloys. [Cu-Er; Ni-Ti

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, H.; Averback, R.S.; Diaz de la Rubia, T.; Okamoto, P.R.

    1985-12-01

    Ion beam mixing (IM) was measured in homogeneous amorphous metallic alloys of Cu-Er and Ni-Ti as a function of temperature using tracer impurities, i.e., the so-called ''marker geometry''. In Cu-Er, a strong temperature dependence in IM was observed between 80 and 373K, indicating that radiation-enhanced diffusion mechanisms are operative in this metallic glass. Phase separation of the Cu-Er alloy was also observed under irradiation as Er segregated to the vacuum and SiO2 interfaces of the specimen. At low-temperatures, the amount of mixing in amorphous Ni-Ti is similar to that in pure Ni or Ti, but it is much greater in Cu-Er than in either Cu or Er.

  18. Improved Photo-Induced Stability in Amorphous Metal-Oxide Based TFTs for Transparent Displays.

    Science.gov (United States)

    Koo, Sang-Mo; Ha, Tae-Jun

    2015-10-01

    In this paper, we investigate the origin of photo-induced instability in amorphous metal-oxide based thin-film transistors (oxide-TFTs) by exploring threshold voltage (Vth) shift in transfer characteristics. The combination of photo irradiation and prolonged gate bias stress enhanced the shift in Vth in amorphous hafnium-indium-zinc-oxide (a-HfIZO) TFTs. Such results stem from the extended trapped charges at the localized defect states related to oxygen vacancy which play a role in a screening effect on the electric field induced by gate voltage. We also demonstrate the chemically clean interface in oxide-TFTs by employing oxygen annealing which reduces the density of trap states, thereby resulting in improved photo-induced stability. We believe that this work stimulates the research society of transparent electronics by providing a promising approach to suppress photo-induced instability in metal-oxide TFTs. PMID:26726416

  19. Evaluation of the low corrosion resistant phase formed during the sigma phase precipitation in duplex stainless steels

    OpenAIRE

    Kobayashi Darlene Yuko; Wolynec Stephan

    1999-01-01

    The duplex stainless steels, having a volumetric fraction of 50% ferrite and 50% austenite, conciliate high corrosion resistance with good mechanical properties. But, in many circumstances different phase transformations may occur, such as that responsible for sigma phase precipitation, which make the steel susceptible to localized corrosion. During the sigma phase precipitation a new austenitic phase is formed with a very low corrosion resistance. In the present research the composition of t...

  20. Study of corrosion resistance of chromium-nickel steel in calcium - hypochlorite solution. Part 1. Steels uranus b6

    OpenAIRE

    Tošković D.; Rajković Miloš B.; Stanojević D.

    2002-01-01

    Corrosion resistance of Cr - Ni (special steels) specimen is tested by electrochemical methods, numerical method of linear polarization and polarization resistance method in calcium-hypochlorite (Ca(OCl)2) solutions. With increasing of Ca(OCl)2 concentration, pH value of the solution increases, as well as active chlorine concentration and corrosion activity of the medium. According to the quantitative method of the corrosion resistance determination it can be concluded that the steels tested ...

  1. Service and Ultimate Limit State Flexural Behavior of One-Way Concrete Slabs Reinforced with Corrosion-Resistant Reinforcing Bars

    OpenAIRE

    Bowen, Galo Emilio

    2013-01-01

    This paper presents results of an experimental investigation to study the structural performance and deformability of a concrete bridge deck reinforced with corrosion resistant reinforcing (CRR) bars, i.e., bars that exhibit improved corrosion resistance when embedded in concrete as compared to traditional black steel. Flexural tests of one-way slabs were conducted to simulate negative transverse flexure over a bridge girder as assumed in the commonly employed strip design method. The bar typ...

  2. Enhanced High Temperature Corrosion Resistance in Advanced Fossil Energy Systems by Nano-Passive Layer Formation

    Energy Technology Data Exchange (ETDEWEB)

    Arnold R. Marder

    2007-06-14

    Due to their excellent corrosion resistance, iron aluminum alloys are currently being considered for use as weld claddings in fossil fuel fired power plants. The susceptibility to hydrogen cracking of these alloys at higher aluminum concentrations has highlighted the need for research into the effect of chromium additions on the corrosion resistance of lower aluminum alloys. In the present work, three iron aluminum alloys were exposed to simulated coal combustion environments at 500 C and 700 C for both short (100 hours) and long (5,000 hours) isothermal durations. Scanning electron microscopy was used to analyze the corrosion products. All alloys exhibited excellent corrosion resistance in the short term tests. For longer exposures, increasing the aluminum concentration was beneficial to the corrosion resistance. The addition of chromium to the binary iron aluminum alloy prevented the formation iron sulfide and resulted in lower corrosion kinetics. A classification of the corrosion products that developed on these alloys is presented. Scanning transmission electron microscopy (STEM) of the as-corroded coupons revealed that chromium was able to form chromium sulfides only on the higher aluminum alloy, thereby preventing the formation of deleterious iron sulfides. When the aluminum concentration was too low to permit selective oxidation of only aluminum (upon initial exposure to the corrosion environment), the formation of chromium oxide alongside the aluminum oxide led to depletion of chromium beneath the oxide layer. Upon penetration of sulfur through the oxide into this depletion layer, iron sulfides (rather than chromium sulfides) were found to form on the low aluminum alloy. Thus, it was found in this work that the role of chromium on alloy corrosion resistance was strongly effected by the aluminum concentration of the alloy. STEM analysis also revealed the encapsulation of external iron sulfide products with a thin layer of aluminum oxide, which may provide a

  3. Influence of cold rolling on the corrosion resistance of austenitic steel

    Directory of Open Access Journals (Sweden)

    A. Kurc

    2010-02-01

    Full Text Available Purpose: The paper analyzes the effects of plastic deformation in cold working process on the corrosion resistance, micro-hardness and mechanical properties of austenitic stainless steel X5CrNi18-10.Design/methodology/approach: Corrosion resistance of X5CrNi18-10 steel was examined using weight and potentiodynamic methods. In the weight method, the specimens were immersed in the prepared solution for 87 days. The evaluation of the corrosion behaviour of investigated steel in the potentiodynamic method was realized by registering of anodic polarization curves. The VoltaLab® PGP 201 system for electrochemical tests was applied. The tests were carried out at room temperature in electrolyte simulating artificial sea water (3.5% NaCl. Registering of anodic polarization curves was conducted at the potential rate equal to 1 mV/s. As the reference electrode the saturated calomel electrode (SCE was applied, the auxiliary electrode was platinum electrode. Mechanical properties were evaluated on the basis of the static tensile and Vickers micro-hardness test. The observations of the surface morphology after corrosive tests were carried out using Scanning Electron Microscope SUPRA™25.Findings: According to the results of potentiodynamic analyses it was found that plastic deformation in a cold working of austenitic steel grade X5CrNi18-10 affected to lower its corrosion resistance in 3.5% NaCl solution, what has an essential meaning in industrial applications of this group of materials.Research limitations/implications: The microscope observations of the surface samples subjected to corrosion resistance test in 3.5% NaCl solution permitted to evaluate types and the rate of corrosion damages.Practical implications: The obtained results can be used for searching the appropriate way of improving the corrosion resistance of a special group of steels.Originality/value: The corrosion behaviour in chloride solution of a Cr-Ni austenitic stainless steel was

  4. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings.

    Science.gov (United States)

    Eric Jones, John; Chen, Meng; Yu, Qingsong

    2014-10-01

    To improve their corrosion resistance and thus long-term biocompatibility, 316L stainless steel coronary artery stents were coated with trimethylsilane (TMS) plasma coatings of 20-25 nm in thickness. Both direct current (DC) and radio-frequency (RF) glow discharges were utilized for TMS plasma coatings and additional NH₃/O₂ plasma treatment to tailor the surface properties. X-ray photoelectron spectroscopy (XPS) was used to characterize the coating surface chemistry. It was found that both DC and RF TMS plasma coatings had Si- and C-rich composition, and the O- and N-contents on the surfaces were substantially increased after NH₃/O₂ plasma treatment. Surface contact angle measurements showed that DC TMS plasma nanocoating with NH₃/O₂ plasma treatment generated very hydrophilic surface. The corrosion resistance of TMS plasma coated stents was evaluated through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The potentiodynamic polarization demonstrated that the TMS plasma coated stents imparted higher corrosion potential and pitting potential, as well as lower corrosion current densities as compared with uncoated controls. The surface morphology of stents before and after potentiodynamic polarization testing was analyzed with scanning electron microscopy, which indicated less corrosion on coated stents than uncoated controls. It was also noted that, from EIS data, the hydrophobic TMS plasma nanocoatings showed stable impedance modulus at 0.1 Hz after 21 day immersion in an electrolyte solution. These results suggest improved corrosion resistance of the 316L stainless steel stents by TMS plasma nanocoatings and great promise in reducing and blocking metallic ions releasing into the bloodstream. PMID:24500866

  5. Microstructure and corrosion resistance of Ce–V conversion coating on AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Highlights: • Through simple chemical conversion process, a Ce–V conversion coating is prepared on AZ31 magnesium alloy. The coating (∼2 μm thick) has a duplex structure and is composed of Mg, Al, Ce, V and O in the outer layer and Mg, Al, V, F and O in the inner layer. • The Ce–V conversion coating can increase the Ecorr by 157 mV and decrease the icorr by 80 times compared to AZ31 magnesium alloy substrate. Moreover, the performance of the Ce–V conversion coating excels the chromate conversion coating on AZ31 magnesium alloy. • The EIS results of Ce–V conversion coating indicate an increase of 10× in the corrosion resistance and a delay in the corrosion process kinetics compared to uncoated AZ31 magnesium alloy in 3.5 wt.% NaCl solution. • The ball cratering is a simple and effective technique of thickness measurement for chemical conversion coating. - Abstract: A Ce–V conversion coating was developed to improve the corrosion resistance of AZ31 magnesium alloy. Scanning electronic microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectrometer (XPS), grazing incidence X-ray diffraction (GIXRD) and the ball cratering test were adopted to study the morphology, chemical composition, structure and thickness of the coating. The coating has duplex structure with network and its thickness is about 2 μm. The coating contains high contents of Ce and V, which exhibits amorphous structure. Potentiodynamic polarization shows the coating can increase the corrosion potential and reduce the corrosion current density of AZ31 magnesium alloy. Moreover, the electrochemical impedance spectra exhibit the coating significantly improves the corrosion resistance of AZ31 magnesium alloy. Results indicate that the Ce–V conversion coating can provide effective protection to AZ31 magnesium alloy

  6. Corrosion resistance of sintered duplex stainless steel evaluated by electrochemical method

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2006-04-01

    Full Text Available Purpose: Purpose of this paper was to examine the corrosion resistance of duplex stainless steels using electrochemical methods in 1M NaCl solution. The influence of powder mixes preparation and cooling cycle after sintering on corrosion properties was evaluated.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, martensitic base powders by controlled addition of alloying elements. In the studies behind the preparation of mixes, Schaffler’s diagram was taken into consideration. Prepared mixes have been compacted at 800 MPa and sintered in a vacuum furnace with argon backfilling at 1260°C for 1h. After sintering two different cooling cycles were applied: rapid cooling with an average cooling rate of 245°C/min and slow cooling of 5°C/min in argon atmosphere.Findings: According to achieved results, it was affirmed that applied sintering method as well as powder mixes preparation allows for manufacturing the sintered duplex steels with good corrosion properties. Corrosion resistance of sintered stainless steels is strictly connected with the density and the pore morphology present in the microstructure too. The highest resistance to pitting corrosion was achieved for composition with approximate balance of ferrite and austenite in the microstructure.Research limitations/implications: According to the powders characteristic, the applied fast cooling rate seems to be a good compromise for corrosion properties and microstructures, nevertheless further tests should be carried out in order to examine different cooling rates and sintering temperatures.Originality/value: The use of elemental powders added to a stainless steel base showed its potentialities, in terms of fair compressibility and final sintered density. In addition a good structural homogeneity and first of all corrosion resistance was achieved, also working with cycles possible for industries.

  7. Effect of alloying elements Al and Ca on corrosion resistance of plasma anodized Mg alloys

    Science.gov (United States)

    Anawati, Asoh, Hidetaka; Ono, Sachiko

    2016-04-01

    Plasma anodizing is a surface treatment used to form a ceramic-type oxide film on Mg alloys by the application of a high anodic voltage to create intense plasma near the metal surface. With proper selection of the process parameters, the technique can produce high quality oxide with superior adhesion, corrosion resistance, micro-hardness, wear resistance and strength. The effect of alloying element Al on plasma anodizing process of Mg alloys was studied by comparing the anodizing curves of pure Mg, AZ31, and AZ61 alloys while the effect of Ca were studied on AZ61 alloys containing 0, 1, and 2 wt% Ca. Anodizing was performed in 0.5 M Na3PO4 solution at a constant current density of 200 Am-2 at 25°C. Anodic oxide films with lava-like structure having mix composition of amorphous and crystal were formed on all of the alloys. The main crystal form of the oxide was Mg3(PO4)2 as analyzed by XRD. Alloying elements Al and Ca played role in modifying the plasma lifetime during anodization. Al tended to extend the strong plasma lifetime and therefore accelerated the film thickening. The effect of Ca on anodizing process was still unclear. The anodic film thickness and chemical composition were altered by the presence of Ca in the alloys. Electrochemical corrosion test in 0.9% NaCl solution showed that the corrosion behavior of the anodized specimens depend on the behavior of the substrate. Increasing Al and Ca content in the alloys tended to increase the corrosion resistance of the specimens. The corrosion resistance of the anodized specimens improved significantly about two orders of magnitude relative to the bare substrate.

  8. Corrosion resistance of burnished X5CrNi 18-9 stainless steel

    Directory of Open Access Journals (Sweden)

    K. Pałka

    2006-04-01

    Full Text Available Purpose: In this paper there were presented the burnishing process and obtained mechanical properties and the structure of burnished stainless steel and its corrosion resistance.Design/methodology/approach: Burnishing was conducted in standard milling machine equipped with the 2-ball rotation head. The structural and mechanical researches were carried out by optical microscopy and the X-ray diffraction patterns. The corrosion research was performed using the potentiodynamic anodic polarization. The scope of this study was to achieve the correlations between mechanical and structural properties and corrosion resistance of burnished stainless steel.Findings: Results shown increasing of the open circuit potential (EOCP and decreasing of breakdown (Eb and repassivation potentials (Erp with increasing of burnishing load. The breakdown potential and the repassivation potential changes were influenced by structural changes in surface layer and it indicated of slightly decreasing of corrosion resistance. It might be caused by martensitic transformation induced by the plastic deformation. The X-ray diffraction analysis showed increasing of Fe-α contain with the burnishing load.Research limitations/implications: There’s need to conduct future research on susceptibility to stress corrosion cracking and fatigue corrosion. The main difference between presented research and the future is necessity of double-sided burnishing of specimens.Practical implications: Burnishing increases the strength and the rigidity of elements, especially stream plates of heat exchangers which may have lower thickness to improve the heat transfer. Some of elements, such as homogenized valves achieving better erosion and wear resistance by higher surface hardness. Originality/value: Presented researches contain a lot of quantitative results which may be useful for design engineers in wide space of application.

  9. CO2 corrosion resistance of carbon steel in relation with microstructure changes

    International Nuclear Information System (INIS)

    The microstructural effects on the corrosion resistance of an API 5L X42 carbon steel in 0.5 M NaCl solution saturated with CO2 was investigated. Four microstructures were considered: banded (B), normalized (N), quenched and tempered (Q&T), and annealed (A). Electrochemical measurements (polarization curves and electrochemical impedance spectroscopy) were coupled with surface analyses (scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS)) to characterize the formation of the corrosion product layers. Electrochemical results revealed that corrosion resistance increased in the following order: B < N < Q&T < A. From the polarization curves it was shown that specifically, cathodic current densities were affected by microstructural changes. SEM images indicated that ferrite dissolved earlier than cementite and a thin layer of corrosion products was deposited on the steel surface. XPS analyses revealed that this layer was composed of a mixture of iron carbonate and non-dissolved cementite. It was also found that the quantity of FeCO3 content on the steel surface was greater for Q&T and A microstructures. These results, in agreement with the electrochemical data, indicate that the deposition mechanism of iron carbonate is closely related to the morphology of the non-dissolved cementite, determining the protective properties of the corrosion product layers. - Highlights: • The effect of change in microstructure on CO2 corrosion resistance was evaluated. • An API 5LX 42 carbon steel was immersed in a 0.5 M NaCl solution saturated with CO2. • Banded, normalized, quenched-tempered and annealed microstructures were considered. • Electrochemical measurements were coupled with surface analysis. • Morphology and distribution of undissolved Fe3C control corrosion kinetics

  10. Improving the empirical model for plasma nitrided AISI 316L corrosion resistance based on Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Campos, M.; Souza, S. D. de [Universidade Federal de Sao Carlos, Departamento de Fisica (Brazil); Souza, S. de [Instituto de Pesquisas Energeticas e Nucleares, Centro de Ciencia e Tecnologia de Materiais (Brazil); Olzon-Dionysio, M., E-mail: dmod@df.ufscar.br [Universidade Federal de Sao Carlos, Departamento de Fisica (Brazil)

    2011-11-15

    Traditional plasma nitriding treatments using temperatures ranging from approximately 650 to 730 K can improve wear, corrosion resistance and surface hardness on stainless steels. The nitrided layer consists of some iron nitrides: the cubic {gamma}{sup Prime} phase (Fe{sub 4}N), the hexagonal phase {epsilon} (Fe{sub 2 - 3}N) and a nitrogen supersatured solid phase {gamma}{sub N}. An empirical model is proposed to explain the corrosion resistance of AISI 316L and ASTM F138 nitrided samples based on Moessbauer Spectroscopy results: the larger the ratio between {epsilon} and {gamma}{sup Prime} phase fractions of the sample, the better its resistance corrosion is. In this work, this model is examined using some new results of AISI 316L samples, nitrided under the same previous conditions of gas composition and temperature, but at different pressure, for 3, 4 and 5 h. The sample nitrided for 4 h, whose value for {epsilon}/{gamma}{sup Prime} is maximum (= 0.73), shows a slightly better response than the other two samples, nitrided for 5 and 3 h ({epsilon}/{gamma}{sup Prime} = 0.72 and 0.59, respectively). Moreover, these samples show very similar behavior. Therefore, this set of samples was not suitable to test the empirical model. However, the comparison between the present results of potentiodynamic polarization curves and those obtained previously at 4 and 4.5 torr, could indicated that the corrosion resistance of the sample which only presents the {gamma}{sub N} phase was the worst of them. Moreover, the empirical model seems not to be ready to explain the response to corrosion and it should be improved including the {gamma}{sub N} phase.

  11. Study of corrosion resistance of AISI 444 ferritic stainless steel for application as a biomaterial

    International Nuclear Information System (INIS)

    Ferritic stainless steels are ferromagnetic materials. This property does not allow their use in orthopedic prosthesis. Nevertheless, in some specific applications, this characteristic is very useful, such as, for fixing dental and facial prostheses by using magnetic attachments. In this study, the corrosion resistance and cytotoxicity of the AISI 444 ferritic stainless steel, with low nickel content, extra-low interstitial levels (C and N) and Ti and Nb stabilizers, were investigated for magnetic dental attachments application. The ISO 5832-1 (ASTM F-139) austenitic stainless steel and a commercial universal keeper for dental attachment (Neo-magnet System) were evaluated for comparison reasons. The first stainless steel is the most used metallic material for prostheses, and the second one, is a ferromagnetic keeper for dental prostheses (NeoM). In vitro cytotoxicity analysis was performed by the red neutral incorporation method. The results showed that the AISI 444 stainless steel is non cytotoxic. The corrosion resistance was studied by anodic polarization methods and electrochemical impedance spectroscopy (EIS), in a saline phosphate buffered solution (PBS) at 37 °C. The electronic properties of the passive film formed on AISI 444 SS were evaluated by the Mott-Schottky approach. All tested materials showed passivity in the PBS medium and the passive oxide film presented a duplex nature. The highest susceptibility to pitting corrosion was associated to the NeoM SS. This steel was also associated to the highest dopant concentration. The comparatively low levels of chromium (nearly 12.5%) and molybdenum (0.3%) of NeoM relatively to the other studied stainless steels are the probable cause of its lower corrosion resistance. The NeoM chemical composition does not match that of the SUS444 standards. The AISI 444 SS pitting resistance was equivalent to the ISO 5832-1 pointing out that it is a potential candidate for replacement of commercial ferromagnetic alloys used

  12. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings

    Science.gov (United States)

    Jones, John Eric; Chen, Meng; Yu, Qingsong

    2015-01-01

    To improve their corrosion resistance and thus long-term biocompatibility, 316L stainless steel coronary artery stents were coated with trimethylsilane (TMS) plasma coatings of 20–25 nm in thickness. Both direct current (DC) and radio-frequency (RF) glow discharges were utilized for TMS plasma coatings and additional NH3/O2 plasma treatment to tailor the surface properties. X-ray photoelectron spectroscopy (XPS) was used to characterize the coating surface chemistry. It was found that both DC and RF TMS plasma coatings had Si- and C-rich composition, and the O-and N-contents on the surfaces were substantially increased after NH3/O2 plasma treatment. Surface contact angle measurements showed that DC TMS plasma nanocoating with NH3/O2 plasma treatment generated very hydrophilic surface. The corrosion resistance of TMS plasma coated stents was evaluated through potentiodynamic polarization and electro-chemical impedance spectroscopy (EIS) techniques. The potentiodynamic polarization demonstrated that the TMS plasma coated stents imparted higher corrosion potential and pitting potential, as well as lower corrosion current densities as compared with uncoated controls. The surface morphology of stents before and after potentiodynamic polarization testing was analyzed with scanning electron microscopy, which indicated less corrosion on coated stents than uncoated controls. It was also noted that, from EIS data, the hydrophobic TMS plasma nanocoatings showed stable impedance modulus at 0.1 Hz after 21 day immersion in an electrolyte solution. These results suggest improved corrosion resistance of the 316L stainless steel stents by TMS plasma nanocoatings and great promise in reducing and blocking metallic ions releasing into the bloodstream. PMID:24500866

  13. Influence of heat input on corrosion resistance of SAW welded duplex joints

    Directory of Open Access Journals (Sweden)

    J. Nowacki

    2006-04-01

    Full Text Available Purpose: Purpose of this paper is description of influence of the heat input of submerged arc welding (SAW of duplex steel UNS S31803 on welded butt joints corrosion resistance.Design/methodology/approach: Butt joints on plates of 9 – 30 mm thickness were executed where the applied heat input of welding exceeded the 2.5 kJ/mm value. Maximum heat input level was HI ≤ 3.0; HI ≤ 3.5; HI ≤ 4.0; HI ≤ 4.5; HI ≤ 5.0. Analysis of welding heat input influence on mechanical properties, value of ferrite share, and corrosion of test joints has been done. Non-destructive and destructive testing, e. g. visual examinations, microstructure examination, corrosion resistance tests according to ASTM G48 Method A, HV5 hardness tests, impact and tensile test were carried out. For analysis of welding heat input influence on creation of welding imperfections, there were executed welding of sheet of thickness 9, 14, 28 mm.Findings: It was shown that submerged arc welding of duplex steel with the heat input from 2.5 kJ/mm up to 5.0 kJ/mm has no negative influence on properties of the joints. Based on the performed tests the conclusion is that according to DNV Rules the welding heat input exceeding the recommended values has no negative impact on strength properties and corrosion resistance of the executed welded joints.Research limitations/implications: Research implications the welding heat input exceeding the recommended values should influenced the precipitation processes in the HAZ, what need further experiments.Practical implications: Application of high value of the welding heat input will be profitable in terms of the welding costs.Originality/value: An original value of the paper is to prove that a usage of high value welding heat input provides the best joints quality.

  14. Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology

    International Nuclear Information System (INIS)

    Magnesium alloy foams have the potential to serve as structural material for regular light-weight applications as well as for biodegradable scaffold implants. However, their main disadvantage relates to the high reactivity of magnesium and consequently their natural tendency to corrode in regular service conditions and in physiological environments. The present study aims at evaluating the effect of porosity on the corrosion resistance of MRI 201S magnesium alloy foams in 0.9% NaCl solution and in phosphate buffer saline solution as a simulated physiological electrolyte. The magnesium foams were produced by powder metallurgy technology using space-holding particles to control the porosity content. Machined chips were used as raw material for the production of Mg alloy powder by milling process. The microstructure of the foams was examined using optical and scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analysis. The corrosion behavior was evaluated by immersion test and potentiodynamic polarization analysis. The results obtained clearly demonstrate that the porosity has a significant effect on the corrosion resistance of the tested foams. Foams with 14–19% porosity have a corrosion rate of 4–10 mcd and 7–15 mcd in NaCl and phosphate buffer saline solution, respectively, compared to only 0.10 mcd for the same alloy in as cast conditions. This increased corrosion degradation of the Mg foams by more than one order of magnitude compared to the cast alloy may limit their potential application in regular and physiological environments. - Highlights: • Porosity has a detrimental effect on corrosion resistance of MRI 201S Mg foams. • 14–19% porosity increases the corrosion rate by more than one order of magnitude. • Accelerated corrosion limits the use of foams in regular/physiological environments

  15. Influence of heat treatment on properties and corrosion resistance of Al-composite

    Directory of Open Access Journals (Sweden)

    M. Adamiak

    2007-03-01

    Full Text Available Purpose: of the project was evaluation of the effect of heat treatment and of the reinforcing Al2O3 particles in the EN AW-AlCu4Mg1(A aluminium alloy on the mechanical properties, abrasive and corrosion resistance in the NaCl water solution environment.Design/methodology/approach: some of the composite materials were hyperquenched for 0.5 h at the temperature of 495ºC with the subsequent cooling in water, and were quench aged next for 6 h at 200°C. Hardness tests were made on HAUSER hardness tester with the Vickers method at 10 N. Static compression and tensile tests of the fabricated composite materials were made on the ZWICK 100 type testing machine at room temperature. Abrasion resistance wear tests were carried out with the constant number of cycles of 5000 (120 m at various loads: 4, 5, 6, 7, and 8 N. Test pieces were rinsed in the ultrasonic washer to clean them and next were weighed on the analytical balance with the accuracy of 0.0001 g to check the mass loss. Corrosion tests were made in 5% water NaCl solution.Findings: Besides visible improvement of mechanical properties: hardness, compression strength and tensile strength, wear resistance there were also observed the influence of heat treatment on the corrosion resistance of composite materials in 3% NaCl solution.Practical implications: Tested composite materials can be applicate among the others in automotive industry but it requires additional researches.Originality/value: It was demonstrated that the mechanical properties, as well as the wear and corrosion resistance of the sintered composite materials with the EN AW-Al Cu4Mg1(A alloy matrix may be formed by the dispersion hardening with the Al2O3 particles in various portions and by the precipitation hardening of the matrix.

  16. CO{sub 2} corrosion resistance of carbon steel in relation with microstructure changes

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa, Nathalie, E-mail: nochoa@usb.ve [Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Aptdo., 89000, Caracas (Venezuela, Bolivarian Republic of); Vega, Carlos [Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Aptdo., 89000, Caracas (Venezuela, Bolivarian Republic of); Pébère, Nadine; Lacaze, Jacques [Université de Toulouse, CIRIMAT, UPS/INPT/CNRS, ENSIACET, 4 Allée Emile Monso, CS 44362, 31030 Toulouse Cedex 4 (France); Brito, Joaquín L. [Laboratorio de Físico-química de Superficies, Centro de Química, Instituto Venezolano de Investigaciones Cientificas (IVIC), Carretera Panamericana, Km 11, Altos de Pipe, Estado Miranda (Venezuela, Bolivarian Republic of)

    2015-04-15

    The microstructural effects on the corrosion resistance of an API 5L X42 carbon steel in 0.5 M NaCl solution saturated with CO{sub 2} was investigated. Four microstructures were considered: banded (B), normalized (N), quenched and tempered (Q&T), and annealed (A). Electrochemical measurements (polarization curves and electrochemical impedance spectroscopy) were coupled with surface analyses (scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS)) to characterize the formation of the corrosion product layers. Electrochemical results revealed that corrosion resistance increased in the following order: B < N < Q&T < A. From the polarization curves it was shown that specifically, cathodic current densities were affected by microstructural changes. SEM images indicated that ferrite dissolved earlier than cementite and a thin layer of corrosion products was deposited on the steel surface. XPS analyses revealed that this layer was composed of a mixture of iron carbonate and non-dissolved cementite. It was also found that the quantity of FeCO{sub 3} content on the steel surface was greater for Q&T and A microstructures. These results, in agreement with the electrochemical data, indicate that the deposition mechanism of iron carbonate is closely related to the morphology of the non-dissolved cementite, determining the protective properties of the corrosion product layers. - Highlights: • The effect of change in microstructure on CO{sub 2} corrosion resistance was evaluated. • An API 5LX 42 carbon steel was immersed in a 0.5 M NaCl solution saturated with CO{sub 2}. • Banded, normalized, quenched-tempered and annealed microstructures were considered. • Electrochemical measurements were coupled with surface analysis. • Morphology and distribution of undissolved Fe{sub 3}C control corrosion kinetics.

  17. Durability of High Performance Color Hardener

    Institute of Scientific and Technical Information of China (English)

    MA Bao-guo; DONG Rong-zhen; ZHU Hong-bo; ZHANG Li; JIAN Shou-wei

    2004-01-01

    The properties of high performance color hardener (HPCH) and the mechanism were studied.HPCH is a composite system, which is composed of cementitious and auxiliary cementing materials, composite additives, abrasion resistance component (aggregate) and pigment. The porosity and pore structure of the material are obviously improved due to the activation, filling and adsorption of auxiliary cementing materials, thus resulting in a great increase of binding capacity for ions in HPCH and the obstacles of ion migrating.The density of material structure, bonding capacity of cementitious material to the abrasion-resisting component and the corrosion resistance are greatly and effectively improved by adding the auxiliary cementing materials and compound additives. According to the tests of dry shrinkage, sulphate resistance, chloride permeability and Ca(OH)2 content distribution, the property superiority of HPCH is analyzed.The mechanism of materials modification of HPCH is explained from the microscopic point of view by testing the pore structure and pore distribution via the mercury intrusion pressure method.

  18. Intergranular corrosion resistance of 304 stainless steel welded junctions for BWR piping

    International Nuclear Information System (INIS)

    Intergranular corrosion of stainless steel pipings has been noticed in welded areas in almost every boiling water nuclear power plants so as to attract the attention of safety authorities. The research activity developed during more than one decade allowed to apply and qualify a series of provisions aiming at assuring the tensio-corrosion resistence and satisfying the strigent limitations imposed by control authorities. Results achieved by ENEL in cooperation with CISE concerning the study of origin materials, made on mockups of 4'' to 8'' welded tubings and weldings of BWR plants

  19. Electrochemical testing of passivity state and corrosion resistance of supermartensitic stainless steels

    Directory of Open Access Journals (Sweden)

    S. Lasek

    2010-01-01

    Full Text Available On low interstitial - supermartensitic stainless steels (X1CrNiMo 12-5-1, X2CrNiMo 13-6-2, X1CrNiMo 12-6-2 the electrochemical potentiodynamic polarization tests were carried out and the passive state stability and localized corrosion resistance were compared and evaluated. The effect of quenching and tempering as well as the changes in microstructure on polarisation curves and corrosion properties at room temperature were established. Small differences in chemical composition of steels were also registered on their corrosion parameters changes and resistance.

  20. Influence of heat treatment on corrosion resistance of PM composite materials

    OpenAIRE

    A. Włodarczyk-Fligier; L.A. Dobrzański; M. Adamiak

    2007-01-01

    Purpose: of the project was evaluation of the effect of heat treatment and of the reinforcing Al2O3, Ti(C,N) and BN particles in the EN AW-AlCu4Mg1(A) aluminium alloy on the corrosion resistance in the NaCl water solution environment.Design/methodology/approach: some of the composite materials were hyperquenched for 0.5 h at the temperature of 495ºC with the subsequent cooling in water, and were quench aged next for 6 h at 200°C. Corrosion tests were made in 5%...

  1. Corrosion Resistance of Co-Cr-Mo Alloy Used in Dentistry

    OpenAIRE

    Łukaszczyk A.; Augustyn-PieniąŻek J.

    2015-01-01

    The presented paper studies the effect of the casting technology on the corrosion resistance of Co-Cr-Mo alloy. The investigations were conducted on a commercial alloy with the brand name ARGELOY N.P SPECIAL (Co-Cr-Mo) produced by Argen as well as the same alloy melted and cast by the lost wax casting method performed by a dental technician. The corrosion behavior of the dental alloys in an artificial saliva was studied with the use of the following electrochemical techniques: open circuit po...

  2. Corrosion resistance of SAW duplex joints welded with high heat input

    Directory of Open Access Journals (Sweden)

    J. Nowacki

    2007-08-01

    Full Text Available Purpose: test if the welding heat input exceeding the recommended values has negative impact on strength properties and corrosion resistance of the executed welded joints as well as description of influence of the heat input of submerged arc welding (SAW of duplex steel UNS S31803 (0.032%C, 23.17%Cr, 9.29%Ni, 3.48%Mo, 0.95%Mn, 0.7%Si, 0.16%N, 0.017P, 0.006%S, 0.11%Cu on welded joints microstructure, particularly average values of ferrite volume fraction, mechanical properties, and corrosion resistance.Design/methodology/approach: analysis of welding heat input influence on mechanical properties, value of ferrite share, and corrosion of test joints has been done. Non-destructive and destructive testing, e. g. visual examinations, microstructure examination, corrosion resistance tests according to ASTM G48 Method A, HV5 hardness tests, impact and tensile test were carried out. For analysis of welding heat input influence on creation of welding imperfections, there were executed welding of sheet of thickness 9, 14, 28 mm. Butt joints on plates of different thickness were made where the applied heat input of welding exceeded the 2.5 kJ/mm value. Maximum heat input level was HI ≤ 3.0; HI ≤ 3.5; HI ≤ 4.0; HI ≤ 4.5; HI ≤ 5.0.Findings: based on the performed tests the conclusion is that according to DNV Rules the welding heat input exceeding the recommended values has no negative impact on strength properties and corrosion resistance of the executed welded joints. It was shown that submerged arc welding of duplex steel with the heat input from 2.5 kJ/mm up to 5.0 kJ/mm has no negative influence on properties of the joints.Research limitations/implications: the welding heat input exceeding the recommended values may influenced the precipitation processes in the HAZ, what need further experiments.Practical implications: application of high value of the welding heat input will be profitable in terms of the welding costs.Originality/value: an

  3. The function of the grain boundaries in embrittlement of corrosion-resistant steels

    International Nuclear Information System (INIS)

    The influence of processes proceeding at grain boundaries during heat treatment and grain size effect on ductility are considered for high-strength corrosion resistant steels [Fe-0.1%C-(13-15)%Cr-(5-6)%Ni-(1.5-3.7)%Mo-2%Cu-0.9%Si-0.2%Nb]. It is shown that to ensure high reliability of the steels it is necessary to obtain a fine-grained structure with no impurity segregations or phase precipitates along grain boundaries. The steel alloying with molybdenum in amounts of ∼ 2 mass % is stated to retard the grain boundary phase precipitation and to enhance the steel ductility

  4. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    Science.gov (United States)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution. PMID:26952459

  5. Corrosion resistance of modern austenitic-ferritic (duplex) stainless steel. Corrosion of special types. (Review)

    International Nuclear Information System (INIS)

    Recent data on resistance of modern corrosion-resistant austenitic-ferritic steels to different types of corrosion are generalized. It is shown that these steels are characterized by high resistance to general corrosion in acid, alkali, chloride and other solutions, are not inclined to intercrystalline, pitting and crevice corrosion and are noted for high resistance to corrosion cracking and corrosion fatigue. All this is combined with technological and economical effectiveness. It is advisible to use these steels instead of highly-alloyed and expensive steels and alloys in chemical, power and other industries. 59 refs.; 2 tabs

  6. Development of improved and corrosion-resistant surfaces for fossil power system components

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Santella, M.L.; Goodwin, G.M.

    1996-06-01

    The purpose of this task is to develop the corrosion-resistant surfaces on a variety of fossil power system components. The Fe-Al alloys ranging in aluminum from 16 to 36 @ % are of interest. The surfaces of Fe-Al alloys can be produced by weld overlay. However, because of their limited room-temperature ductility, the production of weld wire for these compositions is not commercially feasible. The alloying element dilution during weld overlay also makes depositing exact surface composition rather difficult.

  7. Analyze the test methods for intergranular corrosion-resistance of nickel-based alloys 690

    International Nuclear Information System (INIS)

    The corrosion resistance effective of steam generator heat tubing in PWR nuclear power build highly demanding and direct impact on the reliability of the nuclear power unit to the technical performance and safety. Nickel-based Alloy 690 is the best material for nuclear SG heat tubing. Heat of the damage is caused by various types of corrosion, mainly is intergranular corrosion and stress corrosion cracking. Tests to verify the stability of heat transfer performance and application reliability. Analyze the chemical and electrochemical immersion (EPR) corrosion methods to provide the basic theory for experimental verification of the stability and engineering applications reliability of heat transfer. (authors)

  8. Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity

    Science.gov (United States)

    Wang, Guoyong; Liu, Shuai; Wei, Sufeng; Liu, Yan; Lian, Jianshe; Jiang, Qing

    2016-01-01

    Practical application of superhydrophobic surfaces is limited by the fragility of nanoscale asperities. Combining chemical etching and anodization, microscale pits and nanoscale pores, instead of the micro and nano protrusions on traditional superhydrophobic surfaces mimicking Lutos leaves, were fabricated on commercially pure aluminum surfaces. After modified by FDTS, the surfaces were superhydrophobic and self-cleaning. The ultrahigh hardness and electrochemical stability of Al2O3 coating endowed the surface excellent mechanical durability and good corrosion resistance. Because the method is scalable, it may find practical application on body panels of automobiles and aircrafts and so on. PMID:26853810

  9. Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity

    Science.gov (United States)

    Wang, Guoyong; Liu, Shuai; Wei, Sufeng; Liu, Yan; Lian, Jianshe; Jiang, Qing

    2016-02-01

    Practical application of superhydrophobic surfaces is limited by the fragility of nanoscale asperities. Combining chemical etching and anodization, microscale pits and nanoscale pores, instead of the micro and nano protrusions on traditional superhydrophobic surfaces mimicking Lutos leaves, were fabricated on commercially pure aluminum surfaces. After modified by FDTS, the surfaces were superhydrophobic and self-cleaning. The ultrahigh hardness and electrochemical stability of Al2O3 coating endowed the surface excellent mechanical durability and good corrosion resistance. Because the method is scalable, it may find practical application on body panels of automobiles and aircrafts and so on.

  10. Influence on corrosion resistance of superficial strain hardening of parts made of austenitic stainless steels

    International Nuclear Information System (INIS)

    Reactivity of strain hardened stainless steel 18-10 and 18-10 Mo in oxidizing media is very different at the surface and in the metal core. Surface corrosion or protection is very sensitive to superficial strain hardening resulting of mechanical treatments. Three physical phenomena are directly strain hardening dependent and have important consequences on corrosion resistance: 1) increase of diffusion rate of the different alloy elements, especially chromium; 2) residual superficial strain influence on stress corrosion and 3) structural transformation of metastable austenite

  11. Scandium effect on corrosion resistance of aluminium and its alloys in 3% NaCl solution

    International Nuclear Information System (INIS)

    Scandium effect on corrosion and electrochemical features of aluminium and its high-impact alloys in NaCl 3%-solution is studied. Positive effect of scandium doping of alloys was determined. Mechanism of scandium behaviour when aluminium corrosion resistance is improved is suggested. The suggested mechanism takes account of scandium ability to be selectively dissolved and oxidized by water oxygen with formation of Sc2O3 oxide accumulated at the surface in the form of fine-dispersed precipitation insoluble in electrolyte and forming no mixed oxides with aluminium

  12. Testing the permeability and corrosion resistance of micro-mechanically interlocked joints

    DEFF Research Database (Denmark)

    Byskov-Nielsen, Jeppe; Holm, Allan Hjarbæk; Højsholt, Rune;

    2011-01-01

    is conducted. The permeability seems to be consistent with the Hagen–Poiseuille equation independent of the laser structuring technique and is orders of magnitudes larger than the diffusion rate through the plastic. Two different types of corrosion tests have been undertaken, and we show that care must......Micro-mechanical interlocking (MMI) can be applied to create new and interesting composite materials. We have employed laser structuring to achieve MMI between stainless steel and plastic with extremely high joint strength. However, the water permeability and corrosion resistance of the joint must...

  13. Evaluation of effect of surface treatment on corrosion resistance of Nd-Fe-B magnets

    International Nuclear Information System (INIS)

    Nd-Fe-B magnets produced by powder metallurgy are highly susceptible to corrosion due to their complex microstructure and intrinsic porosity due to their fabrication process. Moreover, these magnets have excellent magnetic properties and find many applications. In the nuclear area, permanent magnets based on rare earth transition-iron-boron (Ne-Fe-B) are used in the manufacture of magnetic media (magnetic levitation) for ultra-centrifuges used for isotopic enrichment of uranium employed in nuclear reactors. In dentistry these types of magnets are used to fix total and partial prostheses on implants; in orthodontics to correct dental malocclusion and make moves; in buco-maxillo-facial surgery for setting facial prostheses of large defects of the face. In electronic equipment, they are used in scales, locks, electric motors and particularly in the manufacturing of hard drives of computers. The objective of this study is to evaluate the corrosion resistance of the magnet tested and surface treatments that could replace chromating that generates toxic residues and present high cost of processing waste with treatments that are environmentally friendly. The evaluation of the corrosion resistance was carried out through the analysis potentiodynamic polarization curves, electrochemical impedance spectroscopy, monitoring of corrosion potential as a function of test time and scanning electron microscopy to try to correlate the magnet microstructure with its corrosion resistance. The results show that these magnets are highly susceptible to corrosion that occurs preferentially in the Nd-rich phase, located in the boundaries of the magnetic matrix phase (ψ). Treatment with silane, cerium, sam, Cr 6+, tricationic phosphate followed by bath of chromium trioxide and in NaH2PO4 solution for 24 hours followed by bath of zinc sulphate did not improve the corrosion resistance of the magnet. Among the treatments used, immersion in NaH2PO4 solution for 24 hours pH=3.8 was the one that

  14. Effects of organic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Blawert, C.; Scharnagl, N.; Dietzel, W.; Kainer, K. U.

    2010-01-01

    mu m of the contaminated surface was required to reach corrosion rates less than 1 mm/year in salt spray condition. Among the three organic acids examined, acetic acid is the best choice. Oxalic acid can be an alternative while citric acid is not suitable for cleaning AZ31 sheet, because of......Organic acids were used to clean AZ31 magnesium alloy sheet and the effect of the cleaning processes on the surface condition and corrosion performance of the alloy was investigated. Organic acid cleanings reduced the surface impurities and enhanced the corrosion resistance. Removal of at least 4...

  15. Protection of 2024-T3 aluminium alloy by corrosion resistant phytic acid conversion coating

    Science.gov (United States)

    Shi, Hongwei; Han, En-Hou; Liu, Fuchun; Kallip, Silvar

    2013-09-01

    The corrosion protection properties of environmentally friendly phytic acid conversion coatings were studied on 2024-T3 aluminium alloy. The films were prepared under acidic conditions with various pH values and characterised by SEM, EDS, ATR-FTIR and electrochemical techniques. The results indicate that the conversion coatings obtained by immersing the alloy in phytic acid solutions at pH from 3 to 5.5 provide excellent corrosion resistance. ATR-FTIR confirms that the film is formed by deposition of reaction products between Al3+ and phosphate groups in phytic acid molecules. The conformation models of the deposition film are proposed.

  16. Scratch and corrosion resistance of an aluminum flange with an electron beam modified seal edge

    International Nuclear Information System (INIS)

    A lot of aluminum (A2219-T852) flanges with a knife-edge seal have been used at the SPring-8 storage ring. We investigated an Electron Beam Modified (EBM) knife-edge seal for the flange to confirm seal compatibility with the original A2219-T852 flange. We already confirmed that mechanical properties of EBM are equal to those of the original flange. In comparison with the original flange, we found that an ability of anti-scratch is almost equal, but corrosion resistance is inferior to that of the original flange. (author)

  17. Evaluation of stray current corrosion resistance of concrete in metro construction

    Institute of Scientific and Technical Information of China (English)

    Shucai YANG; Xu YANG

    2008-01-01

    By simulation tests of concrete specimens in saturated Ca(OH)2 solution and seawater, and based on micro mechanism analysis, this paper evaluates the stray current corrosion resistance of concrete specimens of dif-ferent mixture ratios, and reaches a conclusion that the capability to resist stray current corrosion of optimally designed concrete mixed with good-quality fly ash and powdered slag is increased by over 5 times more than the reference concrete with the same water to binder ratio, and the service life of such kind of concrete meets the basic requirement of a metro project.

  18. Corrosion-Resistant Amorphous Alloy Ribbons for Electromagnetic Filtration of Iron Rusts from Water

    OpenAIRE

    Kawashima, Asahi; Asami, Katsuhiko; Sato, Takeaki; Hashimoto, Koji

    1985-01-01

    An attempt was made to use corrosion-resistant amorphous Fe-9Cr-13P-7C alloy ribbons as an electromagnetic filter material for trapping various iron rusts suspended in water at 40℃. The ferrimagnetic Fe_3O_4 rust was trapped with the 100% efficiency and paramagnetic rusts such as α-Fe_2O_3, α-FeOOH and amorphous ferric oxyhydroxide were trapped with certain efficiencies at the magnetic field strength of 0.5-10 kOe. The regeneration of the filter by back-washing was easy. The trapping capacity...

  19. Bioactive glass-ceramic coating for enhancing the in vitro corrosion resistance of biodegradable Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ye Xinyu [Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Cai Shu, E-mail: caishu@tju.edu.cn [Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Dou Ying [Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Xu Guohua [Shanghai Changzheng Hospital, Shanghai 200003 (China); Huang Kai; Ren Mengguo; Wang Xuexin [Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Sol-gel derived 45S5 glass-ceramic coating was prepared on Mg alloy substrate. Black-Right-Pointing-Pointer The corrosion resistance of glass-ceramic coated Mg alloy was markedly improved. Black-Right-Pointing-Pointer The corrosion behavior of the coated sample varied due to the cracking of coating. - Abstract: In this work, a bioactive 45S5 glass-ceramic coating was synthesized on magnesium (Mg) alloy substrate by using a sol-gel dip-coating method, to improve the initial corrosion resistance of AZ31 Mg alloy. The surface morphology and phase composition of the glass-ceramic coating were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The coating composed of amorphous phase and crystalline phase Na{sub 2}Ca{sub 2}Si{sub 3}O{sub 9}, with the thickness of {approx}1.0 {mu}m, exhibited a uniform and crack-free surface morphology. The corrosion behavior of the uncoated and coated Mg alloy substrates was investigated by the electrochemical measurements and immersion tests in simulated body fluid (SBF). Potentiodynamic polarization tests recorded an increase of potential (E{sub corr}) form -1.60 V to -1.48 V, and a reduction of corrosion current density (i{sub corr}) from 4.48 {mu}A cm{sup -2} to 0.16 {mu}A cm{sup -2}, due to the protection provided by the glass-ceramic coating. Immersion tests also showed the markedly improved corrosion resistance of the coated sample over the immersion period of 7 days. Moreover, after 14 days of immersion in SBF, the corrosion resistance of the coated sample declined due to the cracking of the glass-ceramic coating, which was confirmed by electrochemical impedance spectroscopy (EIS) analysis. The results suggested that the 45S5 glass-ceramic coated Mg alloy could provide a suitable corrosion behavior for use as degradable implants.

  20. Effect of sulfur addition on corrosion resistance of copper containing austenitic stainless steel in highly concentrated sulfuric acid solution

    International Nuclear Information System (INIS)

    Effect of S addition on corrosion resistance of Cu containing austenitic stainless steel in 18.4N H2SO4 at 80∼120.deg.C was investigated through polarization test, immersion test, metallographic examination, Scanning Auger Multi-probe and X-ray photoelectron spectroscope analysis. The addition of 0.091 % S in the experimental Cu containing alloy tended to de-crease the general and pitting corrosion resistance in highly concentrated sulfuric acid due to a small increase in corrosion current density, current density of hydrogen evolution, critical current density, passivation current density and immersion corrosion rate. However, this addition of S had no critical effect on decrease in corrosion resistance. The experimental Cu containing alloys maintained high corrosion resistance de-spite the addition of S. It was suggested as the primary reason of this result that the protective surface film was heavily enriched by the noble metallic Cu and CuO from the selective dissolution of the active metallic Fe, Ni, Cr and the active FeS, NiS, FeSO4, NiSO4 produced by S adsorption. In addition, the corrosion resistance seemed to be enhanced by NiO, MoO2, WO3, MoO(OH)2, MoO2-4, WO2-4 and CrO2-4 contained in the protective surface film

  1. Microstructure and corrosion resistance of Cr/Cr2N multilayer film deposited on the surface of depleted uranium

    International Nuclear Information System (INIS)

    Highlights: • A Cr/Cr2N film was prepared to improve corrosion resistance of uranium. • The Cr/Cr2N film showed laminate structure, its modulation period was 40–50 nm. • The oxidized depth of Cr/Cr2N film was less than 40 nm at 573 K for 120 min. • The corrosion resistance of uranium was improved after deposited the Cr/Cr2N film. - Abstract: Depleted uranium is widely used in national defence and nuclear energy fields. However, the inferior corrosion resistance limits its application. A Cr/Cr2N film was prepared by magnetron sputtering on the uranium to improve its corrosion resistance. The Cr/Cr2N film exhibits modulation structure. The introduction of the Cr/Cr2N increases the corrosion potential; the corresponding current density decreases about three orders of magnitude. After polarization corrosion, the surface morphology of the Cr/Cr2N-coated on uranium keeps integrated. Only a thin layer of film (∼40 nm) is oxidized. The Cr/Cr2N film shows great potential in improving oxidation and corrosion resistance of depleted uranium

  2. Effect of post treatments on the corrosion resistance of plasma sprayed duplex stainless steel coating in salt water

    International Nuclear Information System (INIS)

    The uniform composition of a thermally sprayed duplex stainless steel coating is essential to ensure its good corrosion resistance in salt water. Stainless steel coatings made by atmospheric plasma spraying (APS) always contain pores and oxides accompanied with chromium-depleted zones which destroy the corrosion resistance of such coatings. To reduce porosity and oxidation of the coatings, several post treatments for the coatings sprayed by APS and by APS with gas shielding around the plasma jet (APS/S) were studied including resin impregnation, hot isostatic pressing (HIP), shot peening and vacuum annealing. Electrochemical corrosion tests revealed that the corrosion resistance of the APS coatings could not be improved by any post treatments because oxidation during spraying caused chromium-depleted zones in the coating. The best corrosion resistance was obtained by using the shielding gas shroud with APS. Such coatings had a very low oxide content and primarily ferritic structure. The corrosion resistance of these APS/S coatings can be further improved by shot peening to densify the coating or by post annealing, which balances the austenite/ferrite ratio of the coating as well as reduce porosity

  3. Effect of Fe and Mo contents of corrosion resistance on ingot of Zirlo-Mo alloys in saturated steam

    International Nuclear Information System (INIS)

    One way to improve the efficiency of fuel element for advanced PWR reactor is to increase burnup of the fuel. Increasing the burnup causes the fuel life time will be longer in the nuclear reactor core, thus allowing the reduction of mechanical properties and corrosion resistance of cladding materials. It is therefore necessary to develop new materials that have a corrosion resistance and toughness higher than Zircaloy-4, including Zirlo. In this research ingot of Zirlo-Mo alloys with raw materials of Zr sponge, and Nb, Sn, Fe, and Mo powders has been made using vacuum melting furnace. The objective of this research is to study corrosion resistance on ingot of Zirlo-Mo alloys in saturated steam. The methods employed was corrosion test using the gravimetric method and the observation of the oxide layer using an optical microscope. The results of the study show that the best corrosion resistance for ingot of Zirlo-Mo alloys with 1.0 wt% Fe is Zirlo-1.0% Mo alloy, while for ingot Zirlo-Mo alloys with 0.1 wt% Fe is Zirlo-0.5% Mo alloy. The corrosion resistance of ingot of Zr-Mo alloys with 0.1% and 1.0 wt% Fe influenced by Mo and Fe elements. (author)

  4. Visible-light-induced instability in amorphous metal-oxide based TFTs for transparent electronics

    Directory of Open Access Journals (Sweden)

    Tae-Jun Ha

    2014-10-01

    Full Text Available We investigate the origin of visible-light-induced instability in amorphous metal-oxide based thin film transistors (oxide-TFTs for transparent electronics by exploring the shift in threshold voltage (Vth. A large hysteresis window in amorphous indium-gallium-zinc-oxide (a-IGZO TFTs possessing large optical band-gap (≈3 eV was observed in a visible-light illuminated condition whereas no hysteresis window was shown in a dark measuring condition. We also report the instability caused by photo irradiation and prolonged gate bias stress in oxide-TFTs. Larger Vth shift was observed after photo-induced stress combined with a negative gate bias than the sum of that after only illumination stress and only negative gate bias stress. Such results can be explained by trapped charges at the interface of semiconductor/dielectric and/or in the gate dielectric which play a role in a screen effect on the electric field applied by gate voltage, for which we propose that the localized-states-assisted transitions by visible-light absorption can be responsible.

  5. High performance homes

    DEFF Research Database (Denmark)

    Beim, Anne; Vibæk, Kasper Sánchez

    2014-01-01

    Can prefabrication contribute to the development of high performance homes? To answer this question, this chapter defines high performance in more broadly inclusive terms, acknowledging the technical, architectural, social and economic conditions under which energy consumption and production occur....... Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy...

  6. Effect of heat treatment on the Nb distribution and corrosion resistance of Zr-Sn-Nb-Fe zirconium alloy

    Institute of Scientific and Technical Information of China (English)

    LIU Wenqing; GENG Xun; LIU Qingdong; LI Qiang; ZHOU Bangxin; YAO Meiyi

    2008-01-01

    After being treated in different ways,Zr-Sn-Nb-Fe alloy specimens are exposed in 0.01mol/L LiOH aqueous solution at 350℃ under 16.8 MPa.The examination of microstructures and second phase particles (SPPs) of these specimens was carded out by high-resolution transmission electron microscopy (HR-TEM).The specimens treated at 800℃ before the final cold roiling have a better corrosion resistance than those treated at 680℃,and the specimens treated at 500℃,after the final cold rolling,have a better corrosion resistance than those treated at 560℃.TEM examination shows that the SPPs existing in the 800℃/500℃ specimen,which has the best corrosion resistance,contains a lot of Nb dement,which results in the reduction of the niobium content in the a-Zr solid solution.

  7. Microstructure and Corrosion Resistance of Cr7C3/γ-Fe Ceramal Composite Coating Fabricated by Plasma Cladding

    Institute of Scientific and Technical Information of China (English)

    LIU Junbo

    2007-01-01

    A new type in situ Cr7C3/γ-Fe ceramal composite coating was fabricated on substrate of hardened and tempered grade C steel by plasma cladding with Fe-Cr-C alloy powders. The ceramal composite coating has a rapidly solidified microstructure consisting of primary Cr7C3 and the Cr7C3/γ-Fe eutectics, and is metallurgically bonded to the degree C steel substrate. The corrosion resistances of the coating in water solutions of 0.5 mol/L H2SO4 and 3.5% NaCl were evaluated utilizing the electrochemical polarization corrosion-test method. Because of the inherent excellent corrosion-resisting properties of the constituting phase and the rapidly solidified homogeneous microstructure, the plasma clad ceramal composite coating exhibits excellent corrosion resistance in the water solutions of 0.5 mol/L H2SO4 and 3.5% NaCl.

  8. Corrosion resistance of welded joints of zirconium alloy with 2.5% niobium in hydrochloric, sulfuric and phosphoric acids

    International Nuclear Information System (INIS)

    Effect of the way of welding (helium-arc, argon-arc and electron-beam ones), composition of welding atmosphere in the process of helium-arc welding, heat treatment in a vacuum furnace at 850 K and in the air at 740 K for 2h on the corrosion resistance of welded joints of zirconium alloy with 2.5% niobium in hydrochloric, sulfuric and phosphoric acids, is considered. It is established, that the joints have a good corrosion resistance in hydrochloric, sulfuric and phosphoric acids at their concentration 30, 70 and 40% respectively. To ensure good corrosion resistance of the joints the content of nitrogen and water vapours in helium should not exceed 0.001%. Heat treatment of the joints in the air reduces corrosion rate due to formation on metal surface of protective film of zirconium dioxide

  9. Effect of HCl pre-treatment on corrosion resistance of cerium-based conversion coatings on magnesium and magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brunelli, Katya [Department of Mechanical Innovation and Management, University of Padua, Via Marzolo 9, 35131 Padua (Italy); Dabala, Manuele [Department of Mechanical Innovation and Management, University of Padua, Via Marzolo 9, 35131 Padua (Italy)]. E-mail: manuele.dabala@unipd.it; Calliari, Irene [Department of Mechanical Innovation and Management, University of Padua, Via Marzolo 9, 35131 Padua (Italy); Magrini, Maurizio [Department of Mechanical Innovation and Management, University of Padua, Via Marzolo 9, 35131 Padua (Italy)

    2005-04-01

    The corrosion protection afforded by a cerium conversion coating, formed by immersion in a solution containing rare earth salt and hydrogen peroxide, on pure magnesium and two magnesium alloys, AZ91 and AM50, has been studied. The effect of HCl pre-treatments on the morphology and on the corrosion resistance of the cerium conversion layer was investigated. A thicker and more homogeneous distribution of the conversion coating was obtained when the sample surface was pre-treated with acid. Higher amounts of cerium on the surface of the pre-treated samples were detected. The cerium conversion coating increased the corrosion resistance of the alloys because it ennobled the corrosion potential and decreased both the anodic and cathodic current. The acid pre-treatment further increased the corrosion resistance of the coated alloys. After five days of immersion in chloride environment the untreated samples showed localized corrosion while the chemical conversion coated samples appeared unaffected.

  10. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    Science.gov (United States)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-12-01

    The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce2O3 and CeO2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  11. Corrosion resistance, surface mechanical properties, and cytocompatibility of plasma immersion ion implantation-treated nickel-titanium shape memory alloys.

    Science.gov (United States)

    Yeung, K W K; Poon, R W Y; Liu, X Y; Ho, J P Y; Chung, C Y; Chu, P K; Lu, W W; Chan, D; Cheung, K M C

    2005-11-01

    Nickel-titanium shape memory alloys are promising materials in orthopedic applications because of their unique properties. However, for prolonged use in a human body, deterioration of the corrosion resistance of the materials becomes a critical issue because of the increasing possibility of deleterious ions released from the substrate to living tissues. We have investigated the use of nitrogen, acetylene, and oxygen plasma immersion ion implantation (PIII) to improve the corrosion resistance and mechanical properties of the materials. Our results reveal that the corrosion resistance and mechanical properties such as hardness and elastic modulus are significantly enhanced after surface treatment. The release of nickel is drastically reduced as compared with the untreated control. In addition, our in vitro tests show that the plasma-treated surfaces are well tolerated by osteoblasts. Among the three types of samples, the best biological effects are observed on the nitrogen PIII samples. PMID:16078209

  12. Study of corrosion resistance of chromium-nickel steel in calcium - hypochlorite solution. Part 1. Steels uranus b6

    Directory of Open Access Journals (Sweden)

    Tošković D.

    2002-01-01

    Full Text Available Corrosion resistance of Cr - Ni (special steels specimen is tested by electrochemical methods, numerical method of linear polarization and polarization resistance method in calcium-hypochlorite (Ca(OCl2 solutions. With increasing of Ca(OCl2 concentration, pH value of the solution increases, as well as active chlorine concentration and corrosion activity of the medium. According to the quantitative method of the corrosion resistance determination it can be concluded that the steels tested in 1 wt % Ca(OCl2 solution are resistant, in 10 wt % solution constant, and in 50 wt % suspension less resistant. URANUS B6 showed the best corrosion resistance of all tested chromium - nickel steels in all tested corrosion mediums.

  13. Evaluation of the corrosion resistance of Ni-Co-B coatings in simulated PEMFC environment

    International Nuclear Information System (INIS)

    The corrosion resistance behavior of Ni-Co-B coated carbon steel, Al 6061 alloy and 304 stainless steel was evaluated in simulated proton exchange membrane fuel cell (PEMFC) environment. The phase structure of the NiCoB based alloy was determined by Rietveld analysis. The PEMFC environment was constituted of 0.5 M H2SO4 at 60 oC and the evaluation techniques employed included potentiodynamic polarization, linear polarization resistance, open circuit potential measurements and electrochemical impedance spectroscopy. The results showed that in all cases the corrosion resistance of the Ni-Co-B coating was higher than that of the uncoated alloys; about two orders of magnitude with respect to carbon steel and an order of magnitude compared to 304 stainless steel. Except for the uncoated 304 type stainless steel, the polarization curves for the coated specimens did not exhibit a passive region but only anodic dissolution. The corrosion potential value, E corr, was always nobler for the coated samples than for the uncoated specimens. This was true for the stainless steel in the passive region, but in the active state for the carbon steel and Al 6061 alloy. The corrosion of the underlying alloy occurred due to filtering of the solution through coating defects like microcracks, pinholes, etc. During the filtering process the E corr value of the coating decreased slowly until it reached a steady state value, close to the E corr value of the underlying alloy

  14. Cellulose acetate/hydroxyapatite/chitosan coatings for improved corrosion resistance and bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Zhenyu; Qin, Jinli [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Ma, Jun, E-mail: caltary@gmail.com [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-04-01

    Cellulose acetate (CA) nanofibers were deposited on stainless steel plates by electrospinning technique. The composite of hydroxyapatite (HAP) nanoparticles and chitosan (CHI) was coated subsequently by dip-coating. The structure and morphology of the obtained coatings were investigated by Fourier transform infrared spectroscopy and scanning electron microscopy. The stability of the coatings in physiological environment was studied using electrochemical polarization and impedance spectroscopy. The CA nanofibers were embedded in the HAP/CHI coating and the resulted composite film was densely packed and uniform on the substrate. The in vitro biomineralization study of the coated samples immersed in simulated body fluid (SBF) confirmed the formation ability of bone-like apatite layer on the surface of HAP-containing coatings. Furthermore, the coatings could provide corrosion resistance to the stainless steel substrate in SBF. The electrochemical results suggested that the incorporation of CA nanofibers could improve the corrosion resistance of the HAP/CHI coating. Thus, biocompatible CA/HAP/CHI coated metallic implants could be very useful in the long-term stability of the biomedical applications. - Highlights: • The composite coatings were prepared by electrospinning and dip-coating. • Good in vitro bioactivity of the CA/HAP/CHI coating was confirmed. • Electrochemical behaviors in SBF of the coatings have been studied. • The CA/HAP/CHI coating shows better resistance property than HAP/CHI.

  15. On texture, corrosion resistance and morphology of hot-dip galvanized zinc coatings

    International Nuclear Information System (INIS)

    Texture is an important factor which affects the coating properties. Chemical composition of the zinc bath can strongly influence the texture of hot-dip galvanized coatings. In this study, lead content of the zinc bath was changed from 0.01 wt.% to 0.11 wt.%. Specimens were prepared from zinc baths of different lead content and its texture was evaluated using X-ray diffraction. Corrosion behaviour was analyzed by Tafel extrapolation and linear polarization tests. To study the corrosion products of the specimens, salt spray test was employed. Also, the spangle size of the specimens was determined using line intercept method. From the experimental results it was found that (00.2) basal plane texture component would be weakened by increasing the lead content of the zinc and conversely (20.1) high angle pyramidal texture components strengthened. Besides, coatings with strong (00.2) texture component and weaker (20.1) component have better corrosion resistance than the coatings with weak (00.2) and strong (20.1) texture components. In addition, surface morphology would be changed and presence of basal planes decreases at the coating surface due to the increase of lead in the zinc bath. Furthermore, spangle size would be increased by increasing the lead content of the zinc bath. Investigation on the effects of skin pass rolling showed that in this case (00.2) basal texture component and corrosion resistance of the skin passed specimens, in comparison with non-skin passed specimens, have been decreased

  16. Fabrication of biomimetic hydrophobic films with corrosion resistance on magnesium alloy by immersion process

    International Nuclear Information System (INIS)

    Highlights: ► We have developed a facile and simple method of creating a hydrophobic surface on a magnesium alloy by an immersion process at room temperature. ► The distribution of the micro-structure and the roughness of the surface play critical roles in transforming from hydrophilic to hydrophobic. ► The hydrophobic coatings possess better corrosion resistance than magnesium alloy matrix. - Abstract: Biomimetic hydrophobic films of crystalline CeO2 were prepared on magnesium alloy by an immersion process with cerium nitrate solution and then modified with DTS (CH3(CH2)11Si(OCH3)3). The CeO2 films fabricated with 20-min immersion yield a water contact angle of 137.5 ± 2°, while 20-min DTS treatment on top of CeO2 can further enhance the water contact angle to 146.7 ± 2°. Then corrosion-resistant property of these prepared films against NaCl solution was investigated and elucidated using electrochemical measurements.

  17. Producing cobalt–graphene composite coating by pulse electrodeposition with excellent wear and corrosion resistance

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Graphene oxide/cobalt coatings are synthesized by pulse electrodeposition. • Incorporating GO refines the grain size and changes the microstructure of the coating. • Incorporating GO greatly improves the friction reduction and wear resistance of the coating. • The corrosion resistance is enhanced by the incorporation of GO. - Abstract: Cobalt (Co) and graphene oxide/cobalt (GO/Co) composite coatings were fabricated by pulse electrodeposition technique from an aqueous bath containing cobalt sulfate and GO, etc. Effect of the incorporations of GO on morphology, phase structure, average grain size and corrosion and wear resistance of the resulting composite coatings were evaluated in detail. Scanning electron microscope (SEM) and energy dispersed X-ray (EDX) show that the GO nanosheets disperse homogeneously in the composite coating and the incorporations of GO change the morphologies of the deposit from conical shaped structure to protruding structure. In addition, the co-deposition GO with Co ions favor the formation of hcp (1 0 0), (0 0 2) and (1 0 1) textures in the composite coating and have functions of grain refining and hardness enhancement. The wear tests show that the incorporations of GO in the coating improve the wear resistance and friction reduction of the deposit. The electrochemical corrosion tests using potentiodynamic polarization and electrochemical impedance spectroscopy show that the GO/Co composite coating possesses better corrosion resistance than the pure Co coating

  18. Pulse electrodeposited nickel using sulphamate electrolyte for hardness and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Sivasakthi, P.; Sekar, R.; Bapu, G.N.K.Ramesh, E-mail: bapu2657@yahoo.com

    2015-10-15

    Highlights: • Nickel deposits from sulphamate solutions using pulse method are prepared. • Effect of duty cycle and frequency are studied. • XRD, SEM and AFM of the nickel deposits are characterized. • Corrosion characteristics of the nickel deposit are reported. - Abstract: Nickel deposits have been obtained on mild steel substrate by pulse current (PC) electrodeposition method using nickel sulphamate electrolyte. Micro hardness values increased with decreasing duty cycle and pulse frequency. X-ray diffraction studies revealed that (2 0 0) plane was predominant and the nickel deposit obtained at low duty cycle and low frequency has the smallest grain size. The surface morphology of the coatings was explored by scanning electron microscopy (SEM) and atomic force microscopy. These studies showed that the microstructure of the nickel coatings changed from pyramidal structure to homogeneous structure with increasing duty cycle and pulse frequencies. The corrosion resistance of coatings was evaluated by potentiodynamic polarization and electrochemical impedance studies in 3.5 wt% sodium chloride (NaCl) solutions. An enhancement of the corrosion resistance, charge-transfer resistance and wear resistance has been obtained at low duty cycle and low frequencies.

  19. Microstructure and Corrosion Resistance of Laser Additively Manufactured 316L Stainless Steel

    Science.gov (United States)

    Trelewicz, Jason R.; Halada, Gary P.; Donaldson, Olivia K.; Manogharan, Guha

    2016-03-01

    Additive manufacturing (AM) of metal alloys to produce complex part designs via powder bed fusion methods such as laser melting promises to be a transformative technology for advanced materials processing. However, effective implementation of AM processes requires a clear understanding of the processing-structure-properties-performance relationships in fabricated components. In this study, we report on the formation of micro and nanoscale structures in 316L stainless steel samples printed by laser AM and their implications for general corrosion resistance. A variety of techniques including x-ray diffraction, optical, scanning and transmission electron microscopy, x-ray fluorescence, and energy dispersive x-ray spectroscopy were employed to characterize the microstructure and chemistry of the laser additively manufactured 316L stainless steel, which are compared with wrought 316L coupons via electrochemical polarization. Apparent segregation of Mo has been found to contribute to a loss of passivity and an increased anodic current density. While porosity will also likely impact the environmental performance (e.g., facilitating crevice corrosion) of AM alloys, this work demonstrates the critical influence of microstructure and heterogeneous solute distributions on the corrosion resistance of laser additively manufactured 316L stainless steel.

  20. Corrosion resistance of biodegradable polymeric layer-by-layer coatings on magnesium alloy AZ31

    Science.gov (United States)

    Cui, Lan-Yue; Zeng, Rong-Chang; Zhu, Xiao-Xiao; Pang, Ting-Ting; Li, Shuo-Qi; Zhang, Fen

    2016-06-01

    Biocompatible polyelectrolyte multilayers (PEMs) and polysiloxane hybrid coatings were prepared to improve the corrosion resistance of biodegradable Mg alloy AZ31. The PEMs, which contained alternating poly(sodium 4-styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH), were first self-assembled on the surface of the AZ31 alloy substrate via electrostatic interactions, designated as (PAH/PSS)5/AZ31. Then, the (PAH/PSS)5/AZ31 samples were dipped into a methyltrimethoxysilane (MTMS) solution to fabricate the PMTMS films, designated as PMTMS/(PAH/PSS)5/AZ31. The surface morphologies, microstructures and chemical compositions of the films were investigated by FE-SEM, FTIR, XRD and XPS. Potentiodynamic polarization, electrochemical impedance spectroscopy and hydrogen evolution measurements demonstrated that the PMTMS/(PAH/PSS)5/AZ31 composite film significantly enhanced the corrosion resistance of the AZ31 alloy in Hank's balanced salt solution (HBSS). The PAH and PSS films effectively improved the deposition of Ca-P compounds including Ca3(PO4)2 and hydroxyapatite (HA). Moreover, the corrosion mechanism of the composite coating was discussed. These coatings could be an alternative candidate coating for biodegradable Mg alloys.

  1. EFFECTS OF Ce ON CORROSION RESISTANCE OF AZ91D MAGNESIUM ALLOY

    Institute of Scientific and Technical Information of China (English)

    Z.H. Huang; X.F. Guo; Z.M. Zhang; C.J. Xu

    2005-01-01

    As-cast and corrosive microstructures of AZ91D alloy containing various Ce contents were observed by optical microscope (OM). The phase compositions of the alloys before and after the corrosion were analyzed by X-ray diffraction (XRD). Meanwhile, the corrosion resistance of the alloys was tested by weight loss and potentiodynamic polarization curve methods respectively.The results show that rod-like Al4Ce phase is formed in AZ91D alloy containing certain Ce content and as-cast microstructures are refined. AZ91D-0. 7%Ce alloy has good grain refinementeffect. The addition of Ce can reduce the corrosion rate and corrosion current density of AZ91Dalloy and those of AZ91D-0. 1%Ce alloy reach the minimum, which are 0.35mg/(cm2·d) and2.761μA/cm2 with 75% and 86% reduction, respectively. The increasing volume fraction and reticular degree of β phase can improve the corrosion resistance of the alloys.

  2. Corrosion resistance of AZ31 alloy after plastic working in NaCl solutions

    Directory of Open Access Journals (Sweden)

    W. Walke

    2011-04-01

    Full Text Available Purpose: The purpose of the study was to assess corrosion resistance of magnesium alloy AZ31 (Mg-Al-Zn alloy after plastic working in NaCl solutions. It presents currently applied methods of magnesium alloys plastic working. Basic groups of magnesium alloys that are used for plastic working have been discussed.Design/methodology/approach: Corrosion tests of AZ31 alloy were carried out in solution with concentration of 0.01-2 M NaCl with application of the system for electrochemical tests VoltaLab®PGP201. Resistance to electrochemical corrosion was evaluated on the ground of registered anodic polarisation curves by means of potentiodynamic method. Immersion tests were carried out in NaCl solutions in the time of 1-5 days. Scanning microscopy enabled to present microstructure of AZ31 after immersion tests.Findings: Results of all carried out tests explicitly prove deterioration of corrosion properties of magnesium alloy AZ31 with the increase in molar concentration of NaCl solution.Practical implications: It was determined that irrespective of molar concentration of NaCl solution pitting corrosion was found in the tested alloy. It proves that application of protective coating on elements made of the tested alloy is necessary.Originality/value: Literature gives the results of corrosion tests with reference to cast alloy AZ31. Tests of corrosion resistance of hot rolled AZ31 in chloride solutions have been made for the first time.

  3. Fabrication of biomimetic hydrophobic films with corrosion resistance on magnesium alloy by immersion process

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yan, E-mail: liuyan2000@jlu.edu.cn [Key Laboratory for Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Lu Guolong; Liu Jindan; Han Zhiwu; Liu Zhenning [Key Laboratory for Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer We have developed a facile and simple method of creating a hydrophobic surface on a magnesium alloy by an immersion process at room temperature. Black-Right-Pointing-Pointer The distribution of the micro-structure and the roughness of the surface play critical roles in transforming from hydrophilic to hydrophobic. Black-Right-Pointing-Pointer The hydrophobic coatings possess better corrosion resistance than magnesium alloy matrix. - Abstract: Biomimetic hydrophobic films of crystalline CeO{sub 2} were prepared on magnesium alloy by an immersion process with cerium nitrate solution and then modified with DTS (CH{sub 3}(CH{sub 2}){sub 11}Si(OCH{sub 3}){sub 3}). The CeO{sub 2} films fabricated with 20-min immersion yield a water contact angle of 137.5 {+-} 2 Degree-Sign , while 20-min DTS treatment on top of CeO{sub 2} can further enhance the water contact angle to 146.7 {+-} 2 Degree-Sign . Then corrosion-resistant property of these prepared films against NaCl solution was investigated and elucidated using electrochemical measurements.

  4. Effect of manufacturing process sequence on the corrosion resistance characteristics of coated metallic bipolar plates

    Science.gov (United States)

    Dur, Ender; Cora, Ömer Necati; Koç, Muammer

    2014-01-01

    Metallic bipolar plate (BPP) with high corrosion and low contact resistance, durability, strength, low cost, volume, and weight requirements is one of the critical parts of the PEMFC. This study is dedicated to understand the effect of the process sequence (manufacturing then coating vs. coating then manufacturing) on the corrosion resistance of coated metallic bipolar plates. To this goal, three different PVD coatings (titanium nitride (TiN), chromium nitride (CrN), zirconium nitride (ZrN)), with three thicknesses, (0.1, 0.5, 1 μm) were applied on BPPs made of 316L stainless steel alloy before and after two types of manufacturing (i.e., stamping or hydroforming). Corrosion test results indicated that ZrN coating exhibited the best corrosion protection while the performance of TiN coating was the lowest among the tested coatings and thicknesses. For most of the cases tested, in which coating was applied before manufacturing, occurrence of corrosion was found to be more profound than the case where coating was applied after manufacturing. Increasing the coating thickness was found to improve the corrosion resistance. It was also revealed that hydroformed BPPs performed slightly better than stamped BPPs in terms of the corrosion behavior.

  5. Wear and corrosion resistant coatings formed by microarc oxidation on TiAl alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li Xijin [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Department of Materials Science and Engineering, Beijing Normal University, Beijing 100875 (China); Cheng Guoan [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Department of Materials Science and Engineering, Beijing Normal University, Beijing 100875 (China); Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China)], E-mail: gacheng@bnu.edu.cn; Xue Wenbin; Zheng Ruiting [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Department of Materials Science and Engineering, Beijing Normal University, Beijing 100875 (China); Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China); Cheng Yunjun [Research Center of Ti-Al Intermetallic Compound, High Temperature Material Research Division, General Iron and Steel Research Institute, Beijing 100081 (China)

    2008-01-15

    Microarc oxidation is an advanced method to fabricate ceramic coatings on valve metals. The coatings up to 110 {mu}m thick were prepared on {gamma}-TiAl alloy by the alternating-current microarc oxidation in silicate electrolyte. Their structures, composition, wear resistance and corrosion resistance were evaluated by scanning electron microscopy (SEM), X-ray diffraction (XRD), ball-disc dry sliding and electrochemical polarization tests. Results showed that the dense layer of coatings was mainly composed of Al{sub 2}TiO{sub 5} and TiO{sub 2} rutile phases, while the loose layer contained a large amount of amorphous SiO{sub 2} besides Al{sub 2}TiO{sub 5} and TiO{sub 2} rutile phases. Maximum value of microhardness in the coating was about three times higher than that of TiAl substrate. The wear rate of coating was only 1/10 of TiAl substrate. Corrosion current density of the coated TiAl alloy was greatly reduced. The microarc oxidation is a promising method to improve the wear resistance and corrosion resistance of TiAl alloy.

  6. Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V.

    Science.gov (United States)

    Grotberg, John; Hamlekhan, Azhang; Butt, Arman; Patel, Sweetu; Royhman, Dmitry; Shokuhfar, Tolou; Sukotjo, Cortino; Takoudis, Christos; Mathew, Mathew T

    2016-02-01

    The negative impact of in vivo corrosion of metallic biomedical implants remains a complex problem in the medical field. We aimed to determine the effects of electrochemical anodization (60V, 2h) and thermal oxidation (600°C) on the corrosive behavior of Ti-6Al-4V, with serum proteins, at physiological temperature. Anodization produced a mixture of anatase and amorphous TiO2 nanopores and nanotubes, while the annealing process yielded an anatase/rutile mixture of TiO2 nanopores and nanotubes. The surface area was analyzed by the Brunauer-Emmett-Teller method and was estimated to be 3 orders of magnitude higher than that of polished control samples. Corrosion resistance was evaluated on the parameters of open circuit potential, corrosion potential, corrosion current density, passivation current density, polarization resistance and equivalent circuit modeling. Samples both anodized and thermally oxidized exhibited shifts of open circuit potential and corrosion potential in the noble direction, indicating a more stable nanoporous/nanotube layer, as well as lower corrosion current densities and passivation current densities than the smooth control. They also showed increased polarization resistance and diffusion limited charge transfer within the bulk oxide layer. The treatment groups studied can be ordered from greatest corrosion resistance to least as Anodized+Thermally Oxidized > Anodized > Smooth > Thermally Oxidized for the conditions investigated. This study concludes that anodized surface has a potential to prevent long term implant failure due to corrosion in a complex in-vivo environment. PMID:26652422

  7. Corrosion Resistance and Pitting Behaviour of Low-Carbon High-Mn Steels in Chloride Solution

    Directory of Open Access Journals (Sweden)

    Grajcar A.

    2016-06-01

    Full Text Available Corrosion resistance of the X4MnSiAlNbTi27-4-2 and X6MnSiAlNbTi26-3-3 type austenitic steels, after hot deformation as well as after cold rolling, were evaluated in 3.5% NaCl solution using potentiodynamic polarization tests. A type of nonmetallic inclusions and their pitting corrosion behaviour were investigated. Additionally, the effect of cold deformation on the corrosion resistance of high-Mn steels was studied. The SEM micrographs revealed that corrosion damage formed in both investigated steels is characterized by various shapes and an irregular distribution at the metallic matrix, independently on the steel state (thermomechanically treated or cold worked. Corrosion pits are generated both in grain interiors, grain boundaries and along the deformation bands. Moreover, corrosion damage is stronger in cold deformed steels in comparison to the thermomechanically treated specimens. EDS analysis revealed that corrosion pits preferentially nucleated on MnS and AlN inclusions or complex oxysulphides. The morphology of corrosion damage in 3.5% NaCl supports the data registered in potentiodynamic tests.

  8. The corrosion resistance of materials used for the manufacture of ear piercing studs

    International Nuclear Information System (INIS)

    Nickel containing alloy shave been widely used as substrates for the manufacture of studs used for ear piercing. Unfortunately, nickel has also been related to the development of allergic contact dermatitis caused by skin sensitization due to Ni''2+ ions. Nickel ions can be leached out into the body fluids due to corrosion reactions. Defect free coatings are very difficult to produce, and therefore nickel free materials should be used as substrates of ear piercing studs, although the commercial alloys used usually contain this element. In this study, the corrosion resistance of two kinds of commercial studs prepared with nickel containing substrates and a titanium laboratory made stud was determined in a culture medium. The corrosion resistance of the studs was investigated by means of potentiodynamic polarization tests and electrochemical impedance spectroscopy as a function of immersion time in the culture medium. The elements that leached out into the medium due to corrosion reactions were analyzed by instrumental neutron activation analysis. The surfaces of the commercial gold-coated studs were examined by scanning electron microscopy and analyzed by energy dispersive spectroscopy, both before and after exposure to the culture medium. The cytotoxicity of the tested studs was also determined in the culture medium. (Author) 10 refs

  9. Effect of Different Treatment on Corrosion Resistance of Sputtered Al Coating on Stainless Steel

    Science.gov (United States)

    Fu, Guangyan; Qi, Zeyan; Su, Yong; Liu, Qun; Guo, Xingxing

    2014-12-01

    Aluminum coating on 1Cr18Ni9Ti stainless steel was prepared by magnetron sputtering method. The specimens were treated with pre-oxidation (PO) or vacuum diffusion annealing (VA). Hot corrosion resistance of the coatings beneath the deposits of Na2SO4 at 1050 °C was investigated. Corrosion products were analyzed by XRD and SEM. Results show that the presence of coating could improve the corrosion resistance of stainless steel. FeAl phase appeared after VA at 600 °C, which enhanced cohesive force between the coating and the substrate, and reduced the oxidation and sulfidation rate. PO treatment can protect the substrate more effectively than VA treatment for metastable Al2O3 formed during PO treatment can be translated to stable Al2O3 more quickly at high temperatures. The corrosion products of the two kinds of specimens with aluminum coating were both composed of Al2O3, a little amount of FeS and Fe2O3 after 24 h corrosion. Al2O3 was formed mainly in the coatings, FeS was mainly distributed in the interface between coating and substrate of the specimens, and a small amount of FeS was distributed in the substrate. Al2O3 film remained intact after 24 h corrosion, and kept its protective effect on the substrate.

  10. Influence of Heat Treatments on the Corrosion Resistance of Medium -Carbon Steel using Sulfuric Spring Water

    Directory of Open Access Journals (Sweden)

    Ikhlas Basheer

    2013-04-01

    Full Text Available The corrosion is one of the important problems that may be occur to the parts of machinery and equipment after manufactured and when used as a result of exposure to corrosive media. Plain-carbon steel is considered as one of the most common minerals used in industrial applications. Some of heat treatments can have direct effect on the corrosion rate of steel by building up galvanic corrosion cells between its microscopic phases. Therefore, to adopt one of kinds of the plain-carbon steel and the most commonly used in industry to be study subject, that is medium carbon steel and took samples of this steel has been treated thermally in three methods which the normalising, annealing, and hardening .The corrosive media used in the research is Sulfuric Spring, it contains many chemical compounds to show its influence on the corrosion of steel. The weight loss method is used to determine corrosion rate and to compare between the results obtained, show that the greatest corrosion resistance of the annealed steel and the corrosion resistance of the hardened steel is the lowest while the corrosion  resistance of the normalised steel is in-between them.         Calcium carbonate was formed on the metal surface which acts as an isolating layer which decrease corrosion rate with time

  11. ICONEL 690: a material with improved corrosion resistance for PWR steam generator tubes

    International Nuclear Information System (INIS)

    This paper reviews the major aspects of the joint program carried out by the Commissariat a l'Energie Atomique, Electricite de France, Framatome and Westinghouse on the investigation of Inconel 690 (I.690) for use as PWR Steam Generator Tubing. The program was conceived as a further step in the long-term development of improvements in S.G. tube material corrosion resistance. Although the major emphasis of the work was on the corrosion resistance it was also necessary, in preparing for the commercial use of I.690 for S.G. tubing, to verify other aspects of behaviour in respect of physical and mechanical properties and for steam generator fabrication purposes. A key activity in the preparation for commercial use was the pre-production fabrication by a tube supplier of about 200 full-length tubes from each of three different heats. These tubes not only served the need to fully characterize the tubing (a requirement of the French specifications) but also provided a source of additional fully representative material for confirmatory corrosion and fabrication evaluation

  12. Evaluation of the corrosion resistance of anodized aluminum 6061 using electrochemical impedance spectroscopy (EIS)

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yuelong [Corrosion and Environmental Effects Laboratory (CEEL), Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-0241 (United States); Shih Hong [Lam Research Corporation, 4400 Cushing Parkway, Fremont, CA 94538 (United States)], E-mail: hong.shih@lamrc.com; Huang, Huochuan; Daugherty, John; Wu Shun; Ramanathan, Sivakami; Chang, Chris [Lam Research Corporation, 4400 Cushing Parkway, Fremont, CA 94538 (United States); Mansfeld, Florian [Corrosion and Environmental Effects Laboratory (CEEL), Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-0241 (United States)], E-mail: mansfeld@usc.edu

    2008-12-15

    The corrosion resistance of anodized Al 6061 produced by two different anodizing and sealing processes was evaluated using electrochemical impedance spectroscopy (EIS). The scanning electron microscope (SEM) was employed to determine the surface structure and the thickness of the anodized layers. The EIS data revealed that there was very little change of the properties of the anodized layers for samples that were hard anodized in a mixed acid solution and sealed in hot water over a 365 day exposure period in a 3.5 wt% NaCl solution. The specific admittance A{sub s} and the breakpoint frequency f{sub b} remained constant with exposure time confirming that the hard anodizing process used in this study was very effective in providing excellent corrosion resistance of anodized Al 6061 over extended exposure periods. Some minor degradation of the protective properties of the anodized layers was observed for samples that were hard anodized in H{sub 2}SO{sub 4} and exposed to the NaCl solution for 14 days.

  13. Hierarchically ordered self-lubricating superhydrophobic anodized aluminum surfaces with enhanced corrosion resistance.

    Science.gov (United States)

    Vengatesh, Panneerselvam; Kulandainathan, Manickam Anbu

    2015-01-28

    Herein, we report a facile method for the fabrication of self-lubricating superhydrophobic hierarchical anodic aluminum oxide (AAO) surfaces with improved corrosion protection, which is greatly anticipated to have a high impact in catalysis, aerospace, and the shipping industries. This method involves chemical grafting of as-formed AAO using low surface free energy molecules like long chain saturated fatty acids, perfluorinated fatty acid (perfluorooctadecanoic acid, PFODA), and perfluorosulfonicacid-polytetrafluoroethylene copolymer. The pre and post treatment processes in the anodization of aluminum (Al) play a vital role in the grafting of fatty acids. Wettability and surface free energy were analyzed using a contact angle meter and achieved 161.5° for PFODA grafted anodized aluminum (PFODA-Al). This study was also aimed at evaluating the surface for corrosion resistance by Tafel polarization and self-lubricating properties by tribological studies using a pin-on-disc tribometer. The collective results showed that chemically grafted AAO nanostructures exhibit high corrosion resistance toward seawater and low frictional coefficient due to low surface energy and self-lubricating property of fatty acids covalently linked to anodized Al surfaces. PMID:25529561

  14. Fabrication and Corrosion Resistance of Superhydrophobic Hydroxide Zinc Carbonate Film on Aluminum Substrates

    Directory of Open Access Journals (Sweden)

    Jin Liang

    2013-01-01

    Full Text Available Superhydrophobic hydroxide zinc carbonate (HZC films were fabricated on aluminum substrate through a convenient in situ deposition process. Firstly, HZC films with different morphologies were deposited on aluminum substrates through immersing the aluminum substrates perpendicularly into aqueous solution containing zinc nitrate hexahydrate and urea. Secondly, the films were then modified with fluoroalkylsilane (FAS: CH3(CF26(CH23Si(OCH33 molecules by immersing in absolute ethanol solution containing FAS. The morphologies, hydrophobicity, chemical compositions, and bonding states of the films were analyzed by scanning electron microscopy (SEM, water contact angle measurement (CA, Fourier transform infrared spectrometer (FTIR, and X-ray photoelectron spectroscopy (XPS, respectively. It was shown by surface morphological observation that HZC films displayed different microstructures such as microporous structure, rose petal-like structure, block-shaped structure, and pinecone-like structure by altering the deposition condition. A highest water contact angle of 156.2° was obtained after FAS modification. Moreover, the corrosion resistance of the superhydrophobic surface on aluminum substrate was investigated using electrochemical impedance spectroscopy (EIS measurements. The EIS measurements’ results revealed that the superhydrophobic surface considerably improved the corrosion resistance of aluminum.

  15. Enhancement of wear and corrosion resistance of beta titanium alloy by laser gas alloying with nitrogen

    Science.gov (United States)

    Chan, Chi-Wai; Lee, Seunghwan; Smith, Graham; Sarri, Gianluca; Ng, Chi-Ho; Sharba, Ahmed; Man, Hau-Chung

    2016-03-01

    The relatively high elastic modulus coupled with the presence of toxic vanadium (V) in Ti6Al4V alloy has long been a concern in orthopaedic applications. To solve the problem, a variety of non-toxic and low modulus beta-titanium (beta-Ti) alloys have been developed. Among the beta-Ti alloy family, the quaternary Ti-Nb-Zr-Ta (TNZT) alloys have received the highest attention as a promising replacement for Ti6Al4V due to their lower elastic modulus and outstanding long term stability against corrosion in biological environments. However, the inferior wear resistance of TNZT is still a problem that must be resolved before commercialising in the orthopaedic market. In this work, a newly developed laser surface treatment technique was employed to improve the surface properties of Ti-35.3Nb-7.3Zr-5.7Ta alloy. The surface structure and composition of the laser-treated TNZT surface were examined by grazing incidence X-ray diffraction (GI-XRD) and X-ray photoelectron spectroscopy (XPS). The wear and corrosion resistance were evaluated by pin-on-plate sliding test and anodic polarisation test in Hanks' solution. The experimental results were compared with the untreated (or base) TNZT material. The research findings showed that the laser surface treatment technique reported in this work can effectively improve the wear and corrosion resistance of TNZT.

  16. Fabrication and Corrosion Resistance of Super hydrophobic Hydroxide Zinc Carbonate Film on Aluminum Substrates

    International Nuclear Information System (INIS)

    Super hydrophobic hydroxide zinc carbonate (HZC) films were fabricated on aluminum substrate through a convenient in situ deposition process. Firstly, HZC films with different morphologies were deposited on aluminum substrates through immersing the aluminum substrates perpendicularly into aqueous solution containing zinc nitrate hexahydrate and urea. Secondly, the films were then modified with fluoroalkylsilane (FAS: CH3(CF2)6(CH2))3Si(OCH3)3) molecules by immersing in absolute ethanol solution containing FAS. The morphologies, hydrophobicity, chemical compositions, and bonding states of the films were analyzed by scanning electron microscopy (SEM), water contact angle measurement (CA), Fourier transform infrared spectrometer (FTIR), and X-ray photoelectron spectroscopy (XPS), respectively. It was shown by surface morphological observation that HZC films displayed different microstructures such as microporous structure, rose petal-like structure, block-shaped structure, and pine cone-like structure by altering the deposition condition. A highest water contact angle of 156.2° was obtained after FAS modification. Moreover, the corrosion resistance of the super hydrophobic surface on aluminum substrate was investigated using electrochemical impedance spectroscopy (EIS) measurements. The EIS measurements’ results revealed that the super hydrophobic surface considerably improved the corrosion resistance of aluminum.

  17. Corrosion resistance of CrN thin films produced by dc magnetron sputtering

    International Nuclear Information System (INIS)

    In this study, the electrochemical behavior of chromium nitride (CrN) coatings deposited on two steel substrates, AISI 304 and AISI 1440, was investigated. The CrN coatings were prepared using a reactive d.c. magnetron sputtering deposition technique at two different pressures (P1 = 0.4 Pa and P2 = 4 Pa) with a mixture of N2–Ar (1.5-10). The microstructure and crystallinity of the CrN coatings were investigated using X-ray diffraction. The aqueous corrosion behavior of the coatings was evaluated using two methods. The polarization resistance (Tafel curves) and electrochemical impedance spectra (EIS) in a saline (3.5% NaCl solution) environment were measured in terms of the open-circuit potentials and polarization resistance (Rp). The results indicated that the CrN coatings present better corrosion resistance and Rp values than do the uncoated steel substrates, especially for the coatings produced on the AISI 304 substrates, which exhibited a strong enhancement in the corrosion resistance. Furthermore, better behavior was observed for the coatings produced at lower pressures (0.4 Pa) than those grown at 4 Pa.

  18. Effect of stress and strain on corrosion resistance of duplex stainless steel

    International Nuclear Information System (INIS)

    The interplay of the mechanical and electrochemical phenomena has been a subject of active research. In this paper, corrosion resistance studies about SAF2205 and SAF2507 duplex stainless steel were carried out under elastic stress applied (100 MPa, 300 MPa, 500 MPa) and pre-strain (5%, 10%, 15%) in 3.5% NaCl and 2 mol/L HCl solution. Potentiodynamic anodic polarization study revealed that corrosion resistance of SAF2205 duplex stainless steel decreases slightly with increasing of elastic stress level and noticeably with increasing of pre-strained level. Scanning electron microscopy investigation on surface of the electrochemical tested SAF2205 duplex stainless steel samples indicated that pitting is always located in austenite grains when pre-strain level is below 5% (including different elastic stress level) and located on intersection of ferrite and austenite grain when pre-strain level is above 5%. For SAF2507 duplex stainless steel, elastic stress and pre-strain have no effect on general corrosion and pitting corrosion. Based on deformation mechanism of duplex structure and the relationship of mechanical load and corrosion potential, Pitting corrosion behavior of duplex stainless steel is explained and discussed

  19. Effect of welding processes on corrosion resistance of UNS S31803 duplex stainless steel

    International Nuclear Information System (INIS)

    An attractive combination of corrosion resistance and mechanical properties in the temperature range -50 to 250 .deg. C is offered by duplex stainless steel. However, undesirable secondary precipitation phase such as σ, γ2 and Cr2N may taken place at the cooling stage from the welding processes. Therefore, this paper describes the influence of different welding procedures such as manual metal arc welding (MMA), tungsten inert gas welding (TIG) and vacuum brazing on corrosion resistance of the welded joint for UNS S31803 duplex stainless steel. Microstructure and chemical compositions of the welded joint were examined. The weight loss of specimens immersed in 6% FeCl3 solution at 47.5 .deg. C for 24-hours was determined and used to evaluate the pitting resistance of duplex stainless steel and their welds. The region of heat-affected zone of specimen obtained by the MMA is much wider than that resulted from TIG, therefore, the weight loss of welds by MMA was larger than that of weld by TIG. The weight loss of brazed specimens cooled from slow cooling rate was larger than those of specimens cooled from high cooling rate, because the precipitation of σ phase. Beside that, the weight loss of brazed specimen is greater than those of the welded specimens. The galvanic corrosion was observed in brazed duplex stainless steel joints in the chloride solution

  20. Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds

    Science.gov (United States)

    Bhatt, R. B.; Kamat, H. S.; Ghosal, S. K.; de, P. K.

    1999-10-01

    The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 °C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improved pitting corrosion resistance of the weldments of this steel. However, the resistance to pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constitutent phases, which are responsible for improved resistance to pitting corrosion.

  1. Effect of Aging Treatment on Impact Toughness and Corrosion Resistance of Super Duplex Stainless Steel

    Science.gov (United States)

    Kim, Jae-Hwan; Oh, Eun-Ji; Lee, Byung-Chan; Kang, Chang-Yong

    2016-01-01

    The effect of aging time on impact toughness and corrosion resistance of 25%Cr-7%Ni-2%Mo-4%W-0.2%N super duplex stainless steel from the viewpoint of intermetallic secondary phase variation was investigated with scanning electron microscopic observation with energy-dispersive x-ray spectroscopic analysis and transmission electron microscopy. The results clarified that R-phase is precipitated not only at the interface of ferrite and austenite but inside the ferrite at an initial stage of aging and then transformed into σ-phase from an aging time of 1 h, while the ferrite phase decomposed into γ2 and σ-phase with increase of aging time. This variation of the phases led to decrease of its impact toughness, and specifically, the R-phase was proved to be predominant in the degradation of the impact toughness at the initial stage of the aging. Additionally, these secondary phases led to deterioration of corrosion resistance because of Cr depletion.

  2. Pulse electrodeposited nickel using sulphamate electrolyte for hardness and corrosion resistance

    International Nuclear Information System (INIS)

    Highlights: • Nickel deposits from sulphamate solutions using pulse method are prepared. • Effect of duty cycle and frequency are studied. • XRD, SEM and AFM of the nickel deposits are characterized. • Corrosion characteristics of the nickel deposit are reported. - Abstract: Nickel deposits have been obtained on mild steel substrate by pulse current (PC) electrodeposition method using nickel sulphamate electrolyte. Micro hardness values increased with decreasing duty cycle and pulse frequency. X-ray diffraction studies revealed that (2 0 0) plane was predominant and the nickel deposit obtained at low duty cycle and low frequency has the smallest grain size. The surface morphology of the coatings was explored by scanning electron microscopy (SEM) and atomic force microscopy. These studies showed that the microstructure of the nickel coatings changed from pyramidal structure to homogeneous structure with increasing duty cycle and pulse frequencies. The corrosion resistance of coatings was evaluated by potentiodynamic polarization and electrochemical impedance studies in 3.5 wt% sodium chloride (NaCl) solutions. An enhancement of the corrosion resistance, charge-transfer resistance and wear resistance has been obtained at low duty cycle and low frequencies

  3. Corrosion resistance of high-chromium steels in coal gasification atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Kihara, S.; Nakagawa, K.; Ohtomo, A.; Kato, M.

    1987-06-01

    The corrosion resistances of AISI 347H and 310 stainless steels (SSs), 35Cr-45Ni steel, and chromized and aluminized AISI 347H SS were evaluated in simulated coal gasification atmospheres at 550, 600, and 650 C. The scales formed were mainly sulfides, with a small amount of oxides. Although the corrosion of AISI 347H and 310 SS increased with increasing temperature the corrosion of high-chromium steels, 35Cr-45Ni steel, and chromized AISI 347H SS remarkably decreased at 650 C. Weight gain decreased with increasing chromium content of steel. However, local corrosion occurred on 35Cr-45Ni steel at 600 C. The aluminized samples were the most corrosion resistant of the materials tested, but some cracks were found in the aluminized layer after 100-h exposure. Addition of HCI to the simulated gasification atmosphere generally accelerated corrosion by the formation of a porous outer scale. Pitting during downtime corrosion occurred only for AISI 347H SS exposed in the simulated gas involving 0.2 vol% HCI. The results of electrochemical measurements suggested that the downtime corrosion might by polythionic acid corrosion and crevice corrosion in the solution involving CI/sup -/.

  4. Effect of Annealing Temperature on the Corrosion Resistance of Electroless Ni-B-Mo Coatings

    Science.gov (United States)

    Serin, Ihsan Gökhan; Göksenli, Ali; Yüksel, Behiye; Yildiz, Rasid Ahmed

    2015-08-01

    The Ni-B-Mo coating on steel by electroless plating and the evaluation of the morphology and corrosion performance after applying heat treatments at different temperatures for 1 h were investigated in this study. The 25-μm-thick coating was uniform and adhesion between the substrate and the coating was good. The coating consisted of an amorphous-like structure in their as-plated condition, and after annealing at 400 °C for 1 h, crystallized nickel, nickel borides, and molybdenum carbide were formed. Immersion tests in 10% HCl solution and potentiodynamic polarization measurements in 3.5% NaCl aqueous solution were applied to investigate corrosion resistance. The corrosion performance of heat-treated coatings was compared with steel and the as-plated coating. By increasing the annealing temperature, corrosion potential shifted toward a noble direction, corrosion current density decreased and the weight loss of specimens decreased, demonstrating an increase in corrosion resistance. Best corrosion performance was achieved by the coating heat treated at 550 °C.

  5. Producing cobalt–graphene composite coating by pulse electrodeposition with excellent wear and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cansen; Su, Fenghua, E-mail: fhsu@scut.edu.cn; Liang, Jizhao

    2015-10-01

    Graphical abstract: - Highlights: • Graphene oxide/cobalt coatings are synthesized by pulse electrodeposition. • Incorporating GO refines the grain size and changes the microstructure of the coating. • Incorporating GO greatly improves the friction reduction and wear resistance of the coating. • The corrosion resistance is enhanced by the incorporation of GO. - Abstract: Cobalt (Co) and graphene oxide/cobalt (GO/Co) composite coatings were fabricated by pulse electrodeposition technique from an aqueous bath containing cobalt sulfate and GO, etc. Effect of the incorporations of GO on morphology, phase structure, average grain size and corrosion and wear resistance of the resulting composite coatings were evaluated in detail. Scanning electron microscope (SEM) and energy dispersed X-ray (EDX) show that the GO nanosheets disperse homogeneously in the composite coating and the incorporations of GO change the morphologies of the deposit from conical shaped structure to protruding structure. In addition, the co-deposition GO with Co ions favor the formation of hcp (1 0 0), (0 0 2) and (1 0 1) textures in the composite coating and have functions of grain refining and hardness enhancement. The wear tests show that the incorporations of GO in the coating improve the wear resistance and friction reduction of the deposit. The electrochemical corrosion tests using potentiodynamic polarization and electrochemical impedance spectroscopy show that the GO/Co composite coating possesses better corrosion resistance than the pure Co coating.

  6. Corrosion resistance of duplex and gradient CrNx coated H13 steel

    International Nuclear Information System (INIS)

    The electrochemical behavior of H13 steel coated with duplex and gradient CrNx coatings deposited by cathodic arc deposition has been studied. The substrate material was coated with CrN by cathodic arc deposition technique. Duplex layers of CrNx, which normally include an interlayer approximately 100-200 nm of Cr under the main CrN coating, were prepared; gradient CrNx coating were produced with continuous elevated nitrogen pressure. The X-ray photoelectron spectroscopy (XPS) was applied to characterize the chemical composition, and the glancing angle X-ray diffraction (GAXRD) was used to examine the crystallographic structure. The potentiodynamic polarization was examined by Zahner IM6e electrochemical workstation in a 0.5 M H2SO4 solution at ambient temperature, and the corrosive surface was detected by scanning electron microscopy (SEM). It was shown that the gradient coating could enhance the corrosion performance of CrNx coated H13 steel. The corrosion resistance improvement was not only attributed to the increase in thickness, but also to the internal microstructure and phase composition. Gradient CrNx coating produced in this work was proved to be particularly promising in terms of corrosion resistance, owing to its incontinuous pinholes and different composition: Cr, Cr2N in inner part and CrN in surface. The results showed that the gradient coating had an improved electrochemical performance than duplex CrN coating

  7. A facile method to prepare superhydrophobic fluorinated polysiloxane/ZnO nanocomposite coatings with corrosion resistance

    International Nuclear Information System (INIS)

    Highlights: • We have developed a facile and inexpensive method to fabricate superhydrophobic fluorinated polysiloxane/ZnO nanocomposite on the steel substrates. • The surface exhibits a water contact angle of 166° and a sliding angle of 4°. • The micro/nano-hierarchical roughness structures with the low surface energy leads to surface superhydrophobicity. • The prepared superhydrophobic surface possesses good durability and corrosion resistance. - Abstract: In this paper, we report a simple and inexpensive method for fabricating fluorinated polysiloxane/ZnO nanocomposite coatings on the steel substrates. The surface wettability and topology of coating were characterized by contact angle measurement, scanning electron microscope and Fourier transform infrared spectrometry. The results showed that the hydrophobic -CH3 and -CH2- groups were introduced into ZnO particles via modification, the ZnO nanoparticles were modified from hydrophilic to hydrophobic. When the weight ratio of modified-ZnO to fluorinated polysiloxane was 13:7, the contact angle of nanocomposite coating was 166°, and a sliding angle of 4°, coating surface with hierarchical micro/nano-structures. In addition, the as-prepared superhydrophobic surface has excellent durability and corrosion resistance. It is believed that the facile and low-cost method offer an effective strategy and promising industrial applications for fabricating superhydrophobic surfaces on steel materials

  8. A facile method to prepare superhydrophobic fluorinated polysiloxane/ZnO nanocomposite coatings with corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Qing, Yongquan; Yang, Chuanning [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110004 (China); Hu, Chuanbo; Zheng, Yansheng [College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006 (China); Liu, Changsheng, E-mail: csliu@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110004 (China)

    2015-01-30

    Highlights: • We have developed a facile and inexpensive method to fabricate superhydrophobic fluorinated polysiloxane/ZnO nanocomposite on the steel substrates. • The surface exhibits a water contact angle of 166° and a sliding angle of 4°. • The micro/nano-hierarchical roughness structures with the low surface energy leads to surface superhydrophobicity. • The prepared superhydrophobic surface possesses good durability and corrosion resistance. - Abstract: In this paper, we report a simple and inexpensive method for fabricating fluorinated polysiloxane/ZnO nanocomposite coatings on the steel substrates. The surface wettability and topology of coating were characterized by contact angle measurement, scanning electron microscope and Fourier transform infrared spectrometry. The results showed that the hydrophobic -CH{sub 3} and -CH{sub 2}- groups were introduced into ZnO particles via modification, the ZnO nanoparticles were modified from hydrophilic to hydrophobic. When the weight ratio of modified-ZnO to fluorinated polysiloxane was 13:7, the contact angle of nanocomposite coating was 166°, and a sliding angle of 4°, coating surface with hierarchical micro/nano-structures. In addition, the as-prepared superhydrophobic surface has excellent durability and corrosion resistance. It is believed that the facile and low-cost method offer an effective strategy and promising industrial applications for fabricating superhydrophobic surfaces on steel materials.

  9. Improve sensitization and corrosion resistance of an Al-Mg alloy by optimization of grain boundaries

    Science.gov (United States)

    Yan, Jianfeng; Heckman, Nathan M.; Velasco, Leonardo; Hodge, Andrea M.

    2016-05-01

    The sensitization and subsequent intergranular corrosion of Al-5.3 wt.% Mg alloy has been shown to be an important factor in stress corrosion cracking of Al-Mg alloys. Understanding sensitization requires the review of grain boundary character on the precipitation process which can assist in developing and designing alloys with improved corrosion resistance. This study shows that the degree of precipitation in Al-Mg alloy is dependent on grain boundary misorientation angle, adjacent grain boundary planes and grain boundary types. The results show that the misorientation angle is the most important factor influencing precipitation in grain boundaries of the Al-Mg alloy. Low angle grain boundaries (≤15°) have better immunity to precipitation and grain boundary acid attack. High angle grain boundaries (>15°) are vulnerable to grain boundary acid attack. Grain boundaries with adjacent plane orientations near to {100} have potential for immunity to precipitation and grain boundary acid attack. This work shows that low Σ (Σ ≤ 29) coincident site lattice (CSL) grain boundaries have thinner β precipitates. Modified nitric acid mass loss test and polarization test demonstrated that the global corrosion resistance of sputtered Al-Mg alloy is enhanced. This may be attributed to the increased fractions of low Σ (Σ ≤ 29) CSL grain boundaries after sputtering.

  10. Laser alloyed Al-W coatings on aluminum for enhanced corrosion resistance

    International Nuclear Information System (INIS)

    Highlights: • Al4W intermetallic phase was formed after laser surface alloying. • Potential–time measurements show the stable behavior after laser surface alloying. • Cyclic polarization indicates increase in corrosion resistance after laser surface alloying. - Abstract: A tungsten precursor deposit was spray coated on aluminum 1100 substrate and was subsequently surface alloyed using a continuous wave diode-pumped ytterbium laser at varying laser energy densities. For the laser energy input of 21–32 J/mm2 the melt depth ranged between 135 and 150 μm. Scanning electron microscopy observations indicated the formation of uniform and continuously dense laser alloyed coatings with sound interface between the modified surface and substrate along with an equi-axed grain structure with second phase precipitates in the intergranular region. X-ray diffraction analysis confirmed that laser processing has resulted in the formation of Al4W, as the major phase with retention of W in Al within the alloyed region. The corrosion resistance of laser alloyed coatings was evaluated in near natural chloride solution using ac and dc electrochemical techniques. After laser processing potential–time measurements has indicated the relatively stable and high potential values over the longer exposure times. Cyclic polarization results showed the reduction in the corrosion current density by a factor of 8, compared to untreated Al 1100. Besides, the electrochemical impedance spectroscopy confirmed the increase in the total resistance (47–70 kΩ cm2) with the increase in the laser energy density

  11. Evaluation of the corrosion resistance of anodized aluminum 6061 using electrochemical impedance spectroscopy (EIS)

    International Nuclear Information System (INIS)

    The corrosion resistance of anodized Al 6061 produced by two different anodizing and sealing processes was evaluated using electrochemical impedance spectroscopy (EIS). The scanning electron microscope (SEM) was employed to determine the surface structure and the thickness of the anodized layers. The EIS data revealed that there was very little change of the properties of the anodized layers for samples that were hard anodized in a mixed acid solution and sealed in hot water over a 365 day exposure period in a 3.5 wt% NaCl solution. The specific admittance As and the breakpoint frequency fb remained constant with exposure time confirming that the hard anodizing process used in this study was very effective in providing excellent corrosion resistance of anodized Al 6061 over extended exposure periods. Some minor degradation of the protective properties of the anodized layers was observed for samples that were hard anodized in H2SO4 and exposed to the NaCl solution for 14 days

  12. Improve sensitization and corrosion resistance of an Al-Mg alloy by optimization of grain boundaries.

    Science.gov (United States)

    Yan, Jianfeng; Heckman, Nathan M; Velasco, Leonardo; Hodge, Andrea M

    2016-01-01

    The sensitization and subsequent intergranular corrosion of Al-5.3 wt.% Mg alloy has been shown to be an important factor in stress corrosion cracking of Al-Mg alloys. Understanding sensitization requires the review of grain boundary character on the precipitation process which can assist in developing and designing alloys with improved corrosion resistance. This study shows that the degree of precipitation in Al-Mg alloy is dependent on grain boundary misorientation angle, adjacent grain boundary planes and grain boundary types. The results show that the misorientation angle is the most important factor influencing precipitation in grain boundaries of the Al-Mg alloy. Low angle grain boundaries (≤15°) have better immunity to precipitation and grain boundary acid attack. High angle grain boundaries (>15°) are vulnerable to grain boundary acid attack. Grain boundaries with adjacent plane orientations near to {100} have potential for immunity to precipitation and grain boundary acid attack. This work shows that low Σ (Σ ≤ 29) coincident site lattice (CSL) grain boundaries have thinner β precipitates. Modified nitric acid mass loss test and polarization test demonstrated that the global corrosion resistance of sputtered Al-Mg alloy is enhanced. This may be attributed to the increased fractions of low Σ (Σ ≤ 29) CSL grain boundaries after sputtering. PMID:27230299

  13. Nanocomposite coatings on biomedical grade stainless steel for improved corrosion resistance and biocompatibility.

    Science.gov (United States)

    Nagarajan, Srinivasan; Mohana, Marimuthu; Sudhagar, Pitchaimuthu; Raman, Vedarajan; Nishimura, Toshiyasu; Kim, Sanghyo; Kang, Yong Soo; Rajendran, Nallaiyan

    2012-10-24

    The 316 L stainless steel is one of the most commonly available commercial implant materials with a few limitations in its ease of biocompatibility and long-standing performance. Hence, porous TiO(2)/ZrO(2) nanocomposite coated over 316 L stainless steels was studied for their enhanced performance in terms of its biocompatibility and corrosion resistance, following a sol-gel process via dip-coating technique. The surface composition and porosity texture was studied to be uniform on the substrate. Biocompatibility studies on the TiO(2)/ZrO(2) nanocomposite coatings were investigated by placing the coated substrate in a simulated body fluid (SBF). The immersion procedure resulted in the complete coverage of the TiO(2)/ZrO(2) nanocomposite (coated on the surface of 316 L stainless steel) with the growth of a one-dimensional (1D) rod-like carbonate-containing apatite. The TiO(2)/ZrO(2) nanocomposite coated specimens showed a higher corrosion resistance in the SBF solution with an enhanced biocompatibility, surpassing the performance of the pure oxide coatings. The cell viability of TiO(2)/ZrO(2) nanocomposite coated implant surface was examined under human dermal fibroblasts culture, and it was observed that the composite coating enhances the proliferation through effective cellular attachment compared to pristine 316 L SS surface. PMID:22967070

  14. Effects of Boronizing Treatment on Corrosion Resistance of 65Mn Steel in two Acid Mediums

    Science.gov (United States)

    Wang, Hongyu; Zhao, Yufeng; Yuan, Xiaoming; Chen, Kangmin; Xu, Ruihua

    To explore the soil workability of rotary blade suitable for large tilling depth (over 20 cm) manufactured through boronizing treatment, this work focuses on the corrosion behavior of 65Mn steel after boronizing treatment in two acid mediums, i.e. the strong acidic medium that hydrochloric solution and the weak acidic that fertilizer-containing soil, and the comparison with existing technology of general rotary blade (lonnealing after overall quenching). The result shows that the corrosion resistance in the two acid mediums of 65Mn steel after boronizing treatment is remarkably improved. After 168 hours' corrosion in the hydrochloric acid solution, the weight loss of boronizing-status sample is only 27.9% of that of lonnealing-status sample. Moreover, there is no obvious weight loss in boronizing-status sample after 168 hours' corrosion in the fertilizer-containing soil, while the weight of lonnealing-status sample is lighter than the original weight after about 150 hours' corrosion. The improvement of the corrosion resistance lies in the significant reduction of the anodization speed in strong acid medium and the effective prevention of phosphorization reaction in weak acidic medium.

  15. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    Science.gov (United States)

    Dhandapani, Vishnu Shankar; Subbiah, Ramesh; Thangavel, Elangovan; Arumugam, Madhankumar; Park, Kwideok; Gasem, Zuhair M.; Veeraragavan, Veeravazhuthi; Kim, Dae-Eun

    2016-05-01

    Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp2 bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  16. Corrosion resistance of Cu-Al coatings produced by thermal spray

    Directory of Open Access Journals (Sweden)

    Laura Marcela Dimaté Castellanos

    2012-04-01

    Full Text Available Many components in the shipbuilding industry are made of copper-based alloys. These pieces tend to break due to corrosion generated by a marine environment; such components can be salvaged through surface engineering, through deposition of suitable coatings. This paper studied the influence of three surface preparation methods involving phosphor bronze substrates concerning the corrosion resistance of commercial coatings having Al-Cu +11% Fe chemical composition. The surface was prepared using three methods: sand blasting, shot blasting and metal polishing with an abrasive disk (with and without a base layer. The deposited coatings were micro-structurally characterised by x-ray diffraction (XRD, optical microscopy and scanning electron microscopy (SEM. Corrosion resistance was evaluated by electrochemical test electrochemical impedance spectroscopy (EIS. Surfaces prepared by sandblasting showed the best resistance to corrosion, so these systems could be a viable alternative for salvaging certain parts in the marine industry. The corrosion mechanisms for the coatings produced are discussed in this research.

  17. Corrosion resistance and biocompatibility of SrHAp/ZnO composite implant coating on titanium

    Science.gov (United States)

    Huang, Yong; Zeng, Hongjuan; Wang, Xuexin; Wang, Deshun

    2014-01-01

    The corrosion resistance of electrodeposited ZnO containing and strontium doped hydroxyapatite (SrHAp/ZnO) coating on titanium (Ti) substrate was investigated. The microstructure, phase composition and corrosion resistance of the coating were studied. The results reveal that Sr2+ and ZnO incorporation markedly increased the density of HAp coating, i.e. the fabricated coating had significantly lower porosity than the original HAp coating. The SrHAp/ZnO coating was dense and uniform, with a flocculent morphological structure of apatite. The SrHAp/ZnO crystals were carbonated calcium-deficient hydroxyapatite, and Sr2+ and ZnO were homogeneously distributed in the coating. The thickness of the composite coating was almost 10 μm without delamination or cracks at the interface. Bond strength test revealed that the adhesion of the SrHAp/ZnO coating was more enhanced than that of the HAp coating. The SrHAp/ZnO-coated Ti had a lower corrosion rate than the pure HAp-coated sample, which suggests the protective characteristic of the composite coating. Osteoblast cellular tests demonstrated that the SrHAp/ZnO composite coating greatly enhanced the in vitro biocompatibility of the Ti substrate.

  18. Enhancing biocompatibility and corrosion resistance of Mg implants via surface treatments.

    Science.gov (United States)

    Jo, Ji-Hoon; Hong, Ji-Yeon; Shin, Kwang-Seon; Kim, Hyoun-Ee; Koh, Young-Hag

    2012-11-01

    Oxide coating layers were formed on a pure magnesium (Mg) substrate through anodization and micro-arc oxidation (MAO) in order to enhance the biocompatibility and reduce the degradation rate. A thin, smooth MgO coating layer was formed after the anodization. On the other hand, when the Mg was treated using the MAO process, a relatively thick, rough MgO layer was formed. The corrosion properties were investigated using electrochemical and ion release tests in a simulated body fluid. Both the anodization and the MAO treatment enhanced the corrosion resistance of the Mg specimens. However, the MgO layers that formed on the surface were not stable enough to render favorable environments for cell growth. The anodized and MAO-treated specimens were post-treated in a cell-culturing medium in order to improve the stability of the coating layer. The biocompatibility was evaluated using in vitro cell tests, including cell attachment, DNA measurement, and alkaline phosphatase (ALP) activity tests. The DNA levels of the surface-treated Mg were about 6-10 times higher than the bare Mg. The ALP activity levels were also more than double after either the anodization or the MAO followed by the post-treatments. These results demonstrated that the biocompatibility and the corrosion resistance of Mg were significantly improved by the series of surface treatments. PMID:21862515

  19. Corrosion resistance and biocompatibility of SrHAp/ZnO composite implant coating on titanium

    International Nuclear Information System (INIS)

    The corrosion resistance of electrodeposited ZnO containing and strontium doped hydroxyapatite (SrHAp/ZnO) coating on titanium (Ti) substrate was investigated. The microstructure, phase composition and corrosion resistance of the coating were studied. The results reveal that Sr2+ and ZnO incorporation markedly increased the density of HAp coating, i.e. the fabricated coating had significantly lower porosity than the original HAp coating. The SrHAp/ZnO coating was dense and uniform, with a flocculent morphological structure of apatite. The SrHAp/ZnO crystals were carbonated calcium-deficient hydroxyapatite, and Sr2+ and ZnO were homogeneously distributed in the coating. The thickness of the composite coating was almost 10 μm without delamination or cracks at the interface. Bond strength test revealed that the adhesion of the SrHAp/ZnO coating was more enhanced than that of the HAp coating. The SrHAp/ZnO-coated Ti had a lower corrosion rate than the pure HAp-coated sample, which suggests the protective characteristic of the composite coating. Osteoblast cellular tests demonstrated that the SrHAp/ZnO composite coating greatly enhanced the in vitro biocompatibility of the Ti substrate.

  20. Effect of phytic acid on the microstructure and corrosion resistance of Ni coating

    Energy Technology Data Exchange (ETDEWEB)

    Meng Guozhe, E-mail: mengguozhe@hrbeu.edu.c [Corrosion and Protection Laboratory, Key Laboratory of Superlight Materials and Surface Technology, Harbin Engineering University, Ministry of Education, Harbin 150001 (China)] [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Sun Feilong [Corrosion and Protection Laboratory, Key Laboratory of Superlight Materials and Surface Technology, Harbin Engineering University, Ministry of Education, Harbin 150001 (China); Shaoa Yawei [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang Tao; Wang Fuhui [Corrosion and Protection Laboratory, Key Laboratory of Superlight Materials and Surface Technology, Harbin Engineering University, Ministry of Education, Harbin 150001 (China)] [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Dong Chaofang [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China); Li, Xiaogang [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)] [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China)

    2010-08-01

    In this work, the pure Ni coatings were synthesized on Q235 steel by using reverse pulsed electrodeposition technique in sulphate-based baths with 0, 0.1, 0.2 and 0.3 g/L phytic acid additive. The effect of phytic acid on the microstructure and micro-morphology of the sample was observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. And the effect of phytic acid on the corrosion resistance of the sample was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results demonstrated that the addition of phytic acid was in favor of the growth of nano-scale twins (NT) in the interior of grains, which was due to the lowered stacking fault energies of Ni during the electrodeposition, and the typical morphology of pyramidal islands on the surface. The results also demonstrated that the effect of phytic acid was not monotonous with increasing concentration: the passive current density i{sub p} was minimum and the charge transfer resistance R{sub t} was maximum for the sample obtained from the bath with 0.2 g/L phytic acid, indicating that the sample obtained from the bath with 0.2 g/L phytic acid showed the best corrosion resistance.

  1. Effect of phytic acid on the microstructure and corrosion resistance of Ni coating

    International Nuclear Information System (INIS)

    In this work, the pure Ni coatings were synthesized on Q235 steel by using reverse pulsed electrodeposition technique in sulphate-based baths with 0, 0.1, 0.2 and 0.3 g/L phytic acid additive. The effect of phytic acid on the microstructure and micro-morphology of the sample was observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. And the effect of phytic acid on the corrosion resistance of the sample was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results demonstrated that the addition of phytic acid was in favor of the growth of nano-scale twins (NT) in the interior of grains, which was due to the lowered stacking fault energies of Ni during the electrodeposition, and the typical morphology of pyramidal islands on the surface. The results also demonstrated that the effect of phytic acid was not monotonous with increasing concentration: the passive current density ip was minimum and the charge transfer resistance Rt was maximum for the sample obtained from the bath with 0.2 g/L phytic acid, indicating that the sample obtained from the bath with 0.2 g/L phytic acid showed the best corrosion resistance.

  2. Investigation on corrosion resistance of Hastelloy N alloy after He+ ion irradiation

    International Nuclear Information System (INIS)

    Background: The invalidation problems of irradiated Hastelloy N alloy caused by high temperature, intense irradiation and severe corrosion are the key factors to the service life of structural materials of molten salt reactor (MSR). Purpose: The aim is to investigate the effect of absorbed dose on the corrosion resistance of Hastelloy N alloy. Methods: Hastelloy N alloy was irradiated by 4.5-MeV He+ ions, and the absorbed doses were 0 He+·cm-2, 1x1015 He+·cm-2, 5×1015 He+·cm-2 and 1×1016 He+·cm-2 respectively. The virgin and irradiated specimens were immersed into molten fluoride salts at 700℃ for 300 h. Then the corroded specimens were imaged by scanning electron microscopy and analyzed by synchrotron radiation microbeam X-ray fluorescence (μ-XRF). Results: The weight-loss results showed that the corrosion generally correlated with the absorbed dose of the alloy. The μ-XRF results indicated that the corrosion was mainly due to the dealloying of alloying element Cr in the matrix. Conclusion: The density of dislocations of Hastelloy N alloy increased with the absorbed dose, which acted as quick paths for Cr element diffusion, and the diffusion of element Cr out of matrix became easier. Finally became weak of the corrosion resistance of Hastelloy N alloy. (authors)

  3. Durable superhydrophilic/phobic surfaces based on green patina with corrosion resistance.

    Science.gov (United States)

    Cho, Handong; Lee, Jeongwon; Lee, Sangmin; Hwang, Woonbong

    2015-03-14

    Special wetting surfaces with superhydrophilicity or superhydrophobicity have attracted great interest because of their potential for practical applications. However, since the special wetting surface may be used in a severe environment, including polluted air and seawater, it is necessary to develop a durable special wetting surface with excellent corrosion-resistance. Here, we report a new strategy for robust superhydrophilic or superhydrophobic green patina surfaces on copper substrates with superior corrosion resistance and adhesion strength, which have great potential for treating marine pollution. The as-prepared surfaces exhibited superhydrophilicity with underwater superoleophobicity or superoleophilicity with under-oil superhydrophobicity, which allowed them to selectively separate oil and water with high efficiency. More importantly, the surface displayed not only good mechanical stability but also chemical stability in corrosive liquids owing to the intrinsic properties of the patina and hydrophobic coating. Furthermore, the surface can be utilized as coating material for the decoration of building exteriors and prevention from surface fouling. We believe that our proposed method would make it possible to develop engineering materials that require robust anti-fouling, anti-frost, and anti-corrosion properties in marine environments. PMID:25670158

  4. On texture, corrosion resistance and morphology of hot-dip galvanized zinc coatings

    Energy Technology Data Exchange (ETDEWEB)

    Asgari, H. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of)]. E-mail: asgari.ha@gmail.com; Toroghinejad, M.R. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of); Golozar, M.A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of)

    2007-06-15

    Texture is an important factor which affects the coating properties. Chemical composition of the zinc bath can strongly influence the texture of hot-dip galvanized coatings. In this study, lead content of the zinc bath was changed from 0.01 wt.% to 0.11 wt.%. Specimens were prepared from zinc baths of different lead content and its texture was evaluated using X-ray diffraction. Corrosion behaviour was analyzed by Tafel extrapolation and linear polarization tests. To study the corrosion products of the specimens, salt spray test was employed. Also, the spangle size of the specimens was determined using line intercept method. From the experimental results it was found that (00.2) basal plane texture component would be weakened by increasing the lead content of the zinc and conversely (20.1) high angle pyramidal texture components strengthened. Besides, coatings with strong (00.2) texture component and weaker (20.1) component have better corrosion resistance than the coatings with weak (00.2) and strong (20.1) texture components. In addition, surface morphology would be changed and presence of basal planes decreases at the coating surface due to the increase of lead in the zinc bath. Furthermore, spangle size would be increased by increasing the lead content of the zinc bath. Investigation on the effects of skin pass rolling showed that in this case (00.2) basal texture component and corrosion resistance of the skin passed specimens, in comparison with non-skin passed specimens, have been decreased.

  5. Cellulose acetate/hydroxyapatite/chitosan coatings for improved corrosion resistance and bioactivity

    International Nuclear Information System (INIS)

    Cellulose acetate (CA) nanofibers were deposited on stainless steel plates by electrospinning technique. The composite of hydroxyapatite (HAP) nanoparticles and chitosan (CHI) was coated subsequently by dip-coating. The structure and morphology of the obtained coatings were investigated by Fourier transform infrared spectroscopy and scanning electron microscopy. The stability of the coatings in physiological environment was studied using electrochemical polarization and impedance spectroscopy. The CA nanofibers were embedded in the HAP/CHI coating and the resulted composite film was densely packed and uniform on the substrate. The in vitro biomineralization study of the coated samples immersed in simulated body fluid (SBF) confirmed the formation ability of bone-like apatite layer on the surface of HAP-containing coatings. Furthermore, the coatings could provide corrosion resistance to the stainless steel substrate in SBF. The electrochemical results suggested that the incorporation of CA nanofibers could improve the corrosion resistance of the HAP/CHI coating. Thus, biocompatible CA/HAP/CHI coated metallic implants could be very useful in the long-term stability of the biomedical applications. - Highlights: • The composite coatings were prepared by electrospinning and dip-coating. • Good in vitro bioactivity of the CA/HAP/CHI coating was confirmed. • Electrochemical behaviors in SBF of the coatings have been studied. • The CA/HAP/CHI coating shows better resistance property than HAP/CHI

  6. The corrosion resistance of Zr-Nb and Zr-Nb-Sn alloys in high-temperature water and steam

    International Nuclear Information System (INIS)

    An alloy of reactor-grade sponge zirconium-2.5 wt. % niobium was exposed to water and steam at high temperature. The corrosion was twice that of Zircaloy-2 while hydrogen pickup was found to be equal to that of Zircaloy-2. Ternary additions of tin to this alloy in the range 0.5-1.5 had no effect on the corrosion resistance in water at 315oC up to 100 days. At higher temperatures, tin increased the corrosion, the effect varying with temperature. Heat treatment of the alloys was shown to affect corrosion resistance. (author)

  7. Effect of Nitrogen Ion Implantation on the Structure and Corrosion Resistance of Equiatomic NiTi Shape Memory Alloy

    Institute of Scientific and Technical Information of China (English)

    HUA Yingjie; WANG Chongtai; MENG Changgong; YANG Dazhi

    2006-01-01

    To protect the surface of NiTi from corrosion, an ion implantation method was proposed. In the present work, a surface oxidized sample was implanted with nitrogen at energy of 100 keV. The corrosion resistance property was examined by the anodic polarization method in a simulated body fluid (SBF) at a temperature of 37 ℃ and contrasted to non-implanted NiTi samples. The composition and structure of the implanted layers were investigated by XPS. The experimental results from the electrochemical measurements provide an evidence that the nitrogen ion-implantation increases the corrosion resistance of NiTi shape memory alloy.

  8. Metastable beta Ti-Nb-Mo alloys with improved corrosion resistance in saline solution

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Microstructural and electrochemical characterization of metastable beta Ti-Nb-Mo alloys for biomedical implantation. • Corrosion resistance was established in 0.9 wt% NaCl saline solution at 25 °C using conventional and microelectrochemical techniques. • The materials spontaneously form passivating oxide films on their surface. • Surface films are stable for polarizations more positive than those encountered in the human body. • The addition of niobium to Ti12Mo enhances the capacitive characteristics of the passivating oxide layers. - Abstract: The present study explores the microstructural characteristics and electrochemical responses of four metastable beta Ti-Nb-Mo alloys for biomedical implantation. They were synthesized by the cold crucible levitation melting technique, and compositions were selected to keep the molybdenum equivalency close to 12 wt% Moeq. For the sake of comparison, Ti12Mo was also investigated. Microstructural characterization reveals that all the alloys are β (body-centred cubic structure), and the surface is composed by β equiaxial grains with dimensions in the range of tens to hundreds μm. The corrosion resistance (potentiodynamic polarization and electrochemical impedance spectroscopy) of the alloys was determined in 0.9 wt% NaCl saline solution at 25 °C. The materials spontaneously form a passivating oxide film on their surface, and they are stable for polarizations up to +1.0 VSCE. No evidence of localized breakdown of the oxide layers is found for polarizations more positive than those encountered in the human body. The passive layers show dielectric characteristics, and the wide frequency ranges displaying capacitive characteristics occur for both higher niobium contents in the alloy and longer exposures to the saline solution. The insulating characteristics of the oxide-covered surfaces were investigated by scanning electrochemical microscopy operated in the feedback mode, using

  9. High Performance Concrete (HPC)

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Normal Strength Concrete (NSC) is heavy and lacks the required workability in some large concrete structures, such as high-rise buildings, bridges, and structures under severe exposure conditions. High Performance Concrete (HPC) is the latest development in concrete.

  10. High Performance Marine Vessels

    CERN Document Server

    Yun, Liang

    2012-01-01

    High Performance Marine Vessels (HPMVs) range from the Fast Ferries to the latest high speed Navy Craft, including competition power boats and hydroplanes, hydrofoils, hovercraft, catamarans and other multi-hull craft. High Performance Marine Vessels covers the main concepts of HPMVs and discusses historical background, design features, services that have been successful and not so successful, and some sample data of the range of HPMVs to date. Included is a comparison of all HPMVs craft and the differences between them and descriptions of performance (hydrodynamics and aerodynamics). Readers will find a comprehensive overview of the design, development and building of HPMVs. In summary, this book: Focuses on technology at the aero-marine interface Covers the full range of high performance marine vessel concepts Explains the historical development of various HPMVs Discusses ferries, racing and pleasure craft, as well as utility and military missions High Performance Marine Vessels is an ideal book for student...

  11. Effects of Sr and Sn on microstructure and corrosion resistance of Mg–Zr–Ca magnesium alloy for biomedical applications

    International Nuclear Information System (INIS)

    Highlights: ► Element alloying is one of the effective ways to modify the performance of alloys. ► Sr and Sn were simultaneously used to improve the corrosion resistance of Mg–Zr–Ca. ► Mg2Sn was mainly found within the grain interior. ► Corrosion resistance was improved obviously. -- Abstract: Magnesium based alloy is a biodegradable metal that has significant potential advantages as an implant material. Element alloying is one of the effective methods to modify the performance of the magnesium alloy. In the paper, Sr and Sn as alloy elements were simultaneously added into the Mg–Zr–Ca alloy to improve the corrosion resistance. The differences of Mg–Zr–Ca alloy and Mg–Zr–Ca–Sr–Sn alloy were compared. The X-ray diffractometer (XRD) and the scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) were used to analysis the phases and the microstructure of the alloys. The results indicated that the addition of Sn could form Mg2Sn mainly within the grain interior; Sr phase was mainly detected along the grain boundary. Immersion tests and electrochemical measurements showed that the corrosion resistance was improved obviously with simultaneous addition of Sr and Sn in Mg–Zr–Ca alloy. It suggested that bio-magnesium based alloy can use Sr and Sn as effective alloy elements to modify its performance.

  12. 77 FR 54891 - Certain Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Preliminary...

    Science.gov (United States)

    2012-09-06

    ... FR 55769 (September 14, 2010) (unchanged in the final results); Certain Corrosion-Resistant Carbon... Administrative Review, 74 FR 46110, 46112 (September 8, 2009) (unchanged in the final results); Certain Corrosion... Administrative Reviews and Requests for Revocations in Part, 76 FR 61076 (October 3, 2011) (Initiation...

  13. 76 FR 55004 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary...

    Science.gov (United States)

    2011-09-06

    ..., 75 FR 55769 (September 14, 2010) (unchanged in CORE 16 Final Results); Certain Corrosion-Resistant... for Revocation in Part, 75 FR 60076, 60077 (September 29, 2010) (Initiation Notice). In addition... Carbon Steel Flat Products from Korea, 58 FR 44159 (August 19, 1993) (Orders on Certain Steel from...

  14. 76 FR 17381 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of...

    Science.gov (United States)

    2011-03-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of Final Results of the Sixteenth Administrative Review Correction In notice document...

  15. Influence of silver additions to type 316 stainless steels on bacterial inhibition, mechanical properties, and corrosion resistance

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Tseng, I-Sheng; Møller, Per;

    2010-01-01

    techniques. The microstructure of these 316 stainless steels was examined, and the influences of silver additions to 316 stainless steels on bacterial inhibition, mechanical properties, and corrosion resistance were investigated. This study suggested that silver-bearing 316 stainless steels could be used in...

  16. 77 FR 67395 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Revised Schedule for the...

    Science.gov (United States)

    2012-11-09

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Revised Schedule for the... these five-year reviews (77 FR 31877, May 30, 2012). As noted in the Commission's original...

  17. 78 FR 55241 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2013-09-10

    ...: Certain Steel Products From Korea, 58 FR 43752 (August 17, 1993) (Order). \\3\\ See the ``Decision... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... carbon steel flat products (CORE) from the Republic of Korea (Korea) for the period of review...

  18. Ion beam analysis, corrosion resistance and nanomechanical properties of TiAlCN/CNx multilayer grown by reactive magnetron sputtering

    International Nuclear Information System (INIS)

    A novel TiAlCN/CNx multilayer coating, consisting of nine TiAlCN/CNx periods with a top layer 0.5 μm of CNx, was designed to enhance the corrosion resistance of CoCrMo biomedical alloy. The multilayers were deposited by dc and RF reactive magnetron sputtering from Ti0.5Al0.5 and C targets respectively in a N2/Ar plasma. The corrosion resistance and mechanical properties of the multilayer coatings were analyzed and compared to CoCrMo bulk alloy. Ion beam analysis (IBA) and X-ray diffraction tests were used to measure the element composition profiles and crystalline structure of the films. Corrosion resistance was evaluated by means of potentiodynamic polarization measurements using simulated body fluid (SBF) at typical body temperature and the nanomechanical properties of the multilayer evaluated by nanoindentation tests were analyzed and compared to CoCrMo bulk alloy. It was found that the multilayer hardness and the elastic recovery are higher than the substrate of CoCrMo. Furthermore the coated substrate shows a better general corrosion resistance than that of the CoCrMo alloy alone with no observation of pitting corrosion

  19. Computer Simulation and Experimental Validation on the Oxidation and Sulfate Corrosion Resistance of Novel Chromium Based High Temperature Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shizhong

    2013-02-28

    This report summarizes our recent works of ab initio molecular dynamics inter-atomic potentials development on dilute rare earth element yttrium (Y) etc. doped chromium (Cr) alloy systems, its applications in oxidation and corrosion resistance simulation, and experiment validation on the candidate systems. The simulation methods, experimental validation techniques, achievements already reached, students training, and future improvement are briefly introduced.

  20. Effect of Copper Addition on Corrosion Resistance of Austenitic Stainless Steel in Highly Concentrated Sulfuric Acid Solution

    International Nuclear Information System (INIS)

    Effect of Cu addition on corrosion resistance of austenitic stainless steel in 18.4N H2SO4 at 80 ∼ 120 .deg. C was investigated through anodic polarization test, cathodic polarization test, long-term immersion test and Auger surface analysis. The addition of 3.2% Cu in the alloy enhanced the corrosion resistance greatly in highly concentrated sulfuric acid by decreasing corrosion current density, current density of hydrogen evolution, critical current density and passivation current density. The dissolution rates of each of the elements in the alloy resembled that of the elements in pure metal form. The reason why Cu improved the corrosion resistance was that cathodic reaction and anodic dissolution in the active region were retarded by the protective surface film now heavily enriched with Cu through selective dissolution of Fe, Ni and Cr. The stainless steel with 18%Cr-21%Ni-3.2%Mo-1.6%W-0.2%N- 3.2%Cu-0.035%C displayed a noticeably better corrosion resistance than the commercial super austenitic stainless steel such as 654SMO and at least as good as Ni-base alloy such as CW12MW in SO42- environment

  1. Effect of Copper Addition on Corrosion Resistance of Austenitic Stainless Steel in Highly Concentrated Sulfuric Acid Solution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soon Tae; Park, Yong Soo [Yonsei University, Seoul (Korea, Republic of); Kim, Hyung Joon [POSCO Technical Research Laboratories, Pohang (Korea, Republic of)

    1999-08-15

    Effect of Cu addition on corrosion resistance of austenitic stainless steel in 18.4N H{sub 2}SO{sub 4} at 80 {approx} 120 .deg. C was investigated through anodic polarization test, cathodic polarization test, long-term immersion test and Auger surface analysis. The addition of 3.2% Cu in the alloy enhanced the corrosion resistance greatly in highly concentrated sulfuric acid by decreasing corrosion current density, current density of hydrogen evolution, critical current density and passivation current density. The dissolution rates of each of the elements in the alloy resembled that of the elements in pure metal form. The reason why Cu improved the corrosion resistance was that cathodic reaction and anodic dissolution in the active region were retarded by the protective surface film now heavily enriched with Cu through selective dissolution of Fe, Ni and Cr. The stainless steel with 18%Cr-21%Ni-3.2%Mo-1.6%W-0.2%N- 3.2%Cu-0.035%C displayed a noticeably better corrosion resistance than the commercial super austenitic stainless steel such as 654SMO and at least as good as Ni-base alloy such as CW12MW in SO{sub 4}{sup 2-} environment.

  2. 77 FR 27438 - Certain Corrosion-Resistant Carbon Steel Flat Products From Korea: Final Results of Expedited...

    Science.gov (United States)

    2012-05-10

    ... Tariff Act of 1930, as amended (``the Act''). See Initiation of Five-Year (``Sunset'') Review, 77 FR 85... Products from Korea, 58 FR 43752 (August 17, 1993). On January 3, 2012, the Department initiated the third..., plated, or coated with corrosion-resistant metals such as zinc, aluminum, or zinc-, aluminum-, nickel-...

  3. 75 FR 13490 - Certain Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Notice of...

    Science.gov (United States)

    2010-03-22

    ...: Notice of Preliminary Results of the Antidumping Duty Administrative Review, 74 FR 46110 (September 8... Time Limit for the Final Results of Antidumping Duty Administrative Review, 74 FR 58945 (November 16... with corrosion-resistant metals such as zinc, aluminum, or zinc-, aluminum-, nickel- or...

  4. Zirconium alloys with small amounts of iron and copper or nickel show improved corrosion resistance in superheated steam

    Science.gov (United States)

    Greenberg, S.; Youngdahl, C. A.

    1967-01-01

    Heat treating various compositions of zirconium alloys improve their corrosion resistance to superheated steam at temperatures higher than 500 degrees C. This increases their potential as fuel cladding for superheated-steam nuclear-fueled reactors as well as in autoclaves operating at modest pressures.

  5. Size-dependent radiation tolerance and corrosion resistance in ion irradiated CrN/AlTiN nanofilms

    International Nuclear Information System (INIS)

    This paper demonstrates a substantial enhancement in radiation tolerance and corrosion resistance for the CrN/AlTiN multilayered nanofilms with the decreasing of period-thickness. After irradiation by 190 keV Ar+ ions to the dose of 81 dpa, the amorphization region in the CrN/AlTiN 3 nm multilayered nanofilm is much smaller than that in the CrN/AlTiN 7 nm multilayered nanofilm and the CrN film based on glancing-incidence X-ray diffraction measurements. Potentiodynamic polarization and impedance measurements show that the CrN/AlTiN multilayered nanofilms have good corrosion resistance to irradiation. With increasing the irradiation fluence, the irradiated samples are more susceptible to corrosive electrolyte. However, the CrN/AlTiN multilayered nanofilm with smaller period-thickness shows significant enhancement of the corrosion resistance under both irradiation and un-irradiation conditions. Under the same irradiation fluence of 5 × 1016 ions/cm2, the corrosion current density increased 9.47 times for the CrN film, while it only increased 2.08 times for the CrN/AlTiN 3 nm multilayered nanofilm. The interfaces of multilayered nanofilms act as effective sinks for irradiation-induced defects and are responsible for the enhanced radiation tolerance and corrosion resistance properties

  6. Size-dependent radiation tolerance and corrosion resistance in ion irradiated CrN/AlTiN nanofilms

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Mengqing [School of Physics and Technology and Center for Electron Microscopy, Wuhan University, Wuhan 430072 (China); Ren, Feng, E-mail: fren@whu.edu.cn [School of Physics and Technology and Center for Electron Microscopy, Wuhan University, Wuhan 430072 (China); Wang, Yongqiang [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Zhang, Hongxiu; Xiao, Xiangheng; Fu, Dejun [School of Physics and Technology and Center for Electron Microscopy, Wuhan University, Wuhan 430072 (China); Yang, Bing [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Jiang, Changzhong [School of Physics and Technology and Center for Electron Microscopy, Wuhan University, Wuhan 430072 (China)

    2015-01-01

    This paper demonstrates a substantial enhancement in radiation tolerance and corrosion resistance for the CrN/AlTiN multilayered nanofilms with the decreasing of period-thickness. After irradiation by 190 keV Ar{sup +} ions to the dose of 81 dpa, the amorphization region in the CrN/AlTiN 3 nm multilayered nanofilm is much smaller than that in the CrN/AlTiN 7 nm multilayered nanofilm and the CrN film based on glancing-incidence X-ray diffraction measurements. Potentiodynamic polarization and impedance measurements show that the CrN/AlTiN multilayered nanofilms have good corrosion resistance to irradiation. With increasing the irradiation fluence, the irradiated samples are more susceptible to corrosive electrolyte. However, the CrN/AlTiN multilayered nanofilm with smaller period-thickness shows significant enhancement of the corrosion resistance under both irradiation and un-irradiation conditions. Under the same irradiation fluence of 5 × 10{sup 16} ions/cm{sup 2}, the corrosion current density increased 9.47 times for the CrN film, while it only increased 2.08 times for the CrN/AlTiN 3 nm multilayered nanofilm. The interfaces of multilayered nanofilms act as effective sinks for irradiation-induced defects and are responsible for the enhanced radiation tolerance and corrosion resistance properties.

  7. 78 FR 16247 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea; Final Results of...

    Science.gov (United States)

    2013-03-14

    ... Corrosion-Resistant Carbon Steel Flat Products from Korea, 58 FR 44159 (August 19, 1993). Notification to..., and Partial Rescission, 77 FR 54891 (September 6, 2012) (Preliminary Results). DATES: Effective Date...'s Preliminary Results.\\5\\ \\2\\ See id., 77 FR at 54893. \\3\\ See id., 77 FR at 54896. \\4\\ See...

  8. 77 FR 301 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea: Institution of Five-Year...

    Science.gov (United States)

    2012-01-04

    ... corrosion-resistant carbon steel flat products from Germany and Korea (72 FR 7009). The Commission is now... part 207), as most recently amended at 74 FR 2847 (January 16, 2009). \\1\\ No response to this request...-resistant carbon steel flat products from Korea (58 FR 43752). On August 19, 1993, Commerce...

  9. 75 FR 25841 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2010-05-10

    ... for Revocation in Part, 74 FR 48224 (September 22, 2009). The preliminary results of this review were... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...'') published a notice of initiation of the administrative review of the antidumping duty order on...

  10. 77 FR 25405 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2012-04-30

    ... for Revocation in Part, 76 FR 61076 (October 3, 2011). The preliminary results of this review are... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...'') published a notice of initiation of the administrative review of the antidumping duty order on...

  11. 76 FR 21332 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2011-04-15

    ... for Revocation in Part, 75 FR 60076 (September 29, 2010). The preliminary results of this review are... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...'') published a notice of initiation of the administrative review of the antidumping duty order on...

  12. Cost-effective solutions for corrosion-resistant expandable-screen base pipe in sour/brine service

    Energy Technology Data Exchange (ETDEWEB)

    Chitwood, G. [Halliburton Energy Services, Calgary, AB (Canada); Skogsberg, L. [Shell International E and P Inc., Calgary, AB (Canada)

    2004-07-01

    In order to remain competitive, oilfield operators use the lowest-cost materials that meet the technical needs of an operation. As field development expands into deeper and more corrosive environments, there is a greater demand for corrosion-resistant alloys. The main environmental factors that affect stress corrosion cracking (SCC) behaviour of S31603 are hydrogen sulphide (H{sub 2}S) content, acidity, chloride concentration, oxygen contamination and temperature. In expandable sand control systems, new technology must compete with existing non-expandable screens that are low-cost to manufacture. The first choice for a corrosion-resistant alloy for base pipe in conventional sand screens is the low cost 13Cr which provides corrosion resistance in mild H{sub 2}S situations under a range of chloride and temperature conditions. The material, however, lacks ductility needed for 25 per cent expansion. Another option is to use 316L (UNS S31603), an alloy with sufficient ductility and strength, but with questionable corrosion resistance when it comes to chloride SCC. The potential application of S31603 in several projects was presented along with data needed to establish a performance envelope for this material which has been shown to be a cost-effective material for base pipes in sand-control screens. 3 refs., 2 tabs., 3 figs.

  13. Study of process of silicide coatings formation and their corrosion resistance on niobium-titanium alloy NT50

    International Nuclear Information System (INIS)

    Kinetics of NT50 niobium alloy vacuum siliconizing in the 1100-1250 deg C temperature range, structure and composition of coating are investigated. Corrosion resistance in the 1000-1400 deg C temperature range, phase composition and structure of oxidation products are studied. Durability of coatings in the 1200-1500 deg C temperature range is determined

  14. Corrosion resistance of premodeled wires made of stainless steel used for heart electrotherapy leaders

    International Nuclear Information System (INIS)

    The purpose of the study is to evaluate resistance to electrochemical corrosion of wire made of X10CrNi18-8 stainless steel designed for use in cardiology treatment. The influence of strain formed in the premodeling process and methods of wire surface preparation to corrosive resistance in artificial plasma solution were analysed. Wire corrosion tests were carried out in the solution of artificial plasma. Resistance to electrochemical corrosion was evaluated on the ground of recorded curves of anodic polarization by means of potentiodynamic method. Potentiodynamic tests carried out enabled to determine how the resistance to pitting corrosion of wire changes, depending on strain formed in the premodeling process as well as on the method of wire surface preparation. For evaluation of phenomena occurring on the surface of tested steel, electrochemical impedance spectroscopy (EIS) was applied. Deterioration of corrosive properties of wire along with the increase in the formed strain hardening was observed.

  15. Characteristics of low nickel ferritic-austenitic corrosion resistant cast steel

    Directory of Open Access Journals (Sweden)

    B. Kalandyk

    2014-10-01

    Full Text Available The article presents the results of microscopic examinations of corrosion resistant cast steel with reduced nickel content obtained in a test casting with varying wall thickness. Investigations were carried out in as-cast condition and after heat treatment. Regardless of the casting wall thickness, increasing the manganese and nitrogen content to about 5 % and 2 500 ppm, respectively, yields the material with a two-phase microstructure containing ferrite in an amount of 55,6 ÷ 57,2 % (magnetic method and 52,3 ÷ 55,2 % (analytical method. Based on the results of metallographic examinations, total elimination of the secondary austenite from the microstructure was observed. Microhardness measurements showed average values of 352,3 μHV20 and 267 μHV20 for the chromium ferrite and austenite, respectively.

  16. Corrosion resistance, composition and structure of RE chemical conversion coating on magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Golden yellow rare earths chemical conversion coating was obtained on the surface of magnesium alloy by immersing in cerium sulfate solution.The corrosion resistance of RE conversion coating was evaluated using immersion test and potentiodynamic polarization measurements in 3.5%NaCl solution.The morphologies of samples before corrosion and after corrosion were observed by SEM.The structures and compositions of the RE conversion coating were studied by means of XPS.XRD and IR.The results show that,the conversion coating consists of mainly two kinds of element Ce and O,the valences of cerium are+3 and+4.and OH exists in the coating.The anti-corrosion property of magnesium alloy is increased obviously by rare earths conversion coating,Its self-corrosion current density decreases and the coating has self-repairing capability in the corrosion process in 3.5%NaCl solution.

  17. A Magnetic Properties and Corrosion Resistance of Fe-Si Alloy Coating Prepared on Mild Steel

    Directory of Open Access Journals (Sweden)

    Yi WANG

    2014-12-01

    Full Text Available The present work deals with preparation of Fe3Si coatings on mild steel and evaluation of its magnetic property and corrosion behavior. Magnetic property of coatings was measured using a vibrating sample magnetometer, the result shows that the saturation magnetization reached to the maximum value (214.1 emu•g-1 and the coercivity fell to the lowest (23.11 Oe in 1000oC. Corrosion behaviour of the coatings was studied using polarization in 3.5%NaCl solution. It was found that the corrosion current density (icorr decreased with increasing of heat treatment temperature up to 1000oC, indicating an improvement in corrosion resistance. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6446

  18. Influence of microstructure on the corrosion resistance of Fe-44Ni thin films

    Institute of Scientific and Technical Information of China (English)

    Lin Lu; Tian-cheng Liu; Xiao-gang Li

    2016-01-01

    An Fe–44Ni nanocrystalline (NC) alloy thin film was prepared through electrodeposition. The relation between the microstructure and corrosion behavior of the NC film was investigated using electrochemical methods and chemical analysis approaches. The results show that the NC film is composed of a face-centered cubic phase (γ-(Fe,Ni)) and a body-centered cubic phase (α-(Fe,Ni)) when it is annealed at temperatures less than 400°C. The corrosion resistance increases with the increase in grain size, and the corresponding corrosion process is controlled by oxygen reduction. The NC films annealed at 500°C and 600°C do not exhibit the same pattern, although their grain sizes are considerably large. This result is attributed to the existence of an anodic phase, Fe0.947Ni0.054, in these films. Under this condition, the related corrosion process is synthetically controlled by anodic dissolution and depolarization.

  19. Influence of microstructure on the corrosion resistance of Fe-44Ni thin films

    Science.gov (United States)

    Lu, Lin; Liu, Tian-cheng; Li, Xiao-gang

    2016-06-01

    An Fe-44Ni nanocrystalline (NC) alloy thin film was prepared through electrodeposition. The relation between the microstructure and corrosion behavior of the NC film was investigated using electrochemical methods and chemical analysis approaches. The results show that the NC film is composed of a face-centered cubic phase (γ-(Fe,Ni)) and a body-centered cubic phase (α-(Fe,Ni)) when it is annealed at temperatures less than 400°C. The corrosion resistance increases with the increase in grain size, and the corresponding corrosion process is controlled by oxygen reduction. The NC films annealed at 500°C and 600°C do not exhibit the same pattern, although their grain sizes are considerably large. This result is attributed to the existence of an anodic phase, Fe0.947Ni0.054, in these films. Under this condition, the related corrosion process is synthetically controlled by anodic dissolution and depolarization.

  20. Influence of Laser Peening on Phase Transformation and Corrosion Resistance of AISI 321 steel

    Science.gov (United States)

    Karthik, D.; Swaroop, S.

    2016-07-01

    The objective of this study is to investigate the influence of laser peening without coating (LPwC) on austenitic to martensitic (γ → α') phase transformation and corrosion behavior of austenitic stainless steel AISI 321 in 3.5% NaCl environment. Results indicate that LPwC induces a large compressive residual stresses of nearly -854 MPa and γ → α' phase transformation of about 18% (volume fraction). Microstructures of peened surface confirmed the γ → α' phase transformation and showed no grain refinement. Hardness increased slightly with a case depth of 900 μm. Despite the smaller surface roughness introduced, corrosion resistance improved after peening due to compressive residual stresses.

  1. Influence of the cooling rate on the corrosion resistance of duplex cast steel

    Directory of Open Access Journals (Sweden)

    B. Kalandyk

    2013-01-01

    Full Text Available The results of the influence of the cooling rate of the casting made of the acid-resistant ferritic - austenitic cast steel on the microstructure and corrosion resistance are presented in the paper. Samples cut out from the walls of the casting being cooled at the cooling rate of 3,2 - 0,5 ºC/s were used in the study. Different cooling rates create favorable conditions for the segregation processes lowering properties of castings. It was found, that differences in the polarization curves occur only in the more aggressive corrosive environment. The reason of such behaviour of cast steel is the segregation of elements dissolved in austenite and the difference in the volume fraction of ferrite and austenite in the walls of the different thickness.

  2. MICROSTRUCTURES AND THE STRUCTURE STABILITY OF INCONEL 725, A NEW AGE-HARDENABLE CORROSION RESISTANT SUPERALLOY

    Institute of Scientific and Technical Information of China (English)

    J.X. Dong; M.C. Zhang; S.K. Mannan

    2003-01-01

    INCONEL725 is a highly corrosion resistant nickel based alloy capable of being age-hardened to high strength levels. The microstructure observations and the phase iden-tification after a standard heat treatment were investigated. The results show thatmary carbide phase TiC, as well as M6C carbide and a little extent MC (mainly TiC)precipitates which nucleate mainly at grain boundaries. An isothermal aging studywas carried out on this alloy for up to 10 000 hours at 593℃. This additional agingdid not affect the tensile strength. However, microstructures show that the thermalexposure has a little additional effect. With increasing the exposure time, the size ofcipitated at grain boundaries have an increased and complex tendency on a few grainboundaries. The experimental results illustrate the excellent structure stability of theage-hardenable IN725 at 593℃.

  3. Pulsed ion beam surface treatment for preparing rapidly solidified corrosion resistant steel and aluminum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Buchheit, R.G.; Maestas, L.M.; McIntyre, D.C.; Stinnett, R.W. [Sandia National Labs., Albuquerque, NM (United States); Greenly, J.B. [Cornell Univ., Ithaca, NY (United States)

    1995-03-01

    Intense, pulsed ion beams were used to melt and rapidly resolidify Types 316F, 316L and sensitized 304 stainless steel surfaces to eliminate the negative effects of microstructural heterogeneity on localized corrosion resistance. Anodic polarization curves determined for 316F and 316L showed that passive current densities were reduced and pitting potentials were increased due to ion beam treatment. Type 304 samples sensitized at 600 C for 100 h showed no evidence of grain boundary attack when surfaces were ion beam treated. Equivalent ion beam treatments were conducted with a 6061-T6 aluminum alloy. Electrochemical impedance experiments conducted with this alloy exposed to an aerated chloride solution showed that the onset of pitting was delayed compared to untreated control samples.

  4. Influence of Nano-Al Concentrates on the Corrosion Resistance of Epoxy Coatings

    Institute of Scientific and Technical Information of China (English)

    Yongchun Liang; Fu-Chun Liu; Ming Nie; Shuyan Zhao; Jiedong Lin; En-Hou Han

    2013-01-01

    A two-stage process was used to produce nano-composite epoxy coatings.The first step involved preparing nano-Al concentrates with high concentration and low viscosity,and the second step produced nanocomposite epoxy coatings by mixing the nano-Al concentrates and epoxy resin.Later,the coating was examined with immersion and salt spray tests.The coatings were characterized by electrochemical impedance spectroscopy (EIS),scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS).The results showed that the 5% nano-Al significantly improves the corrosion resistance of the coatings.There are two effects of nano-Al on the coating.Nano-Al is corroded initially to protect the substrate from corrosion,and then the aluminum oxide and aluminum hydroxide were produced after corrosion of nano-Al,which hindered the transmission of corrosion fluid into the coatings.

  5. Review on Improving Wear and Corrosion Resistance of Steels via Plasma Electrolytic Saturation Technology

    Science.gov (United States)

    Lin, Naiming; Xie, Ruizhen; Zhou, Peng; Zou, Jiaojuan; Ma, Yong; Wang, Zhenxia; Han, Pengju; Wang, Zhihua; Tang, Bin; Tian, Wei

    2016-03-01

    Plasma electrolytic saturation (PES) technique which holds the advantages of short treating time and limited heating influence and immediate quenching effect is conducted under high voltage power supply in some electrolyte has been extensively applied to enhance the surface performance of metallic materials. Steel is widely used in various fields thanks to its promising merits of easy workability, plasticity, toughness and weldability. It accounts for a large proportion in the application scope of the metal materials. Steel surfaces with good corrosion resistance, promising wear resistance and high hardness would be obtained by PES. Meanwhile, uniformed coatings can be formed without special requirements for substrate geometries using the PES. This paper first presents a brief introduction of the technological principle of PES. The status on studies and applications of PES for improving surface performance of steels has been reviewed.

  6. Sulphur polymer concrete - a corrosion-resistant material for Middle East construction

    Energy Technology Data Exchange (ETDEWEB)

    Vroom, A.H.; Vroom, C.H. [Starcrete Technologies Inc., Calgary, AB (Canada); Hyne, J.B [Alberta Sulphur Research Ltd., Calgary, AB (Canada)

    1995-07-01

    The Canadian development of sulphur polymer concrete (SPC) and its applications as a construction material, was described. The process for producing SPC uses a stable concentrate of polymeric sulphur (SRX polymer) to modify and stabilize additional elemental sulphur. The characteristics of sulphur-based concretes include high strength, corrosion resistance, complete resistance to salt, impermeability and fast setting. Although these concretes have shown poor durability on exposure to changing temperatures, this does not impair their usefulness in areas such as the Middle East. The raw materials for SPC include sulphur, aggregates which can be unwashed desert sand and other salt-containing aggregates, mineral fillers, and SRX polymer. The mix requires no water. Some of the applications for the material include construction block, marine structures, roads, bridges, building foundations, sewer pipes, railway ties and hazardous waste containers. 2 tabs.

  7. Effect of Microstructure on Mechanical Properties and Corrosion Resistance of 2205 Duplex Stainless Steel

    Directory of Open Access Journals (Sweden)

    Łabanowski Jerzy

    2015-01-01

    Full Text Available This paper presents results of the research on impact of microstructure of austenitic-ferritic steel of duplex type on its mechanical properties and susceptibility to stress corrosion cracking. As showed, improper processing technologies more and more often used in shipbuilding industry for plates and other half-finished products made of duplex steel may cause significant lowering their properties, which frequently makes their replacing necessary. Results of the tests on stress corrosion under tension with low strain rate (SSRT conducted in an inert and corrosion (boiling magnesium chloride environment, are presented. It was proved that even minor structural transformations taking place in 500°C ageing temperature lower corrosion resistance of the steel. Structural transformations occurring in 700°C temperature to a smaller extent influence susceptibility to stress corrosion of the steel, however they cause drastic drop in its plasticity.

  8. Influence of ferrite decomposition mechanisms on the corrosion resistance of an aged duplex stainless steel

    International Nuclear Information System (INIS)

    The effect of long term aging of a duplex stainless steel type X6 CrNiMoCu25-6 on pitting and intergranular corrosion was investigated by various electrochemical methods including cyclic potentiodynamic tests, potentio-kinetic tests and DL-EPR (Double Loop Electrochemical Potentio-kinetic Reactivation) tests. It was established that the spinodal decomposition of ferrite (α' + G) after aging at 400 C during 1000 h leads to localized chromium depletion (wavelength 20 nm) without any detrimental effect on the pitting and intergranular resistance of this steel in synthetic sea water, compared to the annealed steel. However, aging at 500 C for 1000 h generates carbides and intermetallic phases by nucleation and growth producing larger chromium depleted areas, which results in lower pitting and intergranular corrosion resistance in synthetic sea water. (authors)

  9. Effect of Mn Content and Solution Annealing Temperature on the Corrosion Resistance of Stainless Steel Alloys

    Directory of Open Access Journals (Sweden)

    Ihsan-ul-Haq Toor

    2014-01-01

    Full Text Available The corrosion behavior of two specially designed austenitic stainless steels (SSs having different Nickel (Ni and Manganese (Mn contents was investigated. Prior to electrochemical tests, SS alloys were solution-annealed at two different temperatures, that is, at 1030°C for 2 h and 1050°C for 0.5 h. Potentiodynamic polarization (PD tests were carried out in chloride and acidic chloride, whereas linear polarization resistance (LPR and electrochemical impedance spectroscopy (EIS was performed in 0.5 M NaCl solution at room temperature. SEM/EDS investigations were carried out to study the microstructure and types of inclusions present in these alloys. Experimental results suggested that the alloy with highest Ni content and annealed at 1050°C/0.5 hr has the highest corrosion resistance.

  10. Improvement of corrosion resistance of Nisbnd Mo alloy coatings: Effect of heat treatment

    Science.gov (United States)

    Mousavi, R.; Bahrololoom, M. E.; Deflorian, F.; Ecco, L.

    2016-02-01

    In this paper, Nisbnd Mo alloy coatings were deposited from bath containing sodium citrate, nickel sulphate, and sodium molybdate. Essentially, this work is divided into two mains parts: (i) the optimization on the coatings deposition parameters and (ii) the effect of the heat treatment. Polarization curves and electrochemical impedance spectroscopy were acquired using potentiostat/galvanostat and a frequency response analyzer, respectively. Morphology and chemical composition of the coatings were investigated by scanning electron microscopy and energy dispersive spectroscopy, respectively. Polarization curves at different condition revealed that electroplating at temperature 40 oC, pH 9 provides a dense coating with high efficiency. Following the optimization of the deposition parameters, the coatings were annealed at 200, 400, and 600 oC for 25 min. The results showed that the coatings obtained at temperature 40 oC, pH 9, and annealing at 600 oC has the highest corrosion resistance and microhardness.

  11. Assessment of corrosion-resistant coatings for a depleted uranium-0.75 titanium alloy

    International Nuclear Information System (INIS)

    A number of different coatings (aluminum, zinc, magnesium, Al-Zn, Al-Mg, nickel, titanium, TiN and aluminum on TiN) were applied by the arc plasma physical vapor deposition technique to a depleted uranium (DU) alloy for corrosion protection assessment. The as-deposited specimens were examined by scanning electron microscopy for surface morphology and tested for adhesion. Electrochemical polarization tests and immersion tests were conducted in aerated 3.5 wt.% NaCl solution. The results of the electrochemical polarization scans and observations after long-term exposure tests indicated that the two alloys Al-Zn and Al-Mg appear to be the best sacrificial coating materials for improving the corrosion resistance of DU-0.75Ti. (orig.)

  12. Suggested solutions to improve the surface hardness of austenitic stainless steels without loosing their corrosion resistance

    International Nuclear Information System (INIS)

    Ionic nitridation is a process which is already used industrially. Indeed, by nitrogen diffusion, it is possible to harden the surfaces and then to improve the wear, seizure, and fatigue resistances. Nevertheless, the direct application to stainless steels induces a strong degradation of their un-oxidizable character. But this process can be optimized in order to maintain a good oxidation resistance. One way consists to work with a nitrogen plasma or with a carbon plasma. The materials properties obtained with a nitrogen plasma are discussed. Example of control elements of a PWR type reactor are given. This process is then compared with those whose plasma is a carbon plasma. According to the studied process, it is possible to increase the wear resistance of the austenitic stainless steel by a factor of 60 to 700 while entirely conserving the corrosion resistance of the untreated steel. (O.M.)

  13. Electrodeposition and Corrosion Resistance Properties of Zn-Ni/TiO2 Nano composite Coatings

    Directory of Open Access Journals (Sweden)

    B. M. Praveen

    2011-01-01

    Full Text Available Nano sized TiO2 particles were prepared by sol-gel method. TiO2 nano particles were dispersed in zinc-nickel sulphate electrolyte and thin film of Zn-Ni-TiO2 composite was generated by electrodeposition on mild steel plates. The effect of TiO2 on the corrosion behavior and hardness of the composite coatings was investigated. The film was tested for its corrosion resistance property using electrochemical, weight loss, and salt spray methods. The paper revealed higher resistance of composite coating to corrosion. Microhardness of the composite coating was determined. Scanning electron microscope images and X-ray diffraction patterns of coating revealed its fine-grain nature. Average crystalline size of the composite coating was calculated. The anticorrosion mechanism of the composite coating was also discussed.

  14. [Determination of the corrosion resistance of dental alloys with a new measurement method].

    Science.gov (United States)

    Schmidli, Fredy; Jungo, Markus; Jäger, Kurt; Lüthy, Heinz; Büchler, Markus

    2009-01-01

    A corrosion sensor newly developed by the Swiss Society for Corrosion, modified for a potential application in the oral cavity, was tested in vitro. By measuring the impedance with a special sensor in the size of a bur handpiece, it allows a quick determination of the corrosion resistance. For the evaluation of the method, measurements were done on six conventional dental alloys (two precious alloys, one Pd-based alloy and three non-precious alloys) which had been tested in crevice corrosion by the authors in an earlier stage. Qualitatively the results are quite in concordance with the ones got with the usual tests. On the base of the present results the use directly in the oral cavity of this corrosion test method appears to be very promising. PMID:20112638

  15. Study of the corrosion resistance of metals in a lithium bromide solution

    Energy Technology Data Exchange (ETDEWEB)

    Mel' nik, V.V.; Spivak, R.Sh.; Sokolov, V.V.; Trofimenko, A.G.

    1988-07-01

    Results are reported of a study of the corrosion resistance of the stainless steels 12Kh19N10T, 10Kh17N13M3T, 08Kh17N15M3T, 10Kh21N6M2T, and 06KhI28MDT, cupronickel MNZhMts 30-1-1, nickel NP-2, and titanium alloys VT1-0, PT-1M, and PT-3V in a solution of lithium bromide for purposes of assessing these alloys for use in absorption-type refrigerating units using the bromide as an absorbent. The uniform corrosion rate was determined from the weight loss; the nonuniform corrosion rate was determined by measuring the maximum depth of the pits under a microscope. Results are comparatively evaluated.

  16. Structure and corrosion resistance of nickel foils deposited in a vertical gravity field

    International Nuclear Information System (INIS)

    The effects of vertical gravity fields on the structural characteristics of electrodeposited Ni foils were investigated in a centrifuge. Analysis by atomic force microscopy (AFM) shows that the surface roughness of Ni foils reduces from 37.6 nm to 8.1 nm with the increase of gravity coefficient (G) from 1 to 354. Furthermore, the roughness of Ni foils deposited at G = 62 evolves much more slowly than that deposited at G = 1. The study of the textural perfection by X-ray diffractiometry (XRD) reveals that the degree of (2 0 0) preferred orientation parallel to the substrate plane is lowered by the vertical gravity field. Randomly oriented deposits are obtained in the vertical gravity field while deposits with uniaxial texture are obtained in the natural gravity field. Due to these variations in the structure, the Ni foils obtained in the vertical gravity field exhibit improved corrosion resistance.

  17. Enhancing corrosion resistance of reinforced concrete structures with hybrid fiber reinforced concrete

    International Nuclear Information System (INIS)

    Highlights: • Reinforced concrete beams were subjected to cyclic flexural loading. • Hybrid fiber reinforced composites were effective in reducing corrosion rates. • Crack resistance due to fibers increased corrosion resistance of steel rebar. • Galvanic corrosion measurements underestimated corrosion rates. • Polarization resistance measurements predicted mass loss more accurately. - Abstract: Service loads well below the yield strength of steel reinforcing bars lead to cracking of reinforced concrete. This paper investigates whether the crack resistance of Hybrid Fiber Reinforced Concrete (HyFRC) reduces the corrosion rate of steel reinforcing bars in concrete after cyclic flexural loading. The reinforcing bars were extracted to examine their surface for corrosion and compare microcell and macrocell corrosion mass loss estimates against direct gravimetric measurements. A delay in corrosion initiation and lower active corrosion rates were observed in the HyFRC beam specimens when compared to reinforced specimens containing plain concrete matrices cycled at the same flexural load

  18. Corrosion resistance and microstructure of alloy 625 weld overlay on ASTM A516 grade 70

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Mohammad J. [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Petroleum Engineering Dept.; Ketabchi, Mostafa [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Mining and Metallurgical Engineering Dept.

    2016-02-01

    Nickel-based alloys are a crucial class of materials because of their excellent corrosion resistance. In the present study, single layer and two layers alloy 625 weld overlays were deposited by GTAW process on A516 grade 70 carbon steel. The dilution in terms of Fe, Ni, Mo and Nb content was calculated in 30 points of weld overlay. Microstructure observations showed that alloy 625 had austenitic structure with two types of Laves and NbC secondary phases. The uniform and pitting corrosion resistance of alloy 625 weld overlay as casted and as forged were evaluated in accordance with ASTM G48-2011 standard at different temperatures to determine the weight loss and critical pitting temperature. For achieving a better comparison, samples from alloy 625 as casted and as forged were tested under the same conditions. The results point out that single layer alloy 625 weld overlay is not suitable for chloride containing environments, two layers alloy 625 weld overlay and alloy 625 as casted have acceptable corrosion resistance and almost the same critical pitting temperature. Alloy 625 as forged has the best corrosion resistance and the highest critical pitting temperature among all test specimens. Also, the corrosion behavior was evaluated in accordance with ASTM G28 standard. The corrosion rate of single layer weld overlay was unacceptable. The average corrosion rate of two layers weld overlay and in casted condition were 35.82 and 33.01 mpy, respectively. [German] Nickellegierungen sind aufgrund ihres exzellenten Korrosionswiderstandes eine bedeutende Werkstoffklasse. In der diesem Beitrag zugrunde liegenden Studie wurden mittels WIG-Schweissens ein- und zweilagige Schweissplattierungen auf den Kohlenstoffstahl A516 (Grade 70) aufgebracht. Die Vermischung in Form des Fe-, Ni-, Mo- und Nb-Gehaltes wurde an 30 Punkten der Schweissplattierungen berechnet. Die mikrostrukturellen Untersuchungen ergaben, dass die Legierung 625 eine austenitische Struktur mit zwei Arten von

  19. Evaluation of the corrosion resistance of AISI 316 stainless steel filters

    Directory of Open Access Journals (Sweden)

    Luzinete Pereira Barbosa

    2005-06-01

    Full Text Available In this investigation, the corrosion resistance of AISI 316 SS filters prepared with powders in the size ranges 74-44 µm and 210-105 µm and compacted with pressures of 300 MPa and 400 MPa has been evaluated in naturally aerated 0.5 M H2SO4 solution at 25 °C. Weight loss of filters manufactured with compacting pressure of 400 MPa were significantly higher than that of filters compacted at 300 MPa. The filter compacted at 400 MPa had higher carbon and nitrogen contents compared to those compacted at 300 MPa. The former also had chromium rich precipitates and oxides in the grain boundaries. The pores in filters compacted at 400 MPa were smaller than in filters compacted at 300 MPa. Smaller pores favor the formation of concentration cells and consequently, increased crevice corrosion.

  20. Stress concentrator effect on corrosion resistance of welded joints of zirconium - 2.5% niobium alloys

    International Nuclear Information System (INIS)

    Considered is the effect of notches and poor penetrations of 10 and 20% pipeline wall thickness made of Zr - 2.5% Nb alloy on corrosion resistance. Stress concentrator effects have been estimated on the basis of results of cyclic tests in 3% NaCl and pressure tests in water-vapor medium at 300 deg C and 85 atm during 1200 h. Estimated are critical strains and corresponding stresses for basic and a weldmetals. Stress concentrators are shown to low the level of critical stresses of corrosion-mechanical fracture initiation. In water-vapor mixture there found is a corrosion in some zones of welded joint heated in a process of welding over 600 deg C. For such zones registered is the effect of structural-chemical changes, caused by welding

  1. Corrosion resistance of Mg-Mn-Ce magnesium alloy modified by polymer plating

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Polymeric nano-film on the surface of Mg-Mn-Ce magnesium alloy was fabricated by polymer plating of 6-dihexylamino-1,3,5-triazine-2,4-dithiol monosodium(DHN)to improve its corrosion resistance.The electrochemical reaction process was analyzed by cyclic voltammetry and two obvious peaks of oxidation reaction were observed.The static contact angle of distilled water on polymer-plated surface can be up to 106.3°while on the blank surface it is 45.8°.Potentiodynamic polarization results show that the polymeric film Can increase the corrosion potential from-1.594 V VS SCE for blank to-0.382 V VS SCE.The results of electrochemical impedance spectroscopy indicate that the charge transfer resistances of blank and polymer-plated fabricating hydrophobic film on Mg-Mn-Ce alloy surface and improving its anti-corrosion property.

  2. Oxidation of Hastelloy-XR Alloy for Corrosion-Resistant Glass-Coating

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The oxidation behavior of Hastelloy-XR alloy was investigated to obtain the optimum surface condition for corrosion-resistant glass-coatings. The surface morphology of oxide scales changed significantly with variation of temperatureand oxygen partial pressure (Po2). The oxidation kinetics was mainly parabolic independent of oxidation conditions.The oxide scales were consisted of inner Cr2O3 and outer spinel layers. The phase component of spinel layers wereMn1.5Cr1.5O4 and (Mn,Ni)(Cr,Fe)2O4 for the oxygen partial pressures Po2 <10 kPa and Po2>10 kPa, respectively.The optimum oxidation condition to obtain an oxide scale for well-adhered glass-coating to the substrate was 1248 Kand Po2 =0.01 kPa for the oxidation time of 43 ks.

  3. Amine-containing block copolymers: long-term adhesion promoters and corrosion resistant coatings

    Energy Technology Data Exchange (ETDEWEB)

    Small, J.H.; Saunders, R.S.; Kent, M.S.

    1996-07-01

    Arylamine-containing diblock copolymers were prepared via ring- opening metathesis polymerization (ROMP) to afford well-defined phase- separated materials. Alteration of the functionaity in a block, as well as the size of the blocks, allowed for the synthesis of self- assembled monolayers on a copper surface. The arylamine-containing block exhibited a strong binding affinity for the copper surface as seen by neutron reflectivity experiments. In addition, neutron reflectivity data verifies the self-assembly of block copolymer monolayers normal to the copper surface. Block copolymers prepared in this manner allow for the preparation of a wide range of adhesives and corrosion resistant materials. The use of ring-opening metathesis polymerization is important because it permits the synthesis of a variety of functionalized block copolymers.

  4. CORROSION RESISTANCE OF HOT DIP GALVANIZED STEEL PRETREATED WITH BIS-FUNCTIONAL SILANES MODIFIED WITH NANOALUMINA

    Institute of Scientific and Technical Information of China (English)

    F.J.Shan; C.S.Liu; S.H.Wang; G.C.Qi

    2008-01-01

    The corrosion behavior of hot dip galvanized steel pretreated with bis-[triethoxy-silylpropyl]tetrasulfide (BTESPT) modified with alumina particles was studied.The corrosion resistance of the passiving films was evaluated by Tafel polarization curve and electrochemical impedance spectroscopy.The films formed on the galvanized steel substrate were characterized by Fourier transform infrared spectroscopy and energy dispersive X-ray spectrometry.The surface morphology of the treated hot dip galva-nized steel samples was observed by Field Emission Scanning Electron Microscope. The results show that the pretreatments on the basis of silane films modified with nanoalumina particles have reduced both anodic and cathodic current densities,and increased total impedance in the measured frequency,consequently,improving cor-rosion protection for hot dip galvanized steel during immersion in NaCl solutions compared to chromate films and silane films.

  5. Corrosion resistance of multilayer and gradient coatings deposited by PVD and CVD techniques

    OpenAIRE

    J. Mikuła; D. Pakuła; K. Lukaszkowicz; L.A. Dobrzański

    2007-01-01

    Purpose: The aim of the research was the investigation of the corrosion resistance and structure of the TiN, TiN+multiTiAlSiN+TiN, TiN+TiAlSiN+TiN, TiN+TiAlSiN+AlSiTiN coatings deposited by PVD process and Ti(C,N)+TiN, Ti(C,N)+Al2O3+TiN, TiC+TiN, TiC+Ti(C,N)+Al2O3+TiN, TiN+Al2O3 coatings deposited by CVD process.Design/methodology/approach: Investigation of the electrochemical corrosion behavior of the samples in a PGP 201 Potentiostat/Galvanostat, in a thre...

  6. Corrosion resistance of a composite polymeric coating applied on biodegradable AZ31 magnesium alloy.

    Science.gov (United States)

    Zomorodian, A; Garcia, M P; Moura e Silva, T; Fernandes, J C S; Fernandes, M H; Montemor, M F

    2013-11-01

    The high corrosion rate of magnesium alloys is the main drawback to their widespread use, especially in biomedical applications. There is a need for developing new coatings that provide simultaneously corrosion resistance and enhanced biocompatibility. In this work, a composite coating containing polyether imide, with several diethylene triamine and hydroxyapatite contents, was applied on AZ31 magnesium alloys pre-treated with hydrofluoric acid by dip coating. The coated samples were immersed in Hank's solution and the coating performance was studied by electrochemical impedance spectroscopy and scanning electron microscopy. In addition, the behavior of MG63 osteoblastic cells on coated samples was investigated. The results confirmed that the new coatings not only slow down the corrosion rate of AZ31 magnesium alloys in Hank's solution, but also enhance the adhesion and proliferation of MG63 osteoblastic cells, especially when hydroxyapatite nanoparticles were introduced in the coating formulation. PMID:23454214

  7. Microstructure and intergranular corrosion resistance of UNS S17400 (17-4PH) stainless steel

    International Nuclear Information System (INIS)

    UNS S17400 or 17-4PH is a precipitation hardening martensitic stainless steel with many industrial applications. Quite different mechanical properties can be produced in this material by varying the aging temperature. In this work, the influence of aging temperature on the intergranular corrosion susceptibility was evaluated by electrochemical and metallographic tests. The microstructural features were investigated by X-ray diffraction, optical and scanning electron microscopy. Intergranular chromium carbide precipitation occurs in specimens aged at high temperatures, although NbC carbides were also observed. The results obtained by double loop electrochemical potentiodynamic reactivation tests (DL-EPR) show that the susceptibility to intergranular corrosion resistance increases with the increase of aging temperature. Healing due to Cr diffusion in the 600-650 oC range was not observed by DL-EPR tests.

  8. Effects of Mg on corrosion resistance of Al galvanically coupled to Fe

    International Nuclear Information System (INIS)

    Effects of magnesium and pH on corrosion of aluminum galvanically coupled to iron have studied by using potentio- dynamic and static tests for polarization curves, Mott-Schottky test for analysis of semiconductor property, and GD-AES and XPS for film analysis. Pitting potential was sensitive to magnesium as an alloying element but not to pH, while passive current was sensitive to pH but not to magnesium. It was explained with, instead of point defect model (PDM), surface charge model describing that the ingression of chloride depends on the state of surface charge and passive film at film/solution interface is affected by pH. In addition, galvanic current of aluminum electrically coupled to iron was not affected by magnesium in pH 8.4, 0.2M citrate solution but was increased by magnesium at the solution of pH 9.1. The galvanic current at pH 9.1 increased with time at the initial stage and after the exposure of about 200 minute, decreased and stabilized. The behavior of the galvanic current was related with the concentration of magnesium at the surface. It agreed with the depletion of magnesium at the oxide surface by using glow discharge atomic emission spectroscopy (GD-AES). In addition, pitting potential of pure aluminum was reduced in neutral pH solution where chloride ion maybe are competitively adsorbed on pure aluminum. It was confirmed by the exponential decrease of pitting potential with log of [Cl-] around 0.025 M of [Cl-] and linear decrease of the pitting potential. From the above results, unlike magnesium, alloying elements with higher electron negativity, lowering isoelectric point (ISE), are recommended to be added to improve pitting corrosion resistance of aluminum and its alloys in neutral solutions as well as their galvanic corrosion resistance in weakly basic solutions

  9. Mechanical and corrosion resistance properties of TiO2 nanoparticles reinforced Ni coating by electrodeposition

    International Nuclear Information System (INIS)

    Coatings have been widely used in engineering and decoration to protect components and products and enhance their life span. Nickel (Ni) is one of the most important hard coatings. Improvement in its tribological and mechanical properties would greatly enhance its use in industry. Nanocomposite coatings of metals with various reinforced nanoparticles have been developed in last few decades. Titania (TiO2) exhibit excellent mechanical properties. It is believed that TiO2 incorporation in Ni matrix will improve the properties of Ni coatings significantly. The main purpose of the current work is to investigate the mechanical and anti-corrosion properties of the electroplated nickel nanocomposite with a small percentage of TiO2. The surface morphology of nanocomposite coating was characterized by scanning electron microscopy (SEM). The hardness of the nanocoating was carried out using micromaterials nanoplatform. The sliding wear rate of the coating at room temperature in dry condition was assessed by a reciprocating ball-on-disk computer-controlled oscillating tribotester. The results showed the nanocomposite coatings have a smoother and more compact surface than the pure Ni layer and have higher hardness and lower wear rate than the pure Ni coating. The anti-corrosion property of nanocomposite coating was carried out in 3.5% NaCl and high concentrated 35% NaCl solution, respectively. The results also showed that the nanocomposite coating improves the corrosion resistance significantly. This present work reveals that incorporation of TiO2 in nickel nanocomposite coating can achieve improved corrosion resistance and mechanical properties of both hardness and wear resistance performances, and the improvement becomes stronger as the content of TiO2 is increased.

  10. Mechanical and corrosion resistance properties of TiO2 nanoparticles reinforced Ni coating by electrodeposition

    Science.gov (United States)

    Shao, W.; Nabb, D.; Renevier, N.; Sherrington, I.; Luo, J. K.

    2012-09-01

    Coatings have been widely used in engineering and decoration to protect components and products and enhance their life span. Nickel (Ni) is one of the most important hard coatings. Improvement in its tribological and mechanical properties would greatly enhance its use in industry. Nanocomposite coatings of metals with various reinforced nanoparticles have been developed in last few decades. Titania (TiO2) exhibit excellent mechanical properties. It is believed that TiO2 incorporation in Ni matrix will improve the properties of Ni coatings significantly. The main purpose of the current work is to investigate the mechanical and anti-corrosion properties of the electroplated nickel nanocomposite with a small percentage of TiO2. The surface morphology of nanocomposite coating was characterized by scanning electron microscopy (SEM). The hardness of the nanocoating was carried out using micromaterials nanoplatform. The sliding wear rate of the coating at room temperature in dry condition was assessed by a reciprocating ball-on-disk computer-controlled oscillating tribotester. The results showed the nanocomposite coatings have a smoother and more compact surface than the pure Ni layer and have higher hardness and lower wear rate than the pure Ni coating. The anti-corrosion property of nanocomposite coating was carried out in 3.5% NaCl and high concentrated 35% NaCl solution, respectively. The results also showed that the nanocomposite coating improves the corrosion resistance significantly. This present work reveals that incorporation of TiO2 in nickel nanocomposite coating can achieve improved corrosion resistance and mechanical properties of both hardness and wear resistance performances, and the improvement becomes stronger as the content of TiO2 is increased.

  11. Corrosion resistance of structural material AlMg-2 in water following heat treatment and cooling

    International Nuclear Information System (INIS)

    Corrosion tests of structural material AlMg-2 in water were carried out using autoclave in order to study the effects of heat treatment on the corrosion resistance of the material. Prior to the tests, the samples were heat-treated at temperatures of 90, 200, 300 and 500 °C and cooled in air, sand and water. The corrosion tests were conducted in water at temperature of 150 °C for 250 hours. The results showed that AlMg-2 samples were corroded although the increase of mass gain was relatively small. Heat treatment from 90 to 500 °C in sand cooling media resulted in an increase of mass gain despite that at 300 °C the increase was less than those at 200 °C and 500 °C. For water cooling media in the temperature range of 90 to 200 °C, the mass gain increased from 0.1854 g/cm2 to 2.1204 g/cm2 although after 200 °C it decreased to 1.8207 g/cm2 and 1.6779 g/cm2 respectively. For air cooling media, the mass gain was relatively constant. Based on the experiment results, it can be concluded that heat treatment and cooling did not significantly influence the corrosion resistance of material AlMg-2. The passive film Al2O3 on the surface was able to protect the inner surface from further corrosion. Water media with pH range from 4 – 9 did not cause damage to passive layer formed. (author)

  12. Improvement of corrosion resistance of AZ91D magnesium alloy by gadolinium addition

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xue-hua; WEI Zhong-ling; CHEN Qiu-rong; GAN Fu-xing

    2006-01-01

    Based on the previous investigation on beneficial introduction of holmium into magnesium alloy, the effect of gadolinium, an adjacent rare earth element, on corrosion resistance was examined. The corrosion behavior of two Mg-9Al-Gd alloys (Mg-9Al-0.45Gd and Mg-9Al-1.43Gd) was evaluated and compared with that of Mg-9Al alloy without Gd by means of specimen mass loss and hydrogen evolution in 3.5% NaCl solution saturated with Mg(OH)2. The Gd-containing alloys exhibit enhanced corrosion resistance with respect to the plain Mg-9Al alloy. The microstructures of Mg-9Al alloy and Mg-9Al-0.45 Gd alloy were observed by electron probe microanalysis (EPMA) and energy dispersion spectroscopy (EDS). The alloys with Gd addition show a microstructure characterized by α phase solid solution, surrounded by minor amount of β phase and more grain-like Gd-containing phase. To illustrate the involved mechanism their polarization curves were recorded. The electrochemical investigations reveal that Gd addition shifts the corrosion potential of the alloy towards active, as Gd containing phase is more active and hence less cathodic. As a result, the micro-galvanic corrosion is suppressed. Moreover corrosion product films formed on the Gd containing alloys are more compact and provide a better protective effectiveness than that on the alloy without Gd against corrosion. Repassivation measurements in mixture solution of 0.21 mol/L K2CrO4+0.6 mol/L NaCl also verify the beneficial role of Gd addition. Based on the present preliminary analysis, both the deposited Gd-containing phases and corrosion product films are believed to be responsible for the improved corrosion behaviour due to Gd addition.

  13. Corrosion Resistance of Synergistic Welding Process of Aluminium Alloy 6061 T6 in Sea Water

    Directory of Open Access Journals (Sweden)

    Kharia Salman Hassan

    2014-12-01

    Full Text Available This work involves studying corrosion resistance of AA 6061T6 butt welded joints using Two different welding processes, tungsten inert gas (TIG and a solid state welding process known as friction stir welding, TIG welding process carried out by using Rolled sheet of thickness6mm to obtain a weld joint with dimension of (100, 50, 5 mm using ER4043 DE (Al Si5 as filler metal and argon as shielding gas, while Friction stir welding process carried out using CNC milling machine with a tool of rotational speed 1000 rpm and welding speed of 50mm/min to obtain the same butt joint dimensions. Also one of weld joint in the same dimensions subjected to synergistic weld process TIG and FSW weld process at the same previous weld conditions. All welded joints were tested by X-ray radiography and Faulty pieces were excluded. The joints without defects used to prepare many specimens for Corrosion test by the dimensions of (15*15*3 mm according to ASTM G71-31. Specimens subjected to micro hardness and microstructure test. Corrosion test was achieved by potential at scan rate( +1000 ,-1000mv/sec to estimate corrosion parameters by extrapolator Tafle method after polarized ±100 mv around open circuit potential,in seawater (3.5%NaCl at a temperature of 25°C. From result which obtained by Tafel equation. It was found that corrosion rate for TIG weld joint was higher than the others but synergistic weld process contributed in improving TIG corrosion resistance by a percentage of 14.3%. and FSW give the lest corrosion rate comparing with base metal.

  14. Effects of surface roughness on corrosion resistance of pure Titanium:An in vivo observation

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-mei; WANG Shao-hai; WANG Da-lin; GUO Tian-wen; QI Wen-sheng

    2005-01-01

    Objective: To study the effect of surface configuration and roughness on the corrosion resis tance of pure Titanium (Ti) after used in oral environment for half a year. Methods :Three edentulous volunteers with healthy oral mucosa participated in an in vivo study. Four kinds of pure Ti testing pieces with different surface roughness were fixed in the polished surface of upper complete dentures and the other in the tissue surface of the dentures. After 6-month wearing the denture, dynamic polarization curves were traced with electrochemical method. Results :Ep and Ip of specimen used in oral cavity was higher than that left in air,which meant corrosion resistance falling. Compared to plane one,Ecorr of wrinkly specimen was more positive,and Ep and Ip were more higher,so its corrosion resistance reduced. With the increase of surface roughness,Ep and Ip increased from 0. 937 V and 1. 810 μA (Group Ⅱ ) to 1. 701 V and 2. 252 μA (Group Ⅳ )respectively,there was even no passivation in Group Ⅲ (which was the most coarse),so proneness to corrosion enhanced. For specimen with the same surface roughness ,Ep and Ip of Group Ⅳ (1. 701 V and 2. 252 μA respectively),which was placed on polished surface of denture base,was higher than that on tissue surface (Group V , 1. 304 V, 1. 946 μA). Conclusion:From the perspective of corrosion behavior,wrinkly surface should not be adopted when pure Ti prosthesis is used ,and surface roughness on the polishing surface of pure Ti prosthesis should be paid more attention,especially on clasps and connectors,where there is often more force to be exerted.

  15. Laser alloyed Al-W coatings on aluminum for enhanced corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Rajamure, Ravi Shanker; Vora, Hitesh D.; Srinivasan, S.G.; Dahotre, Narendra B., E-mail: Narendra.Dahotre@unt.edu

    2015-02-15

    Highlights: • Al{sub 4}W intermetallic phase was formed after laser surface alloying. • Potential–time measurements show the stable behavior after laser surface alloying. • Cyclic polarization indicates increase in corrosion resistance after laser surface alloying. - Abstract: A tungsten precursor deposit was spray coated on aluminum 1100 substrate and was subsequently surface alloyed using a continuous wave diode-pumped ytterbium laser at varying laser energy densities. For the laser energy input of 21–32 J/mm{sup 2} the melt depth ranged between 135 and 150 μm. Scanning electron microscopy observations indicated the formation of uniform and continuously dense laser alloyed coatings with sound interface between the modified surface and substrate along with an equi-axed grain structure with second phase precipitates in the intergranular region. X-ray diffraction analysis confirmed that laser processing has resulted in the formation of Al{sub 4}W, as the major phase with retention of W in Al within the alloyed region. The corrosion resistance of laser alloyed coatings was evaluated in near natural chloride solution using ac and dc electrochemical techniques. After laser processing potential–time measurements has indicated the relatively stable and high potential values over the longer exposure times. Cyclic polarization results showed the reduction in the corrosion current density by a factor of 8, compared to untreated Al 1100. Besides, the electrochemical impedance spectroscopy confirmed the increase in the total resistance (47–70 kΩ cm{sup 2}) with the increase in the laser energy density.

  16. Corrosion resistance and biocompatibility of zirconium oxynitride thin film growth by RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cubillos, G. I.; Olaya, J. J.; Clavijo, D.; Alfonso, J. E. [Universidad Nacional de Colombia, Carrera 45 No. 26-85, AA 14490 Bogota D. C. (Colombia); Bethencourt, M., E-mail: jealfonsoo@unal.edu.co [Universidad de Cadiz, Centro Andaluz de Ciencia y Tecnologia Marinas, Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Av. Republica de Saharaui, Puerto Real, E-11510 Cadiz (Spain)

    2012-07-01

    Thin films of zirconium oxynitride were grown on common glass, silicon (100) and stainless steel 316 L substrates using the reactive RF magnetron sputtering technique. The films were analyzed through structural, morphological and biocompatibility studies. The structural analysis was carried out using X-ray diffraction (XRD), and the morphological analysis was carried out using scanning electron microscopy (Sem) and atomic force microscopy (AFM). These studies were done as a function of growth parameters, such as power applied to the target, substrate temperature, and flow ratios. The corrosion resistance studies were made on samples of stainless steel 316 L coated and uncoated with Zr{sub x}N{sub y}O films, through of polarization curves. The studies of biocompatibility were carried out on zirconium oxynitride films deposited on stainless steel 316 L through proliferation and cellular adhesion. The XRD analysis shows that films deposited at 623 K, with a flow ratio {Phi}N{sub 2}/{Phi}O{sub 2} of 1.25 and a total deposit time of 30 minutes grew preferentially oriented along the (111) plane of the zirconium oxynitride monoclinic phase. The Sem analyses showed that the films grew homogeneously, and the AFM studies indicated that the average rugosity of the film was 5.9 nm and the average particle size was 150 nm. The analysis of the corrosion resistant, shows that the stainless steel coated with the film was increased a factor 10. Finally; through the analysis of the biocompatibility we established that the films have a better surface than the substrate (stainless steel 316 L) in terms of the adhesion and proliferation of bone cells. (Author)

  17. Characterisation, corrosion resistance and in vitro bioactivity of manganese-doped hydroxyapatite films electrodeposited on titanium.

    Science.gov (United States)

    Huang, Yong; Ding, Qiongqiong; Han, Shuguang; Yan, Yajing; Pang, Xiaofeng

    2013-08-01

    This work elucidated the corrosion resistance and in vitro bioactivity of electroplated manganese-doped hydroxyapatite (MnHAp) film on NaOH-treated titanium (Ti). The NaOH treatment process was performed on Ti surface to enhance the adhesion of the MnHAp coating on Ti. Scanning electron microscopy images showed that the MnHAp coating had needle-like apatite crystals, and the approximately 10 μm thick layer was denser than HAp. Energy-dispersive X-ray spectroscopy analysis revealed that the MnHAp crystals were Ca-deficient and the Mn/P molar ratio was 0.048. X-ray diffraction confirmed the presence of single-phase MnHAp, which was aligned vertically to the substrate. Fourier transform infrared spectroscopy indicated the presence of phosphate bands ranging from 500 to 650 and 900 to 1,100 cm(-1), and a hydroxyl band at 3,571 cm(-1), which was characteristic of HAp. Bond strength test revealed that adhesion for the MnHAp coating was more enhanced than that of the HAp coating. Potentiodynamic polarisation test showed that the MnHAp-coated surface exhibited superior corrosion resistance over the HAp single-coated surface. Bioactivity test conducted by immersing the coatings in simulated body fluid showed that MnHAp coating can rapidly induce bone-like apatite nucleation and growth. Osteoblast cellular tests revealed that the MnHAp coating was better at improving the in vitro biocompatibility of Ti than the HAp coating. PMID:23686354

  18. Preparation and corrosion resistance of pulse electrodeposited Zn and Zn–SiC nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sajjadnejad, M., E-mail: M.Sajjadnejad@yahoo.com [Young Researchers and Elite Club, Shiraz Branch, Islamic Azad University, Shiraz (Iran, Islamic Republic of); Mozafari, A. [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Omidvar, H. [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Renewable Energy Research Center, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Javanbakht, M. [Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Renewable Energy Research Center, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of)

    2014-05-01

    Highlights: • Zn and Zn–SiC coatings were obtained under different electrodeposition pulse conditions. • Effects of duty cycle, pulse frequency and applied current on SiC incorporation were investigated. • Potentiodynamic polarization tests were conducted to investigate corrosion behavior of coatings. • SiC incorporation enhances coatings corrosion behavior by filling gaps and defects. • Increasing pulse frequency and decreasing applied current favors SiC incorporation. - Abstract: Pure Zn and Zn matrix composite coatings containing nano-sized SiC particles with an average size of 50 nm were prepared from the zinc sulfate bath. The effects of the pulse frequency, maximum current density and duty cycle on the amount of particles embedded were examined. Electron microscopic studies revealed that the coating morphology was modified by the presence of SiC nanoparticles. In the presence of SiC nanoparticles deposit grows in outgrowth mode resulting in a very rough and porous microstructure. However, at very low and very high duty cycles a smooth and pore free microstructure was obtained. Corrosion resistance properties of the coatings were studied using potentiodynamic polarization technique in 1 M NaCl solution. It was established that presence of well-dispersed nanoparticles significantly improves corrosion resistance of the zinc by filling gaps and defects between zinc flakes and leading to a smoother surface. However, presence of the SiC nanoparticles led to a mixed microstructure with fine and coarse zinc flakes in some coatings, which presented a weak corrosion behavior. Incorporation of SiC nanoparticles enhanced hardness of the Zn coatings by fining deposit structure and through the dispersion hardening effect.

  19. Different immersion periods and aqueous solutions effects upon the corrosion resistance of zinc and aluminium specimens

    Directory of Open Access Journals (Sweden)

    Osório, W. R.

    2005-12-01

    Full Text Available Several metallic materials form spontaneously an oxide film at the surface when is exposed in a corrosive environment. It is well known that the type of corrosive media may develop different results at the material corrosion resistance. The aim of the present paper is to investigate the influence of immersion periods and different solutions upon the corrosion resistance of pure Zn and Al specimens presenting different grain morphologies. The specimens were monitored for several periods in a 3 % NaCl solution at room temperature. Tests were also performed with variations of the 3 % NaCl solution modified by additions of acid and alkaline components. Both the electrochemical impedance spectroscopy (EIS and polarization methods were applied.

    Algunos materiales metálicos, cuando se encuentran en un entorno corrosivo, forman espontáneamente una película de óxido en su superficie. Se sabe que los medios corrosivos pueden dar resultados diferentes, según sea la resistencia a la corrosión del material. El propósito del siguiente trabajo es investigar la influencia de los períodos de inmersión en diferentes soluciones sobre la resistencia a la corrosión de probetas de cinc y aluminio puros, con morfologías de grano diferentes. Las probetas fueron ensayadas durante varios períodos de tiempo en soluciones de NaCl 3 % y también con adiciones de ácidos y bases. Se utilizaron las técnicas de espectrometría de impedancia electroquímica (EIS y de polarización.

  20. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopala N. Krishnan; Ripudaman Malhotra; Jordi Perez; Marc Hornbostel; Kai-Hung Lau; Angel Sanjurjo

    2007-05-31

    Advanced electric power generation systems use a coal gasifier to convert coal to a gas rich in fuels such as H{sub 2} and CO. The gas stream contains impurities such as H{sub 2}S and HCl, which attack metal components of the coal gas train, causing plant downtime and increasing the cost of power generation. Corrosion-resistant coatings would improve plant availability and decrease maintenance costs, thus allowing the environmentally superior integrated-gasification-combined-cycle (IGCC) plants to be more competitive with standard power-generation technologies. Heat-exchangers, particle filters, turbines, and other components in the IGCC system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy will improve is resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. The Fe- and Ni-based high-temperature alloys are susceptible to sulfidation attack unless they are fortified with high levels of Cr, Al, and Si. To impart corrosion resistance, these elements need not be in the bulk of the alloy and need only be present at the surface layers. In this study, the use of corrosion-resistant coatings on low alloy steels was investigated for use as high-temperature components in IGCC systems. The coatings were deposited using SRI's fluidized-bed reactor chemical vapor deposition technique. Diffusion coatings of Cr and Al were deposited by this method on to dense and porous, low alloy stainless steel substrates. Bench-scale exposure tests at 900 C with a simulated coal gas stream containing 1.7% H{sub 2}S showed that the low alloy steels such SS405 and SS409 coated with