WorldWideScience

Sample records for amorphous track models

  1. Amorphous track models: a numerical comparison study

    DEFF Research Database (Denmark)

    Greilich, Steffen; Grzanka, Leszek; Hahn, Ute

    in carbon ion treatment at the particle facility HIT in Heidelberg. Apparent differences between the LEM and the Katz model are the way how interactions of individual particle tracks and how extended targets are handled. Complex scenarios, however, can mask the actual effect of these differences. Here, we......Amorphous track models such as Katz' Ion-Gamma-Kill (IGK) approach [1, 2] or the Local Effect Model (LEM) [3, 4] had reasonable success in predicting the response of solid state dosimeters and radiobiological systems. LEM is currently applied in radiotherapy for biological dose optimization...

  2. Cell survival in carbon beams - comparison of amorphous track model predictions

    DEFF Research Database (Denmark)

    Grzanka, L.; Greilich, S.; Korcyl, M.

    Introduction: Predictions of the radiobiological effectiveness (RBE) play an essential role in treatment planning with heavy charged particles. Amorphous track models ( [1] , [2] , also referred to as track structure models) provide currently the most suitable description of cell survival under i....... Amorphous track modelling of luminescence detector efficiency in proton and carbon beams. 4.Tsuruoka C, Suzuki M, Kanai T, et al. LET and ion species dependence for cell killing in normal human skin fibroblasts. Radiat Res. 2005;163:494-500.......Introduction: Predictions of the radiobiological effectiveness (RBE) play an essential role in treatment planning with heavy charged particles. Amorphous track models ( [1] , [2] , also referred to as track structure models) provide currently the most suitable description of cell survival under ion....... [2] . In addition, a new approach based on microdosimetric distributions is presented and investigated [3] . Material and methods: A suitable software library embrasing the mentioned amorphous track models including numerous submodels with respect to delta-electron range models, radial dose...

  3. A transient thermodynamic model for track formation in amorphous semi-conductors: a possible mechanism

    International Nuclear Information System (INIS)

    Dufour, C.; Toulemonde, M.; Paumier, E.; Lesellier de Chezelles, B.; Delignon, V.

    1991-01-01

    Latent tracks have been observed in amorphous semi-conductors after heavy ion irradiation in the electronic stopping power regime. A transient thermodynamic model is developed including energy diffusion on the electron gas and on the atomic lattice and energy exchange between these two systems. A set of two non linear differential equations is solved numerically in cylindrical geometry in order to predict the radii of the latent tracks observed in amorphous germanium and silicon. A good agreement is obtained for the two materials using the same set of input parameters for the energy diffusion on the electronic system and the same coupling constant for the energy exchange between electron and lattice atoms despite the large differences in the macroscopic lattice thermodynamical parameters of the two materials

  4. Modeling Radiation Effects of Ultrasoft X Rays on the Basis of Amorphous Track Structure.

    Science.gov (United States)

    Buch, Tamara; Scifoni, Emanuele; Krämer, Michael; Durante, Marco; Scholz, Michael; Friedrich, Thomas

    2018-01-01

    There is experimental evidence that ultrasoft X rays (0.1-5 keV) show a higher biological effectiveness than high-energy photons. Similar to high-LET radiation, this is attributed to a rather localized dose distribution associated with a considerably smaller range of secondary electrons, which results in an increasing yield of double-strand breaks (DSBs) and potentially more complex lesions. We previously reported on the application of the Giant LOop Binary LEsion (GLOBLE) model to ultrasoft X rays, in which experimental values of the relative biological effectiveness (RBE) for DSB induction were used to show that this increasing DSB yield was sufficient to explain the enhanced effectiveness in the cell inactivation potential of ultrasoft X rays. Complementary to GLOBLE, we report here on a modeling approach to predict the increased DSB yield of ultrasoft X rays on the basis of amorphous track structure formed by secondary electrons, which was derived from Monte Carlo track structure simulations. This procedure is associated with increased production of single-strand break (SSB) clusters, which are caused by the highly localized energy deposition pattern induced by low-energy photons. From this, the RBE of ultrasoft X rays can be determined and compared to experimental data, showing that the inhomogeneity of the energy deposition pattern represents the key variable to describe the increased biological effectiveness of ultrasoft X rays. Thus, this work demonstrates an extended applicability of the amorphous track structure concept and tests its limits with respect to its predictive power. The employed model mechanism offers a possible explanation for how the cellular response to ultrasoft X rays is directly linked to the energy deposition properties on the nanometric scale.

  5. Biophysical calculations of cell killing probability by the amorphous track structure model for heavy-ion beams

    International Nuclear Information System (INIS)

    Kase, Yuki; Matsufuji, Naruhiro; Furusawa, Yoshiya; Kanai, Tatsuaki

    2007-01-01

    In a treatment planning of heavy-ion radiotherapy, it is necessary to estimate the biological effect of the heavy-ion beams. Physical dose should be associated with the relative biological effectiveness (RBE) at each point. Presently, carbon ion radiotherapy has been carried out at the National Institute Radiological Sciences (NIRS) in Japan and the Gesellschaft fuer Schwerionenforschung mbH (GSI) in Germany. Both facilities take individual approach for the calculation of the RBE value. At NIRS, the classical LQ model has been used while the local effect model (LEM) has been incorporated into the treatment planning system at GSI. The first aim of this study is to explain the RBE model of NIRS by the microdosimetric kinetic model (MKM). In addition, the clarification of similarities and differences between the MKM and the LEM was also investigated. (author)

  6. Model for amorphous aggregation processes

    Science.gov (United States)

    Stranks, Samuel D.; Ecroyd, Heath; van Sluyter, Steven; Waters, Elizabeth J.; Carver, John A.; von Smekal, Lorenz

    2009-11-01

    The amorphous aggregation of proteins is associated with many phenomena, ranging from the formation of protein wine haze to the development of cataract in the eye lens and the precipitation of recombinant proteins during their expression and purification. While much literature exists describing models for linear protein aggregation, such as amyloid fibril formation, there are few reports of models which address amorphous aggregation. Here, we propose a model to describe the amorphous aggregation of proteins which is also more widely applicable to other situations where a similar process occurs, such as in the formation of colloids and nanoclusters. As first applications of the model, we have tested it against experimental turbidimetry data of three proteins relevant to the wine industry and biochemistry, namely, thaumatin, a thaumatinlike protein, and α -lactalbumin. The model is very robust and describes amorphous experimental data to a high degree of accuracy. Details about the aggregation process, such as shape parameters of the aggregates and rate constants, can also be extracted.

  7. Amorphous track predictions in ‘libamtrack’ for alanine relative effectiveness in ion beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Greilich, Steffen; Grzanka, Leszek

    2011-01-01

    and simple dose response, the alanine detector can help to study fundamental assumptions and accuracy in amorphous track modelling. The libamtrack project enabled recently to directly compare various flavours of ATMs. We therefore present here the potential of predictions for alanine from two libamtrack ATMs...... transport and stopping powers hinders a thorough interpretation of the deviation found and stress the necessity for a broader data base at lower particle energies....

  8. Photoconductivity of amorphous silicon-rigorous modelling

    International Nuclear Information System (INIS)

    Brada, P.; Schauer, F.

    1991-01-01

    It is our great pleasure to express our gratitude to Prof. Grigorovici, the pioneer of the exciting field of amorphous state by our modest contribution to this area. In this paper are presented the outline of the rigorous modelling program of the steady-state photoconductivity in amorphous silicon and related materials. (Author)

  9. Fluctuation microscopy analysis of amorphous silicon models

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J.M., E-mail: jmgibson@fsu.edu [Northeastern University, Department of Physics, Boston MA 02115 (United States); FAMU/FSU Joint College of Engineering, 225 Pottsdamer Street, Tallahassee, FL 32310 (United States); Treacy, M.M.J. [Arizona State University, Department of Physics, Tempe AZ 85287 (United States)

    2017-05-15

    Highlights: • Studied competing computer models for amorphous silicon and simulated fluctuation microscopy data. • Show that only paracrystalline/random network composite can fit published data. • Specifically show that pure random network or random network with void models do not fit available data. • Identify a new means to measure volume fraction of ordered material. • Identify unreported limitations of the Debye model for simulating fluctuation microscopy data. - Abstract: Using computer-generated models we discuss the use of fluctuation electron microscopy (FEM) to identify the structure of amorphous silicon. We show that a combination of variable resolution FEM to measure the correlation length, with correlograph analysis to obtain the structural motif, can pin down structural correlations. We introduce the method of correlograph variance as a promising means of independently measuring the volume fraction of a paracrystalline composite. From comparisons with published data, we affirm that only a composite material of paracrystalline and continuous random network that is substantially paracrystalline could explain the existing experimental data, and point the way to more precise measurements on amorphous semiconductors. The results are of general interest for other classes of disordered materials.

  10. Fluctuation microscopy analysis of amorphous silicon models

    International Nuclear Information System (INIS)

    Gibson, J.M.; Treacy, M.M.J.

    2017-01-01

    Highlights: • Studied competing computer models for amorphous silicon and simulated fluctuation microscopy data. • Show that only paracrystalline/random network composite can fit published data. • Specifically show that pure random network or random network with void models do not fit available data. • Identify a new means to measure volume fraction of ordered material. • Identify unreported limitations of the Debye model for simulating fluctuation microscopy data. - Abstract: Using computer-generated models we discuss the use of fluctuation electron microscopy (FEM) to identify the structure of amorphous silicon. We show that a combination of variable resolution FEM to measure the correlation length, with correlograph analysis to obtain the structural motif, can pin down structural correlations. We introduce the method of correlograph variance as a promising means of independently measuring the volume fraction of a paracrystalline composite. From comparisons with published data, we affirm that only a composite material of paracrystalline and continuous random network that is substantially paracrystalline could explain the existing experimental data, and point the way to more precise measurements on amorphous semiconductors. The results are of general interest for other classes of disordered materials.

  11. Atomistic modeling of ion beam induced amorphization in silicon

    International Nuclear Information System (INIS)

    Pelaz, Lourdes; Marques, Luis A.; Lopez, Pedro; Santos, Ivan; Aboy, Maria; Barbolla, Juan

    2005-01-01

    Ion beam induced amorphization in Si has attracted significant interest since the beginning of the use of ion implantation for the fabrication of Si devices. Nowadays, a renewed interest in the modeling of amorphization mechanisms at atomic level has arisen due to the use of preamorphizing implants and high dopant implantation doses for the fabrication of nanometric-scale Si devices. In this work, we briefly describe the existing phenomenological and defect-based amorphization models. We focus on the atomistic model we have developed to describe ion beam induced amorphization in Si. In our model, the building block for the amorphous phase is the bond defect or IV pair, whose stability increases with the number of surrounding IV pairs. This feature explains the regrowth behavior of different damage topologies and the kinetics of the crystalline to amorphous transition. The model provides excellent quantitative agreement with experimental results

  12. Graph Model Based Indoor Tracking

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Lu, Hua; Yang, Bin

    2009-01-01

    The tracking of the locations of moving objects in large indoor spaces is important, as it enables a range of applications related to, e.g., security and indoor navigation and guidance. This paper presents a graph model based approach to indoor tracking that offers a uniform data management...

  13. TRACKING CLIMATE MODELS

    Data.gov (United States)

    National Aeronautics and Space Administration — CLAIRE MONTELEONI*, GAVIN SCHMIDT, AND SHAILESH SAROHA* Climate models are complex mathematical models designed by meteorologists, geophysicists, and climate...

  14. Track structure in biological models.

    Science.gov (United States)

    Curtis, S B

    1986-01-01

    High-energy heavy ions in the galactic cosmic radiation (HZE particles) may pose a special risk during long term manned space flights outside the sheltering confines of the earth's geomagnetic field. These particles are highly ionizing, and they and their nuclear secondaries can penetrate many centimeters of body tissue. The three dimensional patterns of ionizations they create as they lose energy are referred to as their track structure. Several models of biological action on mammalian cells attempt to treat track structure or related quantities in their formulation. The methods by which they do this are reviewed. The proximity function is introduced in connection with the theory of Dual Radiation Action (DRA). The ion-gamma kill (IGK) model introduces the radial energy-density distribution, which is a smooth function characterizing both the magnitude and extension of a charged particle track. The lethal, potentially lethal (LPL) model introduces lambda, the mean distance between relevant ion clusters or biochemical species along the track. Since very localized energy depositions (within approximately 10 nm) are emphasized, the proximity function as defined in the DRA model is not of utility in characterizing track structure in the LPL formulation.

  15. Conductivity enhancement of ion tracks in tetrahedral amorphous carbon by doping with N, B, Cu and Fe

    International Nuclear Information System (INIS)

    Krauser, J.; Nix, A.-K.; Gehrke, H.-G.; Hofsäss, H.; Trautmann, C.; Weidinger, A.

    2012-01-01

    Conducting ion tracks are formed when high-energy heavy ions (e.g. 1 GeV Au) pass through tetrahedral amorphous carbon (ta-C). These nanowires with a diameter of about 8 nm are embedded in the insulating ta-C matrix and of interest for various nanotechnological applications. Usually the overall conductivity of the tracks and the current/voltage characteristics (Ohmic or non-Ohmic) vary strongly from track to track, even when measured on the same sample, indicating that the track formation is neither complete nor homogeneous. To improve the track conductivity, doping of ta-C with N, B, Cu, or Fe is investigated. Beneficial changes in track conductivity after doping compete with a conductivity increase of the surrounding matrix material. Best results are achieved by incorporation of 1 at.% Cu, while for different reasons, the improvement of the tracks remains moderate for N, B, and Fe doping. Conductivity enhancement of the tracks is assumed to develop during the ion track formation process by an increased number of localized states which contribute to the current transport.

  16. Self-consistent modeling of amorphous silicon devices

    International Nuclear Information System (INIS)

    Hack, M.

    1987-01-01

    The authors developed a computer model to describe the steady-state behaviour of a range of amorphous silicon devices. It is based on the complete set of transport equations and takes into account the important role played by the continuous distribution of localized states in the mobility gap of amorphous silicon. Using one set of parameters they have been able to self-consistently simulate the current-voltage characteristics of p-i-n (or n-i-p) solar cells under illumination, the dark behaviour of field-effect transistors, p-i-n diodes and n-i-n diodes in both the ohmic and space charge limited regimes. This model also describes the steady-state photoconductivity of amorphous silicon, in particular, its dependence on temperature, doping and illumination intensity

  17. Structural models for amorphous transition metal binary alloys

    International Nuclear Information System (INIS)

    Ching, W.Y.; Lin, C.C.

    1976-01-01

    A dense random packing of 445 hard spheres with two different diameters in a concentration ratio of 3 : 1 was hand-built to simulate the structure of amorphous transition metal-metalloid alloys. By introducing appropriate pair potentials of the Lennard-Jones type, the structure is dynamically relaxed by minimizing the total energy. The radial distribution functions (RDF) for amorphous Fe 0 . 75 P 0 . 25 , Ni 0 . 75 P 0 . 25 , Co 0 . 75 P 0 . 25 are obtained and compared with the experimental data. The calculated RDF's are resolved into their partial components. The results indicate that such dynamically constructed models are capable of accounting for some subtle features in the RDF of amorphous transition metal-metalloid alloys

  18. Design, Construction and Effectiveness Analysis of Hybrid Automatic Solar Tracking System for Amorphous and Crystalline Solar Cells

    OpenAIRE

    Bhupendra Gupta

    2013-01-01

    - This paper concerns the design and construction of a Hybrid solar tracking system. The constructed device was implemented by integrating it with Amorphous & Crystalline Solar Panel, three dimensional freedom mechanism and microcontroller. The amount of power available from a photovoltaic panel is determined by three parameters, the type of solar tracker, materials of solar panel and the intensity of the sunlight. The objective of this paper is to present analysis on the use of two differ...

  19. A model for stored energy in amorphous silica

    International Nuclear Information System (INIS)

    Tinivella, G.

    1980-12-01

    The observed saturation value of stored energy in irradiated amorphous silica is too big to be explained by the energy of recombined non-grouped defects. The hypothesis that it can be due to a structural change has been tested, and a simple model based on the fluctuation of the atomic distances shows a reasonable agreement with the experimental data. (author)

  20. Microstructural model for the plasticity of amorphous solids

    NARCIS (Netherlands)

    Hütter, M.; Breemen, van L.C.A.

    2012-01-01

    Based on the concept of localized shear transformation zones (STZ), a thermodynamically consistent model for the viscoplastic deformation of amorphous solids is developed. The approach consists of a dynamic description of macroscopic viscoplasticity that is enriched by the evolution of number

  1. Modeling Ballasted Tracks for Runoff Coefficient C

    Science.gov (United States)

    2012-08-01

    In this study, the Regional Transportation District (RTD)s light rail tracks were modeled to determine the Rational Method : runoff coefficient, C, values corresponding to ballasted tracks. To accomplish this, a laboratory study utilizing a : rain...

  2. Tracks FAQs: What is Modeled Air Data?

    Centers for Disease Control (CDC) Podcasts

    2011-04-25

    In this podcast, CDC Tracking experts discuss modeled air data. Do you have a question for our Tracking experts? Please e-mail questions to trackingsupport@cdc.gov.  Created: 4/25/2011 by National Center for Environmental Health, Division of Environmental Hazards and Health Effects, Environmental Health Tracking Branch.   Date Released: 4/25/2011.

  3. Mesoscale modeling of amorphous metals by shear transformation zone dynamics

    International Nuclear Information System (INIS)

    Homer, Eric R.; Schuh, Christopher A.

    2009-01-01

    A new mesoscale modeling technique for the thermo-mechanical behavior of metallic glasses is proposed. The modeling framework considers the shear transformation zone (STZ) as the fundamental unit of deformation, and coarse-grains an amorphous collection of atoms into an ensemble of STZs on a mesh. By employing finite element analysis and a kinetic Monte Carlo algorithm, the modeling technique is capable of simulating glass processing and deformation on time and length scales greater than those usually attainable by atomistic modeling. A thorough explanation of the framework is presented, along with a specific two-dimensional implementation for a model metallic glass. The model is shown to capture the basic behaviors of metallic glasses, including high-temperature homogeneous flow following the expected constitutive law, and low-temperature strain localization into shear bands. Details of the effects of processing and thermal history on the glass structure and properties are also discussed.

  4. Model-Based Motion Tracking of Infants

    DEFF Research Database (Denmark)

    Olsen, Mikkel Damgaard; Herskind, Anna; Nielsen, Jens Bo

    2014-01-01

    Even though motion tracking is a widely used technique to analyze and measure human movements, only a few studies focus on motion tracking of infants. In recent years, a number of studies have emerged focusing on analyzing the motion pattern of infants, using computer vision. Most of these studies...... are based on 2D images, but few are based on 3D information. In this paper, we present a model-based approach for tracking infants in 3D. The study extends a novel study on graph-based motion tracking of infants and we show that the extension improves the tracking results. A 3D model is constructed...

  5. A Predictive Maintenance Model for Railway Tracks

    DEFF Research Database (Denmark)

    Li, Rui; Wen, Min; Salling, Kim Bang

    2015-01-01

    presents a mathematical model based on Mixed Integer Programming (MIP) which is designed to optimize the predictive railway tamping activities for ballasted track for the time horizon up to four years. The objective function is setup to minimize the actual costs for the tamping machine (measured by time......). Five technical and economic aspects are taken into account to schedule tamping: (1) track degradation of the standard deviation of the longitudinal level over time; (2) track geometrical alignment; (3) track quality thresholds based on the train speed limits; (4) the dependency of the track quality...

  6. The forward tracking, an optical model method

    CERN Document Server

    Benayoun, M

    2002-01-01

    This Note describes the so-called Forward Tracking, and the underlying optical model, developed in the context of LHCb-Light studies. Starting from Velo tracks, cheated or found by real pattern recognition, the tracks are found in the ST1-3 chambers after the magnet. The main ingredient to the method is a parameterisation of the track in the ST1-3 region, based on the Velo track parameters and an X seed in one ST station. Performance with the LHCb-Minus and LHCb-Light setups is given.

  7. Track models and radiation chemical yields

    International Nuclear Information System (INIS)

    Chatterjee, A.; Magee, J.L.

    1987-01-01

    The authors are concerned only with systems in which single track effects dominate and radiation chemical yields are sums of yields for individual tracks. The authors know that the energy deposits of heavy particle tracks are composed of spurs along the particle trajectory (about one-half of the energy) and a more diffuse pattern composed of the tracks of knock-on electrons, called the penumbra (about one-half of the energy). The simplest way to introduce the concept of a unified track model for heavy particles is to consider the special case of the track of a heavy particle with an LET below 0.2-0.3eV/A, which in practice limits us to protons, deuterons, or particles with energy above 100 MeV per nucleon. At these LET values, to a good approximation, spurs formed by the main particle track can be considered to remain isolated throughout the radiation chemical reactions

  8. Object tracking using active appearance models

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille

    2001-01-01

    This paper demonstrates that (near) real-time object tracking can be accomplished by the deformable template model; the Active Appearance Model (AAM) using only low-cost consumer electronics such as a PC and a web-camera. Successful object tracking of perspective, rotational and translational...

  9. Modeling amorphization of tetrahedral structures under local approaches

    International Nuclear Information System (INIS)

    Jesurum, C.E.; Pulim, V.; Berger, B.; Hobbs, L.W.

    1997-01-01

    Many crystalline ceramics can be topologically disordered (amorphized) by disordering radiation events involving high-energy collision cascades or (in some cases) successive single-atom displacements. The authors are interested in both the potential for disorder and the possible aperiodic structures adopted following the disordering event. The potential for disordering is related to connectivity, and among those structures of interest are tetrahedral networks (such as SiO 2 , SiC and Si 3 N 4 ) comprising corner-shared tetrahedral units whose connectivities are easily evaluated. In order to study the response of these networks to radiation, the authors have chosen to model their assembly according to the (simple) local rules that each corner obeys in connecting to another tetrahedron; in this way they easily erect large computer models of any crystalline polymorphic form. Amorphous structures can be similarly grown by application of altered rules. They have adopted a simple model of irradiation in which all bonds in the neighborhood of a designated tetrahedron are destroyed, and they reform the bonds in this region according to a set of (possibly different) local rules appropriate to the environmental conditions. When a tetrahedron approaches the boundary of this neighborhood, it undergoes an optimization step in which a spring is inserted between two corners of compatible tetrahedra when they are within a certain distance of one another; component forces are then applied that act to minimize the distance between these corners and minimize the deviation from the rules. The resulting structure is then analyzed for the complete adjacency matrix, irreducible ring statistics, and bond angle distributions

  10. Laser assisted crystallization of ferromagnetic amorphous ribbons: A multimodal characterization and thermal model study

    Energy Technology Data Exchange (ETDEWEB)

    Katakam, Shravana; Santhanakrishnan, S.; Smith, Casey; Banerjee, Rajarshi; Dahotre, Narendra B. [Laboratory of Laser Materials Processing and Synthesis Department of Materials Science and Engineering University of North Texas, Denton, Texas 76207 (United States); Devaraj, Arun; Bowden, Mark; Thevuthasan, Suntharampillai [William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Ramanujan, R. V. [Schhol of Materials Science and Engineering Nanyang Technological University, Singapore 639798 (Singapore)

    2013-11-14

    This paper focuses on laser-based de-vitrification of amorphous soft magnetic Fe-Si-B ribbons and its consequent influence on the magnetic properties. Laser processing resulted in a finer scale of crystallites due to rapid heating and cooling during laser annealing compared to conventional furnace annealing process. A significant increase in saturation magnetization is observed for laser-annealed ribbons compared to both as-received and furnace annealed samples coupled with an increase in coercivity compared to the as received samples. The combined effect of thermal histories and stresses developed during laser annealing results in the formation of nano-crystalline phase along the laser track. The phase evolution is studied by micro-XRD and TEM analysis. Solute partitioning and compositional variation within the phases are obtained by Local Electrode Atom probe analysis. The evolution of microstructure is rationalized using a Finite Element based heat transfer multi-physics model.

  11. Modelling structure and properties of amorphous silicon boron nitride ceramics

    Directory of Open Access Journals (Sweden)

    Johann Christian Schön

    2011-06-01

    Full Text Available Silicon boron nitride is the parent compound of a new class of high-temperature stable amorphous ceramics constituted of silicon, boron, nitrogen, and carbon, featuring a set of properties that is without precedent, and represents a prototypical random network based on chemical bonds of predominantly covalent character. In contrast to many other amorphous materials of technological interest, a-Si3B3N7 is not produced via glass formation, i.e. by quenching from a melt, the reason being that the binary components, BN and Si3N4, melt incongruently under standard conditions. Neither has it been possible to employ sintering of μm-size powders consisting of binary nitrides BN and Si3N4. Instead, one employs the so-called sol-gel route starting from single component precursors such as TADB ((SiCl3NH(BCl2. In order to determine the atomic structure of this material, it has proven necessary to simulate the actual synthesis route.Many of the exciting properties of these ceramics are closely connected to the details of their amorphous structure. To clarify this structure, it is necessary to employ not only experimental probes on many length scales (X-ray, neutron- and electron scattering; complex NMR experiments; IR- and Raman scattering, but also theoretical approaches. These address the actual synthesis route to a-Si3B3N7, the structural properties, the elastic and vibrational properties, aging and coarsening behaviour, thermal conductivity and the metastable phase diagram both for a-Si3B3N7 and possible silicon boron nitride phases with compositions different from Si3N4: BN = 1 : 3. Here, we present a short comprehensive overview over the insights gained using molecular dynamics and Monte Carlo simulations to explore the energy landscape of a-Si3B3N7, model the actual synthesis route and compute static and transport properties of a-Si3BN7.

  12. Mechanics of amorphous solids—identification and constitutive modelling

    NARCIS (Netherlands)

    van Dommelen, J.A.W.; Estevez, R.

    2018-01-01

    Both polymers and metals can be in an organised crystalline or amorphous glassy state, where for polymers usually at least a part of the structure is amorphous and metals are in a glassy state only when processed under special conditions. At the 15th European Mechanics of Materials Conference in

  13. Atomistic modeling of defect evolution in Si for amorphizing and subamorphizing implants

    International Nuclear Information System (INIS)

    Lopez, Pedro; Pelaz, Lourdes; Marques, Luis A.; Santos, Ivan; Aboy, Maria; Barbolla, Juan

    2004-01-01

    Solid phase epitaxial regrowth of pre-amorphizing implants has received significant attention as a method to achieve high dopant activation with minimal diffusion at low implant temperatures and suppress channelling. Therefore, a good understanding of the amorphization and regrowth mechanisms is required in process simulators. We present an atomistic amorphization and recrystallization model that uses the interstitial-vacancy (I-V) pair as a building block to describe the amorphous phase. I-V pairs are locally characterized by the number of neighbouring I-V pairs. This feature captures the damage generation and the dynamical annealing during ion implantation, and also explains the annealing behaviour of amorphous layers and amorphous pockets

  14. Materials modeling by design: applications to amorphous solids

    International Nuclear Information System (INIS)

    Biswas, Parthapratim; Tafen, D N; Inam, F; Cai Bin; Drabold, D A

    2009-01-01

    In this paper, we review a host of methods used to model amorphous materials. We particularly describe methods which impose constraints on the models to ensure that the final model meets a priori requirements (on structure, topology, chemical order, etc). In particular, we review work based on quench from the melt simulations, the 'decorate and relax' method, which is shown to be a reliable scheme for forming models of certain binary glasses. A 'building block' approach is also suggested and yields a pleading model for GeSe 1.5 . We also report on the nature of vulcanization in an Se network cross-linked by As, and indicate how introducing H into an a-Si network develops into a-Si:H. We also discuss explicitly constrained methods including reverse Monte Carlo (RMC) and a novel method called 'Experimentally Constrained Molecular Relaxation'. The latter merges the power of ab initio simulation with the ability to impose external information associated with RMC.

  15. Deformable Models for Eye Tracking

    DEFF Research Database (Denmark)

    Vester-Christensen, Martin; Leimberg, Denis; Ersbøll, Bjarne Kjær

    2005-01-01

    A deformable template method for eye tracking on full face images is presented. The strengths of the method are that it is fast and retains accuracy independently of the resolution. We compare the me\\$\\backslash\\$-thod with a state of the art active contour approach, showing that the heuristic...

  16. Experimental and Computer Modelling Studies of Metastability of Amorphous Silicon Based Solar Cells

    NARCIS (Netherlands)

    Munyeme, Geoffrey

    2003-01-01

    We present a combination of experimental and computer modelling studies of the light induced degradation in the performance of amorphous silicon based single junction solar cells. Of particular interest in this study is the degradation kinetics of different types of amorphous silicon single junction

  17. Thermodynamical modeling of nuclear glasses: coexistence of amorphous phases

    International Nuclear Information System (INIS)

    Adjanor, G.

    2007-11-01

    Investigating the stability of borosilicate glasses used in the nuclear industry with respect to phase separation requires to estimate the Gibbs free energies of the various phases appearing in the material. In simulation, using current computational resources, a direct state-sampling of a glassy system with respect to its ensemble statistics is not ergodic and the estimated ensemble averages are not reliable. Our approach consists in generating, at a given cooling rate, a series of quenches, or paths connecting states of the liquid to states of the glass, and then in taking into account the probability to generate the paths leading to the different glassy states in ensembles averages. In this way, we introduce a path ensemble formalism and calculate a Landau free energy associated to a glassy meta-basin. This method was validated by accurately mapping the free energy landscape of a 38-atom glassy cluster. We then applied this approach to the calculation of the Gibbs free energies of binary amorphous Lennard-Jones alloys, and checked the correlation between the observed tendencies to order or to phase separate and the computed Gibbs free energies. We finally computed the driving force to phase separation in a simplified three-oxide nuclear glass modeled by a Born-Mayer-Huggins potential that includes a three-body term, and we compared the estimated quantities to the available experimental data. (author)

  18. Local yield stress statistics in model amorphous solids

    Science.gov (United States)

    Barbot, Armand; Lerbinger, Matthias; Hernandez-Garcia, Anier; García-García, Reinaldo; Falk, Michael L.; Vandembroucq, Damien; Patinet, Sylvain

    2018-03-01

    We develop and extend a method presented by Patinet, Vandembroucq, and Falk [Phys. Rev. Lett. 117, 045501 (2016), 10.1103/PhysRevLett.117.045501] to compute the local yield stresses at the atomic scale in model two-dimensional Lennard-Jones glasses produced via differing quench protocols. This technique allows us to sample the plastic rearrangements in a nonperturbative manner for different loading directions on a well-controlled length scale. Plastic activity upon shearing correlates strongly with the locations of low yield stresses in the quenched states. This correlation is higher in more structurally relaxed systems. The distribution of local yield stresses is also shown to strongly depend on the quench protocol: the more relaxed the glass, the higher the local plastic thresholds. Analysis of the magnitude of local plastic relaxations reveals that stress drops follow exponential distributions, justifying the hypothesis of an average characteristic amplitude often conjectured in mesoscopic or continuum models. The amplitude of the local plastic rearrangements increases on average with the yield stress, regardless of the system preparation. The local yield stress varies with the shear orientation tested and strongly correlates with the plastic rearrangement locations when the system is sheared correspondingly. It is thus argued that plastic rearrangements are the consequence of shear transformation zones encoded in the glass structure that possess weak slip planes along different orientations. Finally, we justify the length scale employed in this work and extract the yield threshold statistics as a function of the size of the probing zones. This method makes it possible to derive physically grounded models of plasticity for amorphous materials by directly revealing the relevant details of the shear transformation zones that mediate this process.

  19. Fracture of Carbon Nanotube - Amorphous Carbon Composites: Molecular Modeling

    Science.gov (United States)

    Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.

    2015-01-01

    Carbon nanotubes (CNTs) are promising candidates for use as reinforcements in next generation structural composite materials because of their extremely high specific stiffness and strength. They cannot, however, be viewed as simple replacements for carbon fibers because there are key differences between these materials in areas such as handling, processing, and matrix design. It is impossible to know for certain that CNT composites will represent a significant advance over carbon fiber composites before these various factors have been optimized, which is an extremely costly and time intensive process. This work attempts to place an upper bound on CNT composite mechanical properties by performing molecular dynamics simulations on idealized model systems with a reactive forcefield that permits modeling of both elastic deformations and fracture. Amorphous carbon (AC) was chosen for the matrix material in this work because of its structural simplicity and physical compatibility with the CNT fillers. It is also much stiffer and stronger than typical engineering polymer matrices. Three different arrangements of CNTs in the simulation cell have been investigated: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. The SWNT and MWNT array systems are clearly idealizations, but the SWNT bundle system is a step closer to real systems in which individual tubes aggregate into large assemblies. The effect of chemical crosslinking on composite properties is modeled by adding bonds between the CNTs and AC. The balance between weakening the CNTs and improving fiber-matrix load transfer is explored by systematically varying the extent of crosslinking. It is, of course, impossible to capture the full range of deformation and fracture processes that occur in real materials with even the largest atomistic molecular dynamics simulations. With this limitation in mind, the simulation results reported here provide a plausible upper limit on

  20. Track-stitching using graphical models and message passing

    CSIR Research Space (South Africa)

    Van der Merwe, LJ

    2013-07-01

    Full Text Available In order to stitch tracks together, two tasks are required, namely tracking and track stitching. In this study track stitching is performed using a graphical model and message passing (belief propagation) approach. Tracks are modelled as nodes in a...

  1. Melody Track Selection Using Discriminative Language Model

    Science.gov (United States)

    Wu, Xiao; Li, Ming; Suo, Hongbin; Yan, Yonghong

    In this letter we focus on the task of selecting the melody track from a polyphonic MIDI file. Based on the intuition that music and language are similar in many aspects, we solve the selection problem by introducing an n-gram language model to learn the melody co-occurrence patterns in a statistical manner and determine the melodic degree of a given MIDI track. Furthermore, we propose the idea of using background model and posterior probability criteria to make modeling more discriminative. In the evaluation, the achieved 81.6% correct rate indicates the feasibility of our approach.

  2. Enhanced index tracking modelling in portfolio optimization

    Science.gov (United States)

    Lam, W. S.; Hj. Jaaman, Saiful Hafizah; Ismail, Hamizun bin

    2013-09-01

    Enhanced index tracking is a popular form of passive fund management in stock market. It is a dual-objective optimization problem, a trade-off between maximizing the mean return and minimizing the risk. Enhanced index tracking aims to generate excess return over the return achieved by the index without purchasing all of the stocks that make up the index by establishing an optimal portfolio. The objective of this study is to determine the optimal portfolio composition and performance by using weighted model in enhanced index tracking. Weighted model focuses on the trade-off between the excess return and the risk. The results of this study show that the optimal portfolio for the weighted model is able to outperform the Malaysia market index which is Kuala Lumpur Composite Index because of higher mean return and lower risk without purchasing all the stocks in the market index.

  3. A mechanistic model for radiation-induced crystallization and amorphization in U3Si

    International Nuclear Information System (INIS)

    Rest, J.

    1994-06-01

    Radiation-induced amorphization is assessed. A rate-theory model is formulated wherein amorphous clusters are formed by the damage event These clusters are considered centers of expansion (CE), or excess-free-volume zones. Simultaneously, centers of compression (CC) are created in the material. The CCs are local regions of increased density that travel through the material as an elastic (e.g., acoustic) shock wave. The CEs can be annihilated upon contact with CCs (annihilation probability depends on height of the energy barrier), forming either a crystallized region indistinguishable from the host material, or a region with a slight disorientation (recrystallized grain). Recrystallized grains grow by the accumulation of additional CCs. Full amorphization is calculated on the basis of achieving a fuel volume fraction consistent with the close packing of spherical entities. Amorphization of a recrystallized grain is hindered by the grain boundary. Preirradiation of U 3 Si above the critical temperature for amorphization results in of nanometer-size grains. Subsequent reirradiation below the critical temperature shows that the material has developed a resistance to radiation-induced amorphization higher dose needed to amorphize the preirradiated samples than now preirradiated samples. In the model, it is assumed that grain boundaries act as effective defect sinks, and that enhanced defect annihilation is responsible for retarding amorphization at low temperature. The calculations have been validated against data from ion-irradiation experiments with U 3 Si. To obtain additional validation, the model has also been applied to the ion-induced motion of the interface between crystalline and amorphous phases of U 3 Si. Results of this analysis are compared to data and results of calculations for ion bombardment of Si

  4. Railway Track Allocation: Models and Methods

    DEFF Research Database (Denmark)

    Lusby, Richard Martin; Larsen, Jesper; Ehrgott, Matthias

    2011-01-01

    Efficiently coordinating the movement of trains on a railway network is a central part of the planning process for a railway company. This paper reviews models and methods that have been proposed in the literature to assist planners in finding train routes. Since the problem of routing trains......, and train routing problems, group them by railway network type, and discuss track allocation from a strategic, tactical, and operational level....... on a railway network entails allocating the track capacity of the network (or part thereof) over time in a conflict-free manner, all studies that model railway track allocation in some capacity are considered relevant. We hence survey work on the train timetabling, train dispatching, train platforming...

  5. Railway Track Allocation: Models and Methods

    DEFF Research Database (Denmark)

    Lusby, Richard Martin; Larsen, Jesper; Ehrgott, Matthias

    Eciently coordinating the movement of trains on a railway network is a central part of the planning process for a railway company. This paper reviews models and methods that have been proposed in the literature to assist planners in nding train routes. Since the problem of routing trains......, and train routing problems, group them by railway network type, and discuss track allocation from a strategic, tactical, and operational level....... on a railway network entails allocating the track capacity of the network (or part thereof) over time in a con ict-free manner, all studies that model railway track allocation in some capacity are considered relevant. We hence survey work on the train timetabling, train dispatching, train platforming...

  6. Particle Tracking Model (PTM) with Coastal Modeling System (CMS)

    Science.gov (United States)

    2015-11-04

    Coastal Inlets Research Program Particle Tracking Model (PTM) with Coastal Modeling System ( CMS ) The Particle Tracking Model (PTM) is a Lagrangian...currents and waves. The Coastal Inlets Research Program (CIRP) supports the PTM with the Coastal Modeling System ( CMS ), which provides coupled wave...and current forcing for PTM simulations. CMS -PTM is implemented in the Surface-water Modeling System, a GUI environment for input development

  7. Replication of surface features from a master model to an amorphous metallic article

    Science.gov (United States)

    Johnson, William L.; Bakke, Eric; Peker, Atakan

    1999-01-01

    The surface features of an article are replicated by preparing a master model having a preselected surface feature thereon which is to be replicated, and replicating the preselected surface feature of the master model. The replication is accomplished by providing a piece of a bulk-solidifying amorphous metallic alloy, contacting the piece of the bulk-solidifying amorphous metallic alloy to the surface of the master model at an elevated replication temperature to transfer a negative copy of the preselected surface feature of the master model to the piece, and separating the piece having the negative copy of the preselected surface feature from the master model.

  8. An Amorphous Network Model for Capillary Flow and Dispersion in a Partially Saturated Porous Medium

    Science.gov (United States)

    Simmons, C. S.; Rockhold, M. L.

    2013-12-01

    Network models of capillary flow are commonly used to represent conduction of fluids at pore scales. Typically, a flow system is described by a regular geometric lattice of interconnected tubes. Tubes constitute the pore throats, while connection junctions (nodes) are pore bodies. Such conceptualization of the geometry, however, is questionable for the pore scale, where irregularity clearly prevails, although prior published models using a regular lattice have demonstrated successful descriptions of the flow in the bulk medium. Here a network is allowed to be amorphous, and is not subject to any particular lattice structure. Few network flow models have treated partially saturated or even multiphase conditions. The research trend is toward using capillary tubes with triangular or square cross sections that have corners and always retain some fluid by capillarity when drained. In contrast, this model uses only circular capillaries, whose filled state is controlled by a capillary pressure rule for the junctions. The rule determines which capillary participate in the flow under an imposed matric potential gradient during steady flow conditions. Poiseuille's Law and Laplace equation are used to describe flow and water retention in the capillary units of the model. A modified conjugate gradient solution for steady flow that tracks which capillary in an amorphous network contribute to fluid conduction was devised for partially saturated conditions. The model thus retains the features of classical capillary models for determining hydraulic flow properties under unsaturated conditions based on distribution of non-interacting tubes, but now accounts for flow exchange at junctions. Continuity of the flow balance at every junction is solved simultaneously. The effective water retention relationship and unsaturated permeability are evaluated for an extensive enough network to represent a small bulk sample of porous medium. The model is applied for both a hypothetically

  9. Miedema model based methodology to predict amorphous-forming-composition range in binary and ternary systems

    Energy Technology Data Exchange (ETDEWEB)

    Das, N., E-mail: nirupamd@barc.gov.in [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Mittra, J. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Murty, B.S. [Department of Metallurgical and Materials Engineering, IIT Madras, Chennai 600 036 (India); Pabi, S.K. [Department of Metallurgical and Materials Engineering, IIT Kharagpur, Kharagpur 721 302 (India); Kulkarni, U.D.; Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer A methodology was proposed to predict amorphous forming compositions (AFCs). Black-Right-Pointing-Pointer Chemical contribution to enthalpy of mixing {proportional_to} enthalpy of amorphous for AFCs. Black-Right-Pointing-Pointer Accuracy in the prediction of AFC-range was noticed in Al-Ni-Ti system. Black-Right-Pointing-Pointer Mechanical alloying (MA) results of Al-Ni-Ti followed the predicted AFC-range. Black-Right-Pointing-Pointer Earlier MA results of Al-Ni-Ti also conformed to the predicted AFC-range. - Abstract: From the earlier works on the prediction of amorphous forming composition range (AFCR) using Miedema based model and also, on mechanical alloying experiments it has been observed that all amorphous forming compositions of a given alloy system falls within a linear band when the chemical contribution to enthalpy of the solid solution ({Delta}H{sup ss}) is plotted against the enthalpy of mixing in the amorphous phase ({Delta}H{sup amor}). On the basis of this observation, a methodology has been proposed in this article to identify the AFCR of a ternary system that is likely to be more precise than what can be obtained using {Delta}H{sup amor} - {Delta}H{sup ss} < 0 criterion. MA experiments on various compositions of Al-Ni-Ti system, producing amorphous, crystalline, and mixture of amorphous plus crystalline phases have been carried out and the phases have been characterized using X-ray diffraction and transmission electron microscopy techniques. Data from the present MA experiments and, also, from the literature have been used to validate the proposed approach. Also, the proximity of compositions, producing a mixture of amorphous and crystalline phases to the boundary of AFCR in the Al-Ni-Ti ternary has been found useful to validate the effectiveness of the prediction.

  10. 3-D model-based vehicle tracking.

    Science.gov (United States)

    Lou, Jianguang; Tan, Tieniu; Hu, Weiming; Yang, Hao; Maybank, Steven J

    2005-10-01

    This paper aims at tracking vehicles from monocular intensity image sequences and presents an efficient and robust approach to three-dimensional (3-D) model-based vehicle tracking. Under the weak perspective assumption and the ground-plane constraint, the movements of model projection in the two-dimensional image plane can be decomposed into two motions: translation and rotation. They are the results of the corresponding movements of 3-D translation on the ground plane (GP) and rotation around the normal of the GP, which can be determined separately. A new metric based on point-to-line segment distance is proposed to evaluate the similarity between an image region and an instantiation of a 3-D vehicle model under a given pose. Based on this, we provide an efficient pose refinement method to refine the vehicle's pose parameters. An improved EKF is also proposed to track and to predict vehicle motion with a precise kinematics model. Experimental results with both indoor and outdoor data show that the algorithm obtains desirable performance even under severe occlusion and clutter.

  11. A Provenance Tracking Model for Data Updates

    Directory of Open Access Journals (Sweden)

    Gabriel Ciobanu

    2012-08-01

    Full Text Available For data-centric systems, provenance tracking is particularly important when the system is open and decentralised, such as the Web of Linked Data. In this paper, a concise but expressive calculus which models data updates is presented. The calculus is used to provide an operational semantics for a system where data and updates interact concurrently. The operational semantics of the calculus also tracks the provenance of data with respect to updates. This provides a new formal semantics extending provenance diagrams which takes into account the execution of processes in a concurrent setting. Moreover, a sound and complete model for the calculus based on ideals of series-parallel DAGs is provided. The notion of provenance introduced can be used as a subjective indicator of the quality of data in concurrent interacting systems.

  12. Multiple-lesion track-structure model

    International Nuclear Information System (INIS)

    Wilson, J.W.; Cucinotta, F.A.; Shinn, J.L.

    1992-03-01

    A multilesion cell kinetic model is derived, and radiation kinetic coefficients are related to the Katz track structure model. The repair-related coefficients are determined from the delayed plating experiments of Yang et al. for the C3H10T1/2 cell system. The model agrees well with the x ray and heavy ion experiments of Yang et al. for the immediate plating, delaying plating, and fractionated exposure protocols employed by Yang. A study is made of the effects of target fragments in energetic proton exposures and of the repair-deficient target-fragment-induced lesions

  13. The effect of empirical potential functions on modeling of amorphous carbon using molecular dynamics method

    International Nuclear Information System (INIS)

    Li, Longqiu; Xu, Ming; Song, Wenping; Ovcharenko, Andrey; Zhang, Guangyu; Jia, Ding

    2013-01-01

    Empirical potentials have a strong effect on the hybridization and structure of amorphous carbon and are of great importance in molecular dynamics (MD) simulations. In this work, amorphous carbon at densities ranging from 2.0 to 3.2 g/cm 3 was modeled by a liquid quenching method using Tersoff, 2nd REBO, and ReaxFF empirical potentials. The hybridization, structure and radial distribution function G(r) of carbon atoms were analyzed as a function of the three potentials mentioned above. The ReaxFF potential is capable to model the change of the structure of amorphous carbon and MD results are in a good agreement with experimental results and density function theory (DFT) at low density of 2.6 g/cm 3 and below. The 2nd REBO potential can be used when amorphous carbon has a very low density of 2.4 g/cm 3 and below. Considering the computational efficiency, the Tersoff potential is recommended to model amorphous carbon at a high density of 2.6 g/cm 3 and above. In addition, the influence of the quenching time on the hybridization content obtained with the three potentials is discussed.

  14. An interface tracking model for droplet electrocoalescence.

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Lindsay Crowl

    2013-09-01

    This report describes an Early Career Laboratory Directed Research and Development (LDRD) project to develop an interface tracking model for droplet electrocoalescence. Many fluid-based technologies rely on electrical fields to control the motion of droplets, e.g. microfluidic devices for high-speed droplet sorting, solution separation for chemical detectors, and purification of biodiesel fuel. Precise control over droplets is crucial to these applications. However, electric fields can induce complex and unpredictable fluid dynamics. Recent experiments (Ristenpart et al. 2009) have demonstrated that oppositely charged droplets bounce rather than coalesce in the presence of strong electric fields. A transient aqueous bridge forms between approaching drops prior to pinch-off. This observation applies to many types of fluids, but neither theory nor experiments have been able to offer a satisfactory explanation. Analytic hydrodynamic approximations for interfaces become invalid near coalescence, and therefore detailed numerical simulations are necessary. This is a computationally challenging problem that involves tracking a moving interface and solving complex multi-physics and multi-scale dynamics, which are beyond the capabilities of most state-of-the-art simulations. An interface-tracking model for electro-coalescence can provide a new perspective to a variety of applications in which interfacial physics are coupled with electrodynamics, including electro-osmosis, fabrication of microelectronics, fuel atomization, oil dehydration, nuclear waste reprocessing and solution separation for chemical detectors. We present a conformal decomposition finite element (CDFEM) interface-tracking method for the electrohydrodynamics of two-phase flow to demonstrate electro-coalescence. CDFEM is a sharp interface method that decomposes elements along fluid-fluid boundaries and uses a level set function to represent the interface.

  15. Thermodynamical modeling of nuclear glasses: coexistence of amorphous phases; Modelisation thermodynamique des verres nucleaires: coexistence entre phases amorphes

    Energy Technology Data Exchange (ETDEWEB)

    Adjanor, G

    2007-11-15

    Investigating the stability of borosilicate glasses used in the nuclear industry with respect to phase separation requires to estimate the Gibbs free energies of the various phases appearing in the material. In simulation, using current computational resources, a direct state-sampling of a glassy system with respect to its ensemble statistics is not ergodic and the estimated ensemble averages are not reliable. Our approach consists in generating, at a given cooling rate, a series of quenches, or paths connecting states of the liquid to states of the glass, and then in taking into account the probability to generate the paths leading to the different glassy states in ensembles averages. In this way, we introduce a path ensemble formalism and calculate a Landau free energy associated to a glassy meta-basin. This method was validated by accurately mapping the free energy landscape of a 38-atom glassy cluster. We then applied this approach to the calculation of the Gibbs free energies of binary amorphous Lennard-Jones alloys, and checked the correlation between the observed tendencies to order or to phase separate and the computed Gibbs free energies. We finally computed the driving force to phase separation in a simplified three-oxide nuclear glass modeled by a Born-Mayer-Huggins potential that includes a three-body term, and we compared the estimated quantities to the available experimental data. (author)

  16. Modelling the structure factors and pair distribution functions of amorphous germanium, silicon and carbon

    International Nuclear Information System (INIS)

    Dalgic, Seyfettin; Gonzalez, Luis Enrique; Baer, Shalom; Silbert, Moises

    2002-01-01

    We present the results of calculations of the static structure factor S(k) and the pair distribution function g(r) of the tetrahedral amorphous semiconductors germanium, silicon and carbon using the structural diffusion model (SDM). The results obtained with the SDM for S(k) and g(r) are of comparable quality with those obtained by the unconstrained Reverse Monte Carlo simulations and existing ab initio molecular dynamics simulations for these systems. We have found that g(r) exhibits a small peak, or shoulder, a weak remnant of the prominent third neighbour peak present in the crystalline phase of these systems. This feature has been experimentally found to be present in recently reported high energy X-ray experiments of amorphous silicon (Phys. Rev. B 60 (1999) 13520), as well as in the previous X-ray diffraction of as-evaporated amorphous germanium (Phys. Rev. B 50 (1994) 539)

  17. Modelling the structure factors and pair distribution functions of amorphous germanium, silicon and carbon

    Energy Technology Data Exchange (ETDEWEB)

    Dalgic, Seyfettin; Gonzalez, Luis Enrique; Baer, Shalom; Silbert, Moises

    2002-12-01

    We present the results of calculations of the static structure factor S(k) and the pair distribution function g(r) of the tetrahedral amorphous semiconductors germanium, silicon and carbon using the structural diffusion model (SDM). The results obtained with the SDM for S(k) and g(r) are of comparable quality with those obtained by the unconstrained Reverse Monte Carlo simulations and existing ab initio molecular dynamics simulations for these systems. We have found that g(r) exhibits a small peak, or shoulder, a weak remnant of the prominent third neighbour peak present in the crystalline phase of these systems. This feature has been experimentally found to be present in recently reported high energy X-ray experiments of amorphous silicon (Phys. Rev. B 60 (1999) 13520), as well as in the previous X-ray diffraction of as-evaporated amorphous germanium (Phys. Rev. B 50 (1994) 539)

  18. Unified physical DC model of staggered amorphous InGaZnO transistors

    NARCIS (Netherlands)

    Ghittorelli, M.; Torricelli, F.; Garripoli, C.; van der Steen, J.L.; Gelinck, G.H.; Cantatore, E.; Colalongo, L.; Kovács-Vajna, Z.M.

    In this paper, we propose a unified physical model of InGaZnO [amorphous indium-gallium-zinc-oxide (a-IGZO)] thin-film transistors (TFTs) accounting for both charge injection at the contact and charge transport within the channel. We extract the current-voltage characteristics of the injecting

  19. Finite size effects in a model for platicity of amorphous composites

    DEFF Research Database (Denmark)

    Tyukodi, Botond; Lemarchand, Claire A.; Hansen, Jesper Schmidt

    2016-01-01

    We discuss the plastic behavior of an amorphous matrix reinforced by hard particles. A mesoscopic depinning-like model accounting for Eshelby elastic interactions is implemented. Only the effect of a plastic disorder is considered. Numerical results show a complex size dependence of the effective...

  20. Magnetic properties of the three-dimensional Ising model with an interface amorphization

    International Nuclear Information System (INIS)

    Benyoussef, A.; El Kenz, A.; Saber, M.

    1993-09-01

    A three-dimensional ferromagnetic Ising model with an interface amorphization is investigated with the use of the effective field theory. Phase diagrams and reduced magnetization curves of interface and bulks are studied. We obtain a number of characteristic behaviour such as the possibility of the reentrant phenomena and a large depression of interface magnetization. (author). 21 refs, 5 figs

  1. Deformation Models Tracking, Animation and Applications

    CERN Document Server

    Torres, Arnau; Gómez, Javier

    2013-01-01

    The computational modelling of deformations has been actively studied for the last thirty years. This is mainly due to its large range of applications that include computer animation, medical imaging, shape estimation, face deformation as well as other parts of the human body, and object tracking. In addition, these advances have been supported by the evolution of computer processing capabilities, enabling realism in a more sophisticated way. This book encompasses relevant works of expert researchers in the field of deformation models and their applications.  The book is divided into two main parts. The first part presents recent object deformation techniques from the point of view of computer graphics and computer animation. The second part of this book presents six works that study deformations from a computer vision point of view with a common characteristic: deformations are applied in real world applications. The primary audience for this work are researchers from different multidisciplinary fields, s...

  2. Kinetic model for transformation from nano-sized amorphous $TiO_2$ to anatase

    OpenAIRE

    Madras, Giridhar; McCoy, Benjamin J

    2006-01-01

    We propose a kinetic model for the transformation of nano-sized amorphous $TiO_2$ to anatase with associated coarsening by coalescence. Based on population balance (distribution kinetics) equations for the size distributions, the model applies a first-order rate expression for transformation combined with Smoluchowski coalescence for the coarsening particles. Size distribution moments (number and mass of particles) lead to dynamic expressions for extent of reaction and average anatase particl...

  3. Modeling the Coupled Chemo-Thermo-Mechanical Behavior of Amorphous Polymer Networks.

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Jonathan A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Nguyen, Thao D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Xiao, Rui [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-02-01

    Amorphous polymers exhibit a rich landscape of time-dependent behavior including viscoelasticity, structural relaxation, and viscoplasticity. These time-dependent mechanisms can be exploited to achieve shape-memory behavior, which allows the material to store a programmed deformed shape indefinitely and to recover entirely the undeformed shape in response to specific environmental stimulus. The shape-memory performance of amorphous polymers depends on the coordination of multiple physical mechanisms, and considerable opportunities exist to tailor the polymer structure and shape-memory programming procedure to achieve the desired performance. The goal of this project was to use a combination of theoretical, numerical and experimental methods to investigate the effect of shape memory programming, thermo-mechanical properties, and physical and environmental aging on the shape memory performance. Physical and environmental aging occurs during storage and through exposure to solvents, such as water, and can significantly alter the viscoelastic behavior and shape memory behavior of amorphous polymers. This project – executed primarily by Professor Thao Nguyen and Graduate Student Rui Xiao at Johns Hopkins University in support of a DOE/NNSA Presidential Early Career Award in Science and Engineering (PECASE) – developed a theoretical framework for chemothermo- mechanical behavior of amorphous polymers to model the effects of physical aging and solvent-induced environmental factors on their thermoviscoelastic behavior.

  4. Modeling of the structure and properties of oxygen vacancies in amorphous silica

    International Nuclear Information System (INIS)

    Mukhopadhyay, Sanghamitra; Sushko, Peter V.; Stoneham, A. Marshall; Shluger, Alexander L.

    2004-01-01

    We used an embedded cluster method to predict and characterize possible structural types of neutral and positively charged oxygen vacancies in amorphous silica. Defects were treated at 70 different oxygen sites of continuous random network amorphous structure generated using classical molecular dynamics. The neutral vacancies are characterized by a wide distribution of formation energies and structural parameters. Our modeling predicts the two major structural types of positively charged vacancies (E ' centers): dimer and dangling bond centers. The local structure of both types of centers depends on the medium range structure of the surrounding amorphous network. The majority of the dangling bond centers are unpuckered. We used structural 'fingerprints' derived from similar calculations of oxygen vacancy type centers in quartz and from experiment to find two other structural types of dangling bond centers: the puckered configuration and the back-projected configuration of E ' centers. In each case we find a distribution of both structural and EPR parameters. However, the average values of the EPR parameters for all dangling bond configurations are very similar. The structural criteria which favor the formation of different types of centers in the original amorphous structure are formulated in terms of the average Si-O distance of oxygen ion with its two neighboring silicon ions

  5. Fundamental models of electronic transport in amorphous semiconductors

    International Nuclear Information System (INIS)

    Emin, D.

    1982-01-01

    Significant fundamental questions lie at the heart of our understanding of the electronic and optical properties of semiconducting and insulating glasses. In this article the principal features of the Mott-CFO model and the small-polaron model are described. While the Mott-CFO model seems to apply to the high-mobility electron transport in glassy SiO 2 and Cd 2 As 3 it does not appear applicable to the most frequently studied chalocogenide glasses. Furthermore, the Mott-CFO model does not account for as basic a feature as the sign of the Hall effect. On the other hand, the small-polaron model accounts for the observed d.c. conductivity, Peltier heat and Hall mobility in a very simple and direct manner

  6. Hydroxylated crystalline edingtonite silica faces as models for the amorphous silica surface

    Energy Technology Data Exchange (ETDEWEB)

    Tosoni, S; Civalleri, B; Ugliengo, P [Dipartimento di Chimica IFM and NIS (Centre of Excellence), Universita di Torino, Via P. Giuria 7, 10125 Torino - ITALY (Italy); Pascale, F [Laboratoire de Cristallographie ed Modelisation des Materiaux Mineraux et Biologiques, UMR-CNRS-7036. Universite Henri Poincare - Nancy I, B.P. 239, 54506 Vandoeuvre-les-Nancy Cedex 05 - FRANCE (France)], E-mail: piero.ugliengo@unito.it

    2008-06-01

    Fully hydroxylated surfaces derived from crystalline edingtonite were adopted to model the variety of sites known to exist at the amorphous silica surface, namely isolated, geminal and interacting silanols. Structures, energetics and vibrational features of the surfaces either bare or in contact with water were modelled at DFT level using the B3LYP functional with a GTO basis set of double-zeta polarized quality using the periodic ab-initio CRYSTAL06 code. Simulated infrared spectra of both dry and water wet edingtonite surfaces were in excellent agreement with the experimental ones recorded on amorphous silica. Water interaction energies were compared with microcalorimetric differential heats of adsorption data showing good agreement, albeit computed ones being slightly underestimated due to the lack of dispersive forces in the B3LYP functional.

  7. Development of a railway wagon-track interaction model: Case studies on excited tracks

    Science.gov (United States)

    Xu, Lei; Chen, Xianmai; Li, Xuwei; He, Xianglin

    2018-02-01

    In this paper, a theoretical framework for modeling the railway wagon-ballast track interactions is presented, in which the dynamic equations of motion of wagon-track systems are constructed by effectively coupling the linear and nonlinear dynamic characteristics of system components. For the linear components, the energy-variational principle is directly used to derive their dynamic matrices, while for the nonlinear components, the dynamic equilibrium method is implemented to deduce the load vectors, based on which a novel railway wagon-ballast track interaction model is developed, and being validated by comparing with the experimental data measured from a heavy haul railway and another advanced model. With this study, extensive contributions in figuring out the critical speed of instability, limits and localizations of track irregularities over derailment accidents are presented by effectively integrating the dynamic simulation model, the track irregularity probabilistic model and time-frequency analysis method. The proposed approaches can provide crucial information to guarantee the running safety and stability of the wagon-track system when considering track geometries and various running speeds.

  8. A Model for Nationwide Patient Tracking

    Science.gov (United States)

    2009-09-01

    SUBJECT TERMS Patient Tracking, Public Health, Emergency Medical Services, Patient Movement, Evacuation, Public Health Preparedness 16. PRICE CODE 17...Emergency Medical Services................................................................................................19 2. Ideal Patient Tracking... Medical Services ............................................................36 a. Patient Flow in Field-Based Casualty Care—Current Process

  9. An improved likelihood model for eye tracking

    DEFF Research Database (Denmark)

    Hammoud, Riad I.; Hansen, Dan Witzner

    2007-01-01

    While existing eye detection and tracking algorithms can work reasonably well in a controlled environment, they tend to perform poorly under real world imaging conditions where the lighting produces shadows and the person's eyes can be occluded by e.g. glasses or makeup. As a result, pixel clusters...... associated with the eyes tend to be grouped together with background-features. This problem occurs both for eye detection and eye tracking. Problems that especially plague eye tracking include head movement, eye blinking and light changes, all of which can cause the eyes to suddenly disappear. The usual...... approach in such cases is to abandon the tracking routine and re-initialize eye detection. Of course this may be a difficult process due to missed data problem. Accordingly, what is needed is an efficient method of reliably tracking a person's eyes between successively produced video image frames, even...

  10. Numerically modeling Brownian thermal noise in amorphous and crystalline thin coatings

    Science.gov (United States)

    Lovelace, Geoffrey; Demos, Nicholas; Khan, Haroon

    2018-01-01

    Thermal noise is expected to be one of the noise sources limiting the astrophysical reach of Advanced LIGO (once commissioning is complete) and third-generation detectors. Adopting crystalline materials for thin, reflecting mirror coatings, rather than the amorphous coatings used in current-generation detectors, could potentially reduce thermal noise. Understanding and reducing thermal noise requires accurate theoretical models, but modeling thermal noise analytically is especially challenging with crystalline materials. Thermal noise models typically rely on the fluctuation-dissipation theorem, which relates the power spectral density of the thermal noise to an auxiliary elastic problem. In this paper, we present results from a new, open-source tool that numerically solves the auxiliary elastic problem to compute the Brownian thermal noise for both amorphous and crystalline coatings. We employ the open-source deal.ii and PETSc frameworks to solve the auxiliary elastic problem using a finite-element method, adaptive mesh refinement, and parallel processing that enables us to use high resolutions capable of resolving the thin reflective coating. We verify numerical convergence, and by running on up to hundreds of compute cores, we resolve the coating elastic energy in the auxiliary problem to approximately 0.1%. We compare with approximate analytic solutions for amorphous materials, and we verify that our solutions scale as expected with changing beam size, mirror dimensions, and coating thickness. Finally, we model the crystalline coating thermal noise in an experiment reported by Cole et al (2013 Nat. Photon. 7 644–50), comparing our results to a simpler numerical calculation that treats the coating as an ‘effectively amorphous’ material. We find that treating the coating as a cubic crystal instead of as an effectively amorphous material increases the thermal noise by about 3%. Our results are a step toward better understanding and reducing thermal noise to

  11. Representation of Northern Hemisphere winter storm tracks in climate models

    Energy Technology Data Exchange (ETDEWEB)

    Greeves, C.Z.; Pope, V.D.; Stratton, R.A.; Martin, G.M. [Met Office Hadley Centre for Climate Prediction and Research, Exeter (United Kingdom)

    2007-06-15

    Northern Hemisphere winter storm tracks are a key element of the winter weather and climate at mid-latitudes. Before projections of climate change are made for these regions, it is necessary to be sure that climate models are able to reproduce the main features of observed storm tracks. The simulated storm tracks are assessed for a variety of Hadley Centre models and are shown to be well modelled on the whole. The atmosphere-only model with the semi-Lagrangian dynamical core produces generally more realistic storm tracks than the model with the Eulerian dynamical core, provided the horizontal resolution is high enough. The two models respond in different ways to changes in horizontal resolution: the model with the semi-Lagrangian dynamical core has much reduced frequency and strength of cyclonic features at lower resolution due to reduced transient eddy kinetic energy. The model with Eulerian dynamical core displays much smaller changes in frequency and strength of features with changes in horizontal resolution, but the location of the storm tracks as well as secondary development are sensitive to resolution. Coupling the atmosphere-only model (with semi-Lagrangian dynamical core) to an ocean model seems to affect the storm tracks largely via errors in the tropical representation. For instance a cold SST bias in the Pacific and a lack of ENSO variability lead to large changes in the Pacific storm track. Extratropical SST biases appear to have a more localised effect on the storm tracks. (orig.)

  12. Models and Algorithms for Tracking Target with Coordinated Turn Motion

    Directory of Open Access Journals (Sweden)

    Xianghui Yuan

    2014-01-01

    Full Text Available Tracking target with coordinated turn (CT motion is highly dependent on the models and algorithms. First, the widely used models are compared in this paper—coordinated turn (CT model with known turn rate, augmented coordinated turn (ACT model with Cartesian velocity, ACT model with polar velocity, CT model using a kinematic constraint, and maneuver centered circular motion model. Then, in the single model tracking framework, the tracking algorithms for the last four models are compared and the suggestions on the choice of models for different practical target tracking problems are given. Finally, in the multiple models (MM framework, the algorithm based on expectation maximization (EM algorithm is derived, including both the batch form and the recursive form. Compared with the widely used interacting multiple model (IMM algorithm, the EM algorithm shows its effectiveness.

  13. Robust Visual Tracking via Exclusive Context Modeling

    KAUST Repository

    Zhang, Tianzhu

    2015-02-09

    In this paper, we formulate particle filter-based object tracking as an exclusive sparse learning problem that exploits contextual information. To achieve this goal, we propose the context-aware exclusive sparse tracker (CEST) to model particle appearances as linear combinations of dictionary templates that are updated dynamically. Learning the representation of each particle is formulated as an exclusive sparse representation problem, where the overall dictionary is composed of multiple {group} dictionaries that can contain contextual information. With context, CEST is less prone to tracker drift. Interestingly, we show that the popular L₁ tracker [1] is a special case of our CEST formulation. The proposed learning problem is efficiently solved using an accelerated proximal gradient method that yields a sequence of closed form updates. To make the tracker much faster, we reduce the number of learning problems to be solved by using the dual problem to quickly and systematically rank and prune particles in each frame. We test our CEST tracker on challenging benchmark sequences that involve heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that CEST consistently outperforms state-of-the-art trackers.

  14. Empty tracks optimization based on Z-Map model

    Science.gov (United States)

    Liu, Le; Yan, Guangrong; Wang, Zaijun; Zang, Genao

    2017-12-01

    For parts with many features, there are more empty tracks during machining. If these tracks are not optimized, the machining efficiency will be seriously affected. In this paper, the characteristics of the empty tracks are studied in detail. Combining with the existing optimization algorithm, a new tracks optimization method based on Z-Map model is proposed. In this method, the tool tracks are divided into the unit processing section, and then the Z-Map model simulation technique is used to analyze the order constraint between the unit segments. The empty stroke optimization problem is transformed into the TSP with sequential constraints, and then through the genetic algorithm solves the established TSP problem. This kind of optimization method can not only optimize the simple structural parts, but also optimize the complex structural parts, so as to effectively plan the empty tracks and greatly improve the processing efficiency.

  15. The Soft-Confined Method for Creating Molecular Models of Amorphous Polymer Surfaces

    KAUST Repository

    Liu, Hongyi; Li, Yan; Krause, Wendy E.; Rojas, Orlando J.; Pasquinelli, Melissa A.

    2012-01-01

    The goal of this work was to use molecular dynamics (MD) simulations to build amorphous surface layers of polypropylene (PP) and cellulose and to inspect their physical and interfacial properties. A new method to produce molecular models for these surfaces was developed, which involved the use of a "soft" confining layer comprised of a xenon crystal. This method compacts the polymers into a density distribution and a degree of molecular surface roughness that corresponds well to experimental values. In addition, calculated properties such as density, cohesive energy density, coefficient of thermal expansion, and the surface energy agree with experimental values and thus validate the use of soft confining layers. The method can be applied to polymers with a linear backbone such as PP as well as those whose backbones contain rings, such as cellulose. The developed PP and cellulose surfaces were characterized by their interactions with water. It was found that a water nanodroplet spreads on the amorphous cellulose surfaces, but there was no significant change in the dimension of the droplet on the PP surface; the resulting MD water contact angles on PP and amorphous cellulose surfaces were determined to be 106 and 33°, respectively. © 2012 American Chemical Society.

  16. The Soft-Confined Method for Creating Molecular Models of Amorphous Polymer Surfaces

    KAUST Repository

    Liu, Hongyi

    2012-02-09

    The goal of this work was to use molecular dynamics (MD) simulations to build amorphous surface layers of polypropylene (PP) and cellulose and to inspect their physical and interfacial properties. A new method to produce molecular models for these surfaces was developed, which involved the use of a "soft" confining layer comprised of a xenon crystal. This method compacts the polymers into a density distribution and a degree of molecular surface roughness that corresponds well to experimental values. In addition, calculated properties such as density, cohesive energy density, coefficient of thermal expansion, and the surface energy agree with experimental values and thus validate the use of soft confining layers. The method can be applied to polymers with a linear backbone such as PP as well as those whose backbones contain rings, such as cellulose. The developed PP and cellulose surfaces were characterized by their interactions with water. It was found that a water nanodroplet spreads on the amorphous cellulose surfaces, but there was no significant change in the dimension of the droplet on the PP surface; the resulting MD water contact angles on PP and amorphous cellulose surfaces were determined to be 106 and 33°, respectively. © 2012 American Chemical Society.

  17. Three-dimensional shear transformation zone dynamics model for amorphous metals

    International Nuclear Information System (INIS)

    Homer, Eric R; Schuh, Christopher A

    2010-01-01

    A fully three-dimensional (3D) mesoscale modeling framework for the mechanical behavior of amorphous metals is proposed. The model considers the coarse-grained action of shear transformation zones (STZs) as the fundamental deformation event. The simulations are controlled through the kinetic Monte Carlo algorithm and the mechanical response of the system is captured through finite-element analysis, where STZs are mapped onto a 3D finite-element mesh and are allowed to shear in any direction in three dimensions. Implementation of the technique in uniaxial creep tests over a wide range of conditions validates the model's ability to capture the expected behaviors of an amorphous metal, including high temperature flow conforming to the expected constitutive law and low temperature localization in the form of a nascent shear band. The simulation results are combined to construct a deformation map that is comparable to experimental deformation maps. The flexibility of the modeling framework is illustrated by performing a contact test (simulated nanoindentation) in which the model deforms through STZ activity in the region experiencing the highest shear stress

  18. Track structure model of cell damage in space flight

    Science.gov (United States)

    Katz, Robert; Cucinotta, Francis A.; Wilson, John W.; Shinn, Judy L.; Ngo, Duc M.

    1992-01-01

    The phenomenological track-structure model of cell damage is discussed. A description of the application of the track-structure model with the NASA Langley transport code for laboratory and space radiation is given. Comparisons to experimental results for cell survival during exposure to monoenergetic, heavy-ion beams are made. The model is also applied to predict cell damage rates and relative biological effectiveness for deep-space exposures.

  19. Portfolio optimization for index tracking modelling in Malaysia stock market

    Science.gov (United States)

    Siew, Lam Weng; Jaaman, Saiful Hafizah; Ismail, Hamizun

    2016-06-01

    Index tracking is an investment strategy in portfolio management which aims to construct an optimal portfolio to generate similar mean return with the stock market index mean return without purchasing all of the stocks that make up the index. The objective of this paper is to construct an optimal portfolio using the optimization model which adopts regression approach in tracking the benchmark stock market index return. In this study, the data consists of weekly price of stocks in Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index from January 2010 until December 2013. The results of this study show that the optimal portfolio is able to track FBMKLCI Index at minimum tracking error of 1.0027% with 0.0290% excess mean return over the mean return of FBMKLCI Index. The significance of this study is to construct the optimal portfolio using optimization model which adopts regression approach in tracking the stock market index without purchasing all index components.

  20. Density model for medium range order in amorphous materials: application to small angle scattering

    International Nuclear Information System (INIS)

    Boucher, B.; Tournarie, M.; Chieux, P.; Convert, P.

    1983-06-01

    We consider a family of randomly spaced parallel planes, each plane dressed with a density function, h(x), where x is the distance from the plane. An expression for the volume scattering power from a system of N such families with random orientations in space is derived from Fourier transform of h(x), which can subsequently be determined from experimental observations. This density model is used to interpret the small angle neutron scattering (SANS) results for the amorphous alloy TbCusub(3.54)

  1. Zebrabase: An intuitive tracking solution for aquatic model organisms

    OpenAIRE

    Oltova, Jana; Bartunek, Petr; Machonova, Olga; Svoboda, Ondrej; Skuta, Ctibor; Jindrich, Jindrich

    2018-01-01

    Small fish species, like zebrafish or medaka, are constantly gaining popularity in basic research and disease modeling as a useful alternative to rodent model organisms. However, the tracking options for fish within a facility are rather limited. Here, we present an aquatic species tracking database, Zebrabase, developed in our zebrafish research and breeding facility that represents a practical and scalable solution and an intuitive platform for scientists, fish managers and caretakers, in b...

  2. Device and material characterization and analytic modeling of amorphous silicon thin film transistors

    Science.gov (United States)

    Slade, Holly Claudia

    Hydrogenated amorphous silicon thin film transistors (TFTs) are now well-established as switching elements for a variety of applications in the lucrative electronics market, such as active matrix liquid crystal displays, two-dimensional imagers, and position-sensitive radiation detectors. These applications necessitate the development of accurate characterization and simulation tools. The main goal of this work is the development of a semi- empirical, analytical model for the DC and AC operation of an amorphous silicon TFT for use in a manufacturing facility to improve yield and maintain process control. The model is physically-based, in order that the parameters scale with gate length and can be easily related back to the material and device properties. To accomplish this, extensive experimental data and 2D simulations are used to observe and quantify non- crystalline effects in the TFTs. In particular, due to the disorder in the amorphous network, localized energy states exist throughout the band gap and affect all regimes of TFT operation. These localized states trap most of the free charge, causing a gate-bias-dependent field effect mobility above threshold, a power-law dependence of the current on gate bias below threshold, very low leakage currents, and severe frequency dispersion of the TFT gate capacitance. Additional investigations of TFT instabilities reveal the importance of changes in the density of states and/or back channel conduction due to bias and thermal stress. In the above threshold regime, the model is similar to the crystalline MOSFET model, considering the drift component of free charge. This approach uses the field effect mobility to take into account the trap states and must utilize the correct definition of threshold voltage. In the below threshold regime, the density of deep states is taken into account. The leakage current is modeled empirically, and the parameters are temperature dependent to 150oC. The capacitance of the TFT can be

  3. Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model

    Energy Technology Data Exchange (ETDEWEB)

    Baltrusaitis, Jonas, E-mail: job314@lehigh.edu [Department of Chemical Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015 (United States); PhotoCatalytic Synthesis group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Meander 229, P.O. Box 217, 7500 AE Enschede (Netherlands); Mendoza-Sanchez, Beatriz [CRANN, Chemistry School, Trinity College Dublin, Dublin (Ireland); Fernandez, Vincent [Institut des Matériaux Jean Rouxel, 2 rue de la Houssinière, BP 32229, F-44322 Nantes Cedex 3 (France); Veenstra, Rick [PhotoCatalytic Synthesis group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Meander 229, P.O. Box 217, 7500 AE Enschede (Netherlands); Dukstiene, Nijole [Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas (Lithuania); Roberts, Adam [Kratos Analytical Ltd, Trafford Wharf Road, Wharfside, Manchester, M17 1GP (United Kingdom); Fairley, Neal [Casa Software Ltd, Bay House, 5 Grosvenor Terrace, Teignmouth, Devon TQ14 8NE (United Kingdom)

    2015-01-30

    Highlights: • We analyzed and modeled spectral envelopes of complex molybdenum oxides. • Molybdenum oxide films of varying valence and crystallinity were synthesized. • MoO{sub 3} and MoO{sub 2} line shapes from experimental data were created. • Informed amorphous sample model (IASM) developed. • Amorphous molybdenum oxide XPS envelopes were interpreted. - Abstract: Accurate elemental oxidation state determination for the outer surface of a complex material is of crucial importance in many science and engineering disciplines, including chemistry, fundamental and applied surface science, catalysis, semiconductors and many others. X-ray photoelectron spectroscopy (XPS) is the primary tool used for this purpose. The spectral data obtained, however, is often very complex and can be subject to incorrect interpretation. Unlike traditional XPS spectra fitting procedures using purely synthetic spectral components, here we develop and present an XPS data processing method based on vector analysis that allows creating XPS spectral components by incorporating key information, obtained experimentally. XPS spectral data, obtained from series of molybdenum oxide samples with varying oxidation states and degree of crystallinity, were processed using this method and the corresponding oxidation states present, as well as their relative distribution was elucidated. It was shown that monitoring the evolution of the chemistry and crystal structure of a molybdenum oxide sample due to an invasive X-ray probe could be used to infer solutions to complex spectral envelopes.

  4. MODELING OF THE TRACK AND ROLLING STOCK INTERACTION

    Directory of Open Access Journals (Sweden)

    N. V. Khalipova

    2013-09-01

    Full Text Available Purpose. Interaction of system’s elements of "carriage–track" modelling requires consideration of various criteria, it also requires analysis of many uncertainty and randomness factors’ influence on the basic parameters to ensure optimal or rational parameters of the system. The researching of interactions’ process requires new theoretical approaches to formulation of objectives, based on a generalization of existing modeling approaches. The purpose of this work is development of interaction models between track and rolling stock based on multiple structures of objects. Methodology. Dedicated and formed the main evaluation criteria of dynamic interaction between track and rolling stock optimization - quality assurance and safety of transportation process, improving of their efficiency and reducing of prime cost’s. Based on vector optimization methods, proposed model of rolling stock and track’s elements interaction. For the synthesis of the model used mathematical machine of multiple objects structures. Findings. Generalized approaches to modeling in the interaction of rolling stock and track for different structural elements of the system under different exploitation conditions. This theoretical approach demonstrated on the examples of modeling of passenger and freight cars with track under different exploitation conditions. Originality. Proposed theoretical approach to the problem of track and rolling stock interaction, based on a synthesis of existing models by using of multiple objects structures. Practical value. Using of proposed model allows to structure key data and rational parameters of rolling stock and track interaction’s modeling and to formulate optimal and rational parameters of the system, to determine the effective exploitation parameters and measurement system for rational use of infrastructure.

  5. Modeling amorphous Si3B3N7: Structure and elastic properties

    International Nuclear Information System (INIS)

    Hannemann, A.; Schoen, J.C.; Jansen, M.; Putz, H.; Lengauer, T.

    2004-01-01

    We investigate the structure and elastic properties of the amorphous high-temperature ceramic a-Si 3 B 3 N 7 . Several different structural models are generated and their properties such as the radial and angular distribution functions, the degree of local order, the density, the bulk modulus and the phonon spectrum, are calculated and compared with the experiment. The best structural agreement between model and experimental observations is found for models exhibiting a certain degree of local ( 3 B 3 N 7 has not been synthesized by cooling from the melt but via the polymerization and subsequent pyrolysis of molecular precursors. Furthermore, we suggest that, due to the synthesis process, stable nanoscale cavities (diameter 3 )

  6. Modeling of amorphous pocket formation in silicon by numerical solution of the heat transport equation

    International Nuclear Information System (INIS)

    Kovac, D.; Otto, G.; Hobler, G.

    2005-01-01

    In this paper we present a model of amorphous pocket formation that is based on binary collision simulations to generate the distribution of deposited energy, and on numerical solution of the heat transport equation to describe the quenching process. The heat transport equation is modified to consider the heat of melting when the melting temperature is crossed at any point in space. It is discretized with finite differences on grid points that coincide with the crystallographic lattice sites, which allows easy determination of molten atoms. Atoms are considered molten if the average of their energy and the energy of their neighbors meets the melting criterion. The results obtained with this model are in good overall agreement with published experimental data on P, As, Te and Tl implantations in Si and with data on the polyatomic effect at cryogenic temperature

  7. Group Targets Tracking Using Multiple Models GGIW-CPHD Based on Best-Fitting Gaussian Approximation and Strong Tracking Filter

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2016-01-01

    Full Text Available Gamma Gaussian inverse Wishart cardinalized probability hypothesis density (GGIW-CPHD algorithm was always used to track group targets in the presence of cluttered measurements and missing detections. A multiple models GGIW-CPHD algorithm based on best-fitting Gaussian approximation method (BFG and strong tracking filter (STF is proposed aiming at the defect that the tracking error of GGIW-CPHD algorithm will increase when the group targets are maneuvering. The best-fitting Gaussian approximation method is proposed to implement the fusion of multiple models using the strong tracking filter to correct the predicted covariance matrix of the GGIW component. The corresponding likelihood functions are deduced to update the probability of multiple tracking models. From the simulation results we can see that the proposed tracking algorithm MM-GGIW-CPHD can effectively deal with the combination/spawning of groups and the tracking error of group targets in the maneuvering stage is decreased.

  8. The link between physics and chemistry in track modelling

    International Nuclear Information System (INIS)

    Green, N.J.B.; Bolton, C.E.; Spencer-Smith, R.D.

    1999-01-01

    The physical structure of a radiation track provides the initial conditions for the modelling of radiation chemistry. These initial conditions are not perfectly understood, because there are important gaps between what is provided by a typical track structure model and what is required to start the chemical model. This paper addresses the links between the physics and chemistry of tracks, with the intention of identifying those problems that need to be solved in order to obtain an accurate picture of the initial conditions for the purposes of modelling chemistry. These problems include the reasons for the increased yield of ionisation relative to homolytic bond breaking in comparison with the gas phase. A second area of great importance is the physical behaviour of low-energy electrons in condensed matter (including thermolisation and solvation). Many of these processes are not well understood, but they can have profound effects on the transient chemistry in the track. Several phenomena are discussed, including the short distance between adjacent energy loss events, the molecular nature of the underlying medium, dissociative attachment resonances and the ability of low-energy electrons to excite optically forbidden molecular states. Each of these phenomena has the potential to modify the transient chemistry substantially and must therefore be properly characterised before the physical model of the track can be considered to be complete. (orig.)

  9. Particle tracking in sophisticated CAD models for simulation purposes

    International Nuclear Information System (INIS)

    Sulkimo, J.; Vuoskoski, J.

    1995-01-01

    The transfer of physics detector models from computer aided design systems to physics simulation packages like GEANT suffers from certain limitations. In addition, GEANT is not able to perform particle tracking in CAD models. We describe an application which is able to perform particle tracking in boundary models constructed in CAD systems. The transfer file format used is the new international standard, STEP. The design and implementation of the application was carried out using object-oriented techniques. It will be integrated in the future object-oriented version of GEANT. (orig.)

  10. Particle tracking in sophisticated CAD models for simulation purposes

    Science.gov (United States)

    Sulkimo, J.; Vuoskoski, J.

    1996-02-01

    The transfer of physics detector models from computer aided design systems to physics simulation packages like GEANT suffers from certain limitations. In addition, GEANT is not able to perform particle tracking in CAD models. We describe an application which is able to perform particle tracking in boundary models constructed in CAD systems. The transfer file format used is the new international standard, STEP. The design and implementation of the application was carried out using object-oriented techniques. It will be integrated in the future object-oriented version of GEANT.

  11. The Sport Education Model: A Track and Field Unit Application

    Science.gov (United States)

    O'Neil, Kason; Krause, Jennifer M.

    2016-01-01

    Track and field is a traditional instructional unit often taught in secondary physical education settings due to its history, variety of events, and potential for student interest. This article provides an approach to teaching this unit using the sport education model (SEM) of instruction, which has traditionally been presented as a model for team…

  12. Rail Track Detection and Modelling in Mobile Laser Scanner Data

    Directory of Open Access Journals (Sweden)

    S. Oude Elberink

    2013-10-01

    Full Text Available We present a method for detecting and modelling rails in mobile laser scanner data. The detection is based on the properties of the rail tracks and contact wires such as relative height, linearity and relative position with respect to other objects. Points classified as rail track are used in a 3D modelling algorithm. The modelling is done by first fitting a parametric model of a rail piece to the points along each track, and estimating the position and orientation parameters of each piece model. For each position and orientation parameter a smooth low-order Fourier curve is interpolated. Using all interpolated parameters a mesh model of the rail is reconstructed. The method is explained using two areas from a dataset acquired by a LYNX mobile mapping system in a mountainous area. Residuals between railway laser points and 3D models are in the range of 2 cm. It is concluded that a curve fitting algorithm is essential to reliably and accurately model the rail tracks by using the knowledge that railways are following a continuous and smooth path.

  13. Model Predictive Control for Offset-Free Reference Tracking

    Czech Academy of Sciences Publication Activity Database

    Belda, Květoslav

    2016-01-01

    Roč. 5, č. 1 (2016), s. 8-13 ISSN 1805-3386 Institutional support: RVO:67985556 Keywords : offset-free reference tracking * predictive control * ARX model * state-space model * multi-input multi-output system * robotic system * mechatronic system Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2016/AS/belda-0458355.pdf

  14. Coordination number constraint models for hydrogenated amorphous Si deposited by catalytic chemical vapour deposition

    Science.gov (United States)

    Kawahara, Toshio; Tabuchi, Norikazu; Arai, Takashi; Sato, Yoshikazu; Morimoto, Jun; Matsumura, Hideki

    2005-02-01

    We measured structure factors of hydrogenated amorphous Si by x-ray diffraction and analysed the obtained structures using a reverse Monte Carlo (RMC) technique. A small shoulder in the measured structure factor S(Q) was observed on the larger Q side of the first peak. The RMC results with an unconstrained model did not clearly show the small shoulder. Adding constraints for coordination numbers 2 and 3, the small shoulder was reproduced and the agreement with the experimental data became better. The ratio of the constrained coordination numbers was consistent with the ratio of Si-H and Si-H2 bonds which was estimated by the Fourier transformed infrared spectra of the same sample. This shoulder and the oscillation of the corresponding pair distribution function g(r) at large r seem to be related to the low randomness of cat-CVD deposited a-Si:H.

  15. Coordination number constraint models for hydrogenated amorphous Si deposited by catalytic chemical vapour deposition

    International Nuclear Information System (INIS)

    Kawahara, Toshio; Tabuchi, Norikazu; Arai, Takashi; Sato, Yoshikazu; Morimoto, Jun; Matsumura, Hideki

    2005-01-01

    We measured structure factors of hydrogenated amorphous Si by x-ray diffraction and analysed the obtained structures using a reverse Monte Carlo (RMC) technique. A small shoulder in the measured structure factor S(Q) was observed on the larger Q side of the first peak. The RMC results with an unconstrained model did not clearly show the small shoulder. Adding constraints for coordination numbers 2 and 3, the small shoulder was reproduced and the agreement with the experimental data became better. The ratio of the constrained coordination numbers was consistent with the ratio of Si-H and Si-H 2 bonds which was estimated by the Fourier transformed infrared spectra of the same sample. This shoulder and the oscillation of the corresponding pair distribution function g(r) at large r seem to be related to the low randomness of cat-CVD deposited a-Si:H

  16. Experimental and modelling studies of the shape memory properties of amorphous polymer network composites

    International Nuclear Information System (INIS)

    Arrieta, J S; Diani, J; Gilormini, P

    2014-01-01

    Shape memory polymer composites (SMPCs) have become an important way to leverage improvements in the development of applications featuring shape memory polymers (SMPs). In this study, an amorphous SMP matrix has been filled with different types of reinforcements. An experimental set of results is presented and then compared to three-dimensional (3D) finite-element simulations. Thermomechanical shape memory cycles were performed in uniaxial tension. The fillers effect was studied in stress-free and constrained-strain recoveries. Experimental observations indicate complete shape recovery and put in evidence the increased sensitivity of constrained length stress recoveries to the heating ramp on the tested composites. The simulations reproduced a simplified periodic reinforced composite and used a model for the matrix material that has been previously tested on regular SMPs. The latter combines viscoelasticity at finite strain and time-temperature superposition. The simulations easily allow representation of the recovery properties of a reinforced SMP. (paper)

  17. A fractional model with parallel fractional Maxwell elements for amorphous thermoplastics

    Science.gov (United States)

    Lei, Dong; Liang, Yingjie; Xiao, Rui

    2018-01-01

    We develop a fractional model to describe the thermomechanical behavior of amorphous thermoplastics. The fractional model is composed of two parallel fractional Maxwell elements. The first fractional Maxwell model is used to describe the glass transition, while the second component is aimed at describing the viscous flow. We further derive the analytical solutions for the stress relaxation modulus and complex modulus through Laplace transform. We then demonstrate the model is able to describe the master curves of the stress relaxation modulus, storage modulus and loss modulus, which all show two distinct transition regions. The obtained parameters show that the modulus of the two fractional Maxwell elements differs in 2-3 orders of magnitude, while the relaxation time differs in 7-9 orders of magnitude. Finally, we apply the model to describe the stress response of constant strain rate tests. The model, together with the parameters obtained from fitting the master curve of stress relaxation modulus, can accurately predict the temperature and strain rate dependent stress response.

  18. PENGEMBANGAN MODEL TRACKING DAN TRACING DALAM DISTRIBUSI KOMODITI PERTANIAN

    Directory of Open Access Journals (Sweden)

    Yandra Rahadian Perdana

    2011-06-01

    Full Text Available Kegagalan distribusi komoditi pertanian dapat berdampak pada penurunan dan kehilangan nilai baik secara kualitas dan kuantitas karena suatu perubahan dimensi waktu-jarak atau suhu serta sarana pengangkutan dalam setiap mata rantai aktivitas distribusi. Model tracking dan tracing system dapat menjadi strategi untuk menjamin keberhasilan distribusi komoditi pertanian secara tepat baik kuantitas maupun kualitas. Model tracking dan tracing komoditi pertanian adalah sebuah sistem proaktif yang real time yang dilengkapi dengan komponen pendukung proses distribusi dengan data yang akurat, terpercaya, berguna, dan cepat dengan memberikan informasi posisi barang atau sarana moda transportasinya.

  19. Molecular simulation strategy for mechanical modeling of amorphous/porous low-dielectric constant materials

    NARCIS (Netherlands)

    Yuan, C.A.; Sluis, van der O.; Zhang, G.Q.; Ernst, L.J.; Driel, van W.D.; Flower, A.E.; Silfhout, van R.B.R.

    2008-01-01

    We propose an amorphous/porous molecular connection network generation algorithm for simulating the material stiffness of a low-k material (SiOC:H). Based on a given concentration of the basic building blocks, this algorithm will generate an approximate and large amorphous network. The molecular

  20. GPU-accelerated 3-D model-based tracking

    International Nuclear Information System (INIS)

    Brown, J Anthony; Capson, David W

    2010-01-01

    Model-based approaches to tracking the pose of a 3-D object in video are effective but computationally demanding. While statistical estimation techniques, such as the particle filter, are often employed to minimize the search space, real-time performance remains unachievable on current generation CPUs. Recent advances in graphics processing units (GPUs) have brought massively parallel computational power to the desktop environment and powerful developer tools, such as NVIDIA Compute Unified Device Architecture (CUDA), have provided programmers with a mechanism to exploit it. NVIDIA GPUs' single-instruction multiple-thread (SIMT) programming model is well-suited to many computer vision tasks, particularly model-based tracking, which requires several hundred 3-D model poses to be dynamically configured, rendered, and evaluated against each frame in the video sequence. Using 6 degree-of-freedom (DOF) rigid hand tracking as an example application, this work harnesses consumer-grade GPUs to achieve real-time, 3-D model-based, markerless object tracking in monocular video.

  1. Model of wet chemical etching of swift heavy ions tracks

    Science.gov (United States)

    Gorbunov, S. A.; Malakhov, A. I.; Rymzhanov, R. A.; Volkov, A. E.

    2017-10-01

    A model of wet chemical etching of tracks of swift heavy ions (SHI) decelerated in solids in the electronic stopping regime is presented. This model takes into account both possible etching modes: etching controlled by diffusion of etchant molecules to the etching front, and etching controlled by the rate of a reaction of an etchant with a material. Olivine ((Mg0.88Fe0.12)2SiO4) crystals were chosen as a system for modeling. Two mechanisms of chemical activation of olivine around the SHI trajectory are considered. The first mechanism is activation stimulated by structural transformations in a nanometric track core, while the second one results from neutralization of metallic atoms by generated electrons spreading over micrometric distances. Monte-Carlo simulations (TREKIS code) form the basis for the description of excitations of the electronic subsystem and the lattice of olivine in an SHI track at times up to 100 fs after the projectile passage. Molecular dynamics supplies the initial conditions for modeling of lattice relaxation for longer times. These simulations enable us to estimate the effects of the chemical activation of olivine governed by both mechanisms. The developed model was applied to describe chemical activation and the etching kinetics of tracks of Au 2.1 GeV ions in olivine. The estimated lengthwise etching rate (38 µm · h-1) is in reasonable agreement with that detected in the experiments (24 µm · h-1).

  2. MODEL OF FEES CALCULATION FOR ACCESS TO TRACK INFRASTRUCTURE FACILITIES

    Directory of Open Access Journals (Sweden)

    M. I. Mishchenko

    2014-12-01

    Full Text Available Purpose. The purpose of the article is to develop a one- and two-element model of the fees calculation for the use of track infrastructure of Ukrainian railway transport. Methodology. On the basis of this one can consider that when planning the planned preventive track repair works and the amount of depreciation charges the guiding criterion is not the amount of progress it is the operating life of the track infrastructure facilities. The cost of PPTRW is determined on the basis of the following: the classification track repairs; typical technological processes for track repairs; technology based time standards for PPTRW; costs for the work of people, performing the PPTRW, their hourly wage rates according to the Order 98-Ts; the operating cost of machinery; regulated list; norms of expenditures and costs of materials and products (they have the largest share of the costs for repairs; railway rates; average distances for transportation of materials used during repair; standards of general production expenses and the administrative costs. Findings. The models offered in article allow executing the objective account of expenses in travelling facilities for the purpose of calculation of the proved size of indemnification and necessary size of profit, the sufficient enterprises for effective activity of a travelling infrastructure. Originality. The methodological bases of determination the fees (payments for the use of track infrastructure on one- and two-element base taking into account the experience of railways in the EC countries and the current transport legislation were grounded. Practical value. The article proposes the one- and two-element models of calculating the fees (payments for the TIF use, accounting the applicable requirements of European transport legislation, which provides the expense compensation and income formation, sufficient for economic incentives of the efficient operation of the TIE of Ukrainian railway transport.

  3. Modeling and Velocity Tracking Control for Tape Drive System ...

    African Journals Online (AJOL)

    Modeling and Velocity Tracking Control for Tape Drive System. ... Journal of Applied Sciences and Environmental Management ... The result of the study revealed that 7.07, 8 and 10 of koln values met the design goal and also resulted in optimal control performance with the following characteristics 7.31%,7.71% , 9.41% ...

  4. Model tracking dual stochastic controller design under irregular internal noises

    International Nuclear Information System (INIS)

    Lee, Jong Bok; Heo, Hoon; Cho, Yun Hyun; Ji, Tae Young

    2006-01-01

    Although many methods about the control of irregular external noise have been introduced and implemented, it is still necessary to design a controller that will be more effective and efficient methods to exclude for various noises. Accumulation of errors due to model tracking, internal noises (thermal noise, shot noise and l/f noise) that come from elements such as resistor, diode and transistor etc. in the circuit system and numerical errors due to digital process often destabilize the system and reduce the system performance. New stochastic controller is adopted to remove those noises using conventional controller simultaneously. Design method of a model tracking dual controller is proposed to improve the stability of system while removing external and internal noises. In the study, design process of the model tracking dual stochastic controller is introduced that improves system performance and guarantees robustness under irregular internal noises which can be created internally. The model tracking dual stochastic controller utilizing F-P-K stochastic control technique developed earlier is implemented to reveal its performance via simulation

  5. Modeling self-occlusions in dynamic shape and appearance tracking

    KAUST Repository

    Yang, Yanchao; Sundaramoorthi, Ganesh

    2013-01-01

    We present a method to track the precise shape of a dynamic object in video. Joint dynamic shape and appearance models, in which a template of the object is propagated to match the object shape and radiance in the next frame, are advantageous over

  6. Mechanical modelling and application of vibroacoustic isolators in railway tracks

    Directory of Open Access Journals (Sweden)

    Zbiciak Artur

    2017-01-01

    Full Text Available The paper presents systematization and description of vibroacoustic isolators used in railway tracks (due to track structure type, with special attention paid to resilient mats. As in the second part of the paper the state-space mechanical model of a system with Under-Ballast Mat is formulated. Also some numerical problems arising from the mass matrix singularity are discussed. The poles of the system were calculated by using Matlab. Moreover, the influence of various parameters on the system’s insertion loss and its transmissibility was visualized in figures.

  7. Viscoelastic dynamic models of resilient elements used in railway tracks

    Directory of Open Access Journals (Sweden)

    Zbiciak Artur

    2016-01-01

    Full Text Available The paper presents selected theoretical aspects concerning viscoelastic dynamic modelling of resilient elements used in railway tracks. In order to characterize the research methodology for resilient mats in railway tracks, German Standards [1-4] are used herein. The main goal of the paper is to demonstrate the procedure of insertion loss calculation for a single degree of freedom truck system containing under-ballast mats. Selected results of certain dynamic characteristics of resilient truck systems (transmissibility, Bode and Nyquist plots etc. are also discussed. The results of calculations visualized in graphs, were obtained by using own applications written in programming language MATLAB.

  8. Robust Model Predictive Control Schemes for Tracking Setpoints

    Directory of Open Access Journals (Sweden)

    Vu Trieu Minh

    2010-01-01

    Full Text Available This paper briefly reviews the development of nontracking robust model predictive control (RMPC schemes for uncertain systems using linear matrix inequalities (LMIs subject to input saturated and softened state constraints. Then we develop two new tracking setpoint RMPC schemes with common Lyapunov function and with zero terminal equality subject to input saturated and softened state constraints. The novel tracking setpoint RMPC schemes are able to stabilize uncertain systems once the output setpoints lead to the violation of the state constraints. The state violation can be regulated by changing the value of the weighting factor. A brief comparative simulation study of the two tracking setpoint RMPC schemes is done via simple examples to demonstrate the ability of the softened state constraint schemes. Finally, some features of future research from this study are discussed.

  9. High speed railway track dynamics models, algorithms and applications

    CERN Document Server

    Lei, Xiaoyan

    2017-01-01

    This book systematically summarizes the latest research findings on high-speed railway track dynamics, made by the author and his research team over the past decade. It explores cutting-edge issues concerning the basic theory of high-speed railways, covering the dynamic theories, models, algorithms and engineering applications of the high-speed train and track coupling system. Presenting original concepts, systematic theories and advanced algorithms, the book places great emphasis on the precision and completeness of its content. The chapters are interrelated yet largely self-contained, allowing readers to either read through the book as a whole or focus on specific topics. It also combines theories with practice to effectively introduce readers to the latest research findings and developments in high-speed railway track dynamics. It offers a valuable resource for researchers, postgraduates and engineers in the fields of civil engineering, transportation, highway & railway engineering.

  10. Continuum modeling of twinning, amorphization, and fracture: theory and numerical simulations

    Science.gov (United States)

    Clayton, J. D.; Knap, J.

    2018-03-01

    A continuum mechanical theory is used to model physical mechanisms of twinning, solid-solid phase transformations, and failure by cavitation and shear fracture. Such a sequence of mechanisms has been observed in atomic simulations and/or experiments on the ceramic boron carbide. In the present modeling approach, geometric quantities such as the metric tensor and connection coefficients can depend on one or more director vectors, also called internal state vectors. After development of the general nonlinear theory, a first problem class considers simple shear deformation of a single crystal of this material. For homogeneous fields or stress-free states, algebraic systems or ordinary differential equations are obtained that can be solved by numerical iteration. Results are in general agreement with atomic simulation, without introduction of fitted parameters. The second class of problems addresses the more complex mechanics of heterogeneous deformation and stress states involved in deformation and failure of polycrystals. Finite element calculations, in which individual grains in a three-dimensional polycrystal are fully resolved, invoke a partially linearized version of the theory. Results provide new insight into effects of crystal morphology, activity or inactivity of different inelasticity mechanisms, and imposed deformation histories on strength and failure of the aggregate under compression and shear. The importance of incorporation of inelastic shear deformation in realistic models of amorphization of boron carbide is noted, as is a greater reduction in overall strength of polycrystals containing one or a few dominant flaws rather than many diffusely distributed microcracks.

  11. Amorphous track modelling of luminescence detector efficiency in proton and carbon beams

    DEFF Research Database (Denmark)

    Greilich, Steffen; Grzanka, Leszek; Bassler, Niels

    assumptions in a variety of detectors. The library also includes simple particle transportation or can be interfaced to external transport codes. We applied our code to RL and OSL data from fiber-coupled Al2O3:C-detectors in a proton (nominal energies 10 MeV to 60 MeV) and a carbon beam (270 MeV/u). Results...

  12. Hydrogen in amorphous silicon

    International Nuclear Information System (INIS)

    Peercy, P.S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH 1 ) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon

  13. Critical behavior in a random field classical Heisenberg model for amorphous systems

    International Nuclear Information System (INIS)

    Albuquerque, Douglas F. de; Alves, Sandro Roberto L.; Arruda, Alberto S. de

    2005-01-01

    By using the differential operator technique and the effective field theory scheme, the critical behavior of amorphous classical Heisenberg ferromagnet of spin-1/2 in a random field is studied. The phase diagram in the T-H and T-α planes on a simple cubic lattice for a cluster with two spins is obtained. Tricritical points, reentrant phenomena and influence of the random field and amorphization on the transition temperature are discussed

  14. Superplasticity of amorphous alloy

    International Nuclear Information System (INIS)

    Levin, Yu.B.; Likhachev, V.L.; Sen'kov, O.N.

    1988-01-01

    Results of mechanical tests of Co 57 Ni 10 Fe 5 Si 11 B 17 amorphous alloy are presented and the effect of crystallization, occurring during deformation process, on plastic low characteristics is investiagted. Superplasticity of amorphous tape is investigated. It is shown, that this effect occurs only when during deformation the crystallization takes place. Process model, based on the usage disclination concepts about glass nature, is suggested

  15. Elastic and plastic characteristics of a model Cu–Zr amorphous alloy

    International Nuclear Information System (INIS)

    Nakamura, Akiho; Kamimura, Yasushi; Edagawa, Keiichi; Takeuchi, Shin

    2014-01-01

    Athermal quasistatic simulation of shear deformation has been conducted for a realistic model Cu–Zr amorphous alloy to investigate characteristic features of elasticity and plasticity of the material. Significant reduction of the shear modulus by nonaffine atomic displacements and appreciable nonlinearity of elasticity have been observed. The fourth-order elastic constant in shear deformation and the ideal shear strength have been evaluated. Plastic deformation has been observed to start with isolated local shear transformations (LSTs) followed by collective LSTs leading to the formation of a shear band. Participation-ratio analysis (PRA) has demonstrated how the nonaffine displacement field converges as the system approaches the critical point of losing structural stability. PRA has also evaluated quantitatively the numbers of atoms participating in LSTs – the average number is about 30. Spatially anisotropic development of nascent shear band on a plane has been shown, attributable to anisotropic internal stress field induced by an LST. The evaluated stresses for the shear-band nucleation and for its propagation have indicated that the yielding in real materials is controlled by the shear-band propagation, as previously pointed out

  16. Amorphous nanophotonics

    CERN Document Server

    Scharf, Toralf

    2013-01-01

    This book represents the first comprehensive overview over amorphous nano-optical and nano-photonic systems. Nanophotonics is a burgeoning branch of optics that enables many applications by steering the mould of light on length scales smaller than the wavelength with devoted nanostructures. Amorphous nanophotonics exploits self-organization mechanisms based on bottom-up approaches to fabricate nanooptical systems. The resulting structures presented in the book are characterized by a deterministic unit cell with tailored geometries; but their spatial arrangement is not controlled. Instead of periodic, the structures appear either amorphous or random. The aim of this book is to discuss all aspects related to observable effects in amorphous nanophotonic material and aspects related to their design, fabrication, characterization and integration into applications. The book has an interdisciplinary nature with contributions from scientists in physics, chemistry and materials sciences and sheds light on the topic fr...

  17. Positrons in amorphous alloys

    International Nuclear Information System (INIS)

    Moser, Pierre.

    1981-07-01

    Positron annihilation techniques give interesting informations about ''empty spaces'' in amorphous alloys. The results of an extensive research work on the properties of either pre-existing or irradiation induced ''empty spaces'' in four amorphous alloys are presented. The pre-existing empty spaces appear to be small vacancy-like defects. The irradiation induced defects are ''close pairs'' with widely distributed configurations. There is a strong interaction between vacancy like and interstitial like components. A model is proposed, which explains the radiation resistance mechanism of the amorphous alloys. An extensive joint research work to study four amorphous alloys, Fe 80 B 20 ,Fe 40 Ni 40 P 14 B 6 , Cu 50 Ti 50 , Pd 80 Si 20 , is summarized

  18. A phenomenological model for the chemo-responsive shape memory effect in amorphous polymers undergoing viscoelastic transition

    International Nuclear Information System (INIS)

    Lu, Haibao; Huang, Wei Min

    2013-01-01

    We present a phenomenological approach to study the viscoelastic transition and working mechanism of the chemo-responsive shape memory effect (SME) in amorphous shape memory polymers (SMPs). Both the copolymerization viscosity model and Doolittle equation are initially applied to quantitatively identify the influential factors behind the chemo-responsive SME in the SMPs exposure to a right solvent. After this, the Williams–Landel–Ferry (WLF) equation is employed to couple the viscosity (η), time–temperature shift factor (α τ ) and glass transition temperature (T g ) in amorphous polymers. By means of combining the WLF and Arrhenius equations together, the inductively decreased transition temperature is confirmed as the driving force for the chemo-responsive SME. Finally, a phenomenological viscoelastic model is proposed and then verified by the available experimental data reported in the literature and then compared with the simulation results of a semi-empirical model. This phenomenological model is expected to provide a powerful simulation tool for theoretical prediction and experimental substantiation of the chemo-responsive SME in amorphous SMPs by viscoelastic transition. (paper)

  19. Reference-data modelling for tracking and tracing

    NARCIS (Netherlands)

    Dorp, van C.A.

    2004-01-01

    Subject headings: supply chain, tracking and tracing, reference-data modelling

  20. HCP track calculations in Lif:Mg,Ti: 3D modeling of the ''track – escape'' parameter

    International Nuclear Information System (INIS)

    Sattinger, D.; Sharon, A.; Horowitz, Y.S.

    2011-01-01

    The conceptual framework of the track interaction model (TIM) was conceived in the 1970s and mathematically formulated in the 1980s to describe heavy charged particle TL fluence response supralinearity. The extended track interaction model (ETIM) was developed to include saturation effects due to overlapping tracks and has been applied to both proton and alpha particle TL fluence response. One of the parameters of major importance in the TIM is the ''track – escape'' parameter, defined by N e /N w , where N e represents the number of electrons which escape the parent track during heating, and N w is the number of electrons which recombine within the parent track to produce a TL photon. Recently a first attempt was carried out to theoretically model escape parameters calculated in 2D geometry as a function of particle type and energy using trapping center (TC), luminescent center (LC) and competitive center (CC) occupation probabilities calculated from track segment radial dose distributions and optical absorption (OA) dose response. In this study, the calculations are extended to 3D geometry using a Monte Carlo approach which samples the point of creation of the charge carriers according to the TC occupation probabilities and then estimates N w by sampling the chord length to the track exterior. Charge carriers which escape the irradiated track volume contribute to N e . This more sophisticated 3D calculation of N e /N w is expected to increase the reliability of the modeling of heavy charged particle TL fluence response in the framework of the ETIM and enhance our understanding of “track effects” in Heavy Charged Particle (HCP) induced TL.

  1. Inverse modelling of thermal histories with apatite fission tracks

    International Nuclear Information System (INIS)

    El Lmrani, A.; Zine El Abidine, H.; Limouri, M.; Essaid, A.; POupeau, G.

    1998-01-01

    The problem of modelling thermal histories lies in the exploration of a time-temperature space, usually so broad, in order to identify the optimal paths. For overcoming this difficulty, many approaches were proposed, using linear and non-linear optimisation algorithms. Generally, these approaches do not take into account the experimental data (fission track age [FTA] and fission track length distribution [FTLD]) to better aim the search strategy. The present work shows that experimental data hold some precious information, for which it should be known how to extract it. In fact, it allows us to tighten the time-temperature space of search, supposed to contain the optimal solutions. A genetic algorithm is also used in this work to perform the search for these optimal solutions. (authors)

  2. Molecular dynamics study of amorphous pocket formation in Si at low energies and its application to improve binary collision models

    International Nuclear Information System (INIS)

    Santos, Ivan; Marques, Luis A.; Pelaz, Lourdes; Lopez, Pedro

    2007-01-01

    In this paper, we present classical molecular dynamics results about the formation of amorphous pockets in silicon for energy transfers below the displacement threshold. While in binary collision simulations ions with different masses generate the same number of Frenkel pairs for the same deposited nuclear energy, in molecular dynamics simulations the amount of damage and its complexity increase with ion mass. We demonstrate that low-energy transfers to target atoms are able to generate complex damage structures. We have determined the conditions that have to be fulfilled to produce amorphous pockets, showing that the order-disorder transition depends on the particular competition between melting and heat diffusion processes. We have incorporated these molecular dynamics results in an improved binary collision model that is able to provide a good description of damage with a very low computational cost

  3. Particle Tracking Model and Abstraction of Transport Processes

    International Nuclear Information System (INIS)

    Robinson, B.

    2000-01-01

    The purpose of the transport methodology and component analysis is to provide the numerical methods for simulating radionuclide transport and model setup for transport in the unsaturated zone (UZ) site-scale model. The particle-tracking method of simulating radionuclide transport is incorporated into the FEHM computer code and the resulting changes in the FEHM code are to be submitted to the software configuration management system. This Analysis and Model Report (AMR) outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the unsaturated zone at Yucca Mountain. In addition, methods for determining colloid-facilitated transport parameters are outlined for use in the Total System Performance Assessment (TSPA) analyses. Concurrently, process-level flow model calculations are being carrier out in a PMR for the unsaturated zone. The computer code TOUGH2 is being used to generate three-dimensional, dual-permeability flow fields, that are supplied to the Performance Assessment group for subsequent transport simulations. These flow fields are converted to input files compatible with the FEHM code, which for this application simulates radionuclide transport using the particle-tracking algorithm outlined in this AMR. Therefore, this AMR establishes the numerical method and demonstrates the use of the model, but the specific breakthrough curves presented do not necessarily represent the behavior of the Yucca Mountain unsaturated zone

  4. A thermal model for amorphous silicon photovoltaic integrated in ETFE cushion roofs

    International Nuclear Information System (INIS)

    Zhao, Bing; Chen, Wujun; Hu, Jianhui; Qiu, Zhenyu; Qu, Yegao; Ge, Binbin

    2015-01-01

    Highlights: • A thermal model is proposed to estimate temperature of a-Si PV integrated in ETFE cushion. • Nonlinear equation is solved by Runge–Kutta method integrated in a new program. • Temperature profiles varying with weather conditions are obtained and analyzed. • Numerical results are in good line with experimental results with coefficients of 0.821–0.985. • Reasons for temperature difference of 0.9–4.6 K are solar irradiance and varying parameters. - Abstract: Temperature characteristics of amorphous silicon photovoltaic (a-Si PV) integrated in building roofs (e.g. the ETFE cushions) are indispensible for evaluating the thermal performances of a-Si PV and buildings. To investigate the temperature characteristics and temperature value, field experiments and numerical modeling were performed and compared in this paper. An experimental mock-up composed of a-Si PV and a three-layer ETFE cushion structure was constructed and experiments were carried out under four typical weather conditions (winter sunny, winter cloudy, summer sunny and summer cloudy). The measured solar irradiance and air temperature were used as the real weather conditions for the thermal model. On the other side, a theoretical thermal model was developed based on energy balance equation which was expressed as that absorbed energy was equal to converted energy and energy loss. The corresponding differential equation of PV temperature varying with weather conditions was solved by the Runge–Kutta method. The comparisons between the experimental and numerical results were focusing on the temperature characteristics and temperature value. For the temperature characteristics, good agreement was obtained by correlation analysis with the coefficients of 0.821–0.985, which validated the feasibility of the thermal model. For the temperature value, the temperature difference between the experimental and numerical results was only 0.9–4.6 K and the reasons could be the dramatical

  5. Modeling self-occlusions in dynamic shape and appearance tracking

    KAUST Repository

    Yang, Yanchao

    2013-12-01

    We present a method to track the precise shape of a dynamic object in video. Joint dynamic shape and appearance models, in which a template of the object is propagated to match the object shape and radiance in the next frame, are advantageous over methods employing global image statistics in cases of complex object radiance and cluttered background. In cases of complex 3D object motion and relative viewpoint change, self-occlusions and disocclusions of the object are prominent, and current methods employing joint shape and appearance models are unable to accurately adapt to new shape and appearance information, leading to inaccurate shape detection. In this work, we model self-occlusions and dis-occlusions in a joint shape and appearance tracking framework. Experiments on video exhibiting occlusion/dis-occlusion, complex radiance and background show that occlusion/dis-occlusion modeling leads to superior shape accuracy compared to recent methods employing joint shape/appearance models or employing global statistics. © 2013 IEEE.

  6. Extrapolation of zircon fission-track annealing models

    International Nuclear Information System (INIS)

    Palissari, R.; Guedes, S.; Curvo, E.A.C.; Moreira, P.A.F.P.; Tello, C.A.; Hadler, J.C.

    2013-01-01

    One of the purposes of this study is to give further constraints on the temperature range of the zircon partial annealing zone over a geological time scale using data from borehole zircon samples, which have experienced stable temperatures for ∼1 Ma. In this way, the extrapolation problem is explicitly addressed by fitting the zircon annealing models with geological timescale data. Several empirical model formulations have been proposed to perform these calibrations and have been compared in this work. The basic form proposed for annealing models is the Arrhenius-type model. There are other annealing models, that are based on the same general formulation. These empirical model equations have been preferred due to the great number of phenomena from track formation to chemical etching that are not well understood. However, there are two other models, which try to establish a direct correlation between their parameters and the related phenomena. To compare the response of the different annealing models, thermal indexes, such as closure temperature, total annealing temperature and the partial annealing zone, have been calculated and compared with field evidence. After comparing the different models, it was concluded that the fanning curvilinear models yield the best agreement between predicted index temperatures and field evidence. - Highlights: ► Geological data were used along with lab data for improving model extrapolation. ► Index temperatures were simulated for testing model extrapolation. ► Curvilinear Arrhenius models produced better geological temperature predictions

  7. Ion implantation and amorphous metals

    International Nuclear Information System (INIS)

    Hohmuth, K.; Rauschenbach, B.

    1981-01-01

    This review deals with ion implantation of metals in the high concentration range for preparing amorphous layers (>= 10 at%, implantation doses > 10 16 ions/cm 2 ). Different models are described concerning formation of amorphous phases of metals by ion implantation and experimental results are given. The study of amorphous phases has been carried out by the aid of Rutherford backscattering combined with the channeling technique and using transmission electron microscopy. The structure of amorphous metals prepared by ion implantation has been discussed. It was concluded that amorphous metal-metalloid compounds can be described by a dense-random-packing structure with a great portion of metal atoms. Ion implantation has been compared with other techniques for preparing amorphous metals and the adventages have been outlined

  8. Model tracking system for low-level radioactive waste disposal facilities: License application interrogatories and responses

    Energy Technology Data Exchange (ETDEWEB)

    Benbennick, M.E.; Broton, M.S.; Fuoto, J.S.; Novgrod, R.L.

    1994-08-01

    This report describes a model tracking system for a low-level radioactive waste (LLW) disposal facility license application. In particular, the model tracks interrogatories (questions, requests for information, comments) and responses. A set of requirements and desired features for the model tracking system was developed, including required structure and computer screens. Nine tracking systems were then reviewed against the model system requirements and only two were found to meet all requirements. Using Kepner-Tregoe decision analysis, a model tracking system was selected.

  9. Model tracking system for low-level radioactive waste disposal facilities: License application interrogatories and responses

    International Nuclear Information System (INIS)

    Benbennick, M.E.; Broton, M.S.; Fuoto, J.S.; Novgrod, R.L.

    1994-08-01

    This report describes a model tracking system for a low-level radioactive waste (LLW) disposal facility license application. In particular, the model tracks interrogatories (questions, requests for information, comments) and responses. A set of requirements and desired features for the model tracking system was developed, including required structure and computer screens. Nine tracking systems were then reviewed against the model system requirements and only two were found to meet all requirements. Using Kepner-Tregoe decision analysis, a model tracking system was selected

  10. A visual tracking method based on deep learning without online model updating

    Science.gov (United States)

    Tang, Cong; Wang, Yicheng; Feng, Yunsong; Zheng, Chao; Jin, Wei

    2018-02-01

    The paper proposes a visual tracking method based on deep learning without online model updating. In consideration of the advantages of deep learning in feature representation, deep model SSD (Single Shot Multibox Detector) is used as the object extractor in the tracking model. Simultaneously, the color histogram feature and HOG (Histogram of Oriented Gradient) feature are combined to select the tracking object. In the process of tracking, multi-scale object searching map is built to improve the detection performance of deep detection model and the tracking efficiency. In the experiment of eight respective tracking video sequences in the baseline dataset, compared with six state-of-the-art methods, the method in the paper has better robustness in the tracking challenging factors, such as deformation, scale variation, rotation variation, illumination variation, and background clutters, moreover, its general performance is better than other six tracking methods.

  11. Amorphous superconductors

    International Nuclear Information System (INIS)

    Missell, F.P.

    1985-01-01

    We describe briefly the strong coupling superconductivity observed in amorphous alloys based upon simple metals. For transition metal alloys we discuss the behavior of the superconducting transition temperature T c , the upper critical field H (sub)c2 and the critical current J c . A survey of current problems is presented. (author) [pt

  12. Statistical modelling of railway track geometry degradation using Hierarchical Bayesian models

    International Nuclear Information System (INIS)

    Andrade, A.R.; Teixeira, P.F.

    2015-01-01

    Railway maintenance planners require a predictive model that can assess the railway track geometry degradation. The present paper uses a Hierarchical Bayesian model as a tool to model the main two quality indicators related to railway track geometry degradation: the standard deviation of longitudinal level defects and the standard deviation of horizontal alignment defects. Hierarchical Bayesian Models (HBM) are flexible statistical models that allow specifying different spatially correlated components between consecutive track sections, namely for the deterioration rates and the initial qualities parameters. HBM are developed for both quality indicators, conducting an extensive comparison between candidate models and a sensitivity analysis on prior distributions. HBM is applied to provide an overall assessment of the degradation of railway track geometry, for the main Portuguese railway line Lisbon–Oporto. - Highlights: • Rail track geometry degradation is analysed using Hierarchical Bayesian models. • A Gibbs sampling strategy is put forward to estimate the HBM. • Model comparison and sensitivity analysis find the most suitable model. • We applied the most suitable model to all the segments of the main Portuguese line. • Tackling spatial correlations using CAR structures lead to a better model fit

  13. Fundamentals of amorphous solids structure and properties

    CERN Document Server

    Stachurski, Zbigniew H

    2014-01-01

    Long awaited, this textbook fills the gap for convincing concepts to describe amorphous solids. Adopting a unique approach, the author develops a framework that lays the foundations for a theory of amorphousness. He unravels the scientific mysteries surrounding the topic, replacing rather vague notions of amorphous materials as disordered crystalline solids with the well-founded concept of ideal amorphous solids. A classification of amorphous materials into inorganic glasses, organic glasses, glassy metallic alloys, and thin films sets the scene for the development of the model of ideal amorph

  14. Modeling chemical and topological disorder in irradiation-amorphized silicon carbide

    International Nuclear Information System (INIS)

    Yuan Xianglong; Hobbs, Linn W.

    2002-01-01

    In order to explore the relationship of chemical disorder to topological disorder during irradiation-induced amorphization of silicon carbide, a topological analysis of homonuclear bond distribution, atom coordination number and network ring size distribution has been carried out for imposed simulated disorder, equilibrated with molecular dynamics (MD) procedures utilizing a Tersoff potential. Starting configurations included random atom positions, β-SiC coordinates chemically disordered over a range of chemical disorder parameters and atom coordinates generated from earlier MD simulations of embedded collision cascades. For random starting positions in embedded simulations, the MD refinement converged to an average Si coordination of 4.3 and an average of 1.4 Si-Si and 1.0 C-C bonds per Si and C site respectively. A chemical disorder threshold was observed (χ≡N C-C /N Si-C >0.3-0.4), below which range MD equilibration resulted in crystalline behavior at all temperatures and above which a glass transition was observed. It was thus concluded that amorphization is driven by a critical concentration of homonuclear bonds. About 80% of the density change at amorphization was attributable to threshold chemical disorder, while significant topological changes occurred only for larger values of the chemical disorder parameter

  15. A new enhanced index tracking model in portfolio optimization with sum weighted approach

    Science.gov (United States)

    Siew, Lam Weng; Jaaman, Saiful Hafizah; Hoe, Lam Weng

    2017-04-01

    Index tracking is a portfolio management which aims to construct the optimal portfolio to achieve similar return with the benchmark index return at minimum tracking error without purchasing all the stocks that make up the index. Enhanced index tracking is an improved portfolio management which aims to generate higher portfolio return than the benchmark index return besides minimizing the tracking error. The objective of this paper is to propose a new enhanced index tracking model with sum weighted approach to improve the existing index tracking model for tracking the benchmark Technology Index in Malaysia. The optimal portfolio composition and performance of both models are determined and compared in terms of portfolio mean return, tracking error and information ratio. The results of this study show that the optimal portfolio of the proposed model is able to generate higher mean return than the benchmark index at minimum tracking error. Besides that, the proposed model is able to outperform the existing model in tracking the benchmark index. The significance of this study is to propose a new enhanced index tracking model with sum weighted apporach which contributes 67% improvement on the portfolio mean return as compared to the existing model.

  16. A thermal spike model of the amorphization of insulators by high-energy heavy-ion irradiation

    International Nuclear Information System (INIS)

    Szenes, G.

    1995-01-01

    Recently, experimental data on magnetic insulators irradiated with swift heavy ions were analyzed by a new thermal spike model and good quantitative agreement was achieved. Analytical expressions were given for the evolution of latent tracks with the electronic stopping power S e of bombarding ions and a relation between the thermal properties of the target and the threshold value of S e was proposed and proved experimentally. In the present paper, after a brief review of the model, the temperature dependence of latent track formation is discussed and the predictions of the model are compared with the available experimental results

  17. Connected Component Model for Multi-Object Tracking.

    Science.gov (United States)

    He, Zhenyu; Li, Xin; You, Xinge; Tao, Dacheng; Tang, Yuan Yan

    2016-08-01

    In multi-object tracking, it is critical to explore the data associations by exploiting the temporal information from a sequence of frames rather than the information from the adjacent two frames. Since straightforwardly obtaining data associations from multi-frames is an NP-hard multi-dimensional assignment (MDA) problem, most existing methods solve this MDA problem by either developing complicated approximate algorithms, or simplifying MDA as a 2D assignment problem based upon the information extracted only from adjacent frames. In this paper, we show that the relation between associations of two observations is the equivalence relation in the data association problem, based on the spatial-temporal constraint that the trajectories of different objects must be disjoint. Therefore, the MDA problem can be equivalently divided into independent subproblems by equivalence partitioning. In contrast to existing works for solving the MDA problem, we develop a connected component model (CCM) by exploiting the constraints of the data association and the equivalence relation on the constraints. Based upon CCM, we can efficiently obtain the global solution of the MDA problem for multi-object tracking by optimizing a sequence of independent data association subproblems. Experiments on challenging public data sets demonstrate that our algorithm outperforms the state-of-the-art approaches.

  18. The Quadrotor Dynamic Modeling and Indoor Target Tracking Control Method

    Directory of Open Access Journals (Sweden)

    Dewei Zhang

    2014-01-01

    Full Text Available A reliable nonlinear dynamic model of the quadrotor is presented. The nonlinear dynamic model includes actuator dynamic and aerodynamic effect. Since the rotors run near a constant hovering speed, the dynamic model is simplified at hovering operating point. Based on the simplified nonlinear dynamic model, the PID controllers with feedback linearization and feedforward control are proposed using the backstepping method. These controllers are used to control both the attitude and position of the quadrotor. A fully custom quadrotor is developed to verify the correctness of the dynamic model and control algorithms. The attitude of the quadrotor is measured by inertia measurement unit (IMU. The position of the quadrotor in a GPS-denied environment, especially indoor environment, is estimated from the downward camera and ultrasonic sensor measurements. The validity and effectiveness of the proposed dynamic model and control algorithms are demonstrated by experimental results. It is shown that the vehicle achieves robust vision-based hovering and moving target tracking control.

  19. Distributed support modelling for vertical track dynamic analysis

    Science.gov (United States)

    Blanco, B.; Alonso, A.; Kari, L.; Gil-Negrete, N.; Giménez, J. G.

    2018-04-01

    The finite length nature of rail-pad supports is characterised by a Timoshenko beam element formulation over an elastic foundation, giving rise to the distributed support element. The new element is integrated into a vertical track model, which is solved in frequency and time domain. The developed formulation is obtained by solving the governing equations of a Timoshenko beam for this particular case. The interaction between sleeper and rail via the elastic connection is considered in an analytical, compact and efficient way. The modelling technique results in realistic amplitudes of the 'pinned-pinned' vibration mode and, additionally, it leads to a smooth evolution of the contact force temporal response and to reduced amplitudes of the rail vertical oscillation, as compared to the results from concentrated support models. Simulations are performed for both parametric and sinusoidal roughness excitation. The model of support proposed here is compared with a previous finite length model developed by other authors, coming to the conclusion that the proposed model gives accurate results at a reduced computational cost.

  20. Particle Tracking Model and Abstraction of Transport Processes

    Energy Technology Data Exchange (ETDEWEB)

    B. Robinson

    2004-10-21

    The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data.

  1. Particle Tracking Model and Abstraction of Transport Processes

    International Nuclear Information System (INIS)

    Robinson, B.

    2004-01-01

    The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data

  2. Combined discriminative global and generative local models for visual tracking

    Science.gov (United States)

    Zhao, Liujun; Zhao, Qingjie; Chen, Yanming; Lv, Peng

    2016-03-01

    It is a challenging task to develop an effective visual tracking algorithm due to factors such as pose variation, rotation, and so on. Combined discriminative global and generative local appearance models are proposed to address this problem. Specifically, we develop a compact global object representation by extracting the low-frequency coefficients of the color and texture of the object based on two-dimensional discrete cosine transform. Then, with the global appearance representation, we learn a discriminative metric classifier in an online fashion to differentiate the target object from its background, which is very important to robustly indicate the changes in appearance. Second, we develop a new generative local model that exploits the scale invariant feature transform and its spatial geometric information. To make use of the advantages of the global discriminative model and the generative local model, we incorporate them into Bayesian inference framework. In this framework, the complementary models help the tracker locate the target more accurately. Furthermore, we use different mechanisms to update global and local templates to capture appearance changes. The experimental results demonstrate that the proposed approach performs favorably against state-of-the-art methods in terms of accuracy.

  3. Mathematical modelling of frequency-dependent hysteresis and energy loss of FeBSiC amorphous alloy

    International Nuclear Information System (INIS)

    Koprivica, Branko; Milovanovic, Alenka; Mitrovic, Nebojsa

    2017-01-01

    The aim of this paper is to present a novel mathematical model of frequency-dependent magnetic hysteresis. The major hysteresis loop in this model is represented by the ascending and descending curve over an arctangent function. The parameters of the hysteresis model have been calculated from a measured hysteresis loop of the FeBSiC amorphous alloy sample. A number of measurements have been performed with this sample at different frequencies of the sinusoidal excitation magnetic field. A variation of the coercive magnetic field with the frequency has been observed and used in the modelling of frequency-dependent hysteresis with the proposed model. A comparison between measured and modelled hysteresis loops has been presented. Additionally, the areas of the obtained hysteresis loops, representing the energy loss per unit volume, have been calculated and the dependence of the energy loss on the frequency is shown. Furthermore, two models of the frequency dependence of the coercivity and two models of the energy loss separation have been used for fitting the experimental and simulation results. The relations between these models and their parameters have been observed and analysed. Also, the relations between parameters of the hysteresis model and the parameters of the energy loss separation models have been analysed and discussed. - Highlights: • A mathematical model of frequency-dependent hysteresis is proposed. • Dependence of coercivity and energy loss per unit volume on frequency is modelled. • Equivalence between models and relation between model parameters are presented.

  4. A ‘frozen volume’ transition model and working mechanism for the shape memory effect in amorphous polymers

    Science.gov (United States)

    Lu, Haibao; Wang, Xiaodong; Yao, Yongtao; Qing Fu, Yong

    2018-06-01

    Phenomenological models based on frozen volume parameters could well predict shape recovery behavior of shape memory polymers (SMPs), but the physical meaning of using the frozen volume parameters to describe thermomechanical properties has not been well-established. In this study, the fundamental working mechanisms of the shape memory effect (SME) in amorphous SMPs, whose temperature-dependent viscoelastic behavior follows the Eyring equation, have been established with the considerations of both internal stress and its resulted frozen volume. The stress-strain constitutive relation was initially modeled to quantitatively describe effects of internal stresses at the macromolecular scale based on the transient network theory. A phenomenological ‘frozen volume’ model was then established to characterize the macromolecule structure and SME of amorphous SMPs based on a two-site stress-relaxation model. Effects of the internal stress, frozen volume and strain rate on shape memory behavior and thermomechanical properties of the SMP were investigated. Finally, the simulation results were compared with the experimental results reported in the literature, and good agreements between the theoretical and experimental results were achieved. The novelty and key differences of our newly proposed model with respect to the previous reports are (1). The ‘frozen volume’ in our study is caused by the internal stress and governed by the two-site model theory, thus has a good physical meaning. (2). The model can be applied to characterize and predict both the thermal and thermomechanical behaviors of SMPs based on the constitutive relationship with internal stress parameters. It is expected to provide a power tool to investigate the thermomechanical behavior of the SMPs, of which both the macromolecular structure characteristics and SME could be predicted using this ‘frozen volume’ model.

  5. Real time tracking by LOPF algorithm with mixture model

    Science.gov (United States)

    Meng, Bo; Zhu, Ming; Han, Guangliang; Wu, Zhiguo

    2007-11-01

    A new particle filter-the Local Optimum Particle Filter (LOPF) algorithm is presented for tracking object accurately and steadily in visual sequences in real time which is a challenge task in computer vision field. In order to using the particles efficiently, we first use Sobel algorithm to extract the profile of the object. Then, we employ a new Local Optimum algorithm to auto-initialize some certain number of particles from these edge points as centre of the particles. The main advantage we do this in stead of selecting particles randomly in conventional particle filter is that we can pay more attentions on these more important optimum candidates and reduce the unnecessary calculation on those negligible ones, in addition we can overcome the conventional degeneracy phenomenon in a way and decrease the computational costs. Otherwise, the threshold is a key factor that affecting the results very much. So here we adapt an adaptive threshold choosing method to get the optimal Sobel result. The dissimilarities between the target model and the target candidates are expressed by a metric derived from the Bhattacharyya coefficient. Here, we use both the counter cue to select the particles and the color cur to describe the targets as the mixture target model. The effectiveness of our scheme is demonstrated by real visual tracking experiments. Results from simulations and experiments with real video data show the improved performance of the proposed algorithm when compared with that of the standard particle filter. The superior performance is evident when the target encountering the occlusion in real video where the standard particle filter usually fails.

  6. Tracking people and cars using 3D modeling and CCTV.

    Science.gov (United States)

    Edelman, Gerda; Bijhold, Jurrien

    2010-10-10

    The aim of this study was to find a method for the reconstruction of movements of people and cars using CCTV footage and a 3D model of the environment. A procedure is proposed, in which video streams are synchronized and displayed in a 3D model, by using virtual cameras. People and cars are represented by cylinders and boxes, which are moved in the 3D model, according to their movements as shown in the video streams. The procedure was developed and tested in an experimental setup with test persons who logged their GPS coordinates as a recording of the ground truth. Results showed that it is possible to implement this procedure and to reconstruct movements of people and cars from video recordings. The procedure was also applied to a forensic case. In this work we experienced that more situational awareness was created by the 3D model, which made it easier to track people on multiple video streams. Based on all experiences from the experimental set up and the case, recommendations are formulated for use in practice. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Model of the recrystallization mechanism of amorphous silicon layers created by ion implantation

    International Nuclear Information System (INIS)

    Drosd, R.M.

    1979-11-01

    The recrystallization behavior during annealing of thin films of amorphous (α) silicon, in contact with a single crystal silicon substrate (referred to as C), has been studied in the transmission electron microscope (TEM). The amorphous film is created during high dose phosphorus ion implantation at 100 keV. It was found that the crystal substrate orientation and the implantation temperature have dramatic effects on the recrystallizaton rate, and the defect microstructure produced during annealing. Specifically, (100) wafers implanted at 77 0 K contain only a low density of dislocation loops, but when the same wafer is implanted at room temperature the dislocation density is increased drastically. (111) wafers, when implanted at 77 0 K show a high density of microtwins, but as the implantation temperature is increased a gradual increase in the density of dislocation loops is observed along with a reduction of the microtwins. At an implantation temperature of about 100 0 C both orientations give an identical defect microstructure when annealed, which is a dense tangle of dislocations

  8. Developing a particle tracking surrogate model to improve inversion of ground water - Surface water models

    Science.gov (United States)

    Cousquer, Yohann; Pryet, Alexandre; Atteia, Olivier; Ferré, Ty P. A.; Delbart, Célestine; Valois, Rémi; Dupuy, Alain

    2018-03-01

    The inverse problem of groundwater models is often ill-posed and model parameters are likely to be poorly constrained. Identifiability is improved if diverse data types are used for parameter estimation. However, some models, including detailed solute transport models, are further limited by prohibitive computation times. This often precludes the use of concentration data for parameter estimation, even if those data are available. In the case of surface water-groundwater (SW-GW) models, concentration data can provide SW-GW mixing ratios, which efficiently constrain the estimate of exchange flow, but are rarely used. We propose to reduce computational limits by simulating SW-GW exchange at a sink (well or drain) based on particle tracking under steady state flow conditions. Particle tracking is used to simulate advective transport. A comparison between the particle tracking surrogate model and an advective-dispersive model shows that dispersion can often be neglected when the mixing ratio is computed for a sink, allowing for use of the particle tracking surrogate model. The surrogate model was implemented to solve the inverse problem for a real SW-GW transport problem with heads and concentrations combined in a weighted hybrid objective function. The resulting inversion showed markedly reduced uncertainty in the transmissivity field compared to calibration on head data alone.

  9. Annealing Kinetic Model Using Fast and Slow Metastable Defects for Hydrogenated-Amorphous-Silicon-Based Solar Cells

    Directory of Open Access Journals (Sweden)

    Seung Yeop Myong

    2007-01-01

    Full Text Available The two-component kinetic model employing “fast” and “slow” metastable defects for the annealing behaviors in pin-type hydrogenated-amorphous-silicon- (a-Si:H- based solar cells is simulated using a normalized fill factor. Reported annealing data on pin-type a-Si:H-based solar cells are revisited and fitted using the model to confirm its validity. It is verified that the two-component model is suitable for fitting the various experimental phenomena. In addition, the activation energy for annealing of the solar cells depends on the definition of the recovery time. From the thermally activated and high electric field annealing behaviors, the plausible microscopic mechanism on the defect removal process is discussed.

  10. Uranium fission track length distribution modelling for retracing chronothermometrical history of minerals

    International Nuclear Information System (INIS)

    Rebetez, M.

    1987-01-01

    Spontaneous fission of uranium 238 isotope contained in certain minerals creates damage zones called latent tracks, that can be etched chemically. The observation of these etched tracks and the measurement of their characteristics using an optical microscope are the basis of several applications in the domain of the earth sciences. First, the determination of their densities permits dating a mineral and establishing uranium mapping of rocks. Second, the measurement of their lengths can be a good source of information for retracing the thermal and tectonic history of the sample. The study of the partial annealing of tracks in apatite appears to be the ideal indicator for the evaluation of petroleum potential of a sedimentary basin. To allow the development of this application, it is necessary to devise a theoretical model of track length distributions. The model which is proposed takes into account the most realistic hypotheses concerning registration, etching and observation of tracks. The characteristics of surface tracks (projected lengths, depths, inclination angles, real lengths) and confined tracks (Track IN Track and Track IN Cleavage) are calculated. Surface tracks and confined tracks are perfectly complementary for chrono-thermometric interpretation of complex geological histories. The method is applied to the case of two samples with different tectonic history, issued from the cretaceous alcalin magmatism from the Pyrenees (Bilbao, Spain). A graphic method of distribution deconvolution is proposed. Finally, the uranium migration, depending on the hydrothermal alteration, is studied on the granite from Auriat (France) [fr

  11. Modeling of amorphous SiCxO6/5 by classical molecular dynamics and first principles calculations

    Science.gov (United States)

    Liao, Ningbo; Zhang, Miao; Zhou, Hongming; Xue, Wei

    2017-02-01

    Polymer-derived silicon oxycarbide (SiCO) presents excellent performance for high temperature and lithium-ion battery applications. Current experiments have provided some information on nano-structure of SiCO, while it is very challenging for experiments to take further insight into the molecular structure and its relationship with properties of materials. In this work, molecular dynamics (MD) based on empirical potential and first principle calculation were combined to investigate amorphous SiCxO6/5 ceramics. The amorphous structures of SiCO containing silicon-centered mix bond tetrahedrons and free carbon were successfully reproduced. The calculated radial distribution, angular distribution and Young’s modulus were validated by current experimental data, and more details on molecular structure were discussed. The change in the slope of Young’s modulus is related to the glass transition temperature of the material. The proposed modeling approach can be used to predict the properties of SiCO with different compositions.

  12. Autonomous tracked robots in planar off-road conditions modelling, localization, and motion control

    CERN Document Server

    González, Ramón; Guzmán, José Luis

    2014-01-01

    This monograph is framed within the context of off-road mobile robotics. In particular, it discusses issues related to modelling, localization, and motion control of tracked mobile robots working in planar slippery conditions. Tracked locomotion constitutes a well-known solution for mobile platforms operating over diverse challenging terrains, for that reason, tracked robotics constitutes an important research field with many applications (e.g. agriculture, mining, search and rescue operations, military activities). The specific topics of this monograph are: historical perspective of tracked vehicles and tracked robots; trajectory-tracking model taking into account slip effect; visual-odometry-based localization strategies; and advanced slip-compensation motion controllers ensuring efficient real-time execution. Physical experiments with a real tracked robot are presented showing the better performance of the suggested novel approaches to known techniques.   Keywords: longitudinal slip, visual odometry, slip...

  13. The dose, temperature, and projectile-mass dependence for irradiation-induced amorphization of CuTi

    International Nuclear Information System (INIS)

    Koike, J.; Okamoto, P.R.; Rehn, L.E.; Meshii, M.

    1989-01-01

    CuTi was irradiated with 1-MeV Ne + , Kr + , and Xe + in the temperature range from 150 to 563 K. The volume fraction of the amorphous phase produced during room temperature irradiation with Ne + and Kr + ions was determined as a function of ion dose from measurements of the integrated intensity of the diffuse ring in electron diffraction patterns. The results, analyzed by Gibbons' model, indicate that direct amorphization occurs along a single ion track with Kr + , but the overlapping of three ion tracks is necessary for amorphization with Ne + . The critical temperature for amorphization increases with increasing projectile mass from electron to Ne + to Kr + . However, the critical temperatures for Kr + and Xe + irradiations were found to be identical, and very close to the thermal crystallization temperature of an amorphous zone embedded in the crystalline matrix. Using the present observations, relationships between the amorphization kinetics and the displacement density along the ion track, and between the critical temperature and the stability of the irradiation-induced damage, are discussed

  14. Molecular modeling and simulation of atactic polystyrene/amorphous silica nanocomposites

    International Nuclear Information System (INIS)

    Mathioudakis, I; Vogiatzis, G G; Tzoumanekas, C; Theodorou, D N

    2016-01-01

    The local structure, segmental dynamics, topological analysis of entanglement networks and mechanical properties of atactic polystyrene - amorphous silica nanocomposites are studied via molecular simulations using two interconnected levels of representation: (a) A coarse - grained level. Equilibration at all length scales at this level is achieved via connectivity - altering Monte Carlo simulations. (b) An atomistic level. Initial configurations for atomistic Molecular Dynamics (MD) simulations are obtained by reverse mapping well- equilibrated coarse-grained configurations. By analyzing atomistic MD trajectories, the polymer density profile is found to exhibit layering in the vicinity of the nanoparticle surface. The dynamics of polystyrene (in neat and filled melt systems) is characterized in terms of bond orientation. Well-equilibrated coarse-grained long-chain configurations are reduced to entanglement networks via topological analysis with the CReTA algorithm. Atomistic simulation results for the mechanical properties are compared to the experimental measurements and other computational works. (paper)

  15. A drain current model for amorphous InGaZnO thin film transistors considering temperature effects

    Science.gov (United States)

    Cai, M. X.; Yao, R. H.

    2018-03-01

    Temperature dependent electrical characteristics of amorphous InGaZnO (a-IGZO) thin film transistors (TFTs) are investigated considering the percolation and multiple trapping and release (MTR) conduction mechanisms. Carrier-density and temperature dependent carrier mobility in a-IGZO is derived with the Boltzmann transport equation, which is affected by potential barriers above the conduction band edge with Gaussian-like distributions. The free and trapped charge densities in the channel are calculated with Fermi-Dirac statistics, and the field effective mobility of a-IGZO TFTs is then deduced based on the MTR theory. Temperature dependent drain current model for a-IGZO TFTs is finally derived with the obtained low field mobility and free charge density, which is applicable to both non-degenerate and degenerate conductions. This physical-based model is verified by available experiment results at various temperatures.

  16. Designing a Process for Tracking Business Model Change

    DEFF Research Database (Denmark)

    Groskovs, Sergejs

    The paper has adopted a design science research approach to design and verify with key stakeholders a fundamental management process of revising KPIs (key performance indicators), including those indicators that are related to business model change. The paper proposes a general guide for such pro......The paper has adopted a design science research approach to design and verify with key stakeholders a fundamental management process of revising KPIs (key performance indicators), including those indicators that are related to business model change. The paper proposes a general guide...... for such process design, which is applicable in similar settings, i.e. other multi-subsidiary global firms operating in dynamic industries. The management of the focal case uses a set of KPIs to track performance and thus to allow for bringing about strategic and tactical changes, including the initiatives...... by establishing new KPIs on an ongoing basis together with the business units on the ground, and is thus of key importance to strategic management of the firm. The paper concludes with a discussion of its methodological compliance to design science research guidelines and revisits the literature in process...

  17. Numerical simulation of hot-melt extrusion processes for amorphous solid dispersions using model-based melt viscosity.

    Science.gov (United States)

    Bochmann, Esther S; Steffens, Kristina E; Gryczke, Andreas; Wagner, Karl G

    2018-03-01

    Simulation of HME processes is a valuable tool for increased process understanding and ease of scale-up. However, the experimental determination of all required input parameters is tedious, namely the melt rheology of the amorphous solid dispersion (ASD) in question. Hence, a procedure to simplify the application of hot-melt extrusion (HME) simulation for forming amorphous solid dispersions (ASD) is presented. The commercial 1D simulation software Ludovic ® was used to conduct (i) simulations using a full experimental data set of all input variables including melt rheology and (ii) simulations using model-based melt viscosity data based on the ASDs glass transition and the physical properties of polymeric matrix only. Both types of HME computation were further compared to experimental HME results. Variation in physical properties (e.g. heat capacity, density) and several process characteristics of HME (residence time distribution, energy consumption) among the simulations and experiments were evaluated. The model-based melt viscosity was calculated by using the glass transition temperature (T g ) of the investigated blend and the melt viscosity of the polymeric matrix by means of a T g -viscosity correlation. The results of measured melt viscosity and model-based melt viscosity were similar with only few exceptions, leading to similar HME simulation outcomes. At the end, the experimental effort prior to HME simulation could be minimized and the procedure enables a good starting point for rational development of ASDs by means of HME. As model excipients, Vinylpyrrolidone-vinyl acetate copolymer (COP) in combination with various APIs (carbamazepine, dipyridamole, indomethacin, and ibuprofen) or polyethylene glycol (PEG 1500) as plasticizer were used to form the ASDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Modeling reactive transport with particle tracking and kernel estimators

    Science.gov (United States)

    Rahbaralam, Maryam; Fernandez-Garcia, Daniel; Sanchez-Vila, Xavier

    2015-04-01

    Groundwater reactive transport models are useful to assess and quantify the fate and transport of contaminants in subsurface media and are an essential tool for the analysis of coupled physical, chemical, and biological processes in Earth Systems. Particle Tracking Method (PTM) provides a computationally efficient and adaptable approach to solve the solute transport partial differential equation. On a molecular level, chemical reactions are the result of collisions, combinations, and/or decay of different species. For a well-mixed system, the chem- ical reactions are controlled by the classical thermodynamic rate coefficient. Each of these actions occurs with some probability that is a function of solute concentrations. PTM is based on considering that each particle actually represents a group of molecules. To properly simulate this system, an infinite number of particles is required, which is computationally unfeasible. On the other hand, a finite number of particles lead to a poor-mixed system which is limited by diffusion. Recent works have used this effect to actually model incomplete mix- ing in naturally occurring porous media. In this work, we demonstrate that this effect in most cases should be attributed to a defficient estimation of the concentrations and not to the occurrence of true incomplete mixing processes in porous media. To illustrate this, we show that a Kernel Density Estimation (KDE) of the concentrations can approach the well-mixed solution with a limited number of particles. KDEs provide weighting functions of each particle mass that expands its region of influence, hence providing a wider region for chemical reactions with time. Simulation results show that KDEs are powerful tools to improve state-of-the-art simulations of chemical reactions and indicates that incomplete mixing in diluted systems should be modeled based on alternative conceptual models and not on a limited number of particles.

  19. Radiation amorphization of materials

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Chernyaeva, T.P.

    1993-01-01

    The results of experimental and theoretical research on radiation amorphization are presented in this analytical review. Mechanism and driving forces of radiation amorphization are described, kinetic and thermodynamic conditions of amorphization are formulated. Compositional criteria of radiation amorphization are presented, that allow to predict irradiation behaviour of materials, their tendency to radiation amorphization. Mechanism of transition from crystalline state to amorphous state are considered depending on dose, temperature, structure of primary radiation damage and flux level. (author). 134 refs., 4 tab., 25 fig

  20. Real-time model for simulating a tracked vehicle on deformable soils

    Directory of Open Access Journals (Sweden)

    Martin Meywerk

    2016-05-01

    Full Text Available Simulation is one possibility to gain insight into the behaviour of tracked vehicles on deformable soils. A lot of publications are known on this topic, but most of the simulations described there cannot be run in real-time. The ability to run a simulation in real-time is necessary for driving simulators. This article describes an approach for real-time simulation of a tracked vehicle on deformable soils. The components of the real-time model are as follows: a conventional wheeled vehicle simulated in the Multi Body System software TRUCKSim, a geometric description of landscape, a track model and an interaction model between track and deformable soils based on Bekker theory and Janosi–Hanamoto, on one hand, and between track and vehicle wheels, on the other hand. Landscape, track model, soil model and the interaction are implemented in MATLAB/Simulink. The details of the real-time model are described in this article, and a detailed description of the Multi Body System part is omitted. Simulations with the real-time model are compared to measurements and to a detailed Multi Body System–finite element method model of a tracked vehicle. An application of the real-time model in a driving simulator is presented, in which 13 drivers assess the comfort of a passive and an active suspension of a tracked vehicle.

  1. A Coupled Hidden Markov Random Field Model for Simultaneous Face Clustering and Tracking in Videos

    KAUST Repository

    Wu, Baoyuan

    2016-10-25

    Face clustering and face tracking are two areas of active research in automatic facial video processing. They, however, have long been studied separately, despite the inherent link between them. In this paper, we propose to perform simultaneous face clustering and face tracking from real world videos. The motivation for the proposed research is that face clustering and face tracking can provide useful information and constraints to each other, thus can bootstrap and improve the performances of each other. To this end, we introduce a Coupled Hidden Markov Random Field (CHMRF) to simultaneously model face clustering, face tracking, and their interactions. We provide an effective algorithm based on constrained clustering and optimal tracking for the joint optimization of cluster labels and face tracking. We demonstrate significant improvements over state-of-the-art results in face clustering and tracking on several videos.

  2. Extended Cann Model for Behavioral Modeling of Envelope Tracking Power Amplifiers

    DEFF Research Database (Denmark)

    Tafuri, Felice Francesco; Larsen, Torben

    2013-01-01

    This paper deals with behavioral modeling of power amplifiers (PAs) for envelope tracking (ET) applications. In such a scenario, the power supply modulation brings in several additional challenges for the system design and, similarly, it becomes more difficult to obtain an accurate and general PA...... by the ET operation. The model performance is tested modeling data-sets acquired from an ET test bench including a commercial RFMD PA and an envelope modulator designed using a commercial IC from TI....

  3. Tracking plastics in the Mediterranean: 2D Lagrangian model.

    Science.gov (United States)

    Liubartseva, S; Coppini, G; Lecci, R; Clementi, E

    2018-04-01

    Drift of floating debris is studied with a 2D Lagrangian model with stochastic beaching and sedimentation of plastics. An ensemble of >10 10 virtual particles is tracked from anthropogenic sources (coastal human populations, rivers, shipping lanes) to environmental destinations (sea surface, coastlines, seabed). Daily analyses of ocean currents and waves provided by CMEMS at a horizontal resolution of 1/16° are used to force the plastics. High spatio-temporal variability in sea-surface plastic concentrations without any stable long-term accumulations is found. Substantial accumulation of plastics is detected on coastlines and the sea bottom. The most contaminated areas are in the Cilician subbasin, Catalan Sea, and near the Po River Delta. Also, highly polluted local patches in the vicinity of sources with limited circulation are identified. An inverse problem solution, used to quantify the origins of plastics, shows that plastic pollution of every Mediterranean country is caused primarily by its own terrestrial sources. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Application of a mechanistic model for radiation-induced amorphization and crystallization of uranium silicide to recrystallization of UO2

    International Nuclear Information System (INIS)

    Rest, J.

    1996-07-01

    An alternative mechanism for the evolution of recrystallization nuclei is described for a model of irradiation-induced recrystallization of UO 2 wherein the stored energy in the material is concentrated in a network of sinklike nuclei that diminish with dose due to interaction with radiation-produced defects. The sinklike nuclei are identified as cellular dislocation structures that evolve relatively early in the irradiation period. A generalized theory of radiation-induced amorphization and crystallization, developed for intermetallic nuclear materials, is applied to UO 2 . The complicated kinetics involved in the formation of a cellular dislocation network are approximated by the formation and growth of subgrains due to the interaction of shock waves produced by fission- induced damage to the material

  5. Effective Multi-Model Motion Tracking Under Multiple Team Member Actuators

    OpenAIRE

    Gu, Yang; Veloso, Manuela

    2009-01-01

    Motivated by the interactions between a team and the tracked target, we contribute a method to achieve efficient tracking through using a play-based motion model and combined vision and infrared sensory information. This method gives the robot a more exact task-specific motion model when executing different tactics over the tracked target (e.g. the ball) or collaborating with the tracked target (e.g. the team member). Then we represent the system in a compact dynamic Bayesian network and use ...

  6. A proposed defect tracking model for classifying the inserted defect reports to enhance software quality control.

    Science.gov (United States)

    Sultan, Torky; Khedr, Ayman E; Sayed, Mostafa

    2013-01-01

    NONE DECLARED Defect tracking systems play an important role in the software development organizations as they can store historical information about defects. There are many research in defect tracking models and systems to enhance their capabilities to be more specifically tracking, and were adopted with new technology. Furthermore, there are different studies in classifying bugs in a step by step method to have clear perception and applicable method in detecting such bugs. This paper shows a new proposed defect tracking model for the purpose of classifying the inserted defects reports in a step by step method for more enhancement of the software quality.

  7. Tracking cellular telephones as an input for developing transport models

    CSIR Research Space (South Africa)

    Cooper, Antony K

    2010-08-01

    Full Text Available in the Cape Town area. We discuss the technologies used to track participants and construct their travel routes, problems with recruiting participants, the ethical issues, and the results of the project...

  8. Path Tracking Control of Automatic Parking Cloud Model considering the Influence of Time Delay

    Directory of Open Access Journals (Sweden)

    Yiding Hua

    2017-01-01

    Full Text Available This paper establishes the kinematic model of the automatic parking system and analyzes the kinematic constraints of the vehicle. Furthermore, it solves the problem where the traditional automatic parking system model fails to take into account the time delay. Firstly, based on simulating calculation, the influence of time delay on the dynamic trajectory of a vehicle in the automatic parking system is analyzed under the transverse distance Dlateral between different target spaces. Secondly, on the basis of cloud model, this paper utilizes the tracking control of an intelligent path closer to human intelligent behavior to further study the Cloud Generator-based parking path tracking control method and construct a vehicle path tracking control model. Moreover, tracking and steering control effects of the model are verified through simulation analysis. Finally, the effectiveness and timeliness of automatic parking controller in the aspect of path tracking are tested through a real vehicle experiment.

  9. The TL fluence response to heavy charged particles using the track interaction model and track structure information

    International Nuclear Information System (INIS)

    Rodriguez-Villafuerte, M.; Avila, O.

    2002-01-01

    The extended track interaction model, ETIM, has recently been proposed to explain the TLD-100 fluence response of peak 5 to heavy ions. This model includes the track structure information through the use of the luminescent-centre occupation probability obtained from radial dose distributions produced by the ions as they travel through the dosemeter. In this work an implementation of ETIM using Monte Carlo techniques is presented. The simulation was applied to calculate the response of peak 5 of both sensitised and normal TLD-100 crystals to 2.6 and 6.8 MeV 4 He ions. The simulation shows that the TL-fluence response has a strong dependence on ion energy, in disagreement with experimental observations. In spite of this, good agreement between the simulated TL-fluence response calculated for the 6.8 MeV 4 He radial distributions and the experimental data for the two energies was achieved. (author)

  10. Statistical shape modeling based renal volume measurement using tracked ultrasound

    Science.gov (United States)

    Pai Raikar, Vipul; Kwartowitz, David M.

    2017-03-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the fourth most common cause of kidney transplant worldwide accounting for 7-10% of all cases. Although ADPKD usually progresses over many decades, accurate risk prediction is an important task.1 Identifying patients with progressive disease is vital to providing new treatments being developed and enable them to enter clinical trials for new therapy. Among other factors, total kidney volume (TKV) is a major biomarker predicting the progression of ADPKD. Consortium for Radiologic Imaging Studies in Polycystic Kidney Disease (CRISP)2 have shown that TKV is an early, and accurate measure of cystic burden and likely growth rate. It is strongly associated with loss of renal function.3 While ultrasound (US) has proven as an excellent tool for diagnosing the disease; monitoring short-term changes using ultrasound has been shown to not be accurate. This is attributed to high operator variability and reproducibility as compared to tomographic modalities such as CT and MR (Gold standard). Ultrasound has emerged as one of the standout modality for intra-procedural imaging and with methods for spatial localization has afforded us the ability to track 2D ultrasound in physical space which it is being used. In addition to this, the vast amount of recorded tomographic data can be used to generate statistical shape models that allow us to extract clinical value from archived image sets. In this work, we aim at improving the prognostic value of US in managing ADPKD by assessing the accuracy of using statistical shape model augmented US data, to predict TKV, with the end goal of monitoring short-term changes.

  11. Use of along-track magnetic field differences in lithospheric field modelling

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Finlay, Chris; Olsen, Nils

    2015-01-01

    . Experiments in modelling the Earth's lithospheric magnetic field with along-track differences are presented here as a proof of concept. We anticipate that use of such along-track differences in combination with east–west field differences, as are now provided by the Swarm satellite constellation......We demonstrate that first differences of polar orbiting satellite magnetic data in the along-track direction can be used to obtain high resolution models of the lithospheric field. Along-track differences approximate the north–south magnetic field gradients for non-polar latitudes. In a test case......, using 2 yr of low altitude data from the CHAMP satellite, we show that use of along-track differences of vector field data results in an enhanced recovery of the small scale lithospheric field, compared to the use of the vector field data themselves. We show that the along-track technique performs...

  12. Stat-tracks and mediotypes: powerful tools for modern ichnology based on 3D models

    Directory of Open Access Journals (Sweden)

    Matteo Belvedere

    2018-01-01

    Full Text Available Vertebrate tracks are subject to a wide distribution of morphological types. A single trackmaker may be associated with a range of tracks reflecting individual pedal anatomy and behavioural kinematics mediated through substrate properties which may vary both in space and time. Accordingly, the same trackmaker can leave substantially different morphotypes something which must be considered in creating ichnotaxa. In modern practice this is often captured by the collection of a series of 3D track models. We introduce two concepts to help integrate these 3D models into ichnological analysis procedures. The mediotype is based on the idea of using statistically-generated three-dimensional track models (median or mean of the type specimens to create a composite track to support formal recognition of a ichno type. A representative track (mean and/or median is created from a set of individual reference tracks or from multiple examples from one or more trackways. In contrast, stat-tracks refer to other digitally generated tracks which may explore variance. For example, they are useful in: understanding the preservation variability of a given track sample; identifying characteristics or unusual track features; or simply as a quantitative comparison tool. Both concepts assist in making ichnotaxonomical interpretations and we argue that they should become part of the standard procedure when instituting new ichnotaxa. As three-dimensional models start to become a standard in publications on vertebrate ichnology, the mediotype and stat-track concepts have the potential to help guiding a revolution in the study of vertebrate ichnology and ichnotaxonomy.

  13. Calculations of the magnetic entropy change in amorphous through a microscopic anisotropic model: Applications to Dy{sub 70}Zr{sub 30} and DyCo{sub 3.4} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ranke, P. J. von, E-mail: von.ranke@uol.com.br; Nóbrega, E. P.; Ribeiro, P. O.; Alvarenga, T. S. T.; Lopes, P. H. O.; Sousa, V. S. R. de; Oliveira, N. A. de [Instituto de Física, Universidade do Estado do Rio de Janeiro—UERJ, Rua São Francisco Xavier, 524, 20550-013 Rio de Janeiro (Brazil); Caldas, A. [Sociedade Unificada de Ensino Superior e Cultura, SUESC, 20211-351 Rio de Janeiro (Brazil); Alho, B. P. [Instituto de Aplicação Fernando Rodrigues da Silveira, Universidade do Estado do Rio de Janeiro, Rua Santa Alexandrina, 288, 20260-232 Rio de Janeiro (Brazil); Carvalho, G. [Laboratório Nacional de Luz Sincroton—LNLS, 13083-970 Campinas, São Paulo (Brazil); Magnus, A.

    2014-10-14

    We report theoretical investigations on the magnetocaloric effect, described by the magnetic entropy change in rare earth—transition metal amorphous systems. The model includes the local anisotropy on the rare earth ions in Harris-Plischke-Zuckermann assumptions. The transition metals ions are treated in terms of itinerant electron ferromagnetism and the magnetic moment of rare earth ions is coupled to the polarized d-band by a local exchange interaction. The magnetocaloric effect was calculated in DyCo{sub 3.4} system, which presents amorphous sperimagnetic configuration. The calculations predict higher refrigerant capacity in the amorphous DyCo{sub 3.4} than in DyCo{sub 2} crystal, highlighting the importance of amorphous magnetocaloric materials. Our calculation of the magnetocaloric effect in Dy{sub 70}Zr{sub 30}, which presents amorphous asperomagnetic configuration, is in good agreement with the experimental result. Furthermore, magnetic entropy changes associated with crystal-amorphous configurations change are estimated.

  14. Particle Tracking and Deposition from CFD Simulations using a Viscoelastic Particle Model

    NARCIS (Netherlands)

    Losurdo, M.

    2009-01-01

    In the present dissertation the mathematical modelling of particle deposition is studied and the solution algorithms for particle tracking, deposition and deposit growth are developed. Particle deposition is modelled according to mechanical impact and contact mechanics taking into account the

  15. Preparation, characterization, drug release and computational modelling studies of antibiotics loaded amorphous chitin nanoparticles.

    Science.gov (United States)

    Gayathri, N K; Aparna, V; Maya, S; Biswas, Raja; Jayakumar, R; Mohan, C Gopi

    2017-12-01

    We present a computational investigation of binding affinity of different types of drugs with chitin nanocarriers. Understanding the chitn polymer-drug interaction is important to design and optimize the chitin based drug delivery systems. The binding affinity of three different types of anti-bacterial drugs Ethionamide (ETA) Methacycline (MET) and Rifampicin (RIF) with amorphous chitin nanoparticles (AC-NPs) were studied by integrating computational and experimental techniques. The binding energies (BE) of hydrophobic ETA, hydrophilic MET and hydrophobic RIF were -7.3kcal/mol, -5.1kcal/mol and -8.1kcal/mol respectively, with respect to AC-NPs, using molecular docking studies. This theoretical result was in good correlation with the experimental studies of AC-drug loading and drug entrapment efficiencies of MET (3.5±0.1 and 25± 2%), ETA (5.6±0.02 and 45±4%) and RIF (8.9±0.20 and 53±5%) drugs respectively. Stability studies of the drug encapsulated nanoparticles showed stable values of size, zeta and polydispersity index at 6°C temperature. The correlation between computational BE and experimental drug entrapment efficiencies of RIF, ETA and MET drugs with four AC-NPs strands were 0.999 respectively, while that of the drug loading efficiencies were 0.854 respectively. Further, the molecular docking results predict the atomic level details derived from the electrostatic, hydrogen bonding and hydrophobic interactions of the drug and nanoparticle for its encapsulation and loading in the chitin-based host-guest nanosystems. The present results thus revealed the drug loading and drug delivery insights and has the potential of reducing the time and cost of processing new antibiotic drug delivery nanosystem optimization, development and discovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Modeling of Maximum Power Point Tracking Controller for Solar Power System

    Directory of Open Access Journals (Sweden)

    Aryuanto Soetedjo

    2012-09-01

    Full Text Available In this paper, a Maximum Power Point Tracking (MPPT controller for solar power system is modeled using MATLAB Simulink. The model consists of PV module, buck converter, and MPPT controller. The contribution of the work is in the modeling of buck converter that allowing the input voltage of the converter, i.e. output voltage of PV is changed by varying the duty cycle, so that the maximum power point could be tracked when the environmental changes. The simulation results show that the developed model performs well in tracking the maximum power point (MPP of the PV module using Perturb and Observe (P&O Algorithm.

  17. Modeling track access charge to enhance railway industry performance

    Science.gov (United States)

    Berawi, Mohammed Ali; Miraj, Perdana; Berawi, Abdur Rohim Boy; Susantono, Bambang; Leviakangas, Pekka; Radiansyah, Hendra

    2017-11-01

    Indonesia attempts to improve nation's competitiveness by increasing the quality and the availability of railway network. However, the infrastructure improperly managed by the operator in terms of the technical issue. One of the reasons for this problem is an unbalanced value of infrastructure charge. In 2000's track access charge and infrastructure maintenance and operation for Indonesia railways are equal and despite current formula of the infrastructure charge, issues of transparency and accountability still in question. This research aims to produce an alternative scheme of track access charge by considering marginal cost plus markup (MC+) approach. The research combines qualitative and quantitative method through an in-depth interview and financial analysis. The result will generate alternative formula of infrastructure charge in Indonesia's railway industry. The simulation also conducted to estimate track access charge for the operator and to forecast government support in terms of subsidy. The result is expected to enhance railway industry performance and competitiveness.

  18. Simultaneous optical and electrical modeling of plasmonic light trapping in thin-film amorphous silicon photovoltaic devices

    Science.gov (United States)

    Gandhi, Keyur K.; Nejim, Ahmed; Beliatis, Michail J.; Mills, Christopher A.; Henley, Simon J.; Silva, S. Ravi P.

    2015-01-01

    Rapid prototyping of photovoltaic (PV) cells requires a method for the simultaneous simulation of the optical and electrical characteristics of the device. The development of nanomaterial-enabled PV cells only increases the complexity of such simulations. Here, we use a commercial technology computer aided design (TCAD) software, Silvaco Atlas, to design and model plasmonic gold nanoparticles integrated in optoelectronic device models of thin-film amorphous silicon (a-Si:H) PV cells. Upon illumination with incident light, we simulate the optical and electrical properties of the cell simultaneously and use the simulation to produce current-voltage (J-V) and external quantum efficiency plots. Light trapping due to light scattering and localized surface plasmon resonance interactions by the nanoparticles has resulted in the enhancement of both the optical and electrical properties due to the reduction in the recombination rates in the photoactive layer. We show that the device performance of the modeled plasmonic a-Si:H PV cells depends significantly on the position and size of the gold nanoparticles, which leads to improvements either in optical properties only, or in both optical and electrical properties. The model provides a route to optimize the device architecture by simultaneously optimizing the optical and electrical characteristics, which leads to a detailed understanding of plasmonic PV cells from a design perspective and offers an advanced tool for rapid device prototyping.

  19. A numerical model for the thermal history of rocks based on confined horizontal fission tracks

    International Nuclear Information System (INIS)

    Jensen, P.K.; Kunzendorf, Helmar; Hansen, Kirsten

    1992-01-01

    A numerical model for determination of the thermal history of rocks is presented. It is shown that the thermal history may be uniquely determined as a piece-by-piece linear function on the basis of etched confined, horizontal fission track length distributions, their surface densities, and the uranium content. The initial track length distribution is taken into account. A relation between the measured track length distribution and age is given which includes correction for partial annealing. The annealing model used is the fanning Arrhenius plot. It is shown that track length distributions measured in transmitted light are biased favouring short tracks compared with measurements in reflected light. Testing of the model is performed on apatites from a tuffaceous sandstone from Bornholm (Denmark) yielding an estimate of the thermal history for the period of about 280 Ma back in time. (author)

  20. Amorphous metal composites

    International Nuclear Information System (INIS)

    Byrne, M.A.; Lupinski, J.H.

    1984-01-01

    This patent discloses an improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite

  1. Kinetics of amorphization induced by swift heavy ions in {alpha}-quartz

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Rodriguez, O., E-mail: ovidio.pena@uam.es [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid (CMAM-UAM), Cantoblanco, E-28049 Madrid (Spain); Instituto de Optica, Consejo Superior de Investigaciones Cientificas (IO-CSIC), C/Serrano 121, E-28006 Madrid (Spain); Manzano-Santamaria, J. [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid (CMAM-UAM), Cantoblanco, E-28049 Madrid (Spain); Euratom/CIEMAT Fusion Association, Madrid (Spain); Rivera, A. [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, C/ Jose Gutierrez Abascal 2, E-28006 Madrid (Spain); Garcia, G. [Laboratory of Synchrotron Light (CELLS-ALBA), 08290 Cerdanyola del Valles, Barcelona (Spain); Olivares, J. [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid (CMAM-UAM), Cantoblanco, E-28049 Madrid (Spain); Instituto de Optica, Consejo Superior de Investigaciones Cientificas (IO-CSIC), C/Serrano 121, E-28006 Madrid (Spain); Agullo-Lopez, F. [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid (CMAM-UAM), Cantoblanco, E-28049 Madrid (Spain); Departamento de Fisica de Materiales, Universidad Autonoma de Madrid (UAM), Cantoblanco, E-28049 Madrid (Spain)

    2012-11-15

    The kinetics of amorphization in crystalline SiO{sub 2} ({alpha}-quartz) under irradiation with swift heavy ions (O{sup +1} at 4 MeV, O{sup +4} at 13 MeV, F{sup +2} at 5 MeV, F{sup +4} at 15 MeV, Cl{sup +3} at 10 MeV, Cl{sup +4} at 20 MeV, Br{sup +5} at 15 and 25 MeV and Br{sup +8} at 40 MeV) has been analyzed in this work with an Avrami-type law and also with a recently developed cumulative approach (track-overlap model). This latter model assumes a track morphology consisting of an amorphous core (area {sigma}) and a surrounding defective halo (area h), both being axially symmetric. The parameters of the two approaches which provide the best fit to the experimental data have been obtained as a function of the electronic stopping power S{sub e}. The extrapolation of the {sigma}(S{sub e}) dependence yields a threshold value for amorphization, S{sub th} Almost-Equal-To 2.1 keV/nm; a second threshold is also observed around 4.1 keV/nm. We believe that this double-threshold effect could be related to the appearance of discontinuous tracks in the region between 2.1 and 4.1 keV/nm. For stopping power values around or below the lower threshold, where the ratio h/{sigma} is large, the track-overlap model provides a much better fit than the Avrami function. Therefore, the data show that a right modeling of the amorphization kinetics needs to take into account the contribution of the defective track halo. Finally, a short comparative discussion with the kinetic laws obtained for elastic collision damage is given.

  2. A Cost-Effective Tracking Algorithm for Hypersonic Glide Vehicle Maneuver Based on Modified Aerodynamic Model

    Directory of Open Access Journals (Sweden)

    Yu Fan

    2016-10-01

    Full Text Available In order to defend the hypersonic glide vehicle (HGV, a cost-effective single-model tracking algorithm using Cubature Kalman filter (CKF is proposed in this paper based on modified aerodynamic model (MAM as process equation and radar measurement model as measurement equation. In the existing aerodynamic model, the two control variables attack angle and bank angle cannot be measured by the existing radar equipment and their control laws cannot be known by defenders. To establish the process equation, the MAM for HGV tracking is proposed by using additive white noise to model the rates of change of the two control variables. For the ease of comparison several multiple model algorithms based on CKF are presented, including interacting multiple model (IMM algorithm, adaptive grid interacting multiple model (AGIMM algorithm and hybrid grid multiple model (HGMM algorithm. The performances of these algorithms are compared and analyzed according to the simulation results. The simulation results indicate that the proposed tracking algorithm based on modified aerodynamic model has the best tracking performance with the best accuracy and least computational cost among all tracking algorithms in this paper. The proposed algorithm is cost-effective for HGV tracking.

  3. TO THE MODELING ISSUES OF LIFE CYCLE OF DEFORMATION WORK OF THE RAILWAY TRACK ELEMENTS

    Directory of Open Access Journals (Sweden)

    I. O. Bondarenko

    2014-12-01

    Full Text Available Purpose. This article highlightsthe operational cycle modeling of the railway track elements for the development processes study of deformability as the basis of creating a regulatory framework of the track while ensuring the reliability of the railways. Methodology.The basic theory of wave propagation process in describing the interaction of track and rolling stock are used to achieve the goal. Findings. The basic provisions concerning the concept «the operational cycle of the deformation track» were proposed and formulated. The method was set. On its base the algorithm for determining the dynamic effects of the rolling stock on the way was obtained. The basic principles for the calculation schemes of railway track components for process evaluation of the deformability of the way were formulated. An algorithm was developed, which allows getting the field values of stresses, strains and displacements of all points of the track design elements. Based on the fields of stress-strain state of the track, an algorithm to establish the dependence of the process of deformability and the amount of energy expended on the deformability of the track operation was created. Originality.The research of track reliability motivates the development of new models, provides an opportunity to consider it for some developments. There is a need to define the criteria on which the possibility of assessing and forecasting changes in the track states in the course of its operation. The paper proposed the basic principles, methods, algorithms, and the terms relating to the conduct of the study, questions the reliability of the track. Practical value. Analytical models, used to determine the parameters of strength and stability of tracks, fully meet its objectives, but cannot be applied to determine the parameters of track reliability. One of the main factors of impossibility to apply these models is a quasi-dynamic approach. Therefore, as a rule, not only one dynamic

  4. On the long standing question of nuclear track etch induction time: Surface-cap model

    International Nuclear Information System (INIS)

    Rana, Mukhtar Ahmed

    2008-01-01

    Using a systematic set of experiments, nuclear track etch induction time measurements in a widely used CR-39 detector were completed for accessible track-forming particles (fission fragments, 5.2 MeV alpha particles and 5.9 MeV antiprotons). Results of the present work are compared with appropriately selected published results. The possibility of the use of etch induction time for charged particle identification is evaluated. Analysis of experimental results along with the use of well-established theoretical concepts yielded a model about delay in the start of chemical etching of nuclear tracks. The suggested model proposes the formation of a surface-cap (top segment) in each nuclear track consisting of chemically modified material with almost same or even higher resistance to chemical etching compared with bulk material of the track detector. Existing track formation models are reviewed very briefly, which provide one of the two bases of the proposed model. The other basis of the model is the general behavior of hot or energised material having a connection with an environment containing a number of species like ordinary air. Another reason for the delay in the start of etching is suggested as the absence of localization of etching atoms/molecules, which is present during etching at depth along the latent track

  5. The probabilities of one- and multi-track events for modeling radiation-induced cell kill

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Uwe; Vasi, Fabiano; Besserer, Juergen [University of Zuerich, Department of Physics, Science Faculty, Zurich (Switzerland); Radiotherapy Hirslanden, Zurich (Switzerland)

    2017-08-15

    In view of the clinical importance of hypofractionated radiotherapy, track models which are based on multi-hit events are currently reinvestigated. These models are often criticized, because it is believed that the probability of multi-track hits is negligible. In this work, the probabilities for one- and multi-track events are determined for different biological targets. The obtained probabilities can be used with nano-dosimetric cluster size distributions to obtain the parameters of track models. We quantitatively determined the probabilities for one- and multi-track events for 100, 500 and 1000 keV electrons, respectively. It is assumed that the single tracks are statistically independent and follow a Poisson distribution. Three different biological targets were investigated: (1) a DNA strand (2 nm scale); (2) two adjacent chromatin fibers (60 nm); and (3) fiber loops (300 nm). It was shown that the probabilities for one- and multi-track events are increasing with energy, size of the sensitive target structure, and dose. For a 2 x 2 x 2 nm{sup 3} target, one-track events are around 10,000 times more frequent than multi-track events. If the size of the sensitive structure is increased to 100-300 nm, the probabilities for one- and multi-track events are of the same order of magnitude. It was shown that target theories can play a role for describing radiation-induced cell death if the targets are of the size of two adjacent chromatin fibers or fiber loops. The obtained probabilities can be used together with the nano-dosimetric cluster size distributions to determine model parameters for target theories. (orig.)

  6. Mathematical model to analyze the dissolution behavior of metastable crystals or amorphous drug accompanied with a solid-liquid interface reaction.

    Science.gov (United States)

    Hirai, Daiki; Iwao, Yasunori; Kimura, Shin-Ichiro; Noguchi, Shuji; Itai, Shigeru

    2017-04-30

    Metastable crystals and the amorphous state of poorly water-soluble drugs in solid dispersions (SDs), are subject to a solid-liquid interface reaction upon exposure to a solvent. The dissolution behavior during the solid-liquid interface reaction often shows that the concentration of drugs is supersaturated, with a high initial drug concentration compared with the solubility of stable crystals but finally approaching the latter solubility with time. However, a method for measuring the precipitation rate of stable crystals and/or the potential solubility of metastable crystals or amorphous drugs has not been established. In this study, a novel mathematical model that can represent the dissolution behavior of the solid-liquid interface reaction for metastable crystals or amorphous drug was developed and its validity was evaluated. The theory for this model was based on the Noyes-Whitney equation and assumes that the precipitation of stable crystals at the solid-liquid interface occurs through a first-order reaction. Moreover, two models were developed, one assuming that the surface area of the drug remains constant because of the presence of excess drug in the bulk and the other that the surface area changes in time-dependency because of agglomeration of the drug. SDs of Ibuprofen (IB)/polyvinylpyrrolidone (PVP) were prepared and their dissolution behaviors under non-sink conditions were fitted by the models to evaluate improvements in solubility. The model assuming time-dependent surface area showed good agreement with experimental values. Furthermore, by applying the model to the dissolution profile, parameters such as the precipitation rate and the potential solubility of the amorphous drug were successfully calculated. In addition, it was shown that the improvement in solubility with supersaturation was able to be evaluated quantitatively using this model. Therefore, this mathematical model would be a useful tool to quantitatively determine the supersaturation

  7. Image Analysis of a Negatively Curved Graphitic Sheet Model for Amorphous Carbon

    Science.gov (United States)

    Bursill, L. A.; Bourgeois, Laure N.

    High-resolution electron micrographs are presented which show essentially curved single sheets of graphitic carbon. Image calculations are then presented for the random surface schwarzite-related model of Townsend et al. (Phys. Rev. Lett. 69, 921-924, 1992). Comparison with experimental images does not rule out the contention that such models, containing surfaces of negative curvature, may be useful for predicting some physical properties of specific forms of nanoporous carbon. Some difficulties of the model predictions, when compared with the experimental images, are pointed out. The range of application of this model, as well as competing models, is discussed briefly.

  8. Heavy particle track structure parameters for biophysical modelling

    International Nuclear Information System (INIS)

    Watt, D.E.

    1994-01-01

    Averaged values of physical track structure parameters are important in radiobiology and radiological protection for the expression of damage mechanisms and for quantifying radiation effects. To provide a ready reference, tables of relevant quantities have been compiled for heavy charged particles in liquid water. The full tables will be published elsewhere but here illustrative examples are given of the trends for the most important quantities. In the tables, data are given for 74 types of heavy charged particle ranging from protons to uranium ions at specific energies between 0.1 keV/u and 1 GeV/u. Aggregate effects in liquid water are taken into account implicitly in the calculations. Results are presented for instantaneous particle energies and for averages over the charged particle equilibrium spectrum. The latter are of special relevance to radiation dosimetry. Quality parameters calculated are: β 2 ; z 2 /β 2 ; linear primary ionisation and the mean free path between ionisations; LET; track and dose-restricted LET with 100 eV cut-off; relative variances; delta-ray energies and ranges; ion energies and ranges and kerma factors. Here, the procedures used in the calculations are indicated. Representative results are shown in graphical form. The role of the physical track properties is discussed with regard to optimisation of the design of experiments intended to elucidate biological damage mechanisms in mammalian cells and their relevance to radiological protection. ((orig.))

  9. A Model of the Effects of Acceleration on a Pursuit Tracking Task

    National Research Council Canada - National Science Library

    McKinley, Richard A; Fullerton, Kathy L; Tripp, Jr., Lloyd D; Esken, Robert L; Goodyear, Chuck

    2004-01-01

    .... A mathematical model of this task could become useful when planning air combat missions. Eight subjects performed a 2-D manual pursuit tracking task during four different Gz conditions in a human centrifuge simulator...

  10. Study of Railway Track Irregularity Standard Deviation Time Series Based on Data Mining and Linear Model

    Directory of Open Access Journals (Sweden)

    Jia Chaolong

    2013-01-01

    Full Text Available Good track geometry state ensures the safe operation of the railway passenger service and freight service. Railway transportation plays an important role in the Chinese economic and social development. This paper studies track irregularity standard deviation time series data and focuses on the characteristics and trend changes of track state by applying clustering analysis. Linear recursive model and linear-ARMA model based on wavelet decomposition reconstruction are proposed, and all they offer supports for the safe management of railway transportation.

  11. ADAPTIVE BACKGROUND DENGAN METODE GAUSSIAN MIXTURE MODELS UNTUK REAL-TIME TRACKING

    Directory of Open Access Journals (Sweden)

    Silvia Rostianingsih

    2008-01-01

    Full Text Available Nowadays, motion tracking application is widely used for many purposes, such as detecting traffic jam and counting how many people enter a supermarket or a mall. A method to separate background and the tracked object is required for motion tracking. It will not be hard to develop the application if the tracking is performed on a static background, but it will be difficult if the tracked object is at a place with a non-static background, because the changing part of the background can be recognized as a tracking area. In order to handle the problem an application can be made to separate background where that separation can adapt to change that occur. This application is made to produce adaptive background using Gaussian Mixture Models (GMM as its method. GMM method clustered the input pixel data with pixel color value as it’s basic. After the cluster formed, dominant distributions are choosen as background distributions. This application is made by using Microsoft Visual C 6.0. The result of this research shows that GMM algorithm could made adaptive background satisfactory. This proofed by the result of the tests that succeed at all condition given. This application can be developed so the tracking process integrated in adaptive background maker process. Abstract in Bahasa Indonesia : Saat ini, aplikasi motion tracking digunakan secara luas untuk banyak tujuan, seperti mendeteksi kemacetan dan menghitung berapa banyak orang yang masuk ke sebuah supermarket atau sebuah mall. Sebuah metode untuk memisahkan antara background dan obyek yang di-track dibutuhkan untuk melakukan motion tracking. Membuat aplikasi tracking pada background yang statis bukanlah hal yang sulit, namun apabila tracking dilakukan pada background yang tidak statis akan lebih sulit, dikarenakan perubahan background dapat dikenali sebagai area tracking. Untuk mengatasi masalah tersebut, dapat dibuat suatu aplikasi untuk memisahkan background dimana aplikasi tersebut dapat

  12. Modeling the effects of high-G stress on pilots in a tracking task

    Science.gov (United States)

    Korn, J.; Kleinman, D. L.

    1978-01-01

    Air-to-air tracking experiments were conducted at the Aerospace Medical Research Laboratories using both fixed and moving base dynamic environment simulators. The obtained data, which includes longitudinal error of a simulated air-to-air tracking task as well as other auxiliary variables, was analyzed using an ensemble averaging method. In conjunction with these experiments, the optimal control model is applied to model a human operator under high-G stress.

  13. ADAPTIVE PARAMETER ESTIMATION OF PERSON RECOGNITION MODEL IN A STOCHASTIC HUMAN TRACKING PROCESS

    OpenAIRE

    W. Nakanishi; T. Fuse; T. Ishikawa

    2015-01-01

    This paper aims at an estimation of parameters of person recognition models using a sequential Bayesian filtering method. In many human tracking method, any parameters of models used for recognize the same person in successive frames are usually set in advance of human tracking process. In real situation these parameters may change according to situation of observation and difficulty level of human position prediction. Thus in this paper we formulate an adaptive parameter estimation ...

  14. Modeling of Target Tracking System for Homing Missiles and Air Defense Systems

    Directory of Open Access Journals (Sweden)

    Yunes Sh. ALQUDSI

    2018-06-01

    Full Text Available One reason of why the guidance and control systems are imperfect is due to the dynamics of both the tracker and the missile, which appears as an error in the alignment with the LOS and delay in the response of the missile to change its orientation. Other reasons are the bias and disturbances as well as the noise about and within the system such as the thermal noise. This paper deals with the tracking system used in the homing guidance and air defense systems. A realistic model for the tracking system model is developed including the receiver servo dynamics and the possible disturbance and noise that may affect the accuracy of the tracking signals measured by the seeker sensor. Modeling the parameters variability and uncertainty is also examined to determine the robustness margin of the tracking system.

  15. Modelling of photodegradation effect on elastic-viscoplastic behaviour of amorphous polylactic acid films

    Science.gov (United States)

    Belbachir, S.; Zaïri, F.; Ayoub, G.; Maschke, U.; Naït-Abdelaziz, M.; Gloaguen, J. M.; Benguediab, M.; Lefebvre, J. M.

    2010-02-01

    Polylactic acid (PLA) films were subjected to accelerated ultra-violet (UV) ageing. The UV irradiation leads to the alteration of the chemical structure which influences directly the mechanical response of the polymer. The chemical modification of the polymer was followed by gel permeation chromatography. Uniaxial tension tests were conducted at 50 °C and for different strain rates in order to characterize the large deformation response of PLA. The influence of UV irradiation on the alteration of the large deformation response of PLA was examined. A physically based elastic-viscoplastic model was used to describe the mechanical response of virgin PLA. The photodegradation effect was incorporated into the constitutive model to capture the stress-strain behaviour up to failure of aged PLA. To that end, the measured molecular weight was used as a direct input into the model. The model is shown to be in good agreement with experimental results over a wide range of UV irradiation doses.

  16. Basic simulation models of phase tracking devices using Matlab

    CERN Document Server

    Tranter, William

    2010-01-01

    The Phase-Locked Loop (PLL), and many of the devices used for frequency and phase tracking, carrier and symbol synchronization, demodulation, and frequency synthesis, are fundamental building blocks in today's complex communications systems. It is therefore essential for both students and practicing communications engineers interested in the design and implementation of modern communication systems to understand and have insight into the behavior of these important and ubiquitous devices. Since the PLL behaves as a nonlinear device (at least during acquisition), computer simulation can be used

  17. MULTIPLE HUMAN TRACKING IN COMPLEX SITUATION BY DATA ASSIMILATION WITH PEDESTRIAN BEHAVIOR MODEL

    Directory of Open Access Journals (Sweden)

    W. Nakanishi

    2012-07-01

    Full Text Available A new method of multiple human tracking is proposed. The key concept is that to assume a tracking process as a data assimilation process. Despite the importance of understanding pedestrian behavior in public space with regard to achieving more sophisticated space design and flow control, automatic human tracking in complex situation is still challenging when people move close to each other or are occluded by others. For this difficulty, we stochastically combine existing tracking method by image processing with simulation models of walking behavior. We describe a system in a form of general state space model and define the components of the model according to the review on related works. Then we apply the proposed method to the data acquired at the ticket gate of the railway station. We show the high performance of the method, as well as compare the result with other model to present the advantage of integrating the behavior model to the tracking method. We also show the method's ability to acquire passenger flow information such as ticket gate choice and OD data automatically from the tracking result.

  18. Tracking LHC Models with Thick Lens Quadrupoles: Results and Comparisons with the Standard Thin Lens tracking.

    CERN Document Server

    Burkhardt, H; Risselada, T

    2012-01-01

    So far, the massive numerical simulation studies of the LHC dynamic aperture were performed using thin lens models of the machine. This approach has the clear advantage of speed, but it has also the disadvantage of requiring re-matching of the optics from the real thick configuration to the thin one. The figure-of-merit for the re-matching is the agreement between the beta-functions for the two models. However, the quadrupole gradients are left as free parameters, thus, the impact of the magnetic multipoles might be affected by this approach. In turns, the dynamic aperture computation could be changed. In this paper the new approach is described and the results for the dynamic aperture are compared with the old approach, including detailed considerations on the CPU-time requirements.

  19. A fast fiducial marker tracking model for fully automatic alignment in electron tomography

    KAUST Repository

    Han, Renmin; Zhang, Fa; Gao, Xin

    2017-01-01

    Automatic alignment, especially fiducial marker-based alignment, has become increasingly important due to the high demand of subtomogram averaging and the rapid development of large-field electron microscopy. Among the alignment steps, fiducial marker tracking is a crucial one that determines the quality of the final alignment. Yet, it is still a challenging problem to track the fiducial markers accurately and effectively in a fully automatic manner.In this paper, we propose a robust and efficient scheme for fiducial marker tracking. Firstly, we theoretically prove the upper bound of the transformation deviation of aligning the positions of fiducial markers on two micrographs by affine transformation. Secondly, we design an automatic algorithm based on the Gaussian mixture model to accelerate the procedure of fiducial marker tracking. Thirdly, we propose a divide-and-conquer strategy against lens distortions to ensure the reliability of our scheme. To our knowledge, this is the first attempt that theoretically relates the projection model with the tracking model. The real-world experimental results further support our theoretical bound and demonstrate the effectiveness of our algorithm. This work facilitates the fully automatic tracking for datasets with a massive number of fiducial markers.The C/C ++ source code that implements the fast fiducial marker tracking is available at https://github.com/icthrm/gmm-marker-tracking. Markerauto 1.6 version or later (also integrated in the AuTom platform at http://ear.ict.ac.cn/) offers a complete implementation for fast alignment, in which fast fiducial marker tracking is available by the

  20. A fast fiducial marker tracking model for fully automatic alignment in electron tomography

    KAUST Repository

    Han, Renmin

    2017-10-20

    Automatic alignment, especially fiducial marker-based alignment, has become increasingly important due to the high demand of subtomogram averaging and the rapid development of large-field electron microscopy. Among the alignment steps, fiducial marker tracking is a crucial one that determines the quality of the final alignment. Yet, it is still a challenging problem to track the fiducial markers accurately and effectively in a fully automatic manner.In this paper, we propose a robust and efficient scheme for fiducial marker tracking. Firstly, we theoretically prove the upper bound of the transformation deviation of aligning the positions of fiducial markers on two micrographs by affine transformation. Secondly, we design an automatic algorithm based on the Gaussian mixture model to accelerate the procedure of fiducial marker tracking. Thirdly, we propose a divide-and-conquer strategy against lens distortions to ensure the reliability of our scheme. To our knowledge, this is the first attempt that theoretically relates the projection model with the tracking model. The real-world experimental results further support our theoretical bound and demonstrate the effectiveness of our algorithm. This work facilitates the fully automatic tracking for datasets with a massive number of fiducial markers.The C/C ++ source code that implements the fast fiducial marker tracking is available at https://github.com/icthrm/gmm-marker-tracking. Markerauto 1.6 version or later (also integrated in the AuTom platform at http://ear.ict.ac.cn/) offers a complete implementation for fast alignment, in which fast fiducial marker tracking is available by the

  1. On track for success: an innovative behavioral science curriculum model.

    Science.gov (United States)

    Freedy, John R; Carek, Peter J; Dickerson, Lori M; Mallin, Robert M

    2013-01-01

    This article describes the behavioral science curriculum currently in place at the Trident/MUSC Family Medicine Residency Program. The Trident/MUSC Program is a 10-10-10 community-based, university-affiliated program in Charleston, South Carolina. Over the years, the Trident/MUSC residency program has graduated over 400 Family Medicine physicians. The current behavioral science curriculum consists of both required core elements (didactic lectures, clinical observation, Balint groups, and Resident Grand Rounds) as well as optional elements (longitudinal patient care experiences, elective rotations, behavioral science editorial experience, and scholars project with a behavioral science focus). All Trident/MUSC residents complete core behavioral science curriculum elements and are free to participate in none, some, or all of the optional behavioral science curriculum elements. This flexibility allows resident physicians to tailor the educational program in a manner to meet individual educational needs. The behavioral science curriculum is based upon faculty interpretation of existing "best practice" guidelines (Residency Review Committee-Family Medicine and AAFP). This article provides sufficient curriculum detail to allow the interested reader the opportunity to adapt elements of the behavioral science curriculum to other residency training programs. While this behavioral science track system is currently in an early stage of implementation, the article discusses track advantages as well as future plans to evaluate various aspects of this innovative educational approach.

  2. Ion-reversibility studies in amorphous solids using the two-atom scattering model

    International Nuclear Information System (INIS)

    Oen, O.S.

    1981-06-01

    An analytical two-atom scattering model has been developed to treat the recent discovery of the enhancement near 180 0 of Rutherford backscattering yields from disordered solids. In contrast to conventional calculations of Rutherford backscattering that treat scattering from a single atom only (the backscattering atom), the present model includes the interaction of a second atom lying between the target surface and the backscattering plane. The projectile ion makes a glancing collision with this second atom both before and after it is backscattered. The model predicts an enhancement effect whose physical origin arises from the tolerance of path for those ions whose inward and outward trajectories lie in the vicinity of the critical impact parameter. Results using Moliere scattering show how the yield enhancement depends on ion energy, backscattering depth, exit angle, scattering potential, atomic numbers of the projectile and target, and target density. In the model the critical impact parameter and critical angle play important roles. It is shown that these quantities depend on a single dimensionless parameter and analytical expressions for them are given which are accurate to better than 1%

  3. Slushy weightings for the optimal pilot model. [considering visual tracking task

    Science.gov (United States)

    Dillow, J. D.; Picha, D. G.; Anderson, R. O.

    1975-01-01

    A pilot model is described which accounts for the effect of motion cues in a well defined visual tracking task. The effect of visual and motion cues are accounted for in the model in two ways. First, the observation matrix in the pilot model is structured to account for the visual and motion inputs presented to the pilot. Secondly, the weightings in the quadratic cost function associated with the pilot model are modified to account for the pilot's perception of the variables he considers important in the task. Analytic results obtained using the pilot model are compared to experimental results and in general good agreement is demonstrated. The analytic model yields small improvements in tracking performance with the addition of motion cues for easily controlled task dynamics and large improvements in tracking performance with the addition of motion cues for difficult task dynamics.

  4. Object Tracking Using Adaptive Covariance Descriptor and Clustering-Based Model Updating for Visual Surveillance

    Directory of Open Access Journals (Sweden)

    Lei Qin

    2014-05-01

    Full Text Available We propose a novel approach for tracking an arbitrary object in video sequences for visual surveillance. The first contribution of this work is an automatic feature extraction method that is able to extract compact discriminative features from a feature pool before computing the region covariance descriptor. As the feature extraction method is adaptive to a specific object of interest, we refer to the region covariance descriptor computed using the extracted features as the adaptive covariance descriptor. The second contribution is to propose a weakly supervised method for updating the object appearance model during tracking. The method performs a mean-shift clustering procedure among the tracking result samples accumulated during a period of time and selects a group of reliable samples for updating the object appearance model. As such, the object appearance model is kept up-to-date and is prevented from contamination even in case of tracking mistakes. We conducted comparing experiments on real-world video sequences, which confirmed the effectiveness of the proposed approaches. The tracking system that integrates the adaptive covariance descriptor and the clustering-based model updating method accomplished stable object tracking on challenging video sequences.

  5. Eye Tracking Meets the Process of Process Modeling: a Visual Analytic Approach

    DEFF Research Database (Denmark)

    Burattin, Andrea; Kaiser, M.; Neurauter, Manuel

    2017-01-01

    Research on the process of process modeling (PPM) studies how process models are created. It typically uses the logs of the interactions with the modeling tool to assess the modeler’s behavior. In this paper we suggest to introduce an additional stream of data (i.e., eye tracking) to improve the ...

  6. Fecal indicator organism modeling and microbial source tracking in environmental waters: Chapter 3.4.6

    Science.gov (United States)

    Nevers, Meredith; Byappanahalli, Muruleedhara; Phanikumar, Mantha S.; Whitman, Richard L.

    2016-01-01

    Mathematical models have been widely applied to surface waters to estimate rates of settling, resuspension, flow, dispersion, and advection in order to calculate movement of particles that influence water quality. Of particular interest are the movement, survival, and persistence of microbial pathogens or their surrogates, which may contaminate recreational water, drinking water, or shellfish. Most models devoted to microbial water quality have been focused on fecal indicator organisms (FIO), which act as a surrogate for pathogens and viruses. Process-based modeling and statistical modeling have been used to track contamination events to source and to predict future events. The use of these two types of models require different levels of expertise and input; process-based models rely on theoretical physical constructs to explain present conditions and biological distribution while data-based, statistical models use extant paired data to do the same. The selection of the appropriate model and interpretation of results is critical to proper use of these tools in microbial source tracking. Integration of the modeling approaches could provide insight for tracking and predicting contamination events in real time. A review of modeling efforts reveals that process-based modeling has great promise for microbial source tracking efforts; further, combining the understanding of physical processes influencing FIO contamination developed with process-based models and molecular characterization of the population by gene-based (i.e., biological) or chemical markers may be an effective approach for locating sources and remediating contamination in order to protect human health better.

  7. Swift heavy ion-beam induced amorphization and recrystallization of yttrium iron garnet

    International Nuclear Information System (INIS)

    Costantini, Jean-Marc; Miro, Sandrine; Beuneu, François; Toulemonde, Marcel

    2015-01-01

    Pure and (Ca and Si)-substituted yttrium iron garnet (Y 3 Fe 5 O 12 or YIG) epitaxial layers and amorphous films on gadolinium gallium garnet (Gd 3 Ga 5 O 12 , or GGG) single crystal substrates were irradiated by 50 MeV 32 Si and 50 MeV (or 60 MeV) 63 Cu ions for electronic stopping powers larger than the threshold value (∼4 MeV μm −1 ) for amorphous track formation in YIG crystals. Conductivity data of crystalline samples in a broad ion fluence range (10 11 –10 16 cm −2 ) are modeled with a set of rate equations corresponding to the amorphization and recrystallization induced in ion tracks by electronic excitations. The data for amorphous layers confirm that a recrystallization process takes place above ∼10 14 cm −2 . Cross sections for both processes deduced from this analysis are discussed in comparison to previous determinations with reference to the inelastic thermal-spike model of track formation. Micro-Raman spectroscopy was also used to follow the related structural modifications. Raman spectra show the progressive vanishing and randomization of crystal phonon modes in relation to the ion-induced damage. For crystalline samples irradiated at high fluences (⩾10 14 cm −2 ), only two prominent broad bands remain like for amorphous films, thereby reflecting the phonon density of states of the disordered solid, regardless of samples and irradiation conditions. The main band peaked at ∼660 cm −1 is assigned to vibration modes of randomized bonds in tetrahedral (FeO 4 ) units. (paper)

  8. Space-charge-limited-current diode model for amorphous silicon solar cell degradation

    International Nuclear Information System (INIS)

    Partain, L.D.

    1987-01-01

    A space-charge-limited-current (SCLI) diode model for trap controlled rectification in the dark is extended to a continuous trap distribution for p-i-n a-Si:H solar cells in the light. Light degradation, thermal annealing recovery, and 10% efficient device data are quantitatively fit with i layer, conduction electron concentrations between 1.95 (10 11 ) and 1.90 (10 12 ) cm -3 and band gap trap concentration densities between 7.66 (10 14 ) and 1.14 (10 18 ) cm -3 ev -1 for 0.2 to 0.5 eV below the conduction band edge (E/sub c/). Light exposure increased the trap density at 0.4 eV below E/sub c/ by a factor of 7. Annealing decreased the distance of the peak trap density from E/sub c/ by 0.2 eV. These results agree with trap distributions measured with field effect, DLTS, and ICTS and with theoretical models based on dangling bonds or on defect rearrangements. The model indicates that a minimum peak amplitude of 10 17 cm -3 eV -1 of trapping states is required at about 0.5 eV below E/sub c/ for high fill factors (FF) and open circuit voltages (V/sub oc/). Improved FF values of 0.76 are predicted for trap densities below 10 15 cm -3 eV -1 at 0.2 to 0.4 eV below E/sub c/. Increased V/sub oc/ values of 0.99 V are predicted for a peak trap density of 3.5 (10 17 ) cm -3 eV -1 at 0.5 eV below E/sub c/

  9. Analytical theory of noncollinear amorphous metallic magnetism

    International Nuclear Information System (INIS)

    Kakehashi, Y.; Uchida, T.

    2001-01-01

    Analytical theory of noncollinear magnetism in amorphous metals is proposed on the basis of the Gaussian model for the distribution of the interatomic distance and the saddle-point approximation. The theory removes the numerical difficulty in the previous theory based on the Monte-Carlo sampling method, and reasonably describes the magnetic properties of amorphous transition metals

  10. X-ray diffraction and local order modelling of GexSesub(1-x) amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Malaurent, J C; Dixmier, J [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique des Solides

    1980-01-01

    X-ray diffraction studies are made for GexSesub(1-x) glasses with 0 < x < 0.4. Interference functions exhibit a peculiar peak at about 1 Angstroem/sup -1/. The areas of the first two peaks of the Radial Distribution Functions increase with X. According to the experimental results, a random network model is made of Ge atoms with coordination number four and Se atoms with coordination number two. A computer program sets atoms one by one by allowing free rotation about all bonds. First results of this model are presented. Calculated interference functions are compared with the experimental curve for X = 0.2. We draw attention to the first peak at about 1 Angstroem/sup -1/. Results are in agreement with optical absorption edge measurements and Raman scattering experiments by P. Tronc and al., i.e. there is no Ge-Ge bond and furthermore, Ge-Se-Ge sequences remain scarce, as long as the germanium concentration of the mixture makes its possible.

  11. LENMODEL: A forward model for calculating length distributions and fission-track ages in apatite

    Science.gov (United States)

    Crowley, Kevin D.

    1993-05-01

    The program LENMODEL is a forward model for annealing of fission tracks in apatite. It provides estimates of the track-length distribution, fission-track age, and areal track density for any user-supplied thermal history. The program approximates the thermal history, in which temperature is represented as a continuous function of time, by a series of isothermal steps of various durations. Equations describing the production of tracks as a function of time and annealing of tracks as a function of time and temperature are solved for each step. The step calculations are summed to obtain estimates for the entire thermal history. Computational efficiency is maximized by performing the step calculations backwards in model time. The program incorporates an intuitive and easy-to-use graphical interface. Thermal history is input to the program using a mouse. Model options are specified by selecting context-sensitive commands from a bar menu. The program allows for considerable selection of equations and parameters used in the calculations. The program was written for PC-compatible computers running DOS TM 3.0 and above (and Windows TM 3.0 or above) with VGA or SVGA graphics and a Microsoft TM-compatible mouse. Single copies of a runtime version of the program are available from the author by written request as explained in the last section of this paper.

  12. Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting

    International Nuclear Information System (INIS)

    Yan, Wentao; Ge, Wenjun; Qian, Ya; Lin, Stephen; Zhou, Bin; Liu, Wing Kam; Lin, Feng; Wagner, Gregory J.

    2017-01-01

    Metallic powder bed-based additive manufacturing technologies have many promising attributes. The single track acts as one fundamental building unit, which largely influences the final product quality such as the surface roughness and dimensional accuracy. A high-fidelity powder-scale model is developed to predict the detailed formation processes of single/multiple-track defects, including the balling effect, single track nonuniformity and inter-track voids. These processes are difficult to observe in experiments; previous studies have proposed different or even conflicting explanations. Our study clarifies the underlying formation mechanisms, reveals the influence of key factors, and guides the improvement of fabrication quality of single tracks. Additionally, the manufacturing processes of multiple tracks along S/Z-shaped scan paths with various hatching distance are simulated to further understand the defects in complex structures. The simulations demonstrate that the hatching distance should be no larger than the width of the remelted region within the substrate rather than the width of the melted region within the powder layer. Thus, single track simulations can provide valuable insight for complex structures.

  13. Three-dimensional elasto-plastic soil modelling and analysis of sauropod tracks

    Directory of Open Access Journals (Sweden)

    Eugenio Sanz

    2016-06-01

    Full Text Available This paper reports the use of FEA (Finite Element Analysis to model dinosaur tracks. Satisfactory reproductions of sauropod ichnites were simulated using 3D numerical models of the elasto-plastic behaviour of soils. Though the modelling was done of ichnites in situ at the Miraflores I tracksite (Soria, Spain, the methodology could be applied to other tracksites to improve their ichnological interpretation and better understand how the type and state of the trodden sediment at the moment the track is created is a fundamental determinant of the morphology of the ichnite. The results obtained explain why the initial and commonly adopted hypothesis—that soft sediments become progressively more rigid and resistant at depth—is not appropriate at this tracksite. We explain why it is essential to consider a more rigid superficial layer (caused by desiccation overlying a softer layer that is extruded to form a displacement rim. Adult sauropods left trackways behind them. These tracks could be filled up with water due to phreatic level was close to the ground surface. The simulation provides us with a means to explain the differences between similar tracks (of different depths; with or without displacement rims in the various stratigraphic layers of the tracksite and to explain why temporary and variable conditions of humidity lead to these differences in the tracks. The simulations also demonstrate that track depth alone is insufficient to differentiate true tracks from undertracks and that other discrimination criteria need to be taken into account. The scarcity of baby sauropod tracks is explained because they are shallow and easily eroded.

  14. Theory of amorphous ices.

    Science.gov (United States)

    Limmer, David T; Chandler, David

    2014-07-01

    We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens.

  15. IMPACT - Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking

    Science.gov (United States)

    2013-09-01

    the primary source of drag acceleration uncertainty stem from inadequate knowledge of r and CD. Atmospheric mass densities are often inferred from...sophisticated GSI models are diffuse reflection with incomplete accommodation (DRIA) [18] and the Cercignani-Lampis-Lord ( CLL ) model [19]. The DRIA model has...been applied in satellite drag coefficient modeling for nearly 50 years; however, the CLL model was only recently applied to satellite drag

  16. Radiation damage in metals, and amorphous silica in inertial fusion reactors: Modeling and experiments

    International Nuclear Information System (INIS)

    Perlado, J.M.; Victoria, M.; Arevalo, C.; Martinez, E.; Mota, F.; Velarde, M.; Velarde, G.; Cepas, P.; Caturla, M.J.; Marian, J.; Gamez, M.L.

    2006-01-01

    We have simulated in order to compare with experiments, ultra-high pure α-iron with 20 appm of impurities irradiated with 150 keV Fe + ions at a temperature of 573 K. The dose rate was 4.0 10 11 ions/cm 2 .s. We have compared 50 nm depth simulations with 100 nm depth ones and we have obtained results concerning concentration and sizes versus dose. We can conclude that the higher the depth of the sample the larger the diameter of the loops. The accumulation damage in iron is largely influenced by the 3 parameters studied: sample depth, impurity concentration and minimum transition size. Concerning the long-term behaviour of irradiated Zr and Ti, we have studied irradiation of Zr under different conditions with a kinetic Monte-Carlo model and with input data from molecular dynamics simulations on defect energetics and cascade damage. The result show that the total concentration of vacancies in the bulk is larger than the concentration of interstitials when clusters of all sizes are accounted for. The average cluster size of interstitials is independent of dose, due to their stability. As for the molecular dynamics simulations of the formation of oxygen vacancies in SiO 2 by atomic silicon and oxygen collisions, it appears clearly that the probability of creating a stable ODC (oxygen deficient center) increases with the initial energy of the recoil for both Si and O atoms. The probability of creating a stable oxygen vacancy when the initial energetic atom is oxygen is, as expected much higher than for the case when the initial energetic atom is silicon

  17. New approach of modeling charged particles track development in CR-39 detectors

    International Nuclear Information System (INIS)

    Azooz, A.A.; Hermsdorf, D.; Al-Jubbori, M.A.

    2013-01-01

    In this work, previous modeling of protons and alpha particles track length development in CR-39 solid state nuclear track detectors SSNTD is modified and further extended. The extension involved the accommodation of heavier ions into the model. These ions include deuteron, lithium, boron, carbon, nitrogen and oxygen ions. The new modeling does not contain any case sensitive free fitting parameters. Model calculation results are found to be in good agreement with both experimental data and SRIM software range energy dependence predictions. The access to a single unified and differentiable track length development equation results in the ability to obtain direct results for track etching rates. - Highlights: • New modeling of ions track length evolution measured by different authors. • Ions considered are p, d, α, Li, B, C, N, O. • Equations obtained to describe L(t) and etch rate for all ions at wide energy range. • Equations obtained do not involve any free fitting parameters. • Ions range values obtained compare well with results of SRIM software

  18. THE BASIS OF MATHEMATICAL DESCRIPTION FOR WAVE MODEL OF STRESSES PROPAGATION IN RAILWAY TRACK

    Directory of Open Access Journals (Sweden)

    D. M. Kurhan

    2016-10-01

    Full Text Available Purpose. Modern scientific research has repeatedly cited practical examples of the dynamic effects of railway track operation that go beyond the static calculation schemes. For the track sections where the train speed is approaching to the velocity of wave propagation in the slab track layers such issues are of particular relevance. An adequate tool for the study of such issues can be the use of the wave theory of stress propagation. The purpose of the article is the creation of a mathematical description of the basic principles of the stress propagation wave model in the railway track, which can be used as a basis for the practical development of the relevant calculation system. Methodology. The model of stress-strain states of the railway track on the basis of the stress wave propagation theory is to bring together the equations of the geometry of the outline of the space systems that is involved in the interaction at a given time, and the dynamic equilibrium equations of deformation. The solution is based on the use of the laws of the theory of elasticity. The wave front is described by an ellipsoid equation. When determining the variation in time of the surface position of the ellipsoid a vector approach is used. Findings. The geometry equations of the wave motion determine the volumes of material layers of the slab track involved in the interaction at a given time. The dynamic equilibrium determination of the deformed condition of the space bounded by the wave front makes it possible to calculate both the stresses and strains, and their changes during the time of the load perception. Thus, mathematical descriptions of the processes that occur in the perception of the load by the elements of railway track at high speeds were obtained. Originality. The simulation tasks of the track and rolling stock interaction, in particular taking into account the dynamic deflection of slab track were further developed. For the first time the article

  19. Customer service model for waste tracking at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Dorries, Alison M.; Montoya, Andrew J.; Ashbaugh, Andrew E.

    2010-01-01

    The deployment of any new software system in a production facility will always face multiple hurtles in reaching a successful acceptance. However, a new waste tracking system was required at the plutonium processing facility at Los Alamos National Laboratory (LANL) where waste processing must be integrated to handle Special Nuclear Materials tracking requirements. Waste tracking systems can enhance the processing of waste in production facilities when the system is developed with a focus on customer service throughout the project life cycle. In March 2010 Los Alamos National Laboratory Waste Technical Services (WTS) replaced the aging systems and infrastructure that were being used to support the plutonium processing facility. The Waste Technical Services (WTS) Waste Compliance and Tracking System (WCATS) Project Team, using the following customer service model, succeeded in its goal to meet all operational and regulatory requirements, making waste processing in the facility more efficient while partnering with the customer.

  20. Hidden Markov model tracking of continuous gravitational waves from young supernova remnants

    Science.gov (United States)

    Sun, L.; Melatos, A.; Suvorova, S.; Moran, W.; Evans, R. J.

    2018-02-01

    Searches for persistent gravitational radiation from nonpulsating neutron stars in young supernova remnants are computationally challenging because of rapid stellar braking. We describe a practical, efficient, semicoherent search based on a hidden Markov model tracking scheme, solved by the Viterbi algorithm, combined with a maximum likelihood matched filter, the F statistic. The scheme is well suited to analyzing data from advanced detectors like the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO). It can track rapid phase evolution from secular stellar braking and stochastic timing noise torques simultaneously without searching second- and higher-order derivatives of the signal frequency, providing an economical alternative to stack-slide-based semicoherent algorithms. One implementation tracks the signal frequency alone. A second implementation tracks the signal frequency and its first time derivative. It improves the sensitivity by a factor of a few upon the first implementation, but the cost increases by 2 to 3 orders of magnitude.

  1. Real-time probabilistic covariance tracking with efficient model update.

    Science.gov (United States)

    Wu, Yi; Cheng, Jian; Wang, Jinqiao; Lu, Hanqing; Wang, Jun; Ling, Haibin; Blasch, Erik; Bai, Li

    2012-05-01

    The recently proposed covariance region descriptor has been proven robust and versatile for a modest computational cost. The covariance matrix enables efficient fusion of different types of features, where the spatial and statistical properties, as well as their correlation, are characterized. The similarity between two covariance descriptors is measured on Riemannian manifolds. Based on the same metric but with a probabilistic framework, we propose a novel tracking approach on Riemannian manifolds with a novel incremental covariance tensor learning (ICTL). To address the appearance variations, ICTL incrementally learns a low-dimensional covariance tensor representation and efficiently adapts online to appearance changes of the target with only O(1) computational complexity, resulting in a real-time performance. The covariance-based representation and the ICTL are then combined with the particle filter framework to allow better handling of background clutter, as well as the temporary occlusions. We test the proposed probabilistic ICTL tracker on numerous benchmark sequences involving different types of challenges including occlusions and variations in illumination, scale, and pose. The proposed approach demonstrates excellent real-time performance, both qualitatively and quantitatively, in comparison with several previously proposed trackers.

  2. A case study of consensus modelling for tracking oil spills

    International Nuclear Information System (INIS)

    King, Brian; Brushett, Ben; Lemckert, Charles

    2010-01-01

    Metocean forecast datasets are essential for the timely response to marine incidents and pollutant spill mitigation at sea. To effectively model the likely drift pattern and the area of impact for a marine spill, both wind and ocean current forecast datasets are required. There are two ocean current forecast models and two wind forecast models currently used operationally in the Australia and Asia Pacific region. The availability of several different forecast models provides a unique opportunity to compare the outcome of a particular modelling exercise with the outcome of another using a different model and determining whether there is consensus in the results. Two recent modelling exercises, the oil spill resulting from the damaged Pacific Adventurer (in Queensland) and the oil spill from the Montara well blowout (in Western Australia) are presented as case studies to examine consensus modelling.

  3. Gravity model improvement using the DORIS tracking system on the SPOT 2 satellite

    Science.gov (United States)

    Nerem, R. S.; Lerch, F. J.; Williamson, R. G.; Klosko, S. M.; Robbins, J. W.; Patel, G. B.

    1994-01-01

    A high-precision radiometric satellite tracking system, Doppler Orbitography and Radio-positioning Integrated by Satellite system (DORIS), has recently been developed by the French space agency, Centre National d'Etudes Spatiales (CNES). DORIS was designed to provide tracking support for missions such as the joint United States/French TOPEX/Poseidon. As part of the flight testing process, a DORIS package was flown on the French SPOT 2 satellite. A substantial quantity of geodetic quality tracking data was obtained on SPOT 2 from an extensive international DORIS tracking network. These data were analyzed to assess their accuracy and to evaluate the gravitational modeling enhancements provided by these data in combination with the Goddard Earth Model-T3 (GEM-T3) gravitational model. These observations have noise levels of 0.4 to 0.5 mm/s, with few residual systematic effects. Although the SPOT 2 satellite experiences high atmospheric drag forces, the precision and global coverage of the DORIS tracking data have enabled more extensive orbit parameterization to mitigate these effects. As a result, the SPOT 2 orbital errors have been reduced to an estimated radial accuracy in the 10-20 cm RMS range. The addition of these data, which encompass many regions heretofore lacking in precision satellite tracking, has significantly improved GEM-T3 and allowed greatly improved orbit accuracies for Sun-synchronous satellites like SPOT 2 (such as ERS 1 and EOS). Comparison of the ensuing gravity model with other contemporary fields (GRIM-4C2, TEG2B, and OSU91A) provides a means to assess the current state of knowledge of the Earth's gravity field. Thus, the DORIS experiment on SPOT 2 has provided a strong basis for evaluating this new orbit tracking technology and has demonstrated the important contribution of the DORIS network to the success of the TOPEX/Poseidon mission.

  4. Maximum Correntropy Criterion Kalman Filter for α-Jerk Tracking Model with Non-Gaussian Noise

    Directory of Open Access Journals (Sweden)

    Bowen Hou

    2017-11-01

    Full Text Available As one of the most critical issues for target track, α -jerk model is an effective maneuver target track model. Non-Gaussian noises always exist in the track process, which usually lead to inconsistency and divergence of the track filter. A novel Kalman filter is derived and applied on α -jerk tracking model to handle non-Gaussian noise. The weighted least square solution is presented and the standard Kalman filter is deduced firstly. A novel Kalman filter with the weighted least square based on the maximum correntropy criterion is deduced. The robustness of the maximum correntropy criterion is also analyzed with the influence function and compared with the Huber-based filter, and, moreover, the kernel size of Gaussian kernel plays an important role in the filter algorithm. A new adaptive kernel method is proposed in this paper to adjust the parameter in real time. Finally, simulation results indicate the validity and the efficiency of the proposed filter. The comparison study shows that the proposed filter can significantly reduce the noise influence for α -jerk model.

  5. A Deep-Structured Conditional Random Field Model for Object Silhouette Tracking.

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Shafiee

    Full Text Available In this work, we introduce a deep-structured conditional random field (DS-CRF model for the purpose of state-based object silhouette tracking. The proposed DS-CRF model consists of a series of state layers, where each state layer spatially characterizes the object silhouette at a particular point in time. The interactions between adjacent state layers are established by inter-layer connectivity dynamically determined based on inter-frame optical flow. By incorporate both spatial and temporal context in a dynamic fashion within such a deep-structured probabilistic graphical model, the proposed DS-CRF model allows us to develop a framework that can accurately and efficiently track object silhouettes that can change greatly over time, as well as under different situations such as occlusion and multiple targets within the scene. Experiment results using video surveillance datasets containing different scenarios such as occlusion and multiple targets showed that the proposed DS-CRF approach provides strong object silhouette tracking performance when compared to baseline methods such as mean-shift tracking, as well as state-of-the-art methods such as context tracking and boosted particle filtering.

  6. An Adaptive Neural Mechanism with a Lizard Ear Model for Binaural Acoustic Tracking

    DEFF Research Database (Denmark)

    Shaikh, Danish; Manoonpong, Poramate

    2016-01-01

    expensive algorithms. We present a novel bioinspired solution to acoustic tracking that uses only two microphones. The system is based on a neural mechanism coupled with a model of the peripheral auditory system of lizards. The peripheral auditory model provides sound direction information which the neural...

  7. A generative Bezier curve model for surf-zone tracking in coastal image sequences

    CSIR Research Space (South Africa)

    Burke, Michael G

    2017-09-01

    Full Text Available This work introduces a generative Bezier curve model suitable for surf-zone curve tracking in coastal image sequences. The model combines an adaptive curve parametrised by control points governed by local random walks with a global sinusoidal motion...

  8. A non-parametric hierarchical model to discover behavior dynamics from tracks

    NARCIS (Netherlands)

    Kooij, J.F.P.; Englebienne, G.; Gavrila, D.M.

    2012-01-01

    We present a novel non-parametric Bayesian model to jointly discover the dynamics of low-level actions and high-level behaviors of tracked people in open environments. Our model represents behaviors as Markov chains of actions which capture high-level temporal dynamics. Actions may be shared by

  9. A climatological model of North Indian Ocean tropical cyclone genesis, tracks and landfall

    Science.gov (United States)

    Wahiduzzaman, Mohammad; Oliver, Eric C. J.; Wotherspoon, Simon J.; Holbrook, Neil J.

    2017-10-01

    Extensive damage and loss of life can be caused by tropical cyclones (TCs) that make landfall. Modelling of TC landfall probability is beneficial to insurance/re-insurance companies, decision makers, government policy and planning, and residents in coastal areas. In this study, we develop a climatological model of tropical cyclone genesis, tracks and landfall for North Indian Ocean (NIO) rim countries based on kernel density estimation, a generalised additive model (GAM) including an Euler integration step, and landfall detection using a country mask approach. Using a 35-year record (1979-2013) of tropical cyclone track observations from the Joint Typhoon Warning Centre (part of the International Best Track Archive Climate Stewardship Version 6), the GAM is fitted to the observed cyclone track velocities as a smooth function of location in each season. The distribution of cyclone genesis points is approximated by kernel density estimation. The model simulated TCs are randomly selected from the fitted kernel (TC genesis), and the cyclone paths (TC tracks), represented by the GAM together with the application of stochastic innovations at each step, are simulated to generate a suite of NIO rim landfall statistics. Three hindcast validation methods are applied to evaluate the integrity of the model. First, leave-one-out cross validation is applied whereby the country of landfall is determined by the majority vote (considering the location by only highest percentage of landfall) from the simulated tracks. Second, the probability distribution of simulated landfall is evaluated against the observed landfall. Third, the distances between the point of observed landfall and simulated landfall are compared and quantified. Overall, the model shows very good cross-validated hindcast skill of modelled landfalling cyclones against observations in each of the NIO tropical cyclone seasons and for most NIO rim countries, with only a relatively small difference in the percentage of

  10. Room temperature photoluminescence spectrum modeling of hydrogenated amorphous silicon carbide thin films by a joint density of tail states approach and its application to plasma deposited hydrogenated amorphous silicon carbide thin films

    International Nuclear Information System (INIS)

    Sel, Kıvanç; Güneş, İbrahim

    2012-01-01

    Room temperature photoluminescence (PL) spectrum of hydrogenated amorphous silicon carbide (a-SiC x :H) thin films was modeled by a joint density of tail states approach. In the frame of these analyses, the density of tail states was defined in terms of empirical Gaussian functions for conduction and valance bands. The PL spectrum was represented in terms of an integral of joint density of states functions and Fermi distribution function. The analyses were performed for various values of energy band gap, Fermi energy and disorder parameter, which is a parameter that represents the width of the energy band tails. Finally, the model was applied to the measured room temperature PL spectra of a-SiC x :H thin films deposited by plasma enhanced chemical vapor deposition system, with various carbon contents, which were determined by X-ray photoelectron spectroscopy measurements. The energy band gap and disorder parameters of the conduction and valance band tails were determined and compared with the optical energies and Urbach energies, obtained by UV–Visible transmittance measurements. As a result of the analyses, it was observed that the proposed model sufficiently represents the room temperature PL spectra of a-SiC x :H thin films. - Highlights: ► Photoluminescence spectra (PL) of the films were modeled. ► In the model, joint density of tail states and Fermi distribution function are used. ► Various values of energy band gap, Fermi energy and disorder parameter are applied. ► The model was applied to the measured PL of the films. ► The proposed model represented the room temperature PL spectrum of the films.

  11. A numerical model for the thermal history of rocks based on confined horizontal fission tracks

    DEFF Research Database (Denmark)

    Jensen, Peter Klint; Hansen, Kirsten; Kunzendorf, Helmar

    1992-01-01

    A numerical model for determination of the thermal history of rocks is presented. It is shown that the thermal history may be uniquely determined as a piece-by-piece linear function on the basis of etched confined, horizontal fission track length distributions, their surface densities, and the ur......A numerical model for determination of the thermal history of rocks is presented. It is shown that the thermal history may be uniquely determined as a piece-by-piece linear function on the basis of etched confined, horizontal fission track length distributions, their surface densities...

  12. Multiple Model Particle Filtering For Multi-Target Tracking

    National Research Council Canada - National Science Library

    Hero, Alfred; Kreucher, Chris; Kastella, Keith

    2004-01-01

    .... The details of this method have been presented elsewhere 1. One feature of real targets is that they are poorly described by a single kinematic model Target behavior may change dramatically i.e...

  13. Fermentation process tracking through enhanced spectral calibration modeling.

    Science.gov (United States)

    Triadaphillou, Sophia; Martin, Elaine; Montague, Gary; Norden, Alison; Jeffkins, Paul; Stimpson, Sarah

    2007-06-15

    The FDA process analytical technology (PAT) initiative will materialize in a significant increase in the number of installations of spectroscopic instrumentation. However, to attain the greatest benefit from the data generated, there is a need for calibration procedures that extract the maximum information content. For example, in fermentation processes, the interpretation of the resulting spectra is challenging as a consequence of the large number of wavelengths recorded, the underlying correlation structure that is evident between the wavelengths and the impact of the measurement environment. Approaches to the development of calibration models have been based on the application of partial least squares (PLS) either to the full spectral signature or to a subset of wavelengths. This paper presents a new approach to calibration modeling that combines a wavelength selection procedure, spectral window selection (SWS), where windows of wavelengths are automatically selected which are subsequently used as the basis of the calibration model. However, due to the non-uniqueness of the windows selected when the algorithm is executed repeatedly, multiple models are constructed and these are then combined using stacking thereby increasing the robustness of the final calibration model. The methodology is applied to data generated during the monitoring of broth concentrations in an industrial fermentation process from on-line near-infrared (NIR) and mid-infrared (MIR) spectrometers. It is shown that the proposed calibration modeling procedure outperforms traditional calibration procedures, as well as enabling the identification of the critical regions of the spectra with regard to the fermentation process.

  14. Cellular track model of biological damage to mammalian cell cultures from galactic cosmic rays

    Science.gov (United States)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.; Townsend, Lawrence W.; Nealy, John E.; Shinn, Judy L.

    1991-01-01

    The assessment of biological damage from the galactic cosmic rays (GCR) is a current interest for exploratory class space missions where the highly ionizing, high-energy, high-charge ions (HZE) particles are the major concern. The relative biological effectiveness (RBE) values determined by ground-based experiments with HZE particles are well described by a parametric track theory of cell inactivation. Using the track model and a deterministic GCR transport code, the biological damage to mammalian cell cultures is considered for 1 year in free space at solar minimum for typical spacecraft shielding. Included are the effects of projectile and target fragmentation. The RBE values for the GCR spectrum which are fluence-dependent in the track model are found to be more severe than the quality factors identified by the International Commission on Radiological Protection publication 26 and seem to obey a simple scaling law with the duration period in free space.

  15. Cellular track model of biological damage to mammalian cell cultures from galactic cosmic rays

    International Nuclear Information System (INIS)

    Cucinotta, F.A.; Katz, R.; Wilson, J.W.; Townsend, L.W.; Nealy, J.E.; Shinn, J.L.

    1991-02-01

    The assessment of biological damage from the galactic cosmic rays (GCR) is a current interest for exploratory class space missions where the highly ionizing, high-energy, high-charge ions (HZE) particles are the major concern. The relative biological effectiveness (RBE) values determined by ground-based experiments with HZE particles are well described by a parametric track theory of cell inactivation. Using the track model and a deterministic GCR transport code, the biological damage to mammalian cell cultures is considered for 1 year in free space at solar minimum for typical spacecraft shielding. Included are the effects of projectile and target fragmentation. The RBE values for the GCR spectrum which are fluence-dependent in the track model are found to be more severe than the quality factors identified by the International Commission on Radiological Protection publication 26 and seem to obey a simple scaling law with the duration period in free space

  16. A hand tracking algorithm with particle filter and improved GVF snake model

    Science.gov (United States)

    Sun, Yi-qi; Wu, Ai-guo; Dong, Na; Shao, Yi-zhe

    2017-07-01

    To solve the problem that the accurate information of hand cannot be obtained by particle filter, a hand tracking algorithm based on particle filter combined with skin-color adaptive gradient vector flow (GVF) snake model is proposed. Adaptive GVF and skin color adaptive external guidance force are introduced to the traditional GVF snake model, guiding the curve to quickly converge to the deep concave region of hand contour and obtaining the complex hand contour accurately. This algorithm realizes a real-time correction of the particle filter parameters, avoiding the particle drift phenomenon. Experimental results show that the proposed algorithm can reduce the root mean square error of the hand tracking by 53%, and improve the accuracy of hand tracking in the case of complex and moving background, even with a large range of occlusion.

  17. Ultra-precise tracking control of piezoelectric actuators via a fuzzy hysteresis model.

    Science.gov (United States)

    Li, Pengzhi; Yan, Feng; Ge, Chuan; Zhang, Mingchao

    2012-08-01

    In this paper, a novel Takagi-Sugeno (T-S) fuzzy system based model is proposed for hysteresis in piezoelectric actuators. The antecedent and consequent structures of the fuzzy hysteresis model (FHM) can be, respectively, identified on-line through uniform partition approach and recursive least squares (RLS) algorithm. With respect to controller design, the inverse of FHM is used to develop a feedforward controller to cancel out the hysteresis effect. Then a hybrid controller is designed for high-performance tracking. It combines the feedforward controller with a proportional integral differential (PID) controller favourable for stabilization and disturbance compensation. To achieve nanometer-scale tracking precision, the enhanced adaptive hybrid controller is further developed. It uses real-time input and output data to update FHM, thus changing the feedforward controller to suit the on-site hysteresis character of the piezoelectric actuator. Finally, as to 3 cases of 50 Hz sinusoidal, multiple frequency sinusoidal and 50 Hz triangular trajectories tracking, experimental results demonstrate the efficiency of the proposed controllers. Especially, being only 0.35% of the maximum desired displacement, the maximum error of 50 Hz sinusoidal tracking is greatly reduced to 5.8 nm, which clearly shows the ultra-precise nanometer-scale tracking performance of the developed adaptive hybrid controller.

  18. A study of etching model of alpha-recoil tracks in biotite

    International Nuclear Information System (INIS)

    Dong Jinquan; Yuan Wanming; Wang Shicheng; Fan Qicheng

    2005-01-01

    Like fission-track dating, alpha-recoil track (ART) dating is based on the accumulation of nuclear particles that the released from natural radioactivity and produce etchable tracks in solids. ARTs are formed during the alpha-decay of uranium and thorium as well as of their daughter nuclei. When emitting an alpha-particle, the heavy remaining nucleus recoils 30-40 nm, leaving behind a trail of radiation damage. Through etching the ART tracks become visible with the aid of an interference phase-contrast microscope. Under the presupposition that all tracks are preserved since the formation of a sample their total number is a measure of the sample's age. The research for etching model is to accurately determine ART volume density, i.e., the number of ARTs per unit volume. The volume density of many dots in many layers may be determined on a sample using this etching model, and as decreasing the error and increasing the accuracy. (authors)

  19. High-speed tracking control of piezoelectric actuators using an ellipse-based hysteresis model.

    Science.gov (United States)

    Gu, Guoying; Zhu, Limin

    2010-08-01

    In this paper, an ellipse-based mathematic model is developed to characterize the rate-dependent hysteresis in piezoelectric actuators. Based on the proposed model, an expanded input space is constructed to describe the multivalued hysteresis function H[u](t) by a multiple input single output (MISO) mapping Gamma:R(2)-->R. Subsequently, the inverse MISO mapping Gamma(-1)(H[u](t),H[u](t);u(t)) is proposed for real-time hysteresis compensation. In controller design, a hybrid control strategy combining a model-based feedforward controller and a proportional integral differential (PID) feedback loop is used for high-accuracy and high-speed tracking control of piezoelectric actuators. The real-time feedforward controller is developed to cancel the rate-dependent hysteresis based on the inverse hysteresis model, while the PID controller is used to compensate for the creep, modeling errors, and parameter uncertainties. Finally, experiments with and without hysteresis compensation are conducted and the experimental results are compared. The experimental results show that the hysteresis compensation in the feedforward path can reduce the hysteresis-caused error by up to 88% and the tracking performance of the hybrid controller is greatly improved in high-speed tracking control applications, e.g., the root-mean-square tracking error is reduced to only 0.34% of the displacement range under the input frequency of 100 Hz.

  20. Robot Visual Tracking via Incremental Self-Updating of Appearance Model

    Directory of Open Access Journals (Sweden)

    Danpei Zhao

    2013-09-01

    Full Text Available This paper proposes a target tracking method called Incremental Self-Updating Visual Tracking for robot platforms. Our tracker treats the tracking problem as a binary classification: the target and the background. The greyscale, HOG and LBP features are used in this work to represent the target and are integrated into a particle filter framework. To track the target over long time sequences, the tracker has to update its model to follow the most recent target. In order to deal with the problems of calculation waste and lack of model-updating strategy with the traditional methods, an intelligent and effective online self-updating strategy is devised to choose the optimal update opportunity. The strategy of updating the appearance model can be achieved based on the change in the discriminative capability between the current frame and the previous updated frame. By adjusting the update step adaptively, severe waste of calculation time for needless updates can be avoided while keeping the stability of the model. Moreover, the appearance model can be kept away from serious drift problems when the target undergoes temporary occlusion. The experimental results show that the proposed tracker can achieve robust and efficient performance in several benchmark-challenging video sequences with various complex environment changes in posture, scale, illumination and occlusion.

  1. Tracking the long-distance dispersal of marine organisms: sensitivity to ocean model resolution

    OpenAIRE

    Putman, Nathan F.; He, Ruoying

    2013-01-01

    Ocean circulation models are widely used to simulate organism transport in the open sea, where challenges of directly tracking organisms across vast spatial and temporal scales are daunting. Many recent studies tout the use of ‘high-resolution’ models, which are forced with atmospheric data on the scale of several hours and integrated with a time step of several minutes or seconds. However, in many cases, the model's outputs that are used to simulate organism movement have been averaged to co...

  2. Design of a Discrete Tracking Controller for a Magnetic Levitation System: A Nonlinear Rational Model Approach

    Directory of Open Access Journals (Sweden)

    Fernando Gómez-Salas

    2015-01-01

    Full Text Available This work proposes a discrete-time nonlinear rational approximate model for the unstable magnetic levitation system. Based on this model and as an application of the input-output linearization technique, a discrete-time tracking control design will be derived using the corresponding classical state space representation of the model. A simulation example illustrates the efficiency of the proposed methodology.

  3. Track structure model for damage to mammalian cell cultures during solar proton events

    Science.gov (United States)

    Cucinotta, F. A.; Wilson, J. W.; Townsend, L. W.; Shinn, J. L.; Katz, R.

    1992-01-01

    Solar proton events (SPEs) occur infrequently and unpredictably, thus representing a potential hazard to interplanetary space missions. Biological damage from SPEs will be produced principally through secondary electron production in tissue, including important contributions due to delta rays from nuclear reaction products. We review methods for estimating the biological effectiveness of SPEs using a high energy proton model and the parametric cellular track model. Results of the model are presented for several of the historically largest flares using typical levels and body shielding.

  4. Deformation data modeling through numerical models: an efficient method for tracking magma transport

    Science.gov (United States)

    Charco, M.; Gonzalez, P. J.; Galán del Sastre, P.

    2017-12-01

    Nowadays, multivariate collected data and robust physical models at volcano observatories are becoming crucial for providing effective volcano monitoring. Nevertheless, the forecast of volcanic eruption is notoriously difficult. Wthin this frame one of the most promising methods to evaluate the volcano hazard is the use of surface ground deformation and in the last decades many developments in the field of deformation modeling has been achieved. In particular, numerical modeling allows realistic media features such as topography and crustal heterogeneities to be included, although it is still very time cosuming to solve the inverse problem for near-real time interpretations. Here, we present a method that can be efficiently used to estimate the location and evolution of magmatic sources base on real-time surface deformation data and Finite Element (FE) models. Generally, the search for the best-fitting magmatic (point) source(s) is conducted for an array of 3-D locations extending below a predefined volume region and the Green functions for all the array components have to be precomputed. We propose a FE model for the pre-computation of Green functions in a mechanically heterogeneous domain which eventually will lead to a better description of the status of the volcanic area. The number of Green functions is reduced here to the number of observational points by using their reciprocity relationship. We present and test this methodology with an optimization method base on a Genetic Algorithm. Following synthetic and sensitivity test to estimate the uncertainty of the model parameters, we apply the tool for magma tracking during 2007 Kilauea volcano intrusion and eruption. We show how data inversion with numerical models can speed up the source parameters estimations for a given volcano showing signs of unrest.

  5. Numerical modelling of the reinforcing effect of geosynthetic material used in a ballasted railway tracks

    Czech Academy of Sciences Publication Activity Database

    Jiroušek, Ondřej; Jíra, J.; Hrdlička, Ondřej; Kunecký, Jiří; Kytýř, Daniel; Vyčichl, J.; Doktor, Tomáš

    2010-01-01

    Roč. 224, č. 4 (2010), s. 259-267 ISSN 0954-4097 Institutional research plan: CEZ:AV0Z20710524 Keywords : railway track bed * reinforcing geogrid * finite-element modelling * settlement reduction * contact analysis * ballast material Subject RIV: JN - Civil Engineering Impact factor: 0.389, year: 2010 http://journals.pepublishing.com/content/k561040632411117/

  6. Pedestrian detection and tracking using a mixture of view-based shape-texture models

    NARCIS (Netherlands)

    Munder, S.; Schnörr, C.; Gavrila, D.M.

    2008-01-01

    This paper presents a robust multicue approach to the integrated detection and tracking of pedestrians in a cluttered urban environment. A novel spatiotemporal object representation is proposed, which combines a generative shape model and a discriminative texture classifier, both of which are

  7. Front tracking based modeling of the solid grain growth on the adaptive control volume grid

    Science.gov (United States)

    Seredyński, Mirosław; Łapka, Piotr

    2017-07-01

    The paper presents the micro-scale model of unconstrained solidification of the grain immersed in under-cooled liquid, based on the front tracking approach. For this length scale, the interface tracked through the domain is meant as the solid-liquid boundary. To prevent generation of huge meshes the energy transport equation is discretized on the adaptive control volume (c.v.) mesh. The coupling of dynamically changing mesh and moving front position is addressed. Preliminary results of simulation of a test case, the growth of single grain, are presented and discussed.

  8. Simulations of mixing in Inertial Confinement Fusion with front tracking and sub-grid scale models

    Science.gov (United States)

    Rana, Verinder; Lim, Hyunkyung; Melvin, Jeremy; Cheng, Baolian; Glimm, James; Sharp, David

    2015-11-01

    We present two related results. The first discusses the Richtmyer-Meshkov (RMI) and Rayleigh-Taylor instabilities (RTI) and their evolution in Inertial Confinement Fusion simulations. We show the evolution of the RMI to the late time RTI under transport effects and tracking. The role of the sub-grid scales helps capture the interaction of turbulence with diffusive processes. The second assesses the effects of concentration on the physics model and examines the mixing properties in the low Reynolds number hot spot. We discuss the effect of concentration on the Schmidt number. The simulation results are produced using the University of Chicago code FLASH and Stony Brook University's front tracking algorithm.

  9. Adaptive Parameter Estimation of Person Recognition Model in a Stochastic Human Tracking Process

    Science.gov (United States)

    Nakanishi, W.; Fuse, T.; Ishikawa, T.

    2015-05-01

    This paper aims at an estimation of parameters of person recognition models using a sequential Bayesian filtering method. In many human tracking method, any parameters of models used for recognize the same person in successive frames are usually set in advance of human tracking process. In real situation these parameters may change according to situation of observation and difficulty level of human position prediction. Thus in this paper we formulate an adaptive parameter estimation using general state space model. Firstly we explain the way to formulate human tracking in general state space model with their components. Then referring to previous researches, we use Bhattacharyya coefficient to formulate observation model of general state space model, which is corresponding to person recognition model. The observation model in this paper is a function of Bhattacharyya coefficient with one unknown parameter. At last we sequentially estimate this parameter in real dataset with some settings. Results showed that sequential parameter estimation was succeeded and were consistent with observation situations such as occlusions.

  10. Mathematical model of dynamic interaction between wheel-set and rail track

    Directory of Open Access Journals (Sweden)

    G. Bureika

    2002-04-01

    Full Text Available The main goal of this title is to show how the effects on maximum bending tensions at different locations in the track caused by simultaneous changes of the various parameters can be estimated in a rational manner The dynamic of vertical interaction between a moving rigid wheel and a flexible railway track is investigated. A round and smooth wheel tread and an initially straight and non-corrugated rail surface are assumed in the present optimisation study. Asymmetric linear three-dimensional beam structure model of a finite length of the track is suggested including rail, pads, sleepers and ballast with spatially non-proportional damping. Transient bending tensions in sleepers and rail are calculated. The influence of eight selected track parameters on the dynamic behaviour of the track is investigated. A two-level fractional factorial design method is used in the search for a combination of numerical levels of these parameters making the maximum bending tensions the minimum. Finally, the main conclusions are given.

  11. Ground Track Acquisition and Maintenance Maneuver Modeling for Low-Earth Orbit Satellite

    Directory of Open Access Journals (Sweden)

    Byoung-Sun Lee

    1997-12-01

    Full Text Available This paper presents a comprehensive analytical approach for determining key maneuver parameters associated with the acquisition and maintenance of the ground track for a low-earth orbit. A livearized model relating changes in the drift rate of the ground track directly to changes in the orbital semi-major axis is also developed. The effect of terrestrial atmospheric drag on the semi-major axis is also explored, being quantified through an analytical expression for the decay rate as a function of density. The non-singular Lagrange planetary equations, further simplified for nearly circular orbits, provide the desired relationships between the corrective in-plane impulsive velocity increments and the corresponding effects on the orbit elements. The resulting solution strategy offers excellent insight into the dynamics affecting the timing, magnitude, and frequency of these maneuvers. Simulations are executed for the ground track acquisition and maintenance maneuver as a pre-flight planning and analysis.

  12. Dynamic Modeling and Control Strategy Optimization for a Hybrid Electric Tracked Vehicle

    Directory of Open Access Journals (Sweden)

    Hong Wang

    2015-01-01

    Full Text Available A new hybrid electric tracked bulldozer composed of an engine generator, two driving motors, and an ultracapacitor is put forward, which can provide high efficiencies and less fuel consumption comparing with traditional ones. This paper first presents the terramechanics of this hybrid electric tracked bulldozer. The driving dynamics for this tracked bulldozer is then analyzed. After that, based on analyzing the working characteristics of the engine, generator, and driving motors, the power train system model and control strategy optimization is established by using MATLAB/Simulink and OPTIMUS software. Simulation is performed under a representative working condition, and the results demonstrate that fuel economy of the HETV can be significantly improved.

  13. A Hidden Markov Movement Model for rapidly identifying behavioral states from animal tracks

    DEFF Research Database (Denmark)

    Whoriskey, Kim; Auger-Méthé, Marie; Albertsen, Christoffer Moesgaard

    2017-01-01

    by fitting it to real tracks from a grey seal, lake trout, and blue shark, as well as to simulated data. 4. The HMMM is a fast and reliable tool for making meaningful inference from animal movement data that is ideally suited for ecologists who want to use the popular DCRWS implementation for highly accurate......1. Electronic telemetry is frequently used to document animal movement through time. Methods that can identify underlying behaviors driving specific movement patterns can help us understand how and why animals use available space, thereby aiding conservation and management efforts. For aquatic...... animal tracking data with significant measurement error, a Bayesian state-space model called the first-Difference Correlated Random Walk with Switching (DCRWS) has often been used for this purpose. However, for aquatic animals, highly accurate tracking data of animal movement are now becoming more common...

  14. Amorphous iron (II) carbonate

    DEFF Research Database (Denmark)

    Sel, Ozlem; Radha, A.V.; Dideriksen, Knud

    2012-01-01

    Abstract The synthesis, characterization and crystallization energetics of amorphous iron (II) carbonate (AFC) are reported. AFC may form as a precursor for siderite (FeCO3). The enthalpy of crystallization (DHcrys) of AFC is similar to that of amorphous magnesium carbonate (AMC) and more...

  15. Implementation of an object oriented track reconstruction model into multiple LHC experiments*

    Science.gov (United States)

    Gaines, Irwin; Gonzalez, Saul; Qian, Sijin

    2001-10-01

    An Object Oriented (OO) model (Gaines et al., 1996; 1997; Gaines and Qian, 1998; 1999) for track reconstruction by the Kalman filtering method has been designed for high energy physics experiments at high luminosity hadron colliders. The model has been coded in the C++ programming language and has been successfully implemented into the OO computing environments of both the CMS (1994) and ATLAS (1994) experiments at the future Large Hadron Collider (LHC) at CERN. We shall report: how the OO model was adapted, with largely the same code, to different scenarios and serves the different reconstruction aims in different experiments (i.e. the level-2 trigger software for ATLAS and the offline software for CMS); how the OO model has been incorporated into different OO environments with a similar integration structure (demonstrating the ease of re-use of OO program); what are the OO model's performance, including execution time, memory usage, track finding efficiency and ghost rate, etc.; and additional physics performance based on use of the OO tracking model. We shall also mention the experience and lessons learned from the implementation of the OO model into the general OO software framework of the experiments. In summary, our practice shows that the OO technology really makes the software development and the integration issues straightforward and convenient; this may be particularly beneficial for the general non-computer-professional physicists.

  16. Volcano and ship tracks indicate excessive aerosol-induced cloud water increases in a climate model.

    Science.gov (United States)

    Toll, Velle; Christensen, Matthew; Gassó, Santiago; Bellouin, Nicolas

    2017-12-28

    Aerosol-cloud interaction is the most uncertain mechanism of anthropogenic radiative forcing of Earth's climate, and aerosol-induced cloud water changes are particularly poorly constrained in climate models. By combining satellite retrievals of volcano and ship tracks in stratocumulus clouds, we compile a unique observational dataset and confirm that liquid water path (LWP) responses to aerosols are bidirectional, and on average the increases in LWP are closely compensated by the decreases. Moreover, the meteorological parameters controlling the LWP responses are strikingly similar between the volcano and ship tracks. In stark contrast to observations, there are substantial unidirectional increases in LWP in the Hadley Centre climate model, because the model accounts only for the decreased precipitation efficiency and not for the enhanced entrainment drying. If the LWP increases in the model were compensated by the decreases as the observations suggest, its indirect aerosol radiative forcing in stratocumulus regions would decrease by 45%.

  17. Quadrotor Trajectory Tracking Based on Quasi-LPV System and Internal Model Control

    Directory of Open Access Journals (Sweden)

    ZeFang He

    2015-01-01

    Full Text Available Internal model control (IMC design method based on quasi-LPV (Linear Parameter Varying system is proposed. In this method, the nonlinear model is firstly transformed to the linear model based on quasi-LPV method; then, the quadrotor nonlinear motion function is transformed to transfer function matrix based on the transformation model from the state space to the transfer function; further, IMC is designed to control the controlled object represented by transfer function matrix and realize quadrotor trajectory tracking. The performance of the controller proposed in this paper is tested by tracking for three reference trajectories with drastic changes. The simulation results indicate that the control method proposed in this paper has stronger robustness to parameters uncertainty and disturbance rejection performance.

  18. Adaptive Correlation Model for Visual Tracking Using Keypoints Matching and Deep Convolutional Feature

    Directory of Open Access Journals (Sweden)

    Yuankun Li

    2018-02-01

    Full Text Available Although correlation filter (CF-based visual tracking algorithms have achieved appealing results, there are still some problems to be solved. When the target object goes through long-term occlusions or scale variation, the correlation model used in existing CF-based algorithms will inevitably learn some non-target information or partial-target information. In order to avoid model contamination and enhance the adaptability of model updating, we introduce the keypoints matching strategy and adjust the model learning rate dynamically according to the matching score. Moreover, the proposed approach extracts convolutional features from a deep convolutional neural network (DCNN to accurately estimate the position and scale of the target. Experimental results demonstrate that the proposed tracker has achieved satisfactory performance in a wide range of challenging tracking scenarios.

  19. A Hybrid Model Based on Wavelet Decomposition-Reconstruction in Track Irregularity State Forecasting

    Directory of Open Access Journals (Sweden)

    Chaolong Jia

    2015-01-01

    Full Text Available Wavelet is able to adapt to the requirements of time-frequency signal analysis automatically and can focus on any details of the signal and then decompose the function into the representation of a series of simple basis functions. It is of theoretical and practical significance. Therefore, this paper does subdivision on track irregularity time series based on the idea of wavelet decomposition-reconstruction and tries to find the best fitting forecast model of detail signal and approximate signal obtained through track irregularity time series wavelet decomposition, respectively. On this ideology, piecewise gray-ARMA recursive based on wavelet decomposition and reconstruction (PG-ARMARWDR and piecewise ANN-ARMA recursive based on wavelet decomposition and reconstruction (PANN-ARMARWDR models are proposed. Comparison and analysis of two models have shown that both these models can achieve higher accuracy.

  20. Surrogate-driven deformable motion model for organ motion tracking in particle radiation therapy

    Science.gov (United States)

    Fassi, Aurora; Seregni, Matteo; Riboldi, Marco; Cerveri, Pietro; Sarrut, David; Battista Ivaldi, Giovanni; Tabarelli de Fatis, Paola; Liotta, Marco; Baroni, Guido

    2015-02-01

    The aim of this study is the development and experimental testing of a tumor tracking method for particle radiation therapy, providing the daily respiratory dynamics of the patient’s thoraco-abdominal anatomy as a function of an external surface surrogate combined with an a priori motion model. The proposed tracking approach is based on a patient-specific breathing motion model, estimated from the four-dimensional (4D) planning computed tomography (CT) through deformable image registration. The model is adapted to the interfraction baseline variations in the patient’s anatomical configuration. The driving amplitude and phase parameters are obtained intrafractionally from a respiratory surrogate signal derived from the external surface displacement. The developed technique was assessed on a dataset of seven lung cancer patients, who underwent two repeated 4D CT scans. The first 4D CT was used to build the respiratory motion model, which was tested on the second scan. The geometric accuracy in localizing lung lesions, mediated over all breathing phases, ranged between 0.6 and 1.7 mm across all patients. Errors in tracking the surrounding organs at risk, such as lungs, trachea and esophagus, were lower than 1.3 mm on average. The median absolute variation in water equivalent path length (WEL) within the target volume did not exceed 1.9 mm-WEL for simulated particle beams. A significant improvement was achieved compared with error compensation based on standard rigid alignment. The present work can be regarded as a feasibility study for the potential extension of tumor tracking techniques in particle treatments. Differently from current tracking methods applied in conventional radiotherapy, the proposed approach allows for the dynamic localization of all anatomical structures scanned in the planning CT, thus providing complete information on density and WEL variations required for particle beam range adaptation.

  1. Latent tracks in polymeric etched track detectors

    International Nuclear Information System (INIS)

    Yamauchi, Tomoya

    2013-01-01

    Track registration properties in polymeric track detectors, including Poly(allyl diglycol carbonate), Bispenol A polycarbonate, Poly(ethylen terephtarate), and Polyimide, have been investigated by means of Fourie transform Infararede FT-IR spectrometry. Chemical criterion on the track formation threshold has been proposes, in stead of the conventional physical track registration models. (author)

  2. Disturbance Observer based internal Model Controller Design: Applications to Tracking Control of Optical Disk Drive

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyun Taek; Suh, Il Hong [Hanyang University (Korea, Republic of)

    1999-02-01

    A digital tracking controller is proposed for a precise positioning control under a large repetitive and/or non repetitive disturbances. The proposed controller consists of the internal model controller and the disturbance observer to eliminate the modeling uncertainty. A sufficient condition is given for robust stability of the proposed control system. Numerical Examples are illustrated for a precise head positioning of optical disk drives regardless of a torque disturbance and/or output disturbance. (author). 8 refs., 19 figs.

  3. A radiative transfer model for sea surface temperature retrieval for the along-track scanning radiometer

    Science.gov (United States)

    ZáVody, A. M.; Mutlow, C. T.; Llewellyn-Jones, D. T.

    1995-01-01

    The measurements made by the along-track scanning radiometer are now converted routinely into sea surface temperature (SST). The details of the atmospheric model which had been used for deriving the SST algorithms are given, together with tables of the coefficients in the algorithms for the different SST products. The accuracy of the retrieval under normal conditions and the effect of errors in the model on the retrieved SST are briefly discussed.

  4. Multi-modal imaging, model-based tracking, and mixed reality visualisation for orthopaedic surgery

    Science.gov (United States)

    Fuerst, Bernhard; Tateno, Keisuke; Johnson, Alex; Fotouhi, Javad; Osgood, Greg; Tombari, Federico; Navab, Nassir

    2017-01-01

    Orthopaedic surgeons are still following the decades old workflow of using dozens of two-dimensional fluoroscopic images to drill through complex 3D structures, e.g. pelvis. This Letter presents a mixed reality support system, which incorporates multi-modal data fusion and model-based surgical tool tracking for creating a mixed reality environment supporting screw placement in orthopaedic surgery. A red–green–blue–depth camera is rigidly attached to a mobile C-arm and is calibrated to the cone-beam computed tomography (CBCT) imaging space via iterative closest point algorithm. This allows real-time automatic fusion of reconstructed surface and/or 3D point clouds and synthetic fluoroscopic images obtained through CBCT imaging. An adapted 3D model-based tracking algorithm with automatic tool segmentation allows for tracking of the surgical tools occluded by hand. This proposed interactive 3D mixed reality environment provides an intuitive understanding of the surgical site and supports surgeons in quickly localising the entry point and orienting the surgical tool during screw placement. The authors validate the augmentation by measuring target registration error and also evaluate the tracking accuracy in the presence of partial occlusion. PMID:29184659

  5. Crystalline to amorphous transformation in silicon

    International Nuclear Information System (INIS)

    Cheruvu, S.M.

    1982-09-01

    In the present investigation, an attempt was made to understand the fundamental mechanism of crystalline-to-amorphous transformation in arsenic implanted silicon using high resolution electron microscopy. A comparison of the gradual disappearance of simulated lattice fringes with increasing Frenkel pair concentration with the experimental observation of sharp interfaces between crystalline and amorphous regions was carried out leading to the conclusion that when the defect concentration reaches a critical value, the crystal does relax to an amorphous state. Optical diffraction experiments using atomic models also supported this hypothesis. Both crystalline and amorphous zones were found to co-exist with sharp interfaces at the atomic level. Growth of the amorphous fraction depends on the temperature, dose rate and the mass of the implanted ion. Preliminary results of high energy electron irradiation experiments at 1.2 MeV also suggested that clustering of point defects occurs near room temperature. An observation in a high resolution image of a small amorphous zone centered at the core of a dislocation is presented as evidence that the nucleation of an amorphous phase is heterogeneous in nature involving clustering or segregation of point defects near existing defects

  6. Modeling of human operator dynamics in simple manual control utilizing time series analysis. [tracking (position)

    Science.gov (United States)

    Agarwal, G. C.; Osafo-Charles, F.; Oneill, W. D.; Gottlieb, G. L.

    1982-01-01

    Time series analysis is applied to model human operator dynamics in pursuit and compensatory tracking modes. The normalized residual criterion is used as a one-step analytical tool to encompass the processes of identification, estimation, and diagnostic checking. A parameter constraining technique is introduced to develop more reliable models of human operator dynamics. The human operator is adequately modeled by a second order dynamic system both in pursuit and compensatory tracking modes. In comparing the data sampling rates, 100 msec between samples is adequate and is shown to provide better results than 200 msec sampling. The residual power spectrum and eigenvalue analysis show that the human operator is not a generator of periodic characteristics.

  7. Modal-space reference-model-tracking fuzzy control of earthquake excited structures

    Science.gov (United States)

    Park, Kwan-Soon; Ok, Seung-Yong

    2015-01-01

    This paper describes an adaptive modal-space reference-model-tracking fuzzy control technique for the vibration control of earthquake-excited structures. In the proposed approach, the fuzzy logic is introduced to update optimal control force so that the controlled structural response can track the desired response of a reference model. For easy and practical implementation, the reference model is constructed by assigning the target damping ratios to the first few dominant modes in modal space. The numerical simulation results demonstrate that the proposed approach successfully achieves not only the adaptive fault-tolerant control system against partial actuator failures but also the robust performance against the variations of the uncertain system properties by redistributing the feedback control forces to the available actuators.

  8. Analysis of the model of pulmonary lesions of the cyberknife system tracking

    International Nuclear Information System (INIS)

    Floriano Pardal, A.; Santa-Olalla, I.; Sanchez-Reyes, A.

    2013-01-01

    The CyberKnife VSI system has the ability to carry out treatments for injuries that move with respiration through tracking Synchrony system, compensating for the breathing of the patient through the robotic arm, and thus allowing the reduction of the volume of treatment PTV margins. Tumor tracking is based on a model of correspondence between the positions of internal fiduciales brands previously introduced in the patient, and the external positions of infrared transmitters placed on the patient. This model is associated with a few errors that should be taken into account. The objective of the study is twofold: on the one hand to study the movement of the PTV based on location, and on the other analyze errors associated with this respiratory model. (Author)

  9. A model predictive speed tracking control approach for autonomous ground vehicles

    Science.gov (United States)

    Zhu, Min; Chen, Huiyan; Xiong, Guangming

    2017-03-01

    This paper presents a novel speed tracking control approach based on a model predictive control (MPC) framework for autonomous ground vehicles. A switching algorithm without calibration is proposed to determine the drive or brake control. Combined with a simple inverse longitudinal vehicle model and adaptive regulation of MPC, this algorithm can make use of the engine brake torque for various driving conditions and avoid high frequency oscillations automatically. A simplified quadratic program (QP) solving algorithm is used to reduce the computational time, and the approach has been applied in a 16-bit microcontroller. The performance of the proposed approach is evaluated via simulations and vehicle tests, which were carried out in a range of speed-profile tracking tasks. With a well-designed system structure, high-precision speed control is achieved. The system can robustly model uncertainty and external disturbances, and yields a faster response with less overshoot than a PI controller.

  10. Eye-tracking measurements and their link to a normative model of monitoring behaviour.

    Science.gov (United States)

    Hasse, Catrin; Bruder, Carmen

    2015-01-01

    Increasing automation necessitates operators monitoring appropriately (OMA) and raises the question of how to identify them in future selections. A normative model was developed providing criteria for the identification of OMA. According to this model, the monitoring process comprises distinct monitoring phases (orientation, anticipation, detection and recheck) in which attention should be focused on relevant areas. The current study tests the normative model on the basis of eye tracking. The eye-tracking data revealed increased concentration on relevant areas during the orientation and anticipation phase in comparison to the other phases. For the assessment of monitoring behaviour in the context of personnel selection, this implies that the anticipation and orientation phases should be considered separately as they appear to be more important in the context of monitoring than the other phases. A normative model was developed for the assessment of monitoring behaviour. Using the eye-tracking method, this model was tested with applicants for an Air Traffic Controller training programme. The results are relevant for the future selection of human operators, who will have to monitor highly automated systems.

  11. More performance results and implementation of an object oriented track reconstruction model in different OO frameworks

    International Nuclear Information System (INIS)

    Gaines, Irwin; Qian Sijin

    2001-01-01

    This is an update of the report about an Object Oriented (OO) track reconstruction model, which was presented in the previous AIHENP'99 at Crete, Greece. The OO model for the Kalman filtering method has been designed for high energy physics experiments at high luminosity hadron colliders. It has been coded in the C++ programming language and successfully implemented into a few different OO computing environments of the CMS and ATLAS experiments at the future Large Hadron Collider at CERN. We shall report: (1) more performance result: (2) implementing the OO model into the new SW OO framework 'Athena' of ATLAS experiment and some upgrades of the OO model itself

  12. Amorphization within the tablet

    DEFF Research Database (Denmark)

    Doreth, Maria; Hussein, Murtadha Abdul; Priemel, Petra A.

    2017-01-01

    , the feasibility of microwave irradiation to prepare amorphous solid dispersions (glass solutions) in situ was investigated. Indomethacin (IND) and polyvinylpyrrolidone K12 (PVP) were tableted at a 1:2 (w/w) ratio. In order to study the influence of moisture content and energy input on the degree of amorphization......, tablet formulations were stored at different relative humidity (32, 43 and 54% RH) and subsequently microwaved using nine different power-time combinations up to a maximum energy input of 90 kJ. XRPD results showed that up to 80% (w/w) of IND could be amorphized within the tablet. mDSC measurements...

  13. Physics of amorphous metals

    CERN Document Server

    Kovalenko, Nikolai P; Krey, Uwe

    2008-01-01

    The discovery of bulk metallic glasses has led to a large increase in the industrial importance of amorphous metals, and this is expected to continue. This book is the first to describe the theoretical physics of amorphous metals, including the important theoretical development of the last 20 years.The renowned authors stress the universal aspects in their description of the phonon or magnon low-energy excitations in the amorphous metals, e.g. concerning the remarkable consequences of the properties of these excitations for the thermodynamics at low and intermediate temperatures. Tunneling

  14. Using the Theory of Combined Friction when Making Mathematical Models of Curvilinear Motion of Tracked Vehicles

    Directory of Open Access Journals (Sweden)

    M. V. Vyaznikov

    2014-01-01

    Full Text Available The paper presents study results of the nonlinear interaction processes between the supporting surface of the track Assembly and the ground in the contact patch, using the mathematical models of friction. For the case blaskapelle motion of a caterpillar, when the resultant of the elementary friction forces is limited by the coupling due to the sliding tracks on the ground, it appears that the increase of the lateral component leads to a decrease of the longitudinal component and the change of direction of the resulting force. As a result, with increasing angular velocity of the tracked vehicle a longitudinal component of the friction force decreases, which is the geometric factor and is defined by the locus of friction for a given type of soil. In the development of this well-known model is considered the general case of friction, which describes the effect of reducing the coefficient of friction in the contact patch at increasing the angular velocity of rotation. To describe this process is used the model of the combined friction which occurs when the surface of the body is doing at the same time the rotational and translational motion. The resulting expression for the resultant of forces of friction and the moment of resistance to rotation based on the decomposition of the first order Pade for a flat spot track Assembly with ground of rectangular shape. With combined friction any arbitrarily small perturbation force acting parallel to the surface of the contact spot, leads to slip. The paper considers the possibility of using the model of the combined friction to research a sustainability curvilinear motion of tracked vehicles. The proposed motion of the machine in the mode of skidding on the basis of the frictionslip. The interpretation of the physical processes occurring in the contact area, on the basis of the theory of the combined friction would allow using this mathematical model in the algorithm structure of automatic traffic control

  15. GEM: a dynamic tracking model for mesoscale eddies in the ocean

    Science.gov (United States)

    Li, Qiu-Yang; Sun, Liang; Lin, Sheng-Fu

    2016-12-01

    The Genealogical Evolution Model (GEM) presented here is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish between different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern, which is difficult to accomplish using other tracking methods. To this end, the GEM first uses a two-dimensional (2-D) similarity vector (i.e., a pair of ratios of overlap area between two eddies to the area of each eddy) rather than a scalar to measure the similarity between eddies, which effectively solves the "missing eddy" problem (temporarily lost eddy in tracking). Second, for tracking when an eddy splits, the GEM uses both "parent" (the original eddy) and "child" (eddy split from parent) and the dynamic processes are described as the birth and death of different generations. Additionally, a new look-ahead approach with selection rules effectively simplifies computation and recording. All of the computational steps are linear and do not include iteration. Given the pixel number of the target region L, the maximum number of eddies M, the number N of look-ahead time steps, and the total number of time steps T, the total computer time is O(LM(N + 1)T). The tracking of each eddy is very smooth because we require that the snapshots of each eddy on adjacent days overlap one another. Although eddy splitting or merging is ubiquitous in the ocean, they have different geographic distributions in the North Pacific Ocean. Both the merging and splitting rates of the eddies are high, especially at the western boundary, in currents and in "eddy deserts". The GEM is useful not only for satellite-based observational data, but also for numerical simulation outputs. It is potentially useful for studying dynamic processes in other related fields, e.g., the dynamics of cyclones in meteorology.

  16. Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled Models

    Science.gov (United States)

    Choi, Jieun; Dotter, Aaron; Conroy, Charlie; Cantiello, Matteo; Paxton, Bill; Johnson, Benjamin D.

    2016-06-01

    This is the first of a series of papers presenting the Modules for Experiments in Stellar Astrophysics (MESA) Isochrones and Stellar Tracks (MIST) project, a new comprehensive set of stellar evolutionary tracks and isochrones computed using MESA, a state-of-the-art open-source 1D stellar evolution package. In this work, we present models with solar-scaled abundance ratios covering a wide range of ages (5≤slant {log}({Age}) [{year}]≤slant 10.3), masses (0.1≤slant M/{M}⊙ ≤slant 300), and metallicities (-2.0≤slant [{{Z}}/{{H}}]≤slant 0.5). The models are self-consistently and continuously evolved from the pre-main sequence (PMS) to the end of hydrogen burning, the white dwarf cooling sequence, or the end of carbon burning, depending on the initial mass. We also provide a grid of models evolved from the PMS to the end of core helium burning for -4.0≤slant [{{Z}}/{{H}}]\\lt -2.0. We showcase extensive comparisons with observational constraints as well as with some of the most widely used existing models in the literature. The evolutionary tracks and isochrones can be downloaded from the project website at http://waps.cfa.harvard.edu/MIST/.

  17. Multiple player tracking in sports video: a dual-mode two-way bayesian inference approach with progressive observation modeling.

    Science.gov (United States)

    Xing, Junliang; Ai, Haizhou; Liu, Liwei; Lao, Shihong

    2011-06-01

    Multiple object tracking (MOT) is a very challenging task yet of fundamental importance for many practical applications. In this paper, we focus on the problem of tracking multiple players in sports video which is even more difficult due to the abrupt movements of players and their complex interactions. To handle the difficulties in this problem, we present a new MOT algorithm which contributes both in the observation modeling level and in the tracking strategy level. For the observation modeling, we develop a progressive observation modeling process that is able to provide strong tracking observations and greatly facilitate the tracking task. For the tracking strategy, we propose a dual-mode two-way Bayesian inference approach which dynamically switches between an offline general model and an online dedicated model to deal with single isolated object tracking and multiple occluded object tracking integrally by forward filtering and backward smoothing. Extensive experiments on different kinds of sports videos, including football, basketball, as well as hockey, demonstrate the effectiveness and efficiency of the proposed method.

  18. Transient photoconductivity in amorphous semiconductors

    International Nuclear Information System (INIS)

    Mpawenayo, P.

    1997-07-01

    Localized states in amorphous semiconductors are divided in disorder induced shallow trap levels and dangling bonds deep states. Dangling bonds are assumed here to be either neutral or charged and their energy distribution is a single gaussian. Here, it is shown analytically that transient photocurrent in amorphous semiconductors is fully controlled by charge carriers transitions between localized states for one part and tunneling hopping carriers on the other. Localized dangling bonds deep states act as non radiative recombination centres, while hopping tunnelling is assisted by the Coulomb interaction between defects sites. The half-width of defects distribution is the disorder parameter that determines the carrier hopping time between defects sites. The macroscopic time that explains the long decay response times observed will all types of amorphous semiconductors is duly thought to be temperature dependent. Basic equations developed by Longeaud and Kleider are solved for the general case of a semiconductor after photo-generation. It turns out that the transient photoconductivity decay has two components; one with short response times from carriers trap-release transitions between shallow levels and extended states and a hopping component made of inter-dependent exponentials whose time constants span in larger ranges depending on disorder. The photoconductivity hopping component appears as an additional term to be added to photocurrents derived from existing models. The results of the present study explain and complete the power law decay derived in the multiple trapping models developed 20 years ago only in the approximation of the short response time regime. The long response time regime is described by the hopping macroscopic time. The present model is verified for all samples of amorphous semiconductors known so far. Finally, it is proposed to improved the modulated photoconductivity calculation techniques by including the long-lasting hopping dark documents

  19. A Generic Model Based Tracking Controller for Hydraulic Valve-Cylinder Drives

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Schmidt, Lasse; Pedersen, Henrik Clemmensen

    2016-01-01

    in the entire range of operation, rather than reducing stationary errors, and may be parameterized from the desired gain margin, as well as linear model parameters. The proposed control design approaches are evaluated in an experimentally validated, nonlinear simulation model of a hydraulic valve-cylinder drive......The control of hydraulic valve-cylinder drives is still an active subject of research, and various linear and particularly nonlinear approaches has been proposed, especially in the last two-three decades. In many cases the proposed controllers appear to produce excellent tracking ability due...... generally has failed to break through in industry. This paper discusses the dominant properties necessary to take into account when considering position tracking control of hydraulic valve-cylinder drives, and presents two generally applicable, generic control design approaches that combines non...

  20. Internal Model-Based Robust Tracking Control Design for the MEMS Electromagnetic Micromirror.

    Science.gov (United States)

    Tan, Jiazheng; Sun, Weijie; Yeow, John T W

    2017-05-26

    The micromirror based on micro-electro-mechanical systems (MEMS) technology is widely employed in different areas, such as scanning, imaging and optical switching. This paper studies the MEMS electromagnetic micromirror for scanning or imaging application. In these application scenarios, the micromirror is required to track the command sinusoidal signal, which can be converted to an output regulation problem theoretically. In this paper, based on the internal model principle, the output regulation problem is solved by designing a robust controller that is able to force the micromirror to track the command signal accurately. The proposed controller relies little on the accuracy of the model. Further, the proposed controller is implemented, and its effectiveness is examined by experiments. The experimental results demonstrate that the performance of the proposed controller is satisfying.

  1. Tracking Maneuvering Group Target with Extension Predicted and Best Model Augmentation Method Adapted

    Directory of Open Access Journals (Sweden)

    Linhai Gan

    2017-01-01

    Full Text Available The random matrix (RM method is widely applied for group target tracking. The assumption that the group extension keeps invariant in conventional RM method is not yet valid, as the orientation of the group varies rapidly while it is maneuvering; thus, a new approach with group extension predicted is derived here. To match the group maneuvering, a best model augmentation (BMA method is introduced. The existing BMA method uses a fixed basic model set, which may lead to a poor performance when it could not ensure basic coverage of true motion modes. Here, a maneuvering group target tracking algorithm is proposed, where the group extension prediction and the BMA adaption are exploited. The performance of the proposed algorithm will be illustrated by simulation.

  2. Enhanced index tracking modeling in portfolio optimization with mixed-integer programming z approach

    Science.gov (United States)

    Siew, Lam Weng; Jaaman, Saiful Hafizah Hj.; Ismail, Hamizun bin

    2014-09-01

    Enhanced index tracking is a popular form of portfolio management in stock market investment. Enhanced index tracking aims to construct an optimal portfolio to generate excess return over the return achieved by the stock market index without purchasing all of the stocks that make up the index. The objective of this paper is to construct an optimal portfolio using mixed-integer programming model which adopts regression approach in order to generate higher portfolio mean return than stock market index return. In this study, the data consists of 24 component stocks in Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index from January 2010 until December 2012. The results of this study show that the optimal portfolio of mixed-integer programming model is able to generate higher mean return than FTSE Bursa Malaysia Kuala Lumpur Composite Index return with only selecting 30% out of the total stock market index components.

  3. Rotational Kinematics Model Based Adaptive Particle Filter for Robust Human Tracking in Thermal Omnidirectional Vision

    Directory of Open Access Journals (Sweden)

    Yazhe Tang

    2015-01-01

    Full Text Available This paper presents a novel surveillance system named thermal omnidirectional vision (TOV system which can work in total darkness with a wild field of view. Different to the conventional thermal vision sensor, the proposed vision system exhibits serious nonlinear distortion due to the effect of the quadratic mirror. To effectively model the inherent distortion of omnidirectional vision, an equivalent sphere projection is employed to adaptively calculate parameterized distorted neighborhood of an object in the image plane. With the equivalent projection based adaptive neighborhood calculation, a distortion-invariant gradient coding feature is proposed for thermal catadioptric vision. For robust tracking purpose, a rotational kinematic modeled adaptive particle filter is proposed based on the characteristic of omnidirectional vision, which can handle multiple movements effectively, including the rapid motions. Finally, the experiments are given to verify the performance of the proposed algorithm for human tracking in TOV system.

  4. A Mini-Review of Track And Field’s Talent-Identification Models in Iran and Some Designated Countries

    OpenAIRE

    Ebrahim Ghasemzadeh Mirkolaee; Seyed Mohammad Hossein Razavi; Saeed Amirnejad

    2013-01-01

    Talent identification and training the athletes of the basic levels in track and field requires codifying a proper model like any other system so that any duplication is prevented as well as knowing the right path. The federation of track and field started to codify the national talent-identification scheme in track and field in 1385. Hence, the present studies track-and-field talent-identification patterns in some designated countries and compare them with the codified pattern in Iran. The r...

  5. Magneto-mechanical modeling study of CO-based amorphous micro- and nanowires for acoustic sensing medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Atitoaie, Alexandru, E-mail: atitoaie@phys-iasi.ro [National Institute of Research and Development for Technical Physics, Iasi (Romania); Department of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania); Stancu, Alexandru [Department of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania); Ovari, Tibor-Adrian; Lupu, Nicoleta; Chiriac, Horia [National Institute of Research and Development for Technical Physics, Iasi (Romania)

    2016-04-01

    Magnetic nanowires are potential candidates for substituting, within enhanced cochlear implants, the role played by hair cilia from the inner ear, which are responsible for the transduction of acoustic vibrations into electric signals. The sound waves pressure that is bending the magnetic wires induces stresses that are leading to changes in magnetic properties, such as magnetization and permeability. These changes can be detected by a GMR sensor placed below the nanowire array or, in the case of different designs, by a pick-up coil wrapped around the fixed-end of the wires. For the latter case, we are studying the stress distributions caused by bending deformations using the COMSOL finite element software package. We are also proposing a theoretical method for the evaluation of magnetic permeability variation vs. induced stress dependence. The study is performed on CoFeSiB amorphous micro- and nanowires subjected to mechanical perturbations similar to the ones produced by sound pressure waves.

  6. Magneto-mechanical modeling study of CO-based amorphous micro- and nanowires for acoustic sensing medical applications

    International Nuclear Information System (INIS)

    Atitoaie, Alexandru; Stancu, Alexandru; Ovari, Tibor-Adrian; Lupu, Nicoleta; Chiriac, Horia

    2016-01-01

    Magnetic nanowires are potential candidates for substituting, within enhanced cochlear implants, the role played by hair cilia from the inner ear, which are responsible for the transduction of acoustic vibrations into electric signals. The sound waves pressure that is bending the magnetic wires induces stresses that are leading to changes in magnetic properties, such as magnetization and permeability. These changes can be detected by a GMR sensor placed below the nanowire array or, in the case of different designs, by a pick-up coil wrapped around the fixed-end of the wires. For the latter case, we are studying the stress distributions caused by bending deformations using the COMSOL finite element software package. We are also proposing a theoretical method for the evaluation of magnetic permeability variation vs. induced stress dependence. The study is performed on CoFeSiB amorphous micro- and nanowires subjected to mechanical perturbations similar to the ones produced by sound pressure waves.

  7. Magnetomechanical coupling in thermal amorphous solids

    Science.gov (United States)

    Hentschel, H. George E.; Ilyin, Valery; Mondal, Chandana; Procaccia, Itamar

    2018-05-01

    Standard approaches to magnetomechanical interactions in thermal magnetic crystalline solids involve Landau functionals in which the lattice anisotropy and the resulting magnetization easy axes are taken explicitly into account. In glassy systems one needs to develop a theory in which the amorphous structure precludes the existence of an easy axis, and in which the constituent particles are free to respond to their local amorphous surroundings and the resulting forces. We present a theory of all the mixed responses of an amorphous solid to mechanical strains and magnetic fields. Atomistic models are proposed in which we test the predictions of magnetostriction for both bulk and nanofilm amorphous samples in the paramagnetic phase. The application to nanofilms with emergent self-affine free interfaces requires a careful definition of the film "width" and its change due to the magnetostriction effect.

  8. Spacecraft Doppler tracking with possible violations of LLI and LPI: a theoretical modeling

    International Nuclear Information System (INIS)

    Deng Xue-Mei; Xie Yi

    2014-01-01

    Currently two-way and three-way spacecraft Doppler tracking techniques are widely used and play important roles in control and navigation of deep space missions. Starting from a one-way Doppler model, we extend the theory to two-way and three-way Doppler models by making them include possible violations of the local Lorentz invariance (LLI) and the local position invariance (LPI) in order to test the Einstein equivalence principle, which is the cornerstone of general relativity and all other metric theories of gravity. After taking the finite speed of light into account, which is the so-called light time solution (LTS), we make these models depend on the time of reception of the signal only for practical convenience. We find that possible violations of LLI and LPI cannot affect two-way Doppler tracking under a linear approximation of LTS, although this approximation is sufficiently good for most cases in the solar system. We also show that, in three-way Doppler tracking, possible violations of LLI and LPI are only associated with two stations, which suggests that it is better to set the stations at places with significant differences in velocities and gravitational potentials to obtain a high level of sensitivity for the tests

  9. Effect of lunar gravity models on Chang'E-2 orbit determination using VLBI tracking data

    Directory of Open Access Journals (Sweden)

    Erhu Wei

    2016-11-01

    Full Text Available The precise orbit determination of Chang'E-2 is the most important issue for successful mission and scientific applications, while the lunar gravity field model with big uncertainties has large effect on Chang'E-2 orbit determination. Recently, several new gravity models have been produced using the latest lunar satellites tracking data, such as LP165P, SGM150J, GL0900D and GRGM900C. In this paper, the four gravity models mentioned above were evaluated through the power spectra analysis, admittance and coherence analysis. Effect of four lunar gravity models on Chang'E-2 orbit determination performance is investigated and assessed using Very Long Baseline Interferometry (VLBI tracking data. The overlap orbit analysis, the posteriori data residual, and the orbit prediction are used to evaluate the orbit precision between successive arcs. The LP165P model has better orbit overlap performance than the SGM150J model for Chang'E-2100 km × 100 km orbit and the SGM150J model performs better for Chang'E-2100 km × 15 km orbit, while GL0900D and GRGM900C have the best orbit overlap results for the two types of Chang'E-2 orbit. For the orbit prediction, GRGM900C has the best orbit prediction performance in the four models.

  10. Radar tracking with an interacting multiple model and probabilistic data association filter for civil aviation applications.

    Science.gov (United States)

    Jan, Shau-Shiun; Kao, Yu-Chun

    2013-05-17

    The current trend of the civil aviation technology is to modernize the legacy air traffic control (ATC) system that is mainly supported by many ground based navigation aids to be the new air traffic management (ATM) system that is enabled by global positioning system (GPS) technology. Due to the low receiving power of GPS signal, it is a major concern to aviation authorities that the operation of the ATM system might experience service interruption when the GPS signal is jammed by either intentional or unintentional radio-frequency interference. To maintain the normal operation of the ATM system during the period of GPS outage, the use of the current radar system is proposed in this paper. However, the tracking performance of the current radar system could not meet the required performance of the ATM system, and an enhanced tracking algorithm, the interacting multiple model and probabilistic data association filter (IMMPDAF), is therefore developed to support the navigation and surveillance services of the ATM system. The conventional radar tracking algorithm, the nearest neighbor Kalman filter (NNKF), is used as the baseline to evaluate the proposed radar tracking algorithm, and the real flight data is used to validate the IMMPDAF algorithm. As shown in the results, the proposed IMMPDAF algorithm could enhance the tracking performance of the current aviation radar system and meets the required performance of the new ATM system. Thus, the current radar system with the IMMPDAF algorithm could be used as an alternative system to continue aviation navigation and surveillance services of the ATM system during GPS outage periods.

  11. Radar Tracking with an Interacting Multiple Model and Probabilistic Data Association Filter for Civil Aviation Applications

    Directory of Open Access Journals (Sweden)

    Shau-Shiun Jan

    2013-05-01

    Full Text Available The current trend of the civil aviation technology is to modernize the legacy air traffic control (ATC system that is mainly supported by many ground based navigation aids to be the new air traffic management (ATM system that is enabled by global positioning system (GPS technology. Due to the low receiving power of GPS signal, it is a major concern to aviation authorities that the operation of the ATM system might experience service interruption when the GPS signal is jammed by either intentional or unintentional radio-frequency interference. To maintain the normal operation of the ATM system during the period of GPS outage, the use of the current radar system is proposed in this paper. However, the tracking performance of the current radar system could not meet the required performance of the ATM system, and an enhanced tracking algorithm, the interacting multiple model and probabilistic data association filter (IMMPDAF, is therefore developed to support the navigation and surveillance services of the ATM system. The conventional radar tracking algorithm, the nearest neighbor Kalman filter (NNKF, is used as the baseline to evaluate the proposed radar tracking algorithm, and the real flight data is used to validate the IMMPDAF algorithm. As shown in the results, the proposed IMMPDAF algorithm could enhance the tracking performance of the current aviation radar system and meets the required performance of the new ATM system. Thus, the current radar system with the IMMPDAF algorithm could be used as an alternative system to continue aviation navigation and surveillance services of the ATM system during GPS outage periods.

  12. A 70th Degree Lunar Gravity Model (GLGM-2) from Clementine and other tracking data

    Science.gov (United States)

    Lemonie, Frank G. R.; Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.

    1997-01-01

    A spherical harmonic model of the lunar gravity field complete to degree and order 70 has been developed from S band Doppler tracking data from the Clementine mission, as well as historical tracking data from Lunar Orbiters 1-5 and the Apollo 15 and 16 subsatellites. The model combines 361,000 Doppler observations from Clementine with 347,000 historical observations. The historical data consist of mostly 60-s Doppler with a noise of 0.25 to several mm/s. The Clementine data consist of mostly 10-s Doppler data, with a data noise of 0.25 mm/s for the observations from the Deep Space Network, and 2.5 mm/s for the data from a naval tracking station at Pomonkey, Maryland. Observations provided Clementine, provide the strongest satellite constraint on the Moon's low-degree field. In contrast the historical data, collected by spacecraft that had lower periapsis altitudes, provide distributed regions of high-resolution coverage within +/- 29 deg of the nearside lunar equator. To obtain the solution for a high-degree field in the absence of a uniform distribution of observations, we applied an a priori power law constraint of the form 15 x 10(exp -5)/sq l which had the effect of limiting the gravitational power and noise at short wavelengths. Coefficients through degree and order 18 are not significantly affected by the constraint, and so the model permits geophysical analysis of effects of the major basins at degrees 10-12. The GLGM-2 model confirms major features of the lunar gravity field shown in previous gravitational field models but also reveals significantly more detail, particularly at intermediate wavelengths (10(exp 3) km). Free-air gravity anomaly maps derived from the new model show the nearside and farside highlands to be gravitationally smooth, reflecting a state of isostatic compensation. Mascon basins (including Imbrium, Serenitatis, Crisium, Smythii, and Humorum) are denoted by gravity highs first recognized from Lunar Orbiter tracking. All of the major

  13. ENSO Effect on East Asian Tropical Cyclone Landfall via Changes in Tracks and Genesis in a Statistical Model

    Science.gov (United States)

    Yonekura, Emmi; Hall, Timothy M.

    2014-01-01

    Improvements on a statistical tropical cyclone (TC) track model in the western North Pacific Ocean are described. The goal of the model is to study the effect of El Nino-Southern Oscillation (ENSO) on East Asian TC landfall. The model is based on the International Best-Track Archive for Climate Stewardship (IBTrACS) database of TC observations for 1945-2007 and employs local regression of TC formation rates and track increments on the Nino-3.4 index and seasonally varying climate parameters. The main improvements are the inclusion of ENSO dependence in the track propagation and accounting for seasonality in both genesis and tracks. A comparison of simulations of the 1945-2007 period with observations concludes that the model updates improve the skill of this model in simulating TCs. Changes in TC genesis and tracks are analyzed separately and cumulatively in simulations of stationary extreme ENSO states. ENSO effects on regional (100-km scale) landfall are attributed to changes in genesis and tracks. The effect of ENSO on genesis is predominantly a shift in genesis location from the southeast in El Nino years to the northwest in La Nina years, resulting in higher landfall rates for the East Asian coast during La Nina. The effect of ENSO on track propagation varies seasonally and spatially. In the peak activity season (July-October), there are significant changes in mean tracks with ENSO. Landfall-rate changes from genesis- and track-ENSO effects in the Philippines cancel out, while coastal segments of Vietnam, China, the Korean Peninsula, and Japan show enhanced La Nina-year increases.

  14. An Efficient Implementation of Track-Oriented Multiple Hypothesis Tracker Using Graphical Model Approaches

    Directory of Open Access Journals (Sweden)

    Jinping Sun

    2017-01-01

    Full Text Available The multiple hypothesis tracker (MHT is currently the preferred method for addressing data association problem in multitarget tracking (MTT application. MHT seeks the most likely global hypothesis by enumerating all possible associations over time, which is equal to calculating maximum a posteriori (MAP estimate over the report data. Despite being a well-studied method, MHT remains challenging mostly because of the computational complexity of data association. In this paper, we describe an efficient method for solving the data association problem using graphical model approaches. The proposed method uses the graph representation to model the global hypothesis formation and subsequently applies an efficient message passing algorithm to obtain the MAP solution. Specifically, the graph representation of data association problem is formulated as a maximum weight independent set problem (MWISP, which translates the best global hypothesis formation into finding the maximum weight independent set on the graph. Then, a max-product belief propagation (MPBP inference algorithm is applied to seek the most likely global hypotheses with the purpose of avoiding a brute force hypothesis enumeration procedure. The simulation results show that the proposed MPBP-MHT method can achieve better tracking performance than other algorithms in challenging tracking situations.

  15. Real Time Optima Tracking Using Harvesting Models of the Genetic Algorithm

    Science.gov (United States)

    Baskaran, Subbiah; Noever, D.

    1999-01-01

    Tracking optima in real time propulsion control, particularly for non-stationary optimization problems is a challenging task. Several approaches have been put forward for such a study including the numerical method called the genetic algorithm. In brief, this approach is built upon Darwinian-style competition between numerical alternatives displayed in the form of binary strings, or by analogy to 'pseudogenes'. Breeding of improved solution is an often cited parallel to natural selection in.evolutionary or soft computing. In this report we present our results of applying a novel model of a genetic algorithm for tracking optima in propulsion engineering and in real time control. We specialize the algorithm to mission profiling and planning optimizations, both to select reduced propulsion needs through trajectory planning and to explore time or fuel conservation strategies.

  16. Tracking reliability for space cabin-borne equipment in development by Crow model.

    Science.gov (United States)

    Chen, J D; Jiao, S J; Sun, H L

    2001-12-01

    Objective. To study and track the reliability growth of manned spaceflight cabin-borne equipment in the course of its development. Method. A new technique of reliability growth estimation and prediction, which is composed of the Crow model and test data conversion (TDC) method was used. Result. The estimation and prediction value of the reliability growth conformed to its expectations. Conclusion. The method could dynamically estimate and predict the reliability of the equipment by making full use of various test information in the course of its development. It offered not only a possibility of tracking the equipment reliability growth, but also the reference for quality control in manned spaceflight cabin-borne equipment design and development process.

  17. Modeling and characterization of the low frequency noise behavior for amorphous InGaZnO thin film transistors in the subthreshold region

    Science.gov (United States)

    Cai, Minxi; Yao, Ruohe

    2017-10-01

    An analytical model of the low-frequency noise (LFN) for amorphous InGaZnO (a-IGZO) thin film transistors (TFTs) in the subthreshold region is developed. For a-IGZO TFTs, relations between the device noise and the subgap defects are characterized based on the dominant multiple trapping and release (MTR) mechanism. The LFN is considered to be contributed from trapping/detrapping of carriers both into the border traps and the subgap density of states (DOS). It is revealed that the LFN behavior of a-IGZO TFTs in the subthreshold region is significantly influenced by the distribution of tail states, where MTR process prevails. The 1/f α (with α < 1) spectrum of the drain current noise is also related to the characteristic temperature of the tail states. The new method is introduced to calculate the LFN of devices by extracting the LFN-related DOS parameters from the current-voltage characteristics.

  18. Lipid-Based Formulations Can Enable the Model Poorly Water-Soluble Weakly Basic Drug Cinnarizine to Precipitate in an Amorphous-Salt Form during in Vitro Digestion

    DEFF Research Database (Denmark)

    Khan, Jamal; Rades, Thomas; Boyd, Ben J

    2016-01-01

    The tendency for poorly water-soluble weakly basic drugs to precipitate in a noncrystalline form during the in vitro digestion of lipid-based formulations (LBFs) was linked to an ionic interaction between drug and fatty acid molecules produced upon lipid digestion. Cinnarizine was chosen as a model...... from the starting free base crystalline material to the hydrochloride salt, thus supporting the case that ionic interactions between weak bases and fatty acid molecules during digestion are responsible for producing amorphous-salts upon precipitation. The conclusion has wide implications...... weakly basic drug and was dissolved in a medium-chain (MC) LBF, which was subject to in vitro lipolysis experiments at various pH levels above and below the reported pKa value of cinnarizine (7.47). The solid-state form of the precipitated drug was analyzed using X-ray diffraction (XRD), Fourier...

  19. A physical model of the effect of irreversible changes in structure and properties of amorphous alloys caused by low-temperature treatment

    International Nuclear Information System (INIS)

    Zajchenko, S.G.; Glezer, A.M.

    2002-01-01

    A low temperature ΔT-effect physical model for amorphous metallic alloys (AMA) is developed. Using Ni-P, Fe-Co-Si-B, Co-Ni-Fe-Si-B, Fe-Si-B, Fe-Ni-Si-B, Fe-Cu-Nb-Si-B alloys the studies are carried out which results support basic concepts of the theory, namely: a motive force for atom drift, resulting in irreversible changes of a short-range order, is at the heart of longitudinal oscillations of AMA ribbon initiate the process of changing the initial short-range order. Variations of topological and short-range orders are responsible for a decrease in yield strength and Young modulus, a Curie point shift, an increase of saturation magnetization at an insignificant drop of coercive force or a significant drop of coercive force at a slight increase of saturation magnetization [ru

  20. Maximum Power Point Tracking Control of Photovoltaic Systems: A Polynomial Fuzzy Model-Based Approach

    DEFF Research Database (Denmark)

    Rakhshan, Mohsen; Vafamand, Navid; Khooban, Mohammad Hassan

    2018-01-01

    This paper introduces a polynomial fuzzy model (PFM)-based maximum power point tracking (MPPT) control approach to increase the performance and efficiency of the solar photovoltaic (PV) electricity generation. The proposed method relies on a polynomial fuzzy modeling, a polynomial parallel......, a direct maximum power (DMP)-based control structure is considered for MPPT. Using the PFM representation, the DMP-based control structure is formulated in terms of SOS conditions. Unlike the conventional approaches, the proposed approach does not require exploring the maximum power operational point...

  1. A New Approach to the Computer Modeling of Amorphous Nanoporous Structures of Semiconducting and Metallic Materials: A Review

    Science.gov (United States)

    Romero, Cristina; Noyola, Juan C.; Santiago, Ulises; Valladares, Renela M.; Valladares, Alexander; Valladares, Ariel A.

    2010-01-01

    We review our approach to the generation of nanoporous materials, both semiconducting and metallic, which leads to the existence of nanopores within the bulk structure. This method, which we have named as the expanding lattice method, is a novel transferable approach which consists first of constructing crystalline supercells with a large number of atoms and a density close to the real value and then lowering the density by increasing the volume. The resulting supercells are subjected to either ab initio or parameterized—Tersoff-based—molecular dynamics processes at various temperatures, all below the corresponding bulk melting points, followed by geometry relaxations. The resulting samples are essentially amorphous and display pores along some of the “crystallographic” directions without the need of incorporating ad hoc semiconducting atomic structural elements such as graphene-like sheets and/or chain-like patterns (reconstructive simulations) or of reproducing the experimental processes (mimetic simulations). We report radial (pair) distribution functions, nanoporous structures of C and Si, and some computational predictions for their vibrational density of states. We present numerical estimates and discuss possible applications of semiconducting materials for hydrogen storage in potential fuel tanks. Nanopore structures for metallic elements like Al and Au also obtained through the expanding lattice method are reported.

  2. MODELING OF RAILWAY TRACK OPERATION AS A SYSTEM OF QUASI-ELASTIC ORTHOTROPIC LAYERS

    Directory of Open Access Journals (Sweden)

    Sychev Vyacheslav Petrovich

    2016-03-01

    Full Text Available In this paper the authors give a solution to the problem of the impact of a rolling stock on the rail track on the basis of modeling a railway track as a multi-layered space, introducing each of the layers is a quasi-elastic orthotropic layer with cylindrical anisotropy in the polar coordinate system. The article describes wave equations, taking into account the rotational inertia of cross sectional and transverse shear strains. From the point of view of classical structural mechanics train path can be represented as a multilayer system comprising separate layers with different stiffness, lying on the foundation being the elastic-isotropic space. Winkler model provides that the basis is linearly deformable space, there are loads influencing its surface. These loads are transferred through a layered deformable half-space. This representation is used in this study as an initial approximation. For more accurate results of the deformation of a railway track because of rolling dynamic loads it is proposed to present a railway track in the form of a layered structure, where each element (assembled rails and sleepers, ballast section, the soil in the embankment, basement soils is modeled as a planar quasi-elastic orthotropic layer with cylindrical anisotropy. The equations describing the dynamic behaviour of flat element in a polar coordinate system are hyperbolic in nature and take into account the rotational inertia of the cross sectional and the transverse shear strains. This allows identifying the impact on the final characteristics of the blade wave effects, and oscillatory processes. In order to determine the unknown functions included in the constitutive equations it is proposed to use decomposition in power series in spatial coordinate and time. In order to determine the coefficients of ray series for the required functions, it is necessary to differentiate the defining wave equations k times on time, to take their difference on the different

  3. Species distribution models for a migratory bird based on citizen science and satellite tracking data

    Directory of Open Access Journals (Sweden)

    Christopher L. Coxen

    2017-07-01

    Full Text Available Species distribution models can provide critical baseline distribution information for the conservation of poorly understood species. Here, we compared the performance of band-tailed pigeon (Patagioenas fasciata species distribution models created using Maxent and derived from two separate presence-only occurrence data sources in New Mexico: 1 satellite tracked birds and 2 observations reported in eBird basic data set. Both models had good accuracy (test AUC > 0.8 and True Skill Statistic > 0.4, and high overlap between suitability scores (I statistic 0.786 and suitable habitat patches (relative rank 0.639. Our results suggest that, at the state-wide level, eBird occurrence data can effectively model similar species distributions as satellite tracking data. Climate change models for the band-tailed pigeon predict a 35% loss in area of suitable climate by 2070 if CO2 emissions drop to 1990 levels by 2100, and a 45% loss by 2070 if we continue current CO2 emission levels through the end of the century. These numbers may be conservative given the predicted increase in drought, wildfire, and forest pest impacts to the coniferous forests the species inhabits in New Mexico. The northern portion of the species’ range in New Mexico is predicted to be the most viable through time.

  4. Species distribution models for a migratory bird based on citizen science and satellite tracking data

    Science.gov (United States)

    Coxen, Christopher L.; Frey, Jennifer K.; Carleton, Scott A.; Collins, Daniel P.

    2017-01-01

    Species distribution models can provide critical baseline distribution information for the conservation of poorly understood species. Here, we compared the performance of band-tailed pigeon (Patagioenas fasciata) species distribution models created using Maxent and derived from two separate presence-only occurrence data sources in New Mexico: 1) satellite tracked birds and 2) observations reported in eBird basic data set. Both models had good accuracy (test AUC > 0.8 and True Skill Statistic > 0.4), and high overlap between suitability scores (I statistic 0.786) and suitable habitat patches (relative rank 0.639). Our results suggest that, at the state-wide level, eBird occurrence data can effectively model similar species distributions as satellite tracking data. Climate change models for the band-tailed pigeon predict a 35% loss in area of suitable climate by 2070 if CO2 emissions drop to 1990 levels by 2100, and a 45% loss by 2070 if we continue current CO2 emission levels through the end of the century. These numbers may be conservative given the predicted increase in drought, wildfire, and forest pest impacts to the coniferous forests the species inhabits in New Mexico. The northern portion of the species’ range in New Mexico is predicted to be the most viable through time.

  5. An analytical–numerical model of laser direct metal deposition track and microstructure formation

    International Nuclear Information System (INIS)

    Ahsan, M Naveed; Pinkerton, Andrew J

    2011-01-01

    Multiple analytical and numerical models of the laser metal deposition process have been presented, but most rely on sequential solution of the energy and mass balance equations or discretization of the problem domain. Laser direct metal deposition is a complex process involving multiple interdependent processes which can be best simulated using a fully coupled mass-energy balance solution. In this work a coupled analytical–numerical solution is presented. Sub-models of the powder stream, quasi-stationary conduction in the substrate and powder assimilation into the area of the substrate above the liquidus temperature are combined. An iterative feedback loop is used to ensure mass and energy balances are maintained at the melt pool. The model is verified using Ti–6Al–4V single track deposition, produced with a coaxial nozzle and a diode laser. The model predictions of local temperature history, the track profile and microstructure scale show good agreement with the experimental results. The model is a useful industrial aid and alternative to finite element methods for selecting the parameters to use for laser direct metal deposition when separate geometric and microstructural outcomes are required

  6. A semi-analytical beam model for the vibration of railway tracks

    Science.gov (United States)

    Kostovasilis, D.; Thompson, D. J.; Hussein, M. F. M.

    2017-04-01

    The high frequency dynamic behaviour of railway tracks, in both vertical and lateral directions, strongly affects the generation of rolling noise as well as other phenomena such as rail corrugation. An improved semi-analytical model of a beam on an elastic foundation is introduced that accounts for the coupling of the vertical and lateral vibration. The model includes the effects of cross-section asymmetry, shear deformation, rotational inertia and restrained warping. Consideration is given to the fact that the loads at the rail head, as well as those exerted by the railpads at the rail foot, may not act through the centroid of the section. The response is evaluated for a harmonic load and the solution is obtained in the wavenumber domain. Results are presented as dispersion curves for free and supported rails and are validated with the aid of a Finite Element (FE) and a waveguide finite element (WFE) model. Closed form expressions are derived for the forced response, and validated against the WFE model. Track mobilities and decay rates are presented to assess the potential implications for rolling noise and the influence of the various sources of vertical-lateral coupling. Comparison is also made with measured data. Overall, the model presented performs very well, especially for the lateral vibration, although it does not contain the high frequency cross-section deformation modes. The most significant effects on the response are shown to be the inclusion of torsion and foundation eccentricity, which mainly affect the lateral response.

  7. Tracking boundary movement and exterior shape modelling in lung EIT imaging

    International Nuclear Information System (INIS)

    Biguri, A; Soleimani, M; Grychtol, B; Adler, A

    2015-01-01

    Electrical impedance tomography (EIT) has shown significant promise for lung imaging. One key challenge for EIT in this application is the movement of electrodes during breathing, which introduces artefacts in reconstructed images. Various approaches have been proposed to compensate for electrode movement, but no comparison of these approaches is available. This paper analyses boundary model mismatch and electrode movement in lung EIT. The aim is to evaluate the extent to which various algorithms tolerate movement, and to determine if a patient specific model is required for EIT lung imaging. Movement data are simulated from a CT-based model, and image analysis is performed using quantitative figures of merit. The electrode movement is modelled based on expected values of chest movement and an extended Jacobian method is proposed to make use of exterior boundary tracking. Results show that a dynamical boundary tracking is the most robust method against any movement, but is computationally more expensive. Simultaneous electrode movement and conductivity reconstruction algorithms show increased robustness compared to only conductivity reconstruction. The results of this comparative study can help develop a better understanding of the impact of shape model mismatch and electrode movement in lung EIT. (paper)

  8. Tracking boundary movement and exterior shape modelling in lung EIT imaging.

    Science.gov (United States)

    Biguri, A; Grychtol, B; Adler, A; Soleimani, M

    2015-06-01

    Electrical impedance tomography (EIT) has shown significant promise for lung imaging. One key challenge for EIT in this application is the movement of electrodes during breathing, which introduces artefacts in reconstructed images. Various approaches have been proposed to compensate for electrode movement, but no comparison of these approaches is available. This paper analyses boundary model mismatch and electrode movement in lung EIT. The aim is to evaluate the extent to which various algorithms tolerate movement, and to determine if a patient specific model is required for EIT lung imaging. Movement data are simulated from a CT-based model, and image analysis is performed using quantitative figures of merit. The electrode movement is modelled based on expected values of chest movement and an extended Jacobian method is proposed to make use of exterior boundary tracking. Results show that a dynamical boundary tracking is the most robust method against any movement, but is computationally more expensive. Simultaneous electrode movement and conductivity reconstruction algorithms show increased robustness compared to only conductivity reconstruction. The results of this comparative study can help develop a better understanding of the impact of shape model mismatch and electrode movement in lung EIT.

  9. Single and multiple object tracking using log-euclidean Riemannian subspace and block-division appearance model.

    Science.gov (United States)

    Hu, Weiming; Li, Xi; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen; Zhang, Zhongfei

    2012-12-01

    Object appearance modeling is crucial for tracking objects, especially in videos captured by nonstationary cameras and for reasoning about occlusions between multiple moving objects. Based on the log-euclidean Riemannian metric on symmetric positive definite matrices, we propose an incremental log-euclidean Riemannian subspace learning algorithm in which covariance matrices of image features are mapped into a vector space with the log-euclidean Riemannian metric. Based on the subspace learning algorithm, we develop a log-euclidean block-division appearance model which captures both the global and local spatial layout information about object appearances. Single object tracking and multi-object tracking with occlusion reasoning are then achieved by particle filtering-based Bayesian state inference. During tracking, incremental updating of the log-euclidean block-division appearance model captures changes in object appearance. For multi-object tracking, the appearance models of the objects can be updated even in the presence of occlusions. Experimental results demonstrate that the proposed tracking algorithm obtains more accurate results than six state-of-the-art tracking algorithms.

  10. Master-slave control with trajectory planning and Bouc-Wen model for tracking control of piezo-driven stage

    Science.gov (United States)

    Lu, Xiaojun; Liu, Changli; Chen, Lei

    2018-04-01

    In this paper, a redundant Piezo-driven stage having 3RRR compliant mechanism is introduced, we propose the master-slave control with trajectory planning (MSCTP) strategy and Bouc-Wen model to improve its micro-motion tracking performance. The advantage of the proposed controller lies in that its implementation only requires a simple control strategy without the complexity of modeling to avoid the master PEA's tracking error. The dynamic model of slave PEA system with Bouc-Wen hysteresis is established and identified via particle swarm optimization (PSO) approach. The Piezo-driven stage with operating period T=1s and 2s is implemented to track a prescribed circle. The simulation results show that MSCTP with Bouc-Wen model reduces the trajectory tracking errors to the range of the accuracy of our available measurement.

  11. Simulation study of multi-step model algorithmic control of the nuclear reactor thermal power tracking system

    International Nuclear Information System (INIS)

    Shi Xiaoping; Xu Tianshu

    2001-01-01

    The classical control method is usually hard to ensure the thermal power tracking accuracy, because the nuclear reactor system is a complex nonlinear system with uncertain parameters and disturbances. A sort of non-parameter model is constructed with the open-loop impulse response of the system. Furthermore, a sort of thermal power tracking digital control law is presented using the multi-step model algorithmic control principle. The control method presented had good tracking performance and robustness. It can work despite the existence of unmeasurable disturbances. The simulation experiment testifies the correctness and effectiveness of the method. The high accuracy matching between the thermal power and the referenced load is achieved

  12. Amorphous surface layer versus transient amorphous precursor phase in bone - A case study investigated by solid-state NMR spectroscopy.

    Science.gov (United States)

    Von Euw, Stanislas; Ajili, Widad; Chan-Chang, Tsou-Hsi-Camille; Delices, Annette; Laurent, Guillaume; Babonneau, Florence; Nassif, Nadine; Azaïs, Thierry

    2017-09-01

    The presence of an amorphous surface layer that coats a crystalline core has been proposed for many biominerals, including bone mineral. In parallel, transient amorphous precursor phases have been proposed in various biomineralization processes, including bone biomineralization. Here we propose a methodology to investigate the origin of these amorphous environments taking the bone tissue as a key example. This study relies on the investigation of a bone tissue sample and its comparison with synthetic calcium phosphate samples, including a stoichiometric apatite, an amorphous calcium phosphate sample, and two different biomimetic apatites. To reveal if the amorphous environments in bone originate from an amorphous surface layer or a transient amorphous precursor phase, a combined solid-state nuclear magnetic resonance (NMR) experiment has been used. The latter consists of a double cross polarization 1 H→ 31 P→ 1 H pulse sequence followed by a 1 H magnetization exchange pulse sequence. The presence of an amorphous surface layer has been investigated through the study of the biomimetic apatites; while the presence of a transient amorphous precursor phase in the form of amorphous calcium phosphate particles has been mimicked with the help of a physical mixture of stoichiometric apatite and amorphous calcium phosphate. The NMR results show that the amorphous and the crystalline environments detected in our bone tissue sample belong to the same particle. The presence of an amorphous surface layer that coats the apatitic core of bone apatite particles has been unambiguously confirmed, and it is certain that this amorphous surface layer has strong implication on bone tissue biogenesis and regeneration. Questions still persist on the structural organization of bone and biomimetic apatites. The existing model proposes a core/shell structure, with an amorphous surface layer coating a crystalline bulk. The accuracy of this model is still debated because amorphous calcium

  13. Comparison of 2D and 3D modeled tumor motion estimation/prediction for dynamic tumor tracking during arc radiotherapy

    Science.gov (United States)

    Liu, Wu; Ma, Xiangyu; Yan, Huagang; Chen, Zhe; Nath, Ravinder; Li, Haiyun

    2017-05-01

    Many real-time imaging techniques have been developed to localize a target in 3D space or in a 2D beam’s eye view (BEV) plane for intrafraction motion tracking in radiation therapy. With tracking system latency, the 3D-modeled method is expected to be more accurate even in terms of 2D BEV tracking error. No quantitative analysis, however, has been reported. In this study, we simulated co-planar arc deliveries using respiratory motion data acquired from 42 patients to quantitatively compare the accuracy between 2D BEV and 3D-modeled tracking in arc therapy and to determine whether 3D information is needed for motion tracking. We used our previously developed low kV dose adaptive MV-kV imaging and motion compensation framework as a representative of 3D-modeled methods. It optimizes the balance between additional kV imaging dose and 3D tracking accuracy and solves the MLC blockage issue. With simulated Gaussian marker detection errors (zero mean and 0.39 mm standard deviation) and ~155/310/460 ms tracking system latencies, the mean percentage of time that the target moved  >2 mm from the predicted 2D BEV position are 1.1%/4.0%/7.8% and 1.3%/5.8%/11.6% for the 3D-modeled and 2D-only tracking, respectively. The corresponding average BEV RMS errors are 0.67/0.90/1.13 mm and 0.79/1.10/1.37 mm. Compared to the 2D method, the 3D method reduced the average RMS unresolved motion along the beam direction from ~3 mm to ~1 mm, resulting in on average only  <1% dosimetric advantage in the depth direction. Only for a small fraction of the patients, when tracking latency is long, the 3D-modeled method showed significant improvement of BEV tracking accuracy, indicating potential dosimetric advantage. However, if the tracking latency is short (~150 ms or less), those improvements are limited. Therefore, 2D BEV tracking has sufficient targeting accuracy for most clinical cases. The 3D technique is, however, still important in solving the MLC blockage problem

  14. A new rate-dependent model for high-frequency tracking performance enhancement of piezoactuator system

    Science.gov (United States)

    Tian, Lizhi; Xiong, Zhenhua; Wu, Jianhua; Ding, Han

    2017-05-01

    Feedforward-feedback control is widely used in motion control of piezoactuator systems. Due to the phase lag caused by incomplete dynamics compensation, the performance of the composite controller is greatly limited at high frequency. This paper proposes a new rate-dependent model to improve the high-frequency tracking performance by reducing dynamics compensation error. The rate-dependent model is designed as a function of the input and input variation rate to describe the input-output relationship of the residual system dynamics which mainly performs as phase lag in a wide frequency band. Then the direct inversion of the proposed rate-dependent model is used to compensate the residual system dynamics. Using the proposed rate-dependent model as feedforward term, the open loop performance can be improved significantly at medium-high frequency. Then, combining the with feedback controller, the composite controller can provide enhanced close loop performance from low frequency to high frequency. At the frequency of 1 Hz, the proposed controller presents the same performance as previous methods. However, at the frequency of 900 Hz, the tracking error is reduced to be 30.7% of the decoupled approach.

  15. From Cyclone Tracks to the Costs of European Winter Storms: A Probabilistic Loss Assessment Model

    Science.gov (United States)

    Orwig, K.; Renggli, D.; Corti, T.; Reese, S.; Wueest, M.; Viktor, E.; Zimmerli, P.

    2014-12-01

    European winter storms cause billions of dollars of insured losses every year. Therefore, it is essential to understand potential impacts of future events, and the role reinsurance can play to mitigate the losses. The authors will present an overview on natural catastrophe risk assessment modeling in the reinsurance industry, and the development of a new innovative approach for modeling the risk associated with European winter storms.The new innovative approach includes the development of physically meaningful probabilistic (i.e. simulated) events for European winter storm loss assessment. The meteorological hazard component of the new model is based on cyclone and windstorm tracks identified in the 20thCentury Reanalysis data. The knowledge of the evolution of winter storms both in time and space allows the physically meaningful perturbation of historical event properties (e.g. track, intensity, etc.). The perturbation includes a random element but also takes the local climatology and the evolution of the historical event into account.The low-resolution wind footprints taken from the 20thCentury Reanalysis are processed by a statistical-dynamical downscaling to generate high-resolution footprints for both the simulated and historical events. Downscaling transfer functions are generated using ENSEMBLES regional climate model data. The result is a set of reliable probabilistic events representing thousands of years. The event set is then combined with country and site-specific vulnerability functions and detailed market- or client-specific information to compute annual expected losses.

  16. A first generation dynamic ingress, redistribution and transport model of soil track-in: DIRT.

    Science.gov (United States)

    Johnson, D L

    2008-12-01

    This work introduces a spatially resolved quantitative model, based on conservation of mass and first order transfer kinetics, for following the transport and redistribution of outdoor soil to, and within, the indoor environment by track-in on footwear. Implementations of the DIRT model examined the influence of room size, rug area and location, shoe size, and mass transfer coefficients for smooth and carpeted floor surfaces using the ratio of mass loading on carpeted to smooth floor surfaces as a performance metric. Results showed that in the limit for large numbers of random steps the dual aspects of deposition to and track-off from the carpets govern this ratio. Using recently obtained experimental measurements, historic transport and distribution parameters, cleaning efficiencies for the different floor surfaces, and indoor dust deposition rates to provide model boundary conditions, DIRT predicts realistic floor surface loadings. The spatio-temporal variability in model predictions agrees with field observations and suggests that floor surface dust loadings are constantly in flux; steady state distributions are hardly, if ever, achieved.

  17. Structural amorphous steels

    International Nuclear Information System (INIS)

    Lu, Z.P.; Liu, C.T.; Porter, W.D.; Thompson, J.R.

    2004-01-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist's dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed

  18. CT patterns of pleuro-pulmonary damage caused by inhalation of pumice as a model of pneumoconiosis from non-fibrous amorphous silicates.

    Science.gov (United States)

    Costa, Chiara; Ascenti, Giorgio; Scribano, Emanuele; D'Angelo, Tommaso; Gaeta, Michele; Fenga, Concettina; Blandino, Alfredo; Mazziotti, Silvio

    2016-01-01

    The aim of this article is to correlate the radiological features of pleuro-pulmonary damage caused by inhalation of pumice (an extrusive volcanic rock classified as a non-fibrous, amorphous, complex silicate) with exposure conditions. 36 subjects employed in the pumice quarries were evaluated for annual follow-up in a preventive medical surveillance program including spirometry, chest CT lasting from 1999 to 2014. They were only male subjects, mean age 56.92 ± 16.45 years. Subjects had worked in the quarries for an average of 25.03 ± 9.39 years. Domestic or occupational exposure to asbestos or other mineral dusts other than pumice was excluded. Subjects were also classified as smokers, former smokers and nonsmokers. Among the 36 workers examined, we identified four CT patterns which resulted to be dependent on exposure duration and intensity, FVC, FEV1 and FEF25-75, but not on cigarette smoking. The most common symptoms reported by clinical examination were dyspnoea, cough and asthenia. In no case it was proven an evolution of CT findings during follow-up for 10 years. Liparitosis, caused by pumice inhalation, can be considered a representative example of pneumoconiosis derived by amorphous silica compounds, which are extremely widespread for industrial manufacturing as well as for applicative uses, such as nano-materials. Moreover, being pumice free of quartz contamination, it can represent a disease model for exposure to pure non-fibrous silicates.

  19. Heating- and pressure-induced transformations in amorphous and hexagonal ice: A computer simulation study using the TIP4P/2005 model

    Science.gov (United States)

    Engstler, Justin; Giovambattista, Nicolas

    2017-08-01

    We characterize the phase behavior of glassy water by performing extensive out-of-equilibrium molecular dynamics simulations using the TIP4P/2005 water model. Specifically, we study (i) the pressure-induced transformations between low-density (LDA) and high-density amorphous ice (HDA), (ii) the pressure-induced amorphization (PIA) of hexagonal ice (Ih), (iii) the heating-induced LDA-to-HDA transformation at high pressures, (iv) the heating-induced HDA-to-LDA transformation at low and negative pressures, (v) the glass transition temperatures of LDA and HDA as a function of pressure, and (vi) the limit of stability of LDA upon isobaric heating and isothermal decompression (at negative pressures). These transformations are studied systematically, over a wide range of temperatures and pressures, allowing us to construct a P-T phase diagram for glassy TIP4P/2005 water. Our results are in qualitative agreement with experimental observations and with the P-T phase diagram obtained for glassy ST2 water that exhibits a liquid-liquid phase transition and critical point. We also discuss the mechanism for PIA of ice Ih and show that this is a two-step process where first, the hydrogen-bond network (HBN) is distorted and then the HBN abruptly collapses. Remarkably, the collapse of the HB in ice Ih occurs when the average molecular orientations order, a measure of the tetrahedrality of the HBN, is of the same order as in LDA, suggesting a common mechanism for the LDA-to-HDA and Ih-to-HDA transformations.

  20. Interacting Multiple Model (IMM) Fifth-Degree Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking.

    Science.gov (United States)

    Liu, Hua; Wu, Wen

    2017-06-13

    For improving the tracking accuracy and model switching speed of maneuvering target tracking in nonlinear systems, a new algorithm named the interacting multiple model fifth-degree spherical simplex-radial cubature Kalman filter (IMM5thSSRCKF) is proposed in this paper. The new algorithm is a combination of the interacting multiple model (IMM) filter and the fifth-degree spherical simplex-radial cubature Kalman filter (5thSSRCKF). The proposed algorithm makes use of Markov process to describe the switching probability among the models, and uses 5thSSRCKF to deal with the state estimation of each model. The 5thSSRCKF is an improved filter algorithm, which utilizes the fifth-degree spherical simplex-radial rule to improve the filtering accuracy. Finally, the tracking performance of the IMM5thSSRCKF is evaluated by simulation in a typical maneuvering target tracking scenario. Simulation results show that the proposed algorithm has better tracking performance and quicker model switching speed when disposing maneuver models compared with the interacting multiple model unscented Kalman filter (IMMUKF), the interacting multiple model cubature Kalman filter (IMMCKF) and the interacting multiple model fifth-degree cubature Kalman filter (IMM5thCKF).

  1. Interacting Multiple Model (IMM Fifth-Degree Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking

    Directory of Open Access Journals (Sweden)

    Hua Liu

    2017-06-01

    Full Text Available For improving the tracking accuracy and model switching speed of maneuvering target tracking in nonlinear systems, a new algorithm named the interacting multiple model fifth-degree spherical simplex-radial cubature Kalman filter (IMM5thSSRCKF is proposed in this paper. The new algorithm is a combination of the interacting multiple model (IMM filter and the fifth-degree spherical simplex-radial cubature Kalman filter (5thSSRCKF. The proposed algorithm makes use of Markov process to describe the switching probability among the models, and uses 5thSSRCKF to deal with the state estimation of each model. The 5thSSRCKF is an improved filter algorithm, which utilizes the fifth-degree spherical simplex-radial rule to improve the filtering accuracy. Finally, the tracking performance of the IMM5thSSRCKF is evaluated by simulation in a typical maneuvering target tracking scenario. Simulation results show that the proposed algorithm has better tracking performance and quicker model switching speed when disposing maneuver models compared with the interacting multiple model unscented Kalman filter (IMMUKF, the interacting multiple model cubature Kalman filter (IMMCKF and the interacting multiple model fifth-degree cubature Kalman filter (IMM5thCKF.

  2. Multi-component fiber track modelling of diffusion-weighted magnetic resonance imaging data

    Directory of Open Access Journals (Sweden)

    Yasser M. Kadah

    2010-01-01

    Full Text Available In conventional diffusion tensor imaging (DTI based on magnetic resonance data, each voxel is assumed to contain a single component having diffusion properties that can be fully represented by a single tensor. Even though this assumption can be valid in some cases, the general case involves the mixing of components, resulting in significant deviation from the single tensor model. Hence, a strategy that allows the decomposition of data based on a mixture model has the potential of enhancing the diagnostic value of DTI. This project aims to work towards the development and experimental verification of a robust method for solving the problem of multi-component modelling of diffusion tensor imaging data. The new method demonstrates significant error reduction from the single-component model while maintaining practicality for clinical applications, obtaining more accurate Fiber tracking results.

  3. Seasonal characteristics of water exchange in Beibu Gulf based on a particle tracking model

    Science.gov (United States)

    Wang, L.; Pan, W.; Yan, X.

    2016-12-01

    A lagrangian particle tracking model coupled with a three-dimensional Marine Environmental Committee Ocean Model (MEC) is used to study the transport and seasonal characteristics of water exchange in Beibu Gulf. The hydrodynamic model (MEC), which is forced with the daily surface and lateral boundary fluxes, as well as tidal harmonics and monthly climatological river discharges, is applied to simulate the flow field in the gulf during 2014. Using these results, particle tracking method which includes tidal advection and random walk in the horizontal is used to determine the residence times of sub regions within the gulf in response of winter and summer wind forcing. The result shows water exchange processes in the gulf have a similar tendency with seasonal circulation structure. During the sourthwestly prevailing wind in summer, water particles are traped within the gulf that considerably increases the residence time of each sub region. On the contrary, the presence of strong northeastly prevailing wind in winter drives particles to move cyclonicly leading to shorter residence times and rather active water exchanges among sub regions. Similarly, particle tracking is applied to investigate the water transport in Beibu Gulf. As Qiongzhou Strait and the wide opening in the south of the gulf are two significant channels connecting with the open ocean, continuous particle releases are simulated to quantify the influence range and the pathways of these sources water flowing into Beibu Gulf. The results show that water particles originated from Qiongzhou Strait are moving westward due to the year-round strong westward flow transportation. Influencing range in the north of the Beibu Gulf is enlarged by winter northeastly wind, however, it is blocked to the Leizhou Peninsula coastal region by summer westly wind. In the south opening, water particles are transported northward into the gulf along Hainan Island and flushed from Vietnam coastal region to the ocean rapidly by

  4. Modeling Self-Occlusions/Disocclusions in Dynamic Shape and Appearance Tracking for Obtaining Precise Shape

    KAUST Repository

    Yang, Yanchao

    2013-05-01

    We present a method to determine the precise shape of a dynamic object from video. This problem is fundamental to computer vision, and has a number of applications, for example, 3D video/cinema post-production, activity recognition and augmented reality. Current tracking algorithms that determine precise shape can be roughly divided into two categories: 1) Global statistics partitioning methods, where the shape of the object is determined by discriminating global image statistics, and 2) Joint shape and appearance matching methods, where a template of the object from the previous frame is matched to the next image. The former is limited in cases of complex object appearance and cluttered background, where global statistics cannot distinguish between the object and background. The latter is able to cope with complex appearance and a cluttered background, but is limited in cases of camera viewpoint change and object articulation, which induce self-occlusions and self-disocclusions of the object of interest. The purpose of this thesis is to model self-occlusion/disocclusion phenomena in a joint shape and appearance tracking framework. We derive a non-linear dynamic model of the object shape and appearance taking into account occlusion phenomena, which is then used to infer self-occlusions/disocclusions, shape and appearance of the object in a variational optimization framework. To ensure robustness to other unmodeled phenomena that are present in real-video sequences, the Kalman filter is used for appearance updating. Experiments show that our method, which incorporates the modeling of self-occlusion/disocclusion, increases the accuracy of shape estimation in situations of viewpoint change and articulation, and out-performs current state-of-the-art methods for shape tracking.

  5. Visual Trajectory-Tracking Model-Based Control for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Andrej Zdešar

    2013-09-01

    Full Text Available In this paper we present a visual-control algorithm for driving a mobile robot along the reference trajectory. The configuration of the system consists of a two-wheeled differentially driven mobile robot that is observed by an overhead camera, which can be placed at arbitrary, but reasonable, inclination with respect to the ground plane. The controller must be capable of generating appropriate tangential and angular control velocities for the trajectory-tracking problem, based on the information received about the robot position obtained in the image. To be able to track the position of the robot through a sequence of images in real-time, the robot is marked with an artificial marker that can be distinguishably recognized by the image recognition subsystem. Using the property of differential flatness, a dynamic feedback compensator can be designed for the system, thereby extending the system into a linear form. The presented control algorithm for reference tracking combines a feedforward and a feedback loop, the structure also known as a two DOF control scheme. The feedforward part should drive the system to the vicinity of the reference trajectory and the feedback part should eliminate any errors that occur due to noise and other disturbances etc. The feedforward control can never achieve accurate reference following, but this deficiency can be eliminated with the introduction of the feedback loop. The design of the model predictive control is based on the linear error model. The model predictive control is given in analytical form, so the computational burden is kept at a reasonable level for real-time implementation. The control algorithm requires that a reference trajectory is at least twice differentiable function. A suitable approach to design such a trajectory is by exploiting some useful properties of the Bernstein-Bézier parametric curves. The simulation experiments as well as real system experiments on a robot normally used in the

  6. Effects of model approximations for electron, hole, and photon transport in swift heavy ion tracks

    Energy Technology Data Exchange (ETDEWEB)

    Rymzhanov, R.A. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Medvedev, N.A., E-mail: nikita.medvedev@fzu.cz [Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Laser Plasma Department, Institute of Plasma Physics, Czech Academy of Sciences, Za Slovankou 3, 182 00 Prague 8 (Czech Republic); Volkov, A.E. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); National Research Centre ‘Kurchatov Institute’, Kurchatov Sq. 1, 123182 Moscow (Russian Federation); Lebedev Physical Institute of the Russian Academy of Sciences, Leninskij pr., 53,119991 Moscow (Russian Federation); National University of Science and Technology MISiS, Leninskij pr., 4, 119049 Moscow (Russian Federation); National Research Nuclear University MEPhI, Kashirskoye sh., 31, 115409 Moscow (Russian Federation)

    2016-12-01

    The event-by-event Monte Carlo code, TREKIS, was recently developed to describe excitation of the electron subsystems of solids in the nanometric vicinity of a trajectory of a nonrelativistic swift heavy ion (SHI) decelerated in the electronic stopping regime. The complex dielectric function (CDF) formalism was applied in the used cross sections to account for collective response of a matter to excitation. Using this model we investigate effects of the basic assumptions on the modeled kinetics of the electronic subsystem which ultimately determine parameters of an excited material in an SHI track. In particular, (a) effects of different momentum dependencies of the CDF on scattering of projectiles on the electron subsystem are investigated. The ‘effective one-band’ approximation for target electrons produces good coincidence of the calculated electron mean free paths with those obtained in experiments in metals. (b) Effects of collective response of a lattice appeared to dominate in randomization of electron motion. We study how sensitive these effects are to the target temperature. We also compare results of applications of different model forms of (quasi-) elastic cross sections in simulations of the ion track kinetics, e.g. those calculated taking into account optical phonons in the CDF form vs. Mott’s atomic cross sections. (c) It is demonstrated that the kinetics of valence holes significantly affects redistribution of the excess electronic energy in the vicinity of an SHI trajectory as well as its conversion into lattice excitation in dielectrics and semiconductors. (d) It is also shown that induced transport of photons originated from radiative decay of core holes brings the excess energy faster and farther away from the track core, however, the amount of this energy is relatively small.

  7. Amorphization reaction in thin films of elemental Cu and Y

    Science.gov (United States)

    Johnson, R. W.; Ahn, C. C.; Ratner, E. R.

    1989-10-01

    Compositionally modulated thin films of Cu and Y were prepared in an ultrahigh-vacuum dc ion-beam deposition chamber. The amorphization reaction was monitored by in situ x-ray-diffraction measurements. Growth of amorphous Cu1-xYx is observed at room temperature with the initial formation of a Cu-rich amorphous phase. Further annealing in the presence of unreacted Y leads to Y enrichment of the amorphous phase. Growth of crystalline CuY is observed for T=469 K. Transmission-electron-microscopy measurements provide real-space imaging of the amorphous interlayer and growth morphology. Models are developed, incorporating metastable interfacial and bulk free-energy diagrams, for the early stage of the amorphization reaction.

  8. Radial dose distribution around an energetic heavy ion and an ion track structure model

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Katsutoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ohno, Shin-ichi; Namba, Hideki; Taguchi, Mitsumasa; Watanabe, Ritsuko

    1997-03-01

    Ionization currents produced in a small wall-less ionization chamber located at varying distance from the 200 MeV Ni{sup 12+} ion`path traversing Ar gas were measured and utilized to construct a track structure model. Using the LET value of 200 MeV Ni{sup 12+} and G(Fe{sup 3+}) in Fricke solutions (= 15.4) for fast electrons, we estimate G(Fe{sup 3+}) for this ion to be 5.0. (author)

  9. A low-complexity interacting multiple model filter for maneuvering target tracking

    KAUST Repository

    Khalid, Syed Safwan

    2017-01-22

    In this work, we address the target tracking problem for a coordinate-decoupled Markovian jump-mean-acceleration based maneuvering mobility model. A novel low-complexity alternative to the conventional interacting multiple model (IMM) filter is proposed for this class of mobility models. The proposed tracking algorithm utilizes a bank of interacting filters where the interactions are limited to the mixing of the mean estimates, and it exploits a fixed off-line computed Kalman gain matrix for the entire filter bank. Consequently, the proposed filter does not require matrix inversions during on-line operation which significantly reduces its complexity. Simulation results show that the performance of the low-complexity proposed scheme remains comparable to that of the traditional (highly-complex) IMM filter. Furthermore, we derive analytical expressions that iteratively evaluate the transient and steady-state performance of the proposed scheme, and establish the conditions that ensure the stability of the proposed filter. The analytical findings are in close accordance with the simulated results.

  10. A low-complexity interacting multiple model filter for maneuvering target tracking

    KAUST Repository

    Khalid, Syed Safwan; Abrar, Shafayat

    2017-01-01

    In this work, we address the target tracking problem for a coordinate-decoupled Markovian jump-mean-acceleration based maneuvering mobility model. A novel low-complexity alternative to the conventional interacting multiple model (IMM) filter is proposed for this class of mobility models. The proposed tracking algorithm utilizes a bank of interacting filters where the interactions are limited to the mixing of the mean estimates, and it exploits a fixed off-line computed Kalman gain matrix for the entire filter bank. Consequently, the proposed filter does not require matrix inversions during on-line operation which significantly reduces its complexity. Simulation results show that the performance of the low-complexity proposed scheme remains comparable to that of the traditional (highly-complex) IMM filter. Furthermore, we derive analytical expressions that iteratively evaluate the transient and steady-state performance of the proposed scheme, and establish the conditions that ensure the stability of the proposed filter. The analytical findings are in close accordance with the simulated results.

  11. Model-based extended quaternion Kalman filter to inertial orientation tracking of arbitrary kinematic chains.

    Science.gov (United States)

    Szczęsna, Agnieszka; Pruszowski, Przemysław

    2016-01-01

    Inertial orientation tracking is still an area of active research, especially in the context of out-door, real-time, human motion capture. Existing systems either propose loosely coupled tracking approaches where each segment is considered independently, taking the resulting drawbacks into account, or tightly coupled solutions that are limited to a fixed chain with few segments. Such solutions have no flexibility to change the skeleton structure, are dedicated to a specific set of joints, and have high computational complexity. This paper describes the proposal of a new model-based extended quaternion Kalman filter that allows for estimation of orientation based on outputs from the inertial measurements unit sensors. The filter considers interdependencies resulting from the construction of the kinematic chain so that the orientation estimation is more accurate. The proposed solution is a universal filter that does not predetermine the degree of freedom at the connections between segments of the model. To validation the motion of 3-segments single link pendulum captured by optical motion capture system is used. The next step in the research will be to use this method for inertial motion capture with a human skeleton model.

  12. Tracking vaginal, anal and oral infection in a mouse papillomavirus infection model.

    Science.gov (United States)

    Hu, Jiafen; Budgeon, Lynn R; Cladel, Nancy M; Balogh, Karla; Myers, Roland; Cooper, Timothy K; Christensen, Neil D

    2015-12-01

    Noninvasive and practical techniques to longitudinally track viral infection are sought after in clinical practice. We report a proof-of-principle study to monitor the viral DNA copy number using a newly established mouse papillomavirus (MmuPV1) mucosal infection model. We hypothesized that viral presence could be identified and quantified by collecting lavage samples from cervicovaginal, anal and oral sites. Nude mice infected at these sites with infectious MmuPV1 were tracked for up to 23 weeks starting at 6 weeks post-infection. Viral DNA copy number was determined by SYBR Green Q-PCR analysis. In addition, we tracked viral DNA load through three complete oestrous cycles to pinpoint whether there was a correlation between the DNA load and the four stages of the oestrous cycle. Our results showed that high viral DNA copy number was reproducibly detected from both anal and cervicovaginal lavage samples. The infection and disease progression were further confirmed by histology, cytology, in situ hybridization, immunohistochemistry and transmission electron microscopy. Interestingly, the viral copy number fluctuated over the oestrous cycle, with the highest level at the oestrus stage, implying that multiple sampling might be necessary to provide a reliable diagnosis. Virus DNA was detected in oral lavage samples at a later time after infection. Lower viral DNA load was found in oral samples when compared with those in anal and vaginal tracts. To our knowledge, our study is the first in vivo study to sequentially monitor papillomavirus infection from mucosal anal, oral and vaginal tracts in a preclinical model.

  13. Modelling low energy electron and positron tracks in biologically relevant media

    International Nuclear Information System (INIS)

    Blanco, F.; Munoz, A.; Almeida, D.; Ferreira da Silva, F.; Limao-Vieira, P.; Fuss, M.C.; Sanz, A.G.; Garcia, G.

    2013-01-01

    This colloquium describes an approach to incorporate into radiation damage models the effect of low and intermediate energy (0-100 eV) electrons and positrons, slowing down in biologically relevant materials (water and representative biomolecules). The core of the modelling procedure is a C++ computing programme named 'Low Energy Particle Track Simulation (LEPTS)', which is compatible with available general purpose Monte Carlo packages. Input parameters are carefully selected from theoretical and experimental cross section data and energy loss distribution functions. Data sources used for this purpose are reviewed showing examples of electron and positron cross section and energy loss data for interactions with different media of increasing complexity: atoms, molecules, clusters and condense matter. Finally, we show how such a model can be used to develop an effective dosimetric tool at the molecular level (i.e. nanodosimetry). Recent experimental developments to study the fragmentation induced in biologically material by charge transfer from neutrals and negative ions are also included. (authors)

  14. Convergence monitoring of Markov chains generated for inverse tracking of unknown model parameters in atmospheric dispersion

    International Nuclear Information System (INIS)

    Kim, Joo Yeon; Ryu, Hyung Joon; Jung, Gyu Hwan; Lee, Jai Ki

    2011-01-01

    The dependency within the sequential realizations in the generated Markov chains and their reliabilities are monitored by introducing the autocorrelation and the potential scale reduction factor (PSRF) by model parameters in the atmospheric dispersion. These two diagnostics have been applied for the posterior quantities of the release point and the release rate inferred through the inverse tracking of unknown model parameters for the Yonggwang atmospheric tracer experiment in Korea. The autocorrelations of model parameters are decreasing to low values approaching to zero with increase of lag, resulted in decrease of the dependencies within the two sequential realizations. Their PSRFs are reduced to within 1.2 and the adequate simulation number recognized from these results. From these two convergence diagnostics, the validation of Markov chains generated have been ensured and PSRF then is especially suggested as the efficient tool for convergence monitoring for the source reconstruction in atmospheric dispersion. (author)

  15. Chromosome aberration model combining radiation tracks, chromatin structure, DSB repair and chromatin mobility

    International Nuclear Information System (INIS)

    Friedland, W.; Kundrat, P.

    2015-01-01

    The module that simulates the kinetics and yields of radiation-induced chromosome aberrations within the biophysical code PARTRAC is described. Radiation track structures simulated by Monte Carlo methods are overlapped with multi-scale models of DNA and chromatin to assess the resulting DNA damage. Spatial mobility of individual DNA ends from double-strand breaks is modelled simultaneously with their processing by the non-homologous end-joining enzymes. To score diverse types of chromosome aberrations, the joined ends are classified regarding their original chromosomal location, orientation and the involvement of centromeres. A comparison with experimental data on dicentrics induced by gamma and alpha particles shows that their relative dose dependence is predicted correctly, although the absolute yields are overestimated. The critical model assumptions on chromatin mobility and on the initial damage recognition and chromatin remodelling steps and their future refinements to solve this issue are discussed. (authors)

  16. Formation, reactivity and aging of amorphous ferric oxides in the presence of model and membrane bioreactor derived organics.

    Science.gov (United States)

    Bligh, Mark W; Maheshwari, Pradeep; David Waite, T

    2017-11-01

    Iron salts are routinely dosed in wastewater treatment as a means of achieving effluent phosphorous concentration goals. The iron oxides that result from addition of iron salts partake in various reactions, including reductive dissolution and phosphate adsorption. The reactivity of these oxides is controlled by the conditions of formation and the processes, such as aggregation, that lead to a reduction in accessible surface sites following formation. The presence of organic compounds is expected to significantly impact these processes in a number of ways. In this study, amorphous ferric oxide (AFO) reactivity and aging was investigated following the addition of ferric iron (Fe(III)) to three solution systems: two synthetic buffered systems, either containing no organic or containing alginate, and a supernatant system containing soluble microbial products (SMPs) sourced from a membrane bioreactor (MBR). Reactivity of the Fe(III) phases in these systems at various times (1-60 min) following Fe(III) addition was quantified by determining the rate constants for ascorbate-mediated reductive dissolution over short (5 min) and long (60 min) dissolution periods and for a range (0.5-10 mM) of ascorbate concentrations. AFO particle size was monitored using dynamic light scattering during the aging and dissolution periods. In the presence of alginate, AFO particles appeared to be stabilized against aggregation. However, aging in the alginate system was remarkably similar to the inorganic system where aging is associated with aggregation. An aging mechanism involving restructuring within the alginate-AFO assemblage was proposed. In the presence of SMPs, a greater diversity of Fe(III) phases was evident with both a small labile pool of organically complexed Fe(III) and a polydisperse population of stabilized AFO particles present. The prevalence of low molecular weight organic molecules facilitated stabilization of the Fe(III) oxyhydroxides formed but subsequent aging

  17. Structure of amorphous sulfur

    CSIR Research Space (South Africa)

    Eichinger, BE

    2001-06-01

    Full Text Available The lambda-transition of elemental sulfur occurring at about 159°C has long been associated with the conversion of cyclic S8 rings (c-S8) to amorphous polymer (a-S) via a ring opening polymerization. It is demonstrated, with the use of both density...

  18. Atmosphere surface storm track response to resolved ocean mesoscale in two sets of global climate model experiments

    Science.gov (United States)

    Small, R. Justin; Msadek, Rym; Kwon, Young-Oh; Booth, James F.; Zarzycki, Colin

    2018-05-01

    It has been hypothesized that the ocean mesoscale (particularly ocean fronts) can affect the strength and location of the overlying extratropical atmospheric storm track. In this paper, we examine whether resolving ocean fronts in global climate models indeed leads to significant improvement in the simulated storm track, defined using low level meridional wind. Two main sets of experiments are used: (i) global climate model Community Earth System Model version 1 with non-eddy-resolving standard resolution or with ocean eddy-resolving resolution, and (ii) the same but with the GFDL Climate Model version 2. In case (i), it is found that higher ocean resolution leads to a reduction of a very warm sea surface temperature (SST) bias at the east coasts of the U.S. and Japan seen in standard resolution models. This in turn leads to a reduction of storm track strength near the coastlines, by up to 20%, and a better location of the storm track maxima, over the western boundary currents as observed. In case (ii), the change in absolute SST bias in these regions is less notable, and there are modest (10% or less) increases in surface storm track, and smaller changes in the free troposphere. In contrast, in the southern Indian Ocean, case (ii) shows most sensitivity to ocean resolution, and this coincides with a larger change in mean SST as ocean resolution is changed. Where the ocean resolution does make a difference, it consistently brings the storm track closer in appearance to that seen in ERA-Interim Reanalysis data. Overall, for the range of ocean model resolutions used here (1° versus 0.1°) we find that the differences in SST gradient have a small effect on the storm track strength whilst changes in absolute SST between experiments can have a larger effect. The latter affects the land-sea contrast, air-sea stability, surface latent heat flux, and the boundary layer baroclinicity in such a way as to reduce storm track activity adjacent to the western boundary in the N

  19. Adaptive integral backstepping sliding mode control for opto-electronic tracking system based on modified LuGre friction model

    Science.gov (United States)

    Yue, Fengfa; Li, Xingfei; Chen, Cheng; Tan, Wenbin

    2017-12-01

    In order to improve the control accuracy and stability of opto-electronic tracking system fixed on reef or airport under friction and external disturbance conditions, adaptive integral backstepping sliding mode control approach with friction compensation is developed to achieve accurate and stable tracking for fast moving target. The nonlinear observer and slide mode controller based on modified LuGre model with friction compensation can effectively reduce the influence of nonlinear friction and disturbance of this servo system. The stability of the closed-loop system is guaranteed by Lyapunov theory. The steady-state error of the system is eliminated by integral action. The adaptive integral backstepping sliding mode controller and its performance are validated by a nonlinear modified LuGre dynamic model of the opto-electronic tracking system in simulation and practical experiments. The experiment results demonstrate that the proposed controller can effectively realise the accuracy and stability control of opto-electronic tracking system.

  20. Modeling and Robust Trajectory Tracking Control for a Novel Six-Rotor Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Chengshun Yang

    2013-01-01

    Full Text Available Modeling and trajectory tracking control of a novel six-rotor unmanned aerial vehicle (UAV is concerned to solve problems such as smaller payload capacity and lack of both hardware redundancy and anticrosswind capability for quad-rotor. The mathematical modeling for the six-rotor UAV is developed on the basis of the Newton-Euler formalism, and a second-order sliding-mode disturbance observer (SOSMDO is proposed to reconstruct the disturbances of the rotational dynamics. In consideration of the under-actuated and strong coupling properties of the six-rotor UAV, a nested double loops trajectory tracking control strategy is adopted. In the outer loop, a position error PID controller is designed, of which the task is to compare the desired trajectory with real position of the six-rotor UAV and export the desired attitude angles to the inner loop. In the inner loop, a rapid-convergent nonlinear differentiator (RCND is proposed to calculate the derivatives of the virtual control signal, instead of using the analytical differentiation, to avoid “differential expansion” in the procedure of the attitude controller design. Finally, the validity and effectiveness of the proposed technique are demonstrated by the simulation results.

  1. Analyzing Ocean Tracks: A model for student engagement in authentic scientific practices using data

    Science.gov (United States)

    Krumhansl, K.; Krumhansl, R.; Brown, C.; DeLisi, J.; Kochevar, R.; Sickler, J.; Busey, A.; Mueller-Northcott, J.; Block, B.

    2013-12-01

    The collection of large quantities of scientific data has not only transformed science, but holds the potential to transform teaching and learning by engaging students in authentic scientific work. Furthermore, it has become imperative in a data-rich world that students gain competency in working with and interpreting data. The Next Generation Science Standards reflect both the opportunity and need for greater integration of data in science education, and emphasize that both scientific knowledge and practice are essential elements of science learning. The process of enabling access by novice learners to data collected and used by experts poses significant challenges, however, recent research has demonstrated that barriers to student learning with data can be overcome by the careful design of data access and analysis tools that are specifically tailored to students. A group of educators at Education Development Center, Inc. (EDC) and scientists at Stanford University's Hopkins Marine Station are collaborating to develop and test a model for student engagement with scientific data using a web-based platform. This model, called Ocean Tracks: Investigating Marine Migrations in a Changing Ocean, provides students with the ability to plot and analyze tracks of migrating marine animals collected through the Tagging of Pacific Predators program. The interface and associated curriculum support students in identifying relationships between animal behavior and physical oceanographic variables (e.g. SST, chlorophyll, currents), making linkages between the living world and climate. Students are also supported in investigating possible sources of human impact to important biodiversity hotspots in the Pacific Ocean. The first round of classroom testing revealed that students were able to easily access and display data on the interface, and collect measurements from the animal tracks and oceanographic data layers. They were able to link multiple types of data to draw powerful

  2. Model track studies on fouled ballast using ground penetrating radar and multichannel analysis of surface wave

    Science.gov (United States)

    Anbazhagan, P.; Lijun, Su; Buddhima, Indraratna; Cholachat, Rujikiatkamjorn

    2011-08-01

    Ballast fouling is created by the breakdown of aggregates or outside contamination by coal dust from coal trains, or from soil intrusion beneath rail track. Due to ballast fouling, the conditions of rail track can be deteriorated considerably depending on the type of fouling material and the degree of fouling. So far there is no comprehensive guideline available to identify the critical degree of fouling for different types of fouling materials. This paper presents the identification of degree of fouling and types of fouling using non-destructive testing, namely seismic surface-wave and ground penetrating radar (GPR) survey. To understand this, a model rail track with different degree of fouling has been constructed in Civil engineering laboratory, University of Wollongong, Australia. Shear wave velocity obtained from seismic survey has been employed to identify the degree of fouling and types of fouling material. It is found that shear wave velocity of fouled ballast increases initially, reaches optimum fouling point (OFP), and decreases when the fouling increases. The degree of fouling corresponding after which the shear wave velocity of fouled ballast will be smaller than that of clean ballast is called the critical fouling point (CFP). Ground penetrating radar with four different ground coupled antennas (500 MHz, 800 MHz, 1.6 GHz and 2.3 GHz) was also used to identify the ballast fouling condition. It is found that the 800 MHz ground coupled antenna gives a better signal in assessing the ballast fouling condition. Seismic survey is relatively slow when compared to GPR survey however it gives quantifiable results. In contrast, GPR survey is faster and better in estimating the depth of fouling.

  3. Modelling of a Double-Track Railway Contact System Electric Field Intensity

    Science.gov (United States)

    Belinsky, Stanislav; Khanzhina, Olga; Sidorov, Alexander

    2017-12-01

    Working conditions of personnel that serves contact system (CS) are affected by factors including health and safety, security and working hours (danger of rolling stock accidents, danger of electric shock strokes, work at height, severity and tension of work, increased noise level, etc.) Low frequency electromagnetic fields as part of both electric and magnetic fields are among of the most dangerous and harmful factors. These factors can affect not only the working personnel, but also a lot of people, who do not work with the contact system itself, but could be influenced by electromagnetic field as the result of their professional activity. People, who use public transport or live not far from the electrified lines, are endangered by these factors as well. There are results of the theoretical researches in which low frequency electric fields of railway contact system were designed with the use of mathematical and computer modelling. Significant features of electric field distribution near double-track railway in presence or absence of human body were established. The studies showed the dependence of low frequency electric field parameters on the distance to the track axis, height, and presence or absence of human body. The obtained data were compared with permissible standards established in the Russian Federation and other countries with advanced electrified railway system. Evaluation of low frequency electric fields harmful effect on personnel is the main result of this work. It is also established, that location of personnel, voltage and current level, amount of tracks and other factors influence electric fields of contact systems.

  4. Photovoltaic System Modeling with Fuzzy Logic Based Maximum Power Point Tracking Algorithm

    Directory of Open Access Journals (Sweden)

    Hasan Mahamudul

    2013-01-01

    Full Text Available This paper represents a novel modeling technique of PV module with a fuzzy logic based MPPT algorithm and boost converter in Simulink environment. The prime contributions of this work are simplification of PV modeling technique and implementation of fuzzy based MPPT system to track maximum power efficiently. The main highlighted points of this paper are to demonstrate the precise control of the duty cycle with respect to various atmospheric conditions, illustration of PV characteristic curves, and operation analysis of the converter. The proposed system has been applied for three different PV modules SOLKAR 36 W, BP MSX 60 W, and KC85T 87 W. Finally the resultant data has been compared with the theoretical prediction and company specified value to ensure the validity of the system.

  5. Discrete Model Predictive Control-Based Maximum Power Point Tracking for PV Systems: Overview and Evaluation

    DEFF Research Database (Denmark)

    Lashab, Abderezak; Sera, Dezso; Guerrero, Josep M.

    2018-01-01

    The main objective of this work is to provide an overview and evaluation of discrete model predictive controlbased maximum power point tracking (MPPT) for PV systems. A large number of MPC based MPPT methods have been recently introduced in the literature with very promising performance, however......, an in-depth investigation and comparison of these methods have not been carried out yet. Therefore, this paper has set out to provide an in-depth analysis and evaluation of MPC based MPPT methods applied to various common power converter topologies. The performance of MPC based MPPT is directly linked...... with the converter topology, and it is also affected by the accurate determination of the converter parameters, sensitivity to converter parameter variations is also investigated. The static and dynamic performance of the trackers are assessed according to the EN 50530 standard, using detailed simulation models...

  6. Towards an Applied Gamification Model for Tracking, Managing, & Encouraging Sustainable Travel Behaviours

    Directory of Open Access Journals (Sweden)

    Simon Wells

    2014-10-01

    Full Text Available In this paper we introduce a gamification model for encouraging sustainable multi-modal urban travel in modern European cities. Our aim is to provide a mechanism that encourages users to reflect on their current travel behaviours and to engage in more environmentally friendly activities that lead to the formation of sustainable, long-term travel behaviours. To achieve this our users track their own behaviours, set goals, manage their progress towards those goals, and respond to challenges. Our approach uses a point accumulation and level achievement metaphor to abstract from the underlying specifics of individual behaviours and goals to allow an extensible and flexible platform for behaviour management. We present our model within the context of the SUPERHUB project and platform.

  7. Sky-Hook Control and Kalman Filtering in Nonlinear Model of Tracked Vehicle Suspension System

    Directory of Open Access Journals (Sweden)

    Jurkiewicz Andrzej

    2017-09-01

    Full Text Available The essence of the undertaken topic is application of the continuous sky-hook control strategy and the Extended Kalman Filter as the state observer in the 2S1 tracked vehicle suspension system. The half-car model of this suspension system consists of seven logarithmic spiral springs and two magnetorheological dampers which has been described by the Bingham model. The applied continuous sky-hook control strategy considers nonlinear stiffness characteristic of the logarithmic spiral springs. The control is determined on estimates generated by the Extended Kalman Filter. Improve of ride comfort is verified by comparing simulation results, under the same driving conditions, of controlled and passive vehicle suspension systems.

  8. A neurocomputational model of figure-ground discrimination and target tracking.

    Science.gov (United States)

    Sun, H; Liu, L; Guo, A

    1999-01-01

    A neurocomputational model is presented for figureground discrimination and target tracking. In the model, the elementary motion detectors of the correlation type, the computational modules of saccadic and smooth pursuit eye movement, an oscillatory neural-network motion perception module and a selective attention module are involved. It is shown that through the oscillatory amplitude and frequency encoding, and selective synchronization of phase oscillators, the figure and the ground can be successfully discriminated from each other. The receptive fields developed by hidden units of the networks were surprisingly similar to the actual receptive fields and columnar organization found in the primate visual cortex. It is suggested that equivalent mechanisms may exist in the primate visual cortex to discriminate figure-ground in both temporal and spatial domains.

  9. Steering Angle Control of Car for Dubins Path-tracking Using Model Predictive Control

    Science.gov (United States)

    Kusuma Rahma Putri, Dian; Subchan; Asfihani, Tahiyatul

    2018-03-01

    Car as one of transportation is inseparable from technological developments. About ten years, there are a lot of research and development on lane keeping system(LKS) which is a system that automaticaly controls the steering to keep the vehicle especially car always on track. This system can be developed for unmanned cars. Unmanned system car requires navigation, guidance and control which is able to direct the vehicle to move toward the desired path. The guidance system is represented by using Dubins-Path that will be controlled by using Model Predictive Control. The control objective is to keep the car’s movement that represented by dinamic lateral motion model so car can move according to the path appropriately. The simulation control on the four types of trajectories that generate the value for steering angle and steering angle changes are at the specified interval.

  10. Micro-scale prediction method for API-solubility in polymeric matrices and process model for forming amorphous solid dispersion by hot-melt extrusion.

    Science.gov (United States)

    Bochmann, Esther S; Neumann, Dirk; Gryczke, Andreas; Wagner, Karl G

    2016-10-01

    A new predictive micro-scale solubility and process model for amorphous solid dispersions (ASDs) by hot-melt extrusion (HME) is presented. It is based on DSC measurements consisting of an annealing step and a subsequent analysis of the glass transition temperature (Tg). The application of a complex mathematical model (BCKV-equation) to describe the dependency of Tg on the active pharmaceutical ingredient (API)/polymer ratio, enables the prediction of API solubility at ambient conditions (25°C). Furthermore, estimation of the minimal processing temperature for forming ASDs during HME trials could be defined and was additionally confirmed by X-ray powder diffraction data. The suitability of the DSC method was confirmed with melt rheological trials (small amplitude oscillatory system). As an example, ball milled physical mixtures of dipyridamole, indomethacin, itraconazole and nifedipine in poly(vinylpyrrolidone-co-vinylacetate) (copovidone) and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus®) were used. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The Structure of Liquid and Amorphous Hafnia

    Directory of Open Access Journals (Sweden)

    Leighanne C. Gallington

    2017-11-01

    Full Text Available Understanding the atomic structure of amorphous solids is important in predicting and tuning their macroscopic behavior. Here, we use a combination of high-energy X-ray diffraction, neutron diffraction, and molecular dynamics simulations to benchmark the atomic interactions in the high temperature stable liquid and low-density amorphous solid states of hafnia. The diffraction results reveal an average Hf–O coordination number of ~7 exists in both the liquid and amorphous nanoparticle forms studied. The measured pair distribution functions are compared to those generated from several simulation models in the literature. We have also performed ab initio and classical molecular dynamics simulations that show density has a strong effect on the polyhedral connectivity. The liquid shows a broad distribution of Hf–Hf interactions, while the formation of low-density amorphous nanoclusters can reproduce the sharp split peak in the Hf–Hf partial pair distribution function observed in experiment. The agglomeration of amorphous nanoparticles condensed from the gas phase is associated with the formation of both edge-sharing and corner-sharing HfO6,7 polyhedra resembling that observed in the monoclinic phase.

  12. Robust model-based analysis of single-particle tracking experiments with Spot-On

    Science.gov (United States)

    Grimm, Jonathan B; Lavis, Luke D

    2018-01-01

    Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce ‘Spot-On’, an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants. PMID:29300163

  13. A Simple Free Surface Tracking Model for Multi-dimensional Two-Fluid Approaches

    International Nuclear Information System (INIS)

    Lee, Seungjun; Yoon, Han Young

    2014-01-01

    The development in two-phase experiments devoted to find unknown phenomenological relationships modified conventional flow pattern maps into a sophisticated one and even extended to the multi-dimensional usage. However, for a system including a large void fraction gradient, such as a pool with the free surface, the flow patterns varies spatially throughout small number of cells and sometimes results in an unstable and unrealistic prediction of flows at the large gradient void fraction cells. Then, the numerical stability problem arising from the free surface is the major interest in the analyses of a passive cooling pool convecting the decay heat naturally, which has become a design issue to increase the safety level of nuclear reactors recently. In this research, a new and simple free surface tracking method combined with a simplified topology map is presented. The method modified the interfacial drag coefficient only for the cells defined as the free surface. The performance is shown by comparing the natural convection analysis of a small scale pool with respect to single- and two-phase condition. A simple free surface tracking model with a simplified topology map is developed

  14. Adaptive robust motion trajectory tracking control of pneumatic cylinders with LuGre model-based friction compensation

    Science.gov (United States)

    Meng, Deyuan; Tao, Guoliang; Liu, Hao; Zhu, Xiaocong

    2014-07-01

    Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation (RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This

  15. Electronic structure of the amorphous oxide semiconductor a-InGaZnO4-x: Tauc-Lorentz optical model and origins of subgap states

    International Nuclear Information System (INIS)

    Kamiya, Toshio; Nomura, Kenji; Hosono, Hideo

    2009-01-01

    This paper discusses an optical model and subgap electronic states for a representative amorphous oxide semiconductor, InGaZnO 4 (a-IGZO). Parameterized optical models were developed based on the Tauc-Lorentz model combined with a Lorentz-type oscillator. The measured optical absorption spectra exhibit nearly linear dependences on photon energy (E) between 3 eV 0,TL ) being around 4 eV. The optimized parameters for the fixed E 0,TL of 3.7 eV are provided for four different a-IGZO films with root-mean-square errors less than 1%. Formation energies of crystalline IGZO, stoichiometric a-IGZO, oxygen deficient a-IGZO and their constituent oxides were calculated by the density functional theory using the local density approximation (LDA) and generalized gradient approximation with PBE96 functionals (PBE). PBE gives larger unit cell volumes at the ground states and better agreement in the formation energies than LDA does. The formation energies of an oxygen deficiency in a-IGZO were calculated to be 3.2-3.5 eV. The calculated electronic structures of stoichiometric a-IGZO models exhibit somewhat large dispersions for conduction bands (CB), which are not largely affected by the disordered structure in a-IGZO, while the dispersions of the valence bands (VBs) are very small, unlike the crystalline IGZO, showing that a-IGZO have strongly localized states at the VB maximums (VBMs). Oxygen-deficient a-IGZO models showed that oxygen deficiencies form both a deep localized state at 0.4-1 eV above VBM and a shallow donor state depending on local atomic configurations. An oxygen deficiency that forms a deep state breaks the dispersion of the CB, which could be an origin of the subgap states observed near CB. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. A spatial track formation model and its use for calculating etch-pit parameters of light nuclei

    International Nuclear Information System (INIS)

    Somogyi, G.; Scherzer, R.; Grabisch, K.; Enge, W.

    1976-01-01

    A generalized geometrical model of etch-pit formation in three dimensions is presented for nuclear particles entering isotropic solids at arbitrary angles of incidence. With this model one can calculate the relations between any particle parameter /Z = charge, M = mass, R = range, theta = angle of incidence/ and etching or track parameter /h = removed detector layer, L = track length, d = track diameter, etch-pit profile and contour/ for track etching rates varying monotonically along the trajectory of particles. Using a computer algorithm, calculations have been performed to study identification problems of nuclei of Z = 1-8 registered in a stack of polycarbonate sheets. For these calculations the etching rate ratio vs residual range curves were parametrized with a form of V -1 (R) = 1-Σasub(i) exp (- bsub(i)R) which does not involve the existence of a threshold for track registration. Particular attention was paid to the study of the evolution of etch-pit sizes for relatively high values of h. For this case, data are presented for the charge and isotope resolving power of the identification methods based on the relations L(R) of d(R). Calculations were also made to show the effect of the relative /parallel and opposite/ orientations between the directions of track etching and particle speed on etch-pit evolution. These studies offered new identification methods based on the determination of the curves L(parallel) vs L(opposite) and d(parallel) vs d(opposite), respectively. (orig.) [de

  17. Short range order in amorphous polycondensates

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, C.; Richter, D.; Schweika, W. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Festkoerperforschung; Batoulis, J.; Sommer, K. [Bayer AG, Leverkusen (Germany); Cable, J.W. [Oak Ridge National Lab., TN (United States); Shapiro, S.M. [Brookhaven National Lab., Upton, NY (United States)

    1992-12-01

    The static coherent structure factors S(Q) of the polymer glass Bisphenol-A-Polycarbonate and its chemical variation Bisphenol-A- Polyctherkctone- both in differently deuterated versions- have been measured by spin polarized neutron scattering. The method of spin polarization analysis provided an experimental separation of coherent and incoherent scattering and a reliable intensity calibration. Results are compared to structure factors calculated for model structures which were obtained by ``amorphous cell`` computer simulations. In general reasonable agreement is found between experiment and simulation; however, certain discrepancies hint at an insufficient structural relaxation in the amorphous cell method. 15 refs, 1 fig, 1 tab.

  18. Amorphous Phase Mediated Crystallization: Fundamentals of Biomineralization

    Directory of Open Access Journals (Sweden)

    Wenjing Jin

    2018-01-01

    Full Text Available Many biomineralization systems start from transient amorphous precursor phases, but the exact crystallization pathways and mechanisms remain largely unknown. The study of a well-defined biomimetic crystallization system is key for elucidating the possible mechanisms of biomineralization and monitoring the detailed crystallization pathways. In this review, we focus on amorphous phase mediated crystallization (APMC pathways and their crystallization mechanisms in bio- and biomimetic-mineralization systems. The fundamental questions of biomineralization as well as the advantages and limitations of biomimetic model systems are discussed. This review could provide a full landscape of APMC systems for biomineralization and inspire new experiments aimed at some unresolved issues for understanding biomineralization.

  19. Thermal conductivity of sputtered amorphous Ge films

    International Nuclear Information System (INIS)

    Zhan, Tianzhuo; Xu, Yibin; Goto, Masahiro; Tanaka, Yoshihisa; Kato, Ryozo; Sasaki, Michiko; Kagawa, Yutaka

    2014-01-01

    We measured the thermal conductivity of amorphous Ge films prepared by magnetron sputtering. The thermal conductivity was significantly higher than the value predicted by the minimum thermal conductivity model and increased with deposition temperature. We found that variations in sound velocity and Ge film density were not the main factors in the high thermal conductivity. Fast Fourier transform patterns of transmission electron micrographs revealed that short-range order in the Ge films was responsible for their high thermal conductivity. The results provide experimental evidences to understand the underlying nature of the variation of phonon mean free path in amorphous solids

  20. The impact of waves and sea spray on modelling storm track and development

    Directory of Open Access Journals (Sweden)

    Lichuan Wu

    2015-09-01

    Full Text Available In high wind speed conditions, sea spray generated by intensely breaking waves greatly influences the wind stress and heat fluxes. Measurements indicate that the drag coefficient decreases at high wind speeds. The sea spray generation function (SSGF, an important term of wind stress parameterisation at high wind speeds, is usually treated as a function of wind speed/friction velocity. In this study, we introduce a wave-state-dependent SSGF and wave-age-dependent Charnock number into a high wind speed–wind stress parameterisation. The newly proposed wind stress parameterisation and sea spray heat flux parameterisation were applied to an atmosphere–wave coupled model to study the mid-latitude storm development of six storm cases. Compared with measurements from the FINO1 platform in the North Sea, the new wind stress parameterisation can reduce wind speed simulation errors in the high wind speed range. Considering only sea spray impact on wind stress (and not on heat fluxes will intensify the storms (in terms of minimum sea level pressure and maximum wind speed, but has little effect on the storm tracks. Considering the impact of sea spray on heat fluxes only (not on wind stress can improve the model performance regarding air temperature, but it has little effect on the storm intensity and storm track performance. If the impact of sea spray on both the wind stress and heat fluxes is taken into account, the model performs best in all experiments for minimum sea level pressure, maximum wind speed and air temperature.

  1. An Integral Model for Target Tracking Based on the Use of a WSN

    Directory of Open Access Journals (Sweden)

    Pietro Manzoni

    2013-06-01

    Full Text Available The use of wireless sensor networks (WSN in tracking applications is growing at a fast pace. In these applications, the sensor nodes discover, monitor and track an event or target object. A significant number of proposals relating the use of WSNs for target tracking have been published to date. However, they either focus on the tracking algorithm or on the communication protocol, and none of them address the problem integrally. In this paper, a comprehensive proposal for target detection and tracking is discussed. We introduce a tracking algorithm to detect and estimate a target location. Moreover, we introduce a low-overhead routing protocol to be used along with our tracking algorithm. The proposed algorithm has low computational complexity and has been designed considering the use of a mobile sink while generating minimal delay and packet loss. We also discuss the results of the evaluation of the proposed algorithms.

  2. Amorphous silicon radiation detectors

    Science.gov (United States)

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  3. Improvements in fast-response flood modeling: desktop parallel computing and domain tracking

    Energy Technology Data Exchange (ETDEWEB)

    Judi, David R [Los Alamos National Laboratory; Mcpherson, Timothy N [Los Alamos National Laboratory; Burian, Steven J [UNIV. OF UTAH

    2009-01-01

    It is becoming increasingly important to have the ability to accurately forecast flooding, as flooding accounts for the most losses due to natural disasters in the world and the United States. Flood inundation modeling has been dominated by one-dimensional approaches. These models are computationally efficient and are considered by many engineers to produce reasonably accurate water surface profiles. However, because the profiles estimated in these models must be superimposed on digital elevation data to create a two-dimensional map, the result may be sensitive to the ability of the elevation data to capture relevant features (e.g. dikes/levees, roads, walls, etc...). Moreover, one-dimensional models do not explicitly represent the complex flow processes present in floodplains and urban environments and because two-dimensional models based on the shallow water equations have significantly greater ability to determine flow velocity and direction, the National Research Council (NRC) has recommended that two-dimensional models be used over one-dimensional models for flood inundation studies. This paper has shown that two-dimensional flood modeling computational time can be greatly reduced through the use of Java multithreading on multi-core computers which effectively provides a means for parallel computing on a desktop computer. In addition, this paper has shown that when desktop parallel computing is coupled with a domain tracking algorithm, significant computation time can be eliminated when computations are completed only on inundated cells. The drastic reduction in computational time shown here enhances the ability of two-dimensional flood inundation models to be used as a near-real time flood forecasting tool, engineering, design tool, or planning tool. Perhaps even of greater significance, the reduction in computation time makes the incorporation of risk and uncertainty/ensemble forecasting more feasible for flood inundation modeling (NRC 2000; Sayers et al

  4. Tracking and Analysis Framework (TAF) model documentation and user`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Bloyd, C.; Camp, J.; Conzelmann, G. [and others

    1996-12-01

    With passage of the 1990 Clean Air Act Amendments, the United States embarked on a policy for controlling acid deposition that has been estimated to cost at least $2 billion. Title IV of the Act created a major innovation in environmental regulation by introducing market-based incentives - specifically, by allowing electric utility companies to trade allowances to emit sulfur dioxide (SO{sub 2}). The National Acid Precipitation Assessment Program (NAPAP) has been tasked by Congress to assess what Senator Moynihan has termed this {open_quotes}grand experiment.{close_quotes} Such a comprehensive assessment of the economic and environmental effects of this legislation has been a major challenge. To help NAPAP face this challenge, the U.S. Department of Energy (DOE) has sponsored development of an integrated assessment model, known as the Tracking and Analysis Framework (TAF). This section summarizes TAF`s objectives and its overall design.

  5. Tracking Control of A Balancing Robot – A Model-Based Approach

    Directory of Open Access Journals (Sweden)

    Zaiczek Tobias

    2014-08-01

    Full Text Available This paper presents a control concept for a single-axle mobile robot moving on the horizontal plane. A mathematical model of the nonholonomic mechanical system is derived using Hamel's equations of motion. Subsequently, a concept for a tracking controller is described in detail. This controller keeps the mobile robot on a given reference trajectory while maintaining it in an upright position. The control objective is reached by a cascade control structure. By an appropriate input transformation, we are able to utilize an input-output linearization of a subsystem. For the remaining dynamics a linear set-point control law is presented. Finally, the performance of the implemented control law is illustrated by simulation results.

  6. Threshold irradiation dose for amorphization of silicon carbide

    International Nuclear Information System (INIS)

    Snead, L.L.; Zinkle, S.J.

    1997-01-01

    The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenon ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface or strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be ∼0.56eV. This model successfully explains the difference in the temperature dependent amorphization behavior of SiC irradiated with 0.56 MeV Si + at 1 x 10 -3 dpa/s and with fission neutrons irradiated at 1 x 10 -6 dpa/s irradiated to 15 dpa in the temperature range of ∼340±10K

  7. Threshold irradiation dose for amorphization of silicon carbide

    International Nuclear Information System (INIS)

    Snead, L.L.; Zinkle, S.J.

    1997-01-01

    The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenon ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface of strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be ∼0.56 eV. This model successfully explains the difference in the temperature-dependent amorphization behavior of SiC irradiated with 0.56 MeV silicon ions at 1 x 10 -3 dpa/s and with fission neutrons irradiated at 1 x 10 -6 dpa/s irradiated to 15 dpa in the temperature range of ∼340 ± 10K

  8. Model-based identification of motion sensor placement for tracking retraction and elongation of the tongue.

    Science.gov (United States)

    Wang, Yikun K; Nash, Martyn P; Pullan, Andrew J; Kieser, Jules A; Röhrle, Oliver

    2013-04-01

    Electromagnetic articulography (EMA) is designed to track facial and tongue movements. In practice, the EMA sensors for tracking the movement of the tongue's surface are placed heuristically. No recommendation exists. Within this paper, a model-based approach providing a mathematical analysis and a computational-based recommendation for the placement of sensors, which is based on the tongue's envelope of movement, is proposed. For this purpose, an anatomically detailed Finite Element (FE) model of the tongue has been employed to determine the envelope of motion for retraction and elongation using a forward simulation. Two optimality criteria have been proposed to identify a set of optimal sensor locations based on the pre-computed envelope of motion. The first one is based on the assumption that locations exhibiting large displacements contain the most information regarding the tongue's movement and are less susceptible to measurement errors. The second one selects sensors exhibiting each the largest displacements in the anterior-posterior, superior-inferior, medial-lateral and overall direction. The quality of the two optimality criteria is analysed based on their ability to deduce from the respective sensor locations the corresponding muscle activation parameters of the relevant muscle fibre groups during retraction and elongation by solving the corresponding inverse problem. For this purpose, a statistical analysis has been carried out, in which sensor locations for two different modes of deformation have been subjected to typical measurement errors. Then, for tongue retraction and elongation, the expectation value, the standard deviation, the averaged bias and the averaged coefficient of variation have been computed based on 41 different error-afflicted sensor locations. The results show that the first optimality criteria is superior to the second one and that the averaged bias and averaged coefficient of variation decrease when the number of sensors is

  9. Methods of amorphization and investigation of the amorphous state

    OpenAIRE

    EINFALT, TOMAŽ; PLANINŠEK, ODON; HROVAT, KLEMEN

    2013-01-01

    The amorphous form of pharmaceutical materials represents the most energetic solid state of a material. It provides advantages in terms of dissolution rate and bioavailability. This review presents the methods of solid-state amorphization described in literature (supercooling of liquids, milling, lyophilization, spray drying, dehydration of crystalline hydrates), with the emphasis on milling. Furthermore, we describe how amorphous state of pharmaceuticals differ depending on method of prepara...

  10. Definition and properties of ideal amorphous structures

    International Nuclear Information System (INIS)

    Stachurski, Z.H.

    2002-01-01

    Full text: Amorphous structure is usually defined by what it is not (ie, no crystalline peaks in XRS, no bond correlation in NMR), rather than by what it is. The interest in defining the structure of non-crystalline materials is long standing; packing geometry of spheres, molecular structure of glassy SiO 2 , or the structure of atactic polymers are prime examples. The earliest definitions of amorphous structure were in terms of a microcrystallite model of Valenkov, or continuous random network by Zachariasen. The random close packing of spheres of equal size, and an amorphous structure, composed of freely jointed linear chains of hard spheres, has been described mathematically in terms of a linear homogeneous Poisson process. This paper aims to describe some geometrical, kinematic, and topological properties of these two ideal amorphous structures, which belong to the same amorphous class. The geometry of packing is elucidated, and the use of Voronoi tessellation method for measuring the structures is described. The ideal amorphous solid has no symmetry elements; its volume can not be divided into identical unit cells. However, there is a volume element small enough to allow the distinction of its nanoscopic inhomogeneities, and sufficiently large enough to represent, accurately the overall behaviour. We define this volume element, the representative volume element. Suitable boundary conditions must be prescribed for a choice of RVE, and satisfy certain requirements. Topologically, a catchment region on the Born-Oppenheimer potential energy surface over nuclear configuration space, is defined by Mezey and Bader as an energetically stable geometry of the open region of R 3 traversed by all the trajectories which terminate at a local maximum. Two topological properties will be described: (i) the boundaries of the catchment region as a direct geometrical correspondence to the Voronoi polyhedron for a given atom in a given structure, and (ii) the constriction points

  11. The Stabilization of Amorphous Zopiclone in an Amorphous Solid Dispersion.

    Science.gov (United States)

    Milne, Marnus; Liebenberg, Wilna; Aucamp, Marique

    2015-10-01

    Zopiclone is a poorly soluble psychotherapeutic agent. The aim of this study was to prepare and characterize an amorphous form of zopiclone as well as the characterization and performance of a stable amorphous solid dispersion. The amorphous form was prepared by the well-known method of quench-cooling of the melt. The solid dispersion was prepared by a solvent evaporation method of zopiclone, polyvinylpyrrolidone-25 (PVP-25), and methanol, followed by freeze-drying. The physico-chemical properties and stability of amorphous zopiclone and the solid dispersion was studied using differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), hot-stage microscopy (HSM), X-ray diffractometry (XRD), solubility, and dissolution studies. The zopiclone amorphous solid-state form was determined to be a fragile glass; it was concluded that the stability of the amorphous form is influenced by both temperature and water. Exposure of amorphous zopiclone to moisture results in rapid transformation of the amorphous form to the crystalline dihydrated form. In comparison, the amorphous solid dispersion proved to be more stable with increased aqueous solubility.

  12. Transport, Interfaces, and Modeling in Amorphous Silicon Based Solar Cells: Final Technical Report, 11 February 2002 - 30 September 2006

    Energy Technology Data Exchange (ETDEWEB)

    Schiff, E. A.

    2008-10-01

    Results for a-Si characteristics/modeling; photocarrier drift mobilities in a-Si;H, ..mu..c-Si:H, CIGS; hole-conducting polymers as p-layer for a-Si and c-Si; IR spectra of p/i and n/i interfaces in a-Si.

  13. Variation that can be expected when using particle tracking models in connectivity studies

    Science.gov (United States)

    Hufnagl, Marc; Payne, Mark; Lacroix, Geneviève; Bolle, Loes J.; Daewel, Ute; Dickey-Collas, Mark; Gerkema, Theo; Huret, Martin; Janssen, Frank; Kreus, Markus; Pätsch, Johannes; Pohlmann, Thomas; Ruardij, Piet; Schrum, Corinna; Skogen, Morten D.; Tiessen, Meinard C. H.; Petitgas, Pierre; van Beek, Jan K. L.; van der Veer, Henk W.; Callies, Ulrich

    2017-09-01

    Hydrodynamic Ocean Circulation Models and Lagrangian particle tracking models are valuable tools e.g. in coastal ecology to identify the connectivity between offshore spawning and coastal nursery areas of commercially important fish, for risk assessment and more for defining or evaluating marine protected areas. Most studies are based on only one model and do not provide levels of uncertainty. Here this uncertainty was addressed by applying a suite of 11 North Sea models to test what variability can be expected concerning connectivity. Different notional test cases were calculated related to three important and well-studied North Sea fish species: herring (Clupea harengus), and the flatfishes sole (Solea solea) and plaice (Pleuronectes platessa). For sole and plaice we determined which fraction of particles released in the respective spawning areas would reach a coastal marine protected area. For herring we determined the fraction located in a wind park after a predefined time span. As temperature is more and more a focus especially in biological and global change studies, furthermore inter-model variability in temperatures experienced by the virtual particles was determined. The main focus was on the transport variability originating from the physical models and thus biological behavior was not included. Depending on the scenario, median experienced temperatures differed by 3 °C between years. The range between the different models in one year was comparable to this temperature range observed between modelled years. Connectivity between flatfish spawning areas and the coastal protected area was highly dependent on the release location and spawning time. No particles released in the English Channel in the sole scenario reached the protected area while up to 20% of the particles released in the plaice scenario did. Interannual trends in transport directions and connectivity rates were comparable between models but absolute values displayed high variations. Most

  14. Initial recombination in the track of heavy charged particles: Numerical solution for air filled ionization chambers

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki

    2012-01-01

    ). The investigated charge carrier distributions are based on track structure models, which follow a 1/r2 behavior at larger radii and show a constant value at small radii. The results of the calculations are compared to the initial formulation and to data obtained in experiments using carbon ion beams. Results...... The comparison between the experimental data and the calculations shows that the initial approach made by Jaffe is able to reproduce the effects of initial recombination. The amorphous track structure based charge carrier distribution do not reproduce the experimental data well. A small additional correction...

  15. Structural changes in precipitates and cell model for the conversion of amorphous calcium phosphate to hydroxyapatite during the initial stage of precipitation

    Science.gov (United States)

    Zyman, Z.; Rokhmistrov, D.; Glushko, V.

    2012-08-01

    A new insight on the conversion of an amorphous calcium phosphate, ACP, to hydroxyapatite, HA, has been proposed. The ACP has been precipitated under appropriate conditions of the nitrous method (low concentrations of reactants, pH>10, 25 °С, fast mixing). The ACP to HA conversion has been found to commence immediately after the ACP precipitation. The conversion reveals itself in the first detected shift of the diffuse maximum from 29.5° 2θ (ACP) to about 32° 2θ (the position of principal peaks of HA) in the XRD patterns for the precipitates of 2 min-6 h lifetimes. The precipitates are biphasic mixtures of ACP and nanocrystalline HA, nHA, with increasing nHA/ACP ratio for longer lifetimes. Characteristics of the simulated XRD profiles calculated proceeding on such a picture are excellently confirmed by experimental results. At the end of the conversion, HA nanocrystals start growing. This follows from the appearance of broadened diffraction maxima, which gradually sharpen, along with the appearance and gradual increase of splitting of the initially featureless υ3 and υ4PO43- bands in the IR spectra of precipitates with their aging (after 6 h of the precipitation). Based on the detected structural and compositional peculiarities of ACP in the early stage of precipitation, a cell model for the HA crystallization has been proposed. Proceeding on the model, the principal data in this and earlier studies, considering the ACP to HA conversion as an internal rearrangement process in the ACP particles, has been reasonably explained.

  16. Magnetism and local environment model in (Ni/sub 1-c/Co/sub c/)078P014B008 amorphous alloys

    International Nuclear Information System (INIS)

    Amamou, A.

    1976-06-01

    The magnetic properties of amorphous alloys (Ni/sub 1-c/Co/sub c/) 0 . 78 P 0 . 14 B 0 . 08 were investigated. The samples were prepared by the splat-cooling method. The Curie temperatures were determined and the magnetization measurements, performed for 1.7 0 K less than or equal to T less than or equal to 270 0 K and fields up to kOe. Ni 0 . 78 P 0 . 14 B 0 . 08 is paramagnetic, whereas Co 0 . 78 P 0 . 14 B 0 . 08 is ferromagnetic until the crystallization temperature (678 0 K). The average moment per cobalt atom is 1.15 μ/sub B/. In (Ni/sub 1-c/Co/sub c/) 0 . 78 P 0 . 14 B 0 . 08 the critical concentration for the paramagnetic-ferromagnetic transition is c approximately equal to 0.15; this transition occurs in an inhomogeneous way. The saturation magnetization in the whole concentration range can be interpreted (as for some crystallized alloys and compounds) by a local environment model, when a reasonable short-range order is assumed. In such a model the magnetic moment per cobalt atom is related merely to the number of its Co first neighbors n/sub Co/. For n/sub Co/ = 0 and 1 the cobalt atom is not magnetic, for n/sub Co/ = 2 and 3 it carries a small moment μ 1 = 0.50μ/sub B/ and for n/sub Co/ greater than 3 it is magnetic with μ 2 = 1.15μ/sub B/ as in Co 0 . 78 P 0 . 14 B 0 . 08 ; the nickel atoms do not carry a substantial moment in the entire concentration range. These features are comparable to those obtained in some crystalline alloys. 3 figures

  17. A Low-Cost Maximum Power Point Tracking System Based on Neural Network Inverse Model Controller

    Directory of Open Access Journals (Sweden)

    Carlos Robles Algarín

    2018-01-01

    Full Text Available This work presents the design, modeling, and implementation of a neural network inverse model controller for tracking the maximum power point of a photovoltaic (PV module. A nonlinear autoregressive network with exogenous inputs (NARX was implemented in a serial-parallel architecture. The PV module mathematical modeling was developed, a buck converter was designed to operate in the continuous conduction mode with a switching frequency of 20 KHz, and the dynamic neural controller was designed using the Neural Network Toolbox from Matlab/Simulink (MathWorks, Natick, MA, USA, and it was implemented on an open-hardware Arduino Mega board. To obtain the reference signals for the NARX and determine the 65 W PV module behavior, a system made of a 0.8 W PV cell, a temperature sensor, a voltage sensor and a static neural network, was used. To evaluate performance a comparison with the P&O traditional algorithm was done in terms of response time and oscillations around the operating point. Simulation results demonstrated the superiority of neural controller over the P&O. Implementation results showed that approximately the same power is obtained with both controllers, but the P&O controller presents oscillations between 7 W and 10 W, in contrast to the inverse controller, which had oscillations between 1 W and 2 W.

  18. Neural Modeling of Fuzzy Controllers for Maximum Power Point Tracking in Photovoltaic Energy Systems

    Science.gov (United States)

    Lopez-Guede, Jose Manuel; Ramos-Hernanz, Josean; Altın, Necmi; Ozdemir, Saban; Kurt, Erol; Azkune, Gorka

    2018-06-01

    One field in which electronic materials have an important role is energy generation, especially within the scope of photovoltaic energy. This paper deals with one of the most relevant enabling technologies within that scope, i.e, the algorithms for maximum power point tracking implemented in the direct current to direct current converters and its modeling through artificial neural networks (ANNs). More specifically, as a proof of concept, we have addressed the problem of modeling a fuzzy logic controller that has shown its performance in previous works, and more specifically the dimensionless duty cycle signal that controls a quadratic boost converter. We achieved a very accurate model since the obtained medium squared error is 3.47 × 10-6, the maximum error is 16.32 × 10-3 and the regression coefficient R is 0.99992, all for the test dataset. This neural implementation has obvious advantages such as a higher fault tolerance and a simpler implementation, dispensing with all the complex elements needed to run a fuzzy controller (fuzzifier, defuzzifier, inference engine and knowledge base) because, ultimately, ANNs are sums and products.

  19. Linear Mathematical Model for Seam Tracking with an Arc Sensor in P-GMAW Processes.

    Science.gov (United States)

    Liu, Wenji; Li, Liangyu; Hong, Ying; Yue, Jianfeng

    2017-03-14

    Arc sensors have been used in seam tracking and widely studied since the 80s and commercial arc sensing products for T and V shaped grooves have been developed. However, it is difficult to use these arc sensors in narrow gap welding because the arc stability and sensing accuracy are not satisfactory. Pulse gas melting arc welding (P-GMAW) has been successfully applied in narrow gap welding and all position welding processes, so it is worthwhile to research P-GMAW arc sensing technology. In this paper, we derived a linear mathematical P-GMAW model for arc sensing, and the assumptions for the model are verified through experiments and finite element methods. Finally, the linear characteristics of the mathematical model were investigated. In torch height changing experiments, uphill experiments, and groove angle changing experiments the P-GMAW arc signals all satisfied the linear rules. In addition, the faster the welding speed, the higher the arc signal sensitivities; the smaller the groove angle, the greater the arc sensitivities. The arc signal variation rate needs to be modified according to the welding power, groove angles, and weaving or rotate speed.

  20. Origins of amorphous interstellar grains

    International Nuclear Information System (INIS)

    Hasegawa, H.

    1984-01-01

    The existence of amorphous interstellar grains has been suggested from infrared observations. Some carbon stars show the far infrared emission with a lambda -1 wavelength dependence. Far infrared emission supposed to be due to silicate grains often show the lambda -1 wavelength dependence. Mid infrared spectra around 10 μm have broad structure. These may be due to the amorphous silicate grains. The condition that the condensed grains from the cosmic gas are amorphous is discussed. (author)

  1. Amorphous silicon based particle detectors

    OpenAIRE

    Wyrsch, N.; Franco, A.; Riesen, Y.; Despeisse, M.; Dunand, S.; Powolny, F.; Jarron, P.; Ballif, C.

    2012-01-01

    Radiation hard monolithic particle sensors can be fabricated by a vertical integration of amorphous silicon particle sensors on top of CMOS readout chip. Two types of such particle sensors are presented here using either thick diodes or microchannel plates. The first type based on amorphous silicon diodes exhibits high spatial resolution due to the short lateral carrier collection. Combination of an amorphous silicon thick diode with microstrip detector geometries permits to achieve micromete...

  2. Conception and modelling of photo-detection pixels. PIN photodiodes conceived in amorphous silicon for particles detection

    International Nuclear Information System (INIS)

    Negru, R.

    2008-06-01

    The research done has revealed that the a-Si:H is a material ideally suited for the detection of particles, while being resistant to radiation. It also has a low manufacturing cost, is compatible with existing technology and can be deposited over large areas. Thus, despite the low local mobility of charges (30 cm 2 /V/s), a-Si:H is a material of particular interest for manufacturing high-energy particle detection pixels. As a consequence of this, we have studied the feasibility of an experimental pixel stacked structure based on a-Si:H as a basic sensor element for an electromagnetic calorimeter. The structure of such a pixel consists of different components. First, a silicon PIN diode in a-Si:H is fabricated, followed by a bias resistor and a decoupling capacitor. Before such a structure is made and in order to optimize its design, it is essential to have an efficient behavioural model of the various components. Thus, our primary goal was to develop a two-dimensional physical model of the PIN diode using the SILVACO finite element calculation software. This a-Si:H PIN diode two-dimensional physical model allowed us to study the problem of crosstalk between pixels in a matrix structure of detectors. In particular, we concentrated on the leakage current and the current generated in the volume between neighbouring pixels. The successful implementation of this model in SPICE ensures its usefulness in other professional simulators and especially its integration into a complete electronic structure (PIN diode, bias resistor, decoupling capacity and low noise amplifier). Thanks to these modelling tools, we were able to simulate PIN diode structures in a-Si:H with different thicknesses and different dimensions. These simulations have allowed us to predict that the thicker structures are relevant to the design of the pixel detectors for high energy physics. Applications in astronomy, medical imaging and the analysis of the failure of silicon integrated circuits, can also

  3. Track structure based modelling of light ion radiation effects on nuclear and mitochondrial DNA

    Science.gov (United States)

    Schmitt, Elke; Ottolenghi, Andrea; Dingfelder, Michael; Friedland, Werner; Kundrat, Pavel; Baiocco, Giorgio

    2016-07-01

    Space radiation risk assessment is of great importance for manned spaceflights in order to estimate risks and to develop counter-measures to reduce them. Biophysical simulations with PARTRAC can help greatly to improve the understanding of initial biological response to ionizing radiation. Results from modelling radiation quality dependent DNA damage and repair mechanisms up to chromosomal aberrations (e.g. dicentrics) can be used to predict radiation effects depending on the kind of mixed radiation field exposure. Especially dicentric yields can serve as a biomarker for an increased risk due to radiation and hence as an indicator for the effectiveness of the used shielding. PARTRAC [1] is a multi-scale biophysical research MC code for track structure based initial DNA damage and damage response modelling. It integrates physics, radiochemistry, detailed nuclear DNA structure and molecular biology of DNA repair by NHEJ-pathway to assess radiation effects on cellular level [2]. Ongoing experiments with quasi-homogeneously distributed compared to sub-micrometre focused bunches of protons, lithium and carbon ions allow a separation of effects due to DNA damage complexity on nanometre scale from damage clustering on (sub-) micrometre scale [3, 4]. These data provide an unprecedented benchmark for the DNA damage response model in PARTRAC and help understand the mechanisms leading to cell killing and chromosomal aberrations (e.g. dicentrics) induction. A large part of space radiation is due to a mixed ion field of high energy protons and few heavier ions that can be only partly absorbed by the shielding. Radiation damage induced by low-energy ions significantly contributes to the high relative biological efficiency (RBE) of ion beams around Bragg peak regions. For slow light ions the physical cross section data basis in PARTRAC has been extended to investigate radiation quality effects in the Bragg peak region [5]. The resulting range and LET values agree with ICRU data

  4. Amorphous drugs and dosage forms

    DEFF Research Database (Denmark)

    Grohganz, Holger; Löbmann, K.; Priemel, P.

    2013-01-01

    The transformation to an amorphous form is one of the most promising approaches to address the low solubility of drug compounds, the latter being an increasing challenge in the development of new drug candidates. However, amorphous forms are high energy solids and tend to recry stallize. New...... formulation principles are needed to ensure the stability of amorphous drug forms. The formation of solid dispersions is still the most investigated approach, but additional approaches are desirable to overcome the shortcomings of solid dispersions. Spatial separation by either coating or the use of micro-containers...... before single molecules are available for the formation of crystal nuclei, thus stabilizing the amorphous form....

  5. Tracking the sleep onset process: an empirical model of behavioral and physiological dynamics.

    Directory of Open Access Journals (Sweden)

    Michael J Prerau

    2014-10-01

    Full Text Available The sleep onset process (SOP is a dynamic process correlated with a multitude of behavioral and physiological markers. A principled analysis of the SOP can serve as a foundation for answering questions of fundamental importance in basic neuroscience and sleep medicine. Unfortunately, current methods for analyzing the SOP fail to account for the overwhelming evidence that the wake/sleep transition is governed by continuous, dynamic physiological processes. Instead, current practices coarsely discretize sleep both in terms of state, where it is viewed as a binary (wake or sleep process, and in time, where it is viewed as a single time point derived from subjectively scored stages in 30-second epochs, effectively eliminating SOP dynamics from the analysis. These methods also fail to integrate information from both behavioral and physiological data. It is thus imperative to resolve the mismatch between the physiological evidence and analysis methodologies. In this paper, we develop a statistically and physiologically principled dynamic framework and empirical SOP model, combining simultaneously-recorded physiological measurements with behavioral data from a novel breathing task requiring no arousing external sensory stimuli. We fit the model using data from healthy subjects, and estimate the instantaneous probability that a subject is awake during the SOP. The model successfully tracked physiological and behavioral dynamics for individual nights, and significantly outperformed the instantaneous transition models implicit in clinical definitions of sleep onset. Our framework also provides a principled means for cross-subject data alignment as a function of wake probability, allowing us to characterize and compare SOP dynamics across different populations. This analysis enabled us to quantitatively compare the EEG of subjects showing reduced alpha power with the remaining subjects at identical response probabilities. Thus, by incorporating both

  6. Structure and band gap determination of irradiation-induced amorphous nano-channels in LiNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Sachan, R., E-mail: sachanr@ornl.gov; Pakarinen, O. H.; Chisholm, M. F. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Liu, P. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); School of Physics, State Key Laboratory of Crystal Materials and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Jinan 250100 (China); Patel, M. K. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Zhang, Y. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Wang, X. L. [School of Physics, State Key Laboratory of Crystal Materials and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Jinan 250100 (China); Weber, W. J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-04-07

    The irradiation of lithium niobate with swift heavy ions results in the creation of amorphous nano-sized channels along the incident ion path. These nano-channels are on the order of a hundred microns in length and could be useful for photonic applications. However, there are two major challenges in these nano-channels characterization: (i) it is difficult to investigate the structural characteristics of these nano-channels due to their very long length and (ii) the analytical electron microscopic analysis of individual ion track is complicated due to electron beam sensitive nature of lithium niobate. Here, we report the first high resolution microscopic characterization of these amorphous nano-channels, widely known as ion-tracks, by direct imaging them at different depths in the material, and subsequently correlating the key characteristics with electronic energy loss of ions. Energetic Kr ions ({sup 84}Kr{sup 22} with 1.98 GeV energy) are used to irradiate single crystal lithium niobate with a fluence of 2 × 10{sup 10} ions/cm{sup 2}, which results in the formation of individual ion tracks with a penetration depth of ∼180 μm. Along the ion path, electron energy loss of the ions, which is responsible for creating the ion tracks, increases with depth under these conditions in LiNbO{sub 3}, resulting in increases in track diameter of a factor of ∼2 with depth. This diameter increase with electronic energy loss is consistent with predictions of the inelastic thermal spike model. We also show a new method to measure the band gap in individual ion track by using electron energy-loss spectroscopy.

  7. Adaptive Probabilistic Tracking Embedded in Smart Cameras for Distributed Surveillance in a 3D Model

    Directory of Open Access Journals (Sweden)

    Sven Fleck

    2006-12-01

    Full Text Available Tracking applications based on distributed and embedded sensor networks are emerging today, both in the fields of surveillance and industrial vision. Traditional centralized approaches have several drawbacks, due to limited communication bandwidth, computational requirements, and thus limited spatial camera resolution and frame rate. In this article, we present network-enabled smart cameras for probabilistic tracking. They are capable of tracking objects adaptively in real time and offer a very bandwidthconservative approach, as the whole computation is performed embedded in each smart camera and only the tracking results are transmitted, which are on a higher level of abstraction. Based on this, we present a distributed surveillance system. The smart cameras' tracking results are embedded in an integrated 3D environment as live textures and can be viewed from arbitrary perspectives. Also a georeferenced live visualization embedded in Google Earth is presented.

  8. Adaptive Probabilistic Tracking Embedded in Smart Cameras for Distributed Surveillance in a 3D Model

    Directory of Open Access Journals (Sweden)

    Fleck Sven

    2007-01-01

    Full Text Available Tracking applications based on distributed and embedded sensor networks are emerging today, both in the fields of surveillance and industrial vision. Traditional centralized approaches have several drawbacks, due to limited communication bandwidth, computational requirements, and thus limited spatial camera resolution and frame rate. In this article, we present network-enabled smart cameras for probabilistic tracking. They are capable of tracking objects adaptively in real time and offer a very bandwidthconservative approach, as the whole computation is performed embedded in each smart camera and only the tracking results are transmitted, which are on a higher level of abstraction. Based on this, we present a distributed surveillance system. The smart cameras' tracking results are embedded in an integrated 3D environment as live textures and can be viewed from arbitrary perspectives. Also a georeferenced live visualization embedded in Google Earth is presented.

  9. Geometry modeling of single track cladding deposited by high power diode laser with rectangular beam spot

    Science.gov (United States)

    Liu, Huaming; Qin, Xunpeng; Huang, Song; Hu, Zeqi; Ni, Mao

    2018-01-01

    This paper presents an investigation on the relationship between the process parameters and geometrical characteristics of the sectional profile for the single track cladding (STC) deposited by High Power Diode Laser (HPDL) with rectangle beam spot (RBS). To obtain the geometry parameters, namely cladding width Wc and height Hc of the sectional profile, a full factorial design (FFD) of experiment was used to conduct the experiments with a total of 27. The pre-placed powder technique has been employed during laser cladding. The influence of the process parameters including laser power, powder thickness and scanning speed on the Wc and Hc was analyzed in detail. A nonlinear fitting model was used to fit the relationship between the process parameters and geometry parameters. And a circular arc was adopted to describe the geometry profile of the cross-section of STC. The above models were confirmed by all the experiments. The results indicated that the geometrical characteristics of the sectional profile of STC can be described as the circular arc, and the other geometry parameters of the sectional profile can be calculated only using Wc and Hc. Meanwhile, the Wc and Hc can be predicted through the process parameters.

  10. Dynamic wake model with coordinated pitch and torque control of wind farms for power tracking

    Science.gov (United States)

    Shapiro, Carl; Meyers, Johan; Meneveau, Charles; Gayme, Dennice

    2017-11-01

    Control of wind farm power production, where wind turbines within a wind farm coordinate to follow a time-varying power set point, is vital for increasing renewable energy participation in the power grid. Previous work developed a one-dimensional convection-diffusion equation describing the advection of the velocity deficit behind each turbine (wake) as well the turbulent mixing of the wake with the surrounding fluid. Proof-of-concept simulations demonstrated that a receding horizon controller built around this time-dependent model can effectively provide power tracking services by modulating the thrust coefficients of individual wind turbines. In this work, we extend this model-based controller to include pitch angle and generator torque control and the first-order dynamics of the drive train. Including these dynamics allows us to investigate control strategies for providing kinetic energy reserves to the grid, i.e. storing kinetic energy from the wind in the rotating mass of the wind turbine rotor for later use. CS, CM, and DG are supported by NSF (ECCS-1230788, CMMI 1635430, and OISE-1243482, the WINDINSPIRE project). JM is supported by ERC (ActiveWindFarms, 306471). This research was conducted using computational resources at MARCC.

  11. Mathematical pointing model establishment of the visual tracking theodolite for satellites in two kinds of observation methods.

    Science.gov (United States)

    Zhang, Yuncheng

    The mathematical pointing model is establishment of the visual tracking theodolite for satellites in two kinds of observation methods at Yunnan Observatory, which is related to the digitalisation reform and the optical-electronic technique reform, is introduced respectively in this paper.

  12. Estimation of error components in a multi-error linear regression model, with an application to track fitting

    International Nuclear Information System (INIS)

    Fruehwirth, R.

    1993-01-01

    We present an estimation procedure of the error components in a linear regression model with multiple independent stochastic error contributions. After solving the general problem we apply the results to the estimation of the actual trajectory in track fitting with multiple scattering. (orig.)

  13. First test model of the optical microscope which images the whole vertical particle tracks without any depth scanning

    International Nuclear Information System (INIS)

    Soroko, L.M.

    2001-01-01

    The first test model of the optical microscope which produces the in focus image of the whole vertical particle track without depth scanning is described. The in focus image of the object consisting of the linear array of the point-like elements was obtained. A comparison with primary out of focus image of such an object has been made

  14. Information acquisition during online decision-making : A model-based exploration using eye-tracking data

    NARCIS (Netherlands)

    Shi, W.; Wedel, M.; Pieters, R.

    2013-01-01

    We propose a model of eye-tracking data to understand information acquisition patterns on attribute-by-product matrices, which are common in online choice environments such as comparison websites. The objective is to investigate how consumers gather product and attribute information from moment to

  15. Establishment and verification of three-dimensional dynamic model for heavy-haul train-track coupled system

    Science.gov (United States)

    Liu, Pengfei; Zhai, Wanming; Wang, Kaiyun

    2016-11-01

    For the long heavy-haul train, the basic principles of the inter-vehicle interaction and train-track dynamic interaction are analysed firstly. Based on the theories of train longitudinal dynamics and vehicle-track coupled dynamics, a three-dimensional (3-D) dynamic model of the heavy-haul train-track coupled system is established through a modularised method. Specifically, this model includes the subsystems such as the train control, the vehicle, the wheel-rail relation and the line geometries. And for the calculation of the wheel-rail interaction force under the driving or braking conditions, the large creep phenomenon that may occur within the wheel-rail contact patch is considered. For the coupler and draft gear system, the coupler forces in three directions and the coupler lateral tilt angles in curves are calculated. Then, according to the characteristics of the long heavy-haul train, an efficient solving method is developed to improve the computational efficiency for such a large system. Some basic principles which should be followed in order to meet the requirement of calculation accuracy are determined. Finally, the 3-D train-track coupled model is verified by comparing the calculated results with the running test results. It is indicated that the proposed dynamic model could simulate the dynamic performance of the heavy-haul train well.

  16. Device for positioning and generation of an element of track model and slice of the MELAS automatic equipment

    International Nuclear Information System (INIS)

    Kryutchenko, E.V.; Fedotov, V.S.

    1979-01-01

    The structure and organization of the device for positioning and generation of element of track model and slice of the MELAS automatic equipment which is developed for measuring films from big bubble chambers, is described. Main features of the device are studied and characteristics are given as well

  17. Surface remineralization potential of casein phosphopeptide-amorphous calcium phosphate on enamel eroded by cola-drinks: An in-situ model study

    Directory of Open Access Journals (Sweden)

    Navneet Grewal

    2013-01-01

    Full Text Available Aim: The aim of this study was to investigate the remineralization potential of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP on enamel eroded by cola drinks. Subjects and Methods: A total of 30 healthy subjects were selected from a random sample of 1200 children and divided into two groups of 15 each wherein calcium and phosphorus analyses and scanning electron microscope (SEM analysis was carried out to investigate the remineralization of enamel surface. A total of 30 non-carious premolar teeth were selected from the human tooth bank (HTB to prepare the in-situ appliance. Three enamel slabs were prepared from the same. One enamel slab was used to obtain baseline values and the other two were embedded into the upper palatal appliances prepared on the subjects′ maxillary working model. The subjects wore the appliance after which 30 ml cola drink exposure was given. After 15 days, the slabs were removed and subjected to respective analysis. Statistical Analysis Used: Means of all the readings of soluble calcium and phosphorous levels at baseline,post cola-drink exposure and post cpp-acp application were subjected to statistical analysis SPSS11.5 version.Comparison within groups and between groups was carried out using ANOVA and F-values at 1% level of significance. Results: Decrease in calcium solubility of enamel in the CPP-ACP application group as compared to post-cola drink exposure group (P < 0.05 was seen. Distinctive change in surface topography of enamel in the post-CPP-ACP application group as compared to post-cola drink exposure group was observed. Conclusion: CPP-ACP significantly promoted remineralization of enamel eroded by cola drinks as revealed by significant morphological changes seen in SEM magnification and spectrophotometric analyses.

  18. Imaging infrared: Scene simulation, modeling, and real image tracking; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    Science.gov (United States)

    Triplett, Milton J.; Wolverton, James R.; Hubert, August J.

    1989-09-01

    Various papers on scene simulation, modeling, and real image tracking using IR imaging are presented. Individual topics addressed include: tactical IR scene generator, dynamic FLIR simulation in flight training research, high-speed dynamic scene simulation in UV to IR spectra, development of an IR sensor calibration facility, IR celestial background scene description, transmission measurement of optical components at cryogenic temperatures, diffraction model for a point-source generator, silhouette-based tracking for tactical IR systems, use of knowledge in electrooptical trackers, detection and classification of target formations in IR image sequences, SMPRAD: simplified three-dimensional cloud radiance model, IR target generator, recent advances in testing of thermal imagers, generic IR system models with dynamic image generation, modeling realistic target acquisition using IR sensors in multiple-observer scenarios, and novel concept of scene generation and comprehensive dynamic sensor test.

  19. A Microsoft Project-Based Planning, Tracking, and Management Tool for the National Transonic Facility's Model Changeover Process

    Science.gov (United States)

    Vairo, Daniel M.

    1998-01-01

    The removal and installation of sting-mounted wind tunnel models in the National Transonic Facility (NTF) is a multi-task process having a large impact on the annual throughput of the facility. Approximately ten model removal and installation cycles occur annually at the NTF with each cycle requiring slightly over five days to complete. The various tasks of the model changeover process were modeled in Microsoft Project as a template to provide a planning, tracking, and management tool. The template can also be used as a tool to evaluate improvements to this process. This document describes the development of the template and provides step-by-step instructions on its use and as a planning and tracking tool. A secondary role of this document is to provide an overview of the model changeover process and briefly describe the tasks associated with it.

  20. Role of inertia in the rheology of amorphous sys- tems: a finite element based elasto plastic model

    Science.gov (United States)

    Karimi, Kamran; Barrat, Jean-Louis

    A simple Finite Element analysis with varying damping strength is used to model the athermal shear rheology of densely packed glassy systems at a continuum level. We focus on the influence of dissipation mechanism on bulk rheological properties. Our numerical studies, done over a wide range of damping coefficients, identify two well-separated rheological regimes along with a cross-over region controlled by a critical damping. In the overdamped limit, inertial effects are negligible and the rheological response is well described by the commonly observed Herschel-Bulkley equation. In stark contrast, inertial vibrations in the underdamped regime prompt a significant drop in the mean-stress level, leading to a non-monotonic constitutive relation. The observed negative slope in the flow curve, which is a signature of mechanical instability and thus permanent shear-banding, arises from the sole influence of inertia, in qualitative agreement with the recent molecular dynamics study of Nicolas et al. (arXiv preprint arXiv:1508.06067, 2015).

  1. Development of CFD analysis method based on droplet tracking model for BWR fuel assemblies

    International Nuclear Information System (INIS)

    Onishi, Yoichi; Minato, Akihiko; Ichikawa, Ryoko; Mashara, Yasuhiro

    2011-01-01

    It is well known that the minimum critical power ratio (MCPR) of the boiling water reactor (BWR) fuel assembly depends on the spacer grid type. Recently, improvement of the critical power is being studied by using a spacer grid with mixing devices attaching various types of flow deflectors. In order to predict the critical power of the improved BWR fuel assembly, we have developed an analysis method based on the consideration of detailed thermal-hydraulic mechanism of annular mist flow regime in the subchannels for an arbitrary spacer type. The proposed method is based on a computational fluid dynamics (CFD) model with a droplet tracking model for analyzing the vapor-phase turbulent flow in which droplets are transported in the subchannels of the BWR fuel assembly. We adopted the general-purpose CFD software Advance/FrontFlow/red (AFFr) as the base code, which is a commercial software package created as a part of Japanese national project. AFFr employs a three-dimensional (3D) unstructured grid system for application to complex geometries. First, AFFr was applied to single-phase flows of gas in the present paper. The calculated results were compared with experiments using a round cellular spacer in one subchannel to investigate the influence of the choice of turbulence model. The analyses using the large eddy simulation (LES) and re-normalisation group (RNG) k-ε models were carried out. The results of both the LES and RNG k-ε models show that calculations of velocity distribution and velocity fluctuation distribution in the spacer downstream reproduce the experimental results qualitatively. However, the velocity distribution analyzed by the LES model is better than that by the RNG k-ε model. The velocity fluctuation near the fuel rod, which is important for droplet deposition to the rod, is also simulated well by the LES model. Then, to examine the effect of the spacer shape on the analytical result, the gas flow analyses with the RNG k-ε model were performed

  2. On Inertial Body Tracking in the Presence of Model Calibration Errors.

    Science.gov (United States)

    Miezal, Markus; Taetz, Bertram; Bleser, Gabriele

    2016-07-22

    In inertial body tracking, the human body is commonly represented as a biomechanical model consisting of rigid segments with known lengths and connecting joints. The model state is then estimated via sensor fusion methods based on data from attached inertial measurement units (IMUs). This requires the relative poses of the IMUs w.r.t. the segments-the IMU-to-segment calibrations, subsequently called I2S calibrations-to be known. Since calibration methods based on static poses, movements and manual measurements are still the most widely used, potentially large human-induced calibration errors have to be expected. This work compares three newly developed/adapted extended Kalman filter (EKF) and optimization-based sensor fusion methods with an existing EKF-based method w.r.t. their segment orientation estimation accuracy in the presence of model calibration errors with and without using magnetometer information. While the existing EKF-based method uses a segment-centered kinematic chain biomechanical model and a constant angular acceleration motion model, the newly developed/adapted methods are all based on a free segments model, where each segment is represented with six degrees of freedom in the global frame. Moreover, these methods differ in the assumed motion model (constant angular acceleration, constant angular velocity, inertial data as control input), the state representation (segment-centered, IMU-centered) and the estimation method (EKF, sliding window optimization). In addition to the free segments representation, the optimization-based method also represents each IMU with six degrees of freedom in the global frame. In the evaluation on simulated and real data from a three segment model (an arm), the optimization-based method showed the smallest mean errors, standard deviations and maximum errors throughout all tests. It also showed the lowest dependency on magnetometer information and motion agility. Moreover, it was insensitive w.r.t. I2S position and

  3. Particle Tracking Model for Suspended Sediment Transport and Streambed Clogging Under Losing and Gaining Conditions

    Science.gov (United States)

    Preziosi-Ribero, A.; Fox, A.; Packman, A. I.; Escobar-Vargas, J.; Donado-Garzon, L. D.; Li, A.; Arnon, S.

    2017-12-01

    Exchange of mass, momentum and energy between surface water and groundwater is a driving factor for the biology, ecology and chemistry of rivers and water bodies in general. Nonetheless, this exchange is dominated by different factors like topography, bed morphology, and large-scale hydraulic gradient. In the particular case of fine sediments like clay, conservative tracer modeling is impossible because they are trapped in river beds for long periods, thus the normal advection dispersion approach leads to errors and results do not agree with reality. This study proposes a numerical particle tracking model that represents the behavior of kaolinite in a sand flume, and how its deposition varies according to different flow conditions, namely losing and gaining flow. Since fine particles do not behave like solutes, kaolinite dynamics are represented using settling velocity and a filtration coefficient allowing the particles to be trapped in the bed. This approach allows us to use measurable parameters directly related with the fine particle features as size and shape, and hydraulic parameters. Results are then compared with experimental results from lab experiments obtained in a recirculating flume, in order to assess the impact of losing and gaining conditions on sediment transport and deposition. Furthermore, our model is able to identify the zones where kaolinite deposition concentrates over the flume due to the bed geometry, and later relate these results with clogging of the bed and hence changes in the bed's hydraulic conductivity. Our results suggest that kaolinite deposition is higher under losing conditions since the vertical velocity of the flow is added to the deposition velocity of the particles modeled. Moreover, the zones where kaolinite concentrates varies under different flow conditions due to the difference in pressure and velocity in the river bed.

  4. Modeling and Predistortion of Envelope Tracking Power Amplifiers using a Memory Binomial Model

    DEFF Research Database (Denmark)

    Tafuri, Felice Francesco; Sira, Daniel; Larsen, Torben

    2013-01-01

    . The model definition is based on binomial series, hence the name of memory binomial model (MBM). The MBM is here applied to measured data-sets acquired from an ET measurement set-up. When used as a PA model the MBM showed an NMSE (Normalized Mean Squared Error) as low as −40dB and an ACEPR (Adjacent Channel...... Error Power Ratio) below −51 dB. The simulated predistortion results showed that the MBM can improve the compensation of distortion in the adjacent channel of 5.8 dB and 5.7 dB compared to a memory polynomial predistorter (MPPD). The predistortion performance in the time domain showed an NMSE...

  5. Multi-dimensional boron transport modeling in subchannel approach: Part I. Model selection, implementation and verification of COBRA-TF boron tracking model

    Energy Technology Data Exchange (ETDEWEB)

    Ozdemir, Ozkan Emre, E-mail: ozdemir@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Avramova, Maria N., E-mail: mna109@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Sato, Kenya, E-mail: kenya_sato@mhi.co.jp [Mitsubishi Heavy Industries (MHI), Kobe (Japan)

    2014-10-15

    Highlights: ► Implementation of multidimensional boron transport model in a subchannel approach. ► Studies on cross flow mechanism, heat transfer and lateral pressure drop effects. ► Verification of the implemented model via code-to-code comparison with CFD code. - Abstract: The risk of reflux condensation especially during a Small Break Loss Of Coolant Accident (SB-LOCA) and the complications of tracking the boron concentration experimentally inside the primary coolant system have stimulated and subsequently have been a focus of many computational studies on boron tracking simulations in nuclear reactors. This paper presents the development and implementation of a multidimensional boron transport model with Modified Godunov Scheme within a thermal-hydraulic code based on a subchannel approach. The cross flow mechanism in multiple-subchannel rod bundle geometry as well as the heat transfer and lateral pressure drop effects are considered in the performed studies on simulations of deboration and boration cases. The Pennsylvania State University (PSU) version of the COBRA-TF (CTF) code was chosen for the implementation of three different boron tracking models: First Order Accurate Upwind Difference Scheme, Second Order Accurate Godunov Scheme, and Modified Godunov Scheme. Based on the performed nodalization sensitivity studies, the Modified Godunov Scheme approach with a physical diffusion term was determined to provide the best solution in terms of precision and accuracy. As a part of the verification and validation activities, a code-to-code comparison was carried out with the STAR-CD computational fluid dynamics (CFD) code and presented here. The objective of this study was two-fold: (1) to verify the accuracy of the newly developed CTF boron tracking model against CFD calculations; and (2) to investigate its numerical advantages as compared to other thermal-hydraulics codes.

  6. The use of long range identification and tracking (LRIT) for modelling the risk of ship-based oil spills

    Energy Technology Data Exchange (ETDEWEB)

    Szeto, Andrew [Canadian Coast Guard (Canada)], email: andrew.szeto@dfo-mpo.gc.ca; Pelot, Ronald [Dalhousie University (Canada)], email: ronald.pelot@dal.ca

    2011-07-01

    Accidents involving oil tankers have caused many and sometimes very large oil spills. Such spills to marine areas have a significant impact on environmental quality affecting all aspects of marine ecosystems. Based on valid shipping traffic data as a very important factor that must be considered in modeling the risk of ship-based oil spills, this paper shows the importance of use of the long-range identification and tracking (LRIT) system and looks at how it can be implemented to better assess ship-based oil pollution. The system is a new, accurate and reliable world-wide vessel tracking system with a range of data extended out to 1000 nm from Canadian shores and currently tracks up to about 900 vessels a day in real-time. It is believed that traffic data and effective monitoring can assist with search planning for detection of mystery spills, better resource deployment for spill mitigation, and improving information for research and management.

  7. Modelling of Track Reconstruction Inside Jets with the 2016 ATLAS $\\sqrt{s}= 13$ TeV pp dataset

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    Inside the core of high transverse momentum jets, the particle density is so high that the tracks of charged particles begin to overlap, and due to the different charged particles, pixel clusters in the ATLAS inner detector begin to merge. This high density environment results in a degradation of track reconstruction. Recent innovations to the ambiguity solving in the charged particle pattern recognition partially mitigate the loss in performance. However, it is critical for all physics results using tracks inside jets that the algorithms be well modeled by simulation. This note presents new measurements of the charged particle reconstruction inefficiency and fake rate inside jets with the $\\sqrt{s}=13$ TeV $pp$ dataset collected by the ATLAS experiment at the LHC in 2016.

  8. Amorphous calcium carbonate particles form coral skeletons

    Science.gov (United States)

    Mass, Tali; Giuffre, Anthony J.; Sun, Chang-Yu; Stifler, Cayla A.; Frazier, Matthew J.; Neder, Maayan; Tamura, Nobumichi; Stan, Camelia V.; Marcus, Matthew A.; Gilbert, Pupa U. P. A.

    2017-09-01

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed “vital effects,” that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene-Eocene Thermal Maximum that occurred 56 Mya.

  9. Tracking and recognition face in videos with incremental local sparse representation model

    Science.gov (United States)

    Wang, Chao; Wang, Yunhong; Zhang, Zhaoxiang

    2013-10-01

    This paper addresses the problem of tracking and recognizing faces via incremental local sparse representation. First a robust face tracking algorithm is proposed via employing local sparse appearance and covariance pooling method. In the following face recognition stage, with the employment of a novel template update strategy, which combines incremental subspace learning, our recognition algorithm adapts the template to appearance changes and reduces the influence of occlusion and illumination variation. This leads to a robust video-based face tracking and recognition with desirable performance. In the experiments, we test the quality of face recognition in real-world noisy videos on YouTube database, which includes 47 celebrities. Our proposed method produces a high face recognition rate at 95% of all videos. The proposed face tracking and recognition algorithms are also tested on a set of noisy videos under heavy occlusion and illumination variation. The tracking results on challenging benchmark videos demonstrate that the proposed tracking algorithm performs favorably against several state-of-the-art methods. In the case of the challenging dataset in which faces undergo occlusion and illumination variation, and tracking and recognition experiments under significant pose variation on the University of California, San Diego (Honda/UCSD) database, our proposed method also consistently demonstrates a high recognition rate.

  10. Amorphous silicon ionizing particle detectors

    Science.gov (United States)

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  11. A mathematical model of the rail track presented as a bar on elastic and dissipative supports under the influence of moving loads

    Directory of Open Access Journals (Sweden)

    Darenskiy Alexander

    2017-01-01

    Full Text Available At present, the most common track model is the one in which rails are presented as bars of infinite length rested on continuous elastic foundation. However, some specialists consider the model to be rather ideal for railways in terms of track and the technical state of track. Calculation of track as a bar rested on numerous elastic supports with variable characteristics of stiffness under static loads has shown that application of methods of elastic foundation gives results understated by 17-24%. The study presents mathematic models of the vehicle/track dynamic system, and a design scheme of track presented as a bar on numerous elastic dissipative supports with non-linear characteristics, which is taken on the base of this system. The authors developed models and methods to define the reduced vertical stiffness of the track in the wheel/rail contact point, which considers rail elastic and geometric characteristics, stiffness of supports, distance between supports and distributed track mass. The value of stiffness is variable by time for each wheel at any time and various for the vehicle’s wheels. The mathematical model proposed has been implemented in Matlab software and will make it possible to conduct numerical research into the track/vehicle dynamics.

  12. Recognition of risk situations based on endoscopic instrument tracking and knowledge based situation modeling

    Science.gov (United States)

    Speidel, Stefanie; Sudra, Gunther; Senemaud, Julien; Drentschew, Maximilian; Müller-Stich, Beat Peter; Gutt, Carsten; Dillmann, Rüdiger

    2008-03-01

    Minimally invasive surgery has gained significantly in importance over the last decade due to the numerous advantages on patient-side. The surgeon has to adapt special operation-techniques and deal with difficulties like the complex hand-eye coordination, limited field of view and restricted mobility. To alleviate these constraints we propose to enhance the surgeon's capabilities by providing a context-aware assistance using augmented reality (AR) techniques. In order to generate a context-aware assistance it is necessary to recognize the current state of the intervention using intraoperatively gained sensor data and a model of the surgical intervention. In this paper we present the recognition of risk situations, the system warns the surgeon if an instrument gets too close to a risk structure. The context-aware assistance system starts with an image-based analysis to retrieve information from the endoscopic images. This information is classified and a semantic description is generated. The description is used to recognize the current state and launch an appropriate AR visualization. In detail we present an automatic vision-based instrument tracking to obtain the positions of the instruments. Situation recognition is performed using a knowledge representation based on a description logic system. Two augmented reality visualization programs are realized to warn the surgeon if a risk situation occurs.

  13. Simulation model of ANN based maximum power point tracking controller for solar PV system

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Anil K.; Singh, Bhupal [Department of Electrical and Electronics Engineering, Ajay Kumar Garg Engineering College, Ghaziabad 201009 (India); Kaushika, N.D.; Agarwal, Niti [School of Research and Development, Bharati Vidyapeeth College of Engineering, A-4 Paschim Vihar, New Delhi 110063 (India)

    2011-02-15

    In this paper the simulation model of an artificial neural network (ANN) based maximum power point tracking controller has been developed. The controller consists of an ANN tracker and the optimal control unit. The ANN tracker estimates the voltages and currents corresponding to a maximum power delivered by solar PV (photovoltaic) array for variable cell temperature and solar radiation. The cell temperature is considered as a function of ambient air temperature, wind speed and solar radiation. The tracker is trained employing a set of 124 patterns using the back propagation algorithm. The mean square error of tracker output and target values is set to be of the order of 10{sup -5} and the successful convergent of learning process takes 1281 epochs. The accuracy of the ANN tracker has been validated by employing different test data sets. The control unit uses the estimates of the ANN tracker to adjust the duty cycle of the chopper to optimum value needed for maximum power transfer to the specified load. (author)

  14. Glue detection based on teaching points constraint and tracking model of pixel convolution

    Science.gov (United States)

    Geng, Lei; Ma, Xiao; Xiao, Zhitao; Wang, Wen

    2018-01-01

    On-line glue detection based on machine version is significant for rust protection and strengthening in car production. Shadow stripes caused by reflect light and unevenness of inside front cover of car reduce the accuracy of glue detection. In this paper, we propose an effective algorithm to distinguish the edges of the glue and shadow stripes. Teaching points are utilized to calculate slope between the two adjacent points. Then a tracking model based on pixel convolution along motion direction is designed to segment several local rectangular regions using distance. The distance is the height of rectangular region. The pixel convolution along the motion direction is proposed to extract edges of gules in local rectangular region. A dataset with different illumination and complexity shape stripes are used to evaluate proposed method, which include 500 thousand images captured from the camera of glue gun machine. Experimental results demonstrate that the proposed method can detect the edges of glue accurately. The shadow stripes are distinguished and removed effectively. Our method achieves the 99.9% accuracies for the image dataset.

  15. A Coupled Hidden Markov Random Field Model for Simultaneous Face Clustering and Tracking in Videos

    KAUST Repository

    Wu, Baoyuan; Hu, Bao-Gang; Ji, Qiang

    2016-01-01

    Face clustering and face tracking are two areas of active research in automatic facial video processing. They, however, have long been studied separately, despite the inherent link between them. In this paper, we propose to perform simultaneous face

  16. Nonaffinity in amorphous solids close to the jamming transition

    Directory of Open Access Journals (Sweden)

    Arévalo Roberto

    2017-01-01

    Full Text Available Nonaffinity is known to be an integral part of the response of amorphous solids. Its role is particularly relevant in particulate systems close to their jamming transition, where it dominates the elastic response. Thus, to determine the elastic properties of amorphous solids it is essential to rationalize the features of their nonaffine response. Via numerical simulations we investigate the relation between the non affine response and the vibrational properties of model amorphous materials. We show that, contrary to previous speculations, modes below the Boson peak are those mostly responsible for the nonaffine response.

  17. Modelling the geometry of a moving laser melt pool and deposition track via energy and mass balances

    Energy Technology Data Exchange (ETDEWEB)

    Pinkerton, Andrew J; Li Lin [Laser Processing Research Centre, Department of Mechanical, Aerospace and Manufacturing Engineering, University of Manchester Institute of Science and Technology, PO Box 88, Sackville Street, Manchester M60 1QD (United Kingdom)

    2004-07-21

    The additive manufacturing technique of laser direct metal deposition allows multiple tracks of full density metallic material to be built to form complex parts for rapid tooling and manufacture. Practical results and theoretical models have shown that the geometries of the tracks are governed by multiple factors. Original work with single layer cladding identified three basic clad profiles but, so far, models of multiple layer, powder-feed deposition have been based on only two of them. At higher powder mass flow rates, experimental results have shown that a layer's width can become greater than the melt pool width at the substrate surface, but previous analytical models have not been able to accommodate this. In this paper, a model based on this third profile is established and experimentally verified. The model concentrates on mathematical analysis of the melt pool and establishes mass and energy balances based on one-dimensional heat conduction to the substrate. Deposition track limits are considered as arcs of circles rather than of ellipses, as used in most established models, reflecting the dominance of surface tension forces in the melt pool, and expressions for elongation of the melt pool with increasing traverse speed are incorporated. Trends in layer width and height with major process parameters are captured and predicted layer dimensions correspond well to the experimental values.

  18. A non-reflecting boundary for use in a finite element beam model of a railway track

    Science.gov (United States)

    Yang, Jiannan; Thompson, David J.

    2015-02-01

    Some beam-like structures such as a railway track are effectively infinite in nature. Analytical solutions exist for simple structures but numerical methods like the finite element (FE) method are often employed to study more complicated problems. However, when the FE method is used for structures of infinite extent it is essential to introduce artificial boundaries to limit the area of computation. Here, a non-reflecting boundary is developed using a damped tapered tip for application in a finite element model representing an infinite supported beam. The FE model of the tapered tip is validated against an analytical model based on Bessel functions. The reflection characteristics of the FE tapered tip are quantified using a wave/FE superposition method. It is shown that the damped tapered tip is much more effective than its constant counterpart and achieves reduction of the model size. The damped tapered tip is applied to a simple FE railway track model and good agreement is found when its point mobility is compared with an analytical infinite track model.

  19. Disturbance observer-based L1 robust tracking control for hypersonic vehicles with T-S disturbance modeling

    Directory of Open Access Journals (Sweden)

    Yang Yi

    2016-11-01

    Full Text Available This article concerns a disturbance observer-based L1 robust anti-disturbance tracking algorithm for the longitudinal models of hypersonic flight vehicles with different kinds of unknown disturbances. On one hand, by applying T-S fuzzy models to represent those modeled disturbances, a disturbance observer relying on T-S disturbance models can be constructed to track the dynamics of exogenous disturbances. On the other hand, L1 index is introduced to analyze the attenuation performance of disturbance for those unmodeled disturbances. By utilizing the existing convex optimization algorithm, a disturbance observer-based proportional-integral-controlled input is proposed such that the stability of hypersonic flight vehicles can be ensured and the tracking error for velocity and altitude in hypersonic flight vehicle models can converge to equilibrium point. Furthermore, the satisfactory disturbance rejection and attenuation with L1 index can be obtained simultaneously. Simulation results on hypersonic flight vehicle models can reflect the feasibility and effectiveness of the proposed control algorithm.

  20. A model predictive control approach combined unscented Kalman filter vehicle state estimation in intelligent vehicle trajectory tracking

    Directory of Open Access Journals (Sweden)

    Hongxiao Yu

    2015-05-01

    Full Text Available Trajectory tracking and state estimation are significant in the motion planning and intelligent vehicle control. This article focuses on the model predictive control approach for the trajectory tracking of the intelligent vehicles and state estimation of the nonlinear vehicle system. The constraints of the system states are considered when applying the model predictive control method to the practical problem, while 4-degree-of-freedom vehicle model and unscented Kalman filter are proposed to estimate the vehicle states. The estimated states of the vehicle are used to provide model predictive control with real-time control and judge vehicle stability. Furthermore, in order to decrease the cost of solving the nonlinear optimization, the linear time-varying model predictive control is used at each time step. The effectiveness of the proposed vehicle state estimation and model predictive control method is tested by driving simulator. The results of simulations and experiments show that great and robust performance is achieved for trajectory tracking and state estimation in different scenarios.

  1. Verifying Food Web Bioaccumulation Models by Tracking Fish Exposure and Contaminant Uptake

    Science.gov (United States)

    2012-03-01

    remote dispatch of fish, so accepted procedures (CCAC, 1983; Lines et al. 2003; EFSA , 2004) will be incorporated into the design of the tracking and...Material selection and design will be made with an eye on biocompatibility to minimize any stress associated with inflammatory response. Safety and...Prototype Concept (Version 1 Tag) Squib inside capsule of dry reagent Membrane filled with KCl and heparin Cap Tracking, power, and timing module

  2. Energy Optimal Tracking Control with Discrete Fluid Power Systems using Model Predictive Control

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Asmussen, Magnus Færing; Bech, Michael Møller

    2017-01-01

    For Discrete Displacement Cylinder (DDC) drives the control task lies in choosing force level. Hence, which force level to apply and thereby which pressure level each cylinder chambers shall be connected to. The DDC system is inherently a force system why often a force reference is generated...... and compared to a PID like tracking controller combined with a FSA. The results indicate that the energy efficiency of position tracking DDC systems may be improved significantly by using the MPC algorithm....

  3. Theoretical model and experimental verification on the PID tracking method using liquid crystal optical phased array

    Science.gov (United States)

    Wang, Xiangru; Xu, Jianhua; Huang, Ziqiang; Wu, Liang; Zhang, Tianyi; Wu, Shuanghong; Qiu, Qi

    2017-02-01

    Liquid crystal optical phased array (LC-OPA) has been considered with great potential on the non-mechanical laser deflector because it is fabricated using photolithographic patterning technology which has been well advanced by the electronics and display industry. As a vital application of LC-OPA, free space laser communication has demonstrated its merits on communication bandwidth. Before data communication, ATP (acquisition, tracking and pointing) process costs relatively long time to result in a bottle-neck of free space laser communication. Meanwhile, dynamic real time accurate tracking is sensitive to keep a stable communication link. The electro-optic medium liquid crystal with low driving voltage can be used as the laser beam deflector. This paper presents a fast-track method using liquid crystal optical phased array as the beam deflector, CCD as a beacon light detector. PID (Proportion Integration Differentiation) loop algorithm is introduced as the controlling algorithm to generate the corresponding steering angle. To achieve the goal of fast and accurate tracking, theoretical analysis and experimental verification are demonstrated that PID closed-loop system can suppress the attitude random vibration. Meanwhile, theoretical analysis shows that tracking accuracy can be less than 6.5μrad, with a relative agreement with experimental results which is obtained after 10 adjustments that the tracking accuracy is less than12.6μrad.

  4. Tracking Control of a Magnetic Shape Memory Actuator Using an Inverse Preisach Model with Modified Fuzzy Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Jhih-Hong Lin

    2016-08-01

    Full Text Available Magnetic shape memory (MSM alloys are a new class of smart materials with extraordinary strains up to 12% and frequencies in the range of 1 to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, significant non-linear hysteresis behavior is a significant barrier to control the MSM actuator. In this paper, the Preisach model was used, by capturing experiments from different input signals and output responses, to model the hysteresis of MSM actuator, and the inverse Preisach model, as a feedforward control, provided compensational signals to the MSM actuator to linearize the hysteresis non-linearity. The control strategy for path tracking combined the hysteresis compensator and the modified fuzzy sliding mode control (MFSMC which served as a path controller. Based on the experimental results, it was verified that a tracking error in the order of micrometers was achieved.

  5. Tracking Control of a Magnetic Shape Memory Actuator Using an Inverse Preisach Model with Modified Fuzzy Sliding Mode Control.

    Science.gov (United States)

    Lin, Jhih-Hong; Chiang, Mao-Hsiung

    2016-08-25

    Magnetic shape memory (MSM) alloys are a new class of smart materials with extraordinary strains up to 12% and frequencies in the range of 1 to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, significant non-linear hysteresis behavior is a significant barrier to control the MSM actuator. In this paper, the Preisach model was used, by capturing experiments from different input signals and output responses, to model the hysteresis of MSM actuator, and the inverse Preisach model, as a feedforward control, provided compensational signals to the MSM actuator to linearize the hysteresis non-linearity. The control strategy for path tracking combined the hysteresis compensator and the modified fuzzy sliding mode control (MFSMC) which served as a path controller. Based on the experimental results, it was verified that a tracking error in the order of micrometers was achieved.

  6. Intrinsic charge trapping in amorphous oxide films: status and challenges

    Science.gov (United States)

    Strand, Jack; Kaviani, Moloud; Gao, David; El-Sayed, Al-Moatasem; Afanas’ev, Valeri V.; Shluger, Alexander L.

    2018-06-01

    We review the current understanding of intrinsic electron and hole trapping in insulating amorphous oxide films on semiconductor and metal substrates. The experimental and theoretical evidences are provided for the existence of intrinsic deep electron and hole trap states stemming from the disorder of amorphous metal oxide networks. We start from presenting the results for amorphous (a) HfO2, chosen due to the availability of highest purity amorphous films, which is vital for studying their intrinsic electronic properties. Exhaustive photo-depopulation spectroscopy measurements and theoretical calculations using density functional theory shed light on the atomic nature of electronic gap states responsible for deep electron trapping observed in a-HfO2. We review theoretical methods used for creating models of amorphous structures and electronic structure calculations of amorphous oxides and outline some of the challenges in modeling defects in amorphous materials. We then discuss theoretical models of electron polarons and bi-polarons in a-HfO2 and demonstrate that these intrinsic states originate from low-coordinated ions and elongated metal-oxygen bonds in the amorphous oxide network. Similarly, holes can be captured at under-coordinated O sites. We then discuss electron and hole trapping in other amorphous oxides, such as a-SiO2, a-Al2O3, a-TiO2. We propose that the presence of low-coordinated ions in amorphous oxides with electron states of significant p and d character near the conduction band minimum can lead to electron trapping and that deep hole trapping should be common to all amorphous oxides. Finally, we demonstrate that bi-electron trapping in a-HfO2 and a-SiO2 weakens Hf(Si)–O bonds and significantly reduces barriers for forming Frenkel defects, neutral O vacancies and O2‑ ions in these materials. These results should be useful for better understanding of electronic properties and structural evolution of thin amorphous films under carrier injection

  7. Tracking Electroencephalographic Changes Using Distributions of Linear Models: Application to Propofol-Based Depth of Anesthesia Monitoring.

    Science.gov (United States)

    Kuhlmann, Levin; Manton, Jonathan H; Heyse, Bjorn; Vereecke, Hugo E M; Lipping, Tarmo; Struys, Michel M R F; Liley, David T J

    2017-04-01

    Tracking brain states with electrophysiological measurements often relies on short-term averages of extracted features and this may not adequately capture the variability of brain dynamics. The objective is to assess the hypotheses that this can be overcome by tracking distributions of linear models using anesthesia data, and that anesthetic brain state tracking performance of linear models is comparable to that of a high performing depth of anesthesia monitoring feature. Individuals' brain states are classified by comparing the distribution of linear (auto-regressive moving average-ARMA) model parameters estimated from electroencephalographic (EEG) data obtained with a sliding window to distributions of linear model parameters for each brain state. The method is applied to frontal EEG data from 15 subjects undergoing propofol anesthesia and classified by the observers assessment of alertness/sedation (OAA/S) scale. Classification of the OAA/S score was performed using distributions of either ARMA parameters or the benchmark feature, Higuchi fractal dimension. The highest average testing sensitivity of 59% (chance sensitivity: 17%) was found for ARMA (2,1) models and Higuchi fractal dimension achieved 52%, however, no statistical difference was observed. For the same ARMA case, there was no statistical difference if medians are used instead of distributions (sensitivity: 56%). The model-based distribution approach is not necessarily more effective than a median/short-term average approach, however, it performs well compared with a distribution approach based on a high performing anesthesia monitoring measure. These techniques hold potential for anesthesia monitoring and may be generally applicable for tracking brain states.

  8. Crystallization inhibitors for amorphous oxides

    International Nuclear Information System (INIS)

    Reznitskij, L.A.; Filippova, S.E.

    1993-01-01

    Data for the last 10 years, in which experimental results of studying the temperature stabilization of x-ray amorphous oxides (including R 3 Fe 5 O 12 R-rare earths, ZrO 2 , In 2 O 3 , Sc 2 O 3 ) and their solid solution are presented, are generalized. Processes of amorphous oxide crystallization with the production of simple oxides, solid solutions and chemical compounds with different polyhedral structure, are investigated. Energy and crystallochemical criteria for selecting the doping inhibitor-components stabilizing the amorphous state are ascertained, temperatures and enthalpies of amorpous oxide crystallization are determined, examination of certain provisions of iso,orphous miscibility theory is conducted

  9. From tracking code to analysis generalised Courant-Snyder theory for any accelerator model

    CERN Document Server

    Forest, Etienne

    2016-01-01

    This book illustrates a theory well suited to tracking codes, which the author has developed over the years. Tracking codes now play a central role in the design and operation of particle accelerators. The theory is fully explained step by step with equations and actual codes that the reader can compile and run with freely available compilers. In this book, the author pursues a detailed approach based on finite “s”-maps, since this is more natural as long as tracking codes remain at the center of accelerator design. The hierarchical nature of software imposes a hierarchy that puts map-based perturbation theory above any other methods. This is not a personal choice: it follows logically from tracking codes overloaded with a truncated power series algebra package. After defining abstractly and briefly what a tracking code is, the author illustrates most of the accelerator perturbation theory using an actual code: PTC. This book may seem like a manual for PTC; however, the reader is encouraged to explore...

  10. Altered defaecatory behaviour and faecal incontinence in a video-tracked animal model of pudendal neuropathy.

    Science.gov (United States)

    Devane, L A; Lucking, E; Evers, J; Buffini, M; Scott, S M; Knowles, C H; O'Connell, P R; Jones, J F X

    2017-05-01

    The aim was to develop a behavioural animal model of faecal continence and assess the effect of retro-uterine balloon inflation (RBI) injury. RBI in the rat causes pudendal neuropathy, a risk factor for obstetric related faecal incontinence in humans. Video-tracking of healthy rats (n = 12) in a cage containing a latrine box was used to monitor their defaecatory behaviour index (DBI) over 2 weeks. The DBI (range 0-1) was devised by dividing the defaecation rate (pellets per hour) outside the latrine by that of the whole cage. A score of 0 indicates all pellets were deposited in the latrine. Subsequently, the effects of RBI (n = 19), sham surgery (n = 4) and colostomy (n = 2) were determined by monitoring the DBI for 2 weeks preoperatively and 3 weeks postoperatively. The DBI for healthy rats was 0.1 ± 0.03 with no significant change over 2 weeks (P = 0.71). In the RBI group, 13 of 19 rats (68%) showed no significant change in DBI postoperatively (0.08 ±  -0.05 vs 0.11 ±  -0.07) while in six rats the DBI increased from 0.16 ±  -0.09 to 0.46 ± 0.23. The negative control, sham surgery, did not significantly affect the DBI (0.09 ± 0.06 vs 0.08 ± 0.04, P = 0.14). The positive control, colostomy, increased the DBI from 0.26 ± 0.03 to 0.86 ± 0.08. This is the first study showing a quantifiable change in defaecatory behaviour following injury in an animal model. This model of pudendal neuropathy affects continence in 32% of rats and provides a basis for research on interventions for incontinence. Colorectal Disease © 2017 The Association of Coloproctology of Great Britain and Ireland.

  11. Investigating added value of regional climate modeling in North American winter storm track simulations

    Science.gov (United States)

    Poan, E. D.; Gachon, P.; Laprise, R.; Aider, R.; Dueymes, G.

    2018-03-01

    Extratropical Cyclone (EC) characteristics depend on a combination of large-scale factors and regional processes. However, the latter are considered to be poorly represented in global climate models (GCMs), partly because their resolution is too coarse. This paper describes a framework using possibilities given by regional climate models (RCMs) to gain insight into storm activity during winter over North America (NA). Recent past climate period (1981-2005) is considered to assess EC activity over NA using the NCEP regional reanalysis (NARR) as a reference, along with the European reanalysis ERA-Interim (ERAI) and two CMIP5 GCMs used to drive the Canadian Regional Climate Model—version 5 (CRCM5) and the corresponding regional-scale simulations. While ERAI and GCM simulations show basic agreement with NARR in terms of climatological storm track patterns, detailed bias analyses show that, on the one hand, ERAI presents statistically significant positive biases in terms of EC genesis and therefore occurrence while capturing their intensity fairly well. On the other hand, GCMs present large negative intensity biases in the overall NA domain and particularly over NA eastern coast. In addition, storm occurrence over the northwestern topographic regions is highly overestimated. When the CRCM5 is driven by ERAI, no significant skill deterioration arises and, more importantly, all storm characteristics near areas with marked relief and over regions with large water masses are significantly improved with respect to ERAI. Conversely, in GCM-driven simulations, the added value contributed by CRCM5 is less prominent and systematic, except over western NA areas with high topography and over the Western Atlantic coastlines where the most frequent and intense ECs are located. Despite this significant added-value on seasonal-mean characteristics, a caveat is raised on the RCM ability to handle storm temporal `seriality', as a measure of their temporal variability at a given

  12. Dynamic modelling and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances

    Science.gov (United States)

    Yang, Xinxin; Ge, Shuzhi Sam; He, Wei

    2018-04-01

    In this paper, both the closed-form dynamics and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances are developed. The dynamic model of the system is described with assumed modes approach and Lagrangian method. The flexible manipulators are represented as Euler-Bernoulli beams. Based on singular perturbation technique, the displacements/joint angles and flexible modes are modelled as slow and fast variables, respectively. A sliding mode control is designed for trajectories tracking of the slow subsystem under unknown but bounded disturbances, and an adaptive sliding mode control is derived for slow subsystem under unknown slowly time-varying disturbances. An optimal linear quadratic regulator method is proposed for the fast subsystem to damp out the vibrations of the flexible manipulators. Theoretical analysis validates the stability of the proposed composite controller. Numerical simulation results demonstrate the performance of the closed-loop flexible space robot system.

  13. Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization.

    Science.gov (United States)

    Sartori, Massimo; Farina, Dario; Lloyd, David G

    2014-11-28

    Current electromyography (EMG)-driven musculoskeletal models are used to estimate joint moments measured from an individual׳s extremities during dynamic movement with varying levels of accuracy. The main benefit is the underlying musculoskeletal dynamics is simulated as a function of realistic, subject-specific, neural-excitation patterns provided by the EMG data. The main disadvantage is surface EMG cannot provide information on deeply located muscles. Furthermore, EMG data may be affected by cross-talk, recording and post-processing artifacts that could adversely influence the EMG׳s information content. This limits the EMG-driven model׳s ability to calculate the multi-muscle dynamics and the resulting joint moments about multiple degrees of freedom. We present a hybrid neuromusculoskeletal model that combines calibration, subject-specificity, EMG-driven and static optimization methods together. In this, the joint moment tracking errors are minimized by balancing the information content extracted from the experimental EMG data and from that generated by a static optimization method. Using movement data from five healthy male subjects during walking and running we explored the hybrid model׳s best configuration to minimally adjust recorded EMGs and predict missing EMGs while attaining the best tracking of joint moments. Minimally adjusted and predicted excitations substantially improved the experimental joint moment tracking accuracy than current EMG-driven models. The ability of the hybrid model to predict missing muscle EMGs was also examined. The proposed hybrid model enables muscle-driven simulations of human movement while enforcing physiological constraints on muscle excitation patterns. This might have important implications for studying pathological movement for which EMG recordings are limited.

  14. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice

    Science.gov (United States)

    Lin, Chuanlong; Yong, Xue; Tse, John S.; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kenney-Benson, Curtis; Shen, Guoyin

    2017-09-01

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ˜1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.

  15. An effort to improve track and intensity prediction of tropical cyclones through vortex initialization in NCUM-global model

    Science.gov (United States)

    Singh, Vivek; Routray, A.; Mallick, Swapan; George, John P.; Rajagopal, E. N.

    2016-05-01

    Tropical cyclones (TCs) have strong impact on socio-economic conditions of the countries like India, Bangladesh and Myanmar owing to its awful devastating power. This brings in the need of precise forecasting system to predict the tracks and intensities of TCs accurately well in advance. However, it has been a great challenge for major operational meteorological centers over the years. Genesis of TCs over data sparse warm Tropical Ocean adds more difficulty to this. Weak and misplaced vortices at initial time are one of the prime sources of track and intensity errors in the Numerical Weather Prediction (NWP) models. Many previous studies have reported the forecast skill of track and intensity of TC improved due to the assimilation of satellite data along with vortex initialization (VI). Keeping this in mind, an attempt has been made to investigate the impact of vortex initialization for simulation of TC using UK-Met office global model, operational at NCMRWF (NCUM). This assessment is carried out by taking the case of a extremely severe cyclonic storm "Chapala" that occurred over Arabian Sea (AS) from 28th October to 3rd November 2015. Two numerical experiments viz. Vort-GTS (Assimilation of GTS observations with VI) and Vort-RAD (Same as Vort-GTS with assimilation of satellite data) are carried out. This vortex initialization study in NCUM model is first of its type over North Indian Ocean (NIO). The model simulation of TC is carried out with five different initial conditions through 24 hour cycles for both the experiments. The results indicate that the vortex initialization with assimilation of satellite data has a positive impact on the track and intensity forecast, landfall time and position error of the TCs.

  16. Dynamic Modeling and Simulation of Marine Satellite Tracking Antenna Using Lagrange Method

    DEFF Research Database (Denmark)

    Wang, Yunlong; Soltani, Mohsen; Hussain, Dil muhammed Akbar

    2016-01-01

    Marine Satellite Tracking Antenna (MSTA) is a necessary device in ships for receiving satellite signals when they are sailing on the sea. This paper presents a simple methodology to obtain the dynamic equations of MSTA through Lagrange method, which is fundamental in design of modelbased controll......Marine Satellite Tracking Antenna (MSTA) is a necessary device in ships for receiving satellite signals when they are sailing on the sea. This paper presents a simple methodology to obtain the dynamic equations of MSTA through Lagrange method, which is fundamental in design of modelbased...

  17. A free geometry model-independent neural eye-gaze tracking system

    Directory of Open Access Journals (Sweden)

    Gneo Massimo

    2012-11-01

    Full Text Available Abstract Background Eye Gaze Tracking Systems (EGTSs estimate the Point Of Gaze (POG of a user. In diagnostic applications EGTSs are used to study oculomotor characteristics and abnormalities, whereas in interactive applications EGTSs are proposed as input devices for human computer interfaces (HCI, e.g. to move a cursor on the screen when mouse control is not possible, such as in the case of assistive devices for people suffering from locked-in syndrome. If the user’s head remains still and the cornea rotates around its fixed centre, the pupil follows the eye in the images captured from one or more cameras, whereas the outer corneal reflection generated by an IR light source, i.e. glint, can be assumed as a fixed reference point. According to the so-called pupil centre corneal reflection method (PCCR, the POG can be thus estimated from the pupil-glint vector. Methods A new model-independent EGTS based on the PCCR is proposed. The mapping function based on artificial neural networks allows to avoid any specific model assumption and approximation either for the user’s eye physiology or for the system initial setup admitting a free geometry positioning for the user and the system components. The robustness of the proposed EGTS is proven by assessing its accuracy when tested on real data coming from: i different healthy users; ii different geometric settings of the camera and the light sources; iii different protocols based on the observation of points on a calibration grid and halfway points of a test grid. Results The achieved accuracy is approximately 0.49°, 0.41°, and 0.62° for respectively the horizontal, vertical and radial error of the POG. Conclusions The results prove the validity of the proposed approach as the proposed system performs better than EGTSs designed for HCI which, even if equipped with superior hardware, show accuracy values in the range 0.6°-1°.

  18. Amorphous Ti-Zr

    International Nuclear Information System (INIS)

    Rabinkin, A.; Liebermann, H.; Pounds, S.; Taylor, T.

    1991-01-01

    This paper is the first report on processing, properties and potential application of amorphous titanium/zirconium-base alloys produced in the form of a good quality continuous and ductile ribbon having up to 12.5 mm width. To date, the majority of titanium brazing is accomplished using cooper and aluminum-base brazing filler metals. The brazements produced with these filler metals have rather low (∼300 degrees C) service temperature, thus impeding progress in aircraft and other technologies and industries. The attempt to develop a generation of high temperature brazing filler metals was made in the late sixties-early seventies studies in detail were a large number of Ti-, Zr-Ti-Zr, Ti-V and Zr-V-Ti based alloys. The majority of these alloys has copper and nickel as melting temperature depressants. The presence of nickel and copper converts them into eutectic alloys having [Ti(Zr)] [Cu(Ni)], intermetallic phases as major structural constituents. This, in turn, results in high alloy brittleness and poor, if any, processability by means of conventional, i.e. melting-ingot casting-deformation technology. In spite of good wettability and high joint strength achieved in dozens of promising alloys, only Ti-15Cu-15Ni is now widely used as a brazing filler metal for high service temperature. Up until now this material could not be produced as a homogeneous foil and is instead applied as a clad strip consisting of three separate metallic layers

  19. Anomalous magnetoresistance in amorphous metals

    International Nuclear Information System (INIS)

    Kuz'menko, V.M.; Vladychkin, A.N.; Mel'nikov, V.I.; Sudovtsev, A.I.

    1984-01-01

    The magnetoresistance of amorphous Bi, Ca, V and Yb films is investigated in fields up to 4 T at low temperatures. For all metals the magnetoresistance is positive, sharply decreases with growth of temperature and depends anomalously on the magnetic field strength. For amorphous superconductors the results agree satisfactorily with the theory of anomalous magnetoresistance in which allowance is made for scattering of electrons by the superconducting fluctuations

  20. Amorphous structure evolution of high power diode laser cladded Fe–Co–B–Si–Nb coatings

    International Nuclear Information System (INIS)

    Zhu Yanyan; Li Zhuguo; Huang Jian; Li Min; Li Ruifeng; Wu Yixiong

    2012-01-01

    Highlights: ► Fabricated amorphous composited coating by high power diode laser cladding with single track. ► Lower dilution and higher scanning speed are desired to obtain higher amorphous phase fraction. ► White spots phase with high content of Nb embedded in the amorphous matrix. - Abstract: Fe–Co–B–Si–Nb coatings were fabricated on the surface of low carbon steel using high power diode laser cladding of [(Fe 0.5 Co 0.5 ) 0.75 B 0.2 Si 0.05 ] 95.7 Nb 4.3 amorphous powders at three different scanning speeds of 6, 17 and 50 m/s. At each scanning speed, laser power was optimized to obtain low dilution ratio. Scanning electron microscopy, X-ray diffraction, transmission electron microscopy with energy dispersive spectrometer and electron probe micro analysis were carried out to characterize the microstructure and chemical composition of the cladded coatings. Differential scanning calorimetry was also carried out to investigate the fraction of the amorphous phase. The results showed that dilution ratio and scanning speed were the two main factors for fabricating Fe–Co–B–Si–Nb amorphous coating by high power diode laser cladding. Low dilution ratio was crucial for the formation of amorphous phase. When the dilution ratio was low, the fraction of amorphous phase in the cladded coatings increased upon increasing the scanning speed.

  1. A process model for design team communication within fast-track building projects using project websites

    NARCIS (Netherlands)

    Otter, den A.F.H.J.; Reymen, I.M.M.J.

    2008-01-01

    The factor time within building projects is on high pressure because of the increasing need for faster delivery of buildings. Within fast track, complex building projects the design process is an important key. Through case analyses offart-hack design processes it became obvious that process and

  2. Tracking the reading eye: towards a model of real-world reading

    NARCIS (Netherlands)

    Jarodzka, Halszka; Brand-Gruwel, Saskia

    2018-01-01

    Eye tracking has helped to understand the process of reading a word or a sentence, and this research has been very fruitful over the past decades. However, everyday real-world reading dramatically differs from this scenario: we read a newspaper on the bus, surf the Internet for movie reviews or

  3. A vortex filament tracking method for the Gross–Pitaevskii model of a superfluid

    International Nuclear Information System (INIS)

    Villois, Alberto; Proment, Davide; Salman, Hayder; Krstulovic, Giorgio

    2016-01-01

    We present an accurate and robust numerical method to track quantised vortex lines in a superfluid described by the Gross–Pitaevskii equation. By utilising the pseudo-vorticity field of the associated complex scalar order parameter of the superfluid, we are able to track the topological defects of the superfluid and reconstruct the vortex lines which correspond to zeros of the field. Throughout, we assume our field is periodic to allow us to make extensive use of the Fourier representation of the field and its derivatives in order to retain spectral accuracy. We present several case studies to test the precision of the method which include the evaluation of the curvature and torsion of a torus vortex knot, and the measurement of the Kelvin wave spectrum of a vortex line and a vortex ring. The method we present makes no a priori assumptions on the geometry of the vortices and is therefore applicable to a wide range of systems such as a superfluid in a turbulent state that is characterised by many vortex rings coexisting with sound waves. This allows us to track the positions of the vortex filaments in a dense turbulent vortex tangle and extract statistical information about the distribution of the size of the vortex rings and the inter-vortex separations. In principle, the method can be extended to track similar topological defects arising in other physical systems. (paper)

  4. Threshold irradiation dose for amorphization of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Zinkle, S.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenon ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface of strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be {approximately}0.56 eV. This model successfully explains the difference in the temperature-dependent amorphization behavior of SiC irradiated with 0.56 MeV silicon ions at 1 x 10{sup {minus}3} dpa/s and with fission neutrons irradiated at 1 x 10{sup {minus}6} dpa/s irradiated to 15 dpa in the temperature range of {approximately}340 {+-} 10K.

  5. Tracking sensitive source areas of different weather pollution types using GRAPES-CUACE adjoint model

    Science.gov (United States)

    Wang, Chao; An, Xingqin; Zhai, Shixian; Hou, Qing; Sun, Zhaobin

    2018-02-01

    In this study, the sustained pollution processes were selected during which daily PM2.5 concentration exceeded 75 μg/m3 for three days continuously based on the hourly data of Beijing observation sites from July 2012 to December 2015. Using the China Meteorological Administration (CMA) MICAPS meteorological processing system, synoptic situation during PM2.5 pollution processes was classified into five weather types: low pressure and weak high pressure alternating control, weak high pressure, low pressure control, high rear, and uniform pressure field. Then, we chose the representative pollution cases corresponding to each type, adopted the GRAPES-CUACE adjoint model tracking the sensitive source areas of the five types, and analyzed the critical discharge periods of Beijing and neighboring provinces as well as their contribution to the PM2.5 peak concentration in Beijing. The results showed that the local source plays the main theme in the 30 h before the objective time, and prior to 72 h before the objective time contribution of local sources for the five pollution types are 37.5%, 25.0%, 39.4%, 31.2%, and 42.4%, respectively; the Hebei source contributes constantly in the 57 h ahead of the objective time with the contribution proportion ranging from 37% to 64%; the contribution period and rate of Tianjin and Shanxi sources are shorter and smaller. Based on the adjoint sensitivity analysis, we further discussed the effect of emission reduction control measures in different types, finding that the effect of local source reduction in the first 20 h of the objective time is better, and if the local source is reduced 50% within 72 h before the objective time, the decline rates of PM2.5 in the five types are 11.6%, 9.4%, 13.8%, 9.9% and 15.2% respectively. And the reduction effect of the neighboring sources is better within the 3-57 h before the objective time.

  6. In vivo tracking of neuronal-like cells by magnetic resonance in rabbit models of spinal cord injury

    Science.gov (United States)

    Zhang, Ruiping; Zhang, Kun; Li, Jianding; Liu, Qiang; Xie, Jun

    2013-01-01

    In vitro experiments have demonstrated that neuronal-like cells derived from bone marrow mesenchymal stem cells can survive, migrate, integrate and help to restore the function and behaviors of spinal cord injury models, and that they may serve as a suitable approach to treating spinal cord injury. However, it is very difficult to track transplanted cells in vivo. In this study, we injected superparamagnetic iron oxide-labeled neuronal-like cells into the subarachnoid space in a rabbit model of spinal cord injury. At 7 days after cell transplantation, a small number of dot-shaped low signal intensity shadows were observed in the spinal cord injury region, and at 14 days, the number of these shadows increased on T2-weighted imaging. Perl's Prussian blue staining detected dot-shaped low signal intensity shadows in the spinal cord injury region, indicative of superparamagnetic iron oxide nanoparticle-labeled cells. These findings suggest that transplanted neuronal-like cells derived from bone marrow mesenchymal stem cells can migrate to the spinal cord injury region and can be tracked by magnetic resonance in vivo. Magnetic resonance imaging represents an efficient noninvasive technique for visually tracking transplanted cells in vivo. PMID:25206659

  7. Tracking student progress in a game-like physics learning environment with a Monte Carlo Bayesian knowledge tracing model

    Science.gov (United States)

    Gweon, Gey-Hong; Lee, Hee-Sun; Dorsey, Chad; Tinker, Robert; Finzer, William; Damelin, Daniel

    2015-03-01

    In tracking student learning in on-line learning systems, the Bayesian knowledge tracing (BKT) model is a popular model. However, the model has well-known problems such as the identifiability problem or the empirical degeneracy problem. Understanding of these problems remain unclear and solutions to them remain subjective. Here, we analyze the log data from an online physics learning program with our new model, a Monte Carlo BKT model. With our new approach, we are able to perform a completely unbiased analysis, which can then be used for classifying student learning patterns and performances. Furthermore, a theoretical analysis of the BKT model and our computational work shed new light on the nature of the aforementioned problems. This material is based upon work supported by the National Science Foundation under Grant REC-1147621 and REC-1435470.

  8. Simulation of DNA Damage in Human Cells from Space Radiation Using a Physical Model of Stochastic Particle Tracks and Chromosomes

    Science.gov (United States)

    Ponomarev, Artem; Plante, Ianik; Hada, Megumi; George, Kerry; Wu, Honglu

    2015-01-01

    The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a recently developed model, in which chromosomes simulated by NASARTI (NASA Radiation Tracks Image) is combined with nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS (Relativistic Ion Tracks) in a voxelized space. The model produces the number of DSBs, as a function of dose for high-energy iron, oxygen, and carbon ions, and He ions. The combined model calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The merged computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The merged model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation.

  9. Conception and modelling of photo-detection pixels. PIN photodiodes conceived in amorphous silicon for particles detection; Conception et modelisation de pixels de photodetection: Photodiodes PIN en silicium amorphe en vue de leurs utilisations comme detecteurs de particules

    Energy Technology Data Exchange (ETDEWEB)

    Negru, R

    2008-06-15

    The research done has revealed that the a-Si:H is a material ideally suited for the detection of particles, while being resistant to radiation. It also has a low manufacturing cost, is compatible with existing technology and can be deposited over large areas. Thus, despite the low local mobility of charges (30 cm{sup 2}/V/s), a-Si:H is a material of particular interest for manufacturing high-energy particle detection pixels. As a consequence of this, we have studied the feasibility of an experimental pixel stacked structure based on a-Si:H as a basic sensor element for an electromagnetic calorimeter. The structure of such a pixel consists of different components. First, a silicon PIN diode in a-Si:H is fabricated, followed by a bias resistor and a decoupling capacitor. Before such a structure is made and in order to optimize its design, it is essential to have an efficient behavioural model of the various components. Thus, our primary goal was to develop a two-dimensional physical model of the PIN diode using the SILVACO finite element calculation software. This a-Si:H PIN diode two-dimensional physical model allowed us to study the problem of crosstalk between pixels in a matrix structure of detectors. In particular, we concentrated on the leakage current and the current generated in the volume between neighbouring pixels. The successful implementation of this model in SPICE ensures its usefulness in other professional simulators and especially its integration into a complete electronic structure (PIN diode, bias resistor, decoupling capacity and low noise amplifier). Thanks to these modelling tools, we were able to simulate PIN diode structures in a-Si:H with different thicknesses and different dimensions. These simulations have allowed us to predict that the thicker structures are relevant to the design of the pixel detectors for high energy physics. Applications in astronomy, medical imaging and the analysis of the failure of silicon integrated circuits, can

  10. MRI-tracking of transplanted human ASC in a SCID mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Siegmund, Birte J.; Kasten, Annika [Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center (Germany); Kühn, Jens-Peter [Institute of Diagnostic Radiology and Neuroradiology, Greifswald University Medical Center (Germany); Winter, Karsten [Institute of Anatomy, Faculty of Medicine, University of Leipzig (Germany); Grüttner, Cordula [Micromod Partikeltechnologie GmbH, Rostock (Germany); Frerich, Bernhard, E-mail: bernhard.frerich@med.uni-rostock.de [Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center (Germany)

    2017-04-01

    Background: Regarding strategies improving the efficacy of stem cell transplantation in adipose tissue engineering, cell tracking might be useful. Here we report the in vivo tracking of adipose tissue derived stem cells (ASC) by means of nanoparticle labeling and magnetic resonance imaging (MRI). Here we report the in vivo tracking of adipose tissue derived stromal cells (ASC) by means of nanoparticle labeling and magnetic resonance imaging (MRI). Materials and methods: Human ASC were amplified and labeled with two types of magnetic nanoparticles (MNP), BNF starch and nanomag®-D-spio. Adipose tissue constructs were fabricated by seeding collagen scaffolds with labeled and unlabeled ASCs. Constructs were implanted subcutaneously in the back of severe combined immunodeficient (SCID) mice (n =69, group 1: control with cells w/o label, group 2: BNF starch labeled cells, group 3: nanomag®-D-spio labeled cells). MRI scans were performed at 24 hours, four, twelve and 28 days and four months in a 7.1 T animal device. Explanted constructs were analyzed histomorphometrically. Results: MRI scans showed high contrast of the labeled cells in t2-tse-sequence compared to unlabeled controls. Loss of volume of the implants was observed over time due to partial loss for transplanted cells without significant difference (level of significance p<0.017). Compared to histomorphometry, there was found a positiv correlations in measurement of implant size with a significant at day four (correlation coefficient =0.643; p=0.024) and day twelve (correlation coefficient =0.687; p=0.010). Additional Prussian blue stain showed iron in all implants. Significant differences between the three groups (significance level p<0.017) were found after twelve days between control group and group 3 (p=0.008) and after 28 days between control group and group 2 and 3 (p=0.011). Conclusion: Both MNPs might be suitable for tracking of ASC in vivo and show long term stability over 4 months. - Highlights:

  11. The amorphous phase transition in irradiated NiTi alloy

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Kissinger, H.E.; Pelton, A.R.

    1985-01-01

    Observed supralinear dose dependence for the amorphous transformation during irradiation of NiTi is compatible with a cascade overlap model for heavy ion (2.5 MeV Ni + , 6 MeV Ta +++ ) irradiations. A model based on total defect build-up, however, is necessary to explain the amorphous transition induced by electron irradiation and can also be applied to heavy ion irradiation. The cascade effects in this latter model are manifested by non-uniform defect distribution in the lattice. The defect build-up model requires a high activation energy for interstitial migration which is not incompatible with recent findings. The form of the temperature dependence can also be rationalized using a defect build-up model (amorphous phase transition, heavy-ion irradiation, electron irradiation, NiTi, defect build-up, cascade overlap). (author)

  12. Observations on the geometries of etched fission and alpha-recoil tracks with reference to models of track revelation in minerals

    International Nuclear Information System (INIS)

    Jonckheere, R.; Enkelmann, E.; Stuebner, K.

    2005-01-01

    The kinetic and atomistic theories of crystal growth and dissolution are used to interpret the shapes and orientations of fission-track, recoil-track and dislocation etch pits in tri-octahedral phlogopite and di-octahedral muscovite. An atomistic approach combined with symmetry considerations lead to the identification of the periodic bond chains that determine the etch pit morphologies and relative etch rates at a chemical level: O-Mg-O in phlogopite, O-Mg-O-Fe in biotite and O-Al-O in muscovite. Using first-order estimates of the bond strengths, it is possible to account for the relative track etch rates in these minerals. The reported, sometimes simultaneous, occurrence of triangular, polygonal and hexagonal etch pit contours in phlogopite, some of which violate the crystal symmetry, suggests that the cohesion of the phlogopite lattice is lost over a much larger radius than that of the track core around the trajectories of particles for which the energy loss exceeds a threshold value. This is interpreted as an indication of pronounced sublattice and anisotropic effects during track registration

  13. Cumulative approaches to track formation under swift heavy ion (SHI) irradiation: Phenomenological correlation with formation energies of Frenkel pairs

    Energy Technology Data Exchange (ETDEWEB)

    Crespillo, M.L., E-mail: mcrespil@utk.edu [Centro de Microanálisis de Materiales, CMAM-UAM, Cantoblanco, Madrid 28049 (Spain); Department of Materials Science & Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Agulló-López, F., E-mail: fal@uam.es [Centro de Microanálisis de Materiales, CMAM-UAM, Cantoblanco, Madrid 28049 (Spain); Zucchiatti, A. [Centro de Microanálisis de Materiales, CMAM-UAM, Cantoblanco, Madrid 28049 (Spain)

    2017-03-01

    Highlights: • Extensive survey formation energies Frenkel pairs and electronic stopping thresholds. • Correlation: track formation thresholds and the energies for Frenkel pair formation. • Formation energies Frenkel pairs discussed in relation to the cumulative mechanisms. • Amorphous track formation mechanisms: defect accumulation models versus melting. • Advantages cumulative models to deal with new hot topics: nuclear-electronic synergy. - Abstract: An extensive survey for the formation energies of Frenkel pairs, as representative candidates for radiation-induced point defects, is presented and discussed in relation to the cumulative mechanisms (CM) of track formation in dielectric materials under swift heavy ion (SHI) irradiation. These mechanisms rely on the generation and accumulation of point defects during irradiation followed by collapse of the lattice once a threshold defect concentration is reached. The physical basis of those approaches has been discussed by Fecht as a defect-assisted transition to an amorphous phase. Although a first quantitative analysis of the CM model was previously performed for LiNbO{sub 3} crystals, we have, here, adopted a broader phenomenological approach. It explores the correlation between track formation thresholds and the energies for Frenkel pair formation for a broad range of materials. It is concluded that the threshold stopping powers can be roughly scaled with the energies required to generate a critical Frenkel pair concentration in the order of a few percent of the total atomic content. Finally, a comparison with the predictions of the thermal spike model is discussed within the analytical Szenes approximation.

  14. A dynamic model-based approach to motion and deformation tracking of prosthetic valves from biplane x-ray images.

    Science.gov (United States)

    Wagner, Martin G; Hatt, Charles R; Dunkerley, David A P; Bodart, Lindsay E; Raval, Amish N; Speidel, Michael A

    2018-04-16

    Transcatheter aortic valve replacement (TAVR) is a minimally invasive procedure in which a prosthetic heart valve is placed and expanded within a defective aortic valve. The device placement is commonly performed using two-dimensional (2D) fluoroscopic imaging. Within this work, we propose a novel technique to track the motion and deformation of the prosthetic valve in three dimensions based on biplane fluoroscopic image sequences. The tracking approach uses a parameterized point cloud model of the valve stent which can undergo rigid three-dimensional (3D) transformation and different modes of expansion. Rigid elements of the model are individually rotated and translated in three dimensions to approximate the motions of the stent. Tracking is performed using an iterative 2D-3D registration procedure which estimates the model parameters by minimizing the mean-squared image values at the positions of the forward-projected model points. Additionally, an initialization technique is proposed, which locates clusters of salient features to determine the initial position and orientation of the model. The proposed algorithms were evaluated based on simulations using a digital 4D CT phantom as well as experimentally acquired images of a prosthetic valve inside a chest phantom with anatomical background features. The target registration error was 0.12 ± 0.04 mm in the simulations and 0.64 ± 0.09 mm in the experimental data. The proposed algorithm could be used to generate 3D visualization of the prosthetic valve from two projections. In combination with soft-tissue sensitive-imaging techniques like transesophageal echocardiography, this technique could enable 3D image guidance during TAVR procedures. © 2018 American Association of Physicists in Medicine.

  15. Prediction of Phase Behavior of Spray-Dried Amorphous Solid Dispersions: Assessment of Thermodynamic Models, Standard Screening Methods and a Novel Atomization Screening Device with Regard to Prediction Accuracy

    Directory of Open Access Journals (Sweden)

    Aymeric Ousset

    2018-03-01

    Full Text Available The evaluation of drug–polymer miscibility in the early phase of drug development is essential to ensure successful amorphous solid dispersion (ASD manufacturing. This work investigates the comparison of thermodynamic models, conventional experimental screening methods (solvent casting, quench cooling, and a novel atomization screening device based on their ability to predict drug–polymer miscibility, solid state properties (Tg value and width, and adequate polymer selection during the development of spray-dried amorphous solid dispersions (SDASDs. Binary ASDs of four drugs and seven polymers were produced at 20:80, 40:60, 60:40, and 80:20 (w/w. Samples were systematically analyzed using modulated differential scanning calorimetry (mDSC and X-ray powder diffraction (XRPD. Principal component analysis (PCA was used to qualitatively assess the predictability of screening methods with regards to SDASD development. Poor correlation was found between theoretical models and experimentally-obtained results. Additionally, the limited ability of usual screening methods to predict the miscibility of SDASDs did not guarantee the appropriate selection of lead excipient for the manufacturing of robust SDASDs. Contrary to standard approaches, our novel screening device allowed the selection of optimal polymer and drug loading and established insight into the final properties and performance of SDASDs at an early stage, therefore enabling the optimization of the scaled-up late-stage development.

  16. Two-stage unified stretched-exponential model for time-dependence of threshold voltage shift under positive-bias-stresses in amorphous indium-gallium-zinc oxide thin-film transistors

    Science.gov (United States)

    Jeong, Chan-Yong; Kim, Hee-Joong; Hong, Sae-Young; Song, Sang-Hun; Kwon, Hyuck-In

    2017-08-01

    In this study, we show that the two-stage unified stretched-exponential model can more exactly describe the time-dependence of threshold voltage shift (ΔV TH) under long-term positive-bias-stresses compared to the traditional stretched-exponential model in amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). ΔV TH is mainly dominated by electron trapping at short stress times, and the contribution of trap state generation becomes significant with an increase in the stress time. The two-stage unified stretched-exponential model can provide useful information not only for evaluating the long-term electrical stability and lifetime of the a-IGZO TFT but also for understanding the stress-induced degradation mechanism in a-IGZO TFTs.

  17. Optical response of thin amorphous films to infrared radiation

    Science.gov (United States)

    Orosco, J.; Coimbra, C. F. M.

    2018-03-01

    We briefly review the electrical-optical response of materials to radiative forcing within the formalism of the Kramers-Kronig relations. A commensurate set of criteria is described that must be met by any frequency-domain model representing the time-domain response of a real (i.e., physically possible) material. The criteria are applied to the Brendel-Bormann (BB) oscillator, a model that was originally introduced for its fidelity at reproducing the non-Lorentzian peak broadening experimentally observed in the infrared absorption by thin amorphous films but has since been used for many other common materials. We show that the BB model fails to satisfy the established physical criteria. Taking an alternative approach to the model derivation, a physically consistent model is proposed. This model provides the appropriate line-shape broadening for modeling the infrared optical response of thin amorphous films while adhering strictly to the Kramers-Kronig criteria. Experimental data for amorphous alumina (Al2O3 ) and amorphous quartz silica (SiO2) are used to obtain model parametrizations for both the noncausal BB model and the proposed causal model. The proposed model satisfies consistency criteria required by the underlying physics and reproduces the experimental data with better fidelity (and often with fewer parameters) than previously proposed permittivity models.

  18. “How to Track Baby Feedings” Penerapan Model Dokumentasi Dengan Menggunakan Software Sebagai Upaya Meningkatkan Pertumbuhan Dan Perkembangan Pada Bayi

    OpenAIRE

    Dwi Susanti, Henny

    2014-01-01

    “How To Track Baby Feedings” Penerapan Model Dokumentasi Dengan Menggunakan Software Sebagai Upaya Meningkatkan Pertumbuhan dan Perkembangan Pada Bayi“How to Track Baby Feedings” Implementation Documentation Model by Using Software as an Effort to Improve Growth and Development in InfantsHenny Dwi SusantiFakultas Ilmu Kesehatan, Universitas Muhammadiyah MalangJl. Bendungan Sutami 188A Malang 65145E-mail : Pertumbuhan adalah bertambahnya ukuran tubuh, sedangkan perk...

  19. A discrete time-varying internal model-based approach for high precision tracking of a multi-axis servo gantry.

    Science.gov (United States)

    Zhang, Zhen; Yan, Peng; Jiang, Huan; Ye, Peiqing

    2014-09-01

    In this paper, we consider the discrete time-varying internal model-based control design for high precision tracking of complicated reference trajectories generated by time-varying systems. Based on a novel parallel time-varying internal model structure, asymptotic tracking conditions for the design of internal model units are developed, and a low order robust time-varying stabilizer is further synthesized. In a discrete time setting, the high precision tracking control architecture is deployed on a Voice Coil Motor (VCM) actuated servo gantry system, where numerical simulations and real time experimental results are provided, achieving the tracking errors around 3.5‰ for frequency-varying signals. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  20. 2-D Modeling of Energy-z Beam Dynamics Using the LiTrack Matlab Program

    International Nuclear Information System (INIS)

    Cauley, S.K.

    2005-01-01

    Short bunches and the bunch length distribution have important consequences for both the LCLS project at SLAC and the proposed ILC project. For both these projects, it is important to simulate what bunch length distributions are expected and then to perform actual measurements. The goal of the research is to determine the sensitivity of the bunch length distribution to accelerator phase and voltage. This then indicates the level of control and stability that is needed. In this project I simulated beamlines to find the rms bunch length in three different beam lines at SLAC, which are the test beam to End Station A (ILC-ESA) for the ILC studies, Linac Coherent Light Source (LCLS) and LCLS-ESA. To simulate the beamlines, I used the LiTrack program, which does a 2-dimensional tracking of an electron bunch's longitudinal (z) and the energy spread beam (E) parameters. In order to reduce the time of processing the information, I developed a small program to loop over adjustable machine parameters. LiTrack is a Matlab script and Matlab is also used for plotting and saving and loading files. The results show that the LCLS in Linac-A is the most sensitive when looking at the ratio of change in phase degree to rate of change. The results also show a noticeable difference between the LCLS and LCLS-ESA, which suggest that further testing should go into looking the Beam Switch Yard and End Station A to determine why the result of the LCLS and LCLS-ESA vary

  1. A better understanding of biomass co-firing by developing an advanced non-spherical particle tracking model

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse Aistrup; Kær, Søren Knudsen

    2004-01-01

    -area-to-volume ratio and thus experiences a totally different motion and reaction as a non-spherical particle. Therefore, an advanced non-spherical particle-tracking model is developed to calculate the motion and reaction of nonspherical biomass particles. The biomass particles are assumed as solid or hollow cylinders......-gradient force. Since the drag and lift forces are both shape factor- and orientation-dependent, coupled particle rotation equations are resolved to update particle orientation. In the reaction of biomass particles, the actual particle surface area available and the average oxygen mass flux at particle surface...

  2. Amorphous titanium-oxide supercapacitors

    OpenAIRE

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2016-01-01

    The electric capacitance of an amorphous TiO2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7?mF/cm2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large r...

  3. Modeling of competitive activity of skilled athletes specialized at 1500 m distance on short-track skating

    Directory of Open Access Journals (Sweden)

    O.S. Kholodova

    2013-10-01

    Full Text Available Background: Models of competitive activity at the 1500 m distance on short-track skating are developed on the basis of defining the relationship between sports results and major characteristics which describe speed of running at different parts of the distance. Material: we analyzed reports of competitions at the European and World Championships, World Cups 2007-2011. The dynamics of the speed finalists of the competition at the 1500 m - in hits (n = 33, quarterfinals (n = 34, semi-finals (n = 32 and finals (n = 39. Results: it was determined that for a distance of 1500 m short track skating is the most appropriate model with factors of influence: the speed of the first to sixth part of distance , the speed difference between the first and second half of the distance, time of the slowest circle, the difference between the time of the slowest and fastest circles. Conclusions: time of overcoming of distance will diminish at the rational change of model indexes. It will allow to increase possibility of output in the next circle of competitions and accordingly improve a place in final protocol.

  4. Multiple Model-Based Synchronization Approaches for Time Delayed Slaving Data in a Space Launch Vehicle Tracking System

    Directory of Open Access Journals (Sweden)

    Haryong Song

    2016-01-01

    Full Text Available Due to the inherent characteristics of the flight mission of a space launch vehicle (SLV, which is required to fly over very large distances and have very high fault tolerances, in general, SLV tracking systems (TSs comprise multiple heterogeneous sensors such as radars, GPS, INS, and electrooptical targeting systems installed over widespread areas. To track an SLV without interruption and to hand over the measurement coverage between TSs properly, the mission control system (MCS transfers slaving data to each TS through mission networks. When serious network delays occur, however, the slaving data from the MCS can lead to the failure of the TS. To address this problem, in this paper, we propose multiple model-based synchronization (MMS approaches, which take advantage of the multiple motion models of an SLV. Cubic spline extrapolation, prediction through an α-β-γ filter, and a single model Kalman filter are presented as benchmark approaches. We demonstrate the synchronization accuracy and effectiveness of the proposed MMS approaches using the Monte Carlo simulation with the nominal trajectory data of Korea Space Launch Vehicle-I.

  5. TH-CD-207A-03: A Surface Deformation Driven Respiratory Model for Organ Motion Tracking in Lung Cancer Radiotherapy

    International Nuclear Information System (INIS)

    Chen, H; Zhen, X; Zhou, L; Gu, X

    2016-01-01

    Purpose: To propose and validate a novel real-time surface-mesh-based internal organ-external surface motion and deformation tracking method for lung cancer radiotherapy. Methods: Deformation vector fields (DVFs) which characterizes the internal and external motion are obtained by registering the internal organ and tumor contours and external surface meshes to a reference phase in the 4D CT images using a recent developed local topology preserved non-rigid point matching algorithm (TOP). A composite matrix is constructed by combing the estimated internal and external DVFs. Principle component analysis (PCA) is then applied on the composite matrix to extract principal motion characteristics and finally yield the respiratory motion model parameters which correlates the internal and external motion and deformation. The accuracy of the respiratory motion model is evaluated using a 4D NURBS-based cardiac-torso (NCAT) synthetic phantom and three lung cancer cases. The center of mass (COM) difference is used to measure the tumor motion tracking accuracy, and the Dice’s coefficient (DC), percent error (PE) and Housdourf’s distance (HD) are used to measure the agreement between the predicted and ground truth tumor shape. Results: The mean COM is 0.84±0.49mm and 0.50±0.47mm for the phantom and patient data respectively. The mean DC, PE and HD are 0.93±0.01, 0.13±0.03 and 1.24±0.34 voxels for the phantom, and 0.91±0.04, 0.17±0.07 and 3.93±2.12 voxels for the three lung cancer patients, respectively. Conclusions: We have proposed and validate a real-time surface-mesh-based organ motion and deformation tracking method with an internal-external motion modeling. The preliminary results conducted on a synthetic 4D NCAT phantom and 4D CT images from three lung cancer cases show that the proposed method is reliable and accurate in tracking both the tumor motion trajectory and deformation, which can serve as a potential tool for real-time organ motion and deformation

  6. TH-CD-207A-03: A Surface Deformation Driven Respiratory Model for Organ Motion Tracking in Lung Cancer Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Zhen, X; Zhou, L [Southern Medical University, Guangzhou, Guangdong (China); Gu, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To propose and validate a novel real-time surface-mesh-based internal organ-external surface motion and deformation tracking method for lung cancer radiotherapy. Methods: Deformation vector fields (DVFs) which characterizes the internal and external motion are obtained by registering the internal organ and tumor contours and external surface meshes to a reference phase in the 4D CT images using a recent developed local topology preserved non-rigid point matching algorithm (TOP). A composite matrix is constructed by combing the estimated internal and external DVFs. Principle component analysis (PCA) is then applied on the composite matrix to extract principal motion characteristics and finally yield the respiratory motion model parameters which correlates the internal and external motion and deformation. The accuracy of the respiratory motion model is evaluated using a 4D NURBS-based cardiac-torso (NCAT) synthetic phantom and three lung cancer cases. The center of mass (COM) difference is used to measure the tumor motion tracking accuracy, and the Dice’s coefficient (DC), percent error (PE) and Housdourf’s distance (HD) are used to measure the agreement between the predicted and ground truth tumor shape. Results: The mean COM is 0.84±0.49mm and 0.50±0.47mm for the phantom and patient data respectively. The mean DC, PE and HD are 0.93±0.01, 0.13±0.03 and 1.24±0.34 voxels for the phantom, and 0.91±0.04, 0.17±0.07 and 3.93±2.12 voxels for the three lung cancer patients, respectively. Conclusions: We have proposed and validate a real-time surface-mesh-based organ motion and deformation tracking method with an internal-external motion modeling. The preliminary results conducted on a synthetic 4D NCAT phantom and 4D CT images from three lung cancer cases show that the proposed method is reliable and accurate in tracking both the tumor motion trajectory and deformation, which can serve as a potential tool for real-time organ motion and deformation

  7. Application of Gauss's law space-charge limited emission model in iterative particle tracking method

    Energy Technology Data Exchange (ETDEWEB)

    Altsybeyev, V.V., E-mail: v.altsybeev@spbu.ru; Ponomarev, V.A.

    2016-11-01

    The particle tracking method with a so-called gun iteration for modeling the space charge is discussed in the following paper. We suggest to apply the emission model based on the Gauss's law for the calculation of the space charge limited current density distribution using considered method. Based on the presented emission model we have developed a numerical algorithm for this calculations. This approach allows us to perform accurate and low time consumpting numerical simulations for different vacuum sources with the curved emitting surfaces and also in the presence of additional physical effects such as bipolar flows and backscattered electrons. The results of the simulations of the cylindrical diode and diode with elliptical emitter with the use of axysimmetric coordinates are presented. The high efficiency and accuracy of the suggested approach are confirmed by the obtained results and comparisons with the analytical solutions.

  8. An Improved Mixture-of-Gaussians Background Model with Frame Difference and Blob Tracking in Video Stream

    Directory of Open Access Journals (Sweden)

    Li Yao

    2014-01-01

    Full Text Available Modeling background and segmenting moving objects are significant techniques for computer vision applications. Mixture-of-Gaussians (MoG background model is commonly used in foreground extraction in video steam. However considering the case that the objects enter the scenery and stay for a while, the foreground extraction would fail as the objects stay still and gradually merge into the background. In this paper, we adopt a blob tracking method to cope with this situation. To construct the MoG model more quickly, we add frame difference method to the foreground extracted from MoG for very crowded situations. What is more, a new shadow removal method based on RGB color space is proposed.

  9. Production of amorphous alloys by ion implantation

    International Nuclear Information System (INIS)

    Grant, W.A.; Chadderton, L.T.; Johnson, E.

    1978-01-01

    Recent data are reported on the use of ion implantation to produce amorphous metallic alloys. In particular data on the dose dependence of the crystalline to amorphous transition induced by P + implantation of nickel is presented. (Auth.)

  10. Amorphous nanoparticles — Experiments and computer simulations

    International Nuclear Information System (INIS)

    Hoang, Vo Van; Ganguli, Dibyendu

    2012-01-01

    The data obtained by both experiments and computer simulations concerning the amorphous nanoparticles for decades including methods of synthesis, characterization, structural properties, atomic mechanism of a glass formation in nanoparticles, crystallization of the amorphous nanoparticles, physico-chemical properties (i.e. catalytic, optical, thermodynamic, magnetic, bioactivity and other properties) and various applications in science and technology have been reviewed. Amorphous nanoparticles coated with different surfactants are also reviewed as an extension in this direction. Much attention is paid to the pressure-induced polyamorphism of the amorphous nanoparticles or amorphization of the nanocrystalline counterparts. We also introduce here nanocomposites and nanofluids containing amorphous nanoparticles. Overall, amorphous nanoparticles exhibit a disordered structure different from that of corresponding bulks or from that of the nanocrystalline counterparts. Therefore, amorphous nanoparticles can have unique physico-chemical properties differed from those of the crystalline counterparts leading to their potential applications in science and technology.

  11. Tracking the MSL-SAM methane detection source location Through Mars Regional Atmospheric Modeling System (MRAMS)

    Science.gov (United States)

    Pla-García, Jorge

    2016-04-01

    1. Introduction: The putative in situ detection of methane by Sample Analysis at Mars (SAM) instrument suite on Curiosi-ty at Gale crater has garnered significant attention because of the potential implications for the presence of geological methane sources or indigenous Martian organisms [1, 2]. SAM reported detection of back-ground levels of atmospheric methane of mean value 0.69±0.25 parts per billion by volume (ppbv) at the 95% confidence interval (CI). Additionally, in four sequential measurements spanning a 60-sol period, SAM observed elevated levels of methane of 7.2±2.1 ppbv (95% CI), implying that Mars is episodically producing methane from an additional unknown source. There are many major unresolved questions regard-ing this detection: 1) What are the potential sources of the methane release? 2) What causes the rapid decrease in concentration? and 3) Where is the re-lease location? 4) How spatially extensive is the re-lease? 5) For how long is CH4 released? Regarding the first question, the source of methane, is so far not identified. It could be related with geo-logical process like methane release from clathrates [3], serpentinisation [4] and volcanism [5]; or due to biological activity from methanogenesis [6]. To answer the second question, the rapid decrease in concentration, it is important to note that the photo-chemical lifetime of methane is of order 100 years, much longer than the atmospheric mixing time scale, and thus the gas should tend to be well mixed except near a source or shortly after an episodic release. The observed spike of 7 ppb from the background of System (MRAMS). The model was focused on rover locations using nested grids with a spacing of 330 meters on the in-nermost grid that is centered over the landing [8, 9]. MRAMS is ideally suited for this investigation; the model is explicitly designed to simulate Mars' at-mospheric circulations at the mesoscale and smaller with realistic, high-resolution surface properties [10, 11

  12. Photoconductivity response time in amorphous semiconductors

    Science.gov (United States)

    Adriaenssens, G. J.; Baranovskii, S. D.; Fuhs, W.; Jansen, J.; Öktü, Ö.

    1995-04-01

    The photoconductivity response time of amorphous semiconductors is examined theoretically on the basis of standard definitions for free- and trapped-carrier lifetimes, and experimentally for a series of a-Si1-xCx:H alloys with xgeneration rate and temperature. As no satisfactory agreement between models and experiments emerges, a simple theory is developed that can account for the experimental observations on the basis of the usual multiple-trappping ideas, provided a small probability of direct free-carrier recombination is included. The theory leads to a stretched-exponential photocurrent decay.

  13. Structure of hydrogenated amorphous silicon from ab initio molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Buda, F. (Department of Physics, The Ohio State University, 174 West 18th Avenue, Columbus, Ohio (USA)); Chiarotti, G.L. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Laboratorio Tecnologie Avanzate Superfici e Catalisi del Consorzio Interuniversitario Nazionale di Fisica della Materia, Padriciano 99, I-34012 Trieste (Italy)); Car, R. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Institut Romard de Recherche Numerique en Physique des Materiaux, CH-1015 Lausanne, Switzerland Department of Condensed Matter Physics, University of Geneva, CH-1211 Geneva (Switzerland)); Parrinello, M. (IBM Research Division, Zurich Research Laboratory, CH-8803 Rueschlikon (Switzerland))

    1991-09-15

    We have generated a model of hydrogenated amorphous silicon by first-principles molecular dynamics. Our results are in good agreement with the available experimental data and provide new insight into the microscopic structure of this material. The calculation lends support to models in which monohydride complexes are prevalent, and indicates a strong tendency of hydrogen to form small clusters.

  14. Amorphous titanium-oxide supercapacitors

    Science.gov (United States)

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2016-10-01

    The electric capacitance of an amorphous TiO2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7 mF/cm2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large resistance and small capacitance on the amorphous TiO2-x surface, illuminated a red LED for 37 ms after it was charged with 1 mA at 10 V. The fabricated device showed no dielectric breakdown up to 1,100 V. Based on this approach, further advances in the development of amorphous titanium-dioxide supercapacitors might be attained by integrating oxide ribbons with a micro-electro mechanical system.

  15. Radiation tolerance of amorphous semiconductors

    International Nuclear Information System (INIS)

    Nicolaides, R.V.; DeFeo, S.; Doremus, L.W.

    1976-01-01

    In an attempt to determine the threshold radiation damage in amorphous semiconductors, radiation tests were performed on amorphous semiconductor thin film materials and on threshold and memory devices. The influence of flash x-rays and neutron radiation upon the switching voltages, on- and off-state characteristics, dielectric response, optical transmission, absorption band edge and photoconductivity were measured prior to, during and following irradiation. These extensive tests showed the high radiation tolerance of amorphous semiconductor materials. Electrical and optical properties, other than photoconductivity, have a neutron radiation tolerance threshold above 10 17 nvt in the steady state and 10 14 nvt in short (50 μsec to 16 msec) pulses. Photoconductivity increases by 1 1 / 2 orders of magnitude at the level of 10 14 nvt (short pulses of 50 μsec). Super flash x-rays up to 5000 rads (Si), 20 nsec, do not initiate switching in off-state samples which are voltage biased up to 90 percent of the threshold voltage. Both memory and threshold amorphous devices are capable of switching on and off during nuclear radiation transients at least as high as 2 x 10 14 nvt in 50 μsec pulses

  16. Amorphous metal matrix composite ribbons

    International Nuclear Information System (INIS)

    Barczy, P.; Szigeti, F.

    1998-01-01

    Composite ribbons with amorphous matrix and ceramic (SiC, WC, MoB) particles were produced by modified planar melt flow casting methods. Weldability, abrasive wear and wood sanding examinations were carried out in order to find optimal material and technology for elevated wear resistance and sanding durability. The correlation between structure and composite properties is discussed. (author)

  17. Fracture Phenomena in Amorphous Selenium

    DEFF Research Database (Denmark)

    Lindegaard-Andersen, Asger; Dahle, Birgit

    1966-01-01

    Fracture surfaces of amorphous selenium broken in flexure at room temperature have been studied. The fracture velocity was found to vary in different regions of the fracture surface. Peculiar features were observed in a transition zone between fast and slower fracture. In this zone cleavage steps...

  18. Amorphous and Crystalline Particulates: Challenges and Perspectives in Drug Delivery.

    Science.gov (United States)

    Al-Obaidi, Hisham; Majumder, Mridul; Bari, Fiza

    2017-01-01

    Crystalline and amorphous dispersions have been the focus of academic and industrial research due to their potential role in formulating poorly water-soluble drugs. This review looks at the progress made starting with crystalline carriers in the form of eutectics moving towards more complex crystalline mixtures. It also covers using glassy polymers to maintain the drug as amorphous exhibiting higher energy and entropy. However, the amorphous form tends to recrystallize on storage, which limits the benefits of this approach. Specific interactions between the drug and the polymer may retard this spontaneous conversion of the amorphous drug. Some studies have shown that it is possible to maintain the drug in the amorphous form for extended periods of time. For the drug and the polymer to form a stable mixture they have to be miscible on a molecular basis. Another form of solid dispersions is pharmaceutical co-crystals, for which research has focused on understanding the chemistry, crystal engineering and physico-chemical properties. USFDA has issued a guidance in April 2013 suggesting that the co-crystals as a pharmaceutical product may be a reality; but just not yet! While some of the research is still oriented towards application of these carriers, understanding the mechanism by which drug-carrier miscibility occurs is also covered. Within this context is the use of thermodynamic models such as Flory-Huggins model with some examples of studies used to predict miscibility. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Cooling rate effects on structure of amorphous graphene

    International Nuclear Information System (INIS)

    Van Hoang, Vo

    2015-01-01

    Simple monatomic amorphous 2D models with Honeycomb structure are obtained from 2D simple monatomic liquids with Honeycomb interaction potential (Rechtsman et al., Phys. Rev. Lett. 95, 228301 (2005)) via molecular dynamics (MD) simulations. Models are observed by cooling from the melt at various cooling rates. Temperature dependence of thermodynamic and structural properties including total energy, mean ring size, mean coordination number is studied in order to show evolution of structure and thermodynamics upon cooling from the melt. Structural properties of the amorphous Honeycomb structures are studied via radial distribution function (RDF), coordination number and ring distributions together with 2D visualization of the atomic configurations. Amorphous Honeycomb structures contain a large amount of structural defects including new ones which have not been previously reported yet. Cooling rate dependence of structural properties of the obtained amorphous Honeycomb structures is analyzed. Although amorphous graphene has been proposed theoretically and/or recently obtained by the experiments, our understanding of structural properties of the system is still poor. Therefore, our simulations highlight the situation and give deeper understanding of structure and thermodynamics of the glassy state of this novel 2D material

  20. MUICYCL and MUIFAP: models tracking minor uranium isotopes in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Blum, S.R.; McLaren, R.A.

    1979-10-01

    Two computer programs have been written to provide information on the buildup of minor uranium isotopes in the nuclear fuel cycle. The Minor Uranium Isotope Cycle Program, MUICYCL, tracks fuel through a multiyear campaign cycle of enrichment, reactor burnup, reprocessing, enrichment, etc. MUICYCL facilities include preproduction stockpiles, U 235 escalation, and calculation of losses. The Minor Uranium Isotope Flowsheet Analyzer Program, MUIFAP, analyzes one minor isotope in one year of an enrichment operation. The formulation of the enrichment cascade, reactors, and reprocessing facility is presented. Input and output descriptions and sample cases are presented. The programs themselves are documented by short descriptions of each routine, flowcharts, definitions of common blocks and variables, and internal documentation. The programs are written in FORTRAN for use in batch mode

  1. Volume-weighted particle-tracking method for solute-transport modeling; Implementation in MODFLOW–GWT

    Science.gov (United States)

    Winston, Richard B.; Konikow, Leonard F.; Hornberger, George Z.

    2018-02-16

    In the traditional method of characteristics for groundwater solute-transport models, advective transport is represented by moving particles that track concentration. This approach can lead to global mass-balance problems because in models of aquifers having complex boundary conditions and heterogeneous properties, particles can originate in cells having different pore volumes and (or) be introduced (or removed) at cells representing fluid sources (or sinks) of varying strengths. Use of volume-weighted particles means that each particle tracks solute mass. In source or sink cells, the changes in particle weights will match the volume of water added or removed through external fluxes. This enables the new method to conserve mass in source or sink cells as well as globally. This approach also leads to potential efficiencies by allowing the number of particles per cell to vary spatially—using more particles where concentration gradients are high and fewer where gradients are low. The approach also eliminates the need for the model user to have to distinguish between “weak” and “strong” fluid source (or sink) cells. The new model determines whether solute mass added by fluid sources in a cell should be represented by (1) new particles having weights representing appropriate fractions of the volume of water added by the source, or (2) distributing the solute mass added over all particles already in the source cell. The first option is more appropriate for the condition of a strong source; the latter option is more appropriate for a weak source. At sinks, decisions whether or not to remove a particle are replaced by a reduction in particle weight in proportion to the volume of water removed. A number of test cases demonstrate that the new method works well and conserves mass. The method is incorporated into a new version of the U.S. Geological Survey’s MODFLOW–GWT solute-transport model.

  2. A Multiple Model SNR/RCS Likelihood Ratio Score for Radar-Based Feature-Aided Tracking

    National Research Council Canada - National Science Library

    Slocumb, Benjamin J; Klusman, III, Michael E

    2005-01-01

    ...) and radar cross section (RCS) for use in narrowband radar tracking. The formulation requires an estimate of the target mean RCS, and a key challenge is the tracking of the mean RCS through significant jumps due to aspect dependencies...

  3. Robust model reference adaptive output feedback tracking for uncertain linear systems with actuator fault based on reinforced dead-zone modification.

    Science.gov (United States)

    Bagherpoor, H M; Salmasi, Farzad R

    2015-07-01

    In this paper, robust model reference adaptive tracking controllers are considered for Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) linear systems containing modeling uncertainties, unknown additive disturbances and actuator fault. Two new lemmas are proposed for both SISO and MIMO, under which dead-zone modification rule is improved such that the tracking error for any reference signal tends to zero in such systems. In the conventional approach, adaption of the controller parameters is ceased inside the dead-zone region which results tracking error, while preserving the system stability. In the proposed scheme, control signal is reinforced with an additive term based on tracking error inside the dead-zone which results in full reference tracking. In addition, no Fault Detection and Diagnosis (FDD) unit is needed in the proposed approach. Closed loop system stability and zero tracking error are proved by considering a suitable Lyapunov functions candidate. It is shown that the proposed control approach can assure that all the signals of the close loop system are bounded in faulty conditions. Finally, validity and performance of the new schemes have been illustrated through numerical simulations of SISO and MIMO systems in the presence of actuator faults, modeling uncertainty and output disturbance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Particle tracking

    International Nuclear Information System (INIS)

    Mais, H.; Ripken, G.; Wrulich, A.; Schmidt, F.

    1986-02-01

    After a brief description of typical applications of particle tracking in storage rings and after a short discussion of some limitations and problems related with tracking we summarize some concepts and methods developed in the qualitative theory of dynamical systems. We show how these concepts can be applied to the proton ring HERA. (orig.)

  5. Timber tracking

    DEFF Research Database (Denmark)

    Düdder, Boris; Ross, Omry

    2017-01-01

    Managing and verifying forest products in a value chain is often reliant on easily manipulated document or digital tracking methods - Chain of Custody Systems. We aim to create a new means of tracking timber by developing a tamper proof digital system based on Blockchain technology. Blockchain...

  6. The determination of solubility and diffusion coefficient for solids in liquids by an inverse measurement technique using cylinders of amorphous glucose as a model compound

    International Nuclear Information System (INIS)

    Hu, Chengyao; Huang, Pei

    2011-01-01

    The importance of sugar and sugar-containing materials is well recognized nowadays, owing to their application in industrial processes, particularly in the food, pharmaceutical and cosmetic industries. Because of the large numbers of those compounds involved and the relatively small number of solubility and/or diffusion coefficient data for each compound available, it is highly desirable to measure the solubility and/or diffusion coefficient as efficiently as possible and to be able to improve the accuracy of the methods used. In this work, a new technique was developed for the measurement of the diffusion coefficient of a stationary solid solute in a stagnant solvent which simultaneously measures solubility based on an inverse measurement problem algorithm with the real-time dissolved amount profile as a function of time. This study differs from established techniques in both the experimental method and the data analysis. The experimental method was developed in which the dissolved amount of solid solute in quiescent solvent was investigated using a continuous weighing technique. In the data analysis, the hybrid genetic algorithm is used to minimize an objective function containing a calculated and a measured dissolved amount with time. This is measured on a cylindrical sample of amorphous glucose in methanol or ethanol. The calculated dissolved amount, that is a function of the unknown physical properties of the solid solute in the solvent, is calculated by the solution of the two-dimensional nonlinear inverse natural convection problem. The estimated values of the solubility of amorphous glucose in methanol and ethanol at 293 K were respectively 32.1 g/100 g methanol and 1.48 g/100 g ethanol, in agreement with the literature values, and support the validity of the simultaneously measured diffusion coefficient. These results show the efficiency and the stability of the developed technique to simultaneously estimate the solubility and diffusion coefficient. Also

  7. Foot model for tracking temperature of safety boot insoles: application to different insole materials in firefighter boots.

    Science.gov (United States)

    García-Hernández, César; Sánchez-Álvarez, Eduardo J; Huertas-Talón, José-Luis

    2016-01-01

    This research is based on the development of a human foot model to study the temperature conditions of a foot bottom surface under extreme external conditions. This foot model is made by combining different manufacturing techniques to enable the simulation of bones and tissues, allowing the placement of sensors on its surface to track the temperature values of different points inside a shoe. These sensors let researchers capture valuable data during a defined period of time, making it possible to compare the features of different safety boots, socks or soles, among others. In this case, it has been applied to compare different plantar insole materials, placed into safety boots on a high-temperature surface.

  8. Electronic excitations in metallic systems: from defect annihilation to track formation

    International Nuclear Information System (INIS)

    Dunlop, A.; Lesueur, D.

    1991-01-01

    This paper presents an overview of the effects of high electronic energy deposition in metallic targets irradiated with GeV heavy ions. The main result of these investigations is that high electronic excitations lead to various and sometimes conflicting effects according to the nature of the target: - partial annealing of the defects induced by elastic collisions, - creation of additional disorder, - phase transformation (tracks formation and amorphization), - anisotropic growth. These different effects of high electronic energy deposition in metallic targets are probably manifestations at various degrees of the same basic energy transfer process between the excited electrons and the target atoms. Up to now no theoretical model explains these effects. 24 refs

  9. Adaptation of multidimensional group particle tracking and particle wall-boundary condition model to the FDNS code

    Science.gov (United States)

    Chen, Y. S.; Farmer, R. C.

    1992-01-01

    A particulate two-phase flow CFD model was developed based on the FDNS code which is a pressure based predictor plus multi-corrector Navier-Stokes flow solver. Turbulence models with compressibility correction and the wall function models were employed as submodels. A finite-rate chemistry model was used for reacting flow simulation. For particulate two-phase flow simulations, a Eulerian-Lagrangian solution method using an efficient implicit particle trajectory integration scheme was developed in this study. Effects of particle-gas reaction and particle size change to agglomeration or fragmentation were not considered in this investigation. At the onset of the present study, a two-dimensional version of FDNS which had been modified to treat Lagrangian tracking of particles (FDNS-2DEL) had already been written and was operational. The FDNS-2DEL code was too slow for practical use, mainly because it had not been written in a form amenable to vectorization on the Cray, nor was the full three-dimensional form of FDNS utilized. The specific objective of this study was to reorder to calculations into long single arrays for automatic vectorization on the Cray and to implement the full three-dimensional version of FDNS to produce the FDNS-3DEL code. Since the FDNS-2DEL code was slow, a very limited number of test cases had been run with it. This study was also intended to increase the number of cases simulated to verify and improve, as necessary, the particle tracking methodology coded in FDNS.

  10. Bringing nanomagnetism to the mesoscale with artificial amorphous structures

    Science.gov (United States)

    Muscas, G.; Brucas, R.; Jönsson, P. E.

    2018-05-01

    In the quest for materials with emergent or improved properties, an effective route is to create artificial superstructures. Novel properties emerge from the coupling between the phases, but the strength of this coupling depends on the quality of the interfaces. Atomic control of crystalline interfaces is notoriously complicated and to elude that obstacle, we suggest here an all-amorphous design. Starting from a model amorphous iron alloy, we locally tune the magnetic behavior by creating boron-doped regions by means of ion implantation through a lithographic mask. This process preserves the amorphous environment, creating a non-topographic magnetic superstructure with smooth interfaces and no structural discontinuities. The absence of inhomogeneities acting as pinning centers for the magnetization reversal is demonstrated by the formation of magnetic vortexes for ferromagnetic disks as large as 20 µm in diameter embedded within a paramagnetic matrix. Rigid exchange coupling between two amorphous ferromagnetic phases in a microstructured sample is evidenced by an investigation involving first-order reversal curves. The sample consists of a soft matrix with embedded elements constituting a hard phase where the anisotropy originates from an elongated shape of the elements. We provide an intuitive explanation for the micrometer-range exchange coupling mechanism and discuss how to tailor the properties of all-amorphous superstructures.

  11. Amorphous computing in the presence of stochastic disturbances.

    Science.gov (United States)

    Chu, Dominique; Barnes, David J; Perkins, Samuel

    2014-11-01

    Amorphous computing is a non-standard computing paradigm that relies on massively parallel execution of computer code by a large number of small, spatially distributed, weakly interacting processing units. Over the last decade or so, amorphous computing has attracted a great deal of interest both as an alternative model of computing and as an inspiration to understand developmental biology. A number of algorithms have been developed that can take advantage of the massive parallelism of this computing paradigm to solve specific problems. One of the interesting properties of amorphous computers is that they are robust with respect to the loss of individual processing units, in the sense that a removal of some of them should not impact on the computation as a whole. However, much less understood is to what extent amorphous computers are robust with respect to minor disturbances to the individual processing units, such as random motion or occasional faulty computation short of total component failure. In this article we address this question. As an example problem we choose an algorithm to calculate a straight line between two points. Using this example, we find that amorphous computers are not in general robust with respect to Brownian motion and noise, but we find strategies that restore reliable computation even in their presence. We will argue that these strategies are generally applicable and not specific to the particular AC we consider, or even specific to electronic computers. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Tracking- and Scintillation-Aware Channel Model for GEO Satellite to Land Mobile Terminals at Ku-Band

    Directory of Open Access Journals (Sweden)

    Ali M. Al-Saegh

    2015-01-01

    Full Text Available Recent advances in satellite to land mobile terminal services and technologies, which utilize high frequencies with directional antennas, have made the design of an appropriate model for land mobile satellite (LMS channels a necessity. This paper presents LMS channel model at Ku-band with features that enhance accuracy, comprehensiveness, and reliability. The effect of satellite tracking loss at different mobile terminal speeds is considered for directional mobile antenna systems, a reliable tropospheric scintillation model for an LMS scenario at tropical and temperate regions is presented, and finally a new quality indicator module for different modulation and coding schemes is included. The proposed extended LMS channel (ELMSC model is designed based on actual experimental measurements and can be applied to narrow- and wide-band signals at different regions and at different speeds and multichannel states. The proposed model exhibits lower root mean square error (RMSE and significant performance observation compared with the conventional model in terms of the signal fluctuations, fade depth, signal-to-noise ratio (SNR, and quality indicators accompanied for several transmission schemes.

  13. MODEL PREDICTIVE CONTROL FOR PHOTOVOLTAIC STATION MAXIMUM POWER POINT TRACKING SYSTEM

    Directory of Open Access Journals (Sweden)

    I. Elzein

    2015-01-01

    Full Text Available The purpose of this paper is to present an alternative maximum power point tracking, MPPT, algorithm for a photovoltaic module, PVM, to produce the maximum power, Pmax, using the optimal duty ratio, D, for different types of converters and load matching.We present a state-based approach to the design of the maximum power point tracker for a stand-alone photovoltaic power generation system. The system under consideration consists of a solar array with nonlinear time-varying characteristics, a step-up converter with appropriate filter.The proposed algorithm has the advantages of maximizing the efficiency of the power utilization, can be integrated to other MPPT algorithms without affecting the PVM performance, is excellent for Real-Time applications and is a robust analytical method, different from the traditional MPPT algorithms which are more based on trial and error, or comparisons between present and past states. The procedure to calculate the optimal duty ratio for a buck, boost and buck-boost converters, to transfer the maximum power from a PVM to a load, is presented in the paper. Additionally, the existence and uniqueness of optimal internal impedance, to transfer the maximum power from a photovoltaic module using load matching, is proved.

  14. Mathematical Modeling Of The Acceleration Process In Race-track Microtron

    CERN Document Server

    Gromov, A M; Vasilev, A A

    2004-01-01

    The precise calculations of beam dynamics are needed to make choice of optimal design parameters of race-track microtron. As a result, the necessary physical require-ments to the accelerator systems become found. For cal-culation of the magnetic field, POISSON LANL code is used. Acceleration of the beam is investigated with the help of the program of MathCad. Nonlinear distribution of the field in magnets of micro-tron with adjustable reverse field was simulated. The equation of motion of a beam in bending magnets of re-circulation system are found and solved by a numerical method. Trajectories of the beam for all orbits in a micro-tron are received. The recursive equation for calculation of the largest area of injected beam phase and power spreads providing steady acceleration process is written. The acceleration of the beam with maximal phase-energy area through all orbits of microtron was simulated. The velocity of accelerated particles on first orbits dif-fers from velocity of light. The minimal energy ...

  15. Defects in Amorphous Semiconductors: The Case of Amorphous Indium Gallium Zinc Oxide

    Science.gov (United States)

    de Jamblinne de Meux, A.; Pourtois, G.; Genoe, J.; Heremans, P.

    2018-05-01

    Based on a rational classification of defects in amorphous materials, we propose a simplified model to describe intrinsic defects and hydrogen impurities in amorphous indium gallium zinc oxide (a -IGZO). The proposed approach consists of organizing defects into two categories: point defects, generating structural anomalies such as metal—metal or oxygen—oxygen bonds, and defects emerging from changes in the material stoichiometry, such as vacancies and interstitial atoms. Based on first-principles simulations, it is argued that the defects originating from the second group always act as perfect donors or perfect acceptors. This classification simplifies and rationalizes the nature of defects in amorphous phases. In a -IGZO, the most important point defects are metal—metal bonds (or small metal clusters) and peroxides (O - O single bonds). Electrons are captured by metal—metal bonds and released by the formation of peroxides. The presence of hydrogen can lead to two additional types of defects: metal-hydrogen defects, acting as acceptors, and oxygen-hydrogen defects, acting as donors. The impact of these defects is linked to different instabilities observed in a -IGZO. Specifically, the diffusion of hydrogen and oxygen is connected to positive- and negative-bias stresses, while negative-bias illumination stress originates from the formation of peroxides.

  16. Geant4-DNA track-structure simulations for gold nanoparticles: The importance of electron discrete models in nanometer volumes.

    Science.gov (United States)

    Sakata, Dousatsu; Kyriakou, Ioanna; Okada, Shogo; Tran, Hoang N; Lampe, Nathanael; Guatelli, Susanna; Bordage, Marie-Claude; Ivanchenko, Vladimir; Murakami, Koichi; Sasaki, Takashi; Emfietzoglou, Dimitris; Incerti, Sebastien

    2018-05-01

    Gold nanoparticles (GNPs) are known to enhance the absorbed dose in their vicinity following photon-based irradiation. To investigate the therapeutic effectiveness of GNPs, previous Monte Carlo simulation studies have explored GNP dose enhancement using mostly condensed-history models. However, in general, such models are suitable for macroscopic volumes and for electron energies above a few hundred electron volts. We have recently developed, for the Geant4-DNA extension of the Geant4 Monte Carlo simulation toolkit, discrete physics models for electron transport in gold which include the description of the full atomic de-excitation cascade. These models allow event-by-event simulation of electron tracks in gold down to 10 eV. The present work describes how such specialized physics models impact simulation-based studies on GNP-radioenhancement in a context of x-ray radiotherapy. The new discrete physics models are compared to the Geant4 Penelope and Livermore condensed-history models, which are being widely used for simulation-based NP radioenhancement studies. An ad hoc Geant4 simulation application has been developed to calculate the absorbed dose in liquid water around a GNP and its radioenhancement, caused by secondary particles emitted from the GNP itself, when irradiated with a monoenergetic electron beam. The effect of the new physics models is also quantified in the calculation of secondary particle spectra, when originating in the GNP and when exiting from it. The new physics models show similar backscattering coefficients with the existing Geant4 Livermore and Penelope models in large volumes for 100 keV incident electrons. However, in submicron sized volumes, only the discrete models describe the high backscattering that should still be present around GNPs at these length scales. Sizeable differences (mostly above a factor of 2) are also found in the radial distribution of absorbed dose and secondary particles between the new and the existing Geant4

  17. Short, intermediate and long range order in amorphous ices

    Science.gov (United States)

    Martelli, Fausto; Torquato, Salvatore; Giovanbattista, Nicolas; Car, Roberto

    Water exhibits polyamorphism, i.e., it exists in more than one amorphous state. The most common forms of glassy water are the low-density amorphous (LDA) and the high-density amorphous (HDA) ices. LDA, the most abundant form of ice in the Universe, transforms into HDA upon isothermal compression. We model the transformation of LDA into HDA under isothermal compression with classical molecular dynamics simulations. We analyze the molecular structures with a recently introduced scalar order metric to measure short and intermediate range order. In addition, we rank the structures by their degree of hyperuniformity, i.e.,the extent to which long range density fluctuations are suppressed. F.M. and R.C. acknowledge support from the Department of Energy (DOE) under Grant No. DE-SC0008626.

  18. Making tracks

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-10-15

    In many modern tracking chambers, the sense wires, rather than being lined up uniformly, are grouped into clusters to facilitate the pattern recognition process. However, with higher energy machines providing collisions richer in secondary particles, event reconstruction becomes more complicated. A Caltech / Illinois / SLAC / Washington group developed an ingenious track finding and fitting approach for the Mark III detector used at the SPEAR electron-positron ring at SLAC (Stanford). This capitalizes on the detector's triggering, which uses programmable logic circuits operating in parallel, each 'knowing' the cell patterns for all tracks passing through a specific portion of the tracker (drift chamber)

  19. Amorphous gauge glass theory

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Bennett, D.L.

    1987-08-01

    Assuming that a lattice gauge theory describes a fundamental attribute of Nature, it should be pointed out that such a theory in the form of a gauge glass is a weaker assumption than a regular lattice model in as much as it is not constrained by the imposition of translational invariance; translational invariance is, however, recovered approximately in the long wavelength or continuum limit. (orig./WL)

  20. Relationships of radiation track structure to biological effect: a re-interpretation of the parameters of the Katz model

    International Nuclear Information System (INIS)

    Goodhead, D.T.

    1989-01-01

    The Katz track-model of cell inactivation has been more successful than any other biophysical model in fitting and predicting inactivation of mammalian cells exposed to a wide variety of ionising radiations. Although the model was developed as a parameterised phenomenological description, without necessarily implying any particular mechanistic processes, the present analysis attempts to interpret it and thereby benefit further from its success to date. A literal interpretation of the parameters leads to contradictions with other experimental and theoretical information, especially since the fitted parameters imply very large (> ∼ 4 μm) subcellular sensitive sites which each require very large amounts (> ∼ 100 keV) of energy deposition in order to be inactivated. Comparisons of these fits with those for cell mutation suggest a re-interpretation in terms of (1) very much smaller sites and (2) a clearer distinction between the ion-kill and γ-kill modes of inactivation. It is suggested that this re-interpretation may be able to guide future development of the phenomenological Katz model and also parameterisation of mechanistic biophysical models. (author)