WorldWideScience

Sample records for amorphous solid dispersions

  1. Theoretical Considerations in Developing Amorphous Solid Dispersions

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Priemel, Petra Alexandra; Surwase, Sachin;

    2014-01-01

    Before pursuing the laborious route of amorphous solid dispersion formulation and development, which is the topic of many of the subsequent chapters in this book, the formulation scientist would benefit from a priori knowledge whether the amorphous route is a viable one for a given drug and how...... to their glass-forming ability and glass stability. In the main parts of this chapter, we review theoretical approaches to determine amorphous drug polymer miscibility and crystalline drug polymer solubility, as a prerequisite to develop amorphous solid dispersions (glass solutions)....... much solubility improvement, and hence increase in bioavailability, can be expected, and what forms of solid dispersion have been developed in the past. In this chapter, we therefore initially define the various forms of solid dispersions, and then go on to discuss properties of pure drugs with respect...

  2. Drug-excipient behavior in polymeric amorphous solid dispersions.

    OpenAIRE

    Surikutchi Bhanu Teja; Shashank Pralhad Patil; Ganesh Shete; Sarsvatkumar Patel; Arvind Kumar Bansal

    2016-01-01

    Amorphous drug delivery systems are increasingly utilized to enhance aqueous solubility and oral bioavailability. However, they lack physical and/or chemical stability. One of the most common ways of stabilizing an amorphous form is by formulating it as an amorphous solid dispersion. This review focuses on polymeric amorphous solid dispersions wherein polymers are used as excipients to stabilize the amorphous form. A brief introduction to the basic concepts of amorphous systems such as glass ...

  3. Drug excipient behavior in polymeric amorphous solid dispersions

    OpenAIRE

    Bhanu Teja Surikutchi; Shashank Pralhad Patil; Ganesh Shete; Sarsvatkumar Patel; Arvind Kumar Bansal

    2013-01-01

    Amorphous drug delivery system is being increasingly utilized for enhancing aqueous solubility and oral bioavailability. However it suffers from lack of physical/chemical stability. One of the most common ways of stabilizing an amorphous form is by formulating it as amorphous solid dispersion. This review focuses on the polymeric amorphous solid dispersion wherein polymers are used as excipients to stabilize the amorphous form. We present a brief introduction of basic concepts of amorphous sy...

  4. Spray drying formulation of amorphous solid dispersions.

    Science.gov (United States)

    Singh, Abhishek; Van den Mooter, Guy

    2016-05-01

    Spray drying is a well-established manufacturing technique which can be used to formulate amorphous solid dispersions (ASDs) which is an effective strategy to deliver poorly water soluble drugs (PWSDs). However, the inherently complex nature of the spray drying process coupled with specific characteristics of ASDs makes it an interesting area to explore. Numerous diverse factors interact in an inter-dependent manner to determine the final product properties. This review discusses the basic background of ASDs, various formulation and process variables influencing the critical quality attributes (CQAs) of the ASDs and aspects of downstream processing. Also various aspects of spray drying such as instrumentation, thermodynamics, drying kinetics, particle formation process and scale-up challenges are included. Recent advances in the spray-based drying techniques are mentioned along with some future avenues where major research thrust is needed.

  5. Delivery of poorly soluble compounds by amorphous solid dispersions.

    Science.gov (United States)

    Lee, Thomas W Y; Boersen, Nathan A; Hui, H W; Chow, S F; Wan, K Y; Chow, Albert H L

    2014-01-01

    Solid state manipulation by amorphous solid dispersion has been the subject of intensive research for decades due to their excellent potential for dissolution and bioavailability enhancement. The present review aims to highlight the latest advancement in this area, with focus on the fundamentals, characterization, formulation development and manufacturing of amorphous solid dispersions as well as the new generation amorphization technologies. Additionally, specific applications of amorphous solid dispersion in the formulation of herbal drugs or bioactive natural products are reviewed to reflect the growing interest in this relatively neglected area.

  6. Amorphous solid dispersions: Rational selection of a manufacturing process.

    Science.gov (United States)

    Vasconcelos, Teófilo; Marques, Sara; das Neves, José; Sarmento, Bruno

    2016-05-01

    Amorphous products and particularly amorphous solid dispersions are currently one of the most exciting areas in the pharmaceutical field. This approach presents huge potential and advantageous features concerning the overall improvement of drug bioavailability. Currently, different manufacturing processes are being developed to produce amorphous solid dispersions with suitable robustness and reproducibility, ranging from solvent evaporation to melting processes. In the present paper, laboratorial and industrial scale processes were reviewed, and guidelines for a rationale selection of manufacturing processes were proposed. This would ensure an adequate development (laboratorial scale) and production according to the good manufacturing practices (GMP) (industrial scale) of amorphous solid dispersions, with further implications on the process validations and drug development pipeline. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Dissolution and precipitation behavior of amorphous solid dispersions.

    Science.gov (United States)

    Alonzo, David E; Gao, Yi; Zhou, Deliang; Mo, Huaping; Zhang, Geoff G Z; Taylor, Lynne S

    2011-08-01

    Amorphous solid dispersions (ASDs) are widely utilized in the pharmaceutical industry for bioavailability enhancement of low solubility drugs. The important factors governing the dissolution behavior of these systems are still far from adequately understood. As a consequence, it is of interest to investigate the behavior of these systems during the dissolution process. The purpose of this research was twofold. First, the degree of supersaturation generated upon dissolution as a function of drug-polymer composition was investigated. Second, an investigation was conducted to correlate physical behavior upon dissolution with polymer loading. Felodipine and indomethacin were selected as model drugs and hydroxypropylmethylcellulose (HPMC) and polyvinylpyrrolidone (PVP) were used to form the dispersions. Diffusion and nuclear magnetic resonance spectroscopy experiments revealed that the extent of bulk supersaturation generated on dissolution of the ASD did not depend on the drug-polymer ratio. Interestingly, the maximum supersaturation generated was similar to the predicted amorphous solubility advantage. However, dynamic light scattering measurements revealed that particles on the submicron scale were generated during dissolution of the solid dispersions containing 90% polymer, whereas solid dispersions at a 50% polymer loading did not yield these nanoparticles. The nanoparticles were found to result in anomalous concentration measurements when using in situ ultraviolet spectroscopy. The supersaturation generated upon dissolution of the solid dispersions was maintained for biologically relevant timeframes for the HPMC dispersions, whereas PVP appeared to be a less effective crystallization inhibitor.

  8. Applications of KinetiSol dispersing for the production of plasticizer free amorphous solid dispersions.

    Science.gov (United States)

    DiNunzio, James C; Brough, Chris; Miller, Dave A; Williams, Robert O; McGinity, James W

    2010-06-14

    Thermal manufacturing methods for the production of solid dispersions frequently require the addition of a plasticizer in order to achieve requisite molten material flow properties when processed by unit operations such as hot melt extrusion. KinetiSol Dispersing, a rapid high energy thermal manufacturing process, was investigated for the ability to produce amorphous solid dispersions without the aid of a plasticizer. For this study itraconazole was used as a model active ingredient, while Eudragit L100-55 and Carbomer 974P were used as model solid dispersion carriers. Triethyl citrate (TEC) was used as necessary as a model plasticizer. Compositions prepared by KinetiSol Dispersing and hot melt extrusion were evaluated for solid state properties, supersaturated in vitro dissolution behavior under pH change conditions and accelerated stability performance. Results showed that both manufacturing processes were capable of producing amorphous solid dispersions, however compositions produced by hot melt extrusion required the presence of TEC and yielded a glass transition temperature (T(g)) of approximately 54 degrees C. Plasticized and unplasticized compositions were successfully produced by KinetiSol Dispersing, with plasticizer free solid dispersions exhibiting a T(g) of approximately 101 degrees C. Supersaturated in vitro dissolution testing revealed a significantly higher dissolution rate of plasticized material which was attributed to the pore forming behavior of TEC during the acidic phase of testing. A further contribution to release may also have been provided by the greater diffusivity in the plasticized polymer. X-ray diffraction testing revealed that under accelerated stability conditions, plasticized compositions exhibited partial recrystallization, while plasticizer free materials remained amorphous throughout the 6-month testing period. These results demonstrated that KinetiSol Dispersing could be used for the production of amorphous solid dispersions

  9. Amorphous solid dispersions: a robust platform to address bioavailability challenges.

    Science.gov (United States)

    Newman, Ann; Nagapudi, Karthik; Wenslow, Robert

    2015-02-01

    Amorphous solid dispersions (ASDs) are being used with increasing frequency for poorly soluble pharmaceutical compounds in development. These systems consist of an amorphous active pharmaceutical ingredient stabilized by a polymer to produce a system with improved physical and solution stability. ASDs are commonly considered as a means of improving the apparent solubility of an active pharmaceutical ingredient. This review will discuss methods of preparation and characterization of ASDs with an emphasis on understanding and predicting stability. Theoretical understanding of supersaturation and predicting in vivo performance will be stressed. Additionally, a summary of preclinical and clinical development efforts will be presented to give the reader an understanding of risks and key pitfalls when developing an ASD.

  10. Solubility Advantage (and Disadvantage) of Pharmaceutical Amorphous Solid Dispersions.

    Science.gov (United States)

    Huang, Siyuan; Mao, Chen; Williams, Robert O; Yang, Chia-Yi

    2016-12-01

    The solubility of a drug is ultimately governed by its chemical potential as it is present in the undissolved solute. For a pharmaceutical amorphous solid dispersion (ASD), its solubility depends on the state and composition of the undissolved solute when the ASD is equilibrated with water. Concerning the undissolved solute phase that can contain up to 3 components (drug, polymer, and water), we developed a complete thermodynamic model to calculate the chemical potential of a drug in the multicomponent, amorphous system. This approach enables the estimation of the true solubility advantage of ASD from calorimetric measurements and moisture sorption isotherms. Both theoretical estimation and experimental studies, using indomethacin (IMC)/Eudragit E ASD systems, show that the solubility advantage of the amorphous IMC is significantly reduced through ASD formation and water partitioning. For the ASD with 70% drug loading, the solubility of IMC is lower than its crystalline counterpart. Our results show that stabilization through the ASD formation and water sorption can be manifested by the lowering of drug solubility; they demonstrate that the core property in ASD development is the drug chemical potential, which is essentially the thermodynamic driving force and can be quantitated using the model presented in this work.

  11. Multifractal and mechanical analysis of amorphous solid dispersions.

    Science.gov (United States)

    Adler, Camille; Teleki, Alexandra; Kuentz, Martin

    2017-03-09

    The formulation of lipophilic and hydrophobic compounds is a challenge for the pharmaceutical industry and it requires the development of complex formulations. Our first aim was to investigate hot-melt extrudate microstructures by means of multifractal analysis using scanning electron microscopy imaging. Since the microstructure can affect solid dosage form performance such as mechanical properties, a second objective was to study the influence of the type of adsorbent and of the presence of an amorphous compound on extrudate hardness. β-Carotene (BC) was chosen as poorly water-soluble model compound. Formulations containing a polymer, a lipid and two different silica based inorganic carriers were produced by hot-melt extrusion. Based on scanning electron microscopy/energy dispersive X-ray spectroscopy, the obtained images were analyzed using multifractal formalism. The breaking force of the strands was assessed by a three point bending test. Multifractal analysis and three point bending results showed that the nature of interparticle interactions in the inorganic carrier as well as the presence of amorphous BC had an influence on the microstructure and thus on the mechanical performance. The use of multifractal analysis and the study of the mechanical properties were complementary to better characterize and understand complex formulations obtained by hot-melt extrusion.

  12. An investigation into the role of polymeric carriers on crystal growth within amorphous solid dispersion systems.

    Science.gov (United States)

    Tian, Yiwei; Jones, David S; Andrews, Gavin P

    2015-04-06

    Using phase diagrams derived from Flory-Huggins theory, we defined the thermodynamic state of amorphous felodipine within three different polymeric carriers. Variation in the solubility and miscibility of felodipine within different polymeric materials (using F-H theory) has been identified and used to select the most suitable polymeric carriers for the production of amorphous drug-polymer solid dispersions. With this information, amorphous felodipine solid dispersions were manufactured using three different polymeric materials (HPMCAS-HF, Soluplus, and PVPK15) at predefined drug loadings, and the crystal growth rates of felodipine from these solid dispersions were investigated. Crystallization of amorphous felodipine was studied using Raman spectral imaging and polarized light microscopy. Using this data, we examined the correlation among several characteristics of solid dispersions to the crystal growth rate of felodipine. An exponential relationship was found to exist between drug loading and crystal growth rate. Moreover, crystal growth within all selected amorphous drug-polymer solid dispersion systems were viscosity dependent (η(-ξ)). The exponent, ξ, was estimated to be 1.36 at a temperature of 80 °C. Values of ξ exceeding 1 may indicate strong viscosity dependent crystal growth in the amorphous drug-polymer solid dispersion systems. We argue that the elevated exponent value (ξ > 1) is a result of drug-polymer mixing which leads to a less fragile amorphous drug-polymer solid dispersion system. All systems investigated displayed an upper critical solution temperature, and the solid-liquid boundary was always higher than the spinodal decomposition curve. Furthermore, for PVP-FD amorphous dispersions at drug loadings exceeding 0.6 volume ratio, the mechanism of phase separation within the metastable zone was found to be driven by nucleation and growth rather than liquid-liquid separation.

  13. Understanding the Tendency of Amorphous Solid Dispersions to Undergo Amorphous–Amorphous Phase Separation in the Presence of Absorbed Moisture

    OpenAIRE

    Rumondor, Alfred C. F.; Wikström, Håkan; Van Eerdenbrugh, Bernard; Taylor, Lynne S.

    2011-01-01

    Formulation of an amorphous solid dispersion (ASD) is one of the methods commonly considered to increase the bioavailability of a poorly water-soluble small-molecule active pharmaceutical ingredient (API). However, many factors have to be considered in designing an API–polymer system, including any potential changes to the physical stability of the API. In this study, the tendency of ASD systems containing a poorly water-soluble API and a polymer to undergo amorphous–amorphous phase separatio...

  14. A Molecular-Level View of the Physical Stability of Amorphous Solid Dispersions

    Science.gov (United States)

    Yuan, Xiaoda

    Many pharmaceutical compounds being developed in recent years are poorly soluble in water. This has led to insufficient oral bioavailability of many compounds in vitro. The amorphous formulation is one of the promising techniques to increase the oral bioavailability of these poorly water-soluble compounds. However, an amorphous drug substance is inherently unstable because it is a high energy form. In order to increase the physical stability, the amorphous drug is often formulated with a suitable polymer to form an amorphous solid dispersion. Previous research has suggested that the formation of an intimately mixed drug-polymer mixture contributes to the stabilization of the amorphous drug compound. The goal of this research is to better understand the role of miscibility, molecular interactions and mobility on the physical stability of amorphous solid dispersions. Methods were developed to detect different degrees of miscibility on nanometer scale and to quantify the extent of hydrogen-bonding interactions between the drug and the polymer. Miscibility, hydrogen-bonding interactions and molecular mobility were correlated with physical stability during a six-month period using three model systems. Overall, this research provides molecular-level insights into many factors that govern the physical stability of amorphous solid dispersions which can lead to a more effective design of stable amorphous formulations.

  15. Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs.

    Science.gov (United States)

    Baghel, Shrawan; Cathcart, Helen; O'Reilly, Niall J

    2016-09-01

    Poor water solubility of many drugs has emerged as one of the major challenges in the pharmaceutical world. Polymer-based amorphous solid dispersions have been considered as the major advancement in overcoming limited aqueous solubility and oral absorption issues. The principle drawback of this approach is that they can lack necessary stability and revert to the crystalline form on storage. Significant upfront development is, therefore, required to generate stable amorphous formulations. A thorough understanding of the processes occurring at a molecular level is imperative for the rational design of amorphous solid dispersion products. This review attempts to address the critical molecular and thermodynamic aspects governing the physicochemical properties of such systems. A brief introduction to Biopharmaceutical Classification System, solid dispersions, glass transition, and solubility advantage of amorphous drugs is provided. The objective of this review is to weigh the current understanding of solid dispersion chemistry and to critically review the theoretical, technical, and molecular aspects of solid dispersions (amorphization and crystallization) and potential advantage of polymers (stabilization and solubilization) as inert, hydrophilic, pharmaceutical carrier matrices. In addition, different preformulation tools for the rational selection of polymers, state-of-the-art techniques for preparation and characterization of polymeric amorphous solid dispersions, and drug supersaturation in gastric media are also discussed.

  16. Formulation and delivery of improved amorphous fenofibrate solid dispersions prepared by thin film freezing.

    Science.gov (United States)

    Zhang, Meimei; Li, Houli; Lang, Bo; O'Donnell, Kevin; Zhang, Haohao; Wang, Zhouhua; Dong, Yixuan; Wu, Chuanbin; Williams, Robert O

    2012-11-01

    The objective of this study was to prepare amorphous fenofibrate (FB) solid dispersions using thin film freezing (TFF) and to incorporate the solid dispersions into pharmaceutically acceptable dosage forms. FB solid dispersions prepared with optimized drug/polymer ratios were characterized by modulated differential scanning calorimetry (MDSC), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) specific surface area measurements, Fourier-transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), and supersaturation dissolution testing. Furthermore, a dry granulation technique was used to encapsulate the TFF compositions for in vitro dissolution and in vivo animal pharmacokinetic studies. The results showed that the TFF process produced amorphous, porous, microstructured, and stable solid dispersions with high surface areas. Development of solid oral dosage forms revealed that the performance of the FB containing solid dispersions was not affected by the formulation process, which was confirmed by DSC and XRD. Moreover, an in vivo pharmacokinetic study in rats revealed a significant increase in FB absorption compared to bulk FB. We confirmed that amorphous solid dispersions with large surface areas produced by the TFF process displayed superior dissolution rates and corresponding enhanced bioavailability of the poorly water-soluble drug, FB. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Analysis of amorphous solid dispersions using 2D solid-state NMR and (1)H T(1) relaxation measurements.

    Science.gov (United States)

    Pham, Tran N; Watson, Simon A; Edwards, Andrew J; Chavda, Manisha; Clawson, Jacalyn S; Strohmeier, Mark; Vogt, Frederick G

    2010-10-04

    Solid-state NMR (SSNMR) can provide detailed structural information about amorphous solid dispersions of pharmaceutical small molecules. In this study, the ability of SSNMR experiments based on dipolar correlation, spin diffusion, and relaxation measurements to characterize the structure of solid dispersions is explored. Observation of spin diffusion effects using the 2D (1)H-(13)C cross-polarization heteronuclear correlation (CP-HETCOR) experiment is shown to be a useful probe of association between the amorphous drug and polymer that is capable of directly proving glass solution formation. Dispersions of acetaminophen and indomethacin in different polymers are examined using this approach, as well as (1)H double-quantum correlation experiments to probe additional structural features. (1)H-(19)F CP-HETCOR serves a similar role for fluorinated drug molecules such as diflunisal in dispersions, providing a rapid means to prove the formation of a glass solution. Phase separation is detected using (13)C, (19)F, and (23)Na-detected (1)H T(1) experiments in crystalline and amorphous solid dispersions that contain small domains. (1)H T(1) measurements of amorphous nanosuspensions of trehalose and dextran illustrate the ability of SSNMR to detect domain size effects in dispersions that are not glass solutions via spin diffusion effects. Two previously unreported amorphous solid dispersions involving up to three components and containing voriconazole and telithromycin are analyzed using these experiments to demonstrate the general applicability of the approach.

  18. Enabling thermal processing of ritonavir-polyvinyl alcohol amorphous solid dispersions by KinetiSol® Dispersing.

    Science.gov (United States)

    LaFountaine, Justin S; Jermain, Scott V; Prasad, Leena Kumari; Brough, Chris; Miller, Dave A; Lubda, Dieter; McGinity, James W; Williams, Robert O

    2016-04-01

    Polyvinyl alcohol has received little attention as a matrix polymer in amorphous solid dispersions (ASDs) due to its thermal and rheological limitations in extrusion processing and limited organic solubility in spray drying applications. Additionally, in extrusion processing, the high temperatures required to process often exclude thermally labile APIs. The purpose of this study was to evaluate the feasibility of processing polyvinyl alcohol amorphous solid dispersions utilizing the model compound ritonavir with KinetiSol® Dispersing (KSD) technology. The effects of KSD rotor speed and ejection temperature on the physicochemical properties of the processed material were evaluated. Powder X-ray diffraction and modulated differential scanning calorimetry were used to confirm amorphous conversion. Liquid chromatography-mass spectroscopy was used to characterize and identify degradation pathways of ritonavir during KSD processing and (13)C nuclear magnetic resonance spectroscopy was used to investigate polymer stability. An optimal range of processing conditions was found that resulted in amorphous product and minimal to no drug and polymer degradation. Drug release of the ASD produced from the optimal processing conditions was evaluated using a non-sink, pH-shift dissolution test. The ability to process amorphous solid dispersions with polyvinyl alcohol as a matrix polymer will enable further investigations of the polymer's performance in amorphous systems for poorly water-soluble compounds.

  19. Preparation, characterization and in vivo studies of amorphous solid dispersion of berberine with hydrogenated phosphatidylcholine.

    Science.gov (United States)

    Shi, Chunyang; Tong, Qing; Fang, Jianguo; Wang, Chenguang; Wu, Jizhou; Wang, Wenqing

    2015-07-10

    Berberine, a pure crystalline quaternary ammonium salt with the basic structure of isoquinoline alkaloid, has multiple pharmacological bioactivities. But the poor bioavailability of berberine limited its wide clinical applications. In the present study, we aimed to develop an amorphous solid dispersion of berberine with hydrogenated phosphatidylcholine (HPC) in order to improve its bioavailability. The physical characterization studies such as differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Fourier transform infrared spectrophotometry (FT-IR) and scanning electron microscopy (SEM) were conducted to characterize the formation of amorphous berberine HPC solid dispersion (BHPC-SD). The everted intestinal sac and single-pass intestinal perfusion study proved that permeability and intestinal absorption of amorphous BHPC-SD was improved compared with that of pure crystalline berberine, and the pharmacokinetic study results demonstrated that the extent of bioavailability was significantly increased as well. However, the dissolution study indicated that the aqueous cumulative dissolution percentages of berberine remained unchanged or even lower by means of preparation into solid dispersion with HPC. Therefore, according to the previous mechanistic studies, the present results supported that it is the enhanced molecularly dissolved concentration (supersaturation) of berberine by transformation from crystalline structure into amorphous solid dispersions that triggers the enhanced permeability, and consequently results in the improved intestinal absorption and bioavailability.

  20. The effect of processing on the surface physical stability of amorphous solid dispersions.

    Science.gov (United States)

    Yang, Ziyi; Nollenberger, Kathrin; Albers, Jessica; Moffat, Jonathan; Craig, Duncan; Qi, Sheng

    2014-11-01

    The focus of this study was to investigate the effect of processing on the surface crystallization of amorphous molecular dispersions and gain insight into the mechanisms underpinning this effect. The model systems, amorphous molecular dispersions of felodipine-EUDRAGIT® E PO, were processed both using spin coating (an ultra-fast solvent evaporation based method) and hot melt extrusion (HME) (a melting based method). Amorphous solid dispersions with drug loadings of 10-90% (w/w) were obtained by both processing methods. Samples were stored under 75% RH/room temperatures for up to 10months. Surface crystallization was observed shortly after preparation for the HME samples with high drug loadings (50-90%). Surface crystallization was characterized by powder X-ray diffraction (PXRD), ATR-FTIR spectroscopy and imaging techniques (SEM, AFM and localized thermal analysis). Spin coated molecular dispersions showed significantly higher surface physical stability than hot melt extruded samples. For both systems, the progress of the surface crystal growth followed zero order kinetics on aging. Drug enrichment at the surfaces of HME samples on aging was observed, which may contribute to surface crystallization of amorphous molecular dispersions. In conclusion it was found the amorphous molecular dispersions prepared by spin coating had a significantly higher surface physical stability than the corresponding HME samples, which may be attributed to the increased process-related apparent drug-polymer solubility and reduced molecular mobility due to the quenching effect caused by the rapid solvent evaporation in spin coating.

  1. Improved supersaturation and oral absorption of dutasteride by amorphous solid dispersions.

    Science.gov (United States)

    Beak, In-Hwan; Kim, Min-Soo

    2012-01-01

    In this study, amorphous solid dispersions containing dutasteride and various excipients, manufactured by spray-drying processes, were characterized to determine the effects on their ability to form supersaturated solutions and to identify the effects of supersaturation on increasing the bioavailability of dutasteride. The excipients included Eudragit E, hydroxypropyl-β-cyclodextrin (HP-β-CD), hydroxypropyl cellulose (HPC), hydroxypropylmethyl cellulose (HPMC), and polyvinylpyrrolidone (PVP K30). A solid dispersion with Eudragit E displayed a high maximum supersaturation with extended supersaturation, compared with a water-soluble polymer. The maximum concentration and the degree of supersaturation increased in the following order: PVP K30supersaturation concentration. These results suggest that amorphous solid dispersions containing Eudragit E, formed by a spray-drying process, offer enhanced supersaturation characteristics, leading to increased oral absorption of dutasteride.

  2. Phase separation kinetics in amorphous solid dispersions upon exposure to water.

    Science.gov (United States)

    Purohit, Hitesh S; Taylor, Lynne S

    2015-05-04

    The purpose of this study was to develop a novel fluorescence technique employing environment-sensitive fluorescent probes to study phase separation kinetics in hydrated matrices of amorphous solid dispersions (ASDs) following storage at high humidity and during dissolution. The initial miscibility of the ASDs was confirmed using infrared (IR) spectroscopy and differential scanning calorimetry (DSC). Fluorescence spectroscopy, as an independent primary technique, was used together with conventional confirmatory techniques including DSC, X-ray diffraction (XRD), fluorescence microscopy, and IR spectroscopy to study phase separation phenomena. By monitoring the emission characteristics of the environment-sensitive fluorescent probes, it was possible to successfully monitor amorphous-amorphous phase separation (AAPS) as a function of time in probucol-poly(vinylpyrrolidone) (PVP) and ritonavir-PVP ASDs after exposure to water. In contrast, a ritonavir-hydroxypropylmethylcellulose acetate succinate (HPMCAS) ASD, did not show AAPS and was used as a control to demonstrate the capability of the newly developed fluorescence method to differentiate systems that showed no phase separation following exposure to water versus those that did. The results from the fluorescence studies were in good agreement with results obtained using various other complementary techniques. Thus, fluorescence spectroscopy can be utilized as a fast and efficient tool to detect and monitor the kinetics of phase transformations in amorphous solid dispersions during hydration and will help provide mechanistic insight into the stability and dissolution behavior of amorphous solid dispersions.

  3. Amorphous stabilization and dissolution enhancement of amorphous ternary solid dispersions: combination of polymers showing drug-polymer interaction for synergistic effects.

    Science.gov (United States)

    Prasad, Dev; Chauhan, Harsh; Atef, Eman

    2014-11-01

    The purpose of this study was to understand the combined effect of two polymers showing drug-polymer interactions on amorphous stabilization and dissolution enhancement of indomethacin (IND) in amorphous ternary solid dispersions. The mechanism responsible for the enhanced stability and dissolution of IND in amorphous ternary systems was studied by exploring the miscibility and intermolecular interactions between IND and polymers through thermal and spectroscopic analysis. Eudragit E100 and PVP K90 at low concentrations (2.5%-40%, w/w) were used to prepare amorphous binary and ternary solid dispersions by solvent evaporation. Stability results showed that amorphous ternary solid dispersions have better stability compared with amorphous binary solid dispersions. The dissolution of IND from the ternary dispersion was substantially higher than the binary dispersions as well as amorphous drug. Melting point depression of physical mixtures reveals that the drug was miscible in both the polymers; however, greater miscibility was observed in ternary physical mixtures. The IR analysis confirmed intermolecular interactions between IND and individual polymers. These interactions were found to be intact in ternary systems. These results suggest that the combination of two polymers showing drug-polymer interaction offers synergistic enhancement in amorphous stability and dissolution in ternary solid dispersions.

  4. Thermal Processing of PVP- and HPMC-Based Amorphous Solid Dispersions.

    Science.gov (United States)

    LaFountaine, Justin S; Prasad, Leena Kumari; Brough, Chris; Miller, Dave A; McGinity, James W; Williams, Robert O

    2016-02-01

    Thermal processing technologies continue to gain interest in pharmaceutical manufacturing. However, the types and grades of polymers that can be utilized in common thermal processing technologies, such as hot-melt extrusion (HME), are often limited by thermal or rheological factors. The objectives of the present study were to compare and contrast two thermal processing methods, HME and KinetiSol® Dispersing (KSD), and investigate the influence of polymer type, polymer molecular weight, and drug loading on the ability to produce amorphous solid dispersions (ASDs) containing the model compound griseofulvin (GRIS). Dispersions were analyzed by a variety of imaging, solid-state, thermal, and solution-state techniques. Dispersions were prepared by both HME and KSD using polyvinylpyrrolidone (PVP) K17 or hydroxypropyl methylcellulose (HPMC) E5. Dispersions were only prepared by KSD using higher molecular weight grades of HPMC and PVP, as these could not be extruded under the conditions selected. Powder X-ray diffraction (PXRD) analysis showed that dispersions prepared by HME were amorphous at 10% and 20% drug load; however, it showed significant crystallinity at 40% drug load. PXRD analysis of KSD samples showed all formulations and drug loads to be amorphous with the exception of trace crystallinity seen in PVP K17 and PVP K30 samples at 40% drug load. These results were further supported by other analytical techniques. KSD produced amorphous dispersions at higher drug loads than could be prepared by HME, as well as with higher molecular weight polymers that were not processable by HME, due to its higher rate of shear and torque output.

  5. Nonphotochemical hole burning and dispersive kinetics in amorphous solids

    Energy Technology Data Exchange (ETDEWEB)

    Kenney, M.J.

    1990-09-21

    Results covering burn intensities in the nW to {mu}W/cm{sup 2} range, of dispersive hole growth kinetics are reported for Oxazine 720 in glycerol glasses and polyvinyl alcohol polymer films and their deuterated analogues. A theoretical model which employs a distribution function for the hole burning rate constant based upon a Gaussian distribution for the tunnel parameter is shown to accurately describe the kinetic data. This model incorporates the linear electron-phonon coupling. A method for calculating the nonphotochemical quantum yield is presented which utilizes the Gaussian distribution of tunnel parameters. The quantum yield calculation can be extended to determine a quantum yield as a function of hole depth. The effect of spontaneous hole filling is shown to be insignificant over the burn intensity range studied. Average relaxation rates for hole burning are {approximately}8 orders of magnitude greater than for hole filling. The dispersive kinetics of hole burning are observed to be independent over the temperature range of these experiments, 1.6 to 7.0 K. 6 refs., 20 figs., 1 tab.

  6. Solid-State Spectroscopic Investigation of Molecular Interactions between Clofazimine and Hypromellose Phthalate in Amorphous Solid Dispersions.

    Science.gov (United States)

    Nie, Haichen; Su, Yongchao; Zhang, Mingtao; Song, Yang; Leone, Anthony; Taylor, Lynne S; Marsac, Patrick J; Li, Tonglei; Byrn, Stephen R

    2016-11-07

    It has been technically challenging to specify the detailed molecular interactions and binding motif between drugs and polymeric inhibitors in the solid state. To further investigate drug-polymer interactions from a molecular perspective, a solid dispersion of clofazimine (CLF) and hypromellose phthalate (HPMCP), with reported superior amorphous drug loading capacity and physical stability, was selected as a model system. The CLF-HPMCP interactions in solid dispersions were investigated by various solid state spectroscopic methods including ultraviolet-visible (UV-vis), infrared (IR), and solid-state NMR (ssNMR) spectroscopy. Significant spectral changes suggest that protonated CLF is ionically bonded to the carboxylate from the phthalyl substituents of HPMCP. In addition, multivariate analysis of spectra was applied to optimize the concentration of polymeric inhibitor used to formulate the amorphous solid dispersions. Most interestingly, proton transfer between CLF and carboxylic acid was experimentally investigated from 2D (1)H-(1)H homonuclear double quantum NMR spectra by utilizing the ultrafast magic-angle spinning (MAS) technique. The molecular interaction pattern and the critical bonding structure in CLF-HPMCP dispersions were further delineated by successfully correlating ssNMR findings with quantum chemistry calculations. These high-resolution investigations provide critical structural information on active pharmaceutical ingredient-polymer interaction, which can be useful for rational selection of appropriate polymeric carriers, which are effective crystallization inhibitors for amorphous drugs.

  7. Surfactant-free solid dispersion of fat-soluble flavour in an amorphous sugar matrix.

    Science.gov (United States)

    Satoh, Tomo; Hidaka, Fumihiro; Miyake, Kento; Yoshiyama, Natsuki; Takeda, Koji; Matsuura, Tsutashi; Imanaka, Hiroyuki; Ishida, Naoyuki; Imamura, Koreyoshi

    2016-04-15

    A solid dispersion technique to homogeneously disperse hydrophobic ingredients in a water-soluble solid without using surfactant was examined as follows: first, freeze-dried amorphous sugar was dissolved in an organic medium that contained a soluble model hydrophobic component. Second, the mixed solution of sugar and the model hydrophobic component was vacuum dried into a solid (solid dispersion). Methanol and six fat-soluble flavours, including cinnamaldehyde, were used as organic media and model hydrophobic components. The retention of flavours in the solid dispersion during drying and storage under vacuum was evaluated. The amorphised disaccharides dissolved in methanol up to 100mg/mL, even temporarily (20s to 10 days) and could be solidified without any evidence of crystallisation and segregation from flavour. The solid dispersion, prepared using α-maltose usually showed 65-95% flavour retention during drying (and storage for cinnamaldehyde), whereas ⩾ 50% of the flavour was lost when the flavour was O/W emulsified with a surfactant and then freeze-dried with sugar.

  8. Effect of polymer type and drug dose on the in vitro and in vivo behavior of amorphous solid dispersions

    DEFF Research Database (Denmark)

    Knopp, Matthias Manne; Chourak, Nabil; Khan, Fauzan

    2016-01-01

    , the amorphous solid dispersions with the hydrophilic polymers PVP and HPMC led to higher areas under both, the in vitro dissolution and the plasma concentration-time curves (AUC) compared to crystalline and amorphous CCX for all doses. In contrast, the amorphous solid dispersion with the hydrophobic polymer PVA...... showed a lower AUC both in vitro and in vivo than crystalline CCX. For crystalline CCX and CCX:PVA, the in vitro AUC was limited by the low solubility of the drug and the slow release of the drug from the hydrophobic polymer, respectively. For the supersaturating formulations, amorphous CCX, CCX...

  9. Investigating miscibility and molecular mobility of nifedipine-PVP amorphous solid dispersions using solid-state NMR spectroscopy.

    Science.gov (United States)

    Yuan, Xiaoda; Sperger, Diana; Munson, Eric J

    2014-01-06

    Solid-state NMR (SSNMR) (1)H T1 and T1ρ relaxation times were used to evaluate the miscibility of amorphous solid dispersions of nifedipine (NIF) and polyvinylpyrrolidone (PVP) prepared by three different methods: melt quenching in the typical lab setting, spray drying and melt quenching in the NMR rotor while spinning. Of the five compositions prepared by melt quenching in the lab setting, the 95:5 and 90:10 NIF:PVP (w:w) amorphous solid dispersions were not miscible while 75:25, 60:40, and 50:50 NIF:PVP dispersions were miscible by the (1)H T1ρ measurements. The domain size of the miscible systems was estimated to be less than 4.5 nm. Amorphous solid dispersions with composition of 90:10 NIF:PVP prepared by spray drying and melt quenching in the NMR rotor showed miscibility by (1)H T1ρ values. Variable-temperature SSNMR (1)H T1ρ relaxation measurements revealed a change in relaxation time at approximately 20 °C below Tg, suggesting increased molecular mobility above that temperature.

  10. Monitoring the Dissolution Mechanisms of Amorphous Bicalutamide Solid Dispersions via Real-Time Raman Mapping.

    Science.gov (United States)

    Tres, Francesco; Patient, Jamie D; Williams, Philip M; Treacher, Kevin; Booth, Jonathan; Hughes, Leslie P; Wren, Stephen A C; Aylott, Jonathan W; Burley, Jonathan C

    2015-05-04

    Real-time in situ Raman mapping has been employed to monitor, during dissolution, the crystallization transitions of amorphous bicalutamide formulated as a molecular dispersion in a copovidone VA64 matrix. The dissolution performance was also investigated using the rotating disc dissolution rate methodology, which allows simultaneous determination of the dissolution rate of both active ingredient and polymer. The dissolution behavior of two bicalutamide:copovidone VA64 dispersion formulations, containing 5% (w/w) and 50% (w/w) bicalutamide, respectively, was investigated, with the aim of exploring the effect of increasing the bicalutamide loading on the dissolution performance. Spatially time-resolved Raman maps generated using multivariate curve resolution indicated the simultaneous transformation of amorphous bicalutamide present in the 50% drug-loaded extrudate into metastable polymorphic form II and low-energy polymorphic form I. Fitting a kinetic model and spatially correlating the data extracted from the Raman maps also allowed us to understand the re-crystallization mechanisms by which the low-energy form I appears. Form I was shown to crystallize mainly directly from the amorphous solid dispersion, with crystallization from the metastable form II being a minor contribution.

  11. Mucoadhesive amorphous solid dispersions for sustained release of poorly water soluble drugs.

    Science.gov (United States)

    LaFountaine, Justin S; Prasad, Leena Kumari; Miller, Dave A; McGinity, James W; Williams, Robert O

    2017-04-01

    The oral delivery of mucoadhesive patches has been shown to enhance the absorption of large molecules such as peptides. We hypothesized that this mechanism could have utility for poorly soluble small molecules by utilizing a mucoadhesive polymer as the matrix for an amorphous solid dispersion. Binary dispersions of itraconazole and carbomer (Carbopol 71G) were prepared utilizing a thermokinetic mixing process (KinetiSol Dispersing) and the physicochemical properties were investigated by powder X-ray diffraction, calorimetry, and liquid chromatography. Adhesion of the dispersions to freshly excised porcine intestine was investigated with a texture analyzer. Minitablets were compressed from the optimal dispersion and further investigated in vitro and in vivo in rats. Thermokinetic mixing successfully processed amorphous dispersions up to 30% drug loading and each dispersion exhibited works of adhesion that were approximately an order of magnitude greater than a negative control in vitro. Ethylcellulose (EC) coated and uncoated minitablets prepared with the 30% drug load dispersion were delivered orally to rats and exhibited sustained release characteristics, with overall bioavailability greater for the uncoated minitablets compared to the EC-coated minitablets, similar to the rank order observed in our in vitro dissolution experiments. Necropsy studies showed that minitablets delivered with enteric-coated capsules targeted release to the distal small intestine and adhered to the intestinal mucosa, but the rat model presented limitations with respect to evaluating the overall performance. Based on the in vitro and in vivo results, further investigations in larger animals are a logical next step where fluid volumes, pH, and transit times are more favorable for the evaluated dosage forms.

  12. Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery.

    Science.gov (United States)

    Brough, Chris; Williams, R O

    2013-08-30

    Poor water-solubility is a common characteristic of drug candidates in pharmaceutical development pipelines today. Various processes have been developed to increase the solubility, dissolution rate and bioavailability of these active ingredients belonging to BCS II and IV classifications. Over the last decade, nano-crystal delivery forms and amorphous solid dispersions have become well established in commercially available products and industry literature. This article is a comparative analysis of these two methodologies primarily for orally delivered medicaments. The thermodynamic and kinetic theories relative to these technologies are presented along with marketed product evaluations and a survey of commercial relevant scientific literature.

  13. Miscibility behavior and formation mechanism of stabilized felodipine-polyvinylpyrrolidone amorphous solid dispersions.

    Science.gov (United States)

    Karavas, Evangelos; Ktistis, Georgios; Xenakis, Aristotelis; Georgarakis, Emmanouel

    2005-07-01

    In the present study, solid dispersion systems of felodipine (FEL) with polyvinylpyrrolidone (PVP) were developed, in order to enhance solid state stability and release kinetics. The prepared systems were characterized by using Differential Scanning Calorimetry, X-Ray Diffraction, and Scanning Electron Microscopy techniques, while the interactions which take place were identified by using Fourier Transformation-Infrared Spectroscopy. Due to the formation of hydrogen bonds between the carbonyl group of PVP and the amino groups of FEL, transition of FEL from crystalline to amorphous state was achieved. The dispersion of FEL was found to be in nano-scale particle sizes and dependent on the FEL/PVP ratio. This modification leads to partial miscibility of the two components, as it was verified by DSC and optimal glass dispersion of FEL into the polymer matrix since no crystalline structure was detected with XRD. The above deformation has a significant effect on the dissolution enhancement and the release kinetics of FEL, as it causes the pattern to change from linear to logarithmic. An impressive optimization of the dissolution profile is observed corresponding to a rapid release of FEL in the system containing 10% w/w of FEL, releasing 100% in approximately 20 min. The particle size of dispersed FEL into PVP matrix could be classified as the main parameter affecting dissolution optimization. The mechanism of such enhancement consists of the lower energy required for the dissolution due to the amorphous transition and the fine dispersion, which leads to an optimal contact surface of the drug substance with the dissolution media. The prepared systems are stable during storage at 40 +/- 1 degrees C and relative humidity of 75 +/- 5%. Addition of sodium docusate as surfactant does not affect the release kinetics, but only the initial burst due to its effect on the surface tension and wettability of the systems.

  14. Challenges and Strategies in Thermal Processing of Amorphous Solid Dispersions: A Review.

    Science.gov (United States)

    LaFountaine, Justin S; McGinity, James W; Williams, Robert O

    2016-02-01

    Thermal processing of amorphous solid dispersions continues to gain interest in the pharmaceutical industry, as evident by several recently approved commercial products. Still, a number of pharmaceutical polymer carriers exhibit thermal or viscoelastic limitations in thermal processing, especially at smaller scales. Additionally, active pharmaceutical ingredients with high melting points and/or that are thermally labile present their own specific challenges. This review will outline a number of formulation and process-driven strategies to enable thermal processing of challenging compositions. These include the use of traditional plasticizers and surfactants, temporary plasticizers utilizing sub- or supercritical carbon dioxide, designer polymers tailored for hot-melt extrusion processing, and KinetiSol® Dispersing technology. Recent case studies of each strategy will be described along with potential benefits and limitations.

  15. Amorphous Solid Dispersions or Prodrugs: Complementary Strategies to Increase Drug Absorption.

    Science.gov (United States)

    Rumondor, Alfred C F; Dhareshwar, Sundeep S; Kesisoglou, Filippos

    2016-09-01

    Maximizing oral bioavailability of drug candidates represents a challenge in the pharmaceutical industry. In recent years, there has been an increase in the use of amorphous solid dispersions (ASDs) to address this issue, where a growing number of solid dispersion formulations have been introduced to the market. However, an increase in solubility or dissolution rate through ASD does not always result in sufficient improvement of oral absorption because solubility limitations may still exist at high doses. Chemical modification in the form of a prodrug may offer an alternative approach for these cases. Although prodrugs have been primarily used to improve membrane permeability, examples are available in which prodrugs have been used to increase drug solubility beyond what can be achieved via formulation approaches. In this mini review, the role of ASDs and prodrugs as 2 complementary approaches in improving oral bioavailability of drug candidates is discussed. We discuss the fundamental principles of absorption and bioavailability, and review available literature on both solid dispersions and prodrugs, providing a summary of their use and examples of successful applications, and cover some of the biopharmaceutics evaluation aspects for these approaches.

  16. Investigation of drug-excipient interactions in lapatinib amorphous solid dispersions using solid-state NMR spectroscopy.

    Science.gov (United States)

    Song, Yang; Yang, Xinghao; Chen, Xin; Nie, Haichen; Byrn, Stephen; Lubach, Joseph W

    2015-03-02

    This study investigated the presence of specific drug-excipient interactions in amorphous solid dispersions of lapatinib (LB) and four commonly used pharmaceutical polymers, including Soluplus, polyvinylpyrrolidone vinyl acetate (PVPVA), hydroxypropylmethylcellulose acetate succinate (HPMCAS), and hydroxypropylmethylcellulose phthalate (HPMCP). Based on predicted pKa differences, LB was hypothesized to exhibit a specific ionic interaction with HPMCP, and possibly with HPMCAS, while Soluplus and PVPVA were studied as controls without ionizable functionality. Thermal studies showed a single glass transition (Tg) for each dispersion, in close agreement with predicted values for Soluplus, PVPVA, and HPMCAS systems. However, the Tg values of LB-HPMCP solid dispersions were markedly higher than predicted values, indicating a strong intermolecular interaction between LB and HPMCP. (15)N solid-state NMR provided direct spectroscopic evidence for protonation of LB (i.e., salt formation) within the HPMCP solid dispersions. (1)H T1 and (1)H T1ρ relaxation studies of the dispersions supported the ionic interaction hypothesis, and indicated multiple phases in the cases of excess drug or polymer. In addition, the dissolution and stability behavior of each system was examined. Both acidic polymers, HPMCAS and HPMCP, effectively inhibited the crystallization of LB on accelerated stability, likely owing to beneficial strong intermolecular hydrogen and/or specific ionic bonds with the acidic polymers. Soluplus and PVPVA showed poor physical properties on stability and subsequently poor crystallization inhibition.

  17. Detailed stability investigation of amorphous solid dispersions prepared by single-needle and high speed electrospinning.

    Science.gov (United States)

    Démuth, B; Farkas, A; Pataki, H; Balogh, A; Szabó, B; Borbás, E; Sóti, P L; Vigh, T; Kiserdei, É; Farkas, B; Mensch, J; Verreck, G; Van Assche, I; Marosi, G; Nagy, Z K

    2016-02-10

    In this research the long-term stability (one year) of amorphous solid dispersions (ASDs) prepared by high speed electrospinning was investigated at 25 °C/60% relative humidity (RH) (closed conditions) and 40 °C/75% RH (open conditions). Single needle electrospinning and film casting were applied as reference technologies. Itraconazole (ITR) was used as the model API in 40% concentration and the ASDs consisted of either one of the following polymers as a comparison: polyvinylpyrrolidone-vinyl acetate 6:4 copolymer (no hydrogen bonds between API and polymer) and hydroxypropyl methylcellulose (possible hydrogen bonds between oxo or tertiary nitrogen function of API and hydroxyl moiety of polymer). DSC, XRPD and dissolution characteristics of samples at 0, 3 and 12 months were investigated. In addition, Raman maps of certain electrospun ASDs were assessed to investigate crystallinity. A new chemometric method, based on Multivariate Curve Resolution-Alternating Least Squares algorithm, was developed to calculate the spectrum of amorphous ITR in the matrices and to determine the crystalline/amorphous ratio of aged samples. As it was expected ITR in single needle electrospun SDs was totally amorphous at the beginning, in addition hydroxypropyl methylcellulose could keep ITR in this form at 40 °C/75% RH up to one year due to the hydrogen bonds and high glass transition temperature of the SD. In polyvinylpyrrolidone-vinyl acetate matrix ITR remained amorphous at 25 °C/60% RH throughout one year. Materials prepared by scaled-up, high throughput version of electrospinning, which is compatible with pharmaceutical industry, also gained the same quality. Therefore these ASDs are industrially applicable and with an appropriate downstream process it would be possible to bring them to the market.

  18. Influence of Copolymer Composition on In Vitro and In Vivo Performance of Celecoxib-PVP/VA Amorphous Solid Dispersions

    DEFF Research Database (Denmark)

    Knopp, Matthias Manne; Nguyen, Julia Hoang; Mu, Huiling;

    2016-01-01

    Previous studies suggested that an amorphous solid dispersion with a copolymer consisting of both hydrophobic and hydrophilic monomers could improve the dissolution profile of a poorly water-soluble drug compared to the crystalline form. Therefore, this study investigated the influence...... of the copolymer composition of polyvinylpyrrolidone/vinyl acetate (PVP/VA) on the non-sink in vitro dissolution behavior and in vivo performance of celecoxib (CCX) amorphous solid dispersions. The study showed that the hydrophilic monomer vinylpyrrolidone (VP) was responsible for the generation of CCX...... water-soluble drug as an amorphous solid dispersion using a copolymer, the copolymer composition has a significant influence on the dissolution profile and in vivo performance. Thus, the dissolution profile of a drug can theoretically be tailored by changing the monomer ratio of a copolymer with respect...

  19. Investigating the Dissolution Performance of Amorphous Solid Dispersions Using Magnetic Resonance Imaging and Proton NMR.

    Science.gov (United States)

    Tres, Francesco; Coombes, Steven R; Phillips, Andrew R; Hughes, Leslie P; Wren, Stephen A C; Aylott, Jonathan W; Burley, Jonathan C

    2015-09-10

    We have investigated the dissolution performance of amorphous solid dispersions of poorly water-soluble bicalutamide in a Kollidon VA64 polymeric matrix as a function of the drug loading (5% vs. 30% bicalutamide). A combined suite of state-of-the-art analytical techniques were employed to obtain a clear picture of the drug release, including an integrated magnetic resonance imaging UV-Vis flow cell system and 1H-NMR. Off-line 1H-NMR was used for the first time to simultaneously measure the dissolution profiles and rates of both the drug and the polymer from a solid dispersion. MRI and 1H-NMR data showed that the 5% drug loading compact erodes linearly, and that bicalutamide and Kollidon VA64 are released at approximately the same rate from the molecular dispersion. For the 30% extrudate, data indicated a slower water ingress into the compact which corresponds to a slower dissolution rate of both bicalutamide and Kollidon VA64.

  20. Investigating the Dissolution Performance of Amorphous Solid Dispersions Using Magnetic Resonance Imaging and Proton NMR

    Directory of Open Access Journals (Sweden)

    Francesco Tres

    2015-09-01

    Full Text Available We have investigated the dissolution performance of amorphous solid dispersions of poorly water-soluble bicalutamide in a Kollidon VA64 polymeric matrix as a function of the drug loading (5% vs. 30% bicalutamide. A combined suite of state-of-the-art analytical techniques were employed to obtain a clear picture of the drug release, including an integrated magnetic resonance imaging UV-Vis flow cell system and 1H-NMR. Off-line 1H-NMR was used for the first time to simultaneously measure the dissolution profiles and rates of both the drug and the polymer from a solid dispersion. MRI and 1H-NMR data showed that the 5% drug loading compact erodes linearly, and that bicalutamide and Kollidon VA64 are released at approximately the same rate from the molecular dispersion. For the 30% extrudate, data indicated a slower water ingress into the compact which corresponds to a slower dissolution rate of both bicalutamide and Kollidon VA64.

  1. Amorphous Solid Dispersions: Utilization and Challenges in Drug Discovery and Development.

    Science.gov (United States)

    He, Yan; Ho, Chris

    2015-10-01

    Amorphous solid dispersion (ASD) can accelerate a project by improving dissolution rate and solubility, offering dose escalation flexibility and excipient acceptance for toxicology studies, as well as providing adequate preclinical and clinical exposure. The prerequisite physicochemical properties for a compound to form a stable ASD are glass-forming ability and low-crystallization tendency, which can be assessed using computational tools and experimental methods. Polymer excipient screening by in silico miscibility prediction and experimental screening techniques is discussed. Improved technologies for polymer screening with minimal quantity of drug substance, and the scalability of ASD from bench to commercial are reviewed. Considerations of in vitro evaluations, preclinical animal selection, and the translation of the preclinical results to clinical studies are also discussed. Better understanding of how polymers improve the stability of the amorphous phase in the solid state and how ASD improves bioavailability have facilitated the applications of ASD ranging from discovery research to preclinical development and further to commercialization. With the understanding of how ASDs are currently used in the pharmaceutical industry and what challenges remain to be solved, ASD can be applied to solve drug formulation problems at given research and development stages.

  2. Amorphous solid dispersion of cyclosporine A prepared with fine droplet drying process: Physicochemical and pharmacokinetic characterization.

    Science.gov (United States)

    Suzuki, Hiroki; Moritani, Tatsuru; Morinaga, Tadahiko; Seto, Yoshiki; Sato, Hideyuki; Onoue, Satomi

    2017-03-15

    The present study aimed to develop an amorphous solid dispersion (ASD) of cyclosporine A (CsA) by a fine droplet drying (FDD) process for improvement in oral absorption of CsA. CsA and hydroxypropyl cellulose-SSL were dissolved in 1,4-dioxane, and the solution was powdered by the FDD process to obtain the ASD formulation of CsA (ASD/CsA). The ASD/CsA was characterized in terms of morphology, particle size distribution, crystallinity, dissolution behavior, physicochemical stability, and pharmacokinetic behavior in rats. The ASD/CsA was obtained in the form of uniform spherical particles, and the span factor was calculated to be ca. 0.4. CsA in the formulation existed in an amorphous state. The ASD/CsA exhibited a higher dissolution behavior of CsA than amorphous CsA, whereas storage of the ASD/CsA under accelerated conditions led to impairment in the dissolution behavior. The constant release of CsA from non-aged ASD/CsA was observed during dissolution testing. After oral administration of CsA samples (10mg-CsA/kg) in rats, the ASD/CsA showed a high and sustained plasma concentration of CsA as evidenced by a 18-fold increase in the oral bioavailability of CsA compared with amorphous CsA. From these findings, the FDD process might be an efficacious option for the ASD formulation of CsA with enhanced biopharmaceutics properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Enhanced bioavailability and bioefficacy of an amorphous solid dispersion of curcumin.

    Science.gov (United States)

    Chuah, Ai Mey; Jacob, Bindya; Jie, Zhang; Ramesh, Subbarayan; Mandal, Shibajee; Puthan, Jithesh K; Deshpande, Parag; Vaidyanathan, Vadakkanchery V; Gelling, Richard W; Patel, Gaurav; Das, Tapas; Shreeram, Sathyavageeswaran

    2014-08-01

    Curcumin has been shown to have a wide variety of biological activities for various human diseases including inflammation, diabetes and cancer. However, the poor oral bioavailability of curcumin poses a significant pharmacological barrier to its use therapeutically and/or as a functional food. Here we report the evaluation of the bioavailability and bio-efficacy of curcumin as an amorphous solid dispersion (ASD) in a matrix consisting of hydroxypropyl methyl cellulose (HPMC), lecithin and isomalt using hot melt extrusion for application in food products. Oral pharmacokinetic studies in rats showed that ASD curcumin was ∼13-fold more bioavailable compared to unformulated curcumin. Evaluation of the anti-inflammatory activity of ASD curcumin in vivo demonstrated enhanced bio-efficacy compared to unformulated curcumin at 10-fold lower dose. Thus ASD curcumin provides a more potent and efficacious formulation of curcumin which may also help in masking the colour, taste and smell which currently limit its application as a functional food ingredient.

  4. Amphiphilic Cellulose Ethers Designed for Amorphous Solid Dispersion via Olefin Cross-Metathesis.

    Science.gov (United States)

    Dong, Yifan; Mosquera-Giraldo, Laura I; Taylor, Lynne S; Edgar, Kevin J

    2016-02-01

    The design of cellulose ether-based amphiphiles has been difficult and limited because of the harsh conditions typically required for appending ether moieties to cellulose. Olefin cross-metathesis recently has been shown to be a valuable approach for appending a variety of functional groups to cellulose ethers and esters, provided that an olefin handle for metathesis can be attached. This synthetic pathway gives access to these functional derivatives under very mild conditions and at high efficiency. Modification of ethyl cellulose by metathesis to prepare useful derivatives, for example, for solubility and bioavailability enhancement of drugs by amorphous solid dispersion (ASD), has been limited by the low DS(OH) of commercial ethyl cellulose derivatives. This is problematic because ethyl cellulose is otherwise a very attractive substrate for synthesis of amphiphilic derivatives by olefin metathesis. Herein we explore two methods for opening up this design space for ether-based amphiphiles, for example, permitting synthesis of more hydrophilic derivatives. One approach is to start with the more hydrophilic commercial methyl cellulose, which contains much higher DS(OH) and therefore is better suited for introduction of high DS of olefin metathesis "handles". In another approach, we explored a homogeneous one-pot synthesis methodology from cellulose, where controlled DS of ethyl groups was introduced at the same time as the ω-unsaturated alkyl groups, thereby permitting complete control of DS(OH), DS(Et), and ultimately DS of the functional group added by metathesis. We describe the functionalized derivatives available by these successful approaches. In addition, we explore new methods for reduction of the unsaturation in initial metathesis products to provide robust methods for enhancing product stability against further radical-catalyzed reactions. We demonstrate initial evidence that the products show strong promise as amphiphilic matrix polymers for amorphous

  5. Hydroxypropyl cellulose stabilizes amorphous solid dispersions of the poorly water soluble drug felodipine.

    Science.gov (United States)

    Sarode, Ashish L; Malekar, Swapnil A; Cote, Catherine; Worthen, David R

    2014-11-04

    Overcoming the low oral bioavailability of many drugs due to their poor aqueous solubility is one of the major challenges in the pharmaceutical industry. The production of amorphous solid dispersions (ASDs) of these drugs using hydrophilic polymers may significantly improve their solubility. However, their storage stability and the stability of their supersaturated solutions in the gastrointestinal tract upon administration are unsolved problems. We have investigated the potential of a low viscosity grade of a cellulosic polymer, hydroxypropyl cellulose (HPC-SSL), and compared it with a commonly used vinyl polymer, polyvinylpyrrolidone vinyl acetate (PVP-VA), for stabilizing the ASDs of a poorly water soluble drug, felodipine. The ASDs were produced using hot melt mixing and stored under standard and accelerated stability conditions. The ASDs were characterized using differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy. Drug dissolution and partitioning rates were evaluated using single- and biphasic dissolution studies. The ASDs displayed superior drug dissolution and partitioning as compared to the pure crystalline drug, which might be attributed to the formation of a drug-polymer molecular dispersion, amorphous conversion of the drug, and drug-polymer hydrogen bonding interactions. Late phase separation and early re-crystallization occurred at lower and higher storage temperatures, respectively, for HPC-SSL ASDs, whereas early phase separation, even at low storage temperatures, was noted for PVP-VA ASDs. Consequently, the partitioning rates for ASDs dispersed in HPC-SSL were greater than those of PVP-VA at lower and room temperature storage, whereas the performance of both of the ASDs was similar when stored at higher temperatures.

  6. Effect of Temperature and Moisture on the Physical Stability of Binary and Ternary Amorphous Solid Dispersions of Celecoxib.

    Science.gov (United States)

    Xie, Tian; Taylor, Lynne S

    2017-01-01

    The effectiveness of different polymers, alone or in combination, in inhibiting the crystallization of celecoxib (CEX) from amorphous solid dispersions (ASDs) exposed to different temperatures and relative humidities was evaluated. It was found that polyvinylpyrrolidone (PVP) and PVP-vinyl acetate formed stronger or more extensive hydrogen bonding with CEX than cellulose-based polymers. This, combined with their better effectiveness in raising the glass transition temperature (Tg) of the dispersions, provided better physical stabilization of amorphous CEX against crystallization in the absence of moisture when compared with dispersions formed with cellulose derivatives. In ternary dispersions containing 2 polymers, the physical stability was minimally impaired by the presence of a cellulose-based polymer when the major polymer present was PVP. On exposure to moisture, stability of the CEX ASDs was strongly affected by both the dispersion hygroscopicity and the strength of the intermolecular interactions. Binary and ternary ASDs containing PVP appeared to undergo partial amorphous-amorphous phase separation when exposed 94% relative humidity, followed by crystallization, whereas other binary ASDs crystallized directly without amorphous-amorphous phase separation.

  7. Structural and dynamic properties of amorphous solid dispersions: the role of solid-state nuclear magnetic resonance spectroscopy and relaxometry.

    Science.gov (United States)

    Paudel, Amrit; Geppi, Marco; Van den Mooter, Guy

    2014-09-01

    Amorphous solid dispersions (ASDs) are one of the frontier strategies to improve solubility and dissolution rate of poorly soluble drugs and hence tackling the growing challenges in oral bioavailability. Pharmaceutical performance, physicochemical stability, and downstream processability of ASD largely rely on the physical structure of the product. This necessitates in-depth characterization of ASD microstructure. Solid-state nuclear magnetic resonance (SS-NMR) techniques bear the ultimate analytical capabilities to provide the molecular level information on the dynamics and phase compositions of amorphous dispersions. SS-NMR spectroscopy/relaxometry, as a single and nondestructive technique, can reveal diverse and critical structural information of complex ASD formulations that are barely amenable from any other existing technique. The purpose of the current article is to review the recent most important studies on various sophisticated and information-rich one-dimensional and two-dimensional SS-NMR spectroscopy/relaxometry for the analysis of molecular mobility, miscibility, drug-carrier interactions, crystallinity, and crystallization in ASD. Some specific examples on microstructural elucidations of challenging ASD using multidimensional and multinuclear SS-NMR are presented. Additionally, some relevant examples on the utility of solution-NMR and NMR-imaging techniques for the investigation of the dissolution behavior of ASD are gathered.

  8. Impact of surfactants on the crystallization of aqueous suspensions of celecoxib amorphous solid dispersion spray dried particles.

    Science.gov (United States)

    Chen, Jie; Ormes, James D; Higgins, John D; Taylor, Lynne S

    2015-02-02

    Amorphous solid dispersions are frequently prepared by spray drying. It is important that the resultant spray dried particles do not crystallize during formulation, storage, and upon administration. The goal of the current study was to evaluate the impact of surfactants on the crystallization of celecoxib amorphous solid dispersions (ASD), suspended in aqueous media. Solid dispersions of celecoxib with hydroxypropylmethylcellulose acetate succinate were manufactured by spray drying, and aqueous suspensions were prepared by adding the particles to acidified media containing various surfactants. Nucleation induction times were evaluated for celecoxib in the presence and absence of surfactants. The impact of the surfactants on drug and polymer leaching from the solid dispersion particles was also evaluated. Sodium dodecyl sulfate and Polysorbate 80 were found to promote crystallization from the ASD suspensions, while other surfactants including sodium taurocholate and Triton X100 were found to inhibit crystallization. The promotion or inhibition of crystallization was found to be related to the impact of the surfactant on the nucleation behavior of celecoxib, as well as the tendency to promote leaching of the drug from the ASD particle into the suspending medium. It was concluded that surfactant choice is critical to avoid failure of amorphous solid dispersions through crystallization of the drug.

  9. Pharmaceutical development of an oral tablet formulation containing a spray dried amorphous solid dispersion of docetaxel or paclitaxel

    NARCIS (Netherlands)

    Sawicki, Emilia; Beijnen, Jos H; Schellens, Jan H M; Nuijen, Bastiaan

    2016-01-01

    Previously, it was shown in Phase I clinical trials that solubility-limited oral absorption of docetaxel and paclitaxel can be drastically improved with a freeze dried solid dispersion (fdSD). These formulations, however, are unfavorable for further clinical research because of limitations in amorph

  10. Reactive Melt Extrusion To Improve the Dissolution Performance and Physical Stability of Naproxen Amorphous Solid Dispersions.

    Science.gov (United States)

    Liu, Xu; Zhou, Lin; Zhang, Feng

    2017-03-06

    The purpose of this study was to investigate the reaction between naproxen (NPX) and meglumine (MEG) at elevated temperature and to study the effect of this reaction on the physical stabilities and in vitro drug-release properties of melt-extruded naproxen amorphous solid dispersions (ASDs). Differential scanning calorimetry, hot-stage polarized light microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses demonstrated that in situ salt formation with proton transfer between NPX and MEG occurred at elevated temperature during the melt extrusion process. The amorphous NPX-MEG salt was physically most stable when two components were present at a 1:1 molar ratio. Polymeric carriers, including povidone, copovidone, and SOLUPLUS, did not interfere with the reaction between NPX and MEG during melt extrusion. Compared to the traditional NPX ASDs consisting of NPX and polymer only, NPX-MEG ASDs were physically more stable and remained amorphous following four months storage at 40 °C and 75% RH (relative humidity). Based on nonsink dissolution testing and polarized light microscopy analyses, we concluded that the conventional NPX ASDs composed of NPX and polymers failed to improve the NPX dissolution rate due to the rapid recrystallization of NPX in contact with aqueous medium. The dissolution rate of NPX-MEG ASDs was two times greater than the corresponding physical mixtures and conventional NPX ASDs. This study demonstrated that the acid-base reaction between NPX and MEG during melt extrusion significantly improved the physical stability and the dissolution rate of NPX ASDs.

  11. Effect of polymer type and drug dose on the in vitro and in vivo behavior of amorphous solid dispersions.

    Science.gov (United States)

    Knopp, Matthias Manne; Chourak, Nabil; Khan, Fauzan; Wendelboe, Johan; Langguth, Peter; Rades, Thomas; Holm, René

    2016-08-01

    This study investigated the non-sink in vitro dissolution behavior and in vivo performance in rats of celecoxib (CCX) amorphous solid dispersions with polyvinyl acetate (PVA), polyvinylpyrrolidone (PVP) and hydroxypropyl methylcellulose (HPMC) at different drug doses. Both in vitro and in vivo, the amorphous solid dispersions with the hydrophilic polymers PVP and HPMC led to higher areas under both, the in vitro dissolution and the plasma concentration-time curves (AUC) compared to crystalline and amorphous CCX for all doses. In contrast, the amorphous solid dispersion with the hydrophobic polymer PVA showed a lower AUC both in vitro and in vivo than crystalline CCX. For crystalline CCX and CCX:PVA, the in vitro AUC was limited by the low solubility of the drug and the slow release of the drug from the hydrophobic polymer, respectively. For the supersaturating formulations, amorphous CCX, CCX:PVP and CCX:HPMC, the in vitro performance was mainly dependent on the dissolution rate and precipitation/crystallization inhibition of the polymer. As expected, the crystallization tendency increased with increasing dose, and therefore the in vitro AUCs did not increase proportionally with dose. Even though the in vivo AUC for all formulations increased with increasing dose, the relative bioavailability decreased significantly, indicating that the supersaturating formulations also crystallized in vivo and that the absorption of CCX was solubility-limited. These findings underline the importance of evaluating relevant in vitro doses, in order to rationally assess the performance of amorphous solid dispersions and avoid confusion in early in vivo studies.

  12. Downstream processing of polymer-based amorphous solid dispersions to generate tablet formulations.

    Science.gov (United States)

    Démuth, B; Nagy, Z K; Balogh, A; Vigh, T; Marosi, G; Verreck, G; Van Assche, I; Brewster, M E

    2015-01-01

    Application of amorphous solid dispersions (ASDs) is considered one of the most promising approaches to increase the dissolution rate and extent of bioavailability of poorly water soluble drugs. Such intervention is often required for new drug candidates in that enablement, bioavailability is not sufficient to generate a useful product. Importantly, tableting of ASDs is often complicated by a number of pharmaceutical and technological challenges including poor flowability and compressibility of the powders, compression-induced phase changes or phase separation and slow disintegration due to the formation of a gelling polymer network (GPN). The design principles of an ASD-based system include its ability to generate supersaturated systems of the drug of interest during dissolution. These metastable solutions can be prone to precipitation and crystallization reducing the biopharmaceutical performance of the dosage form. The main aim of the research in this area is to maintain the supersaturated state and optimally enhance bioavailability, meaning that crystallization should be delayed or inhibited during dissolution, as well as in solid phase (e.g., during manufacturing and storage). Based on the expanding use of ASD technology as well as their downstream processing, there is an acute need to summarize the results achieved to this point to better understand progress and future risks. The aim of this review is to focus on the conversion of ASDs into tablets highlighting results from various viewpoints.

  13. Frozen in Time: Kinetically Stabilized Amorphous Solid Dispersions of Nifedipine Stable after a Quarter Century of Storage.

    Science.gov (United States)

    Theil, Frank; Anantharaman, Sankaran; Kyeremateng, Samuel O; van Lishaut, Holger; Dreis-Kühne, Sebastian H; Rosenberg, Jörg; Mägerlein, Markus; Woehrle, Gerd H

    2017-01-03

    Kinetically stabilized amorphous solid dispersions are inherently metastable systems. Therefore, such systems are generally considered prone to recrystallization. In some cases, the formation of crystals will impact the bioavailability of the active pharmaceutical ingredient in these formulations. Recrystallization therefore may present a significant risk for patients as it potentially lowers the effective dose of the pharmaceutical formulation. This study indicates that such metastable formulations may indeed remain fully amorphous even after more than two decades of storage under ambient conditions. Different formulations of nifedipine stored for 25 years were compared with freshly prepared samples. A thorough physicochemical characterization including polarized light microscopy, differential scanning calorimetry, X-ray powder diffraction, and transmission Raman spectroscopy was undertaken. This in-depth characterization indicates no signs of recrystallization in the stored samples. The observations presented here prove that long-term stability of amorphous solid dispersions much beyond the typical shelf life for pharmaceutical formulations is indeed possible by kinetic stabilization alone. These findings implicate a reevaluation of the propensity to recrystallize for kinetically stabilized amorphous solid dispersions.

  14. Production of nano-solid dispersions using a novel solvent-controlled precipitation process - Benchmarking their in vivo performance with an amorphous micro-sized solid dispersion produced by spray drying.

    Science.gov (United States)

    Duarte, Íris; Corvo, M Luísa; Serôdio, Pedro; Vicente, João; Pinto, João F; Temtem, Márcio

    2016-10-10

    A novel solvent controlled precipitation (SCP) process based on microfluidization was assessed to produce solid dispersions of carbamazepine, a poorly water-soluble drug with dissolution-rate limited absorption. A half-factorial design (2(3-1)+2 central points) was conducted to study the effect of different formulation variables (viz. polymer type, drug load, and feed solids' concentration) on the particle size and morphology, drug's solid state and drug's molecular distribution within the carrier of the co-precipitated materials produced. Co-precipitated powders were isolated via spray drying (SD). Nano-composite aggregated particles were obtained among all the tests. The particle size of the aggregates was dependent on the feed solids' concentration, while the level of aggregation between nanoparticles was dependent on the drug-polymer ratio. Both amorphous and crystalline nano-solid dispersions were produced using the proposed SCP process. The solid dispersion produced was dependent on both the type of polymeric stabilizer chosen and the drug load. Controls of amorphous and crystalline nano-solid dispersions produced by SCP and an amorphous micro-solid dispersion produced by SD were tested for: in vitro dissolution, in vivo pharmacokinetics in mice, and long-term storage physical stability. Both nano-amorphous and nano-crystalline presented faster dissolution rates and enhanced bioavailabilities than the micro-sized amorphous powder. The reduction of particle size to the nano-scale was found to be more important than the amorphization of the drug. The long-term physical stability of the amorphous nano-solid dispersion and the amorphous micro-solid dispersion were comparable. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Supersaturation and crystallization: non-equilibrium dynamics of amorphous solid dispersions for oral drug delivery.

    Science.gov (United States)

    Kawakami, Kohsaku

    2017-06-01

    Amorphous solid dispersions (ASDs) are one of the key formulation technologies that aid the development of poorly soluble candidates. However, their dynamic behaviors, including dissolution and crystallization processes, are still full of mystery. Further understanding of these processes should enhance their wider use. Areas covered: The first part of this review describes the current understanding of the dissolution of ASDs, where phase separation behavior is frequently involved and attempts to develop appropriate dissolution tests to achieve an in vitro-in vivo correlation are examined. The second part of this review discusses crystallization of the drug molecule with the eventual aim of establishing an accelerated testing protocol for predicting its physical stability. Expert opinion: The phase separation behavior from the supersaturated state during the dissolution test must be understood, and its relevance to the oral absorption behavior needs to be clarified. Research efforts should focus on the differences between the phase behavior in in vitro and in vivo situations. Initiation time of the crystallization was shown to be predicted only from storage and glass transition temperatures. This finding should encourage the establishment of testing protocol of the physical stability of ASDs.

  16. Influence of polymer molecular weight on in vitro dissolution behavior and in vivo performance of celecoxib:PVP amorphous solid dispersions

    DEFF Research Database (Denmark)

    Knopp, Matthias Manne; Nguyen, Julia Hoang; Becker, Christian;

    2016-01-01

    In this study, the influence of the molecular weight of polyvinylpyrrolidone (PVP) on the non-sink in vitro dissolution and in vivo performance of celecoxib (CCX):PVP amorphous solid dispersions were investigated. The dissolution rate of CCX from the amorphous solid dispersions increased...... weight where the crystallization inhibition was strongest. Consistent with the findings from the non-sink in vitro dissolution tests, the amorphous solid dispersions with the highest molecular weight PVPs (K30 and K60) resulted in significantly higher in vivo bioavailability (AUC0-24h) compared with pure...... amorphous and crystalline CCX. A linear relationship between the in vitro and in vivo parameter AUC0-24h indicated that the simple non-sink in vitro dissolution method used in this study could be used to predict the in vivo performance of amorphous solid dispersion with good precision, which enabled...

  17. Formulation and process design for a solid dosage form containing a spray-dried amorphous dispersion of ibipinabant.

    Science.gov (United States)

    Leane, Michael M; Sinclair, Wayne; Qian, Feng; Haddadin, Raja; Brown, Alan; Tobyn, Mike; Dennis, Andrew B

    2013-01-01

    Amorphous forms of poorly soluble drugs are more frequently being incorporated into solid dispersions for administration and extensive research has led to a reasonable understanding of how these dispersions, although still kinetically unstable, improve stability relative to the pure amorphous form. There remains however a paucity of literature describing the effects on such solid dispersions of subsequent processing into solid dosage forms such as tablets. This paper addresses this area by looking at the effects of the addition of common excipients and different manufacturing routes on the stability of a spray-dried dispersion (SDD) of the cannabinoid CB-1 antagonist, ibipinabant. A marked difference in physical stability of tablets was seen with the different fillers with microcrystalline cellulose (MCC) giving the best stability profile. It was found that minimising the number of compression steps led to improved formulation stability with a direct compression process giving the best results. Increased levels of crystallinity were seen in coated tablets most likely due to the exposure of the amorphous matrix to moisture and heat during the coating process. DSIMS analysis of the SDD particles indicated increased levels of polymer on the surface.

  18. Investigation of preparation methods on surface/bulk structural relaxation and glass fragility of amorphous solid dispersions.

    Science.gov (United States)

    Ke, Peng; Hasegawa, Susumu; Al-Obaidi, Hisham; Buckton, Graham

    2012-01-17

    The objective of this study was to investigate the effect of preparation methods on the surface/bulk molecular mobility and glass fragility of solid dispersions. Solid dispersions containing indomethacin and PVP K30 were chosen as the model system. An inverse gas chromatography method was used to determine the surface structural relaxation of the solid dispersions and these data were compared to those for bulk relaxation obtained by DSC. The values of τ(β) for the surface relaxation were 4.6, 7.1 and 1.8h for melt quenched, ball milled and spray dried solid dispersions respectively, compared to 15.6, 7.9 and 9.8h of the bulk. In all systems, the surface had higher molecular mobility than the bulk. The glass fragility of the solid dispersions was also influenced by the preparation methods with the most fragile system showing the best stability. The zero mobility temperature (T(0)) was used to correlate with the physical stability of the solid dispersions. Despite having similar T(g) (65°C), the T(0) of the melt quenched, ball milled and spray dried samples were 21.6, -4.2 and 16.7°C respectively which correlated well with their physical stability results. Therefore, T(0) appears to be a better indicator than T(g) for predicting stability of amorphous materials.

  19. Evaluate the ability of PVP to inhibit crystallization of amorphous solid dispersions by density functional theory and experimental verify.

    Science.gov (United States)

    Wang, Bing; Wang, Dandan; Zhao, Shan; Huang, Xiaobin; Zhang, Jianbin; Lv, Yan; Liu, Xiaocen; Lv, Guojun; Ma, Xiaojun

    2017-01-01

    In this study, we used density functional theory (DFT) to predict polymer-drug interactions, and then evaluated the ability of poly (vinyl pyrrolidone) (PVP) to inhibit crystallization of amorphous solid dispersions by experimental-verification. Solid dispersions of PVP/resveratrol (Res) and PVP/griseofulvin (Gri) were adopted for evaluating the ability of PVP to inhibit crystallization. The density functional theory (DFT) with the B3LYP was used to calculate polymer-drug and drug-drug interactions. Fourier transform infrared spectroscopy (FTIR) was used to confirm hydrogen bonding interactions. Polymer-drug miscibility and drug crystallinity were characterized by the modulated differential scanning calorimetry (MDSC) and X-ray powder diffraction (XRD). The release profiles were studied to investigate the dissolution advantage. DFT results indicated that EPVP-Res>ERes-Res (E: represents hydrogen bonding energy). A strong interaction was formed between PVP and Res. In addition, Fourier transform infrared spectroscopy (FTIR) analysis showed hydrogen bonding formed between PVP and Res, but not between PVP and Gri. MDSC and XRD results suggested that 70-90wt% PVP/Res and PVP/Gri solid dispersions formed amorphous solid dispersions (ASDs). Under the accelerated testing condition, PVP/Res dispersions with higher miscibility quantified as 90/10wt% were more stable than PVP/Gri dispersions. The cumulative dissolution rate of 90wt% PVP/Res dispersions still kept high after 90days storage due to the strong interaction. However, the cumulative dissolution rate of PVP/Gri solid dispersions significantly dropped because of the recrystallization of Gri. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Investigation and correlation of drug polymer miscibility and molecular interactions by various approaches for the preparation of amorphous solid dispersions.

    Science.gov (United States)

    Meng, Fan; Trivino, Anne; Prasad, Dev; Chauhan, Harsh

    2015-04-25

    Curcumin (CUR) was used as a poorly soluble drug whereas polyvinyl pyrrolidone K90 (PVP), Eudragit EPO (EPO), hydroxypropyl methylcellulose E5 (HPMC) and polyethylene glycol 8000 (PEG) were used as hydrophilic polymers. CUR polymer miscibility was evaluated by solubility parameter, melting point depression and glass transition temperature (Tg) measurements. Molecular interactions between CUR and polymers were determined by Fourier-transform infrared spectroscopy (FTIR) and Raman. Amorphous solid dispersions were prepared with CUR-polymer ratio of 70:30 (w/w) by solvent evaporation technique and were evaluated for dissolution enhancement using USP II method. Physical states of solid dispersions were characterized by X-ray diffraction (XRD) whereas thermal behaviors were investigated using modulated differential scanning calorimetry (MDSC). CUR-EPO system showed good miscibility through all the approaches, whereas immiscibility was found in other CUR-polymer systems. CUR-EPO and CUR-HPMC systems showed significant molecular interactions whereas CUR-PVP and CUR-PEG showed no molecular interactions. All solid dispersions showed significant dissolution enhancement with CUR-EPO showing highest dissolution rate during first 1h whereas CUR-HPMC was effective in maintaining high CUR concentrations for 6h. The study highlights the importance of investigating and correlating drug polymer miscibility and molecular interactions by various approaches for successful formulation of amorphous solid dispersions.

  1. Long-Term Physical Stability of PVP- and PVPVA-Amorphous Solid Dispersions.

    Science.gov (United States)

    Lehmkemper, Kristin; Kyeremateng, Samuel O; Heinzerling, Oliver; Degenhardt, Matthias; Sadowski, Gabriele

    2017-01-03

    The preparation of amorphous solid dispersion (ASD) formulations is a promising strategy to improve the bioavailability of an active pharmaceutical ingredient (API). By dissolving the API in a polymer it is stabilized in its amorphous form, which usually shows higher water solubility than its crystalline counterpart. To prevent recrystallization, the long-term physical stability of ASD formulations is of big interest. In this work, the solubility of the APIs acetaminophen and naproxen in the excipient polymers poly(vinylpyrrolidone) (PVP K25) and poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64) was calculated with three models: the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT), the Flory-Huggins model (FH), and an empirical model (Kyeremateng et al., J. Pharm. Sci, 2014, 103, 2847-2858). PC-SAFT and FH were further used to predict the influence of relative humidity (RH) on the API solubility in the polymers. The Gordon-Taylor equation was applied to model the glass-transition temperature of dry ASD and at humid conditions. The calculations were validated by 18 months-long stability studies at standardized storage conditions, 25 °C/0% RH, 25 °C/60% RH, and 40 °C/75% RH. The results of the three modeling approaches for the API solubility in polymers agreed with the experimental solubility data, which are only accessible at high temperatures in dry polymers. However, at room temperature FH resulted in a lower solubility of the APIs in the dry polymers than PC-SAFT and the empirical model. The impact of RH on the solubility of acetaminophen was predicted to be small, but naproxen solubility in the polymers was predicted to decrease with increasing RH with both, PC-SAFT and FH. At 25 °C/60% RH and 40 °C/75% RH, PC-SAFT is in agreement with all results of the long-term stability studies, while FH underestimates the acetaminophen solubility in PVP K25 and PVPVA64.

  2. Surfactant-Free Solid Dispersions of Hydrophobic Drugs in an Amorphous Sugar Matrix Dried from an Organic Solvent.

    Science.gov (United States)

    Takeda, Koji; Gotoda, Yuto; Hirota, Daichi; Hidaka, Fumihiro; Sato, Tomo; Matsuura, Tsutashi; Imanaka, Hiroyuki; Ishida, Naoyuki; Imamura, Koreyoshi

    2017-03-06

    The technique for homogeneously dispersing hydrophobic drugs in a water-soluble solid matrix (solid dispersion) is a subject that has been extensively investigated in the pharmaceutical industry. Herein, a novel technique for dispersing a solid, without the need to use a surfactant, is reported. A freeze-dried amorphous sugar sample was dissolved in an organic solvent, which contained a soluble model hydrophobic component. The suspension of the sugar and the model hydrophobic component was vacuum foam dried to give a solid powder. Four types of sugars and methanol were used as representative sugars and the organic medium. Four model drugs (indomethacin, ibuprofen, gliclazide, and nifedipine) were employed. Differential scanning calorimetry analyses indicated that the sugar and model drug (100:1) did not undergo segregation during the drying process. The dissolution of the hydrophobic drugs in water from the solid dispersion was then evaluated, and the results indicated that the Cmax and AUC0-60 min of the hydrophobic drug in water were increased when the surfactant-free solid dispersion was used. Palatinose and/or α-maltose were superior to the other tested carbohydrates in increasing Cmax and AUC0-60 min for all tested model drugs, and the model drug with a lower water solubility tended to exhibit a greater extent of over-dissolution.

  3. Amorphous solid dispersions of sulfonamide/soluplus® and sulfonamide/PVP prepared by ball milling

    OpenAIRE

    Healy, Anne,

    2013-01-01

    PUBLISHED The aim of this paper is to investigate the physicochemical properties of binary amorphous dispersions of poorly soluble sulfonamide/polymeric excipient prepared by ball milling. The sulfonamides selected were sulfathiazole (STZ), sulfadimidine (SDM), sulfamerazine (SMZ) and sulfadiazine (SDZ). The excipients were polyvinylpyrrolidone (PVP) and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft co-polymer, commercially known as Soluplus®. Co-milled systems were cha...

  4. Modified release itraconazole amorphous solid dispersion to treat Aspergillus fumigatus: importance of the animal model selection.

    Science.gov (United States)

    Maincent, Julien P; Najvar, Laura K; Kirkpatrick, William R; Huang, Siyuan; Patterson, Thomas F; Wiederhold, Nathan P; Peters, Jay I; Williams, Robert O

    2017-02-01

    Previously, modified release itraconazole in the form of a melt-extruded amorphous solid dispersion based on a pH dependent enteric polymer combined with hydrophilic additives (HME-ITZ), exhibited improved in vitro dissolution properties. These properties agreed with pharmacokinetic results in rats showing high and sustained itraconazole (ITZ) systemic levels. The objective of the present study was to better understand the best choice of rodent model for evaluating the pharmacokinetic and efficacy of this orally administered modified release ITZ dosage form against invasive Aspergillus fumigatus. A mouse model and a guinea pig model were investigated and compared to results previously published. In the mouse model, despite similar levels as previously reported values, plasma and lung levels were variable and fungal burden was not statistically different for placebo controls, HME-ITZ and Sporanox(®) (ITZ oral solution). This study demonstrated that the mouse model is a poor choice for studying modified release ITZ dosage forms based on pH dependent enteric polymers due to low fluid volume available for dissolution and low intestinal pH. To the contrary, guinea pig was a suitable model to evaluate modified release ITZ dosage forms. Indeed, a significant decrease in lung fungal burden as a result of high and sustained ITZ tissue levels was measured. Sufficiently high intestinal pH and fluids available for dissolution likely facilitated the dissolution process. Despite high ITZ tissue level, the primary therapeutic agent voriconazole exhibited an even more pronounced decrease in fungal burden due to its reported higher clinical efficacy specifically against Aspergillus fumigatus.

  5. Thermoanalytical and Fourier transform infrared spectral curve-fitting techniques used to investigate the amorphous indomethacin formation and its physical stability in Indomethacin-Soluplus® solid dispersions.

    Science.gov (United States)

    Lin, Shan-Yang; Lin, Hong-Liang; Chi, Ying-Ting; Huang, Yu-Ting; Kao, Chi-Yu; Hsieh, Wei-Hsien

    2015-12-30

    The amorphous form of a drug has higher water solubility and faster dissolution rate than its crystalline form. However, the amorphous form is less thermodynamically stable and may recrystallize during manufacturing and storage. Maintaining the amorphous state of drug in a solid dosage form is extremely important to ensure product quality. The purpose of this study was to quantitatively determine the amount of amorphous indomethacin (INDO) formed in the Soluplus® solid dispersions using thermoanalytical and Fourier transform infrared (FTIR) spectral curve-fitting techniques. The INDO/Soluplus® solid dispersions with various weight ratios of both components were prepared by air-drying and heat-drying processes. A predominate IR peak at 1683cm(-1) for amorphous INDO was selected as a marker for monitoring the solid state of INDO in the INDO/Soluplus® solid dispersions. The physical stability of amorphous INDO in the INDO/Soluplus® solid dispersions prepared by both drying processes was also studied under accelerated conditions. A typical endothermic peak at 161°C for γ-form of INDO (γ-INDO) disappeared from all the differential scanning calorimetry (DSC) curves of INDO/Soluplus® solid dispersions, suggesting the amorphization of INDO caused by Soluplus® after drying. In addition, two unique IR peaks at 1682 (1681) and 1593 (1591)cm(-1) corresponded to the amorphous form of INDO were observed in the FTIR spectra of all the INDO/Soluplus® solid dispersions. The quantitative amounts of amorphous INDO formed in all the INDO/Soluplus® solid dispersions were increased with the increase of γ-INDO loaded into the INDO/Soluplus® solid dispersions by applying curve-fitting technique. However, the intermolecular hydrogen bonding interaction between Soluplus® and INDO were only observed in the samples prepared by heat-drying process, due to a marked spectral shift from 1636 to 1628cm(-1) in the INDO/Soluplus® solid dispersions. The INDO/Soluplus® solid

  6. What Is the Mechanism Behind Increased Permeation Rate of a Poorly Soluble Drug from Aqueous Dispersions of an Amorphous Solid Dispersion?

    DEFF Research Database (Denmark)

    Frank, K. J.; Westedt, U.; Rosenblatt, K. M.

    2014-01-01

    Our aim was to explore the influence of micelles and microparticles emerging in aqueous dispersions of amorphous solid dispersions (ASDs) on molecular/apparent solubility and Caco-2 permeation. The ASD, prepared by hot-melt extrusion, contained the poorly soluble model drug ABT-102, a hydrophilic...... polymer, and three surfactants. Aqueous dispersions of the ASD were investigated at two concentrations, one above and one close to the critical micelle concentration of the surfactants blend in the extrudate. Micelles were detected at the higher concentration and no micelles at the lower concentration...

  7. Amorphous solid dispersions of piroxicam and Soluplus(®): Qualitative and quantitative analysis of piroxicam recrystallization during storage.

    Science.gov (United States)

    Lust, Andres; Strachan, Clare J; Veski, Peep; Aaltonen, Jaakko; Heinämäki, Jyrki; Yliruusi, Jouko; Kogermann, Karin

    2015-01-01

    The conversion of active pharmaceutical ingredient (API) from amorphous to crystalline form is the primary stability issue in formulating amorphous solid dispersions (SDs). The aim of the present study was to carry out qualitative and quantitative analysis of the physical solid-state stability of the SDs of poorly water-soluble piroxicam (PRX) and polyvinyl caprolactam-polyvinyl acetate-polyethylene-glycol graft copolymer (Soluplus(®)). The SDs were prepared by a solvent evaporation method and stored for six months at 0% RH/6 °C, 0% RH/25 °C, 40% RH/25 °C and 75% RH/25 °C. Fourier transform infrared spectroscopy equipped with attenuated total reflection accessory (ATR-FTIR) and Raman spectroscopy were used for characterizing the physical solid-state changes and drug-polymer interactions. The principal component analysis (PCA) and multivariate curve resolution alternating least squares (MCR-ALS) were used for the qualitative and quantitative analysis of Raman spectra collected during storage. When stored at 0% RH/6 °C and at 0% RH/25 °C, PRX in SDs remained in an amorphous form since no recrystallization was observed by ATR-FTIR and Raman spectroscopy. Raman spectroscopy coupled with PCA and MCR-ALS and ATR-FTIR spectroscopy enabled to detect the recrystallization of amorphous PRX in the samples stored at higher humidity.

  8. A solid-state approach to enable early development compounds: selection and animal bioavailability studies of an itraconazole amorphous solid dispersion.

    Science.gov (United States)

    Engers, David; Teng, Jing; Jimenez-Novoa, Jonathan; Gent, Philip; Hossack, Stuart; Campbell, Cheryl; Thomson, John; Ivanisevic, Igor; Templeton, Alison; Byrn, Stephen; Newman, Ann

    2010-09-01

    A solid-state approach to enable compounds in preclinical development is used by identifying an amorphous solid dispersion in a simple formulation to increase bioavailability. Itraconazole (ITZ) was chosen as a model crystalline compound displaying poor aqueous solubility and low bioavailability. Solid dispersions were prepared with different polymers (PVP K-12, K29/32, K90; PVP VA S-630; HPMC-P 55; and HPMC-AS HG) at varied concentrations (1:5, 1:2, 2:1, 5:1 by weight) using two preparation methods (evaporation and freeze drying). Physical characterization and stability data were collected to examine recommended storage, handling, and manufacturing conditions. Based on generated data, a 1:2 (w/w) ITZ/HPMC-P dispersion was selected for further characterization, testing, and scale-up. Thermal data and computational analysis suggest that it is a possible solid nanosuspension. The dispersion was successfully scaled using spray drying, with the materials exhibiting similar physical properties as the screening samples. A simple formulation of 1:2 (w/w) ITZ/HPMC-P dispersion in a capsule was compared to crystalline ITZ in a capsule in a dog bioavailability study, with the dispersion being significantly more bioavailable. This study demonstrated the utility of using an amorphous solid form with desirable physical properties to significantly improve bioavailability and provides a viable strategy for evaluating early drug candidates.

  9. Miscibility/stability considerations in binary solid dispersion systems composed of functional excipients towards the design of multi-component amorphous systems.

    Science.gov (United States)

    Yoo, Seung-uk; Krill, Steven L; Wang, Zeren; Telang, Chitra

    2009-12-01

    The correlations between amorphous miscibility/physical stability of binary solid dispersions (a highly crystalline additive-an amorphous polymer) and the physicochemical properties of the components were investigated. Crystalline functional excipients including surfactants, organic acids, and organic bases were prepared in binary solid dispersions in amorphous polymers by solvent evaporation method. Amorphous miscibility and physical stability of the systems were characterized using polarized light microscope, differential scanning calorimeter, and powder X-ray diffraction. Physicochemical parameters (solubility parameter (delta), hydrogen bond energy, Log P, pK(a) value as an indicator of acid-base ionic interaction, and T(g) of the dispersion as a surrogate of system's mobility) were selected as thermodynamic and kinetic factors to examine their influences on the systems' amorphous miscibility and physical stability. All systems possessing acid-base ionic interaction formed amorphous state. In the absence of the ionic interaction, solubility parameter and partition coefficient were shown to have major roles on amorphous formation. Upon storage condition at 25 degrees C/60% RH for 50 days, systems having ionic interaction and high T(g) remained in the amorphous state. This binary system study provides an insight and a basis for formation of the amorphous state of multi-component solid dispersions utilizing their physicochemical properties.

  10. Stability of indomethacin with relevance to the release from amorphous solid dispersions studied with ATR-FTIR spectroscopic imaging.

    Science.gov (United States)

    Ewing, Andrew V; Clarke, Graham S; Kazarian, Sergei G

    2014-08-18

    This work presents the use of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and spectroscopic imaging to study the stability and dissolution behaviour of amorphous solid dispersions (ASDs). ASDs are employed to improve the bioavailability of drugs which are poorly soluble in aqueous solutions. Selecting the appropriate polymeric excipients for use in pharmaceutical tablets is crucial to control drug stability and subsequent release. In this study, indomethacin was used as a model poorly-aqueous soluble drug since the amorphous-form has improved dissolution properties over its crystalline forms. ASDs of indomethacin/polyethylene glycol (PEG) and indomethacin/hydroxypropyl methylcellulose (HPMC) in a 1:3 wt ratio were compared. Firstly, ATR-FTIR spectroscopy was employed to monitor the stability of indomethacin in the ASDs over 96 h. While the indomethacin/HPMC ASD showed the ability to maintain the amorphous indomethacin form for longer periods of time, ATR-FTIR spectra revealed that indomethacin in the drug/PEG ASD crystallised to the stable γ-form, via the α-form. Secondly, ATR-FTIR spectroscopic imaging was used to study the dissolution of ASD tablets in a phosphate buffer (pH 7.5). Crystallisation of amorphous indomethacin was characterised in the spectra collected during the dissolution of the indomethacin/PEG ASD which consequently hindered release into the surrounding solution. In contrast, release of amorphous indomethacin was more effective from HPMC.

  11. Solvent-shift strategy to identify suitable polymers to inhibit humidity-induced solid-state crystallization of lacidipine amorphous solid dispersions.

    Science.gov (United States)

    Sun, Mengchi; Wu, Chunnuan; Fu, Qiang; Di, Donghua; Kuang, Xiao; Wang, Chao; He, Zhonggui; Wang, Jian; Sun, Jin

    2016-04-30

    The solvent-shift strategy was used to identify appropriate polymers that inhibit humidity-induced solid-state crystallization of amorphous solid dispersions (ASDs). Lacidipine with the polymers, PVP-K30, HPMC-E5 or Soluplus, were combined to form amorphous solid dispersions prepared by solvent evaporation. The formulations were characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier-transform infrared spectroscopy (FT-IR) and were subjected to in vitro dissolution testing. The moisture had a significant impact on the amount dissolved for the solid dispersions. Molecular docking studies established that hydrogen bonding was critical for the stabilization of the solid dispersions. The rank order of the binding energy of the drug-polymer association was Soluplus (-6.21 kcal/mol)>HPMC-E5 (-3.21 kcal/mol)>PVP-K30 (-2.31 kcal/mol). PVP-K30 had the highest water uptake among the polymers, as did ASD system of lacidipine-PVP-K30 ASDs. In the Soluplus ASDs, with its strong drug-polymer interactions and low water uptake, moisture-induced solid-state crystallization was not observed.

  12. Stability-enhanced hot-melt extruded amorphous solid dispersions via combinations of Soluplus® and HPMCAS-HF.

    Science.gov (United States)

    Alshahrani, Saad M; Lu, Wenli; Park, Jun-Bom; Morott, Joseph T; Alsulays, Bader B; Majumdar, Soumyajit; Langley, Nigel; Kolter, Karl; Gryczke, Andreas; Repka, Michael A

    2015-08-01

    The aim of this study was to evaluate a novel combination of Soluplus® and hypromellose acetate succinate (HPMCAS-HF) polymers for solubility enhancement as well as enhanced physicochemical stability of the produced amorphous solid dispersions. This was accomplished by converting the poorly water-soluble crystalline form of carbamazepine into a more soluble amorphous form within the polymeric blends. Carbamazepine (CBZ), a Biopharmaceutics Classification System class II active pharmaceutical ingredient (API) with multiple polymorphs, was utilized as a model drug. Hot-melt extrusion (HME) processing was used to prepare solid dispersions utilizing blends of polymers. Drug loading showed a significant effect on the dissolution rate of CBZ in all of the tested ratios of Soluplus® and HPMCAS-HF. CBZ was completely miscible in the polymeric blends of Soluplus® and HPMCAS-HF up to 40% drug loading. The extrudates were characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and dissolution studies. DSC and XRD data confirmed the formation of amorphous solid dispersions of CBZ in the polymeric blends of Soluplus® and HPMCAS-HF. Drug loading and release of CBZ was increased with Soluplus® (when used as the primary matrix polymer) when formulations contained Soluplus® with 7-21% (w/w) HPMCAS-HF. In addition, this blend of polymers was found to be physically and chemically stable at 40°C, 75% RH over 12 months without any dissolution rate changes.

  13. Hydrogen Bonding Interactions in Amorphous Indomethacin and Its Amorphous Solid Dispersions with Poly(vinylpyrrolidone) and Poly(vinylpyrrolidone-co-vinyl acetate) Studied Using (13)C Solid-State NMR.

    Science.gov (United States)

    Yuan, Xiaoda; Xiang, Tian-Xiang; Anderson, Bradley D; Munson, Eric J

    2015-12-07

    Hydrogen bonding interactions in amorphous indomethacin and amorphous solid dispersions of indomethacin with poly(vinylpyrrolidone), or PVP, and poly(vinylpyrrolidone-co-vinyl acetate), or PVP/VA, were investigated quantitatively using solid-state NMR spectroscopy. Indomethacin that was (13)C isotopically labeled at the carboxylic acid carbon was used to selectively analyze the carbonyl region of the spectrum. Deconvolution of the carboxylic acid carbon peak revealed that 59% of amorphous indomethacin molecules were hydrogen bonded through carboxylic acid cyclic dimers, 15% were in disordered carboxylic acid chains, 19% were hydrogen bonded through carboxylic acid and amide interactions, and the remaining 7% were free of hydrogen bonds. The standard dimerization enthalpy and entropy of amorphous indomethacin were estimated to be -38 kJ/mol and -91 J/(mol · K), respectively, using polystyrene as the "solvent". Polymers such as PVP and PVP/VA disrupted indomethacin self-interactions and formed hydrogen bonds with the drug. The carboxylic acid dimers were almost completely disrupted with 50% (wt) of PVP or PVP/VA. The fraction of disordered carboxylic acid chains also decreased as the polymer content increased. The solid-state NMR results were compared with molecular dynamics (MD) simulations from the literature. The present work highlights the potential of (13)C solid-state NMR to detect and quantify various hydrogen bonded species in amorphous solid dispersions as well as to serve as an experimental validation of MD simulations.

  14. Influence of polymer molecular weight on in vitro dissolution behavior and in vivo performance of celecoxib:PVP amorphous solid dispersions.

    Science.gov (United States)

    Knopp, Matthias Manne; Nguyen, Julia Hoang; Becker, Christian; Francke, Nadine Monika; Jørgensen, Erling B; Holm, Per; Holm, René; Mu, Huiling; Rades, Thomas; Langguth, Peter

    2016-04-01

    In this study, the influence of the molecular weight of polyvinylpyrrolidone (PVP) on the non-sink in vitro dissolution and in vivo performance of celecoxib (CCX):PVP amorphous solid dispersions were investigated. The dissolution rate of CCX from the amorphous solid dispersions increased with decreasing PVP molecular weight and crystallization inhibition was increased with increasing molecular weight of PVP, but reached a maximum for PVP K30. This suggested that the crystallization inhibition was not proportional with molecular weight of the polymer, but rather there was an optimal molecular weight where the crystallization inhibition was strongest. Consistent with the findings from the non-sink in vitro dissolution tests, the amorphous solid dispersions with the highest molecular weight PVPs (K30 and K60) resulted in significantly higher in vivo bioavailability (AUC0-24h) compared with pure amorphous and crystalline CCX. A linear relationship between the in vitro and in vivo parameter AUC0-24h indicated that the simple non-sink in vitro dissolution method used in this study could be used to predict the in vivo performance of amorphous solid dispersion with good precision, which enabled a ranking between the different formulations. In conclusion, the findings of this study demonstrated that the in vitro and in vivo performance of CCX:PVP amorphous solid dispersions were significantly controlled by the molecular weight of the polymer.

  15. Rheology Guided Rational Selection of Processing Temperature To Prepare Copovidone-Nifedipine Amorphous Solid Dispersions via Hot Melt Extrusion (HME).

    Science.gov (United States)

    Yang, Fengyuan; Su, Yongchao; Zhang, Jingtao; DiNunzio, James; Leone, Anthony; Huang, Chengbin; Brown, Chad D

    2016-10-03

    The production of amorphous solid dispersions via hot melt extrusion (HME) relies on elevated temperature and prolonged residence time, which can result in potential degradation and decomposition of thermally sensitive components. Herein, the rheological properties of a physical mixture of polymer and an active pharmaceutical ingredient (API) were utilized to guide the selection of appropriate HME processing temperature. In the currently studied copovidone-nifedipine system, a critical temperature, which is substantially lower (∼13 °C) than the melting point of crystalline API, was captured during a temperature ramp examination and regarded as the critical point at which the API could molecularly dissolve into the polymer. Based on the identification of this critical point, various solid dispersions were prepared by HME processing below, at, and above the critical temperature (both below and above the melting temperature (Tm) of crystalline API). In addition, the resultant extrudates along with two control solid dispersions prepared by physical mixing and cryogenic milling were assessed by X-ray diffraction, differential scanning calorimetry, hot stage microscopy, rheology, and solid-state NMR. Physicochemical properties of resultant solid dispersions indicated that the identified critical temperature is sufficient for the polymer-API system to reach a molecular-level mixing, manifested by the transparent and smooth appearance of extrudates, the absence of API crystalline diffraction and melting peaks, dramatically decreased rheological properties, and significantly improved polymer-API miscibility. Once the critical temperature has been achieved, further raising the processing temperature only results in limited improvement of API dispersion, reflected by slightly reduced storage modulus and complex viscosity and limited improvement in miscibility.

  16. Novel supercritical carbon dioxide impregnation technique for the production of amorphous solid drug dispersions: a comparison to hot melt extrusion.

    Science.gov (United States)

    Potter, Catherine; Tian, Yiwei; Walker, Gavin; McCoy, Colin; Hornsby, Peter; Donnelly, Conor; Jones, David S; Andrews, Gavin P

    2015-05-04

    The formulation of BCS Class II drugs as amorphous solid dispersions has been shown to provide advantages with respect to improving the aqueous solubility of these compounds. While hot melt extrusion (HME) and spray drying (SD) are among the most common methods for the production of amorphous solid dispersions (ASDs), the high temperatures often required for HME can restrict the processing of thermally labile drugs, while the use of toxic organic solvents during SD can impact on end-product toxicity. In this study, we investigated the potential of supercritical fluid impregnation (SFI) using carbon dioxide as an alternative process for ASD production of a model poorly water-soluble drug, indomethacin (INM). In doing so, we produced ASDs without the use of organic solvents and at temperatures considerably lower than those required for HME. Previous studies have concentrated on the characterization of ASDs produced using HME or SFI but have not considered both processes together. Dispersions were manufactured using two different polymers, Soluplus and polyvinylpyrrolidone K15 using both SFI and HME and characterized for drug morphology, homogeneity, presence of drug-polymer interactions, glass transition temperature, amorphous stability of the drug within the formulation, and nonsink drug release to measure the ability of each formulation to create a supersaturated drug solution. Fully amorphous dispersions were successfully produced at 50% w/w drug loading using HME and 30% w/w drug loading using SFI. For both polymers, formulations containing 50% w/w INM, manufactured via SFI, contained the drug in the γ-crystalline form. Interestingly, there were lower levels of crystallinity in PVP dispersions relative to SOL. FTIR was used to probe for the presence of drug-polymer interactions within both polymer systems. For PVP systems, the nature of these interactions depended upon processing method; however, for Soluplus formulations this was not the case. The area under

  17. Experimental observations and dissipative particle dynamic simulations on microstructures of pH-sensitive polymer containing amorphous solid dispersions.

    Science.gov (United States)

    Sun, Mengchi; Li, Bingyu; Li, Yanchun; Liu, Yangdan; Liu, Qi; Jiang, Hailun; He, Zhonggui; Zhao, Yongshan; Sun, Jin

    2017-01-30

    Amorphous solid dispersion (ASD) technique is an effective strategy to increase the dissolution rate of poorly soluble drugs. However, it is inherently unstable, and the molecular basis for achieving kinetic stability is not well understood. In this study, lacidipine-Eudragit_E_100 solid dispersions with 20% drug loading were prepared using the solvent evaporation. Dissolution tested showed that ASD had a significantly high rate, which was dependent on the pH of the medium. Based on time-dependent measurement of supersaturation and particle size, inhibition of crystal growth by Eudragit_E_100 differed at pH 1.2 and 6.8 to a great extent. Dissipative particle dynamic (DPD) simulation revealed that at pH 1.2, the swollen microstructures of the particles were associated with rapid drug release. At pH 6.8, a compacted microstructure of small amorphous particle-aggregated large particles was associated with slow dissolution. The DPD simulation provides insight into the structural basis for experimental observations, and thus is a useful tool to investigate the microstructures of ASD.

  18. A new combination approach of CI jet and QESD to formulate pH-susceptible amorphous solid dispersions.

    Science.gov (United States)

    Kumar, Sumit; Linehan, Brian; Tseng, Yin-Chao

    2014-05-15

    A new combination approach of quasi-emulsion solvent diffusion (QESD) and confined impinging jet (CIJ) technologies was utilized to formulate pH-susceptible amorphous solid dispersions (ASDs) of a poorly soluble investigational compound (BI906) of Boehringer Ingelheim Pharmaceuticals. The objective of this study was to formulate small-size pH-susceptible ASDs of BI906 to enhance its dissolution and solubility. A design of experiment approach was utilized to study the influence of critical parameters: antisolvent-to-solvent ratio, stabilizer concentration, polymer-to-drug ratio and flow rate of solvent. The critical quality attributes of the pH-susceptible solid dispersions (SDs) were crystallinity, particle size, drug loading and dissolution. The particle size of SDs was dependent on the antisolvent-to-solvent ratio, polymer-to-drug ratio and solvent flow rate. An increase in the solvent flow rate and antisolvent-to-solvent ratio resulted in smaller particle size of SDs. It was observed that the drug crystallinity and drug release were dependent on the polymer-to-drug ratio. The formulations containing a polymer-to-drug ratio of 6:1 were amorphous and showed superior pH dependent in vitro drug release performance. This study demonstrates that this new combination approach is feasible to formulate small-size pH-susceptible ASDs and it can be applied to other poorly soluble drugs to enhance in vitro dissolution and solubility.

  19. Dissolution of Danazol Amorphous Solid Dispersions: Supersaturation and Phase Behavior as a Function of Drug Loading and Polymer Type.

    Science.gov (United States)

    Jackson, Matthew J; Kestur, Umesh S; Hussain, Munir A; Taylor, Lynne S

    2016-01-04

    Amorphous solid dispersions (ASDs) are of great interest as enabling formulations because of their ability to increase the bioavailability of poorly soluble drugs. However, the dissolution of these formulations under nonsink dissolution conditions results in highly supersaturated drug solutions that can undergo different types of phase transitions. The purpose of this study was to characterize the phase behavior of solutions resulting from the dissolution of model ASDs as well as the degree of supersaturation attained. Danazol was chosen as a poorly water-soluble model drug, and three polymers were used to form the dispersions: polyvinylpyrrolidone (PVP), hydroxypropylmethyl cellulose (HPMC), and hydroxypropylmethyl cellulose acetate succinate (HPMCAS). Dissolution studies were carried out under nonsink conditions, and solution phase behavior was characterized using several orthogonal techniques. It was found that liquid-liquid phase separation (LLPS) occurred following dissolution and prior to crystallization for most of the dispersions. Using flux measurements, it was further observed that the maximum attainable supersaturation following dissolution was equivalent to the amorphous solubility. The dissolution of the ASDs led to sustained supersaturation, the duration of which varied depending on the drug loading and the type of polymer used in the formulation. The overall supersaturation profile observed thus depended on a complex interplay between dissolution rate, polymer type, drug loading, and the kinetics of crystallization.

  20. What is the mechanism behind increased permeation rate of a poorly soluble drug from aqueous dispersions of an amorphous solid dispersion?

    Science.gov (United States)

    Frank, Kerstin J; Westedt, Ulrich; Rosenblatt, Karin M; Hölig, Peter; Rosenberg, Jörg; Mägerlein, Markus; Fricker, Gert; Brandl, Martin

    2014-06-01

    Our aim was to explore the influence of micelles and microparticles emerging in aqueous dispersions of amorphous solid dispersions (ASDs) on molecular/apparent solubility and Caco-2 permeation. The ASD, prepared by hot-melt extrusion, contained the poorly soluble model drug ABT-102, a hydrophilic polymer, and three surfactants. Aqueous dispersions of the ASD were investigated at two concentrations, one above and one close to the critical micelle concentration of the surfactants blend in the extrudate. Micelles were detected at the higher concentration and no micelles at the lower concentration. Apparent solubility of ABT-102 was 20-fold higher in concentrated than in diluted dispersions, because of micelles. In contrast, Caco-2 permeation of ABT-102 was independent of the ASD concentration, but three times faster than that of crystalline suspensions. Molecular solubility of ABT-102 (equilibrium dialysis) was also independent of the ASD concentration, but by a factor 2 higher than crystalline ABT-102. The total amount of ABT-102 accumulated in the acceptor during Caco-2 experiments exceeded the initial amount of molecularly dissolved drug in the donor. This may indicate that dissolution of amorphous microparticles present in aqueous dispersions induces lasting supersaturation maintaining enhanced permeation. The hypothesis is supported by a slower drug permeation when the microparticles were removed.

  1. Pharmaceutical development of an amorphous solid dispersion formulation of elacridar hydrochloride for proof-of-concept clinical studies.

    Science.gov (United States)

    Sawicki, E; Schellens, J H M; Beijnen, J H; Nuijen, B

    2017-04-01

    A novel tablet formulation containing an amorphous solid dispersion (ASD) of elacridar hydrochloride was developed with the purpose to resolve the drug's low solubility in water and to conduct proof-of-concept clinical studies. Elacridar is highly demanded for proof-of-concept clinical trials that study the drug's suitability to boost brain penetration and bioavailability of numerous anticancer agents. Previously, clinical trials with elacridar were performed with a tablet containing elacridar hydrochloride. However, this tablet formulation resulted in poor and unpredictable absorption which was caused by the low aqueous solubility of elacridar hydrochloride. Twenty four different ASDs were produced and dissolution was compared to crystalline elacridar hydrochloride and a crystalline physical mixture. The formulation with highest dissolution was characterized for amorphicity. Subsequently, a tablet was developed and monitored for chemical/physical stability for 12 months at +15-25 °C, +2-8 °C and -20 °C. The ASD powder was composed of freeze dried elacridar hydrochloride-povidone K30-sodium dodecyl sulfate (1:6:1, w/w/w), appeared fully amorphous and resulted in complete dissolution whereas crystalline elacridar hydrochloride resulted in only 1% dissolution. The ASD tablets contained 25 mg elacridar hydrochloride and were stable for at least 12 months at -20 °C. The ASD tablet was considered feasible for proof-of-concept clinical studies and is now used as such.

  2. Improved Release of Celecoxib from High Drug Loading Amorphous Solid Dispersions Formulated with Polyacrylic Acid and Cellulose Derivatives.

    Science.gov (United States)

    Xie, Tian; Taylor, Lynne S

    2016-03-07

    Amorphous solid dispersions (ASDs) have been extensively exploited as a strategy for improving the dissolution performance of poorly water-soluble drugs. However, factors underpinning the observed dissolution profiles are not clearly understood, and the choice of polymeric carriers is largely empirical. In the current study, the dissolution performance of a high drug loading ASD containing the poorly water-soluble, anti-inflammatory agent, celecoxib, was optimized by using binary polymers combinations. Polyacrylic acid (PAA), a highly water-soluble polymer, was used to substantially increase the dissolution rate of the drug, while hydroxypropyl methyl cellulose (HPMC) or HPMC acetate succinate (HPMCAS) were added to stabilize the solid amorphous matrix against crystallization upon hydration, as well as to maintain supersaturation. Quantitative measurements of the impact of the polymers on the solution nucleation and growth rates of celecoxib revealed that, while the cellulose derivatives are effective nucleation inhibitors, it is more difficult to completely prevent crystal growth in solutions containing seed crystals, in particular at high supersaturations. Therefore, it is critical to prevent the formation of crystals in the dissolving matrix during dissolution. By using certain ratios of HPMC and PAA, both rapid release as well as crystallization inhibition could be achieved, even at high drug loadings. Utilizing combinations of polymers may therefore be useful to tailor release profiles while providing optimized crystallization inhibition.

  3. Amorphous pharmaceutical solids.

    Science.gov (United States)

    Vranić, Edina

    2004-07-01

    Amorphous forms are, by definition, non-crystalline materials which possess no long-range order. Their structure can be thought of as being similar to that of a frozen liquid with the thermal fluctuations present in a liquid frozen out, leaving only "static" structural disorder. The amorphous solids have always been an essential part of pharmaceutical research, but the current interest has been raised by two developments: a growing attention to pharmaceutical solids in general, especially polymorphs and solvates and a revived interest in the science of glasses and the glass transition. Amorphous substances may be formed both intentionally and unintentionally during normal pharmaceutical manufacturing operations. The properties of amorphous materials can be exploited to improve the performance of pharmaceutical dosage forms, but these properties can also give rise to unwanted effects that need to be understood and managed in order for the systems to perform as required.

  4. Amorphous Solid Water:

    DEFF Research Database (Denmark)

    Wenzel, Jack; Linderstrøm-Lang, C. U.; Rice, Stuart A.

    1975-01-01

    The structure factor of amorphous solid D2O deposited from the vapor at 10°K has been obtained by measuring the neutron diffraction spectrum in the wave vector transfer from 0.8 to 12.3 reciprocal angstroms. The results indicate that the phase investigated is amorphous and has a liquiid-like stru......The structure factor of amorphous solid D2O deposited from the vapor at 10°K has been obtained by measuring the neutron diffraction spectrum in the wave vector transfer from 0.8 to 12.3 reciprocal angstroms. The results indicate that the phase investigated is amorphous and has a liquiid...

  5. Nanoscale Infrared, Thermal, and Mechanical Characterization of Telaprevir-Polymer Miscibility in Amorphous Solid Dispersions Prepared by Solvent Evaporation.

    Science.gov (United States)

    Li, Na; Taylor, Lynne S

    2016-03-07

    Miscibility is of great interest for pharmaceutical systems, in particular, for amorphous solid dispersions, as phase separation can lead to a higher tendency to crystallize, resulting in a loss in solubility, decreased dissolution rate, and compromised bioavailability. The purpose of this study was to investigate the miscibility behavior of a model poorly water-soluble drug, telaprevir (TPV), with three different polymers using atomic force microscopy-based infrared, thermal, and mechanical analysis. Standard atomic force microscopy (AFM) imaging together with nanoscale infrared spectroscopy (AFM-IR), nanoscale thermal analysis (nanoTA), and Lorentz contact resonance (LCR) measurements were used to evaluate the miscibility behavior of TPV with three polymers, hydroxypropyl methylcellulose (HPMC), HPMC acetate succinate (HPMCAS), and poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA), at different drug to polymer ratios. Phase separation was observed with HPMC and PVPVA at drug loadings above 10%. For HPMCAS, a smaller miscibility gap was observed, with phase separation being observed at drug loadings higher than ∼30-40%. The domain size of phase-separated regions varied from below 50 nm to a few hundred nanometers. Localized infrared spectra, nano-TA measurements, images from AFM-based IR, and LCR measurements showed clear contrast between the continuous and discrete domains for these phase-separated systems, whereby the discrete domains were drug-rich. Fluorescence microscopy provided additional evidence for phase separation. These methods appear to be promising to evaluate miscibility in drug-polymer systems with similar Tgs and submicron domain sizes. Furthermore, such findings are of obvious importance in the context of contributing to a mechanistic understanding of amorphous solid dispersion phase behavior.

  6. Hot melt extruded amorphous solid dispersion of posaconazole with improved bioavailability: investigating drug-polymer miscibility with advanced characterisation.

    Science.gov (United States)

    Fule, Ritesh; Amin, Purnima

    2014-01-01

    Invasive antifungal infections are reasons for morbidity and mortality in immunogenic patients worldwide. Posaconazole is a most promising antifungal agent against all types of invasive infections with high % of cure rate. The marketed suspension formulation has low bioavailability and is needed to be taken with food. In this paper, PCZ hot melt extruded amorphous solid dispersion (SD) with immediate release and improved bioavailability was prepared using Soluplus (Sol) as primary carrier for solubilization. Surfactants such as PEG 400, Lutrol F27, Lutrol F68, and TPGS are also used in combination with Soluplus to improve the physicochemical performance of the formulation when it comes in contact with GI (gastrointestinal) fluid. Drug-polymer miscibility of SD was investigated using advanced techniques. In the in vivo study, the AUC(0-72) and C(max) of PCZ/Soluplus were 11.5 and 11.74 time higher than those of pure PCZ. The formulation of the extrudate SD had an AUC(0-72) and C(max) higher than those with the commercial capsule (Noxafil). Molecular dynamic (MD) simulation studies were carried out using in silico molecular modelling to understand the drug-polymer intermolecular behaviour. The results of this research ensure enhanced dissolution and bioavailability of the solid dispersion of PCZ prepared by HME compared with the PCZ suspension.

  7. Hot Melt Extruded Amorphous Solid Dispersion of Posaconazole with Improved Bioavailability: Investigating Drug-Polymer Miscibility with Advanced Characterisation

    Directory of Open Access Journals (Sweden)

    Ritesh Fule

    2014-01-01

    Full Text Available Invasive antifungal infections are reasons for morbidity and mortality in immunogenic patients worldwide. Posaconazole is a most promising antifungal agent against all types of invasive infections with high % of cure rate. The marketed suspension formulation has low bioavailability and is needed to be taken with food. In this paper, PCZ hot melt extruded amorphous solid dispersion (SD with immediate release and improved bioavailability was prepared using Soluplus (Sol as primary carrier for solubilization. Surfactants such as PEG 400, Lutrol F27, Lutrol F68, and TPGS are also used in combination with Soluplus to improve the physicochemical performance of the formulation when it comes in contact with GI (gastrointestinal fluid. Drug-polymer miscibility of SD was investigated using advanced techniques. In the in vivo study, the AUC(0–72 and Cmax of PCZ/Soluplus were 11.5 and 11.74 time higher than those of pure PCZ. The formulation of the extrudate SD had an AUC(0–72 and Cmax higher than those with the commercial capsule (Noxafil. Molecular dynamic (MD simulation studies were carried out using in silico molecular modelling to understand the drug-polymer intermolecular behaviour. The results of this research ensure enhanced dissolution and bioavailability of the solid dispersion of PCZ prepared by HME compared with the PCZ suspension.

  8. Investigation of Phase Mixing in Amorphous Solid Dispersions of AMG 517 in HPMC-AS Using DSC, Solid-State NMR, and Solution Calorimetry.

    Science.gov (United States)

    Calahan, Julie L; Azali, Stephanie C; Munson, Eric J; Nagapudi, Karthik

    2015-11-02

    Intimate phase mixing between the drug and the polymer is considered a prerequisite to achieve good physical stability for amorphous solid dispersions. In this article, spray dried amorphous dispersions (ASDs) of AMG 517 and HPMC-as were studied by differential scanning calorimetry (DSC), solid-state NMR (SSNMR), and solution calorimetry. DSC analysis showed a weakly asymmetric (ΔTg ≈ 13.5) system with a single glass transition for blends of different compositions indicating phase mixing. The Tg-composition data was modeled using the BKCV equation to accommodate the observed negative deviation from ideality. Proton spin-lattice relaxation times in the laboratory and rotating frames ((1)H T1 and T1ρ), as measured by SSNMR, were consistent with the observation that the components of the dispersion were in intimate contact over a 10-20 nm length scale. Based on the heat of mixing calculated from solution calorimetry and the entropy of mixing calculated from the Flory-Huggins theory, the free energy of mixing was calculated. The free energy of mixing was found to be positive for all ASDs, indicating that the drug and polymer are thermodynamically predisposed to phase separation at 25 °C. This suggests that miscibility measured by DSC and SSNMR is achieved kinetically as the result of intimate mixing between drug and polymer during the spray drying process. This kinetic phase mixing is responsible for the physical stability of the ASD.

  9. Identifying the mechanisms of drug release from amorphous solid dispersions using MRI and ATR-FTIR spectroscopic imaging.

    Science.gov (United States)

    Punčochová, Kateřina; Ewing, Andrew V; Gajdošová, Michaela; Sarvašová, Nina; Kazarian, Sergei G; Beránek, Josef; Štěpánek, František

    2015-04-10

    The dissolution mechanism of a poorly aqueous soluble drug from amorphous solid dispersions was investigated using a combination of two imaging methods: attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopic imaging and magnetic resonance imaging (MRI). The rates of elementary processes such as water penetration, polymer swelling, growth and erosion of gel layer, and the diffusion, release and in some cases precipitation of drug were evaluated by image analysis. The results from the imaging methods were compared with drug release profiles obtained by classical dissolution tests. The study was conducted using three polymeric excipients (soluplus, polyvinylpyrrolidone - PVP K30, hydroxypropylmethyl cellulose - HPMC 100M) alone and in combination with a poorly soluble drug, aprepitant. The imaging methods were complementary: ATR-FTIR imaging enabled a qualitative observation of all three components during the dissolution experiments, water, polymer and drug, including identifying structural changes from the amorphous form of drug to the crystalline form. The comparison of quantitative MRI data with drug release profiles enabled the different processes during dissolution to be established and the rate-limiting step to be identified, which - for the drug-polymer combinations investigated in this work - was the drug diffusion through the gel layer rather than water penetration into the tablet.

  10. Non-invasive insight into the release mechanisms of a poorly soluble drug from amorphous solid dispersions by confocal Raman microscopy.

    Science.gov (United States)

    Punčochová, Kateřina; Vukosavljevic, Branko; Hanuš, Jaroslav; Beránek, Josef; Windbergs, Maike; Štěpánek, František

    2016-04-01

    In this study, we investigated the release mechanism of the poorly water soluble drug aprepitant from different amorphous solid dispersions using confocal Raman microscopy (CRM). Solid dispersions were fabricated based on either Soluplus®, as an amphiphilic copolymer and solubilizer, or on polyvinylpyrrolidone, as a hydrophilic polymer, in order to elucidate the influence of the polymer characteristics on the drug form and dissolution mechanisms. Aprepitant exhibited its amorphous form in both solid dispersions. However, the release differed depending on the polymer. The high complexation effect of Soluplus was shown to be a crucial factor for stabilization of the amorphous drug, resulting in continuous release without any recrystallization of aprepitant. In contrast, solid dispersions based on polyvinylpyrrolidone showed a different mechanism of dissolution; due to the good affinity of PVP and water, the polymer is dissolving fast, leading to phase separation and local recrystallization of the drug. The study highlights the complexity of release processes from solid dispersions and elucidates the influence of the polymer on drug release kinetics.

  11. Investigating the Correlation between Miscibility and Physical Stability of Amorphous Solid Dispersions Using Fluorescence-Based Techniques.

    Science.gov (United States)

    Tian, Bin; Tang, Xing; Taylor, Lynne S

    2016-11-07

    The purpose of this study was to investigate the feasibility of using a fluorescence-based technique to evaluate drug-polymer miscibility and to probe the correlation between miscibility and physical stability of amorphous solid dispersions (ASDs). Indomethacin-hydroxypropyl methylcellulose (IDM-HPMC), indomethacin-hydroxypropyl methylcellulose acetate succinate, and indomethacin-polyvinylpyrrolidone (IDM-PVP) were used as model systems. The miscibility of the IDM-polymer systems was evaluated by fluorescence spectroscopy, fluorescence imaging, differential scanning calorimetry (DSC), and infrared (IR) spectroscopy. The physical stability of IDM-polymer ASDs stored at 40 °C was evaluated using fluorescence imaging and X-ray diffraction (XRD). The experimentally determined miscibility limit of IDM with the polymers was 50-60%, 20-30%, and 70-80% drug loading for HPMC, HPMCAS, and PVP, respectively. The X-ray results showed that for IDM-HPMC ASDs, samples with a drug loading of less than 50% were maintained in amorphous form during the study period, while samples with drug loadings higher than 50% crystallized within 15 days. For IDM-HPMCAS ASDs, samples with drug loading less than 30% remained amorphous, while samples with drug loadings higher than 30% crystallized within 10 days. IDM-PVP ASDs were found to be resistant to crystallization for all compositions. Thus, a good correlation was observed between phase separation and reduced physical stability, suggesting that miscibility is indeed an important ASDs characteristic. In addition, fluorescence-based techniques show promise in the evaluation of drug-polymer miscibility.

  12. Investigation and correlation of physical stability, dissolution behaviour and interaction parameter of amorphous solid dispersions of telmisartan: a drug development perspective.

    Science.gov (United States)

    Dukeck, R; Sieger, P; Karmwar, P

    2013-07-16

    The aim of this study was to investigate if amorphous solid dispersions of telmisartan, prepared in presence of different polymers, exhibit different structural and thermodynamic characteristics and whether these differences can be correlated to their physical stability (time to crystallisation) and dissolution behaviour. Amorphous samples were prepared by melt quenching. The resulting amorphous materials were characterised using X-ray diffraction, Raman spectroscopy and differential scanning calorimetry. All freshly prepared samples were completely X-ray amorphous (with a halo being the only feature in the diffractograms). The shape of the halos in the diffractograms varied suggesting structural variations in the near order of the molecules between the different amorphous solid dispersions (ASDs). Principal component analysis of the Raman spectra of the various ASD revealed that the samples clustered in the scores plot, again suggesting structural differences due to the presence of different drug-polymer interaction. The ranking of the samples with respect to physical stability and interaction parameter was: ASD of telmisartan:eudragit>ASD of telmisartan:soluplus>ASD of telmisartan:HPMC>ASD of telmisartan:PVP>amorphous telmisartan. The interaction parameter, calculated by using the Flory Huggins theory, showed a good correlation with the experimentally determined stability whereas a weak correlation was found with dissolution behaviour of different ASD. This study showed that correlation of physical stability and dissolution behaviour with calculated interaction parameter is possible for the same amorphous systems prepared by using different polymers. This could aid in selecting the most appropriate polymer for the development of optimised formulations containing amorphous drugs. It can be concluded that ASD prepared by using different polymers have different structural and thermal properties. These differences affect the physical stability and dissolution

  13. Impact of Eudragit EPO and hydroxypropyl methylcellulose on drug release rate, supersaturation, precipitation outcome and redissolution rate of indomethacin amorphous solid dispersions.

    Science.gov (United States)

    Xie, Tian; Gao, Wei; Taylor, Lynne S

    2017-10-05

    The purpose of this work was to evaluate the impact of polymer(s) on the dissolution rate, supersaturation and precipitation of indomethacin amorphous solid dispersions (ASD), and to understand the link between precipitate characteristics and redissolution kinetics. The crystalline and amorphous solubilities of indomethacin were determined in the absence and presence of hydroxypropylmethyl cellulose (HPMC) and/or Eudragit (®) EPO to establish relevant phase boundaries. At acidic pH, HPMC could maintain supersaturation of the drug by effectively inhibiting solution crystallization while EPO increased both the crystalline and amorphous solubility of the drug, but did not inhibit crystallization. The HPMC dispersion dissolved relatively slowly without undergoing crystallization while the supersaturation generated by rapid dissolution of the EPO ASD was short-lived due to crystallization. The crystals thus generated underwent rapid redissolution upon pH increase, dissolving faster than the reference crystalline material, and at a comparable rate to the amorphous HPMC dispersion. A ternary dispersion containing both EPO and HPMC dissolved rapidly, generating an apparent drug concentration that exceeded the amorphous solubility of indomethacin, leading to the formation of a new nanosized droplet phase. These nanodroplets dissolved virtually immediately when the pH was increased. In conclusion, the concentration-time profiles achieved from indomethacin ASD dissolution are a complex interplay of drug release rate, precipitation kinetics and outcome, and precipitate redissolution rate, whereby each of these processes is highly dependent on the polymer(s) employed in the formulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Thermal Processing of PVP- and HPMC-Based Amorphous Solid Dispersions

    OpenAIRE

    LaFountaine, Justin S.; Prasad, Leena Kumari; Brough, Chris; Miller, Dave A.; McGinity, James W.; Williams, Robert O.

    2015-01-01

    Thermal processing technologies continue to gain interest in pharmaceutical manufacturing. However, the types and grades of polymers that can be utilized in common thermal processing technologies, such as hot-melt extrusion (HME), are often limited by thermal or rheological factors. The objectives of the present study were to compare and contrast two thermal processing methods, HME and KinetiSol® Dispersing (KSD), and investigate the influence of polymer type, polymer molecular weight, and dr...

  15. Dual-mechanism gastroretentive drug delivery system loaded with an amorphous solid dispersion prepared by hot-melt extrusion.

    Science.gov (United States)

    Vo, Anh Q; Feng, Xin; Pimparade, Manjeet; Ye, Xinyou; Kim, Dong Wuk; Martin, Scott T; Repka, Michael A

    2017-02-28

    In the present study, we aimed to prepare a gastroretentive drug delivery system that would be both highly resistant to gastric emptying via multiple mechanisms and would also potentially induce in situ supersaturation. The bioadhesive floating pellets, loaded with an amorphous solid dispersion, were prepared in a single step of hot-melt extrusion technology. Hydroxypropyl cellulose (Klucel™ MF) and hypromellose (Benecel™ K15M) were used as matrix-forming polymers, and felodipine was used as the model drug. The foam pellets were fabricated based on the expansion of CO2, which was generated from sodium bicarbonate during the melt-extrusion process. A 2(n) full factorial experimental design was utilized to investigate the effects of formulation compositions to the pellet properties. The melt-extrusion process transformed the crystalline felodipine into an amorphous state that was dispersed and "frozen" in the polymer matrix. All formulations showed high porosity and were able to float immediately, without lag time, on top of gastric fluid, and maintained their buoyancy over 12h. The pellet-specific floating force, which could be as high as 4800μN/g, increased significantly during the first hour, and was relatively stable until 9h. The sodium bicarbonate percentage was found to be most significantly effect to the floating force. The ex vivo bioadhesion force of the pellets to porcine stomach mucosa was approximately 5mN/pellet, which was more than five times higher than the gravitation force of the pellet saturated with water. Drug release was well controlled up to 12h in the sink condition of 0.5% sodium lauryl sulphate in 0.1N HCl. The dissolution at 1, 3, 5, and 8h were 5-12%, 25-45%, 55-80%, and ≥75% respectively for all 11 formulations. In biorelevant dissolution medium, a supersaturated solution was formed, and the concentration was maintained at around 2μg/mL, approximately 10-folds higher than that of the pure felodipine. All input factors

  16. Evaluation of Drug Load and Polymer by Using a 96-Well Plate Vacuum Dry System for Amorphous Solid Dispersion Drug Delivery

    OpenAIRE

    Chiang, Po-Chang; Ran, Yingqing; Chou, Kang-Jye; Cui, Yong; Sambrone, Amy; Chan, Connie; Hart, Ryan

    2012-01-01

    It is well recognized that poor dissolution rate and solubility of drug candidates are key limiting factors for oral bioavailability. While numerous technologies have been developed to enhance solubility of the drug candidates, poor water solubility continuously remains a challenge for drug delivery. Among those technologies, amorphous solid dispersions (SD) have been successfully employed to enhance both dissolution rate and solubility of poorly water-soluble drugs. This research reports a h...

  17. Insights into Nano- and Micron-Scale Phase Separation in Amorphous Solid Dispersions Using Fluorescence-Based Techniques in Combination with Solid State Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Purohit, Hitesh S; Ormes, James D; Saboo, Sugandha; Su, Yongchao; Lamm, Matthew S; Mann, Amanda K P; Taylor, Lynne S

    2017-07-01

    Miscibility between the drug and the polymer in an amorphous solid dispersion (ASD) is considered to be one of the most important factors impacting the solid state stability and dissolution performance of the active pharmaceutical ingredient (API). The research described herein utilizes emerging fluorescence-based methodologies to probe (im)miscibility of itraconazole (ITZ)-hydroxypropyl methylcellulose (HPMC) ASDs. The ASDs were prepared by solvent evaporation with varying evaporation rates and were characterized by steady-state fluorescence spectroscopy, confocal imaging, differential scanning calorimetry (DSC), and solid state nuclear magnetic resonance (ssNMR) spectroscopy. The size of the phase separated domains for the ITZ-HPMC ASDs was affected by the solvent evaporation rate. Smaller domains (30 nm) were found in ASDs prepared using slower evaporation rates. Confocal imaging provided visual confirmation of phase separation along with chemical specificity, achieved by selectively staining drug-rich and polymer-rich phases. ssNMR confirmed the results of fluorescence-based techniques and provided information on the size of phase separated domains. The fluorescence-based methodologies proved to be sensitive and rapid in detecting phase separation, even at the nanoscale, in the ITZ-HPMC ASDs. Fluorescence-based methods thus show promise for miscibility evaluation of spray-dried ASDs.

  18. Hot Melt Extrusion: Development of an Amorphous Solid Dispersion for an Insoluble Drug from Mini-scale to Clinical Scale.

    Science.gov (United States)

    Agrawal, Anjali M; Dudhedia, Mayur S; Zimny, Ewa

    2016-02-01

    The objective of the study was to develop an amorphous solid dispersion (ASD) for an insoluble compound X by hot melt extrusion (HME) process. The focus was to identify material-sparing approaches to develop bioavailable and stable ASD including scale up of HME process using minimal drug. Mixtures of compound X and polymers with and without surfactants or pH modifiers were evaluated by hot stage microscopy (HSM), polarized light microscopy (PLM), and modulated differential scanning calorimetry (mDSC), which enabled systematic selection of ASD components. Formulation blends of compound X with PVP K12 and PVP VA64 polymers were extruded through a 9-mm twin screw mini-extruder. Physical characterization of extrudates by PLM, XRPD, and mDSC indicated formation of single-phase ASD's. Accelerated stability testing was performed that allowed rapid selection of stable ASD's and suitable packaging configurations. Dissolution testing by a discriminating two-step non-sink dissolution method showed 70-80% drug release from prototype ASD's, which was around twofold higher compared to crystalline tablet formulations. The in vivo pharmacokinetic study in dogs showed that bioavailability from ASD of compound X with PVP VA64 was four times higher compared to crystalline tablet formulations. The HME process was scaled up from lab scale to clinical scale using volumetric scale up approach and scale-independent-specific energy parameter. The present study demonstrated systematic development of ASD dosage form and scale up of HME process to clinical scale using minimal drug (∼500 g), which allowed successful clinical batch manufacture of enabled formulation within 7 months.

  19. Determination of tacrolimus crystalline fraction in the commercial immediate release amorphous solid dispersion products by a standardized X-ray powder diffraction method with chemometrics.

    Science.gov (United States)

    Rahman, Ziyaur; Siddiqui, Akhtar; Bykadi, Srikant; Khan, Mansoor A

    2014-11-20

    Clinical performance of an amorphous solid dispersion (ASD) drug product is related to the amorphous drug content because of the greater bioavailability of this form of the drug than its crystalline form. Therefore, it is paramount to monitor the amorphous and the crystalline fractions in the ASD products. The objective of the present investigation was to study the feasibility of using a standardized X-ray powder diffraction (XRPD) in conjunction with chemometric methods to quantitate the amorphous and crystalline fraction of the drug in several tacrolimus ASD products. Three ASD products were prepared in which drug to excipients ratios ranged from 1:19 to 1:49. The amorphous and crystalline drug products were mixed in various proportions so that amorphous/crystalline tacrolimus in the samples vary from 0 to 100%. XRPD of the samples of the drug products were collected, and PLSR and PCR chemometric methods were applied to the data. The R(2) was greater than '0.987' for all the models and bias in the models were statistically insignificant (p>0.05). RMSEP and SEP values were smaller for PLSR models than PCR models. The models prediction capabilities were good and can predict as low as 10% when drug to excipient ratio is as high as 1:49. In summary, XRPD and chemometric provide powerful analytical tools to monitor the crystalline fractions of the drug in the ASD products.

  20. Enhanced Supersaturation and Oral Absorption of Sirolimus Using an Amorphous Solid Dispersion Based on Eudragit® E

    Directory of Open Access Journals (Sweden)

    Youngseok Cho

    2015-05-01

    Full Text Available The present study aimed to investigate the effect of Eudragit® E/HCl (E-SD on the degradation of sirolimus in simulated gastric fluid (pH 1.2 and to develop a new oral formulation of sirolimus using E-SD solid dispersions to enhance oral bioavailability. Sirolimus-loaded solid dispersions were fabricated by a spray drying process. A kinetic solubility test demonstrated that the sirolimus/E-SD/TPGS (1/8/1 solid dispersion had a maximum solubility of 196.7 μg/mL within 0.5 h that gradually decreased to 173.4 μg/mL after 12 h. According to the dissolution study, the most suitable formulation was the sirolimus/E-SD/TPGS (1/8/1 solid dispersion in simulated gastric fluid (pH 1.2, owing to enhanced stability and degree of supersaturation of E-SD and TPGS. Furthermore, pharmacokinetic studies in rats indicated that compared to the physical mixture and sirolimus/HPMC/TPGS (1/8/1 solid dispersion, the sirolimus/E-SD/TPGS (1/8/1 solid dispersion significantly improved oral absorption of sirolimus. E-SD significantly inhibited the degradation of sirolimus in a dose-dependent manner. E-SD also significantly inhibited the precipitation of sirolimus compared to hydroxypropylmethyl cellulose (HPMC. Therefore, the results from the present study suggest that the sirolimus-loaded E-SD/TPGS solid dispersion has great potential in clinical applications.

  1. Enhanced supersaturation and oral absorption of sirolimus using an amorphous solid dispersion based on Eudragit® e.

    Science.gov (United States)

    Cho, Youngseok; Ha, Eun-Sol; Baek, In-Hwan; Kim, Min-Soo; Cho, Cheong-Weon; Hwang, Sung-Joo

    2015-05-25

    The present study aimed to investigate the effect of Eudragit® E/HCl (E-SD) on the degradation of sirolimus in simulated gastric fluid (pH 1.2) and to develop a new oral formulation of sirolimus using E-SD solid dispersions to enhance oral bioavailability. Sirolimus-loaded solid dispersions were fabricated by a spray drying process. A kinetic solubility test demonstrated that the sirolimus/E-SD/TPGS (1/8/1) solid dispersion had a maximum solubility of 196.7 μg/mL within 0.5 h that gradually decreased to 173.4 μg/mL after 12 h. According to the dissolution study, the most suitable formulation was the sirolimus/E-SD/TPGS (1/8/1) solid dispersion in simulated gastric fluid (pH 1.2), owing to enhanced stability and degree of supersaturation of E-SD and TPGS. Furthermore, pharmacokinetic studies in rats indicated that compared to the physical mixture and sirolimus/HPMC/TPGS (1/8/1) solid dispersion, the sirolimus/E-SD/TPGS (1/8/1) solid dispersion significantly improved oral absorption of sirolimus. E-SD significantly inhibited the degradation of sirolimus in a dose-dependent manner. E-SD also significantly inhibited the precipitation of sirolimus compared to hydroxypropylmethyl cellulose (HPMC). Therefore, the results from the present study suggest that the sirolimus-loaded E-SD/TPGS solid dispersion has great potential in clinical applications.

  2. In-line monitoring of compaction properties on a rotary tablet press during tablet manufacturing of hot-melt extruded amorphous solid dispersions.

    Science.gov (United States)

    Grymonpré, W; Verstraete, G; Van Bockstal, P J; Van Renterghem, J; Rombouts, P; De Beer, T; Remon, J P; Vervaet, C

    2017-01-30

    As the number of applications for polymers in pharmaceutical development is increasing, there is need for fundamental understanding on how such compounds behave during tableting. This research is focussed on the tableting behaviour of amorphous polymers, their solid dispersions and the impact of hot-melt extrusion on the compaction properties of these materials. Soluplus, Kollidon VA 64 and Eudragit EPO were selected as amorphous polymers since these are widely studied carriers for solid dispersions, while Celecoxib was chosen as BCS class II model drug. Neat polymers and physical mixtures (up to 35% drug load) were processed by hot-melt extrusion (HME), milled and sieved to obtain powders with comparable particle sizes as the neat polymer. A novel approach was used for in-line analysis of the compaction properties on a rotary tablet press (Modul P, GEA) using complementary sensors and software (CDAAS, GEA). By combining 'in-die' and 'out-of-die' techniques, it was possible to investigate in a comprehensive way the impact of HME on the tableting behaviour of amorphous polymers and their formulations. The formation of stable glassy solutions altered the formulations towards more fragmentary behaviour under compression which was beneficial for the tabletability. Principal component analysis (PCA) was applied to summarize the behaviour during compaction of the formulations, enabling the selection of Soluplus and Kollidon VA 64 as the most favourable polymers for compaction of glassy solutions.

  3. Near-infrared and fourier transform infrared chemometric methods for the quantification of crystalline tacrolimus from sustained-release amorphous solid dispersion.

    Science.gov (United States)

    Rahman, Ziyaur; Siddiqui, Akhtar; Bykadi, Srikant; Khan, Mansoor A

    2014-08-01

    The objective of the present research was to study the feasibility of using near-infrared (NIR) and Fourier transform infrared (FTIR)-based chemometric models in quantifying crystalline and amorphous tacrolimus from its sustained-release amorphous solid dispersion (ASD). ASD contained ethyl cellulose, hydroxypropyl methyl cellulose, and lactose monohydrate as carriers, and amorphous form of tacrolimus in it was confirmed by X-ray powder diffraction. Crystalline physical mixture was mixed with ASD in various proportions to prepare sample matrices containing 0%-100% amorphous/crystalline tacrolimus. NIR and FTIR of the samples were recorded, and data were mathematically pretreated using multiple scattering correction, standard normal variate, or Savitzky-Golay before multivariate analysis, partial-least-square regression (PLSR), and principle component regression (PCR). The PLSR models were more accurate than PCR for NIR and FTIR data as indicated by low value of root-mean-squared error of prediction, standard error of prediction and bias, and high value of R(2). Additionally, NIR data-based models were more accurate and precise than FTIR data models. In conclusion, NIR chemometric models provide simple and fast method to quantitate crystalline tacrolimus in the ASD formulation.

  4. Acid-Base Interactions of Polystyrene Sulfonic Acid in Amorphous Solid Dispersions Using a Combined UV/FTIR/XPS/ssNMR Study.

    Science.gov (United States)

    Song, Yang; Zemlyanov, Dmitry; Chen, Xin; Nie, Haichen; Su, Ziyang; Fang, Ke; Yang, Xinghao; Smith, Daniel; Byrn, Stephen; Lubach, Joseph W

    2016-02-01

    This study investigates the potential drug-excipient interactions of polystyrene sulfonic acid (PSSA) and two weakly basic anticancer drugs, lapatinib (LB) and gefitinib (GB), in amorphous solid dispersions. Based on the strong acidity of the sulfonic acid functional group, PSSA was hypothesized to exhibit specific intermolecular acid-base interactions with both model basic drugs. Ultraviolet (UV) spectroscopy identified red shifts, which correlated well with the color change observed in lapatinib-PSSA solutions. Fourier transform infrared (FTIR) spectra suggest the protonation of the quinazoline nitrogen atom in both model compounds, which agrees well with data from the crystalline ditosylate salt of lapatinib. X-ray photoelectron spectroscopy (XPS) detected increases in binding energy of the basic nitrogen atoms in both lapatinib and gefitinib, strongly indicating protonation of these nitrogen atoms. (15)N solid-state NMR spectroscopy provided direct spectroscopic evidence for protonation of the quinazoline nitrogen atoms in both LB and GB, as well as the secondary amine nitrogen atom in LB and the tertiary amine nitrogen atom in GB. The observed chemical shifts in the LB-PSSA (15)N spectrum also agree very well with the lapatinib ditosylate salt where proton transfer is known. Additionally, the dissolution and physical stability behaviors of both amorphous solid dispersions were examined. PSSA was found to significantly improve the dissolution of LB and GB and effectively inhibit the crystallization of LB and GB under accelerated storage conditions due to the beneficial strong intermolecular acid-base interaction between the sulfonic acid groups and basic nitrogen centers.

  5. The amorphous solid dispersion of the poorly soluble ABT-102 forms nano/microparticulate structures in aqueous medium: impact on solubility

    Directory of Open Access Journals (Sweden)

    Frank KJ

    2012-11-01

    Full Text Available Kerstin J Frank,1,3 Ulrich Westedt,2 Karin M Rosenblatt,2 Peter Hölig,2 Jörg Rosenberg,2 Markus Mägerlein,2 Gert Fricker,3 Martin Brandl11Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark; 2Abbott GmbH and Co. KG, Ludwigshafen, Germany; 3Department of Pharmaceutical Technology, University of Heidelberg, Heidelberg, GermanyAbstract: Amorphous solid dispersions (ASDs are a promising formulation approach for poorly soluble active pharmaceutical ingredients (APIs, because they ideally enhance both dissolution rate and solubility. However, the mechanism behind this is not understood in detail. In the present study, we investigated the supramolecular and the nano/microparticulate structures that emerge spontaneously upon dispersion of an ASD in aqueous medium and elucidated their influence on solubility. The ASD, prepared by hot melt extrusion, contained the poorly soluble ABT-102 (solubility in buffer, 0.05 µg/mL, a hydrophilic polymer, and three surfactants. The apparent solubility of ABT-102 from the ASD-formulation was enhanced up to 200 times in comparison to crystalline ABT-102. At the same time, the molecular solubility, as assessed by inverse equilibrium dialysis, was enhanced two times. Asymmetrical flow field-flow fractionation in combination with a multiangle light-scattering detector, an ultraviolet detector, and a refractometer enabled us to separate and identify the various supramolecular assemblies that were present in the aqueous dispersions of the API-free ASD (placebo and of binary/ternary blends of the ingredients. Thus, the supramolecular assemblies with a molar mass between 20,000 and 90,000 could be assigned to the polyvinylpyrrolidone/vinyl acetate 64, while two other kinds of assemblies were assigned to different surfactant assemblies (micelles. The amount of ABT-102 remaining associated with each of the assemblies upon fractionation was quantified offline with high

  6. Micro-scale prediction method for API-solubility in polymeric matrices and process model for forming amorphous solid dispersion by hot-melt extrusion.

    Science.gov (United States)

    Bochmann, Esther S; Neumann, Dirk; Gryczke, Andreas; Wagner, Karl G

    2016-10-01

    A new predictive micro-scale solubility and process model for amorphous solid dispersions (ASDs) by hot-melt extrusion (HME) is presented. It is based on DSC measurements consisting of an annealing step and a subsequent analysis of the glass transition temperature (Tg). The application of a complex mathematical model (BCKV-equation) to describe the dependency of Tg on the active pharmaceutical ingredient (API)/polymer ratio, enables the prediction of API solubility at ambient conditions (25°C). Furthermore, estimation of the minimal processing temperature for forming ASDs during HME trials could be defined and was additionally confirmed by X-ray powder diffraction data. The suitability of the DSC method was confirmed with melt rheological trials (small amplitude oscillatory system). As an example, ball milled physical mixtures of dipyridamole, indomethacin, itraconazole and nifedipine in poly(vinylpyrrolidone-co-vinylacetate) (copovidone) and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus®) were used.

  7. Supersaturation, nucleation, and crystal growth during single- and biphasic dissolution of amorphous solid dispersions: polymer effects and implications for oral bioavailability enhancement of poorly water soluble drugs.

    Science.gov (United States)

    Sarode, Ashish L; Wang, Peng; Obara, Sakae; Worthen, David R

    2014-04-01

    The influence of polymers on the dissolution, supersaturation, crystallization, and partitioning of poorly water soluble compounds in biphasic media was evaluated. Amorphous solid dispersions (ASDs) containing felodipine (FLD) and itraconazole (ITZ) were prepared by hot melt mixing (HMM) using various polymers. The ASDs were analyzed using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), and HPLC. Amorphous drug conversion was confirmed using DSC and PXRD, and drug stability by HPLC. Single- and biphasic dissolution studies of the ASDs with concurrent dynamic light scattering (DLS) and polarized light microscopic (PLM) analysis of precipitated drugs were performed. HPLC revealed no HMM-induced drug degradation. Maximum partitioning into the organic phase was dependent upon the degree of supersaturation. Although the highest supersaturation of FLD was attained using Eudragit® EPO and AQOAT® AS-LF with better nucleation and crystal growth inhibition using the latter, higher partitioning of the drug into the organic phase was achieved using Pharmacoat® 603 and Kollidon® VA-64 by maintaining supersaturation below critical nucleation. Critical supersaturation for ITZ was surpassed using all of the polymers, and partitioning was dependent upon nucleation and crystal growth inhibition in the order of Pharmacoat® 603>Eudragit® L-100-55>AQOAT® AS-LF. HMM drug-polymer systems that prevent drug nucleation by staying below critical supersaturation are more effective for partitioning than those that achieve the highest supersaturation.

  8. Comparison of X-ray powder diffraction and solid-state nuclear magnetic resonance in estimating crystalline fraction of tacrolimus in sustained-release amorphous solid dispersion and development of discriminating dissolution method.

    Science.gov (United States)

    Rahman, Ziyaur; Bykadi, Srikant; Siddiqui, Akhtar; Khan, Mansoor A

    2015-05-01

    The focus of present investigation was to explore X-ray powder diffraction (XRPD) and solid-state nuclear magnetic resonance (ssNMR) techniques for amorphous and crystalline tacrolimus quantification in the sustained-release amorphous solid dispersion (ASD), and to propose discriminating dissolution method that can detect crystalline drug. The ASD and crystalline physical mixture was mixed in various proportions to make sample matrices containing 0%-100% crystalline-amorphous tacrolimus. Partial-least-square regression and principle component regression were applied to the spectral data. Dissolution of the ASD in the US FDA recommended dissolution medium with and without surfactant was performed. R(2) > 0.99 and slope was close to one for all the models. Root-mean-square of prediction, standard error of prediction, and bias were higher in ssNMR-based models when compared with XRPD data models. Dissolution of the ASD decreased with an increase in the crystalline tacrolimus in the formulations. Furthermore, detection of crystalline tacrolimus in the ASD was progressively masked with an increase in the surfactant level in the dissolution medium. XRPD and ssNMR can be used equally to quantitate the crystalline and amorphous fraction of tacrolimus in the ASD with good accuracy; however, ssNMR data collection time is excessively long, and minimum surfactant level in the dissolution medium maximizes detection of crystalline reversion in the formulation.

  9. Fundamentals of amorphous solids structure and properties

    CERN Document Server

    Stachurski, Zbigniew H

    2014-01-01

    Long awaited, this textbook fills the gap for convincing concepts to describe amorphous solids. Adopting a unique approach, the author develops a framework that lays the foundations for a theory of amorphousness. He unravels the scientific mysteries surrounding the topic, replacing rather vague notions of amorphous materials as disordered crystalline solids with the well-founded concept of ideal amorphous solids. A classification of amorphous materials into inorganic glasses, organic glasses, glassy metallic alloys, and thin films sets the scene for the development of the model of ideal amorph

  10. Hot melt extrusion for amorphous solid dispersions: temperature and moisture activated drug-polymer interactions for enhanced stability.

    Science.gov (United States)

    Sarode, Ashish L; Sandhu, Harpreet; Shah, Navnit; Malick, Waseem; Zia, Hossein

    2013-10-07

    Hot melt extrudates (HMEs) of indomethacin (IND) with Eudragit EPO and Kollidon VA 64 and those of itraconazole (ITZ) with HPMCAS-LF and Kollidon VA 64 were manufactured using a Leistritz twin screw extruder. The milled HMEs were stored at controlled temperature and humidity conditions. The samples were collected after specified time periods for 3 months. The stability of amorphous HMEs was assessed using moisture analysis, thermal evaluation, powder X-ray diffraction, FTIR, HPLC, and dissolution study. In general, the moisture content increased with time, temperature, and humidity levels. Amorphous ITZ was physically unstable at very high temperature and humidity levels, and its recrystallization was detected in the HMEs manufactured using Kollidon VA 64. Although physical stability of IND was better sustained by both Eudragit EPO and Kollidon VA 64, chemical degradation of the drug was identified in the stability samples of HMEs with Eudragit EPO stored at 50 °C. The dissolution rates and the supersaturation levels were significantly decreased for the stability samples in which crystallization was detected. Interestingly, the supersaturation was improved for the stability samples of IND:Eudragit EPO and ITZ:HPMCAS-LF, in which no physical or chemical instability was observed. This enhancement in supersaturation was attributed to the temperature and moisture activated electrostatic interactions between the drugs and their counterionic polymers.

  11. Water-induced phase separation of miconazole-poly (vinylpyrrolidone-co-vinyl acetate) amorphous solid dispersions: Insights with confocal fluorescence microscopy.

    Science.gov (United States)

    Saboo, Sugandha; Taylor, Lynne S

    2017-08-30

    The aim of this study was to evaluate the utility of confocal fluorescence microscopy (CFM) to study the water-induced phase separation of miconazole-poly (vinylpyrrolidone-co-vinyl acetate) (mico-PVPVA) amorphous solid dispersions (ASDs), induced during preparation, upon storage at high relative humidity (RH) and during dissolution. Different fluorescent dyes were added to drug-polymer films and the location of the dyes was evaluated using CFM. Orthogonal techniques, in particular atomic force microscopy (AFM) coupled with nanoscale infrared spectroscopy (AFM-nanoIR), were used to provide additional analysis of the drug-polymer blends. The initial miscibility of mico-PVPVA ASDs prepared under low humidity conditions was confirmed by AFM-nanoIR. CFM enabled rapid identification of drug-rich and polymer-rich phases in phase separated films prepared under high humidity conditions. The identity of drug- and polymer-rich domains was confirmed using AFM-nanoIR imaging and localized IR spectroscopy, together with Lorentz contact resonance (LCR) measurements. The CFM technique was then utilized successfully to further investigate phase separation in mico-PVPVA films exposed to high RH storage and to visualize phase separation dynamics following film immersion in buffer. CFM is thus a promising new approach to study the phase behavior of ASDs, utilizing drug and polymer specific dyes to visualize the evolution of heterogeneity in films exposed to water. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Acid-base interactions in amorphous solid dispersions of lumefantrine prepared by spray-drying and hot-melt extrusion using X-ray photoelectron spectroscopy.

    Science.gov (United States)

    Song, Yang; Zemlyanov, Dmitry; Chen, Xin; Su, Ziyang; Nie, Haichen; Lubach, Joseph W; Smith, Daniel; Byrn, Stephen; Pinal, Rodolfo

    2016-12-05

    This study investigates drug-excipient interactions in amorphous solid dispersions (ASDs) of the model basic compound lumefantrine (LMN), with five acidic polymers. X-ray photoelectron spectroscopy (XPS) was used to measure the extent of the protonation of the tertiary amine in LMN by the five acidic polymers. The extent/efficiency of protonation of the ASDs was assessed a function of polymer type, manufacturing process (hot-melt extrusion vs. spray drying), and drug loading (DL). The most strongly acidic polymer, polystyrene sulfonic acid (PSSA) was found to be the most efficient polymer in protonating LMN, independently of manufacturing method and DL. The rank order for the protonation extent of LMN by each polymer is roughtly the same for both manufacturing processes. However, protonation efficiency of polymers of similar acidic strength ranged from ∼0% to 75% (HPMCAS and Eudragit L100-55, respectively), suggesting an important role of molecular/mixing effects. For some polymers, including Eudragit L100 55 and HPMCP, spray-drying resulted in higher protonation efficiency compared to hot-melt extrusion. This result is attributable to a more favorable encounter between acid and base groups, when exposed to each other in solution phase. Increasing DL led to decreased protonation efficiency in most cases, particularly for polyacrylic acid, despite having the highest content of acidic groups per unit mass. These results indicate that the combined effects of acid strength and mixing phenomena regulate the efficiency of acid-base interactions in the ASDs.

  13. A win-win solution in oral delivery of lipophilic drugs: supersaturation via amorphous solid dispersions increases apparent solubility without sacrifice of intestinal membrane permeability.

    Science.gov (United States)

    Miller, Jonathan M; Beig, Avital; Carr, Robert A; Spence, Julie K; Dahan, Arik

    2012-07-02

    Recently, we have revealed a trade-off between solubility increase and permeability decrease when solubility-enabling oral formulations are employed. We have shown this trade-off phenomenon to be ubiquitous, and to exist whenever the aqueous solubility is increased via solubilizing excipients, regardless if the mechanism involves decreased free fraction (cyclodextrins complexation, surfactant micellization) or simple cosolvent solubilization. Discovering a way to increase drug solubility without concomitant decreased permeability represents a major advancement in oral delivery of lipophilic drugs and is the goal of this work. For this purpose, we sought to elucidate the solubility-permeability interplay when increased apparent solubility is obtained via supersaturation from an amorphous solid dispersion (ASD) formulation. A spray-dried ASD of the lipophilic drug progesterone was prepared in the hydrophilic polymer hydroxypropyl methylcellulose acetate succinate (HPMC-AS), which enabled supersaturation up to 4× the crystalline drug's aqueous solubility (8 μg/mL). The apparent permeability of progesterone from the ASD in HPMC-AS was then measured as a function of increasing apparent solubility (supersaturation) in the PAMPA and rat intestinal perfusion models. In contrast to previous cases in which apparent solubility increases via cyclodextrins, surfactants, and cosolvents resulted in decreased apparent permeability, supersaturation via ASD resulted in no decrease in apparent permeability with increasing apparent solubility. As a result, overall flux increased markedly with increasing apparent solubility via ASD as compared to the other formulation approaches. This work demonstrates that supersaturation via ASDs has a subtle yet powerful advantage over other solubility-enabling formulation approaches. That is, increased apparent solubility may be achieved without the expense of apparent intestinal membrane permeability. Thus, supersaturation via ASDs presents a

  14. Solid-state diffusion in amorphous zirconolite

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.; Dove, M. T.; Trachenko, K. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Zarkadoula, E. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6138 (United States); Todorov, I. T. [STFC Daresbury Laboratory, Warrington WA4 1EP (United Kingdom); Geisler, T. [Steinmann-Institut für Geologie, Mineralogie und Paläontologie, University of Bonn, D-53115 Bonn (Germany); Brazhkin, V. V. [Institute for High Pressure Physics, RAS, 142190 Moscow (Russian Federation)

    2014-11-14

    We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also find that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.

  15. Interaction Study of an Amorphous Solid Dispersion of Cyclosporin A in Poly-Alpha-Cyclodextrin with Model Membranes by 1H-, 2H-, 31P-NMR and Electron Spin Resonance

    Directory of Open Access Journals (Sweden)

    Jean-Claude Debouzy

    2014-01-01

    Full Text Available The properties of an amorphous solid dispersion of cyclosporine A (ASD prepared with the copolymer alpha cyclodextrin (POLYA and cyclosporine A (CYSP were investigated by 1H-NMR in solution and its membrane interactions were studied by 1H-NMR in small unilamellar vesicles and by 31P 2H NMR in phospholipidic dispersions of DMPC (dimyristoylphosphatidylcholine in comparison with those of POLYA and CYSP alone. 1H-NMR chemical shift variations showed that CYSP really interacts with POLYA, with possible adduct formation, dispersion in the solid matrix of the POLYA, and also complex formation. A coarse approach to the latter mechanism was tested using the continuous variations method, indicating an apparent 1 : 1 stoichiometry. Calculations gave an apparent association constant of log Ka = 4.5. A study of the interactions with phospholipidic dispersions of DMPC showed that only limited interactions occurred at the polar head group level (31P. Conversely, by comparison with the expected chain rigidification induced by CYSP, POLYA induced an increase in the fluidity of the layer while ASD formation led to these effects almost being overcome at 298 K. At higher temperature, while the effect of CYSP seems to vanish, a resulting global increase in chain fluidity was found in the presence of ASD.

  16. Tracer Diffusion Mechanism in Amorphous Solids

    Directory of Open Access Journals (Sweden)

    P. K. Hung

    2011-01-01

    Full Text Available Tracer diffusion in amorphous solid is studied by mean of nB-bubble statistic. The nB-bubble is defined as a group of atoms around a spherical void and large bubble that represents a structural defect which could be eliminated under thermal annealing. It was found that amorphous alloys such as CoxB100−x (x=90, 81.5 and 70 and Fe80P20 suffer from a large number of vacancy bubbles which function like diffusion vehicle. The concentration of vacancy bubble weakly depends on temperature, but essentially on the relaxation degree of considered sample. The diffusion coefficient estimated for proposed mechanism via vacancy bubbles is in a reasonable agreement with experiment for actual amorphous alloys. The relaxation effect for tracer diffusion in amorphous alloys is interpreted by the elimination of vacancy bubbles under thermal annealing.

  17. Breakdown of elasticity in amorphous solids

    Science.gov (United States)

    Biroli, Giulio; Urbani, Pierfrancesco

    2016-12-01

    What characterizes a solid is the way that it responds to external stresses. Ordered solids, such as crystals, exhibit an elastic regime followed by a plastic regime, both understood microscopically in terms of lattice distortion and dislocations. For amorphous solids the situation is instead less clear, and the microscopic understanding of the response to deformation and stress is a very active research topic. Several studies have revealed that even in the elastic regime the response is very jerky at low temperature, resembling very much the response of disordered magnetic materials. Here we show that in a very large class of amorphous solids this behaviour emerges upon decreasing temperature, as a phase transition, where standard elastic behaviour breaks down. At the transition all nonlinear elastic moduli diverge and standard elasticity theory no longer holds. Below the transition, the response to deformation becomes history- and time-dependent.

  18. Athermal nonlinear elastic constants of amorphous solids.

    Science.gov (United States)

    Karmakar, Smarajit; Lerner, Edan; Procaccia, Itamar

    2010-08-01

    We derive expressions for the lowest nonlinear elastic constants of amorphous solids in athermal conditions (up to third order), in terms of the interaction potential between the constituent particles. The effect of these constants cannot be disregarded when amorphous solids undergo instabilities such as plastic flow or fracture in the athermal limit; in such situations the elastic response increases enormously, bringing the system much beyond the linear regime. We demonstrate that the existing theory of thermal nonlinear elastic constants converges to our expressions in the limit of zero temperature. We motivate the calculation by discussing two examples in which these nonlinear elastic constants play a crucial role in the context of elastoplasticity of amorphous solids. The first example is the plasticity-induced memory that is typical to amorphous solids (giving rise to the Bauschinger effect). The second example is how to predict the next plastic event from knowledge of the nonlinear elastic constants. Using the results of our calculations we derive a simple differential equation for the lowest eigenvalue of the Hessian matrix in the external strain near mechanical instabilities; this equation predicts how the eigenvalue vanishes at the mechanical instability and the value of the strain where the mechanical instability takes place.

  19. Development of In Vitro-In Vivo Correlation for Amorphous Solid Dispersion Immediate-Release Suvorexant Tablets and Application to Clinically Relevant Dissolution Specifications and In-Process Controls.

    Science.gov (United States)

    Kesisoglou, Filippos; Hermans, Andre; Neu, Colleen; Yee, Ka Lai; Palcza, John; Miller, Jessica

    2015-09-01

    Although in vitro-in vivo correlations (IVIVCs) are commonly pursued for modified-release products, there are limited reports of successful IVIVCs for immediate-release (IR) formulations. This manuscript details the development of a Multiple Level C IVIVC for the amorphous solid dispersion formulation of suvorexant, a BCS class II compound, and its application to establishing dissolution specifications and in-process controls. Four different 40 mg batches were manufactured at different tablet hardnesses to produce distinct dissolution profiles. These batches were evaluated in a relative bioavailability clinical study in healthy volunteers. Although no differences were observed for the total exposure (AUC) of the different batches, a clear relationship between dissolution and Cmax was observed. A validated Multiple Level C IVIVC against Cmax was developed for the 10, 15, 20, 30, and 45 min dissolution time points and the tablet disintegration time. The relationship established between tablet tensile strength and dissolution was subsequently used to inform suitable tablet hardness ranges within acceptable Cmax limits. This is the first published report for a validated Multiple Level C IVIVC for an IR solid dispersion formulation demonstrating how this approach can facilitate Quality by Design in formulation development and help toward clinically relevant specifications and in-process controls. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  20. Effect of micro-environment modification and polymer type on the in-vitro dissolution behavior and in-vivo performance of amorphous solid dispersions.

    Science.gov (United States)

    Sun, Weiwei; Pan, Baoliang

    2017-06-15

    This study investigates the effects of micro-environment modification and polymer type on the in-vitro dissolution behavior and in-vivo performance of micro-environment pH modifying solid dispersions (pHM-SD) for the poorly water-soluble model drug Toltrazuril (TOL). Various pHM-SDs were prepared using Ca(OH)2 as a pH-modifier in hydrophilic polymers, including polyethylene glycol 6000 (PEG6000), polyvinylpyrrolidone k30 (PVPk30) and hydroxypropyl methylcellulose (HPMC). Based on the results of physicochemical characterizations and in-vitro dissolution testing, the representative ternary (Ca(OH)2:TOL:PEG6000/HPMC/PVPk30=1:8:24, w/w/w) and binary (TOL:PVPk30=1:3, w/w) solid dispersions were selected and optimized to perform in-vivo pharmacokinetic study. The micro-environment pH modification improved the in-vitro water-solubility and in-vivo bioavailability of parent drug TOL. Furthermore, the addition of alkalizers not only enhanced the release and absorption of prototype drug, but also promoted the generation of active metabolites, including toltrazuril sulfoxide (TOLSO) and toltrazuril sulfone (TOLSO2). The in-vitro dissolution profiles and in-vivo absorption, distribution and metabolism behaviors of the pHM-SDs varied with polymer type. Moreover, in-vivo bioavailability of three active pharmaceutical ingredients increased with an increase in in-vitro dissolution rates of the drug from the pHM-SDs prepared with various polymers. Therefore, a non-sink in-vitro dissolution method can be used to predict the in-vivo performance of pHM-SDs formulated with various polymers with trend consistency. In-vitro and in-vivo screening procedures revealed that the pHM-SD composed of Ca(OH)2, TOL and PVPk30 at a weight ratio of 1:8:24, of which the safety was adequately proved via histopathological examination, may be a promising candidate for providing better clinical outcomes. Copyright © 2017. Published by Elsevier B.V.

  1. Characterization during storage and dissolution of Solid dispersions containing furosemide and hydroxypropyl methylcellulose

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Rades, T.; Müllertz, A.

    2013-01-01

    Solid dispersions containing furosemide and various amounts of hydroxypropyl methylcellulose (HPMC) were prepared by spray drying to investigate if the physical stability of amorphous furosemide during storage and dissolution could be improved by formulating the drug as a solid dispersion. All...... within 30 days of storage. In contrast, furosemide in solid dispersions containing 80 % HPMC stayed amorphous for 30 days. Dissolution experiments in conjunction with XRPD and in-line Raman spectroscopy showed that the addition of 80 % HPMC was necessary for complete avoidance of solid state conversion...... of amorphous fiirosemide to a crystalline form during dissolution....

  2. Co-relationship of physical stability of amorphous dispersions with enthalpy relaxation.

    Science.gov (United States)

    Bansal, S S; Kaushal, A M; Bansal, A K

    2008-11-01

    Physical stability studies of valdecoxib (VLB) and its solid dispersions with PVP (1, 2, 5, 10, 15 and 20% w/w) were carried out by Differential Scanning Calorimetry (DSC). Change in specific heat with time was measured to determine the degree of crystallinity of amorphous drug and its binary dispersions after storage at 40 degrees C and 75% RH. The rate of crystallization was found to decrease with increasing PVP concentration and time for 10% crystallization (t90%) was found to increase significantly for the amorphous drug when formulated as PVP dispersions. Enthalpy relaxation was found to be inversely correlated with t90% (min) values and was found to be a good predictor of devitrification tendency and hence stability of amorphous VLB.

  3. Encoding of Memory in Sheared Amorphous Solids

    Science.gov (United States)

    Fiocco, Davide; Foffi, Giuseppe; Sastry, Srikanth

    2014-01-01

    We show that memory can be encoded in a model amorphous solid subjected to athermal oscillatory shear deformations, and in an analogous spin model with disordered interactions, sharing the feature of a deformable energy landscape. When these systems are subjected to oscillatory shear deformation, they retain memory of the deformation amplitude imposed in the training phase, when the amplitude is below a "localization" threshold. Remarkably, multiple persistent memories can be stored using such an athermal, noise-free, protocol. The possibility of such memory is shown to be linked to the presence of plastic deformations and associated limit cycles traversed by the system, which exhibit avalanche statistics also seen in related contexts.

  4. DEVELOPMENT OF SUSTAINED RELEASE TABLETS CONTAINING SOLID DISPERSIONS OF BACLOFEN

    Directory of Open Access Journals (Sweden)

    K. H. Janardhana

    2013-12-01

    Full Text Available Sustained release tablets containing solid dispersions granules of a poorly water soluble drug were prepared to investigate the controlled release of the drug. Baclofen was chosen because of its poor water solubility and short elimination half-life. Poloxamer 188 and PEG 6000 were used as solid dispersion carrier. Free flowing solid dispersion granules were prepared by adsorbing the melt of the drug and carriers onto the surface of an adsorbent, Carbopol 934P followed by direct compression with HPMC K4M and HPMC K100 to obtain an solid dispersion loaded sustained release tablets. FTIR studies confirmed that the compatibility of drug and carriers. Differential scanning calorimetry (DSC and X-ray diffraction (XRD revealed partially amorphous structures of the drug in solid dispersion granules. The solid dispersion granules dissolved completely within 30 min, which was much faster than that of pure drug baclofen. The sustained release of baclofen from the solid dispersion containing tablet was achieved for 2 h in gastric fluid (pH 1.2 and for up to 10 h in intestinal fluid (pH 6.8. A combination of solid dispersion techniques using adsorption and sustained release concepts is a promising approach to control the release rate of poorly water-soluble drugs.

  5. DEVELOPMENT OF SUSTAINED RELEASE TABLETS CONTAINING SOLID DISPERSIONS OF BACLOFEN

    Directory of Open Access Journals (Sweden)

    K. H. Janardhana

    2015-07-01

    Full Text Available Sustained release tablets containing solid dispersions granules of a poorly water soluble drug were prepared to investigate the controlled release of the drug. Baclofen was chosen because of its poor water solubility and short elimination half-life. Poloxamer 188 and PEG 6000 were used as solid dispersion carrier. Free flowing solid dispersion granules were prepared by adsorbing the melt of the drug and carriers onto the surface of an adsorbent, Carbopol 934P followed by direct compression with HPMC K4M and HPMC K100 to obtain an solid dispersion loaded sustained release tablets. FTIR studies confirmed that the compatibility of drug and carriers. Differential scanning calorimetry (DSC and X-ray diffraction (XRD revealed partially amorphous structures of the drug in solid dispersion granules. The solid dispersion granules dissolved completely within 30 min, which was much faster than that of pure drug baclofen. The sustained release of baclofen from the solid dispersion containing tablet was achieved for 2 h in gastric fluid (pH 1.2 and for up to 10 h in intestinal fluid (pH 6.8. A combination of solid dispersion techniques using adsorption and sustained release concepts is a promising approach to control the release rate of poorly water-soluble drugs.

  6. Clozapine-carboxylic acid plasticized co-amorphous dispersions: Preparation, characterization and solution stability evaluation

    Directory of Open Access Journals (Sweden)

    Ali Ahmed Mahmoud Abdelhaleem

    2015-06-01

    Full Text Available This study addressed the possibility of forming of co-amorphous systems between clozapine (CZ and various carboxylic acid plasticizers (CAPs. The aim was to improve the solubility and oral bioavailability of clozapine. Co-amorphous dispersions were prepared using modified solvent evaporation methodology at drug/plasticizer stoichiometric ratios of 1:1, 1:1.5 and 1:2. Solid state characterization was performed using differential scanning calorimetry, X-ray diffraction and infra red spectroscopy. Highly soluble homogeneous co-amorphous dispersions were formed between clozapine and CAPs via hydrogen bonding. The co-amorphous dispersions formed with tartaric acid (1:2 showed the highest dissolution percentage (> 95 % in 20 minutes compared to pure crystalline CZ (56 %. Highly stable solutions were obtained from co-amorphous CZ-citric and CZ-tartaric acid at 1:1.5 molar ratio. The prepared dispersions suggest the possibility of peroral or sublingual administration of highly soluble clozapine at a reduced dose with the great chance to bypass the first pass metabolism.

  7. Rheological and solid-state NMR assessments of copovidone/clotrimazole model solid dispersions.

    Science.gov (United States)

    Yang, Fengyuan; Su, Yongchao; Zhu, Lei; Brown, Chad D; Rosen, Lawrence A; Rosenberg, Kenneth J

    2016-03-16

    This study aims to assess several model solid dispersions by using dynamic oscillatory rheology, solid-state NMR and other solid phase characterization techniques, and correlate their viscoelastic responses with processing methods and microstructures. A model active pharmaceutical ingredient (API), clotrimazole, was compounded with copovidone to form solid dispersions via various techniques with different mixing capabilities. Physicochemical characterizations of the resulting solid dispersions demonstrated that simple physical mixing led to a poorly mixed blend manifested by existence of large API crystalline content and heterogeneous distribution. Cryogenic milling significantly improved mixing of two components as a result of reduced particle size and increased contact surface area, but produced limited amorphous content. In contrast, hot melt extrusion (HME) processing resulted in a homogenous amorphous solid dispersion because of its inherent mixing efficiency. Storage modulus and viscosities versus frequency of different solid dispersions indicated that the incorporation of API into the polymer matrix resulted in a plasticizing effect which reduced the viscosity. The crystalline/aggregated forms of API also exhibited more elastic response than its amorphous/dispersed counterpart. Temperature ramps of the physical mixture with high API concentration captured a critical temperature, at which a bump was observed in damping factor. This bump was attributed to the dissolution of crystalline API into the polymer. In addition, heating-cooling cycles of various solid dispersions suggested that cryomilling and HME processing could form a homogeneous solid dispersion at low API content, whereas high drug concentration led to a relatively unstable dispersion due to supersaturation of API in the polymer.

  8. Characterization during storage and dissolution of Solid dispersions containing furosemide and hydroxypropyl methylcellulose

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Rades, T.; Müllertz, A.

    2013-01-01

    Solid dispersions containing furosemide and various amounts of hydroxypropyl methylcellulose (HPMC) were prepared by spray drying to investigate if the physical stability of amorphous furosemide during storage and dissolution could be improved by formulating the drug as a solid dispersion. All...... solid dispersions, containing 20, 50, or 80 w/w % HPMC, were stable for 730 days when stored at 22 °C and 33 % relative humidity (RH), whereas under accelerated storage conditions of 40 °C and 75 % RH the amorphous furosemide in the solid dispersions with 20 and 50 % HPMC converted to a crystalline form...... within 30 days of storage. In contrast, furosemide in solid dispersions containing 80 % HPMC stayed amorphous for 30 days. Dissolution experiments in conjunction with XRPD and in-line Raman spectroscopy showed that the addition of 80 % HPMC was necessary for complete avoidance of solid state conversion...

  9. The characterization and dissolution performances of spray dried solid dispersion of ketoprofen in hydrophilic carriers

    Directory of Open Access Journals (Sweden)

    Siok-Yee Chan

    2015-10-01

    Full Text Available Solid dispersion is one of the most promising strategies to improve oral bioavailability of poorly soluble API. However, there are inconsistent dissolution performances of solid dispersion reported which entails further investigation. In this study, solid dispersions of ketoprofen in three hydrophilic carriers, i.e. PVP K30, PVPVA 6:4 and PVA were prepared and characterized. Physical characterization of the physical mixture of ketoprofen and carriers shows certain extent of amorphization of the API. This result is coinciding to evaluation of drug–polymer interaction using ATR-FTIR whereby higher amorphization was seen in samples with higher drug–polymer interaction. XRPD scanning confirms that fully amorphous solid dispersion was obtained for SD KTP PVP K30 and PVPVA system whereas partially crystalline system was obtained for SD KTP PVA. Interestingly, dissolution profiles of the solid dispersion had shown that degree of amorphization of KTP was not directly proportional to the dissolution rate enhancement of the solid dispersion system. Thus, it is concluded that complete amorphization does not guarantee dissolution enhancement of an amorphous solid dispersion system.

  10. Preparation and structural characterization of amorphous spray-dried dispersions of tenoxicam with enhanced dissolution.

    Science.gov (United States)

    Patel, Jagdishwar R; Carlton, Robert A; Yuniatine, Fnu; Needham, Thomas E; Wu, Lianming; Vogt, Frederick G

    2012-02-01

    Tenoxicam is a poorly soluble nonsteroidal anti-inflammatory drug. In this work, the solubility of tenoxicam is enhanced using amorphous spray-dried dispersions (SDDs) prepared using two molar equivalents of l-arginine and optionally with 10%-50% (w/w) polyvinylpyrrolidone (PVP). When added to the dispersions, PVP is shown to improve physical properties and also assists in maintaining supersaturation in solution. The dispersions provide a twofold increase over equilibrium solubility at the same pH. The dispersions are characterized using electron microscopy, vibrational spectroscopy, diffuse-reflectance visible spectroscopy, and X-ray powder diffraction. The structures of the dispersions are probed using solid-state nuclear magnetic resonance (SSNMR) experiments applied to the (1) H, (13) C, and (15) N nuclei, including two-dimensional dipolar correlation experiments that detect molecular association and the formation of a glass solution between tenoxicam, l-arginine, and PVP. Other aspects of the amorphous structure, including hydrogen-bonding interactions and the ionization state of tenoxicam and l-arginine, are also explored using SSNMR methods. These methods are used to show that the SDDs contain an amorphous l-arginine salt of tenoxicam in a glass solution that also includes PVP when present. Finally, the dispersions show only a minor decrease in chemical stability during accelerated stability studies relative to a crystalline form of tenoxicam.

  11. Development of Methods to Predict and Enhance the Physical Stability of Hot Melt Extruded Solid Dispersions

    OpenAIRE

    YANG, ZIYI

    2013-01-01

    The application of amorphous solid dispersions is one of the most widely used formulation strategies for the enhancement of in-vitro and in-vivo performance of poorly water-soluble drugs. However, because of their meta-stable nature, the physical stability of amorphous solid dispersions has been considered to be the main obstacle for their formulation development and commercialisation by the pharmaceutical industry. The aim of this project was to understand, predict and enhance the physical s...

  12. Fusion processing of itraconazole solid dispersions by kinetisol dispersing: a comparative study to hot melt extrusion.

    Science.gov (United States)

    DiNunzio, James C; Brough, Chris; Miller, Dave A; Williams, Robert O; McGinity, James W

    2010-03-01

    KinetiSol Dispersing (KSD) is a novel high energy manufacturing process investigated here for the production of pharmaceutical solid dispersions. Solid dispersions of itraconazole (ITZ) and hypromellose were produced by KSD and compared to identical formulations produced by hot melt extrusion (HME). Materials were characterized for solid state properties by modulated differential scanning calorimetry and X-ray diffraction. Dissolution behavior was studied under supersaturated conditions. Oral bioavailability was determined using a Sprague-Dawley rat model. Results showed that KSD was able to produce amorphous solid dispersions in under 15 s while production by HME required over 300 s. Dispersions produced by KSD exhibited single phase solid state behavior indicated by a single glass transition temperature (T(g)) whereas compositions produced by HME exhibited two T(g)s. Increased dissolution rates for compositions manufactured by KSD were also observed compared to HME processed material. Near complete supersaturation was observed for solid dispersions produced by either manufacturing processes. Oral bioavailability from both processes showed enhanced AUC compared to crystalline ITZ. Based on the results presented from this study, KSD was shown to be a viable manufacturing process for the production of pharmaceutical solid dispersions, providing benefits over conventional techniques including: enhanced mixing for improved homogeneity and reduced processing times.

  13. Modeling Physical Stability of Amorphous Solids Based on Temperature and Moisture Stresses.

    Science.gov (United States)

    Zhu, Donghua Alan; Zografi, George; Gao, Ping; Gong, Yuchuan; Zhang, Geoff G Z

    2016-09-01

    Isothermal microcalorimetry was utilized to monitor the crystallization process of amorphous ritonavir (RTV) and its hydroxypropylmethylcellulose acetate succinate-based amorphous solid dispersion under various stressed conditions. An empirical model was developed: ln(τ)=ln(A)+EaRT-b⋅wc, where τ is the crystallization induction period, A is a pre-exponential factor, Ea is the apparent activation energy, b is the moisture sensitivity parameter, and wc is water content. To minimize the propagation of errors associated with the estimates, a nonlinear approach was used to calculate mean estimates and confidence intervals. The physical stability of neat amorphous RTV and RTV in hydroxypropylmethylcellulose acetate succinate solid dispersions was found to be mainly governed by the nucleation kinetic process. The impact of polymers and moisture on the crystallization process can be quantitatively described by Ea and b in this Arrhenius-type model. The good agreement between the measured values under some less stressful test conditions and those predicted, reflected by the slope and R(2) of the correlation plot of these 2 sets of data on a natural logarithm scale, indicates its predictability of long-term physical stability of amorphous RTV in solid dispersions. To further improve the model, more understanding of the impact of temperature and moisture on the amorphous physical stability and fundamentals regarding nucleation and crystallization is needed.

  14. Photostable Solid Dispersion of Nifedipine by Porous Calcium Silicate.

    Science.gov (United States)

    Fujimoto, Yumi; Hirai, Nobuaki; Takatani-Nakase, Tomoka; Takahashi, Koichi

    2016-01-01

    Nifedipine (NIF) is a typical light-sensitive drug requiring protection from light during manufacture, storage, and handling of its dosage forms. The purpose of this study was to evaluate the utility of porous calcium silicate (PCS) for maintaining the photostability of NIF in a solid dispersion formulation. Adsorption solid dispersion (ASD) prepared using NIF and PCS as an amorphous formulation was more stable to light irradiation than a physical mixture of NIF and microcrystalline cellulose (a control physical mixture) as a crystalline formulation. In addition, PCS in physical mixtures with NIF adequately protected NIF from photodegradation, suggesting that this protective effect could be because of some screening effect by the porous structure of PCS blocking the passage of light reaching NIF in pores of PCS. These findings suggest that PCS is useful for improving the solubility and photostability of NIF in solid dispersion formulation.

  15. Lyophilization monophase solution technique for preparation of amorphous flutamide dispersions.

    Science.gov (United States)

    Elgindy, Nazik; Elkhodairy, Kadria; Molokhia, Abdallah; Elzoghby, Ahmed

    2011-07-01

    Flutamide (FLT) is a poorly soluble anticancer drug. Therefore, lyophilized dispersions (LDs) of FLT with polyvinylpyrrolidone (PVP) K30, polyethylene glycol (PEG) 6000, and pluronic F127 were prepared via lyophilization monophase solution technique with the aim of increasing its dissolution rate. FLT showed an A(L)-type phase solubility diagrams with PVP and PEG, whereas A(N)-type diagram was obtained with pluronic. The amount of residual tertiary butyl alcohol, determined by gas chromatography, was 0.015-0.021% w/w. Differential scanning calorimetry and X-ray diffractometry revealed that FLT-polymer 1:1 LDs were partially amorphous, whereas the 1:3 and 1:5 LDs were completely amorphous. After 6 months storage, polymers under study inhibited FLT recrystallization maintaining its amorphous form. The particle size of FLT-polymer LDs was between 0.81 and 2.13 μm, with a high surface area (268.43-510.82 m²/g) and porosity (354.01-676.23 e⁻³ mL/g). Also, the poor flow properties of FLT could be improved but to a limited extent. FLT dissolution was significantly enhanced with the fastest dissolution that was achieved using pluronic. After 30 min, about 66.52%, 78.23%, and 81.64% of FLT was dissolved from 1:5 FLT-PVP, PEG, and pluronic LDs, respectively, compared with only 13.45% of FLT. These data suggest that these polymers might be useful adjuncts in preparation and stabilization of amorphous immediate-release FLT LDs.

  16. Avalanche size scaling in sheared three-dimensional amorphous solid

    DEFF Research Database (Denmark)

    Bailey, Nicholas; Schiøtz, Jakob; Lemaître, A.

    2007-01-01

    We study the statistics of plastic rearrangement events in a simulated amorphous solid at T=0. Events are characterized by the energy release and the "slip volume", the product of plastic strain and system volume. Their distributions for a given system size L appear to be exponential, but a chara......We study the statistics of plastic rearrangement events in a simulated amorphous solid at T=0. Events are characterized by the energy release and the "slip volume", the product of plastic strain and system volume. Their distributions for a given system size L appear to be exponential...

  17. Emergent interparticle interactions in thermal amorphous solids

    Science.gov (United States)

    Gendelman, Oleg; Lerner, Edan; Pollack, Yoav G.; Procaccia, Itamar; Rainone, Corrado; Riechers, Birte

    2016-11-01

    Amorphous media at finite temperatures, be them liquids, colloids, or glasses, are made of interacting particles that move chaotically due to thermal energy, continuously colliding and scattering off each other. When the average configuration in these systems relaxes only at long times, one can introduce effective interactions that keep the mean positions in mechanical equilibrium. We introduce a framework to determine the effective force laws that define an effective Hessian that can be employed to discuss stability properties and the density of states of the amorphous system. We exemplify the approach with a thermal glass of hard spheres; these experience zero forces when not in contact and infinite forces when they touch. Close to jamming we recapture the effective interactions that at temperature T depend on the gap h between spheres as T /h [C. Brito and M. Wyart, Europhys. Lett. 76, 149 (2006), 10.1209/epl/i2006-10238-x]. For hard spheres at lower densities or for systems whose binary bare interactions are longer ranged (at any density), the emergent force laws include ternary, quaternary, and generally higher-order many-body terms, leading to a temperature-dependent effective Hessian.

  18. Solid dispersions in pharmaceutical technology. Part I. Classification and methods to obtain solid dispersions.

    Science.gov (United States)

    Karolewicz, Bozena; Górniak, Agata; Probst, Sandra; Owczarek, Artur; Pluta, Janusz; Zurawska-Płaksej, Ewa

    2012-01-01

    There are many methods to increase solubility of a substance. These include, inter alia, preparation of solid dispersions, i.e. eutectic mixtures, solid solutions, glassy solutions and suspensions. When compared to the individual constituents prior to dispersion formation solid dispersion components are better soluble in water. Therefore, solid solutions became one of the most promising ways to modify solubility, ensuring improved bioavailability and consequently therapeutic efficacy of a substance. In this part of the publication solid dispersions were classified and described in regard to their properties and preparation methods, i.e. melting method, melt evaporation and melt extrusion methods, lyophilisation technique, melt agglomeration process as well as SCF technology and electrospinning.

  19. Low temperature dynamics in amorphous solids : A photon echo study

    NARCIS (Netherlands)

    Meijers, Hans C.; Wiersma, Douwe A.

    1994-01-01

    The long-lived stimulated photon echo is put forward as a powerful technique to probe structural dynamics in glasses and other amorphous solids. We present results of optical dephasing measurements on several doped organic glasses (deuterated ethanol, toluene, and triethylamine) and polymers (polyst

  20. Feasibility of 19F-NMR for assessing the molecular mobility of flufenamic acid in solid dispersions.

    Science.gov (United States)

    Aso, Yukio; Yoshioka, Sumie; Miyazaki, Tamaki; Kawanishi, Toru

    2009-01-01

    The purpose of the present study was to clarify the feasibility of 19F-NMR for assessing the molecular mobility of flufenamic acid (FLF) in solid dispersions. Amorphous solid dispersions of FLF containing poly(vinylpyrrolidone) (PVP) or hydroxypropylmethylcellulose (HPMC) were prepared by melting and rapid cooling. Spin-lattice relaxation times (T1 and T(1rho)) of FLF fluorine atoms in the solid dispersions were determined at various temperatures (-20 to 150 degrees C). Correlation time (tauc), which is a measure of rotational molecular mobility, was calculated from the observed T1 or T1rho value and that of the T1 or T1rho minimum, assuming that the relaxation mechanism of spin-lattice relaxation of FLF fluorine atoms does not change with temperature. The tauc value for solid dispersions containing 20% PVP was 2-3 times longer than that for solid dispersions containing 20% HPMC at 50 degrees C, indicating that the molecular mobility of FLF in solid dispersions containing 20% PVP was lower than that in solid dispersions containing 20% HPMC. The amount of amorphous FLF remaining in the solid dispersions stored at 60 degrees C was successfully estimated by analyzing the solid echo signals of FLF fluorine atoms, and it was possible to follow the overall crystallization of amorphous FLF in the solid dispersions. The solid dispersion containing 20% PVP was more stable than that containing 20% HPMC. The difference in stability between solid dispersions containing PVP and HPMC is considered due to the difference in molecular mobility as determined by tauc. The molecular mobility determined by 19F-NMR seems to be a useful measure for assessing the stability of drugs containing fluorine atoms in amorphous solid dispersions.

  1. Preparation and characterization of solid dispersions of Quercetin with PEG4000

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-zhan; LI Xiao-hui

    2008-01-01

    Objective To enhance the solubility, quicken the speed of digesting and absorption, and increase the bioavailability of quercetin (3, 3′, 4′, 5, 7-pentahydroxyflavone). Methods A series of Quercetin-PEG4000 solid dispersions were prepared by fusion method. The configuration and property of solid dispersion were characterized by solubility tests, dissolution tests, FTIR spectra, differential scanning calorimetry (DSC) and microphotograph. Results 1. According to solubility tests the the mass ratio of quercetin to PEG4000 affected strongly on the solubility of solid dispersions, on the whole, the relation of the solubility of solid dispersions to the mass ratio presented linear relationship. The preparation temperature had little effect on the solubility of solid dispersions. The surface-active agent, polysorbate80 increased strongly the solubility of solid dispersions. 2. According to the dissolution tests, the mass ratio of quercetin to PEG4000 affected strongly on the dissolution of solid dispersions, the preparation temperature had little effect on the dissolution of solid dispersions. The surface-active agent, polysorbate80 increased strongly the dissolution of solid dispersions, and after addition polysorbate80, the dissolution of solid dispersions was two times of the dissolution of solid dispersions without polysorbate80.3. According to the DSC results, except that a little of quercetin molecular existed as crystalline state in the solid dispersion with the mass ratio was qu: PEG = 1 : 2, quercetin existed as amorphous phase in other mass ratio solid dispersion. 4. According to the FTIR spectra and microphotograph results, the relation of quereetin and PEG4000 was mainly physical mixing in quercetin-PEG4000 solid dispersion. Quereetin was just like solute in solution, and PEG4000 was just like solvent in solution. The force between quercetin and PEG4000 was mainly hydrogen bonding, so the biological activity of quercetin would not be influenced greatly

  2. Atorvastatin solid dispersion for bioavailability enhancement

    Directory of Open Access Journals (Sweden)

    Shamsuddin

    2016-01-01

    Full Text Available Atorvastatin calcium is a lipid-lowering agent. It has approximately 15% of bioavailability, remaining amount of drug showed adverse effect which is undesirable for patients. The objective of the study was to enhance the solubility and a dissolution profile of the atorvastatin (AT calcium. Solid dispersion (SD is a technique which enhances the solubility and a dissolution profile of poorly soluble drug. Various methods are being used for SDs such as microwave irradiation fusion, kneading, solvent evaporation, fusion, and dropping method. The authors have used here conventional fusion method using PEG 4000 as a hydrophilic carrier. The solubility of pure drug, physical mixture using PEG 4000 (1:3, and SD in phosphate buffer solutions (pH 6.8 was found to be 55.33 ± 0.66, 81.89 ± 2.35, and 93.66 ± 1.35, respectively. Fourier transform infrared and differential scanning calorimetry study showed the significant peak shift of drug in SD. It indicated that the nature of drug had been changed from crystalline form to amorphous form due to conversion into SD formulation. The dissolution rate was significantly increased when the drug polyethylene glycol 4000 ratio was 1:3. The mean cumulative percentage drugs release from pure drug, physical mixture, marketed tablet, and SD at 1 h was 28.92 ± 1.66%, 55.26 ± 0.95%, 72.16 ± 1.33%, and 91.66 ± 1.65%, respectively. It was concluded that the solubility and dissolution profile of SD of AT calcium showed the enhancement of solubility and dissolution when compared with marketed preparations.

  3. Amorphous drug dispersions with mono- and diacyl lecithin: On molecular categorization of their feasibility and UV dissolution imaging.

    Science.gov (United States)

    Gautschi, Nicolas; Van Hoogevest, Peter; Kuentz, Martin

    2015-08-01

    There is a growing interest in drug-phospholipid complexes and similar formulations that are mostly solid dispersions with high drug load. This study aims to explore the feasibility of such phospholipid-based solid dispersions as well as to characterize them. A particular aim was to compare monoacyl phosphatidylcholine (PC) with the diacyl excipient. The solid dispersions were manufactured using a solvent evaporation technique and characterized by means of differential scanning calorimetry and X-ray diffractometry. Density functional theory was used to calculate molecular frontier orbitals of the different compounds. Finally, the dissolution properties were analyzed in a flow-through cell by means of UV imaging. It was found that the ability to form solid dispersions with the phospholipids containing amorphous or solubilized drug (at equimolar ratio with the lipid) was dependent on the drug's frontier orbital energy, the enthalpy of fusion, as well as the log P value. In a subsequent dissolution study, UV imaging revealed pronounced surface swelling of the solid dispersions. Only the monoacyl PC was found to substantially enhance in vitro dissolution compared to pure drug. The gained understanding will support a future development of solid drug dispersions using phospholipids as matrix components.

  4. FORMULATION AND EVALUATION OF SOLID DISPERSION OF ATORVASTATIN CALCIUM

    Directory of Open Access Journals (Sweden)

    Monika Sharma

    2013-08-01

    Full Text Available The present study was designed to improve the solubility and hence enhance the dissolution of hydrophobic drug Atorvastatin calcium (ATC in order to increase its bioavailability. Solid dispersion of atorvastatin calcium using carrier PEG 4000 was formulated in different ratios by conventional fusion and microwave induced fusion method. In particular, the Microwave technology has been considered in order to prepare an enhanced release dosage form for poorly water soluble drug ATC. Their physicochemical characteristics and dissolution properties were compared to the corresponding dispersions and pure drug. Three different formulations were prepared using Conventional fusion method and Microwave induced fusion method in different ratios i.e., 1:1, 1:2, 1:3 and 1:1, 1:2, 1:3 respectively, were further characterized by FTIR, DSC and SEM analysis. The results of FTIR revealed that no chemical interaction between the drug and the polymer exist. DSC studies showed that the drug was in amorphous state completely entrapped by the polymer. SEM studies showed the surface morphology of the solid dispersion. All the formulations showed a marked increase in drug release with the increase in the concentration of PEG 4000 when tested for their in vitro studies. Formulation T5 showed the best release with a cumulative release of 86.15 % in 30 minutes, when compared to the pure drug and marketed formulation. The microwave assisted method was found to be better than conventional fusion method for preparation of solid dispersion.

  5. Solid-state amorphization of rebamipide and investigation on solubility and stability of the amorphous form.

    Science.gov (United States)

    Xiong, Xinnuo; Xu, Kailin; Li, Shanshan; Tang, Peixiao; Xiao, Ying; Li, Hui

    2017-02-01

    Solid-state amorphization of crystalline rebamipide (RBM) was realized by ball milling and spray drying. The amorphous content of samples milled for various time was quantified using X-ray powder diffraction. Crystalline RBM and three amorphous RBM obtained by milling and spray drying were characterized by morphological analysis, X-ray diffraction, thermal analysis and vibrational spectroscopy. The crystal structure of RBM was first determined by single-crystal X-ray diffraction. In addition, the solubility and dissolution rate of the RBM samples were investigated in different media. Results indicated that the solubility and the dissolution rates of spray-dried RBM-PVP in different media were highly improved compared with crystalline RBM. The physical stabilities of the three amorphous RBM were systematically investigated, and the stability orders under different storage temperatures and levels of relative humidity (RH) were both as follows: spray dried RBM < milled RBM < spray dried RBM-PVP. A direct glass-to-crystal transformation was induced under high RH, and the transformation rate rose with increasing RH. However, amorphous RBM could stay stable at RH levels lower than 57.6% (25 °C).

  6. Characterization and Pharmacokinetic Study of Aprepitant Solid Dispersions with Soluplus®

    Directory of Open Access Journals (Sweden)

    Jinwen Liu

    2015-06-01

    Full Text Available Solid dispersions are a useful approach to improve the dissolution rate and bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs. The aim of this study was to improve the physicochemical properties and bioavailability of a poorly water-soluble aprepitant by preparation of solid dispersions. The solid dispersions were characterized by dissolution, FTIR, XRPD, DSC, SEM and pharmacokinetic studies in rats. The dissolution rate of the aprepitant was significantly increased by solid dispersions, and XRD, DSC, and SEM analysis indicated that the aprepitant existed in an amorphous form within the solid dispersions. The result of dissolution study showed that the dissolution rate of SDs was nearly five-fold faster than aprepitant. FTIR spectrometry suggested the presence of intermolecular hydrogen bonds between the aprepitant and polymer. Pharmacokinetic studies in rats indicated that the degree drug absorption was comparable with that of Emend®. Aprepitant exists in an amorphous state in solid dispersions and the solid dispersions can markedly improve the dissolution and oral bioavailability of the aprepitant. The AUC0–t of the SDs was 2.4-fold that of the aprepitant. In addition, the method and its associated techniques are very easy to carry out.

  7. Evaluation of crystallization behavior on the surface of nifedipine solid dispersion powder using inverse gas chromatography.

    Science.gov (United States)

    Miyanishi, Hideo; Nemoto, Takayuki; Mizuno, Masayasu; Mimura, Hisashi; Kitamura, Satoshi; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2013-02-01

    To investigate crystallization behavior on the surface of amorphous solid dispersion powder using inverse gas chromatography (IGC) and to predict the physical stability at temperatures below the glass transition temperature (T (g)). Amorphous solid dispersion powder was prepared by melt-quenching of a mixture of crystalline nifedipine and polyvinylpyrrolidon (PVP) K-30. IGC was conducted by injecting undecane (probe gas) and methane (reference gas) repeatedly to the solid dispersion at temperatures below T (g). Surface crystallization was evaluated by the retention volume change of undecane based on the observation that the surface of the solid dispersion with crystallized nifedipine gives an increased retention volume. On applying the retention volume change to the Hancock-Sharp equation, surface crystallization was found to follow a two-dimensional growth of nuclei mechanism. Estimation of the crystallization rates at temperatures far below T (g) using the Avrami-Erofeev equation and Arrhenius equation showed that, to maintain its quality for at least three years, the solid dispersion should be stored at -20°C (T (g) - 65°C). IGC can be used to evaluate crystallization behavior on the surface of a solid dispersion powder, and, unlike traditional techniques, can also predict the stability of the solid dispersion based on the surface crystallization behavior.

  8. Characterization and Pharmacokinetic Study of Aprepitant Solid Dispersions with Soluplus®.

    Science.gov (United States)

    Liu, Jinwen; Zou, Meijuan; Piao, Hongyu; Liu, Yi; Tang, Bo; Gao, Ying; Ma, Ning; Cheng, Gang

    2015-06-19

    Solid dispersions are a useful approach to improve the dissolution rate and bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs). The aim of this study was to improve the physicochemical properties and bioavailability of a poorly water-soluble aprepitant by preparation of solid dispersions. The solid dispersions were characterized by dissolution, FTIR, XRPD, DSC, SEM and pharmacokinetic studies in rats. The dissolution rate of the aprepitant was significantly increased by solid dispersions, and XRD, DSC, and SEM analysis indicated that the aprepitant existed in an amorphous form within the solid dispersions. The result of dissolution study showed that the dissolution rate of SDs was nearly five-fold faster than aprepitant. FTIR spectrometry suggested the presence of intermolecular hydrogen bonds between the aprepitant and polymer. Pharmacokinetic studies in rats indicated that the degree drug absorption was comparable with that of Emend®. Aprepitant exists in an amorphous state in solid dispersions and the solid dispersions can markedly improve the dissolution and oral bioavailability of the aprepitant. The AUC0-t of the SDs was 2.4-fold that of the aprepitant. In addition, the method and its associated techniques are very easy to carry out.

  9. Development and Physicochemical Characterization of Sirolimus Solid Dispersions Prepared by Solvent Evaporation Method

    Directory of Open Access Journals (Sweden)

    Shahram Emami

    2014-12-01

    Full Text Available Purpose: The aim of the present investigation was preparation and characterization of sirolimus solid dispersions by solvent evaporation technique to improve its dissolution properties. Methods: Polyvinylpyrrolidone (PVP, Poloxamer 188 and Cremophore RH40 were used to prepare the solid dispersions of sirolimus. In vitro dissolution study using USP type I apparatus, were performed in distilled water (containing SLS 0.4% for pure sirolimus, physical mixtures, Rapamune and prepared solid dispersions. The characterization of solid dispersions was performed using Fourier Transform Infrared (FTIR Spectroscopy and Differential Scanning Calorimetry (DSC. Results: More than 75% of sirolimus was released within 30 minutes from all prepared solid dispersions. The dissolution rate of all prepared solid dispersion powders were more than physical mixtures. The absence of sirolimus peak in the DSC spectrum of solid dispersions indicated the conversion of crystalline form of sirolimus into amorphous form. The results from FT-IR spectroscopy showed that there was no significant change in the FT-IR spectrum of solid dispersions indicating absence of well-defined interaction between drug and carriers. Conclusion: It was concluded that solid dispersion method, using PVP, Poloxamer 188 and Cremophore RH40 can improve dissolution rate of sirolimus.

  10. Characterization and performance assessment of solid dispersions prepared by hot melt extrusion and spray drying process.

    Science.gov (United States)

    Agrawal, Anjali M; Dudhedia, Mayur S; Patel, Ashwinkumar D; Raikes, Michelle S

    2013-11-30

    The present study investigated effect of manufacturing methods such as hot melt extrusion (HME) and spray drying (SD) on physicochemical properties, manufacturability, physical stability and product performance of solid dispersion. Solid dispersions of compound X and PVP VA64 (1:2) when prepared by SD and HME process were amorphous by polarized light microscopy, powder X-ray diffractometry, and modulated differential scanning calorimetry analyses with a single glass transition temperature. Fourier transform infrared (FT-IR) and Raman spectroscopic analyses revealed similar molecular level interactions between compound X and PVP VA64 as evident by overlapping FT-IR and FT Raman spectra in SD and HME solid dispersions. The compactibility, tabletability, disintegration and dissolution performance were similar for solid dispersions prepared by both processing techniques. Differences in material properties such as surface area, morphological structure, powder densities, and flow characteristics were observed between SD and HME solid dispersion. The SD solid dispersion was physically less stable compared to HME solid dispersion under accelerated stability conditions. Findings from this study suggest that similar product performance could be obtained if the molecular properties of the solid dispersion processed by two different techniques are similar. However differences in material properties might affect the physical stability of the solid dispersions.

  11. Dynamics of amorphous solids and viscous liquids

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    -dependence of the average relaxation time in viscous liquids is proposed. In the new model, the short-time (or high-frequency) elastic properties of the liquid determine the activation energy for the average relaxation time. It is shown that the new model agrees well with experiment on a number of organic molecular liquids...... the brief paper P3, that is included in the thesis mainly because its figures are more pedagogical than those of P4. By means of analytical approximations it is shown that at sufficiently low temperatures - corresponding to extreme disorder - all disordered solids with thermally activated conduction exhibit......-Arrhenius temperature-dependence of the average relaxation time in viscous liquids, an approach that is also followed in Chapter 2. However, in P8 itself the focus was on the prediction that there are two different types of glass transitions. In P9 from 1995, B„ssler's random walk model for viscous liquids is studied...

  12. Plastic response and correlations in athermally sheared amorphous solids

    Science.gov (United States)

    Puosi, F.; Rottler, J.; Barrat, J.-L.

    2016-09-01

    The onset of irreversible deformation in low-temperature amorphous solids is due to the accumulation of elementary events, consisting of spatially and temporally localized atomic rearrangements involving only a few tens of atoms. Recently, numerical and experimental work addressed the issue of spatiotemporal correlations between these plastic events. Here, we provide further insight into these correlations by investigating, via molecular dynamics (MD) simulations, the plastic response of a two-dimensional amorphous solid to artificially triggered local shear transformations. We show that while the plastic response is virtually absent in as-quenched configurations, it becomes apparent if a shear strain was previously imposed on the system. Plastic response has a fourfold symmetry, which is characteristic of the shear stress redistribution following the local transformation. At high shear rate we report evidence for a fluctuation-dissipation relation, connecting plastic response and correlation, which seems to break down if lower shear rates are considered.

  13. The yielding transition in amorphous solids under oscillatory shear deformation

    Science.gov (United States)

    Leishangthem, Premkumar; Parmar, Anshul D. S.; Sastry, Srikanth

    2017-01-01

    Amorphous solids are ubiquitous among natural and man-made materials. Often used as structural materials for their attractive mechanical properties, their utility depends critically on their response to applied stresses. Processes underlying such mechanical response, and in particular the yielding behaviour of amorphous solids, are not satisfactorily understood. Although studied extensively, observed yielding behaviour can be gradual and depend significantly on conditions of study, making it difficult to convincingly validate existing theoretical descriptions of a sharp yielding transition. Here we employ oscillatory deformation as a reliable probe of the yielding transition. Through extensive computer simulations for a wide range of system sizes, we demonstrate that cyclically deformed model glasses exhibit a sharply defined yielding transition with characteristics that are independent of preparation history. In contrast to prevailing expectations, the statistics of avalanches reveals no signature of the impending transition, but exhibit dramatic, qualitative, changes in character across the transition. PMID:28248289

  14. Strain localization and percolation of stable structure in amorphous solids

    OpenAIRE

    Shi, Yunfeng; Falk, Michael L.

    2005-01-01

    Spontaneous strain localization occurs during mechanical tests of a model amorphous solid simulated using molecular dynamics. The degree of localization depends upon the extent of structural relaxation prior to mechanical testing. In the most rapidly quenched samples higher strain rates lead to increased localization, while the more gradually quenched samples exhibit the opposite strain rate dependence. This transition coincides with the k-core percolation of atoms with quasi-crystal-like sho...

  15. On the inherent properties of Soluplus and its application in ibuprofen solid dispersions generated by microwave-quench cooling technology.

    Science.gov (United States)

    Shi, Nian-Qiu; Lai, Hong-Wei; Zhang, Yong; Feng, Bo; Xiao, Xiao; Zhang, Hong-Mei; Li, Zheng-Qiang; Qi, Xian-Rong

    2016-11-16

    Polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer, or Soluplus(®), is a relatively new copolymer and a promising carrier of amorphous solid dispersions. Knowledge on the inherent properties of Soluplus(®) (e.g. cloud points, critical micelle concentrations, and viscosity) in different conditions is relatively inadequate, and the application characteristics of Soluplus(®)-based solid dispersions made by microwave methods still need to be clarified. In the present investigation, the inherent properties of a Soluplus(®) carrier, including cloud points, critical micelle concentrations, and viscosity, were explored in different media and in altered conditions. Ibuprofen, a BCS class II non-steroidal anti-inflammatory drug, was selected to develop Soluplus(®)-based amorphous solid dispersions using the microwave-quench cooling (MQC) method. Scanning electronic microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Raman spectroscopy (RS), and Fourier transform infrared spectroscopy (FT-IR) were adopted to analyze amorphous properties and molecular interactions in ibuprofen/Soluplus(®) amorphous solid dispersions generated by MQC. Dissolution, dissolution extension, phase solubility, equilibrium solubility, and supersaturated crystallization inhibiting experiments were performed to elucidate the effects of Soluplus(®) on ibuprofen in solid dispersions. This research provides valuable information on the inherent properties of Soluplus(®) and presents a basic understanding of Soluplus(®) as a carrier of amorphous solid dispersions.

  16. Stochastic approach to plasticity and yield in amorphous solids

    Science.gov (United States)

    Hentschel, H. G. E.; Jaiswal, Prabhat K.; Procaccia, Itamar; Sastry, Srikanth

    2015-12-01

    We focus on the probability distribution function (PDF) P (Δ γ ;γ ) where Δ γ are the measured strain intervals between plastic events in a athermal strained amorphous solids, and γ measures the accumulated strain. The tail of this distribution as Δ γ →0 (in the thermodynamic limit) scales like Δ γη . The exponent η is related via scaling relations to the tail of the PDF of the eigenvalues of the plastic modes of the Hessian matrix P (λ ) which scales like λθ, η =(θ -1 )/2 . The numerical values of η or θ can be determined easily in the unstrained material and in the yielded state of plastic flow. Special care is called for in the determination of these exponents between these states as γ increases. Determining the γ dependence of the PDF P (Δ γ ;γ ) can shed important light on plasticity and yield. We conclude that the PDF's of both Δ γ and λ are not continuous functions of γ . In slowly quenched amorphous solids they undergo two discontinuous transitions, first at γ =0+ and then at the yield point γ =γ Y to plastic flow. In quickly quenched amorphous solids the second transition is smeared out due to the nonexisting stress peak before yield. The nature of these transitions and scaling relations with the system size dependence of are discussed.

  17. Characterization and physical stability of spray dried solid dispersions of probucol and PVP-K30

    DEFF Research Database (Denmark)

    Thybo, Pia; Pedersen, Betty L; Hovgaard, Lars

    2008-01-01

    The main purpose of this study was to obtain stable, well-characterized solid dispersions (SDs) of amorphous probucol and polyvinylpyrrolidone K-30 (PVP-K30) with improved dissolution rates. A secondary aim was to investigate the flow-through dissolution method for in-vitro dissolution measuremen...

  18. Solid-state characterization of amorphous and mesomorphous calcium ketoprofen.

    Science.gov (United States)

    Atassi, Faraj; Mao, Chen; Masadeh, Ahmad S; Byrn, Stephen R

    2010-09-01

    This article is concerned with exploring the application of pair distribution in pharmaceutical analysis. The solid-state characterization of amorphous and mesomorphous (liquid crystalline) calcium ketoprofen is used as an example and the structures of the amorphous and mesomorphous phases of calcium ketoprofen are compared to that of the crystalline phase. An approach to calculating the optimal experimental parameters in pair distribution function (PDF) analysis as well as a suggested method to help assign the many different peaks in a PDF diagram of an organic material are discussed. The studied salts were analyzed by X-ray powder diffraction (XRPD), single crystal X-ray diffraction, Raman spectroscopy, polarized light microscopy (PLM), solid-state NMR (SSNMR), variable-temperature SSNMR, and PDF. Raman and SSNMR were useful techniques in identifying and differentiating the crystalline phase from the other two phases but failed, alone, to differentiate between the amorphous and mesomorphous phases. The absence of significant changes in chemical shifts in SSNMR and peak shifts in Raman spectra suggested that the differences in the molecular environment of the major chemical groups in the amorphous and mesomorphous phases were minimal. However, the broadening of the Raman and SSNMR peaks in the noncrystalline phases indicated an increase in the disorder in these systems. PDF analysis of the disordered phases revealed that upon dehydration or quench cooling where the system transformed from crystalline to become disordered, the calcium-calcium and calcium-oxygen (oxygen of the carboxylic acid) distances remained intact meanwhile the rest of the molecule became disordered. The preliminary results from variable-temperature SSNMR showed two different T(1) relaxation time profiles for the amorphous and mesomorphous phases. This was consistent with the hypothesis that part of the molecule remained ordered while the rest of the molecule became disordered and the amorphous

  19. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations.

    Science.gov (United States)

    Paudel, Amrit; Worku, Zelalem Ayenew; Meeus, Joke; Guns, Sandra; Van den Mooter, Guy

    2013-08-30

    Spray drying is an efficient technology for solid dispersion manufacturing since it allows extreme rapid solvent evaporation leading to fast transformation of an API-carrier solution to solid API-carrier particles. Solvent evaporation kinetics certainly contribute to formation of amorphous solid dispersions, but also other factors like the interplay between the API, carrier and solvent, the solution state of the API, formulation parameters (e.g. feed concentration or solvent type) and process parameters (e.g. drying gas flow rate or solution spray rate) will influence the final physical structure of the obtained solid dispersion particles. This review presents an overview of the interplay between manufacturing process, formulation parameters, physical structure, and performance of the solid dispersions with respect to stability and drug release characteristics.

  20. [Study on solid dispersion of precipitated calcium carbonate-based oleanolic acid].

    Science.gov (United States)

    Yan, Hong-mei; Zhang, Zhen-hai; Jia, Xiao-bin; Jiang, Yan-rong; Sun, E

    2015-05-01

    Oleanolic acid-precipitated calcium carbonate solid dispersion was prepared by using solvent evaporation method. The microscopic structure and physicochemical properties of solid dispersion were analyzed using differential scanning calorimetry and scanning electron microscopy (SEM). And its in vitro release also was investigated. The properties of the precipitated calcium carbonate was studied which was as a carrier of oleanolic acid solid dispersion. Differential scanning calorimetry analysis suggested that oleanolic acid may be present in solid dispersion as amorphous substance. The in vitro release determination results of oleanolic acid-precipitated calcium carbonate (1: 5) solid dispersion showed accumulated dissolution rate of.oleanolic acid was up to 90% at 45 min. Accelerating experiment showed that content and in vitro dissolution of oleanolic acid solid dispersion did not change after storing over 6 months. The results indicated that in vitro dissolution of oleanolic acid was improved greatly by the solid dispersion with precipitated calcium carbonate as a carrier. The solid dispersion is a stabilizing system which has actual applied value.

  1. Correlation of inhibitory effects of polymers on indomethacin precipitation in solution and amorphous solid crystallization based on molecular interaction.

    Science.gov (United States)

    Chauhan, Harsh; Kuldipkumar, Anuj; Barder, Timothy; Medek, Ales; Gu, Chong-Hui; Atef, Eman

    2014-02-01

    To correlate the polymer's degree of precipitation inhibition of indomethacin in solution to the amorphous stabilization in solid state. Precipitation of indomethacin (IMC) in presence of polymers was continuously monitored by a UV spectrophotometer. Precipitates were characterized by PXRD, IR and SEM. Solid dispersions with different polymer to drug ratios were prepared using solvent evaporation. Crystallization of the solid dispersion was monitored using PXRD. Modulated differential scanning calorimetry (MDSC), IR, Raman and solid state NMR were used to explore the possible interactions between IMC and polymers. PVP K90, HPMC and Eudragit E100 showed precipitation inhibitory effects in solution whereas Eudragit L100, Eudragit S100 and PEG 8000 showed no effect on IMC precipitation. The rank order of precipitation inhibitory effect on IMC was found to be PVP K90 > Eudragit E100 > HPMC. In the solid state, polymers showing precipitation inhibitory effect also exhibited amorphous stabilization of IMC with the same rank order of effectiveness. IR, Raman and solid state NMR studies showed that rank order of crystallization inhibition correlates with strength of molecular interaction between IMC and polymers. Correlation is observed in the polymers ability to inhibit precipitation in solution and amorphous stabilization in the solid state for IMC and can be explained by the strength of drug polymer interactions.

  2. Solid-state flat panel imager with avalanche amorphous selenium

    Science.gov (United States)

    Scheuermann, James R.; Howansky, Adrian; Goldan, Amir H.; Tousignant, Olivier; Levéille, Sébastien; Tanioka, K.; Zhao, Wei

    2016-03-01

    Active matrix flat panel imagers (AMFPI) have become the dominant detector technology for digital radiography and fluoroscopy. For low dose imaging, electronic noise from the amorphous silicon thin film transistor (TFT) array degrades imaging performance. We have fabricated the first prototype solid-state AMFPI using a uniform layer of avalanche amorphous selenium (a-Se) photoconductor to amplify the signal to eliminate the effect of electronic noise. We have previously developed a large area solid-state avalanche a-Se sensor structure referred to as High Gain Avalanche Rushing Photoconductor (HARP) capable of achieving gains of 75. In this work we successfully deposited this HARP structure onto a 24 x 30 cm2 TFT array with a pixel pitch of 85 μm. An electric field (ESe) up to 105 Vμm-1 was applied across the a-Se layer without breakdown. Using the HARP layer as a direct detector, an X-ray avalanche gain of 15 +/- 3 was achieved at ESe = 105 Vμm-1. In indirect mode with a 150 μm thick structured CsI scintillator, an optical gain of 76 +/- 5 was measured at ESe = 105 Vμm-1. Image quality at low dose increases with the avalanche gain until the electronic noise is overcome at a constant exposure level of 0.76 mR. We demonstrate the success of a solid-state HARP X-ray imager as well as the largest active area HARP sensor to date.

  3. Development and characterization of nifedipine-amino methacrylate copolymer solid dispersion powders with various adsorbents

    Directory of Open Access Journals (Sweden)

    Yotsanan Weerapol

    2017-07-01

    Full Text Available Solid dispersions of nifedipine (NDP, a poorly water-soluble drug, and amino methacrylate copolymer (AMCP with aid of adsorbent, that is, fumed silica, talcum, calcium carbonate, titanium dioxide, and mesoporous silica from rice husks (SRH, were prepared by solvent method. The physicochemical properties of solid dispersions, compared to their physical mixtures, were determined using powder X-ray diffractometry (PXRD and differential scanning calorimetry (DSC. The surface morphology of the prepared solid dispersions was examined by scanning electron microscopy (SEM. The dissolution of NDP from solid dispersions was compared to NDP powders. The effect of adsorbent type on NDP dissolution was also examined. The dissolution of NDP increased with the ratio of NDP:AMCP:adsorbent of 1:4:1 when compared to the other formulations. As indicated from PXRD patterns, DSC thermograms and SEM images, NDP was molecularly dispersed within polymer carrier or in an amorphous form, which confirmed the better dissolution of solid dispersions. Solid dispersions containing SRH provided the highest NDP dissolution, due to a porous nature of SRH, allowing dissolved drug to fill in the pores and consequently dissolve in the medium. The results suggested that solid dispersions containing adsorbents (SRH in particular demonstrated improved dissolution of poorly water-soluble drug when compared to NDP powder.

  4. Fusion production of solid dispersions containing a heat-sensitive active ingredient by hot melt extrusion and Kinetisol dispersing.

    Science.gov (United States)

    Dinunzio, James C; Brough, Chris; Hughey, Justin R; Miller, Dave A; Williams, Robert O; McGinity, James W

    2010-02-01

    Many techniques for the production of solid dispersions rely on elevated temperatures and prolonged material residence times, which can result in decomposition of temperature-sensitive components. In this study, hydrocortisone was used as a model temperature-sensitive active ingredient to study the effect of formulation and processing techniques as well as to characterize the benefits of KinetiSol Dispersing for the production of solid dispersions. Preformulation studies were conducted using differential scanning calorimetry and hot stage microscopy to identify optimum carriers for the production of amorphous solid dispersions. After identification, solid dispersions were prepared by hot melt extrusion and KinetiSol Dispersing, with material characterized by X-ray diffraction, dissolution and potency testing to evaluate physicochemical properties. Results from the preformulation studies showed that vinylacetate:vinylpyrrolidone (PVPVA) copolymer allowed for hydrocortisone dissolution within the carrier at temperatures as low as 160 degrees C, while hydroxypropyl methylcellulose required temperatures upward of 180 degrees C to facilitate solubilization. Low substituted hydroxypropyl cellulose, a high glass transition temperature control, showed that the material was unable to solubilize hydrocortisone. Manufacturing process control studies using hot melt extruded compositions of hydrocortisone and PVPVA showed that increased temperatures and residence times negatively impacted product potency due to decomposition. Using KinetiSol Dispersing to reduce residence time and to facilitate lower temperature processing, it was possible to produce solid dispersions with improved product potency. This study clearly demonstrated the importance of carrier selection to facilitate lower temperature processing, as well as the effect of residence time on product potency. Furthermore, KinetiSol Dispersing provided significant advantages over hot melt extrusion due to the reduced

  5. Mechanical failure in amorphous solids: Scale-free spinodal criticality

    Science.gov (United States)

    Procaccia, Itamar; Rainone, Corrado; Singh, Murari

    2017-09-01

    The mechanical failure of amorphous media is a ubiquitous phenomenon from material engineering to geology. It has been noticed for a long time that the phenomenon is "scale-free," indicating some type of criticality. In spite of attempts to invoke "Self-Organized Criticality," the physical origin of this criticality, and also its universal nature, being quite insensitive to the nature of microscopic interactions, remained elusive. Recently we proposed that the precise nature of this critical behavior is manifested by a spinodal point of a thermodynamic phase transition. Demonstrating this requires the introduction of an "order parameter" that is suitable for distinguishing between disordered amorphous systems. At the spinodal point there exists a divergent correlation length which is associated with the system-spanning instabilities (known also as shear bands) which are typical to the mechanical yield. The theory, the order parameter used and the correlation functions which exhibit the divergent correlation length are universal in nature and can be applied to any amorphous solid that undergoes mechanical yield. The phenomenon is seen at its sharpest in athermal systems, as is explained below; in this paper we extend the discussion also to thermal systems, showing that at sufficiently high temperatures the spinodal phenomenon is destroyed by thermal fluctuations.

  6. “PREPARATION OF SOLID DISPERSION OF POORLY WATER SOLUBLE DRUG FORMULATION AND CONSIDERATION”

    Directory of Open Access Journals (Sweden)

    Mr.Godge G.R.

    2015-05-01

    Full Text Available This article investigates enhancement of the dissolution profile of furosemide using solid dispersion (SD with eudragit(RLPO & RSPO & also control it’s by using solvent evaporation technique. 1: 0.5(w/w 1:1(w/w ,1:1.5 solid dispersions were prepared by solvent evaporation technique using solvent water and methanol in 1:1 ratio. Dissolution studies using the USP paddle method were performed for solid dispersions of furosemide at 37 ± 0.5 C and 55 rpm in simulated gastric fluid (SGF of pH 1.2. Fourier transformer infrared (FTIR spectroscopy, differential scanning calorimetry (DSC, and x-ray diffractometry (XRD were performed to identify the physicochemical interaction between drug and carrier, hence its effect on dissolution. Tablets were formulated containing solid dispersion products and compared with pure drug . IR spectroscopy, XRD, and DSC showed change in the crystal structure towards amorphous one of furosemide (FRMD. Dissolution of furosemide improved and release is controlled significantly in solid dispersion with the ratio 1:1.5 of eudragit RLPO & RSPO . Tablets containing solid dispersion exhibited better dissolution profile than pure drug. Thus, the solid dispersion technique can be successfully used for improvement of dissolution of furosemide as well as control it’s release.

  7. Characterization and solubility study of norfloxacin-polyethylene glycol, polyvinylpyrrolidone and carbopol 974p solid dispersions.

    Science.gov (United States)

    Gorajana, Adinarayana; Kit, Wong W; Dua, Kamal

    2015-01-01

    Norfloxacin has a low aqueous solubility which leads to poor dissolution. Keeping this fact in mind the purpose of the present study is to formulate and evaluate norfloxacin solid dispersion. Solid dispersions were prepared using hydrophilic carriers like polyethylene glycol (PEG) 4000, polyvinylpyrrolidone (PVP) k30 and carbopol 974pNF (CP) in various ratios using solvent evaporation technique. These formulations were evaluated using solubility studies, dissolution studies; Fourier transmitted infrared spectroscopy (FTIR), X-ray diffraction (XRD), and differential scanning calorimetery (DSC). The influence of polymer type and drug to polymer ratio on the solubility and dissolution rate of norfloxacin was also evaluated. FTIR analysis showed no interaction of all three polymers with norfloxacin. The results from XRD and DSC analyses of the solid dispersion preparations showed that norfloxacin existsin its amorphous form. Among the Norfloxacin: PEG solid dispersions, Norfloxacin: PEG 1:14 ratio showed the highest dissolution rate at pH 6.8. For norfloxacin: PVP solid dispersions, norfloxacin: PVP 1:10 ratio showed the highest dissolution rate at pH 6.8. For Norfloxacin: CP solid dispersions, norfloxacin: P 1:2 ratio showed the highest dissolution rate at pH 6.8. The solid dispersion of norfloxacin with polyethylene glycol (PEG) 4000, polyvinylpyrrolidone (PVP) k30 and carbopol 974p NF (CP), lends an ample credence for better therapeutic efficacy.

  8. Optimising Drug Solubilisation in Amorphous Polymer Dispersions: Rational Selection of Hot-melt Extrusion Processing Parameters.

    Science.gov (United States)

    Li, Shu; Tian, Yiwei; Jones, David S; Andrews, Gavin P

    2016-02-01

    The aim of this article was to construct a T-ϕ phase diagram for a model drug (FD) and amorphous polymer (Eudragit® EPO) and to use this information to understand the impact of how temperature-composition coordinates influenced the final properties of the extrudate. Defining process boundaries and understanding drug solubility in polymeric carriers is of utmost importance and will help in the successful manufacture of new delivery platforms for BCS class II drugs. Physically mixed felodipine (FD)-Eudragit(®) EPO (EPO) binary mixtures with pre-determined weight fractions were analysed using DSC to measure the endset of melting and glass transition temperature. Extrudates of 10 wt% FD-EPO were processed using temperatures (110°C, 126°C, 140°C and 150°C) selected from the temperature-composition (T-ϕ) phase diagrams and processing screw speed of 20, 100 and 200rpm. Extrudates were characterised using powder X-ray diffraction (PXRD), optical, polarised light and Raman microscopy. To ensure formation of a binary amorphous drug dispersion (ADD) at a specific composition, HME processing temperatures should at least be equal to, or exceed, the corresponding temperature value on the liquid-solid curve in a F-H T-ϕ phase diagram. If extruded between the spinodal and liquid-solid curve, the lack of thermodynamic forces to attain complete drug amorphisation may be compensated for through the use of an increased screw speed. Constructing F-H T-ϕ phase diagrams are valuable not only in the understanding drug-polymer miscibility behaviour but also in rationalising the selection of important processing parameters for HME to ensure miscibility of drug and polymer.

  9. Solid dispersion in pharmaceutical technology. Part II. The methods of analysis of solid dispersions and examples of their application.

    Science.gov (United States)

    Karolewicz, Bozena; Górniak, Agata; Owczarek, Artur; Nartowski, Karol; Zurawska-Płaksej, Ewa; Pluta, Janusz

    2012-01-01

    In the first part of the article solid dispersions were classified the properties and methods of their preparation were described. This section presents methods of analysis of solid dispersions i.e.: thermoanalytical methods, XRPD, FTIR, microscopic methods, dissolution studies and examples of drug forms where solid dispersions were used.

  10. Anomalous stress fluctuations in athermal two-dimensional amorphous solids

    Science.gov (United States)

    Wu, Yegang; Karimi, Kamran; Maloney, Craig E.; Teitel, S.

    2017-09-01

    We numerically study the local stress distribution within athermal, isotropically stressed, mechanically stable, packings of bidisperse frictionless disks above the jamming transition in two dimensions. Considering the Fourier transform of the local stress, we find evidence for algebraically increasing fluctuations in both isotropic and anisotropic components of the stress tensor at small wave numbers, contrary to recent theoretical predictions. Such increasing fluctuations imply a lack of self-averaging of the stress on large length scales. The crossover to these increasing fluctuations defines a length scale ℓ0, however, it appears that ℓ0 does not vary much with packing fraction ϕ , nor does ℓ0 seem to be diverging as ϕ approaches the jamming ϕJ. We also find similar large length scale fluctuations of stress in the inherent states of a quenched Lennard-Jones liquid, leading us to speculate that such fluctuations may be a general property of amorphous solids in two dimensions.

  11. Elasticity in Amorphous Solids: Nonlinear or Piecewise Linear?

    Science.gov (United States)

    Dubey, Awadhesh K; Procaccia, Itamar; Shor, Carmel A B Z; Singh, Murari

    2016-02-26

    Quasistatic strain-controlled measurements of stress versus strain curves in macroscopic amorphous solids result in a nonlinear-looking curve that ends up either in mechanical collapse or in a steady state with fluctuations around a mean stress that remains constant with increasing strain. It is therefore very tempting to fit a nonlinear expansion of the stress in powers of the strain. We argue here that at low temperatures the meaning of such an expansion needs to be reconsidered. We point out the enormous difference between quenched and annealed averages of the stress versus strain curves and propose that a useful description of the mechanical response is given by a stress (or strain) -dependent shear modulus for which a theoretical evaluation exists. The elastic response is piecewise linear rather than nonlinear.

  12. Development and Characterization of Solid Dispersion for Dissolution Improvement of Furosemide by Cogrinding Method

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Siahi-Shadbad

    2014-12-01

    Full Text Available Purpose: The purpose of this study was to prepare and characterize solid dispersion formulation of furosemide to enhance dissolution rate. Methods: Solid dispersions with different drug: carrier ratios were prepared by cogrinding method using crospovidone and microcrystalline cellulose as carrier. The physical state and interactions between the drug and carrier were characterized by Fourier transform infrared spectroscopic (FT-IR and X ray diffraction (XRD. Results: Solid dispersions (especially with drug: Carrier ratio of 1:2 showed a higher dissolution rate than their respective physical mixture and pure furosemide. Dissolution rate in pH 5.8 was also higher than pH 1.2. The XRD analysis showed that crystalline form was changed to the amorphous state in the solid dispersions. FT-IR analysis did not show any physicochemical interactions in the solid dispersion formulations. Release kinetic of formulations were fitted best to the Weibull and Wagner log probability (linear kinetic as well as suggested 2 and Gompertz (non-linear kinetic models. Conclusion: The dissolution properties of furosemide were improved with the use of hydrophilic carriers in solid dispersions due to change in the crystalline form of the drug and more intimate contact between drug and carriers which was dependent on the type and ratio of carrier as well as dissolution medium pH.

  13. [Comparison of different preparation methods of tanshinoneporous silica solid dispersion].

    Science.gov (United States)

    Jiang, Yan-Rong; Zhang, Zhen-Hai; Ding, Dong-Mei; Chen, Xiao-Yun; Su, E; Jia, Xiao-Bin

    2013-10-01

    Porous silica was used as a carrier to prepare tanshinone solid dispersions (SDs). sThe effect of the spray drying method or the solvent method on the drug dissolution of SD was studied. The structure characteristics of SDs was analyzed by SEM, DSC,XPRD and FTIR. And in vitro dissolution was also investigated. The results showed that drugs were highly dispersed into SDs prepared by spray drying method and the solvent method in amorphous form. In addition, the results of the dissolution tested in vitro exhibited that the tanshinone I and tanshinone II A, accumulated dissolutions of SDs prepared using solvent achieved 80. 9% ,84. 6% and 86. 2% ,88. 7% within 45,60 min, respectively. And SDs prepared using spray-drying method were 92.7% ,95. 3% and 95. 8%, 97. 1% within 45,60 min, respectively. The tanshinone SDs were prepared successfully by spray drying method and solvent method. The SDs prepared by spray drying method was more conducive to improving the dissolution.

  14. Revealing facts behind spray dried solid dispersion technology used for solubility enhancement

    OpenAIRE

    Patel, Bhavesh B.; Patel, Jayvadan K.; Chakraborty, Subhashis; Shukla, Dali

    2013-01-01

    Poor solubility and bioavailability of an existing or newly synthesized drug always pose challenge in the development of efficient pharmaceutical formulation. Numerous technologies can be used to improve the solubility and among them amorphous solid dispersion based spray drying technology can be successfully useful for development of product from lab scale to commercial scale with a wide range of powder characteristics. Current review deals with the importance of spray drying technology in d...

  15. Inhibition of a solid phase reaction among excipients that accelerates drug release from a solid dispersion with aging.

    Science.gov (United States)

    Mizuno, Masayasu; Hirakura, Yutaka; Yamane, Ikuro; Miyanishi, Hideo; Yokota, Shoji; Hattori, Munetaka; Kajiyama, Atsushi

    2005-11-23

    Hydrophobic drug substances can be formulated as a solid dispersion or solution using macromolecular matrices with high glass transition temperatures to attain satisfactory dissolution. However, very few marketed products have previously relied on solid dispersion technology due to physical and chemical instability problems, and processing difficulties. In the present study, a modified release product of a therapeutic drug for hypertension, Barnidipine hydrochloride, was developed. The drug product consisted of solid dispersion based on a matrix of carboxymethylethylcellulose (CMEC), which was produced using the spray-coating method. An enteric coat layer was sprayed on the surface of the solid dispersion to control drug release. Interestingly, the release rate accelerated as the drug product aged, while there were no indications of deceleration of the release rate which was due to crystallization of the drug substance. To prevent changes in the dissolution kinetics during storage periods, a variety of processing conditions were tried. It was found that not only use of non-aqueous solvents but also a reduction in coating temperatures consistently resulted in stable solid dispersions. The molecular bases of dissolution of the drug substance from those matrices were investigated. The molecular weight of CMEC was found to be a dominant factor that determined dissolution kinetics, which followed zero-order release, suggesting an involvement of an osmotic pumping mechanism. While dissolution was faster using a higher molecular weight CMEC, the molecular weight of CMEC in the drug product slowly increased with aging (solid phase reaction) depending on the processing conditions, causing the time-induced elevation of dissolution. While no crystalline components were found in the solid dispersion, the amorphous structure maintained a degree of non-equilibrium by nature. Plasticization by water in the coating solution relaxed the amorphous system and facilitated phase

  16. Comparison of three different types of cilostazol-loaded solid dispersion: Physicochemical characterization and pharmacokinetics in rats.

    Science.gov (United States)

    Mustapha, Omer; Kim, Kyung Soo; Shafique, Shumaila; Kim, Dong Shik; Jin, Sung Giu; Seo, Youn Gee; Youn, Yu Seok; Oh, Kyung Taek; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon

    2017-06-01

    The aim of this research was to compare three different types of cilostazol-loaded solid dispersion system including solvent-evaporated, solvent-wetted and surface-attached solid dispersion. The effect of polymers and surfactants on the aqueous solubility of cilostazol was investigated, leading to the selection of polyvinylpyrrolidone (PVP) and sodium lauryl sulphate (SLS). Employing a spray-drying technique, numerous surface-attached, solvent-evaporated and solvent-wetted solid dispersions were prepared with various amounts PVP and SLS using water, 90% ethanol and acetone, respectively. Their physicochemical properties, solubility, dissolution and oral bioavailability in rats were assessed compared to the drug powder. Among each solid dispersion system tested, the surface-attached, solvent-evaporated and solvent-wetted solid dispersions composed of cilostazol, PVP and SLS at weight ratios of 3.0 : 0.75 : 1.5, 3.0 : 3.0 : 1.5 and 3.0 : 3.0 : 1.5, respectively, provided the highest drug solubility and dissolution. The solvent-evaporated solid dispersion gave homogeneous and very small spherical particles, in which the drug was changed to an amorphous state. In the solvent-wetted solid dispersion, the amorphous drug was attached to the polymer surface. Conversely, in the surface-attached solid dispersion, the carriers were adhered onto the surface of the unchanged crystalline drug. The solubility, dissolution and oral bioavailability were significantly increased in the order of solvent-evaporated>solvent-wetted>surface-attached>drug powder. Thus, the type of solid dispersion considerably affected the physicochemical properties, aqueous solubility and oral bioavailability. Furthermore, the cilostazol-loaded solvent-evaporated solid dispersion with the highest oral bioavailability would be actively recommended as a practical oral pharmaceutical product. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Physicochemical characterisation, drug polymer dissolution and in vitro evaluation of phenacetin and phenylbutazone solid dispersions with polyethylene glycol 8000.

    Science.gov (United States)

    Khan, Sheraz; Batchelor, Hannah; Hanson, Peter; Perrie, Yvonne; Mohammed, Afzal R

    2011-10-01

    Poor water solubility leads to low dissolution rate and consequently, it can limit bioavailability. Solid dispersions, where the drug is dispersed into an inert, hydrophilic polymer matrix can enhance drug dissolution. Solid dispersions were prepared using phenacetin and phenylbutazone as model drugs with polyethylene glycol (PEG) 8000 (carrier), by melt fusion method. Phenacetin and phenylbutazone displayed an increase in the dissolution rate when formulated as solid dispersions as compared with their physical mixture and drug alone counterparts. Characterisation of the solid dispersions was performed using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). DSC studies revealed that drugs were present in the amorphous form within the solid dispersions. FTIR spectra for the solid dispersions of drugs suggested that there was a lack of interaction between PEG 8000 and the drug. However, the physical mixture of phenacetin with PEG 8000 indicated the formation of hydrogen bond between phenacetin and the carrier. Permeability of phenacetin and phenylbutazone was higher for solid dispersions as compared with that of drug alone across Caco-2 cell monolayers. Permeability studies have shown that both phenacetin and phenylbutazone, and their solid dispersions can be categorised as well-absorbed compounds.

  18. Mechanism for enhanced absorption of a solid dispersion formulation of LY2300559 using the artificial stomach duodenum model.

    Science.gov (United States)

    Polster, Christopher S; Wu, Sy-Juen; Gueorguieva, Ivelina; Sperry, David C

    2015-04-06

    An artificial stomach duodenum (ASD) model has been used to demonstrate the performance difference between two formulations of LY2300559, a low-solubility acidic developmental drug. The two formulations investigated were a conventional high-shear wet granulation (HSWG) formulation and a solid dispersion formulation. A pharmacokinetic study in humans demonstrated the enhanced performance of the solid dispersion formulation relative to the HSWG formulation. The Cmax and AUC of the solid dispersion was 2.6 and 1.9 times greater, respectively, compared to the HSWG formulation. In the ASD, the solid dispersion formulation performance was characterized by three main phases: (1) rapid release in the stomach, creating a supersaturated concentration of drug, (2) precipitation in the stomach, and (3) rapid redissolution of the precipitate in the duodenum to concentration levels that are supersaturated relative to crystalline drug. A series of complementary experiments were employed to describe this performance behavior mechanistically. Imaging experiments with a pH indicating dye showed that local pH gradients from meglumine in the solid dispersion formulation were responsible for creating a high initial supersaturation concentration in the stomach. Upon dissipation of meglumine, the drug precipitated in the stomach as an amorphous solid. Because the precipitated drug is in an amorphous form, it can then rapidly redissolve as it transits to the more neutral environment of the duodenum. This unexpected sequence of physical state changes gives a mechanistic explanation for the enhanced in vivo performance of the solid dispersion formulation relative to the HSWG formulation.

  19. [Preparation of two poor water soluble drugs - nanoporous ZnO solid dispersions and the mechanism of drug dissolution improvement].

    Science.gov (United States)

    Gao, Bei; Sun, Chang-shan; Zhi, Zhuang-zhi; Wang, Yan; Chang, Di; Wang, Si-ling; Jiang, Tong-ying

    2011-11-01

    Nanoporous ZnO was used as a carrier to prepare drug solid dispersion, the mechanism of which to improve the drug dissolution was also studied. Nanoporous ZnO, obtained through chemical deposition method, was used as a carrier to prepare indomethacin and cilostazol solid dispersions by melt-quenching method, separately. The results of scanning electron microscope, surface area analyzer, fourier transform infra-red spectroscopy, differential scanning calorimeter and X-ray diffraction showed that drugs were implanted into nanopores of ZnO by physical adsorption effect and highly dispersed into nanopores of ZnO in amorphous form, moreover, these nanopores strongly inhibited amorphous recrystallization in the condition of 45 degrees C and 75% RH. In addition, the results of the dissolution tested in vitro exhibited that the accumulated dissolutions of indomethacin and cilostazol solid dispersions achieved about 90% within 5 min and approximately 80% within 30 min. It was indicated in this study that the mechanism of drug dissolution improvement was associated with the effects of nanoporous ZnO carrier on increasing drug dispersion, controlling drug in nanopores as amorphous form and inhibiting amorphous recrystallization.

  20. Low energy charged particles interacting with amorphous solid water layers

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Yonatan; Asscher, Micha [Institute of Chemistry, Hebrew University of Jerusalem, Edmund J. Safra Campus, Givat-Ram, Jerusalem 91904 (Israel)

    2012-04-07

    The interaction of charged particles with condensed water films has been studied extensively in recent years due to its importance in biological systems, ecology as well as interstellar processes. We have studied low energy electrons (3-25 eV) and positive argon ions (55 eV) charging effects on amorphous solid water (ASW) and ice films, 120-1080 ML thick, deposited on ruthenium single crystal under ultrahigh vacuum conditions. Charging the ASW films by both electrons and positive argon ions has been measured using a Kelvin probe for contact potential difference (CPD) detection and found to obey plate capacitor physics. The incoming electrons kinetic energy has defined the maximum measurable CPD values by retarding further impinging electrons. L-defects (shallow traps) are suggested to be populated by the penetrating electrons and stabilize them. Low energy electron transmission measurements (currents of 0.4-1.5 {mu}A) have shown that the maximal and stable CPD values were obtained only after a relatively slow change has been completed within the ASW structure. Once the film has been stabilized, the spontaneous discharge was measured over a period of several hours at 103 {+-} 2 K. Finally, UV laser photo-emission study of the charged films has suggested that the negative charges tend to reside primarily at the ASW-vacuum interface, in good agreement with the known behavior of charged water clusters.

  1. Low energy charged particles interacting with amorphous solid water layers

    Science.gov (United States)

    Horowitz, Yonatan; Asscher, Micha

    2012-04-01

    The interaction of charged particles with condensed water films has been studied extensively in recent years due to its importance in biological systems, ecology as well as interstellar processes. We have studied low energy electrons (3-25 eV) and positive argon ions (55 eV) charging effects on amorphous solid water (ASW) and ice films, 120-1080 ML thick, deposited on ruthenium single crystal under ultrahigh vacuum conditions. Charging the ASW films by both electrons and positive argon ions has been measured using a Kelvin probe for contact potential difference (CPD) detection and found to obey plate capacitor physics. The incoming electrons kinetic energy has defined the maximum measurable CPD values by retarding further impinging electrons. L-defects (shallow traps) are suggested to be populated by the penetrating electrons and stabilize them. Low energy electron transmission measurements (currents of 0.4-1.5 μA) have shown that the maximal and stable CPD values were obtained only after a relatively slow change has been completed within the ASW structure. Once the film has been stabilized, the spontaneous discharge was measured over a period of several hours at 103 ± 2 K. Finally, UV laser photo-emission study of the charged films has suggested that the negative charges tend to reside primarily at the ASW-vacuum interface, in good agreement with the known behavior of charged water clusters.

  2. Physical stability of solid dispersions with respect to thermodynamic solubility of tadalafil in PVP-VA.

    Science.gov (United States)

    Wlodarski, K; Sawicki, W; Kozyra, A; Tajber, L

    2015-10-01

    The aim of this paper was to evaluate physical stability of solid dispersions in respect to the drug, tadalafil (Td), in vinylpyrrolidone and vinyl acetate block copolymer (PVP-VA). Nine solid dispersions of Td in PVP-VA (Td/PVP-VA) varied in terms of quantitative composition (1:9-9:1, w/w) were successfully produced by spray-drying. Their amorphous nature, supersaturated character and molecular level of mixing (a solid solution structure) were subsequently confirmed using DSC, PXRD, SEM and calculation of Hansen total solubility parameters. Due to thermal degradation of both components before the melting point of Td (302.3°C), an approach based on the drug crystallization from the supersaturated solid dispersion was selected to calculate the solubility of Td in the polymer. Annealing of the Td/PVP-VA solid dispersion (1:1, w/w) at selected temperatures above its Tg resulted in different stable solid dispersions. According to the Gordon-Taylor equation their new Tgs gave the information about the quantitative composition which corresponded to the thermodynamic solubility of Td in PVP-VA at given temperatures of annealing. The obtained relationship was fitted to the exponential function, with the calculated solubility of Td of 20.5% at 25°C. This value was in accordance with the results of hot stage polarizing light microscopy as well as stability tests carried out at 80°C and 0% RH, in which Td solid dispersions containing 10-20% of the drug were the only systems that did not crystallize within two months. A thermal analysis protocol utilizing a fast heating rate was shown to generate Td solubility data complementing the solid dispersion method. The Flory-Huggins model applied for the Td/PVP-VA system yielded the solubility value of 0.1% at 25°C, showing the lack of applicability in this case.

  3. Development of amorphous dispersions of artemether with hydrophilic polymers via spray drying: Physicochemical and in silico studies

    Directory of Open Access Journals (Sweden)

    Jaywant N. Pawar

    2016-06-01

    Full Text Available Artemether (ARM is a poorly water soluble and poorly permeable drug effective against acute and severe falciparum malaria, hence there is a strong need to improve its solubility. The objective of the study was to enhance the solubility and dissolution rate of ARM by preparation of solid dispersions using spray-drying technique. Solid dispersions of ARM were prepared with Soluplus, Kollidon VA 64, HPMC and Eudragit EPO at weight ratios of 1:1, 1:2, 1:3 using spray drying technology, and characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC, and X-ray powder diffraction (XRD to identify the physicochemical interaction between drug and carrier, as well as effect on dissolution. The prepared solid dispersion of ARM with polymers showed reduced crystallinity as compared to neat ARM, which was confirmed by DSC and XRD. Drug/polymer interactions were studied in-silico by docking and molecular dynamics which indicated formation of van der Waals type of interactions of ARM with the polymers. Based on solubility studies, the optimum drug/Soluplus ratio was found to be 1:3. The dissolution studies of formulation SD3 showed highest drug release up to 82% compared to neat ARM giving only 20% at 60 minutes. The spray-dried products were free of crystalline ARM; possessed higher dissolution rates, and were stable over a period according to ICH guidelines. These findings suggest that an amorphous solid dispersion of ARM could be a viable option for enhancing the dissolution rate of ARM.

  4. PREPERATION AND IN VITRO EVALUATION OF SOLID DISPERSIONS OF NIMODIPINE USING PEG 4000 AND PVP K3

    Directory of Open Access Journals (Sweden)

    ADINARAYANA GORAJANA, ADHIYAMAN RAJENDRA NALAMOLU KOTESWARA RAO

    2013-09-01

    Full Text Available Solid dispersions in water-soluble carriers have attracted considerable interest as a means of improving the dissolution rate, and hence possibly bioavailability, of a range of hydrophobic drugs. The aim of the present study was to improve the solubility and dissolution rate of a poorly water-soluble drug, nimodipine, by a solid dispersion technique. Solid dispersions were prepared by using polyethylene glycol 4000 (PEG- 4000 and polyvinylpyrrolidone K30 (PVPK30 in different drug-to-carrier ratios. The solid dispersions were prepared by melting method. Morphology of solid dispersions was characterised by scanning electron microscope. The pure drug, physical mixtures and solid dispersions were characterized by in vitro dissolution study. Dissolution characteristics were determined by using pH 4.5 acetate buffer containing 0.3% SDS. The very slow dissolution rate was observed for pure nimodipine and the dispersion of the drug in the polymers considerably enhanced the dissolution rate. This can be attributed to improved wettability and dispersibility, as well as decrease of the crystalline and increase of the amorphous fraction of the drug. Solid dispersions prepared with PEG-4000 and PVPK30 showed the highest improvement in wettability and dissolution rate of nimodipine. Even physical mixtures of nimodipine prepared with both polymers also showed better dissolution profile than that of pure nimodipine. In conclusion, dissolution of nimodipine can be enhanced by the use of hydrophilic carriers PEG-4000 and PVPK30.

  5. Hydrogen bonding with adsorbent during storage governs drug dissolution from solid-dispersion granules.

    Science.gov (United States)

    Gupta, Manish K; Tseng, Yin-Chao; Goldman, David; Bogner, Robin H

    2002-11-01

    To investigate changes in drug dissolution on storage of ternary solid-dispersion granules containing poorly water-soluble drugs. Hot-melt granulation was used to prepare ternary solid-dispersion granules in which the drug was dispersed in a carrier and coated onto an adsorbent. Seven drugs including four carboxylic acid-containing drugs (BAY 12-9566, naproxen, ketoprofen, and indomethacin). a hydroxyl-containing drug (testosterone), an amide-containing drug (phenacetin), and a drug with no proton-donating group (progesterone) were studied. Gelucire 50/13 and polyethylene glycol (PEG) 8000 were used as dispersion carriers whereas Neusilin US2 (magnesium aluminosilicate) was used as the surface adsorbent. Two competing mechanisms have been proposed to explain the complex changes observed in drug dissolution upon storage of solid dispersion granules. Conversion of the crystalline drug to the amorphous hydrogen bonded (to Neusilin) state seems to increase dissolution, whereas, the phenomenon of Ostwald ripening can be used to explain the decrease in drug dissolution upon storage. The solubility of the drug in Gelucire is a crucial factor in determining the predominant mechanism by governing the flux toward the surface of Neusilin. The mobility for this phenomenon was provided by the existence of the eutectic mixture in the molten liquid state during storage. A competitive balance between hydrogen bonding of the drugs with Neusilin and Ostwald ripening determines drug dissolution from solid-dispersion granules upon storage.

  6. Characterization of ternary solid dispersions of itraconazole, PEG 6000, and HPMC 2910 E5.

    Science.gov (United States)

    Janssens, Sandrien; de Armas, Hector Novoa; Roberts, Clive J; Van den Mooter, Guy

    2008-06-01

    In order to reduce the crystallinity of PEG 6000, blends were prepared by spray drying and extrusion with the following polymers; PVP K25, PVPVA 64, and HPMC 2910 E5. The maximal reduction of crystallinity in PEG 6000 was obtained by co-spray drying with HPMC 2910 E5. In the next step the model drug Itraconazole was added to the blend and the resulting ternary solid dispersions were characterized. The results of this study show that the addition of PEG 6000 to the Itraconazole/HPMC 2910 E5 system leads to phase separation that in most cases gives rise to recrystallization of either PEG 6000 or Itraconazole. For all ternary dispersions containing 20% of Itraconazole the drug was highly amorphous and the dissolution was improved compared to the binary 20/80 w/w Itraconazole/HPMC 2910 E5 solid dispersion. For all ternary dispersions containing 40% of Itraconazole, the drug was partially crystalline and the dissolution was lower than the dissolution of the binary 40/60 w/w Itraconazole/HPMC 2910 E5 dispersion. These results show that provided Itraconazole is highly amorphous the addition of PEG 6000 to HPMC 2910 E5 leads to an increase in drug release.

  7. Solid state amorphization of nanocrystalline nickel by cryogenic laser shock peening

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Chang, E-mail: cye@uakron.edu; Ren, Zhencheng; Zhao, Jingyi; Hou, Xiaoning; Dong, Yalin [Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325 (United States); Liu, Yang; Sang, Xiahan [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-10-07

    In this study, complete solid state amorphization in nanocrystalline nickel has been achieved through cryogenic laser shock peening (CLSP). High resolution transmission electron microscopy has revealed the complete amorphous structure of the sample after CLSP processing. A molecular dynamic model has been used to investigate material behavior during the shock loading and the effects of nanoscale grain boundaries on the amorphization process. It has been found that the initial nanoscale grain boundaries increase the initial Gibbs free energy before plastic deformation and also serve as dislocation emission sources during plastic deformation to contribute to defect density increase, leading to the amorphization of pure nanocrystalline nickel.

  8. Multivariate Quantification of the Solid State Phase Composition of Co-Amorphous Naproxen-Indomethacin

    DEFF Research Database (Denmark)

    Beyer, Andreas; Grohganz, Holger; Löbmann, Korbinian

    2015-01-01

    regression approach that enables the simultaneous determination of up to four solid state fractions: crystalline naproxen, γ-indomethacin, α-indomethacin as well as co-amorphous naproxen-indomethacin. For this purpose, a calibration set that covers the whole range of possible combinations of the four...... four solid state phases, involving one co-amorphous phase, can be quantified with this XRPD data-based approach....

  9. Preparation and characterization of solid dispersion freeze-dried efavirenz – polyvinylpyrrolidone K-30

    Science.gov (United States)

    Fitriani, Lili; Haqi, Alianshar; Zaini, Erizal

    2016-01-01

    The aim of this research is to prepare and characterize solid dispersion of efavirenz – polyvinylpyrrolidone (PVP) K-30 by freeze drying to increase its solubility. Solid dispersion of efavirenz – PVP K-30 was prepared by solvent evaporation method with ratio 2:1, 1:1, and 1:2 and dried using a freeze dryer. Characterizations were done by scanning electron microscopy (SEM), powder X-ray diffraction analysis, differential thermal analysis (DTA), and Fourier transform infrared (FT-IR) spectroscopy. Solubility test was carried out in CO2-free distilled water, and efavirenz assay was conducted using high-performance liquid chromatography with acetonitrile:acetic acid (80:20) as the mobile phases. Powder X-ray diffractogram showed a decrease in the peak intensity, which indicated the crystalline altered to amorphous phase. DTA thermal analysis showed a decrease in the melting point of the solid dispersion compared to intact efavirenz. SEM results indicated the changes in the morphology of the crystal into an amorphous form compared to pure components. FT-IR spectroscopy analysis showed a shift wavenumber of the spectrum efavirenz and PVP K-30. The solubility of solid dispersion at ratio 2:1, 1:1, and 1:2 was 6.777 μg/mL, 6.936 μg/mL, and 14,672 μg/mL, respectively, whereas the solubility of intact efavirenz was 0.250 μg/mL. In conclusion, the solubility of solid dispersion increased significantly (P < 0.05). PMID:27429930

  10. Studies on mechanism of enhanced dissolution of albendazole solid dispersions with crystalline carriers

    Directory of Open Access Journals (Sweden)

    Kalaiselvan R

    2006-01-01

    Full Text Available The main purpose of this research was to study the mechanism of drug release from solid dispersions of albendazole, giving special emphasis to particle size of the drug in solid dispersions. Solid dispersions were prepared using three different carriers, mixing ratios and methods in an attempt to improve the solubility and dissolution rate of albendazole. The mechanism of enhanced dissolution was investigated by a novel dissolution technique as an adjunct to phase solubility study, wettability test, differential scanning calorimetry, X-ray diffractometry, infrared spectroscopy and scanning electron microscopy. The solubility of albendazole was greater with albendazole-poloxamer 407 system, while polyethylene glycol dispersions showed predominant wettability. Physical mixtures showed enhanced dissolution compared with the pure drug, due to improved wetting and solubilization of drug in the diffusion layer offering carrier-rich microenvironment. Preparation of solid dispersion further improved the dissolution compared to the physical mixture, owing to increased surface area for mass transfer, thermodynamically enhanced dissolution of a higher energy amorphous form from the carrier, in addition to improved wetting and solubilization. All carriers showed comparable degree of drug particle size reduction, whereas mixing ratio and method of preparation substantially affected the particle size. Intermolecular association of drug with the carrier led to inhibition of drug recrystallization.

  11. Using DVS-NIR to assess the water sorption behaviour and stability of a griseofulvin/PVP K30 solid dispersion.

    Science.gov (United States)

    Li, Wanjing; Buckton, Graham

    2015-11-30

    The purpose of this work was to investigate the distribution of water in a physically unstable amorphous solid dispersion (polyvinylpyrrolidone (PVP) and griseofulvin (as a model hydrophobic drug)), both as the sample absorbs water and during prolonged exposure to elevated humidity by use of dynamic vapour sorption combined with near infrared (DVS-NIR). The solid dispersion absorbed much less water than the sum of the water sorption of the individual components. This suggests that griseofulvin hindered PVP from absorbing water through the formation of the solid dispersion. Prolonged storage of the solid dispersion at 75% RH resulted in no significant mass change. Whilst this would usually be interpreted as the absence of crystallization, the NIR spectra demonstrated that crystallization occurred. The reason for the lack of a weight loss was that the expelled water from amorphous griseofulvin was sorbed by PVP, meaning that as the dispersion was broken by the crystallisation of griseofulvin, the PVP was once again free to sorb water (in line with the higher water sorption shown by PVP alone, and in contrast with the lower sorption of water by the solid dispersion). As water is a key factor in the physical stability of amorphous systems, understanding how and where water is absorbed and how this is liable to change is an important advance and offers promise in understanding the mechanism of stabilisation of solid dispersions, and therefore may be useful to predict the stability of new API dispersions.

  12. Comparison of spray drying, electroblowing and electrospinning for preparation of Eudragit E and itraconazole solid dispersions.

    Science.gov (United States)

    Sóti, Péter Lajos; Bocz, Katalin; Pataki, Hajnalka; Eke, Zsuzsanna; Farkas, Attila; Verreck, Geert; Kiss, Éva; Fekete, Pál; Vigh, Tamás; Wagner, István; Nagy, Zsombor K; Marosi, György

    2015-10-15

    Three solvent based methods: spray drying (SD), electrospinning (ES) and air-assisted electrospinning (electroblowing; EB) were used to prepare solid dispersions of itraconazole and Eudragit E. Samples with the same API/polymer ratios were prepared in order to make the three technologies comparable. The structure and morphology of solid dispersions were identified by scanning electron microscopy and solid phase analytical methods such as, X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and Raman chemical mapping. Moreover, the residual organic solvents of the solid products were determined by static headspace-gas chromatography/mass spectroscopy measurements and the wettability of samples was characterized by contact angle measurement. The pharmaceutical performance of the three dispersion type, evaluated by dissolution tests, proved to be very similar. According to XRPD and DSC analyses, made after the production, all the solid dispersions were free of any API crystal clusters but about 10 wt% drug crystallinity was observed after three months of storage in the case of the SD samples in contrast to the samples produced by ES and EB in which the polymer matrix preserved the API in amorphous state.

  13. Fabrication and Characterization of Cefopodoxime Proxetil Solid Dispersion for Solubility Enhancement

    Directory of Open Access Journals (Sweden)

    Sushma Gupta

    2014-10-01

    Full Text Available Cefopodoxime Proxetil belongs to BCS class IV and used in treatment of upper respiratory tract and urinary tract infections. Solid dispersions (SDs are one of the most promising strategies to improve the solubility, dissolution and ultimately oral bioavailability of such poorly water soluble drugs. The main objective of the present research was to formulate Cefopodoxime Proxetil solid dispersion employing two methods namely hot melt granulation and solvent evaporation method. The PEG 4000 and PEG 6000 were used as carrier in varied proportion (1:1, 1:2, 1:3 and 1:4 w/w. Results of FT-IR spectra revealed no potential chemical incompatibility between drug and excipients. Enhancement in the percent drug released and dissolution rate was observed in SD of PEG 6000 as to PEG 4000 and pure drug. Drug release kinetics studies revealed that the drug release from the formulations followed non-fickian diffusion and the best fitted model for drug release for Korsmeyer Peppas Model. No sharp peaks were observed in both solid dispersions (comprising PEG 4000 & PEG 6000 in PXRD spectra revealing the formation of amorphous product. Similar results were observed in DSC studies indicating disappearance of sharp fusion endothermic peak i.e. conversion of crystalline form into amorphous form. These results were further supported by SEM studies showing disappearance of crystal habit in these formulations.

  14. Spray Drying: A Approach for Solubility Enhancement of Ritonavir by Solid Dispersion

    Directory of Open Access Journals (Sweden)

    Karva G. S.

    2015-07-01

    Full Text Available The aim of present work was to improve the dissolution rate of Ritonavir by preparing micro-particles with certain hydrophilic polymers via spray drying technique. Role of spray drying method was studied for solubility enhancement of poorly aqueous soluble model Ritonavir using solid dispersion approach. All the carriers showed dissolution improvement vis-à-vis pure drug in varying degrees. The solid dispersions were characterized in comparison with pure drug and corresponding Physical mixture (PM. The prepared solid dispersion were evaluated by drug content analysis, saturation solubility, DSC (Differential scanning calorimeter, SEM (Scanning electron microscopy, PXRD (Powder X-ray diffraction, FTIR (Fourier transform infrared spectroscopy.and in vitro drug release. Absence of pure drug peaks in PXRD suggests transformation of crystalline drug into an amorphous form. The transformation of Ritonavir from crystalline to amorphous state by spray drying and the hydrophilic coating of drug particles by the polymers are considered for improvement of Solubility and dissolution of Ritonavir.

  15. Characterization and physical stability of spray dried solid dispersions of probucol and PVP-K30.

    Science.gov (United States)

    Thybo, Pia; Pedersen, Betty L; Hovgaard, Lars; Holm, Rene; Mullertz, Anette

    2008-01-01

    The main purpose of this study was to obtain stable, well-characterized solid dispersions (SDs) of amorphous probucol and polyvinylpyrrolidone K-30 (PVP-K30) with improved dissolution rates. A secondary aim was to investigate the flow-through dissolution method for in-vitro dissolution measurements of small-sized amorphous powders dispersed in a hydrophilic polymer. SDs were prepared by spray drying solutions of probucol and different amounts of PVP-K30. The obtained SDs were characterized by dissolution rate measurements in a flow-through apparatus, X-ray Powder Diffraction (XRPD), Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), particle sizing (laser diffraction) and Brunauer-Emmett-Teller Method (BET) and results were compared with starting material and a physical mixture. The physical stability was monitored after storage at 25 degrees C and 60% RH for up to 12 weeks. The flow-through method was found suitable as dissolution method. All SDs showed improved in-vitro dissolution rates when compared to starting material and physical mixtures. The greatest improvement in the in-vitro dissolution rate was observed for the highest polymer to drug ratio. By means of the results from XRPD and DSC, it was argued that the presence of amorphous probucol improved the dissolution rate, but the amorphous state could not fully account for the difference in dissolution profiles between the SDs. It was suggested that the increase in surface area due to the reduction in particle size contributed to an increased dissolution rate as well as the presence of PVP-K30 by preventing aggregation and drug re-crystallization and by improving wettability during dissolution. The stabilizing effect of the polymer was verified in the solid state, as all the SDs retained probucol in the amorphous state throughout the entire length of the stability study.

  16. Characterization and physical stability of tolfenamic acid-PVP K30 solid dispersions.

    Science.gov (United States)

    Thybo, Pia; Kristensen, Jakob; Hovgaard, Lars

    2007-01-01

    Obtaining a stable formulation with high bioavailability of a poorly water-soluble drug often presents a challenge to the formulation scientist. Transformation of the drug into its more soluble high-energy amorphous form is one method used for improving the dissolution rate of such compounds. The present study uses the spray-drying technique for preparation of solid dispersions (SDs) of tolfenamic acid (TA) and polyvinylpyrrolidone K-30 (PVP). The SDs and TA in the form of a spray-dried powder were initially characterized and compared with a physical mixture and starting materials. Stability of the SDs was monitored over 12 weeks at 25 degrees C and 60% RH. XRPD studies revealed changes in solid state during the formation of the SDs and indicated the presence of TA in the amorphous state. FTIR, together with TGA, suggested molecular interactions (hydrogen-bonding) in the SDs. Dissolution studies proved an increase in the dissolution rate of TA from all SDs. The SDs with higher content of PVP retained TA in the amorphous state throughout the stability study. However, SDs with lower content showed recrystallization of TA after 1 week. Thus, this study reveals the possibility of preparing stable SDs of amorphous TA in PVP with improved dissolution rate.

  17. Effect of hydroxypropylcellulose and Tween 80 on physicochemical properties and bioavailability of ezetimibe-loaded solid dispersion.

    Science.gov (United States)

    Rashid, Rehmana; Kim, Dong Wuk; Din, Fakhar Ud; Mustapha, Omer; Yousaf, Abid Mehmood; Park, Jong Hyuck; Kim, Jong Oh; Yong, Chul Soon; Choi, Han-Gon

    2015-10-05

    The purpose of this research was to evaluate the effect of the HPC (hydroxypropylcellulose) and Tween 80 on the physicochemical properties and oral bioavailability of ezetimibe-loaded solid dispersions. The binary solid dispersions were prepared with drug and various amounts of HPC. Likewise, ternary solid dispersions were prepared with different ratios of drug, HPC and Tween 80. Both types of solid dispersions were prepared using the solvent evaporation method. Their aqueous solubility, physicochemical properties, dissolution and oral bioavailability were investigated in comparison with the drug powder. All the solid dispersions significantly improved the drug solubility and dissolution. As the amount of HPC increased in the binary solid dispersions to 10-fold, the drug solubility and dissolution were increased accordingly. However, further increase in HPC did not result in significant differences among them. Similarly, up to 0.1-fold, Tween 80 increased the drug solubility in the ternary solid dispersions followed by no significant change. However, Tween 80 hardly affected the drug dissolution. The physicochemical analysis proved that the drug in binary and ternary solid dispersion was existed in the amorphous form. The particle-size measurements of these formulations were also not significantly different from each other, which showed that Tween 80 had no impact on physicochemical properties. The ezetimibe-loaded binary and ternary solid dispersions gave 1.6- and 1.8-fold increased oral bioavailability in rats, respectively, as compared to the drug powder; however, these values were not significantly different from each other. Thus, HPC greatly affected the solubility, dissolution and oral bioavailability of drug, but Tween 80 hardly did. Furthermore, this ezetimibe-loaded binary solid dispersion prepared only with HPC would be suggested as a potential formulation for oral administration of ezetimibe.

  18. Itraconazole/TPGS/Aerosil200 solid dispersions: characterization, physical stability and in vivo performance.

    Science.gov (United States)

    Van Eerdenbrugh, Bernard; Van Speybroeck, Michiel; Mols, Raf; Houthoofd, Kristof; Martens, Johan A; Froyen, Ludo; Van Humbeeck, Jan; Augustijns, Patrick; Van den Mooter, Guy

    2009-10-01

    Solid dispersions were successfully prepared by co-spray-drying of TPGS-stabilized itraconazole nanosuspensions with Aerosil200, followed by heat treatment of the powders. The itraconazole/Aerosil200 weight ratios amounted to 50/50, 30/70, 40/60 and 20/80. The itraconazole content of the powders was close to the expected value, with relative errors between 0.3% and 7.8%. X-ray powder diffraction (XRPD), solid state NMR (SSNMR) and differential scanning calorimetry (DSC) evaluation on the powders revealed the formation of amorphous itraconazole and the absence of glassy itraconazole. Dissolution of the powders was enhanced compared to crystalline and glassy itraconazole (a 2-dimensional structured form of itraconazole). However, no clear trend could be observed between drug loading and dissolution performance of the solid dispersions. Upon storage, conversion to crystalline itraconazole was observed for the 50/50 powder based on XRPD, SSNMR and DSC measurements. Although the 40/60 powder remained X-ray amorphous upon storage, DSC did reveal that a small fraction (7.5+/-1.6% after 10 months of storage) of itraconazole crystallized upon storage. For the 30/70 and 20/80 dispersions, no crystallization could be seen. After 10 months of storage, important changes in the dissolution behavior of the powders were observed. A decrease in dissolution performance was seen for the 50/50 dispersion, which could be attributed to the crystallization of itraconazole. On the other hand, the 40/60, 30/70 and 20/80 dispersions showed an increase in dissolution rate (more than 60% after 10 min). Although not completely clear at this stage, adsorption of itraconazole onto the Aerosil200 surface during storage might be responsible for this behavior. Finally, in vivo experiments were performed in the rat. Oral bioavailability of the 30/70 dispersion was, although lower compared to the marketed Sporanox formulation, significantly enhanced compared to the crystalline drug.

  19. Enhancement of dissolution of Telmisartan through use of solid dispersion technique surface solid dispersion

    Directory of Open Access Journals (Sweden)

    Bhumika Patel

    2012-01-01

    Full Text Available The present study was aimed to increase the solubility of the poorly water soluble drug Telmisartan by using Surface solid dispersion (SSD made of polymers like Poloxamer 407, PEG 6000 by Solvent evaporation method. The drug was solubilized by surfactants and/or polymers then adsorbed onto the surface of extremely fine carriers to increase its surface area and to form the SSD which give the more Surface area for absorption of the drug. A 2 2 full factorial design was used to investigate for each carrier the joint influence of formulation variables: Amount of carrier and adsorbent. Saturation solubility studies shows the improvement in solubility of drug batch SSD 8 give more solubility improvement than the other batch, in-vitro dissolution of pure drug, physical mixtures and SSDs were carried out in that SSDs were found to be effective in increasing the dissolution rate of Telmisartan in form of SSD when compared to pure drug. Also FT-IR spectroscopy, differential scanning calorimetry and X-ray diffractometry studies were carried out in order to characterize the drug and Surface solid dispersion. Furthermore, both DSC and X-ray diffraction showed a decrease in the melting enthalpy and reduced drug crystallinity consequently in SSDs. However, infrared spectroscopy revealed no drug interactions with the carriers.

  20. Effect of particle shape on the random packing density of amorphous solids

    NARCIS (Netherlands)

    Kyrylyuk, A.V.; Philipse, A.P.

    2011-01-01

    The packing density of a particulate solid strongly depends on the shape of the particles that are jammed at random close packing (RCP). To investigate the effect of particle shape on the RCP density of an amorphous solid, we studied jammed packings of binary mixtures of a-thermal or granular sphero

  1. Disorder-assisted melting and the glass transition in amorphous solids

    Science.gov (United States)

    Zaccone, Alessio; Terentjev, Eugene

    2013-03-01

    The mechanical response of solids depends on temperature because the way atoms and molecules respond collectively to deformation is affected at various levels by thermal motion. This is a fundamental problem of solid state science and plays a crucial role in metallurgy, aerospace engineering, energy. In disordered solids (glass, amorphous semiconductors, ceramics, metallic glass, polymers) the vanishing of rigidity as a function of temperature is not well understood because continuum elasticity is inapplicable due to the disorder leading to nontrivial (nonaffine) components in the atomic displacements. Our theory explains the basic mechanism of the melting transition of amorphous solids in terms of the lattice energy lost to nonaffine motion, compared to which thermal vibrations turn out to play a negligible role. The theory is in good agreement with data on melting of amorphous polymers (where no alternative theory can be found in the literature) and offers new opportunities in materials science.

  2. Physicochemical characterization and solubility enhancement studies of allopurinol solid dispersions

    Directory of Open Access Journals (Sweden)

    Jagdale Swati Changdeo

    2011-09-01

    Full Text Available Allopurinol is a commonly used drug in the treatment of chronic gout or hyperuricaemia associated with treatment of diuretic conditions. One of the major problems with the drug is that it is practically insoluble in water, which results in poor bioavailability after oral administration. In the present study, solid dispersions of allopurinol were prepared by solvent evaporation, kneading method, co-precipitation method, co-grinding method and closed melting methods to increase its water solubility. Hydrophilic carriers such as polyvinylpyrrolidone, polyethylene glycol 6000 were used in the ratio of 1:1, 1:2 and 1:4 (drug to carrier ratio. The aqueous solubility of allopurinol was favored by the presence of both polymers. These new formulations were characterized in the liquid state by phase solubility studies and in the solid state by differential scanning calorimetry, powder X-ray diffraction, UV and Fourier Transform Infrared spectroscopy. Solid state characterizations indicated that allopurinol was present as an amorphous material and entrapped in polymer matrix. In contrast to the very slow dissolution rate of pure allopurinol, the dispersion of the drug in the polymers considerably enhanced the dissolution rate. Solid dispersion prepared with polyvinylpyrrolidone showed highest improvement in wettability and dissolution rate of allopurinol. Mathematical modeling of in vitro dissolution data indicated the best fitting with Korsemeyer-Peppas model and the drug release kinetics primarily as Non-Fickian diffusion. Therefore, the present study showed that polyvinylpyrrolidone and polyethylene glycol 6000 have a significant solubilizing effect on allopurinol.Alopurinol é fármaco comumente utilizado no tratamento de gota crônica ou hiperuricemia associada com o tratamento em condições diuréticas. Um dos maiores problemas com o fármaco é que este é praticamente insolúvel em água, o que resulta em baixa biodisponibilidade na administra

  3. Evaluation of the recrystallization kinetics of hot-melt extruded polymeric solid dispersions using an improved Avrami equation.

    Science.gov (United States)

    Feng, Xin; Ye, Xingyou; Park, Jun-Bom; Lu, Wenli; Morott, Joe; Beissner, Brad; Lian, Zhuoyang John; Pinto, Elanor; Bi, Vivian; Porter, Stu; Durig, Tom; Majumdar, Soumyajit; Repka, Michael A

    2015-01-01

    The recrystallization of an amorphous drug in a solid dispersion system could lead to a loss in the drug solubility and bioavailability. The primary objective of the current research was to use an improved kinetic model to evaluate the recrystallization kinetics of amorphous structures and to further understand the factors influencing the physical stability of amorphous solid dispersions. Amorphous solid dispersions of fenofibrate with different molecular weights of hydroxypropylcellulose, HPC (Klucel™ LF, EF, ELF) were prepared utilizing hot-melt extrusion technology. Differential scanning calorimetry was utilized to quantitatively analyze the extent of recrystallization in the samples stored at different temperatures and relative humidity (RH) conditions. The experimental data were fitted into the improved kinetics model of a modified Avrami equation to calculate the recrystallization rate constants. Klucel LF, the largest molecular weight among the HPCs used, demonstrated the greatest inhibition of fenofibrate recrystallization. Additionally, the recrystallization rate (k) decreased with increasing polymer content, however exponentially increased with higher temperature. Also k increased linearly rather than exponentially over the range of RH studied.

  4. Discovery of homogeneously dispersed pentacoordinated Al(V) species on the surface of amorphous silica-alumina

    CERN Document Server

    Wang, Zichun; Yi, Xianfeng; Zhou, Cuifeng; Rawal, Aditya; Hook, James; Liu, Zongwen; Deng, Feng; Zheng, Anmin; Baiker, Alfons; Huang, Jun

    2016-01-01

    The dispersion and coordination of aluminium species on the surface of silica-alumina based materials are essential for controlling their catalytic activity and selectivity. Al(IV) and Al(VI) are two common coordinations of Al species in the silica network and alumina phase, respectively. Al(V) is rare in nature and was found hitherto only in the alumina phase or interfaces containing alumina, a behavior which negatively affects the dispersion, population, and accessibility of Al(V) species on the silica-alumina surface. This constraint has limited the development of silica-alumina based catalysts, particularly because Al(V) had been confirmed to act as a highly active center for acid reactions and single-atom catalysts. Here, we report the direct observation of high population of homogenously dispersed Al(V) species in amorphous silica-alumina in the absence of any bulk alumina phase, by high resolution TEM/EDX and high magnetic-field MAS NMR. Solid-state 27Al multi-quantum MAS NMR experiments prove unambigu...

  5. Solid solution and amorphous phase in Ti–Nb–Ta–Mn systems synthesized by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzman, P. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Parra, C. [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Bejar, L. [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia C.P. 58000, Michoacán (Mexico); Medina, A. [Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C.P. 58000, Michoacán (Mexico); Guzman, D. [Departamento de Metalurgia, Universidad de Atacama, Av. España 485, Copiapó (Chile)

    2016-06-15

    This work discusses the formation of Ti–30Nb–13Ta–xMn (x: 2, 4 and 6 wt%) solid solution by mechanical alloying using a shaker mill. A solid solution was formed after 15 h of milling and an amorphous phase was formed after 30 h of milling, according to X-ray diffraction results. Disappearance of strongest X-ray diffraction peaks of Nb, Ta and Mn indicated the formation of solid solution, while, X-ray diffraction patterns of powders milled for 30 h showed an amorphous hump with crystalline peaks in the angular range of 35–45° in 2θ. TEM image analysis showed the presence of nanocrystalline intermetallic compounds embedded in an amorphous matrix. Mn{sub 2}Ti, MnTi and NbTi{sub 4} intermetallic compounds were detected and revealed crystallites with size ranging from 3 to 20 nm. The Gibbs free energy for the formation of solid solution and amorphous phase of three ternary systems (Ti–Nb–Ta, Ti–Nb–Mn and Ti–Ta–Mn) was calculated using extended Miedema's model. Experimental and thermodynamic data confirmed that solid solution was first formed in the alloy with 6wt% Mn followed by the formation of an amorphous phase as milling time increases. The presence of Mn promoted the formation of amorphous phase because the atomic radius difference between Mn with Ti, Nb and Ta. - Highlights: • Thermodynamics analysis of extension of solid solution of the Ti–Nb–Ta–Mn system. • Formation of amorphous phase and intermetallic compounds were observed. • Nanocrystalline intermetallic compounds were formed with the sizes between 3 and 20 nm.

  6. Effect of milling conditions on solid-state amorphization of glipizide, and characterization and stability of solid forms.

    Science.gov (United States)

    Xu, Kailin; Xiong, Xinnuo; Zhai, Yuanming; Wang, Lili; Li, Shanshan; Yan, Jin; Wu, Di; Ma, Xiaoli; Li, Hui

    2016-09-10

    In this study, the amorphization of glipizide was systematically investigated through high-energy ball milling at different temperatures. The results of solid-state amorphization through milling indicated that glipizide underwent direct crystal-to-glass transformation at 15 and 25°C and crystal-to-glass-to-crystal conversion at 35°C; hence, milling time and temperature had significant effects on the amorphization of glipizide, which should be effectively controlled to obtain totally amorphous glipizide. Solid forms of glipizide were detailedly characterized through analyses of X-ray powder diffraction, morphology, thermal curves, vibrational spectra, and solid-state nuclear magnetic resonance. The physical stability of solid forms was investigated under different levels of relative humidity (RH) at 25°C. Forms I and III are kinetically stable and do not form any new solid-state forms at various RH levels. By contrast, Form II is kinetically unstable, undergoing direct glass-to-crystal transformation when RH levels higher than 32.8%. Therefore, stability investigation indicated that Form II should be stored under relatively dry conditions to prevent rapid crystallization. High temperatures can also induce the solid-state transformation of Form II; the conversion rate increased with increasing temperature.

  7. XAFS Study on Solid State Amorphization of Alloys by Mechanical Alloying

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Structural evolution of alloys by ball-milling during solid stateamorphization were studied by means of XAFS technique. The first one is amorphization process of Fe and B powder mixtures by mechanical alloying (MA), and the second one is amorphization process of ordered B2 CoZr intermetallic compound by mechanical milling (MM). The mixing process of Fe and B and disintegration process of ordered B2 CoZr intermetallic compound crystal were observed clearly in atomic level by XAFS method. The micro-mechanism of amorphization process of alloy by ball-milling was discussed.

  8. Interaction of Puerarin with Phospholipid in Solid Dispersion

    Institute of Scientific and Technical Information of China (English)

    ZHAIGuang-xi; LOUHong-xiang; BIDian-zhou; ZOULi-jia

    2003-01-01

    Aim:To study the interaction of puerarin(PU) with phospholipid(PL)in solid dispersion.Methods:PU/PL solid dispersion was prepared with solvent evaporation and the interaction between PU and PL was studied by analysis of their ultraviolet spectra,infrared spectra,1H NMR spectra and thin layer chromatogram.Results:In chloroform the maximum absorption peak of pu in PU/PL mixture was located at 243nm,but 251nm for that of PU in solid dispersion.Howerver in methanol,QU in mixture or solid dispersion had the same maximum absorption peak location in ultraviolet spectra.Compared with the infrared spectra of mixture,that of solid dispersion showed the specific absorption peak location of berzene ring framework in PU molecule was markedly changed,the stretching vibration peak of P=O in PL molecule was shifted to high wavernumbers and the stretching vibration peak of C=C in PL molecule was disappeared.In 1H NMR spectra,most of the signals form PU in solid dispersion were weaken markedly or disappeared and the signals from the polar part of PL molecule were significantly changed.PU and PL in solid dispersion could be spearated on silica gel plate with the mixed solvent of chloroform,methanol and water (65:25:5)or ethyl acetate and methanol(10:1).Conclusion:In solid dispersion the benzene ring framework of PU molecule could act with the polar part and unsaturated part of PL molecule through charges transfer,and the interacted part could be surrounded by fat chains of PL molecule.

  9. Design and performance of felodipine-based solid dispersions

    OpenAIRE

    Langham, Zoe A.

    2011-01-01

    In recent years the pharmaceutical industry has seen a rise in the number of drug compounds with low aqueous solubility, and consequently poor oral bioavailablility. One potential solution to this problem is to formulate such compounds as solid dispersions, whereby the drug is dispersed in a carrier matrix in the solid state. In this thesis, the hypothesis that a number of drug-drug and drug-polymer intermolecular interactions influence the physical stability and dissolution performance o...

  10. Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process

    Directory of Open Access Journals (Sweden)

    Kim MS

    2011-11-01

    Full Text Available Min-Soo Kim1, Jeong-Soo Kim1, Hee Jun Park1, Won Kyung Cho1,3, Kwang-Ho Cha1,3, Sung-Joo Hwang2,31College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea, 2College of Pharmacy, 3Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of KoreaBackground: The aim of this study was to improve the physicochemical properties and bioavailability of poorly water-soluble sirolimus via preparation of a solid dispersion of nanoparticles using a supercritical antisolvent (SAS process.Methods: First, excipients for enhancing the stability and solubility of sirolimus were screened. Second, using the SAS process, solid dispersions of sirolimus-polyvinylpyrrolidone (PVP K30 nanoparticles were prepared with or without surfactants such as sodium lauryl sulfate (SLS, tocopheryl propylene glycol succinate, Sucroester 15, Gelucire 50/13, and Myrj 52. A mean particle size of approximately 250 nm was obtained for PVP K30-sirolimus nanoparticles. Solid state characterization, kinetic solubility, powder dissolution, stability, and pharmacokinetics were analyzed in rats.Results: X-ray diffraction, differential scanning calorimetry, and high-pressure liquid chromatography indicated that sirolimus existed in an anhydrous amorphous form within a solid dispersion of nanoparticles and that no degradation occurred after SAS processing. The improved supersaturation and dissolution of sirolimus as a solid dispersion of nanoparticles appeared to be well correlated with enhanced bioavailability of oral sirolimus in rats. With oral administration of a solid dispersion of PVP K30-SLS-sirolimus nanoparticles, the peak concentration and AUC0→12h of sirolimus were increased by approximately 18.3-fold and 15.2-fold, respectively.Conclusion: The results of this study suggest that preparation of PVP K30-sirolimus-surfactant nanoparticles using the SAS process may be a promising approach for improving the bioavailability of sirolimus

  11. Physicochemical properties of tadalafil solid dispersions - Impact of polymer on the apparent solubility and dissolution rate of tadalafil.

    Science.gov (United States)

    Wlodarski, K; Sawicki, W; Haber, K; Knapik, J; Wojnarowska, Z; Paluch, M; Lepek, P; Hawelek, L; Tajber, L

    2015-08-01

    To improve solubility of tadalafil (Td), a poorly soluble drug substance (3μg/ml) belonging to the II class of the Biopharmaceutical Classification System, its six different solid dispersions (1:1, w/w) in the following polymers: HPMC, MC, PVP, PVP-VA, Kollicoat IR and Soluplus were successfully produced by freeze-drying. Scanning electron microscopy showed a morphological structure of solid dispersions typical of lyophilisates. Apparent solubility and intrinsic dissolution rate studies revealed the greatest, a 16-fold, increase in drug solubility (50μg/ml) and a significant, 20-fold, dissolution rate enhancement for the Td/PVP-VA solid dispersion in comparison with crystalline Td. However, the longest duration of the supersaturation state in water (27μg/ml) over 24h was observed for the Td solid dispersion in HPMC. The improved dissolution of Td from Td/PVP-VA was confirmed in the standard dissolution test of capsules filled with solid dispersions. Powder X-ray diffraction and thermal analysis showed the amorphous nature of these binary systems and indicated the existence of dispersion at the molecular level and its supersaturated character, respectively. Nevertheless, as evidenced by film casting, the greatest ability to dissolve Td in polymer was determined for PVP-VA. The crystallization tendency of Td dispersed in Kollicoat IR could be explained by the low Tg (113°C) of the solid dispersion and the highest difference in Hansen solubility parameters (6.8MPa(0.5)) between Td and the polymer, although this relationship was not satisfied for the partially crystalline dispersion in PVP. Similarly, no correlation was found between the strength of hydrogen bonds investigated using infrared spectroscopy and the physical stability of solid dispersions or the level of supersaturation in aqueous solution.

  12. Formulation, Characterization, and in Vivo Evaluation of Celecoxib-PVP Solid Dispersion Nanoparticles Using Supercritical Antisolvent Process

    Directory of Open Access Journals (Sweden)

    Eun-Sol Ha

    2014-12-01

    Full Text Available The aim of this study was to develop celecoxib-polyvinylpyrrolidone (PVP solid dispersion nanoparticles with and without surfactant using the supercritical antisolvent (SAS process. The effect of different surfactants such as gelucire 44/14, poloxamer 188, poloxamer 407, Ryoto sugar ester L1695, and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS on nanoparticle formation and dissolution as well as oral absorption of celecoxib-PVP K30 solid dispersion nanoparticles was investigated. Spherical celecoxib solid dispersion nanoparticles less than 300 nm in size were successfully developed using the SAS process. Analysis by differential scanning calorimetry and powder X-ray diffraction showed that celecoxib existed in the amorphous form within the solid dispersion nanoparticles fabricated using the SAS process. The celecoxib-PVP-TPGS solid dispersion nanoparticles significantly enhanced in vitro dissolution and oral absorption of celecoxib relative to that of the unprocessed form. The area under the concentration-time curve (AUC0→24 h and peak plasma concentration (Cmax increased 4.6 and 5.7 times, respectively, with the celecoxib-PVP-TPGS formulation. In addition, in vitro dissolution efficiency was well correlated with in vivo pharmacokinetic parameters. The present study demonstrated that formulation of celecoxib-PVP-TPGS solid dispersion nanoparticles using the SAS process is a highly effective strategy for enhancing the bioavailability of poorly water-soluble celecoxib.

  13. Formulation, characterization, and in vivo evaluation of celecoxib-PVP solid dispersion nanoparticles using supercritical antisolvent process.

    Science.gov (United States)

    Ha, Eun-Sol; Choo, Gwang-Ho; Baek, In-Hwan; Kim, Min-Soo

    2014-12-04

    The aim of this study was to develop celecoxib-polyvinylpyrrolidone (PVP) solid dispersion nanoparticles with and without surfactant using the supercritical antisolvent (SAS) process. The effect of different surfactants such as gelucire 44/14, poloxamer 188, poloxamer 407, Ryoto sugar ester L1695, and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) on nanoparticle formation and dissolution as well as oral absorption of celecoxib-PVP K30 solid dispersion nanoparticles was investigated. Spherical celecoxib solid dispersion nanoparticles less than 300 nm in size were successfully developed using the SAS process. Analysis by differential scanning calorimetry and powder X-ray diffraction showed that celecoxib existed in the amorphous form within the solid dispersion nanoparticles fabricated using the SAS process. The celecoxib-PVP-TPGS solid dispersion nanoparticles significantly enhanced in vitro dissolution and oral absorption of celecoxib relative to that of the unprocessed form. The area under the concentration-time curve (AUC0→24 h) and peak plasma concentration (Cmax) increased 4.6 and 5.7 times, respectively, with the celecoxib-PVP-TPGS formulation. In addition, in vitro dissolution efficiency was well correlated with in vivo pharmacokinetic parameters. The present study demonstrated that formulation of celecoxib-PVP-TPGS solid dispersion nanoparticles using the SAS process is a highly effective strategy for enhancing the bioavailability of poorly water-soluble celecoxib.

  14. Multivariate Quantification of the Solid State Phase Composition of Co-Amorphous Naproxen-Indomethacin

    Directory of Open Access Journals (Sweden)

    Andreas Beyer

    2015-10-01

    Full Text Available To benefit from the optimized dissolution properties of active pharmaceutical ingredients in their amorphous forms, co-amorphisation as a viable tool to stabilize these amorphous phases is of both academic and industrial interest. Reports dealing with the physical stability and recrystallization behavior of co-amorphous systems are however limited to qualitative evaluations based on the corresponding X-ray powder diffractograms. Therefore, the objective of the study was to develop a quantification model based on X-ray powder diffractometry (XRPD, followed by a multivariate partial least squares regression approach that enables the simultaneous determination of up to four solid state fractions: crystalline naproxen, γ-indomethacin, α-indomethacin as well as co-amorphous naproxen-indomethacin. For this purpose, a calibration set that covers the whole range of possible combinations of the four components was prepared and analyzed by XRPD. In order to test the model performances, leave-one-out cross validation was performed and revealed root mean square errors of validation between 3.11% and 3.45% for the crystalline molar fractions and 5.57% for the co-amorphous molar fraction. In summary, even four solid state phases, involving one co-amorphous phase, can be quantified with this XRPD data-based approach.

  15. Stabilizing ability of surfactant on physicochemical properties of drug nanoparticles generated from solid dispersions.

    Science.gov (United States)

    Thongnopkoon, Thanu; Puttipipatkhachorn, Satit

    2017-07-01

    This study was aimed to examine the nanoparticle formation from redispersion of binary and ternary solid dispersions. Binary systems are composed of various ratios of glibenclamide (GBM) and polyvinylpyrrolidone K30 (PVP-K30), whereas a constant amount at 2.5%w/w of a surfactant, sodium lauryl sulfate (SLS) or Gelucire44/14 (GLC), was added to create ternary systems. GBM nanoparticles were collected after the systems were dispersed in water for 15 min. The obtained nanoparticles were characterized for size distribution, crystallinity, thermal behavior, molecular structure, and dissolution properties. The results indicated that GBM nanoparticles could be formed when the drug content of the systems was lower than 30%w/w in binary systems and ternary systems containing SLS. The particle size ranged from 200 to 500 nm in diameter with narrow size distribution. The particle size was increased with increasing drug content in the systems. The obtained nanoparticles were spherical and showed the amorphous state. Furthermore, because of being amorphous form and reduced particle size, the dissolution of the generated nanoparticles was markedly improved compared with the GBM powder. In contrast, all the ternary solid dispersions prepared with GLC anomalously provided the crystalline particles with the size ranging over 5 µm and irregular shape. Interestingly, this was irrelevant to the drug content in the systems. These results indicated the ability of GLC to destabilize the polymer network surrounding the particles during particle precipitation. Therefore, this study suggested that drug content, quantity, and type of surfactant incorporated in solid dispersions drastically affected the physicochemical properties of the precipitated particles.

  16. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    Science.gov (United States)

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  17. Preparation and characterization of metoprolol controlled-release solid dispersions.

    Science.gov (United States)

    Varshosaz, Jaleh; Faghihian, Hossein; Rastgoo, Kobra

    2006-01-01

    In recent years, great attention has been paid to using solid dispersions to make sustained-release drugs. The objective of this study is to produce sustained-release systems of metoprolol tartrate using solid dispersion techniques and to evaluate their physicochemical characteristics. The solid dispersions were produced by melting and solvent methods, containing 7%, 15%, or 25% of the drug and different ratios of Eudragit RLPO and RSPO in ratios of 0:10, 3:7, 5:5, 7:3, and 10:0. Drug release profiles were determined by USP XXIII rotating paddle method in phosphate buffer solution (pH 6.8). XRD, DSC, IR, and microscopic observations were performed to evaluate the physical characteristics of solid dispersions. Results showed that the drug release from dispersions was at a slower rate than pure drug and physical mixtures. Moreover, the formulations containing greater ratios of Eudragit RSPO showed slower release rates and smaller DE8% but larger mean dissolution time than those containing greater ratios of Eudragit RLPO. Dispersions with particle size of less than 100 microm containing 7% of metoprolol and Eudragit RL:RS 5:5 (solvent method) and those with the ratio of 3:7 (melting method) had similar release pattern to Lopressor sustained-release tablets by zero-order and Higuchi kinetics, respectively.

  18. Dissolution enhancement of aceclofenac tablet by solid dispersion technique

    Directory of Open Access Journals (Sweden)

    Kiroj Rajbanshi

    2014-04-01

    Full Text Available Present study was carried out to enhace the dissolution rate of poorly water soluble drug Aceclofenac (BCS –II, by solid dispersion technique using different carrier and super disintegrant by Kneading method. Screening of carrier and super disintegrant having better dissolution effect was performed by Placket Burman Design. Carrier that were selected for the study include Hydroxypropyl Beta Cyclodextrin (HPBCD, premix of Lactose and Maize Starch and Mannitol. Similarly, as superdisintegrant, Sodium Starch Glycolate (SSG, Croscarmellose and Crospovidone were selected . Among the carriers and superdisintegrants, Mannitol and Crospovidone showed best effect on dissolution, respectively. For optimizaton of concentration of Mannitol and Crospovidone in solid dispersion, Central Composite Design (CCD was applied for two factor at two level which gave 13 formulation.Tablet were prepared and evaluated for physiochemical properties. Reponse surface plot and contour plot were drawn and an optimum formulation was selected, which contained 114.14 mg of Mannitol and 10.5 mg of Crospovidone. The in-vitro dissolution studies of optimized formulation CCDF8 and the marketed product were carried out in USP Type II apparatus at different time interval of 5,15, 30 and 45 minute at 50 rpm in phosphate buffer, pH 7.5 (0.33M mixed. Solid dispersion was evaluated by FTIR. It showed that the drug was stable in solid dispersion. Hence, Solid dispersion technique can be sucessfully used for the improvement of the dissolution profile of Aceclofenac.

  19. Solid state 31NMR studies of the conversion of amorphous tricalcium phosphate to apatitic tricalcium phosphate.

    Science.gov (United States)

    Roberts, J E; Heughebaert, M; Heughebaert, J C; Bonar, L C; Glimcher, M J; Griffin, R G

    1991-12-01

    The hydrolytic conversion of a solid amorphous calcium phosphate of empirical formula Ca9 (PO4)6 to a poorly crystalline apatitic phase, under conditions where Ca2+ and PO4(3-) were conserved, was studied by means of solid-state magic-angle sample spinning 31P-NMR (nuclear magnetic resonance). Results showed a gradual decrease in hydrated amorphous calcium phosphate and the formation of two new PO4(3-)-containing components: an apatitic component similar to poorly crystalline hydroxyapatite and a protonated PO4(3-), probably HPO4(2-) in a dicalcium phosphate dihydrate (DCPD) brushite-like configuration. This latter component resembles the brushite-like HPO4(2-) component previously observed by 31P-NMR in apatitic calcium phosphates of biological origin. Results were consistent with previous studies by Heughebaert and Montel [18] of the kinetics of the conversion of amorphous calcium phosphate to hydroxyapatite under the same conditions.

  20. Spray coating as a powerful technique in preparation of solid dispersions with enhanced desloratadine dissolution rate.

    Science.gov (United States)

    Kolašinac, Nemanja; Kachrimanis, Kyriakos; Djuriš, Jelena; Homšek, Irena; Grujić, Branka; Ibrić, Svetlana

    2013-07-01

    Solid dispersion systems have been widely used to enhance dissolution rate and oral bioavailability of poorly water-soluble drugs. However, the formulation process development and scale-up present a number of difficulties which has greatly limited their commercial applications. In this study, solid dispersions (SDs) of desloratadine (DSL) with povidone (PVP) and crospovidone (cPVP) were prepared by spray coating technique. The process involved the spray application of 96% ethanol solution of DSL and PVP/cPVP, and subsequent deposition of the coprecipitates onto microcrystalline cellulose pellets during drying by air flow in a mini spray coater. The results from the present study demonstrated that the spray coating process is efficient in preparing SDs with enhanced drug dissolution rate and it is highly efficient in organic solvent removal. Both PVP and cPVP greatly improved drug dissolution rate by SDs, with PVP showing better solubilization capability. Very fast drug dissolution rate is achieved from SDs containing PVP regardless of differences in K grade. SD with smaller particles of cPVP have higher drug dissolution rate in comparison to the cPVP with larger particles. Results from physical state characterization indicate that DSL in SDs exist in the amorphous (high free-energy) state which is probably stabilized by PVP/cPVP. After 6-month accelerated stability study, DSL remains amorphous, while PVP and cPVP act as anti-plasticizing agents, offering efficient steric hindrance for nucleation and crystal growth.

  1. Mathematical model to analyze the dissolution behavior of metastable crystals or amorphous drug accompanied with a solid-liquid interface reaction.

    Science.gov (United States)

    Hirai, Daiki; Iwao, Yasunori; Kimura, Shin-Ichiro; Noguchi, Shuji; Itai, Shigeru

    2017-02-21

    Metastable crystals and the amorphous state of poorly water-soluble drugs in solid dispersions (SDs), are subject to a solid-liquid interface reaction upon exposure to a solvent. The dissolution behavior during the solid-liquid interface reaction often shows that the concentration of drugs is supersaturated, with a high initial drug concentration compared with the solubility of stable crystals but finally approaching the latter solubility with time. However, a method for measuring the precipitation rate of stable crystals and/or the potential solubility of metastable crystals or amorphous drugs has not been established. In this study, a novel mathematical model that can represent the dissolution behavior of the solid-liquid interface reaction for metastable crystals or amorphous drug was developed and its validity was evaluated. The theory for this model was based on the Noyes-Whitney equation and assumes that the precipitation of stable crystals at the solid-liquid interface occurs through a first-order reaction. Moreover, two models were developed, one assuming that the surface area of the drug remains constant because of the presence of excess drug in the bulk and the other that the surface area changes in time-dependency because of agglomeration of the drug. SDs of Ibuprofen (IB)/polyvinylpyrrolidone (PVP) were prepared and their dissolution behaviors under non-sink conditions were fitted by the models to evaluate improvements in solubility. The model assuming time-dependent surface area showed good agreement with experimental values. Furthermore, by applying the model to the dissolution profile, parameters such as the precipitation rate and the potential solubility of the amorphous drug were successfully calculated. In addition, it was shown that the improvement in solubility with supersaturation was able to be evaluated quantitatively using this model. Therefore, this mathematical model would be a useful tool to quantitatively determine the supersaturation

  2. Preparation and characterization of celecoxib solid dispersions; comparison of poloxamer-188 and PVP-K30 as carriers

    Directory of Open Access Journals (Sweden)

    Alireza Homayouni

    2014-05-01

    Full Text Available Objective(s:Solid dispersion formulation is the most promising strategy to improve oral bioavailability of poorly water soluble drugs. The aim of this study was to compare the effect of polyvinylpyrrolidone K30 (PVP and poloxamer-188 (PLX as carrier in solid dispersion formulations of celecoxib (CLX. Materials and Methods: Solid dispersions of CLX:PVP or CLX:PLX were prepared at different ratios (2:1, 1:1, 1:2, 1:4, 1:6 by solvent evaporation and melting methods, respectively. The characterization of samples was performed using differential scanning calorimetery (DSC, X-Ray powder diffraction (XRPD and Fourier transform infrared spectroscopy (FT-IR. The Gordon-Taylor equation was used to estimate the Tg of solid dispersion systems and the possibility of the interaction between CLX and PVP. Also, the dissolution rate of all samples was determined. Results: DSC and XRPD analyses confirmed the presence of amorphous state of drug in solid dispersion systems. FT-IR studies showed CLX could participate in hydrogen bonding with PVP whilst no specific interaction between CLX and PLX was observed. Both PVP and PLX enhanced the dissolution rate of drug in solid dispersion samples. The dissolution rate was dependent on the ratio of drug: carrier. Interestingly, the solid dispersion samples of PLX at 2:1 and 1:1 drug: carrier showed slower dissolution rate than pure CLX, whilst these results were not observed for PVP. Conclusion: The effect of PVP on dissolution rate enhancement was more pronounced compared to the other carrier. Having a higher Tg and more effect on dissolution rate, PVP could be considered as a more suitable carrier compared to PLX in solid dispersion formulation of CLX.

  3. LOW-TEMPERATURE DYNAMICS IN AMORPHOUS SOLIDS - A PHOTON-ECHO STUDY

    NARCIS (Netherlands)

    MEIJERS, HC; WIERSMA, DA

    1994-01-01

    The long-lived stimulated photon echo is put forward as a powerful technique to probe structural dynamics in glasses and other amorphous solids. We present results of optical dephasing measurements on several doped organic glasses (deuterated ethanol, toluene, and triethylamine) and polymers (polyst

  4. Preparation, characterization and in vitro/vivo evaluation of tectorigenin solid dispersion with improved dissolution and bioavailability.

    Science.gov (United States)

    Shuai, Shuping; Yue, Shanlan; Huang, Qingting; Wang, Wei; Yang, Junyi; Lan, Ke; Ye, Liming

    2016-08-01

    The purpose of this study was to develop and evaluate a novel amorphous solid dispersion system for tectorigenin (TG). TG is one of isoflavone aglycones extracted from Iris tectorum and flowers of Pueraria thunbergiana, but its poor water solubility and low membrane permeability have severely restricted the clinical application. To increase the aqueous solubility and oral bioavailability of TG, we prepared the solid dispersions of tectorigenin (TG-SD) using a simple solvent evaporation process with TG, polyvinylpyrrolidone (PVP) and PEG4000 at weight ratio of 7:54:9 after tested in several ratios. The prepared solid dispersions of tectorigenin are duly characterized for drug morphological conversion, in vitro dissolution and in vivo bioavailability. The X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) studies have indicated the morphological conversion of tectorigenin to amorphous form. In vitro release profiles revealed that the % release of TG-SD was achieved 4.35-fold higher than that of the pure drug after 150 min. The oral bioavailability of the solid dispersion in rats was also increased based on AUC0-t and C max of TG-SD, which were 4.8- and 13.1-fold higher than that of TG crystal, respectively. It is worth noting that physical mixture containing TG, PEG4000 and PVP produced a similar level of oral exposure as TG-SD, suggesting that PEG4000 and PVP were able to enhance bioavailability of TG in rats. However, with the reduction of particle size, TG-SD provided the fastest oral absorption compared to physical mixture and pure drug. These results demonstrated that the efficacy of solid dispersions for the enhancement of TG oral bioavailability was by increasing its aqueous solubility and the solid dispersion formulation could be a viable option for enhancing the oral bioavailability of TG.

  5. Development and characterization of an atorvastatin solid dispersion formulation using skimmed milk for improved oral bioavailability

    Directory of Open Access Journals (Sweden)

    Ankush Choudhary

    2012-08-01

    Full Text Available Atorvastatin has low aqueous solubility resulting in low oral bioavailability (12% and thus presents a challenge in formulating a suitable dosage form. To improve the aqueous solubility, a solid dispersion formulation of atorvastatin was prepared by lyophilization utilising skimmed milk as a carrier. Six different formulations were prepared with varying ratios of drug and carrier and the corresponding physical mixtures were also prepared. The formation of a solid dispersion formulation was confirmed by differential scanning calorimetry and X-ray diffraction studies. The optimum drug-to-carrier ratio of 1:9 enhanced solubility nearly 33-fold as compared to pure drug. In vitro drug release studies exhibited a cumulative release of 83.69% as compared to 22.7% for the pure drug. Additionally, scanning electron microscopy studies suggested the conversion of crystalline atorvastatin to an amorphous form. In a Triton-induced hyperlipidemia model, a 3-fold increase in the lipid lowering potential was obtained with the reformulated drug as compared to pure drug. These results suggest that solid dispersion of atorvastatin using skimmed milk as carrier is a promising approach for oral delivery of atorvastatin.

  6. Process optimization and characterization of carvedilol solid dispersion with hydroxypropyl-β-cyclodextrin and tartaric acid

    Energy Technology Data Exchange (ETDEWEB)

    Yuvaraja, K.; Das, Sanjoy Kumar; Khanam, Jasmina [Jadavpur University, Kolkata (India)

    2015-01-15

    The present investigation concerns the experimental design in preparing a solid dispersion of ionized carvedilol with hydroxypropyl-β-cyclodextrin (HPβCD), tartaric acid (TA) by adopting 'kneading technique'. Simplex lattice design has been chosen to develop model equations that correlate the process variables such as HPβCD (mg), TA (mg), and kneading time (min) with the response variables, such as solubility (mg/mL) and drug release (%) from the solid dispersion. Software-generated ANOVA results confirmed the sufficiency of model equations. Results predicted by model equations are in good agreement with that of experimental results. Optimized formulation with variables 'CV: HPβCD: TA-kneading time' (200mg: 689.6mg: 227.6mg-45 min) showed complete drug release (⁓99%) within 15 min and enhanced solubility of 1.89mg/mL. The instrumental analysis (DSC, XRD and FTIR) of the optimized solid dispersion suggests a transformation of crystallinity of drug to amorphous form, due to its complexation with HPβCD. Hence, this combination of drug and carriers suggests an improvement of carvedilol bioavailability.

  7. Realistic inversion of diffraction data for an amorphous solid: The case of amorphous silicon

    Science.gov (United States)

    Pandey, Anup; Biswas, Parthapratim; Bhattarai, Bishal; Drabold, D. A.

    2016-12-01

    We apply a method called "force-enhanced atomic refinement" (FEAR) to create a computer model of amorphous silicon (a -Si) based upon the highly precise x-ray diffraction experiments of Laaziri et al. [Phys. Rev. Lett. 82, 3460 (1999), 10.1103/PhysRevLett.82.3460]. The logic underlying our calculation is to estimate the structure of a real sample a -Si using experimental data and chemical information included in a nonbiased way, starting from random coordinates. The model is in close agreement with experiment and also sits at a suitable energy minimum according to density-functional calculations. In agreement with experiments, we find a small concentration of coordination defects that we discuss, including their electronic consequences. The gap states in the FEAR model are delocalized compared to a continuous random network model. The method is more efficient and accurate, in the sense of fitting the diffraction data, than conventional melt-quench methods. We compute the vibrational density of states and the specific heat, and we find that both compare favorably to experiments.

  8. Surface roughness effects with solid lubricants dispersed in mineral oils

    Science.gov (United States)

    Cusano, C.; Goglia, P. R.; Sliney, H. E.

    1983-01-01

    The lubricating effectiveness of solid-lubricant dispersions are investigated in both point and line contacts using surfaces with both random and directional roughness characteristics. Friction and wear data obtained at relatively low speeds and at room temperature, indicate that the existence of solid lubricants such as graphite, MoS2, and PTFE in a plain mineral oil generally will not improve the effectiveness of the oil as a lubricant for such surfaces. Under boundary lubrication conditions, the friction force, as a function of time, initially depends upon the directional roughness properties of the contacting surfaces irrespective of whether the base oil or dispersions are used as lubricants.

  9. Relating solubility data of parabens in liquid PEG 400 to the behaviour of PEG 4000-parabens solid dispersions.

    Science.gov (United States)

    Unga, Johan; Tajarobi, Farhad; Norder, Ove; Frenning, Göran; Larsson, Anette

    2009-10-01

    The solid state behaviour of polyethylene glycol 4000 (PEG 4000) and dispersions of a homologous series of parabens (methyl- (MP), ethyl- (EP), propyl- (PP) and butyl- (BP)) were examined and compared to the paraben solubility in liquid PEG 400. Dispersions were prepared by co-melting different amounts of paraben (5-80% (w/w)) and PEG 4000 and were studied using a combination of differential scanning calorimetry (DSC) and small and wide angle X-ray diffraction (SAXD/WAXD). Depending on the concentration of parabens in the dispersions, DSC showed melting peaks from folded and unfolded forms of PEG, a eutectic melting and melting of pure parabens. The fraction of folded PEG increased and the melting temperatures of both PEG forms decreased with increasing paraben content. In an apparent phase diagram of PP-PEG dispersions a eutectic mixture appeared above 5% PP. In addition, a melting peak corresponding to the paraben appeared for dispersion containing more than 60% PP. Similar phase diagrams were shown for the other parabens. The SAXD data and a 1D correlation function analysis revealed that MP and BP were incorporated into the amorphous domains of the lamellae of solid PEG to a higher degree than EP and PP. In addition, the lamellae thickness of PEG and the fraction of amorphous domains increased more for MP and BP compared to EP and PP. BP showed the highest solubility of the parabens followed by MP, EP and PP in both liquid and solid PEG. Furthermore, the thickness of the amorphous domains of the PEG in the different parabens-PEG dispersions could be correlated to the solubility in liquid PEG 400.

  10. Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques

    NARCIS (Netherlands)

    van Drooge, D J; Hinrichs, W L J; Visser, M R; Frijlink, H W

    2006-01-01

    The molecular distribution in fully amorphous solid dispersions consisting of poly(vinylpyrrolidone) (PVP)-diazepam and inulin-diazepam was studied. One glass transition temperature (T-g), as determined by temperature modulated differential scanning calorimetry (TMDSC), was observed in PVP-diazepam

  11. Investigation of Polymer-Surfactant and Polymer-Drug-Surfactant Miscibility for Solid Dispersion.

    Science.gov (United States)

    Gumaste, Suhas G; Gupta, Simerdeep Singh; Serajuddin, Abu T M

    2016-09-01

    In a solid dispersion (SD), the drug is generally dispersed either molecularly or in the amorphous state in polymeric carriers, and the addition of a surfactant is often important to ensure drug release from such a system. The objective of this investigation was to screen systematically polymer-surfactant and polymer-drug-surfactant miscibility by using the film casting method. Miscibility of the crystalline solid surfactant, poloxamer 188, with two commonly used amorphous polymeric carriers, Soluplus® and HPMCAS, was first studied. Then, polymer-drug-surfactant miscibility was determined using itraconazole as the model drug, and ternary phase diagrams were constructed. The casted films were examined by DSC, PXRD and polarized light microscopy for any crystallization or phase separation of surfactant, drug or both in freshly prepared films and after exposure to 40°C/75% RH for 7, 14, and 30 days. The miscibility of poloxamer 188 with Soluplus® was <10% w/w, while its miscibility with HPMCAS was at least 30% w/w. Although itraconazole by itself was miscible with Soluplus® up to 40% w/w, the presence of poloxamer drastically reduced its miscibility to <10%. In contrast, poloxamer 188 had minimal impact on HPMCAS-itraconazole miscibility. For example, the phase diagram showed amorphous miscibility of HPMCAS, itraconazole, and poloxamer 188 at 54, 23, and 23% w/w, respectively, even after exposure to 40°C/75% RH for 1 month. Thus, a relatively simple and practical method of screening miscibility of different components and ultimately physical stability of SD is provided. The results also identify the HPMCAS-poloxamer 188 mixture as an optimal surface-active carrier system for SD.

  12. Application of ethyl cellulose, microcrystalline cellulose and octadecanol for wax based floating solid dispersion pellets.

    Science.gov (United States)

    Yan, Hong-Xiang; Zhang, Shuang-Shuang; He, Jian-Hua; Liu, Jian-Ping

    2016-09-01

    The present study aimed to develop and optimize the wax based floating sustained-release dispersion pellets for a weakly acidic hydrophilic drug protocatechuic acid to achieve prolonged gastric residence time and improved bioavailability. This low-density drug delivery system consisted of octadecanol/microcrystalline cellulose mixture matrix pellet cores prepared by extrusion-spheronization technique, coated with drug/ethyl cellulose 100cp solid dispersion using single-step fluid-bed coating method. The formulation-optimized pellets could maintain excellent floating state without lag time and sustain the drug release efficiently for 12h based on non-Fickian transport mechanism. Observed by SEM, the optimized pellet was the dispersion-layered spherical structure containing a compact inner core. DSC, XRD and FTIR analysis revealed drug was uniformly dispersed in the amorphous molecule form and had no significant physicochemical interactions with the polymer dispersion carrier. The stability study of the resultant pellets further proved the rationality and integrity of the developed formulation.

  13. Amorphization within the tablet

    DEFF Research Database (Denmark)

    Doreth, Maria; Hussein, Murtadha Abdul; Priemel, Petra A.

    2017-01-01

    , the feasibility of microwave irradiation to prepare amorphous solid dispersions (glass solutions) in situ was investigated. Indomethacin (IND) and polyvinylpyrrolidone K12 (PVP) were tableted at a 1:2 (w/w) ratio. In order to study the influence of moisture content and energy input on the degree of amorphization......, tablet formulations were stored at different relative humidity (32, 43 and 54% RH) and subsequently microwaved using nine different power-time combinations up to a maximum energy input of 90 kJ. XRPD results showed that up to 80% (w/w) of IND could be amorphized within the tablet. mDSC measurements...

  14. Effect of storage conditions on the recrystallization of drugs in solid dispersions with crospovidone.

    Science.gov (United States)

    Shibata, Yusuke; Fujii, Makiko; Suzuki, Ayako; Koizumi, Naoya; Kanada, Ken; Yamada, Masaki; Watanabe, Yoshiteru

    2014-06-01

    The physical stability of amorphous solid dispersions (SDs) is influenced by their storage conditions. The goal of this work was to investigate the factors affecting the recrystallization of drugs in SDs after storage under conditions of high temperature and high humidity. SDs of three drugs (dipyridamole, nifedipine and indomethacin) with different functional groups (amino, carbonyl and hydroxyl) and onset times for crystallization of the amorphous state were prepared using crospovidone (CrosPVP). All of the drugs in the SDs remained in an amorphous state at 25 °C/50% relative humidity (RH) in closed glass bottles for at least six months. Under conditions of high temperature (40 °C/75%RH/closed and 60 °C/open), differences in interactions between the hydrogen bond donors of the drugs and the amide carbonyl group of CrosPVP are essential factors for recrystallization of the drugs in the SDs. On the other hand, under condition of high humidity (40 °C/75%RH/open), in addition to the difference in the interaction between the drug and CrosPVP, the rate of increase in moisture content affects their recrystallization in SDs.

  15. Physicochemical studies on solid dispersions of poorly water-soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Bikiaris, Dimitrios [Laboratory of Organic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki (Greece); Papageorgiou, George Z. [Laboratory of Organic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki (Greece); Stergiou, Anagnostis [Department of Physics, Aristotle University of Thessaloniki, 541 24, Thessaloniki (Greece); Pavlidou, Eleni [Department of Physics, Aristotle University of Thessaloniki, 541 24, Thessaloniki (Greece); Karavas, Evangelos [Pharmathen S.A., Pharmaceutical Industry, Dervenakion Str. 6, Pallini Attikis, 153 51 Attiki (Greece); Kanaze, Ferras [Section of Pharmaceutics and Drug Control, Department of Pharmacy, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Macedonia (Greece); Georgarakis, Manolis [Section of Pharmaceutics and Drug Control, Department of Pharmacy, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Macedonia (Greece)]. E-mail: georgara@pharm.auth.gr

    2005-12-01

    Polyvinylpyrrolidone (PVP) and poly(ethylene glycol) (PEG) solid dispersions with Felodipine or Hesperetin having up to 20 wt% drug were prepared using solvent evaporation method. Solid dispersions in comparison with their physical mixtures were studied using differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), scanning electron microscopy (SEM) and hot stage polarizing light microscopy (HSM). PVP formulations with low drug load proved to be amorphous, since no crystalline Felodipine or Hesperetin drugs were detected using DSC and WAXD. Low and fast heating rates were applied for DSC study, to prevent changes in the samples caused during heating. Similarity between results of WAXD and DSC was also found in the case of physical mixtures, where the drug was in the crystalline state. However, though specific tests showed the high sensitivity of the DSC technique, it was difficult to arrive to reliable results for PEG solid dispersions or physical mixtures with low drug content by DSC, even by high heating rates. Crystalline drug could not be detected by DSC, leading to erroneous conclusions about the physical state of the drug, in contrast to WAXD. On the other hand, HSM proved the presence of small drug particles in the solid dispersions with PEG and the dissolution of the drug in the melt of PEG on heating. In such systems, in which a polymer with low melting point is used as drug carrier, DSC is inappropriate technique and must be used always in combination with HSM. The coupling of WAXD with thermal analysis, allowed complete physicochemical characterization and better understanding which is essential for a first prediction of dissolution characteristics of such formulations.

  16. The formation and physical stability of two-phase solid dispersion systems of indomethacin in supercooled molten mixtures with different matrix formers.

    Science.gov (United States)

    Semjonov, Kristian; Kogermann, Karin; Laidmäe, Ivo; Antikainen, Osmo; Strachan, Clare J; Ehlers, Henrik; Yliruusi, Jouko; Heinämäki, Jyrki

    2017-01-15

    Amorphous solid dispersions (SDs) are a promising approach to improve the dissolution rate of and oral bioavailability of poorly water-soluble drugs. In some cases multi-phase, instead of single-phase, SD systems with amorphous drug are obtained. While it is widely assumed that one-phase amorphous systems are desirable, two-phase systems may still potentially exhibit enhanced stability and dissolution advantages over undispersed systems. The objective of the present study was to understand the solid-state properties of two-phase SDs with amorphous drug and their relation to physical stability. Two different types of excipients for SD formation were used, one being a polymer and the other a small molecule excipient. The supercooled molten SDs of a poorly water-soluble indomethacin (IND) with a graft copolymer, Soluplus® (SOL) and sugar alcohol, xylitol (XYL) were prepared. Supercooled molten SDs of IND with SOL were two-phase glassy suspension in which the amorphous drug was dispersed in an amorphous polymer matrix. A short-term aging of the SDs led to the formation of glassy suspensions where the crystalline drug was dispersed in an amorphous polymer matrix. These were physically stable at room temperature for the time period studied (RT, 23±2°C), but aging at high-humidity conditions (75% RH) recrystallization to metastable α-IND occurred. Interestingly, the SDs with XYL were two-phase amorphous precipitation systems in which the drug was in an amorphous form in the crystalline sugar alcohol matrix. The SDs of IND and XYL exhibited fast drug recrystallization. In conclusion, the preparation method of two-phase systems via co-melting in association with the rapid quench cooling is a feasible method for the formulation of poorly water-soluble drugs. The physical stability of these two-phase systems, however, is dependent on the carrier material and storage conditions.

  17. Yield stress in amorphous solids: a mode-coupling-theory analysis.

    Science.gov (United States)

    Ikeda, Atsushi; Berthier, Ludovic

    2013-11-01

    The yield stress is a defining feature of amorphous materials which is difficult to analyze theoretically, because it stems from the strongly nonlinear response of an arrested solid to an applied deformation. Mode-coupling theory predicts the flow curves of materials undergoing a glass transition and thus offers predictions for the yield stress of amorphous solids. We use this approach to analyze several classes of disordered solids, using simple models of hard-sphere glasses, soft glasses, and metallic glasses for which the mode-coupling predictions can be directly compared to the outcome of numerical measurements. The theory correctly describes the emergence of a yield stress of entropic nature in hard-sphere glasses, and its rapid growth as density approaches random close packing at qualitative level. By contrast, the emergence of solid behavior in soft and metallic glasses, which originates from direct particle interactions is not well described by the theory. We show that similar shortcomings arise in the description of the caging dynamics of the glass phase at rest. We discuss the range of applicability of mode-coupling theory to understand the yield stress and nonlinear rheology of amorphous materials.

  18. Preparation and Evaluation of Solid Dispersion Tablets by a Simple and Manufacturable Wet Granulation Method Using Porous Calcium Silicate.

    Science.gov (United States)

    Fujimoto, Yumi; Hirai, Nobuaki; Takatani-Nakase, Tomoka; Takahashi, Koichi

    2016-01-01

    The aim of this study was to prepare and evaluate solid dispersion tablets containing a poorly water-soluble drug using porous calcium silicate (PCS) by a wet granulation method. Nifedipine (NIF) was used as the model poorly water-soluble drug. Solid dispersion tablets were prepared with the wet granulation method using ethanol and water by a high-speed mixer granulator. The binder and disintegrant were selected from 7 and 4 candidates, respectively. The dissolution test was conducted using the JP 16 paddle method. The oral absorption of NIF was studied in fasted rats. Xylitol and crospovidone were selected as the binder and disintegrant, respectively. The dissolution rates of NIF from solid dispersion formulations were markedly enhanced compared with NIF powder and physical mixtures. Powder X-ray diffraction (PXRD) confirmed the reduced crystallinity of NIF in the solid dispersion formulations. Fourier transform infrared (FT-IR) showed the physical interaction between NIF and PCS in the solid dispersion formulations. NIF is present in an amorphous state in granules prepared by the wet granulation method using water. The area under the plasma concentration-time curve (AUC) and peak concentration (C(max)) values of NIF after dosing rats with the solid dispersion granules were significantly greater than those after dosing with NIF powder. The solid dispersion formulations of NIF prepared with PCS using the wet granulation method exhibited accelerated dissolution rates and superior oral bioavailability. This method is very simple, and may be applicable to the development of other poorly water-soluble drugs.

  19. Dispersive Non-Geminate Recombination in an Amorphous Polymer:Fullerene Blend

    Science.gov (United States)

    Kurpiers, Jona; Neher, Dieter

    2016-05-01

    Recombination of free charge is a key process limiting the performance of solar cells. For low mobility materials, such as organic semiconductors, the kinetics of non-geminate recombination (NGR) is strongly linked to the motion of charges. As these materials possess significant disorder, thermalization of photogenerated carriers in the inhomogeneously broadened density of state distribution is an unavoidable process. Despite its general importance, knowledge about the kinetics of NGR in complete organic solar cells is rather limited. We employ time delayed collection field (TDCF) experiments to study the recombination of photogenerated charge in the high-performance polymer:fullerene blend PCDTBT:PCBM. NGR in the bulk of this amorphous blend is shown to be highly dispersive, with a continuous reduction of the recombination coefficient throughout the entire time scale, until all charge carriers have either been extracted or recombined. Rapid, contact-mediated recombination is identified as an additional loss channel, which, if not properly taken into account, would erroneously suggest a pronounced field dependence of charge generation. These findings are in stark contrast to the results of TDCF experiments on photovoltaic devices made from ordered blends, such as P3HT:PCBM, where non-dispersive recombination was proven to dominate the charge carrier dynamics under application relevant conditions.

  20. Amorphous drugs and dosage forms

    DEFF Research Database (Denmark)

    Grohganz, Holger; Löbmann, K.; Priemel, P.

    2013-01-01

    The transformation to an amorphous form is one of the most promising approaches to address the low solubility of drug compounds, the latter being an increasing challenge in the development of new drug candidates. However, amorphous forms are high energy solids and tend to recry stallize. New...... formulation principles are needed to ensure the stability of amorphous drug forms. The formation of solid dispersions is still the most investigated approach, but additional approaches are desirable to overcome the shortcomings of solid dispersions. Spatial separation by either coating or the use of micro......-containers has shown potential to prevent or delay recrystallization. Another recent approach is the formation of co-amorphous mixtures between either two drugs or one drug and one low molecular weight excipient. Molecular interactions between the two molecules provide an energy barrier that has to be overcome...

  1. Formulation and evaluation of fast dissolving tablet containing domperidone ternary solid dispersion.

    Science.gov (United States)

    Patel, Dasharath M; Patel, Sweeti P; Patel, Chhagan N

    2014-10-01

    Fast dissolving tablet containing domperidone ternary solid dispersion was developed to improve the dissolution of drug and stability of solid dispersion. Binary and ternary solid dispersions were prepared by fusion method. They were characterized by solubility study, in vitro dissolution, dissolution efficiency, and stability study. The solid state properties of solid dispersions were characterized by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Ternary solid dispersion was successfully incorporated into fast dissolving tablet by direct compression method. Tablets were characterized for pre-compression parameters, post-compression parameters, and stability study. Optimized ternary solid dispersion containing ratio 1:2:1.5 of drug: Gelucire 50/13: Poloxamer 188 gave maximum dissolution. The FTIR, DSC, and XRD studies of solid dispersions were confirmed the formation of solid dispersion. Ternary solid dispersion was more stable compared to binary solid dispersion at accelerated environment conditions for one month as confirmed by DSC study. Crospovidone as a superdisintegrant (4%) showed good result with disintegration time of 19 s and dissolution near to 100% in 0.1N HCL at 30 min. The studies indicated that the dissolution of drug and stability of solid dispersion was improved in the presence of ternary agent (surfactant) as compared to binary solid dispersion. It was concluded that fast dissolving tablet containing ternary solid dispersion was stable at accelerated environmental conditions for 1 month.

  2. Comparative study on solid self-nanoemulsifying drug delivery and solid dispersion system for enhanced solubility and bioavailability of ezetimibe

    Directory of Open Access Journals (Sweden)

    Rashid R

    2015-09-01

    Full Text Available Rehmana Rashid,1 Dong Wuk Kim,1 Abid Mehmood Yousaf,1 Omer Mustapha,1 Fakhar ud Din,1 Jong Hyuck Park,1 Chul Soon Yong,2 Yu-Kyoung Oh,3 Yu Seok Youn,4 Jong Oh Kim,2 Han-Gon Choi11College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea; 2College of Pharmacy, Yeungnam University, Gyeongsan, South Korea; 3College of Pharmacy, Seoul National University, Seoul, South Korea; 4School of Pharmacy, Sungkyunkwan University, Suwon, South KoreaBackground: The objective of this study was to compare the physicochemical characteristics, solubility, dissolution, and oral bioavailability of an ezetimibe-loaded solid self-nanoemulsifying drug delivery system (SNEDDS, surface modified solid dispersion (SMSD, and solvent evaporated solid dispersion (SESD to identify the best drug delivery system with the highest oral bioavailability.Methods: For the liquid SNEDDS formulation, Capryol 90, Cremophor EL, and Tween 80 were selected as the oil, surfactant, and cosurfactant, respectively. The nanoemulsion-forming region was sketched using a pseudoternary phase diagram on the basis of reduced emulsion size. The optimized liquid SNEDDS was converted to solid SNEDDS by spray drying with silicon dioxide. Furthermore, SMSDs were prepared using the spray drying technique with various amounts of hydroxypropylcellulose and Tween 80, optimized on the basis of their drug solubility. The SESD formulation was prepared with the same composition of optimized SMSD. The aqueous solubility, dissolution, physicochemical properties, and pharmacokinetics of all of the formulations were investigated and compared with the drug powder.Results: The drug existed in the crystalline form in SMSD, but was changed into an amorphous form in SNEDDS and SESD, giving particle sizes of approximately 24, 6, and 11 µm, respectively. All of these formulations significantly improved the aqueous solubility and dissolution in the order of solid

  3. NATO Advanced Study Institute on Hydrogen in Disordered and Amorphous Solids

    CERN Document Server

    Bowman, Robert

    1986-01-01

    This is the second volume in the NATO ASI series dealing with the topic of hydrogen in solids. The first (V. B76, Metal Hydrides) appeared five years ago and focussed primarily on crystalline phases of hydrided metallic systems. In the intervening period, the amorphous solid state has become an area of intense research activity, encompassing both metallic and non-metallic, e.g. semiconducting, systems. At the same time the problem of storage of hydrogen, which motivated the first ASI, continues to be important. In the case of metallic systems, there were early indications that metallic glasses and disordered alloys may be more corrosion resistant, less susceptible to embrittlement by hydrogen and have a higher hydrogen mobility than ordered metals or intermetallics. All of these properties are desirable for hydrogen storage. Subsequent research has shown that thermodynamic instability is a severe problem in many amorphous metal hydrides. The present ASI has provided an appropriate forum to focus on these issu...

  4. Molecular interaction between glimepiride and Soluplus®-PEG 4000 hybrid based solid dispersions: Characterisation and anti-diabetic studies.

    Science.gov (United States)

    Reginald-Opara, Joy Nneji; Attama, Anthony; Ofokansi, Kenneth; Umeyor, Chukwuebuka; Kenechukwu, Frankline

    2015-12-30

    The objective of this study was to evaluate a novel blend of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol 6000 grafted copolymer (Soluplus®) and polyethylene glycol (PEG) 4000 for solubility enhancement, physicochemical stability and anti-diabetic efficacy of the produced solid dispersions containing glimepiride, a biopharmaceutics classification system (BCS) class II sulphonylurea. Different batches of glimepiride solid dispersions (SD) were prepared by the solvent evaporation method using the individual polymers and blends of the polymers at different ratios. The Soluplus®-PEG 4000 (sol-PEG) hybrid polymer based glimepiride solid dispersions were characterized by differential scanning calorimetry (DSC), fourier transform infrared (FTIR) spectroscopy, micromeritics and dissolution studies. In vivo anti-diabetic activity was determined by measuring the changes in blood glucose concentrations in albino rats. The solid dispersions showed good flow properties and excellent practical yield. Drug content and release from the different formulations increased when Soluplus® was used as the main matrix polymer. The kinetics of drug release from all the solid dispersions followed first order. Solid state characterization confirmed the formation of amorphous glimepiride solid dispersions in the Sol-PEG hybrid polymer and no strong drug-polymer interaction was observed. The blood glucose reduction in albino rats by the Sol-PEG-Glim SDs was significantly (p<0.05) higher and more sustained when compared with the plain drug sample and commercially available product. Optimized SD batches (SP1 and SP3) showed a reduction in blood glucose level from 100% to 9.81% and 8.97%, respectively, at Tmax of 3h. The Sol-PEG-Glim SD was found to be stable over a period of 6 months (at 40°C, 70% RH) with no significant changes in the drug content. Thus, the Sol-PEG polymeric hybrids represent a promising tool for enhanced delivery of glimepiride.

  5. Development of megestrol acetate solid dispersion nanoparticles for enhanced oral delivery by using a supercritical antisolvent process

    Directory of Open Access Journals (Sweden)

    Ha ES

    2015-08-01

    Full Text Available Eun-Sol Ha,1 Jeong-Soo Kim,2 In-hwan Baek,3 Jin-Wook Yoo,1 Yunjin Jung,1 Hyung Ryong Moon,1 Min-Soo Kim1 1College of Pharmacy, Pusan National University, 2Dong-A ST Co Ltd, Yongin, 3College of Pharmacy, Kyungsung University, Busan, South Korea Abstract: In the present study, solid dispersion nanoparticles with a hydrophilic polymer and surfactant were developed using the supercritical antisolvent (SAS process to improve the dissolution and oral absorption of megestrol acetate. The physicochemical properties of the megestrol acetate solid dispersion nanoparticles were characterized using scanning electron microscopy, differential scanning calorimetry, powder X-ray diffraction, and a particle-size analyzer. The dissolution and oral bioavailability of the nanoparticles were also evaluated in rats. The mean particle size of all solid dispersion nanoparticles that were prepared was <500 nm. Powder X-ray diffraction and differential scanning calorimetry measurements showed that megestrol acetate was present in an amorphous or molecular dispersion state within the solid dispersion nanoparticles. Hydroxypropylmethyl cellulose (HPMC solid dispersion nanoparticles significantly increased the maximum dissolution when compared with polyvinylpyrrolidone K30 solid dispersion nanoparticles. The extent and rate of dissolution of megestrol acetate increased after the addition of a surfactant into the HPMC solid dispersion nanoparticles. The most effective surfactant was Ryoto sugar ester L1695, followed by d-a-tocopheryl polyethylene glycol 1000 succinate. In this study, the solid dispersion nanoparticles with a drug:HPMC:Ryoto sugar ester L1695 ratio of 1:2:1 showed >95% rapid dissolution within 30 minutes, in addition to good oral bioavailability, with approximately 4.0- and 5.5-fold higher area under the curve (0–24 hours and maximum concentration, respectively, than raw megestrol acetate powder. These results suggest that the preparation of megestrol

  6. Thermodynamics of water-solid interactions in crystalline and amorphous pharmaceutical materials.

    Science.gov (United States)

    Sacchetti, Mark

    2014-09-01

    Pharmaceutical materials, crystalline and amorphous, sorb water from the atmosphere, which affects critical factors in the development of drugs, such as the selection of drug substance crystal form, compatibility with excipients, dosage form selection, packaging, and product shelf-life. It is common practice to quantify the amount of water that a material sorbs at a given relative humidity (RH), but the results alone provide minimal to no physicochemical insight into water-solid interactions, without which pharmaceutical scientists cannot develop an understanding of their materials, so as to anticipate and circumvent potential problems. This research was conducted to advance the science of pharmaceutical materials by examining the thermodynamics of solids with sorbed water. The compounds studied include nonhygroscopic drugs, a channel hydrate drug, a stoichiometric hydrate excipient, and an amorphous excipient. The water sorption isotherms were measured over a range of temperature to extract the partial molar enthalpy and entropy of sorbed water as well as the same quantities for some of the solids. It was found that water-solid interactions spanned a range of energy and entropy as a function of RH, which was unique to the solid, and which could be valuable in identifying batch-to-batch differences and effects of processing in material performance.

  7. Characterization of gliclazide-polyethylene glycol solid dispersion and its effect on dissolution

    Directory of Open Access Journals (Sweden)

    Moreshwar Pandharinath Patil

    2011-03-01

    Full Text Available The present study was initiated with the objective of studying the in vitro dissolution behavior of gliclazide from its solid dispersion with polyethylene glycol 6000. In this work, a solid dispersion of gliclazide with polyethylene glycol was prepared by the fusion method. In vitro dissolution study of gliclazide, its physical mixture and solid dispersion were carried out to demonstrate the effect of PEG 6000. Analytical techniques of FT-IR spectroscopy, differential scanning calorimetry and X-ray diffractometry were used to characterize the drug in the physical mixtures and solid dispersions. The dissolution studies of solid dispersion and physical mixture showed greater improvement compared to that of the pure drug. The mechanisms for increased dissolution rate may include reduction of crystallite size, a solubilization effect of the carrier, absence of aggregation of drug crystallites, improved wettability and dispersbility of the drug from the dispersion, dissolution of the drug in the hydrophilic carrier or conversion of drug to an amorphous state. The FT-IR spectra suggested that there was no interaction between gliclazide and PEG 6000 when prepared as a solid dispersion. DSC and XRD study indicated that the drug was converted in the amorphous form.O presente trabalho foi realizado com o objetivo de estudar o comportamento in vitro da dissolução da gliclazida a partir da sua dispersão sólida com polietileno glicol 6000. Neste trabalho, as dispersões sólidas de gliclazida com polietileno glicol foram preparadas pelo método de fusão. Os estudo de dissolução in vitro da gliclazida, na mistura física e nas dispersões sólidas foram realizados para demonstrar o efeito de PEG 6000. Técnicas analíticas como espectroscopia FT-IR, calorimetria diferencial de varredura e difração de raios-X foram empregadas para caracterizar o fármaco nas misturas físicas e nas dispersoes sólidas. Os estudos de dissolução demonstraram maior

  8. STUDIES ON MELOXICAM SOLID DISPERSION INCORPORATED BUCCAL PATCHES

    Directory of Open Access Journals (Sweden)

    Mohammed Jafar

    2011-05-01

    Full Text Available Arthritis is one of the most common chronic diseases in the world. Life style effects of arthritis includes; Depression, Anxiety, Feelings of helplessness, Limitations on daily activities, Job limitations etc. Meloxicam, a non-steroidal anti-inflammatory drug is widely used in the treatment of rheumatoid arthritis, ankylosing spondulytis and osteoarthritis. It is also indicated for the management of dental pain, Post-traumatic and post-operative pain, inflammation and swelling. Recently it is considered as a potential drug for prevention and treatment of colorectal polyps. One of the major problems with this drug is its low solubility in biological fluids, which results into poor bioavailability and GI-Side effects after oral administration. The present work was aimed at overcoming these limitations of the drug. The first problem i.e. Poor solubility of meloxicam was overcome by solid dispersion technique and the same work was than published in a reputed online journal. The present study was the continuation of the published work, in this study buccal patches were prepared using varying percentage of carbopol 934p, HPMC (muco adhesive polymers and 50% W/W of propylene glycol (Plasticizer by solvent casting technique, using 32 factorial design. Prepared blank buccal patches were evaluated for various physical and mechanical parameters, patches which comply with reported results were selected for meloxicam and its solid dispersion incorporation. Meloxicam solid dispersion incorporated buccal patches were prepared and evaluated for drug content, in-vitro diffusion, in-vivo release of meloxicam in rabbits and stability study. All solid dispersion incorporated patches showed increased in-vitro drug release (i.e. between 94% to 99.98% over an extended period of 8hrs as compared to plain drug incorporated buccal patch. Whereas plain drug incorporated buccal patch showed only 31.22% in-vitro drug release in 8hrs. Release of meloxicam was slightly

  9. Formation of physically stable amorphous phase of ibuprofen by solid state milling with kaolin.

    Science.gov (United States)

    Mallick, Subrata; Pattnaik, Satyanarayan; Swain, Kalpana; De, Pintu K; Saha, Arindam; Ghoshal, Gaurisankar; Mondal, Arijit

    2008-02-01

    Ibuprofen was milled in the solid state with kaolin (hydrated aluminium silicate) in different ratio to examine the extent of transformation from crystalline to amorphous state. The physical stability of the resultant drug was also investigated. X-ray powder diffractometry (XRD) and birefringence by Scanning Electron Microscopy (SEM) studies indicated almost complete amorphization of the drug on ball milling with kaolin at 1:2 ratio. Fourier transform infrared spectroscopy (FTIR) data showed a reduction in the absorbance of the free and the hydrogen-bonded acid carbonyl peak of carboxylic acid group accompanied by a corresponding increase in the absorbance of the carboxylate peak, indicating an acid-base reaction between the carboxylic acid containing ibuprofen and kaolin on milling. The extent of amorphization and reduction in the carbonyl peak and increase in carboxylate peak was a function of kaolin concentration in the milled powder. On storage of milled powder (at 40 degrees C and 75% RH for 10 weeks), XRD and birefringence of SEM study showed the absence of reversion to the crystalline state and FTIR data revealed continued reduction of carbonyl peak, whereas, ibuprofen converted from its crystalline acid form to amorphous salt form on milling with kaolin. Kaolin-bound state of ibuprofen was physically stable during storage. In-vitro dissolution studies revealed that percent release of ibuprofen from the kaolin co-milled powder is in the order: 1:2>1:1>1:0.5>1:0.1>milled alone ibuprofen>crystalline ibuprofen.

  10. Thermodynamic phase behavior of API/polymer solid dispersions.

    Science.gov (United States)

    Prudic, Anke; Ji, Yuanhui; Sadowski, Gabriele

    2014-07-07

    To improve the bioavailability of poorly soluble active pharmaceutical ingredients (APIs), these materials are often integrated into a polymer matrix that acts as a carrier. The resulting mixture is called a solid dispersion. In this work, the phase behaviors of solid dispersions were investigated as a function of the API as well as of the type and molecular weight of the carrier polymer. Specifically, the solubility of artemisinin and indomethacin was measured in different poly(ethylene glycol)s (PEG 400, PEG 6000, and PEG 35000). The measured solubility data and the solubility of sulfonamides in poly(vinylpyrrolidone) (PVP) K10 and PEG 35000 were modeled using the perturbed-chain statistical associating fluid theory (PC-SAFT). The results show that PC-SAFT predictions are in a good accordance with the experimental data, and PC-SAFT can be used to predict the whole phase diagram of an API/polymer solid dispersion as a function of the kind of API and polymer and of the polymer's molecular weight. This remarkably simplifies the screening process for suitable API/polymer combinations.

  11. Use of polymer combinations in the preparation of solid dispersions of a thermally unstable drug by hot-melt extrusion

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2013-07-01

    Full Text Available The objective of the study was to prepare solid dispersions containing a thermally unstable drug by hot-melt extrusion (HME. Carbamazepine (CBZ was selected as model drug and combinations of Kollidon VA64 (VA64, Soluplus (SOL and Eudragit EPO (EPO were utilized as carriers. Preformulation was conducted to identify the suitability of polymer combinations based on solubility parameters, differential scanning calorimetry (DSC, hot stage microscopy and thermogravimetric analysis. Physicochemical properties of solid dispersions were determined by DSC, X-ray diffraction, fourier transform infrared spectroscopy, dissolution and accelerated stability testing. The results show that drug-polymer miscibility at temperatures below the melting point (Tm of CBZ was improved by combining EPO with VA64 or SOL. With 30% drug loading in a solid dispersion in SOL:EPO (1:1, w/w, CBZ was mainly present in an amorphous form accompanied by a small amount of a microcrystalline form. The dissolution rate of the solid dispersion was significantly increased (approximately 90% within 5 min compared to either the pure drug (approximately 85% within 60 min or the corresponding physical mixture (approximately 80% within 60 min before and after storage. The solid dispersion in SOL:EPO (1:1, w/w was relatively stable at 40 °C/75% RH under CBZ tablet packaging conditions for at least 3 months. In conclusion, polymer combinations that improve drug-polymer miscibility at an HME processing temperature below the Tm of a drug appear to be beneficial in the preparation of solid dispersions containing thermally unstable drugs.

  12. Hydrophilic-hydrophobic polymer blend for modulation of crystalline changes and molecular interactions in solid dispersion.

    Science.gov (United States)

    Van Ngo, Hai; Nguyen, Phuc Kien; Van Vo, Toi; Duan, Wei; Tran, Van-Thanh; Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh

    2016-11-20

    This research study aimed to develop a new strategy for using a polymer blend in solid dispersion (SD) for dissolution enhancement of poorly water-soluble drugs. SDs with different blends of hydrophilic-hydrophobic polymers (zein/hydroxypropyl methylcellulose - zein/HPMC) were prepared using spray drying to modulate the drug crystal and polymer-drug interactions in SDs. Physicochemical characterizations, including power X-ray diffraction and Fourier transform infrared spectroscopy, were performed to elucidate the roles of the blends in SDs. Although hydrophobic polymers played a key role in changing the model drug from a crystal to an amorphous state, the dissolution rate was limited due to the wetting property. Fortunately, the hydrophilic-hydrophobic blend not only reduced the drug crystallinity but also resulted in a hydrogen bonding interaction between the drugs and the polymer for a dissolution rate improvement. This work may contribute to a new generation of solid dispersion using a blend of hydrophilic-hydrophobic polymers for an effective dissolution enhancement of poorly water-soluble drugs.

  13. Evaluation and enhancement of physical stability of semi-solid dispersions containing piroxicam into hard gelatin capsules.

    Science.gov (United States)

    Karataş, Ayşegül; Bekmezci, Serife

    2013-01-01

    The aim of the study was to investigate the physical stability of the semi-solid dispersions into the hard gelatine capsules prepared with Gelucire 44/14, Labrasol and different additives such as microcrystalline cellulose (MCC), mannitol and lactose (alpha-monohydrate) used for enhancing the stability of the formulations. The master dispersion prepared with only Gelucire 44/14 (20% w/w) and Labrasol (80% w/w) was stored in a refrigerator (5 +/- 3 degrees C), while the modified dispersions with the additives (2% w/w) were kept in a climatic chamber (25 +/- 2 degrees C / 60 +/- 5% RH) for 12 months. Dissolution tests of the semi-solid dispersions were performed in media with different pH's immediatly after preparation and after 3, 6 and 12 months of storage. FTIR and DSC studies were also carried out at the same time points. The ideal storage condition for the master dispersion was found to be at 5 degrees C. The addition of MCC, mannitol and lactose (alpha-monohydrate) to the original dispersion afforded a solidification effect on the formulation at room temperature and showed the same dissolution behavior (not less than 85% of piroxicam within 30 min in pH 1.2, 4.5 and 6.8; and water) with the master. The dispersion including lactose was stable at 25 degrees C for 12 months. However, the ideal period of storage for the modified dispersions including MCC and mannitol was 6 months at 25 degrees C. FTIR and DSC results both confirmed the amorphous state of piroxicam in all semi-solid dispersions under storage conditions for 12 months.

  14. Prediction of recrystallization behavior of troglitazone/polyvinylpyrrolidone solid dispersion by solid-state NMR.

    Science.gov (United States)

    Ito, Atsutoshi; Watanabe, Tomoyuki; Yada, Shuichi; Hamaura, Takeshi; Nakagami, Hiroaki; Higashi, Kenjirou; Moribe, Kunikazu; Yamamoto, Keiji

    2010-01-04

    The purpose of this study was to elaborate the relationship between the (13)C CP/MAS NMR spectra and the recrystallization behavior during the storage of troglitazone solid dispersions. The solid dispersions were prepared by either the solvent method or by co-grinding. The recrystallization behavior under storage conditions at 40 degrees C/94% RH was evaluated by the Kolmogorov-Johnson-Mehl-Avrami (KJMA) equation. Solid dispersions prepared by the solvent method or by prolonged grinding brought about inhibition of the nucleation and the nuclei growth at the same time. No differences in the PXRD profiles were found in the samples prepared by the co-grinding and solvent methods, however, (13)C CP/MAS NMR showed significant differences in the spectra. The correlation coefficients using partial least square regression analysis between the PXRD profiles and the apparent nuclei-growth constant or induction period to nucleation were 0.1305 or 0.6350, respectively. In contrast, those between the (13)C CP/MAS NMR spectra and the constant or the period were 0.9916 or 0.9838, respectively. The (13)C CP/MAS NMR spectra had good correlation with the recrystallization kinetic parameters evaluated by the KJMA equation. Consequently, solid-state NMR was judged to be a useful tool for the prediction of the recrystallization behavior of solid dispersions.

  15. Improved dissolution and bioavailability of silymarin delivered by a solid dispersion prepared using supercritical fluids

    Directory of Open Access Journals (Sweden)

    Gang Yang

    2015-06-01

    Full Text Available The objective of this study was to improve the dissolution and bioavailability of silymarin (SM. Solid dispersions (SDs were prepared using solution-enhanced dispersion by supercritical fluids (SEDS and evaluated in vitro and in vivo, compared with pure SM powder. The particle sizes, stability, and contents of residual solvent of the prepared SM-SDs with SEDS and solvent evaporation (SE were investigated. Four polymer matrix materials were evaluated for the preparation of SM-SD-SEDS, and the hydrophilic polymer, polyvinyl pyrrolidone K17, was selected with a ratio of 1:5 between SM and the polymer. Physicochemical analyses using X-ray diffraction and differential scanning calorimetry indicated that SM was dispersed in SD in an amorphous state. The optimized SM-SD-SEDS showed no loss of SM after storage for 6 months and negligible residual solvent (ethanol was detected using gas chromatography. In vitro drug release was increased from the SM-SD-SEDS, as compared with pure SM powder or SM-SD-SE. In vivo, the area under the rat plasma SM concentration-time curve and the maximum plasma SM concentration were 2.4-fold and 1.9-fold higher, respectively, after oral administration of SM-SD-SEDS as compared with an aqueous SM suspension. These results illustrated the potential of using SEDS to prepare SM-SD, further improving the biopharmaceutical properties of this compound.

  16. Solid-state characterization and dissolution properties of meloxicam-moringa coagulant-PVP ternary solid dispersions.

    Science.gov (United States)

    Noolkar, Suhail B; Jadhav, Namdeo R; Bhende, Santosh A; Killedar, Suresh G

    2013-06-01

    The effect of ternary solid dispersions of poor water-soluble NSAID meloxicam with moringa coagulant (obtained by salt extraction of moringa seeds) and polyvinylpyrrolidone on the in vitro dissolution properties has been investigated. Binary (meloxicam-moringa and meloxicam-polyvinylpyrrolidone (PVP)) and ternary (meloxicam-moringa-PVP) systems were prepared by physical kneading and ball milling and characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffractometry. The in vitro dissolution behavior of meloxicam from the different products was evaluated by means of United States Pharmacopeia type II dissolution apparatus. The results of solid-state studies indicated the presence of strong interactions between meloxicam, moringa, and PVP which were of totally amorphous nature. All ternary combinations were significantly more effective than the corresponding binary systems in improving the dissolution rate of meloxicam. The best performance in this respect was given by the ternary combination employing meloxicam-moringa-PVP ratio of [1:(3:1)] prepared by ball milling, with about six times increase in percent dissolution rate, whereas meloxicam-moringa (1:3) and meloxicam-PVP (1:4) prepared by ball milling improved dissolution of meloxicam by almost 3- and 2.5-folds, respectively. The achieved excellent dissolution enhancement of meloxicam in the ternary systems was attributed to the combined effects of impartation of hydrophilic characteristic by PVP, as well as to the synergistic interaction between moringa and PVP.

  17. Development of an oral solid dispersion formulation for use in low-dose metronomic chemotherapy of paclitaxel.

    Science.gov (United States)

    Moes, Johannes; Koolen, Stijn; Huitema, Alwin; Schellens, Jan; Beijnen, Jos; Nuijen, Bastiaan

    2013-01-01

    For the clinical development of low-dose metronomic (LDM) chemotherapy of paclitaxel, oral administration is vital. However, the development of an oral formulation is difficult due to paclitaxel's low oral bioavailability, caused by its low permeability and low solubility. We increased the oral bioavailability of paclitaxel by combining a pharmacokinetic booster, ritonavir, with a new oral solid dispersion formulation of paclitaxel. The combined use of Hansen solubility parameters and dissolution experiments resulted in the development of a solid dispersion formulation containing 1/11 w/w paclitaxel, 9/11 w/w polyvinylpyrrolidone (PVP) K30, and 1/11 w/w sodium lauryl sulfate (SLS). Analysis of the solid dispersion formulation by X-ray diffraction, Fourier transform infrared (FT-IR) spectroscopy, and modulated differential scanning calorimetry (mDSC) confirmed the amorphous nature of paclitaxel and the fine dispersion of paclitaxel in the matrix of PVP-K30 and SLS. Furthermore, in vitro tests showed a major increase in the apparent solubility and dissolution rate of paclitaxel. To test the clinical significance of these findings, the solid dispersion formulation of paclitaxel (ModraPac001 10mg capsule) was compared to the paclitaxel premix solution in four patients with advanced cancer. Although the mean systemic exposure to paclitaxel after oral administration of the solid dispersion formulation was slightly lower compared to the paclitaxel premix solution (190±63.1ng/mLh for vs. 247±100ng/mLh), the systemic exposure to paclitaxel is clinically relevant [1,2]. In addition to this, the favorable pharmaceutical characteristics, for example, neutral taste, dosing accuracy, and the 2-year ambient shelf life, make the ModraPac001 10mg capsule an attractive candidate for oral paclitaxel chemotherapy. Currently, the ModraPac001 formulation is applied in the first clinical trial with oral LDM chemotherapy of paclitaxel.

  18. In vitro dissolution study of atorvastatin binary solid dispersion

    Science.gov (United States)

    Jahan, Rahat; Islam, Md. Saiful; Tanwir, Ahmad; Chowdhury, Jakir Ahmed

    2013-01-01

    The aim of the present study was to improve the solubility and dissolution rate of atorvastatin (ATV), a slight water-soluble drug, by solid dispersion (SD) technique using a hydrophilic carrier Poloxamer 188 (POL188). Physical mixing (PM) and solvent evaporation (SE) method were used to prepare ATV-SD where different drug-carrier ratios were used. Prepared formulations were characterized in their solid state by solubility study; differential scanning calorimetry, scanning electron microscopy, and Fourier transform infrared spectroscopy which demonstrated changes in the formulations supporting the improved solubility. Percent content of POL188 in the SD matrix was found to play the pivotal role in the improvement of dissolution property of ATV. In case of PM, highest enhancement in drug release was found for 1:3 ratio (P < 0.05, ANOVA Single factor) whereas in case of SE, 3:0.5 ratio of ATV-POL188 resulted the maximum enhancement in ATV release (P < 0.05, ANOVA Single factor). Analysis of dissolution data of optimized formula indicated the best fitting with Peppas-Korsmeyer model and the drug release kinetics was fickian diffusion. In conclusion, binary SD prepared by both PM and SE technique using POL188 could be considered as a simple, efficient method to prepare ATV solid dispersions with significant improvement in the dissolution rate. PMID:23662278

  19. In vitro dissolution study of atorvastatin binary solid dispersion

    Directory of Open Access Journals (Sweden)

    Rahat Jahan

    2013-01-01

    Full Text Available The aim of the present study was to improve the solubility and dissolution rate of atorvastatin (ATV, a slight water-soluble drug, by solid dispersion (SD technique using a hydrophilic carrier Poloxamer 188 (POL188. Physical mixing (PM and solvent evaporation (SE method were used to prepare ATV-SD where different drug-carrier ratios were used. Prepared formulations were characterized in their solid state by solubility study; differential scanning calorimetry, scanning electron microscopy, and Fourier transform infrared spectroscopy which demonstrated changes in the formulations supporting the improved solubility. Percent content of POL188 in the SD matrix was found to play the pivotal role in the improvement of dissolution property of ATV. In case of PM, highest enhancement in drug release was found for 1:3 ratio (P < 0.05, ANOVA Single factor whereas in case of SE, 3:0.5 ratio of ATV-POL188 resulted the maximum enhancement in ATV release (P < 0.05, ANOVA Single factor. Analysis of dissolution data of optimized formula indicated the best fitting with Peppas-Korsmeyer model and the drug release kinetics was fickian diffusion. In conclusion, binary SD prepared by both PM and SE technique using POL188 could be considered as a simple, efficient method to prepare ATV solid dispersions with significant improvement in the dissolution rate.

  20. Solubility and dissolution enhancement of HPMC - based solid dispersions of carbamazepine by hot-melt extrusion technique

    Directory of Open Access Journals (Sweden)

    Sharadchandra Dagadu Javeer

    2014-01-01

    Full Text Available The objective of this study was to investigate solid dispersions (SDs of poorly water soluble drug carbamazepine (CBZ, prepared using low viscosity grade hydroxypropyl methyl cellulose (HPMC (Methocel® E3 LV and Methocel® E5 LV by hot-melt extrusion (HME technology. Saturation solubility and dissolution profile of CBZ was studied. Characterization of hot-melt extruded samples was done by Fourier transform infrared spectroscopy (FTIR, differential scanning calorimetry (DSC, and X-ray diffraction studies (XRD. The result of the study showed the conversion of crystalline form of drug into amorphous form indicating increase in saturation solubility and dissolution rate of CBZ.

  1. [Compared with colloidal silica and porous silica as baicalin solid dispersion carrier].

    Science.gov (United States)

    Yan, Hong-Mei; Ding, Dong-Mei; Wang, Jing; Sun, E; Jia, Xiao-Bin; Zhang, Zhen-Hai

    2014-07-01

    To compare the dissolution characteristics of colloidal silica and porous silica as the solid dispersion carrier, with baicalin as the model drug. The baicalin solid dispersion was prepared by the solvent method, with colloidal silica and porous silica as the carriers. In the in vitro dissolution experiment, the solid dispersion was identified by scanning electron microscopy, differential scanning and X-ray diffraction. The solid dispersion carriers prepared with both colloidal silica and porous silica could achieve the purpose of rapid release. Along with the increase in the proportion of the carriers, the dissolution rate is accelerated to more than 80% within 60 min. Baicalin existed in the solid dispersion carriers in the non-crystalline form. The release behaviors of the baicalin solid dispersion prepared with two types of carrier were different. Among the two solid dispersion carriers, porous silica dissolved slowly than colloidal silica within 60 min, and they showed similar dissolutions after 60 min.

  2. Breakdown of nonlinear elasticity in stress-controlled thermal amorphous solids

    Science.gov (United States)

    Dailidonis, Vladimir; Ilyin, Valery; Procaccia, Itamar; Shor, Carmel A. B. Z.

    2017-03-01

    In recent work it was clarified that amorphous solids under strain control do not possess nonlinear elastic theory in the sense that the shear modulus exists but nonlinear moduli exhibit sample-to-sample fluctuations that grow without bound with the system size. More relevant, however, for experiments are the conditions of stress control. In the present Rapid Communication we show that also under stress control the shear modulus exists, but higher-order moduli show unbounded sample-to-sample fluctuation. The unavoidable consequence is that the characterization of stress-strain curves in experiments should be done with a stress-dependent shear modulus rather than with nonlinear expansions.

  3. The model of solid phase crystallization of amorphous silicon under elastic stress

    OpenAIRE

    2000-01-01

    Solid phase crystallization of an amorphous silicon (a-Si) film stressed by a Si3N4 cap was studied by laser Raman spectroscopy. The a-Si films were deposited on Si3N4 (50 nm)/Si(100) substrate by rf sputtering. The stress in an a-Si film was controlled by thickness of a Si3N4 cap layer. The Si3N4 films were also deposited by rf sputtering. It was observed that the crystallization was affected by the stress in a-Si films introduced by the Si3N4 cap layer. The study suggests that the elastic s...

  4. Continuum simulation of solid phase epitaxial regrowth of amorphized silicon including most advanced physical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Delalleau, Julien; Simola, Roberto [STMicroelectronics, ZI de Rousset, BP 2, 13106 Rousset (France); Pakfar, Ardechir; Tavernier, Clement [STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex (France); Bazizi, El-Medhi [STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex (France); LAAS/CNRS, University of Toulouse, 7 av. Col. Roche, 31077 Toulouse (France); CEMES/CNRS, 29 rue J. Marvig, 31055 Toulouse (France)

    2011-03-15

    Solid-phase-epitaxial regrowth (SPER) of Si amorphized by ion implantation is considered as a potential solution for the fabrication of highly-activated ultra-shallow junctions for future technology nodes of Si CMOS devices. In the frame of 32 and 22 nm technologies node development, SPER occurs after amorphizing implantations used in source/drain regions. To get an accurate simulation of dopant activation and junction depth position, a suitable continuum SPER model, implemented into a commercial simulator, is now mandatory. This TCAD model must consider the different physical effects associated with SPER: silicon regrowth rate, dopants redistribution snow plough effect, and interaction with silicon point defects. In this work, using a previously established model, we have implemented an improved physically based model for SPER and, several formulations have been developed to enable a robust/accurate modeling of the recrystallization velocity. It takes into account the direct interaction between amorphous/crystalline interface kinetics and point defects, and a regrowth rate dependent on temperature. Simulation results of dopant concentration profiles are in good agreement with experimental data and can provide important insight for optimizing the bulk silicon process as well in one dimension as two dimensions. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Continuous production of itraconazole-based solid dispersions by hot melt extrusion: Preformulation, optimization and design space determination.

    Science.gov (United States)

    Thiry, Justine; Lebrun, Pierre; Vinassa, Chloe; Adam, Marine; Netchacovitch, Lauranne; Ziemons, Eric; Hubert, Philippe; Krier, Fabrice; Evrard, Brigitte

    2016-12-30

    The purpose of this work was to increase the solubility and the dissolution rate of itraconazole, which was chosen as the model drug, by obtaining an amorphous solid dispersion by hot melt extrusion. Therefore, an initial preformulation study was conducted using differential scanning calorimetry, thermogravimetric analysis and Hansen's solubility parameters in order to find polymers which would have the ability to form amorphous solid dispersions with itraconazole. Afterwards, the four polymers namely Kollidon(®) VA64, Kollidon(®) 12PF, Affinisol(®) HPMC and Soluplus(®), that met the set criteria were used in hot melt extrusion along with 25wt.% of itraconazole. Differential scanning confirmed that all four polymers were able to amorphize itraconazole. A stability study was then conducted in order to see which polymer would keep itraconazole amorphous as long as possible. Soluplus(®) was chosen and, the formulation was fine-tuned by adding some excipients (AcDiSol(®), sodium bicarbonate and poloxamer) during the hot melt extrusion process in order to increase the release rate of itraconazole. In parallel, the range limits of the hot melt extrusion process parameters were determined. A design of experiment was performed within the previously defined ranges in order to optimize simultaneously the formulation and the process parameters. The optimal formulation was the one containing 2.5wt.% of AcDiSol(®) produced at 155°C and 100rpm. When tested with a biphasic dissolution test, more than 80% of itraconazole was released in the organic phase after 8h. Moreover, this formulation showed the desired thermoformability value. From these results, the design space around the optimum was determined. It corresponds to the limits within which the process would give the optimized product. It was observed that a temperature between 155 and 170°C allowed a high flexibility on the screw speed, from about 75 to 130rpm.

  6. Solid dispersions in the form of electrospun core-sheath nanofibers

    Directory of Open Access Journals (Sweden)

    Yu DG

    2011-12-01

    Full Text Available Deng-GuangYu1, Li-Min Zhu2, Christopher J Branford-White3, Jun-He Yang1, Xia Wang1, Ying Li1, Wei Qian11School of Materials Science and Engineering, University of Shanghai for Science and Technology; 2College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People's Republic of China; 3Faculty of Life Sciences, London Metropolitan University, London, United KingdomBackground: The objective of this investigation was to develop a new type of solid dispersion in the form of core-sheath nanofibers using coaxial electrospinning for poorly water-soluble drugs. Different functional ingredients can be placed in various parts of core-sheath nanofibers to improve synergistically the dissolution and permeation properties of encapsulated drugs and to enable drugs to exert their actions.Methods: Using acyclovir as a model drug, polyvinylpyrrolidone as the hydrophilic filament-forming polymer matrix, sodium dodecyl sulfate as a transmembrane enhancer, and sucralose as a sweetener, core-sheath nanofibers were successfully prepared, with the sheath part consisting of polyvinylpyrrolidone, sodium dodecyl sulfate, and sucralose, and the core part composed of polyvinylpyrrolidone and acyclovir.Results: The core-sheath nanofibers had an average diameter of 410 ± 94 nm with a uniform structure and smooth surface. Differential scanning calorimetry and x-ray diffraction results demonstrated that acyclovir, sodium dodecyl sulfate, and sucralose were well distributed in the polyvinylpyrrolidone matrix in an amorphous state due to favoring of second-order interactions. In vitro dissolution and permeation studies showed that the core-sheath nanofiber solid dispersions could rapidly release acyclovir within one minute, with an over six-fold increased permeation rate across the sublingual mucosa compared with that of crude acyclovir particles.Conclusion: The study reported here provides an example of the systematic design, preparation

  7. Characterization, Molecular Docking, and In Vitro Dissolution Studies of Solid Dispersions of 20(S-Protopanaxadiol

    Directory of Open Access Journals (Sweden)

    Qi Zhang

    2017-02-01

    Full Text Available In this study, we prepared solid dispersions (SDs of 20(S-protopanaxadiol (PPD using a melting-solvent method with different polymers, in order to improve the solubility and dissolution performance of drugs with poor water solubility. The SDs were characterized via differential scanning calorimetry (DSC, powder X-ray diffraction (PXRD, Fourier transform infrared spectroscopy (FTIR, nuclear magnetic resonance (NMR, and molecular docking and dynamics study. DSC and PXRD results indicated that PPD crystallinity in SDs was significantly reduced, and that the majority of PPD is amorphous. No interaction was observed between PPD and polymers on FTIR and NMR spectra. Molecular docking and dynamic calculations indicated that the PPD molecule localized to the interpolated charged surface, rather than within the amorphous polymer chain network, which might help prevent PPD crystallization, consequently enhancing the PPD dispersion in polymers. An in vitro dissolution study revealed that the SDs considerably improved the PPD dissolution performance in distilled water containing 0.35% Tween-80 (T-80. Furthermore, among three PPD-SDs formulations, Poloxamer188 (F68 was the most effective in improving the PPD solubility and was even superior to the mixed polymers. Therefore, the SD prepared with F68 as a hydrophilic polymer carrier might be a promising strategy for improving solubility and in vitro dissolution performance. F68-based SD, containing PPD with a melting-solvent preparation method, can be used as a promising, nontoxic, quick-release, and effective intermediate for other pharmaceutical formulations, in order to achieve a more effective drug delivery.

  8. Understanding the performance of melt-extruded poly(ethylene oxide)-bicalutamide solid dispersions: characterisation of microstructural properties using thermal, spectroscopic and drug release methods.

    Science.gov (United States)

    Abu-Diak, Osama A; Jones, David S; Andrews, Gavin P

    2012-01-01

    In this article, we have prepared hot-melt-extruded solid dispersions of bicalutamide (BL) using poly(ethylene oxide) (PEO) as a matrix platform. Prior to preparation, miscibility of PEO and BL was assessed using differential scanning calorimetry (DSC). The onset of BL melting was significantly depressed in the presence of PEO, and using Flory-Huggins (FH) theory, we identified a negative value of -3.4, confirming miscibility. Additionally, using FH lattice theory, we estimated the Gibbs free energy of mixing which was shown to be negative, passing through a minimum at a polymer fraction of 0.55. Using these data, solid dispersions at drug-to-polymer ratios of 1:10, 2:10 and 3:10 were prepared via hot-melt extrusion. Using a combination of DSC, powder X-ray diffractometry and scanning electron microscopy, amorphous dispersions of BL were confirmed at the lower two drug loadings. At the 3:10 BL to PEO ratio, crystalline BL was detected. The percent crystallinity of PEO was reduced by approximately 10% in all formulations following extrusion. The increased amorphous content within PEO following extrusion accommodated amorphous BL at drug to polymer loadings up to 2:10; however, the increased amorphous domains with PEO following extrusion were not sufficient to fully accommodate BL at drug-to-polymer ratios of 3:10.

  9. Solid dispersions of the penta-ethyl ester prodrug of diethylenetriaminepentaacetic acid (DTPA): formulation design and optimization studies.

    Science.gov (United States)

    Yang, Yu-Tsai; Di Pasqua, Anthony J; Zhang, Yong; Sueda, Katsuhiko; Jay, Michael

    2014-11-01

    The penta-ethyl ester prodrug of diethylenetriaminepentaacetic acid (DTPA), which exists as an oily liquid, was incorporated into a solid dispersion for oral administration by the solvent evaporation method using blends of polyvinylpyrrolidone (PVP), Eudragit® RL PO and α-tocopherol. D-optimal mixture design was used to optimize the formulation. Formulations that had a high concentration of both Eudragit® RL PO and α-tocopherol exhibited low water absorption and enhanced stability of the DTPA prodrug. Physicochemical properties of the optimal formulation were evaluated using Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). In vitro release of the prodrug was evaluated using the USP Type II apparatus dissolution method. DSC studies indicated that the matrix had an amorphous structure, while FTIR spectrometry showed that DTPA penta-ethyl ester and excipients did not react with each other during formation of the solid dispersion. Dissolution testing showed that the optimized solid dispersion exhibited a prolonged release profile, which could potentially result in a sustained delivery of DTPA penta-ethyl to enhance bioavailability. In conclusion, DTPA penta-ethyl ester was successfully incorporated into a solid matrix with high drug loading and improved stability compared to prodrug alone.

  10. Molecularly designed lipid microdomains for solid dispersions using a polymer/inorganic carrier matrix produced by hot-melt extrusion.

    Science.gov (United States)

    Adler, Camille; Schönenberger, Monica; Teleki, Alexandra; Kuentz, Martin

    2016-02-29

    Amorphous solid dispersions have for many years been a focus in oral formulations, especially in combination with a hot-melt extrusion process. The present work targets a novel approach with a system based on a fatty acid, a polymer and an inorganic carrier. It was intended to adsorb the acidic lipid by specific molecular interactions onto the solid carrier to design disorder in the alkyl chains of the lipid. Such designed lipid microdomains (DLM) were created as a new microstructure to accommodate a compound in a solid dispersion. Vibrational spectroscopy, X-ray powder diffraction, atomic force microscopy as well as electron microscopic imaging were employed to study a system of stearic acid, hydroxypropylcellulose and aluminum magnesium silicate. β-carotene was used as a poorly water-soluble model substance that is difficult to formulate with conventional solid dispersion formulations. The results indicated that the targeted molecular excipient interactions indeed led to DLMs for specific compositions. The different methods provided complementary aspects and important insights into the created microstructure. The novel delivery system appeared to be especially promising for the formulation of oral compounds that exhibit both high crystal energy and lipophilicity.

  11. Pressure-induced Transformations of Dense Carbonyl Sulfide to Singly Bonded Amorphous Metallic Solid

    Science.gov (United States)

    Kim, Minseob; Dias, Ranga; Ohishi, Yasuo; Matsuoka, Takehiro; Chen, Jing-Yin; Yoo, Choong-Shik

    2016-08-01

    The application of pressure, internal or external, transforms molecular solids into non-molecular extended network solids with diverse crystal structures and electronic properties. These transformations can be understood in terms of pressure-induced electron delocalization; however, the governing mechanisms are complex because of strong lattice strains, phase metastability and path dependent phase behaviors. Here, we present the pressure-induced transformations of linear OCS (R3m, Phase I) to bent OCS (Cm, Phase II) at 9 GPa an amorphous, one-dimensional (1D) polymer at 20 GPa (Phase III); and an extended 3D network above ~35 GPa (Phase IV) that metallizes at ~105 GPa. These results underscore the significance of long-range dipole interactions in dense OCS, leading to an extended molecular alloy that can be considered a chemical intermediate of its two end members, CO2 and CS2.

  12. Solid phase epitaxy amorphous silicon re-growth: some insight from empirical molecular dynamics simulation

    CERN Document Server

    Krzeminski, Christophe; 10.1140/epjb/e2011-10958-7

    2011-01-01

    The modelling of interface migration and the associated diffusion mechanisms at the nanoscale level is a challenging issue. For many technological applications ranging from nanoelectronic devices to solar cells, more knowledge of the mechanisms governing the migration of the silicon amorphous/crystalline interface and dopant diffusion during solid phase epitaxy is needed. In this work, silicon recrystallisation in the framework of solid phase epitaxy and the influence on orientation effects have been investigated at the atomic level using empirical molecular dynamics simulations. The morphology and the migration process of the interface has been observed to be highly dependent on the original inter-facial atomic structure. The [100] interface migration is a quasi-planar ideal process whereas the cases [110] and [111] are much more complex with a more diffuse interface. For [110], the interface migration corresponds to the formation and dissolution of nanofacets whereas for [111] a defective based bilayer reor...

  13. Spontaneous cracking of amorphous solid water films and the dependence on microporous structure

    Science.gov (United States)

    Bu, Caixia; Dukes, Catherine A.; Baragiola, Raúl A.

    2016-11-01

    Vapor-deposited, porous, amorphous, water-ice films, also called amorphous solid water (ASW), crack spontaneously during growth when the film thickness exceeds a critical value (Lc). We measured the Lc during growth of ASW films as a function of growth temperature (Tg = 10 K, 30 K, and 50 K) and deposition angle (θ = 0°, 45°, and 55°) using a quartz crystal microbalance, an optical interferometer, and an infrared spectrometer. The critical thickness, 1-5 μm under our experimental conditions, increases with Tg and θ, an indication of film porosity. We suggest that ASW films undergo tensile stress due to the mismatch between substrate adhesion and contracting forces derived from the incompletely coordinated molecules on the surfaces of the pores. We provide a model to explain the observed dependences of Lc on the Tg and θ in the context of Griffith theory and estimate the tensile strength of low-temperature ASW to be ˜25-40 MPa. Our model can be applied more generally to describe fracture of other solids with microporous structures, such as metallic or ceramic materials with voids.

  14. An investigation into the effect of spray drying temperature and atomizing conditions on miscibility, physical stability, and performance of naproxen-PVP K 25 solid dispersions.

    Science.gov (United States)

    Paudel, Amrit; Loyson, Yves; Van den Mooter, Guy

    2013-04-01

    The present study investigates the effect of changing spray drying temperature (40°C-120°C) and/or atomizing airflow rate (AR; 5-15 L/min) on the phase structure, physical stability, and performance of spray-dried naproxen-polyvinylpyrrolidone (PVP) K 25 amorphous solid dispersions. The modulated differential scanning calorimetry, attenuated total internal reflectance-Fourier transform infrared, and powder X-ray diffractometry (pXRD) studies revealed that higher inlet temperature (IT) or atomization airflow leads to the formation of amorphous-phase-separated dispersions with higher strongly H-bonded and free PVP fractions, whereas that prepared with the lowest IT was more homogeneous. The dispersion prepared with the lowest atomization AR showed trace crystallinity. Upon exposure to 75% relative humidity (RH) for 3 weeks, the phase-separated dispersions generated by spray drying at higher temperature or higher atomization airflow retained relatively higher amorphous drug fraction compared with those prepared at slow evaporation conditions. The humidity-controlled pXRD analysis at 98% RH showed that the dispersion prepared with highest atomization AR displayed the slowest kinetics of recrystallization. The molecular-level changes occurring during recrystallization at 98% RH was elucidated by spectroscopic monitoring at the same humidity. The rate and extent of the drug dissolution was the highest for dispersions prepared at the highest atomizing AR and the lowest for that prepared with the slowest atomizing condition.

  15. In-Vitro Characterization and Oral Bioavailability of Organic Solvent-free Solid Dispersions Containing Telmisartan

    Science.gov (United States)

    Cao, Yue; Shi, Li-Li; Cao, Qing-Ri; Yang, Mingshi; Cui, Jing-Hao

    2016-01-01

    Poorly water-soluble drugs often suffer from limited or irreproducible clinical response due to their low solubility and dissolution rate. In this study, organic solvent-free solid dispersions (OSF-SDs) containing telmisartan (TEL) were prepared using polyvinylpyrrolidone K30 (PVP K30) and polyethylene glycol 6000 (PEG 6000) as hydrophilic polymers, sodium hydroxide (NaOH) as an alkalizer, and poloxamer 188 as a surfactant by a lyophilization method. In-vitro dissolution rate and physicochemical properties of the OSF-SDs were characterized using the USP I basket method, differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and fourier transform-infrared (FT-IR) spectroscopy. In addition, the oral bioavailability of OSF-SDs in rats was evaluated by using TEL bulk powder as a reference. The dissolution rates of the OSF-SDs were significantly enhanced as compared to TEL bulk powder. The results from DSC, XRD showed that TEL was molecularly dispersed in the OSF-SDs as an amorphous form. The FT-IR results suggested that intermolecular hydrogen bonding had formed between TEL and its carriers. The OSF-SDs exhibited significantly higher AUC0–24 h and Cmax, but similar Tmax as compared to the reference. This study demonstrated that OSF-SDs can be a promising method to enhance the dissolution rate and oral bioavailability of TEL. PMID:27642309

  16. Solid solution or amorphous phase formation in TiZr-based ternary to quinternary multi-principal-element films

    Directory of Open Access Journals (Sweden)

    Mariana Braic

    2014-08-01

    The deposited films exhibited only solid solution (fcc, bcc or hcp or amorphous phases, no intermetallic components being detected. It was found that the hcp structure was stabilized by the presence of Hf or Y, bcc by Nb or Al and fcc by Cu. For the investigated films, the atomic size difference, mixing enthalpy, mixing entropy, Gibbs free energy of mixing and the electronegativity difference for solid solution and amorphous phases were calculated based on Miedema׳s approach of the regular solution model. It was shown that the atomic size difference and the ratio between the Gibbs free energies of mixing of the solid solution and amorphous phases were the most significant parameters controlling the film crystallinity.

  17. Two-subsystem thermodynamics for the mechanics of aging amorphous solids

    Science.gov (United States)

    Semkiv, Mykhailo; Anderson, Patrick D.; Hütter, Markus

    2017-03-01

    The effect of physical aging on the mechanics of amorphous solids as well as mechanical rejuvenation is modeled with nonequilibrium thermodynamics, using the concept of two thermal subsystems, namely a kinetic one and a configurational one. Earlier work (Semkiv and Hütter in J Non-Equilib Thermodyn 41(2):79-88, 2016) is extended to account for a fully general coupling of the two thermal subsystems. This coupling gives rise to hypoelastic-type contributions in the expression for the Cauchy stress tensor, that reduces to the more common hyperelastic case for sufficiently long aging. The general model, particularly the reversible and irreversible couplings between the thermal subsystems, is compared in detail with models in the literature (Boyce et al. in Mech Mater 7:15-33, 1988; Buckley et al. in J Mech Phys Solids 52:2355-2377, 2004; Klompen et al. in Macromolecules 38:6997-7008, 2005; Kamrin and Bouchbinder in J Mech Phys Solids 73:269-288 2014; Xiao and Nguyen in J Mech Phys Solids 82:62-81, 2015). It is found that only for the case of Kamrin and Bouchbinder (J Mech Phys Solids 73:269-288, 2014) there is a nontrivial coupling between the thermal subsystems in the reversible dynamics, for which the Jacobi identity is automatically satisfied. Moreover, in their work as well as in Boyce et al. (Mech Mater 7:15-33, 1988), viscoplastic deformation is driven by the deviatoric part of the Cauchy stress tensor, while for Buckley et al. (J Mech Phys Solids 52:2355-2377, 2004) and Xiao and Nguyen (J Mech Phys Solids 82:62-81, 2015) this is not the case.

  18. The dielectric behavior of vapor-deposited amorphous solid water and of its crystalline forms

    Science.gov (United States)

    Johari, G. P.; Hallbrucker, Andreas; Mayer, Erwin

    1991-08-01

    The dielectric permittivity and loss of vapor-deposited amorphous solid water (ASW) have been measured for fixed frequencies of 1 and 10 kHz from 80 K to its crystallization temperature. Similar measurements have also been made on the cubic ice formed after the crystallization of ASW and the hexagonal ice formed on heating the cubic ice. The loss tangent shows a broad sub-Tg relaxation peak centered at about 100 K and an approach towards a plateau value which appears as a shoulder. The peak is attributed to thermally activated rotation of H2O molecules with one or two dangling OH groups on the surface of the pores of the microporous sample, and the shoulder to localized motions within the network structure. Sintering of the samples on thermal cycling between 77 and ≊120 K in vacuo causes the broad peak to vanish. With increase in temperature, above Tg, the loss tangent shows the emergence of the expected α-relaxation peak of a liquid at T>Tg, whose completion is terminated by the onset of crystallization to cubic ice at about the same temperature for 1 kHz and for 10 kHz measurements. Thereafter, crystallization becomes slower, thus allowing further observation of the low-temperature part of the α-relaxation peak. The dielectric loss of amorphous solid water at 80 K is nearly 20 times that of the cubic ice formed on its crystallization after heating to 193 K, and nearly 3.5 times higher at Tg. The dielectric loss of the cubic ice formed on crystallization tends towards a plateau value prior to rapidly increasing with increase in temperature, an evidence for a low temperature relaxation which vanishes on conversion to hexagonal ice. This relaxation indicates a remnant topologically disordered structure of intergranular water and/or stacking faults in cubic ice. Samples sintered by thermal cycling in vacuo to ≊120 K crystallized in one step, whereas those without prior thermal cycling crystallized in two steps to cubic ice. Annealing of the ASW at 130 K

  19. Early stage phase separation in pharmaceutical solid dispersion thin films under high humidity: improved spatial understanding using probe-based thermal and spectroscopic nanocharacterization methods.

    Science.gov (United States)

    Qi, Sheng; Moffat, Jonathan G; Yang, Ziyi

    2013-03-04

    Phase separation in pharmaceutical solid dispersion thin films under high humidity is still poorly understood on the submicrometer scale. This study investigated the phase separation of a model solid dispersion thin film, felodipine-PVP K29/32, prepared by spin-coating and analyzed using probe-based methods including atomic force microscopy, nanothermal analysis, and photothermal infrared microspectroscopy. The combined use of these techniques revealed that the phase separation process occurring in the thin films under high humidity is different from that in dry conditions reported previously. The initial stage of phase separation is primarily initiated in the bulk of the films as amorphous drug domains. Drug migration toward the surface of the solid dispersion film was then observed to occur under exposure to increased humidity. PVP cannot prevent phase separation of felodipine under high humidity but can minimize the crystallization of amorphous felodipine domains in the solid dispersion thin films. This study demonstrates the unique abilities of these nanocharacterization methods for studying, in three dimensions, the phase separation of thin films for pharmaceutical applications.

  20. Application of imaging based tools for the characterisation of hollow spray dried amorphous dispersion particles.

    Science.gov (United States)

    Gamble, John F; Ferreira, Ana P; Tobyn, Mike; DiMemmo, Lynn; Martin, Kyle; Mathias, Neil; Schild, Richard; Vig, Balvinder; Baumann, John M; Parks, Stacy; Ashton, Mike

    2014-04-25

    The aim of this study was to investigate novel approaches to determine spray dried dispersion (SDD) specific particle characteristics through the use of imaging based technologies. The work demonstrates approaches that can be applied in order to access quantitative approximations for powder characteristics for hollow particles, such as SDD. Cryo-SEM has been used to measure the solid volume fraction and/or particle density of SDD particles. Application of this data to understand the impact of spray drying process conditions on SDD powder properties, and their impact on processability and final dosage form quality were investigated. The use of data from a Morphologi G3 image based particle characterisation system was also examined in order to explain both the propensity and extent of attrition within a series of SDD samples, and also demonstrate the use of light transmission data to assess the relative wall thickness of SDD particles. Such approaches demonstrate a means to access potentially useful information that can be linked to important particle characteristics for SDD materials which, in addition to the standard bulk powder measurements such as bulk density, may enable a better understanding of such materials and their impact on downstream processability and final dosage form acceptability.

  1. Solid-state, triboelectrostatic and dissolution characteristics of spray-dried piroxicam-glucosamine solid dispersions.

    Science.gov (United States)

    Adebisi, Adeola O; Kaialy, Waseem; Hussain, Tariq; Al-Hamidi, Hiba; Nokhodchi, Ali; Conway, Barbara R; Asare-Addo, Kofi

    2016-10-01

    This work explores the use of both spray drying and d-glucosamine HCl (GLU) as a hydrophilic carrier to improve the dissolution rate of piroxicam (PXM) whilst investigating the electrostatic charges associated with the spray drying process. Spray dried PXM:GLU solid dispersions were prepared and characterised (XRPD, DSC, SEM). Dissolution and triboelectric charging were also conducted. The results showed that the spray dried PXM alone, without GLU produced some PXM form II (DSC results) with no enhancement in solubility relative to that of the parent PXM. XRPD results also showed the spray drying process to decrease the crystallinity of GLU and solid dispersions produced. The presence of GLU improved the dissolution rate of PXM. Spray dried PXM: GLU at a ratio of 2:1 had the most improved dissolution. The spray drying process generally yielded PXM-GLU spherical particles of around 2.5μm which may have contributed to the improved dissolution. PXM showed a higher tendency for charging in comparison to the carrier GLU (-3.8 versus 0.5nC/g for untreated material and -7.5 versus 3.1nC/g for spray dried materials). Spray dried PXM and spray dried GLU demonstrated higher charge densities than untreated PXM and untreated GLU, respectively. Regardless of PXM:GLU ratio, all spray dried PXM:GLU solid dispersions showed a negligible charge density (net-CMR: 0.1-0.3nC/g). Spray drying of PXM:GLU solid dispersions can be used to produce formulation powders with practically no charge and thereby improving handling as well as dissolution behaviour of PXM.

  2. Dispersing SnO2 nanocrystals in amorphous carbon as a cyclic durable anode material for lithium ion batteries

    Institute of Scientific and Technical Information of China (English)

    Renzong Hu; Wei Sun; Meiqin Zeng; Min Zhu

    2014-01-01

    We demonstrate a facile route for the massive production of SnO2/carbon nanocomposite used as high-capacity anode materials of next-generation lithium-ion batteries. The nanocomposite had a unique structure of ultrafine SnO2 nanocrystals (∼5 nm, 80 wt%) homogeneously dispersed in amorphous carbon matrix. This structure design can well accommodate the volume change of Li+insertion/desertion in SnO2, and prevent the aggregation of the nanosized active materials during cycling, leading to superior cycle performance with stable reversible capacity of 400 mAh/g at a high current rate of 3.3 A/g.

  3. Improvement of the dissolution rate of silymarin by means of solid dispersions

    Institute of Scientific and Technical Information of China (English)

    Li FQ; Hu JH

    2005-01-01

    Solid dispersions of silymarin were prepared by the fusion method with the intention of improving the dissolution properties of silymarin. Polyethylene glycol 6000 (PEG 6000) was used as the inert hydrophilic matrix. The dissolution studies of the solid dispersions were performed in vitro. And the results obtained showed that the dissolution rate of silymarin was considerably improved when formulated in solid dispersions with PEG 6000 as compared to original drug, and the increased dissolution rate might be favorable for further oral absorption.

  4. Solid dispersion application in pharmaceutical technology: Methods of preparation and characterization

    OpenAIRE

    Medarević, Đorđe; Ibrić, Svetlana; Đuriš, Jelena; Đurić, Zorica

    2013-01-01

    A growing number of newly synthesized drugs exhibit low aqueous solubility, leading to poor bioavailability. Therefore, improving drug solubility and dissolution rate became one of the greatest challenges during formulation development. Solid dispersions formulation is one of the commonly investigated techniques for improving solubility of poorly soluble drugs. Solid dispersions are dispersions of one or more drugs in an inert carrier (matrix) in the solid state prepared by melting, solvent, ...

  5. Characterization and Pharmacokinetic Study of Aprepitant Solid Dispersions with Soluplus®

    OpenAIRE

    Jinwen Liu; Meijuan Zou; Hongyu Piao; Yi Liu; Bo Tang; Ying Gao; Ning Ma; Gang Cheng

    2015-01-01

    Solid dispersions are a useful approach to improve the dissolution rate and bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs). The aim of this study was to improve the physicochemical properties and bioavailability of a poorly water-soluble aprepitant by preparation of solid dispersions. The solid dispersions were characterized by dissolution, FTIR, XRPD, DSC, SEM and pharmacokinetic studies in rats. The dissolution rate of the aprepitant was significantly incre...

  6. A novel and alternative approach to controlled release drug delivery system based on solid dispersion technique

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Giri

    2012-12-01

    Full Text Available The solid dispersion method was originally used to improve the dissolution properties and the bioavailability of poorly water soluble drugs by dispersing them into water soluble carriers. In addition to the above, dissolution retardation through solid dispersion technique using water insoluble and water swellable polymer for the development of controlled release dosage forms has become a field of interest in recent years. Development of controlled release solid dispersion has a great advantage for bypassing the risk of a burst release of drug; since the structure of the solid dispersion is monolithic where drug molecules homogeneously disperse. Despite the remarkable potential and extensive research being conducted on controlled release solid dispersion system, commercialization and large scale production are limited. The author expects that recent technological advances may overcome the existing limitations and facilitate the commercial utilization of the techniques for manufacture of controlled release solid dispersions. This article begins with an overview of the different carriers being used for the preparation of controlled release solid dispersion and also different techniques being used for the purpose. Kinetics of drug release from these controlled release solid dispersions and the relevant mathematical modeling have also been reviewed in this manuscript.

  7. Characterization of optical constants and dispersion parameters of highly transparent Ge20Se76Sn4 amorphous thin film

    Science.gov (United States)

    Abd-Elrahman, M. I.; Hafiz, M. M.; Abdelraheem, A. M.; Abu-Sehly, A. A.

    2015-12-01

    Amorphous chalcogenide Ge20Se76Sn4 thin films of six different thicknesses (50-350 nm) are prepared by the thermal evaporation technique. Optical transmission and reflection spectra, in the wavelength range of the incident photons from 250 to 2500 nm, are used to study the effect of the film thickness on some optical properties. It is found that the effect of film thickness leads to increase in the absorption coefficient, refractive index, extinction coefficient and the width of the tails of localized states in the gap region. The decrease in optical band gap energy with increasing the film thickness is attributed to the formation of a band tail which narrows down the band gap. Dispersion analyses of refractive index reveal a decrease in the single-oscillator energy and an increase in the dispersion energy with increase in film thickness.

  8. Inertia and universality of avalanche statistics: The case of slowly deformed amorphous solids.

    Science.gov (United States)

    Karimi, Kamran; Ferrero, Ezequiel E; Barrat, Jean-Louis

    2017-01-01

    By means of a finite elements technique we solve numerically the dynamics of an amorphous solid under deformation in the quasistatic driving limit. We study the noise statistics of the stress-strain signal in the steady-state plastic flow, focusing on systems with low internal dissipation. We analyze the distributions of avalanche sizes and durations and the density of shear transformations when varying the damping strength. In contrast to avalanches in the overdamped case, dominated by the yielding point universal exponents, inertial avalanches are controlled by a nonuniversal damping-dependent feedback mechanism, eventually turning negligible the role of correlations. Still, some general properties of avalanches persist and new scaling relations can be proposed.

  9. Robustness of avalanche dynamics in sheared amorphous solids as probed by transverse diffusion.

    Science.gov (United States)

    Chattoraj, Joyjit; Caroli, Christiane; Lemaître, Anaël

    2011-07-01

    Using numerical simulations, we perform an extensive finite-size analysis of the transverse diffusion coefficient in a sheared 2D amorphous solid over a broad range of strain rates at temperatures up to the supercooled liquid regime. We thus obtain direct qualitative evidence for the persistence of correlations between elementary plastic events up to the vicinity of the glass transition temperature T(g). A quantitative analysis of the data, combined with a previous study of the T and γ dependence of the macroscopic stress [Phys. Rev. Lett. 105, 266001 (2010)], leads us to conclude that the average avalanche size remains essentially unaffected by temperature up to T ~ 0.75T(g).

  10. Inertia and universality of avalanche statistics: The case of slowly deformed amorphous solids

    Science.gov (United States)

    Karimi, Kamran; Ferrero, Ezequiel E.; Barrat, Jean-Louis

    2017-01-01

    By means of a finite elements technique we solve numerically the dynamics of an amorphous solid under deformation in the quasistatic driving limit. We study the noise statistics of the stress-strain signal in the steady-state plastic flow, focusing on systems with low internal dissipation. We analyze the distributions of avalanche sizes and durations and the density of shear transformations when varying the damping strength. In contrast to avalanches in the overdamped case, dominated by the yielding point universal exponents, inertial avalanches are controlled by a nonuniversal damping-dependent feedback mechanism, eventually turning negligible the role of correlations. Still, some general properties of avalanches persist and new scaling relations can be proposed.

  11. Pharmaceutical characterization of solid and dispersed carbon nanotubes as nanoexcipients

    Science.gov (United States)

    Ivanova, Marina V; Lamprecht, Constanze; Loureiro, M Jimena; Huzil, J Torin; Foldvari, Marianna

    2012-01-01

    Background Carbon nanotubes (CNTs) are novel materials with considerable potential in many areas related to nanomedicine. However, a major limitation in the development of CNT-based therapeutic nanomaterials is a lack of reliable and reproducible data describing their chemical and structural composition. Knowledge of properties including purity, structural quality, dispersion state, and concentration are essential before CNTs see widespread use in in vitro and in vivo experiments. In this work, we describe the characterization of several commercially available and two in-house-produced CNT samples and discuss the physicochemical profiles that will support their use in nanomedicine. Methods Eighteen single-walled and multi-walled CNT raw materials were characterized using established analytical techniques. Solid CNT powders were analyzed for purity and structural quality using thermogravimetric analysis and Raman spectroscopy. Extinction coefficients for each CNT sample were determined by ultraviolet-visible near infrared absorption spectroscopy. Standard curves for each CNT sample were generated in the 0–5 μg/mL concentration range for dispersions prepared in 1,2-dichlorobenzene. Results Raman spectroscopy and thermogravimetric analysis results demonstrated that CNT purity and overall quality differed substantially between samples and manufacturer sources, and were not always in agreement with purity levels claimed by suppliers. Absorbance values for individual dispersions were found to have significant variation between individual single-walled CNTs and multi-walled CNTs and sources supplying the same type of CNT. Significant differences (P < 0.01) in extinction coefficients were observed between and within single-walled CNTs (24.9–53.1 mL·cm−1·mg−1) and multi-walled CNTs (49.0–68.3 mL·cm−1·mg−1). The results described here suggest a considerable role for impurities and structural inhomogeneities within individual CNT preparations and the

  12. Improved dissolution of Kaempferia parviflora extract for oral administration by preparing solid dispersion via solvent evaporation

    Directory of Open Access Journals (Sweden)

    Yotsanan Weerapol

    2017-03-01

    Full Text Available Kaempferia parviflora, a plant in the family Zingiberaceae, has been used in Thai traditional medicines for treating hypertension and promoting longevity with good health and well-being. However, its limited aqueous solubility and low dissolution restrict its bioavailability. The aim of the study was therefore to improve the dissolution rate of K. parviflora extracted with dichloromethane (KPD by solid dispersions. Different water-soluble polymers were applied to improve dissolution of KPD. The solid dispersions in different ratios were prepared by solvent evaporation method. Only hydroxypropyl methylcellulose (HPMC and polyvinyl alcohol-polyethylene glycol grafted copolymer (PVA-co-PEG could be used to produce homogeneous, powdered solid dispersions. Physical characterization by scanning electron microscopy, hot stage microscopy, differential scanning calorimetry and powder X-ray diffractometry, in comparison with corresponding physical mixtures, showed the changes in solid state during the formation of solid dispersions. Dissolution of a selected marker, 5,7,4′-trimethoxyflavone (TMF, from KPD/HPMC and KPD/PVA-co-PEG solid dispersions was significantly improved, compared with pure KPD. The dissolution enhancement by solid dispersion was influenced by both type and content of polymers. The stability of KPD/HPMC and KPD/PVA-co-PEG solid dispersions was also good after 6-month storage in both long-term and accelerated conditions. These results identified that the KPD/HPMC and KPD/PVA-co-PEG solid dispersions were an effective new approach for pharmaceutical application of K. parviflora.

  13. Understanding API-polymer proximities in amorphous stabilized composite drug products using fluorine-carbon 2D HETCOR solid-state NMR.

    Science.gov (United States)

    Abraham, Anuji; Crull, George

    2014-10-06

    A simple and robust method for obtaining fluorine-carbon proximities was established using a (19)F-(13)C heteronuclear correlation (HETCOR) two-dimensional (2D) solid-state nuclear magnetic resonance (ssNMR) experiment under magic-angle spinning (MAS). The method was applied to study a crystalline active pharmaceutical ingredient (API), avagacestat, containing two types of fluorine atoms and its API-polymer composite drug product. These results provide insight into the molecular structure, aid with assigning the carbon resonances, and probe API-polymer proximities in amorphous spray dried dispersions (SDD). This method has an advantage over the commonly used (1)H-(13)C HETCOR because of the large chemical shift dispersion in the fluorine dimension. In the present study, fluorine-carbon distances up to 8 Å were probed, giving insight into the API structure, crystal packing, and assignments. Most importantly, the study demonstrates a method for probing an intimate molecular level contact between an amorphous API and a polymer in an SDD, giving insights into molecular association and understanding of the role of the polymer in API stability (such as recrystallization, degradation, etc.) in such novel composite drug products.

  14. Preparation, characterization and evaluation of the in vivo trypanocidal activity of ursolic acid-loaded solid dispersion with poloxamer 407 and sodium caprate

    Directory of Open Access Journals (Sweden)

    Josimar Oliveira Eloy

    2015-03-01

    Full Text Available Ursolic acid is a promising candidate for treatment of Chagas disease; however it has low aqueous solubility and intestinal absorption, which are both limiting factors for bioavailability. Among the strategies to enhance the solubility and dissolution of lipophilic drugs, solid dispersions are growing in popularity. In this study, we employed a mixture of the surfactants poloxamer 407 with sodium caprate to produce a solid dispersion containing ursolic acid aimed at enhancing both drug dissolution and in vivo trypanocidal activity. Compared to the physical mixture, the solid dispersion presented higher bulk density and smaller particle size. Fourier Transform Infrared Spectroscopy results showed hydrogen bonding intermolecular interactions between drug and poloxamer 407. X-ray diffractometry experiments revealed the conversion of the drug from its crystalline form to a more soluble amorphous structure. Consequently, the solubility of ursolic acid in the solid dispersion was increased and the drug dissolved in a fast and complete manner. Taken together with the oral absorption-enhancing property of sodium caprate, these results explained the increase of the in vivo trypanocidal activity of ursolic acid in solid dispersion, which also proved to be safe by cytotoxicity evaluation using the LLC-MK2 cell line.

  15. Microfibrous Solid Dispersions of Poorly Water-Soluble Drugs Produced via Centrifugal Spinning: Unexpected Dissolution Behavior on Recrystallization.

    Science.gov (United States)

    Marano, Stefania; Barker, Susan A; Raimi-Abraham, Bahijja T; Missaghi, Shahrzad; Rajabi-Siahboomi, Ali; Aliev, Abil E; Craig, Duncan Q M

    2017-05-01

    Temperature-controlled, solvent-free centrifugal spinning may be used as a means of rapid production of amorphous solid dispersions in the form of drug-loaded sucrose microfibers. However, due to the high content of amorphous sucrose in the formulations, such microfibers may be highly hygroscopic and unstable on storage. In this study, we explore both the effects of water uptake of the microfibers and the consequences of deliberate recrystallization for the associated dissolution profiles. The stability of sucrose microfibers loaded with three selected BCS class II model drugs (itraconazole (ITZ), olanzapine (OLZ), and piroxicam (PRX)) was investigated under four different relative humidity conditions (11, 33, 53, and 75% RH) at 25 °C for 8 months, particularly focusing on the effect of the highest level of moisture (75% RH) on the morphology, size, drug distribution, physical state, and dissolution performance of microfibers. While all samples were stable at 11% RH, at 33% RH the ITZ-sucrose system showed greater resistance against devitrification compared to the OLZ- and PRX-sucrose systems. For all three samples, the freshly prepared microfibers showed enhanced dissolution and supersaturation compared to the drug alone and physical mixes; surprisingly, the dissolution advantage was largely maintained or even enhanced (in the case of ITZ) following the moisture-induced recrystallization under 75% RH. Therefore, this study suggests that the moisture-induced recrystallization process may result in considerable dissolution enhancement compared to the drug alone, while overcoming the physical stability risks associated with the amorphous state.

  16. Influence of polyethylene glycol chain length on compatibility and release characteristics of ternary solid dispersions of itraconazole in polyethylene glycol/hydroxypropylmethylcellulose 2910 E5 blends.

    Science.gov (United States)

    Janssens, Sandrien; Denivelle, Samgar; Rombaut, Patrick; Van den Mooter, Guy

    2008-10-02

    The present study aims to elucidate the influence of the polyethylene glycol chain length on the miscibility of PEG/HPMC 2910 E5 polymer blends, the influence of polymer compatibility on the degree of molecular dispersion of itraconazole, and in vitro dissolution. PEG 2000, 6000, 10,000 and 20,000 were included in the study. Solid dispersions were prepared by spray drying and characterized with MDSC, XRPD and in vitro dissolution testing. The polymer miscibility increased with decreasing chain length due to a decrease in the Gibbs free energy of mixing. Recrystallization of itraconazole occurred as soon as a critical temperature of ca. 75 degrees C was reached for the glass transition that represents the ternary amorphous phase. Due to the lower miscibility degree between the longer PEG types and HPMC 2910 E5, the ternary amorphous phase was further separated, leading to a more rapid decrease of the ternary amorphous phase glass transition as a function of PEG and itraconazole weight percentage and hence, itraconazole recrystallization. In terms of release, an advantage of the shorter chain length PEG types (2000, 6000) over the longer chain length PEG types (10,000, 20,000) was observed for the polymer blends with 5% of PEG with respect to the binary itraconazole/HPMC 2910 E5 solid dispersion. Among the formulations with a 15/85 (w/w) PEG/HPMC 2910 E5 ratio on the other hand, there was no difference in the release profile.

  17. Improvement in the water solubility of drugs with a solid dispersion system by spray drying and hot-melt extrusion with using the amphiphilic polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer and d-mannitol.

    Science.gov (United States)

    Ogawa, Noriko; Hiramatsu, Tomoki; Suzuki, Ryohei; Okamoto, Ryohei; Shibagaki, Kohei; Fujita, Kosuke; Takahashi, Chisato; Kawashima, Yoshiaki; Yamamoto, Hiromitsu

    2017-09-08

    The aim of this study was to prepare and characterize solid dispersion particles with a novel amphiphilic polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer, as a water-soluble carrier. Solid dispersion particles were prepared by hot-melt extrusion and spray drying. Indomethacin (IMC) was used as a model comprising drugs with low solubility in water and d-mannitol (MAN) was used as an excipient. The physicochemical properties of prepared particles were characterized by scanning electron microscopy, thermal analysis, powder X-ray diffraction (PXRD) analysis, FTIR spectra analysis, and drug release studies. Stability studies were also conducted under stress conditions at 40°C, 75% relative humidity. We found that dissolution behavior of the original drug crystal could be improved by solid dispersion with the polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer. The PXRD pattern and thermal analysis indicated that the solid dispersion prepared with the polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer and IMC was in an amorphous state. FTIR spectra analysis indicated that the interaction manner between the polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer and IMC may differ with the preparation method and formulation of solid dispersions. Stability studies proved that the amorphous state of IMC in solid dispersion particles was preserved under stress conditions for more than two weeks. Copyright © 2017. Published by Elsevier B.V.

  18. On the effect of the amorphous silicon microstructure on the grain size of solid phase crystallized polycrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Kashish; Branca, Annalisa; Illiberi, Andrea; Creatore, Mariadriana; Sanden, Mauritius C.M. van de [Department of Applied Physics, Eindhoven University of Technology (Netherlands); Tichelaar, Frans D. [Kavli Institute of Nanoscience, Delft University of Technology (Netherlands)

    2011-05-15

    In this paper the effect of the microstructure of remote plasma-deposited amorphous silicon films on the grain size development in polycrystalline silicon upon solid-phase crystallization is reported. The hydrogenated amorphous silicon films are deposited at different microstructure parameter values R* (which represents the distribution of SiH{sub x} bonds in amorphous silicon), at constant hydrogen content. Amorphous silicon films undergo a phase transformation during solid-phase crystallization and the process results in fully (poly-)crystallized films. An increase in amorphous film structural disorder (i.e., an increase in R*), leads to the development of larger grain sizes (in the range of 700-1100 nm). When the microstructure parameter is reduced, the grain size ranges between 100 and 450 nm. These results point to the microstructure parameter having a key role in controlling the grain size of the polycrystalline silicon films and thus the performance of polycrystalline silicon solar cells. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Acoustic and Seismic Dispersion in Complex Fluids and Solids

    Science.gov (United States)

    Goddard, Joe

    2017-04-01

    The first part of the present paper is the continuation of a previous work [3] on the effects of higher spatial gradients and temporal relaxation on stress and heat flux in complex fluids. In particular, the general linear theory is applied to acoustic dispersion, extending a simpler model proposed by Davis and Brenner [2]. The theory is applied to a linearized version of the Chapman-Enskog fluid [1] valid to terms of Burnett order and including Maxwell-Cataneo relaxation of stress and heat flux on relaxation time scales τ. For this model, the dispersion relation k(ω) giving spatial wave number k as function of temporal frequency ω is a cubic in k2, in contrast to the quadratic in k2 given by the classical model and the recently proposed modification [2]. The cubic terms are shown to be important only for ωτ = O(1) where Maxwell-Cataneo relaxation is also important. As a second part of the present work, it is shown how the above model can also be applied to isotropic solids, where both shear and pressure waves are important. Finally, consideration is given to hyperstress in micro- polar continua, including both graded and micro-morphic varieties. [1]S. Chapman and T. Cowling. The mathematical theory of non-uniform gases. Cambridge University Press, [Cambridge, UK], 1960. [2]A. M.J. Davis and H. Brenner. Thermal and viscous effects on sound waves: revised classical theory. J. Acoust. Soc. Am., 132(5):2963-9, 2012. [3] J.D. Goddard. On material velocities and non-locality in the thermo-mechanics of continua. Int. J. Eng. Sci., 48(11):1279-88, 2010.

  20. Extending of flat normal dispersion profile in all-solid soft glass nonlinear photonic crystal fibres

    Science.gov (United States)

    Siwicki, Bartłomiej; Kasztelanic, Rafał; Klimczak, Mariusz; Cimek, Jarosław; Pysz, Dariusz; Stępień, Ryszard; Buczyński, Ryszard

    2016-06-01

    The bandwidth of coherent supercontinuum generated in optical fibres is strongly determined by the all-normal dispersion characteristic of the fibre. We investigate all-normal dispersion limitations in all-solid oxide-based soft glass photonic crystal fibres with various relative inclusion sizes and lattice constants. The influence of material dispersion on fibre dispersion characteristics for a selected pair of glasses is also examined. A relation between the material dispersion of the glasses and the fibre dispersion has been described. We determined the parameters which limit the maximum range of flattened all-normal dispersion profile achievable for the considered pair of heavy-metal-oxide soft glasses.

  1. Formulation of solid dispersion of rebamipide evaluated in a rat model for improved bioavailability and efficacy.

    Science.gov (United States)

    Tung, Nguyen-Thach; Park, Chun-Woong; Oh, Tack-oon; Kim, Ju-Young; Ha, Jung-Myung; Rhee, Yun-Seok; Park, Eun-Seok

    2011-12-01

    Rebamipide, a novel anti-ulcer agent, is listed in biopharmaceutics classification class IV because of its low aqueous solubility and permeability. Consequently, the bioavailability of rebamipide is under 10% in humans. The aim of this study was to increase the solubility and determine the effect of solubility enhancement on the bioavailability and efficacy of rebamipide (RBM). After taking into account the physiochemical properties of RBM (solubility, melting point, dosage etc.), solid dispersion was chosen as the solubility enhancement method. A rebamipide solid dispersion system containing the drug, l-lysine, PVP-VA 64 and poloxamer 407 was obtained from a spray-drying method. Solubility enhancement of RBM from the solid dispersion was determined by a dissolution test in 900 ml at pH 1.2. The bioavailability and efficacy of RBM solid dispersion were evaluated in a rat model. The aqueous solubility of RBM was improved 62.17 times by solid dispersion. The oral bioavailability of the drug was also increased 1.74-fold from solid dispersion compared with the reference product in a rat model. With regard to the anti-ulcer effect, the percentage inhibition of the solid dispersion was 2.71 times higher than that of the reference product in the ulcer-induced rat model. A solid dispersion of rebamipide was successfully formulated using the spray-drying method. Bioavailability and efficacy of rebamipide were increased significantly by solubility enhancement of the drug. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.

  2. Efficient determination of soft spots in amorphous solids using local structural information

    Science.gov (United States)

    Cubuk, Ekin; Schoenholz, Samuel; Malone, Brad; Liu, Andrea; Kaxiras, Efthimios

    2014-03-01

    Structural defects such as dislocations are also flow defects that control plastic flow in crystalline solids. In disordered solids, it is more challenging to identify such local regions that are susceptible to rearrangement. We propose an extremely fast method for identifying soft spots with high accuracy, which scales linearly with number of particles. We achieve this by training a supervised learning model with instances of local neighborhoods and their subsequent plastic flow behavior. By characterizing local neighborhoods with not just one structural quantity, such as bond orientational order, but a combination of multiple structural quantities, we are able to identify a population of regions that correlates just as strongly with rearrangements as do soft spots calculated from vibrational modes. This method does not require knowledge of the interparticle interactions and can readily be applied to experiments that measure the positions of constituent particles in a disordered packing. Furthermore, this also allows for the prediction of plastic behavior in systems like lithiated amorphous silicon, which is important for addressing the durability issues encountered in recent work on improving lithium-ion batteries.

  3. Unveiling the Surface Structure of Amorphous Solid Water via Selective Infrared Irradiation of OH Stretching Modes

    CERN Document Server

    Noble, Jennifer A; Fraser, Helen J; Roubin, Pascale; Coussan, Stéphane

    2014-01-01

    In the quest to understand the formation of the building blocks of life, amorphous solid water (ASW) is one of the most widely studied molecular systems. Indeed, ASW is ubiquitous in the cold interstellar medium (ISM), where ASW-coated dust grains provide a catalytic surface for solid phase chemistry, and is believed to be present in the Earth's atmosphere at high altitudes. It has been shown that the ice surface adsorbs small molecules such as CO, N$_2$, or CH$_4$, most likely at OH groups dangling from the surface. Our study presents completely new insights concerning the behaviour of ASW upon selective infrared (IR) irradiation of its dangling modes. When irradiated, these surface H$_2$O molecules reorganise, predominantly forming a stabilised monomer-like water mode on the ice surface. We show that we systematically provoke "hole-burning" effects (or net loss of oscillators) at the wavelength of irradiation and reproduce the same absorbed water monomer on the ASW surface. Our study suggests that all dangl...

  4. IMPROVEMENT OF SOLUBILITY AND DISSOLUTION RATE OF PIROXICAM BY SOLID DISPERSIONS IN PEG4000

    Directory of Open Access Journals (Sweden)

    Kulkarni Parthasarathi Keshavarao

    2012-04-01

    Full Text Available The aim of the present study was to enhance the dissolution rate of piroxicam (PX using its solid dispersions (SDs with polyethylene glycol (PEG 6000. The phase solubility behavior of piroxicam in presence of various concentrations of PEG 6000 in distilled water was obtained at 37 °C. The solubility of PX increased with increasing amount of PEG 6000 in water and demonstrating that the reaction conditions became more favorable as the concentration of PEG 6000 increased. The SDs of PX with PEG 6000 were prepared using 1:1, 1:2,1:3,1:4 and1:5 (PX/PEG 6000 ratio by Hot-melt method and solvent evaporation method. Evaluation of the properties of the SDs was performed by using dissolution, Fourier-transform infrared (FTIR spectroscopy, differential scanning calorimetry (DSC. The SDs of PX with PEG 6000 exhibited enhanced dissolution rate of PX and the rate increased with increasing concentration of PEG 6000 in SDs. Mean dissolution time (MDT of PX decreased significantly after preparation of SDs and physical mixture with PEG6000. The FTIR spectroscopic studies revealed that there is no chemical interaction and drug was stable. The DSC studies indicated the microcrystalline or amorphous state of PX in SDs with PEG 6000.

  5. Cefdinir Solid Dispersion Composed of Hydrophilic Polymers with Enhanced Solubility, Dissolution, and Bioavailability in Rats

    Directory of Open Access Journals (Sweden)

    Hyun-Jong Cho

    2017-02-01

    Full Text Available The aim of this work was to develop cefdinir solid dispersions (CSDs prepared using hydrophilic polymers with enhanced dissolution/solubility and in vivo oral bioavailability. CSDs were prepared with hydrophilic polymers such as hydroxypropyl-methylcellulose (HPMC; CSD1, carboxymethylcellulose-Na (CMC-Na; CSD2, polyvinyl pyrrolidone K30 (PVP K30; CSD3 at the weight ratio of 1:1 (drug:polymer using a spray-drying method. The prepared CSDs were characterized by aqueous solubility, differential scanning calorimetry (DSC, powder X-ray diffraction (p-XRD, scanning electron microscopy (SEM, aqueous viscosity, and dissolution test in various media. The oral bioavailability of CSDs was also evaluated in rats and compared with cefdinir powder suspension. The cefdinir in CSDs was amorphous form, as confirmed in the DSC and p-XRD measurements. The developed CSDs commonly resulted in about 9.0-fold higher solubility of cefdinir and a significantly improved dissolution profile in water and at pH 1.2, compared with cefdinir crystalline powder. Importantly, the in vivo oral absorption (represented as AUCinf was markedly increased by 4.30-, 6.77- and 3.01-fold for CSD1, CSD2, and CSD3, respectively, compared with cefdinir suspension in rats. The CSD2 prepared with CMC-Na would provide a promising vehicle to enhance dissolution and bioavailability of cefdinir in vivo.

  6. Characterization of degradation products of amorphous and polymorphic forms of clopidogrel bisulphate under solid state stress conditions

    DEFF Research Database (Denmark)

    Raijada, Dhara K; Prasad, Bhagwat; Paudel, Amrit

    2010-01-01

    The present study deals with the stress degradation studies on amorphous and polymorphic forms of clopidogrel bisulphate. The objective was to characterize the degradation products and postulate mechanism of decomposition of the drug under solid state stress conditions. For that, amorphous form...... degradation products were observed under various stress conditions. The structures of all of them were elucidated using LC-MS/TOF and LC-MS(n) studies. While one matched the known hydrolytic decomposition product of the drug in solution, seven others were new. The postulated degradation pathway and mechanism...

  7. Quality by design: discussing and assessing the solid dispersions risk.

    Science.gov (United States)

    Chaves, Luise L; Vieira, Alexandre C C; Reis, Salette; Sarmento, Bruno; Ferreira, Domingos C

    2014-01-01

    The poor water solubility tops the list of undesirable physicochemical properties in the drug discovery and Solid Dispersions (SDs) has been frequently used to enhance dissolution of such compounds. Although, some challenges limit the studies of SD commercial application. During recent years, the Quality by Design (QbD) approach has begun to change drug development, and focus on pharmaceutical production, which shifted from an univariate empirical understanding for a systematic multivariate process. In this review, some possible variables during the development process, formulation and production of SDs were defined, introducing and applying the QbD concept. The proposed work presented important definitions as well as its application in the pharmaceutical product and process design, especially the challenges encountered during the development of formulations of poorly soluble drugs. In this aspect, the SD technique was deeply discussed, in which some important parameters during SD design and production were mentioned as method of production, polymers commonly used, methods for characterization and stability evaluation, in addition of biopharmaceutical considerations. Finally, a specific risk assessment for the design and production of SD and critical points were discussed, which was a positive evolution and may lead to better understanding of SD for a rational formulation.

  8. Solubility enhancement of BCS Class II drug by solid phospholipid dispersions: Spray drying versus freeze-drying.

    Science.gov (United States)

    Fong, Sophia Yui Kau; Ibisogly, Asiye; Bauer-Brandl, Annette

    2015-12-30

    The poor aqueous solubility of BCS Class II drugs represents a major challenge for oral dosage form development. Using celecoxib (CXB) as model drug, the current study adopted a novel solid phospholipid nanoparticle (SPLN) approach and compared the effect of two commonly used industrial manufacturing methods, spray- and freeze-drying, on the solubility and dissolution enhancement of CXB. CXB was formulated with Phospholipoid E80 (PL) and trehalose at different CXB:PL:trehalose ratios, of which 1:10:16 was the optimal formulation. Spherical amorphous SPLNs with average diameters spray-drying; while amorphous 'matrix'-like structures of solid PL dispersion with larger particle sizes were prepared by freeze-drying. Formulations from both methods significantly enhanced the dissolution rates, apparent solubility, and molecularly dissolved concentration of CXB in phosphate buffer (PBS, pH 6.5) and in biorelevant fasted state simulated intestinal fluid (FaSSIF, pH 6.5) (pspray-dried SPLNs had a larger enhancement in apparent solubility (29- to 132-fold) as well as molecular solubility (18-fold) of CXB at equilibrium (pspray-dried SPLNs to attain 'true' supersaturation state makes them a promising approach for bioavailability enhancement of poorly soluble drugs.

  9. The use of inorganic salts to improve the dissolution characteristics of tablets containing Soluplus®-based solid dispersions.

    Science.gov (United States)

    Hughey, Justin R; Keen, Justin M; Miller, Dave A; Kolter, Karl; Langley, Nigel; McGinity, James W

    2013-03-12

    The dissolution enhancement advantages inherent to amorphous solid dispersions systems are often not fully realized once they are formulated into a solid dosage form. The objective of this study was to investigate the ability of inorganic salts to improve the dissolution rate of carbamazepine (CBZ) from tablets containing a high loading of a Soluplus®-based solid dispersion. Cloud point and viscometric studies were conducted on Soluplus® solutions to understand the effect of temperature, salt type and salt concentration on the aqueous solubility and gelling tendencies of Soluplus®, properties that can significantly impact dissolution performance. Studies indicated that Soluplus® exhibited a cloud point that was strongly dependent on the salt type and salt concentration present in the dissolving medium. The presence of kosmotropic salts dehydrated the polymer, effectively lowering the cloud point and facilitating formation of a thermoreversible hydrogel. The ability of ions to impact the cloud point and gel strength generally followed the rank order of the Hofmeister series. Solid dispersions of CBZ and Soluplus® were prepared by KinetiSol® Dispersing, characterized to confirm an amorphous composition was formed and incorporated into tablets at very high levels (70% w/w). Dissolution studies demonstrated the utility of including salts in tablets to improve dissolution properties. Tablets that did not contain a salt or those that included a chaotropic salt hydrated at the tablet surface and did not allow for sufficient moisture ingress into the tablet. Conversely, the inclusion of kosmotropic salts allowed for rapid hydration of the entire tablet and the formation of a gel structure with strength dependent on the type of salt utilized. Studies also showed that, in addition to allowing tablet hydration, potassium bicarbonate and potassium carbonate provided effervescence which effectively destroyed the gel network and allowed for rapid dissolution of CBZ

  10. In vitro/in vivo evaluation of an optimized fast dissolving oral film containing olanzapine co-amorphous dispersion with selected carboxylic acids.

    Science.gov (United States)

    Maher, Eman Magdy; Ali, Ahmed Mahmoud Abdelhaleem; Salem, Heba Farouk; Abdelrahman, Ahmed Abdelbary

    2016-10-01

    Improvement of water solubility, dissolution rate, oral bioavailability, and reduction of first pass metabolism of OL (OL), were the aims of this research. Co-amorphization of OL carboxylic acid dispersions at various molar ratios was carried out using rapid solvent evaporation. Characterization of the dispersions was performed using differential scanning calorimetry (DSC), Fourier transform infrared spectrometry (FTIR), X-ray diffractometry (XRD), and scanning electron microscopy (SEM). Dispersions with highest equilibrium solubility were formulated as fast dissolving oral films. Modeling and optimization of film formation were undertaken using artificial neural networks (ANNs). The results indicated co-amorphization of OL-ascorbic acid through H-bonding. The co-amorphous dispersions at 1:2 molar ratio showed more than 600-fold increase in solubility of OL. The model optimized fast dissolving film prepared from the dispersion was physically and chemically stable, demonstrated short disintegration time (8.5 s), fast dissolution (97% in 10 min) and optimum tensile strength (4.9 N/cm(2)). The results of in vivo data indicated high bioavailability (144 ng h/mL) and maximum plasma concentration (14.2 ng/mL) compared with the marketed references. Therefore, the optimized co-amorphous OL-ascorbic acid fast dissolving film could be a valuable solution for enhancing the physicochemical and pharmacokinetic properties of OL.

  11. Physicochemical characterization and in vitro dissolution behavior of olanzapine-mannitol solid dispersions

    Directory of Open Access Journals (Sweden)

    Venkateskumar Krishnamoorthy

    2012-06-01

    Full Text Available The objective of the present work is to study the dissolution behavior of olanzapine from its solid dispersions with mannitol. Solid dispersions were prepared by melt dispersion method and characterized by phase solubility studies, drug content and in vitro dissolution studies. The best releasing dispersions were selected from release data, dissolution parameters and their release profiles. Solid state characterization techniques like Fourier transform infrared (FT-IR spectroscopy, X-ray diffractometry, differential scanning calorimetry, near-infrared and Raman spectroscopy were used to characterize the drug in selected dispersions. The dispersions were also evaluated by wettability studies and permeation studies. The results of phase solubility studies and the thermodynamic parameters indicated the spontaneity and solubilization effect of the carrier. The release study results showed greater improvement of drug release from solid dispersions compared to pure drug, and the release was found to increase with an increase in carrier content. The possible mechanism for increased release rate from dispersions may be attributed to solubilization effect of the carrier, change in crystal quality, phase transition from crystalline to amorphous state, prevention of agglomeration or aggregation of drug particles, change in surface hydrophobicity of the drug, and increased wettability and dispersability of the drug in dissolution medium. The suggested reasons for increased release rate from dispersions were found to be well supported by results of solid state characterization, wettability and permeation studies. The absence of any interaction between the drug and the carrier was also proved by FT-IR analysis.O objetivo do presente trabalho é estudar o comportamento de dissolução da olanzapina a partir de suas dispersões sólidas de manitol. As dispersões sólidas foram preparadas por dispersão por fusão e caracterizadas por estudos de solubilidade de

  12. The influence of drug physical state on the dissolution enhancement of solid dispersions prepared via hot-melt extrusion: a case study using olanzapine.

    Science.gov (United States)

    Pina, Maria Fátima; Zhao, Min; Pinto, João F; Sousa, João J; Craig, Duncan Q M

    2014-04-01

    In this study, we examine the relationship between the physical structure and dissolution behavior of olanzapine (OLZ) prepared via hot-melt extrusion in three polymers [polyvinylpyrrolidone (PVP) K30, polyvinylpyrrolidone-co-vinyl acetate (PVPVA) 6:4, and Soluplus® (SLP)]. In particular, we examine whether full amorphicity is necessary to achieve a favorable dissolution profile. Drug–polymer miscibility was estimated using melting point depression and Hansen solubility parameters. Solid dispersions were characterized using differential scanning calorimetry, X-ray powder diffraction, and scanning electron microscopy. All the polymers were found to be miscible with OLZ in a decreasing order of PVP>PVPVA>SLP. At a lower extrusion temperature (160°C), PVP generated fully amorphous dispersions with OLZ, whereas the formulations with PVPVA and SLP contained 14%-16% crystalline OLZ. Increasing the extrusion temperature to 180°C allowed the preparation of fully amorphous systems with PVPVA and SLP. Despite these differences, the dissolution rates of these preparations were comparable, with PVP showing a lower release rate despite being fully amorphous. These findings suggested that, at least in the particular case of OLZ, the absence of crystalline material may not be critical to the dissolution performance. We suggest alternative key factors determining dissolution, particularly the dissolution behavior of the polymers themselves.

  13. Part II: bioavailability in beagle dogs of nimodipine solid dispersions prepared by hot-melt extrusion.

    Science.gov (United States)

    Zheng, Xin; Yang, Rui; Zhang, Yu; Wang, Zhijun; Tang, Xing; Zheng, Liangyuan

    2007-07-01

    The aim of the present work was to investigate the in vitro dissolution properties and oral bioavailability of three solid dispersions of nimodipine. The solid dispersions were compared with pure nimodipine, their physical mixtures, and the marketed drug product Nimotop. Nimodipine solid dispersions were prepared by a hot-melt extrusion process with hydroxypropyl methylcellulose (HPMC, Methocel E5), polyvinylpyrrolidone/vinyl acetate copolymer (PVP/VA, Plasdone S630), and ethyl acrylate, methyl methacrylate polymer (Eudragit EPO). Previous studies of XRPD and DSC data showed that the crystallinity was not observed in hot-melt extrudates, two T(g)s were observed in the 30% and 50% NMD-HPMC samples, indicating phase separation. The weakening and shift of the N-H stretching vibration of the secondary amine groups of nimodipine as determined by FT-IR proved hydrogen bonding between the drug and polymers in the solid dispersion. The dissolution profiles of the three dispersion systems showed that the release was improved compared with the unmanipulated drug. Drug plasma concentrations were determined by HPLC, and pharmacokinetic parameters were calculated after orally administering each preparation containing 60 mg of nimodipine. The mean bioavailability of nimodipine was comparable after administration of the Eudragit EPO solid dispersion and Nimotop, but the HPMC and PVP/VA dispersions exhibited much lower bioavailability. However, the AUC(0-12 hr) values of all three solid dispersions were significantly higher than physical mixtures with the same carriers and nimodipine powder.

  14. Thermal properties and structural characterizations of new types of phase change material: Anhydrous and hydrated palmitic acid/camphene solid dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tu, E-mail: tulee@cc.ncu.edu.tw; Chiu, Yu Hsiu; Lee, Yun; Lee, Hung Lin

    2014-01-10

    Highlights: • Solid dispersion is implemented on phase change materials. • Water is added as a tertiary component. • Specific heat of solid is increased by partially amorphous camphene. • Microstructures are characterized by LTDSC, PXRD and SAXS. • Thermal properties are linked to microstructures. - Abstract: Two new types of phase change material anhydrous and hydrated palmitic acid/camphene solid dispersions (PA1CA1) are prepared and characterized by low-temperature differential scanning calorimetry, powder X-ray diffraction, small-angle X-ray scattering and temperature–history method. Their microstructures contain nanometer-sized palmitic acid (PA) crystallites with lamellar periodicity dispersed in a partially amorphous plastic crystalline camphene (CA) matrix. The PA phase apparently possesses a relatively high latent heat value inherited from the pristine crystalline PA of 229.7 ± 0.1 kJ kg{sup −1}. The relatively high specific heat of solid, C{sub ps}, for anhydrous PA1CA1 of 2.17 ± 0.06 kJ kg{sup −1} K{sup −1} is originated from the presence of disordered CA matrix. Hydration of PA1CA1 can further increase the C{sub ps} to 2.61 ± 0.01 kJ kg{sup −1} K{sup −1}. The mixing of partially amorphous CA, some PA and the small amount of water may have turned the matrix into more disorder due to their different bonding natures, molecular weights, and various molecular shapes and sizes.

  15. Studies on Dissolution Enhancement of Prednisolone, a Poorly Water-Soluble Drug by Solid Dispersion Technique

    Directory of Open Access Journals (Sweden)

    Parvin Zakeri-Milani

    2011-06-01

    Full Text Available Introduction: Prednisolone is a class II substance according to the Biopharmaceutics Classification System. It is a poorly water soluble agent. The aim of the present study was to improve dissolution rate of a poorly water-soluble drug, prednisolone, by a solid dispersion technique. Methods: Solid dispersion of prednisolone was prepared with PEG 6000 or different carbohydrates such as lactose and dextrin with various ratios of the drug to carrier i.e., 1:10, 1:20 and 1:40. Solid dispersions were prepared by coevaporation method. The evaluation of the properties of the dispersions was performed using dissolution studies, Fourier-transform infrared spectroscopy and x-ray powder diffractometery. Results: The results indicated that lactose is suitable carriers to enhance the in vitro dissolution rate of prednisolone. The data from the x-ray diffraction showed that the drug was still detectable in its solid state in all solid dispersions except solid dispersions prepared by dextrin as carrier. The results from infrared spectroscopy showed no well-defined drug–carrier interactions for coevaporates. Conclusion: Solid dispersion of a poorly water-soluble drug, prednisolone may alleviate the problems of delayed and inconsistent rate of dissolution of the drug.

  16. Electron-induced chemistry of methyl chloride caged within amorphous solid water

    Science.gov (United States)

    Horowitz, Yonatan; Asscher, Micha

    2013-10-01

    The interaction of low energy electrons (1.0-25 eV) with methyl-chloride (CD3Cl) molecules, caged within Amorphous Solid Water (ASW) films, 10-120 monolayer (ML) thick, has been studied on top of a Ru(0001) substrate under Ultra High Vacuum (UHV) conditions. While exposing the ASW film to 3 eV electrons a static electric field up to 8 × 108 V/m is developed inside the ASW film due to the accumulation of trapped electrons that produce a plate capacitor voltage of exactly 3 V. At the same time while the electrons continuously strike the ASW surface, they are transmitted through the ASW film at currents of ca. 3 × 10-7 A. These electrons transiently attach to the caged CD3Cl molecules leading to C-Cl bond scission via Dissociative Electron Attachment (DEA) process. The electron induced dissociation cross sections and product formation rate constants at 3.0 eV incident electrons at ASW film thicknesses of 10 ML and 40 ML were derived from model simulations supported by Thermal Programmed Desorption (TPD) experimental data. For 3.0 eV electrons the CD3Cl dissociation cross section is 3.5 × 10-16 cm2, regardless of ASW film thickness. TPD measurements reveal that the primary product is deuterated methane (D3CH) and the minor one is deuterated ethane (C2D6).

  17. Diffusion and Clustering of Carbon Dioxide on non-porous Amorphous Solid Water

    CERN Document Server

    He, Jiao; Vidali, Gianfranco

    2016-01-01

    Observations by ISO and Spitzer towards young stellar objects (YSOs) showed that CO$_2$ segregates in the icy mantles covering dust grains. Thermal processing of ice mixture was proposed as responsible for the segregation. Although several laboratory studied thermally induced segregation, a satisfying quantification is still missing. We propose that the diffusion of CO$_2$ along pores inside water ice is the key to quantify segregation. We combined Temperature Programmed Desorption (TPD) and Reflection Absorption InfraRed Spectroscopy (RAIRS) to study how CO$_2$ molecules interact on a non-porous amorphous solid water (np-ASW) surface. We found that CO$_2$ diffuses significantly on a np-ASW surface above 65~K and clusters are formed at well below one monolayer. A simple rate equation simulation finds that the diffusion energy barrier of CO$_2$ on np-ASW is 2150$\\pm$50 K, assuming a diffusion pre-exponential factor of 10$^{12}$ s$^{-1}$. This energy should also apply to the diffusion of CO$_2$ on wall of pores...

  18. Surface and bulk crystallization of amorphous solid water films: Confirmation of "top-down" crystallization

    Science.gov (United States)

    Yuan, Chunqing; Smith, R. Scott; Kay, Bruce D.

    2016-10-01

    The crystallization kinetics of nanoscale amorphous solid water (ASW) films are investigated using temperature-programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS). TPD measurements are used to probe surface crystallization and RAIRS measurements are used to probe bulk crystallization. Isothermal TPD results show that surface crystallization is independent of the film thickness (from 100 to 1000 ML). Conversely, the RAIRS measurements show that the bulk crystallization time increases linearly with increasing film thickness. These results suggest that nucleation and crystallization begin at the ASW/vacuum interface and then the crystallization growth front propagates linearly into the bulk. This mechanism was confirmed by selective placement of an isotopic layer (5% D2O in H2O) at various positions in an ASW (H2O) film. In this case, the closer the isotopic layer was to the vacuum interface, the earlier the isotopic layer crystallized. These experiments provide direct evidence to confirm that ASW crystallization in vacuum proceeds by a "top-down" crystallization mechanism.

  19. Surface and bulk crystallization of amorphous solid water films: Confirmation of “top-down” crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Chunqing; Smith, R. Scott; Kay, Bruce D.

    2016-10-01

    The crystallization kinetics of nanoscale amorphous solid water (ASW) films are investigated using temperature-programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS). TPD measurements are used to probe surface crystallization and RAIRS measurements are used to probe bulk crystallization. Isothermal TPD results show that surface crystallization is independent of the film thickness (from 100 to 1000 ML). Conversely, the RAIRS measurements show that the bulk crystallization time increases linearly with increasing film thickness. These results suggest that nucleation and crystallization begin at the ASW/vacuum interface and then the crystallization growth front propagates linearly into the bulk. This mechanism was confirmed by selective placement of an isotopic layer (5% D2O in H2O) at various positions in an ASW (H2O) film. In this case, the closer the isotopic layer was to the vacuum interface, the earlier the isotopic layer crystallized. These experiments provide direct evidence to confirm that ASW crystallization in vacuum proceeds by a “top-down” crystallization mechanism.

  20. Crystalline to amorphous transition in solids upon high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Sundeev, R.V., E-mail: apricisvir@gmail.com [I.P. Bardin Central Research Institute for Ferrous Metallurgy, 2-ya Baumanskaya 9/23, Moscow 105005 (Russian Federation); Moscow State University of Instrument Engineering and Computer Science, Stromynka 20, Moscow 107996 (Russian Federation); Glezer, A.M. [I.P. Bardin Central Research Institute for Ferrous Metallurgy, 2-ya Baumanskaya 9/23, Moscow 105005 (Russian Federation); Moscow State University of Instrument Engineering and Computer Science, Stromynka 20, Moscow 107996 (Russian Federation); National University of Science and Technology “MISIS”, Leninsky avenue 4, Moscow 119049 (Russian Federation); Shalimova, A.V. [I.P. Bardin Central Research Institute for Ferrous Metallurgy, 2-ya Baumanskaya 9/23, Moscow 105005 (Russian Federation)

    2014-10-25

    Highlights: • Ti–Ni, Zr and Fe-based alloys were deformed using HTP processing. • Ability to deformation-induced amorphization (DIA) of these alloys was studied. • Amorphization is determined by mechanical, thermodynamic and concentration factors. • The smaller stability of phases the higher their ability to deformation amorphization. • There is the difference between of DIA and to thermal amorphization in the nature. - Abstract: The amorphization behavior of the crystalline multicomponent Ni{sub 50}Ti{sub 30}Hf{sub 20}, Ti{sub 50}Ni{sub 25}Cu{sub 25,} Zr{sub 50}Ni{sub 18}Ti{sub 17}Cu{sub 15}, and Fe{sub 78}B{sub 8.5}Si{sub 9}P{sub 4.5} alloys upon severe plastic deformation (SPD) has been studied. It is shown that the crystalline to amorphous transition is determined by the ability of the crystals to accumulation of deformation defects under mechanical action, by the thermodynamic stability of the crystalline phases contained in the alloy, and by the possibility of the diffusion processes necessary for the change in the chemical composition of the crystalline and amorphous phases upon deformation. It is found that the susceptibility to amorphization upon SPD does not coincide with the tendency of the alloys to amorphization upon melt quenching.

  1. Study of the pressure-time-temperature transformation of amorphous La6Ni5Al89 by the energy dispersive method for phase transition

    DEFF Research Database (Denmark)

    Paci, B.; Rossi-Albertini, V.; Sikorski, M.

    2005-01-01

    An energy dispersive X-ray diffraction method to observe phase transitions is applied to follow the crystallization of an amorphous alloy (La6Ni5Al89) in isothermal conditions. In this way, the diffraction-based configurational entropy (DCE) of the system undergoing the phase transformations...

  2. Anode properties of silicon-rich amorphous silicon suboxide films in all-solid-state lithium batteries

    Science.gov (United States)

    Miyazaki, Reona; Ohta, Narumi; Ohnishi, Tsuyoshi; Takada, Kazunori

    2016-10-01

    This paper reports the effects of introducing oxygen into amorphous silicon films on their anode properties in all-solid-state lithium batteries. Although poor cycling performance is a critical issue in silicon anodes, it has been effectively improved by introducing even a small amount of oxygen, that is, even in Si-rich amorphous silicon suboxide (a-SiOx) films. Because of the small amount of oxygen in the films, high cycling performance has been achieved without lowering the capacity and power density: an a-Si film delivers discharge capacity of 2500 mAh g-1 under high discharge current density of 10 mA cm-2 (35 C). These results demonstrate that a-SiOx is a promising candidate for high-capacity anode materials in solid-state batteries.

  3. Solid Dispersion as a Strategy to Enhance Solubility: A Review Article

    Directory of Open Access Journals (Sweden)

    Bhut Vibha Z

    2012-04-01

    Full Text Available Improving oral bioavailability of drugs remains most challenging aspects in formulation development due to solubility problems of poorly water soluble drugs. Most of the new chemical entities (NCEs are poorly water soluble as well as not well-absorbed after oral administration. Solid dispersion technologies are promising task for improving solubility and hence oral bioavailability of Biopharmaceutical Classification System (BCS class II drugs. Solid dispersion techniques have attracted due to improvingthe dissolution rate of highly lipophilic drugs and hence their bioavailability. This article reviews on classification, various preparation methods, advantages and disadvantages of solid dispersion.

  4. Solid solution or amorphous phase formation in TiZr-based ternary to quinternary multi-principal-element films

    Institute of Scientific and Technical Information of China (English)

    Mariana Braic; Viorel Braic; Alina Vladescu; Catalin N. Zoita; Mihai Balaceanu

    2014-01-01

    TiZr-based multicomponent metallic films composed of 3-5 constituents with almost equal atomic concentrations were prepared by co-sputtering of pure metallic targets in an Ar atmosphere. X-ray diffraction was employed to determine phase composition, crystalline structure, lattice parameters, texture and crystallite size of the deposited films. The deposited films exhibited only solid solution (fcc, bcc or hcp) or amorphous phases, no intermetallic components being detected. It was found that the hcp structure was stabilized by the presence of Hf or Y, bcc by Nb or Al and fcc by Cu. For the investigated films, the atomic size difference, mixing enthalpy, mixing entropy, Gibbs free energy of mixing and the electronegativity difference for solid solution and amorphous phases were calculated based on Miedema's approach of the regular solution model. It was shown that the atomic size difference and the ratio between the Gibbs free energies of mixing of the solid solution and amorphous phases were the most significant parameters controlling the film crystallinity.

  5. Development and evaluation of lafutidine solid dispersion via hot melt extrusion: Investigating drug-polymer miscibility with advanced characterisation

    Directory of Open Access Journals (Sweden)

    Ritesh Fule

    2014-04-01

    Full Text Available In current study, immediate release solid dispersion (SD formulation of antiulcer drug lafutidine (LAFT was developed using hot melt extrusion (HME technique. Amphiphilic Soluplus® used as a primary solubilizing agent, with different concentrations of selected surfactants like PEG 400, Lutrol F127 (LF127, Lutrol F68 (LF68 were used to investigate their influence on formulations processing via HME. Prepared amorphous glassy solid dispersion was found to be thermodynamically and physicochemically stable. On the contrary, traces of crystalline LAFT not observed in the extrudates according to differential scanning calorimetry (DSC, X-ray diffraction (XRD, scanning electron microscopy (SEM and Raman spectroscopy. Raman micro spectrometry had the lowest detection limit of LAFT crystals compared with XRD and DSC. Atomic Force microscopy (AFM studies revealed drug- polymer molecular miscibility and surface interaction at micro level. 1H–COSY NMR spectroscopy confirmed miscibility and interaction between LAFT and Soluplus®, with chemical shift drifting and line broadening. MD simulation studies using computational modelling showed intermolecular interaction between molecules. Dissolution rate and solubility of LAFT was enhanced remarkably in developed SD systems. Optimized ratio of polymer and surfactants played crucial role in dissolution rate enhancement of LAFT SD. The obtained results suggested that developed LAFT has promising potential for oral delivery and might be an efficacious approach for enhancing the therapeutic potential of LAFT.

  6. Flexible continuous manufacturing platforms for solid dispersion formulations

    Science.gov (United States)

    Karry-Rivera, Krizia Marie

    In 2013 16,000 people died in the US due to overdose from prescription drugs and synthetic narcotics. As of that same year, 90% of new molecular entities in the pharmaceutical drug pipeline are classified as poor water-soluble. The work in this dissertation aims to design, develop and validate platforms that solubilize weak acids and can potentially deter drug abuse. These platforms are based on processing solid dispersions via solvent-casting and hot-melt extrusion methods to produce oral transmucosal films and melt tablets. To develop these platforms, nanocrystalline suspensions and glassy solutions were solvent-casted in the form of films after physicochemical characterizations of drug-excipient interactions and design of experiment approaches. A second order model was fitted to the emulsion diffusion process to predict average nanoparticle size and for process optimization. To further validate the manufacturing flexibility of the formulations, glassy solutions were also extruded and molded into tablets. This process included a systematic quality-by-design (QbD) approach that served to identify the factors affecting the critical quality attributes (CQAs) of the melt tablets. These products, due to their novelty, lack discriminatory performance tests that serve as predictors to their compliance and stability. Consequently, Process Analytical Technology (PAT) tools were integrated into the continuous manufacturing platform for films. Near-infrared (NIR) spectroscopy, including chemical imaging, combined with deconvolution algorithms were utilized for a holistic assessment of the effect of formulation and process variables on the product's CQAs. Biorelevant dissolution protocols were then established to improve the in-vivo in-vitro correlation of the oral transmucosal films. In conclusion, the work in this dissertation supports the delivery of poor-water soluble drugs in products that may deter abuse. Drug nanocrystals ensured high bioavailability, while glassy

  7. Axial Liquid Dispersion in Gas-Liquid-Solid Circulating Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    M.Vatanakul; 孙国刚; 郑莹; M.Couturier

    2005-01-01

    The effects of liquid viscosities, solid circulating rates, liquid and gas velocities and phase holdups on the axial dispersion coefficient, Dax, were investigated in a gas-liquid-solid circulating fluidized bed (GLSCFB).Liquid viscosity promotes the axial liquid backmixing when solid particles and gas bubbles are present. Increases in gas velocities and solid circulating rates lead to higher Dax. The effects of liquid velocity on Dax are associated with liquid viscosity. Compared with conventional expanded beds, the GLSCFBs hold less axial liquid dispersion,approaching ideal plug-flow reactors.

  8. Molecular Dynamics Study of Stability of Solid Solutions and Amorphous Phase in the Cu-Al System

    Institute of Scientific and Technical Information of China (English)

    YANG Bin; LAI Wen-Sheng

    2009-01-01

    The relative stability of fcc and bcc solid solutions and amorphous phase with different compositions in the Cu-Al system is studied by molecular dynamics simulations with n-body potentials.For Cu1-xAlx alloys,the calculations show that the fcc solid solution has the lowest energies in the composition region with x<0.32 or x>0.72,while the bcc solid solution has the lowest energies in the central composition range,in agreement with the ball-milling experiments that a single bcc solid solution with 0.30<x< 0.70 is obtained.The evolution of structures in solid solutions and amorphous phase is studied by the coordination number (CN) and bond-length analysis so as to unveil the underlying physics.It is found that the energy sequence among three phases is determined by the competition in energy change originating from the bond length and CNs (or the number of bonds).

  9. An attempt to stabilize tanshinone IIA solid dispersion by the use of ternary systems with nano-CaCO 3 and poloxamer 188

    Directory of Open Access Journals (Sweden)

    Hong-mei Yan

    2014-01-01

    Full Text Available Background: Tanshinone IIA (TSIIA on solid dispersions (SDs has thermodynamical instability of amorphous drug. Ternary solid dispersions (tSDs can extend the stability of the amorphous form of drug. Poloxamer 188 was used as a SD carrier. Nano-CaCO 3 played an important role in adsorption of biomolecules and is being developed for a host of biotechnological applications. Objective: The aim of the present study was to investigate the dissolution behavior and accelerated stability of TSIIA on solid dispersions (SDs by the use of ternary systems with nano-CaCO 3 and poloxamer 188. Materials and Methods: The TSIIA tSDs were prepared by a spray-drying method. First, the effect of combination of poloxamer 188 and nano-CaCO 3 on TSIIA dissolution was studied. Subsequently, a set of complementary techniques (DSC, XRPD, SEM and FTIR was used to monitor the physical changes of TSIIA in the SDs. Finally, stability test was carried out under the conditions 40°C/75% RH for 6 months. Results: The characterization of tSDs by differential scanning calorimetry analysis (DSC and X-ray powder diffraction (XRPD showed that TSIIA was present in its amorphous form. Fourier transforms infrared spectroscopy (FTIR suggested the presence of interactions between TSIIA and carriers in tSDs. Improvement in the dissolution rate was observed for all SDs. The stability study conducted on SDs with nano-CaCO 3 showed stable drug content and dissolution behavior, over the period of 6 months as compared with freshly prepared SDs. Conclusion: SDs preparation with nano-CaCO 3 and poloxamer 188 may be a promising approach to enhance the dissolution and stability of TSIIA.

  10. The granulometric composition of solid dispersions of secondary water and oil emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Abashev, R.G.

    1983-01-01

    An evaluation is made of the chemical and granulometric composition of solid dispersions in stratum waters and intermediate emulsion layers from settlers for commercial preparation of oil. The probable sources of the solid dispersions and their role in the destabilization of the modes for preparing conditioned oil are indicated, along with the need to consider factors which cause the manifestation of a high content of mechanical admixtures, development of technical and technological measures for their complete are partial prevention in well production.

  11. Optimization of the Büchi B-90 spray drying process using central composite design for preparation of solid dispersions.

    Science.gov (United States)

    Gu, Bing; Linehan, Brian; Tseng, Yin-Chao

    2015-08-01

    A central composite design approach was applied to study the effect of polymer concentration, inlet temperature and air flow rate on the spray drying process of the Büchi B-90 nano spray dryer (B-90). Hypromellose acetate succinate-LF was used for the Design of Experiment (DoE) study. Statistically significant models to predict the yield, spray rate, and drying efficiency were generated from the study. The spray drying conditions were optimized according to the models to maximize the yield and efficiency of the process. The models were further validated using a poorly water-soluble investigational compound (BI064) from Boehringer Ingelheim Pharmaceuticals. The polymer/drug ratio ranged from 1/1 to 3/1w/w. The spray dried formulations were amorphous determined by differential scanning calorimetry and X-ray powder diffraction. The particle size of the spray dried formulations was 2-10 μm under polarized light microscopy. All the formulations were physically stable for at least 3h when suspended in an aqueous vehicle composed of 1% methyl cellulose. This study demonstrates that DoE is a useful tool to optimize the spray drying process, and the B-90 can be used to efficiently produce amorphous solid dispersions with a limited quantity of drug substance available during drug discovery stages.

  12. Diffusion and Clustering of Carbon Dioxide on Non-porous Amorphous Solid Water

    Science.gov (United States)

    He, Jiao; Emtiaz, Shahnewaj M.; Vidali, Gianfranco

    2017-03-01

    Observations by ISO and Spitzer toward young stellar objects showed that CO2 segregates in the icy mantles covering dust grains. Thermal processing of the ice mixture was proposed as being responsible for the segregation. Although several laboratories studied thermally induced segregation, a satisfying quantification is still missing. We propose that the diffusion of CO2 along pores inside water ice is the key to quantify segregation. We combined Temperature Programmed Desorption and Reflection Absorption InfraRed Spectroscopy to study how CO2 molecules interact on a non-porous amorphous solid water (np-ASW) surface. We found that CO2 diffuses significantly on an np-ASW surface above 65 K and clusters are formed at well below one monolayer. A simple rate equation simulation finds that the diffusion energy barrier of CO2 on np-ASW is 2150 ± 50 K, assuming a diffusion pre-exponential factor of 1012 s‑1. This energy should also apply to the diffusion of CO2 on the wall of pores. The binding energy of CO2 from CO2 clusters and CO2 from H2O ice has been found to be 2415 ± 20 K and 2250 ± 20 K, respectively, assuming the same prefactor for desorption. CO2–CO2 interaction is stronger than CO2–H2O interaction, in agreement with the experimental finding that CO2 does not wet the np-ASW surface. For comparison, we carried out similar experiments with CO on np-ASW, and found that the CO–CO interaction is always weaker than CO–H2O. As a result, CO wets the np-ASW surface. This study should be of help to uncover the thermal history of CO2 on the icy mantles of dust grains.

  13. Dispersion of Silicate in Tricalcium Phosphate Elucidated by Solid-State NMR

    Energy Technology Data Exchange (ETDEWEB)

    Rewal, A.; Wei, X.; Akinc, M.; Schmidt-Rohr, K.

    2008-03-12

    The dispersion of silicate in tricalcium phosphate, a resorbable bioceramics for bone replacement, has been investigated by various solid-state nuclear magnetic resonance (NMR) methods. In samples prepared with 5 and 10 mol% of both {sup 29}SiO{sub 2} and ZnO, three types of silicate have been detected: (i) SiO{sub 4}{sup 4-} (Q{sub 0} sites) with long longitudinal (T{sub 1,Si}) relaxation times ({approx} 10,000 s), which substitute for {approx}1% of PO{sub 4}{sup 3-}; (ii) silicate nanoinclusions containing Q{sub 2}, Q{sub 1}, and Q{sub 0} sites with T{sub 1,Si} 100 s, which account for most of the silicon; and (iii) crystalline Q{sub 4} (SiO{sub 2}) with long T{sub 1,Si}. Sensitivity was enhanced >100-fold by {sup 29}Si enrichment and refocused detection. The inclusions in both samples have a diameter of {approx}8 nm, as proved by {sup 29}Si{l_brace}{sup 31}P{r_brace} REDOR dephasing on a 30-ms time scale, which was simulated using a multispin approach specifically suited for nanoparticles. {sup 29}Si CODEX NMR with 30-s {sup 29}Si spin diffusion confirms that an inclusion contains >10 Si (consistent with the REDOR result of >100 Si per inclusion). Overlapping signals of silicate Q{sub 2}, Q{sub 1}, and Q{sub 0} sites were spectrally edited based on their J-couplings, using double-quantum filtering. The large inhomogeneous broadening of the Q{sub 2}, Q{sub 1}, and Q{sub 0} {sup 29}Si subspectra indicates that the nanoinclusions are amorphous.

  14. Preparation and characterization of rilpivirine solid dispersions with the application of enhanced solubility and dissolution rate

    Directory of Open Access Journals (Sweden)

    Pavan kommavarapu

    2015-03-01

    Full Text Available Rilpivirine (RPV is a pharmaceutical drug used for the treatment of HIV infection. The drug is characterized with poor aqueous solubility and dissolution rate leading to low bioavailability of the drug. Hence, there is a need for the improvement of the solubility and dissolution of such drugs. In this exertion, enhancement of the solubility and dissolution of the practically water insoluble drug rilpivirine was achieved by solid dispersion (SD preparation using solvent evaporation method which eventually leads to bioavailability enhancement. SD's were formed using Kollidon VA 64 which is a water-soluble copolymer and varying copolymer ratio to Avicel PH-101, Gelucire 50/13 and lecithin soya. Solubility studies were carried out to establish the solubility-enhancing property of the SD's. To support solubility analysis results, powder dissolution studies were carried out. The SD's were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray powder diffraction studies, scanning electron microscopy. It was found that the SD's formed showed the absence of crystalline nature of the drug and its conversion to amorphous state. The solubility and dissolution of the rilpivirine SD's were enhanced. There is a 14.9 fold increase in solubility for Drug: Kollidan VA 64: Gelucire 50/13 (1:4:1. For Drug: Kollidan VA 64 (1:5, Drug: Kollidan VA 64: Lecithin soya (1:4:1 and Drug: Kollidan VA 64: Avicel PH-101 (1:4:1 it was 5.9, 5.4 and 4.2 respectively. In-vitro drug release kinetics was investigated. This study demonstrates the use of solvent evaporation method for the preparation of SD’S in solubility and dissolution enhancement.

  15. Preparation and characterization of fast dissolving flurbiprofen and esomeprazole solid dispersion using spray drying technique.

    Science.gov (United States)

    Pradhan, Roshan; Tran, Tuan Hiep; Kim, Sung Yub; Woo, Kyu Bong; Choi, Yong Joo; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2016-04-11

    We aimed to develop an immediate-release flurbiprofen (FLU) and esomeprazole (ESO) combination formulation with enhanced gastric aqueous solubility and dissolution rate. Aqueous solubility can be enhanced by formulating solid dispersions (SDs) with a polyvinylpyrrolidone (PVP)-K30 hydrophilic carrier, using spray-drying technique. Aqueous and gastric pH dissolution can be achieved by macro-environmental pH modulation using sodium bicarbonate (NaHCO3) and magnesium hydroxide (Mg(OH)2) as the alkaline buffer. FLU/ESO-loaded SDs (FLU/ESO-SDs) significantly improved aqueous solubility of both drugs, compared to each drug powder. Dissolution studies in gastric pH and water were compared with the microenvironmental pH modulated formulations. The optimized FLU/ESO-SD powder formulation consisted of FLU/ESO/PVP-K30/sodium carbonate (Na2CO3) in a weight ratio 1:0.22:1.5:0.3, filled in the inner capsule. The outer capsule consisted of NaHCO3 and Mg(OH)2, which created the macro-environmental pH modulation. Increased aqueous and gastric pH dissolution of FLU and ESO from the SD was attributed to the alkaline buffer effects and most importantly, to drug transformation from crystalline to amorphous SD powder, clearly revealed by scanning electron microscopy, differential scanning calorimetry, and powder X-ray diffraction studies. Thus, the combined FLU and ESO SD powder can be effectively delivered as an immediate-release formulation using the macro-environmental pH modulation concept.

  16. Self-micellizing solid dispersion of cyclosporine A for pulmonary delivery: Physicochemical, pharmacokinetic and safety assessments.

    Science.gov (United States)

    Suzuki, Hiroki; Ueno, Kodai; Mizumoto, Takahiro; Seto, Yoshiki; Sato, Hideyuki; Onoue, Satomi

    2017-01-01

    The present study aimed to develop an inhalable self-micellizing solid dispersion of cyclosporine A (SMSD/CsA) for the direct delivery to the respiratory system with improved therapeutic efficacy and minimized systemic exposure. SMSD/CsA was obtained by wet-milling, and then jet-milled SMSD/CsA was blended with lactose carrier, producing a respirable powder of SMSD/CsA (SMSD/CsA-RP). The physicochemical, pharmacological, and pharmacokinetic properties of SMSD/CsA-RP were characterized, and the hepatotoxic and nephrotoxic potentials were investigated by biomarker analysis. Cascade impactor analysis demonstrated that SMSD/CsA-RP had high in vitro inhalation performance, with a fine particle fraction of 36%. In simulated lung fluid, the SMSD/CsA exhibited better dissolution behavior than amorphous CsA. Pretreatment with SMSD/CsA-RP resulted in significant suppression of antigen-evoked inflammatory events in rats. After intratracheal administration of SMSD/CsA-RP at a pharmacologically effective dose (100μg-CsA/rat), the AUC0-24 value was <1% of that after oral administration of Neoral(®) at a toxic dose (10mg-CsA/kg). Compared with oral Neoral(®), insufflated SMSD/CsA-RP showed 99% reductions of CsA concentrations in both liver and kidney. No significant increases of biomarker levels in plasma were observed even after repeated intratracheal administration of SMSD/CsA-RP for 7days. From these findings, SMSD/CsA-RP might be a favorable dosage form for effective and safe inhalation therapy of CsA. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Preferred orientations of laterally grown silicon films over amorphous substrates using the vapor–liquid–solid technique

    Energy Technology Data Exchange (ETDEWEB)

    LeBoeuf, J. L., E-mail: jerome.leboeuf@mail.mcgill.ca; Brodusch, N.; Gauvin, R.; Quitoriano, N. J. [Department of Mining and Materials Engineering, McGill University, Montreal (Canada)

    2014-12-28

    A novel method has been optimized so that adhesion layers are no longer needed to reliably deposit patterned gold structures on amorphous substrates. Using this technique allows for the fabrication of amorphous oxide templates known as micro-crucibles, which confine a vapor–liquid–solid (VLS) catalyst of nominally pure gold to a specific geometry. Within these confined templates of amorphous materials, faceted silicon crystals have been grown laterally. The novel deposition technique, which enables the nominally pure gold catalyst, involves the undercutting of an initial chromium adhesion layer. Using electron backscatter diffraction it was found that silicon nucleated in these micro-crucibles were 30% single crystals, 45% potentially twinned crystals and 25% polycrystals for the experimental conditions used. Single, potentially twinned, and polycrystals all had an aversion to growth with the (1 0 0) surface parallel to the amorphous substrate. Closer analysis of grain boundaries of potentially twinned and polycrystalline samples revealed that the overwhelming majority of them were of the 60° Σ3 coherent twin boundary type. The large amount of coherent twin boundaries present in the grown, two-dimensional silicon crystals suggest that lateral VLS growth occurs very close to thermodynamic equilibrium. It is suggested that free energy fluctuations during growth or cooling, and impurities were the causes for this twinning.

  18. Solid state amorphization in the Al-Fe binary system during high energy milling

    Energy Technology Data Exchange (ETDEWEB)

    Urban, P., E-mail: purban@us.es; Montes, J. M.; Cintas, J. [University of Seville, Department of Mechanical and Materials Engineering, ETSI, Camino de los Descubrimientos s/n, Seville, 41092 (Spain); Cuevas, F. G., E-mail: fgcuevas@dqcm.uhu.es [University of Huelva, Department of Chemistry and Materials Science, ETSI, Campus La Rábida, Carretera Palos s/n, Palos de la Frontera, Huelva, 21819 (Spain)

    2013-12-16

    In the present study, mechanical alloying (MA) of Al75Fe25 elemental powders mixture was carried out in argon atmosphere, using a high energy attritor ball mill. The microstructure of the milled products at different stages of milling was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The results showed that the amorphous phase content increased by increasing the milling time, and after 50 hours the amorphization process became complete. Heating the samples resulted in the crystallization of the synthesized amorphous alloys and the appearance of the equilibrium intermetallic compounds Al{sub 5}Fe{sub 2}.

  19. An IR investigation of solid amorphous ethanol - Spectra, properties, and phase changes.

    Science.gov (United States)

    Hudson, Reggie L

    2017-12-05

    Mid- and far-infrared spectra of condensed ethanol (CH3CH2OH) at 10-160K are presented, with a special focus on amorphous ethanol, the form of greatest astrochemical interest, and with special attention given to changes at 155-160K. Infrared spectra of amorphous and crystalline forms are shown. The refractive index at 670nm of amorphous ethanol at 16K is reported, along with three IR band strengths and a density. A comparison is made to recent work on the isoelectronic compound ethanethiol (CH3CH2SH), and several astrochemical applications are suggested for future study. Published by Elsevier B.V.

  20. Preparation and characteristics of tadalafil solid dispersions%他达那非固体分散体的制备和性质研究

    Institute of Scientific and Technical Information of China (English)

    于超峰; 单兴杰; 闫占宽; 李传筠

    2016-01-01

    Objective To prepare tadalafil(TD) solid dispersions and investigate the basic characteristics of the solid dispersion . Methods The solid dispersion was prepared by spray drying technology ,and an optimal formulation of the solid dispersion was screened by using apparent solubility and dissolution experiments as indexes .The characteristics including drug state in the disper‐sion and wettability of the dispersion were investigated by DSC ,PXRD and contact tangle examining technology .Results Through preparing the solid dispersions of TD ,the apparent solubility of TD was enhanced up to 22 .6 times;the drug release within 20 min exceeded 90% ;the drug state in dispersion was molecular state or amorphous form ;the contact angle decreased and the wettability of solid dispersion increased .Conclusion The apparent solubility and the dissolution of TD were improved by solid dispersion by u‐sing SDS and mesoporous silica as carriers .%目的:制备他达那非(tadalafil ,TD)固体分散体并进行性质研究。方法利用喷雾干燥法制备固体分散体,以表观溶解度和溶出度为指标筛选处方,采用差示扫描量热(DSC)、粉末X‐射线衍射(PXRD)和接触角测定等技术研究药物的存在状态和润湿性等理化性质。结果固体分散体将他达那非的表观溶解度提高22.6倍;20 min内药物的累积溶出超过90%;固体分散体药物以分子或无定形状态存在;接触角减小,润湿性增大。结论采用十二烷基硫酸钠(SDS )和介孔硅为载体制备的他达那非固体分散体,能明显提高药物的表观溶解度和溶出度。

  1. Solid-state properties and dissolution behaviour of tablets containing co-amorphous indomethacin-arginine

    DEFF Research Database (Denmark)

    Lenz, Elisabeth; Jensen, Katrine Birgitte Tarp; Blaabjerg, Lasse Ingerslev;

    2015-01-01

    Co-amorphous drug formulations provide the possibility to stabilize a drug in its amorphous form by interactions with low molecular weight compounds, e.g. amino acids. Recent studies have shown the feasibility of spray drying as a technique to manufacture co-amorphous indomethacin......–arginine in a larger production scale. In this work, a tablet formulation was developed for a co-amorphous salt, namely spray dried indomethacin–arginine (SD IND–ARG). The effects of compaction pressure on tablet properties, physical stability and dissolution profiles under non-sink conditions were examined....... Dissolution profiles of tablets with SD IND–ARG (TAB SD IND–ARG) were compared to those of tablets containing a physical mixture of crystalline IND and ARG (TAB PM IND–ARG) and to the dissolution of pure spray dried powder. Concerning tableting, the developed formulation allowed for the preparation of tablets...

  2. Humid storage conditions increase the dissolution rate of diazepam from solid dispersions prepared by melt agglomeration

    DEFF Research Database (Denmark)

    Jørgensen, Anna Cecilia; Torstenson, Anette Seo

    2008-01-01

    The purpose of this study is to investigate the effect of cooling mode and storage conditions on the dissolution rate of a solid dispersion prepared by melt agglomeration. The aim has been to relate this effect to the solid state properties of the agglomerates. The cooling mode had an effect on t...

  3. Solubility Enhancement of a Poorly Water Soluble Drug by Forming Solid Dispersions using Mechanochemical Activation

    OpenAIRE

    Rojas-Oviedo, I.; Retchkiman-Corona, B.; Quirino-Barreda, C. T.; Cárdenas, J.; Schabes-Retchkiman, P. S.

    2012-01-01

    Mechanochemical activation is a practical cogrinding operation used to obtain a solid dispersion of a poorly water soluble drug through changes in the solid state molecular aggregation of drug-carrier mixtures and the formation of noncovalent interactions (hydrogen bonds) between two crystalline solids such as a soluble carrier, lactose, and a poorly soluble drug, indomethacin, in order to improve its solubility and dissolution rate. Samples of indomethacin and a physical mixture with a weigh...

  4. A comparison of spray drying and milling in the production of amorphous dispersions of sulfathiazole/polyvinylpyrrolidone and sulfadimidine/polyvinylpyrrolidone.

    Science.gov (United States)

    Caron, Vincent; Tajber, Lidia; Corrigan, Owen I; Healy, Anne Marie

    2011-04-04

    Formulations containing amorphous active pharmaceutical ingredients (APIs) present great potential to overcome problems of limited bioavailability of poorly soluble APIs. In this paper, we directly compare for the first time spray drying and milling as methods to produce amorphous dispersions for two binary systems (poorly soluble API)/excipient: sulfathiazole (STZ)/polyvinylpyrrolidone (PVP) and sulfadimidine (SDM)/PVP. The coprocessed mixtures were characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and intrinsic dissolution tests. PXRD and DSC confirmed that homogeneous glassy solutions (mixture with a single glass transition) of STZ/PVP were obtained for 0.05 ≤ X(PVP) (PVP weight fraction) spray drying and for 0.6 ≤ X(PVP) spray drying and for 0.7 ≤ X(PVP) spray drying but not amorphous STZ could not be anticipated from the thermodynamic driving force of crystallization, but may be due to the lower molecular mobility of amorphous SDM compared to amorphous STZ. The solubility of the crystalline APIs in PVP was determined and the activities of the two APIs were fitted to the Flory-Huggins model. Comparable values of the Flory-Huggins interaction parameter (χ) were determined for the two systems (χ = -1.8 for SDM, χ = -1.5 for STZ) indicating that the two APIs have similar miscibility with PVP. Zones of stability and instability of the amorphous dispersions as a function of composition and temperature were obtained from the Flory-Huggins theory and the Gordon-Taylor equation and were found to be comparable for the two APIs. Intrinsic dissolution studies in aqueous media revealed that dissolution rates increased in the following order: physical mix of unprocessed materials spray dried systems.

  5. Co amorphous systems: A product development perspective.

    Science.gov (United States)

    Chavan, Rahul B; Thipparaboina, Rajesh; Kumar, Dinesh; Shastri, Nalini R

    2016-12-30

    Solubility is one of the major problems associated with most of the new chemical entities that can be reasonably addressed by drug amorphization. However, being a high-energy form, it usually tends to re-crystallize, necessitating new formulation strategies to stabilize amorphous drugs. Polymeric amorphous solid dispersion (PASD) is one of the widely investigated strategies to stabilize amorphous drug, with major limitations like limited polymer solubility and hygroscopicity. Co amorphous system (CAM), a new entrant in amorphous arena is a promising alternative to PASD. CAMs are multi component single phase amorphous solid systems made up of two or more small molecules that may be a combination of drugs or drug and excipients. Excipients explored for CAM preparation include amino acids, carboxylic acids, nicotinamide and saccharine. Advantages offered by CAM include improved aqueous solubility and physical stability of amorphous drug, with a potential to improve therapeutic efficacy. This review attempts to address different aspects in the development of CAM as drug products. Criterion for co-former selection, various methods involved in CAM preparation, characterization tools, stability, scale up and regulatory requirements for the CAM product development are discussed.

  6. Differentiating amorphous mixtures of cefuroxime axetil and copovidone by X-ray diffraction and differential scanning calorimetry.

    Science.gov (United States)

    Nicolaï, B; Perrin, M-A; Céolin, R; Rietveld, I B

    2014-03-01

    The amorphous, molecular solid dispersion of cefuroxime axetil and copovidone with the mass ratio 71/29 is compared to its pure components in the amorphous state and to an amorphous mechanical mixture with the same mass ratio. Calorimetric studies demonstrate that all these materials are vitreous. By using X-ray diffraction profiles, a clear difference can be observed between the local order of the solid dispersion and that of the mechanical mixture. More generally, it is shown how the presence or absence of additivity in the diffraction data can be used to distinguish between different amorphous mixtures. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  7. State transformations and ice nucleation in glassy or (semi-solid amorphous organic aerosol

    Directory of Open Access Journals (Sweden)

    K. J. Baustian

    2012-10-01

    Full Text Available Glassy or amorphous (semi-solid organic aerosol particles have the potential to serve as surfaces for heterogeneous ice nucleation in cirrus clouds. Raman spectroscopy and optical microscopy have been used in conjunction with a cold stage to examine water uptake and ice nucleation on individual aqueous organic glass particles at atmospherically relevant temperatures (200–273 K. Three organic compounds considered proxies for atmospheric secondary organic aerosol (SOA were used in this investigation: sucrose, citric acid and glucose. Internally mixed particles consisting of each organic species and ammonium sulfate were also investigated.

    Results from water uptake experiments were used to construct glass transition curves and state diagrams for each organic and corresponding mixture. A unique glass transition point on each state diagram, Tg', was used to quantify and compare results from this study to previous works. Values of Tg' determined for aqueous sucrose, glucose and citric acid glasses were 236 K, 230 K and 220 K, respectively. Values of Tg' for internally mixed organic/sulfate particles were always significantly lower; 210 K, 207 K and 215 K for sucrose/sulfate, glucose/sulfate and citric acid/sulfate, respectively.

    All investigated organic species were observed to serve as heterogeneous ice nuclei at tropospheric temperatures. Heterogeneous ice nucleation on pure organic particles occurred at Sice=1.1–1.4 for temperatures between 235 K and 200 K. Particles consisting of 1:1 organic-sulfate mixtures remained liquid over a greater range of conditions but were in some cases also observed to depositionally nucleate ice at temperatures below 202 K (Sice=1.25–1.38.

    Glass transition curves constructed from experimental data were incorporated into the Community Aerosol Radiation Model for Atmospheres (CARMA along with the

  8. Enhancement of dissolution rate of class II drugs (Hydrochlorothiazide); a comparative study of the two novel approaches; solid dispersion and liqui-solid techniques

    Science.gov (United States)

    Khan, Amjad; Iqbal, Zafar; Shah, Yasar; Ahmad, Lateef; Ismail; Ullah, Zia; Ullah, Aman

    2015-01-01

    Liqui-solid technique and solid dispersion formation are two novel approaches for enhancement of dissolution rate of BCS class II drugs. Liqui-solid compact converts a liquid drug or drug solution into a free flowing powder with enhanced dissolution rate. In case of solid dispersion drug is molecularly dispersed in a hydrophilic polymer in solid state. In the present study, Liqui-solid and solid dispersion techniques were applied to enhance the dissolution of the Hydrochlorothiazide. Three formulations of Hydrochlorothiazide were prepared by liqui-solid technique using micro crystalline cellulose as carrier material and colloidal silicon dioxide as coating material. Water, poly ethylene glycol-400 and Tween-60 were used as solvent system. Solid dispersions of Hydrochlorothiazide were prepared by solvent fusion method using PEG-4000 as carrier polymer. Tablets were subjected to evaluation of various physical and chemical characteristics. Dissolution profiles of tablets prepared by the novel techniques were compared with marketed conventional tablets. Model independent techniques including similarity factor, dissimilarity factor and dissolution efficiency were applied for comparison of dissolution profiles. The results obtained indicated that liqui-solid compact formulations were more effective in enhancing the dissolution rate compared with solid dispersion technique. The liqui-solid compacts improved the dissolution rate up to 95% while the solid dispersion increased it to 88%. PMID:26702260

  9. On the structure of amorphous calcium carbonate--a detailed study by solid-state NMR spectroscopy.

    Science.gov (United States)

    Nebel, Holger; Neumann, Markus; Mayer, Christian; Epple, Matthias

    2008-09-01

    The calcium carbonate phases calcite, aragonite, vaterite, monohydrocalcite (calcium carbonate monohydrate), and ikaite (calcium carbonate hexahydrate) were studied by solid-state NMR spectroscopy ( (1)H and (13)C). Further model compounds were sodium hydrogencarbonate, potassium hydrogencarbonate, and calcium hydroxide. With the help of these data, the structure of synthetically prepared additive-free amorphous calcium carbonate (ACC) was analyzed. ACC contains molecular water (as H 2O), a small amount of mobile hydroxide, and no hydrogencarbonate. This supports the concept of ACC as a transient precursor in the formation of calcium carbonate biominerals.

  10. Investigation into mixing capability and solid dispersion preparation using the DSM Xplore Pharma Micro Extruder.

    Science.gov (United States)

    Sakai, Toshiro; Thommes, Markus

    2014-02-01

    The goal of this investigation was to qualify the DSM Xplore Pharma Micro Extruder as a formulation screening tool for early-stage hot-melt extrusion. Dispersive and distributive mixing was investigated using soluplus, copovidone or basic butylated methacrylate copolymer with sodium chloride (NaCl) in a batch size of 5 g. Eleven types of solid dispersions were prepared using various drugs and carriers in batches of 5 g in accordance with the literature. The dispersive mixing was a function of screw speed and recirculation time and the particle size was remarkably reduced after 1 min of processing, regardless of the polymers. An inverse relationship between the particle size and specific mechanical energy (SME) was also found. The SME values were higher than those in large-scale extruders. After 1 min recirculation at 200 rpm, the uniformity of NaCl content met the criteria of the European Pharmacopoeia, indicating that distributive mixing was achieved in this time. For the solid dispersions preparations, the results from different scanning calorimetry, powder X-ray diffractometry and in-vitro dissolution tests confirmed that all solid-dispersion systems were successfully prepared. These findings demonstrated that the extruder is a useful tool to screen solid-dispersion formulations and their material properties on a small scale. © 2013 Royal Pharmaceutical Society.

  11. Development and characterization of solid dispersion of piroxicam for improvement of dissolution rate using hydrophilic carriers

    Directory of Open Access Journals (Sweden)

    Mohammad Barzegar-jalali

    2014-09-01

    Full Text Available Introduction: The main objective of this study was preparation and characterization of solid dispersion of piroxicam to enhance its dissolution rate. Methods: Solid dispersion formulations with different carriers including crospovidone, microcrystalline cellulose and Elaeagnus angustifolia fruit powder and with different drug: carrier ratios were prepared employing cogrinding method. Dissolution study of the piroxicam powders, physical mixtures and solid dispersions was performed in simulated gastric fluid and simulated intestinal fluid using USP Apparatus type II. The physical characterization of formulations were analyzed using powder X ray diffraction (PXRD, particle size analyzer and differential scanning calorimetry (DSC. Interactions between the drug and carriers were evaluated by Fourier transform infrared (FT-IR spectroscopic method. Results: It was revealed that all of three carriers increase the dissolution rate of piroxicam from physical mixtures and especially in solid dispersions compared to piroxicam pure and treated powders. PXRD and DSC results were confirmed the reduction of crystalline form of piroxicam. FT-IR analysis did not show any physicochemical interaction between drug and carriers in the solid dispersion formulations. Conclusion: Dissolution rate was dependent on the type and ratio of drug: carrier as well as pH of dissolution medium. Dissolution data of formulations were fitted well in to the linear Weibull as well as non-linear logistic and a suggested models.

  12. Microparticles Containing Curcumin Solid Dispersion: Stability, Bioavailability and Anti-Inflammatory Activity.

    Science.gov (United States)

    Teixeira, C C C; Mendonça, L M; Bergamaschi, M M; Queiroz, R H C; Souza, G E P; Antunes, L M G; Freitas, L A P

    2016-04-01

    This work aimed at improving the solubility of curcumin by the preparation of spray-dried ternary solid dispersions containing Gelucire®50/13-Aerosil® and quantifying the resulting in vivo oral bioavailability and anti-inflammatory activity. The solid dispersion containing 40% of curcumin was characterised by calorimetry, infrared spectroscopy and X-ray powder diffraction. The solubility and dissolution rate of curcumin in aqueous HCl or phosphate buffer improved up to 3600- and 7.3-fold, respectively. Accelerated stability test demonstrated that the solid dispersion was stable for 9 months. The pharmacokinetic study showed a 5.5-fold increase in curcumin in rat blood plasma when compared to unprocessed curcumin. The solid dispersion also provided enhanced anti-inflammatory activity in rat paw oedema. Finally, the solid dispersion proposed here is a promising way to enhance curcumin bioavailability at an industrial pharmaceutical perspective, since its preparation applies the spray drying, which is an easy to scale up technique. The findings herein stimulate further in vivo evaluations and clinical tests as a cancer and Alzheimer chemoprevention agent.

  13. “ Enhancement of Solubility of poorly water soluble drug by solid dispersion technique”

    Directory of Open Access Journals (Sweden)

    V.R.Tagalpallewar

    2015-02-01

    Full Text Available Atovaquone and Satrinidazole has poor solubility resulting in low oral absorption hence low oral bioavailability. Hence to improve the solubility of poorly Atovaquone and Satrinidazole , hydrophilic polymers were used to enhance the dissolution by solid dispersion technique. Polyehylene Glycol 4000 and PVP k30 used to enhance the dissolution of both the drug by Solubilisation. Many alternative techniques have been used to improve such bioavailability; this study thus employed the simple solid dispersion technique and incorporated excipients which can increase the bioavailability of these drugs directly enhancing the dissolution rate of the drug and indirectly by reducing particle size.The aim of present work is to enhance the dissolution of poorly water soluble drug by using solid dispersion technique. To improve the dissolution rate, by using the various concentration of carrier or matrix with drug and hence ,improve the bioavailability of poorly water soluble drug by formulating solid dispersion.To enhance the solubility of poorly water soluble drug ,by means of solubilising agent. In case of poorly water soluble drug, dissolution may be the rate limiting step in the process of absorption. In such case ,we can improve their solubility and dissolution rate.To study the effect of surfactant on the solid dispersion of poorly water soluble drug.

  14. Formulation development and dissolution rate enhancement of efavirenz by solid dispersion systems

    Directory of Open Access Journals (Sweden)

    P T Koh

    2013-01-01

    Full Text Available The aim of this study was to enhance the dissolution rate of efavirenz using solid dispersion systems (binary and ternary. A comparison between solvent and fusion method was also investigated. Solid dispersions of efavirenz were prepared using polyethylene glycol 8000, polyvinylpyrrolidone K30 alone and combination of both. Tween 80 was incorporated to obtain a ternary solid dispersion system. Dissolution tests were conducted and evaluated on the basis of cumulative percentage drug release and dissolution efficiency. Physicochemical characterizations of the solid dispersions were carried out using differential scanning calorimetric, powder X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. Dissolution was remarkably improved in both systems compared to pure efavirenz ( P0.05 in dissolution was observed between the two methods. Binary and ternary solid dispersion systems both have showed a significant improvement in the dissolution rate of efavirenz. Formulations with only polyvinylpyrrolidone K30 showed best dissolution profile and 1:10 was identified as an optimum drug-polymer weight ratio.

  15. Development of megestrol acetate solid dispersion nanoparticles for enhanced oral delivery by using a supercritical antisolvent process.

    Science.gov (United States)

    Ha, Eun-Sol; Kim, Jeong-Soo; Baek, In-Hwan; Yoo, Jin-Wook; Jung, Yunjin; Moon, Hyung Ryong; Kim, Min-Soo

    2015-01-01

    In the present study, solid dispersion nanoparticles with a hydrophilic polymer and surfactant were developed using the supercritical antisolvent (SAS) process to improve the dissolution and oral absorption of megestrol acetate. The physicochemical properties of the megestrol acetate solid dispersion nanoparticles were characterized using scanning electron microscopy, differential scanning calorimetry, powder X-ray diffraction, and a particle-size analyzer. The dissolution and oral bioavailability of the nanoparticles were also evaluated in rats. The mean particle size of all solid dispersion nanoparticles that were prepared was dispersion state within the solid dispersion nanoparticles. Hydroxypropylmethyl cellulose (HPMC) solid dispersion nanoparticles significantly increased the maximum dissolution when compared with polyvinylpyrrolidone K30 solid dispersion nanoparticles. The extent and rate of dissolution of megestrol acetate increased after the addition of a surfactant into the HPMC solid dispersion nanoparticles. The most effective surfactant was Ryoto sugar ester L1695, followed by D-α-tocopheryl polyethylene glycol 1000 succinate. In this study, the solid dispersion nanoparticles with a drug:HPMC:Ryoto sugar ester L1695 ratio of 1:2:1 showed >95% rapid dissolution within 30 minutes, in addition to good oral bioavailability, with approximately 4.0- and 5.5-fold higher area under the curve (0-24 hours) and maximum concentration, respectively, than raw megestrol acetate powder. These results suggest that the preparation of megestrol acetate solid dispersion nanoparticles using the supercritical antisolvent process is a promising approach to improve the dissolution and absorption properties of megestrol acetate.

  16. Preparation and characterisation of Kolliphor® P 188 and P 237 solid dispersion oral tablets containing the poorly water soluble drug disulfiram.

    Science.gov (United States)

    Ramadhani, Nisrina; Shabir, Mehwish; McConville, Christopher

    2014-11-20

    The oral route of administration is the most common and preferred route of drug delivery due to its ease of administration, cost-effectiveness and flexibility in design. However, limited aqueous solubility of the active pharmaceutical ingredient can result in poor bioavailability, which is a major issue for the pharmaceutical industry. Increasing numbers of new drugs are falling into class II of the Biopharmaceutical Classification System (BCS), where they have a low solubility and high tissue permeability, meaning that bioavailability is solubility dependent. Here we demonstrate the development and characterisation of solid dispersion oral tablets, containing the poorly water-soluble drug disulfiram, prepared using both the hot melt and solvent evaporation methods and manufactured from two different polymers, Kolliphor(®) P 188 and P 237, specifically designed for the manufacture of solid dispersions. This paper demonstrates that the disulfiram solid dispersions tablets have an enhanced release rate of disulfiram compared to the control tablets. The Kolliphor(®) P 188 polymer control tablets released approximately 48.8% of their disulfiram content over 8h, with the solvent evaporated tablets releasing approximately 65.8%, while the 60 and 80 °C hot melt tablets released approximately 73.2 and 100% of their disulfiram content respectively. A similar trend was seen with Kolliphor(®) P 237 as the control tablets released approximately 50.5% of their disulfiram content over 8h, while the solvent evaporated tablets released approximately 79.5% and the 60 and 80 °C hot melt tablets released 100.2 and 100.3% respectively. Depending on what method and polymer is used to manufacture the solid dispersions the disulfiram is either maintained completely or partially in its amorphous state and it is this which enhances its solubility and release rate from the tablets. The disulfiram in the Kolliphor(®) P 188 solvent evaporated and 60 °C hot melt tablets retained 50

  17. Novel family of solid acid catalysts: substantially amorphous or partially crystalline zeolitic materials

    CSIR Research Space (South Africa)

    Nicolaides, CP

    1999-01-01

    Full Text Available of the samples obtained at the various temperatures showed that for synthesis temperatures of up to 70 degrees C, X-ray amorphous aluminosilicates were obtained, whereas treatment at 90 degrees C produced a material exhibiting a 2% XRD crystallinity. Higher...

  18. Improvement of solubility and dissolution properties of clotrimazole by solid dispersions and inclusion complexes

    Directory of Open Access Journals (Sweden)

    Gehan Balata

    2011-01-01

    Full Text Available Solid dispersions of a slightly water-soluble drug, clotrimazole, were prepared in different weight ratios using polyethyleneglycol 4000 and different molecular weight polyvinyl pyrrolidones as carriers. Moreover, binary and ternary β-cyclodextrin complexes were prepared in different molar ratios. Both solid dispersions and β-cyclodextrin complexes were prepared by solvent evaporation technique. A phase solubility method was used to evaluate the effect of the tested carriers on the aqueous solubility of clotrimazole. The dissolution of all the preparations was tested using the USP paddle method. The selected solid dispersions and inclusion complexes were characterized by differential scanning calorimetry and X-ray powder diffractometry studies, and results clarified the role of the tested carriers in decreasing the crystallinity of clotrimazole and complexing abilities. Based on physical characters and in vitro drug release pattern, polyvinylpyrrolidone solid dispersions (1:1 weight ratio and ternary cyclodextrin complexes (clotrimazole-β-cyclodextrin complexes with either polymer, 1:1 molar ratio were selected as ideal batches for suppositories. Suppocire AM/50 mg carbopol 940, was chosen as a suppository base and the suppositories were prepared by molding technique. The prepared suppositories were characterized for weight variation, softening time and drug content. All these properties were found to be ideal. The in vitro drug release pattern was determined in citrate buffer (pH 4.5 containing 1% sodium lauryl sulfate. The in vitro release of clotrimazole from its solid dispersions and inclusion complexes incorporated suppositories was markedly improved when compared to the intact drug incorporated suppositories. Polyvinyl pyrrolidone solid dispersions incorporated suppositories were found to possess excellent antifungal activity.

  19. Preparation, Characterization and Stability Studies of Glassy Solid Dispersions of Indomethacin using PVP and Isomalt as carriers

    OpenAIRE

    2012-01-01

    Objective(s) The purpose of the present study was to use the solid dispersion (SD) technique to improve the dissolution rates of indomethacin (IMC). Materials and Methods IMC solid dispersions in PVP K30 and isomalt (GALEN IQ 990) were prepared using the solvent evaporation technique and a hot melt method in weight ratios of 2, 10 and 30% (IMC:PVP). Solid dispersions and physical mixtures were characterized by X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and dissol...

  20. Formation of the prebiotic molecule NH$_2$CHO on astronomical amorphous solid water surfaces: accurate tunneling rate calculations

    CERN Document Server

    Song, Lei

    2016-01-01

    Investigating how formamide forms in the interstellar medium is a hot topic in astrochemistry, which can contribute to our understanding of the origin of life on Earth. We have constructed a QM/MM model to simulate the hydrogenation of isocyanic acid on amorphous solid water surfaces to form formamide. The binding energy of HNCO on the ASW surface varies significantly between different binding sites, we found values between $\\sim$0 and 100 kJ mol$^{-1}$. The barrier for the hydrogenation reaction is almost independent of the binding energy, though. We calculated tunneling rate constants of H + HNCO $\\rightarrow$ NH$_2$CO at temperatures down to 103 K combining QM/MM with instanton theory. Tunneling dominates the reaction at such low temperatures. The tunneling reaction is hardly accelerated by the amorphous solid water surface compared to the gas phase for this system, even though the activation energy of the surface reaction is lower than the one of the gas-phase reaction. Both the height and width of the ba...

  1. Development, characterization and solubility enhancement of comparative dissolution study of second generation of solid dispersions and microspheres for poorly water soluble drug

    Directory of Open Access Journals (Sweden)

    Poovi Ganesan

    2015-10-01

    Full Text Available The poor dissolution characteristics of water-insoluble drugs are a major challenge for pharmaceutical scientists. Reduction of the particle size/increase in the surface area of the drug is a widely used and relatively simple method for increasing dissolution rates. The objective of this study was to improve solubility, release and comparability of dissolution of a poorly soluble drug using two different types of formulations (solid dispersions and microspheres. Hydrochlorothiazide was used as a model drug. The solid dispersions and microspheres were prepared by solvent evaporation method using ethyl cellulose, hydroxypropyl methylcellulose in different drug-to-carrier ratios (1:1, 1:2 w:w. The prepared formulations were evaluated for interaction study by Fourier transform infrared spectroscopy, differential scanning calorimetry, percentage of practical yield, drug loading, surface morphology by scanning electron microscopy, optical microscopy and in-vitro release studies. The results showed no interaction between the drug and polymer, amorphous state of solid dispersions and microspheres, percentage yield of 42.53% to 78.10%, drug content of 99.60 % to 99.64%, good spherical appearance in formulation VI and significant increase in the dissolution rate.

  2. Microparticles Containing Curcumin Solid Dispersion: Stability, Bioavailability and Anti-Inflammatory Activity

    OpenAIRE

    Teixeira, C. C. C.; Mendonça, L. M.; Bergamaschi, M. M.; QUEIROZ, R. H. C.; Souza, G. E. P.; L. M. G. ANTUNES; Freitas, L. A. P. de

    2015-01-01

    This work aimed at improving the solubility of curcumin by the preparation of spray-dried ternary solid dispersions containing Gelucire®50/13-Aerosil® and quantifying the resulting in vivo oral bioavailability and anti-inflammatory activity. The solid dispersion containing 40% of curcumin was characterised by calorimetry, infrared spectroscopy and X-ray powder diffraction. The solubility and dissolution rate of curcumin in aqueous HCl or phosphate buffer improved up to 3600- and 7.3-fold, res...

  3. In-Vitro Characterization and Oral Bioavailability of Organic Solvent-free Solid Dispersions Containing Telmisartan

    DEFF Research Database (Denmark)

    Cao, Yue; Shi, Li-Li; Cao, Qing-Ri

    2016-01-01

    Poorly water-soluble drugs often suffer from limited or irreproducible clinical response due to their low solubility and dissolution rate. In this study, organic solvent-free solid dispersions (OSF-SDs) containing telmisartan (TEL) were prepared using polyvinylpyrrolidone K30 (PVP K30) and polyet......Poorly water-soluble drugs often suffer from limited or irreproducible clinical response due to their low solubility and dissolution rate. In this study, organic solvent-free solid dispersions (OSF-SDs) containing telmisartan (TEL) were prepared using polyvinylpyrrolidone K30 (PVP K30...

  4. Development and characterisation of sustained release solid dispersion oral tablets containing the poorly water soluble drug disulfiram.

    Science.gov (United States)

    Shergill, Mandip; Patel, Mina; Khan, Siraj; Bashir, Ayesha; McConville, Christopher

    2016-01-30

    Administration of drugs via the oral route is the most common and preferred route due to its ease of administration, cost-effectiveness and flexibility in design. However, if the drug being administered has limited aqueous solubility it can result in poor bioavailability. Furthermore, the low pH of the stomach as well as enzymatic activity can result in drugs delivered via the oral route being rapidly metabolised and degraded. Here we demonstrate the development and characterisation of sustained release solid dispersion oral tablets, containing the poorly water-soluble drug disulfiram (DSF). The tablets, which are manufactured from two different polymers (Kolliphor(®) P 188 and P 237) specifically designed for the manufacture of solid dispersions and two different polymers (Kollidon(®) SR and HPMC) specifically designed to provide sustained release, can enhance the solubility of DSF, sustain its release, while protecting it from degradation in simulated gastric fluid (SGF). The paper demonstrates that when using the hot melt method at 80°C the DSF loading capacity of the Kolliphor(®) P 188 and P 237 polymers is approximately 43 and 46% respectively, with the DSF completely in an amorphous state. The addition of 80% Kollidon(®) SR to the formulation completely protected the DSF in SGF for up to 70 min with 16% degradation after 120 min, while 75% degradation occurred after 120 min with the addition of 80% HPMC. The release rate of DSF can be manipulated by both the loading and type of sustained release polymer used, with HPMC providing for a much faster release rate compared to Kollidon(®) SR.

  5. Application of X-ray microtomography for the characterisation of hollow polymer-stabilised spray dried amorphous dispersion particles.

    Science.gov (United States)

    Gamble, John F; Terada, Masako; Holzner, Christian; Lavery, Leah; Nicholson, Sarah J; Timmins, Peter; Tobyn, Mike

    2016-08-20

    The aim of this study was to investigate the capability of X-ray microtomography to obtain information relating to powder characteristics such as wall thickness and solid volume fraction for hollow, polymer-stabilised spray dried dispersion (SDD) particles. SDDs of varying particle properties, with respect to shell wall thickness and degree of particle collapse, were utilised to assess the capability of the approach. The results demonstrate that the approach can provide insight into the morphological characteristics of these hollow particles, and thereby a means to understand/predict the processability and performance characteristics of the bulk material. Quantitative assessments of particle wall thickness, particle/void volume and thereby solid volume fraction were also demonstrated to be achievable. The analysis was also shown to be able to qualitatively assess the impact of the drying rate on the morphological nature of the particle surfaces, thus providing further insight into the final particle shape. The approach demonstrated a practical means to access potentially important particle characteristics for SDD materials which, in addition to the standard bulk powder measurements such as particle size and bulk density, may enable a better understanding of such materials, and their impact on downstream processability and dosage form performance.

  6. ENHANCEMENT OF DISSOLUTION RATE OF CIPROFLOXACIN BY USING VARIOUS SOLID DISPERSION TECHNIQUES

    Directory of Open Access Journals (Sweden)

    Brahmaiah Bonthagarala*, Leela Madhuri Pola and Sreekanth Nama

    2013-11-01

    Full Text Available The aim of this research wok is to formulate and evaluate Ciprofloxacin solid dispersions system by using the different techniques. This will increase the solubility of the drug or Ciprofloxacin and give the immediate release of the drug from the formulations. The main objective is to formulate a drug product as immediate release oral solid dosage form of Ciprofloxacin solid dispersion system which is considered to be stable, robust quality and enhanced dissolution rate. To optimize the method of manufacture by formulate the Ciprofloxacin solid dispersion system by various techniques like Physical mixing, Co-grinding, Kneading and solvent evaporation techniques. The disintegrating agent used in the present study is Crosscarmellose sodium. Among the four different techniques used for preparation of solid dispersions solvent evaporation technique has shown the increase in dissolution rate that is the Trail-5 was found to have a faster solubility and dissolution property which was prepared by using Crosscarmellose sodium as a disintegrant in the ratio of 1:1.

  7. Preparation and physicochemical characterization of solid dispersion of quercetin and polyvinylpyrrolidone%槲皮素PVP固体分散体的制备及物相鉴定

    Institute of Scientific and Technical Information of China (English)

    朱静; 杨照罡; 陈晓梅; 孙葭北; 古丽斯坦·阿吾提; 张烜; 张强

    2007-01-01

    目的 用溶剂法制备槲皮素-PVP固体分散体并考察其溶出特性并对物相进行鉴定.方法 采用溶剂法制备槲皮素-PVP固体分散体,通过溶出实验对槲皮素溶出率的测定研究固体分散体的溶出性质,利用差热分析(Differential scanning calorimetry,DSC)、红外光谱分析(Infrared spectroscopy,IR)、粉末X衍射(X-ray powder diffractometry,PXRD)、扫描电镜(Scanning electron microscopy,SEM)等方法对其进行物相鉴定.结果 槲皮素-PVP固体分散体的溶出速率相对其物理混合物有了明显的改善;溶解实验显示固体分散体中槲皮素的溶解度有了显著的提高;热差分析及粉末X衍射结果表明固体分散体中槲皮素呈非结晶形式;扫描电镜下固体分散体中无槲皮素晶体.结论 采用溶剂法制备槲皮素-PVP固体分散体可显著提高槲皮素的溶解度及溶出速度.%Aim The objective of this study was to prepare and characterize quercetin-polyvinylpyrrolidone (Qurc-PVP)solid dispersion with the intention of improving its dissolution properties. Methods Qurc-PVP sclid dispersion was prepared by solvent method. The release rate of quercetin was determined from dissolution studies and the physicochemical properties of solid dispersion were investigated by differential scanning calorimetry (DSC), infrared spectroscopy (IR), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM). Results The results showed that the dissolution rate of quercetin was significantly improved by solid dispersion compared to that of the pure drug and physical mixture. Solubility studies revealed a markedly increase in the solubility of quercetin. The results of DSC and PXRD showed that the quercetin in solid dispersion was amorphous form. From SEM analysis, there was no quercetin crystal observed in the solid dispersions.Conclusion The solubility and dissolution of quercetin were improved by solid dispersion technique.

  8. Amorphous chalcogenide semiconductors for solid state dosimetric systems of high-energetic ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O. [Pedagogical University, Czestochowa (Poland)]|[Institute of Materials, Lvov (Ukraine)

    1997-12-31

    The application possibilities of amorphous chalcogenide semiconductors use as radiation-sensitive elements of high-energetic (E > 1 MeV) dosimetric systems are analysed. It is shown that investigated materials are characterized by more wide region of registered absorbed doses and low temperature threshold of radiation information bleaching in comparison with well-known analogies based on coloring oxide glasses. (author). 16 refs, 1 tab.

  9. Solid-State Characterization and Dissolution Properties of Meloxicam–Moringa Coagulant–PVP Ternary Solid Dispersions

    OpenAIRE

    Noolkar, Suhail B.; Jadhav, Namdeo R; Bhende, Santosh A.; Suresh G. Killedar

    2013-01-01

    The effect of ternary solid dispersions of poor water-soluble NSAID meloxicam with moringa coagulant (obtained by salt extraction of moringa seeds) and polyvinylpyrrolidone on the in vitro dissolution properties has been investigated. Binary (meloxicam–moringa and meloxicam–polyvinylpyrrolidone (PVP)) and ternary (meloxicam–moringa–PVP) systems were prepared by physical kneading and ball milling and characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, a...

  10. Inulin solid dispersion technology to improve the absorption of the BCS Class IV drug TMC240

    NARCIS (Netherlands)

    Visser, Marinella R; Baert, Lieven; Klooster, Gerben van 't; Schueller, Laurent; Geldof, Marian; Vanwelkenhuysen, Iris; de Kock, Herman; De Meyer, Sandra; Frijlink, Henderik W; Rosier, Jan; Hinrichs, Wouter L J

    2010-01-01

    TMC240 is a very poorly soluble and poorly permeating HIV protease inhibitor. In order to enhance its oral bioavailability, a fast dissolving inulin-based solid dispersion tablet was developed. During the dissolution test in water (0.5% or 1.0% SLS), this tablet released at least 80% of TMC240 withi

  11. Self-healing mechanism based on dispersed solid particles of various monomeric bismaleimides

    NARCIS (Netherlands)

    Turkenburg, D.H.; Fischer, H.R.

    2016-01-01

    In view of self-healing materials for high temperature applications we have studied the use of solid monomeric bismaleimide particles as embedded self-healing component dispersed in a host material. Below the self-healing activation temperature, bismaleimides remain inert while above it they may rap

  12. CLSM as quantitative method to determine the size of drug crystals in a solid dispersion

    NARCIS (Netherlands)

    de Waard, Hans; Hessels, Martin J T; Boon, Maarten; Sjollema, Klaas A; Hinrichs, Wouter L J; Eissens, Anko C; Frijlink, Henderik W

    2011-01-01

    PURPOSE: To test whether confocal laser scanning microscopy (CLSM) can be used as an analytical tool to determine the drug crystal size in a powder mixture or a crystalline solid dispersion. METHODS: Crystals of the autofluorescent drug dipyridamole were incorporated in a matrix of crystalline manni

  13. Effect of drug-carrier interaction on the dissolution behavior of solid dispersion tablets

    NARCIS (Netherlands)

    Srinarong, Parinda; Kouwen, Sander; Visser, Marinella R; Hinrichs, Wouter L J; Frijlink, Henderik W

    2010-01-01

    The objective of this study was to compare the dissolution behavior of tablets prepared from solid dispersions with and without drug-carrier interactions. Diazepam and nifedipine were used as model drugs. Two types of carriers were used; polyvinylpyrrolidone (PVP K12, K30 and K60) and saccharides (i

  14. Strongly enhanced dissolution rate of fenofibrate solid dispersion tablets by incorporation of superdisintegrants

    NARCIS (Netherlands)

    Srinarong, P.; Faber, J.H.; Visser, M.R.; Hinrichs, W.L.J.; Frijlink, H.W.

    2009-01-01

    In this study, it was shown that the incorporation of superdisintegrants in solid dispersion tablets containing a high drug load can strongly enhance the dissolution rate of the highly lipophilic drug fenofibrate. In addition, the dissolution rate was more increased when the superdisintegrant was in

  15. IMPROVING THE SOLUBILITY OF ANTIHELMINTIC DRUG BY SOLID DISPERSIONS AND INCLUSION COMPLEXES

    Directory of Open Access Journals (Sweden)

    Kumar Vijay

    2011-08-01

    Full Text Available Fenbendazole is an Antihelmintic drug (BCS class 2 and poorly soluble in water. Fenbendazole is used as a model drug. This study was conducted to enhance the bioavailability by increasing the aqueous solubility of Fenbendazole. The solid dispersions were prepared with polyvinylpyrrolidone K-25 (PVP K25 and Urea, Inclusion complexes with beta-cyclodextrin (BCD. Solid dispersions and inclusion complexes are prepared by Kneading and Solvent evaporation methods using different drug-polymer ratio like 1:2, 1:4and 1:6. The prepared formulations were characterized for FTIR, drug content, Phase solubility, percent yield and in vitro release studies followed by various release kinetics. The drug content uniformity was found to be good in all formulations. Kinetic profile showed good linearity with first order i.e. exhibiting concentration dependent release of drug. The result indicated that the solubility and dissolution rates of all formulation were significantly increased by solid dispersions and cyclodextrin complexes when compare to pure drug. Dissolution of the pure drug more with beta cyclodextrin complexes than solid dispersion (PVPK25 and Urea. Among all the formulations, VA3 drug-beta-cyclodextrin ratio was found to be better. The result confirmed that beta-cyclodextrin (BCD showed better solubility and dissolution characteristics when compared to polyvinylpyrrolidone K-25 (PVP K25 and Urea.

  16. Investigation of phase diagrams and physical stability of drug-polymer solid dispersions.

    Science.gov (United States)

    Lu, Jiannan; Shah, Sejal; Jo, Seongbong; Majumdar, Soumyajit; Gryczke, Andreas; Kolter, Karl; Langley, Nigel; Repka, Michael A

    2015-01-01

    Solid dispersion technology has been widely explored to improve the solubility and bioavailability of poorly water-soluble compounds. One of the critical drawbacks associated with this technology is the lack of physical stability, i.e. the solid dispersion would undergo recrystallization or phase separation thus limiting a product's shelf life. In the current study, the melting point depression method was utilized to construct a complete phase diagram for felodipine (FEL)-Soluplus® (SOL) and ketoconazole (KTZ)-Soluplus® (SOL) binary systems, respectively, based on the Flory-Huggins theory. The miscibility or solubility of the two compounds in SOL was also determined. The Flory-Huggins interaction parameter χ values of both systems were calculated as positive at room temperature (25 °C), indicating either compound was miscible with SOL. In addition, the glass transition temperatures of both solid dispersion systems were theoretically predicted using three empirical equations and compared with the practical values. Furthermore, the FEL-SOL solid dispersions were subjected to accelerated stability studies for up to 3 months.

  17. Optimally controlled heating of solid particles in a fluidised bed with a dispersive flow of the solid

    Directory of Open Access Journals (Sweden)

    Poświata Artur

    2016-03-01

    Full Text Available In this study the authors minimise the total process cost for the heating of solid particles in a horizontal fluidised bed by an optimal choice of the inlet heating gas temperature profile and the total gas flow. Solid particles flowed along the apparatus and were heated by a hot gas entering from the bottom of the fluidised apparatus. The hydrodynamics of the fluidised bed is described by a two-phase Kunii - Levenspiel model. We assumed that the gas was flowing only vertically, whereas solid particles were flowing horizontally and because of dispersion they could be additionally mixed up in the same direction. The mixing rate was described by the axial dispersion coefficient. As any economic values of variables describing analysing process are subject to local and time fluctuations, the accepted objective function describes the total cost of the process expressed in exergy units. The continuous optimisation algorithm of the Maximum Principle was used for calculations. A mathematical model of the process, including boundary conditions in a form convenient for optimisation, was derived and presented. The optimization results are presented as an optimal profile of inlet gas temperature. The influence of heat transfer kinetics and dispersion coefficients on optimal runs of the heating process is discussed. Results of this discussion constitute a novelty in comparison to information presented in current literature.

  18. Determination of aflatoxins in rice samples by ultrasound-assisted matrix solid-phase dispersion.

    Science.gov (United States)

    Manoochehri, Mahboobeh; Asgharinezhad, Ali Akbar; Safaei, Mahdi

    2015-01-01

    This work describes the application of ultrasound-assisted matrix solid-phase dispersion as an extraction and sample preparation approach for aflatoxins (B1, B2, G1 and G2) and subsequent determination of them by high-performance liquid chromatography-fluorescence detection. A Box-Behnken design in combination with response surface methodology was used to determine the affecting parameters on the extraction procedure. The influence of different variables including type of dispersing phase, sample-to-dispersing phase ratio, type and quantity of clean-up phase, ultrasonication time, ultrasonication temperature, nature and volume of the elution solvent was investigated in the optimization study. C18, primary-secondary amine (PSA) and acetonitrile were selected as dispersing phase, clean-up phase and elution solvent, respectively. The obtained optimized values were sample-to-dispersing phase ratio of 1 : 1, 60 mg of PSA, 11 min ultrasonication time, 30°C ultrasonication temperature and 4 mL acetonitrile. Under the optimal conditions, the limits of detection were ranged from 0.09 to 0.14 ng g(-1) and the precisions [relative standard deviation (RSD%)] were <8.6%. The recoveries of the matrix solid-phase dispersion process ranged from 78 to 83% with RSD <10% in all cases. Finally, this method was successfully applied to the extraction of trace amounts of aflatoxins in rice samples. © The Author [2014]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Synthesis and electrochemical evaluation of an amorphous titanium dioxide derived from a solid state precursor

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, Christopher D.; LaDuca, Holly; Lopez, Carmen M.; Jansen, Andrew N.; Vaughey, J.T. [Electrochemical Energy Storage Group, Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Ave., Argonne, IL 60439 (United States); McIntyre, Toni; Simmons, Sade; Breitzer, Jonathan G. [Department of Natural Science, Fayetteville State University, Fayetteville, NC (United States)

    2010-04-02

    Titanium oxides are an important class of lithium-ion battery electrodes owing to their good capacity and stability within the cell environment. Although most Ti(IV) oxides are poor electronic conductors, new methods developed to synthesize nanometer scale primary particles have achieved the higher rate capability needed for modern commercial applications. In this report, the anionic water stable titanium oxalate anion [TiO(C{sub 2}O{sub 4}){sub 2}]{sup 2-} was isolated in high yield as the insoluble DABCO (1,4-diazabicyclo[2.2.2]octane) salt. Powder X-ray diffraction studies show that the titanium dioxide material isolated after annealing in air is initially amorphous, converts to N-doped anatase above 400 C, then to rutile above 600 C. Electrochemical studies indicate that the amorphous titanium dioxide phase within a carbon matrix has a stable cycling capacity of {proportional_to}350 mAh g{sup -1}. On crystallizing at 400 C to a carbon-coated anatase the capacity drops to 210 mAh g{sup -1}, and finally upon carbon burn-off to 50 mAh g{sup -1}. Mixtures of the amorphous titanium dioxide and Li{sub 4}Ti{sub 5}O{sub 12} showed a similar electrochemical profile and capacity to Li{sub 4}Ti{sub 5}O{sub 12} but with the addition of a sloping region to the end of the discharge curve that could be advantageous for determining state-of-charge in systems using Li{sub 4}Ti{sub 5}O{sub 12}. (author)

  20. 基于壳聚寡糖的黄芩苷固体分散体的研究%Studies on chitooligosaccharide applicatied in solid dispersion of baicalin

    Institute of Scientific and Technical Information of China (English)

    翟文婷; 史红军

    2014-01-01

    Objective To prepare the solid dispersion of baicalin,using chitooligosaccharide with the intention of im-proving drug dissolution. Methods Baicalin solid dispersion was prepared by spray drying method with chitooligosaccharide as carriers. The physical characteristics and in vitro dissolution of baicalin solid dispersion were further evaluated. Results Dissolution percentages of solid dispersion prepared in the drug-carrier ratio of 1:6 was 94. 25% at 30 min. The differential scanning calorimetry( DSC)and scanning electron microscopy( SEM),X-ray powder diffraction( XRD)demonstrated that baicalin existed in amorphous state. Fourier transform infrared spectroscopy( IR)results indicated presence of interactions between chitooligosaccharide and baicalin. Conclusion The results indicated that solid dispersion prepared with chitooligo-saccharide as carrier can significantly increase dissolution of baicalin. As a new type carrier of solid dispersion,chitooligo-saccharide had its practical value.%目的:将壳聚寡糖应用于黄芩苷的制备,以提高药物的体外溶出度。方法以壳聚寡糖为载体,采用喷雾干燥法制备黄芩苷固体分散体,对药物与载体不同比例制备的固体分散体的溶出行为进行了比较研究,并进行物相分析。结果黄芩苷和壳聚寡糖按1:6比例制备的固体分散体在30 min时药物的体外累积溶出度为94.25%;经差示扫描量热法(DSC)、扫描电镜法(SEM)和X-射线粉末衍射法(XRD)等分析,固体分散体中黄芩苷以非晶形态高度分散;傅里叶红外光谱扫描( IR)结果表明壳聚寡糖与黄芩苷之间存在相互作用。结论以壳聚寡糖为载体制备的固体分散体能显著改善黄芩苷的溶出度;壳聚寡糖作为一种新型固体分散体载体具有实际应用价值。

  1. Mechanism for further enhancement in drug dissolution from solid-dispersion granules upon storage.

    Science.gov (United States)

    Gupta, Manish K; Bogner, Robin H; Goldman, David; Tseng, Yin-Chao

    2002-01-01

    The present study was performed to investigate the further increase in drug dissolution on storage of ternary solid-dispersion granules containing poorly water-soluble drugs. Ternary solid-dispersion granules of the drug, a dispersion carrier, and a surface adsorbent were prepared using hot-melt granulation. Two proton-donating drugs, BAY 12-9566, naproxen, and a nonproton-donating drug, progesterone, were studied. Gelucire 50/13 and polyethylene glycol 8000 were evaluated as solid-dispersion carriers with low melting point. Neusilin US2 (magnesium aluminosilicate), a proton acceptor, was used as the surface adsorbent. The proposed mechanism for further increase in drug dissolution (BAY 12-9566 and naproxen) on storage at 40 degrees C/75% RH (relative humidity) is based on hydrogen bonding between the proton-donating drugs and the surface adsorbent, Neusilin US2 (proton acceptor). We propose that there is enough mobility in the solid-dispersion granules at elevated temperatures of storage to allow an increase in the ratio of the hydrogen bonded drug to the crystalline drug. These changes are mediated through the saturated solid solution state, and manifest themselves as increased drug dissolution upon storage. Fourier transform infrared spectroscopy studies are indicative of an increase in the amount of drugs (BAY 12-9566 and naproxen) hydrogen bonded to Neusilin on storage. A corresponding decrease in the crystallinity of these drugs was measured using x-ray powder diffractometry. Granules containing progesterone (a nonproton-donating drug) do not show an increase in the amount of drug hydrogen-bonded to Neusilin upon storage. In contrast to the proton-donating drugs, decreased drug dissolution was found on storage of progesterone-containing granules.

  2. Dispersion of finite size droplets and solid particles in isotropic turbulence

    Science.gov (United States)

    Rosso, Michele

    Turbulent disperse two-phase flows, of either fluid/fluid or fluid/solid type, are common in natural phenomena and engineering devices. Notable examples are atmospheric clouds, i.e. dispersed liquid water droplets and ice particles in a complex turbulent flow, and spray of fuel droplets in the combustion chamber of internal combustion engines. However, the physics of the interaction between a dispersed phase and turbulence is not yet fully understood. The objective of this study is to compare the dispersion of deformable finite size droplets with that of solid particles in a turbulent flow in the absence of gravity, by performing Direct Numerical Simulation (DNS). The droplets and the particles have the same diameter, of the order of the Taylor's microscale of turbulence, and the same density ratio to the carrier flow. The solid particle-laden turbulence is simulated by coupling a standard projection method with the Immersed Boundary Method (IBM). The solid particles are fully resolved in space and time without considering particle/particle collisions (two-way coupling). The liquid droplet-laden turbulence is simulated by coupling a variable-density projection method with the Accurate Conservative Level Set Method (ACLSM). The effect of the surface tension is accounted for by using the Ghost Fluid Method (GFM) in order to avoid any numerical smearing, while the discontinuities in the viscous term of the Navier-Stokes equation are smoothed out via the Continuum Surface Force approach. Droplet/droplet interactions are allowed (four-way coupling). The results presented here show that in isotropic turbulence the dispersion of liquid droplets in a given direction is larger than that of solid particles due to the reduced decay rate of turbulence kinetic energy via the four-way coupling effects of the droplets.

  3. Porosity effects on crystallization kinetics of amorphous solid water: Implications for cold icy objects in the outer solar system

    Science.gov (United States)

    Mitchell, Emily H.; Raut, Ujjwal; Teolis, Benjamin D.; Baragiola, Raúl A.

    2017-03-01

    We have investigated the effects of porosity on the crystallization kinetics of amorphous solid water (ASW). Porosity in ASW films, condensed from the vapor phase at varying incidences at 10 K, was characterized using ultraviolet-visible interferometry and quartz crystal microgravimetry. The films were heated to crystallization temperatures between 130 and 141 K, resulting in partial pore compaction. The isothermal phase transformation was characterized using transmission infrared spectroscopy to monitor the time evolution of the 3.1-μm Osbnd H stretch absorption band. We find that ASW crystallization unfolds in two distinct stages. The first stage, responsible for ∼10% transformation, is initiated from nucleation at the external surface. The dominant second stage begins with nucleation at the internal pore surfaces and completes the transformation of the film at a faster rate compared to the first stage. A key finding is that porosity has major influence on crystallization kinetics; a film with five-times-higher porosity was observed to crystallize ∼15 times faster, compared to the less porous counterpart. We extrapolate our results to predict crystallization times for amorphous ices condensed on Europa's surface from plume sources, as recently observed by the Hubble Space Telescope.

  4. Enriched Boron-Doped Amorphous Selenium Based Position-Sensitive Solid-State Thermal Neutron Detector for MPACT Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Krishna [Univ. of South Carolina, Columbia, SC (United States)

    2017-09-29

    High-efficiency thermal neutron detectors with compact size, low power-rating and high spatial, temporal and energy resolution are essential to execute non-proliferation and safeguard protocols. The demands of such detector are not fully covered by the current detection system such as gas proportional counters or scintillator-photomultiplier tube combinations, which are limited by their detection efficiency, stability of response, speed of operation, and physical size. Furthermore, world-wide shortage of 3He gas, required for widely used gas detection method, has further prompted to design an alternative system. Therefore, a solid-state neutron detection system without the requirement of 3He will be very desirable. To address the above technology gap, we had proposed to develop new room temperature solidstate thermal neutron detectors based on enriched boron (10B) and enriched lithium (6Li) doped amorphous Se (As- 0.52%, Cl 5 ppm) semiconductor for MPACT applications. The proposed alloy materials have been identified for its many favorable characteristics - a wide bandgap (~2.2 eV at 300 K) for room temperature operation, high glass transition temperature (tg ~85°C), a high thermal neutron cross-section (for boron ~ 3840 barns, for lithium ~ 940 barns, 1 barn = 10-24 cm2), low effective atomic number of Se for small gamma ray sensitivity, and high radiation tolerance due to its amorphous structure

  5. Solubility Enhancement of a Poorly Water Soluble Drug by Forming Solid Dispersions using Mechanochemical Activation

    Science.gov (United States)

    Rojas-Oviedo, I.; Retchkiman-Corona, B.; Quirino-Barreda, C. T.; Cárdenas, J.; Schabes-Retchkiman, P. S.

    2012-01-01

    Mechanochemical activation is a practical cogrinding operation used to obtain a solid dispersion of a poorly water soluble drug through changes in the solid state molecular aggregation of drug-carrier mixtures and the formation of noncovalent interactions (hydrogen bonds) between two crystalline solids such as a soluble carrier, lactose, and a poorly soluble drug, indomethacin, in order to improve its solubility and dissolution rate. Samples of indomethacin and a physical mixture with a weight ratio of 1:1 of indomethacin and lactose were ground using a high speed vibrating ball mill. Particle size was determined by electron microscopy, the reduction of crystallinity was determined by calorimetry and transmission electron microscopy, infrared spectroscopy was used to find evidence of any interactions between the drug and the carrier and the determination of apparent solubility allowed for the corroboration of changes in solubility. Before grinding, scanning electron microscopy showed the drug and lactose to have an average particle size of around 50 and 30 μm, respectively. After high speed grinding, indomethacin and the mixture had a reduced average particle size of around 5 and 2 μm, respectively, showing a morphological change. The ground mixture produced a solid dispersion that had a loss of crystallinity that reached 81% after 30 min of grinding while the drug solubility of indomethacin within the solid dispersion increased by 2.76 fold as compared to the pure drug. Drug activation due to hydrogen bonds between the carboxylic group of the drug and the hydroxyl group of lactose as well as the decrease in crystallinity of the solid dispersion and the reduction of the particle size led to a better water solubility of indomethacin. PMID:23798775

  6. Comparison of solvent-wetted and kneaded l-sulpiride-loaded solid dispersions: Powder characterization and in vivo evaluation.

    Science.gov (United States)

    Kim, Dong Shik; Choi, Jong Seo; Kim, Dong Wuk; Kim, Kyeong Soo; Seo, Youn Gee; Cho, Kwan Hyung; Kim, Jong Oh; Yong, Chul Soon; Youn, Yu Seok; Lim, Soo-Jeong; Jin, Sung Giu; Choi, Han-Gon

    2016-09-10

    The purpose of this study was to compare the powder properties, solubility, dissolution and oral absorption of solvent-wetted (SWSD) and kneaded (KNSD) l-sulpiride-loaded solid dispersions. The SWSD and KNSD were prepared with silicon dioxide, sodium laurylsulfate and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) using a spray dryer and high shear mixer, respectively. Their powder properties, solubility, dissolution and oral absorption were assessed compared to l-sulpiride powder. The drug in SWSD was in the amorphous state; however, in KNSD, it existed in the crystalline state. The SWSD with a drug/sodium laurylsulphate/TPGS/silicon dioxide ratio of 5/1/2/12 gave the higher drug solubility and dissolution compared to the KNSD with the same composition. The oral absorption of drug in the SWSD was 1.4 fold higher than the KNSD and 3.0 fold higher than the l-sulpiride powder (psulpiride-loaded product in rats. Thus, the SWSD with more improved oral absorption would be recommended as an alternative for the l-sulpiride-loaded oral administration.

  7. Preparation and characterization of dipyridamole solid dispersions for stabilization of supersaturation: effect of precipitation inhibitors type and molecular weight.

    Science.gov (United States)

    Vora, Chintan; Patadia, Riddhish; Mittal, Karan; Mashru, Rajashree

    2016-11-01

    Dipyridamole (DPL) is a weakly basic BCS class II drug which precipitates upon entering into intestine leading to pH dependant and variable absorption. Thus, research envisaged focuses on developing formulations that maintain supersaturation following upon acid to neutral pH transition. In an endeavor to accomplish the objective, solid dispersion (SD) with hydroxypropylmethyl cellulose (HPMC) and polyvinylpyrrolidone (PVP) was prepared by a quench cooling method. The three molecular weight grades of HPMC (HPMC E5, HPMC E15 and HPMC E50) and two molecular weight grades of PVP (PVP K30 and PVP K90) were investigated to observe effect of increasing molecular weight on stabilizing DPL supersaturated solutions. Equilibrium solubility studies revealed increase in solubility with both HPMC and PVP with greater benefit from HPMC. In vitro supersaturated dissolution results demonstrated that HPMC formulations provided greater degree and extent of supersaturation as compared to PVP formulations. The formulation with HPMC E50 provided maximum stabilization to supersaturation upon acid to neutral pH transition. Moreover, the effect of increase in molecular weight was more pronounced in HPMC rather than PVP. Stronger interactions were observed for DPL with HPMC, while no interaction was observed with PVP which was evident from Fourier transform infra-red studies. Differential scanning calorimetry and powder X-ray diffraction studies revealed the amorphous state of DPL in SD.

  8. Solid state photochemistry. Subpanel A-2(b): Metastability in hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, D. [Solarex Corporation, Newton, PA (United States)

    1996-09-01

    All device quality amorphous silicon based materials exhibit degradation in electronic properties when exposed to sunlight. The photo-induced defects are associated with Si dangling bonds that are created by the recombination and/or trapping of photogenerated carriers. The defects are metastable and can be annealed out at temperatures of about 150 to 200 degrees Centigrade. The density of metastable defects is larger in films that are contaminated with > 10{sup 19} per cubic cm of impurities such as oxygen, carbon and nitrogen. However, recent experimental results indicate that some metastable defects are still present in films with very low impurity concentrations. The photo-induced defects typically saturate after 100 to 1000 hours of exposure to one sun illumination depending on the deposition conditions. There is also experimental evidence that photo-induced structural changes are occurring in the amorphous silicon based materials and that hydrogen may be playing an important role in both the photo-induced structural changes and in the creation of metastable defects.

  9. Novel Transrotational Solid State Order Discovered by TEM in Crystallizing Amorphous Films

    Science.gov (United States)

    Kolosov, Vladimir

    Exotic thin crystals with unexpected transrotational microstructures have been discovered by transmission electron microscopy (TEM) for crystal growth in thin (10-100 nm) amorphous films of different chemical nature (oxides, chalcogenides, metals and alloys) prepared by various methods. Primarily we use our TEM bend contour technique. The unusual phenomenon can be traced in situ in TEM column: dislocation independent regular internal bending of crystal lattice planes in a growing crystal. Such transrotation (unit cell trans lation is complicated by small rotationrealized round an axis lying in the film plane) can result in strong regular lattice orientation gradients (up to 300 degrees per micrometer) of different geometries: cylindrical, ellipsoidal, toroidal, saddle, etc. Transrotation is increasing as the film gets thinner. Transrotational crystal resembles ideal single crystal enclosed in a curved space. Transrotational micro crystals have been eventually recognized by other authors in some vital thin film materials, i.e. PCMs for memory, silicides, SrTiO3. Atomic model and possible mechanisms of the phenomenon are discussed. New transrotational nanocrystalline model of amorphous state is also proposed Support of RF Ministry of Education and Science is acknowledged.

  10. Novel Solid Encapsulation of Ethylene Gas Using Amorphous α-Cyclodextrin and the Release Characteristics.

    Science.gov (United States)

    Ho, Binh T; Bhandari, Bhesh R

    2016-05-04

    This research investigated the encapsulation of ethylene gas into amorphous α-cyclodextrins (α-CDs) at low (LM) and high (HM) moisture contents at 1.0-1.5 MPa for 24-120 h and its controlled release characteristics at 11.2-52.9% relative humidity (RH) for 1-168 h. The inclusion complexes (ICs) were characterized using X-ray diffractometry (XRD), nuclear magnetic resonance spectroscopy (CP-MAS (13)C NMR), and scanning electron microscopy (SEM). Ethylene concentrations in the ICs were from 0.45 to 0.87 mol of ethylene/mol CD and from 0.42 to 0.54 mol of ethylene/mol CD for LM and HM α-CDs, respectively. Ethylene gas released from the encapsulated powder at higher rates with increasing RH. An analysis of release kinetics using Avrami's equation showed that the LM and HM amorphous α-CDs were not associated with significant differences in release constant k and parameter n for any given RH condition. NMR spectra showed the presence of the characteristic carbon-carbon double bond of ethylene gas in the encapsulated α-CD powder.

  11. Properties of the random-singlet phase: From the disordered Heisenberg chain to an amorphous valence-bond solid

    Science.gov (United States)

    Shu, Yu-Rong; Yao, Dao-Xin; Ke, Chih-Wei; Lin, Yu-Cheng; Sandvik, Anders W.

    2016-11-01

    We use a strong-disorder renormalization group (SDRG) method and ground-state quantum Monte Carlo (QMC) simulations to study S =1 /2 spin chains with random couplings, calculating disorder-averaged spin and dimer correlations. The QMC simulations demonstrate logarithmic corrections to the power-law decaying correlations obtained with the SDRG scheme. The same asymptotic forms apply both for systems with standard Heisenberg exchange and for certain multispin couplings leading to spontaneous dimerization in the clean system. We show that the logarithmic corrections arise in the valence-bond (singlet pair) basis from a contribution that cannot be generated by the SDRG scheme. In the model with multispin couplings, where the clean system dimerizes spontaneously, random singlets form between spinons localized at domain walls in the presence of disorder. This amorphous valence-bond solid is asymptotically a random-singlet state and only differs from the random-exchange Heisenberg chain in its short-distance properties.

  12. Kinetics of the laser-induced solid phase crystallization of amorphous silicon-Time-resolved Raman spectroscopy and computer simulations

    Science.gov (United States)

    Očenášek, J.; Novák, P.; Prušáková, L.

    2017-01-01

    This study demonstrates that a laser-induced crystallization instrumented with Raman spectroscopy is, in general, an effective tool to study the thermally activated crystallization kinetics. It is shown, for the solid phase crystallization of an amorphous silicon thin film, that the integral intensity of Raman spectra corresponding to the crystalline phase grows linearly in the time-logarithmic scale. A mathematical model, which assumes random nucleation and crystal growth, was designed to simulate the crystallization process in the non-uniform temperature field induced by laser. The model is based on solving the Eikonal equation and the Arhenius temperature dependence of the crystal nucleation and the growth rate. These computer simulations successfully approximate the crystallization process kinetics and suggest that laser-induced crystallization is primarily thermally activated.

  13. Impact of in situ polymer coating on particle dispersion into solid laser-generated nanocomposites.

    Science.gov (United States)

    Wagener, Philipp; Brandes, Gudrun; Schwenke, Andreas; Barcikowski, Stephan

    2011-03-21

    The crucial step in the production of solid nanocomposites is the uniform embedding of nanoparticles into the polymer matrix, since the colloidal properties or specific physical properties are very sensitive to particle dispersion within the nanocomposite. Therefore, we studied a laser-based generation method of a nanocomposite which enables us to control the agglomeration of nanoparticles and to increase the single particle dispersion within polyurethane. For this purpose, we ablated targets of silver and copper inside a polymer-doped solution of tetrahydrofuran by a picosecond laser (using a pulse energy of 125 μJ at 33.3 kHz repetition rate) and hardened the resulting colloids into solid polymers. Electron microscopy of these nanocomposites revealed that primary particle size, agglomerate size and particle dispersion strongly depend on concentration of the polyurethane added before laser ablation. 0.3 wt% polyurethane is the optimal polymer concentration to produce nanocomposites with improved particle dispersion and adequate productivity. Lower polyurethane concentration results in agglomeration whereas higher concentration reduces the production rate significantly. The following evaporation step did not change the distribution of the nanocomposite inside the polyurethane matrix. Hence, the in situ coating of nanoparticles with polyurethane during laser ablation enables simple integration into the structural analogue polymer matrix without additives. Furthermore, it was possible to injection mold these in situ-stabilized nanocomposites without affecting particle dispersion. This clarifies that sufficient in situ stabilization during laser ablation in polymer solution is able to prevent agglomeration even in a hot polymer melt.

  14. Effect of Solid Properties on Axial Liquid Dispersion in Bubble Column

    Directory of Open Access Journals (Sweden)

    Ali Raad Mohammed Jawad

    2012-01-01

    Full Text Available Experiments were conducted to study axial liquid dispersion coefficient in slurry bubble column of 0.15 m inside diameter and 1.6 m height using perforated plate gas distributor of 54 holes of a size equal to 1 mm diameter and with a 0.24 free area of holes to the cross sectional area of the column. The three phase system consists of air, water and PVC used as the solid phase. The effect of solid loading (0, 30 and 60 kg/m3 and solid diameter (0.7, 1.5 and 3 mm on the axial liquid dispersion coefficient at different axial location (25, 50 and 75 cm and superficial gas velocity covered homogeneous-heterogeneous flow regime (1-10 cm/s were studied in the present work. The results show that the axial liquid dispersion coefficient increases with increasing superficial gas velocity, axial distance, solid concentration and an inverse relationship with particles diameter

  15. PREPARATION, CHARACTERIZATION AND IN VITRO EVALUATION OF REPAGLINIDE BINARY SOLID DISPERSIONS WITH HYDROPHILIC POLYMERS

    Directory of Open Access Journals (Sweden)

    Patel Manvi

    2010-09-01

    Full Text Available In the present study, the practically insoluble drug, repaglinide, employs formation of solid dispersions as a means to enhance the dissolution rate, thus enhancing bioavailability of repaglinide, typically employs hydrophilic polymer systems (Lutrol F127, PEG 6000 and Gelucire 44/14 with different ratios prepared using the melting, solvent and melting solvent methods. The formulations were evaluated for various in vitro parameters (Drug content, Drug release, FTIR, DSC, and XRD. Phase-solubility studies revealed AL type of curves for each carrier, indicating linear increase in drug solubility with carrier concentration. Good uniformity of drug content was observed with all formulations and ranged from 95.52 and 99.0%. All the solid dispersions showed dissolution improvement compare to pure drug. Solid state characterization of the drug?polymer binary systems using XRD, DSC and FTIR techniques revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement in dissolution rate. The stability studies indicated, the best formulation LMS17 was stable for period of 6 months. The solid dispersion techniques provide a promising way to increase the solubility and dissolution rate of poorly soluble drugs.

  16. Effect of substrates on naproxen-polyvinylpyrrolidone solid dispersions formed via the drop printing technique.

    Science.gov (United States)

    Hsu, Hsin-Yun; Toth, Scott J; Simpson, Garth J; Taylor, Lynne S; Harris, Michael T

    2013-02-01

    Solid dispersions have been used to improve the bioavailability of poorly water-soluble drugs. However, drug solid-state phase, compositional uniformity, and scale-up problems are issues that need to be addressed. To allow for highly controllable products, the drop printing (DP) technique can provide precise dosages and predictable compositional uniformity of active pharmaceutical ingredients in two-/three-dimensional structures when integrated with edible substrates. With different preparation conditions, DP was conducted to fabricate naproxen (NAP)-polyvinylpyrrolidone solid dispersions with chitosan and hydroxypropyl methylcellulose films as the substrate. Scanning electron microscopy, X-ray diffraction, second harmonic generation microscopy, and atomic force microscopy analyses were performed to characterize the microstructure and spatial distribution of NAP in the solid dispersions. The results identified that composition, temperature, and substrate type all had an impact on morphology and crystallization of samples. The surface energy approach was combined with classical nucleation theory to evaluate the affinity between the nucleus of NAP and substrates. Finally, the collective results of the drug were correlated to the release profile of NAP within each sample.

  17. Study of shear banding in simulated amorphous solids in the context of shear transformation zone theory

    Science.gov (United States)

    Alix-Williams, Darius; Falk, Michael L.

    2015-03-01

    We examine the general framework of the effective temperature formalism of the shear transformation zone (STZ) theory of plasticity via molecular dynamics simulation of two distinct amorphous systems - Silicon and Cu-Zr. In both systems strain localization is observed during simple shear loading. The shear bands differ in the rate of broadening and the sharpness of the interface between the flowing and jammed material. We examine both systems for scaling expected to arise between effective temperature and shear rate. For each system a local dimensionless effective temperature that quantifies structural disorder is extracted by assuming a linear relation to the local potential energy per atom. Research possible through support from National Science Foundation Grant No. 0801471.

  18. Dispersion effect in optical microscopy systems with a supersphere solid immersion lens

    Institute of Scientific and Technical Information of China (English)

    Zhang Yao-Ju; Zhuang You-Yi

    2009-01-01

    This paper studies the dispersion effect of the supersphere solid immersion lens (SIL) on a near field optical microscopy system by using the vector diffraction theory. Results show that when a real non-monochromatic beam illuminates a supersphere SIL microscopy, the dispersion effect of the SIL has an important influence on the image quality. As the wavelength bandwidth of the non-monochromatic beam increases, the size of the focused spot increases and its intensity decreases in near-field microscopy systems with a supersphere SIL.

  19. Soxhlet-assisted matrix solid phase dispersion to extract flavonoids from rape (Brassica campestris) bee pollen.

    Science.gov (United States)

    Ma, Shuangqin; Tu, Xijuan; Dong, Jiangtao; Long, Peng; Yang, Wenchao; Miao, Xiaoqing; Chen, Wenbin; Wu, Zhenhong

    2015-11-15

    Soxhlet-assisted matrix solid phase dispersion (SA-MSPD) method was developed to extract flavonoids from rape (Brassica campestris) bee pollen. Extraction parameters including the extraction solvent, the extraction time, and the solid support conditions were investigated and optimized. The best extraction yields were obtained using ethanol as the extraction solvent, silica gel as the solid support with 1:2 samples to solid support ratio, and the extraction time of one hour. Comparing with the conventional solvent extraction and Soxhlet method, our results show that SA-MSPD method is a more effective technique with clean-up ability. In the test of six different samples of rape bee pollen, the extracted content of flavonoids was close to 10mg/g. The present work provided a simple and effective method for extracting flavonoids from rape bee pollen, and it could be applied in the studies of other kinds of bee pollen.

  20. Understanding processing-induced phase transformations in erythromycin-PEG 6000 solid dispersions

    DEFF Research Database (Denmark)

    Mirza, Sabiruddin; Heinämäki, Jyrki; Miroshnyk, Inna

    2006-01-01

    Since the quality and performance of a pharmaceutical solid formulation depend on solid state of the drug and excipients, a thorough investigation of potential processing-induced transformations (PITs) of the ingredients is required. In this study, the physical phenomena taking place during...... formulation of erythromycin (EM) dihydrate solid dispersions with polyethylene glycol (PEG) 6000 by melting were investigated. PITs were monitored in situ using variable temperature X-ray powder diffraction (VT-XRPD), differential scanning calorimetry (DSC), and hot-stage microscopy (HSM). Possible...... intermolecular interactions between the drug and polymer in the solid state were further studied by Fourier transform infrared (FTIR) spectroscopy. While in the absence of PEG the dehydration was the only transformation observed, hot-melt processing with the polymer caused the drug to undergo multiple phase...

  1. The potential for the fabrication of wires embedded in the crystalline silicon substrate using the solid phase segregation of gold in crystallising amorphous volumes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, A.C.Y.; McCallum, J.C

    2004-05-15

    The refinement of gold in crystallising amorphous silicon volumes was tested as a means of creating a conducting element embedded in the crystalline matrix. Amorphous silicon volumes were created by self-ion-implantation through a mask. Five hundred kiloelectronvolt Au{sup +} was then implanted into the volumes. The amorphous volumes were crystallised on a hot stage in air, and the crystallisation was characterised using cross sectional transmission electron microscopy. It was found that the amorphous silicon volumes crystallised via solid phase epitaxy at all the lateral and vertical interfaces. The interplay of the effects of the gold and also the hydrogen that infilitrated from the surface oxide resulted in a plug of amorphous material at the surface. Further annealing at this temperature demonstrated that the gold, once it had reached a certain critical concentration nucleated poly-crystalline growth instead of solid phase epitaxy. Time resolved reflectivity and Rutherford backscattering and channeling measurements were performed on large area samples that had been subject to the same implantation regime to investigate this system further. It was discovered that the crystallisation dynamics and zone refinement of the gold were complicated functions of both gold concentration and temperature. These findings do not encourage the use of this method to obtain conducting elements embedded in the crystalline silicon substrate.

  2. The local physical structure of amorphous hydrogenated boron carbide: insights from magic angle spinning solid-state NMR spectroscopy.

    Science.gov (United States)

    Paquette, Michelle M; Li, Wenjing; Sky Driver, M; Karki, Sudarshan; Caruso, A N; Oyler, Nathan A

    2011-11-01

    Magic angle spinning solid-state nuclear magnetic resonance spectroscopy techniques are applied to the elucidation of the local physical structure of an intermediate product in the plasma-enhanced chemical vapour deposition of thin-film amorphous hydrogenated boron carbide (B(x)C:H(y)) from an orthocarborane precursor. Experimental chemical shifts are compared with theoretical shift predictions from ab initio calculations of model molecular compounds to assign atomic chemical environments, while Lee-Goldburg cross-polarization and heteronuclear recoupling experiments are used to confirm atomic connectivities. A model for the B(x)C:H(y) intermediate is proposed wherein the solid is dominated by predominantly hydrogenated carborane icosahedra that are lightly cross-linked via nonhydrogenated intraicosahedral B atoms, either directly through B-B bonds or through extraicosahedral hydrocarbon chains. While there is no clear evidence for extraicosahedral B aside from boron oxides, ∼40% of the C is found to exist as extraicosahedral hydrocarbon species that are intimately bound within the icosahedral network rather than in segregated phases.

  3. Complex plasmas and colloidal dispersions particle-resolved studies of classical liquids and solids

    CERN Document Server

    Ivlev, Alexei; Morfill, Gregor; Royall, C. Patrick

    2012-01-01

    Complex plasmas and colloidal dispersions represent different states of soft matter. They are complementary in many ways, with the most important being that complex plasmas are virtually undamped at the particle timescales, whereas colloidal dispersions are overdamped and therefore can be brought into equilibrium in a very controlled manner. Otherwise, both fields have similar advantages: fully resolved 3D particle trajectories can easily be visualized, the pair interactions are tunable, and particles can be manipulated individually or collectively. These unique properties allow us to investigate generic processes occurring in liquids or solids at the most fundamental individual particle level. The principal research topics to be addressed in the book include: particle dynamics in liquids, with the emphasis on mesoscopic processes in the supercooled (glassy) state, e.g. dynamical heterogeneity, phase transitions in solids, with particular attention to the evolutionary paths of crystal structure development an...

  4. Enhanced chemoprophylactic and clinical efficacy of albendazole formulated as solid dispersions in experimental cystic echinococcosis.

    Science.gov (United States)

    Pensel, Patricia E; Castro, Silvina; Allemandi, Daniel; Bruni, Sergio Sánchez; Palma, Santiago D; Elissondo, María Celina

    2014-06-16

    Cystic echinococcosis is a chronic, complex, and still neglected disease. Although albendazole has demonstrated efficacy, only about one-third of patients experience complete remission or cure and 30-50% of treated patients develop some evidence of a therapeutic response. Different strategies have been developed in order to improve the albendazole water solubility and dissolution rate. The aim of the current work was to investigate the chemoprophylactic and clinical efficacy of an albendazole:poloxamer 188 solid dispersion formulation on mice infected with Echinococcus granulosus metacestodes. Albendazole formulated as solid dispersion had greater chemoprophylactic and clinical efficacy than albendazole alone. The improved in therapeutic efficacy could be a consequence of the increase in the systemic availability of albendazole sulfoxide. The work reported here demonstrates that in vivo treatment with albendazole:poloxamer 188 impairs the development of the hydatid cysts. This new pharmacotechnically based strategy could be a suitable alternative for treating cystic echinococcosis in humans.

  5. To evaluate the change in release from solid dispersion using sodium lauryl sulfate and model drug sulfathiazole.

    Science.gov (United States)

    Dave, Rutesh H; Patel, Hardikkumar H; Donahue, Edward; Patel, Ashwinkumar D

    2013-10-01

    The solubility of drugs remains one of the most challenging aspects of formulation development. There are numerous ways to improve the solubility of drugs amongst which the most promising strategy is solid dispersion. Different ratios of sulfathiazole: PVP-K29/32: sodium lauryl sulfate (SLS) were prepared (1:1:0.1, 1:1:0.5, 1:1:1) and various methods were employed to characterize the prepared solid dispersions, namely modulated differential scanning calorimeter, X-ray powder diffraction, Fourier Transformed Infrared Spectroscopy and dissolution studies. Lack of crystallinity was observed in internal and external systems suggesting a loss of crystallinity, whereas the physical mixtures showed a characteristic peak of sulfathiazole. In vitro dissolution results clearly showed that the incorporation of a relatively small amount of surfactants (5, 20 or 33% w/w) into a solid dispersion can improve its dissolution rates compared to binary solid dispersion (SD) alone and pure sulfathiazole. In all ratios solid dispersion internal shows a higher dissolution rate compared to a physical mixture and solid dispersion external which suggests that the way that the surfactant is incorporated into the solid dispersion plays an important role in changing the solubility of a drug. The solubilization mechanism is mainly responsible for this higher dissolution rate when we incorporate the SLS in SD.

  6. Physical stability of ternary solid dispersions of itraconazole in polyethyleneglycol 6000/hydroxypropylmethylcellulose 2910 E5 blends

    OpenAIRE

    Janssens, Sandrien; ROBERTS, CLIVE; Emily F. Smith; Van den Mooter, Guy

    2008-01-01

    In order to understand the influence of temperature and moisture, polymer blends of polyethyleneglycol 6000 (PEG 6000) and hydroxypropylmethylcellulose 2910 E5 (HPMC 2910 E5) and solid dispersions of itraconazole in these polymer blends were spray dried, further dried for 2 weeks and stored at three different conditions: 25 degrees C, 0% relative humidity (RH); 25 degrees C, 52% RH; 60 degrees C, 0% RH. MTDSC analysis of the polymer blends revealed that at 25 degrees C, 52% RH, PEG 6000 recry...

  7. Structural Irreversibility and Enhanced Brittleness under Fatigue in Zr-Based Amorphous Solids

    Directory of Open Access Journals (Sweden)

    Yiming Qiu

    2012-12-01

    Full Text Available The effect of fatigue on ZrCuAl amorphous metals induced by mechanical cyclic loading is investigated using inelastic neutron scattering and the pair density function analysis of neutron diffraction data. With cooling, the local atomic structure undergoes reorganization under fatigue that is directly related to the number of fatigue cycles. Also under fatigue, suppression in the atomic dynamics is observed as well. A structural restructuring occurs within a 4 Å radius and intensifies with increasing the compression cycles, whereas the vibrational density of states is attenuated as the intensity shifts towards the elastic, zero-energy transfer peak. The combined static and dynamic structural effects are a signature of the microscopic changes brought about by fatigue, and together may be the onset for subsequent behaviors following extended cyclic loading such as fracture. Even after the load is removed, the structural changes described here remain and increase with repeated cyclic loading which is an indication that the lattice deforms even before shear bands are formed.

  8. Amorphous chalcogenides as random octahedrally bonded solids: I. Implications for the first sharp diffraction peak, photodarkening, and Boson peak

    Science.gov (United States)

    Lukyanov, Alexey; Lubchenko, Vassiliy

    2017-09-01

    We develop a computationally efficient algorithm for generating high-quality structures for amorphous materials exhibiting distorted octahedral coordination. The computationally costly step of equilibrating the simulated melt is relegated to a much more efficient procedure, viz., generation of a random close-packed structure, which is subsequently used to generate parent structures for octahedrally bonded amorphous solids. The sites of the so-obtained lattice are populated by atoms and vacancies according to the desired stoichiometry while allowing one to control the number of homo-nuclear and hetero-nuclear bonds and, hence, effects of the mixing entropy. The resulting parent structure is geometrically optimized using quantum-chemical force fields; by varying the extent of geometric optimization of the parent structure, one can partially control the degree of octahedrality in local coordination and the strength of secondary bonding. The present methodology is applied to the archetypal chalcogenide alloys AsxSe1-x. We find that local coordination in these alloys interpolates between octahedral and tetrahedral bonding but in a non-obvious way; it exhibits bonding motifs that are not characteristic of either extreme. We consistently recover the first sharp diffraction peak (FSDP) in our structures and argue that the corresponding mid-range order stems from the charge density wave formed by regions housing covalent and weak, secondary interactions. The number of secondary interactions is determined by a delicate interplay between octahedrality and tetrahedrality in the covalent bonding; many of these interactions are homonuclear. The present results are consistent with the experimentally observed dependence of the FSDP on arsenic content, pressure, and temperature and its correlation with photodarkening and the Boson peak. They also suggest that the position of the FSDP can be used to infer the effective particle size relevant for the configurational equilibration in

  9. Development and Optimization of Osmotically Controlled Asymmetric Membrane Capsules for Delivery of Solid Dispersion of Lycopene

    Directory of Open Access Journals (Sweden)

    Nitin Jain

    2014-01-01

    Full Text Available The aim of the present investigation is to develop and statistically optimize the osmotically controlled asymmetric membrane capsules of solid dispersion of lycopene. Solid dispersions of lycopene with β-cyclodextrin in different ratios were prepared using solvent evaporation method. Solubility studies showed that the solid dispersion with 1 : 5 (lycopene : β-cyclodextrin exhibited optimum solubility (56.25 mg/mL for osmotic controlled delivery. Asymmetric membrane capsules (AMCs were prepared on glass mold pins via dip coating method. Membrane characterization by scanning electron microscopy showed inner porous region and outer dense region. Central composite design response surface methodology was applied for the optimization of AMCs. The independent variables were ethyl cellulose (X1, glycerol (X2, and NaCl (X3 which were varied at different levels to analyze the effect on dependent variables (percentage of cumulative drug release (Y1 and correlation coefficient of drug release (Y2. The effect of independent variables on the response was significantly influential. The F18 was selected as optimized formulation based on percentage of CDR (cumulative drug release of 85.63% and correlation coefficient of 0.9994. The optimized formulation was subjected to analyze the effect of osmotic pressure and agitational intensity on percentage of CDR. The drug release was independent of agitational intensity but was dependent on osmotic pressure of dissolution medium.

  10. Aminoalkyl methacrylate copolymers for improving the solubility of tacrolimus. I: Evaluation of solid dispersion formulations.

    Science.gov (United States)

    Yoshida, Takatsune; Kurimoto, Ippei; Yoshihara, Keiichi; Umejima, Hiroyuki; Ito, Naoki; Watanabe, Shunsuke; Sako, Kazuhiro; Kikuchi, Akihiko

    2012-05-30

    The aim of this study was to investigate the effect of Eudragit E/HCl (E-SD) on the reprecipitation of a poorly water-soluble drug, tacrolimus. To evaluate the inhibition of reprecipitation of E-SD, reprecipitation studies on tacrolimus were conducted using a dissolution test method. Solubility of tacrolimus was measured at regular intervals in a dissolution media, in which tacrolimus was dissolved in ethanol, and the test media contained additives for inhibiting precipitation. Supersaturation profiles of tacrolimus were observed, and were maintained for 24h only with E-SD. Solid dispersion formulations of tacrolimus prepared with hydroxypropylmethylcellulose (HPMC) or E-SD in different drug/carrier ratios were also investigated. Solid dispersions prepared with E-SD showed higher solubility of tacrolimus compared with that of HPMC. In the E-SD formulation, the drug solubility influences to drug/carrier ratio. The formulation of drug/E-SD (1/5) showed the highest drug solubility. Thus, it may be inferred that a definite drug/carrier ratio exists to increase drug solubility. Further, by mixing E-SD the solid dispersion prepared with HPMC showed enhanced drug solubility.

  11. Part I: characterization of solid dispersions of nimodipine prepared by hot-melt extrusion.

    Science.gov (United States)

    Zheng, Xin; Yang, Rui; Tang, Xing; Zheng, Liangyuan

    2007-07-01

    The purpose of this study was to prepare and characterize solid dispersions of nimodipine with hydroxypropyl methylcellulose (HPMC, Methocel E5), polyvinylpyrrolidone/vinyl acetate copolymer (PVP/VA, Plasdone S630), and ethyl acrylate, methyl methacrylate polymer (Eudragit EPO). The goal was to investigate whether the solid dispersion prepared by hot-melt extrusion can improve the dissolution rate of nimodipine. The dissolution results indicated that three polymers are suitable carriers to enhance the in vitro dissolution rate of nimodipine in pH 4.5 medium. The solubility research and solubility parameters calculation was corresponded with dissolution data. XRPD and DSC data showed that the crystallinity was not observed in hot-melt extrudates. NMD acted as a plasticizer for PVP/VA and EPO and was miscible with the polymers as well as 10% NMD-HPMC systems, because a single T(g) was observed in these extrudates. However, two T(g)s were observed in the 30 and 50% NMD-HPMC samples, indicating phase separation. The weakening and shift of the N-H stretching vibration of the secondary amine groups of nimodipine as determined by FT-IR proved hydrogen bonding between the drug and polymers in the solid dispersion.

  12. 非诺贝特-羟丙基-β-环糊精固体分散体的制备及体外表征%Preparation and characterization of fenofibrate-hydroxypropyl-β-cyclodextrin solid dispersion

    Institute of Scientific and Technical Information of China (English)

    谷福根; 徐丽艳; 高源源; 吴春芝

    2015-01-01

    Objective To prepare a water-insoluble drug fenofibrate (FNB) solid dispersion and investigate its related characteristics. Methods The FNB solid dispersion was prepared by using HP-β-CD as carrier material. The drug encapsulation efficiency,physical phase identification and in vitro dissolution test of the FNB solid dispersion were also accomplished. Results The FNB solid dispersion formed with HP-β-CD existed in an amorphous form. The in vitro dissolution of FNB from the solid dispersion was more rapid than that from the intact drug. Conclusion HP-β-CD may use as a good carrier in the preparation of FNB solid dispersion.%目的:制备水难溶性药物非诺贝特( Fenofibrate,FNB)的固体分散体并进行体外表征。方法以羟丙-β-环糊精( HP-β-CD)为载体材料,制备FNB的固体分散体,测定药物的包合率并进行物相鉴定及其体外溶出度考察。结果 FNB与HP-β-CD确已形成了固体分散体,且药物主要以无定型形式存在。固体分散体中FNB的体外溶出速率较原药显著提高。结论 HP-β-CD可用作FNB固体分散体制备的良好载体材料。

  13. Preparation and Characterization of Solid Dispersions of Artemether by Freeze-Dried Method

    Directory of Open Access Journals (Sweden)

    Muhammad Tayyab Ansari

    2015-01-01

    Full Text Available Solid dispersions of artemether and polyethylene glycol 6000 (PEG6000 were prepared in ratio 12 : 88 (group-1. Self-emulsified solid dispersions of artemether were prepared by using polyethylene glycol 6000, Cremophor-A25, olive oil, Transcutol, and hydroxypropyl methylcellulose (HPMC in ratio 12 : 75 : 5 : 4 : 2 : 2, respectively (group-2. In third group, only Cremophor-A25 was replaced with Poloxamer 188 compared to group-2. The solid dispersions and self-emulsified solid dispersions were prepared by physical and freeze dried methods, respectively. All samples were characterized by X-ray diffraction, attenuated total reflectance Fourier transform infrared spectroscopy, differential scanning calorimeter, scanning electron microscopy, and solubility, dissolution, and stability studies. X-ray diffraction pattern revealed artemether complete crystalline, whereas physical mixture and freeze-dried mixture of all three groups showed reduced peak intensities. In attenuated total reflectance Fourier transform infrared spectroscopy spectra, C–H stretching vibrations of artemether were masked in all prepared samples, while C–H stretching vibrations were representative of polyethylene glycol 6000, Cremophor-A25, and Poloxamer 188. Differential scanning calorimetry showed decreased melting endotherm and increased enthalpy change (ΔH in both physical mixture and freeze-dried mixtures of all groups. Scanning electron microscopy of freeze-dried mixtures of all samples showed glassy appearance, size reduction, and embedment, while their physical mixture showed size reduction and embedment of artemether by excipients. In group-1, solubility was improved up to 15 times, whereas group-2 showed up to 121 times increase but, in group-3, when Poloxamer 188 was used instead of Cremophor-A25, solubility of freeze-dried mixtures was increased up to 135 times. In fasted state simulated gastric fluid at pH 1.6, the dissolution of physical

  14. Transitional phenomenon of particle dispersion in gas-solid two-phase flows

    Institute of Scientific and Technical Information of China (English)

    LUO Kun; FAN JianRen; CEN KeFa

    2007-01-01

    Without using any turbulent model, direct numerical simulation of a three-dimensional gas-solid two-phase turbulent jet was performed by finite volume method. The effects on dispersion of particles with different Stokes numbers by the transitional behavior of turbulent structures were investigated. To produce high-resolution results and reduce the computation and storage, the fractional-step projection algorithm was used to solve the governing equations of gas phase fluid. The low-storage, three-order Runge-Kutta scheme was used for time integration. The governing equations of particles were solved in the Lagrangian framework. These numerical schemes were validated by the good agreement between the statistical results of flow field and the related experimental data. In the study of particle dispersion, it was found that the effects on particle dispersion by the spanwise vortex structures were prominent. The new behaviors of particle dispersion were also observed during the evolution of the flow field, i.e. the transitional phenomenon of particle dispersion occurs for the particles with small and intermediate Stokes numbers.

  15. Preparation and evaluation of sustained-release solid dispersions co-loading gastrodin with borneol as an oral brain-targeting enhancer

    Directory of Open Access Journals (Sweden)

    Zheng Cai

    2014-02-01

    Full Text Available Borneol is a traditional Chinese medicine that can promote drug absorption from the gastrointestinal tract and distribution to the brain. However, stomach irritation may occur when high doses of borneol are used. In the present work, gastrodin, the main bioactive ingredient of the traditional Chinese drug “Tianma” (Rhizoma Gastrodiae was used as a model drug to explore reasonable application of borneol. Sustained-release solid dispersions (SRSDs for co-loading gastrodin and borneol were prepared using ethylcellulose as a sustained release matrix and hydroxy-propyl methylcellulose as a retarder. The dispersion state of drug within the SRSDs was analyzed by using scanning electron microscopy, differential scanning calorimetry, and powder X-ray diffractometry. The results indicated that both gastrodin and borneol were molecularly dispersed in an amorphous form. Assay of in vitro drug release demonstrated that the dissolution profiles of gastrodin and borneol from the SRSDs both fitted the Higuchi model. Subsequently, gastric mucosa irritation and the brain targeting of the SRSDs were evaluated. Compared with the free mixture of gastrodin and borneol, brain targeting of SRSDs was slightly weaker (brain targeting index: 1.83 vs. 2.09, but stomach irritation obviously reduced. Sustained-release technology can be used to reduce stomach irritation caused by borneol while preserving sufficient transport capacity for oral brain-targeting drug delivery.

  16. Preparation of fenofibrate solid dispersion using electrospray deposition and improvement in oral absorption by instantaneous post-heating of the formulation.

    Science.gov (United States)

    Kawakami, Kohsaku; Zhang, Shaoling; Chauhan, Rohit Singh; Ishizuka, Narimoto; Yamamoto, Marina; Masaoka, Yoshie; Kataoka, Makoto; Yamashita, Shinji; Sakuma, Shinji

    2013-06-25

    A coaxial electrospray technique was applied to a poorly soluble drug, fenofibrate (FEN), to increase its bioavailability. A particulate core-shell solid dispersion was designed using poly(methacrylic acid-co-methyl methacrylate) (Eudragit L-100) as a shell material and poly(vinyl pyrrolidone) K12-17 as a dispersant for FEN in the core phase. Although 58% of FEN remained in the crystalline state in the electrosprayed formulation, the dissolution behavior was significantly improved due to decrease in particle size, decrease in crystallinity, and increase in dispersion efficiency. The formulation was subjected to post-heating at 100 °C for 30 s to transform the remaining crystals into the amorphous state to further improve the dissolution behavior. Oral bioavailability was also on the order of: heated formulation>intact formulation>crystalline FEN. Instantaneous heating significantly improved the performance of the formulation despite its simple procedure, and thus can be a powerful step to be incorporated in the formulation manufacturing process. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Evaluation of single-walled carbon nanohorns as sorbent in dispersive micro solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Soto, Juan Manuel; Cardenas, Soledad [Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building, Campus de Rabanales, University of Cordoba, 14071 Cordoba (Spain); Valcarcel, Miguel, E-mail: qa1meobj@uco.es [Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building, Campus de Rabanales, University of Cordoba, 14071 Cordoba (Spain)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer The potential of single walled carbon nanohorns in dispersive solid phase microextraction has been evaluated. Black-Right-Pointing-Pointer The method was characterized for the extraction of PAHs from waters. Black-Right-Pointing-Pointer Single walled carbon nanohorns were better extractant than carbon nanotubes and carbon nanocones. Black-Right-Pointing-Pointer The limits of detection were adequate for the target analytes in environmental waters. - Abstract: A new dispersive micro solid-phase extraction method which uses single-walled carbon nanohorns (SWNHs) as sorbent is proposed. The procedure combines the excellent sorbent properties of the nanoparticles with the efficiency of the dispersion of the material in the sample matrix. Under these conditions, the interaction with the analytes is maximized. The determination of polycyclic aromatic hydrocarbons was selected as model analytical problem. Two dispersion strategies were evaluated, being the functionalization via microwave irradiation better than the use of a surfactant. The extraction was accomplished by adding 1 mL of oxidized SWHNs (o-SWNHs) dispersion to 10 mL of water sample. After extraction, the mixture was passed through a disposable Nylon filter were the nanoparticles enriched with the PAHs were retained. The elution was carried out with 100 {mu}L of hexane. The limits of detection achieved were between 30 and 60 ng L{sup -1} with a precision (as repeatability) better than 12.5%. The recoveries obtained for the analytes in three different water samples were acceptable in all instances. The performance of o-SWNHs was favourably compared with that provided by carboxylated single-walled carbon nanotubes and thermally treated carbon nanocones.

  18. Investigation of the solubility enhancement mechanism of rebaudioside D using a solid dispersion technique with potassium sorbate as a carrier.

    Science.gov (United States)

    Pang, Shintaro; Ma, Changchu; Zhang, Naijie; He, Lili

    2015-05-01

    Rebaudioside (Reb) D is a high intensity, natural sweetener that shows great potential for substituting sugar in sweetened beverages. However, Reb D is poorly water soluble, and thus, a solid dispersion technique was recently established to enhance its solubility. The purpose of this study was to elucidate the solubility enhancement mechanism of this solid dispersion material by employing Scanning Electron Microscopy (SEM), Raman spectroscopy, Fourier Transform Infrared spectroscopy (FT-IR) and X-ray Diffraction (XRD). Potassium sorbate (KS) was chosen as the carrier and two different concentration ratios were investigated as solid dispersions (SD) and as physical mixtures (PM). Our data demonstrated the possible mechanism for enhancing solubility through solid dispersion through increased surface area/volume ratio and hydrogen bonding between Reb D and KS. The interaction between the two components were also related to the different concentration ratios, therefore an optimisation of the ratio is important to produce a soluble and stable complex.

  19. The effect of surfactants on the dissolution behavior of amorphous formulations

    DEFF Research Database (Denmark)

    Mah, Pei T; Peltonen, Leena; Novakovic, Dunja

    2016-01-01

    in detail. The main aim of this study was to investigate the effect of surfactant on the dissolution behavior of neat amorphous drug and binary polymer based solid dispersion. Indomethacin was used as the model drug and the surfactants studied were polysorbate 80 and poloxamer 407. The presence...... of surfactants (alone or in combination with polymers) in the buffer was detrimental to the dissolution of neat amorphous indomethacin, suggesting that the surfactants promoted the crystallization of neat amorphous indomethacin. In contrast, the presence of surfactants (0.01% w/v) in the buffer resulted...... in a significant improvement on the dissolution behavior of binary polymer based solid dispersion. Incorporating the surfactant to the formulation to form ternary solid dispersion adversely affected the dissolution behavior. In conclusion, the use of surfactants (as wetting or solubilization agents) in dissolution...

  20. The effect of surfactants on the dissolution behavior of amorphous formulations.

    Science.gov (United States)

    Mah, Pei T; Peltonen, Leena; Novakovic, Dunja; Rades, Thomas; Strachan, Clare J; Laaksonen, Timo

    2016-06-01

    The optimal design of oral amorphous formulations benefits from the use of excipients to maintain drug supersaturation and thus ensures adequate absorption during intestinal transit. The use of surfactants for the maintenance of supersaturation in amorphous formulations has not been investigated in detail. The main aim of this study was to investigate the effect of surfactant on the dissolution behavior of neat amorphous drug and binary polymer based solid dispersion. Indomethacin was used as the model drug and the surfactants studied were polysorbate 80 and poloxamer 407. The presence of surfactants (alone or in combination with polymers) in the buffer was detrimental to the dissolution of neat amorphous indomethacin, suggesting that the surfactants promoted the crystallization of neat amorphous indomethacin. In contrast, the presence of surfactants (0.01% w/v) in the buffer resulted in a significant improvement on the dissolution behavior of binary polymer based solid dispersion. Incorporating the surfactant to the formulation to form ternary solid dispersion adversely affected the dissolution behavior. In conclusion, the use of surfactants (as wetting or solubilization agents) in dissolution studies of neat amorphous drugs requires prudent consideration. The design of amorphous formulations with optimal dissolution performance requires the appropriate selection of a combination of excipients and consideration of the method of introducing the excipients.

  1. Strain-rate and temperature dependence of yield stress of amorphous solids via self-learning metabasin escape algorithm

    CERN Document Server

    Cao, Penghui; Park, Harold S

    2014-01-01

    A general self-learning metabasin escape (SLME) algorithm~\\citep{caoPRE2012} is coupled in this work with continuous shear deformations to probe the yield stress as a function of strain rate and temperature for a binary Lennard-Jones (LJ) amorphous solid. The approach is shown to match the results of classical molecular dynamics (MD) at high strain rates where the MD results are valid, but, importantly, is able to access experimental strain rates that are about ten orders of magnitude slower than MD. In doing so, we find in agreement with previous experimental studies that a substantial decrease in yield stress is observed with decreasing strain rate. At room temperature and laboratory strain rates, the activation volume associated with yield is found to contain about 10 LJ particles, while the yield stress is as sensitive to a $1.5\\%T_{\\rm g}$ increase in temperature as it is to a one order of magnitude decrease in strain rate. Moreover, our SLME results suggest the SLME and extrapolated results from MD simu...

  2. Amorphous Solid Water (ASW): Macroscale Environmentally-Neutral Application for Remediation of Hazardous Pollutants using Condensed-Phase Cryogenic Fluids

    Science.gov (United States)

    de Strulle, Ronald; Rheinhart, Maximilian

    2012-03-01

    We report macroscale environmentally-neutral use of cryogenic fluids to induce phase transitions from crystalline water-ices to amorphous solid water (ASW). New IP and uses in remediation of oil-spills and hazardous immiscibles from aquatic environments. We display high-resolution images of the transitions from hexagonal to cubic crystalline water-ice, then to hydrophobic ASW. Accretion and encapsulation of viscous pollutants within crystalline water-ice, and sequestration of condensed volatiles (PAH, methane) and low viscosity fluids within the interstitial cavities of ASW are shown and differentiated for: crude oils, diesel (heating) and blended oils, petroleum byproducts, vegetable and mineral oils, lipids, and light immiscible fluids. The effects of PdV work and thermal energy transfers during phase changes are shown, along with the sequestration efficiencies for hexagonal and cubic ice lattices vs. non-crystalline ASW, for a range of pollutant substances. The viability of ASW as a medium for study of quantum criticality phases is also proposed. The process is environmentally-neutral in that only substantially condensed-phase air liquefaction products, e.g. nitrogen in >90% liquid phase are employed as an active agent. The applications are also presented in terms of the scale-up of experiments performed at the nanoscale.

  3. Solid/liquid dispersions in drilling and production; Fluides charges en forage et production petroliere

    Energy Technology Data Exchange (ETDEWEB)

    Peysson, Y. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France)

    2004-07-01

    To reach the new oil and gas fields, the oil industry is developing more and more sophisticated drilling and production schemes. Wells trajectories are now deviated, horizontal, with high extended reach, multi-branched, ultra deep offshore, etc. Extended reach wells are up to 10 km and offshore drilling is close to 3000 m of water depth. In these cases, drilling and production techniques are pushed to the limits. The operating conditions, the properties of the different materials employed must be controlled and operated in a more accurate way. This is the case for solid/liquid dispersions that are common in these operations: drilling, fluids, cements, hydrates dispersions oil and gas phases, sand venue with reservoir fluids, etc. These mixtures present some specific properties that can be at the limit between solid or liquid behaviour. For particular conditions the solid phase can create structures able to support large stresses and in others circumstances the mixture can flow like a viscous paste. Modeling of these characteristics is not easy and needs to use knowledge of different areas: Theology, physico-chemistry, hydrodynamics. thermodynamics, etc. In this revue, different systems used in the drilling and production industry will be discussed. Main properties of these systems and different development conducted by IFP will be addressed. (authors)

  4. Study of the pressure-time-temperature transformation of amorphous La6Ni5Al89 by the energy dispersive method for phase transition

    DEFF Research Database (Denmark)

    Paci, B.; Rossi-Albertini, V.; Sikorski, M.

    2005-01-01

    An energy dispersive X-ray diffraction method to observe phase transitions is applied to follow the crystallization of an amorphous alloy (La6Ni5Al89) in isothermal conditions. In this way, the diffraction-based configurational entropy (DCE) of the system undergoing the phase transformations...... was measured and the curves describing the transitions, qualitatively equivalent to a differential scanning calorimetry (DSC) thermogram, could be drawn. Finally, the analysis of such curves allowed calculation of some points of the alloy pressure-time-temperature transformation (PTTT) diagram. More...... importantly, the present work shows that the DCE method can be successfully applied even when DSC can no longer be used. As a consequence, regions of the phase diagram that could not be reached up to now become accessible, opening the way to the study of transition phenomena under extreme conditions....

  5. Two and three-body interatomic dispersion energy contributions to binding in molecules and solids

    Science.gov (United States)

    von Lilienfeld, Anatole; Tkatchenko, Alexandre

    2010-03-01

    Numerical estimates of the leading two and three body dispersion energy terms in van der Waals (vdW) interactions are presented for a broad variety of molecules and solids. The calculations employ London and Axilrod-Teller-Muto expressions damped at short interatomic distances, where the required interatomic dispersion energy coefficients, C6 and C9, are computed from first-principles. The investigated systems include the S22 database of non-covalent interactions, benzene and ice crystals, bilayer graphene, fullerene dimer, a poly peptide (Ala10), an intercalated drug-DNA model (Ellipticine-d(CG)2), 42 DNA base pairs, a protein (DHFR, 2616 atoms), double stranded DNA (1905 atoms), and molecular crystals from a crystal structure blind test. We find that the 2 and 3-body interatomic dispersion energies contribute significantly to binding and cohesive energies, for some systems they can reach up to 50% of experimental estimates of absolute binding. Our results suggest that interatomic 3-body dispersion potentials should be accounted for in atomistic simulations when modeling bulky molecules or condensed phase systems.

  6. Two- and three-body interatomic dispersion energy contributions to binding in molecules and solids

    Science.gov (United States)

    Anatole von Lilienfeld, O.; Tkatchenko, Alexandre

    2010-06-01

    We present numerical estimates of the leading two- and three-body dispersion energy terms in van der Waals interactions for a broad variety of molecules and solids. The calculations are based on London and Axilrod-Teller-Muto expressions where the required interatomic dispersion energy coefficients, C6 and C9, are computed "on the fly" from the electron density. Inter- and intramolecular energy contributions are obtained using the Tang-Toennies (TT) damping function for short interatomic distances. The TT range parameters are equally extracted on the fly from the electron density using their linear relationship to van der Waals radii. This relationship is empiricially determined for all the combinations of He-Xe rare gas dimers, as well as for the He and Ar trimers. The investigated systems include the S22 database of noncovalent interactions, Ar, benzene and ice crystals, bilayer graphene, C60 dimer, a peptide (Ala10), an intercalated drug-DNA model [ellipticine-d(CG)2], 42 DNA base pairs, a protein (DHFR, 2616 atoms), double stranded DNA (1905 atoms), and 12 molecular crystal polymorphs from crystal structure prediction blind test studies. The two- and three-body interatomic dispersion energies are found to contribute significantly to binding and cohesive energies, for bilayer graphene the latter reaches 50% of experimentally derived binding energy. These results suggest that interatomic three-body dispersion potentials should be accounted for in atomistic simulations when modeling bulky molecules or condensed phase systems.

  7. Dispersal

    Science.gov (United States)

    Clobert, J.; Danchin, E.; Dhondt, A.A.; Nichols, J.D.

    2001-01-01

    The ability of species to migrate and disperse is a trait that has interested ecologists for many years. Now that so many species and ecosystems face major environmental threats from habitat fragmentation and global climate change, the ability of species to adapt to these changes by dispersing, migrating, or moving between patches of habitat can be crucial to ensuring their survival. This book provides a timely and wide-ranging overview of the study of dispersal and incorporates much of the latest research. The causes, mechanisms, and consequences of dispersal at the individual, population, species and community levels are considered. The potential of new techniques and models for studying dispersal, drawn from molecular biology and demography, is also explored. Perspectives and insights are offered from the fields of evolution, conservation biology and genetics. Throughout the book, theoretical approaches are combined with empirical data, and care has been taken to include examples from as wide a range of species as possible.

  8. Formulation, Pharmacokinetic, and Efficacy Studies of Mannosylated Self-Emulsifying Solid Dispersions of Noscapine.

    Directory of Open Access Journals (Sweden)

    Terrick Andey

    Full Text Available To formulate hydroxypropyl methylcellulose-stabilized self-emulsifying solid dispersible carriers of noscapine to enhance oral bioavailability.Formulation of noscapine (Nos self-emulsifying solid dispersible microparticles (SESDs was afforded by emulsification using an optimized formula of Labrafil M1944, Tween-80, and Labrasol followed by spray-drying with hydroxypropyl methylcellulose (HPMC, with and without mannosamine (Mann-Nos_SESDs and Nos_SESDs respectively; self-microemulsifying liquid dispersions (SMEDDs with and without mannosamine (Mann-Nos_SMEDDs and Nos_SMEDDs respectively were also prepared. SMEDDs and SESDs were characterized for size, polydispersity, surface charge, entrapment efficiency, in vitro permeability, in vitro release kinetics, and oral pharmacokinetics in Sprague-Dawley rats (10 mg/kg p.o. The antitumor efficacy of Mann-Nos_SESDs on the basis of chemosensitization to cisplatin (2.0 mg/kg, i.v. was investigated in a chemorefractory lung tumor Nu/Nu mouse model up to a maximal oral dose of 300 mg/kg.The oil/surfactant/co-surfactant mixture of Labrafil M1944, Tween-80, and Labrasol optimized at weight ratios of 62.8:9.30:27.90% produced stable self-microemulsifying dispersions (SMEDDs at a SMEDD to water ratio of 1-3:7-9 parts by weight. SMEDDs had hydrodynamic diameters between 231 and 246 nm; surface charges ranged from -16.50 to -18.7 mV; and entrapment efficiencies were between 32 and 35%. SESDs ranged in size between 5.84 and 6.60 μm with surface charges from -10.62 to -12.40 mV and entrapment efficiencies of 30.96±4.66 and 32.05±3.72% (Nos_SESDs and Mann-Nos_SESDs respectively. Mann-Nos_SESDs exhibited saturating uptake across Caco-2 monolayers (Papp = 4.94±0.18 × 10(-6 cm/s, with controlled release of 50% of Nos in 6 hr at pH 6.8 following Higuchi kinetics. Mann-Nos_ SESDs was 40% more bioavailable compared to Nos_SESDs; and was effective in sensitizing H1650 SP cells to Cisplatin in vitro and in an orthotopic

  9. Formulation, Pharmacokinetic, and Efficacy Studies of Mannosylated Self-Emulsifying Solid Dispersions of Noscapine

    Science.gov (United States)

    Andey, Terrick; Patel, Apurva; Marepally, Srujan; Chougule, Mahavir; Spencer, Shawn D.; Rishi, Arun K.; Singh, Mandip

    2016-01-01

    Purpose To formulate hydroxypropyl methylcellulose-stabilized self-emulsifying solid dispersible carriers of noscapine to enhance oral bioavailability. Methods Formulation of noscapine (Nos) self-emulsifying solid dispersible microparticles (SESDs) was afforded by emulsification using an optimized formula of Labrafil M1944, Tween-80, and Labrasol followed by spray-drying with hydroxypropyl methylcellulose (HPMC), with and without mannosamine (Mann-Nos_SESDs and Nos_SESDs respectively); self-microemulsifying liquid dispersions (SMEDDs) with and without mannosamine (Mann-Nos_SMEDDs and Nos_SMEDDs respectively) were also prepared. SMEDDs and SESDs were characterized for size, polydispersity, surface charge, entrapment efficiency, in vitro permeability, in vitro release kinetics, and oral pharmacokinetics in Sprague-Dawley rats (10 mg/kg p.o). The antitumor efficacy of Mann-Nos_SESDs on the basis of chemosensitization to cisplatin (2.0 mg/kg, IV) was investigated in a chemorefractory lung tumor Nu/Nu mouse model up to a maximal oral dose of 300 mg/kg. Results The oil/surfactant/co-surfactant mixture of Labrafil M1944, Tween-80, and Labrasol optimized at weight ratios of 62.8:9.30:27.90% produced stable self-microemulsifying dispersions (SMEDDs) at a SMEDD to water ratio of 1–3:7–9 parts by weight. SMEDDs had hydrodynamic diameters between 231 and 246 nm; surface charges ranged from -16.50 to -18.7 mV; and entrapment efficiencies were between 32 and 35%. SESDs ranged in size between 5.84 and 6.60 μm with surface charges from -10.62 to -12.40 mV and entrapment efficiencies of 30.96±4.66 and 32.05±3.72% (Nos_SESDs and Mann-Nos_SESDs respectively). Mann-Nos_SESDs exhibited saturating uptake across Caco-2 monolayers (Papp = 4.94±0.18 × 10−6 cm/s), with controlled release of 50% of Nos in 6 hr at pH 6.8 following Higuchi kinetics. Mann-Nos_ SESDs was 40% more bioavailable compared to Nos_SESDs; and was effective in sensitizing H1650 SP cells to Cisplatin in vitro

  10. Enhanced electrical transport in ionic liquid dispersed TMAI-PEO solid polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Neha [Physics Department, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India and Department of Physics, JECRC University, Jaipur-303905, Rajasthan (India); Rathore, Munesh, E-mail: adalvi@pilani.bits-pilani.ac.in; Dalvi, Anshuman, E-mail: adalvi@pilani.bits-pilani.ac.in [Physics Department, Birla Institute of Technology and Science, Pilani-333031, Rajasthan (India); Kumar, Anil [Chemistry Department, Birla Institute of Technology and Science, Pilani-333031, Rajasthan (India)

    2014-04-24

    A polymer composite is prepared by dispersing ionic liquid [Bmim][BF{sub 4}] in Polyethylene oxide-tetra methyl ammonium iodide composite and subsequent microwave treatment. X-ray diffraction patterns confirm the composite nature. To explore possibility of proton conductivity in these films, electrical transport is studied by impedance spectroscopy and DC polarization. It is revealed that addition of ionic liquid in host TMAI-PEO solid polymer electrolyte enhances the conductivity by ∼ 2 orders of magnitude. Polarization measurements suggest that composites are essentially ion conducting in nature. The maximum ionic conductivity is found to be ∼2 × 10{sup −5} for 10 wt % ionic liquid.

  11. High solids loading of aluminum nitride powder in epoxy resin: Dispersion and thermal conductivity

    Science.gov (United States)

    Lee, Eunsung

    Most semiconductor devices are now packaged in an epoxy polymer composite, which includes a silica powder filler for reducing the thermal expansion coefficient. However, increased heat output from near-future semiconductors will require higher thermal conductivity fillers such as aluminum nitride powder, instead of silica. This thesis research is intended to apply improved dispersant chemistry, in order to achieve a high volume percentage of AlN powder in epoxy, increasing the thermal conductivity of the composite without causing excessive viscosity before the epoxy monomer is crosslinked. In initial experiments, the dispersibility of aluminum oxide in epoxy monomer resin was better than that of AlN, because of the weaker basicity of oxide surfaces compared with nitride. To improve the dispersibility of AlN, its surface was modified by pretreatment with silane coupling agents. Silane molecules with different head groups were investigated. In those experiments, methylsilane gave lower viscosities than chloro- or methoxysilane, while pretreatments using organic acids increased the viscosity of the AlN dispersion. The viscosity changes and FTIR peak intensity trends suggested that the silane molecules could be adsorbed on AlN surfaces in the form of a monolayer during optimization experiments, and the best silane monolayer coverage on the AlN powder surfaces was achieved with 2 wt% amounts in a 3 hour treatment. A particular phosphate ester was a good second layer dispersant for the AlN-plus-epoxy system. When that dispersant was added onto the silane-treated filler surfaces, the degree of viscosity reduction was dependent on the types of silane coupling agent functional groups. In the optimized results, silane pretreatment followed by dispersant addition was better than either alone. High solids loading, up to 57 vol.%, was achieved with a wide particle size distribution of powder, and the viscosity of that dispersion was 60,000 to 90,000 cps, which easily flowed by

  12. Soluplus®/TPGS-based solid dispersions prepared by hot-melt extrusion equipped with twin-screw systems for enhancing oral bioavailability of valsartan

    Directory of Open Access Journals (Sweden)

    Lee JY

    2015-05-01

    Full Text Available Jae-Young Lee,1,* Wie-Soo Kang,2,* Jingpei Piao,2 In-Soo Yoon,3 Dae-Duk Kim,1 Hyun-Jong Cho4 1College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 2School of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 3College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 4College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea *These authors contributed equally to this work Background: Soluplus® (SP and ᴅ-alpha-tocopherol polyethylene glycol 1000 succinate (TPGS–based solid dispersion (SD formulations were developed by hot-melt extrusion (HME to improve oral bioavailability of valsartan (VST. Methods: HME process with twin-screw configuration for generating a high shear stress was used to prepare VST SD formulations. The thermodynamic state of the drug and its dispersion in the polymers were evaluated by solid-state studies, including Fourier-transform infrared, X-ray diffraction, and differential scanning calorimetry. Drug release from the SD formulations was assessed at pH values of 1.2, 4.0, and 6.8. Pharmacokinetic study was performed in rats to estimate the oral absorption of VST. Results: HME with a high shear rate produced by the twin-screw system was successfully applied to prepare VST-loaded SD formulations. Drug amorphization and its molecular dispersion in the polymer matrix were verified by several solid-state studies. Drug release from SD formulations was improved, compared to the pure drug, particularly at pH 6.8. Oral absorption of drug in rats was also enhanced in SP and TPGS-based SD groups compared to that in the pure drug group. Conclusion: SP and TPGS-based SDs, prepared by the HME process, could be used to improve aqueous solubility, dissolution, and oral absorption of poorly water-soluble drugs. Keywords: hot-melt extrusion, oral bioavailability, solid dispersion, valsartan  

  13. AN OVERVIEW ON SOLUBILITY ENHANCEMENT TECHNIQUES FOR POORLY SOLUBLE DRUGS AND SOLID DISPERSION AS AN EMINENT STRATEGIC APPROACH

    Directory of Open Access Journals (Sweden)

    Sandhiya Jatwani et al.

    2012-04-01

    Full Text Available Solubility is an important parameter to achieve desired concentration of drug in systemic circulation for pharmacological response to be shown. Among all newly discovered chemical entities most of the drugs are lipophillic and fail to reach market due to their poor water solubility. The solubility behavior remains one of the most challenging aspect informational development. Hence various techniques are used for the improvement of solubility of poorly water soluble drugs which include micronization, chemical modification, pH adjustment, solid dispersion, complexation, co-solvency micellar solubilization, hydrotrophy etc. Of all these approaches solid dispersion have attracted tremendous interest as an efficient means of improving the dissolution rate and hence the bioavailability to arrange of hydrophobic drugs. This article reviews the various preparation techniques and types of solid dispersion based on molecular arrangement. Finally some of the practical aspects have also been considered for the preparation of dispersions.

  14. Preparation and Dissolution Characteristics Investigation of Rutin Solid Dispersions%芦丁固体分散体的制备及其溶出特性考察

    Institute of Scientific and Technical Information of China (English)

    孙磊; 马晓兰; 吴洋; 孙涛; 戴贵东

    2013-01-01

    目的:制备芦丁固体分散体,比较不同载体对芦丁固体分散体体外溶出度的影响.方法:采用溶剂法制备固体分散体并考察其体外溶出度;考察不同载体对芦丁溶出度的影响,以差示热分析药物在载体中的存在状态.结果:载体种类和用量对芦丁溶出影响显著,其中PVPK30作为载体时溶出效果最佳,芦丁以微晶无定形分散于载体中.结论:溶剂法制得固体分散体中芦丁的溶出度和溶出速率均显著提高.%Objective: To prepare rutin solid dispersions ( RSD ) , and compare influence of different carriers on in vitro dissolution of it. Method; RSD was prepared by solvent method and its in vitro dissolution was tested. Influence of different carriers on drug dissolution was evaluated. Differential scanning calorimetry ( DSC ) was used to examine presence state of rutin in carrier. Result; Types and amount of carriers had significant influence on rutin dissolution, PVPK30 was chosen as optimum carrier, DSC showed that rutin dispersed in PVPK30 with amorphous and microcrystalline. Conclusion: Rutin dissolution and dissolution rate of these prepared rutin-PVPK30 solid dispersions were significantly improved.

  15. 泊洛沙姆固体分散体对辛伐他汀溶出特性的影响%Effect of poloxamer solid dispersion on the dissolution of simvastatin

    Institute of Scientific and Technical Information of China (English)

    彭霞; 何江梅; 黄兴亮; 吴瑾; 陈章宝

    2013-01-01

    目的 考察泊洛沙姆固体分散体对辛伐他汀体外溶出特性的影响.方法 采用溶剂-熔融法制备辛伐他汀-泊洛沙姆188固体分散体,并用差示扫描量热法(DSC)、X射线粉末衍射(X-RD)和红外光谱(FTIR)考察药物在固体分散体中的存在状态,并进行体外溶出度的研究.结果 药物以分子或无定形态均匀分散于载体中,药物的溶出度随载体比例的增加而增加.结论 制备的辛伐他汀-泊洛沙姆188固体分散体能明显提高辛伐他汀的溶出度.%Objective To study the effect of poloxamer solid dispersion on the in vitro dissolution of simvastatin. Method Poloxamer was used as the carrier materials to prepare simvastatin poloxamcr solid dispersion by melting methods and investigate the dissolution characteristics of different dispersion systems. Differential scanning calorimctry (DSC),X-ray diffraction(X-RD) and Fourier transform infrared spectroscopy(FTIR) methods were used to detect the dispersion state of simvastatin. Result The drug exists in crystallite or amorphous form in solid dispersion,and the dissolution rates of simvastatin increase with the increase of the weight ratio of drug and carrier. Conclusion Simvastatin solid dispersion can obviously improve the dissolution rate of simvastatin by using poloxamcr 188 as a carrier.

  16. 瑞戈非尼固体分散体的制备及体外溶出度考察%Preparation and dissolution of Regorafenib Solid Dispersion in vitro

    Institute of Scientific and Technical Information of China (English)

    刘正平; 刘军田; 王明森; 张建强; 赵国敏; 郑德强

    2015-01-01

    Objective To enhance the dissolution rate of regorafenib which is a poorly water - soluble drug by forma-tion of solid dispersion. Methods Solid dispersions of regorafenib were prepared by solvent method with polyvinylpyrroli-done K30 as a carrier. The dissolution of the solid dispersions in vitro was determined by UV spectrophotometry and the X- ray diffraction technology was used to analyse the distribution mode of regorafenib. Results The dissolution of rego-rafenib solid dispersions was much faster than that of regorafenib and the physical mixtures. The dissolution of regorafenib in vitro was increased as the increasement of the carrier proportion. Regorafenib existed as amorphous form in the carrier. Con-clusion Solid dispersion technology can significantly increase the dissolution of regorafenib in vitro.%目的:采用固体分散技术提高难溶性药物瑞戈非尼的体外溶出度。方法选用聚维酮 K30为载体,以溶剂法制备不同比例的瑞戈非尼固体分散体;采用紫外分光光度法测定其溶出度;采用 X -射线粉末衍射法分析药物在固体分散体中的存在状态。结果瑞戈非尼固体分散体的溶出度较原料药、物理混合物均有显著提高,且载体比例越大,固体分散体溶出度越大;瑞戈非尼以无定形态分散在载体中。结论采用固体分散技术可有效提高瑞戈非尼的体外溶出度。

  17. Taurine zinc solid dispersions attenuate doxorubicin-induced hepatotoxicity and cardiotoxicity in rats.

    Science.gov (United States)

    Wang, Yu; Mei, Xueting; Yuan, Jingquan; Lu, Wenping; Li, Binglong; Xu, Donghui

    2015-11-15

    The clinical efficacy of anthracycline anti-neoplastic agents is limited by cardiac and hepatic toxicities. The aim of this study was to assess the hepatoprotective and cardioprotective effects of taurine zinc solid dispersions, which is a newly-synthesized taurine zinc compound, against doxorubicin-induced toxicity in Sprague-Dawley rats intraperitoneally injected with doxorubicin hydrochloride (3mg/kg) three times a week (seven injections) over 28 days. Hemodynamic parameters, levels of liver toxicity markers and oxidative stress were assessed. Taurine zinc significantly attenuated the reductions in blood pressure, left ventricular pressure and ± dp/dtmax, increases in serum alanine aminotransferase and aspartate aminotransferase activities, and reductions in serum Zn(2+) and albumin levels (Ptaurine zinc dose-dependently increased liver superoxide dismutase activity and glutathione concentration, and decreased malondialdehyde level (PTaurine zinc dose-dependently increased liver heme oxygenase-1 and UDP-glucuronyl transferase mRNA and protein expression (Ptaurine zinc inhibited c-Jun N-terminal kinase phosphorylation by upregulating dual-specificity phosphoprotein phosphatase-1. Additionally, taurine zinc inhibited cardiomyocyte apoptosis as there was decreased TUNEL/DAPI positivity and protein expression of caspase-3. These results indicate that taurine zinc solid dispersions prevent the side-effects of anthracycline-based anticancer therapy. The mechanisms might be associated with the enhancement of antioxidant defense system partly through activating transcription to synthesize endogenous phase II medicine enzymes and anti-apoptosis through inhibiting JNK phosphorylation. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Enhancement of solubility and dissolution of glipizide by solid dispersion (kneading technique

    Directory of Open Access Journals (Sweden)

    Choudhary D

    2009-01-01

    Full Text Available Glipizide is a poorly water-soluble (BCS class II antidiabetic drug. Due to the poor water solubility of this drug, its bioavailability is dissolution rate-limited. The purpose of this study was is to increase the solubility of Glipizide (GZ in aqueous media by solid dispersion (SDs technique with Poloxamer (PXM 188 and Poloxamer (PXM 407 by using the kneading method. The GZ-PXM solid dispersion system was characterized by dDifferential scanning calorimetry (DSC, X-ray powder diffraction (XRD analysis, Fourier transform-infrared spectroscopy (FT-IR and Scanning electron microscopy (SEM, and in vitro dissolution studies. No chemical interaction was found between GZ and PXM 188 or PXM 407. The results from DSC, XRD and SEM studies show that PXM 188 or PXM 407 inhibits the crystallization of GZ. The SDs prepared in this study were found to have better dissolution rates in comparisoncompared to intact GZ and physical mixture of PXM 188 or PXM 407 and GZ. It was found that the optimum weight ratio for drug: Carrier is 1:5 for PXM 188 and 1:6 for PXM 407.

  19. [Determination of aflatoxins in hot chilli products by matrix solid-phase dispersion and liquid chromatography].

    Science.gov (United States)

    Zheng, Ping; Sheng, Xuan; Yu, Xiaofeng; Hu, Yanyun

    2006-01-01

    A new method based on matrix solid-phase dispersion (MSPD) extraction with neutral alumina and co-column purification with graphitized carbon black has been developed to determine aflatoxins B1, B2, G1, G2 in hot chilli products. The method includes liquid chromatography and fluorescence detection with on-line post-column derivatization with bromine. Optimization of different parameters, such as the type of solid supports for matrix dispersion and co-column clean-up was carried out. The recoveries of aflatoxins B1, B2, G1 and G2 were 95.4%, 87.3%, 91.5% and 92.6%, respectively, with relative standard deviations ranging from 3.3% to 6.1%. The limits of detection were in the range of 0.10 ng/g (B2, G2) to 0.25 ng/g (B1, G1). In addition, the comparison of the extraction and purification effect of MSPD with immunity affinity column showed that, MSPD is a valid method to analyze aflatoxins in hot chilli products.

  20. Construction of drug-polymer thermodynamic phase diagrams using Flory-Huggins interaction theory: identifying the relevance of temperature and drug weight fraction to phase separation within solid dispersions.

    Science.gov (United States)

    Tian, Yiwei; Booth, Jonathan; Meehan, Elizabeth; Jones, David S; Li, Shu; Andrews, Gavin P

    2013-01-07

    Amorphous drug-polymer solid dispersions have the potential to enhance the dissolution performance and thus bioavailability of BCS class II drug compounds. The principle drawback of this approach is the limited physical stability of amorphous drug within the dispersion. Accurate determination of the solubility and miscibility of drug in the polymer matrix is the key to the successful design and development of such systems. In this paper, we propose a novel method, based on Flory-Huggins theory, to predict and compare the solubility and miscibility of drug in polymeric systems. The systems chosen for this study are (1) hydroxypropyl methylcellulose acetate succinate HF grade (HPMCAS-HF)-felodipine (FD) and (2) Soluplus (a graft copolymer of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol)-FD. Samples containing different drug compositions were mixed, ball milled, and then analyzed by differential scanning calorimetry (DSC). The value of the drug-polymer interaction parameter χ was calculated from the crystalline drug melting depression data and extrapolated to lower temperatures. The interaction parameter χ was also calculated at 25 °C for both systems using the van Krevelen solubility parameter method. The rank order of interaction parameters of the two systems obtained at this temperature was comparable. Diagrams of drug-polymer temperature-composition and free energy of mixing (ΔG(mix)) were constructed for both systems. The maximum crystalline drug solubility and amorphous drug miscibility may be predicted based on the phase diagrams. Hyper-DSC was used to assess the validity of constructed phase diagrams by annealing solid dispersions at specific drug loadings. Three different samples for each polymer were selected to represent different regions within the phase diagram.

  1. Study on prepartion and dissolution of the solid dispersions of artemisinin%青蒿素固体分散物的制备及体外溶出研究

    Institute of Scientific and Technical Information of China (English)

    李国栋; 周全; 赵长文; 马光大; 林锦明

    1999-01-01

    OBJECTIVE:The solid dispersion method was used to increase the solubility of artemisinin.METHOD:Solid dispersion of artemisinin was prepared.The solubility and balance dissolution of the solid dispersion was detected.X-Ray powder diffraction was used to investigate the nature of the studied forms.RESULT:The results showed the drug in solid dispersion existed in amorphous form.When the solid dispersion was exposed to an atmosphere of 75% relative humidity for 3 months at 40℃,the solubility and existing state of the solid dispersion did not alter much.The dissolution rates of dispersion was 70% in 10 minutes,which was obviously increased than that of the pure drug,CONCLUSION:The solid dispersion of artemisinin can increase the solubility of artemisinin in virto.%目的:采用制剂技术方法提高青蒿素的体外溶出速率。方法:采用固体分散技术制备青蒿素固体分散物,对其进行了体外溶出度、平衡溶解度测定,并采用X-射线衍射方法进行固体分散物的物相分析。结果:固体分散物体外溶出速率10min以内达到70%以上,明显比青蒿素原料药的体外溶出速率加快,固体分散物X-射线衍射图谱表明青蒿素以非晶体状态存在;在RH75%40℃条件下放置3个月后,固体分散物X-射线衍射图谱和体外溶出速率均无明显变化。结论:制备青蒿素固体分散体可以提高其体外溶出速率。

  2. Cross-linkage effect of cellulose/laponite hybrids in aqueous dispersions and solid films.

    Science.gov (United States)

    Yuan, Zaiwu; Fan, Qingrui; Dai, Xiaonan; Zhao, Chao; Lv, Aijie; Zhang, Jingjing; Xu, Guiying; Qin, Menghua

    2014-02-15

    Homogenous cellulose/laponite aqueous dispersions and composite films were respectively prepared from the pre-cooling NaOH/urea aqueous systems. Rheological measurements of aqueous dispersions demonstrated a sol-to-gel transition triggered by loading of laponite, reflecting a cross-linkage effect of cellulose/laponite hybrids. Similarly, based on scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) characterizations, as well as mechanical and thermal measurements, the cross-linkage effect of cellulose/laponite hybrids was also found in solid films, which played an important role in improving the tensile strength (σb) of composite films. For instance, the σb exhibited a largest enhancement up to 75.7% at a critical laponite content of 0.100 wt%, indicating that the property of composite film was closely related with the dispersion and interaction state of laponite, i.e. its content in cellulose matrix. These results were expected to provide significant information for fabrication and utility of cellulose-based materials.

  3. Study of the effect of boron doping on the solid phase crystallisation of hydrogenated amorphous silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Westra, J.M.; Swaaij, R.A.C.M.M. van [Photovoltaic Materials and Devices, Department of Sustainable Electrical Energy, Delft University of Technology, Delft (Netherlands); Šutta, P. [New Technologies-Research Centre, University of West Bohemia, Plzen (Czech Republic); Sharma, K.; Creatore, M. [Department of Applied Physics, Eindhoven University of Technology, Eindhoven (Netherlands); Zeman, M. [Photovoltaic Materials and Devices, Department of Sustainable Electrical Energy, Delft University of Technology, Delft (Netherlands)

    2014-10-01

    Thin-film polycrystalline silicon on glass obtained by crystallization of hydrogenated amorphous silicon (a-Si:H) films is an interesting alternative for thin-film silicon solar cells. Although the solar-cell efficiencies are still limited, this technique offers excellent opportunity to study the influence of B-doping on the crystallisation process of a-Si:H. Our approach is to slowly crystallize B-doped a-Si:H films by solid phase crystallization in the temperature range 580–600°C. We use plasma-enhanced chemical vapour deposition (PECVD) and expanding thermal plasma chemical vapour deposition (ETPCVD) for the B-doped a-Si:H deposition. In this work we show the first in-situ study of the crystallization process of B-doped a-Si:H films produced by ETPCVD and make a comparison to the crystallization of intrinsic ETPCVD deposited a-Si:H as well as intrinsic and B-doped a-Si:H films deposited by PECVD. The crystallization process is investigated by in-situ x-ray diffraction, using a high temperature chamber for the annealing procedure. The study shows a strong decrease in the time required for full crystallisation for B-doped a-Si:H films compared to the intrinsic films. The time before the onset of crystallisation is reduced by the incorporation of B as is the grain growth velocity. The time to full crystallisation can be manipulated by the B{sub 2}H{sub 6}-to-SiH{sub 4} ratio used during the deposition and by the microstructure of the as-deposited a-Si:H films. - Highlights: • Solid-phase crystallization of B-doped a-Si:H films is presented. • Crystallization study of B-doped and intrinsic a-Si:H by in-situ x-ray diffraction • The microstructure and B-doping of a-Si:H influences the crystallisation process. • B enhances the grain growth rate, but the effect on the nucleation rate is limited.

  4. Recent advances in co-amorphous drug formulations

    DEFF Research Database (Denmark)

    Dengale, Swapnil Jayant; Grohganz, Holger; Rades, Thomas;

    2016-01-01

    Co-amorphous drug delivery systems have recently gained considerable interest in the pharmaceutical field because of their potential to improve oral bioavailability of poorly water-soluble drugs through drug dissolution enhancement as a result of the amorphous nature of the material. A co-amorpho...... findings. In particular, we investigate co-amorphous formulations from the viewpoint of solid dispersions, describe their formation and mechanism of stabilization, study their impact on dissolution and in vivo performance and briefly outline the future potentials.......Co-amorphous drug delivery systems have recently gained considerable interest in the pharmaceutical field because of their potential to improve oral bioavailability of poorly water-soluble drugs through drug dissolution enhancement as a result of the amorphous nature of the material. A co-amorphous...... system is characterized by the use of only low molecular weight components that are mixed into a homogeneous single-phase co-amorphous blend. The use of only low molecular weight co-formers makes this approach very attractive, as the amount of amorphous stabilizer can be significantly reduced compared...

  5. Amorphization within the tablet: Using microwave irradiation to form a glass solution in situ.

    Science.gov (United States)

    Doreth, Maria; Hussein, Murtadha Abdul; Priemel, Petra A; Grohganz, Holger; Holm, René; Lopez de Diego, Heidi; Rades, Thomas; Löbmann, Korbinian

    2017-03-15

    In situ amorphization is a concept that allows to amorphize a given drug in its final dosage form right before administration. Hence, this approach can potentially be used to circumvent recrystallization issues that other amorphous formulation approaches are facing during storage. In this study, the feasibility of microwave irradiation to prepare amorphous solid dispersions (glass solutions) in situ was investigated. Indomethacin (IND) and polyvinylpyrrolidone K12 (PVP) were tableted at a 1:2 (w/w) ratio. In order to study the influence of moisture content and energy input on the degree of amorphization, tablet formulations were stored at different relative humidity (32, 43 and 54% RH) and subsequently microwaved using nine different power-time combinations up to a maximum energy input of 90kJ. XRPD results showed that up to 80% (w/w) of IND could be amorphized within the tablet. mDSC measurements revealed that with increasing microwaving power and time, the fractions of crystalline IND and amorphous PVP reduced, whereas the amount of in situ formed IND-PVP glass solution increased. Intrinsic dissolution showed that the dissolution rate of the microwaved solid dispersion was similar to that of a quench cooled, fully amorphous glass solution even though the microwaved samples contained residual crystalline IND. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Influence of temperature on the solubilization of thiabendazole by combined action of solid dispersions and co-solvents.

    Science.gov (United States)

    Muela, Susana; Escalera, Begoña; Peña, M Angeles; Bustamante, Pilar

    2010-01-15

    Co-solvents and solid dispersions with polyvinyl pyrrolidone were tested to increase solubility of thiabendazole. Solid dispersions were prepared by the solvent method and analyzed by differential scanning calorimetry. The solubility was measured at 15-35 degrees C in aqueous (ethanol-water) and non-aqueous (ethanol-ethyl acetate) mixtures. Combination of solid dispersions with cosolvents increased the water solubility of thiabendazole in a larger extent that each method separately. The effect of the solid dispersions is greatest in water and it decreases nonlinearly as the volume fraction of ethanol-in water increases. The solubility enhancement is smaller in ethanol-ethyl acetate and is uncorrelated with co-solvent concentration. Solubility parameters delta were used to predict drug/carrier compatibility and related to solubility profiles. Thiabendazole shows an intermediate behaviour between solubility curves with two peaks (more polar drugs with larger delta values) and a single peak (less polar drugs with lower delta values). The solid dispersions increase the solubility parameter of thiabendazole from delta=24 to delta=25.7 MPa(1/2). The model of Bustamante et al. allowed solubility prediction including jointly both mixtures whereas the equation of Jouyban et al. was able to predict the solubility at several temperatures in each binary mixture separately, using a few experiments.

  7. Study on Enhanced Dissolution of Azilsartan-Loaded Solid Dispersion, Prepared by Combining Wet Milling and Spray-Drying Technologies.

    Science