WorldWideScience

Sample records for amorphous silicon pixel

  1. A novel low noise hydrogenated amorphous silicon pixel detector

    OpenAIRE

    Moraes, D.; Anelli, G.; Despeisse, M.; Dissertori, G.; Garrigos, A.; Jarron, P.; Kaplon. J.; Miazza, C.; Shah, Arvind; Viertel, G. M.; Wyrsch, Nicolas

    2008-01-01

    Firsts results on particle detection using a novel silicon pixel detector are presented. The sensor consists of an array of 48 square pixels with 380 μm pitch based on a n–i–p hydrogenated amorphous silicon (a-Si:H) film deposited on top of a VLSI chip. The deposition was performed by VHF-PECVD, which enables high rate deposition up to 2 nm/s. Direct particle detection using beta particles from 63Ni and 90Sr sources was performed.

  2. A new concept of monolithic silicon pixel detectors Hydrogenated amorphous silicon on ASIC

    CERN Document Server

    Anelli, G; Despeisse, M; Dissertori, G; Jarron, P; Miazza, C; Moraes, D; Shah, A; Viertel, Gert M; Wyrsch, N

    2004-01-01

    A new concept of a monolithic pixel radiation detector is presented. It is based on the deposition of a film of hydrogenated amorphous silicon (a-Si:H) on an Application Specific Integrated Circuit (ASIC) . For almost 20 years, several research groups tried to demonstrate that a-Si:H material could be used to build radiation detectors for particle physics applications. A novel approach is made by the deposition of a-Si:H directly on the readout ASIC. This technique is similar to the concept of monolithic pixel detectors, but offers considerable advantages. We present first results from tests of a n- i-p a-Si:H diode array deposited on a glass substrate and on the a- Si:H above ASIC prototype detector.

  3. Amorphous silicon pixel layers with cesium iodide converters for medical radiography

    International Nuclear Information System (INIS)

    Jing, T.; Cho, G.; Goodman, C.A.

    1993-11-01

    We describe the properties of evaporated layers of Cesium Iodide (Thallium activated) deposited on substrates that enable easy coupling to amorphous silicon pixel arrays. The CsI(Tl) layers range in thickness from 65 to 220μm. We used the two-boat evaporator system to deposit CsI(Tl) layers. This system ensures the formation of the scintillator film with homogenous thallium concentration which is essential for optimizing the scintillation light emission efficiency. The Tl concentration was kept to 0.1--0.2 mole percent for the highest light output. Temperature annealing can affect the microstructure as well as light output of the CsI(Tl) film. 200--300C temperature annealing can increase the light output by a factor of two. The amorphous silicon pixel arrays are p-i-n diodes approximately lμm thick with transparent electrodes to enable them to detect the scintillation light produced by X-rays incident on the CsI(Tl). Digital radiography requires a good spatial resolution. This is accomplished by making the detector pixel size less then 50μm. The light emission from the CsI(Tl) is collimated by techniques involving the deposition process on pattered substrates. We have measured MTF of greater than 12 line pairs per mm at the 10% level

  4. ALICE Silicon Pixel Detector

    CERN Multimedia

    Manzari, V

    2013-01-01

    The Silicon Pixel Detector (SPD) forms the innermost two layers of the 6-layer barrel Inner Tracking System (ITS). The SPD plays a key role in the determination of the position of the primary collision and in the reconstruction of the secondary vertices from particle decays.

  5. Hydrogen in amorphous silicon

    International Nuclear Information System (INIS)

    Peercy, P.S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH 1 ) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon

  6. Conception and modelling of photo-detection pixels. PIN photodiodes conceived in amorphous silicon for particles detection

    International Nuclear Information System (INIS)

    Negru, R.

    2008-06-01

    The research done has revealed that the a-Si:H is a material ideally suited for the detection of particles, while being resistant to radiation. It also has a low manufacturing cost, is compatible with existing technology and can be deposited over large areas. Thus, despite the low local mobility of charges (30 cm 2 /V/s), a-Si:H is a material of particular interest for manufacturing high-energy particle detection pixels. As a consequence of this, we have studied the feasibility of an experimental pixel stacked structure based on a-Si:H as a basic sensor element for an electromagnetic calorimeter. The structure of such a pixel consists of different components. First, a silicon PIN diode in a-Si:H is fabricated, followed by a bias resistor and a decoupling capacitor. Before such a structure is made and in order to optimize its design, it is essential to have an efficient behavioural model of the various components. Thus, our primary goal was to develop a two-dimensional physical model of the PIN diode using the SILVACO finite element calculation software. This a-Si:H PIN diode two-dimensional physical model allowed us to study the problem of crosstalk between pixels in a matrix structure of detectors. In particular, we concentrated on the leakage current and the current generated in the volume between neighbouring pixels. The successful implementation of this model in SPICE ensures its usefulness in other professional simulators and especially its integration into a complete electronic structure (PIN diode, bias resistor, decoupling capacity and low noise amplifier). Thanks to these modelling tools, we were able to simulate PIN diode structures in a-Si:H with different thicknesses and different dimensions. These simulations have allowed us to predict that the thicker structures are relevant to the design of the pixel detectors for high energy physics. Applications in astronomy, medical imaging and the analysis of the failure of silicon integrated circuits, can also

  7. The ALICE Silicon Pixel Detector

    International Nuclear Information System (INIS)

    Kluge, A.; Rinella, G. Aglieri; Anelli, G.; Antinori, F.; Badala, A.; Burns, M.; Cali, I.A.; Campbell, M.; Caselle, M.; Ceresa, S.; Chochula, P.; Dima, R.; Elias, D.; Fabris, D.; Fini, R.A.; Formenti, F.; Krivda, M.; Lenti, V.; Librizzi, F.; Manzari, V.

    2007-01-01

    The ALICE Silicon Pixel Detector (SPD) forms the two innermost layers of the ALICE inner tracker system. It contains 9.8x10 6 pixels with a material budget of less than 1% of X 0 per layer. It is based on hybrid pixel technology. The space and material budget constraints have severe impact on the design. The ALICE SPD detector system components are discussed

  8. Conception and modelling of photo-detection pixels. PIN photodiodes conceived in amorphous silicon for particles detection; Conception et modelisation de pixels de photodetection: Photodiodes PIN en silicium amorphe en vue de leurs utilisations comme detecteurs de particules

    Energy Technology Data Exchange (ETDEWEB)

    Negru, R

    2008-06-15

    The research done has revealed that the a-Si:H is a material ideally suited for the detection of particles, while being resistant to radiation. It also has a low manufacturing cost, is compatible with existing technology and can be deposited over large areas. Thus, despite the low local mobility of charges (30 cm{sup 2}/V/s), a-Si:H is a material of particular interest for manufacturing high-energy particle detection pixels. As a consequence of this, we have studied the feasibility of an experimental pixel stacked structure based on a-Si:H as a basic sensor element for an electromagnetic calorimeter. The structure of such a pixel consists of different components. First, a silicon PIN diode in a-Si:H is fabricated, followed by a bias resistor and a decoupling capacitor. Before such a structure is made and in order to optimize its design, it is essential to have an efficient behavioural model of the various components. Thus, our primary goal was to develop a two-dimensional physical model of the PIN diode using the SILVACO finite element calculation software. This a-Si:H PIN diode two-dimensional physical model allowed us to study the problem of crosstalk between pixels in a matrix structure of detectors. In particular, we concentrated on the leakage current and the current generated in the volume between neighbouring pixels. The successful implementation of this model in SPICE ensures its usefulness in other professional simulators and especially its integration into a complete electronic structure (PIN diode, bias resistor, decoupling capacity and low noise amplifier). Thanks to these modelling tools, we were able to simulate PIN diode structures in a-Si:H with different thicknesses and different dimensions. These simulations have allowed us to predict that the thicker structures are relevant to the design of the pixel detectors for high energy physics. Applications in astronomy, medical imaging and the analysis of the failure of silicon integrated circuits, can

  9. Hydrogenated amorphous silicon photonics

    Science.gov (United States)

    Narayanan, Karthik

    2011-12-01

    Silicon Photonics is quickly proving to be a suitable interconnect technology for meeting the future goals of on-chip bandwidth and low power requirements. However, it is not clear how silicon photonics will be integrated into CMOS chips, particularly microprocessors. The issue of integrating photonic circuits into electronic IC fabrication processes to achieve maximum flexibility and minimum complexity and cost is an important one. In order to minimize usage of chip real estate, it will be advantageous to integrate in three-dimensions. Hydrogenated amorphous silicon (a-Si:H) is emerging as a promising material for the 3-D integration of silicon photonics for on-chip optical interconnects. In addition, a-Si:H film can be deposited using CMOS compatible low temperature plasma-enhanced chemical vapor deposition (PECVD) process at any point in the fabrication process allowing maximum flexibility and minimal complexity. In this thesis, we demonstrate a-Si:H as a high performance alternate platform to crystalline silicon, enabling backend integration of optical interconnects in a hybrid photonic-electronic network-on-chip architecture. High quality passive devices are fabricated on a low-loss a-Si:H platform enabling wavelength division multiplexing schemes. We demonstrate a broadband all-optical modulation scheme based on free-carrier absorption effect, which can enable compact electro-optic modulators in a-Si:H. Furthermore, we comprehensively characterize the optical nonlinearities in a-Si:H and observe that a-Si:H exhibits enhanced nonlinearities as compared to crystalline silicon. Based on the enhanced nonlinearities, we demonstrate low-power four-wave mixing in a-Si:H waveguides enabling high speed all-optical devices in an a-Si:H platform. Finally, we demonstrate a novel data encoding scheme using thermal and all-optical tuning of silicon waveguides, increasing the spectral efficiency in an interconnect link.

  10. Medical imaging applications of amorphous silicon

    International Nuclear Information System (INIS)

    Mireshghi, A.; Drewery, J.S.; Hong, W.S.; Jing, T.; Kaplan, S.N.; Lee, H.K.; Perez-Mendez, V.

    1994-07-01

    Two dimensional hydrogenated amorphous silicon (a-Si:H) pixel arrays are good candidates as flat-panel imagers for applications in medical imaging. Various performance characteristics of these imagers are reviewed and compared with currently used equipments. An important component in the a-Si:H imager is the scintillator screen. A new approach for fabrication of high resolution CsI(Tl) scintillator layers, appropriate for coupling to a-Si:H arrays, are presented. For nuclear medicine applications, a new a-Si:H based gamma camera is introduced and Monte Carlo simulation is used to evaluate its performance

  11. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  12. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The bump-bonded silicon pixel detector, developed at CERN by the EP-MIC group, is shown here in its ceramic carrier. Both represent the ISPA-tube anode. The chip features between 1024 (called OMEGA-1) and 8196 (ALICE-1) active pixels.

  13. Studies of hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, S G; Carlos, W E

    1984-07-01

    This report discusses the results of probing the defect structure and bonding of hydrogenated amorphous silicon films using both nuclear magnetic resonance (NMR) and electron spin resonance (ESR). The doping efficiency of boron in a-Si:H was found to be less than 1%, with 90% of the boron in a threefold coordinated state. On the other hand, phosphorus NMR chemical shift measurements yielded a ration of threefold to fourfold P sites of roughly 4 to 1. Various resonance lines were observed in heavily boron- and phosphorus-doped films and a-SiC:H alloys. These lines were attributed to band tail states on twofold coordinated silicon. In a-SiC:H films, a strong resonance was attributed to dangling bonds on carbon atoms. ESR measurements on low-pressure chemical-vapor-deposited (LPCVD) a-Si:H were performed on samples. The defect density in the bulk of the films was 10/sup 17//cc with a factor of 3 increase at the surface of the sample. The ESR spectrum of LPCVD-prepared films was not affected by prolonged exposure to strong light. Microcrystalline silicon samples were also examined. The phosphorus-doped films showed a strong signal from the crystalline material and no resonance from the amorphous matrix. This shows that phosphorus is incorporated in the crystals and is active as a dopant. No signal was recorded from the boron-doped films.

  14. Amorphous silicon crystalline silicon heterojunction solar cells

    CERN Document Server

    Fahrner, Wolfgang Rainer

    2013-01-01

    Amorphous Silicon/Crystalline Silicon Solar Cells deals with some typical properties of heterojunction solar cells, such as their history, the properties and the challenges of the cells, some important measurement tools, some simulation programs and a brief survey of the state of the art, aiming to provide an initial framework in this field and serve as a ready reference for all those interested in the subject. This book helps to "fill in the blanks" on heterojunction solar cells. Readers will receive a comprehensive overview of the principles, structures, processing techniques and the current developmental states of the devices. Prof. Dr. Wolfgang R. Fahrner is a professor at the University of Hagen, Germany and Nanchang University, China.

  15. Amorphous silicon based radiation detectors

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Cho, G.; Drewery, J.; Jing, T.; Kaplan, S.N.; Qureshi, S.; Wildermuth, D.; Fujieda, I.; Street, R.A.

    1991-07-01

    We describe the characteristics of thin(1 μm) and thick (>30μm) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and γ rays. For x-ray, γ ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. 13 refs., 7 figs

  16. Towards upconversion for amorphous silicon solar cells

    NARCIS (Netherlands)

    de Wild, J.; Meijerink, A.; Rath, J.K.; van Sark, W.G.J.H.M.; Schropp, R.E.I.

    2010-01-01

    Upconversion of subbandgap light of thin film single junction amorphous silicon solar cells may enhance their performance in the near infrared (NIR). In this paper we report on the application of the NIR–vis upconverter β-NaYF4:Yb3+(18%) Er3+(2%) at the back of an amorphous silicon solar cell in

  17. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    TECS

    flexible triple junction, amorphous silicon solar cells. At the Malaysia Energy Centre (MEC), we fabricated triple junction amorphous silicon solar cells (up to 12⋅7% efficiency (Wang et al 2002)) and laser-interconnected modules on steel, glass and polyimide substrates. A major issue encountered is the adhesion of thin film ...

  18. Charge sharing in silicon pixel detectors

    CERN Document Server

    Mathieson, K; Seller, P; Prydderch, M L; O'Shea, V; Bates, R L; Smith, K M; Rahman, M

    2002-01-01

    We used a pixellated hybrid silicon X-ray detector to study the effect of the sharing of generated charge between neighbouring pixels over a range of incident X-ray energies, 13-36 keV. The system is a room temperature, energy resolving detector with a Gaussian FWHM of 265 eV at 5.9 keV. Each pixel is 300 mu m square, 300 mu m deep and is bump bonded to matching read out electronics. The modelling packages MEDICI and MCNP were used to model the complete X-ray interaction and the subsequent charge transport. Using this software a model is developed which reproduces well the experimental results. The simulations are then altered to explore smaller pixel sizes and different X-ray energies. Charge sharing was observed experimentally to be 2% at 13 keV rising to 4.5% at 36 keV, for an energy threshold of 4 keV. The models predict that up to 50% of charge may be lost to the neighbouring pixels, for an X-ray energy of 36 keV, when the pixel size is reduced to 55 mu m.

  19. Charge sharing in silicon pixel detectors

    International Nuclear Information System (INIS)

    Mathieson, K.; Passmore, M.S.; Seller, P.; Prydderch, M.L.; O'Shea, V.; Bates, R.L.; Smith, K.M.; Rahman, M.

    2002-01-01

    We used a pixellated hybrid silicon X-ray detector to study the effect of the sharing of generated charge between neighbouring pixels over a range of incident X-ray energies, 13-36 keV. The system is a room temperature, energy resolving detector with a Gaussian FWHM of 265 eV at 5.9 keV. Each pixel is 300 μm square, 300 μm deep and is bump bonded to matching read out electronics. The modelling packages MEDICI and MCNP were used to model the complete X-ray interaction and the subsequent charge transport. Using this software a model is developed which reproduces well the experimental results. The simulations are then altered to explore smaller pixel sizes and different X-ray energies. Charge sharing was observed experimentally to be 2% at 13 keV rising to 4.5% at 36 keV, for an energy threshold of 4 keV. The models predict that up to 50% of charge may be lost to the neighbouring pixels, for an X-ray energy of 36 keV, when the pixel size is reduced to 55 μm

  20. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    OpenAIRE

    Schriver, Maria Christine

    2012-01-01

    A novel solar cell architecture made completely from the earth abundant elements silicon and carbon has been developed. Hydrogenated amorphous silicon (aSi:H), rather than crystalline silicon, is used as the active material due to its high absorption through a direct band gap of 1.7eV, well matched to the solar spectrum to ensure the possibility of improved cells in this architecture with higher efficiencies. The cells employ a Schottky barrier design wherein the amorphous silicon absorber la...

  1. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The ISPA tube is a position-sensitive photon detector. It belongs to the family of hybrid photon detectors (HPD), recently developed by CERN and INFN with leading photodetector firms. HPDs confront in a vacuum envelope a photocathode and a silicon detector. This can be a single diode or a pixelized detector. The electrons generated by the photocathode are efficiently detected by the silicon anode by applying a high-voltage difference between them. ISPA tube can be used in high-energy applications as well as bio-medical and imaging applications.

  2. Ab initio simulation of amorphous silicon

    International Nuclear Information System (INIS)

    Cooper, N.C.; McKenzie, D.R.; Goringe, C.M.

    1999-01-01

    Full text: A first-principles Car-Parrinello molecular dynamics simulation of amorphous silicon is presented. Density Functional Theory is used to describe the forces between the atoms in a 64 atom supercell which is periodically repeated throughout space in order to generate an infinite network of atoms (a good approximation to a real solid). A quench from the liquid phase is used to achieve a quenched amorphous structure, which is subjected to an annealing cycle to improve its stability. The final, annealed network is in better agreement with experiment than any previous simulation of amorphous silicon. Significantly, the predicted average first-coordination numbers of 3.56 and 3.84 for the quenched and annealed structures from this simulation agree very closely with the experimental values of 3.55 and 3.90 respectively, whereas all previous simulations yielded first coordination numbers greater than 4. This improved agreement in coordination numbers is important because it supports the experimental finding that dangling bonds (which are associated with under-coordinated atoms) are more prevalent than floating bonds (the strained, longer bond of a five coordinate atom) in pure amorphous silicon. Finally, the effect of adding hydrogen to amorphous silicon was investigated by specifically placing hydrogen atoms at the likely defect sites. After a structural relaxation to optimise the positions of these hydrogen atoms, the localised electronic states associated with these defects are absent. Thus hydrogen is responsible for removing these defect states (which are able to trap carriers) from the edge of the band gap of the amorphous silicon. These results confirm the widely held ideas about the effect of hydrogen in producing remarkable improvements in the electronic properties of amorphous silicon

  3. Amorphous silicon detectors in positron emission tomography

    International Nuclear Information System (INIS)

    Conti, M.; Perez-Mendez, V.

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters ε 2 τ's are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs

  4. Amorphous silicon detectors in positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Conti, M. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy) Lawrence Berkeley Lab., CA (USA)); Perez-Mendez, V. (Lawrence Berkeley Lab., CA (USA))

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters {epsilon}{sup 2}{tau}'s are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs.

  5. The ALICE Silicon Pixel Detector System

    CERN Document Server

    Fadmar Osmic, FO

    2006-01-01

    The European Organization for Particle Physics (CERN) in Geneva is currently constructing the Large Hadron Collider (LHC), which will allow the study of the subnuclear ranges of physics with an accuracy never achieved before. Within the LHC project, ALICE is to the study of strongly interacting matter at extreme densities and high temperatures. ALICE as many other modern High Energy Physics (HEP) experiments uses silicon pixel detectors for tracking close to the interaction point (IP). The ALICE Silicon Pixel Detector (SPD) will constitute the two innermost layers of ALICE, and will due to its high granularity provide precise tracking information. In heavy ion collisions, the track density could be as high as 80 tracks/cm2 in the first SPD layer. The SPD will provide tracking information at radii of 3.9 and 7.6 cm from the IP. It is a fundamental element for the study of the weak decays of the particles carrying heavy flavour, whose typical signature will be a secondary vertex separated from the primary verte...

  6. Dynamics of hydrogen in hydrogenated amorphous silicon

    Indian Academy of Sciences (India)

    weak (strained) Si–Si bond thereby apparently enhancing the hydrogen diffusion and increasing the light-induced dangling bonds. Keywords. Hydrogenated amorphous silicon; metastable electronic states; hydrogen diffusion. PACS Nos 61.43.Dq; 66.30.-h; 71.23.Cq. 1. Introduction. Hydrogen passivation of dangling bonds ...

  7. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    TECS

    Abstract. A major issue encountered during fabrication of triple junction a-Si solar cells on polyimide sub- strates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and ...

  8. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    A major issue encountered during fabrication of triple junction -Si solar cells on polyimide substrates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and Gouldflex), and the ...

  9. Dynamics of hydrogen in hydrogenated amorphous silicon

    Indian Academy of Sciences (India)

    c0, c being the instantaneous concentration at a local point and c0, the average concentration of hydrogen in the hydrogenated amorphous silicon. If the system is both incompressible and isotropic, the change in Helmholtz free energy due to fluctuations in the local concentration of hydrogen is given as. 122. Pramana – J.

  10. Ion bombardment and disorder in amorphous silicon

    International Nuclear Information System (INIS)

    Sidhu, L.S.; Gaspari, F.; Zukotynski, S.

    1997-01-01

    The effect of ion bombardment during growth on the structural and optical properties of amorphous silicon are presented. Two series of films were deposited under electrically grounded and positively biased substrate conditions. The biased samples displayed lower growth rates and increased hydrogen content relative to grounded counterparts. The film structure was examined using Raman spectroscopy. The transverse optic like phonon band position was used as a parameter to characterize network order. Biased samples displayed an increased order of the amorphous network relative to grounded samples. Furthermore, biased samples exhibited a larger optical gap. These results are correlated and attributed to reduced ion bombardment effects

  11. Amorphization of silicon by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Jia, Jimmy; Li Ming; Thompson, Carl V.

    2004-01-01

    We have used femtosecond laser pulses to drill submicron holes in single crystal silicon films in silicon-on-insulator structures. Cross-sectional transmission electron microscopy and energy dispersive x-ray analysis of material adjacent to the ablated holes indicates the formation of a layer of amorphous Si. This demonstrates that even when material is ablated using femtosecond pulses near the single pulse ablation threshold, sufficient heating of the surrounding material occurs to create a molten zone which solidifies so rapidly that crystallization is bypassed

  12. The ALICE silicon pixel detector system

    International Nuclear Information System (INIS)

    Kapusta, S.

    2009-01-01

    The Large Hadron Collider (LHC) is again reaching its startup phase at the European Organization for Particle Physics (CERN). The LHC started its operation on the 10 th of September, 2008 with huge success managing to sent the the first beam successfully around the entire ring in less than an hour after the first injection in one direction, and later that day in the opposite direction. Unfortunately, on the 19 th of September, an accident occurred during the 5.5 TeV magnet commissioning in Sector 34, which will significantly delay the operation of the LHC. The ALICE experiment will exploit the collisions of accelerated ions produced at the LHC to study strongly interacting matter at extreme densities and high temperatures. e ALICE Silicon Pixel Detector (SPD) represents the two innermost layers of the ALICE Inner Traing System (ITS) located at radii of 3.9 cm and 7.6 cm from the Interaction Point (IP). One of the main tasks of the SPD is to provide precise traing information. is information is fundamental for the study of weak decays of heavy flavor particles, since the corresponding signature is a secondary vertex separated from the primary vertex only by a few hundred micrometers. e tra density could be as high as 80 tracks per cm 2 in the innermost SPD layer as a consequence of a heavy ion collision. The SPD will provide a spatial resolution of around ≅12 μm in the rφ direction and ≅70 μm in the z direction. The expected occupancy of the SPD ranges from 0.4% to 1.5% which makes it an excellent charged particle multiplicity detector in the pseudorapidity region |η| < 2. Furthermore, by combining all possible hits in the SPD, one can get a rough estimate of the position of the primary interaction. One of the challenges is the tight material budget constraint (<1% radiation length per layer) in order to limit the scattering of the traversing particles. e silicon sensor and its readout chip have a total thickness of only 350 μm and the signal lines from the

  13. Fluctuation microscopy analysis of amorphous silicon models

    International Nuclear Information System (INIS)

    Gibson, J.M.; Treacy, M.M.J.

    2017-01-01

    Highlights: • Studied competing computer models for amorphous silicon and simulated fluctuation microscopy data. • Show that only paracrystalline/random network composite can fit published data. • Specifically show that pure random network or random network with void models do not fit available data. • Identify a new means to measure volume fraction of ordered material. • Identify unreported limitations of the Debye model for simulating fluctuation microscopy data. - Abstract: Using computer-generated models we discuss the use of fluctuation electron microscopy (FEM) to identify the structure of amorphous silicon. We show that a combination of variable resolution FEM to measure the correlation length, with correlograph analysis to obtain the structural motif, can pin down structural correlations. We introduce the method of correlograph variance as a promising means of independently measuring the volume fraction of a paracrystalline composite. From comparisons with published data, we affirm that only a composite material of paracrystalline and continuous random network that is substantially paracrystalline could explain the existing experimental data, and point the way to more precise measurements on amorphous semiconductors. The results are of general interest for other classes of disordered materials.

  14. Pixels detectors and silicon X-rays detectors

    OpenAIRE

    Delpierre, P.

    1994-01-01

    Silicon pixel detectors are beginning to be used in large particle physics experiments. The hybrid technique (detector and electronics on two separate wafers) allows large surfaces to be built. For ATLAS at LHC it is proposed to cover areas of more than 1 m2 with 5000 to 10000 pixels/cm2. Each pixel has a full electronic chain directly connected which means very low input capacitance and no integration of dark current. Furthermore, silicon strip detectors and CCD's have been successfully test...

  15. Diamond and silicon pixel detectors in high radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, Jieh-Wen

    2012-10-15

    Diamond pixel detector is a promising candidate for tracking of collider experiments because of the good radiation tolerance of diamond. The diamond pixel detector must withstand the radiation damage from 10{sup 16} particles per cm{sup 2}, which is the expected total fluence in High Luminosity Large Hadron Collider. The performance of diamond and silicon pixel detectors are evaluated in this research in terms of the signal-to-noise ratio (SNR). Single-crystal diamond pixel detectors with the most recent readout chip ATLAS FE-I4 are produced and characterized. Based on the results of the measurement, the SNR of diamond pixel detector is evaluated as a function of radiation fluence, and compared to that of planar-silicon ones. The deterioration of signal due to radiation damage is formulated using the mean free path of charge carriers in the sensor. The noise from the pixel readout circuit is simulated and calculated with leakage current and input capacitance to the amplifier as important parameters. The measured SNR shows good agreement with the calculated and simulated results, proving that the performance of diamond pixel detectors can exceed the silicon ones if the particle fluence is more than 10{sup 15} particles per cm{sup 2}.

  16. A silicon pixel detector prototype for the CLIC vertex detector

    CERN Multimedia

    Vicente Barreto Pinto, Mateus

    2017-01-01

    A silicon pixel detector prototype for CLIC, currently under study for the innermost detector surrounding the collision point. The detector is made of a High-Voltage CMOS sensor (top) and a CLICpix2 readout chip (bottom) that are glued to each other. Both parts have a size of 3.3 x 4.0 $mm^2$ and consist of an array of 128 x 128 pixels of 25 x 25 $\\micro m^2$ size.

  17. Three-Terminal Amorphous Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Cheng-Hung Tai

    2011-01-01

    Full Text Available Many defects exist within amorphous silicon since it is not crystalline. This provides recombination centers, thus reducing the efficiency of a typical a-Si solar cell. A new structure is presented in this paper: a three-terminal a-Si solar cell. The new back-to-back p-i-n/n-i-p structure increased the average electric field in a solar cell. A typical a-Si p-i-n solar cell was also simulated for comparison using the same thickness and material parameters. The 0.28 μm-thick three-terminal a-Si solar cell achieved an efficiency of 11.4%, while the efficiency of a typical a-Si p-i-n solar cell was 9.0%. Furthermore, an efficiency of 11.7% was achieved by thickness optimization of the three-terminal solar cell.

  18. Development of large area, high efficiency amorphous silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K.S.; Kim, S.; Kim, D.W. [Yu Kong Taedok Institute of Technology (Korea, Republic of)

    1996-02-01

    The objective of the research is to develop the mass-production technologies of high efficiency amorphous silicon solar cells in order to reduce the costs of solar cells and dissemination of solar cells. Amorphous silicon solar cell is the most promising option of thin film solar cells which are relatively easy to reduce the costs. The final goal of the research is to develop amorphous silicon solar cells having the efficiency of 10%, the ratio of light-induced degradation 15% in the area of 1200 cm{sup 2} and test the cells in the form of 2 Kw grid-connected photovoltaic system. (author) 35 refs., 8 tabs., 67 figs.

  19. Crystallization of HWCVD amorphous silicon thin films at elevated temperatures

    CSIR Research Space (South Africa)

    Muller, TFG

    2006-01-01

    Full Text Available Hot-wire chemical vapour deposition (HWCVD) has been used to prepare both hydrogenated amorphous silicon (a-Si:H) and nano/ microcrystalline thin layers as intrinsic material at different deposition conditions, in order to establish optimum...

  20. Amorphous silicon films doped with BF3 and PF5

    International Nuclear Information System (INIS)

    Ortiz, A.; Muhl, S.; Sanchez, A.; Monroy, R.; Pickin, W.

    1984-01-01

    By using gaseous discharge process, thin films of hydrogenated amorphous silicon (a-Si:H) were produced. This process consists of Silane (SiH 4 ) decomposition at low pressure, in a chamber. (A.C.A.S.) [pt

  1. Silicon Pixel Detectors for Synchrotron Applications

    CERN Document Server

    Stewart, Graeme Douglas

    Recent advances in particle accelerators have increased the demands being placed on detectors. Novel detector designs are being implemented in many different areas including, for example, high luminosity experiments at the LHC or at next generation synchrotrons. The purpose of this thesis was to characterise some of these novel detectors. The first of the new detector types is called a 3D detector. This design was first proposed by Parker, Kenney and Segal (1997). In this design, doped electrodes are created that extend through the silicon substrate. When compared to a traditional photodiode with electrodes on the opposing surfaces, the 3D design can combine a reasonable detector thickness with a small electrode spacing resulting in fast charge collection and limited charge sharing. The small electrode spacing leads to the detectors having lower depletion voltages. This, combined with the fast collection time, makes 3D detectors a candidate for radiation hard applications. These applications include the upgra...

  2. Silicon pixel R&D for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718101

    2017-01-01

    The physics aims at the proposed future CLIC high-energy linear e+e− collider pose challenging demands on the performance of the vertex and tracking detector system. In particular the detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The requirements include ultra-low mass, facilitated by power pulsing and air cooling in the vertex-detector region, small cell sizes and precision hit timing at the few-ns level. A highly granular all- silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints.

  3. Amorphous Silicon: Flexible Backplane and Display Application

    Science.gov (United States)

    Sarma, Kalluri R.

    Advances in the science and technology of hydrogenated amorphous silicon (a-Si:H, also referred to as a-Si) and the associated devices including thin-film transistors (TFT) during the past three decades have had a profound impact on the development and commercialization of major applications such as thin-film solar cells, digital image scanners and X-ray imagers and active matrix liquid crystal displays (AMLCDs). Particularly, during approximately the past 15 years, a-Si TFT-based flat panel AMLCDs have been a huge commercial success. a-Si TFT-LCD has enabled the note book PCs, and is now rapidly replacing the venerable CRT in the desktop monitor and home TV applications. a-Si TFT-LCD is now the dominant technology in use for applications ranging from small displays such as in mobile phones to large displays such as in home TV, as well-specialized applications such as industrial and avionics displays.

  4. Megavoltage imaging with a large-area, flat-panel, amorphous silicon imager

    International Nuclear Information System (INIS)

    Antonuk, Larry E.; Yorkston, John; Huang Weidong; Sandler, Howard; Siewerdsen, Jeffrey H.; El-Mohri, Youcef

    1996-01-01

    Purpose: The creation of the first large-area, amorphous silicon megavoltage imager is reported. The imager is an engineering prototype built to serve as a stepping stone toward the creation of a future clinical prototype. The engineering prototype is described and various images demonstrating its properties are shown including the first reported patient image acquired with such an amorphous silicon imaging device. Specific limitations in the engineering prototype are reviewed and potential advantages of future, more optimized imagers of this type are presented. Methods and Materials: The imager is based on a two-dimensional, pixelated array containing amorphous silicon field-effect transistors and photodiode sensors which are deposited on a thin glass substrate. The array has a 512 x 560-pixel format and a pixel pitch of 450 μm giving an imaging area of ∼23 x 25 cm 2 . The array is used in conjunction with an overlying metal plate/phosphor screen converter as well as an electronic acquisition system. Images were acquired fluoroscopically using a megavoltage treatment machine. Results: Array and digitized film images of a variety of anthropomorphic phantoms and of a human subject are presented and compared. The information content of the array images generally appears to be at least as great as that of the digitized film images. Conclusion: Despite a variety of severe limitations in the engineering prototype, including many array defects, a relatively slow and noisy acquisition system, and the lack of a means to generate images in a radiographic manner, the prototype nevertheless generated clinically useful information. The general properties of these amorphous silicon arrays, along with the quality of the images provided by the engineering prototype, strongly suggest that such arrays could eventually form the basis of a new imaging technology for radiotherapy localization and verification. The development of a clinically useful prototype offering high

  5. The ALICE Silicon Pixel Detector Control and Calibration Systems

    CERN Document Server

    Calì, Ivan Amos; Manzari, Vito; Stefanini, Giorgio

    2008-01-01

    The work presented in this thesis was carried out in the Silicon Pixel Detector (SPD) group of the ALICE experiment at the Large Hadron Collider (LHC). The SPD is the innermost part (two cylindrical layers of silicon pixel detec- tors) of the ALICE Inner Tracking System (ITS). During the last three years I have been strongly involved in the SPD hardware and software development, construction and commissioning. This thesis is focused on the design, development and commissioning of the SPD Control and Calibration Systems. I started this project from scratch. After a prototyping phase now a stable version of the control and calibration systems is operative. These systems allowed the detector sectors and half-barrels test, integration and commissioning as well as the SPD commissioning in the experiment. The integration of the systems with the ALICE Experiment Control System (ECS), DAQ and Trigger system has been accomplished and the SPD participated in the experimental December 2007 commissioning run. The complex...

  6. GigaTracker, a Thin and Fast Silicon Pixels Tracker

    CERN Document Server

    Velghe, Bob; Bonacini, Sandro; Ceccucci, Augusto; Kaplon, Jan; Kluge, Alexander; Mapelli, Alessandro; Morel, Michel; Noël, Jérôme; Noy, Matthew; Perktold, Lukas; Petagna, Paolo; Poltorak, Karolina; Riedler, Petra; Romagnoli, Giulia; Chiozzi, Stefano; Cotta Ramusino, Angelo; Fiorini, Massimiliano; Gianoli, Alberto; Petrucci, Ferruccio; Wahl, Heinrich; Arcidiacono, Roberta; Jarron, Pierre; Marchetto, Flavio; Gil, Eduardo Cortina; Nuessle, Georg; Szilasi, Nicolas

    2014-01-01

    GigaTracker, the NA62’s upstream spectrometer, plays a key role in the kinematically constrained background suppression for the study of the K + ! p + n ̄ n decay. It is made of three independent stations, each of which is a six by three cm 2 hybrid silicon pixels detector. To meet the NA62 physics goals, GigaTracker has to address challenging requirements. The hit time resolution must be better than 200 ps while keeping the total thickness of the sensor to less than 0.5 mm silicon equivalent. The 200 μm thick sensor is divided into 18000 300 μm 300 μm pixels bump-bounded to ten independent read-out chips. The chips use an end-of-column architecture and rely on time-over- threshold discriminators. A station can handle a crossing rate of 750 MHz. Microchannel cooling technology will be used to cool the assembly. It allows us to keep the sensor close to 0 C with 130 μm of silicon in the beam area. The sensor and read-out chip performance were validated using a 45 pixel demonstrator with a laser test setu...

  7. Assembly procedure for the silicon pixel ladder for PHENIX silicon vertex tracker

    International Nuclear Information System (INIS)

    Onuki, Y.; Akiba, Y.; En'yo, H.; Fujiwara, K.; Haki, Y.; Hashimoto, K.; Ichimiya, R.; Kasai, M.; Kawashima, M.; Kurita, K.; Kurosawa, M.; Mannel, E.J.; Nakano, K.; Pak, R.; Sekimoto, M.; Sondheim, W.E.; Taketani, A.; Togawa, M.; Yamamoto, Y.

    2009-01-01

    The silicon vertex tracker (VTX) will be installed in the summer of 2010 to enhance the physics capabilities of the Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) experiment at Brookhaven National Laboratory. The VTX consists of two types of silicon detectors: a pixel detector and a strip detector. The pixel detector consists of 30 pixel ladders placed on the two inner cylindrical layers of the VTX. The ladders are required to be assembled with high precision, however, they should be assembled in both cost and time efficient manner. We have developed an assembly bench for the ladder with several assembly fixtures and a quality assurance (Q/A) system using a 3D measurement machine. We have also developed an assembly procedure for the ladder, including a method for dispensing adhesive uniformly and encapsulation of bonding wires. The developed procedures were adopted in the assembly of the first pixel ladder and satisfy the requirements.

  8. Self-consistent modeling of amorphous silicon devices

    International Nuclear Information System (INIS)

    Hack, M.

    1987-01-01

    The authors developed a computer model to describe the steady-state behaviour of a range of amorphous silicon devices. It is based on the complete set of transport equations and takes into account the important role played by the continuous distribution of localized states in the mobility gap of amorphous silicon. Using one set of parameters they have been able to self-consistently simulate the current-voltage characteristics of p-i-n (or n-i-p) solar cells under illumination, the dark behaviour of field-effect transistors, p-i-n diodes and n-i-n diodes in both the ohmic and space charge limited regimes. This model also describes the steady-state photoconductivity of amorphous silicon, in particular, its dependence on temperature, doping and illumination intensity

  9. Plasma deposition of amorphous silicon-based materials

    CERN Document Server

    Bruno, Giovanni; Madan, Arun

    1995-01-01

    Semiconductors made from amorphous silicon have recently become important for their commercial applications in optical and electronic devices including FAX machines, solar cells, and liquid crystal displays. Plasma Deposition of Amorphous Silicon-Based Materials is a timely, comprehensive reference book written by leading authorities in the field. This volume links the fundamental growth kinetics involving complex plasma chemistry with the resulting semiconductor film properties and the subsequent effect on the performance of the electronic devices produced. Key Features * Focuses on the plasma chemistry of amorphous silicon-based materials * Links fundamental growth kinetics with the resulting semiconductor film properties and performance of electronic devices produced * Features an international group of contributors * Provides the first comprehensive coverage of the subject, from deposition technology to materials characterization to applications and implementation in state-of-the-art devices.

  10. GHz-rate optical parametric amplifier in hydrogenated amorphous silicon

    International Nuclear Information System (INIS)

    Wang, Ke-Yao; Foster, Amy C

    2015-01-01

    We demonstrate optical parametric amplification operating at GHz-rates at telecommunications wavelengths using a hydrogenated amorphous silicon waveguide through the nonlinear optical process of four-wave mixing. We investigate how the parametric amplification scales with repetition rate. The ability to achieve amplification at GHz-repetition rates shows hydrogenated amorphous silicon’s potential for telecommunication applications and a GHz-rate optical parametric oscillator. (paper)

  11. Transmissive metallic contact for amorphous silicon solar cells

    Science.gov (United States)

    Madan, A.

    1984-11-29

    A transmissive metallic contact for amorphous silicon semiconductors includes a thin layer of metal, such as aluminum or other low work function metal, coated on the amorphous silicon with an antireflective layer coated on the metal. A transparent substrate, such as glass, is positioned on the light reflective layer. The metallic layer is preferably thin enough to transmit at least 50% of light incident thereon, yet thick enough to conduct electricity. The antireflection layer is preferably a transparent material that has a refractive index in the range of 1.8 to 2.2 and is approximately 550A to 600A thick.

  12. Edge pixel response studies of edgeless silicon sensor technology for pixellated imaging detectors

    Science.gov (United States)

    Maneuski, D.; Bates, R.; Blue, A.; Buttar, C.; Doonan, K.; Eklund, L.; Gimenez, E. N.; Hynds, D.; Kachkanov, S.; Kalliopuska, J.; McMullen, T.; O'Shea, V.; Tartoni, N.; Plackett, R.; Vahanen, S.; Wraight, K.

    2015-03-01

    Silicon sensor technologies with reduced dead area at the sensor's perimeter are under development at a number of institutes. Several fabrication methods for sensors which are sensitive close to the physical edge of the device are under investigation utilising techniques such as active-edges, passivated edges and current-terminating rings. Such technologies offer the goal of a seamlessly tiled detection surface with minimum dead space between the individual modules. In order to quantify the performance of different geometries and different bulk and implant types, characterisation of several sensors fabricated using active-edge technology were performed at the B16 beam line of the Diamond Light Source. The sensors were fabricated by VTT and bump-bonded to Timepix ROICs. They were 100 and 200 μ m thick sensors, with the last pixel-to-edge distance of either 50 or 100 μ m. The sensors were fabricated as either n-on-n or n-on-p type devices. Using 15 keV monochromatic X-rays with a beam spot of 2.5 μ m, the performance at the outer edge and corners pixels of the sensors was evaluated at three bias voltages. The results indicate a significant change in the charge collection properties between the edge and 5th (up to 275 μ m) from edge pixel for the 200 μ m thick n-on-n sensor. The edge pixel performance of the 100 μ m thick n-on-p sensors is affected only for the last two pixels (up to 110 μ m) subject to biasing conditions. Imaging characteristics of all sensor types investigated are stable over time and the non-uniformities can be minimised by flat-field corrections. The results from the synchrotron tests combined with lab measurements are presented along with an explanation of the observed effects.

  13. Comprehensive modeling of ion-implant amorphization in silicon

    International Nuclear Information System (INIS)

    Mok, K.R.C.; Jaraiz, M.; Martin-Bragado, I.; Rubio, J.E.; Castrillo, P.; Pinacho, R.; Srinivasan, M.P.; Benistant, F.

    2005-01-01

    A physically based model has been developed to simulate the ion-implant induced damage accumulation up to amorphization in silicon. Based on damage structures known as amorphous pockets (AP), which are three-dimensional, irregularly shaped agglomerates of interstitials (I) and vacancies (V) surrounded by crystalline silicon, the model is able to reproduce a wide range of experimental observations of damage accumulation and amorphization with interdependent implantation parameters. Instead of recrystallizing the I's and V's instantaneously, the recrystallization rate of an AP containing nI and mV is a function of its effective size, defined as min(n, m), irrespective of its internal spatial configuration. The parameters used in the model were calibrated using the experimental silicon amorphous-crystalline transition temperature as a function of dose rate for C, Si, and Ge. The model is able to show the superlinear damage build-up with dose, the extent of amorphous layer and the superadditivity effect of polyatomic ions

  14. Detection of charged particles in amorphous silicon layers

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Morel, J.; Kaplan, S.N.; Street, R.A.

    1986-02-01

    The successful development of radiation detectors made from amorphous silicon could offer the possibility for relatively easy construction of large area position-sensitive detectors. We have conducted a series of measurements with prototype detectors, on signals derived from alpha particles. The measurement results are compared with simple model calculations, and projections are made of potential applications in high-energy and nuclear physics

  15. Structure of hydrogenated amorphous silicon from ab initio molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Buda, F. (Department of Physics, The Ohio State University, 174 West 18th Avenue, Columbus, Ohio (USA)); Chiarotti, G.L. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Laboratorio Tecnologie Avanzate Superfici e Catalisi del Consorzio Interuniversitario Nazionale di Fisica della Materia, Padriciano 99, I-34012 Trieste (Italy)); Car, R. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Institut Romard de Recherche Numerique en Physique des Materiaux, CH-1015 Lausanne, Switzerland Department of Condensed Matter Physics, University of Geneva, CH-1211 Geneva (Switzerland)); Parrinello, M. (IBM Research Division, Zurich Research Laboratory, CH-8803 Rueschlikon (Switzerland))

    1991-09-15

    We have generated a model of hydrogenated amorphous silicon by first-principles molecular dynamics. Our results are in good agreement with the available experimental data and provide new insight into the microscopic structure of this material. The calculation lends support to models in which monohydride complexes are prevalent, and indicates a strong tendency of hydrogen to form small clusters.

  16. Theory of structure and properties of hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Chiarotti, G.L.; Car, R. (International School of Advanced Studies, Trieste (Italy) Interuniversitario Nazionale di Fisica della Materia (INFM), Trieste (Italy). Lab. Tecnologie Avanzate Superfici e Catalisi); Buda, F. (International School of Advanced Studies, Trieste (Italy) Ohio State Univ., Columbus, OH (USA). Dept. of Physics); Parrinello, M. (International School of Advanced Studies, Trieste

    1990-01-01

    We have generated a computer model of hydrogenated amorphous silicon by first-principles molecular dynamics. Our results are in good agreement with the available experimental data, and provide new insight into the microscopic structure of this material. This should lead to a better understanding of the hydrogenation process. 13 refs., 2 figs.

  17. A new tevchnique for production of amorphous silicon solar cells

    International Nuclear Information System (INIS)

    Andrade, A.M. de; Pereyra, I.; Sanematsu, M.S.; Corgnier, S.L.L.; Fonseca, F.J.

    1984-01-01

    It is presented a new technique for the production of amorphous silicon solar cells based on the development of thin films of a-Si in a reactor in which the decomposition of the sylane, induced by capacitively coupled RF, and the film deposition occur in separate chambers. (M.W.O.) [pt

  18. Study of silicon pixel sensor for synchrotron radiation detection

    Science.gov (United States)

    Li, Zhen-Jie; Jia, Yun-Cong; Hu, Ling-Fei; Liu, Peng; Yin, Hua-Xiang

    2016-03-01

    The silicon pixel sensor (SPS) is one of the key components of hybrid pixel single-photon-counting detectors for synchrotron radiation X-ray detection (SRD). In this paper, the design, fabrication, and characterization of SPSs for single beam X-ray photon detection is reported. The designed pixel sensor is a p+-in-n structure with guard-ring structures operated in full-depletion mode and is fabricated on 4-inch, N type, 320 μm thick, high-resistivity silicon wafers by a general Si planar process. To achieve high energy resolution of X-rays and obtain low dark current and high breakdown voltage as well as appropriate depletion voltage of the SPS, a series of technical optimizations of device structure and fabrication process are explored. With optimized device structure and fabrication process, excellent SPS characteristics with dark current of 2 nA/cm2, full depletion voltage 150 V are achieved. The fabricated SPSs are wire bonded to ASIC circuits and tested for the performance of X-ray response to the 1W2B synchrotron beam line of the Beijing Synchrotron Radiation Facility. The measured S-curves for SRD demonstrate a high discrimination for different energy X-rays. The extracted energy resolution is high (10 keV) and the linear properties between input photo energy and the equivalent generator amplitude are well established. It confirmed that the fabricated SPSs have a good energy linearity and high count rate with the optimized technologies. The technology is expected to have a promising application in the development of a large scale SRD system for the Beijing Advanced Photon Source. Supported by Prefabrication Research of Beijing Advanced Photon Source (R&D for BAPS) and National Natural Science Foundation of China (11335010)

  19. Hydrogen-free amorphous silicon with no tunneling states.

    Science.gov (United States)

    Liu, Xiao; Queen, Daniel R; Metcalf, Thomas H; Karel, Julie E; Hellman, Frances

    2014-07-11

    The ubiquitous low-energy excitations, known as two-level tunneling systems (TLSs), are one of the universal phenomena of amorphous solids. Low temperature elastic measurements show that e-beam amorphous silicon (a-Si) contains a variable density of TLSs which diminishes as the growth temperature reaches 400 °C. Structural analyses show that these a-Si films become denser and more structurally ordered. We conclude that the enhanced surface energetics at a high growth temperature improved the amorphous structural network of e-beam a-Si and removed TLSs. This work obviates the role hydrogen was previously thought to play in removing TLSs in the hydrogenated form of a-Si and suggests it is possible to prepare "perfect" amorphous solids with "crystal-like" properties for applications.

  20. Silicon sensors for the upgrades of the CMS pixel detector

    International Nuclear Information System (INIS)

    Centis Vignali, Matteo

    2015-12-01

    The Compact Muon Solenoid (CMS) is a general purpose detector at the Large Hadron Collider (LHC). The LHC luminosity is constantly increased through upgrades of the accelerator and its injection chain. Two major upgrades will take place in the next years. The first upgrade involves the LHC injector chain and allows the collider to achieve a luminosity of about 2.10 34 cm -2 s -1 . A further upgrade of the LHC foreseen for 2025 will boost its luminosity to 5.10 34 cm -2 s -1 . As a consequence of the increased luminosity, the detectors need to be upgraded. In particular, the CMS pixel detector will undergo two upgrades in the next years. The first upgrade (phase I) consists in the substitution of the current pixel detector in winter 2016/2017. The upgraded pixel detector will implement new readout electronics that allow efficient data taking up to a luminosity of 2.10 34 cm -2 s -1 , twice as much as the LHC design luminosity. The modules that will constitute the upgraded detector are being produced at different institutes. Hamburg (University and DESY) is responsible for the production of 350 pixel modules. The second upgrade (phase II) of the pixel detector is foreseen for 2025. The innermost pixel layer of the upgraded detector will accumulate a radiation damage corresponding to an equivalent fluence of Φ eq =2.10 16 cm -2 and a dose of ∼10 MGy after an integrated luminosity of 3000 fb -1 . Several groups are investigating sensor designs and configurations able to withstand such high doses and fluences. This work is divided into two parts related to important aspects of the upgrades of the CMS pixel detector. For the phase I upgrade, a setup has been developed to provide an absolute energy calibration of the pixel modules that will constitute the detector. The calibration is obtained using monochromatic X-rays. The same setup is used to test the buffering capabilities of the modules' readout chip. The maximum rate experienced by the modules produced in

  1. Geometry optimization of a barrel silicon pixelated tracker

    Science.gov (United States)

    Liu, Qing-Yuan; Wang, Meng; Winter, Marc

    2017-08-01

    We have studied optimization of the design of a barrel-shaped pixelated tracker for given spatial boundaries. The optimization includes choice of number of layers and layer spacing. Focusing on tracking performance only, momentum resolution is chosen as the figure of merit. The layer spacing is studied based on Gluckstern’s method and a numerical geometry scan of all possible tracker layouts. A formula to give the optimal geometry for curvature measurement is derived in the case of negligible multiple scattering to deal with trajectories of very high momentum particles. The result is validated by a numerical scan method, which could also be implemented with any track fitting algorithm involving material effects, to search for the optimal layer spacing and to determine the total number of layers for the momentum range of interest under the same magnetic field. The geometry optimization of an inner silicon pixel tracker proposed for BESIII is also studied by using a numerical scan and these results are compared with Geant4-based simulations. Supported by National Natural Science Foundation of China (U1232202)

  2. The atomic and electronic structure of amorphous silicon nitride

    CERN Document Server

    Alvarez, F

    2002-01-01

    Using a novel approach to the ab initio generation of random networks we constructed two nearly stoichiometric samples of amorphous silicon nitride with the same content x= 1.29. The two 64-atom periodically-continued cubic diamond-like cells contain 28 silicons and 36 nitrogens randomly substituted, and were amorphized with a 6 f s time step by heating them to just below their melting temperature with a Harris-functional based, molecular dynamics code in the LDA approximation. The averaged total radial distribution function (RDF) obtained is compared with some existing Tersoff-like potential simulations and with experiment; ours agree with experiment. All the partial radial features are calculated and the composition of the second peak also agrees with experiment. The electronic structure is calculated and the optical gaps obtained using both a HOMO-LUMO approach and the Tauc-like procedure developed recently that gives reasonable gaps. (Author)

  3. Photo stability Assessment in Amorphous-Silicon Solar Cells

    International Nuclear Information System (INIS)

    Gandia, J. J.; Carabe, J.; Fabero, F.; Jimenez, R.; Rivero, J. M.

    1999-01-01

    The present status of amorphous-silicon-solar-cell research and development at CIEMAT requires the possibility to characterise the devices prepared from the point of view of their stability against sunlight exposure. Therefore a set of tools providing such a capacity has been developed. Together with an introduction to photovoltaic applications of amorphous silicon and to the photodegradation problem, the present work describes the process of setting up these tools. An indoor controlled photodegradation facility has been designed and built, and a procedure has been developed for the measurement of J-V characterisation in well established conditions. This method is suitable for all kinds of solar cells, even for those for which no model is still available. The photodegradation and characterisation of some cells has allowed to validate both the new testing facility and method. (Author) 14 refs

  4. Optical properties of amorphous silicon: Some problem areas

    International Nuclear Information System (INIS)

    Ravindra, N.M.; Chelle, F. de; Ance, C.; Ferraton, J.P.; Berger, J.M.; Coulibaly, S.P.

    1983-08-01

    In this presentation we essentially attempt to throw light on some problem areas concerning the various optical properties of amorphous silicon. The problems seem to emerge from the classical methods employed to determine the optical properties like the optical gap, urbach tail parameter and other related characteristics. Additional problems have emerged in recent years by virtue of many attempts to generalize the property-behaviour relationships for amorphous silicon without attributing any importance to the method of preparation of the films. It should be noted here that although many authors believe disorder to be the controlling parameter, we are of the opinion that at least for films containing fairly large concentrations of hydrogen, the hydrogen concentration has an equally important role to play. The present study has been carried out for films prepared by glow-discharge and chemical vapour deposition. (author)

  5. First-Principles Prediction of Densities of Amorphous Materials: The Case of Amorphous Silicon

    Science.gov (United States)

    Furukawa, Yoritaka; Matsushita, Yu-ichiro

    2018-02-01

    A novel approach to predict the atomic densities of amorphous materials is explored on the basis of Car-Parrinello molecular dynamics (CPMD) in density functional theory. Despite the determination of the atomic density of matter being crucial in understanding its physical properties, no first-principles method has ever been proposed for amorphous materials until now. We have extended the conventional method for crystalline materials in a natural manner and pointed out the importance of the canonical ensemble of the total energy in the determination of the atomic densities of amorphous materials. To take into account the canonical distribution of the total energy, we generate multiple amorphous structures with several different volumes by CPMD simulations and average the total energies at each volume. The density is then determined as the one that minimizes the averaged total energy. In this study, this approach is implemented for amorphous silicon (a-Si) to demonstrate its validity, and we have determined the density of a-Si to be 4.1% lower and its bulk modulus to be 28 GPa smaller than those of the crystal, which are in good agreement with experiments. We have also confirmed that generating samples through classical molecular dynamics simulations produces a comparable result. The findings suggest that the presented method is applicable to other amorphous systems, including those for which experimental knowledge is lacking.

  6. Development and characterization of diamond and 3D-silicon pixel detectors with ATLAS-pixel readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Mathes, Markus

    2008-12-15

    Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10{sup 16} particles per cm{sup 2} per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 x 50 {mu}m{sup 2} have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm{sup 2} and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 x 6 cm{sup 2}). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge collection inside a pixel cell as well as the charge sharing between adjacent pixels was studied using a high energy particle beam. (orig.)

  7. Development and characterization of diamond and 3D-silicon pixel detectors with ATLAS-pixel readout electronics

    International Nuclear Information System (INIS)

    Mathes, Markus

    2008-12-01

    Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10 16 particles per cm 2 per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 x 50 μm 2 have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm 2 and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 x 6 cm 2 ). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge collection inside a pixel cell as well as the charge sharing between adjacent pixels was studied using a high energy particle beam. (orig.)

  8. Atomic hydrogen induced defect kinetics in amorphous silicon

    NARCIS (Netherlands)

    Peeters, F. J. J.; Zheng, J.; Aarts, I. M. P.; Pipino, A. C. R.; Kessels, W. M. M.; van de Sanden, M. C. M.

    2017-01-01

    Near-infrared evanescent-wave cavity ring-down spectroscopy (CRDS) has been applied to study the defect evolution in an amorphous silicon (a-Si:H) thin film subjected to a directed beam of atomic H with a flux of (0.4–2) × 1014 cm−2 s−1. To this end, a 42 ± 2 nm a-Si:H film was grown on the total

  9. Electron trapping in amorphous silicon: A quantum molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lin H.; Kalia, R.K.; Vashishta, P.

    1990-12-01

    Quantum molecular dynamics (QMD) simulations provide the real-time dynamics of electrons and ions through numerical solutions of the time-dependent Schrodinger and Newton equations, respectively. Using the QMD approach we have investigated the localization behavior of an excess electron in amorphous silicon at finite temperatures. For time scales on the order of a few picoseconds, we find the excess electron is localized inside a void of radius {approximately}3 {Angstrom} at finite temperatures. 12 refs.

  10. Silicon pixel R&D for the CLIC detector

    CERN Document Server

    AUTHOR|(SzGeCERN)674552

    2016-01-01

    The physics aims at the future CLIC high-energy linear $e^{+}e^{−}$ collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The main challenges are: a point resolution of a few microns, ultra-low mass (~0.2% X$_{0}$ per layer for the vertex region and ~1% X$_{0}$ per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analogue readout are explored. For the outer tra...

  11. Silicon pixel-detector R&D for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718101

    2016-01-01

    The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few μm, ultra-low mass (∼ 0.2% X${}_0$ per layer for the vertex region and ∼ 1 % X${}_0$ per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ∼ 10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analog readout are explored. For the outer trac...

  12. Stretched exponential relaxation processes in hydrogenated amorphous and polymorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Morigaki, Kazuo [Department of Electrical and Digital-System Engineering, Hiroshima Institute of Technology, Miyake, Saeki-ku, Hiroshima 731-5193 (Japan); Hikita, Harumi [Physics Laboratory, Meikai University, Urayasu, Chiba 279-8550 (Japan)

    2011-09-15

    Stretched exponential relaxation has been observed in various phenomena of hydrogenated amorphous silicon (a-Si:H) and hydrogenated polymorphous silicon (pm-Si:H). As an example, we take light-induced defect creation in a-Si:H and pm-Si:H, in which defect-creation process and defect-annihilation process via hydrogen movement play important roles. We have performed the Monte Carlo simulation for hydrogen movement. Hydrogen movement exhibits anomalous diffusion. In our model of light-induced defect creation in a-Si:H, a pair of two types of dangling bonds, i.e., a normal dangling bond and a hydrogen-related dangling bond, that is a dangling bond having hydrogen in the nearby site, are created under illumination, and hydrogen dissociated from the hydrogen-related dangling bond terminates a normal dangling bond via hydrogen movement. The amorphous network reflects on the dispersive parameter of the stretched exponential function in the light-induced defect creation. We discuss this issue, taking into account the difference in the amorphous network between a-Si:H and pm-Si:H (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Improved method of preparing p-i-n junctions in amorphous silicon semiconductors

    Science.gov (United States)

    Madan, A.

    1984-12-10

    A method of preparing p/sup +/-i-n/sup +/ junctions for amorphous silicon semiconductors includes depositing amorphous silicon on a thin layer of trivalent material, such as aluminum, indium, or gallium at a temperature in the range of 200/sup 0/C to 250/sup 0/C. At this temperature, the layer of trivalent material diffuses into the amorphous silicon to form a graded p/sup +/-i junction. A layer of n-type doped material is then deposited onto the intrinsic amorphous silicon layer in a conventional manner to finish forming the p/sup +/-i-n/sup +/ junction.

  14. Grain boundary resistance to amorphization of nanocrystalline silicon carbide

    Science.gov (United States)

    Chen, Dong; Gao, Fei; Liu, Bo

    2015-01-01

    Under the C displacement condition, we have used molecular dynamics simulation to examine the effects of grain boundaries (GBs) on the amorphization of nanocrystalline silicon carbide (nc-SiC) by point defect accumulation. The results show that the interstitials are preferentially absorbed and accumulated at GBs that provide the sinks for defect annihilation at low doses, but also driving force to initiate amorphization in the nc-SiC at higher doses. The majority of surviving defects are C interstitials, as either C-Si or C-C dumbbells. The concentration of defect clusters increases with increasing dose, and their distributions are mainly observed along the GBs. Especially these small clusters can subsequently coalesce and form amorphous domains at the GBs during the accumulation of carbon defects. A comparison between displacement amorphized nc-SiC and melt-quenched single crystal SiC shows the similar topological features. At a dose of 0.55 displacements per atom (dpa), the pair correlation function lacks long range order, demonstrating that the nc-SiC is fully amorphilized. PMID:26558694

  15. Amorphous silicon prepared from silane-hydrogen mixture

    International Nuclear Information System (INIS)

    Pietruszko, S.M.

    1982-09-01

    Amorphous silicon films prepared from a d.c. discharge of 10% SiH 4 - 90% H 2 mixture are found to have properties similar to those made from 100% SiH 4 . These films are found to be quite stable against prolonged light exposure. The effect of nitrogen on the properties of these films was investigated. It was found that instead of behaving as a classical donor, nitrogen introduces deep levels in the material. Field effect experiments on a-Si:H films at the bottom (film-substrate interface) and the top (film-vacuum interface) of the film are also reported. (author)

  16. Structural properties of amorphous silicon produced by electron irradiation

    International Nuclear Information System (INIS)

    Yamasaki, J.; Takeda, S.

    1999-01-01

    The structural properties of the amorphous Si (a-Si), which was created from crystalline silicon by 2 MeV electron irradiation at low temperatures about 25 K, are examined in detail by means of transmission electron microscopy and transmission electron diffraction. The peak positions in the radial distribution function (RDF) of the a-Si correspond well to those of a-Si fabricated by other techniques. The electron-irradiation-induced a-Si returns to crystalline Si after annealing at 550 C

  17. FDTD simulation of amorphous silicon waveguides for microphotonics applications

    Science.gov (United States)

    Fantoni, A.; Lourenço, P.; Pinho, P.; Vieira, M.,

    2017-05-01

    In this work we correlate the dimension of the waveguide with small variations of the refractive index of the material used for the waveguide core. We calculate the effective modal refractive index for different dimensions of the waveguide and with slightly variation of the refractive index of the core material. These results are used as an input for a set of Finite Difference Time Domain simulation, directed to study the characteristics of amorphous silicon waveguides embedded in a SiO2 cladding. The study considers simple linear waveguides with rectangular section for studying the modal attenuation expected at different wavelengths. Transmission efficiency is determined analyzing the decay of the light power along the waveguides. As far as near infrared wavelengths are considered, a-Si:H shows a behavior highly dependent on the light wavelength and its extinction coefficient rapidly increases as operating frequency goes into visible spectrum range. The simulation results show that amorphous silicon can be considered a good candidate for waveguide material core whenever the waveguide length is as short as a few centimeters. The maximum transmission length is highly affected by the a-Si:H defect density, the mid-gap density of states and by the waveguide section area. The simulation results address a minimum requirement of 300nm×400nm waveguide section in order to keep attenuation below 1 dB cm-1.

  18. Initial steps toward the realization of large area arrays of single photon counting pixels based on polycrystalline silicon TFTs

    Science.gov (United States)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Jiang, Hao; Street, Robert A.; Lu, Jeng Ping

    2014-03-01

    The thin-film semiconductor processing methods that enabled creation of inexpensive liquid crystal displays based on amorphous silicon transistors for cell phones and televisions, as well as desktop, laptop and mobile computers, also facilitated the development of devices that have become ubiquitous in medical x-ray imaging environments. These devices, called active matrix flat-panel imagers (AMFPIs), measure the integrated signal generated by incident X rays and offer detection areas as large as ~43×43 cm2. In recent years, there has been growing interest in medical x-ray imagers that record information from X ray photons on an individual basis. However, such photon counting devices have generally been based on crystalline silicon, a material not inherently suited to the cost-effective manufacture of monolithic devices of a size comparable to that of AMFPIs. Motivated by these considerations, we have developed an initial set of small area prototype arrays using thin-film processing methods and polycrystalline silicon transistors. These prototypes were developed in the spirit of exploring the possibility of creating large area arrays offering single photon counting capabilities and, to our knowledge, are the first photon counting arrays fabricated using thin film techniques. In this paper, the architecture of the prototype pixels is presented and considerations that influenced the design of the pixel circuits, including amplifier noise, TFT performance variations, and minimum feature size, are discussed.

  19. Experimental and Computer Modelling Studies of Metastability of Amorphous Silicon Based Solar Cells

    NARCIS (Netherlands)

    Munyeme, Geoffrey

    2003-01-01

    We present a combination of experimental and computer modelling studies of the light induced degradation in the performance of amorphous silicon based single junction solar cells. Of particular interest in this study is the degradation kinetics of different types of amorphous silicon single junction

  20. Density functional study of hydrogen in amorphous silicon

    Science.gov (United States)

    Tuttle, Blair R.

    Hydrogenated amorphous silicon is a relatively new material with device applications including photovoltaics. Intrinsic and light-induced electronic defects reduce the efficiency of a-Si:H solar cells. Although hydrogen is implicated in these defects, microscopic understanding of the structure and energetics of hydrogen in a-Si:H has been limited. The current limits are in part due to the lack of reliable theoretical calculations. Here we apply density functional methods to study H in a-Si:H. First, we develop a new atomistic model for a-Si:H. Then, using molecular dynamics simulations, we compare several currently available atomistic models. Finally, we calculate the properties of hydrogen in these models, including the geometric environments, the energetics, the electronic structure and the vibrational properties. Our most important conclusions are presented below. Our calculations are consistent with the following microscopic picture for long range diffusion of H in a-Si:H. Clustered Si-H bonds constitute the dominant trapping species. Upon the dissociation of 2 H atoms, a Si-Si bond forms leaving a nominally 4-fold coordinated weak bond complex. The 2 H atoms move away separately along Si-Si bond center sites until trapped at another weak bond complex. The calculated activation energy is found in agreement with established experimental results. Also, our calculations are successfully applied to observations of H evolution, hydrogen-deuterium exchange and long range diffusion in p-type amorphous silicon. Our calculations clarify the role of H during electronic defect formation. We calculate the energetics for H to move from a variety of Si-H bonds to the bulk chemical potential. For isolated Si-H bonds (i.e. in micro-cavities without any bond reconstruction) the energetics are not consistent with observations. However, if the remaining Si reconstructs with a nearby silicon creating a 5-fold coordinated defect then the energetics are in agreement with

  1. Amorphous silicon passivation for 23.3% laser processed back contact solar cells

    Science.gov (United States)

    Carstens, Kai; Dahlinger, Morris; Hoffmann, Erik; Zapf-Gottwick, Renate; Werner, Jürgen H.

    2017-08-01

    This paper presents amorphous silicon deposited at temperatures below 200 °C, leading to an excellent passivation layer for boron doped emitter and phosphorus doped back surface field areas in interdigitated back contact solar cells. A higher deposition temperature degrades the passivation of the boron emitter by an increased hydrogen effusion due to lower silicon hydrogen bond energy, proved by hydrogen effusion measurements. The high boron surface doping in crystalline silicon causes a band bending in the amorphous silicon. Under these conditions, at the interface, the intentionally undoped amorphous silicon becomes p-type conducting, with the consequence of an increased dangling bond defect density. For bulk amorphous silicon this effect is described by the defect pool model. We demonstrate, that the defect pool model is also applicable to the interface between amorphous and crystalline silicon. Our simulation shows the shift of the Fermi energy towards the valence band edge to be more pronounced for high temperature deposited amorphous silicon having a small bandgap. Application of optimized amorphous silicon as passivation layer for the boron doped emitter and phosphorus doped back surface field on the rear side of laser processed back contact solar cells, fabricated using four laser processing steps, yields an efficiency of 23.3%.

  2. Hydrogenated amorphous silicon coatings may modulate gingival cell response

    Science.gov (United States)

    Mussano, F.; Genova, T.; Laurenti, M.; Munaron, L.; Pirri, C. F.; Rivolo, P.; Carossa, S.; Mandracci, P.

    2018-04-01

    Silicon-based materials present a high potential for dental implant applications, since silicon has been proven necessary for the correct bone formation in animals and humans. Notably, the addition of silicon is effective to enhance the bioactivity of hydroxyapatite and other biomaterials. The present work aims to expand the knowledge of the role exerted by hydrogen in the biological interaction of silicon-based materials, comparing two hydrogenated amorphous silicon coatings, with different hydrogen content, as means to enhance soft tissue cell adhesion. To accomplish this task, the films were produced by plasma enhanced chemical vapor deposition (PECVD) on titanium substrates and their surface composition and hydrogen content were analyzed by means of X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectrophotometry (FTIR) respectively. The surface energy and roughness were measured through optical contact angle analysis (OCA) and high-resolution mechanical profilometry respectively. Coated surfaces showed a slightly lower roughness, compared to bare titanium samples, regardless of the hydrogen content. The early cell responses of human keratinocytes and fibroblasts were tested on the above mentioned surface modifications, in terms of cell adhesion, viability and morphometrical assessment. Films with lower hydrogen content were endowed with a surface energy comparable to the titanium surfaces. Films with higher hydrogen incorporation displayed a lower surface oxidation and a considerably lower surface energy, compared to the less hydrogenated samples. As regards mean cell area and focal adhesion density, both a-Si coatings influenced fibroblasts, but had no significant effects on keratinocytes. On the contrary, hydrogen-rich films increased manifolds the adhesion and viability of keratinocytes, but not of fibroblasts, suggesting a selective biological effect on these cells.

  3. Development of hybrid photon detectors with integrated silicon pixel readout for the RICH counters of LHCb

    CERN Document Server

    Alemi, M; Formenti, F; Gys, Thierry; Piedigrossi, D; Puertolas, D; Rosso, E; Snoeys, W; Wyllie, Ken H

    1999-01-01

    We report on the ongoing work towards a hybrid photon detector with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment at the Large Hadron Collider at CERN. The photon detector is based $9 on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 4. The anode consists of a silicon pixel array, bump-bonded to a fast, binary readout chip with matching pixel electronics. The $9 performance of a half-scale prototype is presented, together with the developments and tests of a full-scale tube with large active area. Specific requirements for pixel front-end and readout electronics in LHCb are outlined, and $9 recent results obtained from pixel chips applicable to hybrid photon detector design are summarized.

  4. A silicon pixel detector with routing for external VLSI read-out

    International Nuclear Information System (INIS)

    Thomas, S.L.; Seller, P.

    1988-07-01

    A silicon pixel detector with an array of 32 by 16 hexagonal pixels has been designed and is being built on high resistivity silicon. The detector elements are reverse biased diodes consisting of p-implants in an n-type substrate and are fully depleted from the front to the back of the wafer. They are intended to measure high energy ionising particles traversing the detector. The detailed design of the pixels, their layout and method of read-out are discussed. A number of test structures have been incorporated onto the wafer to enable measurements to be made on individual pixels together with a variety of active devices. The results will give a better understanding of the operation of the pixel array, and will allow testing of computer simulations of more elaborate structures for the future. (author)

  5. Excellent Silicon Surface Passivation Achieved by Industrial Inductively Coupled Plasma Deposited Hydrogenated Intrinsic Amorphous Silicon Suboxide

    Directory of Open Access Journals (Sweden)

    Jia Ge

    2014-01-01

    Full Text Available We present an alternative method of depositing a high-quality passivation film for heterojunction silicon wafer solar cells, in this paper. The deposition of hydrogenated intrinsic amorphous silicon suboxide is accomplished by decomposing hydrogen, silane, and carbon dioxide in an industrial remote inductively coupled plasma platform. Through the investigation on CO2 partial pressure and process temperature, excellent surface passivation quality and optical properties are achieved. It is found that the hydrogen content in the film is much higher than what is commonly reported in intrinsic amorphous silicon due to oxygen incorporation. The observed slow depletion of hydrogen with increasing temperature greatly enhances its process window as well. The effective lifetime of symmetrically passivated samples under the optimal condition exceeds 4.7 ms on planar n-type Czochralski silicon wafers with a resistivity of 1 Ωcm, which is equivalent to an effective surface recombination velocity of less than 1.7 cms−1 and an implied open-circuit voltage (Voc of 741 mV. A comparison with several high quality passivation schemes for solar cells reveals that the developed inductively coupled plasma deposited films show excellent passivation quality. The excellent optical property and resistance to degradation make it an excellent substitute for industrial heterojunction silicon solar cell production.

  6. Modelling structure and properties of amorphous silicon boron nitride ceramics

    Directory of Open Access Journals (Sweden)

    Johann Christian Schön

    2011-06-01

    Full Text Available Silicon boron nitride is the parent compound of a new class of high-temperature stable amorphous ceramics constituted of silicon, boron, nitrogen, and carbon, featuring a set of properties that is without precedent, and represents a prototypical random network based on chemical bonds of predominantly covalent character. In contrast to many other amorphous materials of technological interest, a-Si3B3N7 is not produced via glass formation, i.e. by quenching from a melt, the reason being that the binary components, BN and Si3N4, melt incongruently under standard conditions. Neither has it been possible to employ sintering of μm-size powders consisting of binary nitrides BN and Si3N4. Instead, one employs the so-called sol-gel route starting from single component precursors such as TADB ((SiCl3NH(BCl2. In order to determine the atomic structure of this material, it has proven necessary to simulate the actual synthesis route.Many of the exciting properties of these ceramics are closely connected to the details of their amorphous structure. To clarify this structure, it is necessary to employ not only experimental probes on many length scales (X-ray, neutron- and electron scattering; complex NMR experiments; IR- and Raman scattering, but also theoretical approaches. These address the actual synthesis route to a-Si3B3N7, the structural properties, the elastic and vibrational properties, aging and coarsening behaviour, thermal conductivity and the metastable phase diagram both for a-Si3B3N7 and possible silicon boron nitride phases with compositions different from Si3N4: BN = 1 : 3. Here, we present a short comprehensive overview over the insights gained using molecular dynamics and Monte Carlo simulations to explore the energy landscape of a-Si3B3N7, model the actual synthesis route and compute static and transport properties of a-Si3BN7.

  7. Rapid Thermal annealing of silicon layers amorphized by ion implantation

    International Nuclear Information System (INIS)

    Hasenack, C.M.

    1986-01-01

    The recrystallization behavior and the supression mechanisms of the residual defects of silicon layers amorphized by ion implantation, were investigated. The samples were annealed with the aid of a rapid thermal annealing (RTA) system at temperature range from 850 to 1200 0 C, and annealing time up to 120 s. Random and aligned Rutherford backscattering spectroscopy were used to analyse the samples. Similarities in the recrystallization behavior for layers implanted with ions of the same chemical groups such as As or Sb; Ge, Sn or Pb, In or Ga, are observed. The results show that the effective supression of resisual defects of the recrystallired layers is vinculated to the redistribution of impurities via thermal diffusion. (author) [pt

  8. Optical characterisation of sputtered hydrogenated amorphous silicon thin films

    International Nuclear Information System (INIS)

    Mellassi, K.; Chafik El Idrissi, M.; Chouiyakh, A.; Rjeb, A.; Barhdadi, A.

    2000-09-01

    The present work is devoted to the study of some optical properties of hydrogenated amorphous silicon (a-Si:H) thin films prepared by radio-frequency cathodic sputtering technique. It is essentially focused on investigating separately the effects of increasing partial hydrogen pressure during the deposition stage, and the effects of post deposition thermal annealing on the main optical parameters of the deposited layers (refraction index, optical gap Urbach energy, etc.). We show that low hydrogen pressures allow a saturation of the dangling bonds in the material, while high pressures lead to the creation of new defects. We also show that thermal annealing under moderate temperatures allows a good improvement of the structural quality of deposited films. (author)

  9. Si-H bond dynamics in hydrogenated amorphous silicon

    Science.gov (United States)

    Scharff, R. Jason; McGrane, Shawn D.

    2007-08-01

    The ultrafast structural dynamics of the Si-H bond in the rigid solvent environment of an amorphous silicon thin film is investigated using two-dimensional infrared four-wave mixing techniques. The two-dimensional infrared (2DIR) vibrational correlation spectrum resolves the homogeneous line shapes ( 4ps waiting times. The Si-H stretching mode anharmonic shift is determined to be 84cm-1 and decreases slightly with vibrational frequency. The 1→2 linewidth increases with vibrational frequency. Frequency dependent vibrational population times measured by transient grating spectroscopy are also reported. The narrow homogeneous line shape, large inhomogeneous broadening, and lack of spectral diffusion reported here present the ideal backdrop for using a 2DIR probe following electronic pumping to measure the transient structural dynamics implicated in the Staebler-Wronski degradation [Appl. Phys. Lett. 31, 292 (1977)] in a-Si:H based solar cells.

  10. Infrared analysis of thin films amorphous, hydrogenated carbon on silicon

    CERN Document Server

    Jacob, W; Schwarz-Selinger, T

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, ...

  11. Microstructure and hydrogen dynamics in hydrogenated amorphous silicon carbides

    Science.gov (United States)

    Shinar, J.; Shinar, R.; Williamson, D. L.; Mitra, S.; Kavak, H.; Dalal, V. L.

    1999-12-01

    Small angle x-ray scattering (SAXS) and deuterium secondary-ion-mass spectrometry (DSIMS) studies of the microstructure and hydrogen dynamics in undoped rf-sputter-deposited (RFS) and undoped and boron-doped electron-cyclotron-resonance-deposited (ECR) hydrogenated amorphous silicon carbides (a-Si1-xCx:H) are described. In the RFS carbides with xcarbides with xBoron doping of the ECR carbides also reduced the bulklike Si-bonded H content, suggesting that it induces nanovoids, consistent with the observed suppression of long-range motion of most of the H and D atoms. However, a small fraction of the H atoms appeared to undergo fast diffusion, reminiscent of the fast diffusion in B-doped a-Si:H.

  12. Environmental aspects and risks of amorphous silicon solar cells

    International Nuclear Information System (INIS)

    Van Engelenburg, B.C.W.; Alsema, E.A.

    1993-01-01

    The aim of the study on the title subject is to identify potential bottlenecks for a number of (future) solar cell technologies and to formulate ensuing recommendations with regard to the photovoltaic (PV) research and development policy in the Netherlands. The potential environmental effects of amorphous silicon PV modules are investigated for their entire life cycle. For the life cycle assessment (LCA) the product life cycle is divided into a number of processes, each of which is described by the typical product input and output flow, secondary materials input, energy input, process yield, emissions to water and air, solid waste production and the output of reusable (secondary) materials. Regarding the development towards future (energy) technologies three possible technology cases are defined: a worst, a base and a best case.In order to facilitate the material flow accounting for LCA, a special LCA computer model has been developed in connection with a data base system, containing process descriptions. Also attention is paid to possible risks concerning occupational health and safety. The overall conclusion is that, from am environmental and from a risk point of view, no serious bottlenecks can be identified in the life cycle of amorphous silicon PV modules. Within these constraints this technology can be called sustainable, when the present developments persevere and the available safety practices will be incorporated in the production processes to a large degree. Recommendations are given for further research on the title subject to fill gaps in the knowledge of parameters of certain processes for PV modules. 5 figs., 20 tabs., 2 appendices, 74 refs

  13. Correlating the properties of amorphous silicon with its flexibility volume

    Science.gov (United States)

    Fan, Zhao; Ding, Jun; Li, Qing-Jie; Ma, Evan

    2017-04-01

    For metallic glasses, "flexibility volume" has recently been introduced as a property-revealing indicator of the structural state the glass is in. This parameter incorporates the atomic volume and the vibrational mean-square displacement, to combine both static structure and dynamics information. Flexibility volume was shown to quantitatively correlate with the properties of metallic glasses [J. Ding et al., Nat. Commun. 7, 13733 (2016), 10.1038/ncomms13733]. However, it remains to be examined if this parameter is useful for other types of glasses with bonding characteristics, atomic packing structures, as well as properties that are distinctly different from metallic glasses. In this paper, we tackle this issue through systematic molecular-dynamics simulations of amorphous silicon (a -Si) models produced with different cooling rates, as a -Si is a prototypical covalently bonded network glass whose structure and properties cannot be characterized using structural parameters such as free volume used for metallic and polymeric glasses. Specifically, we demonstrate a quantitative prediction of the shear modulus of a -Si from the flexibility for atomic motion. This flexibility volume descriptor, when evaluated on the atomic scale, is shown to also correlate well with local packing, as well as with the propensity for thermal relaxations and shear transformations, providing a metric to map out and explain the structural and mechanical heterogeneity in the amorphous material. This case study of a model of covalently bonded network a -Si, together with our earlier demonstration for metallic glasses, points to the universality of flexibility volume as an indicator of the structure state to link with properties, applicable across amorphous materials with different chemical bonding and atomic packing structures.

  14. Microstructure and properties of ultrathin amorphous silicon nitride protective coating

    International Nuclear Information System (INIS)

    Yen, Bing K.; White, Richard L.; Waltman, Robert J.; Dai Qing; Miller, Dolores C.; Kellock, Andrew J.; Marchon, Bruno; Kasai, Paul H.; Toney, Michael F.; York, Brian R.; Deng Hong; Xiao Qifan; Raman, Vedantham

    2003-01-01

    The effect of N content on the structure and properties of rf reactively sputtered amorphous silicon nitride (a-SiN x ) has been studied by Rutherford backscattering spectrometry, x-ray reflectivity, ellipsometry, and nano-indentation. The N content in the film increased with the N 2 concentration in the sputtering gas until the Si 3 N 4 stoichiometry was reached. The hardness of a-SiN x increased with density, which in turn increased with the N content. The maximum hardness of 25 GPa and density of 3.2 g/cm 3 were attained at the stoichiometric Si 3 N 4 composition. With the application of a protective overcoat for magnetic disks in mind, thin a-SiN x films were deposited on CoPtCr media to examine their coverage, pinhole density, and wear resistance. According to x-ray photoelectron spectroscopy, the minimum thickness of a-SiN x required to protect the CoPtCr alloy from oxidation was 10 A, which was 10 A thinner than that of the reference amorphous nitrogenated carbon (a-CN x ). A statistic model showed this lower thickness required for a-SiN x can be attributed to its high density, which corresponds to 93% bulk density of Si 3 N 4 . Compared with 45 A a-CN x coated disks, 15 A a-SiN x coated disks had lower pinhole defect density and superior wear resistance

  15. Electronic properties of intrinsic and doped amorphous silicon carbide films

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, M. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain)]. E-mail: mvetter@eel.upc.edu; Voz, C. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain); Ferre, R. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain); Martin, I. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain); Orpella, A. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain); Puigdollers, J. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain); Andreu, J. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Av. Diagonal 647, E-08028 Barcelona (Spain); Alcubilla, R. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain)

    2006-07-26

    Hydrogenated amorphous silicon carbide (a-SiC{sub x} : H) films have shown excellent surface passivation of crystalline silicon. With the aim of large area deposition of these films the influence of the rf plasma power was investigated. It is found that homogenous deposition with effective surface recombination velocity lower than 100 cms{sup -1} is possible up to 6'' diameter in a simple parallel plate reactor by optimizing deposition parameters. For application in solar cell processes the conductivity of these a-SiC{sub x} : H films might become of importance since good surface passivation results from field-effect passivation which needs an insulating dielectric layer. Therefore, the temperature dependence of the dark dc conductivity of these films was investigated in the temperature range from - 20 to 260 deg. C. Two transition temperatures, T {sub s}{approx}80 deg. C and T {sub s}{approx}170 deg. C, were found where conductivity increases, resp. decreases over-exponential. From Arrhenius plots activation energy (E {sub a}) and conductivity pre-factor ({sigma} {sub 0}) were calculated for a large number of samples with different composition. A correlation between E {sub a} and {sigma} {sub 0} was found giving a Meyer-Neldel relation with a slope of 59 mV, corresponding to a material characteristic temperature T {sub m} = 400 deg. C, and an intercept at {sigma} {sub 00} = 0.1 {omega}{sup -1}cm{sup -1}.

  16. Crystallization and doping of amorphous silicon on low temperature plastic

    Science.gov (United States)

    Kaschmitter, James L.; Truher, Joel B.; Weiner, Kurt H.; Sigmon, Thomas W.

    1994-01-01

    A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900.degree. C.), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180.degree. C. for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180.degree. C.) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide.

  17. Electronic properties of intrinsic and doped amorphous silicon carbide films

    International Nuclear Information System (INIS)

    Vetter, M.; Voz, C.; Ferre, R.; Martin, I.; Orpella, A.; Puigdollers, J.; Andreu, J.; Alcubilla, R.

    2006-01-01

    Hydrogenated amorphous silicon carbide (a-SiC x : H) films have shown excellent surface passivation of crystalline silicon. With the aim of large area deposition of these films the influence of the rf plasma power was investigated. It is found that homogenous deposition with effective surface recombination velocity lower than 100 cms -1 is possible up to 6'' diameter in a simple parallel plate reactor by optimizing deposition parameters. For application in solar cell processes the conductivity of these a-SiC x : H films might become of importance since good surface passivation results from field-effect passivation which needs an insulating dielectric layer. Therefore, the temperature dependence of the dark dc conductivity of these films was investigated in the temperature range from - 20 to 260 deg. C. Two transition temperatures, T s ∼80 deg. C and T s ∼170 deg. C, were found where conductivity increases, resp. decreases over-exponential. From Arrhenius plots activation energy (E a ) and conductivity pre-factor (σ 0 ) were calculated for a large number of samples with different composition. A correlation between E a and σ 0 was found giving a Meyer-Neldel relation with a slope of 59 mV, corresponding to a material characteristic temperature T m = 400 deg. C, and an intercept at σ 00 = 0.1 Ω -1 cm -1

  18. Ballistic Phonon Penetration Depth in Amorphous Silicon Dioxide.

    Science.gov (United States)

    Yang, Lin; Zhang, Qian; Cui, Zhiguang; Gerboth, Matthew; Zhao, Yang; Xu, Terry T; Walker, D Greg; Li, Deyu

    2017-12-13

    Thermal transport in amorphous silicon dioxide (a-SiO 2 ) is traditionally treated as random walks of vibrations owing to its greatly disordered structure, which results in a mean free path (MFP) approximately the same as the interatomic distance. However, this picture has been debated constantly and in view of the ubiquitous existence of thin a-SiO 2 layers in nanoelectronic devices, it is imperative to better understand this issue for precise thermal management of electronic devices. Different from the commonly used cross-plane measurement approaches, here we report on a study that explores the in-plane thermal conductivity of double silicon nanoribbons with a layer of a-SiO 2 sandwiched in-between. Through comparing the thermal conductivity of the double ribbon samples with that of corresponding single ribbons, we show that thermal phonons can ballistically penetrate through a-SiO 2 of up to 5 nm thick even at room temperature. Comprehensive examination of double ribbon samples with various oxide layer thicknesses and van der Waals bonding strengths allows for extraction of the average ballistic phonon penetration depth in a-SiO 2 . With solid experimental data demonstrating ballistic phonon transport through a-SiO 2 , this work should provide important insight into thermal management of electronic devices.

  19. Nano structures of amorphous silicon: localization and energy gap

    Directory of Open Access Journals (Sweden)

    Z Nourbakhsh

    2013-10-01

    Full Text Available Renewable energy research has created a push for new materials; one of the most attractive material in this field is quantum confined hybrid silicon nano-structures (nc-Si:H embedded in hydrogenated amorphous silicon (a-Si:H. The essential step for this investigation is studying a-Si and its ability to produce quantum confinement (QC in nc-Si: H. Increasing the gap of a-Si system causes solar cell efficiency to increase. By computational calculations based on Density Functional Theory (DFT, we calculated a special localization factor, [G Allan et al., Phys. Rev. B 57 (1997 6933.], for the states close to HOMO and LUMO in a-Si, and found most weak-bond Si atoms. By removing these silicon atoms and passivating the system with hydrogen, we were able to increase the gap in the a-Si system. As more than 8% hydrogenate was not experimentally available, we removed about 2% of the most localized Si atoms in the almost tetrahedral a-Si system. After removing localized Si atoms in the system with 1000 Si atoms, and adding 8% H, the gap increased about 0.24 eV. Variation of the gap as a function of hydrogen percentage was in good agreement with the Tight –Binding results, but about 2 times more than its experimental value. This might come from the fact that in the experimental conditions, it does not have the chance to remove the most localized states. However, by improving the experimental conditions and technology, this value can be improved.

  20. Analysis of IV characteristics of solar cells made of hydrogenated amorphous, polymorphous and microcrystalline silicon

    International Nuclear Information System (INIS)

    Hamadeh, H.

    2009-03-01

    The IV characteristics of pin solar cells made of amorphous, polymorphous and microcrystalline silicon were investigated. The temperature dependence was measured in the temperature range between 150 K and 395 K. This range covers the most terrestrial applications condition. Using simplex procedure, the IV parameter of the cells were deduce using line fitting. It has been shown that polymorphous silicon shows electrical properties that are close to properties of microcrystalline silicon but as it is well known, polymorphous silicon shows higher absorption similar to amorphous silicon. The polymorphous silicon solar cells showed higher efficiencies, lower shunting and higher filling factors. In the above mentioned temperature range, polymorphous silicon is the better material for the manufacturing of thin film hydrogenated silicon pin solar cells. More investigations concerning the structural properties are necessary to make stronger conclusions in regards to the stability of the material, what we hope to do in the future. (author)

  1. arXiv Time resolution of silicon pixel sensors

    CERN Document Server

    Riegler, W.

    2017-11-21

    We derive expressions for the time resolution of silicon detectors, using the Landau theory and a PAI model for describing the charge deposit of high energy particles. First we use the centroid time of the induced signal and derive analytic expressions for the three components contributing to the time resolution, namely charge deposit fluctuations, noise and fluctuations of the signal shape due to weighting field variations. Then we derive expressions for the time resolution using leading edge discrimination of the signal for various electronics shaping times. Time resolution of silicon detectors with internal gain is discussed as well.

  2. Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

    International Nuclear Information System (INIS)

    Viel, Simon; Banerjee, Swagato; Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice; Hard, Andrew Straiton; Kaplan, Laser Seymour; Kashif, Lashkar; Pranko, Aliaksandr; Rieger, Julia; Wolf, Julian; Wu, Sau Lan; Yang, Hongtao

    2016-01-01

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN. - Highlights: • Extended inner pixel barrel layers are proposed for the ATLAS ITk upgrade. • Test beam results at small track incidence angles validate this ATLAS ITk design. • Long pixel clusters are reconstructed with high efficiency at low threshold values. • Excellent angular resolution is achieved using pixel cluster length information.

  3. Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Viel, Simon, E-mail: sviel@lbl.gov [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Banerjee, Swagato [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States); Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Hard, Andrew Straiton; Kaplan, Laser Seymour; Kashif, Lashkar [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States); Pranko, Aliaksandr [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Rieger, Julia [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); II Physikalisches Institut, Georg-August-Universität, Göttingen (Germany); Wolf, Julian [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Wu, Sau Lan; Yang, Hongtao [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States)

    2016-09-21

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN. - Highlights: • Extended inner pixel barrel layers are proposed for the ATLAS ITk upgrade. • Test beam results at small track incidence angles validate this ATLAS ITk design. • Long pixel clusters are reconstructed with high efficiency at low threshold values. • Excellent angular resolution is achieved using pixel cluster length information.

  4. Silicon Sensors for the Upgrades of the CMS Pixel Detector

    CERN Document Server

    Centis Vignali, Matteo; Schleper, Peter

    2015-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector at the Large Hadron Collider (LHC). The LHC luminosity is constantly increased through upgrades of the accel- erator and its injection chain. Two major upgrades will take place in the next years. The rst upgrade involves the LHC injector chain and allows the collider to achieve a luminosity of about 2 10 34 cm-2 s-1 A further upgrade of the LHC foreseen for 2025 will boost its luminosity to 5 10 34 cm-2 s1. As a consequence of the increased luminosity, the detectors need to be upgraded. In particular, the CMS pixel detector will undergo two upgrades in the next years. The rst upgrade (phase I) consists in the substitution of the current pixel detector in winter 2016/2017. The upgraded pixel detector will implement new readout elec- tronics that allow ecient data taking up to a luminosity of 2 10 34 cm-2s-1,twice as much as the LHC design luminosity. The modules that will constitute the upgraded detector are being produced at dierent institutes. Ham...

  5. Solution growth of microcrystalline silicon on amorphous substrates

    Energy Technology Data Exchange (ETDEWEB)

    Heimburger, Robert

    2010-07-05

    This work deals with low-temperature solution growth of micro-crystalline silicon on glass. The task is motivated by the application in low-cost solar cells. As glass is an amorphous material, conventional epitaxy is not applicable. Therefore, growth is conducted in a two-step process. The first step aims at the spatial arrangement of silicon seed crystals on conductive coated glass substrates, which is realized by means of vapor-liquid-solid processing using indium as the solvent. Seed crystals are afterwards enlarged by applying a specially developed steady-state solution growth apparatus. This laboratory prototype mainly consists of a vertical stack of a silicon feeding source and the solvent (indium). The growth substrate can be dipped into the solution from the top. The system can be heated to a temperature below the softening point of the utilized glass substrate. A temperature gradient between feeding source and growth substrate promotes both, supersaturation and material transport by solvent convection. This setup offers advantages over conventional liquid phase epitaxy at low temperatures in terms of achievable layer thickness and required growth times. The need for convective solute transport to gain the desired thickness of at least 50 {mu}m is emphasized by equilibrium calculations in the binary system indium-silicon. Material transport and supersaturation conditions inside the utilized solution growth crucible are analyzed. It results that the solute can be transported from the lower feeding source to the growth substrate by applying an appropriate heating regime. These findings are interpreted by means of a hydrodynamic analysis of fluid flow and supporting FEM simulation. To ensure thermodynamic stability of all materials involved during steady-state solution growth, the ternary phase equilibrium between molybdenum, indium and silicon at 600 C was considered. Based on the obtained results, the use of molybdenum disilicide as conductive coating

  6. Environmental life cycle assessment of roof-integrated flexible amorphous silicon/nanocrystalline silicon solar cell laminate

    NARCIS (Netherlands)

    Mohr, N.J.; Meijer, A.; Huijbregts, M.A.J.; Reijnders, L.

    2013-01-01

    This paper presents an environmental life cycle assessment of a roof-integrated flexible solar cell laminate with tandem solar cells composed of amorphous silicon/nanocrystalline silicon (a-Si/nc-Si). The a-Si/nc-Si cells are considered to have 10% conversion efficiency. Their expected service life

  7. Thin-film amorphous silicon germanium solar cells with p-and n-type hydrogenated silicon oxide layers

    NARCIS (Netherlands)

    Si, F.T.; Isabella, O.; Zeman, M.

    2017-01-01

    Mixed-phase hydrogenated silicon oxide (SiOx:H) is applied to thin-film hydrogenated amorphous silicon germanium (a-SiGe:H) solar cells serving as both p-doped and n-doped layers. The bandgap of p-SiOx:H is adjusted to achieve a highly-transparent window layer while also providing a strong electric

  8. Recrystallization of implanted amorphous silicon layers. I. Electrical properties of silicon implanted with BF+2 or Si++B+

    International Nuclear Information System (INIS)

    Tsai, M.Y.; Streetman, B.G.

    1979-01-01

    Electrical properties of recrystallized amorphous silicon layers, formed by BF + 2 implants or Si + +B + implants, have been studied by differential resistivity and Hall-effect measurements. Electrical carrier distribution profiles show that boron atoms inside the amorphized Si layers can be fully activated during recrystallization at 550 0 C. The mobility is also recovered. However, the tail of the B distribution, located inside a damaged region near the original amorphous-crystalline interface, remains inactive. This inactive tail has been observed for all samples implanted with BF + 2 . Only in a thicker amorphous layer, formed for example by Si + predamage implants, can the entire B profile be activated. The etch rate of amorphous silicon in HF and the effect of fluorine on the recrystallization rate are also reported

  9. Size modulation of nanocrystalline silicon embedded in amorphous silicon oxide by Cat-CVD

    International Nuclear Information System (INIS)

    Matsumoto, Y.; Godavarthi, S.; Ortega, M.; Sanchez, V.; Velumani, S.; Mallick, P.S.

    2011-01-01

    Different issues related to controlling size of nanocrystalline silicon (nc-Si) embedded in hydrogenated amorphous silicon oxide (a-SiO x :H) deposited by catalytic chemical vapor deposition (Cat-CVD) have been reported. Films were deposited using tantalum (Ta) and tungsten (W) filaments and it is observed that films deposited using tantalum filament resulted in good control on the properties. The parameters which can affect the size of nc-Si domains have been studied which include hydrogen flow rate, catalyst and substrate temperatures. The deposited samples are characterized by X-ray diffraction, HRTEM and micro-Raman spectroscopy, for determining the size of the deposited nc-Si. The crystallite formation starts for Ta-catalyst around the temperature of 1700 o C.

  10. Fiber Optic Excitation of Silicon Microspheres in Amorphous and Crystalline Fluids

    NARCIS (Netherlands)

    Yilmaz, H.; Murib, M.S.; Serpenguzel, A.

    2016-01-01

    This study investigates the optical resonance spectra of free-standing monolithic single crystal silicon microspheres immersed in various amorphous fluids, such as air, water, ethylene glycol, and 4-Cyano-4’-pentylbiphenyl nematic liquid crystal. For the various amorphous fluids,

  11. X-ray imaging characterization of active edge silicon pixel sensors

    International Nuclear Information System (INIS)

    Ponchut, C; Ruat, M; Kalliopuska, J

    2014-01-01

    The aim of this work was the experimental characterization of edge effects in active-edge silicon pixel sensors, in the frame of X-ray pixel detectors developments for synchrotron experiments. We produced a set of active edge pixel sensors with 300 to 500 μm thickness, edge widths ranging from 100 μm to 150 μm, and n or p pixel contact types. The sensors with 256 × 256 pixels and 55 × 55 μm 2 pixel pitch were then bump-bonded to Timepix readout chips for X-ray imaging measurements. The reduced edge widths makes the edge pixels more sensitive to the electrical field distribution at the sensor boundaries. We characterized this effect by mapping the spatial response of the sensor edges with a finely focused X-ray synchrotron beam. One of the samples showed a distortion-free response on all four edges, whereas others showed variable degrees of distortions extending at maximum to 300 micron from the sensor edge. An application of active edge pixel sensors to coherent diffraction imaging with synchrotron beams is described

  12. The CMS Silicon Pixel detector for HL-LHC

    CERN Document Server

    Steinbrueck, Georg

    2016-01-01

    The LHC is planning an upgrade program which will bring the luminosity to about 5~$\\times10^{34}$~cm$^{-2}$s$^{-1}$ in 2026, with the goal of an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity scenario, HL-LHC, will present new challenges of higher data rates and increased radiation. To maintain its physics potential in this harsh environment, the CMS detector will undergo a major upgrade program known as the Phase II upgrade. The new Phase II pixel detector will require a high bandwidth readout system and highly radiation tolerant sensors and on-detector ASICs. Several technologies for the sensors are being studied. Serial powering schemes are under consideration to accommodate significant constraints on the system. These prospective designs, as well as new layout geometries that include very forward pixel discs with acceptance extended from $\\vert\\eta\\vert<2.4$ to $\\vert\\eta\\vert<4$, are presented together with performance estimates.

  13. Novel Silicon n-on-p Edgeless Planar Pixel Sensors for the ATLAS upgrade

    CERN Document Server

    Bomben, M

    2013-01-01

    In view of the LHC upgrade phases towards HL-LHC, the ATLAS experiment plans to upgrade the inner detector with an all-silicon system. The n-on-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness. The edgeless technology would allow for enlarging the area instrumented with pixel detectors. We report on the development of novel n-on-p edgeless planar pixel sensors fabricated at FBK (Trento, Italy), making use of the active edge concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology and fabrication process, we present device simulations (pre- and post-irradiation) performed for different sensor configurations. First preliminary results obtained with the test-structures of the production are shown.

  14. Novel silicon n-on-p edgeless planar pixel sensors for the ATLAS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Bomben, M., E-mail: marco.bomben@cern.ch [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE), Paris (France); Bagolini, A.; Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM) Povo di Trento (Italy); Bosisio, L. [Università di Trieste, Dipartimento di Fisica and INFN, Trieste (Italy); Calderini, G. [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE), Paris (France); Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa (Italy); INFN Sez. di Pisa, Pisa (Italy); Chauveau, J. [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE), Paris (France); Giacomini, G. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM) Povo di Trento (Italy); La Rosa, A. [Section de Physique (DPNC), Université de Genève, Genève (Switzerland); Marchiori, G. [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE), Paris (France); Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM) Povo di Trento (Italy)

    2013-12-01

    In view of the LHC upgrade phases towards HL-LHC, the ATLAS experiment plans to upgrade the inner detector with an all-silicon system. The n-on-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness. The edgeless technology would allow for enlarging the area instrumented with pixel detectors. We report on the development of novel n-on-p edgeless planar pixel sensors fabricated at FBK (Trento, Italy), making use of the active edge concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology and fabrication process, we present device simulations (pre- and post-irradiation) performed for different sensor configurations. First preliminary results obtained with the test-structures of the production are shown.

  15. Novel silicon n-on-p edgeless planar pixel sensors for the ATLAS upgrade

    International Nuclear Information System (INIS)

    Bomben, M.; Bagolini, A.; Boscardin, M.; Bosisio, L.; Calderini, G.; Chauveau, J.; Giacomini, G.; La Rosa, A.; Marchiori, G.; Zorzi, N.

    2013-01-01

    In view of the LHC upgrade phases towards HL-LHC, the ATLAS experiment plans to upgrade the inner detector with an all-silicon system. The n-on-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness. The edgeless technology would allow for enlarging the area instrumented with pixel detectors. We report on the development of novel n-on-p edgeless planar pixel sensors fabricated at FBK (Trento, Italy), making use of the active edge concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology and fabrication process, we present device simulations (pre- and post-irradiation) performed for different sensor configurations. First preliminary results obtained with the test-structures of the production are shown

  16. Novel Silicon n-on-p Edgeless Planar Pixel Sensors for the ATLAS upgrade

    CERN Document Server

    Bomben, M.; Boscardin, M.; Bosisio, L.; Calderini, G.; Chauveau, J.; Giacomini, G.; La Rosa, A.; Marchiori, G.; Zorzi, N.

    2013-01-01

    In view of the LHC upgrade phases towards HL-LHC, the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness, that allow for enlarging the area instrumented with pixel detectors. We report on the development of novel n-in-p edgeless planar pixel sensors fabricated at FBK (Trento, Italy), making use of the 'active edge' concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology and fabrication process, we present device simulations (pre- and post-irradiation) performed for different sensor configurations. First preliminary results obtained with the test-structures of the production are shown.

  17. Carrier transport in amorphous silicon utilizing picosecond photoconductivity

    Science.gov (United States)

    Johnson, A. M.

    1981-08-01

    The development of a high-speed electronic measurement capability permitted the direct observation of the transient photoresponse of amorphous silicon (a-Si) with a time resolution of approximately 10ps. This technique was used to measure the initial mobility of photogenerated (2.1eV) free carriers in three types of a-Si having widely different densities of structural defects (i.e., as prepared by: (1) RF glow discharge (a-Si:H); (2) chemical vapor deposition; and (3) evaporation in ultra-high vacuum). In all three types of a-Si, the same initial mobility of approximately 1 cu cm/Vs at room temperature was found. This result tends to confirm the often-made suggestion that the free carrier mobility is determined by the influence of shallow states associated with the disorder in the random atomic network, and is an intrinsic property of a-Si which is unaffected by the method of preparation. The rate of decay of the photocurrent correlates with the density of structural defects and varies from 4ps to 200ps for the three types of a-Si investigated. The initial mobility of a-Si:H was found to be thermally activated. The possible application of extended state transport controlled by multiple trapping and small polaron formation is discussed.

  18. Amorphous silicon-based PINIP structure for color sensor

    International Nuclear Information System (INIS)

    Zhang, S.; Raniero, L.; Fortunato, E.; Ferreira, I.; Aguas, H.; Martins, R.

    2005-01-01

    A series of hydrogenated amorphous silicon carbide (a-SiC:H) films was prepared by plasma enhanced chemical vapor deposition (PECVD) technology. The microstructure and photoelectronic properties of the film are investigated by absorption spectra (in the ultraviolet to near-infrared range) and Fourier transform infrared (FTIR) spectra. The results show that good band gap controllability (1.83-3.64 eV) was achieved by adjusting the plasma parameters. In the energy range around 2.1 eV, the a-Si 1-x C x :H films exhibit good photosensitivity, opening the possibility to use this wide band gap material for device application, especially when blue color detectors are concerned. A multilayer device with a stack of glass/TCO(ZnO:Ga)/P(a-SiC:H)/I(a-SiC:H)/N(a-Si:H)/I(a-Si:H)/P(a-Si:H)/Al has been prepared. The devices can detect blue and red colors under different bias voltages. The optimization of the device, especially the film thickness and the band gap offset used to achieve better detectivity, is also done in this work

  19. Laminated Amorphous Silicon Neutron Detector (pre-print)

    International Nuclear Information System (INIS)

    McHugh, Harry; Branz, Howard; Stradins, Paul; Xu, Yueqin

    2009-01-01

    An internal R and D project was conducted at the Special Technologies Laboratory (STL) of National Security Technologies, LLC (NSTec), to determine the feasibility of developing a multi-layer boron-10 based thermal neutron detector using the amorphous silicon (AS) technology currently employed in the manufacture of liquid crystal displays. The boron-10 neutron reaction produces an alpha that can be readily detected. A single layer detector, limited to an approximately 2-micron-thick layer of boron, has a theoretical sensitivity of about 3%; hence a thin multi-layer device with high sensitivity can theoretically be manufactured from single layer detectors. Working with National Renewable Energy Laboratory (NREL), an AS PiN diode alpha detector was developed and tested. The PiN diode was deposited on a boron-10 coated substrate. Testing confirmed that the neutron sensitivity was nearly equal to the theoretical value of 3%. However, adhesion problems with the boron-10 coating prevented successful development of a prototype detector. Future efforts will include boron deposition work and development of integrated AS signal processing circuitry.

  20. Nanohole Structuring for Improved Performance of Hydrogenated Amorphous Silicon Photovoltaics.

    Science.gov (United States)

    Johlin, Eric; Al-Obeidi, Ahmed; Nogay, Gizem; Stuckelberger, Michael; Buonassisi, Tonio; Grossman, Jeffrey C

    2016-06-22

    While low hole mobilities limit the current collection and efficiency of hydrogenated amorphous silicon (a-Si:H) photovoltaic devices, attempts to improve mobility of the material directly have stagnated. Herein, we explore a method of utilizing nanostructuring of a-Si:H devices to allow for improved hole collection in thick absorber layers. This is achieved by etching an array of 150 nm diameter holes into intrinsic a-Si:H and then coating the structured material with p-type a-Si:H and a conformal zinc oxide transparent conducting layer. The inclusion of these nanoholes yields relative power conversion efficiency (PCE) increases of ∼45%, from 7.2 to 10.4% PCE for small area devices. Comparisons of optical properties, time-of-flight mobility measurements, and internal quantum efficiency spectra indicate this efficiency is indeed likely occurring from an improved collection pathway provided by the nanostructuring of the devices. Finally, we estimate that through modest optimizations of the design and fabrication, PCEs of beyond 13% should be obtainable for similar devices.

  1. Diffusion of Gold and Platinum in Amorphous Silicon

    CERN Multimedia

    Voss, T L

    2002-01-01

    By means of radiotracer experiments the diffusion of Au and Pt in radio-frequency-sputtered amorphous silicon (a-Si) was investigated. Specimens of a-Si with homogeneous doping concentrations of Au or Pt in the range 0$\\, - \\,$1,7~at.\\% were produced by co-sputtering of Si and Au or Pt, respectively. An additional tiny concentration of radioactive $^{195}$Au or $^{188}$Pt, about 10~at.ppm, was implanted at ISOLDE. The resulting Gaussian distribution of the implanted atoms served as a probe for measuring diffusion coefficients at various doping concentrations. It was found that for a given doping concentration the diffusion coefficients show Arrhenius-type temperature dependences, where the diffusion enthalpy and the pre-exponential factor depend on the doping concentration. From these results it was concluded that in a-Si Au and Pt undergo direct, interstitial-like diffusion that is retarded by temporary trapping of the radiotracer atoms at vacancy-type defects with different binding enthalpies. In the case o...

  2. Experiment and Simulation Study on the Amorphous Silicon Photovoltaic Walls

    Directory of Open Access Journals (Sweden)

    Wenjie Zhang

    2014-01-01

    Full Text Available Based on comparative study on two amorphous silicon photovoltaic walls (a-Si PV walls, the temperature distribution and the instant power were tested; and with EnergyPlus software, similar models of the walls were built to simulate annual power generation and air conditioning load. On typical sunshine day, the corresponding position temperature of nonventilated PV wall was generally 0.5~1.5°C higher than that of ventilated one, while the power generation was 0.2%~0.4% lower, which was consistent with the simulation results with a difference of 0.41% in annual energy output. As simulation results, in summer, comparing the PV walls with normal wall, the heat per unit area of these two photovoltaic walls was 5.25 kWh/m2 (nonventilated and 0.67 kWh/m2 (ventilated higher, respectively. But in winter the heat loss of nonventilated one was smaller, while ventilated PV wall was similar to normal wall. To annual energy consumption of heating and cooling, the building with ventilated PV wall and normal wall was also similar but slightly better than nonventilated one. Therefore, it is inferred that, at low latitudes, such as Zhuhai, China, air gap ventilation is suitable, while the length to thickness ratio of the air gap needs to be taken into account.

  3. Silicon sensors development for the CMS pixel system

    CERN Document Server

    Arndt, Kirk; Bortoletto, Daniela; Giolo, Kim; Horisberger, R P; Rohe, T; Roy, Amitava; Son Seung Hee

    2003-01-01

    The CMS experiment will operate at the Large Hadron Collider (LHC). A hybrid pixel detector located close to the interaction region of the colliding beams will provide high resolution tracking and vertex identification which will be crucial for b quark identification. Because of the radiation environment of the LHC, the performance of the sensors must be carefully evaluated up to a fluence of 6 multiplied by 10**1**4n//e//qcm **-**2. We expect that the sensors will be operated partially depleted during their operation at the LHC and we have implemented an n**+ on n sensor design. We have irradiated prototype sensors to a dose of 1 multiplied by 10 **1**5n //e//qcm**-**2. We present the results of our testing before and after irradiation.

  4. Silicon micro-fluidic cooling for NA62 GTK pixel detectors

    CERN Document Server

    Romagnoli, G; Brunel, B; Catinaccio, A; Degrange, J; Mapelli, A; Morel, M; Noel, J; Petagna, P

    2015-01-01

    Silicon micro-channel cooling is being studied for efficient thermal management in application fields such as high power computing and 3D electronic integration. This concept has been introduced in 2010 for the thermal management of silicon pixel detectors in high energy physics experiments. Combining the versatility of standard micro-fabrication processes with the high thermal efficiency typical of micro-fluidics, it is possible to produce effective thermal management devices that are well adapted to different detector configurations. The production of very thin cooling devices in silicon enables a minimization of material of the tracking sensors and eliminates mechanical stresses due to the mismatch of the coefficient of thermal expansion between detectors and cooling systems. The NA62 experiment at CERN will be the first high particle physics experiment that will install a micro-cooling system to perform the thermal management of the three detection planes of its Gigatracker pixel detector.

  5. Amorphous In–Ga–Zn–O thin-film transistor active pixel sensor x-ray imager for digital breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chumin; Kanicki, Jerzy, E-mail: kanicki@eecs.umich.edu [Solid-State Electronic Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-09-15

    Purpose: The breast cancer detection rate for digital breast tomosynthesis (DBT) is limited by the x-ray image quality. The limiting Nyquist frequency for current DBT systems is around 5 lp/mm, while the fine image details contained in the high spatial frequency region (>5 lp/mm) are lost. Also today the tomosynthesis patient dose is high (0.67–3.52 mGy). To address current issues, in this paper, for the first time, a high-resolution low-dose organic photodetector/amorphous In–Ga–Zn–O thin-film transistor (a-IGZO TFT) active pixel sensor (APS) x-ray imager is proposed for next generation DBT systems. Methods: The indirect x-ray detector is based on a combination of a novel low-cost organic photodiode (OPD) and a cesium iodide-based (CsI:Tl) scintillator. The proposed APS x-ray imager overcomes the difficulty of weak signal detection, when small pixel size and low exposure conditions are used, by an on-pixel signal amplification with a significant charge gain. The electrical performance of a-IGZO TFT APS pixel circuit is investigated by SPICE simulation using modified Rensselaer Polytechnic Institute amorphous silicon (a-Si:H) TFT model. Finally, the noise, detective quantum efficiency (DQE), and resolvability of the complete system are modeled using the cascaded system formalism. Results: The result demonstrates that a large charge gain of 31–122 is achieved for the proposed high-mobility (5–20 cm{sup 2}/V s) amorphous metal-oxide TFT APS. The charge gain is sufficient to eliminate the TFT thermal noise, flicker noise as well as the external readout circuit noise. Moreover, the low TFT (<10{sup −13} A) and OPD (<10{sup −8} A/cm{sup 2}) leakage currents can further reduce the APS noise. Cascaded system analysis shows that the proposed APS imager with a 75 μm pixel pitch can effectively resolve the Nyquist frequency of 6.67 lp/mm, which can be further improved to ∼10 lp/mm if the pixel pitch is reduced to 50 μm. Moreover, the

  6. Synchrotron applications of an amorphous silicon flat-panel detector

    International Nuclear Information System (INIS)

    Lee, J. H.; Can Aydiner, C.; Almer, J.; Bernier, J.; Chapman, K. W.; Chupas, P. J.; Haeffner, D.; Kump, K.; Lee, P. L.; Lienert, U.; Miceli, A.; Vera, G.; LANL; GE Healthcare

    2008-01-01

    A GE Revolution 41RT flat-panel detector (GE 41RT) from GE Healthcare (GE) has been in operation at the Advanced Photon Source for over two years. The detector has an active area of 41 cm x 41 cm with 200 (micro)m x 200 (micro)m pixel size. The nominal working photon energy is around 80 keV. The physical set-up and utility software of the detector system are discussed in this article. The linearity of the detector response was measured at 80.7 keV. The memory effect of the detector element, called lag, was also measured at different exposure times and gain settings. The modulation transfer function was measured in terms of the line-spread function using a 25 (micro)m x 1 cm tungsten slit. The background (dark) signal, the signal that the detector will carry without exposure to X-rays, was measured at three different gain settings and with exposure times of 1 ms to 15 s. The radial geometric flatness of the sensor panel was measured using the diffraction pattern from a CeO 2 powder standard. The large active area and fast data-capturing rate, i.e. 8 frames s -1 in radiography mode, 30 frames s -1 in fluoroscopy mode, make the GE 41RT one of a kind and very versatile in synchrotron diffraction. The loading behavior of a Cu/Nb multilayer material is used to demonstrate the use of the detector in a strain-stress experiment. Data from the measurement of various samples, amorphous SiO 2 in particular, are presented to show the detector effectiveness in pair distribution function measurements

  7. Nonlinear Optical Functions in Crystalline and Amorphous Silicon-on-Insulator Nanowires

    DEFF Research Database (Denmark)

    Baets, R.; Kuyken, B.; Liu, X.

    2012-01-01

    Silicon-on-Insulator nanowires provide an excellent platform for nonlinear optical functions in spite of the two-photon absorption at telecom wavelengths. Work on both crystalline and amorphous silicon nanowires is reviewed, in the wavelength range of 1.5 to 2.5 µm....

  8. 3D track reconstruction capability of a silicon hybrid active pixel detector

    Science.gov (United States)

    Bergmann, Benedikt; Pichotka, Martin; Pospisil, Stanislav; Vycpalek, Jiri; Burian, Petr; Broulim, Pavel; Jakubek, Jan

    2017-06-01

    Timepix3 detectors are the latest generation of hybrid active pixel detectors of the Medipix/Timepix family. Such detectors consist of an active sensor layer which is connected to the readout ASIC (application specific integrated circuit), segmenting the detector into a square matrix of 256 × 256 pixels (pixel pitch 55 μm). Particles interacting in the active sensor material create charge carriers, which drift towards the pixelated electrode, where they are collected. In each pixel, the time of the interaction (time resolution 1.56 ns) and the amount of created charge carriers are measured. Such a device was employed in an experiment in a 120 GeV/c pion beam. It is demonstrated, how the drift time information can be used for "4D" particle tracking, with the three spatial dimensions and the energy losses along the particle trajectory (dE/dx). Since the coordinates in the detector plane are given by the pixelation ( x, y), the x- and y-resolution is determined by the pixel pitch (55 μm). A z-resolution of 50.4 μm could be achieved (for a 500 μm thick silicon sensor at 130 V bias), whereby the drift time model independent z-resolution was found to be 28.5 μm.

  9. 3D track reconstruction capability of a silicon hybrid active pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, Benedikt; Pichotka, Martin; Pospisil, Stanislav; Vycpalek, Jiri [Czech Technical University in Prague, Institute of Experimental and Applied Physics, Praha (Czech Republic); Burian, Petr; Broulim, Pavel [Czech Technical University in Prague, Institute of Experimental and Applied Physics, Praha (Czech Republic); University of West Bohemia, Faculty of Electrical Engineering, Pilsen (Czech Republic); Jakubek, Jan [Advacam s.r.o., Praha (Czech Republic)

    2017-06-15

    Timepix3 detectors are the latest generation of hybrid active pixel detectors of the Medipix/Timepix family. Such detectors consist of an active sensor layer which is connected to the readout ASIC (application specific integrated circuit), segmenting the detector into a square matrix of 256 x 256 pixels (pixel pitch 55 μm). Particles interacting in the active sensor material create charge carriers, which drift towards the pixelated electrode, where they are collected. In each pixel, the time of the interaction (time resolution 1.56 ns) and the amount of created charge carriers are measured. Such a device was employed in an experiment in a 120 GeV/c pion beam. It is demonstrated, how the drift time information can be used for ''4D'' particle tracking, with the three spatial dimensions and the energy losses along the particle trajectory (dE/dx). Since the coordinates in the detector plane are given by the pixelation (x,y), the x- and y-resolution is determined by the pixel pitch (55 μm). A z-resolution of 50.4 μm could be achieved (for a 500 μm thick silicon sensor at 130 V bias), whereby the drift time model independent z-resolution was found to be 28.5 μm. (orig.)

  10. Novel Silicon n-in-p Pixel Sensors for the future ATLAS Upgrades

    CERN Document Server

    La Rosa, A; Macchiolo, A; Nisius, R; Pernegger, H; Richter,R H; Weigell, P

    2013-01-01

    In view of the LHC upgrade phases towards HL-LHC the ATLAS experiment plans to upgrade the Inner Detector with an all silicon system. The n-in-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost eectiveness, that allow for enlarging the area instrumented with pixel detectors. We present the characterization and performance of novel n-in-p planar pixel sensors produced by CiS (Germany) connected by bump bonding to the ATLAS readout chip FE-I3. These results are obtained before and after irradiation up to a fluence of 1016 1-MeV $n_{eq}cm^{-2}$, and prove the operability of this kind of sensors in the harsh radiation environment foreseen for the pixel system at HL-LHC. We also present an overview of the new pixel production, which is on-going at CiS for sensors compatible with the new ATLAS readout chip FE-I4.

  11. Amorphous silicon carbide ultramicroelectrode arrays for neural stimulation and recording

    Science.gov (United States)

    Deku, Felix; Cohen, Yarden; Joshi-Imre, Alexandra; Kanneganti, Aswini; Gardner, Timothy J.; Cogan, Stuart F.

    2018-02-01

    Objective. Foreign body response to indwelling cortical microelectrodes limits the reliability of neural stimulation and recording, particularly for extended chronic applications in behaving animals. The extent to which this response compromises the chronic stability of neural devices depends on many factors including the materials used in the electrode construction, the size, and geometry of the indwelling structure. Here, we report on the development of microelectrode arrays (MEAs) based on amorphous silicon carbide (a-SiC). Approach. This technology utilizes a-SiC for its chronic stability and employs semiconductor manufacturing processes to create MEAs with small shank dimensions. The a-SiC films were deposited by plasma enhanced chemical vapor deposition and patterned by thin-film photolithographic techniques. To improve stimulation and recording capabilities with small contact areas, we investigated low impedance coatings on the electrode sites. The assembled devices were characterized in phosphate buffered saline for their electrochemical properties. Main results. MEAs utilizing a-SiC as both the primary structural element and encapsulation were fabricated successfully. These a-SiC MEAs had 16 penetrating shanks. Each shank has a cross-sectional area less than 60 µm2 and electrode sites with a geometric surface area varying from 20 to 200 µm2. Electrode coatings of TiN and SIROF reduced 1 kHz electrode impedance to less than 100 kΩ from ~2.8 MΩ for 100 µm2 Au electrode sites and increased the charge injection capacities to values greater than 3 mC cm-2. Finally, we demonstrated functionality by recording neural activity from basal ganglia nucleus of Zebra Finches and motor cortex of rat. Significance. The a-SiC MEAs provide a significant advancement in the development of microelectrodes that over the years has relied on silicon platforms for device manufacture. These flexible a-SiC MEAs have the potential for decreased tissue damage and reduced

  12. High resistivity silicon active pixel sensors for recording data from STEM

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.; De Geronimo, G.; Li, Z.; O' Connor, P.; Radeka, V.; Rehak, P. E-mail: rehak2@bnl.gov; Smith, G.C.; Wall, J.S.; Yu, B

    2003-10-11

    An X-ray Active Matrix Pixel Sensor (XAMPS) for recording Data from the Scanning Transmission Electron Microscope (STEM) was designed, produced and tested. The reason for measuring scattering angle of all STEM electrons is given together with the requirement on the performance of the XAMPS. Principles of the measurement of the number of STEM electrons scattered in a particular direction are summarized. Results of tests performed on a produced detector are described and the problem with the formation of an insulation layer between silicon and aluminum is identified. A change in the design of the pixel is proposed which results in a fully functioning XAMPS even with the insulation layer present.

  13. Atomistic modeling of ion beam induced amorphization in silicon

    International Nuclear Information System (INIS)

    Pelaz, Lourdes; Marques, Luis A.; Lopez, Pedro; Santos, Ivan; Aboy, Maria; Barbolla, Juan

    2005-01-01

    Ion beam induced amorphization in Si has attracted significant interest since the beginning of the use of ion implantation for the fabrication of Si devices. Nowadays, a renewed interest in the modeling of amorphization mechanisms at atomic level has arisen due to the use of preamorphizing implants and high dopant implantation doses for the fabrication of nanometric-scale Si devices. In this work, we briefly describe the existing phenomenological and defect-based amorphization models. We focus on the atomistic model we have developed to describe ion beam induced amorphization in Si. In our model, the building block for the amorphous phase is the bond defect or IV pair, whose stability increases with the number of surrounding IV pairs. This feature explains the regrowth behavior of different damage topologies and the kinetics of the crystalline to amorphous transition. The model provides excellent quantitative agreement with experimental results

  14. Fabrication of amorphous silicon nanoribbons by atomic force microscope tip-induced local oxidation for thin film device applications

    International Nuclear Information System (INIS)

    Pichon, L; Rogel, R; Demami, F

    2010-01-01

    We demonstrate the feasibility of induced local oxidation of amorphous silicon by atomic force microscopy. The resulting local oxide is used as a mask for the elaboration of a thin film silicon resistor. A thin amorphous silicon layer deposited on a glass substrate is locally oxidized following narrow continuous lines. The corresponding oxide line is then used as a mask during plasma etching of the amorphous layer leading to the formation of a nanoribbon. Such an amorphous silicon nanoribbon is used for the fabrication of the resistor

  15. A Medipix2-based imaging system for digital mammography with silicon pixel detectors

    CERN Document Server

    Bisogni, M G; Fantacci, M E; Mettivier, G; Montesi, M C; Novelli, M; Quattrocchi, M; Rosso, V; Russo, P; Stefanini, A

    2004-01-01

    In this paper we present the first tests of a digital imaging system based on a silicon pixel detector bump-bonded to an integrated circuit operating in single photon counting mode. The X-rays sensor is a 300 mu m thick silicon, 14 by 14 mm/sup 2/, upon which a matrix of 256 * 256 pixels has been built. The read-out chip, named MEDIPIX2, has been developed at CERN within the MEDIPIX2 Collaboration and it is composed by a matrix of 256 * 256 cells, 55 * 55 mu m/sup 2/. The spatial resolution properties of the system have been assessed by measuring the square wave resolution function (SWRF) and first images of a standard mammographic phantom were acquired using a radiographic tube in the clinical irradiation condition. (5 refs).

  16. A 1006 element hybrid silicon pixel detector with stobed binary output

    International Nuclear Information System (INIS)

    Anghinolfi, F.; Aspell, P.; Beusch, W.; Campbell, M.; Chesi, E.; Glaser, M.; Gys, T.; Heijne, E.H.M.; Jarron, P.; Lemeilleur, F.

    1992-01-01

    An asynchronous version of a binary pixel readout circuit has been implemented in an array with 16 columns at 500 μm pitch and 63 rows at 75 μm pitch. This readout chip has been bonded with solder bumps to a silicon detector with matching pixel elements. event information in a pixel can be strobed into a local memory by a trigger signal and subsequently read out. Without a strobe the information in this memory is continuously cleared. The complete hybrid detector has been successfully tested with ionizing particles from a radioactive source. Three such devices have been put in the CERN heavy ion experiment WA94 in the Omega spectrometer where they recorded particle tracks form high multiplicity 32 S interactions

  17. Optimizing portal dose calculation for an amorphous silicon detector using Swiss Monte Carlo Plan

    International Nuclear Information System (INIS)

    Frauchiger, D; Fix, M K; Frei, D; Volken, W; Mini, R; Manser, P

    2007-01-01

    Purpose: Modern treatment planning systems (TPS) are able to calculate doses within the patient for numerous delivery techniques as e. g. intensity modulated radiation therapy (IMRT). Even dose predictions to an electronic portal image device (EPID) are available in some TPS, but with limitations in accuracy. With the steadily increasing number of facilities using EPIDs for pre-treatment and treatment verification, the desire of calculating accurate EPID dose distributions is growing. A solution for this problem is the use of Monte Carlo (MC) methods. Aims of this study were firstly to implement geometries of an amorphous silicon based EPID with varying levels of geometry complexity. Secondly to analyze the differences between simulation results and measurements for each geometry. Thirdly, to compare different transport algorithms within all EPID geometries in a flexible C++ MC environment. Materials and Methods: In this work three geometry sets, representing the EPID, are implemented and investigated. To gain flexibility in the MC environment geometry and particle transport code are independent. That allows the user to select between the transport algorithms EGSnrc, VMC++ and PIN (an in-house developed transport code) while using one of the implemented geometries of the EPID. For all implemented EPID geometries dose distributions were calculated for 6 MV and 15 MV beams using different transport algorithms and are then compared with measurements. Results: A very simple geometry, consisting of a water slab, is not capable to reproduce measurements, whereas 8 material layers perform well. The more layers with different materials are used, the longer last the calculations. EGSnrc and VMC++ lead to dosimetrically equal results. Gamma analysis between calculated and measured EPID dose distributions, using a dose difference criterion of ± 3% and a distance to agreement criterion of ± 3 mm, revealed a gamma value < 1 within more than 95% of all pixels, that have a

  18. Effect of light trapping in an amorphous silicon solar cell

    International Nuclear Information System (INIS)

    Iftiquar, S.M.; Jung, Juyeon; Park, Hyeongsik; Cho, Jaehyun; Shin, Chonghoon; Park, Jinjoo; Jung, Junhee; Bong, Sungjae; Kim, Sunbo; Yi, Junsin

    2015-01-01

    Light trapping in amorphous silicon based solar cell has been investigated theoretically. The substrate for these cells can be textured, including pyramidally textured c-Si wafer, to improve capture of incident light. A thin silver layer, deposited on the substrate of an n–i–p cell, ultimately goes at the back of the cell structure and can act a back reflector to improve light trapping. The two physical solar cells we investigated had open circuit voltages (V oc ) of 0.87, 0.90 V, short circuit current densities (J sc ) of 14.2, 15.36 mA/cm 2 respectively. The first cell was investigated for the effect on its performance while having and not having light trapping scheme (LT), when thickness of the active layer (d i ) was changed in the range of 100 nm to 800 nm. In both the approaches, for having or not having LT, the short circuit current density increases with d i while the V oc and fill factor, decreases steadily. However, maximum cell efficiency can be obtained when d i = 400 nm, and hence it was considered optimized thickness of the active layer, that was used for further investigation. With the introduction of light trapping to the second cell, it shows a further enhancement in J sc and red response of the external quantum efficiency to 16.6 mA/cm 2 and by 11.1% respectively. Considering multiple passages of light inside the cell, we obtained an improvement in cell efficiency from 9.7% to 10.6%. - Highlights: • A theoretical analysis of light trapping in p–i–n and n–i–p type solar cells • J sc increases and V oc decreases with the increase in i-layer thickness. • Observed optimized thickness of i-layer as 400 nm • J sc improved from 15.4 mA/cm 2 to 16.6 mA/cm 2 due to the light trapping. • Efficiency (η) improved from 9.7% to 10.6% due to better red response of the EQE

  19. Ideality and Tunneling Level Systems (TLS) in amorphous silicon films.

    Science.gov (United States)

    Hellman, Frances

    Heat capacity, sound velocity, and internal friction of covalently bonded amorphous silicon (a-Si) films with and without hydrogen show that low energy excitations commonly called tunneling or two level systems (TLS) can be tuned over nearly 3 decades, from below detectable limits to the range commonly seen in glassy systems. This tuning is accomplished by growth temperature, thickness, growth rate, light soaking or annealing. We see a strong correlation with atomic density in a-Si and in literature analysis of other glasses, as well as with dangling bond density, sound velocity, and bond angle distribution as measured by Raman spectroscopy, but TLS density varies by orders of magnitude while these other measures of disorder vary by less than a factor of two. The lowest TLS films are grown at temperatures near 0.8 of the theoretical glass transition temperature of Si, similar to work on polymer films and suggestive that the high surface mobility at relatively low temperature of vapor deposition can produce materials close to an ideal glass, with higher density, lower energy, and low TLS due to fewer nearby configurations with similarly low energy. The TLS measured by heat capacity and internal friction are strongly correlated for pure a-Si, but not for hydrogenated a-Si, suggesting that the standard TLS model works for a-Si, but that a-Si:H possess TLS that are decoupled from the acoustic waves measured by internal friction. Internal friction measures those TLS that introduce mechanical damping; we are in the process of measuring low T dielectric loss which yield TLS with dipole moments in order to explore the correlation between different types of TLS. Additionally, a strong correlation is found between an excess T3 term (well above the sound velocity-derived Debye contribution) and the linear term in heat capacity, suggesting a common origin. I thank members of my research group and my collaborators for contributions to this work and NSF-DMR-1508828 for support.

  20. Electron-trapping-triggered anneal of defect states in silicon-rich hydrogenated amorphous silicon nitride

    International Nuclear Information System (INIS)

    Oversluizen, G.; Lodders, W.H.; Johnson, M.T.; van der Put, A.A.

    1997-01-01

    The dc-current stress behavior of Mo/a-SiN x H y /Mo thin-film diodes is discussed for several a-SiN x H y -plasma-deposition conditions. Current transport is governed by thermionic field emission of electrons over a reverse biased Schottky barrier. The barrier height is determined by the a-SiN x H y -plasma-deposition conditions. Therefore these back-to-back Schottky devices provide an elegant way to perform dc-current stressing at several well defined carrier densities for similar stress fields. It is shown that such experiments allow assessment of defect-state creation/anneal mechanisms in a-SiN x H y . An electron-trapping-triggered anneal mechanism accounts for the observed dependence of the defect density at the electrode injecting contact (cathode) on the hole-barrier height at the anode. Also a new microscopically detailed anneal reaction scheme is proposed. The defect-state creation/anneal mechanism is expected to be generally applicable for all silicon-rich hydrogenated amorphous silicon alloys. copyright 1997 American Institute of Physics

  1. Origins of hole traps in hydrogenated nanocrystalline and amorphous silicon revealed through machine learning

    Science.gov (United States)

    Mueller, Tim; Johlin, Eric; Grossman, Jeffrey C.

    2014-03-01

    Genetic programming is used to identify the structural features most strongly associated with hole traps in hydrogenated nanocrystalline silicon with very low crystalline volume fraction. The genetic programming algorithm reveals that hole traps are most strongly associated with local structures within the amorphous region in which a single hydrogen atom is bound to two silicon atoms (bridge bonds), near fivefold coordinated silicon (floating bonds), or where there is a particularly dense cluster of many silicon atoms. Based on these results, we propose a mechanism by which deep hole traps associated with bridge bonds may contribute to the Staebler-Wronski effect.

  2. Contributions to the Theory of the Properties of Hydrogenated Amorphous Silicon.

    Science.gov (United States)

    1983-07-21

    isolated gests significant interactions between the four I 35 I 23 THEORETICAL STUDY OF THE HYDROGEN-SATURATED IDEAL... 6605 SI-SI BONED 31(2) --SI...by Spear W.E. ( CICL University of Edinburgh) 467. 52 P8 Theoretical Study of Optical Absorption in Hydrogenated Amorphous Silicon W.E. Pickett...Amorphous and Liquid Semiconductors, ed. W.E. Spear ( CICL Univ. of Edinburgh, 1977), p. 467; P. Viktorovitch, G. Moddel, J. Blake and W. Paul, J. Appl

  3. Performance of novel silicon n-in-p planar Pixel Sensors

    CERN Document Server

    Gallrapp, C; Macchiolo, A; Nisius, R; Pernegger, H; Richter, R H; Weigell, P

    2012-01-01

    The performance of novel n-in-p planar pixel detectors, designed for future upgrades of the ATLAS Pixel system is presented. The n-in-p silicon sensors technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness, that allow for enlarging the area instrumented with pixel detectors. The n-in-p modules presented here, are composed of pixel sensors produced by CiS connected by bump-bonding to the ATLAS readout chip FE-I3. The characterization of these devices has been performed before and after irradiation up to a fluence of 5 x 10**15 neq/cm2 . Charge collection measurements carried out with radioactive sources have proven the functioning of this technology up to these particle fluences. First results from beam test data with a 120 GeV/c pion beam at the CERN-SPS are also discussed, demonstrating a high tracking efficiency before irradiation, and a high collected charge for a device irradiated at a fluence of 5 x 10**15 neq/cm2 .

  4. In situ observation of shear-driven amorphization in silicon crystals

    Energy Technology Data Exchange (ETDEWEB)

    He, Yang; Zhong, Li; Fan, Feifei; Wang, Chongmin; Zhu, Ting; Mao, Scott X.

    2016-09-19

    Amorphous materials have attracted great interest in the scientific and technological fields. An amorphous solid usually forms under the externally driven conditions of melt-quenching, irradiation and severe mechanical deformation. However, its dynamic formation process remains elusive. Here we report the in situ atomic-scale observation of dynamic amorphization processes during mechanical straining of nanoscale silicon crystals by high resolution transmission electron microscopy (HRTEM). We observe the shear-driven amorphization (SDA) occurring in a dominant shear band. The SDA involves a sequence of processes starting with the shear-induced diamond-cubic to diamond-hexagonal phase transition that is followed by dislocation nucleation and accumulation in the newly formed phase, leading to the formation of amorphous silicon. The SDA formation through diamond-hexagonal phase is rationalized by its structural conformity with the order in the paracrystalline amorphous silicon, which maybe widely applied to diamond-cubic materials. Besides, the activation of SDA is orientation-dependent through the competition between full dislocation nucleation and partial gliding.

  5. Observation, modeling, and temperature dependence of doubly peaked electric fields in irradiated silicon pixel sensors

    CERN Document Server

    Swartz, M.; Allkofer, Y.; Bortoletto, D.; Cremaldi, L.; Cucciarelli, S.; Dorokhov, A.; Hoermann, C.; Kim, D.; Konecki, M.; Kotlinski, D.; Prokofiev, Kirill; Regenfus, Christian; Rohe, T.; Sanders, D.A.; Son, S.; Speer, T.

    2006-01-01

    We show that doubly peaked electric fields are necessary to describe grazing-angle charge collection measurements of irradiated silicon pixel sensors. A model of irradiated silicon based upon two defect levels with opposite charge states and the trapping of charge carriers can be tuned to produce a good description of the measured charge collection profiles in the fluence range from 0.5x10^{14} Neq/cm^2 to 5.9x10^{14} Neq/cm^2. The model correctly predicts the variation in the profiles as the temperature is changed from -10C to -25C. The measured charge collection profiles are inconsistent with the linearly-varying electric fields predicted by the usual description based upon a uniform effective doping density. This observation calls into question the practice of using effective doping densities to characterize irradiated silicon.

  6. Hydrogen diffusion and induced-crystallization in intrinsic and doped hydrogenated amorphous silicon films

    International Nuclear Information System (INIS)

    Kail, F.; Hadjadj, A.; Roca i Cabarrocas, P.

    2005-01-01

    We have studied the evolution of the structure of intrinsic and doped hydrogenated amorphous silicon films exposed to a hydrogen plasma. For this purpose, we combine in situ spectroscopic ellipsometry and secondary ion mass spectrometry measurements. We show that hydrogen diffuses faster in boron-doped hydrogenated amorphous silicon than in intrinsic samples, leading to a thicker subsurface layer from the early stages of hydrogen plasma exposure. At longer times, hydrogen plasma leads to the formation of a microcrystalline layer via chemical transport, but there is no evidence for crystallization of the a-Si:H substrate. Moreover, we observe that once the microcrystalline layer is formed, hydrogen diffuses out of the sample

  7. On electronic structure of polymer-derived amorphous silicon carbide ceramics

    Science.gov (United States)

    Wang, Kewei; Li, Xuqin; Ma, Baisheng; Wang, Yiguang; Zhang, Ligong; An, Linan

    2014-06-01

    The electronic structure of polymer-derived amorphous silicon carbide ceramics was studied by combining measurements of temperature-dependent conductivity and optical absorption. By comparing the experimental results to theoretical models, electronic structure was constructed for a carbon-rich amorphous silicon carbide, which revealed several unique features, such as deep defect energy level, wide band-tail band, and overlap between the band-tail band and defect level. These unique features were discussed in terms of the microstructure of the material and used to explain the electric behavior.

  8. Electrodeposition at room temperature of amorphous silicon and germanium nanowires in ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Martineau, F; Namur, K; Mallet, J; Delavoie, F; Troyon, M; Molinari, M [Laboratoire de Microscopies et d' Etude de Nanostructures (LMEN EA3799), Universite de Reims Champagne Ardennes (URCA), Reims Cedex 2 (France); Endres, F, E-mail: michael.molinari@univ-reims.fr [Institute of Particle Technology, Chair of Interface Processes, Clausthal University of Technology, D-36678 Clausthal-Zellerfeld (Germany)

    2009-11-15

    The electrodeposition at room temperature of silicon and germanium nanowires from the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P{sub 1,4}) containing SiCl{sub 4} as Si source or GeCl{sub 4} as Ge source is investigated by cyclic voltammetry. By using nanoporous polycarbonate membranes as templates, it is possible to reproducibly grow pure silicon and germanium nanowires of different diameters. The nanowires are composed of pure amorphous silicon or germanium. The nanowires have homogeneous cylindrical shape with a roughness of a few nanometres on the wire surfaces. The nanowires' diameters and lengths well match with the initial membrane characteristics. Preliminary photoluminescence experiments exhibit strong emission in the near infrared for the amorphous silicon nanowires.

  9. Proton irradiation effects of amorphous silicon solar cell for solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Yousuke; Oshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Sasaki, Susumu; Kuroda, Hideo; Ushirokawa, Akio

    1997-03-01

    Flexible amorphous silicon(fa-Si) solar cell module, a thin film type, is regarded as a realistic power generator for solar power satellite. The radiation resistance of fa-Si cells was investigated by the irradiations of 3,4 and 10 MeV protons. The hydrogen gas treatment of the irradiated fa-Si cells was also studied. The fa-Si cell shows high radiation resistance for proton irradiations, compared with a crystalline silicon solar cell. (author)

  10. Development of thin pixel detectors on epitaxial silicon for HEP experiments

    International Nuclear Information System (INIS)

    Boscardin, Maurizio; Calvo, Daniela; Giacomini, Gabriele; Wheadon, Richard; Ronchin, Sabina; Zorzi, Nicola

    2013-01-01

    The foreseen luminosity of the new experiments in High Energy Physics will require that the innermost layer of vertex detectors will be able to sustain fluencies up to 10 16 n eq /cm 2 . Moreover, in many experiments there is a demand for the minimization of the material budget of the detectors. Therefore, thin pixel devices fabricated on n-type silicon are a natural choice to fulfill these requirements due to their rad-hard performances and low active volume. We present an R and D activity aimed at developing a new thin hybrid pixel device in the framework of PANDA experiments. The detector of this new device is a p-on-n pixel sensor realized starting from epitaxial silicon wafers and back thinned up to 50–100 μm after process completion. We present the main technological steps and some electrical characterization on the fabricated devices before and after back thinning and after bump bonding to the front-end electronics

  11. Development of thin pixel detectors on epitaxial silicon for HEP experiments

    Energy Technology Data Exchange (ETDEWEB)

    Boscardin, Maurizio, E-mail: boscardi@fbk.eu [FBK, CMM, Via Sommarive 18, I-38123 Povo, Trento (Italy); Calvo, Daniela [INFN and Dipartimento di Fisica, Università di Torino, Via Pietro Giuria, I-10125 Torino (Italy); Giacomini, Gabriele [FBK, CMM, Via Sommarive 18, I-38123 Povo, Trento (Italy); Wheadon, Richard [INFN and Dipartimento di Fisica, Università di Torino, Via Pietro Giuria, I-10125 Torino (Italy); Ronchin, Sabina; Zorzi, Nicola [FBK, CMM, Via Sommarive 18, I-38123 Povo, Trento (Italy)

    2013-08-01

    The foreseen luminosity of the new experiments in High Energy Physics will require that the innermost layer of vertex detectors will be able to sustain fluencies up to 10{sup 16} n{sub eq}/cm{sup 2}. Moreover, in many experiments there is a demand for the minimization of the material budget of the detectors. Therefore, thin pixel devices fabricated on n-type silicon are a natural choice to fulfill these requirements due to their rad-hard performances and low active volume. We present an R and D activity aimed at developing a new thin hybrid pixel device in the framework of PANDA experiments. The detector of this new device is a p-on-n pixel sensor realized starting from epitaxial silicon wafers and back thinned up to 50–100 μm after process completion. We present the main technological steps and some electrical characterization on the fabricated devices before and after back thinning and after bump bonding to the front-end electronics.

  12. Amorphous silicon-carbon based nano-scale thin film anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Datta, Moni Kanchan; Maranchi, Jeffrey; Chung, Sung Jae; Epur, Rigved; Kadakia, Karan; Jampani, Prashanth; Kumta, Prashant N.

    2011-01-01

    Research highlights: → Thin film amorphous C/Si. Good cycling response validates carbon matrix for Silicon anodes. → Thin film amorphous C/Si/C. Good cycling response validates carbon as an interface and matrix. - Abstract: The buffering effect of carbon on the structural stability of amorphous silicon films, used as an anode for lithium ion rechargeable batteries, has been studied during long term discharge/charge cycles. To this extent, the electrochemical performance of a prototype material consisting of amorphous Si thin film (∼250 nm) deposited by radio frequency magnetron sputtering on amorphous carbon (∼50 nm) thin films, denoted as a-C/Si, has been investigated. In comparison to pure amorphous Si thin film (a-Si) which shows a rapid fade in capacity after 30 cycles, the a-C/Si exhibits excellent capacity retention displaying ∼0.03% fade in capacity up to 50 cycles and ∼0.2% after 50 cycles when cycled at a rate of 100 μA/cm 2 (∼C/2) suggesting that the presence of thin amorphous C layer deposited between the Cu substrate and a-Si acts as a buffer layer facilitating the release of the volume induced stresses exhibited by pure a-Si during the charge/discharge cycles. This structural integrity combined with microstructural stability of the a-C/Si thin film during the alloying/dealloying process with lithium has been confirmed by scanning electron microscopy (SEM) analysis. The buffering capacity of the thin amorphous carbon layer lends credence to its use as the likely compliant matrix to curtail the volume expansion related cracking of silicon validating its choice as the matrix for bulk and thin film battery systems.

  13. 3D silicon pixel detectors for the High-Luminosity LHC

    CERN Document Server

    Lange, J.

    2016-01-01

    3D silicon pixel detectors have been investigated as radiation-hard candidates for the innermost layers of the HL-LHC upgrade of the ATLAS pixel detector. 3D detectors are already in use today in the ATLAS IBL and AFP experiments. These are based on 50x250 um2 large pixels connected to the FE-I4 readout chip. Detectors of this generation were irradiated to HL-LHC fluences and demonstrated excellent radiation hardness with operational voltages as low as 180 V and power dissipation of 12--15 mW/cm2 at a fluence of about 1e16 neq/cm2, measured at -25 degree C. Moreover, to cope with the higher occupancies expected at the HL-LHC, a first run of a new generation of 3D detectors designed for the HL-LHC was produced at CNM with small pixel sizes of 50x50 and 25x100 um2, matched to the FE-I4 chip. They demonstrated a good performance in the laboratory and in beam tests with hit efficiencies of about 97% at already 1--2V before irradiation.

  14. Multipoint alignment monitoring with amorphous silicon position detectors in a complex light path

    International Nuclear Information System (INIS)

    Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C.; Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Sobron, M.; Vila, I.; Virto, A.L.

    2010-01-01

    This document presents an application of the new generation of amorphous silicon position detecting (ASPD) sensors to multipoint alignment. Twelve units are monitored along a 20 m long laser beam, where the light path is deflected by 90 o using a pentaprism.

  15. Results from multipoint alignment monitoring using the new generation of amorphous silicon position detectors

    International Nuclear Information System (INIS)

    Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C.; Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Sobron, M.; Vila, I.; Virto, A.L.

    2008-01-01

    We present the measured performance of a new generation of large sensitive area (28x28 mm 2 ) semitransparent amorphous silicon position detector sensors. More than 100 units have been characterized. They show a very high performance. To illustrate a multipoint application, we present results from the monitoring of five sensors placed in a 5.5-m-long light path

  16. Amorphous Silicon Position Detectors for the Link Alignment System of the CMS Detector: Users Handbook

    International Nuclear Information System (INIS)

    Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F. J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Scodellaro, L.; Vila, I.; Virto, A. L.; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.

    2007-01-01

    We present the general characteristics, calibration procedures and measured performance of the Amorphous Silicon Position Detectors installed in the Link Alignment System of the CMS Detector for laser beam detection and reconstruction and give the Data Base to be used as a Handbook during CMS operation. (Author) 10 refs

  17. Preparation and Characterisation of Amorphous-silicon Photovoltaic Devices Having Microcrystalline Emitters

    International Nuclear Information System (INIS)

    Gutierrez, M. T.; Gandia, J. J.; Carabe, J.

    1999-01-01

    The present work summarises the essential aspects of the research carried out so far at CIEMAT on amorphous-silicon solar cells. The experience accumulated on the preparation and characterisation of amorphous and microcrystalline silicon has allowed to start from intrinsic (absorbent) and p- and n-type (emitters) materials not only having excellent optoelectronic properties, but enjoying certain technological advantages with respect to those developed by other groups. Among these are absorbent-layer growth rates between 5 and 10 times as fast as conventional ones and microcrystalline emitters prepared without using hydrogen. The preparation of amorphous-silicon cells has required the solution of a number of problems, such as those related to pinholes, edge leak currents and diffusion of metals into the semiconductor. Once such constraints have been overcome, it has been demonstrated not only that the amorphous-silicon technology developed at CIEMAT is valid for making solar cells, but also that the quality of the semiconductor material is good for the application according to the partial results obtained. The development of thin-film laser-scribing technology is considered essential. Additionally it has been concluded that cross contamination, originated by the fact of using a single-chamber reactor, is the basic factor limiting the quality of the cells developed at CIEMAT. The present research activity is highly focused on the solution of this problem. (Author)23 refs

  18. A comparison of degradation in three amorphous silicon PV module technologies

    Energy Technology Data Exchange (ETDEWEB)

    Radue, C.; van Dyk, E.E. [Physics Department, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2010-03-15

    Three commercial amorphous silicon modules manufactured by monolithic integration and consisting of three technology types were analysed in this study. These modules were deployed outdoors for 14 months and underwent degradation. All three modules experienced the typical light-induced degradation (LID) described by the Staebler-Wronski effect, and this was followed by further degradation. A 14 W single junction amorphous silicon module degraded by about 45% of the initial measured maximum power output (P{sub MAX}) at the end of the study. A maximum of 30% of this has been attributed to LID and the further 15% to cell mismatch and cell degradation. The other two modules, a 64 W triple junction amorphous silicon module, and a 68 W flexible triple junction amorphous silicon module, exhibited LID followed by seasonal variation in the degraded P{sub MAX}. The 64 W module showed a maximum degradation in P{sub MAX} of about 22%. This is approximately 4% more than the manufacturer allowed for the initial LID. However, the seasonal variation in P{sub MAX} seems to be centred around the manufacturer's rating ({+-}4%). The 68 W flexible module has shown a maximum decrease in P{sub MAX} of about 27%. This decrease is about 17% greater than the manufacturer allowed for the initial LID. (author)

  19. Amorphous Silicon Position Detectors for the Link Alignment System of the CMS Detector: Users Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F. J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Scodellaro, L.; Vila, I.; Virto, A. L.; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.

    2007-07-01

    We present the general characteristics, calibration procedures and measured performance of the Amorphous Silicon Position Detectors installed in the Link Alignment System of the CMS Detector for laser beam detection and reconstruction and give the Data Base to be used as a Handbook during CMS operation. (Author) 10 refs.

  20. New concept of a submillimetric pixellated Silicon detector for intracerebral application

    Energy Technology Data Exchange (ETDEWEB)

    Benoit, M. [Laboratoire de l' Accelerateur Lineaire (LAL, Universite Paris Sud, CNRS/IN2P3, UMR 8608), Orsay (France); Maerk, J.; Weiss, P. [Centre de Physique des Particules de Marseille (CPPM, Universite Aix-Marseille, CNRS/IN2P3, UMR 6550), Marseille (France); Benoit, D. [Imagerie et Modelisation en Neurobiologie et Cancerologie (IMNC, Universite Paris Sud et Paris Diderot, CNRS/IN2P3, IMNC, Centre Universitaire, batiment 440, 91406 Orsay Cedex, UMR 8165), Orsay (France); Clemens, J.C.; Fougeron, D. [Centre de Physique des Particules de Marseille (CPPM, Universite Aix-Marseille, CNRS/IN2P3, UMR 6550), Marseille (France); Janvier, B. [Imagerie et Modelisation en Neurobiologie et Cancerologie (IMNC, Universite Paris Sud et Paris Diderot, CNRS/IN2P3, IMNC, Centre Universitaire, batiment 440, 91406 Orsay Cedex, UMR 8165), Orsay (France); Jevaud, M.; Karkar, S.; Menouni, M. [Centre de Physique des Particules de Marseille (CPPM, Universite Aix-Marseille, CNRS/IN2P3, UMR 6550), Marseille (France); Pain, F.; Pinot, L. [Imagerie et Modelisation en Neurobiologie et Cancerologie (IMNC, Universite Paris Sud et Paris Diderot, CNRS/IN2P3, IMNC, Centre Universitaire, batiment 440, 91406 Orsay Cedex, UMR 8165), Orsay (France); Morel, C. [Centre de Physique des Particules de Marseille (CPPM, Universite Aix-Marseille, CNRS/IN2P3, UMR 6550), Marseille (France); and others

    2011-12-11

    A new beta{sup +} radiosensitive microprobe implantable in rodent brain dedicated to in vivo and autonomous measurements of local time activity curves of beta radiotracers in a volume of brain tissue of a few mm{sup 3} has been developed recently. This project expands the concept of the previously designed beta microprobe, which has been validated extensively in neurobiological experiments performed on anesthetized animals. Due to its limitations considering recordings on awake and freely moving animals, we have proposed to develop a wireless setup that can be worn by an animal without constraining its movements. To that aim, we have chosen a highly beta sensitive Silicon-based detector to devise a compact pixellated probe. Miniaturized wireless electronics is used to read-out and transfer the measurement data. Initial Monte-Carlo simulations showed that high resistive Silicon pixels are appropriate for this purpose, with their dimensions to be adapted to our specific signals. More precisely, we demonstrated that 200 {mu}m thick pixels with an area of 200 {mu}m Multiplication-Sign 500 {mu}m are optimized in terms of beta{sup +}sensitivity versus relative transparency to the gamma background. Based on this theoretical study, we now present the development of the novel sensor, including the system simulations with technology computer-assisted design (TCAD) to investigate specific configurations of guard rings and their potential to increase the electrical isolation and stabilization of the pixel, as well as the corresponding physical tests to validate the particular geometries of this new sensor.

  1. High rate particle tracking and ultra-fast timing with a thin hybrid silicon pixel detector

    Science.gov (United States)

    Fiorini, M.; Aglieri Rinella, G.; Carassiti, V.; Ceccucci, A.; Cortina Gil, E.; Cotta Ramusino, A.; Dellacasa, G.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Mapelli, A.; Martin, E.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Perktold, L.; Petagna, P.; Petrucci, F.; Poltorak, K.; Riedler, P.; Rivetti, A.; Statera, M.; Velghe, B.

    2013-08-01

    The Gigatracker (GTK) is a hybrid silicon pixel detector designed for the NA62 experiment at CERN. The beam spectrometer, made of three GTK stations, has to sustain high and non-uniform particle rate (∼ 1 GHz in total) and measure momentum and angles of each beam track with a combined time resolution of 150 ps. In order to reduce multiple scattering and hadronic interactions of beam particles, the material budget of a single GTK station has been fixed to 0.5% X0. The expected fluence for 100 days of running is 2 ×1014 1 MeV neq /cm2, comparable to the one foreseen in the inner trackers of LHC detectors during 10 years of operation. To comply with these requirements, an efficient and very low-mass (< 0.15 %X0) cooling system is being constructed, using a novel microchannel cooling silicon plate. Two complementary read-out architectures have been produced as small-scale prototypes: one is based on a Time-over-Threshold circuit followed by a TDC shared by a group of pixels, while the other makes use of a constant-fraction discriminator followed by an on-pixel TDC. The read-out ASICs are produced in 130 nm IBM CMOS technology and will be thinned down to 100 μm or less. An overview of the Gigatracker detector system will be presented. Experimental results from laboratory and beam tests of prototype bump-bonded assemblies will be described as well. These results show a time resolution of about 170 ps for single hits from minimum ionizing particles, using 200 μm thick silicon sensors.

  2. Use of an amorphous silicon EPID for measuring MLC calibration at varying gantry angle

    International Nuclear Information System (INIS)

    Clarke, M F; Budgell, G J

    2008-01-01

    Amorphous silicon electronic portal imaging devices (EPIDs) are used to perform routine quality control (QC) checks on the multileaf collimators (MLCs) at this centre. Presently, these checks are performed at gantry angle 0 0 and are considered to be valid for all other angles. Since therapeutic procedures regularly require the delivery of MLC-defined fields to the patient at a wide range of gantry angles, the accuracy of the QC checks at other gantry angles has been investigated. When the gantry is rotated to angles other than 0 0 it was found that the apparent pixel size measured using the EPID varies up to a maximum value of 0.0015 mm per pixel due to a sag in the EPID of up to 9.2 mm. A correction factor was determined using two independent methods at a range of gantry angles between 0 deg. and 360 deg. The EPID was used to measure field sizes (defined by both x-jaws and MLC) at a range of gantry angles and, after this correction had been applied, any residual gravitational sag was studied. It was found that, when fields are defined by the x-jaws and y-back-up jaws, no errors of greater than 0.5 mm were measured and that these errors were no worse when the MLC was used. It was therefore concluded that, provided the correction is applied, measurements of the field size are, in practical terms, unaffected by gantry angle. Experiments were also performed to study how the reproducibility of individual leaves is affected by gantry angle. Measurements of the relative position of each individual leaf (minor offsets) were performed at a range of gantry angles and repeated three times. The position reproducibility was defined by the RMS error in the position of each leaf and this was found to be 0.24 mm and 0.21 mm for the two leaf banks at a gantry angle of 0 0 . When measurements were performed at a range of gantry angles, these reproducibility values remained within 0.09 mm and 0.11 mm. It was therefore concluded that the calibration of the Elekta MLC is stable at

  3. Characterisation of irradiated thin silicon sensors for the CMS phase II pixel upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Bergauer, T.; Brondolin, E. [Institut fuer Hochenergiephysik, Vienna (Austria); and others

    2017-08-15

    The high luminosity upgrade of the Large Hadron Collider, foreseen for 2026, necessitates the replacement of the CMS experiment's silicon tracker. The innermost layer of the new pixel detector will be exposed to severe radiation, corresponding to a 1 MeV neutron equivalent fluence of up to Φ{sub eq} = 2 x 10{sup 16} cm{sup -2}, and an ionising dose of ∼5 MGy after an integrated luminosity of 3000 fb{sup -1}. Thin, planar silicon sensors are good candidates for this application, since the degradation of the signal produced by traversing particles is less severe than for thicker devices. In this paper, the results obtained from the characterisation of 100 and 200 μm thick p-bulk pad diodes and strip sensors irradiated up to fluences of Φ{sub eq} = 1.3 x 10{sup 16} cm{sup -2} are shown. (orig.)

  4. Defects study of hydrogenated amorphous silicon samples and their relation with the substrate and deposition conditions

    International Nuclear Information System (INIS)

    Darwich, R.

    2009-07-01

    The goal of this work is to study the properties of the defects aiming to explore the types of defects and the effect of various deposition parameters such as substrate temperature, the kind of the substrate, gas pressure and deposition rate. Two kinds of samples have been used; The first one was a series of Schottky diodes, and the second one a series of solar cells (p-i-n junction) deposited on crystalline silicon or on corning glass substrates with different deposition parameters. The deposition parameters were chosen to obtain materials whose their structures varying from amorphous to microcrystalline silicon including polymorphous silicon. Our results show that the polymorphous silicon samples deposited at high deposition rates present the best photovoltaic properties in comparison with those deposited at low rates. Also we found that the defects concentration in high deposition rate samples is less at least by two orders than that obtained in low deposition rate polymorphous, microcrystalline and amorphous samples. This study shows also that there is no effect of the substrate, or the thin films of highly doped amorphous silicon deposited on the substrate, on the creation and properties of these defects. Finally, different experimental methods have been used; a comparison between their results has been presented. (author)

  5. Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes

    KAUST Repository

    Cui, Li-Feng

    2009-01-14

    Silicon is an attractive alloy-type anode material for lithium ion batteries because of its highest known capacity (4200 mAh/g). However silicon\\'s large volume change upon lithium insertion and extraction, which causes pulverization and capacity fading, has limited its applications. Designing nanoscale hierarchical structures is a novel approach to address the issues associated with the large volume changes. In this letter, we introduce a core-shell design of silicon nanowires for highpower and long-life lithium battery electrodes. Silicon crystalline- amorphous core-shell nanowires were grown directly on stainless steel current collectors by a simple one-step synthesis. Amorphous Si shells instead of crystalline Si cores can be selected to be electrochemically active due to the difference of their lithiation potentials. Therefore, crystalline Si cores function as a stable mechanical support and an efficient electrical conducting pathway while amorphous shells store Li ions. We demonstrate here that these core-shell nanowires have high charge storage capacity (̃1000 mAh/g, 3 times of carbon) with ̃90% capacity retention over 100 cycles. They also show excellent electrochemical performance at high rate charging and discharging (6.8 A/g, ̃20 times of carbon at 1 h rate). © 2009 American Chemical Society.

  6. AMORPHOUS SILICON ELECTRONIC STRUCTURE MODELING AND BASIC ELECTRO-PHYSICAL PARAMETERS CALCULATION

    Directory of Open Access Journals (Sweden)

    B. A. Golodenko

    2014-01-01

    Full Text Available Summary. The amorphous semiconductor has any unique processing characteristics and it is perspective material for electronic engineering. However, we have not authentic information about they atomic structure and it is essential knot for execution calculation they electronic states and electro physical properties. The author's methods give to us decision such problem. This method allowed to calculation the amorphous silicon modeling cluster atomics Cartesian coordinates, determined spectrum and density its electronic states and calculation the basics electro physical properties of the modeling cluster. At that determined numerical means of the energy gap, energy Fermi, electron concentration inside valence and conduction band for modeling cluster. The find results provides real ability for purposeful control to type and amorphous semiconductor charge carriers concentration and else provides relation between atomic construction and other amorphous substance physical properties, for example, heat capacity, magnetic susceptibility and other thermodynamic sizes.

  7. Fabrication and characterization of n-on-n silicon pixel detectors compatible with the Medipix2 readout chip

    International Nuclear Information System (INIS)

    Zorzi, N.; Bisogni, M.G.; Boscardin, M.; Dalla Betta, G.-F.; Gregori, P.; Novelli, M.; Piemonte, C.; Quattrocchi, M.; Ronchin, S.; Rosso, V.

    2005-01-01

    Pixel detectors for mammographic applications have been fabricated at ITC-irst on 800 μm thick silicon wafers adopting a double side n + -on-n fabrication technology. The activity aims at increasing the X-ray detection efficiency in the energy range of interest minimizing the risk of electrical discharges in hybrid systems operating at high voltages. The detectors, having a layout compatible with the Medipix2 photon counting chip, feature two different design solutions for the p-isolation between neighboring n + -pixels. We report on the characterization of the fabrication process and on preliminary results of electrical measurements on full detectors and pixel test structures. In particular, we found that the detectors can be reliably operated above the full depletion voltage regardless of the isolation design, that however, impacts the performances in terms of current-voltage characteristics, single pixel currents, inter-pixel resistances and inter-pixel capacitances

  8. Dielectric relaxation and hydrogen diffusion in amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J.C. (AT and T Bell Labs., Murray Hill, NJ (United States))

    1994-04-01

    Hydrogen diffusion is technologically critical to the processing of amorphous Si for solar cell applications. It is shown that this diffusion belongs to a broad class of dielectric relaxation mechanisms which were first studied by Kohlrausch in 1847. A microscopic theory of the Kohlrausch relaxation constant [beta][sub K] is also constructed. This theory explains the values of [beta] observed in many electronic, molecular and polymeric relaxation processes. It is based on two novel concepts: Wiener sausages, from statistical mechanics, and the magic wand, from axiomatic set theory

  9. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes.

    Science.gov (United States)

    Cui, Li-Feng; Ruffo, Riccardo; Chan, Candace K; Peng, Hailin; Cui, Yi

    2009-01-01

    Silicon is an attractive alloy-type anode material for lithium ion batteries because of its highest known capacity (4200 mAh/g). However silicon's large volume change upon lithium insertion and extraction, which causes pulverization and capacity fading, has limited its applications. Designing nanoscale hierarchical structures is a novel approach to address the issues associated with the large volume changes. In this letter, we introduce a core-shell design of silicon nanowires for highpower and long-life lithium battery electrodes. Silicon crystalline-amorphous core-shell nanowires were grown directly on stainless steel current collectors by a simple one-step synthesis. Amorphous Si shells instead of crystalline Si cores can be selected to be electrochemically active due to the difference of their lithiation potentials. Therefore, crystalline Si cores function as a stable mechanical support and an efficient electrical conducting pathway while amorphous shells store Li(+) ions. We demonstrate here that these core-shell nanowires have high charge storage capacity ( approximately 1000 mAh/g, 3 times of carbon) with approximately 90% capacity retention over 100 cycles. They also show excellent electrochemical performance at high rate charging and discharging (6.8 A/g, approximately 20 times of carbon at 1 h rate).

  10. An amorphous silicon photodiode with 2 THz gain-bandwidth product based on cycling excitation process

    Science.gov (United States)

    Yan, Lujiang; Yu, Yugang; Zhang, Alex Ce; Hall, David; Niaz, Iftikhar Ahmad; Raihan Miah, Mohammad Abu; Liu, Yu-Hsin; Lo, Yu-Hwa

    2017-09-01

    Since impact ionization was observed in semiconductors over half a century ago, avalanche photodiodes (APDs) using impact ionization in a fashion of chain reaction have been the most sensitive semiconductor photodetectors. However, APDs have relatively high excess noise, a limited gain-bandwidth product, and high operation voltage, presenting a need for alternative signal amplification mechanisms of superior properties. As an amplification mechanism, the cycling excitation process (CEP) was recently reported in a silicon p-n junction with subtle control and balance of the impurity levels and profiles. Realizing that CEP effect depends on Auger excitation involving localized states, we made the counter intuitive hypothesis that disordered materials, such as amorphous silicon, with their abundant localized states, can produce strong CEP effects with high gain and speed at low noise, despite their extremely low mobility and large number of defects. Here, we demonstrate an amorphous silicon low noise photodiode with gain-bandwidth product of over 2 THz, based on a very simple structure. This work will impact a wide range of applications involving optical detection because amorphous silicon, as the primary gain medium, is a low-cost, easy-to-process material that can be formed on many kinds of rigid or flexible substrates.

  11. Spatially localized current-induced crystallization of amorphous silicon films

    Czech Academy of Sciences Publication Activity Database

    Rezek, Bohuslav; Šípek, Emil; Ledinský, Martin; Krejza, P.; Stuchlík, Jiří; Fejfar, Antonín; Kočka, Jan

    2008-01-01

    Roč. 354, 19-25 (2008), s. 2305-2309 ISSN 0022-3093 R&D Projects: GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA MŠk LC510 Institutional research plan: CEZ:AV0Z10100521 Keywords : silicon * crystallization * atomic force and scanning tunneling microscopy * nanocrystals Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.449, year: 2008

  12. Simulation of the growth dynamics of amorphous and microcrystalline silicon

    OpenAIRE

    Bailat, Julien; Vallat-Sauvain, Evelyne; Vallat, A.; Shah, Arvind

    2008-01-01

    The qualitative description of the major microstructure characteristics of microcrystalline silicon is achieved through a three-dimensional discrete dynamical growth model. The model is based on three fundamental processes that determine surface morphology: (1) random deposition of particles, (2) local relaxation and (3) desorption. In this model, the incoming particle reaching the growing surface takes on a state variable representing a particular way of being incorporated into the material....

  13. Silicon nitride and intrinsic amorphous silicon double antireflection coatings for thin-film solar cells on foreign substrates

    International Nuclear Information System (INIS)

    Li, Da; Kunz, Thomas; Wolf, Nadine; Liebig, Jan Philipp; Wittmann, Stephan; Ahmad, Taimoor; Hessmann, Maik T.; Auer, Richard; Göken, Mathias; Brabec, Christoph J.

    2015-01-01

    Hydrogenated intrinsic amorphous silicon (a-Si:H) was investigated as a surface passivation method for crystalline silicon thin film solar cells on graphite substrates. The results of the experiments, including quantum efficiency and current density-voltage measurements, show improvements in cell performance. This improvement is due to surface passivation by an a-Si:H(i) layer, which increases the open circuit voltage and the fill factor. In comparison with our previous work, we have achieved an increase of 0.6% absolute cell efficiency for a 40 μm thick 4 cm 2 aperture area on the graphite substrate. The optical properties of the SiN x /a-Si:H(i) stack were studied using spectroscopic ellipsometer techniques. Scanning transmission electron microscopy inside a scanning electron microscope was applied to characterize the cross section of the SiN x /a-Si:H(i) stack using focus ion beam preparation. - Highlights: • We report a 10.8% efficiency for thin-film silicon solar cell on graphite. • Hydrogenated intrinsic amorphous silicon was applied for surface passivation. • SiN x /a-Si:H(i) stacks were characterized by spectroscopic ellipsometer techniques. • Cross-section micrograph was obtained by scanning transmission electron microscopy. • Quantum efficiency and J-V measurements show improvements in the cell performance

  14. Thermal conductivity of amorphous and nanocrystalline silicon films prepared by hot-wire chemical-vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jugdersuren, B.; Kearney, B. T.; Queen, D. R.; Metcalf, T. H.; Culbertson, J. C.; Chervin, C. N.; Stroud, R. M.; Nemeth, W.; Wang, Q.; Liu, Xiao

    2017-07-01

    We report 3..omega.. thermal conductivity measurements of amorphous and nanocrystalline silicon thin films from 85 to 300 K prepared by hot-wire chemical-vapor deposition, where the crystallinity of the films is controlled by the hydrogen dilution during growth. The thermal conductivity of the amorphous silicon film is in agreement with several previous reports of amorphous silicon prepared by a variety of deposition techniques. The thermal conductivity of the as-grown nanocrystalline silicon film is 70% higher and increases 35% more after an anneal at 600 degrees C. They all have similarly weak temperature dependence. Structural analysis shows that the as-grown nanocrystalline silicon is approximately 60% crystalline, nanograins and grain boundaries included. The nanograins, averaging 9.1 nm in diameter in the as-grown film, are embedded in an amorphous matrix. The grain size increases to 9.7 nm upon annealing, accompanied by the disappearance of the amorphous phase. We extend the models of grain boundary scattering of phonons with two different non-Debye dispersion relations to explain our result of nanocrystalline silicon, confirming the strong grain size dependence of heat transport for nanocrystalline materials. However, the similarity in thermal conductivity between amorphous and nanocrystalline silicon suggests the heat transport mechanisms in both structures may not be as dissimilar as we currently understand.

  15. In situ probing of surface hydrides on hydrogenated amorphous silicon using attenuated total reflection infrared spectroscopy

    CERN Document Server

    Kessels, W M M; Sanden, M C M; Aydil, E S

    2002-01-01

    An in situ method based on attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) is presented for detecting surface silicon hydrides on plasma deposited hydrogenated amorphous silicon (a-Si:H) films and for determining their surface concentrations. Surface silicon hydrides are desorbed by exposing the a-Si:H films to low energy ions from a low density Ar plasma and by comparing the infrared spectrum before and after this low energy ion bombardment, the absorptions by surface hydrides can sensitively be separated from absorptions by bulk hydrides incorporated into the film. An experimental comparison with other methods that utilize isotope exchange of the surface hydrogen with deuterium showed good agreement and the advantages and disadvantages of the different methods are discussed. Furthermore, the determination of the composition of the surface hydrogen bondings on the basis of the literature data on hydrogenated crystalline silicon surfaces is presented, and quantification of the h...

  16. First operation of a hybrid photon detector prototype with electrostatic cross-focussing and integrated silicon pixel readout

    CERN Document Server

    Alemi, M; Gys, Thierry; Mikulec, B; Piedigrossi, D; Puertolas, D; Rosso, E; Schomaker, R; Snoeys, W; Wyllie, Ken H

    2000-01-01

    We report on the first operation of a hybrid photon detector prototype with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment. The photon detector is based on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 4. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The prototype has been characterized using a low-intensity light-emitting diode operated in pulsed mode. Its performance in terms of single-photoelectron detection efficiency and imaging properties is presented. A model of photoelectron detection is proposed, and is shown to be in good agreement with the experimental data. It includes an estimate of the charge signal generated in the silicon detector, and the combined effects of the comparator threshold spread of the pixel readout chip, charge sharing at the pixel boundaries and back-scattering of the photoelectrons at the silicon detector surface...

  17. First operation of a hybrid photon detector prototype with electrostatic cross-focussing and integrated silicon pixel readout

    International Nuclear Information System (INIS)

    Alemi, M.; Campbell, M.; Gys, T.; Mikulec, B.; Piedigrossi, D.; Puertolas, D.; Rosso, E.; Schomaker, R.; Snoeys, W.; Wyllie, K.

    2000-01-01

    We report on the first operation of a hybrid photon detector prototype with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment. The photon detector is based on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 4. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The prototype has been characterized using a low-intensity light-emitting diode operated in pulsed mode. Its performance in terms of single-photoelectron detection efficiency and imaging properties is presented. A model of photoelectron detection is proposed, and is shown to be in good agreement with the experimental data. It includes an estimate of the charge signal generated in the silicon detector, and the combined effects of the comparator threshold spread of the pixel readout chip, charge sharing at the pixel boundaries and back-scattering of the photoelectrons at the silicon detector surface

  18. First operation of a hybrid photon detector prototype with electrostatic cross-focussing and integrated silicon pixel readout

    Energy Technology Data Exchange (ETDEWEB)

    Alemi, M.; Campbell, M.; Gys, T. E-mail: thierry.gys@cern.ch; Mikulec, B.; Piedigrossi, D.; Puertolas, D.; Rosso, E.; Schomaker, R.; Snoeys, W.; Wyllie, K

    2000-07-11

    We report on the first operation of a hybrid photon detector prototype with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment. The photon detector is based on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 4. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The prototype has been characterized using a low-intensity light-emitting diode operated in pulsed mode. Its performance in terms of single-photoelectron detection efficiency and imaging properties is presented. A model of photoelectron detection is proposed, and is shown to be in good agreement with the experimental data. It includes an estimate of the charge signal generated in the silicon detector, and the combined effects of the comparator threshold spread of the pixel readout chip, charge sharing at the pixel boundaries and back-scattering of the photoelectrons at the silicon detector surface.

  19. Characterisation of edgeless technologies for pixellated and strip silicon detectors with a micro-focused X-ray beam

    Science.gov (United States)

    Bates, R.; Blue, A.; Christophersen, M.; Eklund, L.; Ely, S.; Fadeyev, V.; Gimenez, E.; Kachkanov, V.; Kalliopuska, J.; Macchiolo, A.; Maneuski, D.; Phlips, B. F.; Sadrozinski, H. F.-W.; Stewart, G.; Tartoni, N.; Zain, R. M.

    2013-01-01

    Reduced edge or ``edgeless'' detector design offers seamless tileability of sensors for a wide range of applications from particle physics to synchrotron and free election laser (FEL) facilities and medical imaging. Combined with through-silicon-via (TSV) technology, this would allow reduced material trackers for particle physics and an increase in the active area for synchrotron and FEL pixel detector systems. In order to quantify the performance of different edgeless fabrication methods, 2 edgeless detectors were characterized at the Diamond Light Source using an 11 μm FWHM 15 keV micro-focused X-ray beam. The devices under test were: a 150 μm thick silicon active edge pixel sensor fabricated at VTT and bump-bonded to a Medipix2 ROIC; and a 300 μm thick silicon strip sensor fabricated at CIS with edge reduction performed by SCIPP and the NRL and wire bonded to an ALiBaVa readout system. Sub-pixel resolution of the 55 μm active edge pixels was achieved. Further scans showed no drop in charge collection recorded between the centre and edge pixels, with a maximum deviation of 5% in charge collection between scanned edge pixels. Scans across the cleaved and standard guard ring edges of the strip detector also show no reduction in charge collection. These results indicate techniques such as the scribe, cleave and passivate (SCP) and active edge processes offer real potential for reduced edge, tiled sensors for imaging detection applications.

  20. Design of a radiation hard silicon pixel sensor for X-ray science

    International Nuclear Information System (INIS)

    Schwandt, Joern

    2014-06-01

    At DESY Hamburg the European X-ray Free-Electron Laser (EuXFEL) is presently under construction. The EuXFEL has unique properties with respect to X-ray energy, instantaneous intensity, pulse length, coherence and number of pulses/sec. These properties of the EuXFEL pose very demanding requirements for imaging detectors. One of the detector systems which is currently under development to meet these challenges is the Adaptive Gain Integrating Pixel Detector, AGIPD. It is a hybrid pixel-detector system with 1024 x 1024 p + pixels of dimensions 200 μm x 200 μm, made of 16 p + nn + - silicon sensors, each with 10.52 cm x 2.56 cm sensitive area and 500 μm thickness. The particular requirements for the AGIPD are a separation between noise and single photons down to energies of 5 keV, more than 10 4 photons per pixel for a pulse duration of less than 100 fs, negligible pile-up at the EuXFEL repetition rate of 4.5 MHz, operation for X-ray doses up to 1 GGy, good efficiency for X-rays with energies between 5 and 20 keV, and minimal inactive regions at the edges. The main challenge in the sensor design is the required radiation tolerance and high operational voltage, which is required to reduce the so-called plasma effect. This requires a specially optimized sensor. The X-ray radiation damage results in a build-up of oxide charges and interface traps which lead to a reduction of the breakdown voltage, increased leakage current, increased interpixel capacitances and charge losses. Extensive TCAD simulations have been performed to understand the impact of X-ray radiation damage on the detector performance and optimize the sensor design. To take radiation damage into account in the simulation, radiation damage parameters have been determined on MOS capacitors and gate-controlled diodes as function of dose. The optimized sensor design was fabricated by SINTEF. Irradiation tests on test structures and sensors show that the sensor design is radiation hard and performs as

  1. Enhanced photoluminescence from ring resonators in hydrogenated amorphous silicon thin films at telecommunications wavelengths.

    Science.gov (United States)

    Patton, Ryan J; Wood, Michael G; Reano, Ronald M

    2017-11-01

    We report enhanced photoluminescence in the telecommunications wavelength range in ring resonators patterned in hydrogenated amorphous silicon thin films deposited via low-temperature plasma enhanced chemical vapor deposition. The thin films exhibit broadband photoluminescence that is enhanced by up to 5 dB by the resonant modes of the ring resonators due to the Purcell effect. Ellipsometry measurements of the thin films show a refractive index comparable to crystalline silicon and an extinction coefficient on the order of 0.001 from 1300 nm to 1600 nm wavelengths. The results are promising for chip-scale integrated optical light sources.

  2. Boron profiles in doped amorphous-silicon solar cells formed by plasma ion deposition

    International Nuclear Information System (INIS)

    Stoddart, C.T.H.; Hunt, C.P.; Coleman, J.H.

    1979-01-01

    Amorphous silicon p-n junction solar cells of large area (100 cm 2 ) and having a quantum efficiency approaching 100% in the blue region have been prepared by plasma ion-plating, the p layer being formed from diborane and silane gases in a cathode glow-discharge. Surface secondary ion mass spectrometry combined with ion beam etching was found to be a very sensitive method with high in-depth resolution for obtaining the initial boron-silicon profile of the solar cell p-n junction. (author)

  3. Development of laser-fired contacts for amorphous silicon layers obtained by Hot-Wire CVD

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, D. [XaRMAE-Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Diagonal 647, Barcelona 08028 (Spain)], E-mail: delfina@eel.upc.edu; Voz, C.; Blanque, S. [Universitat Politecnica de Catalunya, Grup de Recerca en Micro i Nanotecnologies, Jordi Girona 1-3, Barcelona 08034 (Spain); Ibarz, D.; Bertomeu, J. [XaRMAE-Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Diagonal 647, Barcelona 08028 (Spain); Alcubilla, R. [Universitat Politecnica de Catalunya, Grup de Recerca en Micro i Nanotecnologies, Jordi Girona 1-3, Barcelona 08034 (Spain)

    2009-03-15

    In this work we study aluminium laser-fired contacts for intrinsic amorphous silicon layers deposited by Hot-Wire CVD. This structure could be used as an alternative low temperature back contact for rear passivated heterojunction solar cells. An infrared Nd:YAG laser (1064 nm) has been used to locally fire the aluminium through the thin amorphous silicon layers. Under optimized laser firing parameters, very low specific contact resistances ({rho}{sub c} {approx} 10 m{omega} cm{sup 2}) have been obtained on 2.8 {omega} cm p-type c-Si wafers. This investigation focuses on maintaining the passivation quality of the interface without an excessive increase in the series resistance of the device.

  4. Simulation of localized surface plasmon in metallic nanoparticles embedded in amorphous silicon

    Science.gov (United States)

    Fantoni, A.; Fernandes, M.; Vygranenko, Y.; Louro, P.; Vieira, M.; Texeira, D.; Ribeiro, A.; Alegria, E.

    2017-08-01

    We propose the development and realization of a plasmonic structure based on the LSP interaction of metal nanoparticles with an embedding matrix of amorphous silicon. This structure need to be usable as the basis for a sensor device applied in biomedical applications, after proper functionalization with selective antibodies. The final sensor structure needs to be low cost, compact and disposable. The study reported in this paper aims to analyze different materials for nanoparticles and embedding medium composition. Metals of interest for nanoparticles composition are Aluminum, Gold and Alumina. As a preliminary approach to this device, we study in this work the optical properties of metal nanoparticles embedded in an amorphous silicon matrix, as a function of size, aspect-ratio and metal type. Following an analysis based on the exact solution of the Mie theory, experimental measurements realized with arrays of metal nanoparticles are compared with the simulations.

  5. Development of laser-fired contacts for amorphous silicon layers obtained by Hot-Wire CVD

    International Nuclear Information System (INIS)

    Munoz, D.; Voz, C.; Blanque, S.; Ibarz, D.; Bertomeu, J.; Alcubilla, R.

    2009-01-01

    In this work we study aluminium laser-fired contacts for intrinsic amorphous silicon layers deposited by Hot-Wire CVD. This structure could be used as an alternative low temperature back contact for rear passivated heterojunction solar cells. An infrared Nd:YAG laser (1064 nm) has been used to locally fire the aluminium through the thin amorphous silicon layers. Under optimized laser firing parameters, very low specific contact resistances (ρ c ∼ 10 mΩ cm 2 ) have been obtained on 2.8 Ω cm p-type c-Si wafers. This investigation focuses on maintaining the passivation quality of the interface without an excessive increase in the series resistance of the device.

  6. Photodecomposition of Hg - Photo - CVD monosilane. Application to hydrogenated amorphous silicon thin films

    International Nuclear Information System (INIS)

    Aka, B.

    1989-04-01

    The construction of a Hg-photo-CVD device is discussed. The system enables the manufacturing of hydrogenous thin films of amorphous silicon from monosilane compound. The reaction mechanisms taking place in the gaseous phase and at the surface, and the optimal conditions for the amorphous silicon film growth are studied. The analysis technique is based on the measurement of the difference between the condensation points of the gaseous components of the mixture obtained from the monosilane photolysis. A kinetic simplified model is proposed. Conductivity measurements are performed and the heat treatment effects are analyzed. Trace amounts of oxygen and carbon are found in the material. No Hg traces are detected by SIMS analysis [fr

  7. Ion-beam doping of amorphous silicon with germanium isovalent impurity

    International Nuclear Information System (INIS)

    Khokhlov, A.F.; Mashin, A.I.; Ershov, A.V.; Mashin, N.I.; Ignat'eva, E.A.

    1988-01-01

    Experimental data on ion-beam doping of amorphous silicon containing minor germanium additions by donor and acceptor impurity are presented. Doping of a-Si:Ge films as well as of a-Si layers was performed by implantation of 40 keV energy B + ions or 120 keV energy phosphorus by doses from 3.2x10 13 up to 1.3x10 17 cm -2 . Ion current density did not exceed 1 μA/cm 2 . Radiation defect annealing was performed at 400 deg C temperature during 30 min. Temperature dependences of conductivity in the region of 160-500 K were studied. It is shown that a-Si:Ge is like hydrogenized amorphous silicon in relation to doping

  8. Detection of charged particles in thick hydrogenated amorphous silicon layers

    International Nuclear Information System (INIS)

    Fujieda, I.; Cho, G.; Kaplan, S.N.; Perez-Mendez, V.; Qureshi, S.; Ward, W.; Street, R.A.

    1988-03-01

    We show our results in detecting particles of various linear energy transfer, including minimum ionizing electrons from a Sr-90 source with 5 to 12 micron thick n-i-p and p-i-n diodes. We measured W ( average energy to produce one electron-hole pair) using 17keV filtered xray pulses with a result W = 6.0 /+-/ 0.2eV. This is consistent with the expected value for a semiconductor with band gap of 1.7 to 1.9eV. With heavily ionizing particles such as 6 MeV alphas and 1 to 2 MeV protons, there was some loss of signal due to recombination in the particle track. The minimum ionizing electrons showed no sign of recombination. Applications to pixel and strip detectors for physics experiments and medical imaging will be discussed. 7 refs., 8 figs

  9. Thermal stability of hot-wire deposited amorphous silicon

    CSIR Research Space (South Africa)

    Arendse, CJ

    2006-04-01

    Full Text Available the solar cells may also be exposed to temperature cycling over a wide range of 2. Experimental details The a-Si:H sample was deposited simultaneously on single-side polished <100> crystalline silicon (c-Si) and Corning 7059 substrates by the hot... change in the defect structure is observed, caused by y clustering at 400 -C, caused by the alignment of unterminated , concentration or both. Raman scattering shows evidence that no s upon annealing. ) 92 – 94 www.elsevier.com/locate/tsf nitrogen...

  10. Large-size high-performance transparent amorphous silicon sensors for laser beam position detection

    International Nuclear Information System (INIS)

    Calderon, A.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto, A.L.; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Luque, J.M.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C.; Koehler, C.; Lutz, B.; Schubert, M.B.; Werner, J.H.

    2006-01-01

    We present the measured performance of a new generation of semitransparent amorphous silicon position detectors. They have a large sensitive area (30x30mm 2 ) and show good properties such as a high response (about 20mA/W), an intrinsic position resolution better than 3μm, a spatial-point reconstruction precision better than 10μm, deflection angles smaller than 10μrad and a transmission power in the visible and NIR higher than 70%

  11. First Measurements of the Performance of New Semitransparent Amorphous Silicon Sensor Prototypes

    International Nuclear Information System (INIS)

    Calderon, A.; Calvo, E.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto, A. L.; Alberdi, J.; Arce, P.; Barcala, J. M.; Ferrando, A.; Josa, M. I.; Luque, J. M.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.

    2004-01-01

    We present first results on the performance of a new generation of semitransparent amorphous silicon position detectors having good properties such as an intrinsic position resolution better than 5μm, an spatial point reconstruction precision better than 10 μm, deflection angles smaller than 10μrad and transmission in the visible and NIR higher than 70%. In addition the sensitive area is very large: 30x30 cm 3 . (Author) 10 refs

  12. Results on photon and neutron irradiation of semitransparent amorphous-silicon sensors

    CERN Document Server

    Carabe, J; Ferrando, A; Fuentes, J; Gandia, J J; Josa-Mutuberria, I; Molinero, A; Oller, J C; Arce, P; Calvo, E; Figueroa, C F; García, N; Matorras, F; Rodrigo, T; Vila, I; Virto, A L; Fenyvesi, A; Molnár, J; Sohler, D

    2000-01-01

    Semitransparent amorphous-silicon sensors are basic elements for laser 2D position reconstruction in the CMS multipoint alignment link system. Some of the sensors have to work in a very hard radiation environment. Two different sensor types have been irradiated with /sup 60/Co photons (up to 100 kGy) and fast neutrons (up to 10/sup 15 / cm/sup -2/), and the subsequent change in their performance has been measured. (13 refs).

  13. Observation of correlation effects in the hopping transport in amorphous silicon

    International Nuclear Information System (INIS)

    Voegele, V.; Kalbitzer, S.; Boehringer, K.

    1985-01-01

    Amorphous silicon films have been modified by the implantation of Au or Si ions. The d.c. conductivity, measured between 300 and 15 K, was found to exhibit hopping exponents m which increase with decreasing temperature. Depending on the varied defect densities, m ranges between the limits of 1/4 and 1. These results can be explained by variable-range-hopping theory, if a Coulomb correlation term is included. (author)

  14. Three-dimensional amorphous silicon solar cells on periodically ordered ZnO nanocolumns

    Czech Academy of Sciences Publication Activity Database

    Neykova, Neda; Moulin, E.; Campa, A.; Hruška, Karel; Poruba, Aleš; Stückelberger, M.; Haug, F.J.; Topič, M.; Ballif, C.; Vaněček, Milan

    2015-01-01

    Roč. 212, č. 8 (2015), s. 1823-1829 ISSN 1862-6300 R&D Projects: GA MŠk 7E12029; GA ČR(CZ) GA14-05053S EU Projects: European Commission(XE) 283501 - FAST TRACK Institutional support: RVO:68378271 Keywords : amorphous materials * hydrothermal growth * nanostructures * silicon * solar cells * ZnO Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.648, year: 2015

  15. Effect of deposition and annealing conditions on the optical properties of amorphous silicon

    International Nuclear Information System (INIS)

    Mashin, A.I.; Ershov, A.V.; Khokhlov, D.A.

    1998-01-01

    The spectral characteristics of the refractive index and the extinction coefficient in the range 0.6-2.0 eV for amorphous silicon films prepared by electron-beam evaporation with variation of the substrate temperature, deposition rate, and annealing temperature in air are presented. The results obtained are discussed on the basis of the changes in the Penn gap energy as a function of the indicated preparation and treatment conditions

  16. Simulating liquid and amorphous silicon dioxide using real-space pseudopotentials

    Science.gov (United States)

    Kim, Minjung; Khoo, K. H.; Chelikowsky, James R.

    2012-08-01

    We present ab initio molecular dynamics simulations of liquid and amorphous silicon dioxide. The interatomic forces in our simulations are calculated using real-space pseudopotentials, which were constructed using density-functional theory. Our simulations are carried out using Born-Oppenheimer molecular dynamics (i.e., the electronic structure problem is solved by performing fully self-consistent calculations for each time step). Using a subspace filtering iteration technique, we avoid solving the Kohn-Sham eigenvalue with “standard” diagonalization methods. We consider systems with up to 192 atoms (64 SiO2 units) in a periodic supercell for simulations over 20 ps. The liquid and amorphous ensembles are formed by thermally quenching random configurations of silicon and oxygen atoms. We compare our liquid and amorphous simulations with previously performed Car-Parrinello molecular dynamic simulations and with experiment. In particular, we examine the possible formation of two-membered rings, which were not observed in previous simulations using quantum forces. We attribute this difference to a “biased” initial configuration, which inhibits the formation of two-membered rings. We also compare the structural properties of our simulated amorphous systems with neutron diffraction measurements and find good agreement.

  17. Control of single-electron charging of metallic nanoparticles onto amorphous silicon surface.

    Science.gov (United States)

    Weis, Martin; Gmucová, Katarína; Nádazdy, Vojtech; Capek, Ignác; Satka, Alexander; Kopáni, Martin; Cirák, Július; Majková, Eva

    2008-11-01

    Sequential single-electron charging of iron oxide nanoparticles encapsulated in oleic acid/oleyl amine envelope and deposited by the Langmuir-Blodgett technique onto Pt electrode covered with undoped hydrogenated amorphous silicon film is reported. Single-electron charging (so-called quantized double-layer charging) of nanoparticles is detected by cyclic voltammetry as current peaks and the charging effect can be switched on/off by the electric field in the surface region induced by the excess of negative/positive charged defect states in the amorphous silicon layer. The particular charge states in amorphous silicon are created by the simultaneous application of a suitable bias voltage and illumination before the measurement. The influence of charged states on the electric field in the surface region is evaluated by the finite element method. The single-electron charging is analyzed by the standard quantized double layer model as well as two weak-link junctions model. Both approaches are in accordance with experiment and confirm single-electron charging by tunnelling process at room temperature. This experiment illustrates the possibility of the creation of a voltage-controlled capacitor for nanotechnology.

  18. Study of Charge Diffusion in a Silicon Detector Using an Energy Sensitive Pixel Readout Chip

    CERN Document Server

    Schioppa, E. J.; van Beuzekom, M.; Visser, J.; Koffeman, E.; Heijne, E.; Engel, K. J.; Uher, J.

    2015-01-01

    A 300 μm thick thin p-on-n silicon sensor was connected to an energy sensitive pixel readout ASIC and exposed to a beam of highly energetic charged particles. By exploiting the spectral information and the fine segmentation of the detector, we were able to measure the evolution of the transverse profile of the charge carriers cloud in the sensor as a function of the drift distance from the point of generation. The result does not rely on model assumptions or electric field calculations. The data are also used to validate numerical simulations and to predict the detector spectral response to an X-ray fluorescence spectrum for applications in X-ray imaging.

  19. On magnetic ordering in silicon made amorphous by ion implantation

    International Nuclear Information System (INIS)

    Khokhlov, A.F.; Mashin, A.N.; Polyakov, S.M.

    1978-01-01

    Temperature dependences of the EPR intensity for silicon irradiated with the neon and argon ions at (2-4)x10 17 cm -2 doses have been studied. Paramagnetic defects with 2.0055 g-factor were recorded. Intensity jump associated with the transformation of the irradiated layer part to ferromagnetic state is observed at approximately 140 K. Paramagnetic centre distributions at temperatures above and lower the magnetic ordering temperature have heen investigated. It has been found, that ferromagnetic ordering is observed in a layer with the defect concentrations (3-7)x10 20 cm -3 , located at a depth > 100 A. Magnetic-ordered layer thickness is proportional to the incident ion energy

  20. Deposition and characterization of amorphous silicon with embedded nanocrystals and microcrystalline silicon for thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, R., E-mail: rambrosi@uacj.mx [Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Puebla (Mexico); Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, UACJ, C.J., Chihuahua (Mexico); Moreno, M.; Torres, A. [Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Puebla (Mexico); Carrillo, A. [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, UACJ, C.J., Chihuahua (Mexico); Vivaldo, I.; Cosme, I. [Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Puebla (Mexico); Heredia, A. [Universidad Popular Autónoma del Estado de Puebla, Puebla (Mexico)

    2015-09-15

    Highlights: • Nanostructured silicon thin films were deposited by PECVD. • Polymorphous and microcrystalline were obtained varying the pressure and power. • Structural and optoelectronics properties were studied. • The σ{sub dark} changed by 5 order of magnitude under illumination, V{sub d} was at 2.5 A/s. • The evidence of embedded nanocrystals into the amorphous matrix was investigated. - Abstract: Amorphous silicon thin films with embedded nanocrystals and microcrystalline silicon were deposited by the standard Radio Frequency (RF) Plasma Enhanced Chemical Vapor Deposition (PECVD) technique, from SiH{sub 4}, H{sub 2}, Ar gas mixture at substrate temperature of 200 °C. Two series of films were produced varying deposition parameters as chamber pressure and RF power density. The chemical bonding in the films was characterized by Fourier transform infrared spectroscopy, where it was observed a correlation between the hydrogen content and the morphological and electrical properties in the films. Electrical and optical parameters were extracted in both series of films, as room temperature conductivity (σ{sub RT}), activation energy (E{sub a}), and optical band gap (E{sub g}). As well, structural analysis in the films was performed by Raman spectroscopy and Atomic Force Microscopy (AFM), which gives an indication of the films crystallinity. The photoconductivity changed in a range of 2 and 6 orders of magnitude from dark to AM 1.5 illumination conditions, which is of interest for thin film solar cells applications.

  1. Deposition and characterization of amorphous silicon with embedded nanocrystals and microcrystalline silicon for thin film solar cells

    International Nuclear Information System (INIS)

    Ambrosio, R.; Moreno, M.; Torres, A.; Carrillo, A.; Vivaldo, I.; Cosme, I.; Heredia, A.

    2015-01-01

    Highlights: • Nanostructured silicon thin films were deposited by PECVD. • Polymorphous and microcrystalline were obtained varying the pressure and power. • Structural and optoelectronics properties were studied. • The σ dark changed by 5 order of magnitude under illumination, V d was at 2.5 A/s. • The evidence of embedded nanocrystals into the amorphous matrix was investigated. - Abstract: Amorphous silicon thin films with embedded nanocrystals and microcrystalline silicon were deposited by the standard Radio Frequency (RF) Plasma Enhanced Chemical Vapor Deposition (PECVD) technique, from SiH 4 , H 2 , Ar gas mixture at substrate temperature of 200 °C. Two series of films were produced varying deposition parameters as chamber pressure and RF power density. The chemical bonding in the films was characterized by Fourier transform infrared spectroscopy, where it was observed a correlation between the hydrogen content and the morphological and electrical properties in the films. Electrical and optical parameters were extracted in both series of films, as room temperature conductivity (σ RT ), activation energy (E a ), and optical band gap (E g ). As well, structural analysis in the films was performed by Raman spectroscopy and Atomic Force Microscopy (AFM), which gives an indication of the films crystallinity. The photoconductivity changed in a range of 2 and 6 orders of magnitude from dark to AM 1.5 illumination conditions, which is of interest for thin film solar cells applications

  2. Investigating the Inverse Square Law with the Timepix Hybrid Silicon Pixel Detector: A CERN [at] School Demonstration Experiment

    Science.gov (United States)

    Whyntie, T.; Parker, B.

    2013-01-01

    The Timepix hybrid silicon pixel detector has been used to investigate the inverse square law of radiation from a point source as a demonstration of the CERN [at] school detector kit capabilities. The experiment described uses a Timepix detector to detect the gamma rays emitted by an [superscript 241]Am radioactive source at a number of different…

  3. Raman study of localized recrystallization of amorphous silicon induced by laser beam

    KAUST Repository

    Tabet, Nouar A.

    2012-06-01

    The adoption of amorphous silicon based solar cells has been drastically hindered by the low efficiency of these devices, which is mainly due to a low hole mobility. It has been shown that using both crystallized and amorphous silicon layers in solar cells leads to an enhancement of the device performance. In this study the crystallization of a-Si prepared by PECVD under various growth conditions has been investigated. The growth stresses in the films are determined by measuring the curvature change of the silicon substrate before and after film deposition. Localized crystallization is induced by exposing a-Si films to focused 532 nm laser beam of power ranging from 0.08 to 8 mW. The crystallization process is monitored by recording the Raman spectra after various exposures. The results suggest that growth stresses in the films affect the minimum laser power (threshold power). In addition, a detailed analysis of the width and position of the Raman signal indicates that the silicon grains in the crystallized regions are of few nm diameter. © 2012 IEEE.

  4. Characterization of thin irradiated epitaxial silicon sensors for the CMS phase II pixel upgrade

    CERN Document Server

    Centis Vignali, Matteo; Eichhorn, Thomas; Garutti, Erika; Junkes, Alexandra; Steinbrueck, Georg

    2015-01-01

    The high-luminosity upgrade fo the large hadron collider foreseen for 2023 resulted in the decision to replace the tracker system of the CMS experiment. The innermost layer of the new pixel detector will experience fluences in the order of $\\phi_{eq} \\approx 10^{16}$~cm$^{-2}$ and a dose of $\\approx 5$~MGy after an integrated luminosity of 3000~fb$^{-1}$. Several materials and designs are under investigation in order to build a detector that can withstand such high fluences. Thin planar silicon sensors are good canditates to achieve this goal since the degradation of the signal produced by traversing particles is less severe than for thicker devices. A study has been carried out in order to characterize highly irradiated planar epitaxial silicon sensors with an active thickness of 100~$\\mu$m. The investigation includes pad diodes and strip detectors irradiated up to a fluence of $\\phi_{eq} = 1.3 \\times 10^{16}$~cm$^{-2}$. The electrical properties of diodes have bee...

  5. Properties of hydrogenated amorphous silicon (a-Si:H) deposited using a microwave Ecr plasma

    International Nuclear Information System (INIS)

    Mejia H, J.A.

    1996-01-01

    Hydrogenated amorphous silicon (a-Si:H) films have been widely applied to semiconductor devices, such as thin film transistors, solar cells and photosensitive devices. In this work, the first Si-H-Cl alloys (obtained at the National Institute for Nuclear Research of Mexico) were formed by a microwave electron cyclotron resonance (Ecr) plasma CVD method. Gaseous mixtures of silicon tetrachloride (Si Cl 4 ), hydrogen and argon were used. The Ecr plasma was generated by microwaves at 2.45 GHz and a magnetic field of 670 G was applied to maintain the discharge after resonance condition (occurring at 875 G). Si and Cl contents were analyzed by Rutherford Backscattering Spectrometry (RBS). It was found that, increasing proportion of Si Cl 4 in the mixture or decreasing pressure, the silicon and chlorine percentages decrease. Optical gaps were obtained by spectrophotometry. Decreasing temperature, optical gap values increase from 1.4 to 1.5 eV. (Author)

  6. X-ray spectroscopy of electronic structure of amorphous silicon and silicyne

    International Nuclear Information System (INIS)

    Mashin, A.I.; Khokhlov, A.F.; Mashin, N.I.; Domashevskaya, Eh.P.; Terekhov, V.A.

    2001-01-01

    SiK β and SiL 23 emission spectra of crystalline silicon (c-Si), amorphous hydrogenated silicon (α-Si:H) and silicyne have been studied by X-ray and ultrasoft X-ray spectroscopy. It is observed that SiL 23 emission spectra of silicyne displays not two maximums, as it usually observed for the c-Si and α-Si:H, but three ones. The third one is seen at high energies near 95.7 eV, and has an intensity about 75%. An additional maximum in the short- wave part of SiK β emission spectrum is observed. This difference of shapes of X-ray spectra between α-Si:H and silicyne is explained by the presence in silicyne a strong π-component of chemical bonds of a silicon atoms in silicyne [ru

  7. X-ray spectroscopy of electronic structure of amorphous silicon and silicyne

    CERN Document Server

    Mashin, A I; Mashin, N I; Domashevskaya, E P; Terekhov, V A

    2001-01-01

    SiK subbeta and SiL sub 2 sub 3 emission spectra of crystalline silicon (c-Si), amorphous hydrogenated silicon (alpha-Si:H) and silicyne have been studied by X-ray and ultrasoft X-ray spectroscopy. It is observed that SiL sub 2 sub 3 emission spectra of silicyne displays not two maximums, as it usually observed for the c-Si and alpha-Si:H, but three ones. The third one is seen at high energies near 95.7 eV, and has an intensity about 75%. An additional maximum in the short- wave part of SiK subbeta emission spectrum is observed. This difference of shapes of X-ray spectra between alpha-Si:H and silicyne is explained by the presence in silicyne a strong pi-component of chemical bonds of a silicon atoms in silicyne

  8. Near infrared photoluminescence of the hydrogenated amorphous silicon thin films with in-situ embedded silicon nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Remeš, Zdeněk; Stuchlík, Jiří; Purkrt, Adam; Ledinský, Martin; Kupčík, Jaroslav

    2017-01-01

    Roč. 61, č. 2 (2017), s. 136-140 ISSN 0862-5468 R&D Projects: GA ČR GC16-10429J Grant - others:AV ČR(CZ) KONNECT-007 Program:Bilaterální spolupráce Institutional support: RVO:68378271 ; RVO:61388980 Keywords : amorphous silicon * chemical vapor deposition * photothermal deflection spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism; CA - Inorganic Chemistry (UACH-T) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Inorganic and nuclear chemistry (UACH-T) Impact factor: 0.439, year: 2016

  9. Efficient amorphous silicon solar cells: characterization, optimization, and optical loss analysis

    Directory of Open Access Journals (Sweden)

    Wayesh Qarony

    Full Text Available Hydrogenated amorphous silicon (a-Si:H has been effectively utilized as photoactive and doped layers for quite a while in thin-film solar applications but its energy conversion efficiency is limited due to thinner absorbing layer and light degradation issue. To overcome such confinements, it is expected to adjust better comprehension of device structure, material properties, and qualities since a little enhancement in the photocurrent significantly impacts on the conversion efficiency. Herein, some numerical simulations were performed to characterize and optimize different configuration of amorphous silicon-based thin-film solar cells. For the optical simulation, two-dimensional finite-difference time-domain (FDTD technique was used to analyze the superstrate (p-i-n planar amorphous silicon solar cells. Besides, the front transparent contact layer was also inquired by using SnO2:F and ZnO:Al materials to improve the photon absorption in the photoactive layer. The cell was studied for open-circuit voltage, external quantum efficiency, and short-circuit current density, which are building blocks for solar cell conversion efficiency. The optical simulations permit investigating optical losses at the individual layers. The enhancement in both short-circuit current density and open-circuit voltage prompts accomplishing more prominent power conversion efficiency. A maximum short-circuit current density of 15.32 mA/cm2 and an energy conversion efficiency of 11.3% were obtained for the optically optimized cell which is the best in class amorphous solar cell. Keywords: Superstrate p-i-n, Power loss, Quantum efficiency, Short circuit current, FDTD

  10. Percolation network in resistive switching devices with the structure of silver/amorphous silicon/p-type silicon

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanhong; Gao, Ping; Bi, Kaifeng; Peng, Wei [School of Physics and Optoelectronic Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116024 (China); Jiang, Xuening; Xu, Hongxia [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian116024 (China)

    2014-01-27

    Conducting pathway of percolation network was identified in resistive switching devices (RSDs) with the structure of silver/amorphous silicon/p-type silicon (Ag/a-Si/p-Si) based on its gradual RESET-process and the stochastic complex impedance spectroscopy characteristics (CIS). The formation of the percolation network is attributed to amounts of nanocrystalline Si particles as well as defect sites embedded in a-Si layer, in which the defect sites supply positions for Ag ions to nucleate and grow. The similar percolation network has been only observed in Ag-Ge-Se based RSD before. This report provides a better understanding for electric properties of RSD based on the percolation network.

  11. Phosphorus-doped Amorphous Silicon Nitride Films Applied to Crystalline Silicon Solar Cells

    NARCIS (Netherlands)

    Feinäugle, Matthias

    2008-01-01

    The Photovoltaics Group at the Universitat Politècnica de Catalunya is investigating silicon carbide (SiC) for the electronic passivation of the surface of crystalline silicon solar cells. The doping of SiC passivation layers with phosphorus resulted in a clear improvement of the minority carrier

  12. Food applications and the toxicological and nutritional implications of amorphous silicon dioxide.

    Science.gov (United States)

    Villota, R; Hawkes, J G

    1986-01-01

    The chemical and physical characteristics of the different types of amorphous silicon dioxide contribute to the versatility of these compounds in a variety of commercial applications. Traditionally, silicas have had a broad spectra of product usage including such areas as viscosity control agents in inks, paints, corrosion-resistant coatings, etc. and as excipients in pharmaceuticals and cosmetics. In the food industry, the most important application has been as an anticaking agent in powdered mixes, seasonings, and coffee whiteners. However, amorphous silica has multifunctional properties that would allow it to act as a viscosity control agent, emulsion stabilizer, suspension and dispersion agent, desiccant, etc. The utilization of silicas in these potential applications, however, has not been undertaken, partially because of the limited knowledge of their physiochemical interactions with other food components and partially due to their controversial status from a toxicological point of view. The main goal of this review is to compile current information on the incorporation of amorphous silicon dioxide as a highly functional and viable additive in the food processing industry as well as to discuss the most recent toxicological investigations of silica in an attempt to present some of the potential food applications and their concomitant toxicological implications. Some of the more significant differences between various silicas and their surface chemistries are presented to elucidate some of their mechanisms of interaction with food components and other biological systems and to aid in the prediction of their rheological or toxicological behavior.

  13. Research and development of photovoltaic power system. Interface studies of amorphous silicon; Taiyoko hatsuden system no kenkyu kaihatsu. Amorphous silicon kaimen no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Konagai, M. [Tokyo Institute of Technology, Tokyo (Japan). Faculty of Engineering

    1994-12-01

    This paper reports the result obtained during fiscal 1994 on research on interface of amorphous silicon for solar cells. In research on amorphous solar cells using ZnO for transparent electrically conductive films, considerations were given on a growth mechanism of a ZnO film using the MOCVD process. It was made clear that the ZnO film grows with Zn(OH)2 working as a film forming species. It was also shown that the larger the ZnO particle size is, the more the solar cell efficiency is improved. Furthermore, theoretical elucidation was made on effects of rear face of an interface on cell characteristics, and experimental discussions were given subsequently. In research on solar cells using hydrogen diluted `i` layers, delta-doped solar cells were fabricated based on basic data obtained in the previous fiscal year, and the hydrogen dilution effect was evaluated from the cell characteristics. When the hydrogen dilution ratio is increased from zero to one, the conversion efficiency has improved from 12.2% to 12.6%. In addition, experiments and discussions were given on solar cells fabricated by using SiH2Cl2. 9 figs.

  14. Photo-excited hot carrier dynamics in hydrogenated amorphous silicon imaged by 4D electron microscopy

    Science.gov (United States)

    Liao, Bolin; Najafi, Ebrahim; Li, Heng; Minnich, Austin J.; Zewail, Ahmed H.

    2017-09-01

    Charge carrier dynamics in amorphous semiconductors has been a topic of intense research that has been propelled by modern applications in thin-film solar cells, transistors and optical sensors. Charge transport in these materials differs fundamentally from that in crystalline semiconductors owing to the lack of long-range order and high defect density. Despite the existence of well-established experimental techniques such as photoconductivity time-of-flight and ultrafast optical measurements, many aspects of the dynamics of photo-excited charge carriers in amorphous semiconductors remain poorly understood. Here, we demonstrate direct imaging of carrier dynamics in space and time after photo-excitation in hydrogenated amorphous silicon (a-Si:H) by scanning ultrafast electron microscopy (SUEM). We observe an unexpected regime of fast diffusion immediately after photoexcitation, together with spontaneous electron-hole separation and charge trapping induced by the atomic disorder. Our findings demonstrate the rich dynamics of hot carrier transport in amorphous semiconductors that can be revealed by direct imaging based on SUEM.

  15. Computational Evaluation of Amorphous Carbon Coating for Durable Silicon Anodes for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jeongwoon Hwang

    2015-10-01

    Full Text Available We investigate the structural, mechanical, and electronic properties of graphite-like amorphous carbon coating on bulky silicon to examine whether it can improve the durability of the silicon anodes of lithium-ion batteries using molecular dynamics simulations and ab-initio electronic structure calculations. Structural models of carbon coating are constructed using molecular dynamics simulations of atomic carbon deposition with low incident energies (1–16 eV. As the incident energy decreases, the ratio of sp2 carbons increases, that of sp3 decreases, and the carbon films become more porous. The films prepared with very low incident energy contain lithium-ion conducting channels. Also, those films are electrically conductive to supplement the poor conductivity of silicon and can restore their structure after large deformation to accommodate the volume change during the operations. As a result of this study, we suggest that graphite-like porous carbon coating on silicon will extend the lifetime of the silicon anodes of lithium-ion batteries.

  16. Performance of hybrid photon detector prototypes with encapsulated silicon pixel detector and readout for the RICH counters of LHCb

    International Nuclear Information System (INIS)

    Campbell, M.; George, K.A.; Girone, M.; Gys, T.; Jolly, S.; Piedigrossi, D.; Riedler, P.; Rozema, P.; Snoeys, W.; Wyllie, K.

    2003-01-01

    These proceedings report on the performance of the latest prototype pixel hybrid photon detector in preparation for the LHCb Ring Imaging Cherenkov detectors. The prototype encapsulates a silicon pixel detector bump-bonded to a binary read-out chip with short (25 ns) peaking time and low ( - ) detection threshold. A brief description of the prototype is given, followed by the preliminary results of the characterisation of the prototype behaviour when tested using a low intensity pulsed light emitting diode. The results obtained are in good agreement with those obtained using previous prototypes. The proceedings conclude with a summary of the current status and future plans

  17. Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides

    DEFF Research Database (Denmark)

    Kuyken, B.; Ji, Hua; Clemmen, S.

    2011-01-01

    We propose hydrogenated amorphous silicon nanowires as a platform for nonlinear optics in the telecommunication wavelength range. Extraction of the nonlinear parameter of these photonic nanowires reveals a figure of merit larger than 2. It is observed that the nonlinear optical properties...... of these waveguides degrade with time, but that this degradation can be reversed by annealing the samples. A four wave mixing conversion efficiency of + 12 dB is demonstrated in a 320 Gbit/s serial optical waveform data sampling experiment in a 4 mm long photonic nanowire....

  18. Effect of low level doping of boron and phosphorus on the properties of amorphous silicon films

    International Nuclear Information System (INIS)

    Tran, N.T.; Epstein, K.A.; Grimmer, D.P.; Vernstrom, G.D.

    1987-01-01

    Effect of the low level doping of boron and phosphorus on the properties of amorphous silicon films (a-Si:H) were studied. Doping level of both boron and phosphorus was in the range of 10/sup 17/ atoms/cm/sup 3/. Apparent improvement in the stability of dark and photoconductivity of a-Si: films upon low level doping does not result from the elimination of light-induced defects. The stability of the dark and photoconductivity upon doping is an indication of pinning of the Fermi level

  19. Large Size High Performance Transparent Amorphous Silicon Sensors for Laser Beam Position Detection and Monitoring

    International Nuclear Information System (INIS)

    Calderon, A.; Martinez Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto; Alberdi, J.; Arce, P.; Barcala, J. M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Luque, J. M.; Molinero, A.; Navarrete, J.; Oller, J. C.; Kohler, C.; Lutz, B.; Schubert, M. B.

    2006-01-01

    We present the measured performance of a new generation of semitransparente amorphous silicon position detectors. They have a large sensitive area (30 x 30 mm2) and show good properties such as a high response (about 20 mA/W), an intinsic position resolution better than 3 m, a spatial point reconstruction precision better than 10 m, deflection angles smaller than 10 rad and a transmission power in the visible and NIR higher than 70%. In addition, multipoint alignment monitoring, using up to five sensors lined along a light path of about 5 meters, can be achieved with a resolution better than 20m. (Author)

  20. Study of some structural properties of hydrogenated amorphous silicon thin films prepared by radiofrequency cathodic sputtering

    International Nuclear Information System (INIS)

    Mellassi, K.; Chafik El Idrissi, M.; Barhdadi, A.

    2001-08-01

    In this work, we have used the grazing X-rays reflectometry technique to characterise hydrogenated amorphous silicon thin films deposited by radio-frequency cathodic sputtering. Relfectometry measurements are taken immediately after films deposition as well as after having naturally oxidised their surfaces during a more or less prolonged stay in the ambient. For the films examined just after deposition, the role of hydrogen appears in the increase of their density. For those analysed after a short stay in the ambient, hydrogen plays a protective role against the oxidation of their surfaces. This role disappears when the stay in the ambient is so long. (author)

  1. Serially Connected Micro Amorphous Silicon Solar Cells for Compact High-Voltage Sources

    OpenAIRE

    Nam, Jiyoon; Lee, Youngjoo; Kim, Chang Su; Kim, Hogyoung; Kim, Dong-Ho; Jo, Sungjin

    2016-01-01

    We demonstrate a compact amorphous silicon (a-Si) solar module to be used as high-voltage power supply. In comparison with the organic solar module, the main advantages of the a-Si solar module are its compatibility with photolithography techniques and relatively high power conversion efficiency. The open circuit voltage of a-Si solar cells can be easily controlled by serially interconnecting a-Si solar cells. Moreover, the a-Si solar module can be easily patterned by photolithography in any ...

  2. Thin metal layer as transparent electrode in n-i-p amorphous silicon solar cells

    Directory of Open Access Journals (Sweden)

    Theuring Martin

    2014-07-01

    Full Text Available In this paper, transparent electrodes, based on a thin silver film and a capping layer, are investigated. Low deposition temperature, flexibility and low material costs are the advantages of this type of electrode. Their applicability in structured n-i-p amorphous silicon solar cells is demonstrated in simulation and experiment. The influence of the individual layer thicknesses on the solar cell performance is discussed and approaches for further improvements are given. For the silver film/capping layer electrode, a higher solar cell efficiency could be achieved compared to a reference ZnO:Al front contact.

  3. Structural, dynamical, and electronic properties of amorphous silicon: An ab initio molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Car, R.; Parrinello, M.

    1988-01-18

    An amorphous silicon structure is obtained with a computer simulation based on a new molecular-dynamics technique in which the interatomic potential is derived from a parameter-free quantum mechanical method. Our results for the atomic structure, the phonon spectrum, and the electronic properties are in excellent agreement with experiment. In addition we study details of the microscopic dynamics which are not directly accessible to experiment. We find in particular that structural defects are associated with weak bonds. These may give rise to low-frequency vibrational modes.

  4. On the temperature dependence of the photoconductivity of amorphous silicon nitride (a-Si Nx: H)

    International Nuclear Information System (INIS)

    Tessler, L.R.; Alvarez, F.; Chambouleyron, I.

    1984-01-01

    Experimental results on the photoconducticity of amorphous hydrogenated silicon nitride a-SiNx: H prepared from plasma decomposition of a gaseus mixture of silane and nitrogen ([Si H 4 ]/[N 2 ] ∼ 0.33) are presented. The material is deposited in a capacitively coupled glow discharge system and nitrogen content was continuously increased by increasing the RF power dissipated in the plasma. Studies of the photocurrent as a function of temperature as a function of temperature and lig ht intensities are reported. (Author) [pt

  5. The reversal of light-induced degradation in amorphous silicon solar cells by an electric field

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, D.E.; Rajan, K. [Solarex, a Business Unit of Amoco/Enron Solar, Newtown, Pennsylvania 19840 (United States)

    1997-04-01

    A strong electric field has been shown to reverse the light-induced degradation of amorphous silicon solar cells while exposed to intense illumination at moderate temperatures. The rate of reversal increases with temperature, illumination intensity, and with the strength of the reverse bias field. The reversal process exhibits an activation energy on the order of 0.9 eV and can be increased by the trapping of either electrons or holes in the presence of a strong electric field. {copyright} {ital 1997 American Institute of Physics.}

  6. The physics and technological aspects of the transition from amorphous to microcrystalline and polycrystalline silicon

    Czech Academy of Sciences Publication Activity Database

    Kočka, Jan; Fejfar, Antonín; Mates, Tomáš; Fojtík, Petr; Dohnalová, Kateřina; Luterová, Kateřina; Stuchlík, Jiří; Stuchlíková, The-Ha; Pelant, Ivan; Rezek, Bohuslav; Stemmer, A.; Ito, M.

    2004-01-01

    Roč. 1, č. 5 (2004), s. 1097-1114 ISSN 1610-1634 R&D Projects: GA AV ČR IAA1010316; GA AV ČR IAB2949101; GA MŽP SM/300/1/03; GA ČR GA202/03/0789 Institutional research plan: CEZ:AV0Z1010914 Keywords : silicon thin films * amorphous/microcrystalline boundary * AFM microscopic study * model of transport * metal-induced crystallization Subject RIV: BM - Solid Matter Physics ; Magnetism

  7. Role of current profiles and atomic force microscope tips on local electric crystallization of amorphous silicon

    Czech Academy of Sciences Publication Activity Database

    Verveniotis, Elisseos; Rezek, Bohuslav; Šípek, Emil; Stuchlík, Jiří; Kočka, Jan

    2010-01-01

    Roč. 518, č. 21 (2010), s. 5965-5970 ISSN 0040-6090 R&D Projects: GA ČR GD202/09/H041; GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA MŠk LC510 Institutional research plan: CEZ:AV0Z10100521 Keywords : amorphous materials * atomic force microscopy (AFM) * conductivity * crystallization * nanostructures * silicon * nickel Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.909, year: 2010

  8. Intrinsic Resistance Switching in Amorphous Silicon Suboxides: The Role of Columnar Microstructure.

    Science.gov (United States)

    Munde, M S; Mehonic, A; Ng, W H; Buckwell, M; Montesi, L; Bosman, M; Shluger, A L; Kenyon, A J

    2017-08-24

    We studied intrinsic resistance switching behaviour in sputter-deposited amorphous silicon suboxide (a-SiO x ) films with varying degrees of roughness at the oxide-electrode interface. By combining electrical probing measurements, atomic force microscopy (AFM), and scanning transmission electron microscopy (STEM), we observe that devices with rougher oxide-electrode interfaces exhibit lower electroforming voltages and more reliable switching behaviour. We show that rougher interfaces are consistent with enhanced columnar microstructure in the oxide layer. Our results suggest that columnar microstructure in the oxide will be a key factor to consider for the optimization of future SiOx-based resistance random access memory.

  9. submitter Commissioning of the Silicon Pixel Detector of ALICE and perspectives for beauty production at LHC

    CERN Document Server

    Bombonati, Carlo

    The activities carried out within the present work were aimed at the preparation for heavy quarks measurements, thus including the construction and commissioning of the SPD. More in detail, they can be summarised in the following: • Assembly of the silicon pixel sensors on the carbon fibre support. Given its role as a precision tracker, the assembly of the SPD requires the use of specific procedures to ensure a high degree of accuracy. • Tuning and maintenance of the cooling system of the SPD. The SPD power dissipation is of about 1.5 kW. This means that, without cooling, the temperature of the sensors would rise at about 1°C/s. The cooling system is thus of vital importance for the operation of the detector. • Development of a set of tools for the monitoring of the alignment procedures of the ITS and, in particular of the SPD. The misalignment of the detector must be accounted for in the software description of the geometry in order to optimize the spatial resolution. The matching of the geometry with...

  10. Characterization and Performance of Silicon n-in-p Pixel Detectors for the ATLAS Upgrades

    CERN Document Server

    Weigell, Philipp; Gallrapp, Christian; La Rosa, Alessandro; Macchiolo, Anna; Nisius, Richard; Pernegger, Heinz; Richter, Rainer

    2011-01-01

    The existing ATLAS Tracker will be at its functional limit for particle fluences of 10^15 neq/cm^2 (LHC). Thus for the upgrades at smaller radii like in the case of the planned Insertable B-Layer (IBL) and for increased LHC luminosities (super LHC) the development of new structures and materials which can cope with the resulting particle fluences is needed. N-in-p silicon devices are a promising candidate for tracking detectors to achieve these goals, since they are radiation hard, cost efficient and are not type inverted after irradiation. A n-in-p pixel production based on a MPP/HLL design and performed by CiS (Erfurt, Germany) on 300 \\mu m thick Float-Zone material is characterised and the electrical properties of sensors and single chip modules (SCM) are presented, including noise, charge collection efficiencies, and measurements with MIPs as well as an 241Am source. The SCMs are built with sensors connected to the current the ATLAS read-out chip FE-I3. The characterisation has been performed with the ATL...

  11. Laser Soldering and Thermal Cycling Tests of Monolithic Silicon Pixel Chips

    CERN Document Server

    Strand, Frode Sneve

    2015-01-01

    An ALPIDE-1 monolithic silicon pixel sensor prototype has been laser soldered to a flex printed circuit using a novel interconnection technique using lasers. This technique is to be optimised to ensure stable, good quality connections between the sensor chips and the FPCs. To test the long-term stability of the connections, as well as study the effects on hit thresholds and noise in the sensor, it was thermally cycled in a climate chamber 1200 times. The soldered connections showed good qualities like even melting and good adhesion on pad/flex surfaces, and the chip remained in working condition for 1080 cycles. After this, a few connections failed, having cracks in the soldering tin, rendering the chip unusable. Threshold and noise characteristics seemed stable, except for the noise levels of sector 2 in the chip, for 1000 cycles in a temperature interval of "10^{\\circ}" and "50^{\\circ}" C. Still, further testing with wider temperature ranges and more cycles is needed to test the limitations of the chi...

  12. Effect of starting point formation on the crystallization of amorphous silicon films by flash lamp annealing

    Science.gov (United States)

    Sato, Daiki; Ohdaira, Keisuke

    2018-04-01

    We succeed in the crystallization of hydrogenated amorphous silicon (a-Si:H) films by flash lamp annealing (FLA) at a low fluence by intentionally creating starting points for the trigger of explosive crystallization (EC). We confirm that a partly thick a-Si part can induce the crystallization of a-Si films. A periodic wavy structure is observed on the surface of polycrystalline silicon (poly-Si) on and near the thick parts, which is a clear indication of the emergence of EC. Creating partly thick a-Si parts can thus be effective for the control of the starting point of crystallization by FLA and can realize the crystallization of a-Si with high reproducibility. We also compare the effects of creating thick parts at the center and along the edge of the substrates, and a thick part along the edge of the substrates leads to the initiation of crystallization at a lower fluence.

  13. Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors.

    Science.gov (United States)

    Sinibaldi, Alberto; Descrovi, Emiliano; Giorgis, Fabrizio; Dominici, Lorenzo; Ballarini, Mirko; Mandracci, Pietro; Danz, Norbert; Michelotti, Francesco

    2012-10-01

    We exploit the properties of surface electromagnetic waves propagating at the surface of finite one dimensional photonic crystals to improve the performance of optical biosensors with respect to the standard surface plasmon resonance approach. We demonstrate that the hydrogenated amorphous silicon nitride technology is a versatile platform for fabricating one dimensional photonic crystals with any desirable design and operating in a wide wavelength range, from the visible to the near infrared. We prepared sensors based on photonic crystals sustaining either guided modes or surface electromagnetic waves, also known as Bloch surface waves. We carried out for the first time a direct experimental comparison of their sensitivity and figure of merit with surface plasmon polaritons on metal layers, by making use of a commercial surface plasmon resonance instrument that was slightly adapted for the experiments. Our measurements demonstrate that the Bloch surface waves on silicon nitride photonic crystals outperform surface plasmon polaritons by a factor 1.3 in terms of figure of merit.

  14. Electrical Characterization of Amorphous Silicon MIS-Based Structures for HIT Solar Cell Applications

    Science.gov (United States)

    García, Héctor; Castán, Helena; Dueñas, Salvador; Bailón, Luis; García-Hernansanz, Rodrigo; Olea, Javier; del Prado, Álvaro; Mártil, Ignacio

    2016-07-01

    A complete electrical characterization of hydrogenated amorphous silicon layers (a-Si:H) deposited on crystalline silicon (c-Si) substrates by electron cyclotron resonance chemical vapor deposition (ECR-CVD) was carried out. These structures are of interest for photovoltaic applications. Different growth temperatures between 30 and 200 °C were used. A rapid thermal annealing in forming gas atmosphere at 200 °C during 10 min was applied after the metallization process. The evolution of interfacial state density with the deposition temperature indicates a better interface passivation at higher growth temperatures. However, in these cases, an important contribution of slow states is detected as well. Thus, using intermediate growth temperatures (100-150 °C) might be the best choice.

  15. Contribution to the analysis of hydrogenated amorphous silicon by nuclear methods

    International Nuclear Information System (INIS)

    Jeannerot, Luc.

    1981-01-01

    The physico chemical characterization of hydrogenated amorphous silicon thin films (0,5 to 2 μm thick) makes use of nuclear microanalysis for quantitative determination and depth profiling of the elements hydrogen, oxygen, argon and carbon. Concerning the methods, performances of the hydrogen analysis using the 1 H( 15 N, αγ) nuclear reaction are presented emphasizing the precision and the analytical consequences of the interaction ion-material. For charged particles data processing (mainly Rutherford backscattering) computer treatments have been developed either for concentration profile obtention as for spectra prediction of given material configurations. The essential results concerning hydrogenated silicon prepared by RF sputtering are on one hand the correlation between the oxygen incorporation and the beam-induced hydrogen effusion and in the other hand the role of the substrate in the impurities incorporation. From the study of the elaboration conditions of the material a tentative interpretation is made for the incorporation and the role of oxygen [fr

  16. Electrical behavior of multi-walled carbon nanotube network embedded in amorphous silicon nitride

    Directory of Open Access Journals (Sweden)

    Buiculescu Raluca

    2011-01-01

    Full Text Available Abstract The electrical behavior of multi-walled carbon nanotube network embedded in amorphous silicon nitride is studied by measuring the voltage and temperature dependences of the current. The microstructure of the network is investigated by cross-sectional transmission electron microscopy. The multi-walled carbon nanotube network has an uniform spatial extension in the silicon nitride matrix. The current-voltage and resistance-temperature characteristics are both linear, proving the metallic behavior of the network. The I-V curves present oscillations that are further analyzed by computing the conductance-voltage characteristics. The conductance presents minima and maxima that appear at the same voltage for both bias polarities, at both 20 and 298 K, and that are not periodic. These oscillations are interpreted as due to percolation processes. The voltage percolation thresholds are identified with the conductance minima.

  17. Nanoscale density variations induced by high energy heavy ions in amorphous silicon nitride and silicon dioxide

    Science.gov (United States)

    Mota-Santiago, P.; Vazquez, H.; Bierschenk, T.; Kremer, F.; Nadzri, A.; Schauries, D.; Djurabekova, F.; Nordlund, K.; Trautmann, C.; Mudie, S.; Ridgway, M. C.; Kluth, P.

    2018-04-01

    The cylindrical nanoscale density variations resulting from the interaction of 185 MeV and 2.2 GeV Au ions with 1.0 μm thick amorphous SiN x :H and SiO x :H layers are determined using small angle x-ray scattering measurements. The resulting density profiles resembles an under-dense core surrounded by an over-dense shell with a smooth transition between the two regions, consistent with molecular-dynamics simulations. For amorphous SiN x :H, the density variations show a radius of 4.2 nm with a relative density change three times larger than the value determined for amorphous SiO x :H, with a radius of 5.5 nm. Complementary infrared spectroscopy measurements exhibit a damage cross-section comparable to the core dimensions. The morphology of the density variations results from freezing in the local viscous flow arising from the non-uniform temperature profile in the radial direction of the ion path. The concomitant drop in viscosity mediated by the thermal conductivity appears to be the main driving force rather than the presence of a density anomaly.

  18. Development of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Calderini, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Dipartimento di Fisica E. Fermi, Universitá di Pisa, Pisa (Italy); Bagolini, A. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Beccherle, R. [Istituto Nazionale di Fisica Nucleare, Sez. di Pisa (Italy); Bomben, M. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Bosisio, L. [Università degli studi di Trieste (Italy); INFN-Trieste (Italy); Chauveau, J. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Giacomini, G. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); La Rosa, A. [Section de Physique (DPNC), Universitè de Geneve, Geneve (Switzerland); Marchiori, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy)

    2016-09-21

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The presentation describes the performance of novel n-in-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, some feedback from preliminary results of the first beam test will be discussed.

  19. Production and characterization of SLID interconnected n-in-p pixel modules with 75 micron thin silicon sensors

    CERN Document Server

    Andricek, L; Macchiolo, A; Moser, H.G; Nisius, R; Richter, R.H; Terzo, S; Weigell, P

    2014-01-01

    The performance of pixel modules built from 75 micrometer thin silicon sensors and ATLAS read-out chips employing the Solid Liquid InterDiffusion (SLID) interconnection technology is presented. This technology, developed by the Fraunhofer EMFT, is a possible alternative to the standard bump-bonding. It allows for stacking of different interconnected chip and sensor layers without destroying the already formed bonds. In combination with Inter-Chip-Vias (ICVs) this paves the way for vertical integration. Both technologies are combined in a pixel module concept which is the basis for the modules discussed in this paper. Mechanical and electrical parameters of pixel modules employing both SLID interconnections and sensors of 75 micrometer thickness are covered. The mechanical features discussed include the interconnection efficiency, alignment precision and mechanical strength. The electrical properties comprise the leakage currents, tuning characteristics, charge collection, cluster sizes and hit efficiencies. T...

  20. Production and Characterisation of SLID Interconnected n-in-p Pixel Modules with 75 Micrometer Thin Silicon Sensors

    CERN Document Server

    Andricek, L; Macchiolo, A.; Moser, H.-G.; Nisius, R.; Richter, R.H.; Terzo, S.; Weigell, P.

    2014-01-01

    The performance of pixel modules built from 75 micrometer thin silicon sensors and ATLAS read-out chips employing the Solid Liquid InterDiffusion (SLID) interconnection technology is presented. This technology, developed by the Fraunhofer EMFT, is a possible alternative to the standard bump-bonding. It allows for stacking of different interconnected chip and sensor layers without destroying the already formed bonds. In combination with Inter-Chip-Vias (ICVs) this paves the way for vertical integration. Both technologies are combined in a pixel module concept which is the basis for the modules discussed in this paper. Mechanical and electrical parameters of pixel modules employing both SLID interconnections and sensors of 75 micrometer thickness are covered. The mechanical features discussed include the interconnection efficiency, alignment precision and mechanical strength. The electrical properties comprise the leakage currents, tunability, charge collection, cluster sizes and hit efficiencies. Targeting at ...

  1. Elastic Measurements of Amorphous Silicon Films at mK Temperatures

    Science.gov (United States)

    Fefferman, Andrew; Maldonado, Ana; Collin, Eddy; Liu, Xiao; Metcalf, Tom; Jernigan, Glenn

    2017-06-01

    The low-temperature properties of glass are distinct from those of crystals due to the presence of poorly understood low-energy excitations. The tunneling model proposes that these are atoms tunneling between nearby equilibria, forming tunneling two-level systems (TLSs). This model is rather successful, but it does not explain the remarkably universal value of the mechanical dissipation Q^{-1} near 1 K. The only known exceptions to this universality are the Q^{-1} of certain thin films of amorphous silicon, carbon and germanium. Recently, it was found that Q^{-1} of amorphous silicon (a-Si) films can be reduced by two orders of magnitude by increasing the temperature of the substrate during deposition. According to the tunneling model, the reduction in Q^{-1} at 1 K implies a reduction in P0γ 2, where P0 is the density of TLSs and γ is their coupling to phonons. In this preliminary report, we demonstrate elastic measurements of a-Si films down to 20 mK. This will allow us, in future work, to determine whether P0 or γ is responsible for the reduction in Q^{-1} with deposition temperature.

  2. Achieving thermography with a thermal security camera using uncooled amorphous silicon microbolometer image sensors

    Science.gov (United States)

    Wang, Yu-Wei; Tesdahl, Curtis; Owens, Jim; Dorn, David

    2012-06-01

    Advancements in uncooled microbolometer technology over the last several years have opened up many commercial applications which had been previously cost prohibitive. Thermal technology is no longer limited to the military and government market segments. One type of thermal sensor with low NETD which is available in the commercial market segment is the uncooled amorphous silicon (α-Si) microbolometer image sensor. Typical thermal security cameras focus on providing the best image quality by auto tonemaping (contrast enhancing) the image, which provides the best contrast depending on the temperature range of the scene. While this may provide enough information to detect objects and activities, there are further benefits of being able to estimate the actual object temperatures in a scene. This thermographic ability can provide functionality beyond typical security cameras by being able to monitor processes. Example applications of thermography[2] with thermal camera include: monitoring electrical circuits, industrial machinery, building thermal leaks, oil/gas pipelines, power substations, etc...[3][5] This paper discusses the methodology of estimating object temperatures by characterizing/calibrating different components inside a thermal camera utilizing an uncooled amorphous silicon microbolometer image sensor. Plots of system performance across camera operating temperatures will be shown.

  3. Implantation of xenon in amorphous carbon and silicon for brachytherapy application

    International Nuclear Information System (INIS)

    Marques, F.C.; Barbieri, P.F.; Viana, G.A.; Silva, D.S. da

    2013-01-01

    We report a procedure to implant high dose of xenon atoms (Xe) in amorphous carbon, a-C, and amorphous silicon, a-Si, for application in brachytherapy seeds. An ion beam assisted deposition (IBAD) system was used for the deposition of the films, where one ion gun was used for sputtering a carbon (or silicon) target, while the other ion gun was used to simultaneously bombard the growing film with a beam of xenon ion Xe + in the 0–300 eV range. Xe atoms were implanted into the film with concentration up to 5.5 at.%, obtained with Xe bombardment energy in the 50–150 eV range. X-ray absorption spectroscopy was used to investigate the local arrangement of the implanted Xe atoms through the Xe L III absorption edge (4.75 keV). It was observed that Xe atoms tend to agglomerate in nanoclusters in a-C and are dispersed in a-Si.

  4. Amorphous SiC layers for electrically conductive Rugate filters in silicon based solar cells

    Science.gov (United States)

    Janz, S.; Peters, M.; Künle, M.; Gradmann, R.; Suwito, D.

    2010-05-01

    The subject of this work is the development of an electrically conductive Rugate filter for photovoltaic applications. We think that the optical as well as the electrical performance of the filter can be adapted especially to the requirements of crystalline Si thin-film and amorphous/crystalline silicon tandem solar cells. We have deposited amorphous hydrogenated Silicon Carbide layers (a-SixC1-x:H) with the precursor gases methane (CH4), silane (SiH4) and diborane (B2H6) applying Plasma Enhanced Chemical Vapour Deposition (PECVD). Through changing just the precursor flows a floating refractive index n from 1.9 to 3.5 (at 633 nm) could be achieved quite accurately. Different complex layer stacks (up to 200 layers) with a sinusoidal refractive index variation normal to the incident light were deposited in just 80 min on 100x100 mm2. Transmission measurements show good agreement between simulation and experiment which proofs our ability to control the deposition process, the good knowledge of the optical behaviour of the different SiC single layers and the advanced stage of our simulation model. The doped single layers show lateral conductivities which were extremely dependent on the Si/C ratio.

  5. Band Offsets at the Interface between Crystalline and Amorphous Silicon from First Principles

    Science.gov (United States)

    Jarolimek, K.; Hazrati, E.; de Groot, R. A.; de Wijs, G. A.

    2017-07-01

    The band offsets between crystalline and hydrogenated amorphous silicon (a -Si ∶H ) are key parameters governing the charge transport in modern silicon heterojunction solar cells. They are an important input for macroscopic simulators that are used to further optimize the solar cell. Past experimental studies, using x-ray photoelectron spectroscopy (XPS) and capacitance-voltage measurements, have yielded conflicting results on the band offset. Here, we present a computational study on the band offsets. It is based on atomistic models and density-functional theory (DFT). The amorphous part of the interface is obtained by relatively long DFT first-principles molecular-dynamics runs at an elevated temperature on 30 statistically independent samples. In order to obtain a realistic conduction-band position the electronic structure of the interface is calculated with a hybrid functional. We find a slight asymmetry in the band offsets, where the offset in the valence band (0.29 eV) is larger than in the conduction band (0.17 eV). Our results are in agreement with the latest XPS measurements that report a valence-band offset of 0.3 eV [M. Liebhaber et al., Appl. Phys. Lett. 106, 031601 (2015), 10.1063/1.4906195].

  6. Aluminium-induced crystallization of amorphous silicon films deposited by DC magnetron sputtering on glasses

    International Nuclear Information System (INIS)

    Kezzoula, F.; Hammouda, A.; Kechouane, M.; Simon, P.; Abaidia, S.E.H.; Keffous, A.; Cherfi, R.; Menari, H.; Manseri, A.

    2011-01-01

    Amorphous silicon (a-Si) and hydrogenated amorphous silicon (a-Si:H) films were deposited by DC magnetron sputtering technique with argon and hydrogen plasma mixture on Al deposited by thermal evaporation on glass substrates. The a-Si/Al and a-Si:H/Al thin films were annealed at different temperatures ranging from 250 to 550 deg. C during 4 h in vacuum-sealed bulb. The effects of annealing temperature on optical, structural and morphological properties of as-grown as well as the vacuum-annealed a-Si/Al and a-Si:H/Al thin films are presented in this contribution. The averaged transmittance of a-Si:H/Al film increases upon increasing the annealing temperature. XRD measurements clearly evidence that crystallization is initiated at 450 deg. C. The number and intensity of diffraction peaks appearing in the diffraction patterns are more important in a-Si:H/Al than that in a-Si/Al layers. Results show that a-Si:H films deposited on Al/glass crystallize above 450 deg. C and present better crystallization than the a-Si layers. The presence of hydrogen induces an improvement of structural properties of poly-Si prepared by aluminium-induced crystallization (AIC).

  7. Modeling chemical and topological disorder in irradiation-amorphized silicon carbide

    International Nuclear Information System (INIS)

    Yuan Xianglong; Hobbs, Linn W.

    2002-01-01

    In order to explore the relationship of chemical disorder to topological disorder during irradiation-induced amorphization of silicon carbide, a topological analysis of homonuclear bond distribution, atom coordination number and network ring size distribution has been carried out for imposed simulated disorder, equilibrated with molecular dynamics (MD) procedures utilizing a Tersoff potential. Starting configurations included random atom positions, β-SiC coordinates chemically disordered over a range of chemical disorder parameters and atom coordinates generated from earlier MD simulations of embedded collision cascades. For random starting positions in embedded simulations, the MD refinement converged to an average Si coordination of 4.3 and an average of 1.4 Si-Si and 1.0 C-C bonds per Si and C site respectively. A chemical disorder threshold was observed (χ≡N C-C /N Si-C >0.3-0.4), below which range MD equilibration resulted in crystalline behavior at all temperatures and above which a glass transition was observed. It was thus concluded that amorphization is driven by a critical concentration of homonuclear bonds. About 80% of the density change at amorphization was attributable to threshold chemical disorder, while significant topological changes occurred only for larger values of the chemical disorder parameter

  8. Fabrication of amorphous micro-ring arrays in crystalline silicon using ultrashort laser pulses

    Science.gov (United States)

    Fuentes-Edfuf, Yasser; Garcia-Lechuga, Mario; Puerto, Daniel; Florian, Camilo; Garcia-Leis, Adianez; Sanchez-Cortes, Santiago; Solis, Javier; Siegel, Jan

    2017-05-01

    We demonstrate a simple way to fabricate amorphous micro-rings in crystalline silicon using direct laser writing. This method is based on the fact that the phase of a thin surface layer can be changed into the amorphous phase by irradiation with a few ultrashort laser pulses (800 nm wavelength and 100 fs duration). Surface-depressed amorphous rings with a central crystalline disk can be fabricated without the need for beam shaping, featuring attractive optical, topographical, and electrical properties. The underlying formation mechanism and phase change pathway have been investigated by means of fs-resolved microscopy, identifying fluence-dependent melting and solidification dynamics of the material as the responsible mechanism. We demonstrate that the lateral dimensions of the rings can be scaled and that the rings can be stitched together, forming extended arrays of structures not limited to annular shapes. This technique and the resulting structures may find applications in a variety of fields such as optics, nanoelectronics, and mechatronics.

  9. Wavelength prediction of laser incident on amorphous silicon detector by neural network

    International Nuclear Information System (INIS)

    Esmaeili Sani, V.; Moussavi-Zarandi, A.; Kafaee, M.

    2011-01-01

    In this paper we present a method based on artificial neural networks (ANN) and the use of only one amorphous semiconductor detector to predict the wavelength of incident laser. Amorphous semiconductors and especially amorphous hydrogenated silicon, a-Si:H, are now widely used in many electronic devices, such as solar cells, many types of position sensitive detectors and X-ray imagers for medical applications. In order to study the electrical properties and detection characteristics of thin films of a-Si:H, n-i-p structures have been simulated by SILVACO software. The basic electronic properties of most of the materials used are known, but device modeling depends on a large number of parameters that are not all well known. In addition, the relationship between the shape of the induced anode current and the wavelength of the incident laser leads to complicated calculations. Soft data-based computational methods can model multidimensional non-linear processes and represent the complex input-output relation between the form of the output signal and the wavelength of incident laser.

  10. Wavelength prediction of laser incident on amorphous silicon detector by neural network

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeili Sani, V., E-mail: vaheed_esmaeely80@yahoo.com [Amirkabir University of Technology, Faculty of Physics, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of); Moussavi-Zarandi, A.; Kafaee, M. [Amirkabir University of Technology, Faculty of Physics, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of)

    2011-10-21

    In this paper we present a method based on artificial neural networks (ANN) and the use of only one amorphous semiconductor detector to predict the wavelength of incident laser. Amorphous semiconductors and especially amorphous hydrogenated silicon, a-Si:H, are now widely used in many electronic devices, such as solar cells, many types of position sensitive detectors and X-ray imagers for medical applications. In order to study the electrical properties and detection characteristics of thin films of a-Si:H, n-i-p structures have been simulated by SILVACO software. The basic electronic properties of most of the materials used are known, but device modeling depends on a large number of parameters that are not all well known. In addition, the relationship between the shape of the induced anode current and the wavelength of the incident laser leads to complicated calculations. Soft data-based computational methods can model multidimensional non-linear processes and represent the complex input-output relation between the form of the output signal and the wavelength of incident laser.

  11. Non-negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon Dioxide.

    Science.gov (United States)

    Lv, Wei; Henry, Asegun

    2016-10-21

    Thermal conductivity is important for almost all applications involving heat transfer. The theory and modeling of crystalline materials is in some sense a solved problem, where one can now calculate their thermal conductivity from first principles using expressions based on the phonon gas model (PGM). However, modeling of amorphous materials still has many open questions, because the PGM itself becomes questionable when one cannot rigorously define the phonon velocities. In this report, we used our recently developed Green-Kubo modal analysis (GKMA) method to study amorphous silicon dioxide (a-SiO 2 ). The predicted thermal conductivities exhibit excellent agreement with experiments and anharmonic effects are included in the thermal conductivity calculation for all the modes in a-SiO 2 for the first time. Previously, localized modes (locons) have been thought to have a negligible contribution to thermal conductivity, due to their highly localized nature. However, in a-SiO 2 our results indicate that locons contribute more than 10% to the total thermal conductivity from 400 K to 800 K and they are largely responsible for the increase in thermal conductivity of a-SiO 2 above room temperature. This is an effect that cannot be explained by previous methods and therefore offers new insight into the nature of phonon transport in amorphous/glassy materials.

  12. Theoretical and experimental comparison of proton and helium-beam radiography using silicon pixel detectors

    Science.gov (United States)

    Gehrke, T.; Amato, C.; Berke, S.; Martišíková, M.

    2018-02-01

    Ion-beam radiography (iRAD) could potentially improve the quality control of ion-beam therapy. The main advantage of iRAD is the possibility to directly measure the integrated stopping power. Until now there is no clinical implementation of iRAD. Topics of ongoing research include developing dedicated detection systems to achieve the desired spatial resolution (SR) and investigating different ion types as imaging radiation. This work focuses on the theoretical and experimental comparison of proton (pRAD) and helium-beam radiography (αRAD). The experimental comparison was performed with an in-house developed detection system consisting of silicon pixel detectors. This system enables the measurement of energy deposition of single ions, their tracking, and the identification of the ion type, which is important for αRAD due to secondary fragments. A 161 mm-thick PMMA phantom with an air gap of 1 mm placed at different depths was imaged with a 168 MeV u-1 proton/helium-ion beam at the Heidelberg ion-beam therapy center. The image quality in terms of SR and contrast-to-noise ratio (CNR) was evaluated. After validating MC simulations against experiments, pRAD and αRAD were compared to carbon-beam radiography (cRAD) in simulations. The theoretical prediction that the CNR of pRAD and αRAD is equal at similar imaging doses was experimentally confirmed. The measured SR of αRAD was 55% better compared to pRAD. The simulated cRads showed the expected improvement in SR and the decreased CNR at the same dose compared to the αRads, however only at dose levels exceeding typical doses of diagnostic x-ray projections. For clinically applicable dose levels, the cRads suffered from an insufficient number of carbon ions per pixel (220 μm  ×  220 μm). In conclusion, it was theoretically and experimentally shown that αRAD provides a better SR than pRAD without any disadvantages concerning the CNR. Using carbon ions instead of helium ions leads to a better SR at the

  13. Nuclear reaction analysis of hydrogen in amorphous silicon and silicon carbide films

    International Nuclear Information System (INIS)

    Guivarc'h, A.; Le Contellec, M.; Richard, J.; Ligeon, E.; Fontenille, J.; Danielou, R.

    1980-01-01

    The 1 H( 11 B, α)αα nuclear reaction is used to determine the H content and the density of amorphous semiconductor Si 1 -sub(x)Csub(x)H 2 and SiHsub(z) thin films. Rutherford backscattering is used to determine the x values and infrared transmission to study the hydrogen bonds. We have observed a transfer or/and a release of hydrogen under bombardment by various ions and we show that this last effect must be taken into account for a correct determination of the hydrogen content. An attempt is made to correlate the hydrogen release with electronic and nuclear energy losses. (orig.)

  14. Direct measurement of free-energy barrier to nucleation of crystallites in amorphous silicon thin films

    Science.gov (United States)

    Shi, Frank G.

    1994-01-01

    A method is introduced to measure the free-energy barrier W(sup *), the activation energy, and activation entropy to nucleation of crystallites in amorphous solids, independent of the energy barrier to growth. The method allows one to determine the temperature dependence of W(sup *), and the effect of the preparation conditions of the initial amorphous phase, the dopants, and the crystallization methds on W(sup *). The method is applied to determine the free-energy barrier to nucleation of crystallites in amorphous silicon (a-Si) thin films. For thermally induced nucleation in a-Si thin films with annealing temperatures in the range of from 824 to 983 K, the free-energy barrier W(sup *) to nucleation of silicon crystals is about 2.0 - 2.1 eV regardless of the preparation conditions of the films. The observation supports the idea that a-Si transforms into an intermediate amorphous state through the structural relaxation prior to the onset of nucleation of crystallites in a-Si. The observation also indicates that the activation entropy may be an insignificant part of the free-energy barrier for the nucleation of crystallites in a-Si. Compared with the free-energy barrier to nucleation of crystallites in undoped a-Si films, a significant reduction is observed in the free-energy barrier to nucleation in Cu-doped a-Si films. For a-Si under irradiation of Xe(2+) at 10(exp 5) eV, the free-energy barrier to ion-induced nucleation of crystallites is shown to be about half of the value associated with thermal-induced nucleation of crystallites in a-Si under the otherwise same conditions, which is much more significant than previously expected. The present method has a general kinetic basis; it thus should be equally applicable to nucleation of crystallites in any amorphous elemental semiconductors and semiconductor alloys, metallic and polymeric glasses, and to nucleation of crystallites in melts and solutions.

  15. Planarization of amorphous silicon thin film transistors for high-aperture-ratio and large-area active-matrix liquid crystal displays

    Science.gov (United States)

    Lan, Je-Hsiung

    The reduction of the backlight power consumption and the improvement of the display image uniformity for future large-area and high-resolution active-matrix liquid- crystal displays (AM-LCDs) are very important. One possible method to achieve the former goal is to increase the pixel electrode aperture-ratio. This can be realized by overlapping the pixel electrode with both gate/data buslines. While for the latter, reduction of the RC-delay by using a low resistance gate metal line is the key. Both of these approaches can be realized by using planarization technology. In this dissertation, the planarization technology based on low dielectric constant organic polymer, benzocyclobutene (BCB), is demonstrated, and this technology has been successfully applied to hydrogenated amorphous-silicon (a-Si:H) thin-film transistor (TFT) arrays and thick metal gate buslines/electrodes. Through the planarization technology, a high-aperture-ratio (HAR) pixel electrode structure has been fabricated. The parasitic capacitance and crosstalk issues in the HAR pixel electrode have been studied through interconnect analysis and circuit simulation. The impact of the parasitic capacitance on display performances, such as feedthrough voltage, vertical crosstalk, pixel electrode aperture-ratio, pixel charging behavior, and gate busline RC-delay issues, has been thoroughly discussed. Some key issues during the process integration of the HAR pixel electrode structure have been addressed. These include the BCB contact via formation, the patterning of the ITO pixel electrodes on BCB layer, the selection of Ar plasma treatment conditions for BCB surface, and the optical transmittance evaluation of the ITO/BCB double-layer structure. In addition, the BCB passivation effects on back-channel etched type a-Si:H TFTs have been investigated. It is found that there is no degradation in the TFT electrical performance and reliability after the BCB passivation. Finally, the planarization technology is

  16. Integrated X-ray and charged particle active pixel CMOS sensor arrays using an epitaxial silicon sensitive region

    Energy Technology Data Exchange (ETDEWEB)

    Kleinfelder, Stuart; Bichsel, Hans; Bieser, Fred; Matis, Howard S.; Rai, Gulshan; Retiere, Fabrice; Weiman, Howard; Yamamoto, Eugene

    2002-07-01

    Integrated CMOS Active Pixel Sensor (APS) arrays have been fabricated and tested using X-ray and electron sources. The 128 by 128 pixel arrays, designed in a standard 0.25 micron process, use a {approx}10 micron epitaxial silicon layer as a deep detection region. The epitaxial layer has a much greater thickness than the surface features used by standard CMOS APS, leading to stronger signals and potentially better signal-to-noise ratio (SNR). On the other hand, minority carriers confined within the epitaxial region may diffuse to neighboring pixels, blur images and reduce peak signal intensity. But for low-rate, sparse-event images, centroid analysis of this diffusion may be used to increase position resolution. Careful trade-offs involving pixel size and sense-node area verses capacitance must be made to optimize overall performance. The prototype sensor arrays, therefore, include a range of different pixel designs, including different APS circuits and a range of different epitaxial layer contact structures. The fabricated arrays were tested with 1.5 GeV electrons and Fe-55 X-ray sources, yielding a measured noise of 13 electrons RMS and an SNR for single Fe-55 X-rays of greater than 38.

  17. Amorphous silicon/crystalline silicon heterojunctions for nuclear radiation detector applications

    International Nuclear Information System (INIS)

    Walton, J.T.; Hong, W.S.; Luke, P.N.; Wang, N.W.; Ziemba, F.P.

    1996-10-01

    Results on characterization of electrical properties of amorphous Si films for the 3 different growth methods (RF sputtering, PECVD [plasma enhanced], LPCVD [low pressure]) are reported. Performance of these a-Si films as heterojunctions on high resistivity p-type and n- type crystalline Si is examined by measuring the noise, leakage current, and the alpha particle response of 5mm dia detector structures. It is demonstrated that heterojunction detectors formed by RF sputtered films and PECVD films are comparable in performance with conventional surface barrier detectors. Results indicate that the a-Si/c-Si heterojunctions have the potential to greatly simplify detector fabrication. Directions for future avenues of nuclear particle detector development are indicated

  18. The use of amorphous silicon in fabricating a photovoltaic thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Mahtani, P.; Yeghikyan, D.; Kherani, N.P.; Zukotynski, S. [Toronto Univ., ON (Canada). Dept. of Electrical and Computer Engineering

    2007-07-01

    The cost of photovoltaic-thermal (PV/T) panels can be reduced by depositing PV materials directly onto the heat exchanger of an STC system. However, most thin-film c-Si solar cells require deposition temperatures in the range of 800 degrees C to 1400 degrees C, which limits the substrates that can be used to highly doped silicon wafers, silicon carbide, and graphite. This paper suggested that the ability to deposit hydrogenated amorphous silicon (a-Si:H) at low temperatures makes the material a strong candidate for PV/T applications. A PV/T system based on directly depositing a-Si:H on the surface of a heat exchanger was presented. The system was able to overcome the drawbacks of current PV/T systems. Plasma-enhanced chemical vapor deposition (PECVD) was used to deposit a-Si:H at temperatures below 200 degrees C. The low temperature deposition allowed the a-Si:H to be directly deposited onto a heat exchanger in STC modules. Results of the study indicated that the emissivity and the thermal collection efficiency of the a-Si:H PV/T systems was higher than standard PV/T systems which used c-Si PV cells. Future work will be conducted to investigate the integration of thermally conductive and electrically insulative materials needed to interconnect the PV cells in series. 16 refs., 1 fig.

  19. Structural Color Filters Enabled by a Dielectric Metasurface Incorporating Hydrogenated Amorphous Silicon Nanodisks.

    Science.gov (United States)

    Park, Chul-Soon; Shrestha, Vivek Raj; Yue, Wenjing; Gao, Song; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong

    2017-05-31

    It is advantageous to construct a dielectric metasurface in silicon due to its compatibility with cost-effective, mature processes for complementary metal-oxide-semiconductor devices. However, high-quality crystalline-silicon films are difficult to grow on foreign substrates. In this work, we propose and realize highly efficient structural color filters based on a dielectric metasurface exploiting hydrogenated amorphous silicon (a-Si:H), known to be lossy in the visible regime. The metasurface is comprised of an array of a-Si:H nanodisks embedded in a polymer, providing a homogeneously planarized surface that is crucial for practical applications. The a-Si:H nanodisk element is deemed to individually support an electric dipole (ED) and magnetic dipole (MD) resonance via Mie scattering, thereby leading to wavelength-dependent filtering characteristics. The ED and MD can be precisely identified by observing the resonant field profiles with the assistance of finite-difference time-domain simulations. The completed color filters provide a high transmission of around 90% in the off-resonance band longer than their resonant wavelengths, exhibiting vivid subtractive colors. A wide range of colors can be facilitated by tuning the resonance by adjusting the structural parameters like the period and diameter of the a-Si:H nanodisk. The proposed devices will be actively utilized to implement color displays, imaging devices, and photorealistic color printing.

  20. Development of amorphous silicon based EUV hardmasks through physical vapor deposition

    Science.gov (United States)

    De Silva, Anuja; Mignot, Yann; Meli, Luciana; DeVries, Scott; Xu, Yongan; Seshadri, Indira; Felix, Nelson M.; Zeng, Wilson; Cao, Yong; Phan, Khoi; Dai, Huixiong; Ngai, Christopher S.; Stolfi, Michael; Diehl, Daniel L.

    2017-10-01

    Extending extreme ultraviolet (EUV) single exposure patterning to its limits requires more than photoresist development. The hardmask film is a key contributor in the patterning stack that offers opportunities to enhance lithographic process window, increase pattern transfer efficiency, and decrease defectivity when utilizing very thin film stacks. This paper introduces the development of amorphous silicon (a-Si) deposited through physical vapor deposited (PVD) as an alternative to a silicon ARC (SiARC) or silicon-oxide-type EUV hardmasks in a typical trilayer patterning scheme. PVD offers benefits such as lower deposition temperature, and higher purity, compared to conventional chemical vapor deposition (CVD) techniques. In this work, sub-36nm pitch line-space features were resolved with a positive-tone organic chemically-amplified resist directly patterned on PVD a-Si, without an adhesion promotion layer and without pattern collapse. Pattern transfer into the underlying hardmask stack was demonstrated, allowing an evaluation of patterning metrics related to resolution, pattern transfer fidelity, and film defectivity for PVD a-Si compared to a conventional tri-layer patterning scheme. Etch selectivity and the scalability of PVD a-Si to reduce the aspect ratio of the patterning stack will also be discussed.

  1. Optical properties of p–i–n structures based on amorphous hydrogenated silicon with silicon nanocrystals formed via nanosecond laser annealing

    Czech Academy of Sciences Publication Activity Database

    Krivyakin, G.K.; Volodin, V.; Kochubei, S.A.; Kamaev, G.N.; Purkrt, Adam; Remeš, Zdeněk; Fajgar, Radek; Stuchlíková, The-Ha; Stuchlík, Jiří

    2016-01-01

    Roč. 50, č. 7 (2016), s. 935-940 ISSN 1063-7826 R&D Projects: GA MŠk LH12236 Institutional support: RVO:68378271 ; RVO:67985858 Keywords : hydrogenated amorphous silicon * nanocrystals * laser annealing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.602, year: 2016

  2. A COMPARISON OF THE ENVIRONMENTAL IMPACT OF SOLAR POWER GENERATION USING MULTICRYSTALLINE SILICON AND THIN FILM OF AMORPHOUS SILICON SOLAR CELLS: CASE STUDY IN THAILAND

    Directory of Open Access Journals (Sweden)

    Wasin Khaenson

    2017-07-01

    Full Text Available This paper studies the environmental impact of two different forms of solar power generation in Thailand - that of multicrystalline silicon solar cells, and that of thin film amorphous silicon solar cells. It takes as its study two of the largest solar cell power plants of their kind in Thailand; a multicrystalline silicon plant in the north (generating 90 MW and a thin film amorphous silicon plant in the centre (generating 55 MW. The Life Cycle Assessment tool (LCA was used to assess the environmental impact of each stage of the process, from the manufacture of the cells, through to their transportation, installation and eventual recycling. The functional unit of the study was the generation of 1 kWh of power transmitted and distributed by the Electricity Generating Authority of Thailand (EGAT and Provincial Electricity Authority (PEA. The environmental impact results were calculated in terms of eco-points (Pt per functional unit of 1 kWh. The characterised data for 1 kWh of solar power generation was then compared with data for 1 kWh of combined cycle and thermal power generation (both in Thailand, using the same set of characterisation factors. After analyzing the results, both forms of solar power energy generation were found to impact upon the studied categories of Human Health, Ecosystem Quality and Resource Depletion, whilst also highlighting the importance of the solar cell module recycling process in decreasing the overall environmental impact. When the two solar cell technologies were compared, the overall impact of the multicrystalline silicon solar cell was found to be higher than that of the thin film amorphous silicon solar cell. Furthermore, when assessing the overall impact against non-renewable power generating technologies such as combined cycle and thermal power generation, the thin film amorphous silicon solar cells were found to have the lowest environmental impact of all technologies studied.

  3. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    International Nuclear Information System (INIS)

    Mouro, J.; Gualdino, A.; Chu, V.; Conde, J. P.

    2013-01-01

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n + -type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three different types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force

  4. Direct and inverse Staebler-Wronski effects observed in carbon-doped hydrogenated amorphous silicon photo-detectors

    International Nuclear Information System (INIS)

    Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C.; Brochero, J.; Calderon, A.; Fernandez, M.G.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Scodellaro, L.; Sobron, M.

    2011-01-01

    The photo-response behaviour of Amorphous Silicon Position Detectors (ASPDs) under prolonged illumination with a 681 nm diode-laser and a 633 nm He-Ne laser is presented. Both direct and inverse Staebler-Wronski effects are observed.

  5. Ultrafast all-optical arithmetic logic based on hydrogenated amorphous silicon microring resonators

    Science.gov (United States)

    Gostimirovic, Dusan; Ye, Winnie N.

    2016-03-01

    For decades, the semiconductor industry has been steadily shrinking transistor sizes to fit more performance into a single silicon-based integrated chip. This technology has become the driving force for advances in education, transportation, and health, among others. However, transistor sizes are quickly approaching their physical limits (channel lengths are now only a few silicon atoms in length), and Moore's law will likely soon be brought to a stand-still despite many unique attempts to keep it going (FinFETs, high-k dielectrics, etc.). This technology must then be pushed further by exploring (almost) entirely new methodologies. Given the explosive growth of optical-based long-haul telecommunications, we look to apply the use of high-speed optics as a substitute to the digital model; where slow, lossy, and noisy metal interconnections act as a major bottleneck to performance. We combine the (nonlinear) optical Kerr effect with a single add-drop microring resonator to perform the fundamental AND-XOR logical operations of a half adder, by all-optical means. This process is also applied to subtraction, higher-order addition, and the realization of an all-optical arithmetic logic unit (ALU). The rings use hydrogenated amorphous silicon as a material with superior nonlinear properties to crystalline silicon, while still maintaining CMOS-compatibility and the many benefits that come with it (low cost, ease of fabrication, etc.). Our method allows for multi-gigabit-per-second data rates while maintaining simplicity and spatial minimalism in design for high-capacity manufacturing potential.

  6. Neural network based cluster creation in the ATLAS silicon Pixel Detector

    CERN Document Server

    Perez Cavalcanti, T; The ATLAS collaboration

    2012-01-01

    The hit signals read out from pixels on planar semi-conductor sensors are grouped into clusters, to reconstruct the location where a charged particle passed through. The resolution of the individual pixel sizes can be improved significantly using the information from the cluster of adjacent pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years giving an excellent performance. However, in dense environments, such as those inside high-energy jets, is likely that the charge deposited by two or more close-by tracks merges into one single cluster. A new pattern recognition algorithm based on neural network methods has been developed for the ATLAS Pixel Detector. This can identify the shared clusters, split them if necessary, and estimate the positions of all particles traversing the cluster. The algorithm significantly reduces ambiguities in the assignment of pixel detector measurements to tracks within jets, and improves the positional accuracy with respect to stand...

  7. Neural network based cluster creation in the ATLAS silicon pixel detector

    CERN Document Server

    Selbach, K E; The ATLAS collaboration

    2012-01-01

    The read-out from individual pixels on planar semi-conductor sensors are grouped into clusters to reconstruct the location where a charged particle passed through the sensor. The resolution given by individual pixel sizes is significantly improved by using the information from the charge sharing between pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years to obtain an excellent performance. However, in dense environments, such as those inside high-energy jets, clusters have an increased probability of merging the charge deposited by multiple particles. Recently, a neural network based algorithm which estimates both the cluster position and whether a cluster should be split has been developed for the ATLAS pixel detector. The algorithm significantly reduces ambiguities in the assignment of pixel detector measurement to tracks within jets and improves the position accuracy with respect to standard interpolation techniques by taking into account the 2-dimensional ...

  8. Neural network based cluster creation in the ATLAS silicon Pixel Detector

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2013-01-01

    The read-out from individual pixels on planar semi-conductor sensors are grouped into clusters to reconstruct the location where a charged particle passed through the sensor. The resolution given by individual pixel sizes is significantly improved by using the information from the charge sharing between pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years to obtain an excellent performance. However, in dense environments, such as those inside high-energy jets, clusters have an increased probability of merging the charge deposited by multiple particles. Recently, a neural network based algorithm which estimates both the cluster position and whether a cluster should be split has been developed for the ATLAS Pixel Detector. The algorithm significantly reduces ambiguities in the assignment of pixel detector measurement to tracks within jets and improves the position accuracy with respect to standard interpolation techniques by taking into account the 2-dimensional ...

  9. Serially Connected Micro Amorphous Silicon Solar Cells for Compact High-Voltage Sources

    Directory of Open Access Journals (Sweden)

    Jiyoon Nam

    2016-01-01

    Full Text Available We demonstrate a compact amorphous silicon (a-Si solar module to be used as high-voltage power supply. In comparison with the organic solar module, the main advantages of the a-Si solar module are its compatibility with photolithography techniques and relatively high power conversion efficiency. The open circuit voltage of a-Si solar cells can be easily controlled by serially interconnecting a-Si solar cells. Moreover, the a-Si solar module can be easily patterned by photolithography in any desired shapes with high areal densities. Using the photolithographic technique, we fabricate a compact a-Si solar module with noticeable photovoltaic characteristics as compared with the reported values for high-voltage power supplies.

  10. Recombination processes and light-induced defect creation in hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Morigaki, K. [Department of Electrical and Digital-System Engineering, Hiroshima Institute of Technology, Miyake, Saeki-ku (Japan)

    2009-05-15

    Recombination processes of electrons and holes in hydrogenated amorphous silicon (a-Si:H) are reviewed in terms of our model. The long decay component of photoluminescence (PL) and the long decay of light-induced electron spin resonance (LESR) are compared, and it is concluded that radiative centres responsible for the long decay component of PL are not LESR centres that are nonradiative centres. This is consistent with our model. The mechanism of light-induced defect creation in a-Si:H and its kinetics is summarized in terms of our model. The related defects involved in the recombination processes and the light-induced defect creation in a-Si:H are discussed. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Investigation of the degradation of a thin-film hydrogenated amorphous silicon photovoltaic module

    Energy Technology Data Exchange (ETDEWEB)

    van Dyk, E.E.; Audouard, A.; Meyer, E.L. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Woolard, C.D. [Department of Chemistry, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2007-01-23

    The degradation of a thin-film hydrogenated single-junction amorphous silicon (a-Si:H) photovoltaic (PV) module has been studied. We investigated the different modes of electrical and physical degradation of a-Si:H PV modules by employing a degradation and failure assessment procedure used in conjunction with analytical techniques, including, scanning electron microscopy (SEM) and thermogravimetry. This paper reveals that due to their thickness, thin films are very sensitive to the type of degradation observed. Moreover, this paper deals with the problems associated with the module encapsulant, poly(ethylene-co-vinylacetate) (EVA). The main objective of this study was to establish the influence of outdoor environmental conditions on the performance of a thin-film PV module comprising a-Si:H single-junction cells. (author)

  12. Direct measurements of the velocity and thickness of ''explosively'' propagating buried molten layers in amorphous silicon

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Jellison, G.E. Jr.; Pennycook, S.J.; Withrow, S.P.; Mashburn, D.N.

    1986-01-01

    Simultaneous infrared (1152 nm) and visible (633 nm) reflectivity measurements with nanosecond resolution were used to study the initial formation and subsequent motion of pulsed KrF laser-induced ''explosively'' propagating buried molten layers in ion implantation-amorphized silicon. The buried layer velocity decreases with depth below the surface, but increases with KrF laser energy density; a maximum velocity of about 14 m/s was observed, implying an undercooling-velocity relationship of approx. 14 K/(m/s). Z-contrast scanning transmission electron microscopy was used to form a direct chemical image of implanted Cu ions transported by the buried layer and showed that the final buried layer thickness was <15 nm

  13. Simultaneous depth profiling of constituents and impurities by elastic proton scattering in amorphous hydrogenated silicon films

    Science.gov (United States)

    Schwarz, R.; Kolodzey, J. S.; Wagner, S.; Kouzes, R. T.

    1987-01-01

    Depth profiles of various constituents and impurities of thin films were obtained simultaneously by a nuclear coincidence method. The energy spectrum of elastically scattered 12 MeV protons, measured by a high-resolution magnetic spectrometer, was used for constituent identification and total content determination. Constituents of interest were selected by software pulse height discrimination and their depth profiles were obtained from the recoil energy spectrum, measured by a surface barrier detector telescope. Thin films of Teflon, of carbon, and of amorphous hydrogenated silicon were measured. The best possible depth resolution is about 20 nm for carbon and is limited by the beam energy spread and the energy resolution of the solid state detectors.

  14. Acoustically induced optical second harmonic generation in hydrogenated amorphous silicon films

    CERN Document Server

    Ebothe, J; Cabarrocas, P R I; Godet, C; Equer, B

    2003-01-01

    Acoustically induced second harmonic generation (AISHG) in hydrogenated amorphous silicon (a-Si : H) films of different morphology has been observed. We have found that with increasing acoustical power, the optical SHG of Gd : YAB laser light (lambda = 2.03 mu m) increases and reaches its maximum value at an acoustical power density of about 2.10 W cm sup - sup 2. With decreasing temperature, the AISHG signal strongly increases below 48 K and correlates well with the temperature behaviour of differential scanning calorimetry indicating near-surface temperature phase transition. The AISHG maxima were observed at acoustical frequencies of 10-11, 14-16, 20-22 and 23-26 kHz. The independently performed measurements of the acoustically induced IR spectra have shown that the origin of the observed phenomenon is the acoustically induced electron-phonon anharmonicity in samples of different morphology.

  15. Effect of back reflectors on photon absorption in thin-film amorphous silicon solar cells

    Science.gov (United States)

    Hossain, Mohammad I.; Qarony, Wayesh; Hossain, M. Khalid; Debnath, M. K.; Uddin, M. Jalal; Tsang, Yuen Hong

    2017-10-01

    In thin-film solar cells, the photocurrent conversion productivity can be distinctly boosted-up utilizing a proper back reflector. Herein, the impact of different smooth and textured back reflectors was explored and effectuated to study the optical phenomena with interface engineering strategies and characteristics of transparent contacts. A unique type of wet-chemically textured glass-substrate 3D etching mask used in superstrate (p-i-n) amorphous silicon-based solar cell along with legitimated back reflector permits joining the standard light-trapping methodologies, which are utilized to upgrade the energy conversion efficiency (ECE). To investigate the optical and electrical properties of solar cell structure, the optical simulations in three-dimensional measurements (3D) were performed utilizing finite-difference time-domain (FDTD) technique. This design methodology allows to determine the power losses, quantum efficiencies, and short-circuit current densities of various layers in such solar cell. The short-circuit current densities for different reflectors were varied from 11.50 to 13.27 and 13.81 to 16.36 mA/cm2 for the smooth and pyramidal textured solar cells, individually. Contrasted with the comparable flat reference cell, the short-circuit current density of textured solar cell was increased by around 24%, and most extreme outer quantum efficiencies rose from 79 to 86.5%. The photon absorption was fundamentally improved in the spectral region from 600 to 800 nm with no decrease of photocurrent shorter than 600-nm wavelength. Therefore, these optimized designs will help to build the effective plans next-generation amorphous silicon-based solar cells.

  16. Band-gap engineering by molecular mechanical strain-induced giant tuning of the luminescence in colloidal amorphous porous silicon nanostructures

    KAUST Repository

    Mughal, Asad Jahangir

    2014-01-01

    Nano-silicon is a nanostructured material in which quantum or spatial confinement is the origin of the material\\'s luminescence. When nano-silicon is broken into colloidal crystalline nanoparticles, its luminescence can be tuned across the visible spectrum only when the sizes of the nanoparticles, which are obtained via painstaking filtration methods that are difficult to scale up because of low yield, vary. Bright and tunable colloidal amorphous porous silicon nanostructures have not yet been reported. In this letter, we report on a 100 nm modulation in the emission of freestanding colloidal amorphous porous silicon nanostructures via band-gap engineering. The mechanism responsible for this tunable modulation, which is independent of the size of the individual particles and their distribution, is the distortion of the molecular orbitals by a strained silicon-silicon bond angle. This mechanism is also responsible for the amorphous-to-crystalline transformation of silicon. This journal is

  17. Band-gap engineering by molecular mechanical strain-induced giant tuning of the luminescence in colloidal amorphous porous silicon nanostructures.

    Science.gov (United States)

    Mughal, A; El Demellawi, J K; Chaieb, Sahraoui

    2014-12-14

    Nano-silicon is a nanostructured material in which quantum or spatial confinement is the origin of the material's luminescence. When nano-silicon is broken into colloidal crystalline nanoparticles, its luminescence can be tuned across the visible spectrum only when the sizes of the nanoparticles, which are obtained via painstaking filtration methods that are difficult to scale up because of low yield, vary. Bright and tunable colloidal amorphous porous silicon nanostructures have not yet been reported. In this letter, we report on a 100 nm modulation in the emission of freestanding colloidal amorphous porous silicon nanostructures via band-gap engineering. The mechanism responsible for this tunable modulation, which is independent of the size of the individual particles and their distribution, is the distortion of the molecular orbitals by a strained silicon-silicon bond angle. This mechanism is also responsible for the amorphous-to-crystalline transformation of silicon.

  18. Highly ordered amorphous silicon-carbon alloys obtained by RF PECVD

    CERN Document Server

    Pereyra, I; Carreno, M N P; Prado, R J; Fantini, M C A

    2000-01-01

    We have shown that close to stoichiometry RF PECVD amorphous silicon carbon alloys deposited under silane starving plasma conditions exhibit a tendency towards c-Si C chemical order. Motivated by this trend, we further explore the effect of increasing RF power and H sub 2 dilution of the gaseous mixtures, aiming to obtain the amorphous counterpart of c-Si C by the RF-PECVD technique. Doping experiments were also performed on ordered material using phosphorus and nitrogen as donor impurities and boron and aluminum as acceptor ones. For nitrogen a doping efficiency close to device quality a-Si:H was obtained, the lower activation energy being 0,12 eV with room temperature dark conductivity of 2.10 sup - sup 3 (OMEGA.cm). Nitrogen doping efficiency was higher than phosphorous for all studied samples. For p-type doping, results indicate that, even though the attained conductivity values are not device levels, aluminum doping conducted to a promising shift in the Fermi level. Also, aluminum resulted a more efficie...

  19. Performance and stability of low temperature hydrogenated amorphous silicon thin film transistors fabricated on stainless steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hwan; Kim, Sung Ki; Lee, Jong-Kwon; Lee, Seok-Woo; Lee, Hong Koo; Peak, Seung Han; Park, Yong-In; Kim, Chang-Dong; Hwang, Yong Kee; Chung, In-Jae [LG Display R and D Center, Paju, Gyongki-do, 413-811 (Korea)

    2010-04-15

    The key development issues in the flexible displays are TFT backplane technology, which requires competitive device performance and low temperature process compatible with flexible substrate. Here, we have fabricated low temperature hydrogenated amorphous silicon thin film transistor on a stainless steel substrate coated with organic barrier layer. Then, we have studied initial device performance by varying plasma gas and pressure conditions at a low power and a low temperature during amorphous silicon and silicon nitride deposition steps. Also, we discuss the stability characteristics of this low temperature processed thin film transistor, which reveals enough possibility for use in flexible display applications. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Test beam measurement of the first prototype of the fast silicon pixel monolithic detector for the TT-PET project

    Science.gov (United States)

    Paolozzi, L.; Bandi, Y.; Benoit, M.; Cardarelli, R.; Débieux, S.; Forshaw, D.; Hayakawa, D.; Iacobucci, G.; Kaynak, M.; Miucci, A.; Nessi, M.; Ratib, O.; Ripiccini, E.; Rücker, H.; Valerio, P.; Weber, M.

    2018-04-01

    The TT-PET collaboration is developing a PET scanner for small animals with 30 ps time-of-flight resolution and sub-millimetre 3D detection granularity. The sensitive element of the scanner is a monolithic silicon pixel detector based on state-of-the-art SiGe BiCMOS technology. The first ASIC prototype for the TT-PET was produced and tested in the laboratory and with minimum ionizing particles. The electronics exhibit an equivalent noise charge below 600 e‑ RMS and a pulse rise time of less than 2 ns , in accordance with the simulations. The pixels with a capacitance of 0.8 pF were measured to have a detection efficiency greater than 99% and, although in the absence of the post-processing, a time resolution of approximately 200 ps .

  1. Hybrid Si nanowire/amorphous silicon FETs for large-area image sensor arrays.

    Science.gov (United States)

    Wong, William S; Raychaudhuri, Sourobh; Lujan, René; Sambandan, Sanjiv; Street, Robert A

    2011-06-08

    Silicon nanowire (SiNW) field-effect transistors (FETs) were fabricated from nanowire mats mechanically transferred from a donor growth wafer. Top- and bottom-gate FET structures were fabricated using a doped a-Si:H thin film as the source/drain (s/d) contact. With a graded doping profile for the a-Si:H s/d contacts, the off-current for the hybrid nanowire/thin-film devices was found to decrease by 3 orders of magnitude. Devices with the graded contacts had on/off ratios of ∼10(5), field-effect mobility of ∼50 cm(2)/(V s), and subthreshold swing of 2.5 V/decade. A 2 in. diagonal 160 × 180 pixel image sensor array was fabricated by integrating the SiNW backplane with an a-Si:H p-i-n photodiode.

  2. Silicon sensors with various pixel geometries adapted for a common readout ASIC

    Science.gov (United States)

    Milovanovic, M.; Burdin, S.; Dervan, P.; Buttar, C.; Bates, R.; Blue, A.; Doonan, K.; Wraight, K. G.; Mcmullen, T.; Stewart, A.; Pater, J.; Eisenhardt, S.; Mills, C.; Allport, P. P.; Matheson, J.; Lipp, J.; Sidiropoulos, G.; Ashby, J.; Doherty, F.; Mcewan, F.; Casse, G.; Forshaw, D. C.; Hayward, H.; Tsurin, I.; Wonsak, S.; Warmald, M.

    2014-11-01

    ATLAS is proposing to replace the entire tracking system for HL-LHC operation. The ``Letter of Intent'' baseline pixel size at higher radii was 50 × 250μm2 (varphi × η), based on the FE-I4 readout chip, and this was optimized for the central barrel region. The detector tracking performance in the end-cap pixel disks can benefit from enhanced resolution in the radial direction to improve the impact parameter resolution in z-coordinate (along the beam line) for high η tracks, which is critical in the high pile-up environment of the HL-LHC. So called ``strixel'' geometries, with long narrow pixels, can be proposed at higher z in the barrel where tracks pass through at large angles. Larger pixels may also be considered for an additional pixel layer if this could reduce the requirements, and therefore costs, for the outer part of the tracker. While ATLAS pixel upgrade plans are evolving, the demonstration of providing a variety of sensor pixel shapes and sizes for a common ASIC pixel geometry will be of general application, whatever the final ASIC design. This paper will report on the development and testing of pixel sensors with several different dimensions assembled into modules with the FE-I4 readout chip. Some of these were irradiated (with protons, 1015 neq/cm2) and evaluated at the DESY test beam. These, together with the test beam results with non-irradiated sensors, will be shown, as well as the results from laboratory characterization.

  3. Amorphous and microcrystalline silicon applied in very thin tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schicho, Sandra

    2011-07-28

    Thin-film solar cells are fabricated by low-cost production processes, and are therefore an alternative to conventionally used wafer solar cells based on crystalline silicon. Due to the different band gaps, tandem cells that consist of amorphous (a-Si:H) and microcrystalline ({mu}c-Si:H) single junction solar cells deposited on top of each other use the solar spectrum much more efficient than single junction solar cells. The silicon layers are usually deposited on TCO (Transparent Conductive Oxide)-coated glass and metal- or plastic foils. Compared to the CdTe and CIGS based thin-film technologies, silicon thin-film solar cells have the advantage that no limitation of raw material supply is expected and no toxic elements are used. Nevertheless, the production cost per Wattpeak is the decisive factor concerning competitiveness and can be reduced by, e.g., shorter deposition times or reduced material consumption. Both cost-reducing conceptions are simultaneously achieved by reducing the a-Si:H and {mu}c-Si:H absorber layer thicknesses in a tandem device. In the work on hand, the influence of an absorber layer thickness reduction up to 77% on the photovoltaic parameters of a-Si:H/{mu}c-Si:H tandem solar cells was investigated. An industry-oriented Radio Frequency Plasma-Enhanced Chemical Vapour Deposition (RF-PECVD) system was used to deposit the solar cells on glass substrates coated with randomly structured TCO layers. The thicknesses of top and bottom cell absorber layers were varied by adjusting the deposition time. Reduced layer thicknesses lead to lower absorption and, hence, to reduced short-circuit current densities which, however, are partially balanced by higher open-circuit voltages and fill factors. Furthermore, by using very thin amorphous top cells, the light-induced degradation decreases tremendously. Accordingly, a thickness reduction of 75% led to an efficiency loss of only 21 %. By adjusting the parameters for the deposition of a-Si:H top cells, a

  4. Results from the NA62 Gigatracker Prototype: A Low-Mass and sub-ns Time Resolution Silicon Pixel Detector

    Science.gov (United States)

    Fiorini, M.; Rinella, G. Aglieri; Carassiti, V.; Ceccucci, A.; Gil, E. Cortina; Ramusino, A. Cotta; Dellacasa, G.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Mapelli, A.; Martin, E.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Petagna, P.; Petrucci, F.; Perktold, L.; Riedler, P.; Rivetti, A.; Statera, M.; Velghe, B.

    The Gigatracker (GTK) is a hybrid silicon pixel detector developed for NA62, the experiment aimed at studying ultra-rare kaon decays at the CERN SPS. Three GTK stations will provide precise momentum and angular measurements on every track of the high intensity NA62 hadron beam with a time-tagging resolution of 150 ps. Multiple scattering and hadronic interactions of beam particles in the GTK have to be minimized to keep background events at acceptable levels, hence the total material budget is fixed to 0.5% X0 per station. In addition the calculated fluence for 100 days of running is 2×1014 1 MeV neq/cm2, comparable to the one expected for the inner trackers of LHC detectors in 10 years of operation. These requirements pose challenges for the development of an efficient and low-mass cooling system, to be operated in vacuum, and on the thinning of read-out chips to 100 μm or less. The most challenging requirement is represented by the time resolution, which can be achieved by carefully compensating for the discriminator time-walk. For this purpose, two complementary read-out architectures have been designed and produced as small-scale prototypes: the first is based on the use of a Time-over-Threshold circuit followed by a TDC shared by a group of pixels, while the other uses a constant-fraction discriminator followed by an on-pixel TDC. The readout pixel ASICs are produced in 130 nm IBM CMOS technology and bump-bonded to 200 μm thick silicon sensors. The Gigatracker detector system is described with particular emphasis on recent experimental results obtained from laboratory and beam tests of prototype bump-bonded assemblies, which show a time resolution of less than 200 ps for single hits.

  5. 4K×4K format 10μm pixel pitch H4RG-10 hybrid CMOS silicon visible focal plane array for space astronomy

    Science.gov (United States)

    Bai, Yibin; Tennant, William; Anglin, Selmer; Wong, Andre; Farris, Mark; Xu, Min; Holland, Eric; Cooper, Donald; Hosack, Joseph; Ho, Kenneth; Sprafke, Thomas; Kopp, Robert; Starr, Brian; Blank, Richard; Beletic, James W.; Luppino, Gerard A.

    2012-07-01

    Teledyne’s silicon hybrid CMOS focal plane array technology has matured into a viable, high performance and high- TRL alternative to scientific CCD sensors for space-based applications in the UV-visible-NIR wavelengths. This paper presents the latest results from Teledyne’s low noise silicon hybrid CMOS visible focal place array produced in 4K×4K format with 10 μm pixel pitch. The H4RG-10 readout circuit retains all of the CMOS functionality (windowing, guide mode, reference pixels) and heritage of its highly successful predecessor (H2RG) developed for JWST, with additional features for improved performance. Combined with a silicon PIN detector layer, this technology is termed HyViSI™ (Hybrid Visible Silicon Imager). H4RG-10 HyViSI™ arrays achieve high pixel interconnectivity (noise (passed radiation testing for low earth orbit (LEO) environment.

  6. Device and material characterization and analytic modeling of amorphous silicon thin film transistors

    Science.gov (United States)

    Slade, Holly Claudia

    Hydrogenated amorphous silicon thin film transistors (TFTs) are now well-established as switching elements for a variety of applications in the lucrative electronics market, such as active matrix liquid crystal displays, two-dimensional imagers, and position-sensitive radiation detectors. These applications necessitate the development of accurate characterization and simulation tools. The main goal of this work is the development of a semi- empirical, analytical model for the DC and AC operation of an amorphous silicon TFT for use in a manufacturing facility to improve yield and maintain process control. The model is physically-based, in order that the parameters scale with gate length and can be easily related back to the material and device properties. To accomplish this, extensive experimental data and 2D simulations are used to observe and quantify non- crystalline effects in the TFTs. In particular, due to the disorder in the amorphous network, localized energy states exist throughout the band gap and affect all regimes of TFT operation. These localized states trap most of the free charge, causing a gate-bias-dependent field effect mobility above threshold, a power-law dependence of the current on gate bias below threshold, very low leakage currents, and severe frequency dispersion of the TFT gate capacitance. Additional investigations of TFT instabilities reveal the importance of changes in the density of states and/or back channel conduction due to bias and thermal stress. In the above threshold regime, the model is similar to the crystalline MOSFET model, considering the drift component of free charge. This approach uses the field effect mobility to take into account the trap states and must utilize the correct definition of threshold voltage. In the below threshold regime, the density of deep states is taken into account. The leakage current is modeled empirically, and the parameters are temperature dependent to 150oC. The capacitance of the TFT can be

  7. Predicting the performance of amorphous and crystalline silicon based photovoltaic solar thermal collectors

    International Nuclear Information System (INIS)

    Daghigh, Ronak; Ibrahim, Adnan; Jin, Goh Li; Ruslan, Mohd Hafidz; Sopian, Kamaruzzaman

    2011-01-01

    BIPVT is an application where solar PV/T modules are integrated into the building structure. System design parameters such as thermal conductivity and fin efficiency, type of cells, type of coolant and operating conditions are factors which influence the performance of BIPVT. Attempts have been made to improve the efficiency of building-integrated photovoltaic thermal (BIPVT). A new design concept of water-based PVT collector for building-integrated applications has been designed and evaluated. The results of simulation study of amorphous silicon (a-Si) PV/T and crystalline silicon (c-Si) module types are based on the metrological condition of Malaysia for a typical day in March. At a flow rate of 0.02 kg/s, solar radiation level between 700 and 900 W/m 2 and ambient temperature between 22 and 32 o C, the electrical, thermal and combined photovoltaic thermal efficiencies for the PV/T (a-Si) were 4.9%, 72% and 77%, respectively. Moreover, the electrical, thermal and combined photovoltaic thermal efficiencies of the PV/T (c-Si) were 11.6%, 51% and 63%.

  8. Microstructure from joint analysis of experimental data and ab initio interactions: Hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Parthapratim, E-mail: Partha.Biswas@usm.edu [Department of Physics and Astronomy, The University of Southern Mississippi, Hattiesburg, MS 39406 (United States); Department of Physics and Astronomy, Condensed Matter and Surface Science Program, Ohio University, Ohio 45701 (United States); Drabold, D. A., E-mail: drabold@ohio.edu [Department of Physics and Astronomy, Condensed Matter and Surface Science Program, Ohio University, Ohio 45701 (United States); Atta-Fynn, Raymond, E-mail: attafynn@uta.edu [Department of Physics, The University of Texas, Arlington, Texas 76019 (United States)

    2014-12-28

    A study of the formation of voids and molecular hydrogen in hydrogenated amorphous silicon is presented based upon a hybrid approach that involves inversion of experimental nuclear magnetic resonance data in conjunction with ab initio total-energy relaxations in an augmented solution space. The novelty of this approach is that the voids and molecular hydrogen appear naturally in the model networks unlike conventional approaches, where voids are created artificially by removing silicon atoms from the networks. Two representative models with 16 and 18 at. % of hydrogen are studied in this work. The result shows that the microstructure of the a-Si:H network consists of several microvoids and few molecular hydrogen for concentration above 15 at. % H. The microvoids are highly irregular in shape and size, and have a linear dimension of 5–7 Å. The internal surface of a microvoid is found to be decorated with 4–9 hydrogen atoms in the form of monohydride Si–H configurations as observed in nuclear magnetic resonance experiments. The microstructure consists of (0.9–1.4)% hydrogen molecules of total hydrogen in the networks. These observations are consistent with the outcome of infrared spectroscopy, nuclear magnetic resonance, and calorimetry experiments.

  9. X-ray radiation damage studies and design of a silicon pixel sensor for science at the XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiaguo

    2013-06-15

    Experiments at the European X-ray Free Electron Laser (XFEL) require silicon pixel sensors which can withstand X-ray doses up to 1 GGy. For the investigation of Xray radiation damage up to these high doses, MOS capacitors and gate-controlled diodes built on high resistivity n-doped silicon with crystal orientations left angle 100 right angle and left angle 111 right angle produced by four vendors, CiS, Hamamatsu, Canberra and Sintef have been irradiated with 12 keV X-rays at the DESY DORIS III synchrotron-light source. Using capacitance/ conductance-voltage, current-voltage and thermal dielectric relaxation current measurements, the densities of oxide charges and interface traps at the Si-SiO{sub 2} interface, and the surface-current densities have been determined as function of dose. Results indicate that the dose dependence of the oxide-charge density, the interface-trap density and the surface-current density depend on the crystal orientation and producer. In addition, the influence of the voltage applied to the gates of the MOS capacitor and the gate-controlled diode during X-ray irradiation on the oxide-charge density, the interface-trap density and the surface-current density has been investigated at doses of 100 kGy and 100 MGy. It is found that both strongly depend on the gate voltage if the electric field in the oxide points from the surface of the SiO{sub 2} to the Si-SiO{sub 2} interface. To verify the long-term stability of irradiated silicon sensors, annealing studies have been performed at 60 C and 80 C on MOS capacitors and gate-controlled diodes irradiated to 5 MGy as well, and the annealing kinetics of oxide charges and surface current were determined. Moreover, the macroscopic electrical properties of segmented sensors have slao been investigated as function of dose. It is found that the defects introduced by X-rays increase the full depletion voltage, the surface leakage current and the inter-electrode capacitance of the segmented sensor. An

  10. 3D silicon sensors: Design, large area production and quality assurance for the ATLAS IBL pixel detector upgrade

    Science.gov (United States)

    Da Via, Cinzia; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Darbo, Giovanni; Fleta, Celeste; Gemme, Claudia; Grenier, Philippe; Grinstein, Sebastian; Hansen, Thor-Erik; Hasi, Jasmine; Kenney, Chris; Kok, Angela; Parker, Sherwood; Pellegrini, Giulio; Vianello, Elisa; Zorzi, Nicola

    2012-12-01

    3D silicon sensors, where electrodes penetrate the silicon substrate fully or partially, have successfully been fabricated in different processing facilities in Europe and USA. The key to 3D fabrication is the use of plasma micro-machining to etch narrow deep vertical openings allowing dopants to be diffused in and form electrodes of pin junctions. Similar openings can be used at the sensor's edge to reduce the perimeter's dead volume to as low as ˜4 μm. Since 2009 four industrial partners of the 3D ATLAS R&D Collaboration started a joint effort aimed at one common design and compatible processing strategy for the production of 3D sensors for the LHC Upgrade and in particular for the ATLAS pixel Insertable B-Layer (IBL). In this project, aimed for installation in 2013, a new layer will be inserted as close as 3.4 cm from the proton beams inside the existing pixel layers of the ATLAS experiment. The detector proximity to the interaction point will therefore require new radiation hard technologies for both sensors and front end electronics. The latter, called FE-I4, is processed at IBM and is the biggest front end of this kind ever designed with a surface of ˜4 cm2. The performance of 3D devices from several wafers was evaluated before and after bump-bonding. Key design aspects, device fabrication plans and quality assurance tests during the 3D sensors prototyping phase are discussed in this paper.

  11. Insertable B-Layer integration in the ATLAS experiment and development of future 3D silicon pixel sensors

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00371528; Røhne, Ole

    This work has two distinct objectives: the development of software for the integration of the Insertable B-Layer (IBL) in the ATLAS offline software framework and the study of the performance of 3D silicon sensors produced by SINTEF for future silicon pixel detectors. The former task consists in the implementation of the IBL byte stream converter. This offline tool performs the decoding of the binary-formatted data coming from the detector into information (e.g. hit position and Time over Threshold) that is stored in a format used in the reconstruction data flow. It also encodes the information extracted from simulations into a simulated IBL byte stream. The tool has been successfully used since the beginning of the LHC Run II data taking. The experimental work on SINTEF 3D sensors was performed in the framework of the development of pixel sensors for the next generation of tracking detectors. Preliminary tests on SINTEF 3D sensors showed that the majority of these devices suffers from high leakage currents, ...

  12. The Gigatracker: An ultra-fast and low-mass silicon pixel detector for the NA62 experiment

    CERN Document Server

    Fiorini, M; Morel, M; Petrucci, F; Marchetto, F; Garbolino, S; Cortina, E; Tiuraniemi, S; Ceccucci, A; Martin, E; Riedler, P; Martoiu, S; Ramusino, A C; Rinella, G A; Mapelli, A; Mazza, G; Noy, M; Jarron, P; Nuessle, G; Dellacasa, G; Kluge, A; Rivetti, A; Kaplon, J

    2011-01-01

    The Gigatracker is a hybrid silicon pixel detector developed to track the highly intense NA62 hadron beam with a time resolution of 150 ps (rms). The beam spectrometer of the experiment is composed of three Gigatracker stations installed in vacuum in order to precisely measure momentum, time and direction of every traversing particle. Precise tracking demands a very low mass of the detector assembly (<0.5\\% X(O) per station) in order to limit multiple scattering and beam hadronic interactions. The high rate and especially the high timing precision requirements are very demanding: two R\\&D options are ongoing and the corresponding prototype read-out chips have been recently designed and produced in 0.13 mu m CMOS technology. One solution makes use of a constant fraction discriminator and on-pixel analogue-based time-to-digital-converter (TDC); the other comprises a delay-locked loop based TDC placed at the end of each pixel column and a time-over-threshold discriminator with time-walk correction techniq...

  13. A wireless beta-microprobe based on pixelated silicon for in vivo brain studies in freely moving rats

    Science.gov (United States)

    Märk, J.; Benoit, D.; Balasse, L.; Benoit, M.; Clémens, J. C.; Fieux, S.; Fougeron, D.; Graber-Bolis, J.; Janvier, B.; Jevaud, M.; Genoux, A.; Gisquet-Verrier, P.; Menouni, M.; Pain, F.; Pinot, L.; Tourvielle, C.; Zimmer, L.; Morel, C.; Laniece, P.

    2013-07-01

    The investigation of neurophysiological mechanisms underlying the functional specificity of brain regions requires the development of technologies that are well adjusted to in vivo studies in small animals. An exciting challenge remains the combination of brain imaging and behavioural studies, which associates molecular processes of neuronal communications to their related actions. A pixelated intracerebral probe (PIXSIC) presents a novel strategy using a submillimetric probe for beta+ radiotracer detection based on a pixelated silicon diode that can be stereotaxically implanted in the brain region of interest. This fully autonomous detection system permits time-resolved high sensitivity measurements of radiotracers with additional imaging features in freely moving rats. An application-specific integrated circuit (ASIC) allows for parallel signal processing of each pixel and enables the wireless operation. All components of the detector were tested and characterized. The beta+ sensitivity of the system was determined with the probe dipped into radiotracer solutions. Monte Carlo simulations served to validate the experimental values and assess the contribution of gamma noise. Preliminary implantation tests on anaesthetized rats proved PIXSIC's functionality in brain tissue. High spatial resolution allows for the visualization of radiotracer concentration in different brain regions with high temporal resolution.

  14. Vectors and submicron precision: redundancy and 3D stacking in silicon pixel detectors

    International Nuclear Information System (INIS)

    Heijne, E H M; Ballabriga, R; Campbell, M; Llopart, X; Tlustos, L; Plackett, R; Wong, W; Boltje, D; Vermeulen, J; Visschers, J; Visser, J; Idarraga, J; Leroy, C; Jakubek, J; PospIsil, S; Turecek, D; Vykydal, Z

    2010-01-01

    Measurements are shown of GeV pions and muons in two 300μm thick, Si Medipix pixel detector assemblies that are stacked on top of each other, with a 25μm thick brass foil in between. In such a radiation imaging semiconductor matrix with a large number of pixels along the particle trail, one can determine local space vectors for the particle trajectory instead of points. This improves pattern recognition and track reconstruction, especially in a crowded environment. Stacking of sensor planes is essential for resolving directional ambiguities. Signal charge sharing can be employed for measuring positions with submicron precision. In the measurements one notices accompanying 'delta' electrons that emerge outside the particle trail, far beyond the boundaries of the 55μm pixel cells. The frequency of such corrupted position measurements is ∼ one per 2.5mm of traversed Si.

  15. Monte Carlo simulation of the response of a pixellated 3D photo-detector in silicon

    International Nuclear Information System (INIS)

    Dubaric, E.; Nilsson, H.-E.; Froejdh, C.; Norlin, B.

    2002-01-01

    The charge transport and X-ray photon absorption in three-dimensional (3D) X-ray pixel detectors have been studied using numerical simulations. The charge transport has been modelled using the drift-diffusion simulator MEDICI, while photon absorption has been studied using MCNP. The response of the entire pixel detector system in terms of charge sharing, line spread function and modulation transfer function, has been simulated using a system level Monte Carlo simulation approach. A major part of the study is devoted to the effect of charge sharing on the energy resolution in 3D-pixel detectors. The 3D configuration was found to suppress charge sharing much better than conventional planar detectors

  16. Monte Carlo simulation of the response of a pixellated 3D photo-detector in silicon

    CERN Document Server

    Dubaric, E; Froejdh, C; Norlin, B

    2002-01-01

    The charge transport and X-ray photon absorption in three-dimensional (3D) X-ray pixel detectors have been studied using numerical simulations. The charge transport has been modelled using the drift-diffusion simulator MEDICI, while photon absorption has been studied using MCNP. The response of the entire pixel detector system in terms of charge sharing, line spread function and modulation transfer function, has been simulated using a system level Monte Carlo simulation approach. A major part of the study is devoted to the effect of charge sharing on the energy resolution in 3D-pixel detectors. The 3D configuration was found to suppress charge sharing much better than conventional planar detectors.

  17. Vectors and submicron precision: redundancy and 3D stacking in silicon pixel detectors

    CERN Document Server

    Heijne, E H M; Wong, W; Idarraga, J; Visser, J; Jakubek, J; Leroy, C; Turecek, D; Visschers, J; Pospisil, S; Ballabriga, R; Vykydal, Z; Vermeulen, J; Plackett, R; Heijne, E H M; Llopart, X; Boltje, D; Campbell, M

    2010-01-01

    Measurements are shown of GeV pions and muons in two 300 mu m thick, Si Medipix pixel detector assemblies that are stacked on top of each other, with a 25 mu m thick brass foil in between. In such a radiation imaging semiconductor matrix with a large number of pixels along the particle trail, one can determine local space vectors for the particle trajectory instead of points. This improves pattern recognition and track reconstruction, especially in a crowded environment. Stacking of sensor planes is essential for resolving directional ambiguities. Signal charge sharing can be employed for measuring positions with submicron precision. In the measurements one notices accompanying `delta' electrons that emerge outside the particle trail, far beyond the boundaries of the 55 mu m pixel cells. The frequency of such corrupted position measurements is similar to one per 2.5mm of traversed Si.

  18. Observation by conductive-probe atomic force microscopy of strongly inverted surface layers at the hydrogenated amorphous silicon/crystalline silicon heterojunctions

    Science.gov (United States)

    Maslova, O. A.; Alvarez, J.; Gushina, E. V.; Favre, W.; Gueunier-Farret, M. E.; Gudovskikh, A. S.; Ankudinov, A. V.; Terukov, E. I.; Kleider, J. P.

    2010-12-01

    Heterojunctions made of hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si) are examined by conducting probe atomic force microscopy. Conductive channels at both (n )a-Si:H/(p)c-Si and (p)a-Si:H/(n)c-Si interfaces are clearly revealed. These are attributed to two-dimension electron and hole gases due to strong inversion layers at the c-Si surface in agreement with previous planar conductance measurements. The presence of a hole gas in (p )a-Si:H/(n)c-Si structures implies a quite large valence band offset (EVc-Si-EVa-Si:H>0.25 eV).

  19. The First JFET-based Silicon Carbide Active Pixel Sensor UV Imager, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Solar-blind ultraviolet (UV) imaging is critically important in the fields of space astronomy, national defense, and bio-chemistry. United Silicon Carbide, Inc....

  20. The First JFET-Based Silicon Carbide Active Pixel Sensor UV Imager, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Solar-blind ultraviolet (UV) imaging is needed in the fields of astronomy, national defense, and bio-chemistry. United Silicon Carbide, Inc. proposes to develop a...

  1. Hydrogen related crystallization in intrinsic hydrogenated amorphous silicon films prepared by reactive radiofrequency magnetron sputtering at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Senouci, D. [Laboratoire de Genie Physique, Universite Ibn-Khaldoun, 14000 Tiaret (Algeria); LPCMME, Departement de Physique, Universite d' Oran Es-senia, 3100, Oran (Algeria); Baghdad, R., E-mail: r_baghdad@mail.univ-tiaret.dz [Laboratoire de Genie Physique, Universite Ibn-Khaldoun, 14000 Tiaret (Algeria); Belfedal, A.; Chahed, L. [LPCMME, Departement de Physique, Universite d' Oran Es-senia, 3100, Oran (Algeria); Portier, X. [CIMAP, CEA, CNRS UMR 6252-ENSICAEN, UCBN, 6 Bvd Marechal Juin, 14050 Caen Cedex (France); Charvet, S. [LPMC, UFR des Sciences, Universite de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens (France); Kim, K.H. [LPICM, Laboratoire de Physique des Interfaces et Couches Minces, CNRS UMR 7647, Ecole Polytechnique, 91128 Palaiseau (France); TOTAL S.A., Gas and Power, R and D Division, Courbevoie (France); Roca i Cabarrocas, P. [LPICM, Laboratoire de Physique des Interfaces et Couches Minces, CNRS UMR 7647, Ecole Polytechnique, 91128 Palaiseau (France); Zellama, K. [LPMC, UFR des Sciences, Universite de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens (France)

    2012-11-01

    We present an investigation on the transition from amorphous to nanocrystalline silicon and associated hydrogen changes during the first steps of hydrogenated nanocrystalline silicon growth for films elaborated by reactive radiofrequency magnetron sputtering at a substrate temperature as low as room temperature and for deposition times varying from 3 to 60 min. Complementary experimental techniques have been used to characterize the films in their as-deposited state. They are completed by thermal hydrogen effusion experiments conducted in the temperature range, from room temperature to 800 Degree-Sign C. The results show that, during the initial stages of growth, the presence of a hydrogen-rich layer is necessary to initiate the crystallization process. - Highlights: Black-Right-Pointing-Pointer Nanocrystalline silicon growth at room temperature. Black-Right-Pointing-Pointer Transition from amorphous to nanocrystalline silicon. Black-Right-Pointing-Pointer Chemical reactions of H atoms with strained Si-Si bonds. Black-Right-Pointing-Pointer H selective etching and chemical transport caused the silicon nucleation.

  2. Ultra-thin silicon (UTSi) on insulator CMOS transceiver and time-division multiplexed switch chips for smart pixel integration

    Science.gov (United States)

    Zhang, Liping; Sawchuk, Alexander A.

    2001-12-01

    We describe the design, fabrication and functionality of two different 0.5 micron CMOS optoelectronic integrated circuit (OEIC) chips based on the Peregrine Semiconductor Ultra-Thin Silicon on insulator technology. The Peregrine UTSi silicon- on-sapphire (SOS) technology is a member of the silicon-on- insulator (SOI) family. The low-loss synthetic sapphire substrate is optically transparent and has good thermal conductivity and coefficient of thermal expansion properties, which meet the requirements for flip-chip bonding of VCSELs and other optoelectronic input-output components. One chip contains transceiver and network components, including four channel high-speed CMOS transceiver modules, pseudo-random bit stream (PRBS) generators, a voltage controlled oscillator (VCO) and other test circuits. The transceiver chips can operate in both self-testing mode and networking mode. An on- chip clock and true-single-phase-clock (TSPC) D-flip-flop have been designed to generate a PRBS at over 2.5 Gb/s for the high-speed transceiver arrays to operate in self-testing mode. In the networking mode, an even number of transceiver chips forms a ring network through free-space or fiber ribbon interconnections. The second chip contains four channel optical time-division multiplex (TDM) switches, optical transceiver arrays, an active pixel detector and additional test devices. The eventual applications of these chips will require monolithic OEICs with integrated optical input and output. After fabrication and testing, the CMOS transceiver array dies will be packaged with 850 nm vertical cavity surface emitting lasers (VCSELs), and metal-semiconductor- metal (MSM) or GaAs p-i-n detector die arrays to achieve high- speed optical interconnections. The hybrid technique could be either wire bonding or flip-chip bonding of the CMOS SOS smart-pixel arrays with arrays of VCSELs and photodetectors onto an optoelectronic chip carrier as a multi-chip module (MCM).

  3. Structure-Property Relationships in Polymer Derived Amorphous/Nano-Crystalline Silicon Carbide for Nuclear Applications

    International Nuclear Information System (INIS)

    Zunjarrao, Suraj C.; Singh, Abhishek K.; Singh, Raman P.

    2006-01-01

    Silicon carbide (SiC) is a promising candidate for several applications in nuclear reactors owing to its high thermal conductivity, high melting temperature, good chemical stability, and resistance to swelling under heavy ion bombardment. However, fabricating SiC by traditional powder processing route generally requires very high temperatures for pressureless sintering. Polymer derived ceramic materials offer unique advantages such as ability to fabricate net shaped components, incorporate reinforcements and relatively low processing temperatures. Furthermore, for SiC based ceramics fabricated using polymer infiltration process (PIP), the microstructure can be tailored by controlling the processing parameters, to get an amorphous, nanocrystalline or crystalline SiC. In this work, fabrication of polymer derived amorphous and nano-grained SiC is presented and its application as an in-core material is explored. Monolithic SiC samples are fabricated by controlled pyrolysis of allyl-hydrido-poly-carbo-silane (AHPCS) under inert atmosphere. Chemical changes, phase transformations and microstructural changes occurring during the pyrolysis process are studied as a function of the processing temperature. Polymer cross-linking and polymer to ceramic conversion is studied using infrared spectroscopy (FTIR). Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) are performed to monitor the mass loss and phase change as a function of temperature. X-ray diffraction studies are done to study the intermediate phases and microstructural changes. Variation in density is carefully monitored as a function of processing temperature. Owing to shrinkage and gas evolution during pyrolysis, precursor derived ceramics are inherently porous and composite fabrication typically involves repeated cycles of polymer re-infiltration and pyrolysis. However, there is a limit to the densification that can be achieved by this method and porosity in the final materials presents

  4. Irreversible lithium storage during lithiation of amorphous silicon thin film electrodes studied by in-situ neutron reflectometry

    Science.gov (United States)

    Jerliu, Bujar; Hüger, Erwin; Horisberger, Michael; Stahn, Jochen; Schmidt, Harald

    2017-08-01

    Amorphous silicon is a promising high-capacity anode material for application in lithium-ion batteries. However, a huge drawback of the material is that the large capacity losses taking place during cycling lead to an unstable performance. In this study we investigate the capacity losses occurring during galvanostatic lithiation of amorphous silicon thin film electrodes by in-situ neutron reflectometry experiments for the first ten cycles. As determined from the analysis of the neutron scattering length density and of the film thickness, the capacity losses are due to irreversible storage of lithium in the electrode. The amount of stored lithium increases during cycling to 20% of the maximum theoretical capacity after the 10th cycle. Possible explanations are discussed.

  5. Growth and Physical Structure of Amorphous Boron Carbide Deposited by Magnetron Sputtering on a Silicon Substrate with a Titanium Interlayer

    Directory of Open Access Journals (Sweden)

    Roberto Caniello

    2013-01-01

    Full Text Available Multilayer amorphous boron carbide coatings were produced by radiofrequency magnetron sputtering on silicon substrates. To improve the adhesion, titanium interlayers with different thickness were interposed between the substrate and the coating. Above three hundreds nanometer, the enhanced roughness of the titanium led to the growth of an amorphous boron carbide with a dense and continuing columnar structure, and no delamination effect was observed. Correspondingly, the adhesion of the coating became three time stronger than in the case of a bare silicon substrate. Physical structure and microstructural proprieties of the coatings were investigated by means of a scan electron microscopy, atomic force microscopy and X-ray diffraction. The adhesion of the films was measured by a scratch tester.

  6. Photostability Assessment in Amorphous-Silicon Solar Cells; Determinacion de la Fotoestabilidad en Celulas Solares de Silicio Amorfo

    Energy Technology Data Exchange (ETDEWEB)

    Gandia, J. J.; Carabe, J.; Fabero, F.; Jimenez, R.; Rivero, J. M. [Ciemat, Madrid (Spain)

    2000-07-01

    The present status of amorphous-silicon-solar-cell research and development at CIEMAT requires the possibility to characterise the devices prepared from the point of view of their stability against sunlight exposure. Therefore a set of tools providing such a capacity has been developed. Together with an introduction to photovoltaic applications of amorphous silicon and to the photodegradation problem, the present work describes the process of setting up these tools. An indoor controlled-photodegradation facility has been designed and built, and a procedure has been developed for the measurement of J-V characteristics in well established conditions. This method is suitable for a kinds of solar cells, even for those for which no model is still available. The photodegradation and characterisation of some cells has allowed to validate both the new testing facility and method. (Author) 14 refs.

  7. Amorphous NEA Silicon Photocathodes - A Robust RF Gun Electron Source. Final Report

    International Nuclear Information System (INIS)

    Mulhollan, Gregory A.

    2009-01-01

    Amorphous silicon (a-Si) has been shown to have great promise as a negative electron affinity visible wavelength photocathode suitable for radio frequency (RF) gun systems. The specific operating wavelength can be shifted by growing it as a germanium alloy (a-Si(1-x)Ge(x)) rather than as pure silicon. This class of photoemitters has been shown to possess a high degree of immunity to charged particle flux. Such particle flux can be a significant problem in the operation of other photocathodes in RF gun systems. Its emission characteristics in the form of current per unit area, or current density, and emission angle, or beam spread are well matched for use in RF guns. Photocathodes made of a-Si can be fabricated on a variety of substrates including those most commonly employed in RF gun systems. Such photocathodes can be made for operation in either transmission or reflection mode. By growing them utilizing radio frequency plasma enhanced chemical vapor deposition, the unit cost is quite low, the quality is high and it is straightforward to grow custom size substrates and full or limited regions to confine the electron emission to the desired area. Quality emitters have been fabricated on tantalum, molybdenum, tungsten, titanium, copper, stainless steel, float glass, borosilicate glass and gallium arsenide. In addition to performing well in dedicated test chambers, a-Si photocathodes have been shown to function well in self-contained vacuum tubes. In this employment, they are subjected to a strenuous environment. Successful operation in this configuration provides additional confidence in their application to high energy linac photoinjectors and potentially as part of reliable, low cost photocathode driven RF gun systems that could become ready replacements for the diode and triode guns used on medical accelerators. Their applications in stand-alone vacuum tubes is just beginning to be explored.

  8. Method for sputtering a PIN amorphous silicon semi-conductor device having partially crystallized P and N-layers

    Science.gov (United States)

    Moustakas, Theodore D.; Maruska, H. Paul

    1985-07-09

    A high efficiency amorphous silicon PIN semiconductor device having partially crystallized (microcrystalline) P and N layers is constructed by the sequential sputtering of N, I and P layers and at least one semi-transparent ohmic electrode. The method of construction produces a PIN device, exhibiting enhanced electrical and optical properties, improved physical integrity, and facilitates the preparation in a singular vacuum system and vacuum pump down procedure.

  9. Complex nano-patterning of structural, optical, electrical and electron emission properties of amorphous silicon thin films by scanning probe

    Czech Academy of Sciences Publication Activity Database

    Fait, Jan; Čermák, Jan; Stuchlík, Jiří; Rezek, Bohuslav

    2018-01-01

    Roč. 428, Jan (2018), s. 1159-1165 ISSN 0169-4332 R&D Projects: GA ČR GA15-01809S Institutional support: RVO:68378271 Keywords : amorphous silicon * nano-templates * nanostructures * electrical conductivity * electron emission * atomic force microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.387, year: 2016

  10. Structural characterization of the interface structure of amorphous silicon thin films after post-deposition argon or hydrogen plasma treatment

    Science.gov (United States)

    Neumüller, Alex; Sergeev, Oleg; Vehse, Martin; Agert, Carsten

    2017-05-01

    The interfaces in silicon thin film solar cells and silicon heterojunction solar cells are considered to be very important for the solar cell conversion efficiency. This work studies the interface properties of hydrogenated amorphous silicon thin films deposited on crystalline silicon wafers after post-deposition hydrogen plasma treatment (HPT) or argon plasma treatment (APT). The investigation extends our previous study by examining the structural changes resulting from the post-deposition plasma treatment on silicon thin film solar cells. We analyzed the ellipsometry and infrared spectra of our samples to gain a deeper understanding of the fundamental plasma treatment effects. By using post-deposition APT and HPT, we were able to reduce the material stress and improve the structure of these layers. Our results show that APT yields a more compact material with fewer voids and less distinct localized tail states. We discuss the effect of APT and HPT on the most crucial interface in silicon heterojunction solar cells, the i-a-Si:H/c-Si interface. We propose to introduce APT as a post-deposition process step in the fabrication of silicon heterojunction solar cells.

  11. Memory effect in MOS structures containing amorphous or crystalline silicon nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Sebastian; Brueggemann, Rudolf; Bauer, Gottfried Heinrich [Institute of Physics, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg (Germany); Nedev, Nicola [Istituto de Ingenieria, Universidad Autonoma de Baja California, Benito Juarez Blvd., s/n, C.P. 21280, Mexicali, Baja California (Mexico); Manolov, Emmo; Nesheva, Diana; Levi, Zelma [Insitute of Solid State Physics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria)

    2008-07-01

    Amorphous and crystalline silicon nanoparticles (Si-NPs) embedded in a SiO{sub 2} matrix are fabricated by thermal annealing of Metal/SiO{sub 2}/SiO{sub x}/c-Si structures (x=1.15) at 700 C or 1000 C in N{sub 2} atmosphere for 30 or 60 minutes. High frequency C-V measurements show that the samples can be charged negatively or positively by applying a positive or negative bias voltage to the gate. A memory effect, due to the Si-NPs in the SiO{sub 2} matrix, is observed. The method of measurement with open circuit between two measurements leads to the retention characteristic where the structures retain about 50% of negative charge trapped in Si-NPs for 24 hours. A second method, where the flat-band voltage is applied as bias voltage, shows shorter retention characteristics. There the Si-NPs retain 50% of their charge after 10 hours.

  12. 25th Anniversary Article: Organic Field-Effect Transistors: The Path Beyond Amorphous Silicon

    Science.gov (United States)

    Sirringhaus, Henning

    2014-01-01

    Over the past 25 years, organic field-effect transistors (OFETs) have witnessed impressive improvements in materials performance by 3–4 orders of magnitude, and many of the key materials discoveries have been published in Advanced Materials. This includes some of the most recent demonstrations of organic field-effect transistors with performance that clearly exceeds that of benchmark amorphous silicon-based devices. In this article, state-of-the-art in OFETs are reviewed in light of requirements for demanding future applications, in particular active-matrix addressing for flexible organic light-emitting diode (OLED) displays. An overview is provided over both small molecule and conjugated polymer materials for which field-effect mobilities exceeding > 1 cm2 V–1 s–1 have been reported. Current understanding is also reviewed of their charge transport physics that allows reaching such unexpectedly high mobilities in these weakly van der Waals bonded and structurally comparatively disordered materials with a view towards understanding the potential for further improvement in performance in the future. PMID:24443057

  13. Effects of phosphorus on the electrical characteristics of plasma deposited hydrogenated amorphous silicon carbide thin films

    Science.gov (United States)

    Alcinkaya, Burak; Sel, Kivanc

    2018-01-01

    The properties of phosphorus doped hydrogenated amorphous silicon carbide (a-SiCx:H) thin films, that were deposited by plasma enhanced chemical vapor deposition technique with four different carbon contents (x), were analyzed and compared with those of the intrinsic a-SiCx:H thin films. The carbon contents of the films were determined by X-ray photoelectron spectroscopy. The thickness and optical energies, such as Tauc, E04 and Urbach energies, of the thin films were determined by UV-Visible transmittance spectroscopy. The electrical properties of the films, such as conductivities and activation energies were analyzed by temperature dependent current-voltage measurements. Finally, the conduction mechanisms of the films were investigated by numerical analysis, in which the standard transport mechanism in the extended states and the nearest neighbor hopping mechanism in the band tail states were taken into consideration. It was determined that, by the effect of phosphorus doping the dominant conduction mechanism was the standard transport mechanism for all carbon contents.

  14. Dose patient verification during treatment using an amorphous silicon electronic portal imaging device in radiotherapy

    International Nuclear Information System (INIS)

    Berger, Lucie

    2006-01-01

    Today, amorphous silicon electronic portal imaging devices (aSi EPID) are currently used to check the accuracy of patient positioning. However, they are not use for dose reconstruction yet and more investigations are required to allow the use of an aSi EPID for routine dosimetric verification. The aim of this work is first to study the dosimetric characteristics of the EPID available at the Institut Curie and then, to check patient dose during treatment using these EPID. First, performance optimization of the Varian aS500 EPID system is studied. Then, a quality assurance system is set up in order to certify the image quality on a daily basis. An additional study on the dosimetric performance of the aS500 EPID is monitored to assess operational stability for dosimetry applications. Electronic portal imaging device is also a useful tool to improve IMRT quality control. The validation and the quality assurance of a portal dose image prediction system for IMRT pre-treatment quality control are performed. All dynamic IMRT fields are verified in clinical routine with the new method based on portal dosimetry. Finally, a new formalism for in vivo dosimetry using transit dose measured with EPID is developed and validated. The absolute dose measurement issue using aSi EPID is described and the midplane dose determination using in vivo dose measurements in combination with portal imaging is used with 3D-conformal-radiation therapy. (author) [fr

  15. Adjustable optical response of amorphous silicon nanowires integrated with thin films.

    Science.gov (United States)

    Dhindsa, Navneet; Walia, Jaspreet; Pathirane, Minoli; Khodadad, Iman; Wong, William S; Saini, Simarjeet Singh

    2016-04-08

    We experimentally demonstrate a new optical platform by integrating hydrogenated amorphous silicon nanowire arrays with thin films deposited on transparent substrates like glass. A 535 nm thick thin film is anisotropically etched to fabricate vertical nanowire arrays of 100 nm diameter arranged in a square lattice. Adjusting the nanowire length, and consequently the thin film thickness permits the optical properties of this configuration to be tuned for either transmission filter response or enhanced broadband absorption. Vivid structural colors are also achieved in reflection and transmission. The optical properties of the platform are investigated for three different etch depths. Transmission filter response is achieved for a configuration with nanowires on glass without any thin film. Alternatively, integrating thin film with nanowires increases the absorption efficiency by ∼97% compared to the thin film starting layer and by ∼78% over nanowires on glass. The ability to tune the optical response of this material in this fashion makes it a promising platform for high performance photovoltaics, photodetectors and sensors.

  16. Nano-fabrication of depth-varying amorphous silicon crescent shell array for light trapping

    Science.gov (United States)

    Yang, Huan; Li, Ben Q.; Jiang, Xinbing; Yu, Wei; Liu, Hongzhong

    2017-12-01

    We report a new structure of depth controllable amorphous silicon (a-Si) crescent shells array, fabricated by the SiO2 monolayer array assisted deposition of a-Si by plasma enhanced chemical vapor deposition and nanosphere lithography, for high-efficiency light trapping applications. The depth of the crescent shell cavity was tailored by selective etching of a-Si layer of the SiO2/a-Si core/shell nanoparticle array with a varied etching time. The morphological changes of the crescent shells were examined by scanning electron microscopy and atomic force microscopy. A simple model is developed to describe the geometrical evolution of the a-Si crescent shells. Spectroscopic measurements and finite difference time domain simulations were conducted to examine the optical performance of the crescent shells. Results show that these nanostructures all have a broadband high efficiency absorption and that the light trapping capability of these crescent shell structures depends on the excitation of depths-regulated optical resonance modes. With an appropriate selection of process parameters, the structure of crescent a-Si shells may be fine-tuned to achieve an optimal light trapping capacity.

  17. On the structural and optical properties of sputtered hydrogenated amorphous silicon thin films

    International Nuclear Information System (INIS)

    Barhdadi, A.; Chafik El ldrissi, M.

    2002-08-01

    The present work is essentially focused on the study of optical and structural properties of hydrogenated amorphous silicon thin films (a-Si:H) prepared by radio-frequency cathodic sputtering. We examine separately the influence of hydrogen partial pressure during film deposition, and the effect of post-deposition thermal annealings on the main optical characteristics of the layers such as refraction index, optical gap and Urbach energy. Using the grazing X-rays reflectometry technique, thin film structural properties are examined immediately after films deposition as well as after surface oxidation or annealing. We show that low hydrogen pressures allow a saturation of dangling bonds in the layers, while high doses lead to the creation of new defects. We show also that thermal annealing under moderate temperatures improves the structural quality of the deposited layers. For the films examined just after deposition, the role of hydrogen appears in the increase of their density. For those analysed after a short stay in the ambient, hydrogen plays a protective role against the oxidation of their surfaces. This role disappears for a long time stay in the ambient. (author)

  18. Biocompatibility of Hydrogen-Diluted Amorphous Silicon Carbide Thin Films for Artificial Heart Valve Coating

    Science.gov (United States)

    Rizal, Umesh; Swain, Bhabani S.; Rameshbabu, N.; Swain, Bibhu P.

    2018-01-01

    Amorphous silicon carbide (a-SiC:H) thin films were synthesized using trichloromethylsilane by a hot wire chemical vapor deposition process. The deposited films were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, x-ray diffraction and x-ray photoelectron spectroscopy to confirm its chemical bonding, structural network and composition of the a-SiC:H films. The optical microscopy images reveal that hydrogen dilution increased the surface roughness and pore density of a-SiC:H thin film. The Raman spectroscopy and FTIR spectra reveal chemical network consisting of Si-Si, C-C and Si-C bonds, respectively. The XRD spectroscopy and Raman spectroscopy indicate a-SiC:H still has short-range order. In addition, in vitro cytotoxicity test ensures the behavior of cell-semiconductor hybrid to monitor the proper coordination. The live-dead assays and MTT assay reveal an increase in green nucleus cell, and cell viability is greater than 88%, respectively, showing non-toxic nature of prepared a-SiC:H film. Moreover, the result indicated by direct contact assay, and cell prefers to adhere and proliferate on a-SiC:H thin films having a positive effect as artificial heart valve coating material.

  19. Thermal grafting of fluorinated molecular monolayers on doped amorphous silicon surfaces

    International Nuclear Information System (INIS)

    Sabbah, H.; Zebda, A.; Ababou-Girard, S.; Solal, F.; Godet, C.; Conde, J. P.; Chu, V.

    2009-01-01

    Thermally induced (160-300 deg. C) gas phase grafting of linear alkene molecules (perfluorodecene) was performed on hydrogenated amorphous silicon (a-Si:H) films, either nominally undoped or doped with different boron and phosphorus concentrations. Dense and smooth a-Si:H films were grown using plasma decomposition of silane. Quantitative analysis of in situ x-ray photoelectron spectroscopy indicates the grafting of a single layer of organic molecules. The hydrophobic properties of perfluorodecene-modified surfaces were studied as a function of surface coverage. Annealing experiments in ultrahigh vacuum show the covalent binding and the thermal stability of these immobilized layers up to 370 deg. C; this temperature corresponds to the Si-C bond cleavage temperature. In contrast with hydrogenated crystalline Si(111):H, no heavy wet chemistry surface preparation is required for thermal grafting of alkene molecules on a-Si:H films. A threshold grafting temperature is observed, with a strong dependence on the doping level which produces a large contrast in the molecular coverage for grafting performed at 230 deg. C

  20. Physical criteria for the interface passivation layer in hydrogenated amorphous/crystalline silicon heterojunction solar cell

    Science.gov (United States)

    Zhao, Lei; Wang, Guanghong; Diao, Hongwei; Wang, Wenjing

    2018-01-01

    AFORS-HET (automat for simulation of heterostructures) simulation was utilized to explore the physical criteria for the passivation layer in hydrogenated amorphous/crystalline silicon heterojunction (SHJ) solar cells, by systematically investigating the solar cell current density-voltage (J-V) performance as a function of the interface defect density (D it) at the passivation layer/c-Si hetero-interface, the thickness (t) of the passivation layer, the bandgap (E g) of the passivation layer, and the density of dangling bond states (D db)/band tail states (D bt) in the band gap of the passivation layer. The corresponding impact regulations were presented clearly. Except for D it, the impacts of D db, D bt and E g are strongly dependent on the passivation layer thickness t. While t is smaller than 4-5 nm, the solar cell performance is less sensitive to the variation of D db, D bt and E g. Low D it at the a-Si:H/c-Si interface and small thickness t are the critical criteria for the passivation layer in such a case. However, if t has to be relatively larger, the microstructure, i.e. the material quality, including D db, D bt and E g, of the passivation layer should be controlled carefully. The mechanisms involved were analyzed and some applicable methods to prepare the passivation layer were proposed.

  1. Human periosteum cell osteogenic differentiation enhanced by ionic silicon release from porous amorphous silica fibrous scaffolds.

    Science.gov (United States)

    Odatsu, Tetsurou; Azimaie, Taha; Velten, Megan F; Vu, Michael; Lyles, Mark B; Kim, Harry K; Aswath, Pranesh B; Varanasi, Venu G

    2015-08-01

    Current synthetic grafts for bone defect filling in the sinus can support new bone formation but lack the ability to stimulate or enhance osteogenic healing. To promote such healing, osteoblast progenitors such as human periosteum cells must undergo osteogenic differentiation. In this study, we tested the hypothesis that degradation of porous amorphous silica fibrous (PASF) scaffolds can enhance human periosteum cell osteogenic differentiation. Two types of PASF were prepared and evaluated according to their densities (PASF99, PASF98) with 99 and 98% porosity, respectively. Silicon (Si) ions were observed to rapidly release from both scaffolds within 24 h in vitro. PASF99 Si ion release rate was estimated to be nearly double that of PASF98 scaffolds. Mechanical tests revealed a lower compressive strength in PASF99 as compared with PASF98. Osteogenic expression analysis showed that PASF99 scaffolds enhanced the expression of activating transcription factor 4, alkaline phosphatase, and collagen (Col(I)α1, Col(I)α2). Scanning electron microscopy showed cellular and extracellular matrix (ECM) ingress into both scaffolds within 16 days and the formation of Ca-P precipitates within 85 days. In conclusion, this study demonstrated that PASF scaffolds enhance human periosteum cell osteogenic differentiation by releasing ionic Si, and structurally supporting cellular and ECM ingress. © 2015 Wiley Periodicals, Inc.

  2. Laser Direct Patterning of Organic Dielectric Passivation Layer for Fabricating Amorphous Silicon Thin-Film Transistors

    Science.gov (United States)

    Chen, Chao-Nan; Su, Kuo-Hui; Chen, Yeong-Chin

    2011-06-01

    In this study, a laser direct patterning process application in benzocyclobutene (BCB) organic dielectric passivation-based amorphous silicon (a-Si) thin film transistor (TFT) device fabrication has been carried out using a KrF excimer laser. A BCB organic photoresist material of 2000 nm with a dielectric constant = 2.7 served as the dielectric passivation layer in our device. Compared with conventional processes, laser direct patterning combining BCB organic photoresist dielectric passivation could eliminate at least four process steps. The etching depth of the BCB organic material passivation layer depends on the laser energy density and number of irradiation shots. The hydrogenated a-Si TFT devices are fabricated by replacing the passivation layer and contact hole patterning process. The mobility and threshold voltage reached 0.16 cm2 V-1 s-1 and -3.5 V, respectively. For TFT device performance, laser direct patterning technology is a potential method of replacing photolithography technology in the application of BCB organic dielectric passivation-based TFT manufacture.

  3. Mass test of AdvanSiD model ASD-NUV3S-P SiliconPMs for the Pixel Timing Counter of the MEG II experiment

    Science.gov (United States)

    Rossella, M.; Bariani, S.; Barnaba, O.; Cattaneo, P. W.; Cervi, T.; Menegolli, A.; Nardò, R.; Prata, M. C.; Romano, E.; Scagliotti, C.; Simonetta, M.; Vercellati, F.

    2017-02-01

    The MEG II Timing Counter will measure the positron time of arrival with a resolution of 30 ps relying on two arrays of scintillator pixels read out by 6144 Silicon Photomultipliers (SiPMs) from AdvanSiD. They must be characterized, measuring their breakdown voltage, to assure that the gains of the SiPMs of each pixel are as uniform as possible, to maximize the pixel resolution. To do this an automatic test system that can measure sequentially the parameters of 32 devices has been developed.

  4. Charge-sensitive poly-silicon TFT amplifiers for a-Si:H pixel particle detectors

    International Nuclear Information System (INIS)

    Cho, G.; Perez-Mendez, V.; Hack, M.; Lewis, A.

    1992-04-01

    Prototype charge-sensitive poly-Si TFT amplifiers have been made for the amplification of signals (from an a-Si:H pixel diode used as an ionizing particle detector). They consist of a charge-sensitive gain stage, a voltage gain stage and a source follower output stage. The gain-bandwidth product of the amplifier is ∼ 300 MHz. When the amplifier is connected to a pixel detector of 0.2 pF, it gives a charge-to-voltage gain of ∼ 0.02 mV/electrons with a pulse rise time less than 100 nsec. An equivalent noise charge of the front-end TFT is ∼ 1000 electrons for a shaping time of 1 μsec

  5. DEPFET: A silicon pixel detector for future colliders. Fundamentals, characterization and performance

    CERN Document Server

    Marinas Pardo, Carlos Manuel; Vos, Marcel Andre

    2011-01-01

    The future electron-positron colliders, either breaking the energy frontier (like ILC or CLIC) or the luminosity frontier (SuperKEKB), impose unprecedented constraints over the new generation of detectors that will be operated in those facilities. In particular, the vertex detectors must be designed for an efficient flavour tagging and excellent vertex reconstruction. To cope with these requirements, highly pixelated sensors with a fast readout, very low material budget and low power consumption must be developed. Although the combination of these factors is a substantial challenge, the DEPFET Collaboration has developed a new generation of sensors that can be operated in such a harsh environment. The DEpleted P-channel Field Effect Transistor (DEPFET) is a pixel sensor that combines detection and internal amplification at the same time. With such configuration, thin detectors with good signal-to-noise ratio and low power consumption can be produced. In this thesis, the optimization and performance of two gen...

  6. Development of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    CERN Document Server

    Calderini, G; Bomben, M; Boscardin, M; Bosisio, L; Chauveau, J; Giacomini, G; La Rosa, A; Marchiori, G; Zorzi, N

    2014-01-01

    In view of the LHC upgrade for the high luminosity phase (HL-LHC), the ATLAS experiment is planning to replace the inner detector with an all-silicon system. The n-in-p bulk technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. The large area necessary to instrument the outer layers will demand to tile the sensors, a solution for which the inefficient region at the border of each sensor needs to be reduced to the minimum size. This paper reports on a joint R&D project by the ATLAS LPNHE Paris group and FBK Trento on a novel n-in-p edgeless planar pixel design, based on the deep-trench process available at FBK.

  7. Development of edgeless silicon pixel sensors on p-type substrate for the ATLAS high-luminosity upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Calderini, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Dipartimento di Fisica E. Fermi, Universitá di Pisa, Pisa (Italy); Bagolini, A. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Bomben, M. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Bosisio, L. [Università degli studi di Trieste and INFN-Trieste (Italy); Chauveau, J. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Giacomini, G. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); La Rosa, A. [Section de Physique (DPNC), Universitè de Geneve, Geneve (Switzerland); Marchiori, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy)

    2014-11-21

    In view of the LHC upgrade for the high luminosity phase (HL-LHC), the ATLAS experiment is planning to replace the inner detector with an all-silicon system. The n-in-p bulk technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. The large area necessary to instrument the outer layers will demand to tile the sensors, a solution for which the inefficient region at the border of each sensor needs to be reduced to the minimum size. This paper reports on a joint R and D project by the ATLAS LPNHE Paris group and FBK Trento on a novel n-in-p edgeless planar pixel design, based on the deep-trench process available at FBK.

  8. Theoretical investigation of the noise performance of active pixel imaging arrays based on polycrystalline silicon thin film transistors.

    Science.gov (United States)

    Koniczek, Martin; Antonuk, Larry E; El-Mohri, Youcef; Liang, Albert K; Zhao, Qihua

    2017-07-01

    Active matrix flat-panel imagers, which typically incorporate a pixelated array with one a-Si:H thin-film transistor (TFT) per pixel, have become ubiquitous by virtue of many advantages, including large monolithic construction, radiation tolerance, and high DQE. However, at low exposures such as those encountered in fluoroscopy, digital breast tomosynthesis and breast computed tomography, DQE is degraded due to the modest average signal generated per interacting x-ray relative to electronic additive noise levels of ~1000 e, or greater. A promising strategy for overcoming this limitation is to introduce an amplifier into each pixel, referred to as the active pixel (AP) concept. Such circuits provide in-pixel amplification prior to readout as well as facilitate correlated multiple sampling, enhancing signal-to-noise and restoring DQE at low exposures. In this study, a methodology for theoretically investigating the signal and noise performance of imaging array designs is introduced and applied to the case of AP circuits based on low-temperature polycrystalline silicon (poly-Si), a semiconductor suited to manufacture of large area, radiation tolerant arrays. Computer simulations employing an analog circuit simulator and performed in the temporal domain were used to investigate signal characteristics and major sources of electronic additive noise for various pixel amplifier designs. The noise sources include photodiode shot noise and resistor thermal noise, as well as TFT thermal and flicker noise. TFT signal behavior and flicker noise were parameterized from fits to measurements performed on individual poly-Si test TFTs. The performance of three single-stage and three two-stage pixel amplifier designs were investigated under conditions relevant to fluoroscopy. The study assumes a 20 × 20 cm 2 , 150 μm pitch array operated at 30 fps and coupled to a CsI:Tl x-ray converter. Noise simulations were performed as a function of operating conditions, including

  9. 3D silicon sensors: Design, large area production and quality assurance for the ATLAS IBL pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Da Via, Cinzia [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Boscardin, Maurizio [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy); Dalla Betta, Gian-Franco, E-mail: dallabe@disi.unitn.it [DISI, Universita degli Studi di Trento and INFN, Via Sommarive 14, I-38123 Trento (Italy); Darbo, Giovanni [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Fleta, Celeste [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona E-08193 (Spain); Gemme, Claudia [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Grenier, Philippe [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Grinstein, Sebastian [Institut de Fisica d' Altes Energies (IFAE) and ICREA, Universitat Autonoma de Barcelona (UAB), E-08193 Bellaterra, Barcelona (Spain); Hansen, Thor-Erik [SINTEF MiNaLab, Blindern, N-0314 Oslo (Norway); Hasi, Jasmine; Kenney, Chris [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Kok, Angela [SINTEF MiNaLab, Blindern, N-0314 Oslo (Norway); Parker, Sherwood [University of Hawaii, c/o Lawrence Berkeley Laboratory, Berkeley, CA 94720 (United States); Pellegrini, Giulio [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona E-08193 (Spain); Vianello, Elisa; Zorzi, Nicola [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy)

    2012-12-01

    3D silicon sensors, where electrodes penetrate the silicon substrate fully or partially, have successfully been fabricated in different processing facilities in Europe and USA. The key to 3D fabrication is the use of plasma micro-machining to etch narrow deep vertical openings allowing dopants to be diffused in and form electrodes of pin junctions. Similar openings can be used at the sensor's edge to reduce the perimeter's dead volume to as low as {approx}4 {mu}m. Since 2009 four industrial partners of the 3D ATLAS R and D Collaboration started a joint effort aimed at one common design and compatible processing strategy for the production of 3D sensors for the LHC Upgrade and in particular for the ATLAS pixel Insertable B-Layer (IBL). In this project, aimed for installation in 2013, a new layer will be inserted as close as 3.4 cm from the proton beams inside the existing pixel layers of the ATLAS experiment. The detector proximity to the interaction point will therefore require new radiation hard technologies for both sensors and front end electronics. The latter, called FE-I4, is processed at IBM and is the biggest front end of this kind ever designed with a surface of {approx}4 cm{sup 2}. The performance of 3D devices from several wafers was evaluated before and after bump-bonding. Key design aspects, device fabrication plans and quality assurance tests during the 3D sensors prototyping phase are discussed in this paper.

  10. Investigation of properties of novel silicon pixel assemblies employing thin n-in-p sensors and 3D-integration

    Energy Technology Data Exchange (ETDEWEB)

    Weigell, Philipp

    2013-01-15

    Until the end of the 2020 decade the LHC programme will be defining the high energy frontier of particle physics. During this time, three upgrade steps of the accelerator are currently planned to further increase the luminosity and energy reach. In the course of these upgrades the specifications of several parts of the current LHC detectors will be exceeded. Especially, the innermost tracking detectors are challenged by the increasing track densities and the radiation damage. This thesis focuses on the implications for the ATLAS experiment. Here, around 2021/2, after having collected an integrated luminosity of around 300 fb{sup -1}, the silicon and gas detector components of the inner tracker will reach the end of their lifetime and will need to be replaced to ensure sufficient performance for continued running - especially if the luminosity is raised to about 5 x 10{sup 35} cm{sup -2}s{sup -1} as currently planned. An all silicon inner detector is foreseen to be installed. This upgrade demands cost effective pixel assemblies with a minimal material budget, a larger active area fraction as compared to the current detectors, and a higher granularity. Furthermore, the assemblies must be able to withstand received fluences up to 2 . 10{sup 16} n{sub eq}/cm{sup 2}. A new pixel assembly concept answering the challenges posed by the high instantaneous luminosities is investigated in this thesis. It employs five novel technologies, namely n-in-p pixel sensors, thin pixel sensors, slim edges with or without implanted sensor sides, and 3D-integration incorporating a new interconnection technology, named Solid Liquid InterDiffusion (SLID) as well as Inter-Chip-Vias (ICVs). n-in-p sensors are cost-effective, since they only need patterned processing on one side. Their performance before and after irradiation is investigated and compared to results obtained with currently used n-in-n sensors. Reducing the thickness of the sensors lowers the amount of multiple scattering

  11. Investigation of properties of novel silicon pixel assemblies employing thin n-in-p sensors and 3D-integration

    International Nuclear Information System (INIS)

    Weigell, Philipp

    2013-01-01

    Until the end of the 2020 decade the LHC programme will be defining the high energy frontier of particle physics. During this time, three upgrade steps of the accelerator are currently planned to further increase the luminosity and energy reach. In the course of these upgrades the specifications of several parts of the current LHC detectors will be exceeded. Especially, the innermost tracking detectors are challenged by the increasing track densities and the radiation damage. This thesis focuses on the implications for the ATLAS experiment. Here, around 2021/2, after having collected an integrated luminosity of around 300 fb -1 , the silicon and gas detector components of the inner tracker will reach the end of their lifetime and will need to be replaced to ensure sufficient performance for continued running - especially if the luminosity is raised to about 5 x 10 35 cm -2 s -1 as currently planned. An all silicon inner detector is foreseen to be installed. This upgrade demands cost effective pixel assemblies with a minimal material budget, a larger active area fraction as compared to the current detectors, and a higher granularity. Furthermore, the assemblies must be able to withstand received fluences up to 2 . 10 16 n eq /cm 2 . A new pixel assembly concept answering the challenges posed by the high instantaneous luminosities is investigated in this thesis. It employs five novel technologies, namely n-in-p pixel sensors, thin pixel sensors, slim edges with or without implanted sensor sides, and 3D-integration incorporating a new interconnection technology, named Solid Liquid InterDiffusion (SLID) as well as Inter-Chip-Vias (ICVs). n-in-p sensors are cost-effective, since they only need patterned processing on one side. Their performance before and after irradiation is investigated and compared to results obtained with currently used n-in-n sensors. Reducing the thickness of the sensors lowers the amount of multiple scattering within the tracking system and leads

  12. High Efficiency Triple-Junction Amorphous Silicon Alloy Photovoltaic Technology, Final Technical Report, 6 March 1998 - 15 October 2001

    Energy Technology Data Exchange (ETDEWEB)

    Guha, S.

    2001-11-08

    This report describes the research program intended to expand, enhance, and accelerate knowledge and capabilities for developing high-performance, two-terminal multijunction amorphous silicon (a-Si) alloy cells, and modules with low manufacturing cost and high reliability. United Solar uses a spectrum-splitting, triple-junction cell structure. The top cell uses an amorphous silicon alloy of {approx}1.8-eV bandgap to absorb blue photons. The middle cell uses an amorphous silicon germanium alloy ({approx}20% germanium) of {approx}1.6-eV bandgap to capture green photons. The bottom cell has {approx}40% germanium to reduce the bandgap to {approx}1.4-eV to capture red photons. The cells are deposited on a stainless-steel substrate with a predeposited silver/zinc oxide back reflector to facilitate light-trapping. A thin layer of antireflection coating is applied to the top of the cell to reduce reflection loss. The major research activities conducted under this program were: (1) Fundamental studies to improve our understanding of materials and devices; the work included developing and analyzing a-Si alloy and a-SiGe alloy materials prepared near the threshold of amorphous-to-microcrystalline transition and studying solar cells fabricated using these materials. (2) Deposition of small-area cells using a radio-frequency technique to obtain higher deposition rates. (3) Deposition of small-area cells using a modified very high frequency technique to obtain higher deposition rates. (4) Large-area cell research to obtain the highest module efficiency. (5) Optimization of solar cells and modules fabricated using production parameters in a large-area reactor.

  13. The upgrade of the ALICE Inner Tracking System - Status of the R&D; on monolithic silicon pixel sensors

    CERN Document Server

    Van Hoorne, Jacobus Willem

    2014-01-01

    s a major part of its upgrade plans, the ALICE experiment schedules the installation of a novel Inner Tracking System (ITS) during the Long Shutdown 2 (LS2) of the LHC in 2018/19. It will replace the present silicon tracker with seven layers of Monolithic Active Pixel Sensors (MAPS) and significantly improve the detector performance in terms of tracking and rate capabilities. The choice of technology has been guided by the tight requirements on the material budget of 0 : 3 % X = X 0 /layer for the three innermost layers and backed by the significant progress in the field of MAPS in recent years. The pixel chips are manufactured in the TowerJazz 180 nm CMOS imaging sensor process on wafers with a high resistivity epitaxial layer. Within the ongoing R&D; phase, several sensor chip prototypes have been developed and produced on different epitaxial layer thicknesses and resistivities. These chips are being characterized for their performance before and after irradiation using source tests, test beam and measu...

  14. The TT-PET project: a thin TOF-PET scanner based on fast novel silicon pixel detectors

    Science.gov (United States)

    Bandi, Y.; Benoit, M.; Cadoux, F. R.; Forshaw, D. C.; Hänni, R.; Hayakawa, D.; Iacobucci, G.; Michal, S.; Miucci, A.; Paolozzi, L.; Ratib, O.; Ripiccini, E.; Tognina, C.; Valerio, P.; Weber, M.

    2018-01-01

    The TT-PET project aims at developing a compact Time-of-flight PET scanner with 30ps time resolution, capable of withstanding high magnetic fields and allowing for integration in a traditional MRI scanner, providing complimentary real-time PET images. The very high timing resolution of the TT-PET scanner is achieved thanks to a new generation of Silicon-Germanium (Si-Ge) amplifiers, which are embedded in monolithic pixel sensors. The scanner is composed of 16 detection towers as well as cooling blocks, arranged in a ring structure. The towers are composed of multiple ultra-thin pixel modules stacked on top of each other. Making it possible to perform depth of interaction measurements and maximize the spatial resolution along the line of flight of the two photons emitted within a patient. This will result in improved image quality, contrast, and uniformity while drastically reducing backgrounds within the scanner. Allowing for a reduction in the amount of radioactivity delivered to the patient. Due to an expected data rate of about 250 MB/s a custom readout system for high data throughput has been developed, which includes noise filtering and reduced data pressure. The realisation of a first scanner prototype for small animals is foreseen by 2019. A general overview of the scanner will be given including, technical details concerning the detection elements, mechanics, DAQ readout, simulation and results.

  15. Characterisation of micro-strip and pixel silicon detectors before and after hadron irradiation

    CERN Document Server

    Allport, P.P

    2012-01-01

    The use of segmented silicon detectors for tracking and vertexing in particle physics has grown substantially since their introduction in 1980. It is now anticipated that roughly 50,000 six inch wafers of high resistivity silicon will need to be processed into sensors to be deployed in the upgraded experiments in the future high luminosity LHC (HL-LHC) at CERN. These detectors will also face an extremely severe radiation environment, varying with distance from the interaction point. The volume of required sensors is large and their delivery is required during a relatively short time, demanding a high throughput from the chosen suppliers. The current situation internationally, in this highly specialist market, means that security of supply for large orders can therefore be an issue and bringing additional potential vendors into the field can only be an advantage. Semiconductor companies that could include planar sensors suitable for particle physics in their product lines will, however, need to prove their pro...

  16. Development of an Indium Bump Bond Process for Silicon Pixel Detectors at PSI

    CERN Document Server

    Brönnimann, C; Gobrecht, J; Heising, S; Horisberger, M; Horisberger, R P; Kästli, H C; Lehmann, J; Rohe, T; Streuli, S; Broennimann, Ch.

    2006-01-01

    The hybrid pixel detectors used in the high energy physics experiments currently under construction use a three dimensional connection technique, the so-called bump bonding. As the pitch below 100um, required in these applications, cannot be fullfilled with standard industrial processes (e.g. the IBM C4 process), an in-house bump bond process using reflown indium bumps was developed at PSI as part of the R&D for the CMS-pixel detector. The bump deposition on the sensor is performed in two subsequent lift-off steps. As the first photolithographic step a thin under bump metalization (UBM) is sputtered onto bump pads. It is wettable by indium and defines the diameter of the bump. The indium is evaporated via a second photolithographic step with larger openings and is reflown afterwards. The height of the balls is defined by the volume of the indium. On the readout chip only one photolithographic step is carried out to deposit the UBM and a thin indium layer for better adhesion. After mating both parts a seco...

  17. Investigation of Properties of Novel Silicon Pixel Assemblies Employing Thin n-in-p Sensors and 3D-Integration

    CERN Document Server

    Weigell, Philipp

    Until the end of the 2020 decade the LHC programme will be defining the high energy frontier of particle physics. During this time, three upgrade steps of the accelerator are currently planned to further increase the luminosity and energy reach. In the course of these upgrades the specifications of several parts of the current LHC detectors will be exceeded. Especially, the innermost tracking detectors are challenged by the increasing track densities and the radiation damage. This thesis focuses on the implications for the ATLAS experiment. Here, around 2021/2, after having collected an integrated luminosity of around 300/fb¹ , the silicon and gas detector components of the inner tracker will reach the end of their lifetime and will need to be replaced to ensure sufficient performance for continued running|especially if the luminosity is raised to about 5x10^35/(cm²s¹ ) as currently planned. An all silicon inner detector is foreseen to be installed. This upgrade demands cost-effective pixel assemblies with...

  18. High spatial resolution radiation detectors based on hydrogenated amorphous silicon and scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Tao [Univ. of California, Berkeley, CA (United States). Dept. of Engineering-Nuclear Engineering

    1995-05-01

    Hydrogenated amorphous silicon (a-Si:H) as a large-area thin film semiconductor with ease of doping and low-cost fabrication capability has given a new impetus to the field of imaging sensors; its high radiation resistance also makes it a good material for radiation detectors. In addition, large-area microelectronics based on a-Si:H or polysilicon can be made with full integration of peripheral circuits, including readout switches and shift registers on the same substrate. Thin a-Si:H p-i-n photodiodes coupled to suitable scintillators are shown to be suitable for detecting charged particles, electrons, and X-rays. The response speed of CsI/a-Si:H diode combinations to individual particulate radiation is limited by the scintillation light decay since the charge collection time of the diode is very short (< 10ns). The reverse current of the detector is analyzed in term of contact injection, thermal generation, field enhanced emission (Poole-Frenkel effect), and edge leakage. A good collection efficiency for a diode is obtained by optimizing the p layer of the diode thickness and composition. The CsI(Tl) scintillator coupled to an a-Si:H photodiode detector shows a capability for detecting minimum ionizing particles with S/N ~20. In such an arrangement a p-i-n diode is operated in a photovoltaic mode (reverse bias). In addition, a p-i-n diode can also work as a photoconductor under forward bias and produces a gain yield of 3--8 for shaping times of 1 {micro}s. The mechanism of the formation of structured CsI scintillator layers is analyzed. Initial nucleation in the deposited layer is sensitive to the type of substrate medium, with imperfections generally catalyzing nucleation. Therefore, the microgeometry of a patterned substrate has a significant effect on the structure of the CsI growth.

  19. High spatial resolution radiation detectors based on hydrogenated amorphous silicon and scintillator

    International Nuclear Information System (INIS)

    Jing, T.; Lawrence Berkeley Lab., CA

    1995-05-01

    Hydrogenated amorphous silicon (a-Si:H) as a large-area thin film semiconductor with ease of doping and low-cost fabrication capability has given a new impetus to the field of imaging sensors; its high radiation resistance also makes it a good material for radiation detectors. In addition, large-area microelectronics based on a-Si:H or polysilicon can be made with full integration of peripheral circuits, including readout switches and shift registers on the same substrate. Thin a-Si:H p-i-n photodiodes coupled to suitable scintillators are shown to be suitable for detecting charged particles, electrons, and X-rays. The response speed of CsI/a-Si:H diode combinations to individual particulate radiation is limited by the scintillation light decay since the charge collection time of the diode is very short (< 10ns). The reverse current of the detector is analyzed in term of contact injection, thermal generation, field enhanced emission (Poole-Frenkel effect), and edge leakage. A good collection efficiency for a diode is obtained by optimizing the p layer of the diode thickness and composition. The CsI(Tl) scintillator coupled to an a-Si:H photodiode detector shows a capability for detecting minimum ionizing particles with S/N ∼20. In such an arrangement a p-i-n diode is operated in a photovoltaic mode (reverse bias). In addition, a p-i-n diode can also work as a photoconductor under forward bias and produces a gain yield of 3--8 for shaping times of 1 micros. The mechanism of the formation of structured CsI scintillator layers is analyzed. Initial nucleation in the deposited layer is sensitive to the type of substrate medium, with imperfections generally catalyzing nucleation. Therefore, the microgeometry of a patterned substrate has a significant effect on the structure of the CsI growth

  20. Hybrid electrolytes based on ionic liquids and amorphous porous silicon nanoparticles: Organization and electrochemical properties

    KAUST Repository

    Tchalala, Mohammed

    2017-05-06

    Ionic liquids (ILs) and ionic liquid-nanoparticle (IL-NP) hybrid electrolytes have garnered a lot of interest due to their unique properties that stimulate their use in various applications. Herein, we investigate the electrochemical and photo-physical properties of organic-inorganic hybrid electrolytes based on three imidazolium-based ionic liquids, i.e., 1-buthyl-3-methylimidazolium thiocyanate ([bmim] [SCN]), 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim] [BF4]) and 1-buthyl-3-methylimidazolium acetate ([bmim] [Ac]) that are covalently tethered to amorphous porous silicon nanoparticles (ap-Si NPs). We found that the addition of ap-Si NPs confer to the ILs a pronounced boost in the electrocatalytic activity, and in mixtures of ap-Si NPs and [bmim] [SCN], the room-temperature current transport is enhanced by more than 5 times compared to bare [bmim] [SCN]. A detailed structural investigation by transmission electron microscope (TEM) showed that the ap-Si NPs were well dispersed, stabilized and highly aggregated in [bmim] [SCN], [emim] [BF4] and [bmim] [Ac] ILs, respectively. These observations correlate well with the enhanced current transport observed in ap-Si NPs/[bmim] [SCN] evidenced by electrochemical measurements. We interpreted these observations by the use of UV–vis absorbance, photoluminescence (PL), FTIR and solid-state NMR spectroscopy. We found that the ap-Si NPs/[bmim] [SCN] hybrid stands out due to its stability and optical transparency. This behavior is attributed to the iron(III) thiocyanate complexion as per the experimental findings. Furthermore, we found that the addition of NPs to [emim] [BF4] alters the equilibrium of the IL, which consequently improved the stability of the NPs through intermolecular interactions with the two ionic layers (anionic and cationic layers) of the IL. While in the case of [bmim] [Ac], the dispersion of ap-Si NPs was restrained because of the high viscosity of this IL.

  1. Continuous roll-to-roll amorphous-silicon photovoltaic manufacturing technology

    Science.gov (United States)

    Izu, M.

    1994-11-01

    This report describes work done in Phase 2 of a 3-year project to advance Energy Conversion Devices, Inc. (ECD), roll-to-roll, triple-junction photovoltaic manufacturing technologies, to reduce the module production costs, to increase the stabilized module performance, and to expand the commercial capacity utilizing ECD technology. Major accomplishments in Phase 2 include: (1) designing, constructing and completing the initial optimization of a 200-kW multi-purpose continuous roll-to-roll amorphous silicon (a-Si) alloy solar cell deposition machine; (2) designing and constructing a serpentine deposition chamber that will be used to demonstrate a compact, low-cost deposition machine design with improved throughput and gas utilization factor; (3) demonstrating greater than or equal to 8.3% initial small-area efficiency a-Si-alloy devices with an intrinsic a-Si layer deposited using serpentine technology in the initial start-up experiment; (4) developing a new back-reflector evaluation technique using Photothermal Defection Spectroscopy (PDS) to analyze the optical losses of textured back-reflector; (5) developing an improved textured Ag/ZnO back-reflector system demonstrating a 26% gain in short-circuit current density over the previous textured Al back-reflector system; (6) demonstrating the long-term stability of ECD's 0.3 m x 1.2 m (1 ft x 4 ft) production module; (7) developing a new grid/bus-bar design utilizing thin wire grids to improve the efficiency by approximately 3% to 4% and reduce the grid/bus-bar cost by about 50%; and (8) achieving accumulative material cost reduction of 56%.

  2. Accelerated kinetics of amorphous silicon using an on-the-fly off-lattice kinetic Monte-Carlo method

    Science.gov (United States)

    Joly, Jean-Francois; El-Mellouhi, Fedwa; Beland, Laurent Karim; Mousseau, Normand

    2011-03-01

    The time evolution of a series of well relaxed amorphous silicon models was simulated using the kinetic Activation-RelaxationTechnique (kART), an on-the-fly off-lattice kinetic Monte Carlo method. This novel algorithm uses the ART nouveau algorithm to generate activated events and links them with local topologies. It was shown to work well for crystals with few defects but this is the first time it is used to study an amorphous material. A parallel implementation allows us to increase the speed of the event generation phase. After each KMC step, new searches are initiated for each new topology encountered. Well relaxed amorphous silicon models of 1000 atoms described by a modified version of the empirical Stillinger-Weber potential were used as a starting point for the simulations. Initial results show that the method is faster by orders of magnitude compared to conventional MD simulations up to temperatures of 500 K. Vacancy-type defects were also introduced in this system and their stability and lifetimes are calculated.

  3. Roof-integrated amorphous silicon photovoltaic installation at the Institute for Micro-Technology; Installation photovoltaique IMT Neuchatel silicium amorphe integre dans toiture

    Energy Technology Data Exchange (ETDEWEB)

    Tscharner, R.; Shah, A.V.

    2003-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes the 6.44 kW grid-connected photovoltaic (PV) power plant that has been in operation since 1996 at the Institute for Micro-Technology in Neuchatel, Switzerland. The PV plant, which features large-area, fully integrated modules using amorphous silicon cells was the first of its kind in Switzerland. Experience gained with the installation, which has been fully operational since its construction, as well as the power produced and efficiencies measured are presented and commented. The role of the installation as the forerunner of new, so-called 'micro-morph' thin-film solar cell technology developed at the institute is stressed. Technical details of the plant and its performance are given.

  4. A Neural-Network Clusterisation Algorithm for the ATLAS Silicon Pixel Detector

    CERN Document Server

    Leney, KJC; The ATLAS collaboration

    2014-01-01

    A novel technique using a set of artificial neural networks to identify and split merged measurements created by multiple charged particles in the ATLAS pixel detector is presented. Such merged measurements are a common feature of boosted physics objects such as tau leptons or strongly energetic jets where particles are highly collimated. The neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. The performance of the splitting technique is quantified using LHC data collected by the ATLAS detector and Monte Carlo simulation. The number of shared hits per track is significantly reduced, particularly in boosted systems, which increases the reconstruction efficiency and quality. The improved position and error estimates of the measurements lead to a sizable improvement of the track and vertex resolution.

  5. A Neural-Network Clusterisation Algorithm for the ATLAS Silicon Pixel Detector

    CERN Document Server

    Leney, KJC; The ATLAS collaboration

    2013-01-01

    We present a novel technique using a set of artificial neural networks to identify and split merged measurements created by multiple charged particles in the ATLAS pixel detector. Such merged measurements are a common feature of boosted physics objects such as tau leptons or strongly energetic jets where particles get highly collimated. The neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. The performance of the splitting technique is quantified using LHC data collected by the ATLAS detector in 2011 and Monte Carlo simulation. The number of shared hits per track is significantly reduced, particularly in boosted systems, which increases the reconstruction efficiency and quality. The improved position and error estimates of the measurements lead to a sizable improvement of the track and vertex resolution.

  6. A neural network clustering algorithm for the ATLAS silicon pixel detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Almond, John; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boddy, Christopher Richard; Boehler, Michael; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gandrajula, Reddy Pratap; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le, Bao Tran; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonhardt, Kathrin; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moraes, Arthur; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Christopher; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2014-09-15

    A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution.

  7. Amorphous silicon oxide layers for surface passivation and contacting of heterostructure solar cells of amorphous and crystalline silicon; Amorphe Siliziumoxidschichten zur Oberflaechenpassivierung und Kontaktierung von Heterostruktur-Solarzellen aus amorphen und kristallinem Silizium

    Energy Technology Data Exchange (ETDEWEB)

    Einsele, Florian

    2010-02-05

    Atomic hydrogen plays a dominant role in the passivation of crystalline silicon surfaces by layers of amorphous silicon. In order to research into this role, this thesis presents the method of hydrogen effusion from thin amorphous films of silicon (a-Si:H) and silicon oxide (a-SiO{sub x}:H). The oxygen concentration of the sub-stoichiometric a-SiO{sub x}:H films ranges up to 10 at.-%. The effusion experiment yields information about the content and thermal stability of hydrogen and about the microstructure of the films. A mathematical description of the diffusion process of atomic hydrogen yields an analytical expression of the effusion rate R{sub E} depending on the linearly increasing temperature in the experiment. Fitting of the calculated effusion rates R{sub E} to measured effusion spectra yields the diffusion coefficient of atomic hydrogen in a-SiO{sub x}:H. With increasing oxygen concentration, the diffusion coefficient of hydrogen in the a-SiO{sub x}:H films decreases. This is attributed to an increasing Si-H bond energy due to back bonded oxygen, resulting in a higher stability of hydrogen in the films. This result is confirmed by an increasing thermal stability of the p-type c-Si passivation with a-SiO{sub x}:H of increasing oxygen concentrations up to 5 at.-%. The passivation reaches very low recombination velocities of S < 10 cm/s at the interface. However, for higher oxygen concentrations up to 10 at.-%, the passivation quality decreases significantly. Here, infrared spectroscopy of Si-H vibrational modes and hydrogen effusion show an increase of hydrogen-rich interconnected voids in the films. This microstructure results in a high amount of molecular hydrogen (H{sub 2}) in the layers, which is not suitable for the saturation of c-Si interface defects. Annealing of the films at temperatures around 400 C leads to a release of H{sub 2} from the voids, as a result of which Si-Si bonds in the material reconstruct. Subsequently, hydrogen migration in the

  8. Piezoresistive pressure sensor using low-temperature aluminium induced crystallization of sputter-deposited amorphous silicon film

    Science.gov (United States)

    Tiwari, Ruchi; Chandra, Sudhir

    2013-09-01

    In the present work, we have investigated the piezoresistive properties of silicon films prepared by the radio frequency magnetron sputtering technique, followed by the aluminium induced crystallization (AIC) process. Orientation and grain size of the polysilicon films were studied by x-ray diffraction analysis and found to be in the range 30-50 nm. Annealing of the Al-Si stack on an oxidized silicon substrate was performed in air ambient at 300-550 °C, resulting in layer exchange and transformation from amorphous to polysilicon phase. Van der Pauw and Hall measurement techniques were used to investigate the sheet resistance and carrier mobility of the resulting polycrystalline silicon film. The effect of Al thickness on the sheet resistance and mobility was also studied in the present work. A piezoresistive pressure sensor was fabricated on an oxidized silicon substrate in a Wheatstone bridge configuration, comprising of four piezoresistors made of polysilicon film obtained by the AIC process. The diaphragm was formed by the bulk-micromachining of silicon substrate. The response of the pressure sensor with applied negative pressure in 10-95 kPa range was studied. The gauge factor was estimated to be 5 and 18 for differently located piezoresistors on the diaphragm. The sensitivity of the pressure sensor was measured to be ˜ 30 mV MPa-1, when the Wheatstone bridge was biased at 1 V input voltage.

  9. Optical and passivating properties of hydrogenated amorphous silicon nitride deposited by plasma enhanced chemical vapour deposition for application on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wight, Daniel Nilsen

    2008-07-01

    Within this thesis, several important subjects related to the use of amorphous silicon nitride made by plasma enhanced chemical vapour deposition as an anti-reflective coating on silicon solar cells are presented. The first part of the thesis covers optical simulations to optimise single and double layer anti-reflective coatings with respect to optical performance when situated on a silicon solar cell. The second part investigates the relationship between important physical properties of silicon nitride films when deposited under different conditions. The optical simulations were either based on minimising the reflectance off a silicon nitride/silicon wafer stack or maximising the transmittance through the silicon nitride into the silicon wafer. The former method allowed consideration of the reflectance off the back surface of the wafer, which occurs typically at wavelengths above 1000 nm due to the transparency of silicon at these wavelengths. However, this method does not take into consideration the absorption occurring in the silicon nitride, which is negligible at low refractive indexes but quite significant when the refractive index increases above 2.1. For high-index silicon nitride films, the latter method is more accurate as it considers both reflectance and absorbance in the film to calculate the transmittance into the Si wafer. Both methods reach similar values for film thickness and refractive index for optimised single layer anti-reflective coatings, due to the negligible absorption occurring in these films. For double layer coatings, though, the reflectance based simulations overestimated the optimum refractive index for the bottom layer, which would have lead to excessive absorption if applied to real anti-reflective coatings. The experimental study on physical properties for silicon nitride films deposited under varying conditions concentrated on the estimation of properties important for its applications, such as optical properties, passivation

  10. Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mangolini, Filippo [Univ. of Texas, Austin, TX (United States); Krick, Brandon A. [Lehigh Univ., Bethlehem, PA (United States); Jacobs, Tevis D. B. [Univ. of Pittsburgh, PA (United States); Khanal, Subarna R. [Univ. of Pittsburgh, PA (United States); Streller, Frank [Univ. of Pennsylvania, Philadelphia, PA (United States); McClimon, J. Brandon [Univ. of Pennsylvania, Philadelphia, PA (United States); Hilbert, James [Univ. of Pennsylvania, Philadelphia, PA (United States); Prasad, Somuri V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scharf, Thomas W. [Univ. of North Texas, Denton, TX (United States); Ohlhausen, James A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lukes, Jennifer R. [Univ. of Pennsylvania, Philadelphia, PA (United States); Sawyer, W. Gregory [Univ. of Florida, Gainesville, FL (United States); Carpick, Robert W. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2018-04-01

    Harsh environments pose materials durability challenges across the automotive, aerospace, and manufacturing sectors, and beyond. While amorphous carbon materials have been used as coatings in many environmentally-demanding applications owing to their unique mechanical, electrical, and optical properties, their limited thermal stability and high reactivity in oxidizing environments have impeded their use in many technologies. Silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) films are promising for several applications because of their higher thermal stability and lower residual stress compared to hydrogenated amorphous carbon (a-C:H). However, an understanding of their superior thermo-oxidative stability compared to a-C:H is lacking, as it has been inhibited by the intrinsic challenge of characterizing an amorphous, multi-component material. Here, we show that introducing silicon and oxygen in a-C:H slightly enhances the thermal stability in vacuum, but tremendously increases the thermo-oxidative stability and the resistance to degradation upon exposure to the harsh conditions of low Earth orbit (LEO). The latter is demonstrated by having mounted samples of a-C:H:Si:O on the exterior of the International Space Station via the Materials International Space Station (MISSE) mission 7b. Exposing lightly-doped a-C:H:Si:O to elevated temperatures under aerobic conditions or to LEO causes carbon volatilization in the near-surface region, producing a silica surface layer that protects the underlying carbon from further removal. In conclusion, these findings provide a novel physically-based understanding of the superior stability of a-C:H:Si:O in harsh environments compared to a-C:H.

  11. Photoelectron yield spectroscopy and inverse photoemission spectroscopy evaluations of p-type amorphous silicon carbide films prepared using liquid materials

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Tatsuya, E-mail: mtatsuya@jaist.ac.jp, E-mail: mtakashi@jaist.ac.jp [Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Masuda, Takashi, E-mail: mtatsuya@jaist.ac.jp, E-mail: mtakashi@jaist.ac.jp; Inoue, Satoshi; Shimoda, Tatsuya [Green Device Research Center, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1211 (Japan); Yano, Hiroshi; Iwamuro, Noriyuki [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai, Tsukuba, Ibaraki 305-8573 (Japan)

    2016-05-15

    Phosphorus-doped amorphous silicon carbide films were prepared using a polymeric precursor solution. Unlike conventional polymeric precursors, this polymer requires neither catalysts nor oxidation for its synthesis and cross-linkage, providing semiconducting properties in the films. The valence and conduction states of resultant films were determined directly through the combination of inverse photoemission spectroscopy and photoelectron yield spectroscopy. The incorporated carbon widened energy gap and optical gap comparably in the films with lower carbon concentrations. In contrast, a large deviation between the energy gap and the optical gap was observed at higher carbon contents because of exponential widening of the band tail.

  12. Study and characterization of an integrated circuit-deposited hydrogenated amorphous silicon sensor for the detection of particles and radiations

    International Nuclear Information System (INIS)

    Despeisse, M.

    2006-03-01

    Next generation experiments at the European laboratory of particle physics (CERN) require particle detector alternatives to actual silicon detectors. This thesis presents a novel detector technology, which is based on the deposition of a hydrogenated amorphous silicon sensor on top of an integrated circuit. Performance and limitations of this technology have been assessed for the first time in this thesis in the context of particle detectors. Specific integrated circuits have been designed and the detector segmentation, the interface sensor-chip and the sensor leakage current have been studied in details. The signal induced by the track of an ionizing particle in the sensor has been characterized and results on the signal speed, amplitude and on the sensor resistance to radiation are presented. The results are promising regarding the use of this novel technology for radiation detection, though limitations have been shown for particle physics application. (author)

  13. Study of hydrogenated amorphous silicon devices under intense electric field: application to nuclear detection

    International Nuclear Information System (INIS)

    Ilie, A.

    1996-01-01

    The goal of this work was the study, development and optimization of hydrogenated amorphous silicon (a-Si:H) devices for use in detection of ionizing radiation in applications connected to the nuclear industry. Thick p-i-n devices, capable of withstanding large electric fields (up to 10 6 V/cm) with small currents (nA/cm 2 ), were proposed and developed. In order to decrease fabrication time, films were made using the 'He diluted' PECVD process and compared to standard a-Si:H films. Aspects connected to specific detector applications as well as to the fundamental physics of a-Si:H were considered: the internal electric field technique, in which the depletion charge was measured as a function of the applied bias voltage; study of the leakage current of p-i-n devices permitted us to demonstrate different regimes: depletion, field-enhanced thermal generation and electronic injection across the p layer. The effect of the electric field on the thermal generation of the carriers was studied considering the Poole-Frenkel and tunneling mechanisms. A model was developed taking under consideration the statistics of the correlated states and electron-phonon coupling. The results suggest that mechanisms not included in the 'standard model' of a Si:h need to be considered, such as defect relaxation, a filed-dependent mobility edge etc...; a new metastable phenomenon, called 'forming', induced by prolonged exposure to a strong electric field, was observed and studied. It is characterized by marked decrease of the leakage current and the detector noise, and increase in the breakdown voltage, as well as an improvement of carrier collection efficiency. This forming process appears to be principally due to an activation of the dopants in the p layer; finally, the capacity of thick p-i-n a Si:H devices to detect ionizing radiation has been evaluated. We show that it is possible, with 20-50 micron thick p-i-n devices, to detect the full spectrum of alpha and beta particles. With an

  14. Mechanisms of amorphization-induced swelling in silicon carbide: the molecular dynamics answer

    International Nuclear Information System (INIS)

    Bertolus, M.; Ribeiro, F.; Defranceschi, M.

    2007-01-01

    We present here the continuation of an investigation of the irradiation-induced swelling of SiC using classical molecular dynamics (CMD) simulations. Heavy ion irradiation has been assumed to affect the material in two successive steps (a) creation of local atomic disorder, modeled by the introduction of extended amorphous areas with various sizes and shapes in a crystalline SiC sample at constant volume (b) induced swelling, determined through relaxation using Molecular Dynamics at constant pressure. This swelling has been computed as a function of the amorphous fraction introduced. Two different definitions of the amorphous fraction were introduced to enable meaningful comparisons of our calculations with experiments and elastic modeling. One definition based on the displacements relative to the ideal lattice positions was used to compare the CMD results with data from experiments combining ion implantations and channeled Rutherford Backscattering analyses. A second definition based on atomic coordination was used to compare the CMD results to those yielded by a simplified elastic model. The results obtained are as follows. On the one hand, comparison of the swelling obtained as a function of the lattice amorphous fraction with the experimental results shows that the melting-quench amorphization simulates the best the irradiation-induced amorphization observed experimentally. This is consistent with the thermal spike phenomenon taking place during ion implantation. On the other hand, disorder analysis at the atomic scale confirms the elastic behavior of the amorphization-induced swelling, in agreement with the comparison with the results of an elastic model. First, no major structural reconstruction occurs during relaxation or annealing. Second, the systems with the most disordered and constrained amorphous area undergo the largest swelling. This means that the disorder and the constraints of the bulk amorphous area are the driving forces for the swelling

  15. Properties of Silicon Dioxide Amorphous Nanopowder Produced by Pulsed Electron Beam Evaporation

    Directory of Open Access Journals (Sweden)

    Vladislav G. Il’ves

    2015-01-01

    Full Text Available SiO2 amorphous nanopowder (NP is produced with the specific surface area of 154 m2/g by means of evaporation by a pulsed electron beam aimed at Aerosil 90 pyrogenic amorphous NP (90 m2/g as a target. SiO2 NP nanoparticles showed improved magnetic, thermal, and optical properties in comparison to Aerosil 90 NP. Possible reasons of emergence of d0 ferromagnetism at the room temperature in SiO2 amorphous NP are discussed. Photoluminescent and cathode luminescent properties of the SiO2 NP were investigated.

  16. Impact of contamination on hydrogenated amorphous silicon thin films and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Woerdenweber, Jan

    2011-09-26

    This thesis deals with atmospheric contamination and cross-contamination of boron (single-chamber process) of the intrinsic absorber layer (i-layer) of p-i-n thin film solar cells based on hydrogenated amorphous silicon. The atmospheric contaminations were introduced by means of intentional leaks. Hereby, the focus is on the influence of contamination species (oxygen and nitrogen), quantity of contamination (leak flow), source of contamination (leaks at chamber wall or in the process gas pipe), and plasma power on the properties of solar cells. Thereby, the minimum requirements for the purity of vacuum and process gas as well as leak conditions of the recipient and gas pipe system have been determined. Additionally, deposition regimes were developed, where the incorporation of impurities is significantly suppressed. For standard processes critical levels of nitrogen and oxygen contamination are determined to be {proportional_to} 4 x 10{sup 18} cm{sup -3} and {proportional_to} 2 x 10{sup 19} cm{sup -3}, respectively, for a leak situated at the chamber wall. Above these concentrations the solar cell efficiency deteriorates. In literature, incorporation of oxygen and nitrogen in doping configuration is assumed to be the reason for the cell deterioration. This assumption is supported by additional material studies of contaminated absorber layers done in this work. The difference in critical concentration is due to the higher doping efficiency of nitrogen compared to that for oxygen. Nevertheless, applying an air leak the critical concentrations of O and N are reached almost simultaneously since the incorporation probability of oxygen is about one order of magnitude higher compared to that for nitrogen. Applying a leak in the process gas pipe the critical oxygen contamination level increases to {proportional_to} 2 x 10{sup 20} cm{sup -3} whereas the critical nitrogen level remains unchanged compared to a chamber wall leak. Applying a deposition regime with a very high

  17. The potential for the fabrication of wires embedded in the crystalline silicon substrate using the solid phase segregation of gold in crystallising amorphous volumes

    International Nuclear Information System (INIS)

    Liu, A.C.Y.; McCallum, J.C.

    2004-01-01

    The refinement of gold in crystallising amorphous silicon volumes was tested as a means of creating a conducting element embedded in the crystalline matrix. Amorphous silicon volumes were created by self-ion-implantation through a mask. Five hundred kiloelectronvolt Au + was then implanted into the volumes. The amorphous volumes were crystallised on a hot stage in air, and the crystallisation was characterised using cross sectional transmission electron microscopy. It was found that the amorphous silicon volumes crystallised via solid phase epitaxy at all the lateral and vertical interfaces. The interplay of the effects of the gold and also the hydrogen that infilitrated from the surface oxide resulted in a plug of amorphous material at the surface. Further annealing at this temperature demonstrated that the gold, once it had reached a certain critical concentration nucleated poly-crystalline growth instead of solid phase epitaxy. Time resolved reflectivity and Rutherford backscattering and channeling measurements were performed on large area samples that had been subject to the same implantation regime to investigate this system further. It was discovered that the crystallisation dynamics and zone refinement of the gold were complicated functions of both gold concentration and temperature. These findings do not encourage the use of this method to obtain conducting elements embedded in the crystalline silicon substrate

  18. Development of an SU-8 MEMS process with two metal electrodes using amorphous silicon as a sacrificial material

    KAUST Repository

    Ramadan, Khaled S.

    2013-02-08

    This work presents an SU-8 surface micromachining process using amorphous silicon as a sacrificial material, which also incorporates two metal layers for electrical excitation. SU-8 is a photo-patternable polymer that is used as a structural layer for MEMS and microfluidic applications due to its mechanical properties, biocompatibility and low cost. Amorphous silicon is used as a sacrificial layer in MEMS applications because it can be deposited in large thicknesses, and can be released in a dry method using XeF2, which alleviates release-based stiction problems related to MEMS applications. In this work, an SU-8 MEMS process was developed using ;-Si as a sacrificial layer. Two conductive metal electrodes were integrated in this process to allow out-of-plane electrostatic actuation for applications like MEMS switches and variable capacitors. In order to facilitate more flexibility for MEMS designers, the process can fabricate dimples that can be conductive or nonconductive. Additionally, this SU-8 process can fabricate SU-8 MEMS structures of a single layer of two different thicknesses. Process parameters were optimized for two sets of thicknesses: thin (5-10 m) and thick (130 m). The process was tested fabricating MEMS switches, capacitors and thermal actuators. © 2013 IOP Publishing Ltd.

  19. Optimization of Recombination Layer in the Tunnel Junction of Amorphous Silicon Thin-Film Tandem Solar Cells

    Directory of Open Access Journals (Sweden)

    Yang-Shin Lin

    2011-01-01

    Full Text Available The amorphous silicon/amorphous silicon (a-Si/a-Si tandem solar cells have attracted much attention in recent years, due to the high efficiency and low manufacturing cost compared to the single-junction a-Si solar cells. In this paper, the tandem cells are fabricated by high-frequency plasma-enhanced chemical vapor deposition (HF-PECVD at 27.1 MHz. The effects of the recombination layer and the i-layer thickness matching on the cell performance have been investigated. The results show that the tandem cell with a p+ recombination layer and i2/i1 thickness ratio of 6 exhibits a maximum efficiency of 9.0% with the open-circuit voltage (Voc of 1.59 V, short-circuit current density (Jsc of 7.96 mA/cm2, and a fill factor (FF of 0.70. After light-soaking test, our a-Si/a-Si tandem cell with p+ recombination layer shows the excellent stability and the stabilized efficiency of 8.7%.

  20. Prototype of the front-end circuit for the GOSSIP (Gas On Slimmed Silicon Pixel) chip in the 0.13 μm CMOS technology

    CERN Document Server

    Gromov, V; van der Graaf, H

    2007-01-01

    The new GOSSIP detector, capable to detect single electrons in gas, has certain advantages with respect silicon (pixel) detectors. It does not require a Si sensor; it has a very low detector parasitic capacitance and a zero bias current at the pixel input. These are attractive features to design a compact, low-noise and low-power integrated input circuit. A prototype of the integrated circuit has been developed in 0.13 μm CMOS technology. It includes a few channels equipped with preamplifier, discriminator and the digital circuit to study the feasibility of the TDC-perpixel concept. The design demonstrates very low input referred noise (60e- RMS) in combination with a fast peaking time (40 ns) and an analog power dissipation as low as 2 μW per channel. Switching activity on the clock bus (up to 100 MHz) in the close vicinity of the pixel input pads does not cause noticeable extra noise.

  1. Surface modification of aluminum nitride by polysilazane and its polymer-derived amorphous silicon oxycarbide ceramic for the enhancement of thermal conductivity in silicone rubber composite

    Science.gov (United States)

    Chiu, Hsien Tang; Sukachonmakul, Tanapon; Kuo, Ming Tai; Wang, Yu Hsiang; Wattanakul, Karnthidaporn

    2014-02-01

    Polysilazane (PSZ) and its polymer-derived amorphous silicon oxycarbide (SiOC) ceramic were coated on aluminum nitride (AlN) by using a dip-coating method to allow moisture-crosslinking of PSZ on AlN, followed by heat treatment at 700 °C in air to convert PSZ into SiOC on AlN. The results from FTIR, XPS and SEM indicated that the surface of AlN was successfully coated by PSZ and SiOC film. It was found that the introduction of PSZ and SiOC film help improve in the interfacial adhesion between the modified AlN (PSZ/AlN and SiOC/AlN) and silicone rubber lead to the increase in the thermal conductivity of the composites since the thermal boundary resistance at the filler-matrix interface was decreased. However, the introduction of SiOC as an intermediate layer between AlN and silicone rubber could help increase the thermal energy transport at the filler-matrix interface rather than using PSZ. This result was due to the decrease in the surface roughness and thickness of SiOC film after heat treatment at 700 °C in air. Thus, in the present work, a SiOC ceramic coating could provide a new surface modification for the improvement of the interfacial adhesion between the thermally conductive filler and the matrix in which can enhance the thermal conductivity of the composites.

  2. Mr. Lorenzo Dellai, presidente della provincia Autonoma di Trento and Professor Andrea Zanotti, president dell'Instituto Trentino di Cultura, visit ALICE experiment underground area and Pixel Silicon Laboratory

    CERN Document Server

    Claudia Marcelloni

    2006-01-01

    Mr. Lorenzo Dellai, presidente della provincia Autonoma di Trento and Professor Andrea Zanotti, president dell'Instituto Trentino di Cultura, visit ALICE experiment underground area and Pixel Silicon Laboratory

  3. Silicon-based thin-film transistors with a high stability

    NARCIS (Netherlands)

    Stannowski, Bernd

    2002-01-01

    Thin-Film Transistors (TFTs) are widely applied as pixel-addressing devices in large-area electronics, such as active-matrix liquid-crystal displays (AMLCDs) or sensor arrays. Hydrogenated amorphous silicon (a-Si:H) and silicon nitride (a-SiNx:H) are generally used as the semiconductor and the

  4. Spectroscopy study of imaging devices based on silicon Pixel Array Detector coupled to VATAGP7 read-out chips

    International Nuclear Information System (INIS)

    Linhart, V; Lacasta, C; Llosa, G; Stankova, V; Burdette, D; Chessi, E; Cochran, E; Honscheid, K; Kagan, H; Weilhammer, P; Cindro, V; Grosicar, B; Mikuz, M; Studen, A; Zontar, D; Clinthorne, N H

    2011-01-01

    Spectroscopic and timing response studies have been conducted on a detector module consisting of a silicon Pixel Array Detector bonded on two VATAGP7 read-out chips manufactured by Gamma-Medica Ideas using laboratory gamma sources and the internal calibration facilities (the calibration system of the read-out chips). The performed tests have proven that the chips have (i) non-linear calibration curves which can be approximated by power functions, (ii) capability to measure the energy of photons with energy resolution better than 2 keV (exact range and resolution depend on experimental setup), (iii) the internal calibration facility which provides 6 out of 16 available internal calibration charges within our region of interest (spanning the Compton edge of 511 keV photons). The peaks induced by the internal calibration facility are suitable for a fit of the calibration curves. However, they are not suitable for measurements of equivalent noise charge because their full width at half maximum varies with their amplitude. These facts indicate that the VATAGP7 chips are useful and precise tools for a wide variety of spectroscopic devices. We have also explored time walk of the module and peaking time of the spectroscopy signals provided by the chips. We have observed that (iv) the time walk is caused partly by the peaking time of the signals provided by the fast shaper of the chips and partly by the timing uncertainty related to the varying position of the photon interaction, (v) the peaking time of the spectroscopy signals provided by the chips increases with increasing pulse height.

  5. Optical properties of amorphous hydrogenated and microcrystalline silicon films prepared by plasma enhanced chemical vapor deposition and re-crystallized at moderate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Netrvalova, Marie; Prusakova, Lucie; Sutta, Pavol [New Technologies - Research Centre, University of West Bohemia, Univerzitni 8, 30614 Plzen (Czech Republic); Mullerova, Jarmila [Faculty of Electrical Engineering, University of Zilina, ul. kpt. J. Nalepku 1390, 03101 Liptovsky Mikulas (Slovakia)

    2011-09-15

    Amorphous hydrogenated silicon films different in thickness (600 - 2400 nm) were deposited by plasma enhanced chemical vapour deposition on Corning glass substrates at 250 C using silan 10% / argon 90% gas mixture. The samples were consequently isothermally heated in a high temperature vacuum chamber at 0.1 Pa and at temperatures from 580 to 620 C. In order to evaluate structural and optical properties of the films X-ray diffraction analysis, Raman spectrometry and optical spectrophotometry were used. Crystalline state (amorphous or microcrystalline), optical band gaps, refractive indices, extinction coefficients, absorption coefficients were determined. X-ray diffraction analysis indicated that originally deposited films were amorphous with different degree of homogeneity depending on the film thickness. After the heat treatment the films became polycrystalline with crystallite sizes 40-50 nm without particular dependence on the recrystallization process used. Raman spectrometry confirmed the results obtained from X-ray diffraction and furthermore revealed the residual amorphous phase 20-25% in volume. Optical spectrophotometry has shown that the values of refractive indices of thermally treated films approach the mono-crystalline silicon refractive index. Extinction coefficients of the thermally treated films are slightly higher than those for monocrystalline silicon. Absorption coefficients for thermally treated films reached quite high values near the absorption edge of the original amorphous material, which can be advantageous for tandem solar cell technologies. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Transmission Electron Microscopy of Amorphous Tandem Thin-Film Silicon Modules Produced by A Roll-to-Roll Process on Plastic Foil

    DEFF Research Database (Denmark)

    Couty, P.; Duchamp, Martial; Söderström, K.

    2011-01-01

    An improvement of the photo-current is expected when amorphous silicon solar cells are grown on a ZnO texture. A full understanding of the relationship between cell structure and electrical performance is essential for the rapid development of high efficiency VHF-tandem cells on textured substrat...

  7. Preparation and Characterisation of Amorphous-silicon Photovoltaic Devices Having Microcrystalline Emitters; Preparacion y Caracterizacion de Dispositivos Fotovoltaicos de Silicio Amorfo con Emisiones Microcristalinos

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, M. T.; Gandia, J. J.; Carabe, J. [CIEMAT. Madrid (Spain)

    1999-11-01

    The present work summarises the essential aspects of the research carried out so far at CIEMAT on amorphous-silicon solar cells. The experience accumulated on the preparation and characterisation of amorphous and microcrystalline silicon has allowed to start from intrinsic (absorbent) and p-and n-type (emitters) materials not only having excellent optoelectronic properties, but enjoying certain technological advantages with respect to those developed by other groups. Among these are absorbent-layer growth rates between 5 and 10 times as fast as conventional ones and microcrystalline emitters prepared without using hydrogen. The preparation of amorphous-silicon cells has required the solution of a number of problems, such as those related to pinholes, edge leak currents and diffusion of metals into the semiconductor. Once such constraints have been overcome, it has been demonstrated not only that the amorphous-silicon technology developed at CIEMAT is valid for making solar cells, but also that the quality of the semiconductor material is good for the application according to the partial results obtained. The development of thin-film laser-scribing technology is considered essential. Additionally it has been concluded that cross contamination, originated by the fact of using a single-chamber reactor, is the basic factor limiting the quality of the cells developed at CIEMAT. The present research activity is highly focused on the solution of this problem. (Author)

  8. Low-temperature high-mobility amorphous IZO for silicon heterojunction solar cells

    Czech Academy of Sciences Publication Activity Database

    Morales-Masis, M.; de Nicolas, S.M.; Holovský, Jakub; De Wolf, S.; Ballif, C.

    2015-01-01

    Roč. 5, č. 5 (2015), s. 1340-1347 ISSN 2156-3381 R&D Projects: GA ČR(CZ) GA14-05053S Institutional support: RVO:68378271 Keywords : solar cells * amorphous * ITO * TCO Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2015

  9. Optimization of transparent and reflecting electrodes for amorphous silicon solar cells. Annual subcontract report, April 1, 1994--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, R.G. [Harvard Univ., Cambridge, MA (United States)

    1995-10-01

    Transparent and reflecting electrodes are important parts of the structure of amorphous silicon solar cells. We report improved methods for depositing zinc oxide, deposition of tin nitride as a potential reflection-enhancing diffusion barrier between the a-Si and back metal electrodes. Highly conductive and transparent fluorine-doped zinc oxide was successfully produced on small areas by atmospheric pressure CVD from a less hazardous zinc precursor, zinc acetylacetonate. The optical properties measured for tin nitride showed that the back-reflection would be decreased if tin nitride were used instead of zinc oxide as a barrier layer over silver on aluminum. Niobium-doped titanium dioxide was produced with high enough electrical conductivity so that normal voltages and fill factors were obtained for a-Si cells made on it.

  10. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes and polymer composite thin film

    Science.gov (United States)

    Rajanna, Pramod M.; Gilshteyn, Evgenia P.; Yagafarov, Timur; Aleekseeva, Alena K.; Anisimov, Anton S.; Neumüller, Alex; Sergeev, Oleg; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert G.

    2018-03-01

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.

  11. Annealing Kinetic Model Using Fast and Slow Metastable Defects for Hydrogenated-Amorphous-Silicon-Based Solar Cells

    Directory of Open Access Journals (Sweden)

    Seung Yeop Myong

    2007-01-01

    Full Text Available The two-component kinetic model employing “fast” and “slow” metastable defects for the annealing behaviors in pin-type hydrogenated-amorphous-silicon- (a-Si:H- based solar cells is simulated using a normalized fill factor. Reported annealing data on pin-type a-Si:H-based solar cells are revisited and fitted using the model to confirm its validity. It is verified that the two-component model is suitable for fitting the various experimental phenomena. In addition, the activation energy for annealing of the solar cells depends on the definition of the recovery time. From the thermally activated and high electric field annealing behaviors, the plausible microscopic mechanism on the defect removal process is discussed.

  12. Chemiluminescence lateral flow immunoassay cartridge with integrated amorphous silicon photosensors array for human serum albumin detection in urine samples.

    Science.gov (United States)

    Zangheri, Martina; Di Nardo, Fabio; Mirasoli, Mara; Anfossi, Laura; Nascetti, Augusto; Caputo, Domenico; De Cesare, Giampiero; Guardigli, Massimo; Baggiani, Claudio; Roda, Aldo

    2016-12-01

    A novel and disposable cartridge for chemiluminescent (CL)-lateral flow immunoassay (LFIA) with integrated amorphous silicon (a-Si:H) photosensors array was developed and applied to quantitatively detect human serum albumin (HSA) in urine samples. The presented analytical method is based on an indirect competitive immunoassay using horseradish peroxidase (HRP) as a tracer, which is detected by adding the luminol/enhancer/hydrogen peroxide CL cocktail. The system comprises an array of a-Si:H photosensors deposited on a glass substrate, on which a PDMS cartridge that houses the LFIA strip and the reagents necessary for the CL immunoassay was optically coupled to obtain an integrated analytical device controlled by a portable read-out electronics. The method is simple and fast with a detection limit of 2.5 mg L -1 for HSA in urine and a dynamic range up to 850 mg L -1 , which is suitable for measuring physiological levels of HSA in urine samples and their variation in different diseases (micro- and macroalbuminuria). The use of CL detection allowed accurate and objective analyte quantification in a dynamic range that extends from femtomoles to picomoles. The analytical performances of this integrated device were found to be comparable with those obtained using a charge-coupled device (CCD) as a reference off-chip detector. These results demonstrate that integrating the a-Si:H photosensors array with CL-LFIA technique provides compact, sensitive and low-cost systems for CL-based bioassays with a wide range of applications for in-field and point-of-care bioanalyses. Graphical Abstract A novel integrated portable device was developed for direct quantitative detection of human serum albumin (HSA) in urine samples, exploiting a chemiluminescence lateral flow immunoassay (LFIA). The device comprises a cartridge that holds the LFIA strip and all the reagents necessary for the analysis, an array of amorphous silicon photosensors, and a custom read-out electronics.

  13. Structural and optical properties of thin films porous amorphous silicon carbide formed by Ag-assisted photochemical etching

    International Nuclear Information System (INIS)

    Boukezzata, A.; Keffous, A.; Cheriet, A.; Belkacem, Y.; Gabouze, N.; Manseri, A.; Nezzal, G.; Kechouane, M.; Bright, A.; Guerbous, L.; Menari, H.

    2010-01-01

    In this work, we present the formation of porous layers on hydrogenated amorphous SiC (a-SiC: H) by Ag-assisted photochemical etching using HF/K 2 S 2 O 8 solution under UV illumination at 254 nm wavelength. The amorphous films a-SiC: H were elaborated by d.c. magnetron sputtering using a hot pressed polycrystalline 6H-SiC target. Because of the high resistivity of the SiC layer, around 1.6 MΩ cm and in order to facilitate the chemical etching, a thin metallic film of high purity silver (Ag) has been deposited under vacuum onto the thin a-SiC: H layer. The etched surface was characterized by scanning electron microscopy, secondary ion mass spectroscopy, infrared spectroscopy and photoluminescence. The results show that the morphology of etched a-SiC: H surface evolves with etching time. For an etching time of 20 min the surface presents a hemispherical crater, indicating that the porous SiC layer is perforated. Photoluminescence characterization of etched a-SiC: H samples for 20 min shows a high and an intense blue PL, whereas it has been shown that the PL decreases for higher etching time. Finally, a dissolution mechanism of the silicon carbide in 1HF/1K 2 S 2 O 8 solution has been proposed.

  14. Method for producing silicon thin-film transistors with enhanced forward current drive

    Science.gov (United States)

    Weiner, Kurt H.

    1998-01-01

    A method for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates.

  15. Amorphization and recrystallization processes in monocrystalline beta silicon carbide thin films

    International Nuclear Information System (INIS)

    Edmond, J.A.; Withrow, S.P.; Kong, H.S.; Davis, R.F.

    1985-01-01

    Individual, as well as multiple doses of 27 Al + , 31 P + , 28 Si + , and 28 Si + and 12 C + , were implanted into (100) oriented monocrystalline β-SiC films. The critical energy of approx. =16 eV/atom required for the amorphization of β-SiC via implantation of 27 Al + and 31 P + was determined using the TRIM84 computer program for calculation of the damage-energy profiles coupled with the results of RBS/ion channeling analyses. In order to recrystallize amorphized layers created by the individual implantation of all four ion species, thermal annealing at 1600, 1700, or 1800 0 C was employed. Characterization of the recrystallized layers was performed using XTEM. Examples of SPE regrown layers containing precipitates and dislocation loops, highly faulted-microtwinned regions, and random crystallites were observed

  16. Silicon Monoxide at 1 atm and Elevated Pressures: Crystalline or Amorphous?

    KAUST Repository

    AlKaabi, Khalid

    2014-03-05

    The absence of a crystalline SiO phase under ordinary conditions is an anomaly in the sequence of group 14 monoxides. We explore theoretically ordered ground-state and amorphous structures for SiO at P = 1 atm, and crystalline phases also at pressures up to 200 GPa. Several competitive ground-state P = 1 atm structures are found, perforce with Si-Si bonds, and possessing Si-O-Si bridges similar to those in silica (SiO2) polymorphs. The most stable of these static structures is enthalpically just a little more stable than a calculated random bond model of amorphous SiO. In that model we find no segregation into regions of amorphous Si and amorphous SiO2. The P = 1 atm structures are all semiconducting. As the pressure is increased, intriguing new crystalline structures evolve, incorporating Si triangular nets or strips and stishovite-like regions. A heat of formation of crystalline SiO is computed; it is found to be the most negative of all the group 14 monoxides. Yet, given the stability of SiO2, the disproportionation 2SiO (s) → Si(s)+SiO2(s) is exothermic, falling right into the series of group 14 monoxides, and ranging from a highly negative ΔH of disproportionation for CO to highly positive for PbO. There is no major change in the heat of disproportionation with pressure, i.e., no range of stability of SiO with respect to SiO2. The high-pressure SiO phases are metallic. © 2014 American Chemical Society.

  17. Non-negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon Dioxide

    OpenAIRE

    Lv, Wei; Henry, Asegun

    2016-01-01

    Thermal conductivity is an important property for almost all applications involving heat transfer, ranging from energy and microelectronics to food processing and textiles. The theory and modeling of crystalline materials is in some sense a solved problem, where one can now calculate the thermal conductivity of any crystalline line compound from first principles [1,2] using expressions based on the phonon gas model (PGM)[3,4]. However, modeling of amorphous materials still has many open quest...

  18. Development of Thin Film Amorphous Silicon Tandem Junction Based Photocathodes Providing High Open-Circuit Voltages for Hydrogen Production

    Directory of Open Access Journals (Sweden)

    F. Urbain

    2014-01-01

    Full Text Available Hydrogenated amorphous silicon thin film tandem solar cells (a-Si:H/a-Si:H have been developed with focus on high open-circuit voltages for the direct application as photocathodes in photoelectrochemical water splitting devices. By temperature variation during deposition of the intrinsic a-Si:H absorber layers the band gap energy of a-Si:H absorber layers, correlating with the hydrogen content of the material, can be adjusted and combined in a way that a-Si:H/a-Si:H tandem solar cells provide open-circuit voltages up to 1.87 V. The applicability of the tandem solar cells as photocathodes was investigated in a photoelectrochemical cell (PEC measurement set-up. With platinum as a catalyst, the a-Si:H/a-Si:H based photocathodes exhibit a high photocurrent onset potential of 1.76 V versus the reversible hydrogen electrode (RHE and a photocurrent of 5.3 mA/cm2 at 0 V versus RHE (under halogen lamp illumination. Our results provide evidence that a direct application of thin film silicon based photocathodes fulfills the main thermodynamic requirements to generate hydrogen. Furthermore, the presented approach may provide an efficient and low-cost route to solar hydrogen production.

  19. Study of the charge sharing in a silicon pixel detector by means of α-particles interacting with a Medipix2 device

    CERN Document Server

    Campbell, M; Holý, T; Idárraga, J; Jakůbek, J; Lebel, C; Leroy, C; Llopart, X; Pospíšil, S; Tlustos, L; Vykydal, Z

    2008-01-01

    The energy deposited in a silicon detector by a heavy charged particle, such as an α-particle, creates a large number of electron–hole pairs. Under the influence of an electric field, the carriers drift towards the corresponding electrode. Due to diffusion, the charge carriers are spread. Lateral spreading depends on the collection time; hence it is expected to be smaller for larger fields. In the case of a pixellated detecting structure, this lateral spread can cause a sharing of the charge between the electrodes and many pixels will have a signal: that is, charge carriers generate a cluster of adjacent pixels. Also influencing the charge collection and its spread is the large concentration of electron–hole pairs generated locally by the α-particle, which creates distortions of the electric field along the ionizing path, giving rise to the so-called plasma and funnelling effects. The results of the charge-sharing effect measured in the Medipix2 pixel detectors are shown as a function of the α-particle...

  20. Comment on 'Ultrafast photoluminescence in quantum-confined silicon nanocrystals arises from an amorphous surface layer'

    Czech Academy of Sciences Publication Activity Database

    Kůsová, Kateřina; Ondič, Lukáš; Pelant, Ivan

    2015-01-01

    Roč. 2, č. 3 (2015), s. 454-455 ISSN 2330-4022 R&D Projects: GA ČR GPP204/12/P235 Institutional support: RVO:68378271 Keywords : silicon nanocrystals, ultrafast luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.404, year: 2015

  1. Comparison of photocurrent spectra measured by FTPS and CPM for amorphous silicon layers and solar cells

    Czech Academy of Sciences Publication Activity Database

    Holovský, Jakub; Poruba, Aleš; Purkrt, Adam; Remeš, Zdeněk; Vaněček, Milan

    2008-01-01

    Roč. 354, 19-25 (2008), s. 2167-2170 ISSN 0022-3093 R&D Projects: GA MŽP(CZ) SN/3/172/05 Keywords : silicon * solar cells * band structure * defects * optical properties * absorption * FTIR measurements * photoconductivity * medium-range order Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.449, year: 2008

  2. Performance of a hybrid photon detector prototype with electrostatic cross-focussing and integrated silicon Pixel readout for Cherenkov ring detection

    CERN Document Server

    Alemi, M; Bibby, J H; Campbell, M; Duane, A; Easo, S; Gys, Thierry; Halley, A W; Piedigrossi, D; Puertolas, D; Rosso, E; Simmons, B; Snoeys, W; Websdale, David M; Wotton, S A; Wyllie, Ken H

    1999-01-01

    We report on the first test beam performance of a hybrid photon detector prototype, using binary readout electronics, intended for use in the ring imaging Cherenkov detectors of the LHCb experiment at the CERN Large Hadron Collider. The photon detector is based on a cross-focussed image intensifier tube geometry. The anode consists of a silicon pixel array bump-bonded to a binary readout chip with matching pixel electronics. The detector has been installed in a quarter-scale prototype vessel of the LHCb ring imaging Cherenkov system. Focussed ring images produced by 120 GeV/c negative pions traversing an air radiator have been recorded. The observed light yield and Cherenkov angle resolution are discussed.

  3. Digital radiography of the skeleton using a large-area detector based on amorphous silicon technology: Image quality and potential for dose reduction in comparison with screen-film radiography

    International Nuclear Information System (INIS)

    Volk, M.; Strotzer, M.; Holzkneckt, N.; Manke, C.; Lenhart, M.; Gmeinwieser, J.; Link, J.; Reiser, M.; Feuerback, S.

    2000-01-01

    AIM: The purpose of this study was to evaluate a large-area, flat-panel X-ray detector (FD), based on caesium-iodide (CsI) and amorphous silicon (a-Si) with respect to skeletal radiography. Conventional images were compared with digital radiographs using identical and reduced radiation doses. MATERIALS AND METHODS: Thirty consecutive patients were studied prospectively using conventional screen-film radiography (SFR; detector dose 2.5 μGy). Digital images were taken from the same patients with detector doses of 2.5, 1.25 and 0.625 μGy, respectively. The active-matrix detector had a panel size of 43 x 43 cm, a matrix of 3 x 3K, and a pixel size of 143 μm. All hard copies were presented in a random order to eight independent observers, who rated image quality according to subjective quality criteria. Results were assessed for significance using the Student's t -test (confidence level 95%). RESULTS: A statistically significant preference for digital over conventional images was revealed for all quality criteria, except for over-exposure (detector dose 2.5 μGy). Digital images with a 50% dose showed a small, statistically not significant, inferiority compared with SFR. The FD-technique was significantly inferior to SFR at 75% dose reduction regarding bone cortex and trabecula, contrast and overall impression. No statistically significant differences were found with regard to over- and under-exposure and soft tissue presentation. CONCLUSION: Amorphous silicon-based digital radiography yields good image quality. The potential for dose reduction depends on the clinical query. Volk, M. (2000)

  4. Infrared picosecond absorption spectroscopy of microcrystalline silicon: separation between carrier recombination in crystalline and amorphous fractions

    Czech Academy of Sciences Publication Activity Database

    Kudrna, J.; Pelant, Ivan; Štěpánek, J.; Trojánek, F.; Malý, P.

    2002-01-01

    Roč. 74, - (2002), s. 253-256 ISSN 0947-8396 R&D Projects: GA AV ČR IAA1010809 Grant - others:GA UK(XC) 180/99 Institutional research plan: CEZ:AV0Z1010914 Keywords : ultra-fast carrier dynamics * hydrogenated microcrystalline silicon * picosecond pump and probe measurements * rate-equation model Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.231, year: 2002

  5. Selective Growth and SERS Property of Gold Nanoparticles on Amorphized Silicon Surface

    International Nuclear Information System (INIS)

    Matsuoka, T; Nishi, M; Sakakura, M; Shimotsuma, Y; Miura, K; Hirao, K

    2011-01-01

    We have fabricated gold patterns on a silicon substrate by a simple three-step method using a focused ion beam (FIB). The obtained gold patterns consisted of a large number of gold nanoparticles which grew selectively on the preprocessed silicon surface from an Au ion-containing solution dropped on the substrate. The solution was prepared by reacting HAuCl 4 aqueous solution with (3-mercaptopropyl)trimethoxysilane (MPTMS). It was found that the size and shape of the precipitating gold nanoparticles is controllable by changing the mixing ratio between HAuCl 4 aqueous solution and MPTMS. Additionally, we confirmed that the fabricated gold structures were surface enhanced Raman scattering (SERS)-active; the enhanced Raman peaks of rhodamin 6G (R6G) were detected on the fabricated gold structures, whereas no peak was detected on the alternative silicon surface. We also demonstrated the gold patterning using a femtosecond laser instead of an FIB. We believe that our method is a favorable candidate for fabricating SERS-active substrates, since the substrates can be prepared very simply and flexibly.

  6. Research and development of photovoltaic power system. Study on structural defects in silicon-based amorphous materials; Taiyoko hatsuden system no kenkyu kaihatsu. Amorphous silicon kei zairyo no kozo kekkan ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T. [Kanazawa University, Ishikawa (Japan). Faculty of Engineering

    1994-12-01

    Described herein are the results of the FY1994 research program for structural defects of silicon-based amorphous materials for solar cells. The study on light generation defects of the a-Si:H system and rejuvenation process by annealing establishes the effects of light irradiation time on changed neutral dangling bond density as a result of light irradiation at varying temperature of 77K, room temperature and 393K. The study on annealing to rejuvenate light generation defects of various types of a-Si-H systems establishes the activation energy distribution with respect to annealing to remove light-induced defects, showing that hydrogen affects the distribution of light-induced defects. The study on decaying process of light-induced ESR for undoped and N-doped a-Si:H systems observes the decaying process of light-induced ESR, after light is cut off, extending for a period of several seconds to several hours at 77K for the a-Si-H systems containing N in a range from 0 to 12at%. The other results presented are space distribution of neutral defects of light-irradiated a-Si-H systems, and rejuvenation process of light-induced spin for the a-Si(1-x)N(x):H composition. 6 figs.

  7. Determination of density of band-gap states of hydrogenated amorphous silicon suboxide thin films

    International Nuclear Information System (INIS)

    Bacioglu, A.

    2005-01-01

    Variation of density of gap states of PECVD silicon suboxide films with different oxygen concentrations was evaluated through electrical and optical measurements. Optical transmission and constant photocurrent method (CPM) were used to determine absorption coefficient as a function of photon energy. From these measurements the localized density of states between the valance band mobility edge and Fermi level has been determined. To determine the variation of conduction band edge, steady state photoconductivity (SSPC), photoconductivity response time (PCRT) and transient photoconductivity (TPC) measurements were utilized. Results indicate that the conduction and valance band edges, both, widen monotonically with oxygen content

  8. Comparison of photocurrent spectra measured by FTPS and CPM for amorphous silicon layers and solar cells

    Czech Academy of Sciences Publication Activity Database

    Holovský, Jakub; Poruba, Aleš; Purkrt, Adam; Remeš, Zdeněk; Vaněček, Milan

    2008-01-01

    Roč. 354, 19-25 (2008), s. 2167-2170 ISSN 0022-3093 R&D Projects: GA MŽP(CZ) SN/3/172/05 EU Projects: European Commission(XE) 19670 - ATHLET; European Commission(XE) 38885 - SE-POWERFOIL; European Commission(XE) 509178 - LPAMS Institutional research plan: CEZ:AV0Z10100521 Keywords : silicon * solar cells * band structure * defects * optical properties * absorption * FTIR measurements * photoconductivity * medium-range order Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.449, year: 2008

  9. Microstructure of amorphous-silicon-based solar cell materials by small-angle x-ray scattering. Annual subcontract report, 6 April 1994--5 April 1995

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, D.L. [Colorado School of Mines, Golden, CO (United States)

    1995-08-01

    The general objective of this research is to provide detailed microstructural information on the amorphous-silicon-based, thin-film materials under development for improved multijunction solar cells. The experimental technique used is small-angle x-ray scattering (SAXS) providing microstructural data on microvoid fractions, sizes, shapes, and their preferred orientations. Other microstructural features such as alloy segregation, hydrogen-rich clusters and alloy short-range order are probed.

  10. Signal amplification and leakage current suppression in amorphous silicon p-i-n diodes by field profile tailoring

    International Nuclear Information System (INIS)

    Hong, W.S.; Zhong, F.; Mireshghi, A.; Perez-Mendez, V.

    1999-01-01

    The performance of amorphous silicon p-i-n diodes as radiation detectors in terms of signal amplitude can be greatly improved when there is a built-in signal gain mechanism. The authors describe an avalanche gain mechanism which is achieved by introducing stacked intrinsic, p-type, and n-type layers into the diode structure. They replaced the intrinsic layer of the conventional p-i-n diode with i 1 -p-i 2 -n-i 3 multilayers. The i 2 layer (typically 1 ∼ 3 microm) achieves an electric field > 10 6 V/cm, while maintaining the p-i interfaces to the metallic contact at electric fields 4 V/cm, when the diode is fully depleted. For use in photo-diode applications the whole structure is less than 10 microm thick. Avalanche gains of 10 ∼ 50 can be obtained when the diode is biased to ∼ 500 V. Also, dividing the electrodes to strips of 2 microm width and 20 microm pitch reduced the leakage current up to an order of magnitude, and increased light transmission without creating inactive regions

  11. Hydrogen in hydrogenated amorphous silicon thick film and its relation to the photoresponse of the film in contact with molybdenum

    International Nuclear Information System (INIS)

    Sridhar, N.; Chung, D.D.L.

    1992-01-01

    This paper reports that hydrogenated amorphous silicon films of thickness 0.5-7 μm on molybdenum substrates were deposited from silane by dc glow discharge and studied by mass spectrometric observation of the evolution of hydrogen upon heating and correlating this information with the photoresponse. The films were found to contain two types of hydrogen, namely weak bonded hydrogen, which evolved at 365 degrees C and was the minority, and strongly bonded hydrogen, which evolved at 460-670 degrees C and was the majority. The proportion of strongly bonded hydrogen increased with increasing film thickness and with increasing substrate temperature during deposition. The total amount of hydrogen increased when the substrate temperature was decreased from 350 to 275 degrees C. The strongly bonded hydrogen resided throughout the thickness of the film, whereas the weakly bonded hydrogen resided near the film surface. The evolution of the strongly bonded hydrogen was diffusion controlled, with an activation energy of 1.6 eV. The strongly bonded hydrogen enhanced the photoresponse, whereas the weakly bonded hydrogen degraded the photoresponse

  12. Scattering matrix analysis for evaluating the photocurrent in hydrogenated-amorphous-silicon-based thin film solar cells.

    Science.gov (United States)

    Shin, Myunghun; Lee, Seong Hyun; Lim, Jung Wook; Yun, Sun Jin

    2014-11-01

    A scattering matrix (S-matrix) analysis method was developed for evaluating hydrogenated amorphous silicon (a-Si:H)-based thin film solar cells. In this approach, light wave vectors A and B represent the incoming and outgoing behaviors of the incident solar light, respectively, in terms of coherent wave and incoherent intensity components. The S-matrix determines the relation between A and B according to optical effects such as reflection and transmission, as described by the Fresnel equations, scattering at the boundary surfaces, or scattering within the propagation medium, as described by the Beer-Lambert law and the change in the phase of the propagating light wave. This matrix can be used to evaluate the behavior of angle-incident coherent and incoherent light simultaneously, and takes into account not only the light scattering process at material boundaries (haze effects) but also nonlinear optical processes within the material. The optical parameters in the S-matrix were determined by modeling both a 2%-gallium-doped zinc oxide transparent conducting oxide and germanium-compounded a-Si:H (a-SiGe:H). Using the S-matrix equations, the photocurrent for an a-Si:H/a-SiGe:H tandem cell and the optical loss in semitransparent a-Si:H solar cells for use in building-integrated photovoltaic applications were analyzed. The developed S-matrix method can also be used as a general analysis tool for various thin film solar cells.

  13. Enhancement of hydrogenated amorphous silicon solar cells with front-surface hexagonal plasmonic arrays from nanoscale lithography

    Science.gov (United States)

    Zhang, Chenlong; Gwamuri, Jephias; Cvetanovic, Sandra; Sadatgol, Mehdi; Guney, Durdu O.; Pearce, Joshua M.

    2017-07-01

    The study first uses numerical simulations of hexagonal triangle and sphere arrays to optimize the performance of hydrogenated amorphous silicon (a-Si:H) photovoltaic devices. The simulations indicated the potential for a sphere array to provide optical enhancement (OE) up to 7.4% compared to a standard cell using a nanosphere radius of 250 nm and silver film thickness of 50 nm. Next a detailed series of a-Si:H cells were fabricated and tested for quantum efficiency and characteristic and current-voltage (I-V) profiles using a solar simulator. Triangle and sphere array based cells, as well as the uncoated reference cells are analyzed and the results find that the simulation does not precisely predict the observed enhancement, but it forecasts a trend and can be used to guide fabrication. In general, the measured OE follows the simulated trend: (1) for triangular arrays no enhancement is observed and as the silver thickness increases the more degradation of the cell; (2) for annealed arrays both measured and simulated OE occur with the thinner silver thickness. Measured efficiency enhancement reached 20.2% and 10.9% for nanosphere diameter D = 500 nm, silver thicknesses h = 50 nm and 25 nm, respectively. These values, which surpass simulation results, indicate that this method is worth additional investigation.

  14. Scattering effect of the high-index dielectric nanospheres for high performance hydrogenated amorphous silicon thin-film solar cells.

    Science.gov (United States)

    Yang, Zhenhai; Gao, Pingqi; Zhang, Cheng; Li, Xiaofeng; Ye, Jichun

    2016-07-26

    Dielectric nanosphere arrays are considered as promising light-trapping designs with the capability of transforming the freely propagated sunlight into guided modes. This kinds of designs are especially beneficial to the ultrathin hydrogenated amorphous silicon (a-Si:H) solar cells due to the advantages of using lossless material and easily scalable assembly. In this paper, we demonstrate numerically that the front-sided integration of high-index subwavelength titanium dioxide (TiO2) nanosphere arrays can significantly enhance the light absorption in 100 nm-thick a-Si:H thin films and thus the power conversion efficiencies (PCEs) of related solar cells. The main reason behind is firmly attributed to the strong scattering effect excited by TiO2 nanospheres in the whole waveband, which contributes to coupling the light into a-Si:H layer via two typical ways: 1) in the short-waveband, the forward scattering of TiO2 nanospheres excite the Mie resonance, which focuses the light into the surface of the a-Si:H layer and thus provides a leaky channel; 2) in the long-waveband, the transverse waveguided modes caused by powerful scattering effectively couple the light into almost the whole active layer. Moreover, the finite-element simulations demonstrate that photocurrent density (Jph) can be up to 15.01 mA/cm(2), which is 48.76% higher than that of flat system.

  15. Dual-Layer Nanostructured Flexible Thin-Film Amorphous Silicon Solar Cells with Enhanced Light Harvesting and Photoelectric Conversion Efficiency.

    Science.gov (United States)

    Lin, Yinyue; Xu, Zhen; Yu, Dongliang; Lu, Linfeng; Yin, Min; Tavakoli, Mohammad Mahdi; Chen, Xiaoyuan; Hao, Yuying; Fan, Zhiyong; Cui, Yanxia; Li, Dongdong

    2016-05-04

    Three-dimensional (3-D) structures have triggered tremendous interest for thin-film solar cells since they can dramatically reduce the material usage and incident light reflection. However, the high aspect ratio feature of some 3-D structures leads to deterioration of internal electric field and carrier collection capability, which reduces device power conversion efficiency (PCE). Here, we report high performance flexible thin-film amorphous silicon solar cells with a unique and effective light trapping scheme. In this device structure, a polymer nanopillar membrane is attached on top of a device, which benefits broadband and omnidirectional performances, and a 3-D nanostructure with shallow dent arrays underneath serves as a back reflector on flexible titanium (Ti) foil resulting in an increased optical path length by exciting hybrid optical modes. The efficient light management results in 42.7% and 41.7% remarkable improvements of short-circuit current density and overall efficiency, respectively. Meanwhile, an excellent flexibility has been achieved as PCE remains 97.6% of the initial efficiency even after 10 000 bending cycles. This unique device structure can also be duplicated for other flexible photovoltaic devices based on different active materials such as CdTe, Cu(In,Ga)Se2 (CIGS), organohalide lead perovskites, and so forth.

  16. Surface morphology and grain analysis of successively industrially grown amorphous hydrogenated carbon films (a-C:H) on silicon

    Science.gov (United States)

    Catena, Alberto; McJunkin, Thomas; Agnello, Simonpietro; Gelardi, Franco M.; Wehner, Stefan; Fischer, Christian B.

    2015-08-01

    Silicon (1 0 0) has been gradually covered by amorphous hydrogenated carbon (a-C:H) films via an industrial process. Two types of these diamond-like carbon (DLC) coatings, one more flexible (f-DLC) and one more robust (r-DLC), have been investigated. Both types have been grown by a radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique with acetylene plasma. Surface morphologies have been studied in detail by atomic force microscopy (AFM) and Raman spectroscopy has been used to investigate the DLC structure. Both types appeared to have very similar morphology and sp2 carbon arrangement. The average height and area for single grains have been analyzed for all depositions. A random distribution of grain heights was found for both types. The individual grain structures between the f- and r-type revealed differences: the shape for the f-DLC grains is steeper than for the r-DLC grains. By correlating the average grain heights to the average grain areas for all depositions a limited region is identified, suggesting a certain regularity during the DLC deposition mechanisms that confines both values. A growth of the sp2 carbon entities for high r-DLC depositions is revealed and connected to a structural rearrangement of carbon atom hybridizations and hydrogen content in the DLC structure.

  17. Light emission in forward and reverse bias operation in OLED with amorphous silicon carbon nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, R [Facultad de Ingenieria Quimica y Textil, Universidad Nacional de Ingenieria, Av. Tupac Amaru SN, Lima (Peru); Cremona, M [Departamento de Fisica, PontifIcia Universidade Catolica de Rio de Janeiro, PUC-Rio, Cx. Postal 38071, Rio de Janeiro, RJ, CEP 22453-970 (Brazil); Achete, C A, E-mail: rreyes@uni.edu.pe [Departamento de Engenheria Metalurgica e de Materiais, Universidade Federal do Rio de Janeiro, Cx. Postal 68505, Rio de Janeiro, RJ, CEP 21945-970 (Brazil)

    2011-01-01

    Amorphous silicon carbon nitride (a-SiC:N) thin films deposited by magnetron sputtering were used in the structure of an organic light emitting diode (OLED), obtaining an OLED operating in forward and reverse bias mode. The device consist of the heterojunction structure ITO/a-SiC:N/Hole Transport Layer (HTL)/ Electron Transport Layer (ETL)/a-SiC:N/Al. As hole transporting layer was used a thin film of 1-(3-methylphenyl)-1,2,3,4 tetrahydroquinoline - 6 - carboxyaldehyde - 1,1'- diphenylhydrazone (MTCD), while the tris(8-hydroxyquinoline aluminum) (Alq{sub 3}) is used as electron transport and emitting layer. A significant increase in the voltage operation compared to the conventional ITO/MTCD/Alq{sub 3}/Al structure was observed, so the onset of electroluminescence occurs at about 22 V in the forward and reverse bias mode of operation. The electroluminescence spectra is similar in both cases, only slightly shifted 0.14 eV to lower energies in relation to the conventional device.

  18. Simultaneous optical and electrical modeling of plasmonic light trapping in thin-film amorphous silicon photovoltaic devices

    Science.gov (United States)

    Gandhi, Keyur K.; Nejim, Ahmed; Beliatis, Michail J.; Mills, Christopher A.; Henley, Simon J.; Silva, S. Ravi P.

    2015-01-01

    Rapid prototyping of photovoltaic (PV) cells requires a method for the simultaneous simulation of the optical and electrical characteristics of the device. The development of nanomaterial-enabled PV cells only increases the complexity of such simulations. Here, we use a commercial technology computer aided design (TCAD) software, Silvaco Atlas, to design and model plasmonic gold nanoparticles integrated in optoelectronic device models of thin-film amorphous silicon (a-Si:H) PV cells. Upon illumination with incident light, we simulate the optical and electrical properties of the cell simultaneously and use the simulation to produce current-voltage (J-V) and external quantum efficiency plots. Light trapping due to light scattering and localized surface plasmon resonance interactions by the nanoparticles has resulted in the enhancement of both the optical and electrical properties due to the reduction in the recombination rates in the photoactive layer. We show that the device performance of the modeled plasmonic a-Si:H PV cells depends significantly on the position and size of the gold nanoparticles, which leads to improvements either in optical properties only, or in both optical and electrical properties. The model provides a route to optimize the device architecture by simultaneously optimizing the optical and electrical characteristics, which leads to a detailed understanding of plasmonic PV cells from a design perspective and offers an advanced tool for rapid device prototyping.

  19. Conformational study of protein interactions with hydrogen-passivated amorphous silicon surfaces: Effect of pH

    Science.gov (United States)

    Brahmi, Yamina; Filali, Larbi; Sib, Jamal Dine; Bouhekka, Ahmed; Benlakehal, Djamel; Bouizem, Yahya; Kebab, Aissa; Chahed, Larbi

    2017-11-01

    The adsorption of Bovine Serum Albumin (BSA) proteins on amorphous silicon (a-Si) surfaces was studied with respect to solution pH. Thin films of a-Si were deposited using radio-frequency magnetron sputtering at room temperature and then treated in a hydrogen ambient to form a hydrogenated a-Si surface layer (a-Si:H). The interactions of the as-deposited and hydrogenated surfaces with the proteins at neutral, acidic, and basic environments was probed by means of Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy, Spectroscopic Ellipsometry (SE), and Atomic Force Microscopy (AFM), to study the influence of the charge of proteins on their adsorption and conformation on the a-Si:H surface, compared with the a-Si surface. The results show that the charge of the proteins has a significant effect on their interactions with these two substrates but in dissimilar ways. For the as-deposited substrate, these interactions are predictably coulombic since the surface is charged. For the hydrogenated substrate, the adsorption of the proteins depends on their conformation which is heavily affected by pH, and the size of their footprint (adsorption mode) on the surface.

  20. Development of a very fast spectral response measurement system for analysis of hydrogenated amorphous silicon solar cells and modules

    International Nuclear Information System (INIS)

    Rodríguez, J.A.; Fortes, M.; Alberte, C.; Vetter, M.; Andreu, J.

    2013-01-01

    Highlights: ► Spectral response equipment for measuring a-Si:H solar cells in a few seconds. ► Equipment based on 16 LEDs with simultaneous illumination of the solar cell. ► The current generated by each LED is analyzed by a Fast Fourier Transform. ► Cheap equipment without lock-in technology for the current measurement. ► Measurement error vs. conventional measurement less than 1% in J sc . - Abstract: An important requirement for a very fast spectral response measurement system is the simultaneous illumination of the solar cell at multiple well defined wavelengths. Nowadays this can be done by means of light emitting diodes (LEDs) available for a multitude of wavelengths. For the purpose to measure the spectral response (SR) of amorphous silicon solar cells a detailed characterization of LEDs emitting in the wavelength range from 300 nm to 800 nm was performed. In the here developed equipment the LED illumination is modulated in the frequency range from 100 Hz to 200 Hz and the current generated by each LED is analyzed by a Fast Fourier Transform (FFT) to determine the current component corresponding to each wavelength. The equipment provides a signal to noise ratio of 2–4 orders of magnitude for individual wavelengths resulting in a precise measurement of the SR over the whole wavelength range. The difference of the short circuit current determined from the SR is less than 1% in comparison to a conventional system with monochromator.

  1. Microporosity and CO₂ Capture Properties of Amorphous Silicon Oxynitride Derived from Novel Polyalkoxysilsesquiazanes.

    Science.gov (United States)

    Iwase, Yoshiaki; Horie, Yoji; Honda, Sawao; Daiko, Yusuke; Iwamoto, Yuji

    2018-03-13

    Polyalkoxysilsesquiazanes ([ROSi(NH) 1.5 ] n , ROSZ, R = Et, nPr, iPr, nBu, sBu, nHex, sHex, cHex, decahydronaphthyl (DHNp)) were synthesized by ammonolysis at -78 °C of alkoxytrichlorosilane (ROSiCl₃), which was isolated by distillation as a reaction product of SiCl₄ and ROH. The simultaneous thermogravimetric and mass spectrometry analyses of the ROSZs under helium revealed a common decomposition reaction, the cleavage of the oxygen-carbon bond of the RO group to evolve alkene as a main gaseous species formed in-situ, leading to the formation of microporous amorphous Si-O-N at 550 °C to 800 °C. The microporosity in terms of the peak of the pore size distribution curve located within the micropore size range (derived from DHNpOSZ having an SSA of 750 m²·g -1 . The CO₂ capture properties were further discussed based on their temperature dependency, and a surface functional group of the Si-O-N formed in-situ during the polymer/ceramics thermal conversion.

  2. Characterization and simulation on antireflective coating of amorphous silicon oxide thin films with gradient refractive index

    Science.gov (United States)

    Huang, Lu; Jin, Qi; Qu, Xingling; Jin, Jing; Jiang, Chaochao; Yang, Weiguang; Wang, Linjun; Shi, Weimin

    2016-08-01

    The optical reflective properties of silicon oxide (SixOy) thin films with gradient refractive index are studied both theoretically and experimentally. The thin films are widely used in photovoltaic as antireflective coatings (ARCs). An effective finite difference time domain (FDTD) model is built to find the optimized reflection spectra corresponding to structure of SixOy ARCs with gradient refractive index. Based on the simulation analysis, it shows the variation of reflection spectra with gradient refractive index distribution. The gradient refractive index of SixOy ARCs can be obtained in adjustment of SiH4 to N2O ratio by plasma-enhanced chemical vapor deposition (PECVD) system. The optimized reflection spectra measured by UV-visible spectroscopy confirms to agree well with that simulated by FDTD method.

  3. Thick amorphous silicon layers suitable for the realization of radiation detectors

    International Nuclear Information System (INIS)

    Hong, Wan-Shick; Drewery, J.S.; Jing, Tao; Lee, Hyong-Koo; Perez-Mendez, V.; Petrova-Koch, V.

    1995-04-01

    Thick silicon films with good electronic quality have been prepared by glow discharge of He-diluted SiH 4 at a substrate temperature ∼ 150 degree C and subsequent annealing at 160 degree C for about 100 hours. The stress in the films obtained this way decreased to ∼ 100 MPa compared to the 350 MPa in conventional a-Si:H. The post-annealing helped to reduce the ionized dangling bond density from 2.5 x 10 15 cm -3 to 7 x 10 14 cm -3 without changing the internal stress. IR spectroscopy and hydrogen effusion measurements implied the existence of microvoids and tiny crystallites in the material showing satisfactory electronic properties. P-I-N diodes for radiation detection applications have been realized out of the new material

  4. Low-Loss, Low-Noise, Crystalline and Amorphous Silicon Dielectrics for Superconducting Microstriplines and Kinetic Inductance Detector Capacitors

    Science.gov (United States)

    Golwala, Sunil

    entertained; For superconducting spectrometers, lower loss would improve the spectral resolution limit, Rmax = (1/tan delta), from 1e3 to 2e5, sufficient for resolved extragalactic mm/submm spectroscopy, where intrinsic line widths are dnu/nu 1e-4 to 1e-3; For KIDs, the interdigitated capacitors (IDC) currently used could be replaced by parallel-plate capacitors 40 times smaller in area, presenting a number of advantages over IDCs in properties such as focal plane fill factor and mounting architecture, direct absorption, and inter-KID coupling. There exist two paths in the literature to lower loss: hydrogenated amorphous silicon (aSi:H) and crystalline silicon (cSi). Crystalline silicon intrinsically has tan delta design/fabrication constraints, it has not been shown yet that this can be extended to more convenient 1 um and 2 um thicknesses. a-Si:H has been demonstrated to have tan delta FIR) direct detectors” and “Compact, Integrated Spectrometers for 100 to 1000 um” gaps.

  5. Electronic structure of the amorphous-crystalline Silicon heterostructure contact; Die elektronische Struktur des amorph-kristallinen Silizium-Heterostruktur-Kontakts

    Energy Technology Data Exchange (ETDEWEB)

    Korte, L.

    2006-07-01

    In the present work, the electronic density of states of hydrogenated amorphous silicon (a-Si:H) layers in the thickness range from 300 down to {proportional_to}2 nm was examined by Near-UV-photoelectron spectroscopy (NUV-PES). The measurements yield a mean density (averaged over all directions in k space) of the extended states in the valence band close to the band edge E{sub v}, down to approximately E{sub v}-1 eV, as well as the density of states in the band-gap between E{sub v} and the Fermi level E{sub f}. An analytic model for the density of states was fitted to the measured yield data. The model describes the extended states close to the band edge as well as the localized states in the band gap. The defect parameters obtained from the fits to the 300 nm sample are elevated with respect to literature data. In contrast to PES the photocurrent measurement yield the defect parameters averaged over the entire layer thickness. Finally, the photocurrent measurements can be evaluated in the Tauc plot to yield the optical band-gap, E{sub g}{sup opt}=1.76(5) eV. The methodology developed in the first part of the thesis (PES measurement and fit of the model density of states) was then applied to various series of approximately 10 nm thin a-Si:H layers on c-Si substrates, where the deposition temperature of the layers and the concentration of their doping both by phosphorus and boron were varied. The experimental results can be summarized as follows: Ultrathin a-Si:H layers show an optimum of the deposition-temperature around 230 C. The optimum is characterized by an Urbach energy of 66(1) meV and a defect-density of 2,9(3).10{sup 18} cm{sup -3}. For undoped layers, the Fermi level lies E{sub F}-E{sub V}{sup {mu}}=1.04(6) eV, the films are therefore slightly n-type. Conductivity measurements at identically prepared thick layers on glass allow to determine the distance of the Fermi level to the conduction band mobility edge, E{sub C}{sup {mu}}-E{sub F}. Both for the

  6. Carrier collection losses in interface passivated amorphous silicon thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Neumüller, A., E-mail: alex.neumueller@next-energy.de; Sergeev, O.; Vehse, M.; Agert, C. [NEXT ENERGY EWE Research Centre for Energy Technology at the University of Oldenburg, Carl-von-Ossietzky-Straße 15, 26129 Oldenburg (Germany); Bereznev, S.; Volobujeva, O. [Department of Materials Science, Tallinn University of Technology, Ehitajate Tee 5, Tallinn 19086 (Estonia); Ewert, M.; Falta, J. [Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen (Germany)

    2016-07-25

    In silicon thin-film solar cells the interface between the i- and p-layer is the most critical. In the case of back diffusion of photogenerated minority carriers to the i/p-interface, recombination occurs mainly on the defect states at the interface. To suppress this effect and to reduce recombination losses, hydrogen plasma treatment (HPT) is usually applied. As an alternative to using state of the art HPT we apply an argon plasma treatment (APT) before the p-layer deposition in n-i-p solar cells. To study the effect of APT, several investigations were applied to compare the results with HPT and no plasma treatment at the interface. Carrier collection losses in resulting solar cells were examined with spectral response measurements with and without bias voltage. To investigate single layers, surface photovoltage and X-ray photoelectron spectroscopy (XPS) measurements were conducted. The results with APT at the i/p-interface show a beneficial contribution to the carrier collection compared with HPT and no plasma treatment. Therefore, it can be concluded that APT reduces the recombination centers at the interface. Further, we demonstrate that carrier collection losses of thin-film solar cells are significantly lower with APT.

  7. Energy loss process analysis for radiation degradation and immediate recovery of amorphous silicon alloy solar cells

    Science.gov (United States)

    Sato, Shin-ichiro; Beernink, Kevin; Ohshima, Takeshi

    2015-06-01

    Performance degradation of a-Si/a-SiGe/a-SiGe triple-junction solar cells due to irradiation of silicon ions, electrons, and protons are investigated using an in-situ current-voltage measurement system. The performance recovery immediately after irradiation is also investigated. Significant recovery is always observed independent of radiation species and temperature. It is shown that the characteristic time, which is obtained by analyzing the short-circuit current annealing behavior, is an important parameter for practical applications in space. In addition, the radiation degradation mechanism is discussed by analyzing the energy loss process of incident particles (ionizing energy loss: IEL, and non-ionizing energy loss: NIEL) and their relative damage factors. It is determined that ionizing dose is the primarily parameter for electron degradation whereas displacement damage dose is the primarily parameter for proton degradation. This is because the ratio of NIEL to IEL in the case of electrons is small enough to be ignored the damage due to NIEL although the defect creation ratio of NIEL is much larger than that of IEL in the cases of both protons and electrons. The impact of “radiation quality effect” has to be considered to understand the degradation due to Si ion irradiation.

  8. Optical and vibrational properties of sulfur and selenium versus halogens in hydrogenated amorphous silicon matrix

    International Nuclear Information System (INIS)

    Al-Alawi, S.M.; Al-Dallal, S.

    1999-01-01

    The infrared spectra of a compositional variation series of alpha-Si,S:H; alpha-Si,Se:H, alpha-Si:Cl, H and alpha-Si:F,H thin films were deposited by r.f. glow discharge were compared. It was shown that S, Se, Cl and F can be bonded to the silicon matrix. The stretching mode bands at 2000 cm/sup -1/. and 2100 cm/sup -1/ in the infrared spectra of the above alloys shifts systematically to higher wave numbers when incorporated S,Se or halogen atoms are increases. This observation was attributed to the larger electronegativity of these atoms with respect to the host matrix. Optical transmission spectroscopy and photothermal deflection experiments reveal an increase in the band gap when the content of any of the above elements is increased. However, the highest band gap was obtained for sulfur alloys. This result was interpreted in terms of the S-Si bond strength as compared to other elements. It was found that alpha-Si, S:H was interpreted in terms of the S-Si alloys exhibit the highest structural stability among the four alloys for moderate amount of incorporated sulfur atoms. (author)

  9. Room temperature photoluminescence spectrum modeling of hydrogenated amorphous silicon carbide thin films by a joint density of tail states approach and its application to plasma deposited hydrogenated amorphous silicon carbide thin films

    International Nuclear Information System (INIS)

    Sel, Kıvanç; Güneş, İbrahim

    2012-01-01

    Room temperature photoluminescence (PL) spectrum of hydrogenated amorphous silicon carbide (a-SiC x :H) thin films was modeled by a joint density of tail states approach. In the frame of these analyses, the density of tail states was defined in terms of empirical Gaussian functions for conduction and valance bands. The PL spectrum was represented in terms of an integral of joint density of states functions and Fermi distribution function. The analyses were performed for various values of energy band gap, Fermi energy and disorder parameter, which is a parameter that represents the width of the energy band tails. Finally, the model was applied to the measured room temperature PL spectra of a-SiC x :H thin films deposited by plasma enhanced chemical vapor deposition system, with various carbon contents, which were determined by X-ray photoelectron spectroscopy measurements. The energy band gap and disorder parameters of the conduction and valance band tails were determined and compared with the optical energies and Urbach energies, obtained by UV–Visible transmittance measurements. As a result of the analyses, it was observed that the proposed model sufficiently represents the room temperature PL spectra of a-SiC x :H thin films. - Highlights: ► Photoluminescence spectra (PL) of the films were modeled. ► In the model, joint density of tail states and Fermi distribution function are used. ► Various values of energy band gap, Fermi energy and disorder parameter are applied. ► The model was applied to the measured PL of the films. ► The proposed model represented the room temperature PL spectrum of the films.

  10. Study and Development of a novel Silicon Pixel Detector for the Upgrade of the ALICE Inner Tracking System

    CERN Document Server

    van Hoorn, Jacobus Willem; Riedler, Petra

    ALICE (A Large Ion Collider Experiment) is the heavy-ion experiment at the CERN Large Hadron Collider (LHC). As an important part of its upgrade plans, the ALICE experiment schedules the installation of a new Inner Tracking System (ITS) during the Long Shutdown 2 (LS2) of the LHC in 2019/20. The new ITS will consist of seven concentric layers, covering about 10m2 with Monolithic Active Pixel Sensors (MAPS). This choice of technology has been guided by the tight requirements on the material budget of 0.3 % x/X0 per layer for the three innermost layers and backed by the significant progress in the field of MAPS in recent years. The pixel chips are manufactured in the TowerJazz 180 nm CMOS process on wafers with a high-resistivity epitaxial layer on top of the substrate. During the R&D phase several chip architectures have been investigated, which take full advantage of a particular process feature, the deep p-well, that allows for full CMOS circuitry within the pixel matrix while retaining full charge colle...

  11. High Growth Rate Deposition of Hydrogenated Amorphous Silicon-Germanium Films and Devices Using ECR-PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Hydrogenated amorphous silicon germanium films (a-SiGe:H) and devices have been extensively studied because of the tunable band gap for matching the solar spectrum and mature the fabrication techniques. a-SiGe:H thin film solar cells have great potential for commercial manufacture because of very low cost and adaptability to large-scale manufacturing. Although it has been demonstrated that a-SiGe:H thin films and devices with good quality can be produced successfully, some issues regarding growth chemistry have remained yet unexplored, such as the hydrogen and inert-gas dilution, bombardment effect, and chemical annealing, to name a few. The alloying of the SiGe introduces above an order-of-magnitude higher defect density, which degrades the performance of the a-SiGe:H thin film solar cells. This degradation becomes worse when high growth-rate deposition is required. Preferential attachment of hydrogen to silicon, clustering of Ge and Si, and columnar structure and buried dihydride radicals make the film intolerably bad. The work presented here uses the Electron-Cyclotron-Resonance Plasma-Enhanced Chemical Vapor Deposition (ECR-PECVD) technique to fabricate a-SiGe:H films and devices with high growth rates. Helium gas, together with a small amount of H2, was used as the plasma species. Thickness, optical band gap, conductivity, Urbach energy, mobility-lifetime product, I-V curve, and quantum efficiency were characterized during the process of pursuing good materials. The microstructure of the a-(Si,Ge):H material was probed by Fourier-Transform Infrared spectroscopy. They found that the advantages of using helium as the main plasma species are: (1) high growth rate--the energetic helium ions break the reactive gas more efficiently than hydrogen ions; (2) homogeneous growth--heavy helium ions impinging on the surface promote the surface mobility of the reactive radicals, so that heteroepitaxy growth as clustering of Ge and Si, columnar structure are

  12. The effect of amorphous silicon surface hydrogenation on morphology, wettability and its implication on the adsorption of proteins

    International Nuclear Information System (INIS)

    Filali, Larbi; Brahmi, Yamina; Sib, Jamal Dine; Bouhekka, Ahmed; Benlakehal, Djamel; Bouizem, Yahya; Kebab, Aissa; Chahed, Larbi

    2016-01-01

    Highlights: • Hydrogenation of the surfaces had the effect of reducing the roughness by way of shadow etching. • Roughness was the driving factor affecting the wettability of the hydrogenated surfaces. • Bovine Serum Albumin proteins favored the surfaces with highest hydrogen content. • Surface modification induced secondary structure change of adsorbed proteins. - Abstract: We study the effect of amorphous silicon (a-Si) surface hydrogenation on Bovine Serum Albumin (BSA) adsorption. A set of (a-Si) films was prepared by radio frequency magnetron sputtering (RFMS) and after deposition; they were treated in molecular hydrogen ambient at different pressures (1–3 Pa). Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy and spectroscopic ellipsometry (SE) were used to study the hydrogenation effect and BSA adsorption. Atomic force microscopy (AFM) was used to evaluate morphological changes caused by hydrogenation. The wettability of the films was measured using contact angle measurement, and in the case of the hydrogenated surfaces, it was found to be driven by surface roughness. FTIR-ATR spectroscopy and SE measurements show that proteins had the strongest affinity toward the surfaces with the highest hydrogen content and their secondary structure was affected by a significant decrease of the α-helix component (-27%) compared with the proteins adsorbed on the un-treated surface, which had a predominantly α-helix (45%) structure. The adsorbed protein layer was found to be densely packed with a large thickness (30.9 nm) on the hydrogen-rich surfaces. The most important result is that the surface hydrogen content was the dominant factor, compared to wettability and morphology, for protein adsorption.

  13. The effect of amorphous silicon surface hydrogenation on morphology, wettability and its implication on the adsorption of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Filali, Larbi, E-mail: larbifilali5@gmail.com [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria); Brahmi, Yamina; Sib, Jamal Dine [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria); Bouhekka, Ahmed [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria); Département de Physique, Université Hassiba Ben Bouali, 02000 Chlef (Algeria); Benlakehal, Djamel; Bouizem, Yahya; Kebab, Aissa; Chahed, Larbi [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria)

    2016-10-30

    Highlights: • Hydrogenation of the surfaces had the effect of reducing the roughness by way of shadow etching. • Roughness was the driving factor affecting the wettability of the hydrogenated surfaces. • Bovine Serum Albumin proteins favored the surfaces with highest hydrogen content. • Surface modification induced secondary structure change of adsorbed proteins. - Abstract: We study the effect of amorphous silicon (a-Si) surface hydrogenation on Bovine Serum Albumin (BSA) adsorption. A set of (a-Si) films was prepared by radio frequency magnetron sputtering (RFMS) and after deposition; they were treated in molecular hydrogen ambient at different pressures (1–3 Pa). Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy and spectroscopic ellipsometry (SE) were used to study the hydrogenation effect and BSA adsorption. Atomic force microscopy (AFM) was used to evaluate morphological changes caused by hydrogenation. The wettability of the films was measured using contact angle measurement, and in the case of the hydrogenated surfaces, it was found to be driven by surface roughness. FTIR-ATR spectroscopy and SE measurements show that proteins had the strongest affinity toward the surfaces with the highest hydrogen content and their secondary structure was affected by a significant decrease of the α-helix component (-27%) compared with the proteins adsorbed on the un-treated surface, which had a predominantly α-helix (45%) structure. The adsorbed protein layer was found to be densely packed with a large thickness (30.9 nm) on the hydrogen-rich surfaces. The most important result is that the surface hydrogen content was the dominant factor, compared to wettability and morphology, for protein adsorption.

  14. Development of a very fast spectral response measurement system for analysis of hydrogenated amorphous silicon solar cells and modules

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.A., E-mail: jose.rodriguez@tsolar.eu [Dept. Technology, Development and Innovation, T-Solar Global S.A., Parque Tecnologico de Galicia, Avda. de Vigo 5, E-32900 San Cibrao das Vinas (Ourense) (Spain); Fortes, M. [Departamento de Electronica e Computacion, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Alberte, C.; Vetter, M.; Andreu, J. [Dept. Technology, Development and Innovation, T-Solar Global S.A., Parque Tecnologico de Galicia, Avda. de Vigo 5, E-32900 San Cibrao das Vinas (Ourense) (Spain)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Spectral response equipment for measuring a-Si:H solar cells in a few seconds. Black-Right-Pointing-Pointer Equipment based on 16 LEDs with simultaneous illumination of the solar cell. Black-Right-Pointing-Pointer The current generated by each LED is analyzed by a Fast Fourier Transform. Black-Right-Pointing-Pointer Cheap equipment without lock-in technology for the current measurement. Black-Right-Pointing-Pointer Measurement error vs. conventional measurement less than 1% in J{sub sc}. - Abstract: An important requirement for a very fast spectral response measurement system is the simultaneous illumination of the solar cell at multiple well defined wavelengths. Nowadays this can be done by means of light emitting diodes (LEDs) available for a multitude of wavelengths. For the purpose to measure the spectral response (SR) of amorphous silicon solar cells a detailed characterization of LEDs emitting in the wavelength range from 300 nm to 800 nm was performed. In the here developed equipment the LED illumination is modulated in the frequency range from 100 Hz to 200 Hz and the current generated by each LED is analyzed by a Fast Fourier Transform (FFT) to determine the current component corresponding to each wavelength. The equipment provides a signal to noise ratio of 2-4 orders of magnitude for individual wavelengths resulting in a precise measurement of the SR over the whole wavelength range. The difference of the short circuit current determined from the SR is less than 1% in comparison to a conventional system with monochromator.

  15. Improvement of memory window and retention with low trap density in hydrogenated-amorphous-silicon-germanium nonvolatile memory

    International Nuclear Information System (INIS)

    Choi, Woojin; Jang, Kyungsoo; Raja, Jayapal; Cho, Jaehyun; Nguyen, Hong Hanh; Kim, Jiwoong; Lee, YounJung; Nagarajan, Balaji; Yi, Junsin; Kim, Minbum

    2013-01-01

    We report the SiO 2 /SiO X /SiO X N Y (OO X O N ) stacked nonvolatile memory (NVM) using hydrogenated amorphous silicon germanium (a-Si X Ge 1–X :H) as an active channel layer. In NVMs, the reduction of interface trap density is one of the key issues to improve device performance including memory window and retention. The NVMs using a-SiGe:H as the active channel overcame the limitation of small memory window size and poor retention characteristics by controlling the interface trap density using different Ge contents in the surface SiGe layer. For a-Si:H NVM that does not contain Ge, the memory size is about 5.15 V, which is quite large, with a programming voltage of −7 V and an erasing voltage of +15 V. However, the retention time of over 10 years is almost impossible. For a-SiGe:H NVM with 20% Ge, the memory size is as large as 7.38 V and the retention data of ∼58% is possible even after 10 years due to the reduced trap density in OO X O N and channel layers. When the Ge content is more than 20%, the memory size and retention property after 10 years decrease rapidly. When the contents of Ge in SiGe films reach a certain point, they act as defects lowering the properties. The results of NVM devices using a-SiGe:H (Ge 20%) as an active channel layer demonstrate that they have switching characteristics suitable for data storage such as a threshold voltage window. (paper)

  16. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  17. Amorphization of silicon via electronic processes induced by irradiation with fullerenes; Amorphisation du silicium par processus electroniques induits par irradiation avec des fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Canut, B.; Bonardi, N.; Ramos, S.M.M. [Universite Claude Bernard, Dept. de Physique des Materiaux, UMR CNRS, 69 - Lyon (France); Della Negra, S. [Institut de Physique Nucleaire, (IN2P3/CNRS) 91 - Orsay (France)

    1999-07-01

    For the first time it is shown that single crystalline silicon is sensitive to collective electronic excitations. Irradiations with C{sub 60} clusters accelerated in the 10 MeV range induce the formation of amorphous latent tracks in this material. This result has never been observed with high energy heavy ions, it means that what may matter is the very high electronic energy density deposited in the silicon by the incident cluster. TEM (transmission electronic microscopy) analysis of irradiated samples have enable us to measure surface damage cross-sections: 55 nm{sup 2} and 87 nm{sup 2} for irradiations with C{sub 60}{sup 2+} beams and C{sub 60}{sup 3+} beams accelerated respectively to 30 and 40 MeV. (A.C.)

  18. The effects of plasma-assisted chemical vapor deposition process variables on the properties of amorphous silicon carbide films

    Science.gov (United States)

    Moskowitz, Illa Lorren

    Amorphous hydrogenated carbon films containing silicon are of considerable interest for a variety of applications including window layers for solar cells, anti-abrasion coatings, masks for x-ray photolithography and biomedical applications. Plasma-assisted chemical vapor deposition (PACVD) is one of the preferred techniques for depositing these films. a-Si:C:H films were deposited by PACVD using a plasma reactor with capacitively coupled parallel plate configuration operating at 13.56 MHz. The following film properties were studied: intrinsic stress (from the curvature of the substrates), micro-hardness (obtained from nanoindentation), surface roughness and morphology (studied using atomic force microscopy), surface energy (obtained from wetting angle measurements) and the optical constants of the films (as obtained from computer modeling of ellipsometric data). The composition of the films was established from Rutherford backscattering experiments and the hydrogen content was measured using nuclear reaction analysis. By investigating the process variables of the PACVD system using a 2-level factorial experimental design, a better understanding of this complex deposition process has been gained. From this study some of the relationships between the process variables of the PACVD system and physical characteristics of the deposited films such as surface roughness, film stress and optical properties have been established. For example, increasing the energy of bombarding ions produced an increase in the surface roughness under certain conditions, but produced a decrease in roughness under other conditions. In another case, changing the composition of the source gas produced a significant change in the refractive index of the films when the ion energy was high, but had little effect when the ion energy was low. Values obtained for the surface roughness of the films and the dispersion functions of n and k obtained from the ellipsometric modeling were in general

  19. Uncooled Infrared Microbolometers and Silicon Germanium Oxide (SixGe1-xOy) Infrared Sensitive Material for Long Wavelength Detection

    Science.gov (United States)

    2014-10-10

    Martin, et al., "First demonstration of 25 μm pitch uncooled amorphous Silicon microbolometer IRFPA at LETI-LIR," Proc. SPIE, vol. 5783, pp. 432 ...and C. J. Han, "Advancement in 17-micron pixel pitch uncooled focal plane arrays," Proc. SPIE, vol. 7298, p. 72980S, 2009. [14] C. J. Han, C. G...Minassian, P. Robert, S. Tinnes, et al., "High performance uncooled amorphous silicon VGA IRFPA with 17μm pixel- pitch ," Proc. SPIE, vol. 7660, p

  20. High-Efficiency Amorphous Silicon Alloy Based Solar Cells and Modules; Final Technical Progress Report, 30 May 2002--31 May 2005

    Energy Technology Data Exchange (ETDEWEB)

    Guha, S.; Yang, J.

    2005-10-01

    The principal objective of this R&D program is to expand, enhance, and accelerate knowledge and capabilities for development of high-efficiency hydrogenated amorphous silicon (a-Si:H) and amorphous silicon-germanium alloy (a-SiGe:H) related thin-film multijunction solar cells and modules with low manufacturing cost and high reliability. Our strategy has been to use the spectrum-splitting triple-junction structure, a-Si:H/a-SiGe:H/a-SiGe:H, to improve solar cell and module efficiency, stability, and throughput of production. The methodology used to achieve the objectives included: (1) explore the highest stable efficiency using the triple-junction structure deposited using RF glow discharge at a low rate, (2) fabricate the devices at a high deposition rate for high throughput and low cost, and (3) develop an optimized recipe using the R&D batch large-area reactor to help the design and optimization of the roll-to-roll production machines. For short-term goals, we have worked on the improvement of a-Si:H and a-SiGe:H alloy solar cells. a-Si:H and a-SiGe:H are the foundation of current a-Si:H based thin-film photovoltaic technology. Any improvement in cell efficiency, throughput, and cost reduction will immediately improve operation efficiency of our manufacturing plant, allowing us to further expand our production capacity.

  1. Amorphous silicon-carbon nanospheres synthesized by chemical vapor deposition using cheap methyltrichlorosilane as improved anode materials for Li-ion batteries.

    Science.gov (United States)

    Zhang, Zailei; Zhang, Meiju; Wang, Yanhong; Tan, Qiangqiang; Lv, Xiao; Zhong, Ziyi; Li, Hong; Su, Fabing

    2013-06-21

    We report the preparation and characterization of amorphous silicon-carbon (Si-C) nanospheres as anode materials in Li-ion batteries. These nanospheres were synthesized by a chemical vapor deposition at 900 °C using methyltrichlorosilane (CH3SiCl3) as both the Si and C precursor, which is a cheap byproduct in the organosilane industry. The samples were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, nitrogen adsorption, thermal gravimetric analysis, Raman spectroscopy, and X-ray photoelectron spectroscopy. It was found that the synthesized Si-C nanospheres composed of amorphous C (about 60 wt%) and Si (about 40 wt%) had a diameter of 400-600 nm and a surface area of 43.8 m(2) g(-1). Their charge capacities were 483.6, 331.7, 298.6, 180.6, and 344.2 mA h g(-1) at 50, 200, 500, 1000, and 50 mA g(-1) after 50 cycles, higher than that of the commercial graphite anode. The Si-C amorphous structure could absorb a large volume change of Si during Li insertion and extraction reactions and hinder the cracking or crumbling of the electrode, thus resulting in the improved reversible capacity and cycling stability. The work opens a new way to fabricate low cost Si-C anode materials for Li-ion batteries.

  2. Amorphous TiO2 Shells: A Vital Elastic Buffering Layer on Silicon Nanoparticles for High-Performance and Safe Lithium Storage.

    Science.gov (United States)

    Yang, Jianping; Wang, Yunxiao; Li, Wei; Wang, Lianjun; Fan, Yuchi; Jiang, Wan; Luo, Wei; Wang, Yang; Kong, Biao; Selomulya, Cordelia; Liu, Hua Kun; Dou, Shi Xue; Zhao, Dongyuan

    2017-12-01

    Smart surface coatings of silicon (Si) nanoparticles are shown to be good examples for dramatically improving the cyclability of lithium-ion batteries. Most coating materials, however, face significant challenges, including a low initial Coulombic efficiency, tedious processing, and safety assessment. In this study, a facile sol-gel strategy is demonstrated to synthesize commercial Si nanoparticles encapsulated by amorphous titanium oxide (TiO 2 ), with core-shell structures, which show greatly superior electrochemical performance and high-safety lithium storage. The amorphous TiO 2 shell (≈3 nm) shows elastic behavior during lithium discharging and charging processes, maintaining high structural integrity. Interestingly, it is found that the amorphous TiO 2 shells offer superior buffering properties compared to crystalline TiO 2 layers for unprecedented cycling stability. Moreover, accelerating rate calorimetry testing reveals that the TiO 2 -encapsulated Si nanoparticles are safer than conventional carbon-coated Si-based anodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. An investigation of optimal interfacial film condition for Cu-Mn alloy based source/drain electrodes in hydrogenated amorphous silicon thin film transistors

    Directory of Open Access Journals (Sweden)

    Haruhiko Asanuma

    2012-06-01

    Full Text Available To aid in developing next generation Cu-Mn alloy based source/drain interconnects for thin film transistor liquid crystal displays (TFT-LCDs, we have investigated the optimal structure of a pre-formed oxide layer on phosphorus doped hydrogenated amorphous silicon (n+a-Si:H that does not degrade TFT electrical properties. We use transmission electron microscopy (TEM and electron energy loss spectroscopy (EELS to examine composition depth profiles of and structural information for the Cu-Mn alloy/n+a-Si:H interface region. In aiming to achieve the same electrical properties as those of TFTs having conventional Mo source/drain electrodes, we have obtained three important findings: (1 in typical TFT-LCD manufacturing processes, no Mn complex oxide layer is formed because Mn cannot diffuse substantially into an n+a-Si:H surface during low temperature (below 300°C processes and the growth of Mn complex oxide layer would also be limited by the absence of excess oxygen species; (2 a pre-formed silicon oxide layer much thicker than 1 nm severely degrades TFT electrical properties and therefore an ultrathin (≈1 nm silicon oxide layer is required to prevent the degradation; (3 Cu diffuses into an n+a-Si:H layer at oxygen-deficient spots and thus uniform surface oxidation is required to prevent the diffusion.

  4. Evaluation of the PANDA silicon pixel front-end electronics and investigation of the anti ΛΛ final state

    Energy Technology Data Exchange (ETDEWEB)

    Esch, Simone

    2014-04-28

    high precision particle beams for several experiments. The AntiProton Annihilation at Darmstadt (PANDA) experiment is one of the large detectors at FAIR. PANDAs main physics objectives center around the properties of particles and excited particles made from quarks of the first and second quark family. It is a fixed target experiment within the High Energy Storage Ring (HESR), which delivers an intense, phase-space cooled antiproton beam in the momentum range of 1.5 to 15 GeV/c. With the high precision of the HESR, PANDA will be able to perform precise spectroscopic studies of hadronic states in the charm quark mass range. The luminosity will be up to 2.10{sup 32} cm{sup -2}s{sup -1}, thus enabling very rare processes to be studied. This high luminosity leads to a high particle flux and a high radiation environment which the sub-detectors must withstand. The most highly affected sub-detector of this high radiation environment is the Micro Vertex Detector (MVD), the innermost detector of PANDA. The main task of the MVD is the detection of the interaction points of events (vertexing). This vertex finding is crucial for the analysis of short living particles like e.g. D-mesons, particles consisting of a c-quark and a light antiquark. An essential part of the MVD detector is the readout of the semiconductor sensors. The ToPix (Torino Pixel) Application Specific Integrated Circuit (ASIC) is the front-end electronics for the MVD sensor, developed at the Istituto Nazionale di Fisica Nucleare (INFN) in Turin, Italy. It measures the spatial coordinate, the time and the deposited charge of incident charged particles. The most recent prototype of this ASIC is the ToPix 3, a version of reduced size and functionality. The Juelich Digital Readout System (JDRS) was adopted and extended to be able to readout this prototype, thus enabling specific test measurements of the prototype. In addition, the performance of PANDA for detecting long lived. particles was studied, and the

  5. Core/shell structured NaYF4:Yb3+/Er3+/Gd+3 nanorods with Au nanoparticles or shells for flexible amorphous silicon solar cells

    International Nuclear Information System (INIS)

    Li, Z Q; Li, X D; Liu, Q Q; Chen, X H; Sun, Z; Huang, S M; Liu, C; Ye, X J

    2012-01-01

    A simple approach for preparing near-infrared (NIR) to visible upconversion (UC) NaYF 4 :Yb/Er/Gd nanorods in combination with gold nanostructures has been reported. The grown UC nanomaterials with Au nanostructures have been applied to flexible amorphous silicon solar cells on the steel substrates to investigate their responses to sub-bandgap infrared irradiation. Photocurrent–voltage measurements were performed on the solar cells. It was demonstrated that UC of NIR light led to a 16-fold to 72-fold improvement of the short-circuit current under 980 nm illumination compared to a cell without upconverters. A maximum current of 1.16 mA was obtained for the cell using UC nanorods coated with Au nanoparticles under 980 nm laser illumination. This result corresponds to an external quantum efficiency of 0.14% of the solar cell. Mechanisms of erbium luminescence in the grown UC nanorods were analyzed and discussed. (paper)

  6. The investigation of ZnO:Al2O3/metal composite back reflectors in amorphous silicon germanium thin film solar cells

    International Nuclear Information System (INIS)

    Wang Guang-Hong; Zhao Lei; Yan Bao-Jun; Chen Jing-Wei; Wang Ge; Diao Hong-Wei; Wang Wen-Jing

    2013-01-01

    Different aluminum-doped ZnO (AZO)/metal composite thin films, including AZO/Ag/Al, AZO/Ag/nickel—chromium alloy (NiCr), and AZO/Ag/NiCr/Al, are utilized as the back reflectors of p—i—n amorphous silicon germanium thin film solar cells. NiCr is used as diffusion barrier layer between Ag and Al to prevent mutual diffusion, which increases the short circuit current density of solar cell. NiCr and NiCr/Al layers are used as protective layers of Ag layer against oxidation and sulfurization, the higher efficiency of solar cell is achieved. The experimental results show that the performance of a-SiGe solar cell with AZO/Ag/NiCr/Al back reflector is best. The initial conversion efficiency is achieved to be 8.05%

  7. Optimization of charge-carrier generation in amorphous-silicon thin-film tandem solar cell backed by two-dimensional metallic surface-relief grating

    Science.gov (United States)

    Civiletti, Benjamin J.; Anderson, Tom H.; Ahmad, Faiz; Monk, Peter B.; Lakhtakia, Akhlesh

    2017-08-01

    The rigorous coupled-wave approach was implemented in a three-dimensional setting to calculate the chargecarrier-generation rate in a thin-film solar cell with multiple amorphous-silicon p-i-n junctions. The solar cell comprised a front antireflection window; three electrically isolated p-i-n junctions in tandem; and a periodically corrugated silver back-reflector with hillock-shaped corrugations arranged on a hexagonal lattice. The differential evolution algorithm (DEA) was used to maximize the charge-carrier-generation rate over a set of selected optical and electrical parameters. This optimization exercise minimized the bandgap of the topmost i-layer but all other parameters turned out to be uninfluential. More importantly, the exercise led to a configuration that would very likely render the solar cell inefficient. Therefore, another optimization exercise was conducted to maximize power density. The resulting configuration was optimal over all parameters.

  8. Investigation of the agglomeration and amorphous transformation effects of neutron irradiation on the nanocrystalline silicon carbide (3C-SiC) using TEM and SEM methods

    Energy Technology Data Exchange (ETDEWEB)

    Huseynov, Elchin M., E-mail: elchin.h@yahoo.com [Department of Nanotechnology and Radiation Material Science, National Nuclear Research Center, Inshaatchilar pr. 4, AZ 1073 Baku (Azerbaijan); Institute of Radiation Problems of Azerbaijan National Academy of Sciences, B.Vahabzade 9, AZ 1143 Baku (Azerbaijan)

    2017-04-01

    Nanocrystalline 3C-SiC particles irradiated by neutron flux during 20 h in TRIGA Mark II light water pool type research reactor. Silicon carbide nanoparticles were analyzed by Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM) devices before and after neutron irradiation. The agglomeration of nanoparticles was studied comparatively before and after neutron irradiation. After neutron irradiation the amorphous layer surrounding the nanoparticles was analyzed in TEM device. Neutron irradiation defects in the 3C-SiC nanoparticles and other effects investigated by TEM device. The effect of irradiation on the crystal structure of the nanomaterial was studied by selected area electron diffraction (SAED) and electron diffraction patterns (EDP) analysis.

  9. Crystallization of amorphous silicon thin-film on glass substrate preheated at 650 Degree-Sign C using Xe arc flash of 400 {mu}s

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Hyun [Department of Mechanical and System Design Engineering, Hongik University, 72-1 Sangsoo-dong, Mapo-koo, Seoul 121-791 (Korea, Republic of); Kim, Byung-Kuk [Viatron Technologies, Suwon Industrial Complex, 972 Gosaek-dong, Kwonsun-koo, Suwon 441-813 (Korea, Republic of); Kim, Hyoung June [Department of Materials Science and Engineering, Hongik University, 72-1 Sangsoo-dong, Mapo-koo, Seoul 121-791 (Korea, Republic of); Park, Seungho, E-mail: spark@hongik.ac.kr [Department of Mechanical and System Design Engineering, Hongik University, 72-1 Sangsoo-dong, Mapo-koo, Seoul 121-791 (Korea, Republic of)

    2012-08-31

    Experimental and theoretical investigations on flash lamp annealing (FLA) of amorphous silicon (a-Si) film on glass were carried out with a view to practical applications in large-window display industries. A Xe arc flash lamp of 950 mm in length and 22 mm in bore diameter was applied with nominal input voltage of 7 kV and flash duration of 400 {mu}s. Prior to the annealing process, the specimen for FLA was preheated at 650 Degree-Sign C, which was very close to the service temperature of the glass specimen used in this study. By employing a focusing elliptic reflector, maximum light energy density of up to 8.4 J/cm{sup 2} could be attained with an active exposure width of 2 cm. Crystallization of a-Si could be achieved in solid-phase by applying a flash beam with light density of at least 5 J/cm{sup 2}, and its phase-transition characteristics that varied with energy densities could be explained by theoretically estimated temperature fields. Electron microscopy observations confirmed that solid-phase crystallization preceded melting of a-Si due to relatively long flashing (heating) duration of 400 {mu}s, which was comparable to solid-phase crystal-growth times at elevated temperatures. - Highlights: Black-Right-Pointing-Pointer Flash lamp annealing of amorphous silicon (a-Si) on glass for large-scale displays Black-Right-Pointing-Pointer Xe-arc flash lamp of 950 mm in length and 22 mm in bore diameter Black-Right-Pointing-Pointer Flash duration of 400 {mu}s at nominal input voltage of 7 kV Black-Right-Pointing-Pointer Solid-phase crystallization precedes melting of a-Si due to long flashing duration.

  10. Highly tunable electronic properties in plasma-synthesized B-doped microcrystalline-to-amorphous silicon nanostructure for solar cell applications

    Science.gov (United States)

    Lim, J. W. M.; Ong, J. G. D.; Guo, Y.; Bazaka, K.; Levchenko, I.; Xu, S.

    2017-10-01

    Highly controllable electronic properties (carrier mobility and conductivity) were obtained in the sophisticatedly devised, structure-controlled, boron-doped microcrystalline silicon structure. Variation of plasma parameters enabled fabrication of films with the structure ranging from a highly crystalline (89.8%) to semi-amorphous (45.4%) phase. Application of the innovative process based on custom-designed, optimized, remote inductively coupled plasma implied all advantages of the plasma-driven technique and simultaneously avoided plasma-intrinsic disadvantages associated with ion bombardment and overheating. The high degree of SiH4, H2 and B2H6 precursor dissociation ensured very high boron incorporation into the structure, thus causing intense carrier scattering. Moreover, the microcrystalline-to-amorphous phase transition triggered by the heavy incorporation of the boron dopant with increasing B2H6 flow was revealed, thus demonstrating a very high level of the structural control intrinsic to the process. Control over the electronic properties through variation of impurity incorporation enabled tailoring the carrier concentrations over two orders of magnitude (1018-1020 cm-3). These results could contribute to boosting the properties of solar cells by paving the way to a cheap and efficient industry-oriented technique, guaranteeing a new application niche for this new generation of nanomaterials.

  11. Status of the ATLAS pixel detector

    CERN Document Server

    Saavedra Aldo, F

    2005-01-01

    The ATLAS pixel detector is currently being constructed and will be installed in 2006 to be ready for commissioning at the Large Hadron Collider. The complete pixel detector is composed of three concentric barrels and six disks that are populated by 1744 ATLAS Pixel modules. The main components of the pixel module are the readout electronics and the silicon sensor whose active region is instrumented with rectangular pixels. The module has been designed to be able to survive 10 years of operation within the ATLAS detector. A brief description of the pixel detector will be presented with results and problems encountered during the production stage.

  12. Pixel Experiments

    DEFF Research Database (Denmark)

    Søndergaard, Karin; Petersen, Kjell Yngve; Augustesen, Christina

    2015-01-01

    Pixel Experiments The term pixel is traditionally defined as any of the minute elements that together constitute a larger context or image. A pixel has its own form and is the smallest unit seen within a larger structure. In working with the potentials of LED technology in architectural lighting...... design it became relevant to investigate the use of LEDs as the physical equivalent of a pixel as a design approach. In this book our interest has been in identifying how the qualities of LEDs can be used in lighting applications. With experiences in the planning and implementation of architectural...... lighting design in practice, one quickly experiences and realises that there are untapped potentials in the attributes of LED technology. In this research, speculative studies have been made working with the attributes of LEDs in architectural contexts, with the ambition to ascertain new strategies...

  13. Pixel Experiments

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Augustesen, Christina

    2015-01-01

    Pixel Experiments The term pixel is traditionally defined as any of the minute elements that together constitute a larger context or image. A pixel has its own form and is the smallest unit seen within a larger structure. In working with the potentials of LED technology in architectural lighting...... for using LED lighting in lighting design practice. The speculative experiments that have been set-up have aimed to clarify the variables that can be used as parameters in the design of lighting applications; including, for example, the structuring and software control of light. The experiments also...... elucidate and exemplify already well-known problems in relation to the experience of vertical and horizontal lighting. Pixel Experiments exist as a synergy between speculative test setups and lighting design in practice. This book is one of four books that is published in connection with the research...

  14. The formation of an amorphous interface layer precedes the onset of the nucleation of an orderly carbon structure on a silicon wafer

    Science.gov (United States)

    Belay, Kalayu; Jackson, Jeremy; Johnson, Kevin

    2002-03-01

    A thin film was grown by plasma assisted chemical vapor deposition (PACVD) process on a heated silicon wafer substrate. The reactants in the process were 298pressure and substrate temperature were 40 Torr and 9000 C respectively. The silicon wafer was scratched with diamond dust to increase the rate of nucleation. Upon absorbing energy from microwave generated plasma the methane breaks down freeing the carbon atoms, which are deposited on the substrate. The system was run for ten hours. A seemingly uniform milky thin layer of film was formed on the substrate. Initial characterization using an X-ray diffractometer was unable to detect the presence of any orderly structure of carbon atoms forming diamond or graphite. This leads us to believe that an amorphous interlayer is formed before diamond or other diamond like structure is formed on the substrate. Results of additional investigations and interpretations will be reported. *This research was supported in part by a grant from NASA MURED to Florida A&M University.

  15. Amorphous silicon solar cells. Comparison of p-i-n and n-i-p structures with zinc-oxide front contact

    International Nuclear Information System (INIS)

    Wieder, S.

    1999-12-01

    This work compares amorphous silicon solar cells in the p-i-n and n-i-p structure. In both cell structures, sputtered zinc-oxide (ZnO) films were established as front contact. We developed smooth TCO films with high conductivity and high transparency. The required surface texture is achieved by a post deposition wet chemical etching step in diluted HCl. In both cell structures, a contact barrier emerges at the amorphous-p/ZnO interface. In both cases, the negative effects of the barrier on the electrical properties of the solar cell are avoided by the application of highly conductive, microcrystalline p-layers (μc-p), which were developed with the RF as well as the VHF deposition technique. We were able to clearly show that the optimum p-layer structure for a-Si:H solar cells with ZnO front contact is an amorphous/microcrystalline double-layer: The thin μc-p-layer provides a low-ohmic ZnO/p-contact, while an amorphous phase is essential in order to build up a high open-circuit voltage (V OC ). The optical optimization led to high quantum efficiencies in both cell types and showed an advantage of the n-i-p structure in the laboratory caused by the possible antireflection design of the front contact in this structure. We confirmed literature reports asserting a drop in the V oc of p-i-n cells when using elevated substrate temperatures during deposition of the i-layer material, while the decrease in V oc for the n-i-p cells simply correlates with the decrease of the band gap of the absorber material. The implementation of the developed materials led to a highly efficient a-Si:H/a-Si:H tandem cell in the p-i-n structure on sputtered ZnO with 9.2% stable efficiency after 900 h of light soaking. The transfer of the achieved results to module production is performed in an joint venture between research and industry. (orig.)

  16. Preparation and electrochemical performance of copper foam-supported amorphous silicon thin films for rechargeable lithium-ion batteries

    International Nuclear Information System (INIS)

    Li Haixia; Cheng Fangyi; Zhu Zhiqiang; Bai Hongmei; Tao Zhanliang; Chen Jun

    2011-01-01

    Research highlights: → Amorphous Si thin films have been deposited on copper foam substrate by radio-frequency (rf) magnetron sputtering. → The as-prepared Si/Cu films with interconnected 3-dimensional structure are employed as anode materials of rechargeable lithium-ion batteries, showing that the electrode properties are greatly affected by the deposition temperature. → The film electrode deposited at an optimum temperature of 300 deg. C delivers a specific capacity of ∼2900 mAh/g and a coulombic efficiency above 95% at charge/discharge current density of 0.2C after 30 cycles. → The Li + diffusion coefficiency in copper foam-supported Si thin films is determined to be 2.36 x 10 -9 cm 2 /s. → The combination of rf magnetron sputtering and cooper foam substrate is an efficient route to prepare amorphous Si films with high capacity and cyclability due to the efficient ionic diffusion and interface contact with a good conductive current collector. - Abstract: Amorphous Si thin films, which have been deposited on copper foam by radio-frequency (rf) magnetron sputtering, are employed as anode materials of rechargeable lithium-ion batteries. The morphologies and structures of the as-prepared Si thin films are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD). Electrochemical performance of lithium-ion batteries with the as-prepared Si films as the anode materials is investigated by cyclic voltammetry and charge-discharge measurements. The results show that the electrode properties of the prepared amorphous Si films are greatly affected by the deposition temperature. The film electrode deposited at an optimum temperature of 300 deg. C can deliver a specific capacity of ∼2900 mAh/g and a coulombic efficiency above 95% at charge/discharge current density of 0.2C after 30 cycles. The Li + diffusion coefficiency in copper foam-supported Si thin films is determined to be 2.36 x 10 -9 cm

  17. ATLAS Pixel Detector Operational Experience

    CERN Document Server

    Di Girolamo, B; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.9% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  18. Anisotropy of optical, electrical, and photoelectrical properties of amorphous hydrogenated silicon films modified by femtosecond laser irradiation

    Science.gov (United States)

    Amasev, D. V.; Khenkin, M. V.; Drevinskas, R.; Kazansky, P.; Kazanskii, A. G.

    2017-06-01

    Two types of independent anisotropic structures have been formed simultaneously in amorphous hydrogenated films by applying a femtosecond laser pulse to them, i.e., a structure with a period of several micrometers to several tens of micrometers and a structure with a period of several hundred nanometers. The formation mechanisms of these strictures are different, which allows us to orient them relative to each other in a desirable way. Both structures independently influence the optical properties of the modified films, which causes the diffraction of transmitted light and making the films polarization-sensitive. The conductivity of the modified films correlates with the mutual orientation of the anisotropic structures, whereas no interrelation between the photoconductivity and optical performance of the modified films has been observed.

  19. Valence band offset and Schottky barrier at amorphous boron and boron carbide interfaces with silicon and copper

    Science.gov (United States)

    King, Sean W.; French, Marc; Xu, Guanghai; French, Benjamin; Jaehnig, Milt; Bielefeld, Jeff; Brockman, Justin; Kuhn, Markus

    2013-11-01

    In order to understand the fundamental charge transport in a-B:H and a-BX:H (X = C, N, P) compound heterostructure devices, X-ray photoelectron spectroscopy has been utilized to determine the valence band offset and Schottky barrier present at amorphous boron compound interfaces formed with (1 0 0) Si and polished poly-crystalline Cu substrates. For interfaces formed by plasma enhanced chemical vapor deposition of a-B4-5C:H on (1 0 0) Si, relatively small valence band offsets of 0.2 ± 0.2 eV were determined. For a-B:H/Cu interfaces, a more significant Schottky barrier of 0.8 ± 0.16 eV was measured. These results are in contrast to those observed for a-BN:H and BP where more significant band discontinuities (>1-2 eV) were observed for interfaces with Si and Cu.

  20. Amorphous SiO {sub x} nanowires grown on silicon (100) substrates via rapid thermal process of nanodiamond films

    Energy Technology Data Exchange (ETDEWEB)

    Liang Xingbo [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Wang Lei [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Yang Deren [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China)]. E-mail: mseyang@zju.edu.cn

    2006-05-01

    Rapid thermal process (RTP) has been carried out on the deposited nanocrystalline diamond (NCD) films. The RTP treatments performed at 800 and 1200 deg. C have been shown to exert prominent influence on the morphology and structure of the NCD films. The loss of material at grain boundaries has been observed at both 800 and 1200 deg. C RTP treatments. Large-scale amorphous SiO {sub x} nanowires with diameters of 30-50 nm and length up to 10 {mu}m were synthesized after RTP treatment at 1200 deg. C for 60 s. The synthesized nanowires were characterized in detail by scanning electron microscopy, transmission electron microscopy, selected area electron diffraction and energy-dispersed X-ray spectrometry analysis. A possible growth mechanism has been proposed to explain the observed phenomenon.

  1. Electron beam recrystallization of amorphous semiconductor materials

    Science.gov (United States)

    Evans, J. C., Jr.

    1968-01-01

    Nucleation and growth of crystalline films of silicon, germanium, and cadmium sulfide on substrates of plastic and glass were investigated. Amorphous films of germanium, silicon, and cadmium sulfide on amorphous substrates of glass and plastic were converted to the crystalline condition by electron bombardment.

  2. Amorphous silicon crystallization by laser. Report of the experiments at Frascati (Project Foto); Cristallizzazione di silicio amorfo via laser. Rapporto degli esperimenti a frascati (Progetto Foto)

    Energy Technology Data Exchange (ETDEWEB)

    Bollanti, S.; Di Lazzaro, P.; Murra, D. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Div. Fisica Applicata; Imparato, A.; Privato, C. [ENEA, Centro Ricerche Portici, Naples (Italy). Div. Fonti Rinnovabili; Carluccio, R.; Fortunato, G.; Mariucci, L.; Pecora, A. [CNR Istituto di Elettronica dello Stato Solido, Rome (Italy)

    2000-07-01

    The final goal of the Project FOTO is the construction of a laboratory in a clean room for the production of active matrix which can be used to obtain Active Matrix Liquid Crystal Displays (AMLCD). The AMLCD are based on Thin Film Transistors (TFT), which can be obtained by poly-silicon (poly-Si) thin films, achieved, e.g., by irradiating films of amorphous silicon (a-Si) by ultraviolet laser radiation. In this report, are presented the results of the a-Si irradiation by using the laser-facility Hercules (excimer XeCl, l=0,308 mm) done at the ENEA Frascati Centre. The transformation of a-Si into poly-Si is commented upon the variation of the space-time characteristics of the laser pulses, of the irradiation conditions and of the characteristics of the irradiated a-Si films. [Italian] Il macro-obiettivo del Progetto FOTO e' la realizzazione di un laboratorio in camera pulita per lo sviluppo di processi atti a fabbricare matrici attive utilizzabili per ottenere schermi piatti a cristalli liquidi (AMLCD, Active Matrix Liquid Crystal Display). Uno dei primi passi del processo consiste nel creare transistori a film sottile (TFT, Thin Film Transistor). A tal fine, e' necessario ottenere strati sottili di Silicio policristallino irragiando films di silicio amorfo con luce laser ultravioletta. In questo rapporto, sono presentati i risultati degli irraggiamenti di film sottili di silicio amorfo tramite la laser-facility Hercules (eccimero XeCl, l=0,308 mm) effettuati presso il C.R. ENEA di Frascati. La trasformazione di silicio amorfo in silicio policristallino cosi' ottenuta e' commentata al variare delle caratteristiche spazio-temporali dell'impulso laser, delle condizioni di irraggiamento e delle caratteristiche del film di silicio amorfo irraggiato.

  3. Characterization of an amorphous silicon flat panel for controlling the positioning accuracy of sheet; Caracterizacion de un panel plano de silicio amorfo para control de la exactitud en el posicionamiento de laminas

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, J.; Gonzalez, V.; Gimeno, J.; Dolores, V. de los; Pastor, V.; Crispin, V.; Guardino, C.

    2011-07-01

    It has established a method for measuring the position of the blades in a multi leaf collimator (MLC) used to measure dose portal imaging device (EPID) of amorphous silicon, and verified its accuracy using radiochromic films and measures water with diode Cuba, techniques perfectly well validated in our institution. This dose profiles are studied for each sheet and determine their position at the point which has 50% of the dose in the open field.

  4. Development of Amorphous/Microcrystalline Silicon Tandem Thin-Film Solar Modules with Low Output Voltage, High Energy Yield, Low Light-Induced Degradation, and High Damp-Heat Reliability

    OpenAIRE

    Chin-Yi Tsai; Chin-Yao Tsai

    2014-01-01

    In this work, tandem amorphous/microcrystalline silicon thin-film solar modules with low output voltage, high energy yield, low light-induced degradation, and high damp-heat reliability were successfully designed and developed. Several key technologies of passivation, transparent-conducting-oxide films, and cell and segment laser scribing were researched, developed, and introduced into the production line to enhance the performance of these low-voltage modules. A 900 kWp photovoltaic system w...

  5. A comparison of fill factor and recombination losses in amorphous silicon solar cells on ZnO and SnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Alkaya, A.; Canbolat, H. [Department of Electrical-Electronics Engineering, University of Mersin, Ciftlikkoy Campus, 33343 Mersin (Turkey); Kaplan, R. [Department of Secondary Science and Mathematics Education, University of Mersin, Yenisehir Campus, 33169 Mersin (Turkey); Hegedus, S.S. [Institute of Energy Conversion, University of Delaware, Newark, DE 19716 (United States)

    2009-06-15

    Effects of ZnO and SnO{sub 2} TCO (Transparent Conductive Oxide) substrate materials on hydrogenated amorphous silicon (a-Si:H) p-i-n solar cell performances and recombination kinetics have been investigated. DC and Frequency-resolved photocurrent measurements in a-Si:H p-i-n solar cells of 6 have been carried out experimentally. In particular, the I-V characteristics in the dark and light, the quantum efficiency spectra, the intensity-, bias voltage- and frequency-dependence of photocurrent were obtained. Fill factor (FF) values were determined from I-V characteristics for both types of substrate cells under various illumination levels. The exponent v in the power-law relationship, I{sub ph} {alpha} G{sup v}, between generating flux density and photocurrent were determined at different bias voltages (DC) and modulation frequencies. High values of V{sub oc} (open-circuit voltage), FF, and DC exponent v for the a-Si:H p-i-n solar cell with SnO{sub 2} were obtained, but the integrated QE (quantum efficiency), the modulated exponent v were found to be low compared to cells prepared on ZnO substrates. Our results show that these parameters are sensitive to the ZnO and SnO{sub 2} substrate materials which act as a window layer allowing most of the incident light to pass into the i-layer of p-i-n cells. (author)

  6. The effect of oxygen on segregation-induced redistribution of rare-earth elements in silicon layers amorphized by ion implantation

    International Nuclear Information System (INIS)

    Aleksandrov, O. V.

    2006-01-01

    A model of segregation-induced redistribution of impurities of rare-earth elements during solid-phase epitaxial crystallization of silicon layers amorphized by ion implantation is developed. This model is based on the assumption that a transition layer with a high mobility of atoms is formed at the interphase boundary on the side of a-Si; the thickness of this layer is governed by the diffusion length of vacancies in a-Si. The Er concentration profiles in Si implanted with both erbium and oxygen ions are analyzed in the context of the model. It shown that, in the case of high doses of implantation of rare-earth ions, it is necessary to take into account the formation of R m clusters (m = 4), where R denotes the atom of a rare-earth element, whereas, if oxygen ions are also implanted, formation of the complexes RO n (n = 3-6) should be taken into account; these complexes affect the transition-layer thickness and segregation coefficient

  7. Small-angle x-ray scattering studies of microvoids in amorphous-silicon-based semiconductors. Final subcontract report, 1 February 1991--31 January 1994

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, D.L.; Jone, S.J.; Chen, Y. [Colorado School of Mines, Golden, CO (United States)

    1994-07-01

    This report describes work performed to provide new details of the microstructure for the size scale from about 1 nm to 30 nm in high-quality hydrogenated amorphous-silicon and related alloys prepared by current state-of-the-art deposition methods as well as by new and emerging deposition technologies. The purpose of this work is to help determine the role of microvoids and other density fluctuations in controlling the opto-electronic and photovoltaic properties. The approach involved collaboration with several groups that supplied relevant systematic sets of samples and the associated opto-electronic/photovoltaic data to help address particular issues. The small-angle X-ray scattering (SAXS) technique, as developed during this project, was able to provide microstructural information with a high degree of sensitivity not available from other methods. It is particularly sensitive to microvoids or H-rich microdomains and to the presence of oriented microstructures. The latter is readily associated with columnar-type growth and can even be observed in premature stages not detectable by transmission electron microscopy. Flotation density measurements provided important complementary data. Systematic correlations demonstrated that material with more SAXS-detected microstructure has to-electronic and photovoltaic properties and increased degradation under light soaking. New results related to alloy randomness emerged from our ability to measure the difffuse scattering component of the SAXS.

  8. Numerical analysis of temperature profile and thermal-stress during excimer laser induced heteroepitaxial growth of patterned amorphous silicon and germanium bi-layers deposited on Si(100)

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J.C., E-mail: jconde@uvigo.e [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Martin, E. [Dpto. de Mecanica, Maquinas y Motores Termicos y Fluidos, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Gontad, F.; Chiussi, S. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Fornarini, L. [Enea-Frascati, Via Enrico Fermi 45, I-00044 Frascati (Roma) (Italy); Leon, B. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain)

    2010-02-26

    A Finite Element Method (FEM) study of the coupled thermal-stress during the heteroepitaxial growth induced by excimer laser radiation of patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bi-layers deposited on a Si(100) wafer is presented. The ArF (193 nm) excimer laser provides high energy densities during very short laser pulse (20 ns) provoking, at the same time, melting and solidification phenomena in the range of several tenths of nanoseconds. These phenomena play an important role during the growth of heteroepitaxial SiGe structures characterized by high Ge concentration buried under a Si rich surface. In addition, the thermal-stresses that appear before the melting and after the solidification processes can also affect to the epitaxial growth of high quality SiGe alloys in these patterned structures and, in consequence, it is necessary to predict their effects. The aim of this work is to estimate the energy threshold and the corresponding thermal-stresses in the interfaces and the borders of these patterned structures.

  9. Numerical analysis of temperature profile and thermal-stress during excimer laser induced heteroepitaxial growth of patterned amorphous silicon and germanium bi-layers deposited on Si(100)

    International Nuclear Information System (INIS)

    Conde, J.C.; Martin, E.; Gontad, F.; Chiussi, S.; Fornarini, L.; Leon, B.

    2010-01-01

    A Finite Element Method (FEM) study of the coupled thermal-stress during the heteroepitaxial growth induced by excimer laser radiation of patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bi-layers deposited on a Si(100) wafer is presented. The ArF (193 nm) excimer laser provides high energy densities during very short laser pulse (20 ns) provoking, at the same time, melting and solidification phenomena in the range of several tenths of nanoseconds. These phenomena play an important role during the growth of heteroepitaxial SiGe structures characterized by high Ge concentration buried under a Si rich surface. In addition, the thermal-stresses that appear before the melting and after the solidification processes can also affect to the epitaxial growth of high quality SiGe alloys in these patterned structures and, in consequence, it is necessary to predict their effects. The aim of this work is to estimate the energy threshold and the corresponding thermal-stresses in the interfaces and the borders of these patterned structures.

  10. Atomistic Models of Amorphous Semiconductors

    NARCIS (Netherlands)

    Jarolimek, K.

    2011-01-01

    Crystalline silicon is probably the best studied material, widely used by the semiconductor industry. The subject of this thesis is an intriguing form of this element namely amorphous silicon. It can contain a varying amount of hydrogen and is denoted as a-Si:H. It completely lacks the neat long

  11. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Rossi, Leonardo Paolo; The ATLAS collaboration

    2018-01-01

    The upgrade of the ATLAS experiment for the operation at the High Luminosity Large Hadron Collider requires a new and more performant inner tracker, the ITk. The innermost part of this tracker will be built using silicon pixel detectors. This paper describes the ITk pixel project, which, after few years of design and test e ort, is now defined in detail.

  12. Study of hydrogenated amorphous silicon devices under intense electric field: application to nuclear detection; Etude de dispositifs electroniques en silicium amorphe hydrogene sous fort champ electrique: application a la detection nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Ilie, A. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Direction des Technologies Avancees]|[Paris-11 Univ., 91 - Orsay (France)

    1996-12-31

    The goal of this work was the study, development and optimization of hydrogenated amorphous silicon (a-Si:H) devices for use in detection of ionizing radiation. Thick p-i-n devices, capable of withstanding large electric fields (up to 10{sup 6} V/cm) with small currents (nA/cm{sup 2}), were developed. To decrease fabrication time, films were made using the `He diluted` PECVD process and compared to standard a-Si:H films. Aspects connected to specific detector applications as well as to the fundamental physics of a-Si:H were considered: the internal electric field technique, in which the depletion charge was measured as a function of the applied bias voltage; study of the leakage current of p-i-n devices permitted us to demonstrate different regimes: depletion, field-enhanced thermal generation and electronic injection across the p layer. The effect of the electric field on the thermal generation of the carriers was studied considering the Poole-Frenkel and tunneling mechanisms. A model was developed taking under consideration the statistics of the correlated states and electron-phonon coupling. The results suggest that mechanisms not included in the `standard model` of a Si:h need to be considered, such as defect relaxation, a filed-dependent mobility edge etc...; a new metastable phenomenon, induced by prolonged exposure to a strong electric field, was observed and studied. It is characterized by marked decrease of the leakage current and the detector noise, and increase in the breakdown voltage, as well as an improvement of carrier collection efficiency. This forming process appears to be principally due to an activation of the dopants in the p layer; finally, the capacity of thick p-i-n a Si:H devices to detect ionizing radiation has been evaluated. We show that it is possible, with 20-50 micron thick p-i-n devices, to detect the full spectrum of alpha and beta particles. With an appropriate converter, neutron detection then becomes possible. (author). 137 refs.

  13. FEM numerical analysis of excimer laser induced modification in alternating multi-layers of amorphous and nano-crystalline silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J.C., E-mail: jconde@uvigo.es [Dpto. Fisica Aplicada, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain); Martin, E. [Dpto. Mecanica, Maquinas, Motores Termicos y Fluidos, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain); Stefanov, S. [Dpto. Fisica Aplicada, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain); Alpuim, P. [Departamento de Fisica, Universidade do Minho, 4800-058 Guimaraes (Portugal); Chiussi, S. [Dpto. Fisica Aplicada, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer nc-Si:H is a material with growing importance for a large-area of nano-electronic, photovoltaic or biomedical devices. Black-Right-Pointing-Pointer UV-ELA technique causes a rapid heating that provokes the H{sub 2} desorption from the Si surface and bulk material. Black-Right-Pointing-Pointer Next, diffusion of P doped nc-Si films and eventually, for high energy densities would be possible to reach the melting point. Black-Right-Pointing-Pointer These multilayer structures consisting of thin alternating a-Si:H(10 nm) and n-doped nc-Si:H(60 nm) films deposited on SiO{sub 2}. Black-Right-Pointing-Pointer To optimize parameters involved in this processing, FEM numerical analysis of multilayer structures have been performed. Black-Right-Pointing-Pointer The numerical results are compared with exhaustive characterization of the experimental results. - Abstract: UV excimer laser annealing (UV-ELA) is an alternative annealing process that, during the last few years, has gained enormous importance for the CMOS nano-electronic technologies, with the ability to provide films and alloys with electrical and optical properties to fit the desired device performance. The UV-ELA of amorphous (a-) and/or doped nano-crystalline (nc-) silicon films is based on the rapid (nanoseconds) formation of temperature profiles caused by laser radiation that is absorbed in the material and lead to crystallisation, diffusion in solid or even in liquid phase. To achieve the desired temperature profiles and to optimize the parameters involved in the processing of hydrogenated nanocrystalline silicon (nc-Si:H) films with the UV-ELA, a numerical analysis by finite element method (FEM) of a multilayer structure has been performed. The multilayer structures, consisting of thin alternating a-Si:H(10 nm) and n-doped nc-Si:H(60 nm) layers, deposited on a glass substrate, has also been experimentally analyzed. Temperature profiles caused by 193 nm radiation with 25

  14. On the use of a charged tunnel layer as a hole collector to improve the efficiency of amorphous silicon thin-film solar cells

    Science.gov (United States)

    Ke, Cangming; Peters, Ian Marius; Sahraei, Nasim; Aberle, Armin G.; Stangl, Rolf

    2015-06-01

    A new concept, using a negatively charged tunnel layer as a hole collector, is proposed and theoretically investigated for application in amorphous silicon thin-film solar cells. The concept features a glass/transparent conductive oxide/ultra-thin negatively charged tunnel layer/intrinsic a-Si:H/n-doped a-Si:H/metal structure. The key feature of this so called t+-i-n structure is the introduction of a negatively charged tunnel layer (attracting holes from the intrinsic absorber layer), which substitutes the highly recombination active p-doped a-Si:H layer in a conventional p-i-n configuration. Atomic layer deposited aluminum oxide (ALD AlOx) is suggested as a potential candidate for such a tunnel layer. Using typical ALD AlOx parameters, a 27% relative efficiency increase (i.e., from 9.7% to 12.3%) is predicted theoretically for a single-junction a-Si:H solar cell on a textured superstrate. This prediction is based on parameters that reproduce the experimentally obtained external quantum efficiency and current-voltage characteristics of a conventional processed p-i-n a-Si:H solar cell, reaching 9.7% efficiency and serving as a reference. Subsequently, the p-doped a-Si:H layer is replaced by the tunnel layer (studied by means of numerical device simulation). Using a t+-i-n configuration instead of a conventional p-i-n configuration will not only increase the short-circuit current density (from 14.4 to 14.9 mA/cm2, according to our simulations), it also enhances the open-circuit voltage and the fill factor (from 917 mV to 1.0 V and from 74% to 83%, respectively). For this concept to work efficiently, a high work function front electrode material or a high interface charge is needed.

  15. A comparison of mechanical properties of three MEMS materials - silicon carbide, ultrananocrystalline diamond, and hydrogen-free tetrahedral amorphous carbon (Ta-C)

    Energy Technology Data Exchange (ETDEWEB)

    Carlisle, John A. (Argonne National Laboratory, Argonne, IL); Moldovan, N. (Northwestern University, Evanston, IL); Xiao, Xingcheng (Argonne National Laboratory, Argonne, IL); Zorman, C. A. (Case Western Reserve University, Cleveland, OH); Mancini, D. C. (Argonne National Laboratory, Argonne, IL); Peng, B. (Northwestern University, Evanston, IL); Espinosa, H. D. (Northwestern University, Evanston, IL); Friedmann, Thomas Aquinas; Auciello, Orlando, (Argonne National Laboratory, Argonne, IL)

    2004-06-01

    Many MEMS devices are based on polysilicon because of the current availability of surface micromachining technology. However, polysilicon is not the best choice for devices where extensive sliding and/or thermal fields are applied due to its chemical, mechanical and tribological properties. In this work, we investigated the mechanical properties of three new materials for MEMS/NEMS devices: silicon carbide (SiC) from Case Western Reserve University (CWRU), ultrananocrystalline diamond (UNCD) from Argonne National Laboratory (ANL), and hydrogen-free tetrahedral amorphous carbon (ta-C) from Sandia National Laboratories (SNL). Young's modulus, characteristic strength, fracture toughness, and theoretical strength were measured for these three materials using only one testing methodology - the Membrane Deflection Experiment (MDE) developed at Northwestern University. The measured values of Young's modulus were 430GPa, 960GPa, and 800GPa for SiC, UNCD, and ta-C, repectively. Fracture toughness measurments resulted in values of 3.2, 4.5, and 6.2 MPa x m{sup 1/2}, respectively. The strengths were found to follow a Weibull distribution but their scaling was found to be controlled by different specimen size parameters. Therefore, a cross comparison of the strengths is not fully meaningful. We instead propose to compare their theoretical strengths as determined by employing Novozhilov fracture criterion. The estimated theoretical strength for SiC is 10.6GPa at a characteristic length of 58nm, for UNCD is 18.6GPa at a characteristic length of 37nm, and for ta-C is 25.4GPa at a characteristic length of 38nm. The techniques used to obtained these results as well as microscopic fractographic analyses are summarized in the article. We also highlight the importance of characterizing mechanical properties of MEMS materials by means of only one simple and accurate experimental technique.

  16. Performance of new radiation tolerant thin n-in-p Silicon pixel sensors for the CMS experiment at High Luminosity LHC

    CERN Document Server

    Dalla Betta, G.F; Darbo, G; Dinardo, Mauro; Giacomini, G; Menasce, Dario; Meschini, Marco; Messineo, Alberto; Moroni, Luigi; Rivera, Ryan Allen; Ronchin, S; Uplegger, Lorenzo; Viliani, Lorenzo; Zoi, Irene; Zuolo, Davide

    2017-01-01

    The High Luminosity upgrade of the CERN-LHC (HL-LHC) demands for a new high-radiation tolerant solid-state pixel sensor capable of surviving fluencies up to a few 10$^{16}$ particles/cm$^2$ at $\\sim$3 cm from the interaction point. To this extent the INFN ATLAS-CMS joint research activity in collaboration with Fondazione Bruno Kessler-FBK, is aiming at the development of thin n-in-p type pixel sensors for the HL-LHC. The R and D covers both planar and single-sided 3D columnar pixel devices made with the Si-Si Direct Wafer Bonding technique, which allows for the production of sensors with 100~$\\mu {\\rm m}$ and 130~$\\mu {\\rm m}$ active thickness for planars, and 130~$\\mu {\\rm m}$ for 3D sensors, the thinnest ones ever produced so far. First prototypes of hybrid modules bump-bonded to the present CMS readout chip have been tested in beam tests. Preliminary results on their performance before and after irradiation are presented.

  17. Study on the substrate-induced crystallisation of amorphous SiC-precursor ceramics. TIB/A; Untersuchungen zur substratinduzierten Kristallisation amorpher SiC-Precursorkeramiken

    Energy Technology Data Exchange (ETDEWEB)

    Rau, C.

    2000-12-01

    In the present thesis the crystallization behaviour of amorphous silicon-carbon materials (SiC{sub x}) was studied. The main topic of the experimental studies formed thereby the epitactical crystallization of thin silicon carbide layers on monocrystalline substrates of silicon carbides or silicon. Furthermore by thermolysis of the polymer amorphous SiC{sub x}-powder was obtained.

  18. Development of Tandem Amorphous/Microcrystalline Silicon Thin-Film Large-Area See-Through Color Solar Panels with Reflective Layer and 4-Step Laser Scribing for Building-Integrated Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    Chin-Yi Tsai

    2014-01-01

    Full Text Available In this work, tandem amorphous/microcrystalline silicon thin-film large-area see-through color solar modules were successfully designed and developed for building-integrated photovoltaic applications. Novel and key technologies of reflective layers and 4-step laser scribing were researched, developed, and introduced into the production line to produce solar panels with various colors, such as purple, dark blue, light blue, silver, golden, orange, red wine, and coffee. The highest module power is 105 W and the highest visible light transmittance is near 20%.

  19. On the evening of June 15, 2008, ALICE physicists saw the first tracks at LHC during the first injection test in transfer line TI 2. The Silicon Pixel detector recorded muon tracks produced in the beam dump near Point 2 of the LHC.

    CERN Multimedia

    Manzari, Vito

    2008-01-01

    On the evening of June 15, 2008, ALICE physicists saw the first tracks at LHC during the first injection test in transfer line TI 2. The Silicon Pixel detector recorded muon tracks produced in the beam dump near Point 2 of the LHC

  20. Development of Amorphous/Microcrystalline Silicon Tandem Thin-Film Solar Modules with Low Output Voltage, High Energy Yield, Low Light-Induced Degradation, and High Damp-Heat Reliability

    Directory of Open Access Journals (Sweden)

    Chin-Yi Tsai

    2014-01-01

    Full Text Available In this work, tandem amorphous/microcrystalline silicon thin-film solar modules with low output voltage, high energy yield, low light-induced degradation, and high damp-heat reliability were successfully designed and developed. Several key technologies of passivation, transparent-conducting-oxide films, and cell and segment laser scribing were researched, developed, and introduced into the production line to enhance the performance of these low-voltage modules. A 900 kWp photovoltaic system with these low-voltage panels was installed and its performance ratio has been simulated and projected to be 92.1%, which is 20% more than the crystalline silicon and CdTe counterparts.

  1. Dual-gate photo thin-film transistor: a “smart” pixel for high- resolution and low-dose X-ray imaging

    International Nuclear Information System (INIS)

    Wang, Kai; Ou, Hai; Chen, Jun

    2015-01-01

    Since its emergence a decade ago, amorphous silicon flat panel X-ray detector has established itself as a ubiquitous platform for an array of digital radiography modalities. The fundamental building block of a flat panel detector is called a pixel. In all current pixel architectures, sensing, storage, and readout are unanimously kept separate, inevitably compromising resolution by increasing pixel size. To address this issue, we hereby propose a “smart” pixel architecture where the aforementioned three components are combined in a single dual-gate photo thin-film transistor (TFT). In other words, the dual-gate photo TFT itself functions as a sensor, a storage capacitor, and a switch concurrently. Additionally, by harnessing the amplification effect of such a thin-film transistor, we for the first time created a single-transistor active pixel sensor. The proof-of-concept device had a W/L ratio of 250μm/20μm and was fabricated using a simple five-mask photolithography process, where a 130nm transparent ITO was used as the top photo gate, and a 200nm amorphous silicon as the absorbing channel layer. The preliminary results demonstrated that the photocurrent had been increased by four orders of magnitude due to light-induced threshold voltage shift in the sub-threshold region. The device sensitivity could be simply tuned by photo gate bias to specifically target low-level light detection. The dependence of threshold voltage on light illumination indicated that a dynamic range of at least 80dB could be achieved. The 'smart' pixel technology holds tremendous promise for developing high-resolution and low-dose X-ray imaging and may potentially lower the cancer risk imposed by radiation, especially among paediatric patients. (paper)

  2. Hydrogen in disordered and amorphous solids

    International Nuclear Information System (INIS)

    Bambakidis, G; Bowman, R.C.

    1986-01-01

    This book presents information on the following topoics: elements of the theory of amorphous semiconductors; electronic structure of alpha-SiH; fluctuation induced gap states in amorphous hydrogenated silicon; hydrogen on semiconductor surfaces; the influence of hydrogen on the defects and instabilities in hydrogenated amorphous silicon; deuteron magnetic resonance in some amorphous semiconductors; formation of amorphous metals by solid state reactions of hydrogen with an intermetallic compound; NMR studies of the hydrides of disordered and amorphous alloys; neutron vibrational spectroscopy of disordered metal-hydrogen system; dynamical disorder of hydrogen in LaNi /SUB 5-y/ M /SUB y/ hydrides studied by quasi-elastic neutron scattering; recent studies of intermetallic hydrides; tritium in Pd and Pd /SUB 0.80/ Sg /SUB 0.20/ ; and determination of hydrogen concentration in thin films of absorbing materials

  3. Performance of ATLAS pixel detector prototype modules

    CERN Document Server

    Andreazza, A

    2003-01-01

    The ATLAS silicon pixel detector is the innermost tracking device of the ATLAS experiment at the LHC consisting of more than 1600 modules for a total sensitive area of about 1.5m**2 and over 70 million pixel cells. The concept is a hybrid of FE-chips bump bonded to the pixel sensor. The elementary pixel cell has 50mum multiplied by 400mum size. Pulse height measurement is provided by the time over threshold technique. The main issue in the design is the radiation hardness of both the sensitive detector and the readout electronics. Assemblies of readout electronics in deep sub-micron technology and oxygenated silicon sensor have been irradiated up to a fluence of 10 **1**5n//e //q/cm**2 and a dose of 60Mrad. The resolution, charge collection and efficiency have been measured in test beams.

  4. Research and development of photovoltaic power system. Study on growth mechanism of a-Si:H and preparation of the stable, high quality films; Taiyoko hatsuden system no kenkyu kaihatsu. Amorphous silicon no seimaku kiko to kohinshitsuka

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, M. [Hiroshima University, Hiroshima (Japan). Faculty of Engineering

    1994-12-01

    This paper reports the result obtained during fiscal 1994 on research on a film forming mechanism for amorphous silicon for solar cells and its quality improvement. In in-situ observation on plasma CVD surface reaction by using the total reflection infrared absorbing spectroscopy, an observation on a real time basis was performed on the reaction process of an a-Si:H surface in contact with gas mixture plasma composed of SiH4 + CH4. In microscopic observation on initial processes of amorphous silicon growth, surface morphological change before and after a-Si:H deposition at 200{degree}C was observed by using an inter-atomic force microscope. The observation verified that a-Si:H has grown to an atomic layer. In research on defect density in a-Si:H fabricated under high-speed film forming conditions, analysis was made on correlation between the film forming speed at 250{degree}C and defect density in the film. Other research works include those on a high-quality a-SiGe:H film fabricated by using the nanometer film forming/hydrogen plasma annealing method, modulated doping into multi-layer films of a-Si:H/a-Ge:H, and thin film transistor using very thin multi layer films of a-Si:H/a-Ge:H. 5 refs., 12 figs.

  5. Amorphous magnetism

    International Nuclear Information System (INIS)

    Rechenberg, H.R.

    1984-01-01

    The consequences of disorder on magnetic properties of solids are examined. In this context the word 'disorder' is not synonimous of structural amorphicity; chemical disorder can be achieved e.g. by randomly diffusing magnetic atoms on a nonmagnetic crystalline lattice. The name Amorphous Magnetism must be taken in a broad sense. (Author) [pt

  6. The physics and applications of amorphous semiconductors

    CERN Document Server

    Madan, Arun

    1988-01-01

    This comprehensive, detailed treatise on the physics and applications of the new emerging technology of amorphous semiconductors focuses on specific device research problems such as the optimization of device performance. The first part of the book presents hydrogenated amorphous silicon type alloys, whose applications include inexpensive solar cells, thin film transistors, image scanners, electrophotography, optical recording and gas sensors. The second part of the book discusses amorphous chalcogenides, whose applications include electrophotography, switching, and memory elements. This boo

  7. Development of a CMOS SOI pixel detector

    CERN Document Server

    Ishino, Hirokazu; Hazumi, M; Ikegami, Y; Kohriki, T; Tajima, O; Terada, S; Tsuboyama, T; Unno, Y; Ushiroda, Y; Ikeda, H; Hara, K; Ishino, H; Kawasaki, T; Miyake, H; Martin, E; Varner, G; Tajima, H; Ohno, M; Fukuda, K; Komatsubara, H; Ida, J

    2007-01-01

    We have developed a monolithic radiation pixel detector using silicon on insulator (SOI) with a commercial 0.15 m fullydepleted- SOI technology and a Czochralski high resistivity silicon substrate in place of a handle wafer. The SOI TEG (Test Element Group) chips with a size of 2.5 x 2.5mm2 consisting of 20 x 20 um2 pixels have been designed and manufactured. Performance tests with a laser light illumination and a . ray radioactive source indicate successful operation of the detector. We also brie y discuss the back gate effect as well as the simulation study.

  8. Amorphous Semiconductor Alloys

    Science.gov (United States)

    Madan, Arun

    1985-08-01

    Amorphous silicon (a-Si) based alloys have attracted a considerable amount of interest because of their applications in a wide variety of technologies. However, the major effort has concentrated on inexpensive photovoltaic device applications and has moved from a laboratory curiosity in the early 1970's to viable commercial applications in the 1980's. Impressive progress in this field has been made since the group at University of Dundee demonstrated that a low defect, device quality hydrogenated amorphous silicon (a-Si:H) 12 material could be produced using the radio frequency (r.f.) glow discharge in SiH4 gas ' and that the material could be doped n- and p-type.3 These results spurred a worldwide interest in a-Si based alloys, especially for photovoltaic devices which has resulted in a conversion efficiency approaching 12%. There is now a quest for even higher conversion efficiencies by using the multijunction cell approach. This necessitates the synthesis of new materials of differing bandgaps, which in principle amorphous semiconductors can achieve. In this article, we review some of this work and consider from a device and a materials point of view the hurdles which have to be overcome before this type of concept can be realized.

  9. Operational experience with the ATLAS Pixel Detector

    CERN Document Server

    Ince, T; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost element of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.2% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  10. Operational experience of the ATLAS Pixel detector

    CERN Document Server

    Hirschbuehl, D; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  11. Operational experience of the ATLAS Pixel Detector

    CERN Document Server

    Marcisovsky, M; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  12. Amorphous silicon germanium carbide photo sensitive bipolar junction transistor with a base-contact and a continuous tunable high current gain

    Energy Technology Data Exchange (ETDEWEB)

    Bablich, A., E-mail: andreas.bablich@uni-siegen.de [Department of Electrical and Computer Engineering, Institute for Microsystem Technologies, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany); Merfort, C., E-mail: merfort@imt.e-technik.uni-siegen.de [Department of Electrical and Computer Engineering, Institute for Microsystem Technologies, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany); Eliasz, J., E-mail: jacek.eliasz@student.uni-siegen.de [Department of Electrical and Computer Engineering, Institute for Microsystem Technologies, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany); Schäfer-Eberwein, H., E-mail: heiko.schaefer@uni-siegen.de [Department of Electrical and Computer Engineering, Institute of High Frequency and Quantum Electronics, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany); Haring-Bolivar, P., E-mail: peter.haring@uni-siegen.de [Department of Electrical and Computer Engineering, Institute of High Frequency and Quantum Electronics, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany); Boehm, M., E-mail: markus.boehm@uni-siegen.de [Department of Electrical and Computer Engineering, Institute for Microsystem Technologies, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany)

    2014-05-02

    In this paper, the design, fabrication and characterization of an amorphous silicon germanium carbide (a-SiGeC:H) photo sensitive bipolar junction transistor (PS-BJT) with three terminals are presented. Whereas the current gain of similar transistor devices presented in the past (Wu et al., 1984; Hwang et al., 1993; Nascetti and Caputo, 2002; Chang et al., 1985a,b; Wu et al, 1985; Hong et al., 1990) can only be controlled with photo induced charge generation, the n–i–δp–i–n structure developed features a contacted base to provide the opportunity to adjust the current gain optically and electrically, too. Electron microscope-, current-/voltage- and spectral measurements were performed to study the PS-BJT behavior and calculate the electrical and optical current gain. The spectral response maximum of the base–collector diode has a value of 170 mA/W applying a base–collector voltage of − 1 V and is located at 620 nm. The base–emitter diode reaches a sensitivity of 25.7 mA/W at 530 nm with a base-emitter voltage of − 3 V. The good a-Si:H transport properties are validated in a μτ-product of 4.6 × 10{sup −6} cm{sup 2} V s, which is sufficient to reach a continuous base- and photo-tunable current gain of up to − 126 at a base current of I{sub B} = + 10 nA and a collector–emitter voltage of V{sub CE} = − 3 V. The transistor obtains a maximum collector current of − 65.5 μA (V{sub CE} = − 3 V) and + 56.2 μA (V{sub CE} = + 3 V) at 10,000 lx 5300 K white-light illumination. At 3300 lx, the electrical current gain reaches a value of + 100 (V{sub CE} = + 2 V) at I{sub B} = 10 nA. With a negative base current of I{sub B} = − 10 nA the electrical gain can be adjusted between 87 (V{sub CE} = + 2 V) and − 106 (V{sub CE} = -3 V), respectively. When no base charge is applied, the transistor is “off” for V{sub CE} > − 3 V. Reducing the base current increases the electrical current gain. Operating with a voltage V{sub CE} of just ± 2 V

  13. Classical molecular dynamics and quantum abs-initio studies on lithium-intercalation in interconnected hollow spherical nano-spheres of amorphous Silicon

    DEFF Research Database (Denmark)

    Bhowmik, Arghya; Malik, R.; Prakash, S.

    2016-01-01

    A high concentration of lithium, corresponding to charge capacity of ~4200 mAh/g, can be intercalated in silicon. Unfortunately, due to high intercalation strain leading to fracture and consequent poor cyclability, silicon cannot be used as anode in lithium ion batteries. But recently...

  14. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.

    Science.gov (United States)

    Zhao, C; Vassiljev, N; Konstantinidis, A C; Speller, R D; Kanicki, J

    2017-03-07

    High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g.  ±30°) improves the low spatial frequency (below 5 mm -1 ) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.

  15. Amorphous nanophotonics

    CERN Document Server

    Scharf, Toralf

    2013-01-01

    This book represents the first comprehensive overview over amorphous nano-optical and nano-photonic systems. Nanophotonics is a burgeoning branch of optics that enables many applications by steering the mould of light on length scales smaller than the wavelength with devoted nanostructures. Amorphous nanophotonics exploits self-organization mechanisms based on bottom-up approaches to fabricate nanooptical systems. The resulting structures presented in the book are characterized by a deterministic unit cell with tailored geometries; but their spatial arrangement is not controlled. Instead of periodic, the structures appear either amorphous or random. The aim of this book is to discuss all aspects related to observable effects in amorphous nanophotonic material and aspects related to their design, fabrication, characterization and integration into applications. The book has an interdisciplinary nature with contributions from scientists in physics, chemistry and materials sciences and sheds light on the topic fr...

  16. Silicon coupled-resonator optical-waveguide-based biosensors using light-scattering pattern recognition with pixelized mode-field-intensity distributions.

    Science.gov (United States)

    Wang, Jiawei; Yao, Zhanshi; Lei, Ting; Poon, Andrew W

    2014-12-18

    Chip-scale, optical microcavity-based biosensors typically employ an ultra-high-quality microcavity and require a precision wavelength-tunable laser for exciting the cavity resonance. For point-of-care applications, however, such a system based on measurements in the spectral domain is prone to equipment noise and not portable. An alternative microcavity-based biosensor that enables a high sensitivity in an equipment-noise-tolerant and potentially portable system is desirable. Here, we demonstrate the proof-of-concept of such a biosensor using a coupled-resonator optical-waveguide (CROW) on a silicon-on-insulator chip. The sensing scheme is based on measurements in the spatial domain, and only requires exciting the CROW at a fixed wavelength and imaging the out-of-plane elastic light-scattering intensity patterns of the CROW. Based on correlating the light-scattering intensity pattern at a probe wavelength with the light-scattering intensity patterns at the CROW eigenstates, we devise a pattern-recognition algorithm that enables the extraction of a refractive index change, Δn, applied upon the CROW upper-cladding from a calibrated set of correlation coefficients. Our experiments using an 8-microring CROW covered by NaCl solutions of different concentrations reveal a Δn of ~1.5 × 10(-4) refractive index unit (RIU) and a sensitivity of ~752 RIU(-1), with a noise-equivalent detection limit of ~6 × 10(-6) RIU.

  17. Aromatic structure degradation of single layer graphene on an amorphous silicon substrate in the presence of water, hydrogen and Extreme Ultraviolet light

    NARCIS (Netherlands)

    Mund, Baibhav Kumar; Sturm, J.M.; Lee, Christopher James; Bijkerk, Frederik

    2018-01-01

    In this paper we study the reaction of water and graphene under Extreme Ultraviolet (EUV) irradiation and in the presence of hydrogen. In this work, single layer graphene (SLG) on amorphous Si as an underlying substrate was dosed with water (0.75 ML) and exposed to EUV (λ = 13.5 nm, 92 eV) with

  18. Studies of flat-plate solar air collectors with absorber plates made of amorphous silicon photovoltaic modules; Amorphous taiyo denchi module wo shunetsuban to shita heibangata kukishiki shunetsuki no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Ito, S.; Miura, N. [Kanagawa Institute of Technology, Kanagawa (Japan)

    1996-10-27

    A light/heat hybrid air type heat collector has been developed in which heat is collected by solar cell panels. In Type 1 heat collector provided with a glass cover, two modules are connected in series and placed under a glass cover to serve as a heat collecting plate, each module built of a steel plate and two thin-film amorphous solar cells bonded to the steel plate. Air runs under the heat collecting plate. Type 2 heat collector is a Type 1 heat collector minus the glass cover. Air is taken in by a fan, runs in a vinyl chloride tube, and then through the heat collector where it is heated by the sun, and goes out at the exit. Heat collecting performance was subjected to theoretical analysis. This heat collector approximated in point of heat collection a model using a board painted black, which means that the new type functions effectively as an air-type heat collector. Operating as a photovoltaic power generator, the covered type generated approximately 20% less than the uncovered type under 800W/m{sup 2} insolation conditions. Type 1 has been in service for five months, and Type 2 for 2 months. At present, both are free of troubles such as deformation and the amorphous solar cell modules have deteriorated but a little. 4 refs., 9 figs.

  19. Research and development of photovoltaic power system. Study of carrier dynamics in a-Si from optical and optoelectronic properties; Taiyoko hatsuden system no kenky kaihatsu. Amorphous silicon no koden tokusei to sono carrier dynamics no kogakuteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Hamakawa, K. [Osaka University, Osaka (Japan). Faculty of Engineering Science

    1994-12-01

    This paper reports the result obtained during fiscal 1994 on research on an optical study of optoelectronic properties of amorphous silicon and its carrier dynamics. Studies have been performed on elucidation of the optoelectronic conversion mechanism in an a-Si film p-i-n junction system and the relationship of the mechanism with the optoelectronic properties. In the studies, optically induced defect level distribution was evaluated by using the modulated optical current spectroscopy, and confirmation was made on model forecast and qualitative agreement, such as large increase in neutral defect levels in association with beam irradiation. In research on elucidation of a film forming mechanism for a-Si based alloys, and material property control, a high-sensitivity reflective infrared spectroscopy was used to observe mechanisms such as treatments and processes given in device fabrication. In research on optical and optoelectronic properties of an s-Si alloy thin film by using the modulated spectroscopy, a new evaluation technology dealing with amorphous semiconductors was developed. The technology separately evaluates carrier migration factors of electrons and holes by combining polarization angle dependence of electro-absorption signals with hole migration measurements. 4 figs.

  20. Thermal decomposition of silane to form hydrogenated amorphous Si film

    Science.gov (United States)

    Strongin, Myron; Ghosh, Arup K.; Wiesmann, Harold J.; Rock, Edward B.; Lutz, III, Harry A.

    1980-01-01

    This invention relates to hydrogenated amorphous silicon produced by thermally decomposing silano (SiH.sub.4) or other gases comprising H and Si, at elevated temperatures of about 1700.degree.-2300.degree. C., and preferably in a vacuum of about 10.sup.-8 to 10.sup.-4 torr, to form a gaseous mixture of atomic hydrogen and atomic silicon, and depositing said gaseous mixture onto a substrate outside said source of thermal decomposition to form hydrogenated amorphous silicon.

  1. Thermal decomposition of silane to form hydrogenated amorphous Si

    Science.gov (United States)

    Strongin, M.; Ghosh, A.K.; Wiesmann, H.J.; Rock, E.B.; Lutz, H.A. III

    Hydrogenated amorphous silicon is produced by thermally decomposing silane (SiH/sub 4/) or other gases comprising H and Si, at elevated temperatures of about 1700 to 2300/sup 0/C, in a vacuum of about 10/sup -8/ to 10/sup -4/ torr. A gaseous mixture is formed of atomic hydrogen and atomic silicon. The gaseous mixture is deposited onto a substrate to form hydrogenated amorphous silicon.

  2. Spark protection layers for CMOS pixel anode chips in MPGDs

    NARCIS (Netherlands)

    Bilevych, Y.; Bilevych, Y.; Blanco Carballo, V.M.; Chefdeville, M.A.; Colas, P.; Delagnes, E.; Fransen, M.; van der Graaff, H.; Koppert, W.J.C.; Melai, J.; Salm, Cora; Schmitz, Jurriaan; Timmermans, J.; Timmermans, J.; Wyrsch, N.

    2011-01-01

    In this work we have investigated the functioning of high resistivity amorphous silicon and silicon-rich nitride layers as a protection against discharges in Micro-Patterned Gaseous Detectors (MPGDs).When the anode is protected by a high resistivity layer, discharge signals are limited in charge. A

  3. Effect of surface irradiation during the photo-CVD deposition of a-Si:H thin films. Hikari CVD ho ni yoru amorphous silicon sakuseiji no kiban hikari reiki koka

    Energy Technology Data Exchange (ETDEWEB)

    Tasaka, K.; Doering, H.; Hashimoto, K.; Fujishima, A. (The University of Tokyo, Tokyo (Japan))

    1990-12-06

    This paper shows the impact of the irradiation from an additional light source during the deposition of hydrogenated amorphous silicon by photo-CVD deposition. Using a mercury sensitized photo-CVD process from Disilan (Si {sub 2} H {sub 6}) and hydrogen, silicon was deposited. A 40W low pressure mercury lamp was applied as the light source. A portion of the substrate was in addition irradiated using an Xg-He lamp through a thermal filter. Irradiation of the substrate using only Xg-He lamp produced no deposition, since this light has a wavelength which is too long to produce the SiH {sub 3}-radicals needed for Si deposition. The additional Xg-He light source was discovered to cause an increased thickness of deposited a-Si:H film and a transmission of the band structure. The reasons of these are considered that the influence of irradiation is not limited to film thickness, but that irradiation also impacts the composition of the a-Si:H film so as to cause a reduction in the hydrogen content. 10 figs., 1 tab.

  4. A novel method for patient exit and entrance dose prediction based on water equivalent path length measured with an amorphous silicon electronic portal imaging device

    International Nuclear Information System (INIS)

    Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex

    2010-01-01

    In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.

  5. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    On the table, under the scrutiny of some collaboration members, an ISPA tube (upper-left of the table) with some of its application components is shown: they consist of the CERN-developed anode chip, special windows for gamma and x-ray detection, scintillating crystal and fibre arrays for imaging and tracking of ionizing particles.

  6. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    Application components of ISPA tubes are shown: the CERN-developed anode chip, special windows for gamma and x-ray detection, scintillating crystal and fibre arrays for imaging and tracking of ionizing particles.

  7. Operational Experience with the CMS Pixel Detector

    CERN Document Server

    INSPIRE-00205212

    2015-05-15

    In the first LHC running period the CMS-pixel detector had to face various operational challenges and had to adapt to the rapidly changing beam conditions. In order to maximize the physics potential and the quality of the data, online and offline calibrations were performed on a regular basis. The detector performed excellently with an average hit efficiency above 99\\% for all layers and disks. In this contribution the operational challenges of the silicon pixel detector in the first LHC run and the current long shutdown are summarized and the expectations for 2015 are discussed.

  8. Technology development for SOI monolithic pixel detectors

    International Nuclear Information System (INIS)

    Marczewski, J.; Domanski, K.; Grabiec, P.; Grodner, M.; Jaroszewicz, B.; Kociubinski, A.; Kucharski, K.; Tomaszewski, D.; Caccia, M.; Kucewicz, W.; Niemiec, H.

    2006-01-01

    A monolithic detector of ionizing radiation has been manufactured using silicon on insulator (SOI) wafers with a high-resistivity substrate. In our paper the integration of a standard 3 μm CMOS technology, originally designed for bulk devices, with fabrication of pixels in the bottom wafer of a SOI substrate is described. Both technological sequences have been merged minimizing thermal budget and providing suitable properties of all the technological layers. The achieved performance proves that fully depleted monolithic active pixel matrix might be a viable option for a wide spectrum of future applications

  9. Commissioning of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Golling, Tobias

    2008-01-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of the ATLAS pixel system are presented

  10. Commissioning the CMS pixel detector with Cosmic Rays

    CERN Document Server

    Heyburn, Bernadette

    2009-01-01

    The Compact Muon Solenoid (CMS) is one of two general purpose experiments at the Large Hadron Collider. The CMS experiment prides itself on an ambitious, all silicon based, tracking system. After almost 20 years of design and construction the CMS tracker detector has been installed and commissioned. The tracker detector consists of ten layers of silicon microstrip detectors while three layers of pixel detector modules are situated closest to the interaction point. The pixel detector consists of 66 million pixels of 100mm 150mm size, and is designed to use the shape of the actual charge distribution of charged particles to gain hit resolutions down to 12mm. This paper will focus on commissioning activities in the CMS pixel detector. Results from cosmic ray studies will be presented, in addition to results obtained from the integration of the pixel detector within the CMS detector and various calibration and alignment analyses.

  11. SOI Pixel Sensor for Gamma-Ray Imaging

    OpenAIRE

    Shimazoe, Kenji; Atiqah, Fairuz; Yoshihara, Yuri; Koyama, Akihiko; Takahashi, Hiroyuki; Orita, Tadashi; Kamada, Kei; Takeda, Ayaki; Tsuru, Takeshi; Arai, Yasuo

    2015-01-01

    SOI (Silicon-On-Insulator) pixel sensor is promising technology for developing the high position resolution detector by integrating the small pixels and circuits in the monolithic way. The event driven (trigger mode) SOI based pixel sensor has also been developed for the application of X-ray astronomy with the purpose of reducing the noise using anti-coincidence event. This trigger mode SOI pixel sensor working with in the rate of kilo Hz is also a promising scatter detector for advanced Comp...

  12. PixelLearn

    Science.gov (United States)

    Mazzoni, Dominic; Wagstaff, Kiri; Bornstein, Benjamin; Tang, Nghia; Roden, Joseph

    2006-01-01

    PixelLearn is an integrated user-interface computer program for classifying pixels in scientific images. Heretofore, training a machine-learning algorithm to classify pixels in images has been tedious and difficult. PixelLearn provides a graphical user interface that makes it faster and more intuitive, leading to more interactive exploration of image data sets. PixelLearn also provides image-enhancement controls to make it easier to see subtle details in images. PixelLearn opens images or sets of images in a variety of common scientific file formats and enables the user to interact with several supervised or unsupervised machine-learning pixel-classifying algorithms while the user continues to browse through the images. The machinelearning algorithms in PixelLearn use advanced clustering and classification methods that enable accuracy much higher than is achievable by most other software previously available for this purpose. PixelLearn is written in portable C++ and runs natively on computers running Linux, Windows, or Mac OS X.

  13. Role of SiNx Barrier Layer on the Performances of Polyimide Ga2O3-doped ZnO p-i-n Hydrogenated Amorphous Silicon Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Fang-Hsing Wang

    2014-02-01

    Full Text Available In this study, silicon nitride (SiNx thin films were deposited on polyimide (PI substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD system. The gallium-doped zinc oxide (GZO thin films were deposited on PI and SiNx/PI substrates at room temperature (RT, 100 and 200 °C by radio frequency (RF magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10−3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH4 = 20 sccm and NH3 = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~1000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells’ properties were also investigated. We had found that substrates to get the optimally solar cells’ efficiency were 200 °C-deposited GZO-SiNx/PI.

  14. Upgrade of ATLAS ITk Pixel Detector

    CERN Document Server

    Huegging, Fabian; The ATLAS collaboration

    2017-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenges to the ATLAS tracker. The current inner detector will be replaced with an entirely-silicon inner tracker (ITk) which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation levels are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors and low mass global and local support structures. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the ITk ATLAS Pixel detector developments as well as different layout options will be reviewed.

  15. Active Pixel Sensors: Are CCD's Dinosaurs?

    Science.gov (United States)

    Fossum, Eric R.

    1993-01-01

    Charge-coupled devices (CCD's) are presently the technology of choice for most imaging applications. In the 23 years since their invention in 1970, they have evolved to a sophisticated level of performance. However, as with all technologies, we can be certain that they will be supplanted someday. In this paper, the Active Pixel Sensor (APS) technology is explored as a possible successor to the CCD. An active pixel is defined as a detector array technology that has at least one active transistor within the pixel unit cell. The APS eliminates the need for nearly perfect charge transfer -- the Achilles' heel of CCDs. This perfect charge transfer makes CCD's radiation 'soft,' difficult to use under low light conditions, difficult to manufacture in large array sizes, difficult to integrate with on-chip electronics, difficult to use at low temperatures, difficult to use at high frame rates, and difficult to manufacture in non-silicon materials that extend wavelength response.

  16. Irradiation and beam tests qualification for ATLAS IBL Pixel Modules

    CERN Document Server

    Rubinskiy, I

    2013-01-01

    The upgrade for the ATLAS detector will have different steps towards HL-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (foreseen for 2013–2014). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing Pixel Detector and a new (smaller radius) beam-pipe at a radius of 33 mm. The IBL will require the development of several new technologies to cope with the increase in the radiation damage and the pixel occupancy and also to improve the physics performance, which will be achieved by reduction of the pixel size and of the material budget. Two different promising silicon sensor technologies (Planar n-in-n and 3D) are currently under investigation for the Pixel Detector. An overview of the sensor technologies' qualification with particular emphasis on irradiation and beam tests is presented.

  17. Irradiation and beam tests qualification for ATLAS IBL Pixel Modules

    CERN Document Server

    Rubinskiy, Igor

    2013-01-01

    The upgrade for the ATLAS detector will have different steps towards HL-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (foreseen for 2013-14). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of 33 mm. The IBL will require the development of several new technologies to cope with the increase of the radiation damage and the pixel occupancy and also to improve the physics performance, which will be achieved by reduction of the pixel size and of the material budget. Two different promising silicon sensor technologies (Planar n-in-n and 3D) are currently under investigation for the pi