WorldWideScience

Sample records for amorphous powder feedstock

  1. Suspension plasma sprayed composite coating using amorphous powder feedstock

    International Nuclear Information System (INIS)

    Chen Dianying; Jordan, Eric H.; Gell, Maurice

    2009-01-01

    Al 2 O 3 -ZrO 2 composite coatings were deposited by the suspension plasma spray process using molecularly mixed amorphous powders. X-ray diffraction (XRD) analysis shows that the as-sprayed coating is composed of α-Al 2 O 3 and tetragonal ZrO 2 phases with grain sizes of 26 nm and 18 nm, respectively. The as-sprayed coating has 93% density with a hardness of 9.9 GPa. Heat treatment of the as-sprayed coating reveals that the Al 2 O 3 and ZrO 2 phases are homogeneously distributed in the composite coating

  2. Computer Vision and Machine Learning for Autonomous Characterization of AM Powder Feedstocks

    Science.gov (United States)

    DeCost, Brian L.; Jain, Harshvardhan; Rollett, Anthony D.; Holm, Elizabeth A.

    2017-03-01

    By applying computer vision and machine learning methods, we develop a system to characterize powder feedstock materials for metal additive manufacturing (AM). Feature detection and description algorithms are applied to create a microstructural scale image representation that can be used to cluster, compare, and analyze powder micrographs. When applied to eight commercial feedstock powders, the system classifies powder images into the correct material systems with greater than 95% accuracy. The system also identifies both representative and atypical powder images. These results suggest the possibility of measuring variations in powders as a function of processing history, relating microstructural features of powders to properties relevant to their performance in AM processes, and defining objective material standards based on visual images. A significant advantage of the computer vision approach is that it is autonomous, objective, and repeatable.

  3. Synthesis and densification of Cu-coated Ni-based amorphous composite powders

    International Nuclear Information System (INIS)

    Kim, Yong-Jin; Kim, Byoung-Kee; Kim, Jin-Chun

    2007-01-01

    Spherical Ni 57 Zr 20 Ti 16 Si 2 Sn 3 (numbers indicate at.%) amorphous powders were produced by the gas atomization process, and ductile Cu phase was coated on the Ni-based amorphous powders by the spray drying process in order to increase the ductility of the consolidated amorphous alloy. The characteristics of the as-prepared powders and the consolidation behaviors of Cu-coated Ni-based amorphous composite powders were investigated. The atomization was conducted at 1450 deg. C under the vacuum of 10 -2 mbar. The Ni-based amorphous powders and Cu nitrate solution were mixed and sprayed at temperature of 130 deg. C. After spray drying and reduction treatment, the sub-micron size Cu powders were coated successfully on the surface of the atomized Ni amorphous powders. The spark plasma sintering process was applied to study the densification behavior of the Cu-coated composite powders. Thickness of the Cu layer was less than 1 μm. The compacts obtained by SPS showed high relative density of over 98% and its hardness was over 800 Hv

  4. Molding Properties of Inconel 718 Feedstocks Used in Low-Pressure Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Fouad Fareh

    2016-01-01

    Full Text Available The impact of binders and temperature on the rheological properties of feedstocks used in low-pressure powder injection molding was investigated. Experiments were conducted on different feedstock formulations obtained by mixing Inconel 718 powder with wax-based binder systems. The shear rate sensitivity index and the activation energy were used to study the degree of dependence of shear rate and temperature on the viscosity of the feedstocks. The injection performance of feedstocks was then evaluated using an analytical moldability model. The results indicated that the viscosity profiles of feedstocks depend significantly on the binder constituents, and the secondary binder constituents play an important role in the rheological behavior (pseudoplastic or near-Newtonian exhibited by the feedstock formulations. Viscosity values as low as 0.06 to 2.9 Pa·s were measured at high shear rates and high temperatures. The results indicate that a feedstock containing a surfactant agent exhibits the best moldability characteristics.

  5. Compaction of amorphous iron–boron powder

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Mørup, Steen; Koch, Christian

    1993-01-01

    Large scale practical use of bulk amorphous alloys requires the capability of molding the material to a desired design, for instance by compaction of an amorphous powder. This is a difficult task because the sintering temperature is limited by the crystallization temperature of the alloy.1 Here we......, should facilitate a compaction. The passivation layer, however, impedes a compaction. Isostatic pressing at 540 K at a pressure of 200 MPa clearly illustrated this; pellets pressed from passivated powder were much more brittle than pellets pressed from unpassivated powder. The density of the pellets...... was very low ([approximately-equal-to]25% of the density of bulk FeB). We have designed a die for uniaxial pressing in which the compaction can be performed without exposing the powder to air and have obtained densities larger than 60% of that of bulk FeB. We have reported studies of the dependence...

  6. Crystallization kinetics and magnetic properties of FeSiCr amorphous alloy powder cores

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hu-ping [School of Logistics Engineering, Wuhan University of Technology, Wuhan 430063 (China); Wang, Ru-wu, E-mail: ruwuwang@hotmail.com [National Engineering Research Center For Silicon Steel, Wuhan 430080 (China); College of Materials Science and Metallurgical Engineering, Wuhan University of Science and Technology, Wuhan 430081 (China); Wei, Ding [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Zeng, Chun [National Engineering Research Center For Silicon Steel, Wuhan 430080 (China)

    2015-07-01

    The crystallization kinetics of FeSiCr amorphous alloy, characterized by the crystallization activation energy, Avrami exponent and frequency factor, was studied by non-isothermal differential scanning calorimetric (DSC) measurements. The crystallization activation energy and frequency factor of amorphous alloy calculated from Augis–Bennett model were 476 kJ/mol and 5.5×10{sup 18} s{sup −1}, respectively. The Avrami exponent n was calculated to be 2.2 from the Johnson–Mehl–Avrami (JMA) equation. Toroid-shaped Fe-base amorphous powder cores were prepared from the commercial FeSiCr amorphous alloy powder and subsequent cold pressing using binder and insulation. The characteristics of FeSiCr amorphous alloy powder and the effects of compaction pressure and insulation content on the magnetic properties, i.e., effective permeability μ{sub e}, quality factor Q and DC-bias properties of FeSiCr amorphous alloy powder cores, were investigated. The FeSiCr amorphous alloy powder cores exhibit a high value of quality factor and a stable permeability in the frequency range up to 1 MHz, showing superior DC-bias properties with a “percent permeability” of more than 82% at H=100 Oe. - Highlights: • The crystallization kinetics of FeSiCr amorphous alloy was investigated. • The FeSiCr powder cores exhibit a high value of Q and a stable permeability. • The FeSiCr powder cores exhibit superior DC-bias properties.

  7. Crystalline-to-amorphous phase transformation in mechanically alloyed Fe50W50 powders

    International Nuclear Information System (INIS)

    Sherif El-Eskandarany, M.S.; Sumiyama, K.; Suzuki, K.

    1997-01-01

    A mechanical alloying process via a ball milling technique has been applied for preparing amorphous Fe 50 W 50 alloy powders. The results have shown that during the first and second stages of milling (0 to 360 ks) W atoms emigrate to Fe lattices to form nanocrystalline b.c.c. Fe-W solid solution, with a grain size of about 7 nm in diameter. After 720 ks of the milling time, this solid solution was transformed to an amorphous Fe-W alloy coexisting with the residual fraction of the unprocessed W powders. During the last stage of milling (720 to 1,440 ks) all of this residual W powder reacts with the amorphous phase to form a homogeneous Fe 50 W 50 amorphous alloy. The crystallization temperature and the enthalpy change of crystallization of amorphous Fe 50 W 50 powders milled for 1,440 ks were measured to be 860 K and -9kJ/mol, respectively. The amorphous Fe 50 W 50 powder produced is almost paramagnetic at room temperature. The powder comprises homogeneous and smooth spheres with an average size of about 0.5 microm in diameter

  8. Effect of mixing on the rheology and particle characteristics of tungsten-based powder injection molding feedstock

    International Nuclear Information System (INIS)

    Suri, Pavan; Atre, Sundar V.; German, Randall M.; Souza, Jupiter P. de

    2003-01-01

    This study investigates the effect of mixing technique and particle characteristics on the rheology and agglomerate dispersion of tungsten-based powder injection molding (PIM) feedstock. Experiments were conducted with as-received (agglomerated) and rod-milled (deagglomerated) tungsten powder mixed in a paraffin wax-polypropylene binder. Increase in the mixing shear rate decreased the agglomerate size of the agglomerated tungsten powder, decreased the viscosity, and improved the flow stability of the feedstock, interpreted as increased homogeneity of the feedstock. Higher solids volume fraction, lower mixing torques, and improved homogeneity were observed with deagglomerated tungsten powder, emphasizing the importance of particle characteristics and mixing procedures in the PIM process. Hydrodynamic stress due to mixing and the cohesive strength of the tungsten agglomerate were calculated to understand the mechanism of deagglomeration and quantify the effect of mixing. It was concluded that deagglomeration occurs due to a combination of rupture and erosion with the local hydrodynamic stresses exceeding the cohesive strength of the agglomerate

  9. An Analysis of Rheological Properties of Inconel 625 Superalloy Feedstocks Formulated with Backbone Binder Polypropylene System for Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Gökmen U.

    2017-12-01

    Full Text Available Binder formula is one of the most significant factors which has a considerable influence on powder injection molding (PIM processes. In the study, rheological behaviors and properties of different binder systems containing PIM feedstocks, Inconel 625 powder commonly used in space industry, were investigated. The feedstocks were prepared 59%-69% (volume powder loading ratios with three diversified binder systems by use of Polypropylene as backbone binder. The average particle size of the Inconel 625 powder used was 12.86 microns. Components used in the binder were mixed for 30 minutes as dry in three dimensional mixing to prepare binder systems. Rheological features of the feedstock were characterized by using a capillary rheometer. Viscosities of the feedstocks were calculated within the range of 37.996-1900 Pa.s based on the shear rate, shear stress, binder formula and temperature. “n” parameters for PIM feedstocks were determined to be less than 1. Influences of temperature on the viscosities of the feedstocks were also studied and “Ea” under various shear stresses were determined within the range of 24.41-70.89 kJ/mol.

  10. Synthesis and Characterization of Oxide Feedstock Powders for the Fuel Cycle R and D Program

    International Nuclear Information System (INIS)

    Voit, Stewart L.; Vedder, Raymond James; Johnson, Jared A.

    2010-01-01

    Nuclear fuel feedstock properties, such as physical, chemical, and isotopic characteristics, have a significant impact on the fuel fabrication process and, by extension, the in-reactor fuel performance. This has been demonstrated through studies with UO 2 spanning greater than 50 years. The Fuel Cycle R and D Program with The Department of Energy Office of Nuclear Energy has initiated an effort to develop a better understanding of the relationships between oxide feedstock, fresh fuel properties, and in-reactor fuel performance for advanced mixed oxide compositions. Powder conditioning studies to enable the use of less than ideal powders for ceramic fuel pellet processing are ongoing at Los Alamos National Laboratory (LANL) and an understanding of methods to increase the green density and homogeneity of pressed pellets has been gained for certain powders. Furthermore, Oak Ridge National Laboratory (ORNL) is developing methods for the co-conversion of mixed oxides along with techniques to analyze the degree of mixing. Experience with the fabrication of fuel pellets using co-synthesized multi-constituent materials is limited. In instances where atomically mixed solid solutions of two or more species are needed, traditional ceramic processing methods have been employed. Solution-based processes may be considered viable synthesis options, including co-precipitation (AUPuC), direct precipitation, direct-conversion (Modified Direct Denitration or MDD) and internal/external gelation (sol-gel). Each of these techniques has various advantages and disadvantages. The Fiscal Year 2010 feedstock development work at ORNL focused on the synthesis and characterization of one batch of UO x and one batch of U 80 Ce 20 O x . Oxide material synthesized at ORNL is being shipped to LANL for fuel fabrication process development studies. The feedstock preparation was performed using the MDD process which utilizes a rotary kiln to continuously thermally denitrate double salts of ammonium

  11. Fabrication of nuclear fuel by powder injection moulding: Study of the binders systems and the de-binding of feedstock containing actinide powder

    International Nuclear Information System (INIS)

    Bricout, J.

    2012-01-01

    Powder Injection Moulding (PIM) is identified as an innovative process for the nuclear fuel fabrication. Technological breakthrough compared to the current process of powder metallurgy, the impact of actinide powder's specificities on the different steps of PIM is performed. Alumina powders simulating actinide powder have been implemented with a reference binders system. Thermal and rheological studies show the injectability and the de-binding of feedstocks with adequate solid loading (≥50 %vol), thanks to the de-agglomeration during the mixing step, which allow to obtain net shape fuel pellet. Specific surface area of powders, acting as a key role in behaviour's feedstocks, has been integrated in analysis models of viscosity prediction according to the shear rate. Also conducted studies on uranium oxide powder show that the selected binders systems, which have a compatible rheological behaviour with PIM process, impact the de-agglomeration of powder and final microstructure of the fuel pellet, consistent with the results obtained on alumina powders. Independent behaviour of binders and uranium oxide powder, showing no adverse chemical reaction against the PIM process, show a residual mass of carbon of about 150 ppm after sintering. Binders system using polystyrene, resistant to radiolysis phenomena and loadable more than 50 %(vol) of actinide powder, shows the promising potential of PIM process for the fuel fabrication. (author) [fr

  12. Polyolefin backbone substitution in binders for low temperature powder injection moulding feedstocks.

    Science.gov (United States)

    Hausnerova, Berenika; Kuritka, Ivo; Bleyan, Davit

    2014-02-27

    This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al₂O₃ feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions containing polyethylene glycol as the initial opening agent and governing the proper mechanism of the degradation process. Moreover, the replacement of synthetic polymer by the natural wax contributes to an increase of environmental sustainability of modern industrial technologies.

  13. Paramagnetic defects in hydrogenated amorphous carbon powders

    International Nuclear Information System (INIS)

    Keeble, D J; Robb, K M; Smith, G M; Mkami, H El; Rodil, S E; Robertson, J

    2003-01-01

    Hydrogenated amorphous carbon materials typically contain high concentrations of paramagnetic defects, the density of which can be quantified by electron paramagnetic resonance (EPR). In this work EPR measurements near 9.5, 94, and 189 GHz have been performed on polymeric and diamond-like hydrogenated amorphous carbon (a-C:H) powder samples. A similar single resonance line was observed at all frequencies for the two forms of a-C:H studied. No contributions to the spectrum from centres with resolved anisotropic g-values as reported earlier were detected. An increase in linewidth with microwave frequency was observed. Possible contributions to this frequency dependence are discussed

  14. Polyolefin Backbone Substitution in Binders for Low Temperature Powder Injection Moulding Feedstocks

    Directory of Open Access Journals (Sweden)

    Berenika Hausnerova

    2014-02-01

    Full Text Available This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al2O3 feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions containing polyethylene glycol as the initial opening agent and governing the proper mechanism of the degradation process. Moreover, the replacement of synthetic polymer by the natural wax contributes to an increase of environmental sustainability of modern industrial technologies.

  15. Synthesis of Amorphous Powders of Ni-Si and Co-Si Alloys by Mechanical Alloying

    Science.gov (United States)

    Omuro, Keisuke; Miura, Harumatsu

    1991-05-01

    Amorphous powders of the Ni-Si and Co-Si alloys are synthesized by mechanical alloying (MA) from crystalline elemental powders using a high energy ball mill. The alloying and amorphization process is examined by X-ray diffraction, differential scanning calorimetry (DSC), and scanning electron microscopy. For the Ni-Si alloy, it is confirmed that the crystallization temperature of the MA powder, measured by DSC, is in good agreement with that of the powder sample prepared by mechanical grinding from the cast alloy ingot products of the same composition.

  16. Influence of binder system and temperature on rheological properties of water atomized 316L powder injection moulding feedstocks

    Directory of Open Access Journals (Sweden)

    Uğur GÖKMEN

    2016-02-01

    Full Text Available In order to obtain a proper powder injection molding the rheological behavior of feedstocks should be known. To determine the binder effect on the rheological behavior of 316L stainless steel powders feedstock two different feedstock were prepared. In the current experiments water atomized 316L stainless steel powders (-20 µm were used. Two types of binders, one of which is mainly paraffin wax can be dissolved in heptane and the other Polietilenglikol (PEG based and can be dissolved in water, were used. Polypropylene was used as binder and steric acid was used as lubricant for both binder systems as skeleton binder. Dry binder system were mixed for 30 min in a three dimensional Turbola. Capillary rheometer was used to characterize the rheological properties of feed stocks at 150-200 °C and a pressures of 0.165-2.069 MPa. Powder loading capacity of PEG and PW based feed stocks were found to be %55 and %61 respectively. The lowest viscosity of PEG and PW based feed stocks were found to be 304.707 Pa.s and 48.857 Pa.s respectively.Keywords: PIM, Binder, Rheological properties

  17. Mechanically Strain-Induced Modification of Selenium Powders in the Amorphization Process

    International Nuclear Information System (INIS)

    Fuse, Makoto; Shirakawa, Yoshiyuki; Shimosaka, Atsuko; Hidaka, Jusuke

    2003-01-01

    For the fabrication of particles designed in the nanoscale structure, or the nanostructural modification of particles using mechanical grinding process, selenium powders ground by a planetary ball mill at various rotational speeds have been investigated. Structural analyses, such as particle size distributions, crystallite sizes, lattice strains and nearest neighbour distances were performed using X-ray diffraction, scanning electron microscopy and dynamical light scattering.By grinding powder particles became spherical composites consisting of nanocrystalline and amorphous phase, and had a distribution with the average size of 2.7 μm. Integral intensities of diffraction peaks of annealed crystal selenium decreased with increasing grinding time, and these peaks broadened due to lattice strains and reducing crystallite size during the grinding. The ground powder at 200 rpm did not have the lattice strain and showed amorphization for the present grinding periods. It indicates that the amorphization of Se by grinding accompanies the lattice strain, and the lattice strain arises from a larger energy concerning intermolecular interaction. In this process, the impact energy is spent on thermal and structural changes according to energy accumulation in macroscopic (the particle size distribution) and microscopic (the crystallite size and the lattice strain) range

  18. Synthesis of nano-sized amorphous boron powders through active dilution self-propagating high-temperature synthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jilin [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Gu, Yunle [School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Li, Zili [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Wang, Weimin, E-mail: wangwm@hotmail.com [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Fu, Zhengyi [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2013-06-01

    Graphical abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed. Highlights: ► Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis method. ► The morphology, particle size and purity of the samples could be effectively controlled via changing the endothermic rate. ► The diluter KBH{sub 4} played an important role in active dilution synthesis of amorphous nano-sized boron powders. ► The active dilution method could be further popularized and become a common approach to prepare various inorganic materials. - Abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method at temperatures ranging from 700 °C to 850 °C in a SHS furnace using Mg, B{sub 2}O{sub 3} and KBH{sub 4} as raw materials. Samples were characterized by X-ray powder diffraction (XRD), Laser particle size analyzer, Fourier transform infrared spectra (FTIR), X-ray energy dispersive spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission TEM (HRTEM). The boron powders demonstrated an average particle size of 50 nm with a purity of 95.64 wt.%. The diluter KBH{sub 4} played an important role in the active dilution synthesis of amorphous nano-sized boron powders. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed.

  19. Synthesis of nano-sized amorphous boron powders through active dilution self-propagating high-temperature synthesis method

    International Nuclear Information System (INIS)

    Wang, Jilin; Gu, Yunle; Li, Zili; Wang, Weimin; Fu, Zhengyi

    2013-01-01

    Graphical abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed. Highlights: ► Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis method. ► The morphology, particle size and purity of the samples could be effectively controlled via changing the endothermic rate. ► The diluter KBH 4 played an important role in active dilution synthesis of amorphous nano-sized boron powders. ► The active dilution method could be further popularized and become a common approach to prepare various inorganic materials. - Abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method at temperatures ranging from 700 °C to 850 °C in a SHS furnace using Mg, B 2 O 3 and KBH 4 as raw materials. Samples were characterized by X-ray powder diffraction (XRD), Laser particle size analyzer, Fourier transform infrared spectra (FTIR), X-ray energy dispersive spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission TEM (HRTEM). The boron powders demonstrated an average particle size of 50 nm with a purity of 95.64 wt.%. The diluter KBH 4 played an important role in the active dilution synthesis of amorphous nano-sized boron powders. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed

  20. Relationship of Powder Feedstock Variability to Microstructure and Defects in Selective Laser Melted Alloy 718

    Science.gov (United States)

    Smith, T. M.; Kloesel, M. F.; Sudbrack, C. K.

    2017-01-01

    Powder-bed additive manufacturing processes use fine powders to build parts layer by layer. For selective laser melted (SLM) Alloy 718, the powders that are available off-the-shelf are in the 10-45 or 15-45 micron size range. A comprehensive investigation of sixteen powders from these typical ranges and two off-nominal-sized powders is underway to gain insight into the impact of feedstock on processing, durability and performance of 718 SLM space-flight hardware. This talk emphasizes an aspect of this work: the impact of powder variability on the microstructure and defects observed in the as-fabricated and full heated material, where lab-scale components were built using vendor recommended parameters. These typical powders exhibit variation in composition, percentage of fines, roughness, morphology and particle size distribution. How these differences relate to the melt-pool size, porosity, grain structure, precipitate distributions, and inclusion content will be presented and discussed in context of build quality and powder acceptance.

  1. Rheological properties of alumina injection feedstocks

    Directory of Open Access Journals (Sweden)

    Vivian Alexandra Krauss

    2005-06-01

    Full Text Available The rheological behavior of alumina molding feedstocks containing polyethylene glycol (PEG, polyvinylbutyral (PVB and stearic acid (SA and having different powder loads were analyzed using a capillary rheometer. Some of the feedstocks showed a pseudoplastic behavior of n < 0, which can lead to the appearance of weld lines on molded parts. Their viscosity also displayed a strong dependence on the shear rate. The slip phenomenon, which can cause an unsteady front flow, was also observed. The results indicate that the feedstock containing a lower powder load displayed the best rheological behavior. The 55 vol. % powder loaded feedstock presented the best rheological behavior, thus appearing to be more suitable than the formulation containing a vol. 59% powder load, which attained viscosities exceeding 10³ Pa.s at low shear rates, indicating its unsuitability for injection molding.

  2. Quantitative determination of amorphous content in ceramic materials using x-ray powder diffraction

    International Nuclear Information System (INIS)

    Kuchinski, M.A.; Hubbard, C.R.

    1988-01-01

    A quantitative technique which employs a modified method of additions approach to analyze for low amorphous content in crystalline matrices was developed and tested. Known amounts of amorphous material are added to the starting powder. The method uses the ratio of a measure of the intensity of the amorphous phase corrected for background to the background corrected intensity of a reference line from a crystalline phase. The amorphous spiking phase must be close in composition to the amorphous phase existing in the analyte. A critical step of the method is to correctly establish the background intensity. A completely crystalline material of similar scattering power was used to establish background intensity

  3. Roller compaction: Effect of morphology and amorphous content of lactose powder on product quality.

    Science.gov (United States)

    Omar, Chalak S; Dhenge, Ranjit M; Osborne, James D; Althaus, Tim O; Palzer, Stefan; Hounslow, Michael J; Salman, Agba D

    2015-12-30

    The effect of morphology and amorphous content, of three types of lactose, on the properties of ribbon produced using roller compaction was investigated. The three types of lactose powders were; anhydrous SuperTab21AN, α-lactose monohydrate 200 M, and spray dried lactose SuperTab11SD. The morphology of the primary particles was identified using scanning electron microscopy (SEM) and the powder amorphous content was quantified using NIR technique. SEM images showed that 21AN and SD are agglomerated type of lactose whereas the 200 M is a non-agglomerated type. During ribbon production, an online thermal imaging technique was used to monitor the surface temperature of the ribbon. It was found that the morphology and the amorphous content of lactose powders have significant effects on the roller compaction behaviour and on ribbon properties. The agglomerated types of lactose produced ribbon with higher surface temperature and tensile strength, larger fragment size, lower porosity and lesser fines percentages than the non-agglomerated type of lactose. The lactose powder with the highest amorphous content showed to result in a better binding ability between the primary particles. This type of lactose produced ribbons with the highest temperature and tensile strength, and the lowest porosity and amount of fines in the product. It also produced ribbon with more smooth surfaces in comparison to the other two types of lactose. It was noticed that there is a relationship between the surface temperature of the ribbon during production and the tensile strength of the ribbon; the higher the temperature of the ribbon during production the higher the tensile strength of the ribbon. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Kinetics and formation mechanism of amorphous Fe52Nb48 alloy powder fabricated by mechanical alloying

    International Nuclear Information System (INIS)

    El-Eskandarany, S.

    1999-01-01

    A single phase amorphous Fe 52 Nb 48 alloy has been synthesized through a solid state interdiffusion of pure polycrystalline Fe and Nb powders at room temperature, using a high-energy ball-milling technique. The mechanisms of metallic glass formation and competing crystallization processes in the mechanically deformed composite powders have been investigated by means of X-ray diffraction, Moessbauer spectroscopy, differential thermal analysis, scanning electron microscopy and transmission electron microscopy. The numerous intimate layered composite particles of the diffusion couples that formed during the first and intermediate stages of milling time (0-56 ks), are intermixed to form amorphous phase(s) upon heating to about 625 K by so-called thermally assisted solid state amorphization, TASSA. The amorphization heat of formation for binary system via the TASSA, ΔH a , was measured directly as a function of the milling time. Comparable with the TASSA, homogeneous amorphous alloys were fabricated directly without heating the composite multilayered particles upon milling these particles for longer milling time (86 ks-144 ks). The amorphization reaction here is attributed to the mechanical driven solid state amorphization. This single amorphous phase transforms into an order phase (μ phase) upon heating at 1088 K (crystallization temperature, T x ) with enthalpy change of crystallization, ΔH x , of -8.3 kJmol -1 . (orig.)

  5. Formation of nanocrystalline and amorphous phase of Al-Pb-Si-Sn-Cu powder during mechanical alloying

    International Nuclear Information System (INIS)

    Ran Guang; Zhou Jingen; Xi Shengqi; Li Pengliang

    2006-01-01

    Al-15%Pb-4%Si-1%Sn-1.5%Cu alloys (mass fraction, %) were prepared by mechanical alloying (MA). Phase transformation and microstructure characteristics of the alloy powders were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the nanocrystalline supersaturated solid solutions and amorphous phase in the powders are obtained during MA. The effect of ball milling is more evident to lead than to aluminum. During MA, the mixture powders are firstly fined, alloyed, nanocrystallized and then the nanocrystalline partly transforms to amorphous phase. A thermodynamic model is developed based on semi-experimental theory of Miedema to calculate the driving force for phase evolution. The thermodynamic analysis shows that there is no chemical driving force to form a crystalline solid solution from the elemental components. But for the amorphous phase, the Gibbs free energy is higher than 0 for the alloy with lead content in the ranges of 0-86.8 at.% and 98.4-100 at.% and lower than 0 in range of 86.8-98.4 at.%. For the Al-2.25 at.%Pb (Al-15%Pb, mass fraction, %), the driving force for formation of amorphization and nanocrystalline supersaturated solid solutions are provided not by the negative heat of mixing but by mechanical work

  6. Impact of Defects in Powder Feedstock Materials on Microstructure of 304L and 316L Stainless Steel Produced by Additive Manufacturing

    Science.gov (United States)

    Morrow, Benjamin M.; Lienert, Thomas J.; Knapp, Cameron M.; Sutton, Jacob O.; Brand, Michael J.; Pacheco, Robin M.; Livescu, Veronica; Carpenter, John S.; Gray, George T.

    2018-05-01

    Recent work in both 304L and 316L stainless steel produced by additive manufacturing (AM) has shown that in addition to the unique, characteristic microstructures formed during the process, a fine dispersion of sub-micron particles, with a chemistry different from either the powder feedstock or the expected final material, are evident in the final microstructure. Such fine-scale features can only be resolved using transmission electron microscopy (TEM) or similar techniques. The present work uses electron microscopy to study both the initial powder feedstock and microstructures in final AM parts. Special attention is paid to the chemistry and origin of these nanoscale particles in several different metal alloys, and their impact on the final build. Comparisons to traditional, wrought material will be made.

  7. The influence of structural changes on electrical and magnetic characteristics of amorphous powder of the nixmoy alloy

    Directory of Open Access Journals (Sweden)

    Ribić-Zelenović Lenka

    2006-01-01

    Full Text Available Nickel and molybdenum alloy powder was electrodeposited on a titanium cathode from a NiSO4⋅7H2O and (NH46 Mo7O24⋅4H2O ammonium solution. The desired chemical composition, structure, size and shape of particles in the powder samples were achieved by an appropriate choice of electrolysis parameters (current density, composition and temperature of the solution, cathode material and electrolysis duration. Metal coatings form in the current density range 15 mA cm-2powders form. The chemical composition of powder samples depends on the current density of electrodeposition. The molybdenum content in the powder increases with the increase of current density (in the low current density range, while in the higher current density range the molybdenum content in the alloy decreases with the increase of the current density of deposition. Smaller sized particles form at higher current density. X-ray analysis, differential scanning calorimetric and measurements of the temperature dependence of electric resistance and magnetic permeability of the powder samples were all used to establish a predominantly amorphous structure of the powder samples formed at the current density of j≥70mA cm-2. The crystalline particle content in the powder samples increases with the decrease of the current density of deposition. Powder heating causes structural changes. The process of thermal stabilization of nickel and molybdenum amorphous powders takes place in the temperature interval from 463K to 573K and causes a decrease in electrical resistance and increase in magnetic permeability. The crystallization temperature depends on the value of current density of powder electrodeposition. Powder formed at j=180 mA cm-2 begins to crystallize at 573K, while the powder deposited at j=50 mA cm-2 begins to crystallize at 673K. Crystallization of the powder causes a decrease in electric resistivity and magnetic

  8. An amorphous Si-O film tribo-induced by natural hydrosilicate powders on ferrous surface

    International Nuclear Information System (INIS)

    Zhang, Baosen; Xu, Binshi; Xu, Yi; Ba, Zhixin; Wang, Zhangzhong

    2013-01-01

    The tribological properties of surface-coated serpentine powders suspended in oil were evaluated using an Optimal SRV-IV oscillating friction and wear tester. The worn surface and the tribo-induced protective film were characterized by scanning electron microscope and focused ion beam (SEM/FIB) work station, energy dispersive spectroscopy (EDS) and transmission electron microscope (TEM). Results indicate that with 0.5 wt% addition of serpentine powders to oil, the friction coefficient and wear rate significantly decrease referenced to those of the base oil alone. An amorphous SiO x film with amorphous SiO x particles inserted has formed on the worn surface undergoing the interactions between serpentine particles and friction surfaces. The protective film with excellent lubricating ability and mechanical properties is responsible for the reduced friction and wear.

  9. The crystallization of amorphous Fe2MnGe powder prepared by ball milling

    International Nuclear Information System (INIS)

    Zhang, L.; Brueck, E.; Tegus, O.; Buschow, K.H.J.; Boer, F.R. de

    2003-01-01

    We synthesized for the first time the intermetallic compound Fe 2 MnGe. To avoid preferential evaporation of volatile components we exploited mechanical alloying. Amorphous Fe 2 MnGe alloy powder was prepared by planetary ball milling elemental starting materials. The amorphous-to-crystalline transition was studied by means of differential scanning calorimetry (DSC) and X-ray diffraction (XRD). A cubic D0 3 phase is formed at low temperature and transforms to a high-temperature hexagonal D0 19 phase. The apparent activation energy was determined by means of the Kissinger method

  10. Research on Zr50Al15-xNi10Cu25Yx amorphous alloys prepared by mechanical alloying with commercial pure element powders

    International Nuclear Information System (INIS)

    Long Woyun; Ouyang Xueqiong; Luo Zhiwei; Li Jing; Lu Anxian

    2011-01-01

    Amorphous Zr 50 Al 15-x Ni 10 Cu 25 Y x alloy powders were fabricated by mechanical alloying at low vacuum with commercial pure element powders. The effects on glass forming ability of Al partial substituted by Y in Zr 50 Al 15 Ni 10 Cu 25 and thermal stability of Si 3 N 4 powders addition were investigated. The as-milled powders were characterized by X-ray diffraction, scanning electron microscopy and differential scanning calorimeter. The results show that partial substitution of Al can improve the glass forming ability of Zr 50 Al 15 Ni 10 Cu 25 alloy. Minor Si 3 N 4 additions raise the crystallization activation energy of the amorphous phase and thus improve its thermal stability. -- Research Highlights: → ZrAlNiCu amorphous alloys can be synthesized by MA in low cost. → Appropriate amount of Al substituted by Y in ZrAlNiCu alloy can improve its glass forming ability. → A second phase particle addition helps to improve the thermal stability of the amorphous matrix.

  11. Influence of Feedstock Powder Modification by Heat Treatments on the Properties of APS-Sprayed Al2O3-40% TiO2 Coatings

    Science.gov (United States)

    Berger, Lutz-Michael; Sempf, Kerstin; Sohn, Yoo Jung; Vaßen, Robert

    2018-04-01

    The formation and decomposition of aluminum titanate (Al2TiO5, tialite) in feedstock powders and coatings of the binary Al2O3-TiO2 system are so far poorly understood. A commercial fused and crushed Al2O3-40%TiO2 powder was selected as the feedstock for the experimental series presented in this paper, as the composition is close to that of Al2TiO5. Part of that powder was heat-treated in air at 1150 and 1500 °C in order to modify the phase composition, while not influencing the particle size distribution and processability. The powders were analyzed by thermal analysis, XRD and FESEM including EDS of metallographically prepared cross sections. Only a maximum content of about 45 wt.% Al2TiO5 was possible to obtain with the heat treatment at 1500 °C due to inhomogeneous distribution of Al and Ti in the original powder. Coatings were prepared by plasma spraying using a TriplexPro-210 (Oerlikon Metco) with Ar-H2 and Ar-He plasma gas mixtures at plasma power levels of 41 and 48 kW. Coatings were studied by XRD, SEM including EDS linescans of metallographically prepared cross sections, and microhardness HV1. With the exception of the powder heat-treated at 1500 °C an Al2TiO5-Ti3O5 (tialite-anosovite) solid solution Al2- x Ti1+ x O5 instead of Al2TiO5 existed in the initial powder and the coatings.

  12. Prospects for using multi-walled carbon nanotubes formed from renewable feedstock in hydrogen energy

    International Nuclear Information System (INIS)

    Onishchenko, D. V.

    2013-01-01

    Mechanoactivation of amorphous carbon synthesized from renewable feedstock promotes formation of multi-walled carbon nanotubes, and the best results were obtained using the feedstock of sphagnum moss. It is shown that the carbon nanotubes formed from different plant feedstock have a high sorption capacity with respect to hydrogen. (author)

  13. Preparation and Characterization of Amorphous B Powders by Salt-Assisted SHS Technique

    Directory of Open Access Journals (Sweden)

    Yujing Ou

    2015-01-01

    Full Text Available To use the salt-assisted SHS technique to prepare B powders was proposed. Calculation results found that the adiabatic combustion temperature of the B2O3-Mg reaction system was 2604 K, higher than the 1800 K criterion of self-propagating temperature, which meant that the SHS application was feasible. When 0, 10%, 20%, 30%, 40%, 50%, and 60% NaCl content were added, the adiabatic combustion temperature of the reaction system decreased linearly. When 60% NaCl content was added, the adiabatic combustion temperature was 1799 K (lower than 1800 K, unsuitable for self-propagating reaction, which was consistent with the experimental results. Through scanning electron microscope (SEM, energy disperse spectroscopy (EDS, and particle size analysis, the influence of different addition of NaCl on the morphology, average particle size, and purity of prepared B powder was investigated. EDS and chemical analysis indicated that the purity of prepared B powder was over 96% and the average particle size was within the range of 0.4~0.8 μm when the content of NaCl was 50%. The analysis of X-ray diffraction (XRD and selected area electron diffraction (SAED proved that the prepared B powder was amorphous.

  14. Amorphous metal composites

    International Nuclear Information System (INIS)

    Byrne, M.A.; Lupinski, J.H.

    1984-01-01

    This patent discloses an improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite

  15. Wear Resistant Amorphous and Nanocomposite Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Racek, O

    2008-03-26

    Glass forming materials (critical cooling rate <10{sup 4}K.s{sup -1}) are promising for their high corrosion and wear resistance. During rapid cooling, the materials form an amorphous structure that transforms to nanocrystalline during a process of devitrification. High hardness (HV 1690) can be achieved through a controlled crystallization. Thermal spray process has been used to apply coatings, which preserves the amorphous/nanocomposite structure due to a high cooling rate of the feedstock particles during the impact on a substrate. Wear properties have been studied with respect to process conditions and feedstock material properties. Application specific properties such as sliding wear resistance have been correlated with laboratory tests based on instrumented indentation and scratch tests.

  16. The nature of the photoluminescence in amorphized PZT

    International Nuclear Information System (INIS)

    Silva, M.S.; Cilense, M.; Orhan, E.; Goes, M.S.; Machado, M.A.C.; Santos, L.P.S.; Paiva-Santos, C.O.; Longo, E.; Varela, J.A.; Zaghete, M.A.; Pizani, P.S.

    2005-01-01

    The polymeric precursor method was used to synthesize lead zirconate titanate powder (PZT). The crystalline powder was then amorphized by a high-energy ball milling process during 120 h. A strong photoluminescence emission was observed at room temperature for the amorphized PZT powder. The powders were characterized by XRD and the percentage of amorphous phase was calculated through Rietveld refinement. The microstructure for both phases was investigated by TEM. The optical gap was calculated through the Wood and Tauc method using the UV-Vis. data. Quantum mechanical calculations were carried out to give an interpretation of the photoluminescence in terms of electronic structure

  17. The Effect of Particles Shape and Size on Feedstock Flowibility and Chemical content of As-sintered NiTi Alloys

    Science.gov (United States)

    Kadir, R. A. Abdul; Razali, R.; Mohamad Nor, N. H.; Subuki, I.; Ismail, M. H.

    2018-05-01

    This paper presents a comparative study of two different titanium powders in fabrication of NiTi alloys by metal injection moulding (MIM) route. Two batches of powder mixture consisted of Ni-Ti and Ni-TiH2 with atomic ratio (at%) of 50-50 were prepared. TiH2 powder was used as a substitution for pure Ti powder owing to its relatively cheaper cost and has been claimed favourable in producing less impurity uptake in sintering process. The binder system used for both mixtures comprised of composite binder of palm stearin (PS) and polyethylene (PE) at weigth ratio (wt%) of 60-40. The flow behaviour of the mixtures was analysed using a capillary rheometer at different shear rates and temperatures. The results showed that owing to irregular shape of TiH2 compared to Ti powder, the viscosity of the feedstock was significantly higher, thus required greater temperature in order to improve the mouldability of the feedstock. Nevertheless, both feedstocks exhibited pseudoplastic, a shear thinning behavior with shear rate and temperature, desirable properties for injection moulding process. Samples prepared with Ni-Ti feedstock were sintered in a high vacuum furnace, while Ni-TiH2 feedstock was sintered in a tube furnace under a flowing of Argon gas. The results showed that the impurity contents (Carbon and Oxygen) for both feedstocks were almost comparable, suggesting NiTi alloy samples prepared with TiH2 powder is an attractive route for manufacturing of NiTi alloys.

  18. Upgrading of solid biofuels and feedstock quality

    Energy Technology Data Exchange (ETDEWEB)

    Burvall, Jan [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept. of Agricultural Research for Northern Sweden

    1998-06-01

    This paper treats upgrading of biomass to pellets, briquettes and powder and the quality needed of the initial feedstock. The main raw materials are wood and reed canary grass (Phalaris arundinacea L.) 5 refs, 6 figs, 2 tabs

  19. Downstream processing of a ternary amorphous solid dispersion: The impacts of spray drying and hot melt extrusion on powder flow, compression and dissolution.

    Science.gov (United States)

    Davis, Mark T; Potter, Catherine B; Walker, Gavin M

    2018-06-10

    Downstream processing aspects of a stable form of amorphous itraconazole exhibiting enhanced dissolution properties were studied. Preparation of this ternary amorphous solid dispersion by either spray drying or hot melt extrusion led to significantly different powder processing properties. Particle size and morphology was analysed using scanning electron microscopy. Flow, compression, blending and dissolution were studied using rheometry, compaction simulation and a dissolution kit. The spray dried material exhibited poorer flow and reduced sensitivity to aeration relative to the milled extrudate. Good agreement was observed between differing forms of flow measurement, such as Flow Function, Relative flow function, Flow rate index, Aeration rate, the Hausner ratio and the Carr index. The stability index indicated that both powders were stable with respect to agglomeration, de-agglomeration and attrition. Tablet ability and compressibility studies showed that spray dried material could be compressed into stronger compacts than extruded material. Blending of the powders with low moisture, freely-flowing excipients was shown to influence both flow and compression. Porosity studies revealed that blending could influence the mechanism of densification in extrudate and blended extrudate formulations. Following blending, the powders were compressed into four 500 mg tablets, each containing a 100 mg dose of amorphous itraconazole. Dissolution studies revealed that the spray dried material released drug faster and more completely and that blending excipients could further influence the dissolution rate. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Synthesis of Nanocrystalline RuO2(60%)-SnO2(40%)Powders by Amorphous Citrate Route

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nanometer RuO2-SnO2was synthesized by the citrate-gel method using RuCl3, SnCl4 as cation sources, citric acid as complexing agent and anhydrous ethanol as solvent. The structures of the derived powders were characterized by thermogravimetric and differential thermal analysis, X-ray diffraction, transmission electron microscope, and Brunauer-Emmett-Teller surface area measurement. The pure, fine and amorphous powders was obtained at 160℃. The materials calcined at above 400 ℃ were composed of rutile-type oxide phases having particle sizes of fairly narrow distribution and good thermal resistant properties. By adding SnO2 to RUO2, the Ru metallic phase can be effectively controlled under a traditional temperature of preparation for dimensional stable anode.

  1. Modelling the Peak Elongation of Nylon6 and Fe Powder Based Composite Wire for FDM Feedstock Filament

    Science.gov (United States)

    Garg, Harish Kumar; Singh, Rupinder

    2017-10-01

    In the present work, to increase the application domain of fused deposition modelling (FDM) process, Nylon6-Fe powder based composite wire has been prepared as feed stock filament. Further for smooth functioning of feed stock filament without any change in the hardware and software of the commercial FDM setup, the mechanical properties of the newly prepared composite wire must be comparable/at par to the existing material i.e. ABS, P-430. So, keeping this in consideration; an effort has been made to model the peak elongation of in house developed feedstock filament comprising of Nylon6 and Fe powder (prepared on single screw extrusion process) for commercial FDM setup. The input parameters of single screw extruder (namely: barrel temperature, temperature of the die, speed of the screw, speed of the winding machine) and rheological property of material (melt flow index) has been modelled with peak elongation as the output by using response surface methodology. For validation of model the result of peak elongation obtained from the model equation the comparison was made with the results of actual experimentation which shows the variation of ±1 % only.

  2. Moessbauer effect study on mechanically alloyed amorphous Fe1-xTix alloys

    International Nuclear Information System (INIS)

    Chen Hong; Xu Zuxiong; Ma Ruzhang; Zhao Zhongtao; Ping Jueyun

    1994-01-01

    Amorphous Fe 1-x Ti x (x = 0.50, 0.60) powders were produced by mechanical alloying from pure elemental powders in a vibratory ball-mill. X-ray diffraction (XRD) and Moessbauer effect (ME) were used to study the progress of amorphization and the property of hydrogen absorption in Fe-Ti alloys. The amorphization process and the properties of the amorphous phase are discussed. (orig.)

  3. Amorphization of Fe-based alloy via wet mechanical alloying assisted by PCA decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Neamţu, B.V., E-mail: Bogdan.Neamtu@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Chicinaş, H.F.; Marinca, T.F. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Isnard, O. [Université Grenoble Alpes, Institut NEEL, F-38042, Grenoble (France); CNRS, Institut NEEL, 25 rue des martyrs, BP166, F-38042, Grenoble (France); Pană, O. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293, Cluj-Napoca (Romania); Chicinaş, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania)

    2016-11-01

    Amorphization of Fe{sub 75}Si{sub 20}B{sub 5} (at.%) alloy has been attempted both by wet and dry mechanical alloying starting from a mixture of elemental powders. Powder amorphization was not achieved even after 140 hours of dry mechanical alloying. Using the same milling parameters, when wet mechanical alloying was used, the powder amorphization was achieved after 40 h of milling. Our assumption regarding the powder amorphization capability enhancement by contamination with carbon was proved by X-ray Photoelectron Spectroscopy (XPS) measurements which revealed the presence of carbon in the chemical composition of the wet mechanically alloyed sample. Using shorter milling times and several process control agents (PCA) (ethanol, oleic acid and benzene) with different carbon content it was proved that the milling duration required for powder amorphization is linked to the carbon content of the PCA. Differential Scanning Calorimetry (DSC), thermomagnetic (TG) and X-ray Diffraction (XRD) measurements performed to the heated samples revealed the fact that, the crystallisation occurs at 488 °C, thus leading to the formation of Fe{sub 3}Si and Fe{sub 2}B. Thermogravimetry measurements performed under H{sub 2} atmosphere, showed the same amount of contamination with C, which is about 2.3 wt%, for the amorphous samples regardless of the type of PCA. Saturation magnetisation of the wet milled samples decreases upon increasing milling time. In the case of the amorphous samples wet milled with benzene up to 20 h and with oleic acid up to 30 h, the saturation magnetisation has roughly the same value, indicating the same degree of contamination. The XRD performed on the samples milled using the same parameters, revealed that powder amorphization can be achieved even via dry milling, just by adding the equivalent amount of elemental C calculated from the TG plots. This proves that in this system by considering the atomic species which can contaminate the powder, they can be

  4. Capillary rheological studies of 17-4 PH MIM feedstocks prepared using a custom CSIR binder system

    CSIR Research Space (South Africa)

    Machaka, Ronald

    2018-02-01

    Full Text Available This paper reports on an attempt to establish the rheological properties of 17-4 PH stainless steel MIM feedstocks prepared using a proprietary CSIR wax-based binder system. The influence of powder and feedstock characteristics on the rheological...

  5. Preparation of Zr50Al15-xNi10Cu25Yx amorphous powders by mechanical alloying and thermodynamic calculation

    International Nuclear Information System (INIS)

    Long, Woyun; Li, Jing; Lu, Anxian

    2013-01-01

    Amorphous Zr 50 Al 15-x Ni 10 Cu 25 Y x powders were fabricated by mechanical alloying at a low rotation speed from commercial pure element powders. The beneficial effect of Al partially substituted by Y in Zr 50 Al 15 Ni 10 Cu 25 on glass-forming ability was investigated. The as-milled powders were characterized by X-ray diffraction and transmission electron microscopy. The results show that partial substitution of Al by Y can improve the glass-forming ability of Zr 50 Al 15 Ni 10 Cu 25 Y alloy. Thermodynamic calculation of equivalent free energy shows that Zr 50 Al 13.8 Ni 10 Cu 25 Y 1.2 alloy has the highest glass-forming ability, which is in good agreement with the report of orthogonal experiments. (author)

  6. Preparation and characterisation of Co–Fe–Ni–M-Si–B (M = Zr, Ti) amorphous powders by wet mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Neamţu, B.V., E-mail: Bogdan.Neamtu@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Chicinaş, H.F.; Marinca, T.F. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania); Isnard, O. [Université Grenoble Alpes, Institut NEEL, F-38042, Grenoble (France); CNRS, Institut NEEL, 25 rue des martyrs, BP166, F-38042, Grenoble (France); Chicinaş, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105, Muncii Avenue, 400641, Cluj-Napoca (Romania)

    2016-07-15

    Co-based amorphous alloys were prepared via wet mechanical alloying process starting from elemental powders. The reference alloy Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 15}B{sub 9} (at. %) as well as the alloys derived from this composition by the substitution of 5 at.% of Zr or Ti for Si or B (Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 15}B{sub 4}Zr{sub 5}, Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 15}B{sub 4}Ti{sub 5}, Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 10}B{sub 9}Zr{sub 5} and Co{sub 70}Fe{sub 4}Ni{sub 2}Si{sub 10}B{sub 9}Ti{sub 5}) are obtained in amorphous state, according to X-ray diffraction (XRD) investigation, after 40 h of milling. The calculated amount of amorphous fraction reaches 99% after 40 h of milling. The largest increase of the crystallisation temperature was induced by the substitution of Zr or Ti for Si while, regardless of the type of substitution, an important increase of the Curie temperature of the alloy was obtained. A Co-based solid solution, with Co{sub 2}Si and Co{sub 2}B phases, result after crystallisation of the amorphous alloys as proved by XRD investigations. Saturation magnetisation of the alloys decreases upon increasing milling time, however it remains larger than the saturation magnetisation of the reference alloy. This was discussed in correlation with the specificity of the wet mechanical alloying process and the influence of the chemical bonding between Co and metalloids atoms over the magnetic moment of Co. - Highlights: • Co–Fe–Ni–M-Si–B (M = Zr, Ti) amorphous powders were prepared by wet MA. • Amorphisation of the alloy is reached after 40 h of wet MA for any composition. • Magnetisation decrease upon increasing milling time. • Substituting 5% Zr/Ti for Si increases significantly the alloy's thermal stability. • Substitution of 5 at. % Zr/Ti for Si increases the saturation magnetisation by 20%.

  7. Powder injection molding of Stellite 6 powder: Sintering, microstructural and mechanical properties

    International Nuclear Information System (INIS)

    Gülsoy, H. Özkan; Özgün, Özgür; Bilketay, Sezer

    2016-01-01

    The purpose of this study was to produce Co-based Stellite 6 superalloy components by using the method of Powder Injection Molding (PIM) and to characterize the microstructural and mechanical properties of the produced components. The experimental studies were started through the formation of feedstock by mixing Stellite 6 powder with a multicomponent binder system. Prepared feedstock was formed by utilizing powder injection molding technique. Then the molded samples were subjected to the solvent and thermal debinding processes. Different sintering cycles were applied to the raw components for the purpose of determining the optimum sintering conditions. The densities of the sintered components were determined in accordance with the Archimedes' principle. The microstructural characterization was performed through scanning electron microscope (SEM) analysis, energy dispersive spectrometry (EDS) analyses, and X-ray diffraction (XRD) analysis. Hardness measurement and tensile test were conducted in order to determine the mechanical properties. The results illustrated that the injection molded Stellite 6 components were composed of fine and equiaxed grains, plenty of carbide precipitates exhibiting homogenous distribution throughout the microstructure formed at the grain boundaries and thus the mechanical properties were considerably high.

  8. Injection molding of coarse 316L stainless steel powder

    International Nuclear Information System (INIS)

    Omar, M.A.; Abdullah, N.S.; Subuki, I; Ali, E.A.G.E.; Ismail, F.; Hassan, N.

    2007-01-01

    Metal injection molding (MIM) process using 316L stainless steel powder of 45 μm was investigated. The binder system consists of a major fraction of palm stearins and minor fraction of polyethylene with a powder loading of 65 vol. %. The rheological behaviour of the feedstock was determined using Capillary Rheometer. The feedstock then injected using vertical injection molding machine into the tensile test bar. Then molded parts were de bound and sintered in vacuum at temperature of 1360 degree Celsius. The results show that the viscosity of the feedstock decreased with the temperature increased. The best sintered density achieved was about 7.5 g/cm 3 with the tensile strength of more than 460 MPa. The properties of the sintered specimens could be increased with the increasing of sintering temperature. (author)

  9. Fabrication of an Fe80.5Si7.5B6Nb5Cu Amorphous-Nanocrystalline Powder Core with Outstanding Soft Magnetic Properties

    Science.gov (United States)

    Zhang, Zongyang; Liu, Xiansong; Feng, Shuangjiu; Rehman, Khalid Mehmood Ur

    2018-03-01

    In this study, the melt spinning method was used to develop Fe80.5Si7.5B6Nb5Cu amorphous ribbons in the first step. Then, the Fe80.5Si7.5B6Nb5Cu amorphous-nanocrystalline core with a compact microstructure was obtained by multiple processes. The main properties of the magnetic powder core, such as micromorphology, thermal behavior, permeability, power loss and quality factor, have been analyzed. The obtained results show that an Fe80.5Si7.5B6Nb5Cu amorphous-nanocrystalline duplex core has high permeability (54.8-57), is relatively stable at different frequencies and magnetic fields, and the maximum power loss is only 313 W/kg; furthermore, it has a good quality factor.

  10. Novel Fe-based nanocrystalline powder cores with excellent magnetic properties produced using gas-atomized powder

    Science.gov (United States)

    Chang, Liang; Xie, Lei; Liu, Min; Li, Qiang; Dong, Yaqiang; Chang, Chuntao; Wang, Xin-Min; Inoue, Akihisa

    2018-04-01

    FeSiBPNbCu nanocrystalline powder cores (NPCs) with excellent magnetic properties were fabricated by cold-compaction of the gas-atomized amorphous powder. Upon annealing at the optimum temperature, the NPCs showed excellent magnetic properties, including high initial permeability of 88, high frequency stability up to 1 MHz with a constant value of 85, low core loss of 265 mW/cm3 at 100 kHz for Bm = 0.05 T, and superior DC-bias permeability of 60% at a bias field of 100 Oe. The excellent magnetic properties of the present NPCs could be attributed to the ultrafine α-Fe(Si) phase precipitated in the amorphous matrix and the use of gas-atomized powder coated with a uniform insulation layer.

  11. Debinding properties' study of a 316-L stainless steel feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Rei, M.; Schaeffer, L. [Metal Forming Lab., Univ. Federal do Rio Grande do Sul, Porto Alegre (Brazil); Souza, J.P. [Extraction Lab., Univ. Federal do Rio Grande do Sul, Porto Alegre (Brazil)

    2001-07-01

    This paper describes the behavior of a 316-L stainless steel feedstock's front low pressure injection molding process steps (MIM). The qualitative composition is 316-L stainless steel powder, ethylene and vinyl acetate copolymer (EVA), 140-macrocrystalline paraffin, carnauba wax and stearic acid. Thermogravimetric analyses were used to determine the quantitative composition of the binder system, while the quantitative composition of feedstock was determined by the knowledge of the mixture's critical loading. The feedstock was molded by low pressure injection molding in a MIGL-33 machine and submitted to a wicking debinding process, or immersed in carbon tetrachloride or in carbon dioxide under supercritical conditions. After the above mentioned procedure, the parts were submitted to thermal extraction. (orig.)

  12. Diffraction. Powder, amorphous, liquid

    International Nuclear Information System (INIS)

    Sosnowska, I.M.

    1999-01-01

    Neutron powder diffraction is a unique tool to observe all possible diffraction effects appearing in crystal. High-resolution neutron diffractometers have to be used in this study. Analysis of the magnetic structure of polycrystalline materials requires the use of high-resolution neutron diffraction in the range of large interplanar distances. As distinguished from the double axis diffractometers (DAS), which show high resolution only at small interplanar distances, TOF (time-of-flight) diffractometry offers the best resolution at large interplanar distances. (K.A.)

  13. Improving Powder Injection Molding: an Opportunity for the Aerospace Industry

    Directory of Open Access Journals (Sweden)

    I. Emri

    2014-01-01

    Full Text Available This work deals with powder injection molding (PIM technology of metal and ceramis powders using polyoximethylene (POM binder. In this study, two ways to decrease the viscosity of PIM feedstock materials with polyoxymethylene were investigated. The first way was to reduce the average molecular weight (AMV of the binder and the second one to select a polydisperse particle size distribution with high maximum packing fraction. It was shown that binder with AMW equal to 24410 g/mol gives required level of viscosity around 10 Pa/s. It was shown that using the low disperse powder with wide size distribution can lead to volumetric loading of approximately 83 %. Moreover, using such a feedstock has viscosity lower than required by PIM technology 1000 Pa/s.

  14. Heat Treatment of Gas-Atomized Powders for Cold Spray Deposition

    Science.gov (United States)

    Story, William A.; Brewer, Luke N.

    2018-02-01

    This communication demonstrates the efficacy of heat treatment on the improved deposition characteristics of aluminum alloy powders. A novel furnace was constructed for solutionizing of feedstock powders in an inert atmosphere while avoiding sintering. This furnace design achieved sufficiently high cooling rates to limit re-precipitation during powder cooling. Microscopy showed homogenization of the powder particle microstructures after heat treatment. Cold spray deposition efficiency with heat-treated powders substantially increased for the alloys AA2024, AA6061, and AA7075.

  15. Assessment of Moisture Content and Its Influence on Laser Beam Melting Feedstock

    NARCIS (Netherlands)

    Cordova, Laura; Campos, Mónica; Tinga, Tiedo

    2017-01-01

    Additive Manufacturing (AM) techniques are known for building functional parts by adding layers of material. This layer-wise fabrication of metal parts yields freedom of design, weight reduction and product customization. Most of the metal AM processes use powder as feedstock, as small particles

  16. Structure and soft magnetic properties of the bulk samples prepared by compaction of the mixtures of Co-based and Fe-based powders

    International Nuclear Information System (INIS)

    Fuezer, J.; Bednarcik, J.; Kollar, P.; Roth, S.

    2007-01-01

    Ball milling of CoFeZrB ribbons and subsequent compaction of the resulting powders were used to prepare bulk amorphous samples. Further, two sets of powder samples were prepared by cryomilling of FeCuNbMoSiB alloy in amorphous and nanocrystalline state. Amorphous and nanocrystalline FeCuNbMoSiB powders were blended with CoFeZrB powder at different concentrations. Such powder mixtures were consolidated and several bulk nanocomposites have been synthesized. An addition of nanocrystalline or amorphous FeCuNbMoSiB powder to amorphous CoFeZrB powder caused a decrease of the magnetostriction of the resultant bulk samples, while the coercivity shows an opposite behavior. Our results show that the powder consolidation by hot pressing is an alternative method for the preparation of bulk metallic glasses, which are difficult to prepare by casting methods

  17. Development and Characterization of a Metal Injection Molding Bio Sourced Inconel 718 Feedstock Based on Polyhydroxyalkanoates

    Directory of Open Access Journals (Sweden)

    Alexandre Royer

    2016-04-01

    Full Text Available The binder plays the most important role in the metal injection molding (MIM process. It provides fluidity of the feedstock mixture and adhesion of the powder to keep the molded shape during injection molding. The binder must provide strength and cohesion for the molded part and must be easy to remove from the molded part. Moreover, it must be recyclable, environmentally friendly and economical. Also, the miscibility between polymers affects the homogeneity of the injected parts. The goal of this study is to develop a feedstock of superalloy Inconel 718 that is environmentally friendly. For these different binders, formulations based on polyethylene glycol (PEG, because of his water solubility property, and bio sourced polymers were studied. Polyhydroxyalkanoates (PHA were investigated as a bio sourced polymer due to its miscibility with the PEG. The result is compared to a standard formulation using polypropylene (PP. The chemical and rheological behavior of the binder formulation during mixing, injection and debinding process were investigated. The feedstock was characterized in the same way as the binders and the interactions between the powder and the binders were also studied. The results show the well adapted formulation of polymer binder to produce a superalloy Inconel 718 feedstock.

  18. Al/ B4C Composites with 5 and 10 wt% Reinforcement Content Prepared by Powder Metallurgy

    International Nuclear Information System (INIS)

    Yusof Abdullah; Mohd Reusmaazran Yusof; Azali Muhammad; Nadira Kamarudin; Wilfred Sylvester Paulus; Roslinda Shamsudin; Nasrat Hannah Shudin; Nurazila Mat Zali

    2012-01-01

    The preparation, physical and mechanical properties of Al/ B 4 C composites with 5 and 10 wt.% reinforcement content were investigated. In order to obtain the feedstock with a low powder loading, B 4 C mixtures containing fine powders were investigated to obtain the optimal particle packing. The experimental results indicated that the fine containing 5 and 10 wt.% particles are able to prepare the feedstock with a good flowability. The composites fabricated by powder metallurgy have low densities and homogeneous microstructures. Additionally there is no interface reaction observed between the reinforcement and matrix by XRD analysis. The hardness of Al/ B 4 C composites prepared by powder metallurgy was high. (Author)

  19. Advancements in Ti Alloy Powder Production by Close-Coupled Gas Atomization

    Energy Technology Data Exchange (ETDEWEB)

    Heidloff, Andy; Rieken, Joel; Anderson, Iver; Byrd, David

    2011-04-01

    As the technology for titanium metal injection molding (Ti-MIM) becomes more readily available, efficient Ti alloy fine powder production methods are required. An update on a novel close-coupled gas atomization system has been given. Unique features of the melting apparatus are shown to have measurable effects on the efficiency and ability to fully melt within the induction skull melting system (ISM). The means to initiate the melt flow were also found to be dependent on melt apparatus. Starting oxygen contents of atomization feedstock are suggested based on oxygen pick up during the atomization and MIM processes and compared to a new ASTM specification. Forming of titanium by metal injection molding (Ti-MIM) has been extensively studied with regards to binders, particle shape, and size distribution and suitable de-binding methods have been discovered. As a result, the visibility of Ti-MIM has steadily increased as reviews of technology, acceptability, and availability have been released. In addition, new ASTM specification ASTM F2885-11 for Ti-MIM for biomedical implants was released in early 2011. As the general acceptance of Ti-MIM as a viable fabrication route increases, demand for economical production of high quality Ti alloy powder for the preparation of Ti-MIM feedstock correspondingly increases. The production of spherical powders from the liquid state has required extensive pre-processing into different shapes thereby increasing costs. This has prompted examination of Ti-MIM with non-spherical particle shape. These particles are produced by the hydride/de-hydride process and are equi-axed but fragmented and angular which is less than ideal. Current prices for MIM quality titanium powder range from $40-$220/kg. While it is ideal for the MIM process to utilize spherical powders within the size range of 0.5-20 {mu}m, titanium's high affinity for oxygen to date has prohibited the use of this powder size range. In order to meet oxygen requirements the top

  20. Oxidation of nano-sized aluminum powders

    International Nuclear Information System (INIS)

    Vorozhtsov, A.B.; Lerner, M.; Rodkevich, N.; Nie, H.; Abraham, A.; Schoenitz, M.; Dreizin, E.L.

    2016-01-01

    Highlights: • Weight gain measured in TG oxidation experiments was split between particles of different sizes. • Reaction kinetics obtained by isoconversion explicitly accounting for the effect of size distribution. • Activation energy is obtained as a function of oxide thickness for growth of amorphous alumina. • Oxidation mechanism for nanopowders remains the same as for coarser aluminum powders. - Abstract: Oxidation of aluminum nanopowders obtained by electro-exploded wires is studied. Particle size distributions are obtained from transmission electron microscopy (TEM) images. Thermo-gravimetric (TG) experiments are complemented by TEM and XRD studies of partially oxidized particles. Qualitatively, oxidation follows the mechanism developed for coarser aluminum powder and resulting in formation of hollow oxide shells. Sintering of particles is also observed. The TG results are processed to account explicitly for the particle size distribution and spherical shapes, so that oxidation of particles of different sizes is characterized. The apparent activation energy is obtained as a function of the reaction progress using model-free isoconversion processing of experimental data. A complete phenomenological oxidation model is then proposed assuming a spherically symmetric geometry. The oxidation kinetics of aluminum powder is shown to be unaffected by particle sizes reduced down to tens of nm. The apparent activation energy describing growth of amorphous alumina is increasing at the very early stages of oxidation. The higher activation energy is likely associated with an increasing homogeneity in the growing amorphous oxide layer, initially containing multiple defects and imperfections. The trends describing changes in both activation energy and pre-exponent of the growing amorphous oxide are useful for predicting ignition delays of aluminum particles. The kinetic trends describing activation energies and pre-exponents in a broader range of the oxide

  1. Amorphization of Fe-Nb by mechanical alloying

    International Nuclear Information System (INIS)

    Yang, J.Y.; Zhang, T.J.; Cui, K.; Li, X.G.; Zhang, J.

    1996-01-01

    Elemental powder mixtures of Fe x Nb 1-x were mechanically alloyed in a planetary ball mill. Powders milled for different times were characterized by X-ray diffraction, transmission and scanning electron microscopy, differential thermal analysis and microhardness measurement. The results show that powders with 0.30≤x≤0.70 could be amorphized after 30 h milling; the maximum hardness (Hv) of milled Fe 50 Nb 50 powders attained was 1490. Based on a thermodynamical analysis, the glass forming range of the Fe-Nb system was calculated, and found to agree with the experimental result very well. (orig.)

  2. Phase evolution in Al-Ni-(Ti, Nb, Zr) powder blends by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, A. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur (India); Manna, I. [Metallurgical and Materials Engineering Department, I.I.T., Kharagpur 721302 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur (India)], E-mail: c.partha@mailcity.com

    2007-08-25

    Mechanical alloying of Al-rich Al-Ni-ETM (ETM = Ti, Nb, Zr) elemental powder blends by planetary ball milling yielded amorphous and/or nanocrystalline products after ball milling for suitable duration. Powder samples collected at different stages of ball milling have been examined by X-ray diffraction, differential scanning caloremetry and high-resolution transmission electron microscopy to examine the solid-state phase evolution. Powder blends having nominal composition of Al{sub 80}Ni{sub 10}Ti{sub 10} and Al{sub 80}Ni{sub 10}Nb{sub 10} yielded predominantly amorphous products, while the other alloys formed composite microstructures comprising nanaocrystalline and amorphous solid solutions. The amorphous Al{sub 80}Ni{sub 10}Ti{sub 10} alloy was mixed with different amounts of Al powder, and subjected to warm rolling after consolidation within the Al-cans with or without intermediate annealing for 10 min at 500 K to obtain sheet of 2.5 mm thickness. Notable improvement in mechanical properties has been achieved for the composite sheets in comparison to the pure Al.

  3. Fe-based nanocrystalline powder cores with ultra-low core loss

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiangyue, E-mail: wangxiangyue1986@163.com [China Iron and Steel Research Institute Group, Beijing 100081 (China); Center of Advanced Technology and Materials Co., Ltd., Beijing 100081 (China); Lu, Zhichao; Lu, Caowei; Li, Deren [China Iron and Steel Research Institute Group, Beijing 100081 (China); Center of Advanced Technology and Materials Co., Ltd., Beijing 100081 (China)

    2013-12-15

    Melt-spun amorphous Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 15.5}B{sub 7} alloy strip was crushed to make flake-shaped fine powders. The passivated powders by phosphoric acid were mixed with organic and inorganic binder, followed by cold compaction to form toroid-shaped bonded powder-metallurgical magnets. The powder cores were heat-treated to crystallize the amorphous structure and to control the nano-grain structure. Well-coated phosphate-oxide insulation layer on the powder surface decreased the the core loss with the insulation of each powder. FeCuNbSiB nanocrystalline alloy powder core prepared from the powder having phosphate-oxide layer exhibits a stable permeability up to high frequency range over 2 MHz. Especially, the core loss could be reduced remarkably. At the other hand, the softened inorganic binder in the annealing process could effectively improve the intensity of powder cores. - Highlights: • Fe-based nanocrystalline powder cores were prepared with low core loss. • Well-coated phosphate-oxide insulation layer on the powder surface decreased the core loss. • Fe-based nanocrystalline powder cores exhibited a stable permeability up to high frequency range over 2 MHz. • The softened inorganic binder in the annealing process could effectively improve the intensity of powder cores.

  4. Study on the substrate-induced crystallisation of amorphous SiC-precursor ceramics. TIB/A; Untersuchungen zur substratinduzierten Kristallisation amorpher SiC-Precursorkeramiken

    Energy Technology Data Exchange (ETDEWEB)

    Rau, C.

    2000-12-01

    In the present thesis the crystallization behaviour of amorphous silicon-carbon materials (SiC{sub x}) was studied. The main topic of the experimental studies formed thereby the epitactical crystallization of thin silicon carbide layers on monocrystalline substrates of silicon carbides or silicon. Furthermore by thermolysis of the polymer amorphous SiC{sub x}-powder was obtained.

  5. Mullite and Mullite/ZrO2-7wt.%Y2O3 Powders for Thermal Spraying of Environmental Barrier Coatings

    Science.gov (United States)

    Garcia, E.; Mesquita-Guimarães, J.; Miranzo, P.; Osendi, M. I.; Wang, Y.; Lima, R. S.; Moreau, C.

    2010-01-01

    Mullite and mullite/ZrO2-7wt.%Y2O3 coatings could be thought among the main protective layers for environment barrier coatings (EBCs) to protect Si-based substrates in future gas turbine engines. Considering that feedstock of the compound powder is not commercially available, two powder processing routes Spray Drying (SD) and Flame Spheroidization (FS) were implemented for both types of powders. For each method the particle size, the morphology, and microstructure of the powder particles was determined. In addition, the effect of the heat treatment on the powder crystallinity and microstructure of FS powders was also investigated. To evaluate their suitability as feedstock materials, the powders were plasma sprayed and their in-flight particle characteristics monitored for coatings production. The powder morphology was correlated to the in-flight particle characteristics and splat morphology to gain insight about into the influence of powder characteristics on the coating formation.

  6. Powder Characterization and Optimization for Additive Manufacturing

    NARCIS (Netherlands)

    Cordova, Laura; Campos, Mónica; Tinga, Tiedo

    2017-01-01

    Achieving the optimal quality for Additive Manufactured (AM) parts does not only depend on setting the right process parameters. Material feedstock also plays an important role when aiming for high performance products. The metal AM processes that are most applicable to industry, Powder Bed Fusion

  7. Salt Fog Testing Iron-Based Amorphous Alloys

    International Nuclear Information System (INIS)

    Rebak, Raul B.; Aprigliano, Louis F.; Day, S. Daniel; Farmer, Joseph C.

    2007-01-01

    Iron-based amorphous alloys are hard and highly corrosion resistant, which make them desirable for salt water and other applications. These alloys can be produced as powder and can be deposited as coatings on any surface that needs to be protected from the environment. It was of interest to examine the behavior of these amorphous alloys in the standard salt-fog testing ASTM B 117. Three different amorphous coating compositions were deposited on 316L SS coupons and exposed for many cycles of the salt fog test. Other common engineering alloys such as 1018 carbon steel, 316L SS and Hastelloy C-22 were also tested together with the amorphous coatings. Results show that amorphous coatings are resistant to rusting in salt fog. Partial devitrification may be responsible for isolated rust spots in one of the coatings. (authors)

  8. Nanograin formation in milled MoO3 powders

    International Nuclear Information System (INIS)

    Guerrero-Paz, J; Dorantes-Rosales, H; Aguilar-Martínez, J A; Garibay-Febles, V

    2013-01-01

    Powder of Molybdenum trioxide was milled for different times in horizontal ball mills. Such powder was characterized by TEM and XRD. Powder was rapidly de-agglomerated and fragmented up to attain nanoplates of two types, amorphous and crystalline. Finally, cold-welding of nanoplates occurred permitting some relaxation process to obtain a more stable energized structure consisting of equiaxial crystalline nanograins after 16 hours of milling.

  9. Preparation of tris(8-hydroxyquinolinato)aluminum thin films by sputtering deposition using powder and pressed powder targets

    Science.gov (United States)

    Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyu, Yoshihito; Ihara, Takeshi; Tanaka, Rei; Suda, Yoshiaki

    2017-06-01

    Tris(8-hydroxyquinolinato)aluminum (Alq3) thin films, for use in organic electroluminescence displays, were prepared by a sputtering deposition method using powder and pressed powder targets. Experimental results suggest that Alq3 thin films can be prepared using powder and pressed powder targets, although the films were amorphous. The surface color of the target after deposition became dark brown, and the Fourier transform infrared spectroscopy spectrum changed when using a pressed powder target. The deposition rate of the film using a powder target was higher than that using a pressed powder target. That may be because the electron and ion densities of the plasma generated using the powder target are higher than those when using pressed powder targets under the same deposition conditions. The properties of a thin film prepared using a powder target were almost the same as those of a film prepared using a pressed powder target.

  10. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying

    Directory of Open Access Journals (Sweden)

    Goedele Craye

    2015-12-01

    Full Text Available In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS as a solubilizer, was explored as a production method for co-amorphous simvastatin–lysine (SVS-LYS at 1:1 molar mixtures, which previously have been observed to form a co-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD and differential scanning calorimetry (DSC showed that in the spray-dried formulations the remaining crystallinity originated from SLS only. The best dissolution properties and a “spring and parachute” effect were found for SVS spray-dried from a 5% SLS solution without LYS. Despite the presence of at least partially crystalline SLS in the mixtures, all the studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions was observed when SLS was spray-dried with SVS (and LYS. In conclusion, spray drying of SVS and LYS from aqueous surfactant solutions was able to produce formulations with improved physical stability for amorphous SVS.

  11. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying.

    Science.gov (United States)

    Craye, Goedele; Löbmann, Korbinian; Grohganz, Holger; Rades, Thomas; Laitinen, Riikka

    2015-12-03

    In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS) as a solubilizer, was explored as a production method for co-amorphous simvastatin-lysine (SVS-LYS) at 1:1 molar mixtures, which previously have been observed to form a co-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS) revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) showed that in the spray-dried formulations the remaining crystallinity originated from SLS only. The best dissolution properties and a "spring and parachute" effect were found for SVS spray-dried from a 5% SLS solution without LYS. Despite the presence of at least partially crystalline SLS in the mixtures, all the studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions) was observed when SLS was spray-dried with SVS (and LYS). In conclusion, spray drying of SVS and LYS from aqueous surfactant solutions was able to produce formulations with improved physical stability for amorphous SVS.

  12. Hybrid Binder to Mitigate Feed Powder Segregation in the Inkjet 3D Printing of Titanium Metal Parts

    Directory of Open Access Journals (Sweden)

    Saeed Maleksaeedi

    2018-05-01

    Full Text Available Using feedstock containing discrete dual or multi powders leads to segregation in the powder bed of additive manufacturing processes. In the present study, a new impregnated hybrid binder with properties closer to those of the base powder is developed to mitigate powder segregation in the inkjet 3D printing of titanium components.

  13. Effect of ball mill treatment on kinetics of amorphous Ni78Si10B12 alloy crystallization

    International Nuclear Information System (INIS)

    Tomilin, I.A.; Mochalova, T.Yu.; Kaloshkin, S.D.; Kostyukovich, T.G.; Lopatina, E.A.

    1993-01-01

    The effect of the parameters of Ni 78 Si 10 B 12 alloy amorphous strip milling in a ball planetary mill on the stability of powder amorphous state, crytallization kinetics and dispersity is studied by the methods of differential scanning microcaloremetry and X-ray diffraction analysis. Energy intensity of milling conditions is assessed. An increase of input energy results in a decrease of activation energy of powder crystallization. Strip milling parameters which enable to avaintain the amorphous state of the material are determined

  14. Solid State Characterization of Commercial Crystalline and Amorphous Atorvastatin Calcium Samples

    OpenAIRE

    Shete, Ganesh; Puri, Vibha; Kumar, Lokesh; Bansal, Arvind K.

    2010-01-01

    Atorvastatin calcium (ATC), an anti-lipid BCS class II drug, is marketed in crystalline and amorphous solid forms. The objective of this study was to perform solid state characterization of commercial crystalline and amorphous ATC drug samples available in the Indian market. Six samples each of crystalline and amorphous ATC were characterized using X-ray powder diffractometry (XRPD), differential scanning calorimetry (DSC), thermogravimetric analysis, Karl Fisher titrimetry, microscopy (hot s...

  15. Microstructural properties of electrochemically prepared Ni–Fe–W powders

    International Nuclear Information System (INIS)

    Ribić-Zelenović, L.; Ćirović, N.; Spasojević, M.; Mitrović, N.; Maričić, A.; Pavlović, V.

    2012-01-01

    A nanostructured Ni–Fe–W powder was obtained by electrodeposition from ammonium citrate electrolyte within the current density range of 500–1000 mA cm −2 at the electrolyte temperature of 50 °C–70 °C. XRD analysis shows that the powder contains an amorphous matrix having embedded nanocrystals of the FCC solid solution of iron and tungsten in nickel, with an average crystal grain size of 3.4 nm, a high internal microstrain value and a high density of chaotically distributed dislocations. EDS analysis exhibits that the chemical composition of the Ni–24%Fe–11%W powder does not depend upon current density and electrolyte temperature due to the diffusion control of the process of codeposition of nickel, iron and tungsten. SEM micrographs show that the electrodeposition results in the formation of two particle shapes: large cauliflower-like particles and small dendrite particles. The cauliflower-like particles contain deep cavities at hydrogen evolution sites. Cavity density increases with increasing deposition current density. Smaller powder particles are formed at higher temperatures and at higher current densities. During the first heating, relative magnetic permeability decreases reaching the Curie temperature at about 350 °C and after cooling exhibits a 12% increase due to the performed relaxation process. Following the second heating to 500 °C, the magnetic permeability of the powder is about 5% lower than that of the as-prepared powder due to crystallization of the amorphous phase of the powder and the crystal grain growth in FCC phase. - Highlights: ► Electrodeposition Ni–Fe–W powder from ammonium citrate electrolyte (500–1000 mA cm −2 ). ► Powder contains amorphous matrix and embedded nanocrystals 3.4 nm. ► Chemical composition Ni–24%Fe–11%W do not depend upon current density and electrolyte temperature. ► Two particle shapes: large cauliflower-like particles and small dendrite particles. ► Smaller powder particles are

  16. Microstructural properties of electrochemically prepared Ni-Fe-W powders

    Energy Technology Data Exchange (ETDEWEB)

    Ribic-Zelenovic, L. [Faculty of Agronomy, University of Kragujevac, Cacak (Serbia); Cirovic, N. [Joint Laboratory for Advanced Materials of SASA, Technical Faculty Cacak, University of Kragujevac, Cacak (Serbia); Spasojevic, M. [Faculty of Agronomy, University of Kragujevac, Cacak (Serbia); Mitrovic, N., E-mail: nmitrov@tfc.kg.ac.rs [Joint Laboratory for Advanced Materials of SASA, Technical Faculty Cacak, University of Kragujevac, Cacak (Serbia); Maricic, A. [Joint Laboratory for Advanced Materials of SASA, Technical Faculty Cacak, University of Kragujevac, Cacak (Serbia); Pavlovic, V. [Faculty of Agriculture, University of Belgrade, Belgrade (Serbia)

    2012-07-16

    A nanostructured Ni-Fe-W powder was obtained by electrodeposition from ammonium citrate electrolyte within the current density range of 500-1000 mA cm{sup -2} at the electrolyte temperature of 50 Degree-Sign C-70 Degree-Sign C. XRD analysis shows that the powder contains an amorphous matrix having embedded nanocrystals of the FCC solid solution of iron and tungsten in nickel, with an average crystal grain size of 3.4 nm, a high internal microstrain value and a high density of chaotically distributed dislocations. EDS analysis exhibits that the chemical composition of the Ni-24%Fe-11%W powder does not depend upon current density and electrolyte temperature due to the diffusion control of the process of codeposition of nickel, iron and tungsten. SEM micrographs show that the electrodeposition results in the formation of two particle shapes: large cauliflower-like particles and small dendrite particles. The cauliflower-like particles contain deep cavities at hydrogen evolution sites. Cavity density increases with increasing deposition current density. Smaller powder particles are formed at higher temperatures and at higher current densities. During the first heating, relative magnetic permeability decreases reaching the Curie temperature at about 350 Degree-Sign C and after cooling exhibits a 12% increase due to the performed relaxation process. Following the second heating to 500 Degree-Sign C, the magnetic permeability of the powder is about 5% lower than that of the as-prepared powder due to crystallization of the amorphous phase of the powder and the crystal grain growth in FCC phase. - Highlights: Black-Right-Pointing-Pointer Electrodeposition Ni-Fe-W powder from ammonium citrate electrolyte (500-1000 mA cm{sup -2}). Black-Right-Pointing-Pointer Powder contains amorphous matrix and embedded nanocrystals 3.4 nm. Black-Right-Pointing-Pointer Chemical composition Ni-24%Fe-11%W do not depend upon current density and electrolyte temperature. Black

  17. Preparation and recrystallization behavior of spray-dried co-amorphous naproxen-indomethacin

    DEFF Research Database (Denmark)

    Beyer, Andreas; Radi, Lydia; Grohganz, Holger

    2016-01-01

    (2) factorial design and the obtained samples were analyzed with X-ray powder diffractometry and Fourier-transformed infrared spectroscopy. Evaluation of the data revealed that the preparation of fully amorphous samples could be achieved depending on the process conditions. The resulting recrystallization......To improve the dissolution properties and the physical stability of amorphous active pharmaceutical ingredients, small molecule stabilizing agents may be added to prepare co-amorphous systems. The objective of the study was to investigate if spray-drying allows the preparation of co-amorphous drug...

  18. Impact of Mixed Feedstocks and Feedstock Densification on Ionic Liquid Pretreatment Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Jian Shi; Vicki S. Thompson; Neal A. Yancey; Vitalie Stavila; Blake A. Simmons; Seema Singh

    2013-01-01

    Background: Lignocellulosic biorefineries must be able to efficiently process the regional feedstocks that are available at cost-competitive prices year round. These feedstocks typically have low energy densities and vary significantly in composition. One potential solution to these issues is blending and/or densifying the feedstocks in order to create a uniform feedstock. Results/discussion: We have mixed four feedstocks - switchgrass, lodgepole pine, corn stover, and eucalyptus - in flour and pellet form and processed them using the ionic liquid 1-ethyl-3-methylimidazolium acetate. Sugar yields from both the mixed flour and pelletized feedstocks reach 90% within 24 hours of saccharification. Conclusions: Mixed feedstocks, in either flour or pellet form, are efficiently processed using this pretreatment process, and demonstrate that this approach has significant potential.

  19. Quantifying low amorphous or crystalline amounts of alpha-lactose-monohydrate using X-ray powder diffraction, near-infrared spectroscopy, and differential scanning calorimetry.

    Science.gov (United States)

    Fix, I; Steffens, K J

    2004-05-01

    Efficient and accurate quantification of low amorphous and crystalline contents within pharmaceutical materials still remains a challenging task in the pharmaceutical industry. Since X-ray powder diffraction (XRPD) equipment has improved in recent years, our aim was 1) to investigate the possibility of substantially lowering the detection limits of amorphous or crystalline material to about 1% or 0.5% w/w respectively by applying conventional Bragg Brentano optics, combined with a fast and simple evaluation technique; 2) to perform these measurements within a short time to make it suitable for routine analysis; and 3) to subject the same data sets to a partial least squares regression (PLSR) in order to investigate whether it is possible to improve accuracy and precision compared to the standard integration method. Near-infrared spectroscopy (NIRS) and differential scanning calorimetry (DSC) were chosen as reference method. As model substance, alpha lactose monohydrate was chosen to create calibration curves based on predetermined mixtures of highly crystalline and amorphous substance. In contrast to DSC, XRPD and NIRS revealed an excellent linearity, precision, and accuracy with the percent of crystalline amount and a detectability down to about 0.5% w/w. Chemometric evaluation (partial least squares regression) applied to the XRPD data further improved the quality of our calibration.

  20. Powder processing and spheroidizing with thermal inductively coupled plasma

    International Nuclear Information System (INIS)

    Nutsch, G.; Linke, P.; Zakharian, S.; Dzur, B.; Weiss, K.-H.

    2001-01-01

    Processing of advanced powder materials for the spraying industry is one of the most promising applications of the thermal RF inductively coupled plasma. By selecting the feedstock carefully and adjusting the RF plasma parameters, unique materials with high quality can be achieved. Powders injected in the hot plasma core emerge with modified shapes, morphology, crystal structure and chemical composition. Ceramic oxide powders such as Al 2 O 3 , ZrO 2 , SiO 2 are spheroidized with a high spheroidization rate. By using the RF induction plasma spheroidizing process tungsten melt carbide powders are obtained with a high spheroidization rate at high feeding rates by densification of agglomerated powders consisting of di-tungsten carbide and monocarbide with a definite composition. This kind of ball-like powders is particularly suited for wear resistant applications. (author)

  1. Amorphous silicon radiation detectors

    Science.gov (United States)

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  2. Preparation of superconductor precursor powders

    Science.gov (United States)

    Bhattacharya, Raghunath

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  3. Preparation and Cycling Performance of Iron or Iron Oxide Containing Amorphous Al-Li Alloys as Electrodes

    Directory of Open Access Journals (Sweden)

    Franziska Thoss

    2014-12-01

    Full Text Available Crystalline phase transitions cause volume changes, which entails a fast destroying of the electrode. Non-crystalline states may avoid this circumstance. Herein we present structural and electrochemical investigations of pre-lithiated, amorphous Al39Li43Fe13Si5-powders, to be used as electrode material for Li-ion batteries. Powders of master alloys with the compositions Al39Li43Fe13Si5 and Al39Li43Fe13Si5 + 5 mass-% FeO were prepared via ball milling and achieved amorphous/nanocrystalline states after 56 and 21.6 h, respectively. In contrast to their Li-free amorphous pendant Al78Fe13Si9, both powders showed specific capacities of about 400 and 700 Ah/kgAl, respectively, after the third cycle.

  4. Thermal plasma spheroidization and spray deposition of barium titanate powder and characterization of the plasma sprayable powder

    Energy Technology Data Exchange (ETDEWEB)

    Pakseresht, A.H., E-mail: amirh_pak@yahoo.com [Department of Ceramics, Materials and Energy Research Center, P.O. Box 31787-316, Karaj (Iran, Islamic Republic of); Rahimipour, M.R. [Department of Ceramics, Materials and Energy Research Center, P.O. Box 31787-316, Karaj (Iran, Islamic Republic of); Vaezi, M.R. [Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, P.O. Box 31787-316, Karaj (Iran, Islamic Republic of); Salehi, M. [Department of Materials Engineering, Isfahan University of Technology, P.O. Box 84156-83111, Isfahan (Iran, Islamic Republic of)

    2016-04-15

    In this paper, atmospheric plasma spray method was used to produce dense plasma sprayable powder and thick barium titanate film. In this regard, the commercially feedstock powders were granulated and spheroidized by the organic binder and the thermal spray process, respectively. Scanning electron microscopy was used to investigate the microstructure of the produced powders and the final deposits. X-ray diffraction was also implemented to characterize phase of the sprayed powder. The results indicated that spheroidized powder had suitable flowability as well as high density. The micro-hardness of the film produced by the sprayed powders was higher than that of the film deposited by the irregular granules. Additionally, relative permittivity of the films was increased by decreasing the defects from 160 to 293 for film deposited using spheroidized powder. The reduction in the relative permittivity of deposits, in comparison with the bulk material, was due to the existence of common defects in the thermal spray process. - Highlights: • We prepare sprayable BaTiO{sub 3} powder with no or less inside voids for plasma spray application for first time. • The sprayable powder has good flow characteristics and high density. • Powder spheroidization via plasma spray improves the hardness and dielectric properties of the deposited film.

  5. Thermal plasma spheroidization and spray deposition of barium titanate powder and characterization of the plasma sprayable powder

    International Nuclear Information System (INIS)

    Pakseresht, A.H.; Rahimipour, M.R.; Vaezi, M.R.; Salehi, M.

    2016-01-01

    In this paper, atmospheric plasma spray method was used to produce dense plasma sprayable powder and thick barium titanate film. In this regard, the commercially feedstock powders were granulated and spheroidized by the organic binder and the thermal spray process, respectively. Scanning electron microscopy was used to investigate the microstructure of the produced powders and the final deposits. X-ray diffraction was also implemented to characterize phase of the sprayed powder. The results indicated that spheroidized powder had suitable flowability as well as high density. The micro-hardness of the film produced by the sprayed powders was higher than that of the film deposited by the irregular granules. Additionally, relative permittivity of the films was increased by decreasing the defects from 160 to 293 for film deposited using spheroidized powder. The reduction in the relative permittivity of deposits, in comparison with the bulk material, was due to the existence of common defects in the thermal spray process. - Highlights: • We prepare sprayable BaTiO_3 powder with no or less inside voids for plasma spray application for first time. • The sprayable powder has good flow characteristics and high density. • Powder spheroidization via plasma spray improves the hardness and dielectric properties of the deposited film.

  6. Effect of Alumina Nanoparticles on the Rheological Behavior of Aluminum-Binder Mixtures for Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Hassan Abdoos

    2014-10-01

    Full Text Available Preparation of appropriate powder-binder mixtures is the crucial step of powder injection molding process. Hence, the rheological properties of powder-binder mixture are important factors in production of sound parts using powder injection molding. Nowadays, the use of nanoparticles in powder injection molding is increasing due to the improved properties and dimensional precision of the final parts. On the other hand, nanoparticles can initiate problems such as agglomeration and loss of rheological properties and homogeneity. In the present study, the rheological behavior of aluminum mixtures containing nanoalumina particles was investigated. Two powder loadings of aluminum powder (54 vol% and 60 vol%, in which 0, 3, 6 and 9 wt% of aluminum was replaced with nanoalumina, were used. The powder systems were blended with the molten binder system in a banbury internal mixer and the rheological properties of the resulting mixtures were evaluated. All feedstocks showed pseudo-plastic behavior. The presence of nanoparticles increased the viscosity of feedstocks. Due to overwhelming particles cohesion by hydrodynamic forces, the viscosity of the mixtures decreased at high shear rates. Tap density results confirmed an improvement in packing compressibility of the mentioned powders. Shear rate sensitivity decreased with incorporation of nanoparticles into the mixtures. This phenomenon improved the injection capability through further reduction in viscosity.

  7. Production of amorphous starch powders by solution spray drying

    NARCIS (Netherlands)

    Niazi, Muhammad B. K.; Broekhuis, Antonius A.

    2012-01-01

    The spray drying of starch/maltodextrin formulations was evaluated as a potential technology for the manufacturing of amorphous thermoplastic starches. Mixtures of starches with high to low amylose (Am)amylopectin (Ap) ratios were spray-dried from water-based solutions and granular dispersions. The

  8. Preparation and soft magnetic properties of spark plasma sintered compacts based on Fe–Si–B glassy powder

    Energy Technology Data Exchange (ETDEWEB)

    Neamţu, B.V., E-mail: bogdan.neamtu@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Marinca, T.F.; Chicinaş, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Isnard, O. [Institut Néel, CNRS/University Joseph Fourier, BP 166, 38042 Grenoble Cédex 9 (France); Popa, F. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Păşcuţă, P. [Physics and Chemistry Department Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania)

    2014-07-05

    Highlights: • Amorphous powder of Fe{sub 75}Si{sub 20}B{sub 5} (at.%) was prepared by wet mechanical alloying. • Spark plasma sintering was used for compaction of amorphous Fe{sub 75}Si{sub 20}B{sub 5} powder. • Increasing SPS time/temperature leads to improvement of AC/DC compacts properties. - Abstract: Amorphous powder of Fe{sub 75}Si{sub 20}B{sub 5} (at.%) was prepared by wet mechanical alloying route using benzene as surfactant. The amorphous phase is obtained after 60 h of milling. Structural, morphological, and thermal characteristics were investigated. The as-milled powder consists in micrometric particles with a mean diameter of 10.4 μm which are formed by the agglomeration of smaller particles. The amorphous powder is thermally stable up to the temperature of 490 °C. Spark plasma sintered compacts were prepared from the amorphous powders at sintering temperatures of 800, 850 and 900 °C. The phases formation and their evolution was investigated by X-ray diffraction technique showing that Fe{sub 3}Si and Fe{sub 2}B are the main phases formed during the spark plasma sintering process. Fe{sub 75}Si{sub 20}B{sub 5} (at.%) samples in the form of a ring were investigated in DC and AC magnetization regime. It was found that the boride phase formation (during sintering) and the low density of the compacts affect the magnetic properties of the compacts. In addition, a superficial contamination of the compacts with carbon (a layer of 2–3 μm) was evidenced, contributing thus to their soft magnetic deterioration. Increasing of the saturation induction, maximum relative permeability and initial relative permeability was observed by increasing both sintering temperature and time. It was generally observed that the compacts with high density have higher total core losses at high frequency.

  9. Pressure effects on Al89La6Ni5 amorphous alloy crystallization

    DEFF Research Database (Denmark)

    Zhuang, Yanxin; Jiang, Jianzhong; Zhou, T. J.

    2000-01-01

    The pressure effect on the crystallization of the Al89La6Ni5 amorphous alloy has been investigated by in situ high-pressure and high-temperature x-ray powder diffraction using synchrotron radiation. The amorphous alloy crystallizes in two steps in the pressure range studied (0-4 GPa). The first p...

  10. Preparation of nanosize carbon powders by pulsed wire discharge

    Energy Technology Data Exchange (ETDEWEB)

    Minami, C.; Kinemuchi, Y.; Suzuki, T.; Suematsu, H.; Jiang, W.; Yatsui, K. [Nagaoka Univ. of Technology, Extreme Energy-Density Research Inst., Nagaoka, Niigata (Japan); Hirata, T.; Hatakeyama, R. [Tohoku Univ., Graduate School of Engineering, Sendai, Miyagi (Japan)

    2002-06-01

    Nanosize powders of carbons were tried to be synthesized by pulsed discharge of graphite wires in several kinds of ambient gases. When the wire was discharged in N{sub 2} gas, nanosize powders have been successfully produced. The result of X-ray diffraction analysis indicated that nanosize powders produced in N{sub 2} gas at 750 Torr were amorphous carbon containing glassy carbons, while mass-spectrum analysis demonstrated the production of fullerenes at 600 Torr. If the wire is discharged in Ar gas, dielectric breakdown takes place between electrodes, producing no carbon powders. (author)

  11. Multivariate Quantification of the Solid State Phase Composition of Co-Amorphous Naproxen-Indomethacin

    Directory of Open Access Journals (Sweden)

    Andreas Beyer

    2015-10-01

    Full Text Available To benefit from the optimized dissolution properties of active pharmaceutical ingredients in their amorphous forms, co-amorphisation as a viable tool to stabilize these amorphous phases is of both academic and industrial interest. Reports dealing with the physical stability and recrystallization behavior of co-amorphous systems are however limited to qualitative evaluations based on the corresponding X-ray powder diffractograms. Therefore, the objective of the study was to develop a quantification model based on X-ray powder diffractometry (XRPD, followed by a multivariate partial least squares regression approach that enables the simultaneous determination of up to four solid state fractions: crystalline naproxen, γ-indomethacin, α-indomethacin as well as co-amorphous naproxen-indomethacin. For this purpose, a calibration set that covers the whole range of possible combinations of the four components was prepared and analyzed by XRPD. In order to test the model performances, leave-one-out cross validation was performed and revealed root mean square errors of validation between 3.11% and 3.45% for the crystalline molar fractions and 5.57% for the co-amorphous molar fraction. In summary, even four solid state phases, involving one co-amorphous phase, can be quantified with this XRPD data-based approach.

  12. Collaboration for the Advancement of Indirect 3D Printing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, Zachary C [ORNL; Elliott, Amy M [ORNL

    2016-06-14

    Amorphous powders often possess high hardness values and other useful mechanical properties. However, densifying these powders into complex shapes while retaining their unique properties is a challenge with standard processing routes. Pressureless sintering, for example, can densify intricate green parts composed of rapidly-solidified powders. But this process typically involves long exposures to elevated temperatures, during which the non-equilibrium microstructure of the powder can evolve towards lower energy configurations with inferior properties. Pressure-assisted compaction techniques, by contrast, can consolidate green parts with simple shapes while preserving the microstructure and properties of the powder feedstock. But parts made with these processes generally require additional post-processing, including machining, which introduces new challenges due to the high hardness of these materials. One processing route that can potentially avoid these issues is Indirect 3D Printing (I-3DP; aka Binder Jetting) followed by melt infiltration. In I-3DP, an organic binder is used to join powder feedstock, layer-by-layer, into a green part. In melt infiltration, this green preform is densified by placing it in contact with a molten alloy that wets the preform and wicks into the pores as a result of capillary forces. When these processes are paired together, they offer two key advantages for the densification of rapidly-solidified powders. The first advantage is that the timescale associated with melt infiltration is on the order of seconds for parts with cm-scale dimensions. So in many instances, infiltration requires only a brief thermal excursion that does not degrade the feedstock’s microstructure. The second advantage is that the combination of binder-jet 3D printing and melt infiltration gives fully-dense net shape objects, minimizing the need for subsequent post-processing. In this work, fully-dense, net shape objects have been fabricated from an amorphous

  13. Lignocellulosic feedstock resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rooney, T.

    1998-09-01

    This report provides overall state and national information on the quantity, availability, and costs of current and potential feedstocks for ethanol production in the United States. It characterizes end uses and physical characteristics of feedstocks, and presents relevant information that affects the economic and technical feasibility of ethanol production from these feedstocks. The data can help researchers focus ethanol conversion research efforts on feedstocks that are compatible with the resource base.

  14. Development of Metal/Polymer Mixtures Dedicated to Macro and Micro powder Injection Moulding : Experiments and Simulations

    International Nuclear Information System (INIS)

    Quinard, C.; Barriere, T.; Gelin, J. C.; Song, J. P.; Cheng, Z. Q.; Liu, B. S.

    2007-01-01

    Important research tasks at ENSMM/LMA are concerned for the development of mixtures of fine powders associated to polymer binders dedicated to the powder injection moulding (PIM) and to the powder injection micro-moulding (μPIM) in accordance with many works already carried out with different feedstock suppliers dedicated to the macro-components. These research tasks are completed with the simulations of injection and sintering for solid state diffusion for to validate the mumerical models

  15. Micro-powder injection moulding of tungsten

    International Nuclear Information System (INIS)

    Zeep, B.

    2007-12-01

    For He-cooled Divertors as integral components of future fusion power plants, about 300000 complex shaped tungsten components are to be fabricated. Tungsten is the favoured material because of its excellent properties (high melting point, high hardness, high sputtering resistance, high thermal conductivity). However, the material's properties cause major problems for large scale production of complex shaped components. Due to the resistance of tungsten to mechanical machining, new fabrication technologies have to be developed. Powder injection moulding as a well established shaping technology for a large scale production of complex or even micro structured parts might be a suitable method to produce tungsten components for fusion applications but is not yet commercially available. The present thesis is dealing with the development of a powder injection moulding process for micro structured tungsten components. To develop a suitable feedstock, the powder particle properties, the binder formulation and the solid load were optimised. To meet the requirements for a replication of micro patterned cavities, a special target was to define the smallest powder particle size applicable for micro-powder injection moulding. To investigate the injection moulding performance of the developed feedstocks, experiments were successfully carried out applying diverse cavities with structural details in micro dimension. For debinding of the green bodies, a combination of solvent debinding and thermal debinding has been adopted for injection moulded tungsten components. To develop a suitable debinding strategy, a variation of the solvent debinding time, the heating rate and the binder formulation was performed. For investigating the thermal consolidation behaviour of tungsten components, sinter experiments were carried out applying tungsten powders suitable for micro-powder injection moulding. First mechanical tests of the sintered samples showed promising material properties such as a

  16. Compaction of Chemically Prepared Amorphous Fe-B nanoparticles

    DEFF Research Database (Denmark)

    Hendriksen, P.V.; Bødker, Franz; Mørup, Steen

    1997-01-01

    We report on attempts to compact chemically prepared amorphous iron-boron particles. The praticles have a size of about 100 nm and are pyrophoric. We have made a special die for uniaxial pressing in which the compaction can be performed at elevated temperature without exposing the powder to air...

  17. Effect of composition and heat treatment on the phase formation of mechanically alloyed Cr-B and Mo-B powders

    International Nuclear Information System (INIS)

    Wu, H M; Hu, C J; Pai, K Y

    2009-01-01

    Blended elemental Cr-B and Mo-B powders in atomic ratio of 67:33, 50:50, and 20:80 were subjected to mechanical alloying up to 60 h and subsequent heat treatment to investigate effect of composition and heat treatment on the phase formation of Cr-B and Mo-B powders. It was studied by X-ray diffraction and differential thermal analysis. Mechanical alloying these powder mixtures for 60 h leads essentially to a amorphous structure except for the Mo 20 B 80 powder, which creates a partially amorphous MoB 4 structure. Annealing at lower temperatures relieves the strains cumulative in the milled powders and creates no new phase. The structures obtained after annealing the milled powders at higher temperature vary and depend on the overall composition of the powder mixtures. Annealing the milled Mo-B powders having greater Mo content ends up with a dissociation reaction at higher temperature.

  18. Review of the Methods for Production of Spherical Ti and Ti Alloy Powder

    Science.gov (United States)

    Sun, Pei; Fang, Zhigang Zak; Zhang, Ying; Xia, Yang

    2017-10-01

    Spherical titanium alloy powder is an important raw material for near-net-shape fabrication via a powder metallurgy (PM) manufacturing route, as well as feedstock for powder injection molding, and additive manufacturing (AM). Nevertheless, the cost of Ti powder including spherical Ti alloy has been a major hurdle that prevented PM Ti from being adopted for a wide range of applications. Especially with the increasing importance of powder-bed based AM technologies, the demand for spherical Ti powder has brought renewed attention on properties and cost, as well as on powder-producing processes. The performance of Ti components manufactured from powder has a strong dependence on the quality of powder, and it is therefore crucial to understand the properties and production methods of powder. This article aims to provide a cursory review of the basic techniques of commercial and emerging methods for making spherical Ti powder. The advantages as well as limitations of different methods are discussed.

  19. Amino acids as co-amorphous excipients for simvastatin and glibenclamide

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Löbmann, Korbinian; Grohganz, Holger

    2014-01-01

    to a few drugs and amino acids. To facilitate the rational selection of amino acids, the practical importance of the amino acid coming from the biological target site of the drug (and associated intermolecular interactions) needs to be established. In the present study, the formation of co......-amorphous systems using cryomilling and combinations of two poorly water-soluble drugs (simvastatin and glibenclamide) with the amino acids aspartic acid, lysine, serine, and threonine was investigated. Solid-state characterization with X-ray powder diffraction, differential scanning calorimetry, and Fourier...... in the mixtures. Interestingly, a favorable effect by the excipients on the tautomerism of amorphous glibenclamide in the co-amorphous blends was seen, as the formation of the thermodynamically less stable imidic acid tautomer of glibenclamide was suppressed compared to that of the pure amorphous drug...

  20. Articulating feedstock delivery device

    Science.gov (United States)

    Jordan, Kevin

    2013-11-05

    A fully articulable feedstock delivery device that is designed to operate at pressure and temperature extremes. The device incorporates an articulating ball assembly which allows for more accurate delivery of the feedstock to a target location. The device is suitable for a variety of applications including, but not limited to, delivery of feedstock to a high-pressure reaction chamber or process zone.

  1. Hydrothermal treatment of coprecipitated YSZ powders

    International Nuclear Information System (INIS)

    Arakaki, Alexander Rodrigo; Yoshito, Walter Kenji; Ussui, Valter; Lazar, Dolores Ribeiro Ricci

    2009-01-01

    Zirconia stabilized with 8.5 mol% yttria (YSZ) were synthesized by coprecipitation and resulting gels were hydrothermally treated at 200°C and 220 PSI for 4, 8 and 16 hours. Products were oven dried at 70°C for 24 hours, uniaxially pressed as pellets and sintered at 1500 °C for 1 hour. Powders were characterized for surface area with N 2 gas adsorption, X-ray diffraction, laser diffraction granulometric analysis and scanning and transmission electronic microscopy. Density of ceramics was measured by an immersion method based on the Archimedes principle. Results showed that powders dried at 70°C are amorphous and after treatment has tetragonal/cubic symmetry. Surface area of powders presented a significant reduction after hydrothermal treatment. Ceramics prepared from hydrothermally treated powders have higher green density but sintered pellets are less dense when compared to that made with powders calcined at 800°C for 1 hour due to the agglomerate state of powders. Solvothermal treatment is a promising procedure to enhance density. (author)

  2. Coercivities of hot-deformed magnets processed from amorphous and nanocrystalline precursors

    International Nuclear Information System (INIS)

    Tang, Xin; Sepehri-Amin, H.; Ohkubo, T.; Hioki, K.; Hattori, A.; Hono, K.

    2017-01-01

    Hot-deformed magnets have been processed from amorphous and nanocrystalline precursors and their hard magnetic properties and microstructures have been investigated in order to explore the optimum process route. The hot-deformed magnets processed from an amorphous precursor exhibited the coercivity of 1.40 T that is higher than that processed from nanocrystalline powder, ∼1.28 T. The average grain size was larger in the magnets processed from amorphous precursor. Detailed microstructure analyses by aberration corrected scanning transmission electron microscopy revealed that the Nd + Pr concentrations in the intergranular phases were higher in the hot-deformed magnet processed from the amorphous precursor, which is considered to lead to the enhanced coercivity due to a stronger pinning force against magnetic domain wall motion.

  3. Fabrication of powder from ductile uranium alloys for use as nuclear dispersion

    International Nuclear Information System (INIS)

    Durazzo, M.; Leal Neto, R.M.; Rocha, C.J.; Urano de Carvalho, E.; Riella, H.G.

    2014-01-01

    This work forms part of the studies presently ongoing at IPEN investigating the feasibility of powdering ductile U-10wt%Mo alloy by hydriding-milling-de-hydriding of the gamma phase (HMD). Hydriding was conducted at room temperature in a Sievert apparatus following heat treatment activation. Hydrided pieces were fragile enough to be hand milled to the desired particle size range. Hydrogen was removed by heating the samples under high vacuum. X-ray diffraction analysis of the hydrided material showed an amorphous-like pattern that is completely reversed following de-hydriding. The hydrogen content of the hydrided samples corresponds to a trihydride, i.e. (U,Mo)H 3 . SEM analysis of HMD powder particles revealed equi-axial powder particles together with some plate-like particles. A hypothesis for the amorphous hydride phase formation is suggested. (authors)

  4. Effect of surface energy on powder compactibility.

    Science.gov (United States)

    Fichtner, Frauke; Mahlin, Denny; Welch, Ken; Gaisford, Simon; Alderborn, Göran

    2008-12-01

    The influence of surface energy on the compactibility of lactose particles has been investigated. Three powders were prepared by spray drying lactose solutions without or with low proportions of the surfactant polysorbate 80. Various powder and tablet characterisation procedures were applied. The surface energy of the powders was characterized by Inverse Gas Chromatography and the compressibility of the powders was described by the relationship between tablet porosity and compression pressure. The compactibility of the powders was analyzed by studying the evolution of tablet tensile strength with increasing compaction pressure and porosity. All powders were amorphous and similar in particle size, shape, and surface area. The compressibility of the powders and the microstructure of the formed tablets were equal. However, the compactibility and dispersive surface energy was dependent of the composition of the powders. The decrease in tablet strength correlated to the decrease in powder surface energy at constant tablet porosities. This supports the idea that tablet strength is controlled by formation of intermolecular forces over the areas of contact between the particles and that the strength of these bonding forces is controlled by surface energy which, in turn, can be altered by the presence of surfactants.

  5. Plasma-Sprayed Titania and Alumina Coatings Obtained from Feedstocks Prepared by Heterocoagulation with 1 wt.% Carbon Nanotube

    Science.gov (United States)

    Jambagi, Sudhakar C.; Agarwal, Anish; Sarkar, Nilmoni; Bandyopadhyay, P. P.

    2018-05-01

    Properties of plasma-sprayed ceramic coatings can be improved significantly by reinforcing such coatings with carbon nanotube (CNT). However, it is difficult to disperse CNT in the plasma spray feedstock owing to its tendency to form agglomerate. A colloidal processing technique, namely heterocoagulation, is effective in bringing about unbundling of CNT, followed by its homogeneous dispersion in the ceramic powder. This report deals with the mixing of micro-sized crushed titania and agglomerated alumina powders with CNT using the heterocoagulation technique. Heterocoagulation of titania was attempted with both cationic and anionic surfactants, and the latter was found to be more effective. Mixing of the oxides and carbon nanotube was also accomplished in a ball mill either in a dry condition or in alcohol, and powders thus obtained were compared with the heterocoagulated powder. The heterocoagulated powder has shown a more homogeneous dispersion of CNT in the oxide. The coatings produced from the heterocoagulated powder demonstrated improvement in hardness, porosity, indentation fracture toughness and elastic modulus. This is attributed to CNT reinforcement.

  6. A standardless method of quantitative ceramic analysis using X-ray powder diffraction

    International Nuclear Information System (INIS)

    Mazumdar, S.

    1999-01-01

    A new procedure using X-ray powder diffraction data for quantitative estimation of the crystalline as well as the amorphous phase in ceramics is described. Classification of the crystalline and amorphous X-ray scattering was achieved by comparison of the slopes at two successive points of the powder pattern at scattering angles at which the crystalline and amorphous phases superimpose. If the second slope exceeds the first by a stipulated value, the intensity is taken as crystalline; otherwise the scattering is considered as amorphous. Crystalline phase analysis is obtained by linear programming techniques using the concept that each observed X-ray diffraction peak has contributions from n component phases, the proportionate analysis of which is required. The method does not require the measurement of calibration data for use as an internal standard, but knowledge of the approximate crystal structure of each phase of interest in the mixture is necessary. The technique is also helpful in qualitative analysis because each suspected phase is characterized by the probability that it will be present when a reflection zone is considered in which the suspected crystalline phase could contribute. The amorphous phases are determined prior to the crystalline ones. The method is applied to ceramic materials and some results are presented. (orig.)

  7. A comparison of compacting and caking behaviour of carbonate-based washing powders

    OpenAIRE

    Leaper, M.C.; Leach, V.; Taylor, P.M.; Prime, D.C.

    2013-01-01

    Two types of sodium carbonate powder produced by spray drying (SD) and dry neutralisation (DN) were studied for their compaction properties using a uniaxial compression tester. Dry neutralised sodium carbonate showed a greater resistance to compression and also produced a weaker compact when compressed to 100kPa. Differential Scanning Calorimetry (DSC) showed that both types of powder were predominantly amorphous in nature. Moisture sorption measurements showed that both powders behaved in a ...

  8. Solid state characterization of commercial crystalline and amorphous atorvastatin calcium samples.

    Science.gov (United States)

    Shete, Ganesh; Puri, Vibha; Kumar, Lokesh; Bansal, Arvind K

    2010-06-01

    Atorvastatin calcium (ATC), an anti-lipid BCS class II drug, is marketed in crystalline and amorphous solid forms. The objective of this study was to perform solid state characterization of commercial crystalline and amorphous ATC drug samples available in the Indian market. Six samples each of crystalline and amorphous ATC were characterized using X-ray powder diffractometry (XRPD), differential scanning calorimetry (DSC), thermogravimetric analysis, Karl Fisher titrimetry, microscopy (hot stage microscopy, scanning electron microscopy), contact angle, and intrinsic dissolution rate (IDR). All crystalline ATC samples were found to be stable form I, however one sample possessed polymorphic impurity, evidenced in XRPD and DSC analysis. Amongst the amorphous ATC samples, XRPD demonstrated five samples to be amorphous 'form 27', while, one matched amorphous 'form 23'. Thermal behavior of amorphous ATC samples was compared to amorphous ATC generated by melt quenching in DSC. ATC was found to be an excellent glass former with T(g)/T(m) of 0.95. Residual crystallinity was detected in two of the amorphous samples by complementary use of conventional and modulated DSC techniques. The wettability and IDR of all amorphous samples was found to be higher than the crystalline samples. In conclusion, commercial ATC samples exhibited diverse solid state behavior that can impact the performance and stability of the dosage forms.

  9. Investigation of powdering ductile gamma U-10 wt%Mo alloy for dispersion fuels

    Energy Technology Data Exchange (ETDEWEB)

    Leal Neto, R.M., E-mail: lealneto@ipen.br [Nuclear and Energy Research Institute, IPEN/CNEN-SP, São Paulo (Brazil); Rocha, C.J. [Nuclear and Energy Research Institute, IPEN/CNEN-SP, São Paulo (Brazil); Urano de Carvalho, E. [Nuclear and Energy Research Institute, IPEN/CNEN-SP, São Paulo (Brazil); Science and Technology Brazilian Institute, Innovating Nuclear Reactors (Brazil); Riella, H.G. [Science and Technology Brazilian Institute, Innovating Nuclear Reactors (Brazil); Chemical Engineering Department, Santa Catarina Federal University, Florianópolis (Brazil); Durazzo, M. [Nuclear and Energy Research Institute, IPEN/CNEN-SP, São Paulo (Brazil); Science and Technology Brazilian Institute, Innovating Nuclear Reactors (Brazil)

    2014-02-01

    This work forms part of the studies presently ongoing at Nuclear and Energy Research Institute – IPEN/CNEN-SP investigating the feasibility of powdering ductile U-10 wt%Mo alloy by hydriding–milling–dehydriding of the gamma phase (HMD). Hydriding was conducted at room temperature in a Sievert apparatus following heat treatment activation. Hydrided pieces were fragile enough to be hand milled to the desired particle size range. Hydrogen was removed by heating the samples under high vacuum. X-ray diffraction analysis of the hydrided material showed an amorphous-like pattern that is completely reversed following dehydriding. The hydrogen content of the hydrided samples corresponds to a trihydride, i.e. (U,Mo)H{sub 3}. SEM analysis of HMD powder particles revealed equiaxial powder particles together with some plate-like particles. A hypothesis for the amorphous hydride phase formation is suggested.

  10. The Influence of Pressure on the Intrinsic Dissolution Rate of Amorphous Indomethacin

    Directory of Open Access Journals (Sweden)

    Korbinian Löbmann

    2014-08-01

    Full Text Available New drug candidates increasingly tend to be poorly water soluble. One approach to increase their solubility is to convert the crystalline form of a drug into the amorphous form. Intrinsic dissolution testing is an efficient standard method to determine the intrinsic dissolution rate (IDR of a drug and to test the potential dissolution advantage of the amorphous form. However, neither the United States Pharmacopeia (USP nor the European Pharmacopeia (Ph.Eur state specific limitations for the compression pressure in order to obtain compacts for the IDR determination. In this study, the influence of different compression pressures on the IDR was determined from powder compacts of amorphous (ball-milling indomethacin (IND, a glass solution of IND and poly(vinylpyrrolidone (PVP and crystalline IND. Solid state properties were analyzed with X-ray powder diffraction (XRPD and the final compacts were visually observed to study the effects of compaction pressure on their surface properties. It was found that there is no significant correlation between IDR and compression pressure for crystalline IND and IND–PVP. This was in line with the observation of similar surface properties of the compacts. However, compression pressure had an impact on the IDR of pure amorphous IND compacts. Above a critical compression pressure, amorphous particles sintered to form a single compact with dissolution properties similar to quench-cooled disc and crystalline IND compacts. In such a case, the apparent dissolution advantage of the amorphous form might be underestimated. It is thus suggested that for a reasonable interpretation of the IDR, surface properties of the different analyzed samples should be investigated and for amorphous samples the IDR should be measured also as a function of the compression pressure used to prepare the solid sample for IDR testing.

  11. Characterization of the hidden glass transition of amorphous cyclomaltoheptaose.

    Science.gov (United States)

    Tabary, Nicolas; Mahieu, Aurélien; Willart, Jean-François; Dudognon, Emeline; Danède, Florence; Descamps, Marc; Bacquet, Maryse; Martel, Bernard

    2011-10-18

    An amorphous solid of cyclomaltoheptaose (β-cyclodextrin, β-CD) was formed by milling its crystalline form using a high-energy planetary mill at room temperature. The glass transition of this amorphous solid was found to occur above the thermal degradation point of the material preventing its direct observation and thus its full characterization. The corresponding glass transition temperature (T(g)) and the ΔC(p) at T(g) have, however, been estimated by extrapolation of T(g) and ΔC(p) of closely related amorphous compounds. These compounds include methylated β-CD with different degrees of substitution and molecular alloys obtained by co-milling β-CD and methylated β-CD (DS 1.8) at different ratios. The physical characterization of the amorphous states have been performed by powder X-ray diffraction and differential scanning calorimetry, while the chemical integrity of β-CD upon milling was checked by NMR spectroscopy and mass spectrometry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Enzymatic Degradation of Poly(ethylene 2,5-furanoate Powders and Amorphous Films

    Directory of Open Access Journals (Sweden)

    Simone Weinberger

    2017-10-01

    Full Text Available Poly(ethylene 2,5-furanoate (PEF is arousing great interest as a biobased alternative to plastics like poly(ethylene terephthalate (PET due to its wide range of potential applications, such as food and beverage packaging, clothing, and in the car industry. In the present study, the hydrolysis of PEF powders of different molecular masses (Mn = 55, Mw = 104 kg/mol and Mn = 18, Mw = 29 kg/mol and various particle sizes (180 < d and 180 < d < 425 µm using cutinase 1 from Thermobifida cellulosilytica (Thc_cut1 was studied. Thereby, the effects of molecular mass, particle size and crystallinity on enzymatic hydrolysis were investigated. The results show that particles with lower molecular mass are hydrolyzed faster than those with higher masses, and that the higher the molecular mass, the lower the influence of the particle size on the hydrolysis. Furthermore, cutinases from Humicola insolens (HiC and Thc_cut1 were compared with regard to their hydrolytic activity on amorphous PEF films (measured as release of 2,5-furandicarboxylic acid (FDCA and weight loss in different reaction media (1 M KPO pH 8, 0.1 M Tris-HCl pH 7 and at different temperatures (50 °C and 65 °C. A 100% hydrolysis of the PEF films was achieved after only 72 h of incubation with a HiC in 1 M KPO pH 8 at 65 °C. Moreover, the hydrolysis reaction was monitored by LC/TOF-MS analysis of the released reaction products and by Scanning Electron Microscopy (SEM examination of the polymer surfaces. Enzymatic hydrolysis of PEF with Thc_cut1 and HiC has potential for use in surface functionalization and recycling purposes.

  13. The influence of pressure on the intrinsic dissolution rate of amorphous indomethacin

    DEFF Research Database (Denmark)

    Löbmann, Korbinian; Flouda, Konstantina; Qiu, Danwen

    2014-01-01

    of different compression pressures on the IDR was determined from powder compacts of amorphous (ball-milling) indomethacin (IND), a glass solution of IND and poly(vinylpyrrolidone) (PVP) and crystalline IND. Solid state properties were analyzed with X-ray powder diffraction (XRPD) and the final compacts were...... and to test the potential dissolution advantage of the amorphous form. However, neither the United States Pharmacopeia (USP) nor the European Pharmacopeia (Ph.Eur) state specific limitations for the compression pressure in order to obtain compacts for the IDR determination. In this study, the influence...... visually observed to study the effects of compaction pressure on their surface properties. It was found that there is no significant correlation between IDR and compression pressure for crystalline IND and IND-PVP. This was in line with the observation of similar surface properties of the compacts. However...

  14. Thermoluminescent dosimetry of beta radiations of 90 Sr/ 90 Y using amorphous ZrO2

    International Nuclear Information System (INIS)

    Rivera M, T.; Olvera T, L.; Azorin N, J.; Barrera R, M.; Soto E, A.M.

    2005-01-01

    In this work the results of studying the thermoluminescent properties (Tl) of the zirconium oxide in its amorphous state (ZrO 2 -a) before beta radiations of 90 Sr/ 90 Y are presented. The amorphous powders of the zirconium oxide were synthesized by means of the sol-gel technique. The sol-gel process using alkoxides like precursors, is an efficient method to prepare a matrix of zirconium oxide by hydrolysis - condensation of the precursor to form chains of Zr-H 3 and Zr-O 2 . One of the advantages of this technique is the obtention of gels at low temperatures with very high purity and homogeneity. The powders were characterized by means of thermal analysis and by X-ray diffraction. The powders of ZrO 2 -a, previously irradiated with beta particles of 90 Sr/ 90 Y, presented a thermoluminescent curve with two peaks at 150 and 257 C. The dissipation of the information of the one ZrO 2 -a was of 40% the first 2 hours remaining constant the information for the following 30 days. The reproducibility of the information was of ± 2.5% in standard deviation. The studied characteristics allow to propose to the amorphous zirconium oxide as thermoluminescent dosemeter for the detection of beta radiation. (Author)

  15. Biomass Feedstocks | Bioenergy | NREL

    Science.gov (United States)

    Feedstocks Biomass Feedstocks Our mission is to enable the coordinated development of biomass generic biomass thermochemical conversion process (over a screened-back map of the United States) showing U.S. Biomass Resources, represented by photos of timber, corn stover, switchgrass, and poplar. All

  16. Sol-gel synthesis and densification of aluminoborosilicate powders. Part 1: Synthesis

    Science.gov (United States)

    Bull, Jeffrey; Selvaduray, Guna; Leiser, Daniel

    1992-01-01

    Aluminoborosilicate powders high in alumina content were synthesized by the sol-gel process utilizing various methods of preparation. Properties and microstructural effects related to these syntheses were examined. After heating to 600 C for 2 h in flowing air, the powders were amorphous with the metal oxides comprising 87 percent of the weight and uncombusted organics the remainder. DTA of dried powders revealed a T(sub g) at approximately 835 C and an exotherm near 900 C due to crystallization. Powders derived from aluminum secbutoxide consisted of particles with a mean diameter 5 microns less than those from aluminum isopropoxide. Powders synthesized with aluminum isopropoxide produced agglomerates comprised of rod shaped particulates while powders made with the secbutoxide precursor produced irregular glassy shards. Compacts formed from these powders required different loadings for equivalent densities according to the method of synthesis.

  17. Identifying the optimal HVOF spray parameters to attain minimum porosity and maximum hardness in iron based amorphous metallic coatings

    Directory of Open Access Journals (Sweden)

    S. Vignesh

    2017-04-01

    Full Text Available Flow based Erosion – corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosion–corrosion damage in the above components, iron based amorphous coatings are considered to be more effective to combat erosion–corrosion problems. High velocity oxy-fuel (HVOF spray process is considered to be a better process to coat the iron based amorphous powders. In this investigation, iron based amorphous metallic coating was developed on 316 stainless steel substrate using HVOF spray technique. Empirical relationships were developed to predict the porosity and micro hardness of iron based amorphous coating incorporating HVOF spray parameters such as oxygen flow rate, fuel flow rate, powder feed rate, carrier gas flow rate, and spray distance. Response surface methodology (RSM was used to identify the optimal HVOF spray parameters to attain coating with minimum porosity and maximum hardness.

  18. Synthesis, characterization and electrochemical performance of core/shell structured carbon coated silicon powders for lithium ion battery negative electrodes

    Directory of Open Access Journals (Sweden)

    Tuğrul Çetinkaya

    2017-06-01

    Full Text Available Surface of nano silicon powders were coated with amorphous carbon by pyrolysis of polyacronitrile (PAN polymer. Microstructural characterization of amorphous carbon coated silicon powders (Si-C were carried out using scanning electron microscopy (SEM and thickness of carbon coating is defined by transmission electron microscopy (TEM. Elemental analyses of Si-C powders were performed using energy dispersive X-ray spectroscopy (EDS. Structural and phase characterization of Si-C composite powders were investigated using X-ray diffractometer (XRD and Raman spectroscopy. Produced Si-C powders were prepared as an electrode on the copper current collector and electrochemical tests were carried out using CR2016 button cells at 200 mA/g constant current density. According to electrochemical test results, carbon coating process enhanced the electrochemical performance by reducing the problems stem from volume change and showed 770 mAh/g discharge capacity after 30 cycles.

  19. Evidence for nano-Si clusters in amorphous SiO anode materials for rechargeable Li-ion batteries

    International Nuclear Information System (INIS)

    Sepehri-Amin, H.; Ohkubo, T.; Kodzuka, M.; Yamamura, H.; Saito, T.; Iba, H.; Hono, K.

    2013-01-01

    Atom probe tomography and high resolution transmission electron microscopy have shown the presence of nano-sized amorphous Si clusters in non-disproportionated amorphous SiO powders are under consideration for anode materials in Li-ion batteries. After Li insertion/extraction, no change was found in the chemistry and structure of the Si clusters. However, Li atoms were found to be trapped at the amorphous SiO phase after Li insertion/extraction, which may be attributed to the large capacity fade after the first charge/discharge cycle

  20. Synthesis and characterization of lead zirconate titanate powders obtained by the oxidant peroxo method

    International Nuclear Information System (INIS)

    Camargo, Emerson R.; Leite, Edson R.; Longo, Elson

    2009-01-01

    Lead zirconate titanate (PbZr 1-x Ti x O 3 ) was synthesized by the 'oxidant peroxo method (OPM)' with 'x' between 0.25 and 0.50. Titanium metal was dissolved into a hydrogen peroxide/ammonia aqueous solution, followed by the addition of lead and zirconium nitrate solution. The amorphous precipitated precursor obtained was crystallized by heat treatment between 400 and 1000 deg. C. Images of transmission microscopy showed spherical particles with average diameter between 20 and 60 nm, and the presence of necks between particles treated at 700 deg. C. All of the unpressed powders were characterized by X-ray diffractometry and FT-Raman spectroscopy. Powder samples with 'x' up to 0.35 showed rhombohedral structure when treated at temperatures higher than 500 deg. C, and tetragonal structure when 'x' was higher than 0.40. Analysis of XRD and Raman spectroscopy of the precursor powders showed amorphous-like structures, however powders treated at 400 deg. C showed a structure identified as an intermediate pyrochlore phase, independently of the Zr and Ti mole ratio

  1. Moessbauer and EXAFS studies of amorphous iron produced by thermal decomposition of carbonyl iron in liquid phase

    International Nuclear Information System (INIS)

    Nomura, Kiyoshi; Tanaka, Junichi; Ujihira, Yusuke; Takahashi, Tamotu; Uchida, Yasuzo

    1990-01-01

    Decomposition of iron carbonyl Fe(CO) 5 and Fe 2 (CO) 9 in liquid phase gave amorphous and crystalline iron powders in the absence and presence of catalyst, respectively. The hyperfine fields were large in amorphous phases prepared from Fe(CO) 5 than from Fe 2 (CO) 9 . Crystalline iron, iron carbide and a trace amount of Fe 3 O 4 were detected in the decomposition products of the amorphous phase prepared from Fe(CO) 5 , and iron carbide was mainly included in the decomposition products of the amorphous phase prepared from Fe 2 (CO) 9 . (orig.)

  2. Production and properties of light-metal base amorphous alloys

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Masumoto, Tsuyoshi

    1993-01-01

    Light-metal base alloys with high specific strength and good corrosion resistance were produced through amorphization of Al and Mg-based alloys. The amorphous phase is formed in rapidly solidified Al-TM-Ln and Mg-TM-Ln (TM=transition metal, Ln=lanthanide metal) alloys. The highest tensile strength (σ f ) reaches 1,330 MPa for the Al base and 830 MPa for the Mg base. Furthermore, the Mg-based alloys have a large glass-forming capacity which enables to produce an amorphous phase by a metallic mold casting method. The extrusion of the Al-based amorphous powders at temperatures above crystallization temperature caused the formation of high strength materials with finely mixed structure consisting of dispersed intermetallic compounds in an Al matrix. The highest values of σ f and fatigue limit are as high as 940 and 313 MPa, respectively, at room temperature and 520 and 165 MPa at 473 K. The extruded Al-Ni-Mm alloy has already been used as machine parts and subsequent further development as practical materials is expected by taking these advantages

  3. Amorphous metallic alloys for oxygen reduction reaction in a polymer electrolyte membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Huerta, R.; Guerra-Martinez, I.; Lopez, J.S. [Inst. Politecnico Nacional, ESIQIE, Mexico City (Mexico). Lab. de Electroquimica; Pierna, A.R. [Basque Country Univ., San Sebastian (Spain). Dept. of Chemical Engineering and Environment; Solorza-Feria, O. [Inst. Politenico Nacional, Centro de Investigacion y de Estudios Avanzados, Mexico City (Mexico). Dept. de Quimica

    2010-07-15

    Direct methanol fuel cells (DMFC) and polymer electrolyte membrane fuel cells (PEMFC) represent an important, environmentally clean energy source. This has motivated extensive research on the synthesis, characterization and evaluation of novel and stable oxygen reduction electrocatalysts for the direct four-electron transfer process to water formation. Studies have shown that amorphous alloyed compounds can be used as electrode materials in electrochemical energy conversion devices. Their use in PEMFCs can optimize the electrocatalyst loading in the membrane electrode assembly (MEA). In this study, amorphous metallic PtSn, PtRu and PtRuSn alloys were synthesized by mechanical milling and used as cathodes for the oxygen reduction reaction (ORR) in sulphuric acid and in a single PEM fuel cell. Two different powder morphologies were observed before and after the chemical activation in a hydrofluoric acid (HF) solution at 25 degrees C. The kinetics of the ORR on the amorphous catalysts were investigated. The study showed that the amorphous metallic PtSn electrocatalyst was the most active of the 3 electrodes for the cathodic reaction. Fuel cell experiments were conducted at various temperatures at 30 psi for hydrogen (H{sub 2}) and at 34 psi for oxygen (O{sub 2}). MEAs made of Nafion 115 and amorphous metallic PtSn dispersed on carbon powder in a PEMFC had a power density of 156 mW per cm{sup 2} at 0.43V and 80 degrees C. 12 refs., 1 tab., 5 figs.

  4. Biomass Feedstock National User Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Bioenergy research at the Biomass Feedstock National User Facility (BFNUF) is focused on creating commodity-scale feed-stocks from native biomass that meet the needs...

  5. Example of feedstock optimization

    International Nuclear Information System (INIS)

    Boustros, E.

    1991-01-01

    An example of feedstock optimization at an olefins plant which has the flexibility to process different kinds of raw materials while maintaining the same product slate, is presented. Product demand and prices, and the number of units in service as well as the required resources to operate these units are considered to be fixed. The plant profitability is a function of feedstock choice, plus constant costs which are the non-volume related costs. The objective is to find a set or combination of feedstocks that could match the client product demands and fall within the unit's design and capacity, while maximizing the financial operating results

  6. The effect of structural changes during sintering on the electric and magnetic traits of the Ni96.7Mo3.3 alloy nanostructured powder

    Directory of Open Access Journals (Sweden)

    Ribić-Zelenović L.

    2009-01-01

    Full Text Available Ni96.7Mo3.3 powder was electrochemically obtained. An X-ray diffraction analysis determined that the powder consisted of a 20% amorphous and 80% crystalline phase. The crystalline phase consisted of a nanocrystalline solid nickel and molybdenum solution with a face-centred cubic (FCC lattice with a high density of chaotically distributed dislocations and high microstrain value. The scanning electronic microscopy (SEM showed that two particle structures were formed: larger cauliflower-like particles and smaller dendriteshaped ones. The thermal stability of the alloy was examined by differential scanning calorimetry (DSC and by measuring the temperature dependence of the electrical resistivity and magnetic permeability. Structural powder relaxation was carried out in the temperature range of 450 K to 560 K causing considerable changes in the electrical resistivity and magnetic permeability. Upon structural relaxation, the magnetic permeability of the cooled alloy was about 80% higher than the magnetic permeability of the fresh powder. The crystallisation of the amorphous portion of the powder and crystalline grain increase occurred in the 630 K to 900 K temperature interval. Upon crystallisation of the amorphous phase and crystalline grain increase, the powder had about 50% lower magnetic permeability than the fresh powder and 3.6 times lower permeability than the powder where only structural relaxation took place.

  7. Effect of process control agent on the structural and magnetic properties of nano/amorphous Fe0.7Nb0.1Zr0.1Ti0.1 powders prepared by high energy ball milling

    Science.gov (United States)

    Khazaei Feizabad, Mohammad Hossein; Sharafi, Shahriar; Khayati, Gholam Reza; Ranjbar, Mohammad

    2018-03-01

    In this study, amorphous Fe0.7Nb0.1Zr0.1Ti0.1 alloy without metalloids was produced by mechanical alloying of pure mixture elements. Miedema's semi-empirical model was employed to predict the possibility of amorphous phase formation in proposed alloying system. The effect of Hexane as process control agent (PCA) on the structural, magnetic, morphological and thermal properties of the products was investigated. The results showed that the presence of PCA was necessary for the formation of amorphous phase as well as improved its soft magnetic properties. The PCA addition causes an increase of the saturation magnetization (about 43%) and decrease of the coercivity (about 50%). Moreover, the sample milled without PCA, showed a wide particle size distribution as well as relatively spherical geometry. While, in the presence of PCA the powders were aspherical and Polygon. In addition, the crystallization and Curie temperatures were found to be around 800 °C and 650 °C, respectively which are relatively high values for these kinds of alloys.

  8. Interaction in polysilazane/SiC powder systems

    Energy Technology Data Exchange (ETDEWEB)

    Boiteux, Y.P.

    1992-07-01

    Consolidation of ceramic precursor ceramic powder systems upon heating is investigated. A polysilazane (silicon nitride precursor) is chosen as ceramic precursor with a filler of a sub-micron SiC powder. A scheme to optimize the volume fraction of precursor is developed in order to maximize the density of the compacted samples in the green state. Different techniques are presented to improve the homogeneity of precursor distribution in the mixture. A microencapsulation technique is developed that leads to a uniform coating of precursor on individual SiC particles. Upon pyrolysis of systems with 20 wt% polysilazane, little shrinkage occurs. The SiC particles do not coarsen during the heat treatment. The precursor, upon pyrolysis, transforms into an amorphous ceramic phase that acts as a cement between SiC particles. This cement phase can remain amorphous up to 1500{degrees}C; and is best described as a siliconoxycarbide with or without traces of nitrogen. Elimination of nitrogen in the amorphous phase indicates that the filler material (SiC) has a strong influence on the pyrolysis behavior of the chosen polysilazane. The amorphous ceramic phase may crystallize between 1400 and 1500{degrees}C, and depending on the nature of the gas environment, the crystalline phases are SiC, Si or Si{sub 3}N{sub 4}. Mechanisms explaining the strength increase upon heat treatment are proposed. Redistribution of the precursor occurs by capillary forces or vapor phase diffusion and recondensation of volatile monomers. The confined pyrolysis of the precursor results in an increase of residual ceramic matter being decomposed inside the sample. Interfacial reaction between the native silica-rich surface layer on SiC particles and the precursor derived phase explains the high strength of the materials.

  9. Mechanical alloying of Hf and Fe powders

    International Nuclear Information System (INIS)

    Mendoza Zelis, L.; Crespo, E.; Creus, M.; Damonte, L.C.; Sanchez, F.H.; Punte, G.

    1994-01-01

    Pure crystalline Hf and Fe powders were mixed and milled under an argon atmosphere. The evolution of the system with milling time was followed with Moessbauer effect spectroscopy and X-ray diffraction. The results indicate that in the first stages an amorphous Fe-rich alloy was gradually formed together with a solid solution of Hf in Fe beyond the solubility limit. (orig.)

  10. Spheroidization of silica powders by radio frequency inductively coupled plasma with Ar-H2 and Ar-N2 as the sheath gases at atmospheric pressure

    Science.gov (United States)

    Li, Lin; Ni, Guo-hua; Guo, Qi-jia; Lin, Qi-fu; Zhao, Peng; Cheng, Jun-li

    2017-09-01

    Amorphous spherical silica powders were prepared by inductively coupled thermal plasma treatment at a radio frequency of 36.2 MHz. The effects of the added content of hydrogen and nitrogen into argon (serving as the sheath gas), as well as the carrier gas flow rate, on the spheroidization rate of silica powders, were investigated. The prepared silica powders before and after plasma treatment were examined by scanning electron microscopy, X-ray diffraction, and laser granulometric analysis. Results indicated that the average size of the silica particles increased, and the transformation of crystals into the amorphous state occurred after plasma treatment. Discharge image processing was employed to analyze the effect of the plasma temperature field on the spheroidization rate. The spheroidization rate of the silica powder increased with the increase of the hydrogen content in the sheath gas. On the other hand, the spheroidization rate of the silica power first increased and then decreased with the increase of the nitrogen content in the sheath gas. Moreover, the amorphous content increased with the increase of the spheroidization rate of the silica powder.

  11. Phénomène de la transition vitreuse appliquée aux glucides alimentaires amorphes à l'état de poudre

    Directory of Open Access Journals (Sweden)

    Deroanne C.

    2009-01-01

    Full Text Available Glass transition phenomena applied to powdered amorphous food carbohydrates. During these last fifteen years, some food technologists and scientists have become aware of the importance of the glass transition, a thermal property of glassy or amorphous material, in food preparation processes. Recent studies have successfully correlated this fundamental notion to technofunctional changes within the powder. The aim of this paper is to present in a non exhaustive manner the relationship between glass transition characteristics and applications in food technology (caking, alterations, etc..

  12. Powder bed charging during electron-beam additive manufacturing

    International Nuclear Information System (INIS)

    Cordero, Zachary C.; Meyer, Harry M.; Nandwana, Peeyush; Dehoff, Ryan R.

    2017-01-01

    Electrons injected into the build envelope during powder bed electron-beam additive manufacturing can accumulate on the irradiated particles and cause them to repel each other. Under certain conditions, these electrostatic forces can grow so large that they drive the particles out of the build envelope in a process known as “smoking”. In the present work, we investigate the causes of powder bed charging and smoking during electron-beam additive manufacturing. In the first part of the paper, we characterize the surface chemistry of a common feedstock material—gas-atomized Ti-6Al-4V powder—and find that a thick, electrically insulating oxide overlayer encapsulates the particles. Based on these experimental results, we then formulate an analytical model of powder bed charging in which each particle is approximated as a capacitor, where the particle and its substrate are the electrodes and the oxide overlayer is the dielectric. Using this model, we estimate the charge distribution in the powder bed, the electrostatic forces acting on the particles, and the conditions under which the powder bed will smoke. It is found that the electrical resistivity of the oxide overlayer strongly influences the charging behavior of the powder bed and that a high resistivity promotes charge accumulation and consequent smoking. This analysis suggests new quality control and process design measures that can help suppress smoking.

  13. Determination of the fraction of amorphous phases in superconducting samples

    International Nuclear Information System (INIS)

    Gomes Junior, G.G.; Ogasawara, T.; Amorim, H.S.

    2010-01-01

    The study phase formation of high critical temperature superconducting (Bi, Pb) - 2223 by partial melting and recrystallization aims to improve the microstructure of the material. Was used for X-ray diffraction characterization of the phases present. The DDM method (Derivative Difference Minimization) was used for the refinement of structures, quantification of the phases and determination the fraction of this amorphous. The advantage this method is not necessary to introduce an internal standard to determine the amorphous fraction. Were observed in the powder precursor phases (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O x (Bi, Pb) -2223, 93% of the sample, Bi 2 Sr 2 CaCu 2 O y (Bi-2212) and Bi 2 Sr 2 CuO z (Bi-2201). The powder precursor was heat treated at 820-870 deg C. To minimize volatilization of lead, the material was placed in silver crucibles closed. To get a high recovery of (Bi, Pb) - 2223, the material was cooled slowly, due to slow kinetic of formation of this phase. We observed a partial recovery phase (Bi, Pb) -2223. (author)

  14. Formation, Physicochemical Characterization, and Thermodynamic Stability of the Amorphous State of Drugs and Excipients.

    Science.gov (United States)

    Martino, Piera Di; Magnoni, Federico; Peregrina, Dolores Vargas; Gigliobianco, Maria Rosa; Censi, Roberta; Malaj, Ledjan

    2016-01-01

    Drugs and excipients used for pharmaceutical applications generally exist in the solid (crystalline or amorphous) state, more rarely as liquid materials. In some cases, according to the physicochemical nature of the molecule, or as a consequence of specific technological processes, a compound may exist exclusively in the amorphous state. In other cases, as a consequence of specific treatments (freezing and spray drying, melting and co-melting, grinding and compression), the crystalline form may convert into a completely or partially amorphous form. An amorphous material shows physical and thermodynamic properties different from the corresponding crystalline form, with profound repercussions on its technological performance and biopharmaceutical properties. Several physicochemical techniques such as X-ray powder diffraction, thermal methods of analysis, spectroscopic techniques, gravimetric techniques, and inverse gas chromatography can be applied to characterize the amorphous form of a compound (drug or excipient), and to evaluate its thermodynamic stability. This review offers a survey of the technologies used to convert a crystalline solid into an amorphous form, and describes the most important techniques for characterizing the amorphous state of compounds of pharmaceutical interest.

  15. Rapid formation of phase-clean 110 K (Bi-2223) powders derived via freeze-drying process

    Science.gov (United States)

    Balachandran, U.

    1996-06-04

    A process for the preparation of amorphous precursor powders for Pb-doped Bi{sub 2}Sr{sub 2} Ca{sub 2}Cu{sub 3}O{sub x} (2223) includes a freeze-drying process incorporating a splat-freezing step. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution without any phase separation; grinding the frozen flakes to form a powder; freeze-drying the frozen powder; heating the dried powder to form a dry green precursor powders; denitrating the green-powders; heating the denitrated powders to form phase-clean Bi-2223 powders. The grain boundaries of the 2223 grains appear to be clean, leading to good intergrain contact between 2223 grains. 11 figs.

  16. Proceedings. Feedstock preparation and quality 1997 workshop

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Jan Erik [ed.

    1998-06-01

    The IEA Bioenergy Feedstock Preparation and Quality 1997 Workshop dealt with fuel feedstock quality improvement and methods to determine feedstock properties. It was arranged by the Swedish Univ. of Agricultural Sciences on behalf of the IEA Bioenergy Task XII Activity 4.1 Feedstock Preparation and Quality. This Activity is a 3-year cooperation 1995-1997 between Denmark, Sweden and the USA, mainly based on information exchange. The workshop had two sections: presentations by invited experts, and country reports on recent development in feedstock preparation and quality in the three participating countries. Separate abstracts have been prepared for four of the six papers presented

  17. Influence of feedstock chemical composition on product formation and characteristics derived from the hydrothermal carbonization of mixed feedstocks.

    Science.gov (United States)

    Lu, Xiaowei; Berge, Nicole D

    2014-08-01

    As the exploration of the carbonization of mixed feedstocks continues, there is a distinct need to understand how feedstock chemical composition and structural complexity influence the composition of generated products. Laboratory experiments were conducted to evaluate the carbonization of pure compounds, mixtures of the pure compounds, and complex feedstocks comprised of the pure compounds (e.g., paper, wood). Results indicate that feedstock properties do influence carbonization product properties. Carbonization product characteristics were predicted using results from the carbonization of the pure compounds and indicate that recovered solids energy contents are more accurately predicted than solid yields and the carbon mass in each phase, while predictions associated with solids surface functional groups are more difficult to predict using this linear approach. To more accurately predict carbonization products, it may be necessary to account for feedstock structure and/or additional feedstock properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Effect of amorphous Mg50Ni50 on hydriding and dehydriding behavior of Mg2Ni alloy

    International Nuclear Information System (INIS)

    Guzman, D.; Ordonez, S.; Fernandez, J.F.; Sanchez, C.; Serafini, D.; Rojas, P.A.; Aguilar, C.; Tapia, P.

    2011-01-01

    Composite Mg 2 Ni (25 wt.%) amorphous Mg 50 Ni 50 was prepared by mechanical milling starting with nanocrystalline Mg 2 Ni and amorphous Mg 50 Ni 50 powders, by using a SPEX 8000 D mill. The morphological and microstructural characterization of the powders was performed via scanning electron microscopy and X-ray diffraction. The hydriding characterization of the composite was performed via a solid gas reaction method in a Sievert's-type apparatus at 363 K under an initial hydrogen pressure of 2 MPa. The dehydriding behavior was studied by differential thermogravimetry. On the basis of the results, it is possible to conclude that amorphous Mg 50 Ni 50 improved the hydriding and dehydriding kinetics of Mg 2 Ni alloy upon cycling. A tentative rationalization of experimental observations is proposed. - Research Highlights: → First study of the hydriding behavior of composite Mg 2 Ni (25 wt.%) amorphous Mg 50 Ni 50 . → Microstructural characterization of composite material using XRD and SEM was obtained. → An improved effect of Mg 50 Ni 50 on the Mg 2 Ni hydriding behavior was verified. → The apparent activation energy for the hydrogen desorption of composite was obtained.

  19. Pressure-induced amorphization of La1/3TaO3

    International Nuclear Information System (INIS)

    Noked, O.; Melchior, A.; Shuker, R.; Livneh, T.; Steininger, R.; Kennedy, B.J.; Sterer, E.

    2013-01-01

    La 1/3 TaO 3 , an A-site cation deficient perovskite, has been studied under pressure by synchrotron X-ray powder diffraction and Raman spectroscopy. It undergoes irreversible pressure induced amorphization at P=18.5 GPa. An almost linear unit cell volume decrease vs. pressure is observed from ambient pressure up to the phase transition. The Raman spectroscopy also shows amorphization at the same pressure, with positive shifts of all modes as a function of pressure. The pressure dependence of the E g and A 1g Raman modes arising from the octahedral oxygen network is discussed. - Graphical abstract: La 1/3 Tao 3 exhibits linear pressure–volume relation until irreversible pressure induced amorphization at 18.5 Gpa. - Highlights: • La 1/3 TaO 3 has been studied under pressure by synchrotron XRD and Raman spectroscopy. • La 1/3 TaO 3 undergoes irreversible pressure induced amorphization around 18.5 GPa. • The transition is manifested in both XRD and Raman measurements. • A linear P–V relation is observed from ambient pressure up to the phase transition

  20. Structure of the short-range atomic order of WO3 amorphous films

    International Nuclear Information System (INIS)

    Olevskij, S.S.; Sergeev, M.S.; Tolstikhina, A.L.; Avilov, A.S.; Shkornyakov, S.M.; Semiletov, S.A.

    1984-01-01

    To study the causes of electrochromism manifestation in thin tungsten oxide films, the structure of WO 3 amorphous films has been investigated. The films were obtained by three different methods: by W(CO) 6 tungsten carbonyl pyrolysis, by high-frequency ion-plasma sputtering of a target prepared by WO 3 powder sintering, and by WO 3 powder thermal evaporation. Monocrystalline wafers of silicon and sodium chloride were used as substrates. The structure of short-range order in WO 3 amorphous films varies versus, the method of preparation in compliance with the type of polyhedral elements, (WO 6 , WO 5 ) and with the character of their packing (contacts via edges or vertices). Manifestation of electroc ro mism in WO 3 films prepared by varions methods and having different structure of short-range order is supposed to be realized through various mechanisms. One cannot exclude a potential simultaneous effect of the two coloration mechanisms

  1. Liquid fuels from alternative feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Andrew, S

    1984-01-01

    The problem of fuels and feedstocks is not technological but political and financial. Methanol is discussed as the lowest cost gasoline substitute to produce. There are two possibilities included for production of methanol: from coal or lignite - either in the US or in Europe, or from natural gas. Biologically produced fuels and feedstocks have the advantage of being renewable. The use of agricultural feedstocks are discussed but only sugar, starch and cellulose are suitable. In the microbiological field, only the metabolic waste product ethanol is cheap enough for use.

  2. Methods for treating a metathesis feedstock with metal alkoxides

    Science.gov (United States)

    Cohen, Steven A.; Anderson, Donde R.; Wang, Zhe; Champagne, Timothy M.; Ung, Thay A.

    2018-04-17

    Various methods are provided for treating and reacting a metathesis feedstock. In one embodiment, the method includes providing a feedstock comprising a natural oil, chemically treating the feedstock with a metal alkoxide under conditions sufficient to diminish catalyst poisons in the feedstock, and, following the treating, combining a metathesis catalyst with the feedstock under conditions sufficient to metathesize the feedstock.

  3. Synthesis and characterization of lead zirconate titanate powders obtained by the oxidant peroxo method

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, Emerson R. [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Department of Chemistry, UFSCar-Federal University of Sao Carlos, Rod. Washington Luis km 235, CP 676, Sao Carlos SP, 13565-905 (Brazil)], E-mail: camargo@ufscar.br; Leite, Edson R. [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Department of Chemistry, UFSCar-Federal University of Sao Carlos, Rod. Washington Luis km 235, CP 676, Sao Carlos SP, 13565-905 (Brazil)], E-mail: derl@power.ufscar.br; Longo, Elson [Department of Biochemistry, Chemistry Institute of Araraquara, UNESP, Sao Paulo State University Rua Francisco Degni, CP 355 Araraquara SP, 14801-907 Brazil (Brazil)], E-mail: elson@iq.unesp.br

    2009-02-05

    Lead zirconate titanate (PbZr{sub 1-x}Ti{sub x}O{sub 3}) was synthesized by the 'oxidant peroxo method (OPM)' with 'x' between 0.25 and 0.50. Titanium metal was dissolved into a hydrogen peroxide/ammonia aqueous solution, followed by the addition of lead and zirconium nitrate solution. The amorphous precipitated precursor obtained was crystallized by heat treatment between 400 and 1000 deg. C. Images of transmission microscopy showed spherical particles with average diameter between 20 and 60 nm, and the presence of necks between particles treated at 700 deg. C. All of the unpressed powders were characterized by X-ray diffractometry and FT-Raman spectroscopy. Powder samples with 'x' up to 0.35 showed rhombohedral structure when treated at temperatures higher than 500 deg. C, and tetragonal structure when 'x' was higher than 0.40. Analysis of XRD and Raman spectroscopy of the precursor powders showed amorphous-like structures, however powders treated at 400 deg. C showed a structure identified as an intermediate pyrochlore phase, independently of the Zr and Ti mole ratio.

  4. Atomic pairwise distribution function analysis of the amorphous phase prepared by different manufacturing routes

    DEFF Research Database (Denmark)

    Boetker, Johan P.; Koradia, Vishal; Rades, Thomas

    2012-01-01

    was subjected to quench cooling thereby creating an amorphous form of the drug from both starting materials. The milled and quench cooled samples were, together with the crystalline starting materials, analyzed with X-ray powder diffraction (XRPD), Raman spectroscopy and atomic pair-wise distribution function...... (PDF) analysis of the XRPD pattern. When compared to XRPD and Raman spectroscopy, the PDF analysis was superior in displaying the difference between the amorphous samples prepared by milling and quench cooling approaches of the two starting materials....

  5. Fiscal 2000 survey report. Basic research on hot molding of amorphous ceramics; 2000 nendo amorphous netsukan ceramics seikeiho ni kansuru kiso kenkyu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Experiments were conducted on the plasticity processing of heat resistant ceramics making use of the viscous deformation of amorphous ceramics in the supercooled liquid temperature domain. Concerning the preparation of powder of amorphous ceramics, the plasma rotating electrode method of Institute for Materials Research, Tohoku University, was employed, and a bamboo leaf shaped amorphous flake was successfully fabricated by increasing the arc discharge current. In a search of texture easy to turn amorphous, it was observed that Al{sub 2}O{sub 3}-La{sub 2}O{sub 3} had a supercooled liquid domain of as large as 70K, and this enabled a conclusion that it was a promising candidate for hot molding in a supercooled liquid domain. In an experiment of molding in a supercooled liquid domain, Al{sub 2}O{sub 3}-Gd{sub 2}O{sub 3} was used in a press molding process. As the result, a compact bulk mold was obtained in a temperature domain far lower than in the case of conventional sintering. Crystallization had already advanced in all the molds experimentally fabricated by press molding, and this disabled a study of characteristics to be exhibited by an amorphous mold, but it was found that they had a compressive strength of approximately 1,800MPa. (NEDO)

  6. Synthesis and characterization of nanosized ceria powders by microwave-hydrothermal method

    International Nuclear Information System (INIS)

    Bonamartini Corradi, A.; Bondioli, F.; Ferrari, A.M.; Manfredini, T.

    2006-01-01

    Nanocrystalline ceria powders (CeO 2 ) have been prepared by adding NaOH to a cerium ammonium nitrate aqueous solution under microwave-hydrothermal conditions. In particular the effect of the synthesis conditions (time, pressure and concentration of both the precursor and the precipitant agent solutions) on the physical properties of the crystals have been evaluated. Microwave-hydrothermal treatment of 5 min at 13.4 atm allows to obtain almost crystallized powders (amorphous phase 4%) as underlined by Rietveld-reference intensity ratio (RIR) results

  7. Amorphization of thiamine chloride hydrochloride: A study of the crystallization inhibitor properties of different polymers in thiamine chloride hydrochloride amorphous solid dispersions.

    Science.gov (United States)

    Arioglu-Tuncil, Seda; Bhardwaj, Vivekanand; Taylor, Lynne S; Mauer, Lisa J

    2017-09-01

    Amorphous solid dispersions of thiamine chloride hydrochloride (THCl) were created using a variety of polymers with different physicochemical properties in order to investigate how effective the various polymers were as THCl crystallization inhibitors. THCl:polymer dispersions were prepared by lyophilizing solutions of THCl and amorphous polymers (guar gum, pectin, κ-carrageenan, gelatin, and polyvinylpyrrolidone (PVP)). These dispersions were stored at select temperature (25 and 40°C) and relative humidity (0, 23, 32, 54, 75, and 85% RH) conditions and monitored at different time points using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). Moisture sorption isotherms of all samples were also obtained. Initially amorphous THCl was produced in the presence of ≥40% w/w pectin, κ-carrageenan, gelatin, and guar gum or ≥60% w/w PVP. Trends in polymer THCl crystallization inhibition (pectin≥κ-carrageenan>gelatin>guar gum≫PVP) were primarily based on the ability of the polymer to interact with THCl via hydrogen bonding and/or ionic interactions. The onset of THCl crystallization from the amorphous dispersions was also related to storage conditions. THCl remained amorphous at low RH conditions (0 and 23% RH) in all 1:1 dispersions except THCl:PVP. THCl crystallized in some dispersions below the glass transition temperature (T g ) but remained amorphous in others at T~T g . At high RHs (75 and 85% RH), THCl crystallized within one day in all samples. Given the ease of THCl amorphization in the presence of a variety of polymers, even at higher vitamin concentrations than would be found in foods, it is likely that THCl is amorphous in many low moisture foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Development of equipment for fabricating DUPIC fuel powder

    International Nuclear Information System (INIS)

    Kim, Ki Ho; Yang, M. S.; Park, J. J.; Lee, J. W.; Kim, J. H.; Cho, K. H.; Lee, D. Y.; Lee, Y. S.; Na, S. H.

    1999-06-01

    The powder fabrication processes, as the first stage of manufacturing DUPIC (Direct Use of PWR spent fuel In CANDU) fuel, consist of the slitting of spent PWR fuel rods, REOX (Oxidation and REduction of Oxide Fuels) processing to produce the powder feedstock, the milling of the produced powder, the granulation of the milled powder, and the mixing of the granulated powder with pressing lubricants. All these processes should be conducted by remote means in a hot-cell environment where the direct human access is limited to the strictest minimum due to the high radioactivity. This report describe the development of the equipment for fabricating DUPIC fuel powder. These equipment are Slitting Machine, Oxidation and Reduction (OREOX) Furnace, Mill, Roll Compactor, and Mixer. Remote design concept was applied to all the equipment for use in the M6 hot-cell of the IMEF. Mechanical design considerations and capabilities of the equipment for remote operation and maintenance are presented. First prototypes were developed and installed in the DUPIC full scale mock-up and tested using a master-slave manipulator. Redesign and reconstruction were made on each equipment based on mock-up test results. The remote technology acquired through this research was utilized in developing other equipment for DUPIC fuel fabrication, thereby improving safety and increasing productivity. This technology could also be extended to the area of remote handling equipment development for use in hazardous environments. (author). 14 refs., 9 tabs., 21 figs

  9. Development of equipment for fabricating DUPIC fuel powder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Ho; Yang, M. S.; Park, J. J.; Lee, J. W.; Kim, J. H.; Cho, K. H.; Lee, D. Y.; Lee, Y. S.; Na, S. H

    1999-06-01

    The powder fabrication processes, as the first stage of manufacturing DUPIC (Direct Use of PWR spent fuel In CANDU) fuel, consist of the slitting of spent PWR fuel rods, REOX (Oxidation and REduction of Oxide Fuels) processing to produce the powder feedstock, the milling of the produced powder, the granulation of the milled powder, and the mixing of the granulated powder with pressing lubricants. All these processes should be conducted by remote means in a hot-cell environment where the direct human access is limited to the strictest minimum due to the high radioactivity. This report describe the development of the equipment for fabricating DUPIC fuel powder. These equipment are Slitting Machine, Oxidation and Reduction (OREOX) Furnace, Mill, Roll Compactor, and Mixer. Remote design concept was applied to all the equipment for use in the M6 hot-cell of the IMEF. Mechanical design considerations and capabilities of the equipment for remote operation and maintenance are presented. First prototypes were developed and installed in the DUPIC full scale mock-up and tested using a master-slave manipulator. Redesign and reconstruction were made on each equipment based on mock-up test results. The remote technology acquired through this research was utilized in developing other equipment for DUPIC fuel fabrication, thereby improving safety and increasing productivity. This technology could also be extended to the area of remote handling equipment development for use in hazardous environments. (author). 14 refs., 9 tabs., 21 figs.

  10. New Polymorphic Forms of Pemetrexed Diacid and Their Use for the Preparation of Pharmaceutically Pure Amorphous and Hemipentahydrate Forms of Pemetrexed Disodium

    Directory of Open Access Journals (Sweden)

    Olga Michalak

    2015-07-01

    Full Text Available The preparation of stable amorphous pemetrexed disodium of pharmaceutical purity as well as the process optimization for the preparation of the hemipentahydrate form of pemetrexed disodium are described. Analytical methods for the polymorphic and chemical purity studies of pemetrexed disodium and pemetrexed diacid forms were developed. The physicochemical properties of the amorphous and hydrate forms of pemetrexed disodium, as well as new forms of pemetrexed diacid (a key synthetic intermediate were studied by thermal analysis and powder X-ray diffraction. High-performance liquid chromatography and gas chromatography methods were used for the chemical purity and residual solvents determination. In order to study the polymorphic and chemical stability of the amorphous and hemipentahydrate forms, a hygroscopicity test (25 °C, 80% RH was performed. Powder diffraction and high-performance liquid chromatography analyses revealed that the amorphous character and high chemical purity were preserved after the hygroscopicity test. The hemipentahydrate form transformed completely to the heptahydrate form of pemetrexed disodium. Both pemetrexed disodium forms were produced with high efficiency and pharmaceutical purity in a small commercial scale. Amorphous pemetrexed disodium was selected for further pharmaceutical development. Two new polymorphs (forms 1 and 2 of pemetrexed diacid were used for the preparation of high purity amorphous pemetrexed disodium.

  11. Formation of amorphous Ti-50at.%Pt by solid state reactions during mechanical alloying

    CSIR Research Space (South Africa)

    Mahlatji, ML

    2013-10-01

    Full Text Available Mechanical alloying of an equiatomic mixture of crystalline elemental powders of Ti and Pt in a high-energy ball mill results in formation of an amorphous alloy by solid-state reactions. Mechanical alloying was carried out in an argon atmosphere...

  12. Survey of Alternative Feedstocks for Commodity Chemical Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Robinson, Sharon M [ORNL

    2008-02-01

    The current high prices for petroleum and natural gas have spurred the chemical industry to examine alternative feedstocks for the production of commodity chemicals. High feedstock prices have driven methanol and ammonia production offshore. The U.S. Chemical Industry is the largest user of natural gas in the country. Over the last 30 years, alternatives to conventional petroleum and natural gas feedstocks have been developed, but have limited, if any, commercial implementation in the United States. Alternative feedstocks under consideration include coal from unconventional processing technologies, such as gasification and liquefaction, novel resources such as biomass, stranded natural gas from unconventional reserves, and heavy oil from tar sands or oil shale. These feedstock sources have been evaluated with respect to the feasibility and readiness for production of the highest volume commodity chemicals in the United States. Sources of organic compounds, such as ethanol from sugar fermentation and bitumen-derived heavy crude are now being primarily exploited for fuels, rather than for chemical feedstocks. Overall, government-sponsored research into the use of alternatives to petroleum feedstocks focuses on use for power and transportation fuels rather than for chemical feedstocks. Research is needed to reduce cost and technical risk. Use of alternative feedstocks is more common outside the United States R&D efforts are needed to make these processes more efficient and less risky before becoming more common domestically. The status of alternative feedstock technology is summarized.

  13. Evolution and Development of Effective Feedstock Specifications

    Energy Technology Data Exchange (ETDEWEB)

    Garold Gresham; Rachel Emerson; Amber Hoover; Amber Miller; William Bauer; Kevin Kenney

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blend stocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. The 2012 feedstock logistics milestone demonstrated that for high-yield areas that minimize the transportation distances of a low-density, unstable biomass, we could achieve a delivered cost of $35/ton. Based on current conventional equipment and processes, the 2012 logistics design is able to deliver the volume of biomass needed to fulfill the 2012 Renewable Fuel Standard’s targets for ethanol. However, the Renewable Fuel Standard’s volume targets are continuing to increase and are expected to peak in 2022 at 36 billion gallons. Meeting these volume targets and achieving a national-scale biofuels industry will require expansion of production capacity beyond the 2012 Conventional Feedstock Supply Design Case to access diverse available feedstocks, regardless of their inherent ability to meet preliminary biorefinery quality feedstock specifications. Implementation of quality specifications (specs), as outlined in the 2017 Design Case – “Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels” (in progress), requires insertion of deliberate, active quality controls into the feedstock supply chain, whereas the 2012 Conventional Design only utilizes passive quality controls.

  14. MECHANISMS CONTROLLING Ca ION RELEASE FROM SOL-GEL DERIVED IN SITU APATITE-SILICA NANOCOMPOSITE POWDER

    Directory of Open Access Journals (Sweden)

    Seyed Mohsen Latifi

    2015-03-01

    Full Text Available Ca ion release from bioactive biomaterials could play an important role in their bioactivity and osteoconductivity properties. In order to improve hydroxyapatite (HA dissolution rate, in situ apatite-silica nanocomposite powders with various silica contents were synthesized via sol-gel method and mechanisms controlling the Ca ion release from them were investigated. Obtained powders were characterized by X-ray diffraction (XRD and transmission electron spectroscopy (TEM techniques, acid dissolution test, and spectroscopy by atomic absorption spectrometer (AAS. Results indicated the possible incorporation of (SiO44- into the HA structure and tendency of amorphous silica to cover the surface of HA particles. However, 20 wt. % silica was the lowest amount that fully covered HA particles. All of the nanocomposite powders showed more Ca ion release compared with pure HA, and HA - 10 wt. % silica had the highest Ca ion release. The crystallinity, the crystallite size, and the content of HA, along with the integrity, thickness, and ion diffusion possibility through the amorphous silica layer on the surface of HA, were factors that varied due to changes in the silica content and were affected the Ca ion release from nanocomposite powders.

  15. Influence of Solvent Composition on the Performance of Spray-Dried Co-Amorphous Formulations

    Directory of Open Access Journals (Sweden)

    Jaya Mishra

    2018-04-01

    Full Text Available Ball-milling is usually used to prepare co-amorphous drug–amino acid (AA mixtures. In this study, co-amorphous drug–AA mixtures were produced using spray-drying, a scalable industrially preferred preparation method. The influence of the solvent type and solvent composition was investigated. Mixtures of indomethacin (IND and each of the three AAs arginine, histidine, and lysine were ball-milled and spray-dried at a 1:1 molar ratio, respectively. Spray-drying was performed at different solvent ratios in (a ethanol and water mixtures and (b acetone and water mixtures. Different ratios of these solvents were chosen to study the effect of solvent mixtures on co-amorphous formulation. Residual crystallinity, thermal properties, salt/partial salt formation, and powder dissolution profiles of the IND–AA mixtures were investigated and compared to pure crystalline and amorphous IND. It was found that using spray-drying as a preparation method, all IND–AA mixtures could be successfully converted into the respective co-amorphous forms, irrespective of the type of solvent used, but depending on the solvent mixture ratios. Both ball-milled and spray-dried co-amorphous samples showed an enhanced dissolution rate and maintained supersaturation compared to the crystalline and amorphous IND itself. The spray-dried samples resulting in co-amorphous samples were stable for at least seven months of storage.

  16. Amorphous phase formation in intermetallic Mg2Ni alloy synthesized by ethanol wet milling

    International Nuclear Information System (INIS)

    Wang, H.-W.; Chyou, S.-D.; Wang, S.-H.; Yang, M.-W.; Hsu, C.-Y.; Tien, H.-C.; Huang, N.-N.

    2009-01-01

    The hydriding/dehydriding properties of an intermetallic Mg 2 Ni alloy synthesized by wet ball milling in ethanol have been investigated. The appearance of the particle surface after different milling methods is one obvious difference. The alloyed powders prepared by either dry milling or wet milling under ethanol were characterized for phase content by X-ray diffractometer (XRD). The results show that two broad diffuse peaks, which are an ionic-organic-Mg amorphous material, appear in addition to the nickel element peaks. This unexpected amorphous phase has the special hydrogen absorbing/desorbing features.

  17. Performance comparison between crystalline and co-amorphous salts of indomethacin-lysine

    DEFF Research Database (Denmark)

    Kasten, Georgia; Nouri, Khatera; Grohganz, Holger

    2017-01-01

    The introduction of a highly water soluble amino acid as co-amorphous co-former has previously been shown to significantly improve the dissolution rate of poorly water soluble drugs. In this work, dry ball milling (DBM) and liquid assisted grinding (LAG) were used to prepare different physical...... forms of salts of indomethacin (IND) with the amino acid lysine (LYS), allowing the direct comparison of their solid-state properties to their in vitro performance. X-ray powder diffraction and Fourier-transformed infrared spectroscopy showed that DBM experiments led to the formation of a fully co......-amorphous salt, while LAG resulted in a crystalline salt. Differential scanning calorimetry showed that the samples prepared by DBM had a single glass transition temperature (Tg) of approx. 100°C for the co-amorphous salt, while a new melting point (223°C) was obtained for the crystalline salt prepared by LAG...

  18. Solid-state amorphization in the Ni-Zr system investigated by positron lifetime spectroscopy

    International Nuclear Information System (INIS)

    Bernal, M.J.; De La Cruz, R.M.; Leguey, T.; Pareja, R.; Riveiro, J.M.

    1995-01-01

    The process of mechanical alloying and amorphization of Ni-Zr powders is investigated by positron lifetime spectroscopy, X-ray diffraction and differential scanning calorimetry. The short-lived component of the lifetime spectra is composition and milling-time dependent. The second lifetime component, found during the initial stages of the milling process, appears to be due to annihilation from states trapped at crystalline interface joints. The results indicate that the solid-state reactions induced by ball milling involve the transformation and disappearance of the crystalline interface joints in the powder particles. (orig.)

  19. Investigation of the milling-induced thermal behavior of crystalline and amorphous griseofulvin.

    Science.gov (United States)

    Trasi, Niraj S; Boerrigter, Stephan X M; Byrn, Stephen Robert

    2010-07-01

    To gain a better understanding of the physical state and the unusual thermal behavior of milled griseofulvin. Griseofulvin crystals and amorphous melt quench samples were milled in a vibrating ball mill for different times and then analyzed using differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). Modulated DSC (mDSC) and annealing studies were done for the milled amorphous samples to further probe the effects of milling. Milling of griseofulvin crystals results in decrease in crystallinity and amorphization of the compound. A double peak is seen for crystallization in the DSC, which is also seen for the milled melt quench sample. Both enthalpy and temperature of crystallization decrease for the milled melt quenched sample. Tg is visible under the first peak with the mDSC, and annealing shows that increasing milling time results in faster crystallization upon storage. Milling of griseofulvin results in the formation of an amorphous form and not a mesophase. It increases the amount of surface created and the overall energy of the amorphous griseofulvin, which leads to a decreased temperature of crystallization. The two exotherms in the DSC are due to some particles having nuclei on the surface.

  20. Structural Relaxations and Thermodynamic Properties of Molecular Amorphous Solids by Mechanical Milling

    Science.gov (United States)

    Tsukushi, I.; Yamamuro, O.; Matsuo, T.

    The organic crystals of tri-O-methyl-β-cyclodextrin (TMCD) and its three clathrate compounds containing benzoic acid (BA), p-nitrobenzoic acid (NBA) and p-hydroxybenzoic acid (HBA), sucrose (SUC), salicin (SAL), phenolphthalein (PP), 1,3,5-tri-α-naphthylbenzene (TNB) were amorphized by milling with a vibrating mill for 2 ˜ 16 hours at room temperature. The amorphization was checked by differential scanning calorimetry (DSC) and X-ray powder diffraction. The heat capacities of crystals, liquid quenched glasses (LQG), and mechanically-milled amorphous solid (MMAS) of TMCD and TNB were measured with an adiabatic calorimeter in the temperature range between 12 and 375 K. For both compounds, the enthalpy relaxation of MMAS appeared in the wide temperature range below Tg and the released configurational enthalpy was much larger than that of LQG, indicating that MMAS is more disordered and strained than LQG.

  1. Health hazards due to the inhalation of amorphous silica

    Energy Technology Data Exchange (ETDEWEB)

    Merget, R.; Bruening, T. [Research Institute for Occupational Medicine (BGFA), Bochum (Germany); Bauer, T. [Bergmannsheil, University Hospital, Department of Internal Medicine, Division of Pneumonology, Allergology and Sleep Medicine, Bochum (Germany); Kuepper, H.U.; Breitstadt, R. [Degussa-Huels Corp., Wesseling (Germany); Philippou, S. [Department of Pathology, Augusta Krankenanstalten, Bochum (Germany); Bauer, H.D. [Research Institute for Hazardous Substances (IGF), Bochum (Germany)

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic (''thermal'' or ''fumed'') silica, and (3) chemically or physically modified silica. According to the different physico-chemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or

  2. Health hazards due to the inhalation of amorphous silica

    International Nuclear Information System (INIS)

    Merget, R.; Bruening, T.; Bauer, T.; Kuepper, H.U.; Breitstadt, R.; Philippou, S.; Bauer, H.D.

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic (''thermal'' or ''fumed'') silica, and (3) chemically or physically modified silica. According to the different physico-chemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or emphysema cannot be excluded. There is no

  3. Effect of thermal spray processing techniques on the microstructure and properties of Ni-based amorphous coatings

    International Nuclear Information System (INIS)

    Lee, S.M.; Moon, B.M.; Fleury, E.; Ahn, H.S.; Kim, D.H.; Kim, W.T.; Sordelet, D.J.

    2005-01-01

    Metallic amorphous materials have been widely developed thanks to the outstanding properties including high chemical stability, mechanical strength, and magnetic properties. However, with the exception of a few compositions, the limiting factor is the critical cooling rate for the formation of the amorphous phase. For many applications, it is only the contact surface properties that are important, thus the use, of coating techniques such as thermal sprayings has several attractive features. In this paper, we present the microstructure of Ni-based amorphous coatings prepared by laser cladding and vacuum plasma spraying. The utilization of plasma spraying to deposit atomized powder enabled the formation of fully amorphous coating, laser cladding resulted in mostly crystallized structures. Glass forming ability and wear properties of the coatings were discussed as a function of the coating microstructure. (orig.)

  4. Development of amorphous and nanocrystalline Al65Cu35-xZrx alloys by mechanical alloying

    International Nuclear Information System (INIS)

    Manna, I.; Chattopadhyay, P.P.; Banhart, F.; Fecht, H.J.

    2004-01-01

    Mechanical alloying of Al 65 Cu 35-x Zr x (x=5, 15 and 25 at.% Zr) elemental powder blends by planetary ball milling up to 50 h yields amorphous and/or nanocrystalline products. Microstructure of the milled product at different stages of milling has been characterized by X-ray diffraction, (XRD) high-resolution transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Among the different alloys synthesized by mechanical alloying, Al 65 Cu 20 Zr 15 yields a predominantly amorphous product, while the other two alloys develop a composite microstructure comprising nanocrystalline and amorphous solid solutions in Al 65 Cu 10 Zr 25 and nano-intermetallic phase/compound in Al 65 Cu 30 Zr 5 , respectively. The genesis of solid-state amorphization in Al 65 Cu 20 Zr 15 and Al 65 Cu 10 Zr 25 is investigated

  5. New experimental procedure for measuring volume magnetostriction on powder samples

    International Nuclear Information System (INIS)

    Rivero, G.; Multigner, M.; Valdes, J.; Crespo, P.; Martinez, A.; Hernando, A.

    2005-01-01

    Conventional techniques used for volume magnetostriction measurements, as strain gauge or cantilever method, are very useful for ribbons or thin films but cannot be applied when the samples are in powder form. To overcome this problem a new experimental procedure has been developed. In this work, the experimental set-up is described, together with the results obtained in amorphous FeCuZr powders, which exhibit a strong dependence of the magnetization on the strength of the applied magnetic field. The magnetostriction measurements presented in this work point out that this dependence is related to a magnetovolume effect

  6. Prediction of the FCC feedstocks crackability

    International Nuclear Information System (INIS)

    Martinez Cruz, Francy L; Navas Guzman, Gustavo; Osorio Suarez, Juan Pablo

    2009-01-01

    This paper presents a statistical model for prediction of feed stock's crackability (potential to generate valuable products on catalytic cracking process), based on experimental reactivity data by micro activity test (MAT - Microscale Fixed Bed Reactor) and detailed physicochemical characterization. A minimum amount of experimental tests corresponding to feed properties (typically available at refinery) is used to build a more complete description of feedstocks including chemical composition and hydrocarbon distribution. Both measured and calculated physicochemical properties are used to predict the yields of main products at several MAT reaction severities. Different well known functions correlating yields and conversion (previously tested with experimental data MAT) allows the evaluation of maximum point of gasoline yield. This point is used like a crackability index and qualitative point comparison of feed stock's potential. Extensive feedstocks data base from Instituto Colombiano del Petroleo (ICP) with a wide range of composition were used to build the model, including the following feeds: 1. Light feedstocks - Ga soils of refinery and laboratory cuts from different types of Colombian crude oils and 2. Heavy feedstocks - Residues or feedstocks combined (blending of ga soil [GO], atmospheric tower bottom [ATB], demetallized oil [DMO] and demetallized oil hydrotreated [DMOH] in several proportions) from the four fluid catalytic cracking units (FCCU) at Ecopetrol S.A. refinery in Barrancabermeja - Colombia. The results of model show the prediction of valuable products such as gasoline for different refinery feedstocks within acceptable accuracy, thus obtaining a reliable ranking of crackability.

  7. High-density amorphous ice: nucleation of nanosized low-density amorphous ice

    Science.gov (United States)

    Tonauer, Christina M.; Seidl-Nigsch, Markus; Loerting, Thomas

    2018-01-01

    The pressure dependence of the crystallization temperature of different forms of expanded high-density amorphous ice (eHDA) was scrutinized. Crystallization at pressures 0.05-0.30 GPa was followed using volumetry and powder x-ray diffraction. eHDA samples were prepared via isothermal decompression of very high-density amorphous ice at 140 K to different end pressures between 0.07-0.30 GPa (eHDA0.07-0.3). At 0.05-0.17 GPa the crystallization line T x (p) of all eHDA variants is the same. At pressures  >0.17 GPa, all eHDA samples decompressed to pressures  <0.20 GPa exhibit significantly lower T x values than eHDA0.2 and eHDA0.3. We rationalize our findings with the presence of nanoscaled low-density amorphous ice (LDA) seeds that nucleate in eHDA when it is decompressed to pressures  <0.20 GPa at 140 K. Below ~0.17 GPa, these nanosized LDA domains are latent within the HDA matrix, exhibiting no effect on T x of eHDA<0.2. Upon heating at pressures  ⩾0.17 GPa, these nanosized LDA nuclei transform to ice IX nuclei. They are favored sites for crystallization and, hence, lower T x . By comparing crystallization experiments of bulk LDA with the ones involving nanosized LDA we are able to estimate the Laplace pressure and radius of ~0.3-0.8 nm for the nanodomains of LDA. The nucleation of LDA in eHDA revealed here is evidence for the first-order-like nature of the HDA  →  LDA transition, supporting water’s liquid-liquid transition scenarios.

  8. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice

    Science.gov (United States)

    Lin, Chuanlong; Yong, Xue; Tse, John S.; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kenney-Benson, Curtis; Shen, Guoyin

    2017-09-01

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ˜1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.

  9. Bibliography on Biomass Feedstock Research: 1978-2002

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, J.H.

    2003-05-01

    This report provides bibliographic citations for more than 1400 reports on biomass feedstock development published by Oak Ridge National Laboratory and its collaborators from 1978 through 2002. Oak Ridge National Laboratory is engaged in analysis of biomass resource supplies, research on the sustainability of feedstock resources, and research on feedstock engineering and infrastructure. From 1978 until 2002, Oak Ridge National Laboratory also provided technical leadership for the U.S. Department of Energy's Bioenergy Feedstock Development Program (BFDP), which supported research to identify and develop promising energy crops. This bibliography lists reports published by Oak Ridge National Laboratory and by its collaborators in the BFDP, including graduate student theses and dissertations.

  10. Complex permeability and core loss of soft magnetic Fe-based nanocrystalline powder cores

    Energy Technology Data Exchange (ETDEWEB)

    Füzerová, Jana, E-mail: jana.fuzerova@tuke.sk [Faculty of Mechanical Engineering, Technical University, Letná 1, 042 00 Košice (Slovakia); Füzer, Ján; Kollár, Peter [Institute of Physics, P.J. Šafárik University, Park Angelinum 9, 040 23 Košice (Slovakia); Bureš, Radovan; Fáberová, Mária [Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 043 53 Košice (Slovakia)

    2013-11-15

    Rapidly quenched ribbons of Fe{sub 73}Cu{sub 1}Nb{sub 3}Si{sub 16}B{sub 7} were ball milled and cryomilled to get powder and warm consolidated to get bulk compacts. The data presented here are relative to different experimental procedures, one corresponding to milling at room temperature (sample R1) and the other corresponding to cryomilling at temperature of liquid nitrogen (sample L1). It was found that the properties of the initial powder influenced the density, the electrical resistivity and electromagnetic properties of the resulting bulk alloys. Permeability and core loss are structure sensitive and depend on factors such as powder size and shape, porosity, purity, and internal stress. Permeability spectra of sample R1 decreases with increasing the frequency and its values are larger than that for sample L1 at low frequencies. On the other hand the permeability of sample L1 remains steady up to 1 kHz and at certain frequency is larger than that for sample R1. Also there are different frequency dependences of the imaginary parts of permeability and loss factor, respectively. The cryomilling of the amorphous ribbon positively influences on the AC magnetic properties at higher frequencies (above 100 Hz) of resulting bulk sample. - Highlights: • We prepared two different amorphous powder vitroperm samples. • We have examined changes in the properties of the bulk samples prepared by compaction. • It was found that properties of the initial powder influence the density, the electrical resistivity and electromagnetic properties of the resulting bulk alloys.

  11. Possibility for hole doping into amorphous InGaZnO4 films prepared by RF sputtering

    International Nuclear Information System (INIS)

    Kobayashi, Kenkichiro; Kohno, Yoshiumi; Tomita, Yasumasa; Maeda, Yasuhisa; Matsushima, Shigenori

    2011-01-01

    Amorphous InGaZnO 4 (IGZO) films codoped with Al and N atoms were prepared by sputtering of targets consisting of IGZO and AlN powders in Ar + O 2 atmospheres. No hole-conductivity is seen in films deposited at 2 x 10 -3 Torr, whereas hole-conductivity is found in films deposited at 2 x 10 -2 Torr at radio frequency powers of 60-80 W in 0.3-0.6% O 2 atmospheres. The amorphous p-type IGZO film has the resistivity of 210 Wcm, hole-density of 7.5 x 10 17 cm -3 , and mobility of 0.4 cm 2 /Vs. The rectification characteristic is obtained for a device constructed from Au, amorphous p-type IGZO, and amorphous n-type IGZO. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Comprehensive characterization of ball-milled powders simulating a tribofilm system

    Energy Technology Data Exchange (ETDEWEB)

    Häusler, I., E-mail: ines.haeusler@bam.de; Dörfel, I., E-mail: Ilona.doerfel@bam.de; Peplinski, B., E-mail: Burkhard.peplinski@bam.de; Dietrich, P.M., E-mail: Paul.dietrich@yahoo.de; Unger, W.E.S., E-mail: Wolfgang.Unger@bam.de; Österle, W., E-mail: Werner.Oesterle@bam.de

    2016-01-15

    A model system was used to simulate the properties of tribofilms which form during automotive braking. The model system was prepared by ball milling of a blend of 70 vol.% iron oxides, 15 vol.% molybdenum disulfide and 15 vol.% graphite. The resulting mixture was characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and various transmission electron microscopic (TEM) methods, including energy dispersive X-ray spectroscopy (EDXS), high resolution investigations (HRTEM) with corresponding simulation of the HRTEM images, diffraction methods such as scanning nano-beam electron diffraction (SNBED) and selected area electron diffraction (SAED). It could be shown that the ball milling caused a reduction of the grain size of the initial components to the nanometer range. Sometimes even amorphization or partial break-down of the crystal structure was observed for MoS{sub 2} and graphite. Moreover, chemical reactions lead to a formation of surface coverings of the nanoparticles by amorphous material, molybdenum oxides, and iron sulfates as derived from XPS. - Highlights: • Ball milling of iron oxides, MoS{sub 2}, and graphite to simulate a tribofilm • Increasing coefficient of friction after ball milling of the model blend • Drastically change of the diffraction pattern of the powder mixture • TEM & XPS showed the components of the milled mixture and the process during milling. • MoS{sub 2} and graphite suffered a loss in translation symmetry or became amorphous.

  13. Scanning transmission electron microscopy analysis of Ge(O)/(graphitic carbon nitride) nanocomposite powder

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Masahiro [JEOL USA Inc., 11 Dearborn Road, Peabody, MA 01960 (United States); Sompetch, Kanganit [Department of Chemistry and Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sarakonsri, Thapanee, E-mail: tsarakonsri@gmail.com [Department of Chemistry and Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Shiojiri, Makoto [Kyoto Institute of Technology, Kyoto 606-8585 (Japan); School of Science and Engineering, University of Toyama, Toyama 930-8555 (Japan)

    2015-12-15

    Analytical electron microscopy has revealed the structure of particles that were synthesized by chemical reaction of GeO{sub 2} with NaBH{sub 4} in the basic solution including graphitic carbon nitride (g-C{sub 3}N{sub 4}) powders. The g-C{sub 3}N{sub 4} was arranged by recrystallization of melamine at 600 °C under N{sub 2} gas atmosphere. The samples were dried at 60 °C or 180 °C for 4 h. The g-C{sub 3}N{sub 4} was observed as lamellae of several ten nm or less in size and had an amorphous-like structure with a distorted lattice in an area as small as a few hundred pm in size. The reaction product was Ge(O) particles as fine as several nm in size and composed of Ge and O atoms. Most of the particles must be of GeO{sub 2−x} with the amorphous-like structure that has also a distorted lattice in an area of a few hundred pm in size. In the sample dried at 60 °C, the particles were found to be dispersed in a wide area on the g-C{sub 3}N{sub 4} lamella. It is hard to recognize those particles in TEM images. The particles in the sample dried at 180 °C became larger and were easily observed as isolated lumps. Hence, these powders can be regarded as GeO{sub 2}/g-C{sub 3}N{sub 4} or Ge/GeO{sub 2}/g-C{sub 3}N{sub 4} nanocomposites, and expected to be applicable to anode materials for high energy Li-ion batteries due to Ge catalysis effect, accordingly. - Graphical abstract: STEM analysis of Ge(O)/(graphitic carbon nitride) nanocomposite powder. - Highlights: • Graphitic (g)-C{sub 3}N{sub 4} powder was prepared at 600 °C by recrystallization of melamine. • Ge(O) was prepared by chemical reaction in a solution including the g-C{sub 3}N{sub 4} powders. • The products can be regarded as GeO{sub 2}/g-C{sub 3}N{sub 4} or Ge/GeO{sub 2}/g-C{sub 3}N{sub 4} nanocomposites. • GeO{sub 2} was amorphous several-nm particles and g-C{sub 3}N{sub 4} was amorphous lamella of several 10 nm in size. • We expect them to be applicable for high energy Li-ion battery anode

  14. Biomass Feedstock and Conversion Supply System Design and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Jacob J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Roni, Mohammad S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cafferty, Kara G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets

  15. Alternative, Renewable and Novel Feedstocks for Producing Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2007-07-01

    Vision2020 and ITP directed the Alternative, Renewable and Novel Feedstocks project to identify industrial options and to determine the work required to make alternative, renewable and novel feedstock options attractive to the U.S. chemicals industry. This report presents the Alternative, Renewable and Novel Feedstocks project findings which were based on a technology review and industry workshop.

  16. Amorphous structure evolution of high power diode laser cladded Fe–Co–B–Si–Nb coatings

    International Nuclear Information System (INIS)

    Zhu Yanyan; Li Zhuguo; Huang Jian; Li Min; Li Ruifeng; Wu Yixiong

    2012-01-01

    Highlights: ► Fabricated amorphous composited coating by high power diode laser cladding with single track. ► Lower dilution and higher scanning speed are desired to obtain higher amorphous phase fraction. ► White spots phase with high content of Nb embedded in the amorphous matrix. - Abstract: Fe–Co–B–Si–Nb coatings were fabricated on the surface of low carbon steel using high power diode laser cladding of [(Fe 0.5 Co 0.5 ) 0.75 B 0.2 Si 0.05 ] 95.7 Nb 4.3 amorphous powders at three different scanning speeds of 6, 17 and 50 m/s. At each scanning speed, laser power was optimized to obtain low dilution ratio. Scanning electron microscopy, X-ray diffraction, transmission electron microscopy with energy dispersive spectrometer and electron probe micro analysis were carried out to characterize the microstructure and chemical composition of the cladded coatings. Differential scanning calorimetry was also carried out to investigate the fraction of the amorphous phase. The results showed that dilution ratio and scanning speed were the two main factors for fabricating Fe–Co–B–Si–Nb amorphous coating by high power diode laser cladding. Low dilution ratio was crucial for the formation of amorphous phase. When the dilution ratio was low, the fraction of amorphous phase in the cladded coatings increased upon increasing the scanning speed.

  17. Development of ultrafine and pure amorphous and crystalline new materials and their fabrication process

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Kim, Y. E.; Kim, J. G.; Gu, J. H.; Yoon, N. K.; Seong, S. Y.; Ryu, S. E.; Lee, J. C.

    1996-07-01

    Based on an estimation of annual rice production of 5.2 Million tons, rice husks by-production reaches to 1.17 Million tons per year in Korea. distinguished to other corns, rice contains a lot of Si; 10 ∼ 20 % by weight in rice husks calculated as silica. The aim of this research project is to develop technologies for ceramic powders and materials utilizing the silica in rice husks called phytoliths. In this researches of the following subjects were performed; decomposition of the organic components, acid treatments, extraction of the organic matter, effect of gamma-ray irradiation on the acid treatment, plasma treatment, crystallization of silica powder, dispersion of amorphous silica powder, fabrication of ultrafine crystalline fibrous materials.. (author). 18 refs., 5 tabs., 55 figs

  18. Synthesis and densification of Cu added Fe-based BMG composite powders by gas atomization and electrical explosion of wire

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.C., E-mail: jckimpml@ulsan.ac.k [University of Ulsan, School of Materials Science and Engineering, Ulsan 680-749 (Korea, Republic of); Ryu, H.J.; Kim, J.S. [University of Ulsan, School of Materials Science and Engineering, Ulsan 680-749 (Korea, Republic of); Kim, B.K.; Kim, Y.J. [Department of Powder Materials, Korea Institute of Materials Science, Changwon 641-831 (Korea, Republic of); Kim, H.J. [Advanced Materials Division, Korea Institute of Industrial Technology, Incheon 406-130 (Korea, Republic of)

    2009-08-26

    In this study, the Fe-based (Fe-C-Si-B-P-Cr-Mo-Al) BMG powders were produced by the high pressure gas atomization process, and they were combined with the ductile Cu powders produced by the electrical explosion of wire (EEW). The Fe-based amorphous powders and Cu added BMG composite powders were compacted by the spark plasma sintering (SPS) processes into cylindrical shape. In the SPS press, the as-prepared powders were sintered at 793 K and 843 K. The relative density increased to 98% when the pressure increased up to 500 MPa by optimum control of the SPS process parameters. The micro-Vickers hardness was over 1100 Hv.

  19. Effect of amorphous Mg{sub 50}Ni{sub 50} on hydriding and dehydriding behavior of Mg{sub 2}Ni alloy

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, D., E-mail: danny.guzman@uda.cl [Departamento de Ingenieria en Metalurgia, Facultad de Ingenieria, Universidad de Atacama y Centro Regional de Investigacion y Desarrollo Sustentable de Atacama (CRIDESAT), Av. Copayapu 485, Copiapo (Chile); Ordonez, S. [Departamento de Ingenieria Metalurgica, Facultad de Ingenieria, Universidad de Santiago de Chile, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile); Fernandez, J.F.; Sanchez, C. [Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco 28049, Madrid (Spain); Serafini, D. [Departamento de Fisica, Facultad de Ciencias, Universidad de Santiago de Chile and Center for Interdisciplinary Research in Materials, CIMAT, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile); Rojas, P.A. [Escuela de Ingenieria Mecanica, Facultad de Ingenieria, Av. Los Carrera 01567, Quilpue, Pontificia Universidad Catolica de Valparaiso, PUCV (Chile); Aguilar, C. [Departamento de Ingenieria Metalurgica y Materiales, Universidad Tecnica Federico Santa Maria, Av. Espana 1680, Valparaiso (Chile); Tapia, P. [Departamento de Ingenieria en Metalurgia, Facultad de Ingenieria, Universidad de Atacama, Av. Copayapu 485, Copiapo (Chile)

    2011-04-15

    Composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50} was prepared by mechanical milling starting with nanocrystalline Mg{sub 2}Ni and amorphous Mg{sub 50}Ni{sub 50} powders, by using a SPEX 8000 D mill. The morphological and microstructural characterization of the powders was performed via scanning electron microscopy and X-ray diffraction. The hydriding characterization of the composite was performed via a solid gas reaction method in a Sievert's-type apparatus at 363 K under an initial hydrogen pressure of 2 MPa. The dehydriding behavior was studied by differential thermogravimetry. On the basis of the results, it is possible to conclude that amorphous Mg{sub 50}Ni{sub 50} improved the hydriding and dehydriding kinetics of Mg{sub 2}Ni alloy upon cycling. A tentative rationalization of experimental observations is proposed. - Research Highlights: {yields} First study of the hydriding behavior of composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50}. {yields} Microstructural characterization of composite material using XRD and SEM was obtained. {yields} An improved effect of Mg{sub 50}Ni{sub 50} on the Mg{sub 2}Ni hydriding behavior was verified. {yields} The apparent activation energy for the hydrogen desorption of composite was obtained.

  20. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    Science.gov (United States)

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  1. Synthesis of amorphous zirconium oxide with luminescent characteristics

    International Nuclear Information System (INIS)

    Barrera S, M.; Chavez G, M.; Soto E, A.M.; Velasquez O, C.; Garcia S, M.A.; Olvera T, L.; Rivera M, T.

    2004-01-01

    It was prepared zirconium oxide, ZrO 2 , by means of hydrolysis-condensation reactions (sol-gel method), using zirconium propoxide, Zr(C 3 H 7 O) 4 , as precursor and nitric acid, HNO 3 , as catalyst of the hydrolysis reaction. In this synthesis it was used a molar ratio water-alkoxide, r=n H2O /n Zr (C 3 H 7 0) 4 , high, similar to 200, so that the hydrolysis happens quickly and the nucleation and growth are completed in very little time. The solid was characterized with Ftir spectrophotometry, Differential thermal analysis (Dta), Thermal gravimetric analysis (T G), X-ray diffraction of powders, Scanning electron microscopy (Sem) and X-ray Dispersion energy (EDX). The ZrO 2 obtained by this way is amorphous even to 300 C and it consists of big aggregates. The amorphous ZrO 2 , presents thermoluminescent behavior, after it was irradiated with UV radiation and beta particles of 90 Sr/ 90 Y and it was thermally stimulated. (Author)

  2. Catalytic hydroprocessing of heavy oil feedstocks

    International Nuclear Information System (INIS)

    Okunev, A G; Parkhomchuk, E V; Lysikov, A I; Parunin, P D; Semeikina, V S; Parmon, V N

    2015-01-01

    A grave problem of modern oil refining industry is continuous deterioration of the produced oil quality, on the one hand, and increase in the demand for motor fuels, on the other hand. This necessitates processing of heavy oil feedstock with high contents of sulfur, nitrogen and metals and the atmospheric residue. This feedstock is converted to light oil products via hydrogenation processes catalyzed by transition metal compounds, first of all, cobalt- or nickel-promoted molybdenum and tungsten compounds. The processing involves desulfurization, denitrogenation and demetallization reactions as well as reactions converting heavy hydrocarbons to lighter fuel components. The review discusses the mechanisms of reactions involved in the heavy feedstock hydroprocessing, the presumed structure and state of the catalytically active components and methods for the formation of supports with the desired texture. Practically used and prospective approaches to catalytic upgrading of heavy oil feedstock as well as examples of industrial processing of bitumen and vacuum residues in the presence of catalysts are briefly discussed. The bibliography includes 140 references

  3. Catalytic hydroprocessing of heavy oil feedstocks

    Science.gov (United States)

    Okunev, A. G.; Parkhomchuk, E. V.; Lysikov, A. I.; Parunin, P. D.; Semeikina, V. S.; Parmon, V. N.

    2015-09-01

    A grave problem of modern oil refining industry is continuous deterioration of the produced oil quality, on the one hand, and increase in the demand for motor fuels, on the other hand. This necessitates processing of heavy oil feedstock with high contents of sulfur, nitrogen and metals and the atmospheric residue. This feedstock is converted to light oil products via hydrogenation processes catalyzed by transition metal compounds, first of all, cobalt- or nickel-promoted molybdenum and tungsten compounds. The processing involves desulfurization, denitrogenation and demetallization reactions as well as reactions converting heavy hydrocarbons to lighter fuel components. The review discusses the mechanisms of reactions involved in the heavy feedstock hydroprocessing, the presumed structure and state of the catalytically active components and methods for the formation of supports with the desired texture. Practically used and prospective approaches to catalytic upgrading of heavy oil feedstock as well as examples of industrial processing of bitumen and vacuum residues in the presence of catalysts are briefly discussed. The bibliography includes 140 references.

  4. Preparation of an amorphous sodium furosemide salt improves solubility and dissolution rate and leads to a faster Tmax after oral dosing to rats

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Gordon, Sarah; Holm, René

    2013-01-01

    Amorphous forms of furosemide sodium salt and furosemide free acid were prepared by spray drying. For the preparation of the amorphous free acid, methanol was utilised as the solvent, whereas the amorphous sodium salt was formed from a sodium hydroxide-containing aqueous solvent in equimolar...... amounts of NaOH and furosemide. Information about the structural differences between the two amorphous forms was obtained by Fourier Transform Infrared Spectroscopy (FTIR), and glass transition temperature (Tg) was determined using Differential Scanning Calorimetry (DSC). The stability and devitrification...... tendency of the two amorphous forms were investigated by X-ray Powder Diffraction (XRPD). The apparent solubility of the two amorphous forms and the crystalline free acid form of furosemide in various gastric and intestinal stimulated media was determined. Moreover, the dissolution characteristics...

  5. Novel Solid Encapsulation of Ethylene Gas Using Amorphous α-Cyclodextrin and the Release Characteristics.

    Science.gov (United States)

    Ho, Binh T; Bhandari, Bhesh R

    2016-05-04

    This research investigated the encapsulation of ethylene gas into amorphous α-cyclodextrins (α-CDs) at low (LM) and high (HM) moisture contents at 1.0-1.5 MPa for 24-120 h and its controlled release characteristics at 11.2-52.9% relative humidity (RH) for 1-168 h. The inclusion complexes (ICs) were characterized using X-ray diffractometry (XRD), nuclear magnetic resonance spectroscopy (CP-MAS (13)C NMR), and scanning electron microscopy (SEM). Ethylene concentrations in the ICs were from 0.45 to 0.87 mol of ethylene/mol CD and from 0.42 to 0.54 mol of ethylene/mol CD for LM and HM α-CDs, respectively. Ethylene gas released from the encapsulated powder at higher rates with increasing RH. An analysis of release kinetics using Avrami's equation showed that the LM and HM amorphous α-CDs were not associated with significant differences in release constant k and parameter n for any given RH condition. NMR spectra showed the presence of the characteristic carbon-carbon double bond of ethylene gas in the encapsulated α-CD powder.

  6. ASSERT FY16 Analysis of Feedstock Companion Markets

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hansen, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Jacob J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nguyen, Thuy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nair, Shyam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, Erin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hess, J. Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Meeting Co-Optima biofuel production targets will require large quantities of mobilized biomass feedstock. Mobilization is of key importance as there is an abundance of biomass resources, yet little is available for purchase, let alone at desired quantity and quality levels needed for a continuous operation, e.g., a biorefinery. Therefore Co-Optima research includes outlining a path towards feedstock production at scale by understanding routes to mobilizing large quantities of biomass feedstock. Continuing along the vertically-integrated path that pioneer cellulosic biorefineries have taken will constrain the bioenergy industry to high biomass yield areas, limiting its ability to reach biofuel production at scale. To advance the cellulosic biofuels industry, a separation between feedstock supply and conversion is necessary. Thus, in contrast to the vertically integrated supply chain, two industries are required: a feedstock industry and a conversion industry. The split is beneficial for growers and feedstock processers as they are able to sell into multiple markets. That is, depots that produce value-add feedstock intermediates that are fully fungible in both the biofuels refining and other, so-called companion markets. As the biofuel industry is currently too small to leverage significant investment in up-stream infrastructure build-up, it requires an established (companion) market to secure demand, which de-risks potential investments and makes a build-up of processing and other logistics infrastructure more likely. A common concern to this theory however is that more demand by other markets could present a disadvantage for biofuels production as resource competition may increase prices leading to reduced availability of low-cost feedstock for biorefineries. To analyze the dynamics across multiple markets vying for the same resources, particularly the potential effects on resource price and distribution, the Companion Market Model (CMM) has been developed in this

  7. ASSERT FY16 Analysis of Feedstock Companion Markets

    International Nuclear Information System (INIS)

    Lamers, Patrick; Hansen, Jason; Jacobson, Jacob J.; Nguyen, Thuy; Nair, Shyam; Searcy, Erin; Hess, J. Richard

    2016-01-01

    Meeting Co-Optima biofuel production targets will require large quantities of mobilized biomass feedstock. Mobilization is of key importance as there is an abundance of biomass resources, yet little is available for purchase, let alone at desired quantity and quality levels needed for a continuous operation, e.g., a biorefinery. Therefore Co-Optima research includes outlining a path towards feedstock production at scale by understanding routes to mobilizing large quantities of biomass feedstock. Continuing along the vertically-integrated path that pioneer cellulosic biorefineries have taken will constrain the bioenergy industry to high biomass yield areas, limiting its ability to reach biofuel production at scale. To advance the cellulosic biofuels industry, a separation between feedstock supply and conversion is necessary. Thus, in contrast to the vertically integrated supply chain, two industries are required: a feedstock industry and a conversion industry. The split is beneficial for growers and feedstock processers as they are able to sell into multiple markets. That is, depots that produce value-add feedstock intermediates that are fully fungible in both the biofuels refining and other, so-called companion markets. As the biofuel industry is currently too small to leverage significant investment in up-stream infrastructure build-up, it requires an established (companion) market to secure demand, which de-risks potential investments and makes a build-up of processing and other logistics infrastructure more likely. A common concern to this theory however is that more demand by other markets could present a disadvantage for biofuels production as resource competition may increase prices leading to reduced availability of low-cost feedstock for biorefineries. To analyze the dynamics across multiple markets vying for the same resources, particularly the potential effects on resource price and distribution, the Companion Market Model (CMM) has been developed in this

  8. Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys

    International Nuclear Information System (INIS)

    Kalay, Yunus Eren

    2008-01-01

    Remarkable advances have been made since rapid solidification was first introduced to the field of materials science and technology. New types of materials such as amorphous alloys and nanostructure materials have been developed as a result of rapid solidification techniques. While these advances are, in many respects, ground breaking, much remains to be discerned concerning the fundamental relationships that exist between a liquid and a rapidly solidified solid. The scope of the current dissertation involves an extensive set of experimental, analytical, and computational studies designed to increase the overall understanding of morphological selection, phase competition, and structural hierarchy that occurs under far-from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are the two different rapid solidification techniques applied in this study. The research is mainly focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet favorable, systems for exploration when alloyed with aluminum under far-from equilibrium conditions. One of the main differences comes from the positions of their respective T 0 curves, which makes Al-Si a good candidate for solubility extension while the plunging T 0 line in Al-Sm promotes glass formation. The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 to 50 wt% Si are examined using scanning and transmission electron microscopy. The non-equilibrium partitioning and morphological selection observed by examining powders at different size classes are described via a microstructure map. The interface velocities and the amount of undercooling present in the powders are estimated from measured eutectic spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which permit a direct comparison of theoretical predictions. For an average particle size of 10 (micro)m with a Peclet number of ∼0.2, JH and TMK deviate from each other. This

  9. Nanocrystalline AL2 O2 powders produced by laser induced gas phase reactions

    International Nuclear Information System (INIS)

    Borsella, E.; Botti, S.; Martelli, S.; Zappa, G.; Giorgi, R.; Turt, S.

    1993-01-01

    Nanocrystalline Al 2 O 3 powders were successfully synthesized by a CO 2 laser-driven gas-phase reaction involving trimethylaluminium (Al(CH 3 ) 3 ) and nitrous-oxide (N 2 O). Ethylene (C 2 H 4 ) was added as gas sensitizer. The as-synthesized powder particles showed a considerable carbon contamination and an amorphous-like structure. After thermal treatment at 1200-1400 degrees C, the powder was transformed to hexagonal a-Al 2 O 3 with very low carbon contamination as confirmed by X-ray diffraction, X-ray photo-electron spectroscopy and chemical analysis. The calcinated powders resulted to be spherical single crystal nanoparticles with a mean size of 15-20 nm, as determined by X-ray diffraction, electron microscopy and B.E.T. specific surface measurements. The laser synthesized Al 2 O 3 particles are well suited dispersoids for intermetallic alloy technology

  10. Production of grape juice powder obtained by freeze-drying after concentration by reverse osmosis

    Directory of Open Access Journals (Sweden)

    Poliana Deyse Gurak

    2013-12-01

    Full Text Available This study aimed to evaluate the freeze-drying process for obtaining grape juice powder by reverse osmosis using 50% grape juice pre-concentrated (28.5 °Brix and 50% hydrocolloids (37.5% maltodextrin and 12.5% arabic gum. The morphology of the glassy food showed the absence of crystalline structure, which was the amorphous wall that protected the contents of the powder. The samples were stored in clear and dark containers at room temperature, evaluated for their physical (X-ray diffraction for 65 days and chemical (polyphenol content stability for 120 days. During the storage time in plastic vessels, samples remained physically stable (amorphous and the phenolic concentration was constant, indicating the potentiality of this technique to obtain a stable product with a high concentration of phenolic compounds. Therefore, the freeze-drying process promoted the encapsulation of concentrated grape juice increasing its stability and shelf life, as well as proving to be an applicable process to food industry

  11. Inhibition effects of protein-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth

    International Nuclear Information System (INIS)

    Cao Ying; Wang Huajie; Cao Cui; Sun Yuanyuan; Yang Lin; Wang Baoqing; Zhou Jianguo

    2011-01-01

    In this article, a facile and environmentally friendly method was applied to fabricate BSA-conjugated amorphous zinc sulfide (ZnS) nanoparticles using bovine serum albumin (BSA) as the matrix. Transmission electron microscopy analysis indicated that the stable and well-dispersed nanoparticles with the diameter of 15.9 ± 2.1 nm were successfully prepared. The energy dispersive X-ray, X-ray powder diffraction, Fourier transform infrared spectrograph, high resolution transmission electron microscope, and selected area electron diffraction measurements showed that the obtained nanoparticles had the amorphous structure and the coordination occurred between zinc sulfide surfaces and BSA in the nanoparticles. In addition, the inhibition effects of BSA-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth were described in detail by cell viability analysis, optical and electron microscopy methods. The results showed that BSA-conjugated amorphous zinc sulfide nanoparticles could inhibit the metabolism and proliferation of human hepatocellular carcinoma cells, and the inhibition was dose dependent. The half maximal inhibitory concentration (IC50) was 0.36 mg/mL. Overall, this study suggested that BSA-conjugated amorphous zinc sulfide nanoparticles had the application potential as cytostatic agents and BSA in the nanoparticles could provide the modifiable site for the nanoparticles to improve their bioactivity or to endow them with the target function.

  12. Invasive plants as feedstock for biochar and bioenergy production.

    Science.gov (United States)

    Liao, Rui; Gao, Bin; Fang, June

    2013-07-01

    In this work, the potential of invasive plant species as feedstock for value-added products (biochar and bioenergy) through pyrolysis was investigated. The product yield rates of two major invasive species in the US, Brazilian Pepper (BP) and Air Potato (AP), were compared to that of two traditional feedstock materials, water oak and energy cane. Three pyrolysis temperatures (300, 450, and 600°C) and four feedstock masses (10, 15, 20, and 25 g) were tested for a total of 12 experimental conditions. AP had high biochar and low oil yields, while BP had a high oil yield. At lower temperatures, the minimum feedstock residence time for biochar and bioenergy production increased at a faster rate as feedstock weight increased than it did at higher temperatures. A simple mathematical model was successfully developed to describe the relationship between feedstock weight and the minimum residence time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Innovative technological paradigm-based approach towards biofuel feedstock

    International Nuclear Information System (INIS)

    Xu, Jiuping; Li, Meihui

    2017-01-01

    Highlights: • DAS was developed through an innovative approach towards literature mining and technological paradigm theory. • A novel concept of biofuel feedstock development paradigm (BFDP) is proposed. • The biofuel production diffusion velocity model gives predictions for the future. • Soft path appears to be the driving force for the new paradigm shift. • An integrated biofuel production feedstock system is expected to play a significant role in a low-carbon sustainable future. - Abstract: Biofuels produced from renewable energy biomass are playing a more significant role because of the environmental problems resulting from the use of fossil fuels. However, a major problem with biofuel production is that despite the range of feedstock that can be used, raw material availability varies considerably. By combining a series of theories and methods, the research objective of this study is to determine the current developments and the future trends in biofuel feedstock. By combining technological paradigm theory with literature mining, it was found that biofuel feedstock production development followed a three-stage trajectory, which was in accordance with the traditional technological paradigm – the S-curve. This new curve can be divided into BFDP (biofuel feedstock development paradigm) competition, BFDP diffusion, and BFDP shift. The biofuel production diffusion velocity model showed that there has been constant growth from 2000, with the growth rate reaching a peak in 2008, after which time it began to drop. Biofuel production worldwide is expected to remain unchanged until 2030 when a paradigm shift is expected. This study also illustrates the results of our innovative procedure – a combination of the data analysis system and the technological paradigm theory – for the present biofuel feedstock soft path that will lead to this paradigm shift, with integrated biofuel production feedstock systems expected to be a significant new trend.

  14. High strength nanostructured Al-based alloys through optimized processing of rapidly quenched amorphous precursors.

    Science.gov (United States)

    Kim, Song-Yi; Lee, Gwang-Yeob; Park, Gyu-Hyeon; Kim, Hyeon-Ah; Lee, A-Young; Scudino, Sergio; Prashanth, Konda Gokuldoss; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2018-01-18

    We report the methods increasing both strength and ductility of aluminum alloys transformed from amorphous precursor. The mechanical properties of bulk samples produced by spark-plasma sintering (SPS) of amorphous Al-Ni-Co-Dy powders at temperatures above 673 K are significantly enhanced by in-situ crystallization of nano-scale intermetallic compounds during the SPS process. The spark plasma sintered Al 84 Ni 7 Co 3 Dy 6 bulk specimens exhibit 1433 MPa compressive yield strength and 1773 MPa maximum strength together with 5.6% plastic strain, respectively. The addition of Dy enhances the thermal stability of primary fcc Al in the amorphous Al-TM -RE alloy. The precipitation of intermetallic phases by crystallization of the remaining amorphous matrix plays important role to restrict the growth of the fcc Al phase and contributes to the improvement of the mechanical properties. Such fully crystalline nano- or ultrafine-scale Al-Ni-Co-Dy systems are considered promising for industrial application because their superior mechanical properties in terms of a combination of very high room temperature strength combined with good ductility.

  15. Optimizing Compliance and Thermal Conductivity of Plasma Sprayed Thermal Barrier Coatings via Controlled Powders and Processing Strategies

    Science.gov (United States)

    Tan, Yang; Srinivasan, Vasudevan; Nakamura, Toshio; Sampath, Sanjay; Bertrand, Pierre; Bertrand, Ghislaine

    2012-09-01

    The properties and performance of plasma-sprayed thermal barrier coatings (TBCs) are strongly dependent on the microstructural defects, which are affected by starting powder morphology and processing conditions. Of particular interest is the use of hollow powders which not only allow for efficient melting of zirconia ceramics but also produce lower conductivity and more compliant coatings. Typical industrial hollow spray powders have an assortment of densities resulting in masking potential advantages of the hollow morphology. In this study, we have conducted process mapping strategies using a novel uniform shell thickness hollow powder to control the defect microstructure and properties. Correlations among coating properties, microstructure, and processing reveal feasibility to produce highly compliant and low conductivity TBC through a combination of optimized feedstock and processing conditions. The results are presented through the framework of process maps establishing correlations among process, microstructure, and properties and providing opportunities for optimization of TBCs.

  16. Inhibition of Recrystallization of Amorphous Lactose in Nanocomposites Formed by Spray-Drying.

    Science.gov (United States)

    Hellrup, Joel; Alderborn, Göran; Mahlin, Denny

    2015-11-01

    This study aims at investigating the recrystallization of amorphous lactose in nanocomposites. In particular, the focus is on the influence of the nano- to micrometer length scale nanofiller arrangement on the amorphous to crystalline transition. Further, the relative significance of formulation composition and manufacturing process parameters for the properties of the nanocomposite was investigated. Nanocomposites of amorphous lactose and fumed silica were produced by co-spray-drying. Solid-state transformation of the lactose was studied at 43%, 84%, and 94% relative humidity using X-ray powder diffraction and microcalorimetry. Design of experiments was used to analyze spray-drying process parameters and nanocomposite composition as factors influencing the time to 50% recrystallization. The spray-drying process parameters showed no significant influence. However, the recrystallization of the lactose in the nanocomposites was affected by the composition (fraction silica). The recrystallization rate constant decreased as a function of silica content. The lowered recrystallization rate of the lactose in the nanocomposites could be explained by three mechanisms: (1) separation of the amorphous lactose into discrete compartments on a micrometer length scale (compartmentalization), (2) lowered molecular mobility caused by molecular interactions between the lactose molecules and the surface of the silica (rigidification), and/or (3) intraparticle confinement of the amorphous lactose. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. [Glass transition of Chinese medicine extract powder and its application].

    Science.gov (United States)

    Luo, Xiao-Jian; Liu, Hui; Liang, Hong-Bo; Xiong, Lei; Rao, Xiao-Yong; Xie, Yin; He, Yan

    2017-01-01

    Glass transition theory is an important theory in polymer science, which is used to characterize the physical properties. It refers to the transition of amorphous polymer from the glassy state to the rubber state due to heating or the transition from rubber state to glassy state due to cooling. In this paper, the glassy state and glass transition of food and the similar relationship between the composition of Chinese medicine extract powder and food ingredients were described; the determination method for glass transition temperature (Tg) of Chinese medicine extract powder was established and its main influencing factors were analyzed. Meanwhile, the problems in drying process, granulation process and Chinese medicine extract powder and solid preparation storage were analyzed and investigated based on Tg, and then the control strategy was put forward to provide guidance for the research and production of Chinese medicine solid preparation. Copyright© by the Chinese Pharmaceutical Association.

  18. Biodiesel from non-food alternative feed-stock

    Science.gov (United States)

    As a potential feedstock for biodiesel (BD) production, Jojoba oil was extracted from Jojoba (Simmondsia chinensis L.) plant seeds that contained around 50-60 wt.%, which were explored as non-food alternative feedstocks. Interestingly, Jojoba oil has long-chain wax esters and is not a typical trigly...

  19. Biofuel Feedstock Assessment for Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64

  20. Biofuel Feedstock Assessment For Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply

  1. Processing Cost Analysis for Biomass Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Badger, P.C.

    2002-11-20

    The receiving, handling, storing, and processing of woody biomass feedstocks is an overlooked component of biopower systems. The purpose of this study was twofold: (1) to identify and characterize all the receiving, handling, storing, and processing steps required to make woody biomass feedstocks suitable for use in direct combustion and gasification applications, including small modular biopower (SMB) systems, and (2) to estimate the capital and operating costs at each step. Since biopower applications can be varied, a number of conversion systems and feedstocks required evaluation. In addition to limiting this study to woody biomass feedstocks, the boundaries of this study were from the power plant gate to the feedstock entry point into the conversion device. Although some power plants are sited at a source of wood waste fuel, it was assumed for this study that all wood waste would be brought to the power plant site. This study was also confined to the following three feedstocks (1) forest residues, (2) industrial mill residues, and (3) urban wood residues. Additionally, the study was confined to grate, suspension, and fluidized bed direct combustion systems; gasification systems; and SMB conversion systems. Since scale can play an important role in types of equipment, operational requirements, and capital and operational costs, this study examined these factors for the following direct combustion and gasification system size ranges: 50, 20, 5, and 1 MWe. The scope of the study also included: Specific operational issues associated with specific feedstocks (e.g., bark and problems with bridging); Opportunities for reducing handling, storage, and processing costs; How environmental restrictions can affect handling and processing costs (e.g., noise, commingling of treated wood or non-wood materials, emissions, and runoff); and Feedstock quality issues and/or requirements (e.g., moisture, particle size, presence of non-wood materials). The study found that over the

  2. Feedstock characterization and recommended procedures

    International Nuclear Information System (INIS)

    Chum, H.L.; Milne, T.A.; Johnson, D.K.; Agblevor, F.A.

    1993-01-01

    Using biomass for non-conventional applications such as feedstocks for fuels, chemicals, new materials, and electric power production requires knowledge of biomass characteristics important to these processes, and characterization techniques that are more appropriate than those employed today for conventional applications of food, feed, and fiber. This paper reviews feedstock characterization and standardization methodologies, and identifies research and development needs. It reviews the international cooperation involved in determining biomass characteristics and standards that has culminated in preparing four biomass samples currently available from the National Institute of Standards and Technology (NIST)

  3. Applications in the Nuclear Industry for Corrosion-Resistant Amorphous-Metal Thermal-Spray Coatings

    International Nuclear Information System (INIS)

    Farmer, J; Choi, J

    2007-01-01

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Fe-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for container applications, though the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas atomized powders and applied as near full density, non-porous coatings with the high-velocity oxy-fuel process. This paper summarizes the performance of these coatings as corrosion-resistant barriers, and as neutron absorbers. Relevant corrosion models are also discussed, as well as a cost model to quantify the economic benefits possible with these new materials

  4. Soft magnetic properties of bulk amorphous Co-based samples

    International Nuclear Information System (INIS)

    Fuezer, J.; Bednarcik, J.; Kollar, P.

    2006-01-01

    Ball milling of melt-spun ribbons and subsequent compaction of the resulting powders in the supercooled liquid region were used to prepare disc shaped bulk amorphous Co-based samples. The several bulk samples have been prepared by hot compaction with subsequent heat treatment (500 deg C - 575 deg C). The influence of the consolidation temperature and follow-up heat treatment on the magnetic properties of bulk samples was investigated. The final heat treatment leads to decrease of the coercivity to the value between the 7.5 to 9 A/m (Authors)

  5. Cryogenic homogenization and sampling of heterogeneous multi-phase feedstock

    Science.gov (United States)

    Doyle, Glenn Michael; Ideker, Virgene Linda; Siegwarth, James David

    2002-01-01

    An apparatus and process for producing a homogeneous analytical sample from a heterogenous feedstock by: providing the mixed feedstock, reducing the temperature of the feedstock to a temperature below a critical temperature, reducing the size of the feedstock components, blending the reduced size feedstock to form a homogeneous mixture; and obtaining a representative sample of the homogeneous mixture. The size reduction and blending steps are performed at temperatures below the critical temperature in order to retain organic compounds in the form of solvents, oils, or liquids that may be adsorbed onto or absorbed into the solid components of the mixture, while also improving the efficiency of the size reduction. Preferably, the critical temperature is less than 77 K (-196.degree. C.). Further, with the process of this invention the representative sample may be maintained below the critical temperature until being analyzed.

  6. Hygroscopic trend of lyophilized ‘mangaba’ pulp powder

    Directory of Open Access Journals (Sweden)

    Juliana Conegero

    Full Text Available ABSTRACT Mangaba is a widely-consumed fruit in the Northeast of Brazil, which is usually exploited through extractivism. This fruit is rich in various nutrients, especially in vitamin C, with pleasant taste and aroma. The lyophilization process transforms these fruits into amorphous powders, which must be analyzed regarding their properties and hygroscopic trend. Thus, the objective of this study was to characterize and evaluate the physico-chemical properties of adsorption isotherms of the lyophilized ‘mangaba’ pulp powder, with addition of maltodextrin (DE 20. The pH, titratable acidity, soluble solids, ascorbic acid and water activity were analyzed. Regarding the isotherms, the mathematical models of GAB, BET, Oswin, and Henderson were used at temperatures of 25, 30, 35 and 40 °C. The obtained powder presented pH of 3.14, titratable acidity of 1.95 mg of citric acid 100g-1 of powder, soluble solid contents of 99 ºBrix, ascorbic acid content of 55.97 mg 100g-1 and water activity of 0.16. Henderson was the mathematical model that best fitted the data of the adsorption isotherms at the four evaluated temperatures, with average errors ranging from 5.76 to 9.70% and R2 from 0.9974 to 0.9995.

  7. Evidence of eutectic crystallization and transient nucleation in Al89La6Ni5 amorphous alloy

    DEFF Research Database (Denmark)

    Zhuang, Yanxin; Jiang, Jianzhong; Lin, Z. G.

    2001-01-01

    The phase evolution with the temperature and time in the process of crystallization of Al89La6Ni5 amorphous alloy has been investigated by in situ high-temperature and high-pressure x-ray powder diffraction using synchrotron radiation. Two crystalline phases, fcc-Al and a metastable bcc-(AlNi)(11...

  8. Production and characterization of amorphous and crystalline zirconium phosphate for using as ion exchanger

    International Nuclear Information System (INIS)

    Medeiros, F.F.P.; Serafim, M.J.S.

    1996-01-01

    This work presents and discusses the results obtained from the development of sintered zirconium phosphates in their amorphous and crystalline structures aimed to be used as ionic exchanger. Such materials, prepared with suitable stoichiometric formula, were obtained from zirconila chloride originated from brazilian zirconite. We have used chemical analysis along with thermogravimetric, differential thermogravimetric, and X-ray diffraction techniques to determine the synthesis parameters obtained from on techniques to determine the synthesis parameters obtained from the suitable powders. The physical characteristics of the samples were available from the analysis of surface area, size and shape of the particles and agglomerates and also from the porosity of the powders. (author)

  9. Structure and thermal stability of biodegradable Mg-Zn-Ca based amorphous alloys synthesized by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Moni Kanchan; Chou, Da-Tren; Hong, Daeho; Saha, Partha [Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Chung, Sung Jae [Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Lee, Bouen [Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Sirinterlikci, Arif [Department of Engineering, Robert Morris University, Moon Township, Pittsburgh, PA 15108 (United States); Ramanathan, Madhumati; Roy, Abhijit [Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Kumta, Prashant N., E-mail: matscib@gmail.com [Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2011-12-15

    Room temperature solid state diffusion reaction induced by mechanical alloying (MA) of elemental blends of Mg, Zn and Ca of nominal composition 60 at.% Mg-35 at.% Zn-5 at.% Ca has been studied. Formation of fully amorphous structure has been identified after 5 h of MA performed in a SPEX 8000M shaker mill, with milling continued up to 8 h to confirm the formation of homogeneous amorphous phase. Thermal stability of the amorphous phase has been studied using differential scanning calorimetry (DSC) and isothermal heat treatment at different temperatures. The amorphous powder consolidated using cold isostatic pressing (CIP) showed an envelope density {approx}80% of absolute density, which increased to an envelope density {approx}84% of absolute density after sintering at an optimized temperature of {approx}523 K for 9 h. Electrochemical bio-corrosion testing of the CIP compacted amorphous pellet as well as the sintered pellet performed in Dulbecco's Modified Eagle Medium, showed improved corrosion resistance in comparison to the as-cast pure Mg. Cytotoxicity testing of the CIP compacted amorphous pellet, performed using the MTT assay with MC3T3 osteoblastic cells, showed low cytotoxicity in comparison to the as-cast pure Mg.

  10. The Stabilization of Amorphous Zopiclone in an Amorphous Solid Dispersion.

    Science.gov (United States)

    Milne, Marnus; Liebenberg, Wilna; Aucamp, Marique

    2015-10-01

    Zopiclone is a poorly soluble psychotherapeutic agent. The aim of this study was to prepare and characterize an amorphous form of zopiclone as well as the characterization and performance of a stable amorphous solid dispersion. The amorphous form was prepared by the well-known method of quench-cooling of the melt. The solid dispersion was prepared by a solvent evaporation method of zopiclone, polyvinylpyrrolidone-25 (PVP-25), and methanol, followed by freeze-drying. The physico-chemical properties and stability of amorphous zopiclone and the solid dispersion was studied using differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), hot-stage microscopy (HSM), X-ray diffractometry (XRD), solubility, and dissolution studies. The zopiclone amorphous solid-state form was determined to be a fragile glass; it was concluded that the stability of the amorphous form is influenced by both temperature and water. Exposure of amorphous zopiclone to moisture results in rapid transformation of the amorphous form to the crystalline dihydrated form. In comparison, the amorphous solid dispersion proved to be more stable with increased aqueous solubility.

  11. Red-clay ceramic powders as geopolymer precursors: Consideration of amorphous portion and CaO content

    Czech Academy of Sciences Publication Activity Database

    Keppert, M.; Vejmelková, E.; Bezdička, Petr; Doleželová, M.; Čáchová, M.; Scheinherrová, L.; Pokorný, J.; Vyšvařil, M.; Rovnaníková, P.; Černý, R.

    2018-01-01

    Roč. 161, SEP (2018), s. 82-89 ISSN 0169-1317 Institutional support: RVO:61388980 Keywords : Amorphous content * Calcium oxide * Composition * Geopolymers * Red-clay ceramics Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 3.101, year: 2016

  12. Transmission X-ray Diffraction (XRD) Patterns Relevant to the MSL Chemin Amorphous Component: Sulfates And Silicates

    Science.gov (United States)

    Morris, R. V.; Rampe, E. B.; Graff, T. G.; Archer, P. D., Jr.; Le, L.; Ming, D. W.; Sutter, B.

    2015-01-01

    The Mars Science Laboratory (MSL) CheMin instrument on the Curiosity rover is a transmission X-ray diffractometer (Co-Kalpha radiation source and a approx.5deg to approx.52deg 2theta range) where the analyzed powder samples are constrained to have discrete particle diameters XRD amorphous component. Estimates of amorphous component abundance, based on the XRD data itself and on mass-balance calculations using APXS data crystalline component chemistry derived from XRD data, martian meteorites, and/or stoichiometry [e.g., 6-9], range from approx.20 wt.% to approx.50 wt.% of bulk sample. The APXSbased calculations show that the amorphous component is rich in volatile elements (esp. SO3) and is not simply primary basaltic glass, which was used as a surrogate to model the broad band in the RN CheMin pattern. For RN, the entire volatile inventory (except minor anhydrite) is assigned to the amorphous component because no volatile-bearing crystalline phases were reported within detection limits [2]. For JK and CB, Fesaponite, basanite, and akaganeite are volatile-bearing crystalline components. Here we report transmission XRD patterns for sulfate and silicate phases relevant to interpretation of MSL-CheMin XRD amorphous components.

  13. Sol-gel synthesis and densification of aluminoborosilicate powders. Part 2: Densification

    Science.gov (United States)

    Bull, Jeffrey; Selvaduray, Guna; Leiser, Daniel

    1992-01-01

    Aluminoborosilicate (ABS) powders, high in alumina content, were synthesized by the sol-gel process utilizing four different methods of synthesis. The effect of these methods on the densification behavior of ABS powder compacts was studied. Five regions of shrinkage in the temperature range 25-1184 C were identified. In these regions, the greatest shrinkage occurred between the gel-to-glass transition temperature (T sub g approximately equal to 835 C) and the crystallization transformation temperature (T sub t approximately equal 900 C). The dominant mechanism of densification in this range was found to be viscous sintering. ABS powders were amorphous to x-rays up to T sub t at which a multiphasic structure crystallized. No 2Al2O3.B2O3 was found in these powders as predicted in the phase diagram. Above T sub t, densification was the result of competing mechanisms including grain growth and boria fluxed viscous sintering. Apparent activation energies for densification in each region varied according to the method of synthesis.

  14. Roller compaction: Effect of relative humidity of lactose powder.

    Science.gov (United States)

    Omar, Chalak S; Dhenge, Ranjit M; Palzer, Stefan; Hounslow, Michael J; Salman, Agba D

    2016-09-01

    The effect of storage at different relative humidity conditions, for various types of lactose, on roller compaction behaviour was investigated. Three types of lactose were used in this study: anhydrous lactose (SuperTab21AN), spray dried lactose (SuperTab11SD) and α-lactose monohydrate 200M. These powders differ in their amorphous contents, due to different manufacturing processes. The powders were stored in a climatic chamber at different relative humidity values ranging from 10% to 80% RH. It was found that the roller compaction behaviour and ribbon properties were different for powders conditioned to different relative humidities. The amount of fines produced, which is undesirable in roller compaction, was found to be different at different relative humidity. The minimum amount of fines produced was found to be for powders conditioned at 20-40% RH. The maximum amount of fines was produced for powders conditioned at 80% RH. This was attributed to the decrease in powder flowability, as indicated by the flow function coefficient ffc and the angle of repose. Particle Image Velocimetry (PIV) was also applied to determine the velocity of primary particles during ribbon production, and it was found that the velocity of the powder during the roller compaction decreased with powders stored at high RH. This resulted in less powder being present in the compaction zone at the edges of the rollers, which resulted in ribbons with a smaller overall width. The relative humidity for the storage of powders has shown to have minimal effect on the ribbon tensile strength at low RH conditions (10-20%). The lowest tensile strength of ribbons produced from lactose 200M and SD was for powders conditioned at 80% RH, whereas, ribbons produced from lactose 21AN at the same condition of 80% RH showed the highest tensile strength. The storage RH range 20-40% was found to be an optimum condition for roll compacting three lactose powders, as it resulted in a minimum amount of fines in the

  15. Heavy gas oils as feedstock for petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P.D. [Nova Chemicals Ltd., Calgary, AB (Canada); Du Plessis, D. [Alberta Energy Research Inst., Edmonton, AB (Canada)]|[Alberta Economic Development and Trade, Edmonton, AB (Canada)

    2004-07-01

    This presentation reviewed the possibilities for converting heavy aromatic compounds and gas oils obtained from Alberta bitumen into competitively priced feedstock for high value refined products and petrochemicals. Upgrading bitumen beyond synthetic crude oil to refined products and petrochemicals would add value to bitumen in Alberta by expanding the petrochemical industry by providing a secure market for co-products derived from the integration of bitumen upgrading and refining. This presentation also reviewed conventional feedstocks and processes; by-products from bitumen upgrading and refining; production of light olefins by the fluid catalytic cracking (FCC) and hydrocracking process; deep catalytic cracking, catalytic pyrolysis and PetroFCC processes; technical and economic evaluations; and opportunities and challenges. Conventional feeds for steam cracking were listed along with comparative yields on feedstock. The use of synthetic gas liquids from oil sands plants was also reviewed. Current FCC type processes for paraffinic feedstocks are not suitable for Alberta's bitumen, which require better technologies based on hydrotreating and new ring opening catalysts. tabs., figs.

  16. Feedstock and Conversion Supply System Design and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mohammad, R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cafferty, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kenney, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hansen, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The success of the earlier logistic pathway designs (Biochemical and Thermochemical) from a feedstock perspective was that it demonstrated that through proper equipment selection and best management practices, conventional supply systems (referred to in this report as “conventional designs,” or specifically the 2012 Conventional Design) can be successfully implemented to address dry matter loss, quality issues, and enable feedstock cost reductions that help to reduce feedstock risk of variable supply and quality and enable industry to commercialize biomass feedstock supply chains. The caveat of this success is that conventional designs depend on high density, low-cost biomass with no disruption from incremental weather. In this respect, the success of conventional designs is tied to specific, highly productive regions such as the southeastern U.S. which has traditionally supported numerous pulp and paper industries or the Midwest U.S for corn stover.

  17. Enhanced ductility in thermally sprayed titania coating synthesized using a nanostructured feedstock

    International Nuclear Information System (INIS)

    Lima, R.S.; Marple, B.R.

    2005-01-01

    Nanostructured and conventional titania (TiO 2 ) feedstock powders were thermally sprayed via high velocity oxy-fuel (HVOF). The microstructure, porosity, Vickers hardness, crack propagation resistance, bond strength (ASTM C633), abrasion behavior (ASTM G65) and the wear scar characteristics of these two types of coatings were analyzed and compared. The coating made from the nanostructured feedstock exhibited a bimodal microstructure, with regions containing particles that were fully molten (conventional matrix) and regions with embedded particles that were semi-molten (nanostructured zones) during the thermal spraying process. The bimodal coating also exhibited higher bond strength and higher wear resistance when compared to the conventional coating. By comparing the wear scars of both coatings (via scanning electron microscopy and roughness measurements) it was observed that when the coatings were subjected to the same abrasive conditions the wear scar of the bimodal coating was smoother, with more plastically deformed regions than the conventional coating. It was concluded that this enhanced ductility of the bimodal coating was caused by its higher toughness. The results suggest that nanostructured zones randomly distributed in the microstructure of the bimodal coating act as crack arresters, thereby enhancing toughness and promoting higher critical depth of cut, which provides a broader plastic deformation range than that exhibited by the conventional coating. This work provides evidence that the enhanced ductility of the bimodal coating is a nanostructured-related property, not caused by any other microstructural artifact

  18. Washington biofuel feedstock crop supply under output price and quantity uncertainty

    International Nuclear Information System (INIS)

    Zheng Qiujie; Shumway, C. Richard

    2012-01-01

    Subsidized development of an in-state biofuels industry has received some political support in the state of Washington, USA. Utilizing in-state feedstock supplies could be an efficient way to stimulate biofuel industries and the local economy. In this paper we estimate supply under output price and quantity uncertainty for major biofuel feedstock crops in Washington. Farmers are expected to be risk averse and maximize the utility of profit and uncertainty. We estimate very large Washington price elasticities for corn and sugar beets but a small price elasticity for a third potential feedstock, canola. Even with the large price elasticities for two potential feedstocks, their current and historical production levels in the state are so low that unrealistically large incentives would likely be needed to obtain sufficient feedstock supply for a Washington biofuel industry. Based on our examination of state and regional data, we find low likelihood that a Washington biofuels industry will develop in the near future primarily using within-state biofuel feedstock crops. - Highlights: ► Within-state feedstock crop supplies insufficient for Washington biofuel industry. ► Potential Washington corn and sugar beet supplies very responsive to price changes. ► Feedstock supplies more responsive to higher expected profit than lower risk. ► R and D for conversion of waste cellulosic feedstocks is potentially important policy.

  19. Amorphization and evolution of magnetic properties during mechanical alloying of Co{sub 62}Nb{sub 6}Zr{sub 2}B{sub 30}: Dependence on starting boron microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, L.M.; Blázquez, J.S., E-mail: jsebas@us.es; Ipus, J.J.; Conde, A.

    2014-02-05

    Highlights: • Mechanical alloying of Co{sub 62}Nb{sub 6}Zr{sub 2}B{sub 30} leads to amorphous phase with B inclusions. • Using optimized amorphous B, amorphization occurs earlier. • B is more effectively introduced in the matrix using amorphous B. • Magnetoelasic contribution to effective magnetic anisotropy is negligible. -- Abstract: Co{sub 62}Nb{sub 6}Zr{sub 2}B{sub 30} composition was mechanically alloyed using three different types of boron powders in the starting mixture: crystalline β-B, commercial amorphous B and optimized amorphous B via ball milling. Using optimized amorphous B, amorphization process of the alloy is more efficient but milling to optimize amorphous B introduces some iron contamination. Boron inclusions (100–150 nm in size) remain even after long milling times. However, using amorphous boron reduces the fraction of boron distributed as inclusions to ∼40% of the total B. Thermal stability at the end of the milling process is affected by the initial boron microstructure. Coercivity is reduced a half using amorphous B instead of crystalline B in the starting mixture.

  20. Security of feedstocks supply for future bio-ethanol production in Thailand

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.

    2010-01-01

    This study assesses the security of feedstock supply to satisfy the increased demand for bio-ethanol production based on the recent 15 years biofuels development plan and target (year 2008-2022) of the Thai government. Future bio-ethanol systems are modeled and the feedstock supply potentials analyzed based on three scenarios including low-, moderate- and high-yields improvement. The three scenarios are modeled and key dimensions including availability; diversity; and environmental acceptability of feedstocks supply in terms of GHG reduction are evaluated through indicators such as net feedstock balances, Shannon index and net life cycle GHG emissions. The results show that only the case of high yields improvement scenario can result in a reliable and sufficient supply of feedstocks to satisfy the long-term demands for bio-ethanol and other related industries. Cassava is identified as the critical feedstock and a reduction in cassava export is necessary. The study concludes that to enhance long-term security of feedstocks supply for sustainable bio-ethanol production in Thailand, increasing use of sugarcane juice as feedstock, improved yields of existing feedstocks and promoting production of bio-ethanol derived from agricultural residues are three key recommendations that need to be urgently implemented by the policy makers. - Research highlights: →Bioethanol in Thailand derived from molasses, cassava, sugarcane juice could yield reductions of 64%, 49% and 87% in GHGs when compared to conventional gasoline. →High yields improvement are required for a reliable and sufficient supply of molasses, cassava and sugarcane to satisfy the long-term demands for bio-ethanol and other related industries. →Other factors to enhance long-term security of feedstocks supply for sustainable bioethanol production in Thailand include increasing use of sugarcane juice as feedstock and promoting production of bioethanol derived from agricultural residues.

  1. N-type nano-silicon powders with ultra-low electrical resistivity as anode materials in lithium ion batteries

    Science.gov (United States)

    Yue, Zhihao; Zhou, Lang; Jin, Chenxin; Xu, Guojun; Liu, Liekai; Tang, Hao; Li, Xiaomin; Sun, Fugen; Huang, Haibin; Yuan, Jiren

    2017-06-01

    N-type silicon wafers with electrical resistivity of 0.001 Ω cm were ball-milled to powders and part of them was further mechanically crushed by sand-milling to smaller particles of nano-size. Both the sand-milled and ball-milled silicon powders were, respectively, mixed with graphite powder (silicon:graphite = 5:95, weight ratio) as anode materials for lithium ion batteries. Electrochemical measurements, including cycle and rate tests, present that anode using sand-milled silicon powder performed much better. The first discharge capacity of sand-milled silicon anode is 549.7 mAh/g and it is still up to 420.4 mAh/g after 100 cycles. Besides, the D50 of sand-milled silicon powder shows ten times smaller in particle size than that of ball-milled silicon powder, and they are 276 nm and 2.6 μm, respectively. In addition, there exist some amorphous silicon components in the sand-milled silicon powder excepting the multi-crystalline silicon, which is very different from the ball-milled silicon powder made up of multi-crystalline silicon only.

  2. Direct synthesis of nano-sized glass powders with spherical shape by RF (radio frequency) thermal plasma

    International Nuclear Information System (INIS)

    Seo, J.H.; Kim, J.S.; Lee, M.Y.; Ju, W.T.; Nam, I.T.

    2011-01-01

    A new route for obtaining very small, spheroid glass powders is demonstrated using an RF (radio frequency) thermal plasma system. During the process, four kinds of chemicals, here SiO 2 , B 2 O 3 , BaCO 3 , and K 2 CO 3 , were mixed at pre-set weight ratios, spray-dried, calcined at 250 deg. C for 3 h, and crushed into fragments. Then, they were successfully reformed into nano-sized amorphous powders (< 200 nm) with spherical shape by injecting them along the centerline of an RF thermal plasma reactor at ∼ 24 kW. The as-synthesized powders show negligible (< 1%) composition changes when compared with the injected precursors of raw material compounds.

  3. Effect of Blended Feedstock on Pyrolysis Oil Composition

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kristin M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gaston, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    Current techno-economic analysis results indicate biomass feedstock cost represents 27% of the overall minimum fuel selling price for biofuels produced from fast pyrolysis followed by hydrotreating (hydro-deoxygenation, HDO). As a result, blended feedstocks have been proposed as a way to both reduce cost as well as tailor key chemistry for improved fuel quality. For this study, two feedstocks were provided by Idaho National Laboratory (INL). Both were pyrolyzed and collected under the same conditions in the National Renewable Energy Laboratory's (NREL) Thermochemical Process Development Unit (TCPDU). The resulting oil properties were then analyzed and characterized for statistical differences.

  4. Low Thermal Conductivity of Bulk Amorphous Si1- x Ge x Containing Nano-Sized Crystalline Particles Synthesized by Ball-Milling Process

    Science.gov (United States)

    Muthusamy, Omprakash; Nishino, Shunsuke; Ghodke, Swapnil; Inukai, Manabu; Sobota, Robert; Adachi, Masahiro; Kiyama, Makato; Yamamoto, Yoshiyuki; Takeuchi, Tsunehiro; Santhanakrishnan, Harish; Ikeda, Hiroya; Hayakawa, Yasuhiro

    2018-06-01

    Amorphous Si0.65Ge0.35 powder containing a small amount of nano-sized crystalline particles was synthesized by means of the mechanical alloying process. Hot pressing for 24 h under the pressure of 400 MPa at 823 K, which is below the crystallization temperature, allowed us to obtain bulk amorphous Si-Ge alloy containing a small amount of nanocrystals. The thermal conductivity of the prepared bulk amorphous Si-Ge alloy was extremely low, showing a magnitude of less than 1.35 Wm-1 K-1 over the entire temperature range from 300 K to 700 K. The sound velocity of longitudinal and transverse waves for the bulk amorphous Si0.65Ge0.35 were measured, and the resulting values were 5841 m/s and 2840 m/s, respectively. The estimated mean free path of phonons was kept at the very small value of ˜ 4.2 nm, which was mainly due to the strong scattering limit of phonons in association with the amorphous structure.

  5. Bioenergy Feedstock Development Program Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.

    2001-02-09

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

  6. Biosynthesis of amorphous mesoporous aluminophosphates using yeast cells as templates

    International Nuclear Information System (INIS)

    Sifontes, Ángela B.; González, Gema; Tovar, Leidy M.; Méndez, Franklin J.; Gomes, Maria E.; Cañizales, Edgar; Niño-Vega, Gustavo; Villalobos, Hector; Brito, Joaquin L.

    2013-01-01

    Graphical abstract: Display Omitted Highlights: ► Amorphous aluminophosphates can take place using yeast as template. ► A mesoporous material was obtained. ► The specific surface area after calcinations ranged between 176 and 214 m 2 g −1 . -- Abstract: In this study aluminophosphates have been synthesized from aluminum isopropoxide and phosphoric acid solutions using yeast cells as template. The physicochemical characterization was carried out by thermogravimetric analysis; X-ray diffraction; Fourier transform infrared; N 2 adsorption–desorption isotherms; scanning electron microscopy; transmission electron microscopy and potentiometric titration with N-butylamine for determination of: thermal stability; crystalline structure; textural properties; morphology and surface acidity, respectively. The calcined powders consisted of an intimate mixture of amorphous and crystallized AlPO particles with sizes between 23 and 30 nm. The average pore size observed is 13–16 nm and the specific surface area after calcinations (at 650 °C) ranged between 176 and 214 m 2 g −1 .

  7. Biosynthesis of amorphous mesoporous aluminophosphates using yeast cells as templates

    Energy Technology Data Exchange (ETDEWEB)

    Sifontes, Ángela B., E-mail: asifonte@ivic.gob.ve [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); González, Gema [Centro de Ingeniería de Materiales y Nanotecnología, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Tovar, Leidy M.; Méndez, Franklin J. [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Gomes, Maria E. [Centro de Ingeniería de Materiales y Nanotecnología, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Cañizales, Edgar [Área de Análisis Químico Inorgánico, PDVSA, INTEVEP, Los Teques 1070-A (Venezuela, Bolivarian Republic of); Niño-Vega, Gustavo; Villalobos, Hector [Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Brito, Joaquin L. [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of)

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Amorphous aluminophosphates can take place using yeast as template. ► A mesoporous material was obtained. ► The specific surface area after calcinations ranged between 176 and 214 m{sup 2} g{sup −1}. -- Abstract: In this study aluminophosphates have been synthesized from aluminum isopropoxide and phosphoric acid solutions using yeast cells as template. The physicochemical characterization was carried out by thermogravimetric analysis; X-ray diffraction; Fourier transform infrared; N{sub 2} adsorption–desorption isotherms; scanning electron microscopy; transmission electron microscopy and potentiometric titration with N-butylamine for determination of: thermal stability; crystalline structure; textural properties; morphology and surface acidity, respectively. The calcined powders consisted of an intimate mixture of amorphous and crystallized AlPO particles with sizes between 23 and 30 nm. The average pore size observed is 13–16 nm and the specific surface area after calcinations (at 650 °C) ranged between 176 and 214 m{sup 2} g{sup −1}.

  8. Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings

    Science.gov (United States)

    Blink, J.; Farmer, J.; Choi, J.; Saw, C.

    2009-06-01

    Amorphous metal and ceramic thermal spray coatings have been developed with excellent corrosion resistance and neutron absorption. These coatings, with further development, could be cost-effective options to enhance the corrosion resistance of drip shields and waste packages, and limit nuclear criticality in canisters for the transportation, aging, and disposal of spent nuclear fuel. Iron-based amorphous metal formulations with chromium, molybdenum, and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials and their stability at high neutron doses enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for waste package and drip shield applications, although the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas-atomized powders and applied as near full density, nonporous coatings with the high-velocity oxy-fuel process. This article summarizes the performance of these coatings as corrosion-resistant barriers and as neutron absorbers. This article also presents a simple cost model to quantify the economic benefits possible with these new materials.

  9. Ecotoxicological characterization of biochars: role of feedstock and pyrolysis temperature.

    Science.gov (United States)

    Domene, X; Enders, A; Hanley, K; Lehmann, J

    2015-04-15

    Seven contrasting feedstocks were subjected to slow pyrolysis at low (300 or 350°C) and high temperature (550 or 600°C), and both biochars and the corresponding feedstocks tested for short-term ecotoxicity using basal soil respiration and collembolan reproduction tests. After a 28-d incubation, soil basal respiration was not inhibited but stimulated by additions of feedstocks and biochars. However, variation in soil respiration was dependent on both feedstock and pyrolysis temperature. In the last case, respiration decreased with pyrolysis temperature (r=-0.78; pmanagement recommendations. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kalay, Yunus Eren [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Remarkable advances have been made since rapid solidification was first introduced to the field of materials science and technology. New types of materials such as amorphous alloys and nanostructure materials have been developed as a result of rapid solidification techniques. While these advances are, in many respects, ground breaking, much remains to be discerned concerning the fundamental relationships that exist between a liquid and a rapidly solidified solid. The scope of the current dissertation involves an extensive set of experimental, analytical, and computational studies designed to increase the overall understanding of morphological selection, phase competition, and structural hierarchy that occurs under far-from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are the two different rapid solidification techniques applied in this study. The research is mainly focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet favorable, systems for exploration when alloyed with aluminum under far-from equilibrium conditions. One of the main differences comes from the positions of their respective T0 curves, which makes Al-Si a good candidate for solubility extension while the plunging T0 line in Al-Sm promotes glass formation. The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 to 50 wt% Si are examined using scanning and transmission electron microscopy. The non-equilibrium partitioning and morphological selection observed by examining powders at different size classes are described via a microstructure map. The interface velocities and the amount of undercooling present in the powders are estimated from measured eutectic spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which permit a direct comparison of theoretical predictions. For an average particle size of 10 {micro}m with a Peclet number of ~0.2, JH and TMK deviate from

  11. The effect of YBa2Cu3O7-x powder characteristics on thick coatings prepared by atmospheric plasma spraying

    International Nuclear Information System (INIS)

    Georgiopoulos, E.; Tsetsekou, A.

    2000-01-01

    The development of superconducting YBa 2 Cu 3 O 7-x plasma sprayed coatings on metal substrates can be very useful for applications such as targets for thin-film deposition techniques (sputtering, laser ablation, ion assisted deposition) or magnetic shielding, due to the brittle nature of bulk superconductors. The plasma spraying technique is very flexible and can be used for manufacturing components with a large variety of geometries. This technique requires the use of powders with good rheological characteristics. In this study, YBa 2 Cu 3 O 7-x powders were produced by using the conventional solid-state reaction route and also by spray drying a solution of nitrate precursors. Both powders, as well as mixtures of them, were plasma sprayed to develop coatings on stainless-steel substrates, with the aim of studying the effect of the feedstock powder characteristics on the coating properties. It was found that by optimizing the plasma spraying conditions, good quality coatings could be obtained. However, the powder morphology and homogeneity significantly affect the coating quality. More homogeneous powders lead to better results, the spray-dried powder being the best because of its enhanced rheological properties and good morphology. (author)

  12. Synthesis and Characterizations of Fine Silica Powder from Rice Husk Ash

    International Nuclear Information System (INIS)

    Khin Muyar Latt

    2011-12-01

    The silica content of rice husk ash obtained from the uncontrolled burning temperature of gasifier was 90.4%. The obtained rice husk ash was an amorphous form of silica with low crystallization by XRD. The sodium hydroxide solution, 1.5N, 2N, 2.5N and 3N, respectively was used to prepare sodium silicate solution by extraction method. The product silica was produced by acid precipitation method used 4.5N, 5.5N and 6.5N sulphuric acid solution. The highest yield percent of product silica extraced by 2.5N sodium hydroxide solution at 5N sulphuric acid solution was 88.84%. The crystallize size of product silica containing silicalite as a source of silica was 86nm at this condition. The fine silica powder was produced by acid refluxing mothod used 5.5N, 6N and 6.5N hydrochloric acid solution. 98% of pure fine silica powder can be produced from the product silica by refluxing method. The crystallize size of fine silica powder was 54nm. The distribution of the crystallize size of product silica powder could be found uniform in size and agglomeration. The Fourier Transform Infrared Spectra indicate the hydrogen bonded silinol groups and siloxane groups in product silica and fine silica powder.

  13. Nonlinear Optical Imaging for Sensitive Detection of Crystals in Bulk Amorphous Powders

    OpenAIRE

    KESTUR, UMESH S.; WANAPUN, DUANGPORN; TOTH, SCOTT J.; WEGIEL, LINDSAY A.; SIMPSON, GARTH J.; TAYLOR, LYNNE S.

    2012-01-01

    The primary aim of this study was to evaluate the utility of second-order nonlinear imaging of chiral crystals (SONICC) to quantify crystallinity in drug–polymer blends, including solid dispersions. Second harmonic generation (SHG) can potentially exhibit scaling with crystallinity between linear and quadratic depending on the nature of the source, and thus, it is important to determine the response of pharmaceutical powders. Physical mixtures containing different proportions of crystalline n...

  14. Degradation of L-Ascorbic Acid in the Amorphous Solid State.

    Science.gov (United States)

    Sanchez, Juan O; Ismail, Yahya; Christina, Belinda; Mauer, Lisa J

    2018-03-01

    Ascorbic acid degradation in amorphous solid dispersions was compared to its degradation in the crystalline state. Physical blends and lyophiles of ascorbic acid and polymers (pectins and polyvinylpyrrolidone [PVP]) were prepared initially at 50:50 (w/w), with further studies using the polymer that best inhibited ascorbic acid crystallization in the lyophiles in 14 vitamin : PVP ratios. Samples were stored in controlled environments (25 to 60 °C, 0% to 23% RH) for 1 mo and analyzed periodically to track the physical appearance, change in moisture content, physical state (powder x-ray diffraction and polarized light microscopy), and vitamin loss (high performance liquid chromatography) over time. The glass transition temperatures of select samples were determined using differential scanning calorimetry, and moisture sorption profiles were generated. Ascorbic acid in the amorphous form, even in the glassy amorphous state, was more labile than in the crystalline form in some formulations at the highest storage temperature. Lyophiles stored at 25 and 40 °C and those in which ascorbic acid had crystallized at 60 °C (≥70% ascorbic acid : PVP) had no significant difference in vitamin loss (P > 0.05) relative to physical blend controls, and the length of storage had little effect. At 60 °C, amorphous ascorbic acid lyophiles (≤60% ascorbic acid : PVP) lost significantly more vitamin (P vitamin loss significantly increased over time. In these lyophiles, vitamin degradation also significantly increased (P vitamins are naturally present or added at low concentrations and production practices may promote amorphization of the vitamin. Vitamin C is one of the most unstable vitamins in foods. This study documents that amorphous ascorbic acid is less stable than crystalline ascorbic acid in some environments (for example, higher temperatures within 1 wk), especially when the vitamin is present at low concentrations in a product. These findings increase the understanding of

  15. Process for desulfurizing petroleum feedstocks

    Science.gov (United States)

    Gordon, John Howard; Alvare, Javier

    2014-06-10

    A process for upgrading an oil feedstock includes reacting the oil feedstock with a quantity of an alkali metal, wherein the reaction produces solid materials and liquid materials. The solid materials are separated from the liquid materials. The solid materials may be washed and heat treated by heating the materials to a temperature above 400.degree. C. The heat treating occurs in an atmosphere that has low oxygen and water content. Once heat treated, the solid materials are added to a solution comprising a polar solvent, where sulfide, hydrogen sulfide or polysulfide anions dissolve. The solution comprising polar solvent is then added to an electrolytic cell, which during operation, produces alkali metal and sulfur.

  16. Powder Injection Molding for mass production of He-cooled divertor parts

    International Nuclear Information System (INIS)

    Antusch, S.; Norajitra, P.; Piotter, V.; Ritzhaupt-Kleissl, H.-J.

    2011-01-01

    A He-cooled divertor for future fusion power plants has been developed at KIT. Tungsten and tungsten alloys are presently considered the most promising materials for functional and structural divertor components. The advantages of tungsten materials lie, e.g. in the high melting point, and low activation, the disadvantages are high hardness and brittleness. The machinig of tungsten, e.g. milling, is very complex and cost-intensive. Powder Injection Molding (PIM) is a method for cost effective mass production of near-net-shape parts with high precision. The complete W-PIM process route is outlined and, results of product examination discussed. A binary tungsten powder feedstock with a grain size distribution in the range 0.7-1.7 μm FSSS, and a solid load of 50 vol.% was developed. After heat treatment, the successfully finished samples showed promising results, i.e. 97.6% theoretical density, a grain size of approximately 5 μm, and a hardness of 457 HV0.1.

  17. 3D printing conditions determination for feedstock used in fused filament fabrication (FFF of 17-4PH stainless steel parts

    Directory of Open Access Journals (Sweden)

    J. Gonzalez-Gutierez

    2018-01-01

    Full Text Available Fused filament fabrication combined with debinding and sintering could be an economical process for 3D printing of metal parts. In this study, compounding, filament making and FFF processing of a feedstock material containing 55 vol. % of 17-4PH stainless steel powder and a multicomponent binder system are presented. For the FFF process, processing windows of the most significant parameters, such as range of extrusion temperatures (210 to 260 °C, flow rate multipliers (150 to 200 %, and 3D printing speed multipliers (60 to 100 % were determined for a constant printing bed temperature of 60 °C.

  18. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  19. Evidence of eutectic crystallization and transient nucleation in Al89La6Ni5 amorphous alloy

    International Nuclear Information System (INIS)

    Zhuang, Y. X.; Jiang, J. Z.; Lin, Z. G.; Mezouar, M.; Crichton, W.; Inoue, A.

    2001-01-01

    The phase evolution with the temperature and time in the process of crystallization of Al 89 La 6 Ni 5 amorphous alloy has been investigated by in situ high-temperature and high-pressure x-ray powder diffraction using synchrotron radiation. Two crystalline phases, fcc-Al and a metastable bcc-(AlNi) 11 La 3 -like phase, were identified after the first crystallization reaction, revealing a eutectic reaction instead of a primary reaction suggested in the literature. Time-dependent nucleation in the amorphous alloy is detected and the experimental data can be fitted by both the Zeldovich's and Kashchiev's transient nucleation models with transient nucleation times of 220 and 120 min, respectively. Copyright 2001 American Institute of Physics

  20. Regional Feedstock Partnership Summary Report: Enabling the Billion-Ton Vision

    Energy Technology Data Exchange (ETDEWEB)

    Owens, Vance N. [South Dakota State Univ., Brookings, SD (United States). North Central Sun Grant Center; Karlen, Douglas L. [Dept. of Agriculture Agricultural Research Service, Ames, IA (United States). National Lab. for Agriculture and the Environment; Lacey, Jeffrey A. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Process Science and Technology Division

    2016-07-12

    The U.S. Department of Energy (DOE) and the Sun Grant Initiative established the Regional Feedstock Partnership (referred to as the Partnership) to address information gaps associated with enabling the vision of a sustainable, reliable, billion-ton U.S. bioenergy industry by the year 2030 (i.e., the Billion-Ton Vision). Over the past 7 years (2008–2014), the Partnership has been successful at advancing the biomass feedstock production industry in the United States, with notable accomplishments. The Billion-Ton Study identifies the technical potential to expand domestic biomass production to offset up to 30% of U.S. petroleum consumption, while continuing to meet demands for food, feed, fiber, and export. This study verifies for the biofuels and chemical industries that a real and substantial resource base could justify the significant investment needed to develop robust conversion technologies and commercial-scale facilities. DOE and the Sun Grant Initiative established the Partnership to demonstrate and validate the underlying assumptions underpinning the Billion-Ton Vision to supply a sustainable and reliable source of lignocellulosic feedstock to a large-scale bioenergy industry. This report discusses the accomplishments of the Partnership, with references to accompanying scientific publications. These accomplishments include advances in sustainable feedstock production, feedstock yield, yield stability and stand persistence, energy crop commercialization readiness, information transfer, assessment of the economic impacts of achieving the Billion-Ton Vision, and the impact of feedstock species and environment conditions on feedstock quality characteristics.

  1. Nanocrystalline K–CaO for the transesterification of a variety of feedstocks: Structure, kinetics and catalytic properties

    International Nuclear Information System (INIS)

    Kumar, Dinesh; Ali, Amjad

    2012-01-01

    The work presented in current manuscript demonstrated the preparation of potassium ion impregnated calcium oxide in nano particle form and its application as solid catalyst for the transesterification of a variety of triglycerides. The catalyst was characterized by powder X-ray diffraction, scanning electron and transmission electron microscopic, BET surface area measurement, and Hammett indicator studies in order to establish the effect of K + impregnation on catalyst structure, particle size, surface morphology, and basic strength. The catalyst prepared by impregnating a mass fraction of 3.5% K + in CaO was found to exist as ∼40 nm sized particles, and same was employed in present study as solid catalyst for the transesterification of a variety of feedstocks viz., mutton fat, soybean, virgin cotton seed, waste cotton seed, castor, karanja and jatropha oil. Under optimized conditions, K–CaO was found to yield 98 ± 2% fatty acid methyl esters (FAMEs) from the employed feedstocks, and showed a high tolerance to the free fatty acid and moisture contents. A pseudo first order kinetic model was applied to evaluate the kinetic parameters and under optimized conditions first order rate constant and activation energy was found to be 0.062 min −1 and 54 kJ mol −1 , respectively. The Koros–Nowak criterion test has been employed to demonstrate that measured catalytic activity was independent of the influence of transport phenomenon. Finally, few physicochemical properties of the FAMEs prepared from waste cotton seed oil, karanja oil and jatropha oils have been studied and compared with European standards. -- Graphical abstract: TEM image of 3.5–K–CaO. Display Omitted Highlights: ► K–CaO as nanosized solid catalyst for the transesterification of variety of feedstock has been prepared and characterized. ► K–CaO was found effective even when 8.4% free fatty acid and 10.3% moisture contents were present in the feedstock. ► K–CaO was reused 3 times and

  2. Physicochemical characterization of atorvastatin calcium/ezetimibe amorphous nano-solid dispersions prepared by electrospraying method.

    Science.gov (United States)

    Jahangiri, Azin; Barzegar-Jalali, Mohammad; Javadzadeh, Yousef; Hamishehkar, Hamed; Adibkia, Khosro

    2017-09-01

    In the present study, electrospraying was applied as a novel method for the fabrication of amorphous nano-solid dispersions (N-SDs) of atorvastatin calcium (ATV), ezetimibe (EZT), and ATV/EZT combination as poorly water-soluble drugs. N-SDs were prepared using polyvinylpyrrolidone K30 as an amorphous carrier in 1:1 and 1:5 drug to polymer ratios and the total solid (including drug and polymer) concentrations of 10 and 20% (w/v). The prepared formulations were further investigated for their morphological, physicochemical, and dissolution properties. Scanning electron microscopy studies indicated that the morphology and diameter of the electrosprayed samples (ESs) were influenced by the solution concentration and drug:polymer ratio, so that an increase in the solution concentration resulted in fiber formation while an increase in the polymer ratio led to enhancement of the particle diameter. Differential scanning calorimetry and X-ray powder diffraction studies together with in vitro dissolution test revealed that the ESs were present in an amorphous form with improved dissolution properties. Infrared spectroscopic studies showed hydrogen-bonding interaction between the drug and polymer in ESs. Since the electrospraying method benefits from the both amorphization and nanosizing effect, this novel approach seems to be an efficient method for the fabrication of N-SDs of poorly water-soluble drugs.

  3. Photocatalytic oxidative desulfurization of dibenzothiophene catalyzed by amorphous TiO2 in ionic liquid

    International Nuclear Information System (INIS)

    Zhu, Wenshuai; Xu, Yehai; Li, Huaming; Dai, Bilian; Xu, Hui; Wang, Chao; Chao, Yanhong; Liu, Hui

    2014-01-01

    Three types of TiO 2 were synthesized by a hydrolysis and calcination method. The catalysts were characterized by X-ray powder diffraction (XRD), diffuse reflectance spectrum (DRS), Raman spectra, and X-ray photoelectron spectroscopy (XPS). The XRD and Raman spectra indicated that amorphous TiO 2 was successfully obtained at 100 .deg. C. The results indicated that amorphous TiO 2 achieved the highest efficiency of desulfurization. The photocatalytic oxidation of dibenzothiophene (DBT), benzothiophene (BT), 4,6-dimethyldibenzothiophene (4,6-DMDBT) and dodecanethiol (RSH) in model oil was studied at room temperature (30 .deg. C) with three catalysts. The system contained amorphous TiO 2 , H 2 O 2 , and [Bmim]BF 4 ionic liquid, ultraviolet (UV), which played vitally important roles in the photocatalytic oxidative desulfurization. Especially, the molar ratio of H 2 O 2 and sulfur (O/S) was only 2 : 1, which corresponded to the stoichiometric reaction. The sulfur removal of DBT-containing model oil with amorphous TiO 2 could reach 96.6%, which was apparently superior to a system with anatase TiO 2 (23.6%) or with anatase - rutile TiO 2 (18.2%). The system could be recycled seven times without a signicant decrease in photocatalytic activity

  4. Mechanochemical synthesis of fluorescent carbon dots from cellulose powders

    Science.gov (United States)

    Chae, Ari; Ram Choi, Bo; Choi, Yujin; Jo, Seongho; Kang, Eun Bi; Lee, Hyukjin; Park, Sung Young; In, Insik

    2018-04-01

    A novel mechanochemical method was firstly developed to synthesize carbon nanodots (CNDs) or carbon nano-onions (CNOs) through high-pressure homogenization of cellulose powders as naturally abundant resource depending on the treatment times. While CNDs (less than 5 nm in size) showed spherical and amorphous morphology, CNOs (10-50 nm in size) presented polyhedral shape, and onion-like outer lattice structure, graphene-like interlattice spacing of 0.36 nm. CNOs showed blue emissions, moderate dispersibility in aqueous media, and high cell viability, which enables efficient fluorescence imaging of cellular media.

  5. Studies on the sintering behaviour of uranium dioxide powder compacts

    International Nuclear Information System (INIS)

    Das, P.; Chowdhury, R.

    1988-01-01

    Uranium dioxide fuel pellets are normally made from their precursor ammonium diuranate, followed by calcination, subsequent reduction to sinterable grade powders and a post operation treatment of pressing and sintering. The low temperature calcined powders, usually exhibiting non-crystalline behaviour (under X-ray diffraction studies) progressively transforms into a crystalline variety on subsequent heat treatment at higher temperature. It is observed however that powders calcined between 800 to 900 0 C exhibit enhanced densification behaviour when sintered at higher temperatures. The isothermal shrinkage versus time plot of the sintered compacts are well described by a hyperbolic relationship which takes care of the observed shrinkage (λ) as caused due to a cumulative effect from the initial sintering of the powder compacts at zero time (α) and that caused due to the structural transformation from a non-crystalline modification with increased thermal treatment (β). The derived equation is a modification of the sintering mechanism of the viscous flow type proposed by Frenkel, involving sintering of an amorphous phase, the viscosity of the latter is presumed to increase with increasing thermal treatment to assume the final modified form as λ=t/(α+βt), where t = time, λ = shrinkage and α and β are the unknown parameters. (orig.)

  6. The precursors effects on biomimetic hydroxyapatite ceramic powders.

    Science.gov (United States)

    Yoruç, Afife Binnaz Hazar; Aydınoğlu, Aysu

    2017-06-01

    In this study, effects of the starting material on chemical, physical, and biological properties of biomimetic hydroxyapatite ceramic powders (BHA) were investigated. Characterization and chemical analysis of BHA powders were performed by using XRD, FT-IR, and ICP-AES. Microstructural features such as size and morphology of the resulting BHA powders were characterized by using BET, nano particle sizer, pycnometer, and SEM. Additionally, biological properties of the BHA ceramic powders were also investigated by using water-soluble tetrazolium salts test (WST-1). According to the chemical analysis of BHA ceramic powders, chemical structures of ceramics which are prepared under different conditions and by using different starting materials show differences. Ceramic powders which are produced at 80°C are mainly composed of hydroxyapatite, dental hydroxyapatite (contain Na and Mg elements in addition to Ca), and calcium phosphate sulfide. However, these structures are altered at high temperatures such as 900°C depending on the features of starting materials and form various calcium phosphate ceramics and/or their mixtures such as Na-Mg-hydroxyapatite, hydroxyapatite, Mg-Whitlockit, and chloroapatite. In vitro cytotoxicity studies showed that amorphous ceramics produced at 80°C and ceramics containing chloroapatite structure as main or secondary phases were found to be extremely cytotoxic. Furthermore, cell culture studies showed that highly crystalline pure hydroxyapatite structures were extremely cytotoxic due to their high crystallinity values. Consequently, the current study indicates that the selection of starting materials which can be used in the production of calcium phosphate ceramics is very important. It is possible to produce calcium phosphate ceramics which have sufficient biocompatibility at physiological pH values and by using appropriate starting materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Multi-layered electroless Ni-P coatings on powder-sintered Nd-Fe-B permanent magnet

    International Nuclear Information System (INIS)

    Chen Zhong; Ng, Alice; Yi Jianzhang; Chen Xingfu

    2006-01-01

    This paper has shown a successful protective coating scheme for powder-sintered Nd-Fe-B permanent magnet using multi-layered electroless nickel (EN) deposition. A low-phosphorus nickel layer is plated with an alkaline EN solution first, followed by a high-phosphorus nickel layer plated with an acidic solution. An additional topcoat by medium-phosphorus nickel on the high-phosphorus coating is also explored. It is shown that the high-phosphorus nickel layer coated in acidic solution provides the best corrosion protection because of its dense amorphous structure. The medium phosphorus topcoat is also dense and is able to provide reasonable corrosion resistance. The low-phosphorus layer itself does not have enough corrosion resistance; its main role is to provide an intermediate coating on the powder-sintered magnet. X-ray diffraction measurement shows that the low-phosphorus coating consists of nano-crystallines, and the high- and the medium-phosphorus coatings are dominated by amorphous structure. Microscopic observation and scratch test on these composite coatings demonstrate good adhesion between the magnet and the coatings. Remanence and coercivity of the plated magnet decrease with the applied coatings, but measured values are still very attractive for practical applications among known hard magnets

  8. Microstructure, surface topography and mechanical properties of slip cast and powder injection moulded microspecimens made of zirconia

    International Nuclear Information System (INIS)

    Auhorn, M.; Kasanicka, B.; Beck, T.; Schulze, V.; Loehe, D.

    2003-01-01

    Investigations on ceramic microspecimens made of Y 2 O 3 -stabilized ZrO 2 produced by slip casting or micro powder injection moulding are introduced. During the production of the microspecimens, feedstocks and sintering conditions were varied. Differently moulded specimens were examined with respect to their microstructure and surface topography using light microscopy, scanning electron microscopy (SEM) and confocal white light microscopy. Additionally, the mechanical characteristics were investigated by three-point bending tests using a micro universal testing device. The statistical analysis was realised by means of the Weibull theory and interpreted by the aid of SEM images of fracture surfaces. This research allowed to understand correlations between different feedstocks used, process parameters like the sintering conditions applied and the resulting characteristics as well as material properties of the microspecimens. These results could be used to improve the production process. (orig.)

  9. Sustainable Use of Biotechnology for Bioenergy Feedstocks

    Science.gov (United States)

    Moon, Hong S.; Abercrombie, Jason M.; Kausch, Albert P.; Stewart, C. Neal

    2010-10-01

    Done correctly, cellulosic bioenergy should be both environmentally and economically beneficial. Carbon sequestration and decreased fossil fuel use are both worthy goals in developing next-generation biofuels. We believe that biotechnology will be needed to significantly improve yield and digestibility of dedicated perennial herbaceous biomass feedstocks, such as switchgrass and Miscanthus, which are native to the US and China, respectively. This Forum discusses the sustainability of herbaceous feedstocks relative to the regulation of biotechnology with regards to likely genetically engineered traits. The Forum focuses on two prominent countries wishing to develop their bioeconomies: the US and China. These two countries also share a political desire and regulatory frameworks to enable the commercialization and wide release of transgenic feedstocks with appropriate and safe new genetics. In recent years, regulators in both countries perform regular inspections of transgenic field releases and seriously consider compliance issues, even though the US framework is considered to be more mature and stringent. Transgene flow continues to be a pertinent environmental and regulatory issue with regards to transgenic plants. This concern is largely driven by consumer issues and ecological uncertainties. Regulators are concerned about large-scale releases of transgenic crops that have sexually compatible crops or wild relatives that can stably harbor transgenes via hybridization and introgression. Therefore, prior to the commercialization or extensive field testing of transgenic bioenergy feedstocks, we recommend that mechanisms that ensure biocontainment of transgenes be instituted, especially for perennial grasses. A cautionary case study will be presented in which a plant’s biology and ecology conspired against regulatory constraints in a non-biomass crop perennial grass (creeping bentgrass, Agrostis stolonifera), in which biocontainment was not attained. Appropriate

  10. Solid solution and amorphous phase in Ti–Nb–Ta–Mn systems synthesized by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzman, P. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Parra, C. [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Bejar, L. [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia C.P. 58000, Michoacán (Mexico); Medina, A. [Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C.P. 58000, Michoacán (Mexico); Guzman, D. [Departamento de Metalurgia, Universidad de Atacama, Av. España 485, Copiapó (Chile)

    2016-06-15

    This work discusses the formation of Ti–30Nb–13Ta–xMn (x: 2, 4 and 6 wt%) solid solution by mechanical alloying using a shaker mill. A solid solution was formed after 15 h of milling and an amorphous phase was formed after 30 h of milling, according to X-ray diffraction results. Disappearance of strongest X-ray diffraction peaks of Nb, Ta and Mn indicated the formation of solid solution, while, X-ray diffraction patterns of powders milled for 30 h showed an amorphous hump with crystalline peaks in the angular range of 35–45° in 2θ. TEM image analysis showed the presence of nanocrystalline intermetallic compounds embedded in an amorphous matrix. Mn{sub 2}Ti, MnTi and NbTi{sub 4} intermetallic compounds were detected and revealed crystallites with size ranging from 3 to 20 nm. The Gibbs free energy for the formation of solid solution and amorphous phase of three ternary systems (Ti–Nb–Ta, Ti–Nb–Mn and Ti–Ta–Mn) was calculated using extended Miedema's model. Experimental and thermodynamic data confirmed that solid solution was first formed in the alloy with 6wt% Mn followed by the formation of an amorphous phase as milling time increases. The presence of Mn promoted the formation of amorphous phase because the atomic radius difference between Mn with Ti, Nb and Ta. - Highlights: • Thermodynamics analysis of extension of solid solution of the Ti–Nb–Ta–Mn system. • Formation of amorphous phase and intermetallic compounds were observed. • Nanocrystalline intermetallic compounds were formed with the sizes between 3 and 20 nm.

  11. Investigations on Bi25FeO40 powders synthesized by hydrothermal and combustion-like processes

    International Nuclear Information System (INIS)

    Köferstein, Roberto; Buttlar, Toni; Ebbinghaus, Stefan G.

    2014-01-01

    The syntheses of phase-pure and stoichiometric iron sillenite (Bi 25 FeO 40 ) powders by a hydrothermal (at ambient pressure) and a combustion-like process are described. Phase-pure samples were obtained in the hydrothermal reaction at 100 °C (1), whereas the combustion-like process leads to pure Bi 25 FeO 40 after calcination at 750 °C for 2 h (2a). The activation energy of the crystallite growth process of hydrothermally synthesized Bi 25 FeO 40 was calculated as 48(9) kJ mol −1 . The peritectic point was determined as 797(1) °C. The optical band gaps of the samples are between 2.70(7) eV and 2.81(6) eV. Temperature and field-depending magnetization measurements (5−300 K) show a paramagnetic behaviour with a Curie constant of 55.66×10 −6 m 3 K mol −1 for sample 1 and C=57.82×10 −6 m 3 K mol −1 for sample 2a resulting in magnetic moments of µ mag =5.95(8) µ B mol −1 and µ mag =6.07(4) µ B mol −1 . The influence of amorphous iron-oxide as a result of non-stoichiometric Bi/Fe ratios in hydrothermal syntheses on the magnetic behaviour was additionally investigated. - Graphical abstract: Bi 25 FeO 40 powders were prepared by a hydrothermal method and a combustion process. The optical band gaps and the peritectic point were determined. The magnetic behaviour was investigated depending on the synthesis and the initial Bi/Fe ratios. The influence of amorphous iron-oxide on the magnetic properties was examined. - Highlights: • Two simple syntheses routes for stoichiometric Bi 25 FeO 40 powders using starch as polymerization agent. • Monitoring the phase evolution and crystallite growth kinetics during the syntheses. • Determination of the optical band gap and melting point. • Investigations of the magnetic behaviour of Bi 25 FeO 40 powders. • Influence of amorphous iron oxide and a non-stoichiometric Bi/Fe ratio on the magnetic behaviour

  12. Single step synthesis of GdAlO3 powder

    International Nuclear Information System (INIS)

    Sinha, Amit; Nair, S.R.; Sinha, P.K.

    2011-01-01

    Research highlights: → First report on direct formation of GdAlO 3 powder using a novel combustion process. → Study of combustion characteristics of Gd(NO 3 ) 3 and Al(NO 3 ) 3 towards three fuels. → Preparation of highly sinterable GdAlO 3 powders through fuel-mixture approach. → Significant reduction in energy consumption for production of GdAlO 3 sintered body. - Abstract: A novel method for preparation of nano-crystalline gadolinium aluminate (GdAlO 3 ) powder, based on combustion synthesis, is reported. It was observed that aluminium nitrate and gadolinium nitrate exhibit different combustion characteristics with respect to urea, glycine and β-alanine. While urea was proven to be a suitable fuel for direct formation of crystalline α-Al 2 O 3 from its nitrate, glycine and β-alanine are suitable fuels for gadolinium nitrate for preparation of its oxide after combustion reaction. Based on the observed chemical characteristics of gadolinium and aluminium nitrates with respect to above mentioned fuels for the combustion reaction, the fuel mixture composition could be predicted that could lead to phase pure perovskite GdAlO 3 directly after the combustion reaction without any subsequent calcination step. The use of single fuel, on the other hand, leads to formation of amorphous precursor powders that call for subsequent calcination for the formation of crystalline GdAlO 3 . The powders produced directly after combustion reactions using fuel mixtures were found to be highly sinterable. The sintering of the powders at 1550 o C for 4 h resulted in GdAlO 3 with sintered density of more than 95%. T.D.

  13. Single-step laser deposition of functionally graded coating by dual ‘wire powder’ or ‘powder powder’ feeding—A comparative study

    Science.gov (United States)

    Syed, Waheed Ul Haq; Pinkerton, Andrew J.; Liu, Zhu; Li, Lin

    2007-07-01

    The creation of iron-copper (Fe-Cu) alloys has practical application in improving the surface heat conduction and corrosion resistance of, for example, conformal cooling channels in steel moulds, but is difficult to achieve because the elements have got low inter-solubility and are prone to solidification cracking. Previous work by these authors has reported a method to produce a graded iron-nickel-copper coating in a single-step by direct diode laser deposition (DLD) of nickel wire and copper powder as a combined feedstock. This work investigates whether dual powder feeds can be used in that process to afford greater geometric flexibility and compares attributes of the 'nickel wire and copper powder' and 'nickel powder and copper powder' processes for deposition on a H13 tool steel substrate. In wire-powder deposition, a higher temperature developed in the melt pool causing a clad with a smooth gradient structure. The nickel powder in powder-powder deposition did not impart much heat into the melt pool so the melt pool solidified with sharp composition boundaries due to single metal melting in some parts. In wire-powder experiments, a graded structure was obtained by varying the flow rates of wire and powder. However, a graded structure was not realised in powder-powder experiments by varying either the feed or the directions. Reasons for the differences and flow patterns in the melt pools and their effect on final part properties of parts produced are discussed.

  14. Radiation amorphization of materials

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Chernyaeva, T.P.

    1993-01-01

    The results of experimental and theoretical research on radiation amorphization are presented in this analytical review. Mechanism and driving forces of radiation amorphization are described, kinetic and thermodynamic conditions of amorphization are formulated. Compositional criteria of radiation amorphization are presented, that allow to predict irradiation behaviour of materials, their tendency to radiation amorphization. Mechanism of transition from crystalline state to amorphous state are considered depending on dose, temperature, structure of primary radiation damage and flux level. (author). 134 refs., 4 tab., 25 fig

  15. Methods of amorphization and investigation of the amorphous state

    OpenAIRE

    EINFALT, TOMAŽ; PLANINŠEK, ODON; HROVAT, KLEMEN

    2013-01-01

    The amorphous form of pharmaceutical materials represents the most energetic solid state of a material. It provides advantages in terms of dissolution rate and bioavailability. This review presents the methods of solid-state amorphization described in literature (supercooling of liquids, milling, lyophilization, spray drying, dehydration of crystalline hydrates), with the emphasis on milling. Furthermore, we describe how amorphous state of pharmaceuticals differ depending on method of prepara...

  16. Measurement of electromagnetic properties of powder and solid metal materials for additive manufacturing

    Science.gov (United States)

    Todorov, Evgueni Iordanov

    2017-04-01

    The lack of validated nondestructive evaluation (NDE) techniques for examination during and after additive manufacturing (AM) component fabrication is one of the obstacles in the way of broadening use of AM for critical applications. Knowledge of electromagnetic properties of powder (e.g. feedstock) and solid AM metal components is necessary to evaluate and deploy electromagnetic NDE modalities for examination of AM components. The objective of this research study was to develop and implement techniques for measurement of powder and solid metal electromagnetic properties. Three materials were selected - Inconel 625, duplex stainless steel 2205, and carbon steel 4140. The powder properties were measured with alternate current (AC) model based eddy current technique and direct current (DC) resistivity measurements. The solid metal properties were measured with DC resistivity measurements, DC magnetic techniques, and AC model based eddy current technique. Initial magnetic permeability and electrical conductivity were acquired for both powder and solid metal. Additional magnetic properties such as maximum permeability, coercivity, retentivity, and others were acquired for 2205 and 4140. Two groups of specimens were tested along the build length and width respectively to investigate for possible anisotropy. There was no significant difference or anisotropy when comparing measurements acquired along build length to those along the width. A trend in AC measurements might be associated with build geometry. Powder electrical conductivity was very low and difficult to estimate reliably with techniques used in the study. The agreement between various techniques was very good where adequate comparison was possible.

  17. Fiscal 2000 report on result of R and D of industrial science and technology that creates new industry. Development of supermetal technology (development of nano-amorphous structured material); 2000 nendo super metal no gijutsu kaihatsu seika hokokusho. Nano amorphous kozo seigyo zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    R and D was conducted for the purpose of manufacturing innovative iron-based alloy materials that excel in high temperature strength, toughness and superplastic forming, with fiscal 2000 results compiled. In the technological study on high-speed grain accumulation and superplastic forming, the researchers were engrossed in developing an aluminum bulk material of nano-crystals. This year, an Al-Fe two-element based alloy using Fe element was evaluated in the composition, thermal processing conditions and physical properties, with a bulk material obtained having a grain size of several tens in nm at 2at% Fe level, a strength of 750-850 MPa and a tenacity (Kc value) of 45-65 MPa(center dot)m{sup 1/2}. In the research of technologies for utilizing and controlling high density energy, design of materials was progressed for strong-acid resistant dew point corrosion materials, leading to the discovery of an alloy composition Ni-10Cr-5Nb-16P-4B whose subcooled liquid zone was wider than the Ta-added alloy of the previous year. Use of He gas as injection gas enabled a quality amorphous powder to be obtained in kg units. In the development of bulk amorphous producing technologies, this powder was thermostatically rolled to make a dense bulk amorphous plate of 2.8 mm thick and about 100 mm long. (NEDO)

  18. Confinement of Amorphous Lactose in Pores Formed Upon Co-Spray Drying With Nanoparticles.

    Science.gov (United States)

    Hellrup, Joel; Mahlin, Denny

    2017-01-01

    This study aims at investigating factors influencing humidity-induced recrystallization of amorphous lactose, produced by co-spray drying with particles of cellulose nanocrystals or sodium montmorillonite. In particular, the focus is on how the nanoparticle shape and surface properties influence the nanometer to micrometer length scale nanofiller arrangement in the nanocomposites and how the arrangements influence the mechanisms involved in the inhibition of the amorphous to crystalline transition. The nanocomposites were produced by co-spray drying. Solid-state transformations were analyzed at 60%-94% relative humidity using X-ray powder diffraction, microcalorimetry, and light microscopy. The recrystallization rate constant for the lactose/cellulose nanocrystals and lactose/sodium montmorillonite nanocomposites was lowered at nanofiller contents higher than 60% and was stable for months at 80% nanofiller. The most likely explanation to these results is spontaneous formations of mesoporous particle networks that the lactose is confined upon co-spray drying at high filler content. Compartmentalization and rigidification of the amorphous lactose proved to be less important mechanisms involved in the stabilization of lactose in the nanocomposites. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. In situ synthesis of NiAl–NbB2 composite powder through combustion synthesis

    International Nuclear Information System (INIS)

    Shokati, Ali Akbar; Parvin, Nader; Sabzianpour, Naser; Shokati, Mohammad; Hemmati, Ali

    2013-01-01

    Highlights: ► A Novel NiAl matrix composite powder with 0–40 wt.% NbB 2 was synthesized. ► Composite powders were synthesized by thermal explosion reaction of Ni–Al–Nb–B system. ► Microhardness of NiAl considerably increased with raising NbB 2 content. ► Synthesized composite powders is a good candidate as precursor for thermal barrier application. - Abstract: Synthesis of a novel NiAl matrix composite powder reinforced with 0–40 wt.% NbB 2 by combustion synthesis in thermal explosion mode was investigated. The elemental powders of Ni, Al, Nb, and amorphous boron were used as starting material. For all compositions final products consisted of only the NiAl and NbB 2 phases. Coarser NbB 2 with a relatively uniform distribution in NiAl matrix was formed with rising NbB 2 content. Microhardness of NiAl considerably increased from 377 ± 13 HV 0.05 to 866 ± 81 HV 0.05 for NiAl with 40 wt.% NbB 2 . High microhardness, proper size and distribution of NbB 2 in NiAl matrix make it a good candidate as precursor for thermal spray application.

  20. Markets for Canadian bitumen-based feedstock

    International Nuclear Information System (INIS)

    Lauerman, V.

    2001-01-01

    The best types of refineries for processing western Canadian bitumen-based feedstock (BBF) were identified and a potential market for these feedstock for year 2007 was calculated. In addition, this power point presentation provided an estimation of potential regional and total demand for BBF. BBF included Athabasca bitumen blend, de-asphalted blend, coked sour crude oil (SCO), coked sweet SCO, hydrocracked SCO and hydrocracked/aromatic saturated SCO (HAS). Refinery prototypes included light and mixed prototypes for primary cracking units, light and heavy prototypes for primary coking units, as well as no coking, coking severe and residuum prototypes for primary hydrocracking units. The presentation included graphs depicting the natural market for Western Canadian crudes as well as U.S. crude oil production forecasts by PADD districts. It was forecasted that the market for bitumen-based feedstock in 2007 will be tight and that the potential demand for bitumen-based blends would be similar to expected production. It was also forecasted that the potential demand for SCO is not as promising relative to the expected production, unless price discounting or HAS will be available. 11 figs

  1. Preparation of 50Ni-45Ti-5Zr powders by high-energy ball milling and hot pressing

    Energy Technology Data Exchange (ETDEWEB)

    Marinzeck de Alcantara Abdala, Julia, E-mail: juabdala@yahoo.com.b [Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraiba, Av. Shishima Hifumi, 2911, 12244-000 Sao Jose dos Campos (Brazil); Bacci Fernandes, Bruno, E-mail: brunobacci@yahoo.com.b [Divisao de Engenharia Mecanica, Instituto Tecnologico de Aeronautica, Praca Marechal-do-Ar Eduardo Gomes, 50, 12228-904 Sao Jose dos Campos (Brazil); Santos, Dalcy Roberto dos, E-mail: dalcy@iae.cta.b [Instituto de Aeronautica e Espaco, Centro Tecnologico Aeroespacial, Praca Marechal-do-Ar Eduardo Gomes, 50, 12228-904 Sao Jose dos Campos (Brazil); Rodrigues Henriques, Vinicius Andre, E-mail: vinicius@iae.cta.b [Instituto de Aeronautica e Espaco, Centro Tecnologico Aeroespacial, Praca Marechal-do-Ar Eduardo Gomes, 50, 12228-904 Sao Jose dos Campos (Brazil); Moura Neto, Carlos de, E-mail: mneto@ita.b [Divisao de Engenharia Mecanica, Instituto Tecnologico de Aeronautica, Praca Marechal-do-Ar Eduardo Gomes, 50, 12228-904 Sao Jose dos Campos (Brazil); Saraiva Ramos, Alfeu, E-mail: alfeu@univap.b [Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraiba, Av. Shishima Hifumi, 2911, 12244-000 Sao Jose dos Campos (Brazil)

    2010-04-16

    This study reports on the preparation of the 50Ni-45Ti-5Zr (at.%) alloy by high-energy ball milling and hot pressing. The elemental powder mixture was processed in silicon nitride and hardened steel vials, and samples were collected after different milling times. To recover the previous powders in addition wet milling isopropyl alcohol (for 20 min) was adopted. The mechanically alloyed powders were hot-pressed under vacuum at 900 {sup o}C for 1 h using pressure levels close to 200 MPa. The milled powders were characterized by means of scanning electron microscopy, X-ray diffraction, and energy dispersive spectrometry techniques. It was noted that the ductile starting powders were continuously cold-welded during ball milling. This fact was more pronounced during the processing of 50Ni-45Ti-5Zr powders in hardened steel vial. After milling for 5 h, the results suggested that amorphous and nanocrystalline structures were achieved. The complete consolidation was found after hot pressing of mechanically alloyed 50Ni-45Ti-5Zr powders, and a large amount of the B2-NiTi phase was formed mainly after processing in stainless steel balls and vial.

  2. Synthesis and characterisation of composite based biohydroxyapatite bovine bone mandible waste (BHAp) doped with 10 wt % amorphous SiO{sub 2} from rice husk by solid state reaction

    Energy Technology Data Exchange (ETDEWEB)

    Asmi, Dwi, E-mail: dwiasmi82@yahoo.com, E-mail: dwi.asmi@fmipa.unila.ac.id; Sulaiman, Ahmad, E-mail: ahmadsulaiman@yahoo.co.id; Oktavia, Irene Lucky, E-mail: ireneluckyo@gmail.com [Department of Physics, Faculty of Mathematics and Natural Sciences, University of Lampung Jl. Sumantri Brojonegoro No.1 Gedung Meneng Bandar Lampung 35145 (Indonesia); Badaruddin, Muhammad, E-mail: mbruddin@eng.unila.ac.id [Department of Mechanical Engineering, Faculty of Engineering, University of Lampung Jl. Sumantri Brojonegoro No.1 Gedung Meneng Bandar Lampung 35145 (Indonesia); Zulfia, Anne, E-mail: anne@metal.ui.ac.id [Department of Metallurgy and Materials Engineering, Faculty of Engineering, University of Indonesia, Kampus Baru-UI, Depok 16424 (Indonesia)

    2016-04-19

    Effect of 10 wt% amorphous SiO{sub 2} from rice husk addition on the microstructures of biohydroxyapatite (BHAp) obtained from bovine bone was synthesized by solid state reaction. In this study, biohydroxyapatite powder was obtained from bovine bone mandible waste heat treated at 800 °C for 5 h and amorphous SiO{sub 2} powder was extracted from citric acid leaching of rice husk followed by combustion at 700°C for 5 h. The composite powder then mixed and sintered at 1200 °C for 3 h. X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM) techniques are utilized to characterize the phase relations, functional group present and morphology of the sample. The study has revealed that the processing procedures played an important role in microstructural development of BHAp-10 wt% SiO{sub 2} composite. The XRD study of the raw material revealed that the primary phase material in the heat treated of bovine bone mandible waste is hydroxyapatite and in the combustion of rice husk is amorphous SiO{sub 2}. However, in the composite the hydroxyapatite, β-tricalcium phosphate, and calcium phosphate silicate were observed. The FTIR result show that the hydroxyl stretching band in the composite decrease compared with those of hydroxyapatite spectra and the evolution of morphology was occurred in the composite.

  3. Optimization of powder injection molding of feedstock based on aluminum oxide and multicomponent water-soluble polymer binder

    Czech Academy of Sciences Publication Activity Database

    Hausnerová, B.; Marcaníková, L.; Filip, Petr; Sáha, P.

    2011-01-01

    Roč. 51, č. 7 (2011), s. 1376-1382 ISSN 0032-3888 R&D Projects: GA ČR GA103/08/1307 Institutional research plan: CEZ:AV0Z20600510 Keywords : powder injection molding * viscosity * thermogravimetric analysis Subject RIV: BK - Fluid Dynamics Impact factor: 1.302, year: 2011

  4. Engineering cyanobacteria as photosynthetic feedstock factories.

    Science.gov (United States)

    Hays, Stephanie G; Ducat, Daniel C

    2015-03-01

    Carbohydrate feedstocks are at the root of bioindustrial production and are needed in greater quantities than ever due to increased prioritization of renewable fuels with reduced carbon footprints. Cyanobacteria possess a number of features that make them well suited as an alternative feedstock crop in comparison to traditional terrestrial plant species. Recent advances in genetic engineering, as well as promising preliminary investigations of cyanobacteria in a number of distinct production regimes have illustrated the potential of these aquatic phototrophs as biosynthetic chassis. Further improvements in strain productivities and design, along with enhanced understanding of photosynthetic metabolism in cyanobacteria may pave the way to translate cyanobacterial theoretical potential into realized application.

  5. Synthesis of nanocrystalline magnesium nitride (Mg3N2) powder using thermal plasma

    International Nuclear Information System (INIS)

    Kim, Dong-Wook; Kim, Tae-Hee; Park, Hyun-Woo; Park, Dong-Wha

    2011-01-01

    Nanocrystalline magnesium nitride (Mg 3 N 2 ) powder was synthesized from bulk magnesium by thermal plasma at atmospheric pressure. Magnesium vapor was generated through heating the bulk magnesium by DC plasma jet and reacted with ammonia gas. Injecting position and flow rates of ammonia gas were controlled to investigate an ideal condition for Mg 3 N 2 synthesis. The synthesized Mg 3 N 2 was cooled and collected on the chamber wall. Characteristics of the synthesized powders for each experimental condition were analyzed by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and thermogravity analysis (TGA). In absence of NH 3 , magnesium metal powder was formed. The synthesis with NH 3 injection in low temperature region resulted in a formation of crystalline magnesium nitride with trigonal morphology, whereas the mixture of magnesium metal and amorphous Mg 3 N 2 was formed when NH 3 was injected in high temperature region. Also, vaporization process of magnesium was discussed.

  6. Preparation and Optimization of Amorphous Ursodeoxycholic Acid Nano-suspensions by Nanoprecipitation based on Acid-base Neutralization for Enhanced Dissolution.

    Science.gov (United States)

    Xie, Yike; Chen, Zhongjian; Su, Rui; Li, Ye; Qi, Jianping; Wu, Wei; Lu, Yi

    2017-01-01

    Ursodeoxycholic acid, usually used to dissolve cholesterol gallstones in clinic, is a typical hydrophobic drug with poor oral bioavailability due to dissolution rate-limited performance. The objective of this study was to increase the dissolution of ursodeoxycholic acid by amorphous nanosuspensions. Nanoprecipitation based on acid-base neutralization was used to prepare the nanosuspensions with central composite design to optimize the formula. The nanosuspensions were characterized by particle size, morphology, crystallology and dissolution. The ursodeoxycholic acid nanosuspensions showed mean particle size around 380 nm with polydispersion index value about 0.25. Scanning electron microscope observed high coverage of HPMC-E50 onto the surface of the nanosuspensions. Differential scanning calorimetry and powder X-ray diffractometry revealed amorphous structure of the ursodeoxycholic acid nanosuspensions. A significant increase of dissolution in acidic media was achieved by the amorphous nanosuspensions compared with the physical mixture. It can be predicted that the amorphous nanosuspensions show great potential in improving the oral bioavailability of ursodeoxycholic acid. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Leading research on super metal. 3. Amorphous and nanostructured metallic materials; Super metal no sendo kenkyu. 3. Kogata buzai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Very fine structure control technique for amorphous and nanostructured metallic materials was reviewed to exceed the marginal performance of small metallic member materials. In Japan, high strength alloys and anticorrosion alloys are currently developed as an amorphous structure control technique, and ultra fine powder production and nano-compaction molding are studied for nanostructured materials. Fabrication of amorphous alloy wire materials and metal glass in USA are also introduced. Fabrication of metallic nanocrystals deposited within gas phase in Germany are attracting attention. The strength and abrasion resistance are remarkably enhanced by making nanostructured crystals and dispersing them. It may be most suitable to utilize amorphous and nanostructured metallic materials for earth-friendly materials having anticorrosion, and catalyst and biomaterial affinities, and also for magnetic materials. It is important for controlling micro-structures to clarify the formation mechanism of structures. For their processing techniques, the diversity and possibility are suggested, as to the condensation and solidification of gaseous and liquid phase metals, the molding and processing of very fine solid phase alloys, and the manufacturing members by heat treatment. 324 refs., 109 figs., 21 tabs.

  8. Theory of amorphous ices.

    Science.gov (United States)

    Limmer, David T; Chandler, David

    2014-07-01

    We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens.

  9. Broadband magnetic losses of nanocrystalline ribbons and powder cores

    Energy Technology Data Exchange (ETDEWEB)

    Beatrice, Cinzia, E-mail: c.beatrice@inrim.it [Istituto Nazionale di Ricerca Metrologica, Nanoscience and Materials Division, Torino (Italy); Dobák, Samuel [Institute of Physics, Faculty of Science, P.J. Šafárik University, Košice (Slovakia); Ferrara, Enzo; Fiorillo, Fausto [Istituto Nazionale di Ricerca Metrologica, Nanoscience and Materials Division, Torino (Italy); Ragusa, Carlo [Politecnico di Torino, Energy Department, Torino (Italy); Füzer, Ján; Kollár, Peter [Institute of Physics, Faculty of Science, P.J. Šafárik University, Košice (Slovakia)

    2016-12-15

    Finemet type alloys have been investigated from DC to 1 GHz at different induction levels upon different treatments: as amorphous precursors, as ribbons nanocrystallized with and without an applied saturating field, as consolidated powders. The lowest energy losses at all frequencies and maximum Snoek's product are exhibited by the transversally field-annealed ribbons. This is understood in terms of rotation-dominated magnetization process in the low-anisotropy material. Intergrain eddy currents are responsible for the fast increase of the losses with frequency and for early permeability relaxation of the powder cores. Evidence for resonant phenomena at high frequencies and for the ensuing inadequate role of the static magnetic constitutive equation of the material in solving the magnetization dynamics via the Maxwell's diffusion equation of the electromagnetic field is provided. It is demonstrated that, by taking the Landau–Lifshitz–Gilbert equation as a constitutive relation, the excellent frequency response of the transverse anisotropy ribbons can be described by analytical method.

  10. Phase evolution during early stages of mechanical alloying of Cu–13 wt.% Al powder mixtures in a high-energy ball mill

    International Nuclear Information System (INIS)

    Dudina, Dina V.; Lomovsky, Oleg I.; Valeev, Konstantin R.; Tikhov, Serguey F.; Boldyreva, Natalya N.; Salanov, Aleksey N.; Cherepanova, Svetlana V.; Zaikovskii, Vladimir I.; Andreev, Andrey S.; Lapina, Olga B.; Sadykov, Vladislav A.

    2015-01-01

    Highlights: • Phase formation during early stages of Cu–Al mechanical alloying was studied. • The products of mechanical alloying are of highly non-equilibrium character. • X-ray amorphous phases are present in the products of mechanical alloying. • An Al-rich X-ray amorphous phase is distributed between the crystallites. - Abstract: We report the phase and microstructure evolution of the Cu–13 wt.% Al mixture during treatment in a high-energy planetary ball mill with a particular focus on the early stages of mechanical alloying. Several characterization techniques, including X-ray diffraction phase analysis, nuclear magnetic resonance spectroscopy, differential dissolution, thermal analysis, and electron microscopy/elemental analysis, have been combined to study the evolution of the phase composition of the mechanically alloyed powders and describe the microstructure of the multi-phase products of mechanical alloying at different length scales. The following reaction sequence has been confirmed: Cu + Al → CuAl 2 (+Cu) → Cu 9 Al 4 + (Cu) → Cu(Al). The phase evolution was accompanied by the microstructure changes, the layered structure of the powder agglomerates disappearing with milling time. This scheme is further complicated by the processes of copper oxidation, reduction of copper oxides by metallic aluminum, and by variation of the stoichiometry of Cu(Al) solid solutions with milling time. Substantial amounts of X-ray amorphous phases were detected as well. Differential dissolution technique has revealed that a high content of aluminum in the Cu(Al) solid solution-based powders is due to the presence of Al-rich phases distributed between the Cu(Al) crystallites

  11. Effect of Sb on physical properties and microstructures of laser nano/amorphous-composite film

    International Nuclear Information System (INIS)

    Li, Jia-Ning; Gong, Shui-Li; Sun, Mei; Shan, Fei-Hu; Wang, Xi-Chang; Jiang, Shuai

    2013-01-01

    A nano/amorphous-composite film was fabricated by laser cladding (LC) of the Co–Ti–B 4 C–Sb mixed powders on a TA15 alloy. Such film mainly consisted of Ti–Al, Co–Ti, Co–Sb intermetallics, TiC, TiB 2 , TiB, and the amorphous phases. Experimental results indicated that the crystal systems of TiB 2 (hexagonal)/TiC (cubic) and Sb (rhombohedral) played important role on the formation of such film. Due to the mismatch of these crystals systems and mutual immiscibility of the metallic components, Sb was not incorporated in TiB 2 /TiC, but formed separate nuclei during the film growth. Thus, the growth of TiB 2 /TiC was stopped by the Sb nucleus in such LC molten pool, so as to form the nanoscale particles

  12. Effect of Sb on physical properties and microstructures of laser nano/amorphous-composite film

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jia-Ning, E-mail: jn2369@163.com [Science and Technology on Power Beam Processes Laboratory, Beijing (China); Aviation Industry Corporation of China, Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024 (China); Gong, Shui-Li, E-mail: gongshuili@sina.com [Science and Technology on Power Beam Processes Laboratory, Beijing (China); Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024 (China); Sun, Mei; Shan, Fei-Hu; Wang, Xi-Chang [Science and Technology on Power Beam Processes Laboratory, Beijing (China); Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024 (China); Jiang, Shuai [Science and Technology on Power Beam Processes Laboratory, Beijing (China); Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024 (China); Department of Materials Science and Engineering, China University of Petroleum, Qingdao 266580 (China)

    2013-11-01

    A nano/amorphous-composite film was fabricated by laser cladding (LC) of the Co–Ti–B{sub 4}C–Sb mixed powders on a TA15 alloy. Such film mainly consisted of Ti–Al, Co–Ti, Co–Sb intermetallics, TiC, TiB{sub 2}, TiB, and the amorphous phases. Experimental results indicated that the crystal systems of TiB{sub 2} (hexagonal)/TiC (cubic) and Sb (rhombohedral) played important role on the formation of such film. Due to the mismatch of these crystals systems and mutual immiscibility of the metallic components, Sb was not incorporated in TiB{sub 2}/TiC, but formed separate nuclei during the film growth. Thus, the growth of TiB{sub 2}/TiC was stopped by the Sb nucleus in such LC molten pool, so as to form the nanoscale particles.

  13. Powder X-ray diffraction laboratory, Reston, Virginia

    Science.gov (United States)

    Piatak, Nadine M.; Dulong, Frank T.; Jackson, John C.; Folger, Helen W.

    2014-01-01

    The powder x-ray diffraction (XRD) laboratory is managed jointly by the Eastern Mineral and Environmental Resources and Eastern Energy Resources Science Centers. Laboratory scientists collaborate on a wide variety of research problems involving other U.S. Geological Survey (USGS) science centers and government agencies, universities, and industry. Capabilities include identification and quantification of crystalline and amorphous phases, and crystallographic and atomic structure analysis for a wide variety of sample media. Customized laboratory procedures and analyses commonly are used to characterize non-routine samples including, but not limited to, organic and inorganic components in petroleum source rocks, ore and mine waste, clay minerals, and glassy phases. Procedures can be adapted to meet a variety of research objectives.

  14. Value of Distributed Preprocessing of Biomass Feedstocks to a Bioenergy Industry

    Energy Technology Data Exchange (ETDEWEB)

    Christopher T Wright

    2006-07-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system and the front-end of a biorefinery. Its purpose is to chop, grind, or otherwise format the biomass into a suitable feedstock for conversion to ethanol and other bioproducts. Many variables such as equipment cost and efficiency, and feedstock moisture content, particle size, bulk density, compressibility, and flowability affect the location and implementation of this unit operation. Previous conceptual designs show this operation to be located at the front-end of the biorefinery. However, data are presented that show distributed preprocessing at the field-side or in a fixed preprocessing facility can provide significant cost benefits by producing a higher value feedstock with improved handling, transporting, and merchandising potential. In addition, data supporting the preferential deconstruction of feedstock materials due to their bio-composite structure identifies the potential for significant improvements in equipment efficiencies and compositional quality upgrades. Theses data are collected from full-scale low and high capacity hammermill grinders with various screen sizes. Multiple feedstock varieties with a range of moisture values were used in the preprocessing tests. The comparative values of the different grinding configurations, feedstock varieties, and moisture levels are assessed through post-grinding analysis of the different particle fractions separated with a medium-scale forage particle separator and a Rototap separator. The results show that distributed preprocessing produces a material that has bulk flowable properties and fractionation benefits that can improve the ease of transporting, handling and conveying the material to the biorefinery and improve the biochemical and thermochemical conversion processes.

  15. Effect of milling time on the structure, micro-hardness, and thermal behavior of amorphous/nanocrystalline TiNiCu shape memory alloys developed by mechanical alloying

    International Nuclear Information System (INIS)

    Alijani, Fatemeh; Amini, Rasool; Ghaffari, Mohammad; Alizadeh, Morteza; Okyay, Ali Kemal

    2014-01-01

    Highlights: • Potential to produce B1′ (thermal- and stress-induced) and B2 was established. • Martensitic transformation occurred without the formation of intermediate R-phase. • Formation of unwanted intermetallics during heating was hindered by milling. • During milling, microhardness was increased, then reduced, and afterward re-increased. • By milling evolution, thermal crystallization steps changed from 3 to 2. - Abstract: In the present paper, the effect of milling process on the chemical composition, structure, microhardness, and thermal behavior of Ti–41Ni–9Cu compounds developed by mechanical alloying was evaluated. The structural characteristic of the alloyed powders was evaluated by X-ray diffraction (XRD). The chemical composition homogeneity and the powder morphology and size were studied by scanning electron microscopy coupled with electron dispersive X-ray spectroscopy. Moreover, the Vickers micro-indentation hardness of the powders milled for different milling times was determined. Finally, the thermal behavior of the as-milled powders was studied by differential scanning calorimetery. According to the results, at the initial stages of milling (typically 0–12 h), the structure consisted of a Ni solid solution and amorphous phase, and by the milling evolution, nanocrystalline martensite (B19′) and austenite (B2) phases were initially formed from the initial materials and then from the amorphous phase. It was found that by the milling development, the composition uniformity is increased, the inter-layer thickness is reduced, and the powders microhardness is initially increased, then reduced, and afterward re-increased. It was also realized that the thermal behavior of the alloyed powders and the structure of heat treated samples is considerably affected by the milling time

  16. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  17. Hydrodeoxygenation of fast-pyrolysis bio-oils from various feedstocks using carbon-supported catalysts

    Science.gov (United States)

    While much work has been accomplished in developing hydrodeoxygenation technologies for bio-oil upgrading, very little translation has occurred to other biomass feedstocks and feedstock processing technologies. In this paper, we sought to elucidate the relationships between the feedstock type and th...

  18. Composites of amorphous and nanocrystalline Zr–Cu–Al–Nb bulk materials synthesized by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, P., E-mail: philipp.drescher@uni-rostock.de [Fluidic Technology and Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock (Germany); Witte, K. [Physics of New Materials, Institute of Physics, University of Rostock, 18051 Rostock (Germany); Yang, B. [Polymer Physics, Institute of Physics, University of Rostock, 18051 Rostock (Germany); Steuer, R.; Kessler, O. [Chair of Materials Science, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock (Germany); Burkel, E. [Physics of New Materials, Institute of Physics, University of Rostock, 18051 Rostock (Germany); Schick, C. [Polymer Physics, Institute of Physics, University of Rostock, 18051 Rostock (Germany); Seitz, H. [Fluidic Technology and Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock (Germany)

    2016-05-15

    The fabrication of Zr{sub 70}Cu{sub 24}Al{sub 4}Nb{sub 2} bulk metallic glass composite samples by spark plasma sintering (SPS) process has been successfully realized. The unique characteristics of bulk metallic glasses could lead to the possibility of future applications as new structural and functional materials. The densification of an amorphous Zr{sub 70}Cu{sub 24}Al{sub 4}Nb{sub 2} powder was realized in a systematic study changing the sintering temperature in the SPS process leading to stable composites characteristic of amorphous and nanocrystalline structures. X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) analysis, transmission electron microscopy (TEM) as well as hardness tests were applied to determine the structural and mechanical properties of the sintered materials. A stable amorphous bulk metallic glass based on Zr{sub 70}Cu{sub 24}Al{sub 4}Nb{sub 2} with a low fraction of crystallites could be fabricated applying a nominal sintering temperature of 400 °C. Higher sintering temperatures lead to composites with high fractions of nanocrystalline material with porosities below 0.5%.

  19. Hydrogen in amorphous silicon

    International Nuclear Information System (INIS)

    Peercy, P.S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH 1 ) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon

  20. Application of new synchrotron powder diffraction techniques to anomalous scattering from glasses

    International Nuclear Information System (INIS)

    Beno, M.A.; Knapp, G.S.; Armand, P.; Price, D.L.; Saboungi, M.

    1995-01-01

    We have applied two synchrotron powder diffraction techniques to the measurement of high quality anomalous scattering diffraction data for amorphous materials. One of these methods, which uses a curved perfect crystal analyzer to simultaneously diffract multiple powder lines into a position sensitive detector has been shown to possess high resolution, low background, and very high counting rates. This data measurement technique provides excellent energy resolution while minimizing systematic errors resulting from detector nonlinearity. Anomalous scattering data for a Cesium Germanate glass collected using this technique will be presented. The second powder diffraction technique uses a flat analyzer crystal to deflect multiple diffraction lines out of the equatorial plane. Calculations show that this method possesses sufficient energy resolution for anomalous scattering experiments when a perfect crystal analyzer is used and is experimentally much simpler. Future studies will make use of a rapid sample changer allowing the scattering from the sample and a standard material (a material not containing the anomalous scatterer) to be measured alternately at each angle, reducing systematic errors due to beam instability or sample misalignment

  1. Amorphous nanophotonics

    CERN Document Server

    Scharf, Toralf

    2013-01-01

    This book represents the first comprehensive overview over amorphous nano-optical and nano-photonic systems. Nanophotonics is a burgeoning branch of optics that enables many applications by steering the mould of light on length scales smaller than the wavelength with devoted nanostructures. Amorphous nanophotonics exploits self-organization mechanisms based on bottom-up approaches to fabricate nanooptical systems. The resulting structures presented in the book are characterized by a deterministic unit cell with tailored geometries; but their spatial arrangement is not controlled. Instead of periodic, the structures appear either amorphous or random. The aim of this book is to discuss all aspects related to observable effects in amorphous nanophotonic material and aspects related to their design, fabrication, characterization and integration into applications. The book has an interdisciplinary nature with contributions from scientists in physics, chemistry and materials sciences and sheds light on the topic fr...

  2. The U.S. biodiesel use mandate and biodiesel feedstock markets

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Wyatt; Meyer, Seth; Green, Travis [University of Missouri, 101 Park deVille Drive, Suite E; Columbia, MO 65203 (United States)

    2010-06-15

    Studies of individual biodiesel feedstocks or broad approaches that lump animal fats and vegetable oils into a single aggregate straddle the true case of imperfect but by no means inconsequential substitution among fats and oils by different users. United States biofuel policy includes a biodiesel use mandate that rises to almost 4 hm{sup 3} by 2012, calling for biomass feedstock analysis that recognizes the complex interdependence among potential feedstocks and competition for food and industrial uses. We model biodiesel input markets to investigate the implications of the mandate for quantities and prices with and without a provision disallowing biodiesel made from soybean oil. Findings suggest a hierarchy of price effects that tends to be largest for cheaper fats and oils typically used for industrial and feed purposes and smallest for fats and oils traditionally used exclusively for direct consumption, with the cross-commodity effects and other key economic parameters playing a critical part in determining the scale in each case. Although sensitive to the exact parameters used, our results argue against overly simplifying feedstock markets by holding prices constant when considering the economics of a particular feedstock or if estimating the broader impacts of rising biodiesel production on competing uses. (author)

  3. High quality transportation fuels from renewable feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors, Lars Peter

    2010-09-15

    Hydrotreating of vegetable oils is novel process for producing high quality renewable diesel. Hydrotreated vegetable oils (HVO) are paraffinic hydrocarbons. They are free of aromatics, have high cetane numbers and reduce emissions. HVO can be used as component or as such. HVO processes can also be modified to produce jet fuel. GHG savings by HVO use are significant compared to fossil fuels. HVO is already in commercial production. Neste Oil is producing its NExBTL diesel in two plants. Production of renewable fuels will be limited by availability of sustainable feedstock. Therefore R and D efforts are made to expand feedstock base further.

  4. Powder compaction characteristics and tube dimensions in PIT fabrication of Ag/BPSCCO superconducting tapes

    International Nuclear Information System (INIS)

    Sarma, M.S.; Syamaprasad, U.; Guruswamy, P.; Warrier, K.G.K.; Damodaran, A.D.; Mukherjee, P.S.

    1997-01-01

    Density variations of the superconductor core during the powder-in-tube (PIT) fabrication of Ag/BPSCCO monolayer tapes have been studied. The PIT procedure involved steps such as filling the tubes with precursor powder, rich in 2212 phase, with packing densities in the range 20-55% of theoretical density, groove rolling, flat rolling and finally a four-stage repeated rolling-annealing cycle. The two types of precursor powders used in this study were prepared by a conventional ceramic route and an amorphous acrylate route (AR). The core density was found to saturate after a few passes of just groove rolling for both powders. However, better compaction was achieved by rolling for the AR powder which also exhibited a better uniaxial compaction response. A further increase in core density was observed only during the final annealing step. Based on the experimentally observed constancy of core density through most of the mechanical working steps, a relation connecting silver sheath thickness, total thickness and cross-section ratio at saturation of compaction has been worked out. Apart from explaining the influence of starting packing density and compaction response of powder in determining the sheath thickness of the final tapes, the relationship was found to be useful in choosing the starting packing density appropriate to the silver tube dimensions and prevailing rolling conditions. (author)

  5. Physical characterisation of particles and rheological of a heterogeneous system used in low-pressure injection moulding; Caracterizacao fisica de particulas e reologica de um sistema heterogeneo utilizado em moldagem de pos por injecao a baixa pressao

    Energy Technology Data Exchange (ETDEWEB)

    Zampieron, Joao Vicente

    2002-07-01

    The powder injection moulding process is a recent technology, which offers as advantages a high production of complex geometry metal parts, with low cost, where secondary operations of machinery are unnecessary. The main of this thesis was centered on a coarse powders feedstock injection. The process begins with the composition of the mass, that is the combination of metal powders with organic binders. The following steps succeed injection in moulds, debinding, sintering and, if necessary, cleaning. For the formulation of the feedstock it is indispensable the characterisation of the powders. This is little mentioned in the open literature and brings up controversy among authors. At first, a series of powders characterisations of AISI 316 L stainless steel (below 25 {mu}m) was adopted. The next step was to characterise the rheological behaviour of the feedstock using different rheological apparatus, so as to find the most appropriate equipment to the low-pressure powder injection molding process. The mass has to present a favourable rheological behaviour, which is low viscosity. The results of the physical characterisation were correlated among themselves and with the rheological characterisation. This was undertaken with the purpose of finding agreement among their values. Finally, the possibility of injection of water and gas atomised stainless steel coarse powders feedstock was studied. This presents as main advantage, the reduction of costs for the process. According to the literature, only powders with size below 25 {mu}m are possible to be injected. Hence, starting from the physical characterisation of particles and rheological characterisation of the feedstock, the formulation of an appropriate mass was found for the coarse powders. These coarse powders were characterised by particles below 45 {mu}m. In this case it was necessary to alter drastically the feedstock composition, using high amounts of wax, which lead to unstable rheological conditions. But, it

  6. Physical characterisation of particles and rheological of a heterogeneous system used in low-pressure injection moulding

    International Nuclear Information System (INIS)

    Zampieron, Joao Vicente

    2002-01-01

    The powder injection moulding process is a recent technology, which offers as advantages a high production of complex geometry metal parts, with low cost, where secondary operations of machinery are unnecessary. The main of this thesis was centered on a coarse powders feedstock injection. The process begins with the composition of the mass, that is the combination of metal powders with organic binders. The following steps succeed injection in moulds, debinding, sintering and, if necessary, cleaning. For the formulation of the feedstock it is indispensable the characterisation of the powders. This is little mentioned in the open literature and brings up controversy among authors. At first, a series of powders characterisations of AISI 316 L stainless steel (below 25 μm) was adopted. The next step was to characterise the rheological behaviour of the feedstock using different rheological apparatus, so as to find the most appropriate equipment to the low-pressure powder injection molding process. The mass has to present a favourable rheological behaviour, which is low viscosity. The results of the physical characterisation were correlated among themselves and with the rheological characterisation. This was undertaken with the purpose of finding agreement among their values. Finally, the possibility of injection of water and gas atomised stainless steel coarse powders feedstock was studied. This presents as main advantage, the reduction of costs for the process. According to the literature, only powders with size below 25 μm are possible to be injected. Hence, starting from the physical characterisation of particles and rheological characterisation of the feedstock, the formulation of an appropriate mass was found for the coarse powders. These coarse powders were characterised by particles below 45 μm. In this case it was necessary to alter drastically the feedstock composition, using high amounts of wax, which lead to unstable rheological conditions. But, it was

  7. Properties of various plants and animals feedstocks for biodiesel production.

    Science.gov (United States)

    Karmakar, Aninidita; Karmakar, Subrata; Mukherjee, Souti

    2010-10-01

    As an alternative fuel biodiesel is becoming increasingly important due to diminishing petroleum reserves and adverse environmental consequences of exhaust gases from petroleum-fuelled engines. Biodiesel, the non-toxic fuel, is mono alkyl esters of long chain fatty acids derived from renewable feedstock like vegetable oils, animal fats and residual oils. Choice of feedstocks depends on process chemistry, physical and chemical characteristics of virgin or used oils and economy of the process. Extensive research information is available on transesterification, the production technology and process optimization for various biomaterials. Consistent supply of feedstocks is being faced as a major challenge by the biodiesel production industry. This paper reviews physico-chemical properties of the plant and animal resources that are being used as feedstocks for biodiesel production. Efforts have also been made to review the potential resources that can be transformed into biodiesel successfully for meeting the ever increasing demand of biodiesel production. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. 2009 Feedstocks Platform Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program‘s Feedstock platform review meeting, held on April 8–10, 2009, at the Grand Hyatt Washington, Washington, D.C.

  9. Protection of hydrophobic amino acids against moisture-induced deterioration in the aerosolization performance of highly hygroscopic spray-dried powders.

    Science.gov (United States)

    Yu, Jiaqi; Chan, Hak-Kim; Gengenbach, Thomas; Denman, John A

    2017-10-01

    Inhalable particles containing amorphous form of drugs or excipients may absorb atmospheric moisture, causing powder aggregation and recrystallization, adversely affecting powder dispersion and lung deposition. The present study aims to explore hydrophobic amino acids for protection against moisture in spray-dried amorphous powders, using disodium cromoglycate (DSCG) as a model drug. DSCG powders were produced by co-spray drying with isoleucine (Ile), valine (Val) and methionine (Met) in various concentrations (10, 20 and 40%w/w). Particle size distribution and morphology were measured by laser diffraction and scanning electron microscopy (SEM). Physiochemical properties of the powders were characterized by X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and dynamic vapor sorption (DVS). Particle surface chemistry was analyzed by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). In vitro aerosolization performance was evaluated by a next generation impactor (NGI) after the powders were stored at 60% or 75% relative humidity (RH) for one month and three months. Ile, Val and Met significantly reduced the deleterious effect of moisture on aerosol performance, depending on the amount of amino acids in the formulation. Formulations containing 10% or 20% of Ile, Val and Met showed notable deterioration in aerosol performance, with fine particle fraction (FPF) reduced by 6-15% after one-month storage at both 60% and 75% RH. However, 40% Ile was able to maintain the aerosol performance of DSCG stored at 75% RH for one month, while the FPF dropped by 7.5% after three months of storage. In contrast, 40% Val or Met were able to maintain the aerosol performance at 60% RH storage but not at 75% RH. At 40%w/w ratio, these formulations had particle surface coverage of 94.5% (molar percent) of Ile, 87.1% of Val and 84.6% of Met, respectively, which may explain their

  10. Photocatalytic oxidative desulfurization of dibenzothiophene catalyzed by amorphous TiO{sub 2} in ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenshuai; Xu, Yehai; Li, Huaming; Dai, Bilian; Xu, Hui; Wang, Chao; Chao, Yanhong; Liu, Hui [Jiangsu University, Zhenjiang (China)

    2014-02-15

    Three types of TiO{sub 2} were synthesized by a hydrolysis and calcination method. The catalysts were characterized by X-ray powder diffraction (XRD), diffuse reflectance spectrum (DRS), Raman spectra, and X-ray photoelectron spectroscopy (XPS). The XRD and Raman spectra indicated that amorphous TiO{sub 2} was successfully obtained at 100 .deg. C. The results indicated that amorphous TiO{sub 2} achieved the highest efficiency of desulfurization. The photocatalytic oxidation of dibenzothiophene (DBT), benzothiophene (BT), 4,6-dimethyldibenzothiophene (4,6-DMDBT) and dodecanethiol (RSH) in model oil was studied at room temperature (30 .deg. C) with three catalysts. The system contained amorphous TiO{sub 2}, H{sub 2}O{sub 2}, and [Bmim]BF{sub 4} ionic liquid, ultraviolet (UV), which played vitally important roles in the photocatalytic oxidative desulfurization. Especially, the molar ratio of H{sub 2}O{sub 2} and sulfur (O/S) was only 2 : 1, which corresponded to the stoichiometric reaction. The sulfur removal of DBT-containing model oil with amorphous TiO{sub 2} could reach 96.6%, which was apparently superior to a system with anatase TiO{sub 2} (23.6%) or with anatase - rutile TiO{sub 2} (18.2%). The system could be recycled seven times without a signicant decrease in photocatalytic activity.

  11. Alternative Feedstocks Program Technical and Economic Assessment: Thermal/Chemical and Bioprocessing Components

    Energy Technology Data Exchange (ETDEWEB)

    Bozell, J. J.; Landucci, R.

    1993-07-01

    This resource document on biomass to chemicals opportunities describes the development of a technical and market rationale for incorporating renewable feedstocks into the chemical industry in both a qualitative and quantitative sense. The term "renewable feedstock?s" can be defined to include a huge number of materials such as agricultural crops rich in starch, lignocellulosic materials (biomass), or biomass material recovered from a variety of processing wastes.

  12. An example of how to handle amorphous fractions in API during early pharmaceutical development: SAR114137--a successful approach.

    Science.gov (United States)

    Petzoldt, Christine; Bley, Oliver; Byard, Stephen J; Andert, Doris; Baumgartner, Bruno; Nagel, Norbert; Tappertzhofen, Christoph; Feth, Martin Philipp

    2014-04-01

    The so-called pharmaceutical solid chain, which encompasses drug substance micronisation to the final tablet production, at pilot plant scale is presented as a case study for a novel, highly potent, pharmaceutical compound: SAR114137. Various solid-state analytical methods, such as solid-state Nuclear Magnetic Resonance (ssNMR), Differential Scanning Calorimetry (DSC), Dynamic Water Vapour Sorption Gravimetry (DWVSG), hot-stage Raman spectroscopy and X-ray Powder Diffraction (XRPD) were applied and evaluated to characterise and quantify amorphous content during the course of the physical treatment of crystalline active pharmaceutical ingredient (API). DSC was successfully used to monitor the changes in amorphous content during micronisation of the API, as well as during stability studies. (19)F solid-state NMR was found to be the method of choice for the detection and quantification of low levels of amorphous API, even in the final drug product (DP), since compaction during tablet manufacture was identified as a further source for the formation of amorphous API. The application of different jet milling techniques was a critical factor with respect to amorphous content formation. In the present case, the change from spiral jet milling to loop jet milling led to a decrease in amorphous API content from 20-30 w/w% to nearly 0 w/w% respectively. The use of loop jet milling also improved the processability of the API. Stability investigations on both the milled API and the DP showed a marked tendency for recrystallisation of the amorphous API content on exposure to elevated levels of relative humidity. No significant impact of amorphous API on either the chemical stability or the dissolution rate of the API in drug formulation was observed. Therefore, the presence of amorphous content in the oral formulation was of no consequence for the clinical trial phases I and II. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. In vitro characterization of a novel polymeric system for preparation of amorphous solid drug dispersions.

    Science.gov (United States)

    Mahmoudi, Zahra N; Upadhye, Sampada B; Ferrizzi, David; Rajabi-Siahboomi, Ali R

    2014-07-01

    Preparation of amorphous solid dispersions using polymers is a commonly used formulation strategy for enhancing the solubility of poorly water-soluble drugs. However, often a single polymer may not bring about a significant enhancement in solubility or amorphous stability of a poorly water-soluble drug. This study describes application of a unique and novel binary polymeric blend in preparation of solid dispersions. The objective of this study was to investigate amorphous solid dispersions of glipizide, a BCS class II model drug, in a binary polymeric system of polyvinyl acetate phthalate (PVAP) and hypromellose (hydroxypropyl methylcellulose, HPMC). The solid dispersions were prepared using two different solvent methods: rotary evaporation (rotavap) and fluid bed drug layering on sugar spheres. The performance and physical stability of the dispersions were evaluated with non-sink dissolution testing, powder X-ray diffraction (PXRD), and modulated differential scanning calorimetry (mDSC). PXRD analysis demonstrated an amorphous state for glipizide, and mDSC showed no evidence of phase separation. Non-sink dissolution testing in pH 7.5 phosphate buffer indicated more than twofold increase in apparent solubility of the drug with PVAP-HPMC system. The glipizide solid dispersions demonstrated a high glass transition temperature (Tg) and acceptable chemical and physical stability during the stability period irrespective of the manufacturing process. In conclusion, the polymeric blend of PVAP-HPMC offers a unique formulation approach for developing amorphous solid dispersions with the flexibility towards the use of these polymers in different ratios and combined quantities depending on drug properties.

  14. Effects of sintering time and temperature to the characteristics of FeCrAl powder compacts formed at elevated temperature

    Science.gov (United States)

    Rahman, M. M.; Rahman, H. Y.; Awang, M. A. A.; Sopyan, I.

    2018-01-01

    This paper presents the outcomes of an experimental investigation on the effect of sintering schedule, i.e., holding time and temperature to the final properties of FeCrAl powder compacts prepared through uniaxial die compaction process at above room temperature. The feedstock was prepared by mechanically mixing iron powder ASC 100.29 with chromium (22 wt%) and aluminium (11 wt%) for 30 min at room temperature. A cylindrical shape die was filled with the powder mass and heated for one hour for uniform heating of the die assembly together with the powder mass. Once the temperature reached to the setup temperature, i.e., 150°C, the powder mass was formed by applying an axial pressure of 425 MPa simultaneously from upward and downward directions. The as-pressed green compacts were then cooled to room temperature and subsequently sintered in argon gas fired furnace at a rate of 5°C/min for three different holding times, i.e., 30, 60, and 90 min at three different sintering temperatures, i.e., 800, 900, and 1000°C. The sintered samples were characterized for their density, electrical resistivity, bending strength, and microstructure. The results revealed that the sample sintered at 1000°C for 90 min achieved the better characteristics.

  15. FY 1998 annual report on the results of new industry creation type industrial science and technology research and development on the research and development of supermetals. Development of techniques for controlling structures of nano-amorphous materials; 1998 nendo super metal no gijutsu kaihatsu. Nano amorphous kozo seigyo zairyo no gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Described herein are the FY 1998 results of the development of techniques for controlling structures of nano-amorphous materials. For the development of techniques for finely dispersing fine particles, mechanical alloying (MA) and mechanical milling (MM) are investigated, to structure nano-crystals in common steel, for which hot isostatic pressing is evaluated as a consolidation process for the MA- and MM-prepared powders in the FY 1998. For researches on high-speed particle deposition and super plastic forming, an Al-Ni, Al-Fe and Al-Ti alloy are selected as the nano-structure materials to be prepared by evaporation, and various compositions of these systems are evaporated, in order to investigate their microstructures, mechanical properties and thermal stabilities. For researches on techniques for controlling phases with the aid of high-density energy, the R and D efforts are directed to exploration of composition of high resistance to corrosion by acid at dew point, preparation of non-equilibrium (e.g., amorphous) powders, and development of solidification and forming techniques, with the target of creation of an amorphous alloy showing corrosion resistance at least twice as high as that of the commercial corrosion-resistance material and formable into a bulk shape having a thickness of at least 1 mm. For researches on controlled cooling techniques, the basic data are collected. (NEDO)

  16. Effect of the milling energy on the production and thermal stability of amorphous Mg50Ni50

    International Nuclear Information System (INIS)

    Guzman, D.; Ordonez, S.; Serafini, D.; Rojas, P.; Bustos, O.

    2009-01-01

    The effect of milling energy on the amorphisation process and subsequent thermal crystallization of Mg 50 Ni 50 was investigated. The amorphous Mg 50 Ni 50 was produced using a planetary mill (medium energy) with a ball to material weight ratio of 13:1, and a SPEX mill (high energy) with a ball to material weight ratio of 20:1. The results obtained by means of X-ray diffraction showed that it is possible to obtain an amorphous Mg 50 Ni 50 alloy, through both milling processes, starting of Ni powders and Mg turnings. However, the amorphisation process requires more time in the planetary mill (80-90 h) than in the SPEX mill (15-20 h), due to the difference in energy level and milling mechanism between these mills. The phase evolution during the amorphisation process is practically independent of the mill energy. In this way, it was observed that the mill conditions promoted an extensive refinement of the microstructure during the first hours of milling. The defects produced during this time led to the amorphisation of part of the system. This amorphous precursor suffers a mechanically induced crystallization into Mg 2 Ni, which is subsequently destabilized into amorphous Mg 50 Ni 50 . Based on the results obtained, it is proposed that the formation of amorphous precursor during mechanical milling of Mg and Ni is a characteristic of the Mg-Ni system, over a wide composition range, rather than of a particular composition. In relation to the thermal crystallization of the amorphous produced, the results of the differential thermal analysis applied to the amorphous samples showed that the formation enthalpy for both amorphous is the same, however, the amorphous produced in a planetary mill presented higher crystallization temperatures and apparent activation energies than the amorphous produced in a SPEX mill. The last behavior would be related with iron contamination coming from the erosion of the milling media. Finally, it is possible to conclude, that under the

  17. Macroalgae as a Biomass Feedstock: A Preliminary Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roesijadi, Guritno; Jones, Susanne B.; Snowden-Swan, Lesley J.; Zhu, Yunhua

    2010-09-26

    A thorough of macroalgae analysis as a biofuels feedstock is warranted due to the size of this biomass resource and the need to consider all potential sources of feedstock to meet current biomass production goals. Understanding how to harness this untapped biomass resource will require additional research and development. A detailed assessment of environmental resources, cultivation and harvesting technology, conversion to fuels, connectivity with existing energy supply chains, and the associated economic and life cycle analyses will facilitate evaluation of this potentially important biomass resource.

  18. Markets for Canadian bitumen-based feedstock

    International Nuclear Information System (INIS)

    Marshall, R.; Lauerman, V.; Yamaguchi, N.

    2001-02-01

    This study was undertaken in an effort to determine the market potential for crude bitumen and derivative products from the Western Canadian Sedimentary Basin in 2007. As part of the study, CERI assessed the economic viability of a wide range of bitumen-based feedstock based on their refining values, investigated the sensitivity of refinery demand to the prices of these feedstocks, and examined the competitiveness of bitumen-based feedstocks and conventional crudes. A US$18.00 per barrel price for West Texas Intermediate at Cushing, Oklahoma, was assumed in all calculations, including other crude prices, as well as for Western Canadian and US crude oil production forecasts. Four different scenarios have been considered, but only the 'most plausible' scenario is discussed in the report. Consequently, Hydrocracked/Aromatics Saturated Synthetic Crude Oil, which is currently only a hypothetical product, is excluded from consideration. The availability of historical price differentials for the various competing crudes was another assumption used in developing the scenario. Proxy prices for the bitumen-based feedstock were based on their respective supply costs. The study concludes that the principal dilemma facing bitumen producers in Western Canada is to determine the amount of upgrading necessary to ensure an economic market for their product in the future. In general, the greater the degree of upgrading, the higher is the demand for bitumen-based feedstock. However, it must be kept in mind that the upgrading decisions of other bitumen producers, along with many other factors, will have a decisive impact on the economics of any individual project. The combination of coking capacity and asphalt demand limits the market for heavy and extra-heavy crudes. As a result, the researchers concluded that major expansion of heavy crude conversion capacity may have to wait until the end of the current decade. The economic market for bitumen-based blends in 2007 is estimated at

  19. Hexagonal ferrite powder synthesis using chemical coprecipitation

    International Nuclear Information System (INIS)

    Hsiang, H.-I; Yao, R.-Q.

    2007-01-01

    The formation mechanism of 3BaO.2CoO.12Fe 2 O 3 (Co 2 Z), 2BaO.2CoO.6Fe 2 O 3 (Co 2 Y) and BaO.6Fe 2 O 3 (BaM) powders were prepared using chemical coprecipitation methods in this study using X-ray diffraction (XRD), thermo-gravimetry (TG), differential thermal analysis (DTA) and Fourier transform infrared spectroscopy (FTIR). It was found that the BaM phase was formed directly through the reaction of the preceding ε-Fe 2 O 3 and amorphous BaCO 3 for BaM precursor. For the Co 2 Y precursor, the intermediate phase, BaM, was obtained through the reaction of the earlier formed BaFe 2 O 4 and α-Fe 2 O 3 . The Co 2 Y phase was obtained through a BaM and BaFe 2 O 4 reaction. However, for the Co 2 Z precursors, the BaM phase was obtained directly from the BaCO 3 and amorphous iron hydroxide reaction, with no α-Fe 2 O 3 and BaFe 2 O 4 formed as intermediates. Co 2 Z phase was obtained through the reaction of the two previous formed BaM and Co 2 Y phases

  20. Potential of feedstock and catalysts from waste in biodiesel preparation: A review

    International Nuclear Information System (INIS)

    Nurfitri, Irma; Maniam, Gaanty Pragas; Hindryawati, Noor; Yusoff, Mashitah M.; Ganesan, Shangeetha

    2013-01-01

    Highlights: • Oils/lipids from waste sources are the suitable candidates for transesterification. • Catalyst derived from waste materials proven its role in transesterification. • The use of materials from waste should be intensify for sustainability. - Abstract: For many years, the cost of production has been the main barrier in commercializing biodiesel, globally. It has been well researched and established in the literature that the cost of feedstock is the major contributor. Biodiesel producers are forced to choose between edible and non-edible feedstock. The use of edible feedstock sparks concern in terms of food security while the inedible feedstock needs additional pretreatment steps. On the other hand, the wide availability of edible feedstock guarantees the supply while the choice of non-edible results in a non-continuous or non-ready supply. With these complications in mind, this review attempts to identify possible solutions by exploring the potential of waste edible oils and waste catalysts in biodiesel preparation. Since edible oils are available and used abundantly, waste or used edible oils have the potential to provide plentiful feedstock for biodiesel. In addition, since traditional homogeneous catalysts are less competent in transesterifying waste/used oils, this review includes the possibility of heterogeneous catalysts from waste sources that are able to aid the transesterification reaction with success

  1. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  2. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Saharoui; Mughal, Asad Jahangir

    2015-01-01

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  3. Fabrication of photonic amorphous diamonds for terahertz-wave applications

    Energy Technology Data Exchange (ETDEWEB)

    Komiyama, Yuichiro; Abe, Hiroyuki; Kamimura, Yasushi; Edagawa, Keiichi, E-mail: edagawa@iis.u-tokyo.ac.jp [Institute of Industrial Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2016-05-09

    A recently proposed photonic bandgap material, named “photonic amorphous diamond” (PAD), was fabricated in a terahertz regime, and its terahertz-wave propagation properties were investigated. The PAD structure was fabricated from acrylic resin mixed with alumina powder, using laser lithographic, micro-additive manufacturing technique. After fabrication, the resulting structure was dewaxed and sintered. The formation of a photonic bandgap at around 0.45 THz was demonstrated by terahertz time-domain spectroscopy. Reflecting the disordered nature of the random network structure, diffusive terahertz-wave propagation was observed in the passbands; the scattering mean-free path decreased as the frequency approached the band edge. The mean-free paths evaluated at the band edges were close to the Ioffe-Regel threshold value for wave localization.

  4. Identifying the hazard characteristics of powder byproducts generated from semiconductor fabrication processes.

    Science.gov (United States)

    Choi, Kwang-Min; An, Hee-Chul; Kim, Kwan-Sick

    2015-01-01

    Semiconductor manufacturing processes generate powder particles as byproducts which potentially could affect workers' health. The chemical composition, size, shape, and crystal structure of these powder particles were investigated by scanning electron microscopy equipped with an energy dispersive spectrometer, Fourier transform infrared spectrometry, and X-ray diffractometry. The powders generated in diffusion and chemical mechanical polishing processes were amorphous silica. The particles in the chemical vapor deposition (CVD) and etch processes were TiO(2) and Al(2)O(3), and Al(2)O(3) particles, respectively. As for metallization, WO(3), TiO(2), and Al(2)O(3) particles were generated from equipment used for tungsten and barrier metal (TiN) operations. In photolithography, the size and shape of the powder particles showed 1-10 μm and were of spherical shape. In addition, the powders generated from high-current and medium-current processes for ion implantation included arsenic (As), whereas the high-energy process did not include As. For all samples collected using a personal air sampler during preventive maintenance of process equipment, the mass concentrations of total airborne particles were particles less than 10 μm in diameter) using direct-reading aerosol monitor by area sampling were between 0.00 and 0.02 μg/m(3). Although the exposure concentration of airborne particles during preventive maintenance is extremely low, it is necessary to make continuous improvements to the process and work environment, because the influence of chronic low-level exposure cannot be excluded.

  5. More valuable as petrochemical feedstock

    International Nuclear Information System (INIS)

    Ramachandran, R.

    2005-01-01

    The problems facing the North American petrochemical industry were discussed with particular reference to the fact that high North American prices present a challenge to competitiveness in a globally traded market. A background of Dow Canada was provided, including details of its upgrading of natural gas liquids that would otherwise be combusted for electrical power generation. The value of the petrochemical industry was outlined, with details of employment, manufacturing output and exports. Alberta's relationship to the natural gas industry was reviewed. The role of petrochemicals as a nexus for bridging the resource sector with manufacturing, retail and transportation was discussed. The historic correlation between world Gross Domestic Product (GDP) and ethylene demand was presented. It was noted that the petrochemical industry currently competes with power generators for smaller volumes of natural gas liquids. As a highly energy intensive industry, inequities in gas pipeline haul charges and even small increases in gas prices has compromised the success of the petrochemical industry. It was noted that while crude oil is a globally traded commodity, natural gas liquids are generally traded at a more localized level, and factors that helped build the petrochemical industry and are now inhibiting growth. Ethane is the primary feedstock in the petrochemical industry. High natural gas prices affected the industry on two levels: volatility in a weakening industry and higher prices on primary feedstocks. It was estimated that changes in current trends were likely to take place in 5 to 10 years, following Northern gas developments. It was estimated that more than 50 per cent of new capacity investment in ethylene plants would take place in the Middle East in the next 5 years. No new plants are planned in Canada. It was concluded that low-cost feedstock advantages, as well as alternative feedstocks and the sustainment of a healthy industry are necessary for the

  6. Nonlinear optical imaging for sensitive detection of crystals in bulk amorphous powders.

    Science.gov (United States)

    Kestur, Umesh S; Wanapun, Duangporn; Toth, Scott J; Wegiel, Lindsay A; Simpson, Garth J; Taylor, Lynne S

    2012-11-01

    The primary aim of this study was to evaluate the utility of second-order nonlinear imaging of chiral crystals (SONICC) to quantify crystallinity in drug-polymer blends, including solid dispersions. Second harmonic generation (SHG) can potentially exhibit scaling with crystallinity between linear and quadratic depending on the nature of the source, and thus, it is important to determine the response of pharmaceutical powders. Physical mixtures containing different proportions of crystalline naproxen and hydroxyl propyl methyl cellulose acetate succinate (HPMCAS) were prepared by blending and a dispersion was produced by solvent evaporation. A custom-built SONICC instrument was used to characterize the SHG intensity as a function of the crystalline drug fraction in the various samples. Powder X-ray diffraction (PXRD) and Raman spectroscopy were used as complementary methods known to exhibit linear scaling. SONICC was able to detect crystalline drug even in the presence of 99.9 wt % HPMCAS in the binary mixtures. The calibration curve revealed a linear dynamic range with a R(2) value of 0.99 spanning the range from 0.1 to 100 wt % naproxen with a root mean square error of prediction of 2.7%. Using the calibration curve, the errors in the validation samples were in the range of 5%-10%. Analysis of a 75 wt % HPMCAS-naproxen solid dispersion with SONICC revealed the presence of crystallites at an earlier time point than could be detected with PXRD and Raman spectroscopy. In addition, results from the crystallization kinetics experiment using SONICC were in good agreement with Raman spectroscopy and PXRD. In conclusion, SONICC has been found to be a sensitive technique for detecting low levels (0.1% or lower) of crystallinity, even in the presence of large quantities of a polymer. Copyright © 2012 Wiley-Liss, Inc.

  7. Application of combined multivariate techniques for the description of time-resolved powder X-ray diffraction data

    Czech Academy of Sciences Publication Activity Database

    Taris, A.; Grosso, M.; Brundu, M.; Guida, V.; Viani, Alberto

    2017-01-01

    Roč. 50, č. 2 (2017), s. 451-461 ISSN 1600-5767 R&D Projects: GA MŠk(CZ) LO1219 Keywords : in situ X-ray powder diffraction * amorphous content * chemically bonded ceramic s * statistical total correlation spectroscopy * multivariate curve resolution Subject RIV: JJ - Other Materials OBOR OECD: Materials engineering Impact factor: 2.495, year: 2016 http://journals.iucr.org/j/issues/2017/02/00/ap5006/index.html

  8. Best practices guidelines for managing water in bioenergy feedstock production

    Science.gov (United States)

    Daniel G. Neary

    2015-01-01

    In the quest to develop renewable energy sources, woody and agricultural crops are being viewed as an important source of low environmental impact feedstocks for electrical generation and biofuels production (Hall and Scrase 1998, Eriksson et al. 2002, Somerville et al. 2010, Berndes and Smith 2013). In countries like the USA, the bioenergy feedstock potential is...

  9. Processing of low-quality bauxite feedstock by thermochemistry-Bayer method

    Directory of Open Access Journals (Sweden)

    О. А. Дубовиков

    2016-11-01

    Full Text Available The modern production of aluminum which by its global output ranks first among the non-ferrous metals includes three main stages: ore extraction, its processing into alumina and, finally, the production of primary aluminum. Alumina production from bauxites,  being the  primary raw material in the  alumina industry,  is based  on two main methods: the Bayer method and the sintering method developed in Russia under the lead of an academician Nikolay Semenovich Kurnakov. Alumina production by the Bayer’s method is more cost effective,  but  has  higher  requirements to the  quality of the bauxite feedstock.  A great deal  of research has  been carried  out on low quality bauxites focusing firstly on finding ways to enrich the feedstock, secondly on improving the combined sequential Bayer-sintering method and thirdly on developing new hydrometallurgical ways for bauxites processing. Mechanical methods of bauxite enrichment have not yet brought any positive outcome, and a development of new hydrometallurgical high alkaline  autoclave process  faced  significant hardware  difficulties not addressed so far. For efficient processing of such low quality bauxite feedstock it is suggested to use a universal thermochemistry-Bayer method, which was developed in St. Petersburg Mining University under  the lead  of  Nikolay Ivanovich Eremin, allows to process different substandard bauxite feedstock and has a competitive costing as compared to the sintering method and combined methods. The main stages of thermochemistry-Bayer method are thermal activation of feedstock, its further desiliconization with the alkaline solution and leaching of the resultant bauxite product  under Bayer’s method. Despite high energy consumption at  the baking stage,  it  allows to condition the  low quality bauxite feedstock by neutralizing a variety of technologically harmful impurities such as organic matter, sulfide sulfur, carbonates, and at the

  10. Preparation of amorphous-crystalline SiO{sub 2} composite by hot isostatic pressing (HIP). 2; HIP ho ni yoru SiO{sub 2} kei hishoshitsu-kesshoshitsu fukugo zairyo no sakusei. 2

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S.; Nishii, J.; Fujii, T.; Akashi, K. [Science University of Tokyo, Tokyo (Japan). Faculty of Science and Tecnology

    2000-08-15

    The composites consisting of {alpha}-quartz crystallites and amorphous SiO{sub 2} were prepared by HIP technique, imitating the structure of natural agate. In the previous study, the K{sub IC} of the composite prepared from the mixed powder of crystallites and amorphous SiO{sub 2} was comparable to that of the natural agate (0.56MN/m{sup 1.5}). In this study, to increase the toughness of the composite, (1) the mixture of silica sol and {alpha}-quartz powder and (2) silica sol including nucleation promoter were examined as starting materials respectively. These starting materials were pressed into powder compacts with {phi} 10 multiplied 50mm in size. The Pyrex glass capsule containing the compact was hipped at 800-1,200 degrees C for 0-120 minutes under the pressure of 200 MPa. The K{sub IC} of the composite obtained from the mixture of silica sol and {alpha}-quartz powder was equivalent to that obtained in the previous study, while the maximum K{sub IC} (0.63 MN/m{sup 1.5}) was obtained when PbCl{sub 2} was used as a nucleation promoter. The nucleation promoter having low solubility in water was useful for the homogeneous generation of the crystallites. (author)

  11. Formation of nanocrystalline phases during decomposition of amorphous Ni-P alloys by continuous linear heating

    Energy Technology Data Exchange (ETDEWEB)

    Revesz, A.; Lendvai, J. [Eoetvoes Lorand Tudomanyegyeten, Budapest (Hungary). Dept. for General Physics; Cziraki, A. [Eoetvoes Univ. (Hungary). Dept. of Solid State Physics; Liebermann, H.H. [Honeywell Amorphous Metals, Morristown, NJ (United States); Bakonyi, I. [Hungarian Academy of Sciences (Hungary). Research Inst. for Solid State Physics and Optics

    2001-05-01

    Differential scanning calorimetry (DSC), powder diffraction and high-resolution X-ray diffraction (XRD), and transmission electron microscopy (TEM) investigations have been performed on melt-quenched amorphous Ni-P alloys with compositions of 18 to 22 at.% P. The calorimetric results revealed different crystallization routes during linear heating below, at and above the eutectic point (19 at.% P) but with the same general transformation scheme as reported previously for electrodeposited and electroless Ni-P amorphous alloys. The composition dependence of the activation energy of the crystallization and the heats evolved during the structural transformations were determined from DSC measurements. The average grain size was derived from XRD line broadening and important information on the crystallization products and their microstructure could be revealed also from the TEM studies. All these findings will have special significance when analysing the results of isothermal annealing experiments to be described in a forthcoming paper. (orig.)

  12. Assessing Potential Air Pollutant Emissions from Agricultural Feedstock Production using MOVES

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, Annika [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Warner, Ethan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yi Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Inman, Daniel J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Carpenter Petri, Alberta C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Heath, Garvin A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hettinger, Dylan J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bhatt, Arpit H [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-29

    Biomass feedstock production is expected to grow as demand for biofuels and bioenergy increases. The change in air pollutant emissions that may result from large-scale biomass supply has implications for local air quality and human health. We developed spatially explicit emissions inventories for corn grain and six cellulosic feedstocks through the extension of the National Renewable Energy Laboratory's Feedstock Production Emissions to Air Model (FPEAM). These inventories include emissions of seven pollutants (nitrogen oxides, ammonia, volatile organic compounds, particulate matter, sulfur oxides, and carbon monoxide) generated from biomass establishment, maintenance, harvest, transportation, and biofuel preprocessing activities. By integrating the EPA's MOtor Vehicle Emissions Simulator (MOVES) into FPEAM, we created a scalable framework to execute county-level runs of the MOVES-Onroad model for representative counties (i.e., those counties with the largest amount of cellulosic feedstock production in each state) on a national scale. We used these results to estimate emissions from the on-road transportation of biomass and combined them with county-level runs of the MOVES-Nonroad model to estimate emissions from agricultural equipment. We also incorporated documented emission factors to estimate emissions from chemical application and the operation of drying equipment for feedstock processing, and used methods developed by the EPA and the California Air Resources Board to estimate fugitive dust emissions. The model developed here could be applied to custom equipment budgets and is extensible to accommodate additional feedstocks and pollutants. Future work will also extend this model to analyze spatial boundaries beyond the county-scale (e.g., regional or sub-county levels).

  13. Feeding a sustainable chemical industry: do we have the bioproducts cart before the feedstocks horse?

    Science.gov (United States)

    Dale, Bruce E

    2017-09-21

    A sustainable chemical industry cannot exist at scale without both sustainable feedstocks and feedstock supply chains to provide the raw materials. However, most current research focus is on producing the sustainable chemicals and materials. Little attention is given to how and by whom sustainable feedstocks will be supplied. In effect, we have put the bioproducts cart before the sustainable feedstocks horse. For example, bulky, unstable, non-commodity feedstocks such as crop residues probably cannot supply a large-scale sustainable industry. Likewise, those who manage land to produce feedstocks must benefit significantly from feedstock production, otherwise they will not participate in this industry and it will never grow. However, given real markets that properly reward farmers, demand for sustainable bioproducts and bioenergy can drive the adoption of more sustainable agricultural and forestry practices, providing many societal "win-win" opportunities. Three case studies are presented to show how this "win-win" process might unfold.

  14. Enzymatic pre-treatment of high content cellulosic feedstock improves biogas production

    Science.gov (United States)

    Animal wastes with high lignin and cellulosic contents can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. However, these high lignin and cellulosic feedstocks are quite recalcitrant to be readily utilized by methanogens to produce ben...

  15. In Situ Fabrication of AlN Coating by Reactive Plasma Spraying of Al/AlN Powder

    Directory of Open Access Journals (Sweden)

    Mohammed Shahien

    2011-10-01

    Full Text Available Reactive plasma spraying is a promising technology for the in situ formation of aluminum nitride (AlN coatings. Recently, it became possible to fabricate cubic-AlN-(c-AlN based coatings through reactive plasma spraying of Al powder in an ambient atmosphere. However, it was difficult to fabricate a coating with high AlN content and suitable thickness due to the coalescence of the Al particles. In this study, the influence of using AlN additive (h-AlN to increase the AlN content of the coating and improve the reaction process was investigated. The simple mixing of Al and AlN powders was not suitable for fabricating AlN coatings through reactive plasma spraying. However, it was possible to prepare a homogenously mixed, agglomerated and dispersed Al/AlN mixture (which enabled in-flight interaction between the powder and the surrounding plasma by wet-mixing in a planetary mill. Increasing the AlN content in the mixture prevented coalescence and increased the nitride content gradually. Using 30 to 40 wt% AlN was sufficient to fabricate a thick (more than 200 µm AlN coating with high hardness (approximately 1000 Hv. The AlN additive prevented the coalescence of Al metal and enhanced post-deposition nitriding through N2 plasma irradiation by allowing the nitriding species in the plasma to impinge on a larger Al surface area. Using AlN as a feedstock additive was found to be a suitable method for fabricating AlN coatings by reactive plasma spraying. Moreover, the fabricated coatings consist of hexagonal (h-AlN, c-AlN (rock-salt and zinc-blend phases and certain oxides: aluminum oxynitride (Al5O6N, cubic sphalerite Al23O27N5 (ALON and Al2O3. The zinc-blend c-AlN and ALON phases were attributed to the transformation of the h-AlN feedstock during the reactive plasma spraying. Thus, the zinc-blend c

  16. Why did the price of solar PV Si feedstock fluctuate so wildly in 2004–2009?

    International Nuclear Information System (INIS)

    Yu Yang; Song Yuhua; Bao Haibo

    2012-01-01

    Great attention has been paid to the origin of observed wild price fluctuations of solar PV Si feedstock in both contract and spot markets during 2004–2009. This paper sheds light on this issue and tries to resolve it by addressing the following questions: what kind of structural shock is underlying the price fluctuations of PV Si feedstock? How can we quantify the magnitude, timing and relative importance of these shocks? What are their dynamic effects on the real price of PV Si feedstock? By carefully studying development conditions, the structural decomposition of the real price of PV Si feedstock is proposed: exchange rate shocks, production cost shocks, aggregate demand shocks and demand shocks specific to feedstock markets. With a Structural Vector Autoregression model, the paper quantifies and verifies the impact of structural shocks on PV Si feedstock real price changes. Based on national data, an analysis is further taken to confirm the essential role of demand shocks specific to feedstock markets in determining sharper price fluctuations during 2004–2009. The results of this study have important implications for national solar PV development, which can be better promoted and administrated if structural shocks in feedstock markets can be carefully evaluated and understood. - Highlights: ► The determination of solar PV Si feedstock price fluctuation is identified and quantified. ► Systematic structural shocks well explain 2004–2009 price fluctuations of PV Si feedstock. ► Production cost and aggregated demand shocks take longer effects on feedstock price. ► Exchange rate and feedstock specific demand shocks explain sharper price fluctuations. ► Development of national PV power should consider effects of structure shocks.

  17. Biofuels feedstock development program

    International Nuclear Information System (INIS)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Martin, S.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1993-11-01

    The Department of Energy's (DOE's) Biofuels Feedstock Development Program (BFDP) leads the nation in the research, development, and demonstration of environmentally acceptable and commercially viable dedicated feedstock supply systems (DFSS). The purpose of this report is to highlight the status and accomplishments of the research that is currently being funded by the BFDP. Highlights summarized here and additional accomplishments are described in more detail in the sections associated with each major program task. A few key accomplishments include (1) development of a methodology for doing a cost-supply analysis for energy crops and the application of that methodology to looking at possible land use changes around a specific energy facility in East Tennessee; (2) preliminary documentation of the relationship between woody crop plantation locations and bird diversity at sites in the Midwest, Canada, and the pacific Northwest supplied indications that woody crop plantations could be beneficial to biodiversity; (3) the initiation of integrated switchgrass variety trials, breeding research, and biotechnology research for the south/southeast region; (4) development of a data base management system for documenting the results of herbaceous energy crop field trials; (5) publication of three issues of Energy Crops Forum and development of a readership of over 2,300 individuals or organizations as determined by positive responses on questionnaires

  18. Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Sokhansanj, Shahabaddine [ORNL

    2009-12-01

    This report describes a set of procedures and assumptions used to estimate production and logistics costs of bioenergy feedstocks from herbaceous crops and agricultural residues. The engineering-economic analysis discussed here is based on methodologies developed by the American Society of Agricultural and Biological Engineers (ASABE) and the American Agricultural Economics Association (AAEA). An engineering-economic analysis approach was chosen due to lack of historical cost data for bioenergy feedstocks. Instead, costs are calculated using assumptions for equipment performance, input prices, and yield data derived from equipment manufacturers, research literature, and/or standards. Cost estimates account for fixed and variable costs. Several examples of this costing methodology used to estimate feedstock logistics costs are included at the end of this report.

  19. Synthesis and mechanical properties of bulk Al{sub 76}Ni{sub 8}Ti{sub 8}Zr{sub 4}Y{sub 4} alloy fabricated by consolidation of mechanically alloyed amorphous powders

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinfu; Wang, Kun; Li, Zhendong; Wang, Xingfu; Wang, Dan; Han, Fusheng, E-mail: fshan@issp.ac.cn

    2015-05-25

    Graphical abstract: Different regions indentation morphologies under 50 g load consolidated at 723 K (left), nanohardness of the Al{sub 76}Ni{sub 8}Ti{sub 8}Zr{sub 4}Y{sub 4} alloy as a function consolidation temperature (right). It can be seen from the above figures that the consolidated sample presents white regions, and the microhardness in the white regions is a little lower than the matrix, which could be caused by the difference of the chemical composition and chemical bonding forces between them. Interestingly, the cracks were formed around the indentation periphery in the white regions, which are not shown in the matrix. The nanohardness of the bulk composites increased from 11.16 to 13.27 GPa with the consolidation temperature increasing, mechanical softening was also found in the present alloys. - Highlights: • Bulk amorphous–nanocrystalline Al-based alloys were prepared by HPS process. • The Vickers microhardness of bulk samples is in the range of 945–1177HV0.1. • The nanohardness agrees well with the Vickers hardness testing results. - Abstract: Mechanically alloyed amorphous Al{sub 76}Ni{sub 8}Ti{sub 8}Zr{sub 4}Y{sub 4} (at.%) alloy powder was consolidated by high-pressure sintering process. The influence of the consolidation temperature on the structure and mechanical properties of the consolidated bulk alloys was examined by X-ray diffraction (XRD), Optical microscopy (OM), Scanning electron microscopy (SEM), Vickers Hardness Tester and Nano Indenter. Structural investigations of the bulk materials revealed that most of the amorphous structure was retained after consolidation at 623 K, however, compaction at 723 K and 823 K caused crystallization of the amorphous phase with the appearance of white regions. The results also indicate that application of high pressure affected the crystallization products of the present alloy. Micro mechanical analysis showed that the microhardness of the bulk composites increased from 945HV{sub 0.1} to 1177HV

  20. Ion implantation and amorphous metals

    International Nuclear Information System (INIS)

    Hohmuth, K.; Rauschenbach, B.

    1981-01-01

    This review deals with ion implantation of metals in the high concentration range for preparing amorphous layers (>= 10 at%, implantation doses > 10 16 ions/cm 2 ). Different models are described concerning formation of amorphous phases of metals by ion implantation and experimental results are given. The study of amorphous phases has been carried out by the aid of Rutherford backscattering combined with the channeling technique and using transmission electron microscopy. The structure of amorphous metals prepared by ion implantation has been discussed. It was concluded that amorphous metal-metalloid compounds can be described by a dense-random-packing structure with a great portion of metal atoms. Ion implantation has been compared with other techniques for preparing amorphous metals and the adventages have been outlined

  1. Investigations on Bi{sub 25}FeO{sub 40} powders synthesized by hydrothermal and combustion-like processes

    Energy Technology Data Exchange (ETDEWEB)

    Köferstein, Roberto, E-mail: roberto.koeferstein@chemie.uni-halle.de; Buttlar, Toni; Ebbinghaus, Stefan G.

    2014-09-15

    The syntheses of phase-pure and stoichiometric iron sillenite (Bi{sub 25}FeO{sub 40}) powders by a hydrothermal (at ambient pressure) and a combustion-like process are described. Phase-pure samples were obtained in the hydrothermal reaction at 100 °C (1), whereas the combustion-like process leads to pure Bi{sub 25}FeO{sub 40} after calcination at 750 °C for 2 h (2a). The activation energy of the crystallite growth process of hydrothermally synthesized Bi{sub 25}FeO{sub 40} was calculated as 48(9) kJ mol{sup −1}. The peritectic point was determined as 797(1) °C. The optical band gaps of the samples are between 2.70(7) eV and 2.81(6) eV. Temperature and field-depending magnetization measurements (5−300 K) show a paramagnetic behaviour with a Curie constant of 55.66×10{sup −6} m{sup 3} K mol{sup −1} for sample 1 and C=57.82×10{sup −6} m{sup 3} K mol{sup −1} for sample 2a resulting in magnetic moments of µ{sub mag}=5.95(8) µ{sub B} mol{sup −1} and µ{sub mag}=6.07(4) µ{sub B} mol{sup −1}. The influence of amorphous iron-oxide as a result of non-stoichiometric Bi/Fe ratios in hydrothermal syntheses on the magnetic behaviour was additionally investigated. - Graphical abstract: Bi{sub 25}FeO{sub 40} powders were prepared by a hydrothermal method and a combustion process. The optical band gaps and the peritectic point were determined. The magnetic behaviour was investigated depending on the synthesis and the initial Bi/Fe ratios. The influence of amorphous iron-oxide on the magnetic properties was examined. - Highlights: • Two simple syntheses routes for stoichiometric Bi{sub 25}FeO{sub 40} powders using starch as polymerization agent. • Monitoring the phase evolution and crystallite growth kinetics during the syntheses. • Determination of the optical band gap and melting point. • Investigations of the magnetic behaviour of Bi{sub 25}FeO{sub 40} powders. • Influence of amorphous iron oxide and a non-stoichiometric Bi/Fe ratio on the

  2. 2011 Biomass Program Platform Peer Review: Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    McCann, Laura [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Feedstock Platform Review meeting.

  3. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    Science.gov (United States)

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2018-04-03

    Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  4. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    Science.gov (United States)

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2017-09-26

    Systems, processes, and catalysts are disclosed for obtaining fuels and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  5. Phase development of the ZrO 2-ZnO system during the thermal treatments of amorphous precursors

    Science.gov (United States)

    Štefanić, Goran; Musić, Svetozar; Ivanda, Mile

    2009-04-01

    Thermal behavior of the amorphous precursors of the ZrO 2-ZnO system on the ZrO 2-rich side of the concentration range, co-precipitated from aqueous solutions of the corresponding salts, was monitored using X-ray powder diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray spectrometry, differential scanning calorimetry and thermogravimetric analysis. The crystallization temperature of the amorphous precursors increased with an increase in the ZnO content, from 457 °C (0 mol% ZnO) to 548 °C (25 mol% ZnO). Maximum solubility of Zn 2+ ions in the ZrO 2 lattice (˜25 mol%) occurred in the metastable products obtained upon crystallization of the amorphous precursors. Raman spectroscopy indicates that the incorporation of Zn 2+ ions can partially stabilize only the tetragonal ZrO 2. A precise determination of unit-cell parameters of the t-ZrO 2-type solid solutions, using both Rietveld and Le Bail refinements of the powder diffraction patterns, shows that the increase in the Zn 2+ content causes a decrease in c-ax, which in a solid solution with a Zn 2+ content above 20 mol% approaches very closely a-ax. The thermal treatment of the crystallization products (up to 1000 °C) leads to a rapid decrease in the terminal solid solubility limit of Zn 2+ ions in the ZrO 2 lattice that is followed by the partial evaporation of zinc, the formation of and increase in phases structurally closely related to zincite and monoclinic ZrO 2. The results of micro-structural analysis indicate that the presence of ZnO promotes the sintering of the ZrO 2 crystallization products.

  6. Sugar cane/sweet sorghum as an ethanol feedstock in Louisiana and Piedmont

    International Nuclear Information System (INIS)

    Marsh, L.S.; Cundiff, J.S.

    1991-01-01

    Cost to provide readily fermentable feedstock for a year round sweet sorghum-to-ethanol production facility, up to the point at which fermentation begins, was determined. It was assumed that sweet sorghum is produced on marginal crop lands in the Southeastern Piedmont, and is purchased, standing in the field by a central ethanol production facility. Feedstock cost varied from $1.96 to $2.98/gal of ethanol potential depending on harvest system and use of by-products. Major contributors to feedstock cost were field production, harvest/field processing, and cost to evaporate juice to a storable syrup. Cost to transport feedstock to a central production facility, and cost of storage were relatively minor components of total cost, contributing only $0.05 and $0.06/gal ethanol potential, respectively. For a point of comparison, cost of producing ethanol feedstock from sugar cane, based on current processing practices in Louisiana sugar mills, was determined to be $2.50/gal ethanol potential. This cost is higher than determined for most options in the Piedmont for two reasons: (1) sugar cane demands a higher price in Louisiana than was assumed for sweet sorghum in the Piedmont, and (2) little market exists in Louisiana for by-products of sugar milling, consequently, no by-product credit was assigned. Current market value of ethanol must approximately double before a sweet sorghum-to-ethanol industry in the Piedmont could be economically viable, as no opportunity was identified for a significant reduction in feedstock cost

  7. Biodiesel production from various feedstocks and their effects on the fuel properties.

    Science.gov (United States)

    Canakci, M; Sanli, H

    2008-05-01

    Biodiesel, which is a new, renewable and biological origin alternative diesel fuel, has been receiving more attention all over the world due to the energy needs and environmental consciousness. Biodiesel is usually produced from food-grade vegetable oils using transesterification process. Using food-grade vegetable oils is not economically feasible since they are more expensive than diesel fuel. Therefore, it is said that the main obstacle for commercialization of biodiesel is its high cost. Waste cooking oils, restaurant greases, soapstocks and animal fats are potential feedstocks for biodiesel production to lower the cost of biodiesel. However, to produce fuel-grade biodiesel, the characteristics of feedstock are very important during the initial research and production stage since the fuel properties mainly depend on the feedstock properties. This review paper presents both biodiesel productions from various feedstocks and their effects on the fuel properties.

  8. Formation of polycrystalline MgB2 synthesized by powder in sealed tube method with different initial boron phase

    Science.gov (United States)

    Yudanto, Sigit Dwi; Imaduddin, Agung; Kurniawan, Budhy; Manaf, Azwar

    2018-04-01

    Magnesium diboride, MgB2 is a new high critical temperature superconductor that discovered in the beginning of the 21st century. The MgB2 has a simple crystal structure and a high critical temperature, which can be manufactured in several forms like thin films, tapes, wires including bulk in the large scale. For that reason, the MgB2 has good prospects for various applications in the field of electronic devices. In the current work, we have explored the synthesis of MgB2 polycrystalline using powder in a sealed tube method. Different initial boron phase for the synthesized of MgB2 polycrystalline were used. These were, in addition to magnesium powders, crystalline boron, amorphous boron and combination both of them were respectively fitted in the synthesis. The raw materials were mixed in a stoichiometric ratio of Mg: B=1:2, ground using agate mortar, packed into stainless steel SS304. The pack was then sintered at temperature of 800°C for 2 hours in air atmosphere. Phase formation of MgB2 polycrystalline in difference of initial boron phase was characterized using XRD and SEM. Referring to the diffraction pattern and microstructure observation, MgB2 polycrystalline was formed, and the formation was effective when using the crystalline Mg and fully amorphous B as the raw materials. The critical temperature of the specimen was evaluated by the cryogenic magnet. The transition temperature of the MgB2 specimen synthesized using crystalline magnesium and full amorphous boron is 42.678 K (ΔTc = 0.877 K).

  9. Microstructural and mechanical properties analysis of an aluminium matrix composite reinforced with the amorphous alloy Al{sub 87.5}Ni{sub 4}Sm{sub 8.5} consolidated by hot extrusion; Propriedades mecanicas e microestruturais de um composito com matrix de aluminio e reforco amorfo de Al{sub 87.5}Ni{sub 4}Sm{sub 8.5} consolidado por extrusao a quente por extrusao a quente

    Energy Technology Data Exchange (ETDEWEB)

    Aliaga, L.C.R.; Bolfarini, C.; Kiminami, C.S.; Botta, W.J. [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais; Peres, M.M., E-mail: peresmm@yahoo.com.b [Universidade Federal de Itajuba (UNIFEI), Itabira, MG (Brazil)

    2010-07-01

    The aim of this work is the microstructure and the mechanical properties analysis of an aluminium matrix composite reinforced with the Al{sub 87.5}Ni{sub 4}Sm{sub 8.5} amorphous alloy. The amorphous alloy was produced by melt-spinning and fragmented in powder particles by milling. Pure aluminium power was moistured with amorphous powder in a proportion of 80:20 (% weight) and processed by milling using 350 rpm during 30 minutes for the generation of a homogeneous composite powder. This product was consolidated by extrusion at 235 deg C, ram speed of 2mm/min and extrusion ratio of 7/1, generating a compact and cylindrical bar with 3 mm of width. The result sample was characterized by Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC) and by X-Ray Diffraction (XRD). Microhardness and compression tests show an improvement on the mechanical properties. (author)

  10. Estimation of Frost Resistance of the Tile Adhesive on a Cement Based with Application of Amorphous Aluminosilicates as a Modifying Additive

    Science.gov (United States)

    Ivanovna Loganina, Valentina; Vladimirovna Zhegera, Christina

    2017-10-01

    In the article given information on the possibility of using amorphous aluminosilicates as a modifying additive in the offered tile cement adhesive. In the article, the data on the preparation of an additive based on amorphous aluminosilicates, on its microstructure and chemical composition. Presented information on the change in the porosity of cement stone when introduced of amorphous aluminosilicates in the his composition. The formulation of a dry building mix on a cement base is proposed with use of an additive based on amorphous aluminosilicates as a modifying additive. Recipe of dry adhesive mixes include Portland cement M400, mineral aggregate in proportion fraction 0.63-0.315:0.315-0.14 respectively 80:20 (%) and filling density of 1538.2 kg/m3, a plasticizer Kratasol, redispersible powder Neolith P4400 and amorphous alumnosilicates. The developed formulation can be used as a tile adhesive for finishing walls of buildings and structure with tiles. Presented results of the evaluation of frost resistance of adhesives based on cement with using of amorphous aluminosilicates as a modifying additive. Installed the mark on the frost resistance of tile glue and frost resistance of the contact zone of adhesive. Established, that the adhesive layer based on developed formulation dry mixture is crack-resistant and frost-resistant for conditions city Penza and dry humidity zone - zone 3 and climatic subarea IIB (accordance with Building codes and regulations 23-01-99Ȋ) cities Russia’s.

  11. Thermoluminescent dosimetry of beta radiations of {sup 90} Sr/ {sup 90} Y using amorphous ZrO{sub 2}; Dosimetria termoluminiscente de radiaciones beta de {sup 90} Sr/ {sup 90} Y usando ZrO{sub 2} amorfo

    Energy Technology Data Exchange (ETDEWEB)

    Rivera M, T. [CICATA-Legaria, IPN, Legaria Num. 694, 11500 Mexico D.F. (Mexico); Olvera T, L.; Azorin N, J.; Barrera R, M.; Soto E, A.M. [UAM-I, 09340 Mexico D.F. (Mexico)

    2005-07-01

    In this work the results of studying the thermoluminescent properties (Tl) of the zirconium oxide in its amorphous state (ZrO{sub 2}-a) before beta radiations of {sup 90} Sr/ {sup 90} Y are presented. The amorphous powders of the zirconium oxide were synthesized by means of the sol-gel technique. The sol-gel process using alkoxides like precursors, is an efficient method to prepare a matrix of zirconium oxide by hydrolysis - condensation of the precursor to form chains of Zr-H{sub 3} and Zr-O{sub 2}. One of the advantages of this technique is the obtention of gels at low temperatures with very high purity and homogeneity. The powders were characterized by means of thermal analysis and by X-ray diffraction. The powders of ZrO{sub 2}-a, previously irradiated with beta particles of {sup 90} Sr/{sup 90} Y, presented a thermoluminescent curve with two peaks at 150 and 257 C. The dissipation of the information of the one ZrO{sub 2}-a was of 40% the first 2 hours remaining constant the information for the following 30 days. The reproducibility of the information was of {+-} 2.5% in standard deviation. The studied characteristics allow to propose to the amorphous zirconium oxide as thermoluminescent dosemeter for the detection of beta radiation. (Author)

  12. Food applications and the toxicological and nutritional implications of amorphous silicon dioxide.

    Science.gov (United States)

    Villota, R; Hawkes, J G

    1986-01-01

    The chemical and physical characteristics of the different types of amorphous silicon dioxide contribute to the versatility of these compounds in a variety of commercial applications. Traditionally, silicas have had a broad spectra of product usage including such areas as viscosity control agents in inks, paints, corrosion-resistant coatings, etc. and as excipients in pharmaceuticals and cosmetics. In the food industry, the most important application has been as an anticaking agent in powdered mixes, seasonings, and coffee whiteners. However, amorphous silica has multifunctional properties that would allow it to act as a viscosity control agent, emulsion stabilizer, suspension and dispersion agent, desiccant, etc. The utilization of silicas in these potential applications, however, has not been undertaken, partially because of the limited knowledge of their physiochemical interactions with other food components and partially due to their controversial status from a toxicological point of view. The main goal of this review is to compile current information on the incorporation of amorphous silicon dioxide as a highly functional and viable additive in the food processing industry as well as to discuss the most recent toxicological investigations of silica in an attempt to present some of the potential food applications and their concomitant toxicological implications. Some of the more significant differences between various silicas and their surface chemistries are presented to elucidate some of their mechanisms of interaction with food components and other biological systems and to aid in the prediction of their rheological or toxicological behavior.

  13. Technology for biomass feedstock production in southern forests and GHG implications

    Science.gov (United States)

    Bob Rummer; John Klepac; Jason Thompson

    2012-01-01

    Woody biomass production in the South can come from four distinct feedstocks - logging residues, thinnings, understory harvesting, or energywood plantations. A range of new technology has been developed to collect, process and transport biomass and a key element of technology development has been to reduce energy consumption. We examined three different woody feedstock...

  14. Impact of Pretreatment Technologies on Saccharification and Isopentenol Fermentation of Mixed Lignocellulosic Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jian; George, Kevin W.; Sun, Ning; He, Wei; Li, Chenlin; Stavila, Vitalie; Keasling, Jay D.; Simmons, Blake A.; Lee, Taek Soon; Singh, Seema

    2015-02-28

    In order to enable the large-scale production of biofuels or chemicals from lignocellulosic biomass, a consistent and affordable year-round supply of lignocellulosic feedstocks is essential. Feedstock blending and/or densification offers one promising solution to overcome current challenges on biomass supply, i.e., low energy and bulk densities and significant compositional variations. Therefore, it is imperative to develop conversion technologies that can process mixed pelleted biomass feedstocks with minimal negative impact in terms of overall performance of the relevant biorefinery unit operations: pretreatment, fermentable sugar production, and fuel titers. We processed the mixture of four feedstocks—corn stover, switchgrass, lodgepole pine, and eucalyptus (1:1:1:1 on dry weight basis)—in flour and pellet form using ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate, dilute sulfuric acid (DA), and soaking in aqueous ammonia (SAA) pretreatments. Commercial enzyme mixtures, including cellulases and hemicellulases, were then applied to these pretreated feedstocks at low to moderate enzyme loadings to determine hydrolysis efficiency. Results show significant variations on the chemical composition, crystallinity, and enzymatic digestibility of the pretreated feedstocks across the different pretreatment technologies studied. The advanced biofuel isopentenol was produced during simultaneous saccharification and fermentation (SSF) of pretreated feedstocks using an engineered Escherichia coli strain. Results show that IL pretreatment liberates the most sugar during enzymatic saccharification, and in turn led to the highest isopentenol titer as compared to DA and SAA pretreatments. This study provides insights on developing biorefinery technologies that produce advanced biofuels based on mixed feedstock streams.

  15. Nitrous oxide emission and soil carbon sequestration from herbaceous perennial biofuel feedstocks

    Science.gov (United States)

    Greenhouse gas (GHG) mitigation and renewable, domestic fuels are needed in the United States. Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential bioenergy feedstocks that may meet this need. However, managing perennial grasses for feedstock requires nitro...

  16. Investigation on the effect of lubrication and forming parameters to the green compact generated from iron powder through warm forming route

    International Nuclear Information System (INIS)

    Rahman, M.M.; Nor, S.S.M.; Rahman, H.Y.

    2011-01-01

    In order to generate green compacts of iron ASC 100.29 powder at above ambient temperature and below its recrystallization temperature, a warm compaction rig is designed and fabricated which can be operated at various temperature and load. The aim of this paper is to present the outcomes of an investigation on the effect of lubrication and forming parameters, i.e., load and temperature to the green compacts generated through warm compaction route. The feedstock was prepared by mechanically mixing the main powder constituent, i.e., iron ASC 100.29 powder with different weight percent of zinc stearate at different mixing time. Compaction load was varied from 105 kN to 125 kN using simultaneous compaction mechanism. The microstructures of the green compacts were analyzed by Scanning Electron Microscopy (SEM), and the mechanical properties are measured through density measurement, hardness test and electrical conductivity test. The study found that increase in compaction load as well as forming temperature give improved microstructure and mechanical properties. It is also found that effects of lubrication to the mechanical properties of green compacts are strongly dependant on the lubricant content as well as mixing time of iron powder with the lubricant.

  17. Low-Temperature Preparation of Amorphous-Shell/Nanocrystalline-Core Nanostructured TiO2 Electrodes for Flexible Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Dongshe Zhang

    2008-01-01

    Full Text Available An amorphous shell/nanocrystalline core nanostructured TiO2 electrode was prepared at low temperature, in which the mixture of TiO2 powder and TiCl4 aqueous solution was used as the paste for coating a film and in this film amorphous TiO2 resulted from direct hydrolysis of TiCl4 at 100∘C sintering was produced to connect the particles forming a thick crack-free uniform nanostructured TiO2 film (12 μm, and on which a photoelectrochemical solar cell-based was fabricated, generating a short-circuit photocurrent density of 13.58 mA/cm2, an open-circuit voltage of 0.647 V, and an overall 4.48% light-to-electricity conversion efficiency under 1 sun illumination.

  18. Crystallization behaviour and thermal stability of two aluminium-based metallic glass powder materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.P.; Yan, M. [University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, QLD 4072 (Australia); Yang, B.J. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, J.Q., E-mail: jqwang@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Schaffer, G.B. [University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, QLD 4072 (Australia); Qian, M., E-mail: ma.qian@uq.edu.au [University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, QLD 4072 (Australia)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The crystallization paths and products of Al{sub 86}Ni{sub 7}Y{sub 4.5}Co{sub 1}La{sub 1.5} powder have been identified. Black-Right-Pointing-Pointer The thermal stability of Al{sub 86}Ni{sub 7}Y{sub 4.5}Co{sub 1}La{sub 1.5} powder has been assessed. Black-Right-Pointing-Pointer The Al{sub 86}Ni{sub 7}Y{sub 4.5}Co{sub 1}La{sub 1.5} powder shows a wide processing window of 75 K. Black-Right-Pointing-Pointer The powder has the potential to be consolidated into thick BMG components based on the findings. Black-Right-Pointing-Pointer The Al{sub 85}Ni{sub 5}Y{sub 6}Co{sub 2}Fe{sub 2} powder shows similar characteristics but inferior thermal stability. - Abstract: The crystallization behaviour and thermal stability of two Al-based metallic glass powder materials, Al{sub 85}Ni{sub 5}Y{sub 6}Co{sub 2}Fe{sub 2} and Al{sub 86}Ni{sub 6}Y{sub 4.5}Co{sub 2}La{sub 1.5}, have been investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and electron microscopy. Both alloy powders show a distinct three-stage crystallization process with a similar gap of {approx}75 K between the onset crystallization temperature (T{sub x}) and the second crystallization temperature. Crystallization occurs by the precipitation and growth of fcc-Al, without intermetallic formation. The apparent activation energy for each stage of crystallization was determined from DSC analyses and the phases resulting from each crystallization stage were identified by XRD and electron microscopy. The critical cooling rate for each alloy powder was calculated from the DSC data. These results are necessary to inform the consolidation of amorphous powder particles of Al{sub 85}Ni{sub 5}Y{sub 6}Co{sub 2}Fe{sub 2} or Al{sub 86}Ni{sub 6}Y{sub 4.5}Co{sub 2}La{sub 1.5} into thick (>1 mm) metallic glass components.

  19. Introduced cool-season grasses in diversified systems of forage and feedstock production

    Science.gov (United States)

    Interest in producing biomass feedstock for biorefineries has increased in the southern Great Plains, though research has largely focused on the potential function of biorefineries. This study examined feedstock production from the producers’ viewpoint, and how this activity might function within di...

  20. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 1, Overview

    Energy Technology Data Exchange (ETDEWEB)

    Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.; Pyne, J.W.

    1988-12-01

    Pacific Northwest Laboratory has completed an initial investigation of the effects of physical and chemical properties of biomass feedstocks relative to their performance in biomass energy conversion systems. Both biochemical conversion routes (anaerobic digestion and ethanol fermentation) and thermochemical routes (combustion, pyrolysis, and gasification) were included in the study. Related processes including chemical and physical pretreatment to improve digestibility, and size and density modification processes such as milling and pelletizing were also examined. This overview report provides background and discussion of feedstock and conversion relationships, along with recommendations for future research. The recommendations include (1) coordinate production and conversion research programs; (2) quantify the relationship between feedstock properties and conversion priorities; (3) develop a common framework for evaluating and characterizing biomass feedstocks; (4) include conversion effects as part of the criteria for selecting feedstock breeding programs; and (5) continue emphasis on multiple feedstock/conversion options for biomass energy systems. 9 refs., 3 figs., 2 tabs.

  1. Generating a geospatial database of U.S. regional feedstock production for use in evaluating the environmental footprint of biofuels.

    Science.gov (United States)

    Holder, Christopher T; Cleland, Joshua C; LeDuc, Stephen D; Andereck, Zac; Hogan, Chris; Martin, Kristen M

    2016-04-01

    The potential environmental effects of increased U.S. biofuel production often vary depending upon the location and type of land used to produce biofuel feedstocks. However, complete, annual data are generally lacking regarding feedstock production by specific location. Corn is the dominant biofuel feedstock in the U.S., so here we present methods for estimating where bioethanol corn feedstock is grown annually and how much is used by U.S. ethanol biorefineries. We use geospatial software and publicly available data to map locations of biorefineries, estimate their corn feedstock requirements, and estimate the feedstock production locations and quantities. We combined these data and estimates into a Bioethanol Feedstock Geospatial Database (BFGD) for years 2005-2010. We evaluated the performance of the methods by assessing how well the feedstock geospatial model matched our estimates of locally-sourced feedstock demand. On average, the model met approximately 89 percent of the total estimated local feedstock demand across the studied years-within approximately 25-to-40 kilometers of the biorefinery in the majority of cases. We anticipate that these methods could be used for other years and feedstocks, and can be subsequently applied to estimate the environmental footprint of feedstock production. Methods used to develop the Bioethanol Feedstock Geospatial Database (BFGD) provide a means of estimating the amount and location of U.S. corn harvested for use as U.S. bioethanol feedstock. Such estimates of geospatial feedstock production may be used to evaluate environmental impacts of bioethanol production and to identify conservation priorities. The BFGD is available for 2005-2010, and the methods may be applied to additional years, locations, and potentially other biofuels and feedstocks.

  2. Photoluminescence of crystalline and disordered BTO:Mn powder: Experimental and theoretical modeling

    International Nuclear Information System (INIS)

    Gurgel, M.F.C.; Espinosa, J.W.M.; Campos, A.B.; Rosa, I.L.V.; Joya, M.R.; Souza, A.G.; Zaghete, M.A.; Pizani, P.S.; Leite, E.R.; Varela, J.A.; Longo, E.

    2007-01-01

    Disordered and crystalline Mn-doped BaTiO 3 (BTO:Mn) powders were synthesized by the polymeric precursor method. After heat treatment, the nature of visible photoluminescence (PL) at room temperature in amorphous BTO:Mn was discussed, considering results of experimental and theoretical studies. X-ray diffraction (XRD), PL, and UV-vis were used to characterize this material. Rietveld refinement of the BTO:Mn from XRD data was used to built two models, which represent the crystalline BTO:Mn (BTO:Mn c ) and disordered BTO:Mn (BTO:Mn d ) structures. Theses models were analyzed by the periodic ab initio quantum mechanical calculations using the CRYSTAL98 package within the framework of density functional theory at the B3LYP level. The experimental and theoretical results indicated that PL is related with the degree of disorder in the BTO:Mn powders and also suggests the presence of localized states in the disordered structure

  3. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    Science.gov (United States)

    Farmer, Joseph C [Tracy, CA; Wong, Frank M. G. [Livermore, CA; Haslam, Jeffery J [Livermore, CA; Yang, Nancy [Lafayette, CA; Lavernia, Enrique J [Davis, CA; Blue, Craig A [Knoxville, TN; Graeve, Olivia A [Reno, NV; Bayles, Robert [Annandale, VA; Perepezko, John H [Madison, WI; Kaufman, Larry [Brookline, MA; Schoenung, Julie [Davis, CA; Ajdelsztajn, Leo [Walnut Creek, CA

    2009-11-17

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  4. Positrons in amorphous alloys

    International Nuclear Information System (INIS)

    Moser, Pierre.

    1981-07-01

    Positron annihilation techniques give interesting informations about ''empty spaces'' in amorphous alloys. The results of an extensive research work on the properties of either pre-existing or irradiation induced ''empty spaces'' in four amorphous alloys are presented. The pre-existing empty spaces appear to be small vacancy-like defects. The irradiation induced defects are ''close pairs'' with widely distributed configurations. There is a strong interaction between vacancy like and interstitial like components. A model is proposed, which explains the radiation resistance mechanism of the amorphous alloys. An extensive joint research work to study four amorphous alloys, Fe 80 B 20 ,Fe 40 Ni 40 P 14 B 6 , Cu 50 Ti 50 , Pd 80 Si 20 , is summarized

  5. Amorphous iron–chromium oxide nanoparticles with long-term stability

    Energy Technology Data Exchange (ETDEWEB)

    Iacob, Mihail [“Petru Poni” Institute of Macromolecular Chemistry, Iasi 700487 (Romania); Institute of Chemistry of ASM, Academiei str. 3, Chisinau 2028, Republic of Moldova (Moldova, Republic of); Cazacu, Maria, E-mail: mcazacu@icmpp.ro [“Petru Poni” Institute of Macromolecular Chemistry, Iasi 700487 (Romania); Turta, Constantin [Institute of Chemistry of ASM, Academiei str. 3, Chisinau 2028, Republic of Moldova (Moldova, Republic of); Doroftei, Florica [“Petru Poni” Institute of Macromolecular Chemistry, Iasi 700487 (Romania); Botko, Martin; Čižmár, Erik; Zeleňáková, Adriana; Feher, Alexander [Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, SK-04154 Košice (Slovakia)

    2015-05-15

    Highlights: • Fe–Cr oxide nanoparticles with pre-established metals ratio were obtained. • The amorphous state and its long-term stability were highlighted by X-ray diffraction. • The average diameter of dried nanoparticles was 3.5 nm, as was estimated by TEM, AFM. • In hexane dispersion, nanoparticles with diameter in the range 2.33–4.85 nm were found. • Superparamagnetic state of NPs co-exists with diamagnetism of the organic layer. - Abstract: Iron–chromium nanoparticles (NPs) were obtained through the thermal decomposition of μ{sub 3}-oxo heterotrinuclear (FeCr{sub 2}O) acetate in the presence of sunflower oil and dodecylamine (DA) as surfactants. The average diameter of the NPs was 3.5 nm, as estimated on the basis of transmission electron microscopy and atomic force microscopy images. Both techniques revealed the formation of roughly approximated spheres with some irregularities and agglomerations in larger spherical assemblies of 50–100 nm. In hexane, NPs with diameters in the 2.33–4.85 nm range are individually dispersed, as emphasized by dynamic light scattering measurements. The amorphous nature of the product was emphasized by X-ray powder diffraction. The study of the magnetic properties shows the presence of superparamagnetic state of iron–chromium oxide NPs and the diamagnetic contribution from DA layer forming a shell of NPs.

  6. Thermal behavior of the amorphous precursors of the ZrO2-SnO2 system

    International Nuclear Information System (INIS)

    Stefanic, Goran; Music, Svetozar; Ivanda, Mile

    2008-01-01

    Thermal behavior of the amorphous precursors of the ZrO 2 -SnO 2 system on the ZrO 2 -rich side of the concentration range, prepared by co-precipitation from aqueous solutions of the corresponding salts, was monitored using differential thermal analysis, X-ray powder diffraction, Raman spectroscopy, field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectrometry (EDS). The crystallization temperature of the amorphous precursors increased with an increase in the SnO 2 content, from 405 deg. C (0 mol% SnO 2 ) to 500 deg. C (40 mol% SnO 2 ). Maximum solubility of Sn 4+ ions in the ZrO 2 lattice (∼25 mol%) occurred in the metastable products obtained upon crystallization of the amorphous precursors. A precise determination of unit-cell parameters, using both Rietveld and Le Bail refinements of the powder diffraction patterns, shows that the incorporation of Sn 4+ ions causes an asymmetric distortion of the monoclinic ZrO 2 lattice. The results of phase analysis indicate that the incorporation of Sn 4+ ions has no influence on the stabilization of cubic ZrO 2 and negligible influence on the stabilization of tetragonal ZrO 2 . Partial stabilization of tetragonal ZrO 2 in products having a tin content above its solid-solubility limit was attributed to the influence of ZrO 2 -SnO 2 surface interactions. In addition to phases closely structurally related to cassiterite, monoclinic ZrO 2 and tetragonal ZrO 2 , a small amount of metastable ZrSnO 4 phase appeared in the crystallization products of samples with 40 and 50 mol% of SnO 2 calcined at 1000 deg. C. Further temperature treatments caused a decrease in and disappearance of metastable phases. The results of the micro-structural analysis show that the sinterability of the crystallization products significantly decreases with an increase in the SnO 2 content

  7. Physico-chemical properties and solubility behaviour of multi-substituted hydroxyapatite powders containing silicon

    International Nuclear Information System (INIS)

    Sprio, S.; Tampieri, A.; Landi, E.; Sandri, M.; Martorana, S.; Celotti, G.; Logroscino, G.

    2008-01-01

    Hydroxyapatite powders characterized by ionic substitutions both in anionic and cationic sites were successfully prepared by synthesis in aqueous medium. The process parameters were set up to allow the simultaneous substitution of the foreign ions, namely carbonate, magnesium and silicon in the crystallographic site of calcium and phosphorus, keeping in count the competition which arises between atoms destined to occupy the same crystallographic site. The chemico-physical properties of the powders were investigated through several analytical techniques, i.e. X-ray diffraction, infrared spectroscopy, atomic emission spectroscopy and thermo-gravimetric analysis. The results show that the utilization of sodium hydrogen-carbonate as a reactant allows the entering of carbonate into the HA structure, mainly in phosphate position, while sodium is eliminated during the process of the powder washing. The entering of silicon in the HA structure progressively reduces its crystallinity, as also carbonate ions do. Silicate and carbonate ions can enter simultaneously into the HA structure, in biological-like amounts, although they compete for the occupation of the phosphate site; the powder crystallinity is strongly reduced as the content of the two substituting ions increases, so that a limit molar concentration exists where the apatite structure collapses and an amorphous phase forms with the simultaneous formation of crystalline calcium carbonate. Solubility tests, carried out at physiological conditions, reveal an increased calcium release in the HA powders containing silicon compared to the silicon-free HA; the solubility behaviour of the multi-substituted HA powders at physiological conditions makes these materials promising as bioactive bone scaffold, as they are able to continuously supply ions which are essential for the process of bone reconstruction

  8. Increasing Feedstock Production for Biofuels: Economic Drivers, Environmental Implications, and the Role of Research

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    The Biomass Research and Development Board (Board) commissioned an economic analysis of feedstocks to produce biofuels. The Board seeks to inform investments in research and development needed to expand biofuel production. This analysis focuses on feedstocks; other interagency teams have projects underway for other parts of the biofuel sector (e.g., logistics). The analysis encompasses feedstocks for both conventional and advanced biofuels from agriculture and forestry sources.

  9. Spectroscopic and X-ray Diffraction Study of Structural Disorder in Cryomilled and Amorphous Griseofulvin

    International Nuclear Information System (INIS)

    Zarow, A.; Zhou, B.; Wang, X.; Pinal, R.; Iqbal, Z.

    2011-01-01

    Structural disorder induced by cryogenic milling and by heating to the amorphous phase in the active pharmaceutical ingredient Griseofulvin has been studied using Raman spectroscopy, X-ray powder diffraction (XRPD), and fluorescence spectroscopy. A broad, exciting-frequency-independent scattering background in the Raman spectra and changes in intensities and splitting of some of the Raman lines due to lattice and molecular modes have been observed. In the cryomilled samples this strong background is deconvoluted into two components: one due to lattice disorder induced by cryomilling and the other due to Mie scattering from nanosized crystallites. A single-component background scattering attributed to lattice disorder is seen in the Raman spectrum of the amorphous sample. Fluorescence measurements showed an intrinsic fluorescence signal in as-received Griseofulvin that does not correspond to the inelastic background in the Raman spectra and, moreover, decreases in intensity upon cryomilling, thus excluding an assignment of the Raman background intensity to impurity- or molecular-defect-induced fluorescence. Wide-angle XRPD measurements on cryomilled Griseofulvin shows a broad two-component background consistent with the background-scattering component in the Raman data associated with lattice disorder, but at longer correlation lengths. Persistence of this disorder to even longer lengths is evident in small-angle synchrotron XRPD data on micronized Griseofulvin taken as a function of temperature from the crystalline to the amorphous phase.

  10. Alternative coke production from unconventional feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Smoot, D.; Eatough, C.N.; Heaton, J.S.; Eatough, S.R.; Miller, A.B. [Combustion Resources, Provo, UT (US)

    2004-07-01

    This presentation reports on US Department of Energy and company sponsored research and development to develop a technology and process for making metallurgical-quality coke from alternate feedstocks, including by-product and waste carbonaceous materials. The basic patent-pending process blends and presses these carbon-containing materials into briquettes of specified size. This product is referred to as CR Clean Coke because pollutant emission levels are carefully controlled to low levels with little or no vagrant emissions during processing. A wide range of feedstock materials has been investigated in over 600 tests for run-of-mine and waste coal fines of various rank with blends of coal tars and pitches, coal and biomass chars, met-coke breeze or petroleum coke. For various coal/pet-coke/tar feedstocks, CR has produced uniform-sized briquettes in commercial-scale briquettes in three nominal sizes: one inch, two inch, and three inch. These products have been successfully qualified according to stringent requirements for conventional met-coke use in a blast furnace. Several formulation have met and frequently exceeded these established met-coke specifications. One specific product containing coal, tar and pet-coke was selected as a base formulation for which preliminary process design and cost estimates have been completed for construction and operation of a demonstration plant capable of producing 120,000 tons per year of CR Clean Coke. Plant design elements and blast furnace test plans are presented. Tailoring of CR Clean Coke products to other prospective end users including foundry, sugar, soda ash, and ferrometals industries presents additional opportunities. The text is accompanied by 30 slides/overheads. 14 refs., 3 figs., 9 tabs.

  11. Process for purifying lignocellulosic feedstocks

    Science.gov (United States)

    Gray, Matthew; Matthes, Megan; Nelson, Thomas; Held, Andrew

    2018-01-09

    The present invention includes methods for removing mineral acids, mineral salts and contaminants, such as metal impurities, ash, terpenoids, stilbenes, flavonoids, proteins, and other inorganic products, from a lignocellulosic feedstock stream containing organic acids, carbohydrates, starches, polysaccharides, disaccharides, monosaccharides, sugars, sugar alcohols, phenols, cresols, and other oxygenated hydrocarbons, in a manner that maintains a portion of the organic acids and other oxygenated hydrocarbons in the product stream.

  12. CRYSTALLIZATION EXPERIMENTS ON AMORPHOUS MAGNESIUM SILICATE. II. EFFECT OF STACKING FAULTS ON INFRARED SPECTRA OF ENSTATITE

    International Nuclear Information System (INIS)

    Murata, K.; Chihara, H.; Koike, C.; Takakura, T.; Imai, Y.; Tsuchiyama, A.; Noguchi, T.

    2009-01-01

    We carried out experiments of low-temperature infrared spectroscopy and transmission electron microscopy of enstatite (MgSiO 3 ) synthesized by heating of amorphous magnesium silicate. There is a discrepancy between the infrared feature of enstatite obtained in this experiment and that of fine powdered single crystals. This reflects stacking disorder of enstatite. We show that circumstellar dust emission of enstatite is similar to the infrared feature measured in this experiment. This result strongly suggests that circumstellar enstatite has abundant stacking faults and is different from the single crystal.

  13. Characteristics of Inconel Powders for Powder-Bed Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Quy Bau Nguyen

    2017-10-01

    Full Text Available In this study, the flow characteristics and behaviors of virgin and recycled Inconel powder for powder-bed additive manufacturing (AM were studied using different powder characterization techniques. The results revealed that the particle size distribution (PSD for the selective laser melting (SLM process is typically in the range from 15 μm to 63 μm. The flow rate of virgin Inconel powder is around 28 s·(50 g−1. In addition, the packing density was found to be 60%. The rheological test results indicate that the virgin powder has reasonably good flowability compared with the recycled powder. The inter-relation between the powder characteristics is discussed herein. A propeller was successfully printed using the powder. The results suggest that Inconel powder is suitable for AM and can be a good reference for researchers who attempt to produce AM powders.

  14. Impact of feedstock quality on clean diesel fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, A.; Stanislaus, A.; Rana, M. [Kuwait Institute for Scientific Research (KISR), Safat (Kuwait)

    2013-06-01

    High sulfur level in diesel fuel has been identified as a major contributor to harmful emissions (sulfur oxides, particulates, etc.) as a result, recent environmental regulations limit the sulfur content of diesel to ultra-low levels in many countries. The diesel fuel specifications are expected to become extremely severe in the coming years. Problem faced by the refiners is the difficulty in meeting the increasing market demand for Ultra-Low Sulfur Diesel (ULSD). Global market for middle distillates is increasing steadily and this trend is expected to continue for the next few years. At the same time, the quality of feed streams is declining. The refiners are, thus, required to produce a ULSD from poor feedstocks such as light cycle oil (LCO) and coker gas oil (CGO). The key to achieving deep desulfurization in gas-oil hydrotreater is in understanding the factors that influence the reactivity of the different types of sulfur compounds present in the feed, namely, feedstock quality, catalyst, process parameters, and chemistry of ULSD production. Among those parameters, feedstock quality is most critical. (orig.)

  15. Development of a lactic acid production process using lignocellulosic biomass as feedstock

    NARCIS (Netherlands)

    Pol, van der E.C.

    2016-01-01

    The availability of crude oil is finite. Therefore, an alternative feedstock has to be found for the production of fuels and plastics. Lignocellulose is such an alternative feedstock. It is present in large quantities in agricultural waste material such as sugarcane bagasse.

    In this PhD

  16. How non-conventional feedstocks will affect aromatics technologies

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, E. [Clariant Produkte (Deutschland) GmbH, Muenchen (Germany)

    2013-11-01

    The abundance of non-conventional feedstocks such as coal and shale gas has begun to affect the availability of traditional base chemicals such as propylene and BTX aromatics. Although this trend is primarily fueled by the fast growing shale gas economy in the US and the abundance of coal in China, it will cause the global supply and demand situation to equilibrate across the regions. Lower demand for gasoline and consequently less aromatics rich reformate from refineries will further tighten the aromatics markets that are expected to grow at healthy rates, however. Refiners can benefit from this trend by abandoning their traditional fuel-oriented business model and becoming producers of petrochemical intermediates, with special focus on paraxylene (PX). Cheap gas from coal (via gasification) or shale reserves is an advantaged feedstock that offers a great platform to make aromatics in a cost-competitive manner, especially in regions where naphtha is in short supply. Gas condensates (LPG and naphtha) are good feedstocks for paraffin aromatization, and methanol from coal or (shale) gas can be directly converted to BTX aromatics (MTA) or alkylated with benzene or toluene to make paraxylene. Most of today's technologies for the production and upgrading of BTX aromatics and their derivatives make use of the unique properties of zeolites. (orig.)

  17. Structural amorphous steels

    International Nuclear Information System (INIS)

    Lu, Z.P.; Liu, C.T.; Porter, W.D.; Thompson, J.R.

    2004-01-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist's dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed

  18. Electromagnetic wave absorption properties of composites with micro-sized magnetic particles dispersed in amorphous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin Peng [Research Center of Carbon Fiber, Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Tianjin Binhai New Area Finance Bureau, Tianjin 300450 (China); Wang, Cheng Guo, E-mail: sduwangchg@gmail.com [Research Center of Carbon Fiber, Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Wang, Wen [Norinco Group China North Material Science and Engineering Technology Group Corporation, Jinan 250031 (China); Yu, Mei Jie; Gao, Rui; Chen, Yang; Xiang Wang, Yan [Research Center of Carbon Fiber, Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China)

    2014-09-01

    Composites with micro-sized magnetic particles dispersed in amorphous carbon were fabricated conveniently and economically by carbonizing polyacrylonitrile (PAN) fibers mixed with micro-sized iron particles under different temperatures. The composites were characterized by X-ray diffraction (XRD) and scanning electric microscope (SEM). The electromagnetic (EM) properties were measured by a vector network analyzer in the frequency range of 2–18 GHz based on which analog computations of EM wave absorption properties were carried out. The influences of temperature on phase composition and EM wave absorption properties were also investigated, indicating that the composites had good electromagnetic absorption properties with both electrical loss and magnetic loss. Effective reflection loss (RL<−10 dB) was observed in a large frequency range of 7.5–18 GHz with the absorber thickness of 2.0–3.0 mm for the paraffin samples with composite powders heated up to 750 °C and the minimum absorption peak around −40 dB appeared at approximately 10 GHz with matching thickness of 2.0 mm for the paraffin sample with composite powders heated up to 800 °C. - Highlights: • High-performance electromagnetic wave absorption materials were fabricated conveniently and economically. • The materials are composites with micro-sized magnetic particles dispersed in porous amorphous carbon. • The influences of temperature on phase composition and electromagnetic wave absorption properties were investigated. • The composites heated up to 750 °C and 800 °C had good electromagnetic wave absorption property.

  19. Laser fabrication nanocrystalline coatings using simultaneous powders/wire feed

    Science.gov (United States)

    Li, Jianing; Zhai, Tongguang; Zhang, Yuanbin; Shan, Feihu; Liu, Peng; Ren, Guocheng

    2016-07-01

    Laser melting deposition (LMD) fabrication is used to investigate feasibilty of simultaneously feeding TC17 wire and the Stellite 20-Si3N4-TiC-Sb mixed powders in order to increase the utilization ratio of materials and also quality of LMD composite coatings on the TA1 substrate. SEM images indicated that such LMD coating with metallurgical joint to substrate was formed free of the obvious defects. Lots of the ultrafine nanocrystals (UNs) were produced, which distributed uniformly in some coating matrix location, retarding growth of the ceramics in a certain extent; UNs were intertwined with amorphous, leading the yarn-shape materials to be produced. Compared with substrate, an improvement of wear resistance was achieved for such LMD coating.

  20. Preparation of (Bi,Pb)2Sr2Ca2Cu3Ox precursor powders by a modified polyethylene glycol based sol-gel process

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Andersen, N.H.

    2002-01-01

    A modified sol-gel process based on polyethylene glycol has been developed for preparing (Bi,Pb)(2)Sr2Ca2Cu3Ox precursor powders in view of Ag-sheeted tape manufacture. A careful control of the pH and concentration temperature yields an amorphous gel, which can be converted to a fine and extremely...

  1. The Rheology behind Stress-Induced Solidification in Native Silk Feedstocks.

    Science.gov (United States)

    Laity, Peter R; Holland, Chris

    2016-10-29

    The mechanism by which native silk feedstocks are converted to solid fibres in nature has attracted much interest. To address this question, the present work used rheology to investigate the gelation of Bombyx mori native silk feedstock. Exceeding a critical shear stress appeared to be more important than shear rate, during flow-induced initiation. Compositional changes (salts, pH etc.,) were not required, although their possible role in vivo is not excluded. Moreover, after successful initiation, gel strength continued to increase over a considerable time under effectively quiescent conditions, without requiring further application of the initial stimulus. Gelation by elevated temperature or freezing was also observed. Prior to gelation, literature suggests that silk protein adopts a random coil configuration, which argued against the conventional explanation of gelation, based on hydrophilic and hydrophobic interactions. Instead, a new hypothesis is presented, based on entropically-driven loss of hydration, which appears to explain the apparently diverse methods by which silk feedstocks can be gelled.

  2. The Rheology behind Stress-Induced Solidification in Native Silk Feedstocks

    Directory of Open Access Journals (Sweden)

    Peter R. Laity

    2016-10-01

    Full Text Available The mechanism by which native silk feedstocks are converted to solid fibres in nature has attracted much interest. To address this question, the present work used rheology to investigate the gelation of Bombyx mori native silk feedstock. Exceeding a critical shear stress appeared to be more important than shear rate, during flow-induced initiation. Compositional changes (salts, pH etc., were not required, although their possible role in vivo is not excluded. Moreover, after successful initiation, gel strength continued to increase over a considerable time under effectively quiescent conditions, without requiring further application of the initial stimulus. Gelation by elevated temperature or freezing was also observed. Prior to gelation, literature suggests that silk protein adopts a random coil configuration, which argued against the conventional explanation of gelation, based on hydrophilic and hydrophobic interactions. Instead, a new hypothesis is presented, based on entropically-driven loss of hydration, which appears to explain the apparently diverse methods by which silk feedstocks can be gelled.

  3. Hydrogen in disordered and amorphous solids

    International Nuclear Information System (INIS)

    Bambakidis, G; Bowman, R.C.

    1986-01-01

    This book presents information on the following topoics: elements of the theory of amorphous semiconductors; electronic structure of alpha-SiH; fluctuation induced gap states in amorphous hydrogenated silicon; hydrogen on semiconductor surfaces; the influence of hydrogen on the defects and instabilities in hydrogenated amorphous silicon; deuteron magnetic resonance in some amorphous semiconductors; formation of amorphous metals by solid state reactions of hydrogen with an intermetallic compound; NMR studies of the hydrides of disordered and amorphous alloys; neutron vibrational spectroscopy of disordered metal-hydrogen system; dynamical disorder of hydrogen in LaNi /SUB 5-y/ M /SUB y/ hydrides studied by quasi-elastic neutron scattering; recent studies of intermetallic hydrides; tritium in Pd and Pd /SUB 0.80/ Sg /SUB 0.20/ ; and determination of hydrogen concentration in thin films of absorbing materials

  4. Influence of spark plasma sintering parameters on the mechanical properties of Cu{sub 50}Zr{sub 45}Al{sub 5} bulk metallic glass obtained using metallic glass powder

    Energy Technology Data Exchange (ETDEWEB)

    Cardinal, S. [Université de Lyon, CNRS (France); INSA-Lyon, MATEIS UMR5510, F-69621 Villeurbanne (France); Pelletier, J.M., E-mail: jean-marc.pelletier@insa-lyon.fr [Université de Lyon, CNRS (France); INSA-Lyon, MATEIS UMR5510, F-69621 Villeurbanne (France); Qiao, J.C. [School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072 (China); Bonnefont, G. [Université de Lyon, CNRS (France); INSA-Lyon, MATEIS UMR5510, F-69621 Villeurbanne (France); Xie, G. [Institute for Materials Research, Tohoku University, Sendai (Japan)

    2016-11-20

    Gas atomized Cu{sub 50}Zr{sub 45}Al{sub 5} amorphous powder was densified by spark plasma sintering, in order to obtain bulk metallic glasses with larger size than that obtained by the conventional casting strategy. The influence of different parameters was investigated: sintering temperature, isothermal holding time as well as size of the specimens. After optimization of the processing parameters, dense and amorphous specimens were elaborated with a diameter up to 30 mm. Thermal stability and mechanical properties of consolidated samples are similar to those of Cu{sub 50}Zr{sub 45} Al{sub 5} cast alloy. A hardness of 535 HV and a compressive strength of 1600 MPa have been obtained. Fractographic investigation indicated an intergranular rupture mode which leads to lower toughness compared to as the cast material, but for these samples the size is limited to 3 mm. However an increase in applied pressure (from 90 MPa to 1 GPa) induces a significant improvement in bonding between powder particles.

  5. Rapid formation of nanocrystalline HfO2 powders from amorphous hafnium hydroxide under ultrasonically assisted hydrothermal treatment

    International Nuclear Information System (INIS)

    Meskin, Pavel E.; Sharikov, Felix Yu.; Ivanov, Vladimir K.; Churagulov, Bulat R.; Tretyakov, Yury D.

    2007-01-01

    Peculiarities of hafnium hydroxide hydrothermal decomposition were studied by in situ heat flux calorimetry for the first time. It was shown that this process occurs in one exothermal stage (ΔH = -17.95 kJ mol -1 ) at 180-250 deg. C resulting in complete crystallization of amorphous phase with formation of pure monoclinic HfO 2 . It was found that the rate of m-HfO 2 formation can be significantly increased by combining hydrothermal treatment with simultaneous ultrasonic activation

  6. Pressure-induced amorphization and collapse of magnetic order in the type-I clathrate Eu8Ga16Ge30

    Science.gov (United States)

    Mardegan, J. R. L.; Fabbris, G.; Veiga, L. S. I.; Adriano, C.; Avila, M. A.; Haskel, D.; Giles, C.

    2013-10-01

    We investigate the low temperature structural and electronic properties of the type-I clathrate Eu8Ga16Ge30 under pressure using x-ray powder diffraction (XRD), x-ray absorption near-edge structure (XANES), and x-ray magnetic circular dichroism (XMCD) techniques. The XRD measurements reveal a transition to an amorphous phase above 18 GPa. Unlike previous reports on other clathrate compounds, no volume collapse is observed prior to the crystalline-amorphous phase transition which takes place when the unit cell volume is reduced to 81% of its ambient pressure value. Fits of the pressure-dependent relative volume to a Murnaghan equation of state yield a bulk modulus B0=65±3 GPa and a pressure derivative B0'=3.3±0.5. The Eu L2-edge XMCD data shows quenching of the magnetic order at a pressure coincident with the crystalline-amorphous phase transition. This information along with the persistence of an Eu2+ valence state observed in the XANES spectra up to the highest pressure point (22 GPa) indicates that the suppression of XMCD intensity is due to the loss of long range magnetic order. When compared with other clathrates, the results point to the importance of guest ion-cage interactions in determining the mechanical stability of the framework structure and the critical pressure for amorphization. Finally, the crystalline structure is not found to recover after pressure release, resulting in an amorphous material that is at least metastable at ambient pressure and temperature.

  7. Synthesis of Uranium nitride powders using metal uranium powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong Joo; Oh, Jang Soo; Rhee, Young Woo; Kim, Jong Hun; Kim, Keon Sik

    2012-01-01

    Uranium nitride (UN) is a potential fuel material for advanced nuclear reactors because of their high fuel density, high thermal conductivity, high melting temperature, and considerable breeding capability in LWRs. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. The carbothermic reduction has an advantage in the production of fine powders. However it has many drawbacks such as an inevitable engagement of impurities, process burden, and difficulties in reusing of expensive N 15 gas. Manufacturing concerns issued in the carbothermic reduction process can be solved by changing the starting materials from oxide powder to metals. However, in nitriding process of metal, it is difficult to obtain fine nitride powders because metal uranium is usually fabricated in the form of bulk ingots. In this study, a simple reaction method was tested to fabricate uranium nitride powders directly from uranium metal powders. We fabricated uranium metal spherical powder and flake using a centrifugal atomization method. The nitride powders were obtained by thermal treating those metal particles under nitrogen containing gas. We investigated the phase and morphology evolutions of powders during the nitriding process. A phase analysis of nitride powders was also a part of the present work

  8. Fundamentals of amorphous solids structure and properties

    CERN Document Server

    Stachurski, Zbigniew H

    2014-01-01

    Long awaited, this textbook fills the gap for convincing concepts to describe amorphous solids. Adopting a unique approach, the author develops a framework that lays the foundations for a theory of amorphousness. He unravels the scientific mysteries surrounding the topic, replacing rather vague notions of amorphous materials as disordered crystalline solids with the well-founded concept of ideal amorphous solids. A classification of amorphous materials into inorganic glasses, organic glasses, glassy metallic alloys, and thin films sets the scene for the development of the model of ideal amorph

  9. Microbial Production of l-Serine from Renewable Feedstocks.

    Science.gov (United States)

    Zhang, Xiaomei; Xu, Guoqiang; Shi, Jinsong; Koffas, Mattheos A G; Xu, Zhenghong

    2018-07-01

    l-Serine is a non-essential amino acid that has wide and expanding applications in industry with a fast-growing market demand. Currently, extraction and enzymatic catalysis are the main processes for l-serine production. However, such approaches limit the industrial-scale applications of this important amino acid. Therefore, shifting to the direct fermentative production of l-serine from renewable feedstocks has attracted increasing attention. This review details the current status of microbial production of l-serine from renewable feedstocks. We also summarize the current trends in metabolic engineering strategies and techniques for the typical industrial organisms Corynebacterium glutamicum and Escherichia coli that have been developed to address and overcome major challenges in the l-serine production process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Butner, R.S.; Elliott, D.C.; Sealock, L.J., Jr.; Pyne, J.W.

    1988-12-01

    This report presents an exploration of the relationships between biomass feedstocks and the conversion processes that utilize them. Specifically, it discusses the effect of the physical and chemical structure of biomass on conversion yields, rates, and efficiencies in a wide variety of available or experimental conversion processes. A greater understanding of the complex relationships between these conversion systems and the production of biomass for energy uses is required to help optimize the complex network of biomass production, collection, transportation, and conversion to useful energy products. The review of the literature confirmed the scarcity of research aimed specifically at identifying the effect of feedstock properties on conversion. In most cases, any mention of feedstock-related effects was limited to a few brief remarks (usually in qualitative terms) in the conclusions, or as a topic for further research. Attempts to determine the importance of feedstock parameters from published data were further hampered by the lack of consistent feedstock characterization and the difficulty of comparing results between different experimental systems. Further research will be required to establish quantitative relationships between feedstocks and performance criteria in conversion. 127 refs., 4 figs., 7 tabs.

  11. Physics of amorphous metals

    CERN Document Server

    Kovalenko, Nikolai P; Krey, Uwe

    2008-01-01

    The discovery of bulk metallic glasses has led to a large increase in the industrial importance of amorphous metals, and this is expected to continue. This book is the first to describe the theoretical physics of amorphous metals, including the important theoretical development of the last 20 years.The renowned authors stress the universal aspects in their description of the phonon or magnon low-energy excitations in the amorphous metals, e.g. concerning the remarkable consequences of the properties of these excitations for the thermodynamics at low and intermediate temperatures. Tunneling

  12. Amorphous surface layer versus transient amorphous precursor phase in bone - A case study investigated by solid-state NMR spectroscopy.

    Science.gov (United States)

    Von Euw, Stanislas; Ajili, Widad; Chan-Chang, Tsou-Hsi-Camille; Delices, Annette; Laurent, Guillaume; Babonneau, Florence; Nassif, Nadine; Azaïs, Thierry

    2017-09-01

    The presence of an amorphous surface layer that coats a crystalline core has been proposed for many biominerals, including bone mineral. In parallel, transient amorphous precursor phases have been proposed in various biomineralization processes, including bone biomineralization. Here we propose a methodology to investigate the origin of these amorphous environments taking the bone tissue as a key example. This study relies on the investigation of a bone tissue sample and its comparison with synthetic calcium phosphate samples, including a stoichiometric apatite, an amorphous calcium phosphate sample, and two different biomimetic apatites. To reveal if the amorphous environments in bone originate from an amorphous surface layer or a transient amorphous precursor phase, a combined solid-state nuclear magnetic resonance (NMR) experiment has been used. The latter consists of a double cross polarization 1 H→ 31 P→ 1 H pulse sequence followed by a 1 H magnetization exchange pulse sequence. The presence of an amorphous surface layer has been investigated through the study of the biomimetic apatites; while the presence of a transient amorphous precursor phase in the form of amorphous calcium phosphate particles has been mimicked with the help of a physical mixture of stoichiometric apatite and amorphous calcium phosphate. The NMR results show that the amorphous and the crystalline environments detected in our bone tissue sample belong to the same particle. The presence of an amorphous surface layer that coats the apatitic core of bone apatite particles has been unambiguously confirmed, and it is certain that this amorphous surface layer has strong implication on bone tissue biogenesis and regeneration. Questions still persist on the structural organization of bone and biomimetic apatites. The existing model proposes a core/shell structure, with an amorphous surface layer coating a crystalline bulk. The accuracy of this model is still debated because amorphous calcium

  13. Characterization of dense lead lanthanum titanate ceramics prepared from powders synthesized by the oxidant peroxo method

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Alexandre H. [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Departamento de Quimica, UFSCar-Universidade Federal de Sao Carlos, Rod.Washington Luis km 235, CP 676 Sao Carlos, SP 13565-905 (Brazil); Souza, Flavio L., E-mail: flavio.souza@ufabc.edu.br [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adelia 166, Bangu, Santo Andre, SP 09210-170 (Brazil); Chiquito, Adenilson J., E-mail: chiquito@df.ufscar.br [Departamento de Fisica, UFSCar-Federal University of Sao Carlos, Rod.Washington Luis km 235, CP 676 Sao Carlos, SP 13565-905 (Brazil); Longo, Elson, E-mail: elson@iq.unesp.br [Instituto de Quimica de Araraquara, UNESP-Universidade Estadual Paulista, Rua Francisco Degni, CP 355 Araraquara, SP 14801-907 (Brazil); Leite, Edson R., E-mail: derl@power.ufscar.br [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Departamento de Quimica, UFSCar-Universidade Federal de Sao Carlos, Rod.Washington Luis km 235, CP 676 Sao Carlos, SP 13565-905 (Brazil); Camargo, Emerson R., E-mail: camargo@ufscar.br [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Departamento de Quimica, UFSCar-Universidade Federal de Sao Carlos, Rod.Washington Luis km 235, CP 676 Sao Carlos, SP 13565-905 (Brazil)

    2010-12-01

    Nanosized powders of lead lanthanum titanate (Pb{sub 1-x}La{sub x}TiO{sub 3}) were synthesized by means of the oxidant-peroxo method (OPM). Lanthanum was added from 5 to 30% in mol through the dissolution of lanthanum oxide in nitric acid, followed by the addition of lead nitrate to prepare a solution of lead and lanthanum nitrates, which was dripped into an aqueous solution of titanium peroxo complexes, forming a reactive amorphous precipitate that could be crystallized by heat treatment. Crystallized powders were characterized by FT-Raman spectroscopy and X-ray powder diffraction, showing that tetragonal perovskite structure is obtained for samples up to 25% of lanthanum and cubic perovskite for samples with 30% of lanthanum. Powders containing 25 and 30% in mol of lanthanum were calcined at 700 deg. C for 2 h, and in order to determine the relative dielectric permittivity and the phase transition behaviour from ferroelectric-to-paraelectric, ceramic pellets were prepared and sintered at 1100 or 1150 deg. C for 2 h and subjected to electrical characterization. It was possible to observe that sample containing 25% in mol of La presented a normal behaviour for the phase transition, whereas the sample containing 30% in mol of La presented a diffuse phase transition and relaxor behaviour.

  14. Characterization of dense lead lanthanum titanate ceramics prepared from powders synthesized by the oxidant peroxo method

    International Nuclear Information System (INIS)

    Pinto, Alexandre H.; Souza, Flavio L.; Chiquito, Adenilson J.; Longo, Elson; Leite, Edson R.; Camargo, Emerson R.

    2010-01-01

    Nanosized powders of lead lanthanum titanate (Pb 1-x La x TiO 3 ) were synthesized by means of the oxidant-peroxo method (OPM). Lanthanum was added from 5 to 30% in mol through the dissolution of lanthanum oxide in nitric acid, followed by the addition of lead nitrate to prepare a solution of lead and lanthanum nitrates, which was dripped into an aqueous solution of titanium peroxo complexes, forming a reactive amorphous precipitate that could be crystallized by heat treatment. Crystallized powders were characterized by FT-Raman spectroscopy and X-ray powder diffraction, showing that tetragonal perovskite structure is obtained for samples up to 25% of lanthanum and cubic perovskite for samples with 30% of lanthanum. Powders containing 25 and 30% in mol of lanthanum were calcined at 700 deg. C for 2 h, and in order to determine the relative dielectric permittivity and the phase transition behaviour from ferroelectric-to-paraelectric, ceramic pellets were prepared and sintered at 1100 or 1150 deg. C for 2 h and subjected to electrical characterization. It was possible to observe that sample containing 25% in mol of La presented a normal behaviour for the phase transition, whereas the sample containing 30% in mol of La presented a diffuse phase transition and relaxor behaviour.

  15. Synthesis of fuels and feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Andrew D.; Brooks, Ty; Jenkins, Rhodri; Moore, Cameron; Staples, Orion

    2017-10-10

    Disclosed herein are embodiments of a method for making fuels and feedstocks from readily available alcohol starting materials. In some embodiments, the method concerns converting alcohols to carbonyl-containing compounds and then condensing such carbonyl-containing compounds together to form oligomerized species. These oligomerized species can then be reduced using by-products from the conversion of the alcohol. In some embodiments, the method further comprises converting saturated, oligomerized, carbonyl-containing compounds to aliphatic fuels.

  16. Development of a technology for amorphous material (Co-free) hardfacing on primary side component materials using laser beam to improve their wear/erosion.corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Jeong Hun; Kim, J. S.; Han, J. H.; Lee, D. H.; Hwang, S. S

    2000-08-01

    A technology of laser hardfacing of amorphous materials onto materials used in the primary-side components has been developed in order to improve their integrity and reduce the radiation fluence in the primary system. (1) Development of a powder feeding system for the laser cladding. (2) Modification of the laser system in order to perform cladding the part surfaces with complex 3D geometries through the tool paths determined with CAD/CAM. (3) Development of laser cladding technology with amorphous alloy. (4) Examination and analysis of the microstructure, chemical composition, and phases of the clads. (5) Evaluation of the mechanical properties of the clads. (6) Development of an ultrasonic vibrator for VSR.

  17. Development of a technology for amorphous material (Co-free) hardfacing on primary side component materials using laser beam to improve their wear/erosion.corrosion resistance

    International Nuclear Information System (INIS)

    Suh, Jeong Hun; Kim, J. S.; Han, J. H.; Lee, D. H.; Hwang, S. S.

    2000-08-01

    A technology of laser hardfacing of amorphous materials onto materials used in the primary-side components has been developed in order to improve their integrity and reduce the radiation fluence in the primary system. 1) Development of a powder feeding system for the laser cladding. 2) Modification of the laser system in order to perform cladding the part surfaces with complex 3D geometries through the tool paths determined with CAD/CAM. 3) Development of laser cladding technology with amorphous alloy. 4) Examination and analysis of the microstructure, chemical composition, and phases of the clads. 5) Evaluation of the mechanical properties of the clads. 6) Development of an ultrasonic vibrator for VSR

  18. Amorphous nanoparticles — Experiments and computer simulations

    International Nuclear Information System (INIS)

    Hoang, Vo Van; Ganguli, Dibyendu

    2012-01-01

    The data obtained by both experiments and computer simulations concerning the amorphous nanoparticles for decades including methods of synthesis, characterization, structural properties, atomic mechanism of a glass formation in nanoparticles, crystallization of the amorphous nanoparticles, physico-chemical properties (i.e. catalytic, optical, thermodynamic, magnetic, bioactivity and other properties) and various applications in science and technology have been reviewed. Amorphous nanoparticles coated with different surfactants are also reviewed as an extension in this direction. Much attention is paid to the pressure-induced polyamorphism of the amorphous nanoparticles or amorphization of the nanocrystalline counterparts. We also introduce here nanocomposites and nanofluids containing amorphous nanoparticles. Overall, amorphous nanoparticles exhibit a disordered structure different from that of corresponding bulks or from that of the nanocrystalline counterparts. Therefore, amorphous nanoparticles can have unique physico-chemical properties differed from those of the crystalline counterparts leading to their potential applications in science and technology.

  19. Effect of multiple-feedstock strategy on the economic and environmental performance of thermochemical ethanol production under extreme weather conditions

    International Nuclear Information System (INIS)

    Kou, Nannan; Zhao, Fu

    2011-01-01

    Current US transportation sector mainly relies on liquid hydrocarbons derived from petroleum and about 60% of the petroleum consumed is from areas where supply may be disturbed by regional instability. This has led to serious concerns on energy security and global warming. To address these issues, numerous alternative energy carriers have been proposed. Among them, second generation biofuel is one of the most promising technologies. Gasification-based thermochemical conversion will bring flexibility to both feedstock and production sides of a plant, thus presents an attractive technical route to address both the energy security and global warming concerns. In this paper, thermochemical ethanol production using multiple-feedstock (corn stover, municipal solid waste, and wood chips) is simulated using Aspen Plus and compared with the single-feedstock scenario, in terms of economic performances, life cycle greenhouse gas (GHG) emissions and survivability under extreme weather conditions. For a hypothetical facility in southwest Indiana it is found that multiple-feedstock strategy improves the net present value by 18% compared to single-feedstock strategy. This margin is increased to 57% when effects of extreme weather conditions on feedstock supply are considered. Moreover, multiple-feedstock fuel plant has no potential risk of bankruptcy during the payback period, while single-feedstock fuel plant has a 75% chance of bankruptcy. Although the multiple-feedstock strategy has 26% more GHG emission per liter of ethanol produced than the single-feedstock strategy, the trend is reversed if feedstock supply disruption is taken into account. Thus the idea of multiple-feedstock strategy is proposed to the future thermo chemical biofuel plants.

  20. Research Progress on Fe-based Amorphous Coatings

    Directory of Open Access Journals (Sweden)

    LIANG Xiu-bing

    2017-09-01

    Full Text Available The latest research progresses on Fe-based amorphous coatings were reviewed. The typical alloy system and the classification of Fe-based amorphous coatings were clarified. The status, progress and development of the Fe-based amorphous coatings prepared by thermal spray processing and laser cladding process were discussed. The main mechanical properties and potential applications of the Fe-based amorphous coatings were also described. Furthermore, based on the main problems mentioned above, the future development of the Fe-based amorphous coatings was discussed, including the exploitation preparation technologies of high amorphous content of the Fe-based coatings, the development of the low cost and high performance Fe-based coating alloys system, the broadening application of Fe-based amorphous coatings, and so on.

  1. Amorphous drugs and dosage forms

    DEFF Research Database (Denmark)

    Grohganz, Holger; Löbmann, K.; Priemel, P.

    2013-01-01

    The transformation to an amorphous form is one of the most promising approaches to address the low solubility of drug compounds, the latter being an increasing challenge in the development of new drug candidates. However, amorphous forms are high energy solids and tend to recry stallize. New...... formulation principles are needed to ensure the stability of amorphous drug forms. The formation of solid dispersions is still the most investigated approach, but additional approaches are desirable to overcome the shortcomings of solid dispersions. Spatial separation by either coating or the use of micro-containers...... before single molecules are available for the formation of crystal nuclei, thus stabilizing the amorphous form....

  2. Acceptable contamination levels in solar grade silicon: From feedstock to solar cell

    International Nuclear Information System (INIS)

    Hofstetter, J.; Lelievre, J.F.; Canizo, C.; Luque, A. del

    2009-01-01

    Ultimately, alternative ways of silicon purification for photovoltaic applications are developed and applied. There is an ongoing debate about what are the acceptable contamination levels within the purified silicon feedstock to specify the material as solar grade silicon. Applying a simple model and making some additional assumptions, we calculate the acceptable contamination levels of different characteristic impurities for each fabrication step of a typical industrial mc-Si solar cell. The acceptable impurity concentrations within the finished solar cell are calculated for SRH recombination exclusively and under low injection conditions. It is assumed that during solar cell fabrication impurity concentrations are only altered by a gettering step. During the crystallization process, impurity segregation at the solid-liquid interface and at extended defects are taken into account. Finally, the initial contamination levels allowed within the feedstock are deduced. The acceptable concentration of iron in the finished solar cell is determined to be 9.7x10 -3 ppma whereas the concentration in the silicon feedstock can be as high as 12.5 ppma. In comparison, the titanium concentration admitted in the solar cell is calculated to be 2.7x10 -4 ppma and the allowed concentration of 2.2x10 -2 ppma in the feedstock is only two orders of magnitude higher. Finally, it is shown theoretically and experimentally that slow cooling rates can lead to a decrease of the interstitial Fe concentration and thus relax the purity requirements in the feedstock.

  3. Effect of crystallization condition on the Microwave properties of Fe-based amorphous alloy flakes and polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Byoung-Gi [Department of Advanced Metallic Materials, Korea Institute of Materials Science, 531 Changwondaero, Changwon, Kyungnam (Korea, Republic of); Hong, Soon-Ho; Sohn, Keun Yong; Park, Won-Wook [School of Nano Engineering, Inje University, 607 Obang-dong, Kimhae, Kyungnam (Korea, Republic of); Kwon, Sang-Kyun; Song, Yong-Sul [Amosense Co., 185-1 Sucham-ri, Tongjin-myun, Gimposi, Kyungkido (Korea, Republic of); Lee, Taek-Dong, E-mail: bgmoon@kims.re.k [Department of Materials Science and Engineering, Korea Insititute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon (Korea, Republic of)

    2009-01-01

    The electromagnetic (EM) wave absorption properties with a variation of crystallization temperature have been investigated in a sheet-type absorber made of the amorphous Fe{sub 73}Si{sub 16}B{sub 7}Nb{sub 3}Cu{sub 1}Finemet powder. With the variation of the annealing temperature, the magnetic and dielectric properties of the crystallized Fe-based absorber with a nano-structure were changed. The complex permittivity increased with increasing the annealing temperature, whereas the complex permeability was maximized after annealing at 530 deg. C for 1 hour. The absolute value of the reflection parameter, |S{sub 11}|, increased with increasing annealing temperature of the nanocrystalline alloy powder. On the contrary, the transmission one, |S{sub 21}|, showed the highest value after annealing at 530 deg. C for 1 hour, which is regarded as the optimum temperature for the improvement of EM wave absorption properties.

  4. Agave: a biofuel feedstock for arid and semi-arid environments

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Stephen; Martin, Jeffrey; Simpson, June; Wang, Zhong; Visel, Axel

    2011-05-31

    Efficient production of plant-based, lignocellulosic biofuels relies upon continued improvement of existing biofuel feedstock species, as well as the introduction of newfeedstocks capable of growing on marginal lands to avoid conflicts with existing food production and minimize use of water and nitrogen resources. To this end, specieswithin the plant genus Agave have recently been proposed as new biofuel feedstocks. Many Agave species are adapted to hot and arid environments generally unsuitable forfood production, yet have biomass productivity rates comparable to other second-generation biofuel feedstocks such as switchgrass and Miscanthus. Agavesachieve remarkable heat tolerance and water use efficiency in part through a Crassulacean Acid Metabolism (CAM) mode of photosynthesis, but the genes andregulatory pathways enabling CAM and thermotolerance in agaves remain poorly understood. We seek to accelerate the development of agave as a new biofuelfeedstock through genomic approaches using massively-parallel sequencing technologies. First, we plan to sequence the transcriptome of A. tequilana to provide adatabase of protein-coding genes to the agave research community. Second, we will compare transcriptome-wide gene expression of agaves under different environmentalconditions in order to understand genetic pathways controlling CAM, water use efficiency, and thermotolerance. Finally, we aim to compare the transcriptome of A.tequilana with that of other Agave species to gain further insight into molecular mechanisms underlying traits desirable for biofuel feedstocks. These genomicapproaches will provide sequence and gene expression information critical to the breeding and domestication of Agave species suitable for biofuel production.

  5. Preparation of UO{sub 2}, ThO{sub 2} and (Th,U)O{sub 2} pellets from photochemically-prepared nano-powders

    Energy Technology Data Exchange (ETDEWEB)

    Pavelková, Tereza [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 115 19 Praha 1 (Czech Republic); Čuba, Václav, E-mail: vaclav.cuba@fjfi.cvut.cz [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 115 19 Praha 1 (Czech Republic); Visser-Týnová, Eva de [Nuclear Research and Consultancy Group (NRG), Research & Innovation, Westerduinweg 3, 1755 LE Petten (Netherlands); Ekberg, Christian [Nuclear Chemistry/Industrial Materials Recycling, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Persson, Ingmar [Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala (Sweden)

    2016-02-15

    Photochemically-induced preparation of nano-powders of crystalline uranium and/or thorium oxides and their subsequent pelletizing has been investigated. The preparative method was based on the photochemically induced formation of amorphous solid precursors in aqueous solution containing uranyl and/or thorium nitrate and ammonium formate. The EXAFS analyses of the precursors shown that photon irradiation of thorium containing solutions yields a compound with little long-range order but likely “ThO{sub 2} like” and the irradiation of uranium containing solutions yields the mixture of U(IV) and U(VI) compounds. The U-containing precursors were carbon free, thus allowing direct heat treatment in reducing atmosphere without pre-treatment in the air. Subsequent heat treatment of amorphous solid precursors at 300–550 °C yielded nano-crystalline UO{sub 2}, ThO{sub 2} or solid (Th,U)O{sub 2} solutions with high purity, well-developed crystals with linear crystallite size <15 nm. The prepared nano-powders of crystalline oxides were pelletized without any binder (pressure 500 MPa), the green pellets were subsequently sintered at 1300 °C under an Ar:H{sub 2} (20:1) mixture (UO{sub 2} and (Th,U)O{sub 2} pellets) or at 1600 °C in ambient air (ThO{sub 2} pellets). The theoretical density of the sintered pellets varied from 91 to 97%. - Highlights: • Photochemically prepared UO{sub 2}/ThO{sub 2} nano-powders were pelletized. • The nano-powders of crystalline oxides were pelletized without any binder. • Pellets were sintered at 1300 °C (UO{sub 2} and (Th,U)O{sub 2}) or 1600 °C (ThO{sub 2} pellets). • The theoretical density of the sintered pellets varies from 91 to 97%.

  6. A bioenergy feedstock/vegetable double-cropping system

    Science.gov (United States)

    Certain warm-season vegetable crops may lend themselves to bioenergy double-cropping systems, which involve growing a winter annual bioenergy feedstock crop followed by a summer annual crop. The objective of the study was to compare crop productivity and weed communities in different pumpkin product...

  7. Expected international demand for woody and herbaceous feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Jacob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mohammad, Roni [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The development of a U.S. bioenergy market and ultimately ‘bioeconomy’ has primarily been investigated with a national focus. Limited attention has been given to the potential impacts of international market developments. The goal of this project is to advance the current State of Technology of a single biorefinery to the global level providing quantitative estimates on how international markets may influence the domestic feedstock supply costs. The scope of the project is limited to feedstock that is currently available and new crops being developed to be used in a future U.S. bioeconomy including herbaceous residues (e.g., corn stover), woody biomass (e.g., pulpwood), and energy crops (e.g., switchgrass). The timeframe is set to the periods of 2022, 2030, and 2040 to align with current policy targets (e.g., the RFS2) and future updates of the Billion Ton data. This particular milestone delivers demand volumes for generic woody and herbaceous feedstocks for the main (net) importing regions along the above timeframes. The regional focus of the study is the European Union (EU), currently the largest demand region for U.S. pellets made from pulpwood and forest residues. The pellets are predominantly used in large-scale power plants (>5MWel) in the United Kingdom (UK), the Netherlands (NL), Belgium (BE), and Denmark (DK).

  8. Effect of particle size of drug on conversion of crystals to an amorphous state in a solid dispersion with crospovidone.

    Science.gov (United States)

    Sugamura, Yuka; Fujii, Makiko; Nakanishi, Sayaka; Suzuki, Ayako; Shibata, Yusuke; Koizumi, Naoya; Watanabe, Yoshiteru

    2011-01-01

    The effect of particle size on amorphization of drugs in a solid dispersion (SD) was investigated for two drugs, indomethacin (IM) and nifedipine (NP). The SD of drugs were prepared in a mixture with crospovidone by a variety of mechanical methods, and their properties investigated by particle sizing, thermal analysis, and powder X-ray diffraction. IM, which had an initial particle size of 1 µm and tends to aggregate, was forced through a sieve to break up the particles. NP, which had a large initial particle size, was jet-milled. In both cases, reduction of the particle size of the drugs enabled transition to an amorphous state below the melting point of the drug. The reduction in particle size is considered to enable increased contact between the crospovidone and drug particles, increasing interactions between the two compounds. © 2011 Pharmaceutical Society of Japan

  9. Preparation by a facile method and characterization of amorphous and crystalline nickel sulfide nanophases

    Energy Technology Data Exchange (ETDEWEB)

    Nagaveena, S., E-mail: nagaveena3@gmail.com; Mahadevan, C.K.

    2014-01-05

    Highlights: • Amorphous NiS, and crystalline NiS{sub 1.03}, β-NiS and α-NiS nanophases prepared. • Simple microwave assisted solvothermal method used. • Nanoparticles with low grain size, high phase purity and homogeneity obtained. • High coercivity observed indicates the applicability in data storage devices. -- Abstract: A simple solvothermal route using a domestic microwave oven has been developed to prepare the prominent nickel sulfide nanophases (amorphous NiS, and crystalline NiS{sub 1.03}, β-NiS and α-NiS). The prepared nanophases have been characterized chemically, structurally, optically, electrically, and magnetically by the available methods like thermogravimetric and differential thermal analyses, X-ray powder diffraction analysis, scanning electron microscopic, and transmission electron microscopic analyses, energy dispersive X-ray spectroscopic, Fourier transform-infrared spectral, UV–Vis spectral and photoluminescence spectral analyses, AC and DC electrical measurements at various temperatures in the range 40–150 °C, and vibrating sample magnetometric measurements. The average particle sizes obtained through transmission electron microscopic analysis are 15, 17, 18, 20 nm respectively for the amorphous NiS, NiS{sub 1.03}, β-NiS and α-NiS nanophases. Results obtained in the present study indicates that the method adopted is found to be an effective and economical one for preparing these nanophases with high purity, reduced size, homogeneity, and useful optical, electrical and magnetic properties.

  10. Amorphous iron (II) carbonate

    DEFF Research Database (Denmark)

    Sel, Ozlem; Radha, A.V.; Dideriksen, Knud

    2012-01-01

    Abstract The synthesis, characterization and crystallization energetics of amorphous iron (II) carbonate (AFC) are reported. AFC may form as a precursor for siderite (FeCO3). The enthalpy of crystallization (DHcrys) of AFC is similar to that of amorphous magnesium carbonate (AMC) and more...

  11. Amorphization of ceramics by ion beams

    International Nuclear Information System (INIS)

    McHargue, C.J.; Farlow, G.C.; White, C.W.; Williams, J.M.; Appleton, B.R.; Naramoto, H.

    1984-01-01

    The influence of the implantation parameters fluence, substrate temperature, and chemical species on the formation of amorphous phases in Al 2 O 3 and α-SiC was studied. At 300 0 K, fluences in excess of 10 17 ions.cm -2 were generally required to amorphize Al 2 O 3 ; however, implantation of zirconium formed the amorphous phase at a fluence of 4 x 10 16 Zr.cm -2 . At 77 0 K, the threshold fluence was lowered to about 2 x 10 15 Cr.cm -2 . Single crystals of α-SiC were amorphized at 300 0 K by a fluence of 2 x 10 14 Cr.cm -2 or 1 x 10 15 N.cm -2 . Implantation at 1023 0 K did not produce the amorphous phase in SiC. The micro-indentation hardness of the amorphous material was about 60% of that of the crystalline counterpart

  12. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Choi, J; Haslam, J; Day, S; Yang, N; Headley, T; Lucadamo, G; Yio, J; Chames, J; Gardea, A; Clift, M; Blue, G; Peters, W; Rivard, J; Harper, D; Swank, D; Bayles, R; Lemieux, E; Brown, R; Wolejsza, T; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Lavernia, E; Schoenung, J; Ajdelsztajn, L; Dannenberg, J; Graeve, O; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Boudreau, J

    2007-09-20

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer

  13. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings

    International Nuclear Information System (INIS)

    Farmer, J; Choi, J; Haslam, J; Day, S; Yang, N; Headley, T; Lucadamo, G; Yio, J; Chames, J; Gardea, A; Clift, M; Blue, G; Peters, W; Rivard, J; Harper, D; Swank, D; Bayles, R; Lemieux, E; Brown, R; Wolejsza, T; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Lavernia, E; Schoenung, J; Ajdelsztajn, L; Dannenberg, J; Graeve, O; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Boudreau, J

    2007-01-01

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer

  14. Amorphization within the tablet

    DEFF Research Database (Denmark)

    Doreth, Maria; Hussein, Murtadha Abdul; Priemel, Petra A.

    2017-01-01

    , the feasibility of microwave irradiation to prepare amorphous solid dispersions (glass solutions) in situ was investigated. Indomethacin (IND) and polyvinylpyrrolidone K12 (PVP) were tableted at a 1:2 (w/w) ratio. In order to study the influence of moisture content and energy input on the degree of amorphization......, tablet formulations were stored at different relative humidity (32, 43 and 54% RH) and subsequently microwaved using nine different power-time combinations up to a maximum energy input of 90 kJ. XRPD results showed that up to 80% (w/w) of IND could be amorphized within the tablet. mDSC measurements...

  15. A green emissive amorphous fac-Alq3 solid generated by grinding crystalline blue fac-Alq3 powder.

    Science.gov (United States)

    Bi, Hai; Chen, Dong; Li, Di; Yuan, Yang; Xia, Dandan; Zhang, Zuolun; Zhang, Hongyu; Wang, Yue

    2011-04-14

    A novel green emissive Alq(3) solid with a facial isomeric form has been obtained by grinding the typical blue luminescent fac-Alq(3) crystalline powder. This is the first report, to the best of our knowledge, that a fac-Alq(3) isomer emits green light.

  16. Efficient utilization of renewable feedstocks: the role of catalysis and process design

    Science.gov (United States)

    Palkovits, Regina; Delidovich, Irina

    2017-11-01

    Renewable carbon feedstocks such as biomass and CO2 present an important element of future circular economy. Especially biomass as highly functionalized feedstock provides manifold opportunities for the transformation into attractive platform chemicals. However, this change of the resources requires a paradigm shift in refinery design. Fossil feedstocks are processed in gas phase at elevated temperature. In contrast, biorefineries are based on processes in polar solvents at moderate conditions to selectively deoxygenate the polar, often thermally instable and high-boiling molecules. Here, challenges of catalytic deoxygenation, novel strategies for separation and opportunities provided at the interface to biotechnology are discussed in form of showcases. This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.

  17. Hydrogen production via catalytic processing of renewable feedstocks

    International Nuclear Information System (INIS)

    Nazim Muradov; Franklyn Smith; Ali T-Raissi

    2006-01-01

    Landfill gas (LFG) and biogas can potentially become important feedstocks for renewable hydrogen production. The objectives of this work were: (1) to develop a catalytic process for direct reforming of CH 4 -CO 2 gaseous mixture mimicking LFG, (2) perform thermodynamic analysis of the reforming process using AspenPlus chemical process simulator, (3) determine operational conditions for auto-thermal (or thermo-neutral) reforming of a model CH 4 -CO 2 feedstock, and (4) fabricate and test a bench-scale hydrogen production unit. Experimental data obtained from catalytic reformation of the CH 4 -CO 2 and CH 4 -CO 2 -O 2 gaseous mixtures using Ni-catalyst were in a good agreement with the simulation results. It was demonstrated that catalytic reforming of LFG-mimicking gas produced hydrogen with the purity of 99.9 vol.%. (authors)

  18. Efficacy of fatty acid profile as a tool for screening feedstocks for biodiesel production

    International Nuclear Information System (INIS)

    Moser, Bryan R.; Vaughn, Steven F.

    2012-01-01

    Fuel properties are largely dependent on the fatty acid (FA) composition of the feedstock from which biodiesel is prepared. Consequently, FA profile was employed as a screening tool for selection of feedstocks high in monounsaturated FAs for further evaluation as biodiesel. Those feedstocks included ailanthus (Ailanthus altissima L.), anise (Pimpinella anisum L.), arugula (Eruca vesicaria L.), cress (Lepidium sativum L.), cumin (Cuminum cyminum L.), Indian cress (Tropaeolum majus L.), shepherd’s purse (Capsella bursa-pastoris L.) and upland cress (Barbarea verna (Mill.) Asch.). Other selection criteria included saturated FA content, iodine value (IV), content of FAs containing twenty or more carbons and content of trienoic FAs. Anise oil satisfied all selection criteria and was therefore selected for further investigation. Arugula, cumin and upland cress oils were selected as antagonists to the selection criteria. Preparation of FA methyl esters (FAMEs, ≥ 92 wt % yield) following conventional alkaline-catalyzed methanolysis preceded fuel property determination. Of particular interest were oxidative stability and cold flow properties. Also measured were kinematic viscosity (40 °C), IV, acid value, free and total glycerol content, sulfur and phosphorous content, cetane number, energy content and lubricity. FAMEs prepared from anise oil yielded properties compliant with biodiesel standards ASTM D6751 and EN 14214 whereas the antagonists failed at least one specification contained within the standards. As a result, FA profile was an efficient predictor of compliance with biodiesel standards and is therefore recommended as a screening tool for investigation of alternative feedstocks. -- Highlights: ► Fatty acid methyl esters were prepared from several alternative feedstocks. ► Fatty acid composition was a principal factor influencing fuel properties. ► Oxidative stability and cold flow properties of biodiesel were examined in detail. ► Limits were developed

  19. Crystalline to amorphous transformation in silicon

    International Nuclear Information System (INIS)

    Cheruvu, S.M.

    1982-09-01

    In the present investigation, an attempt was made to understand the fundamental mechanism of crystalline-to-amorphous transformation in arsenic implanted silicon using high resolution electron microscopy. A comparison of the gradual disappearance of simulated lattice fringes with increasing Frenkel pair concentration with the experimental observation of sharp interfaces between crystalline and amorphous regions was carried out leading to the conclusion that when the defect concentration reaches a critical value, the crystal does relax to an amorphous state. Optical diffraction experiments using atomic models also supported this hypothesis. Both crystalline and amorphous zones were found to co-exist with sharp interfaces at the atomic level. Growth of the amorphous fraction depends on the temperature, dose rate and the mass of the implanted ion. Preliminary results of high energy electron irradiation experiments at 1.2 MeV also suggested that clustering of point defects occurs near room temperature. An observation in a high resolution image of a small amorphous zone centered at the core of a dislocation is presented as evidence that the nucleation of an amorphous phase is heterogeneous in nature involving clustering or segregation of point defects near existing defects

  20. Microstructural and mechanical characterization of injection molded 718 superalloy powders

    Energy Technology Data Exchange (ETDEWEB)

    Özgün, Özgür [Bingol University, Faculty of Engineering and Architecture, Mechanical Eng. Dep., 12000 Bingol (Turkey); Gülsoy, H. Özkan, E-mail: ogulsoy@marmara.edu.tr [Marmara University, Technology Faculty, Metallurgy and Materials Eng. Dep., 34722 Istanbul (Turkey); Yılmaz, Ramazan [Sakarya University, Technology Faculty, Metallurgy and Materials Eng. Dep., 54187 Sakarya (Turkey); Fındık, Fehim [Sakarya University, Technology Faculty, Metallurgy and Materials Eng. Dep., 54187 Sakarya (Turkey) and International University of Sarajevo, Faculty of Engineering and Natural Sciences, Department of Mechanical Engineering, 71000 Sarajevo, Bosnia and Herzegovina (Bosnia and Herzegowina)

    2013-11-05

    Highlights: •Microstructural and mechanical properties of injection molded Nickel 718 superalloy were studied. •The maximum sintered density achieved this study was 97.3% at 1290 °C for 3 hours. •Tensile strength of 1022 MPa and elongation of 5.3% were achieved for sintered-heat treated samples. -- Abstract: This study concerns with the determination of optimum production parameters for injection molding 718 superalloy parts. And at the same time, microstructural and mechanical characterization of these produced parts was also carried out. At the initial stage, 718 superalloy powders were mixed with a multi-component binder system for preparing feedstock. Then the prepared feedstock was granulated and shaped by injection molding. Following this operation, the shaped samples were subjected to the debinding process. These samples were sintered at different temperatures for various times. Samples sintered under the condition that gave way to the highest relative density (3 h at 1290 °C) were solution treated and aged respectively. Sintered, solution treated and aged samples were separately subjected to microstructural and mechanical characterization. Microstructural characterization operations such as X-ray diffraction, optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and elemental analysis showed that using polymeric binder system led to plentiful carbide precipitates to be occurred in the injection molded samples. It is also observed that the volume fractions of the intermetallic phases (γ′ and γ″) obtained by aging treatment were decreased due to the plentiful carbide precipitation in the samples. Mechanical characterization was performed by hardness measurements and tensile tests.

  1. Amorphous titanium-oxide supercapacitors

    Science.gov (United States)

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2016-10-01

    The electric capacitance of an amorphous TiO2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7 mF/cm2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large resistance and small capacitance on the amorphous TiO2-x surface, illuminated a red LED for 37 ms after it was charged with 1 mA at 10 V. The fabricated device showed no dielectric breakdown up to 1,100 V. Based on this approach, further advances in the development of amorphous titanium-dioxide supercapacitors might be attained by integrating oxide ribbons with a micro-electro mechanical system.

  2. NMR studies of 55Mn in amorphous CexMn100-x alloys

    International Nuclear Information System (INIS)

    Niki, H.; Okamura, K.; Yogi, M.; Amakai, Y.; Takano, H.; Murayama, S.; Obi, Y.

    2008-01-01

    In order to investigate the heavy-fermion like behavior of amorphous alloy Ce x Mn 100-x , the NMR measurements of 55 Mn (I=5/2 ) in Ce 65 Mn 35 have been carried out from 4.2 to 270 K using powdered sample. A broadened NMR spectrum containing five NQR lines split due to NQR interaction is observed. Quadrupole coupling constant 3e 2 Qq/2I(2I-1)h is gradually changed from about 1.8 MHz at 4.2 K to about 1.6 MHz at 270 K. Temperature dependence of the line width is expressed in the Curie-Weiss law with θ p =-10.5K. The value of Knight shift would be almost constant from 4.2 to 270 K

  3. Probing the mechanisms of drug release from amorphous solid dispersions in medium-soluble and medium-insoluble carriers.

    Science.gov (United States)

    Sun, Dajun D; Lee, Ping I

    2015-08-10

    The objective of the current study is to mechanistically differentiate the dissolution and supersaturation behaviors of amorphous drugs from amorphous solid dispersions (ASDs) based on medium-soluble versus medium-insoluble carriers under nonsink dissolution conditions through a direct head-to-head comparison. ASDs of indomethacin (IND) were prepared in several polymers which exhibit different solubility behaviors in acidic (pH1.2) and basic (pH7.4) dissolution media. The selected polymers range from water-soluble (e.g., PVP and Soluplus) and water-insoluble (e.g., ethylcellulose and Eudragit RL PO) to those only soluble in an acidic or basic dissolution medium (e.g., Eudragit E100, Eudragit L100, and HPMCAS). At 20wt.% drug loading, DSC and powder XRD analysis confirmed that the majority of incorporated IND was present in an amorphous state. Our nonsink dissolution results confirm that whether the carrier matrix is medium soluble determines the release mechanism of amorphous drugs from ASD systems which has a direct impact on the rate of supersaturation generation, thus in turn affecting the evolution of supersaturation in amorphous systems. For example, under nonsink dissolution conditions, the release of amorphous IND from medium-soluble carriers is governed by a dissolution-controlled mechanism leading to an initial surge of supersaturation followed by a sharp decline in drug concentration due to rapid nucleation and crystallization. In contrast, the dissolution of IND ASD from medium-insoluble carriers is more gradual as drug release is regulated by a diffusion-controlled mechanism by which drug supersaturation is built up gradually and sustained over an extended period of time without any apparent decline. Since several tested carrier polymers can be switched from soluble to insoluble by simply changing the pH of the dissolution medium, the results obtained here provide unequivocal evidence of the proposed transition of kinetic solubility profiles from the

  4. Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: A review

    International Nuclear Information System (INIS)

    Mansir, Nasar; Taufiq-Yap, Yun Hin; Rashid, Umer; Lokman, Ibrahim M.

    2017-01-01

    Highlights: • Solid acid catalysts are proficient to esterifying high free fatty acid feedstocks to biodiesel. • Heterogeneous catalysts have the advantage of easy separation and reusability. • Heterogeneous basic catalysts have limitations due to high FFA of low cost feedstocks. • Solid catalysts having acid and base sites reveal better catalyst for biodiesel production. - Abstract: The conventional fossil fuel reserves are continually declining worldwide and therefore posing greater challenges to the future of the energy sources. Biofuel alternatives were found promising to replace the diminishing fossil fuels. However, conversion of edible vegetable oils to biodiesel using homogeneous acids and base catalysts is now considered as indefensible for the future particularly due to food versus fuel competition and other environmental problems related to catalyst system and feedstock. This review has discussed the progression in research and growth related to heterogeneous catalysts used for biodiesel production for low grade feedstocks. The heterogeneous base catalysts have revealed effective way to produce biodiesel, but it has the limitation of being sensitive to high free fatty acid (FFA) or low grade feedstocks. Alternatively, solid acid catalysts are capable of converting the low grade feedstocks to biodiesel in the presence of active acid sites. The paper presents a comprehensive review towards the investigation of solid acid catalyst performance on low grade feedstock, their category, properties, advantages, limitations and possible remedy to their drawbacks for biodiesel production.

  5. Potential bioethanol feedstock availability around nine locations in the Republic of Ireland

    International Nuclear Information System (INIS)

    Deverell, R.; McDonnell, K.; Devlin, G.

    2009-01-01

    The Republic of Ireland, like many other countries is trying to diversify energy sources to counteract environmental, political and social concerns. Bioethanol from domestically grown agricultural crops is an indigenously produced alternative fuel that can potentially go towards meeting the goal of diversified energy supply. The Republic of Ireland's distribution of existing soils and agricultural land-uses limit arable crop land to around 10% of total agricultural area. Demand for land to produce arable crops is expected to decrease, which could open the opportunity for bioethanol production. Bioethanol production plants are required to be of a sufficient scale in order to compete economically with other fuel sources, it is important therefore to determine if enough land exists around potential ethanol plant locations to meet the potential demands for feedstock. This study determines, through the use of a developed GIS based model, the potential quantities of feedstock that is available in the hinterlands of nine locations in the Republic of Ireland. The results indicate that three locations can meet all its feedstock demands using indigenously grown sugarbeet, while only one location can meet its demands using a combination of indigenous wheat and straw as the two locally sourced feedstocks. (author)

  6. Preparation of Zr50Al15− xNi10Cu25Yx amorphous powders by ...

    Indian Academy of Sciences (India)

    The as-milled powders were characterized by X-ray diffraction and transmission electron microscopy. The results show that partial substitution of Al by Y can improve the glass-forming ability of Zr50Al15Ni10Cu25 alloy. Thermodynamic calculation of equivalent free energy shows that Zr50Al13.8Ni10Cu25Y1.2 alloy has the ...

  7. Microbial production host selection for converting second-generation feedstocks into bioproducts

    Directory of Open Access Journals (Sweden)

    van Groenestijn Johan W

    2009-12-01

    Full Text Available Abstract Background Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates are complex mixtures of different fermentable sugars, but also inhibitors and salts that affect the performance of the microbial production host. The performance of six industrially relevant microorganisms, i.e. two bacteria (Escherichia coli and Corynebacterium glutamicum, two yeasts (Saccharomyces cerevisiae and Pichia stipitis and two fungi (Aspergillus niger and Trichoderma reesei were compared for their (i ability to utilize monosaccharides present in lignocellulosic hydrolysates, (ii resistance against inhibitors present in lignocellulosic hydrolysates, (iii their ability to utilize and grow on different feedstock hydrolysates (corn stover, wheat straw, sugar cane bagasse and willow wood. The feedstock hydrolysates were generated in two manners: (i thermal pretreatment under mild acid conditions followed by enzymatic hydrolysis and (ii a non-enzymatic method in which the lignocellulosic biomass is pretreated and hydrolyzed by concentrated sulfuric acid. Moreover, the ability of the selected hosts to utilize waste glycerol from the biodiesel industry was evaluated. Results Large differences in the performance of the six tested microbial production hosts were observed. Carbon source versatility and inhibitor resistance were the major discriminators between the performances of these microorganisms. Surprisingly all 6 organisms performed relatively well on pretreated crude feedstocks. P. stipitis and A. niger were found to give the overall best performance C. glutamicum and S. cerevisiae were shown to be the least adapted to renewable feedstocks. Conclusion Based on the results obtained we conclude that a substrate oriented instead of the more commonly used product oriented approach towards the selection of a microbial production host will avoid the requirement for extensive metabolic

  8. Amorphous silicon based particle detectors

    OpenAIRE

    Wyrsch, N.; Franco, A.; Riesen, Y.; Despeisse, M.; Dunand, S.; Powolny, F.; Jarron, P.; Ballif, C.

    2012-01-01

    Radiation hard monolithic particle sensors can be fabricated by a vertical integration of amorphous silicon particle sensors on top of CMOS readout chip. Two types of such particle sensors are presented here using either thick diodes or microchannel plates. The first type based on amorphous silicon diodes exhibits high spatial resolution due to the short lateral carrier collection. Combination of an amorphous silicon thick diode with microstrip detector geometries permits to achieve micromete...

  9. Development and characterization of high payload combination dry powders of anti-tubercular drugs for treating pulmonary tuberculosis.

    Science.gov (United States)

    Eedara, Basanth Babu; Rangnekar, Bhamini; Sinha, Shubhra; Doyle, Colin; Cavallaro, Alex; Das, Shyamal C

    2018-06-15

    This study aimed to develop a high payload dry powder inhalation formulation containing a combination of the first line anti-tubercular drug, pyrazinamide, and the second line drug, moxifloxacin HCl. Individual powders of pyrazinamide (P SD ) and moxifloxacin (M SD ) and combination powders of the two drugs without (PM) and with 10% l-leucine (PML) and 10% DPPC (PMLD) were produced by spray drying. P SD contained >10 μm crystalline particles and showed poor aerosolization behaviour with a fine particle fraction (FPF) of 18.7 ± 3.4%. PM produced spherical hollow particles with aerodynamic diameter  0.05) compared to PML . Solid state studies and surface elemental analysis by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry confirmed the surface coating of particles contained amorphous moxifloxacin and both l-leucine and DPPC over crystalline pyrazinamide. Furthermore, pyrazinamide, moxifloxacin, PML and PMLD were found to display low toxicity to both A549 and Calu-3 cell lines even at a concentration of 100 μg/mL. In conclusion, a combination powder formulation of PML has the potential to deliver a high drug dose to the site of infection resulting in efficient treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Microstructure and Mechanical Behavior of Microwave Sintered Cu50Ti50 Amorphous Alloy Reinforced Al Metal Matrix Composites

    Science.gov (United States)

    Reddy, M. Penchal; Ubaid, F.; Shakoor, R. A.; Mohamed, A. M. A.

    2018-06-01

    In the present work, Al metal matrix composites reinforced with Cu-based (Cu50Ti50) amorphous alloy particles synthesized by ball milling followed by a microwave sintering process were studied. The amorphous powders of Cu50Ti50 produced by ball milling were used to reinforce the aluminum matrix. They were examined by x-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and compression testing. The analysis of XRD patterns of the samples containing 5 vol.%, 10 vol.% and 15 vol.% Cu50Ti50 indicates the presence of Al and Cu50Ti50 peaks. SEM images of the sintered composites show the uniform distribution of reinforced particles within the matrix. Mechanical properties of the composites were found to increase with an increasing volume fraction of Cu50Ti50 reinforcement particles. The hardness and compressive strength were enhanced to 89 Hv and 449 MPa, respectively, for the Al-15 vol.% Cu50Ti50 composites.

  11. Environmental and energy system analysis of bio-methane production pathways: A comparison between feedstocks and process optimizations

    International Nuclear Information System (INIS)

    Pierie, F.; Someren, C.E.J. van; Benders, R.M.J.; Bekkering, J.; Gemert, W.J.Th. van; Moll, H.C.

    2015-01-01

    Highlights: • Using local waste feedstock and optimization improves environmental sustainability. • Optimization favors waste feedstocks. • Transport distances should not exceed 150 km. • The produced energy should be used for powering the green gas process first. • The AD process should be used primarily for local waste treatment. - Abstract: The energy efficiency and sustainability of an anaerobic green gas production pathway was evaluated, taking into account five biomass feedstocks, optimization of the green gas production pathway, replacement of current waste management pathways by mitigation, and transport of the feedstocks. Sustainability is expressed by three main factors: efficiency in (Process) Energy Returned On Invested (P)EROI, carbon footprint in Global Warming Potential GWP(100), and environmental impact in EcoPoints. The green gas production pathway operates on a mass fraction of 50% feedstock with 50% manure. The sustainability of the analyzed feedstocks differs substantially, favoring biomass waste flows over, the specially cultivated energy crop, maize. The use of optimization, in the shape of internal energy production, green gas powered trucks, and mitigation can significantly improve the sustainability for all feedstocks, but favors waste materials. Results indicate a possible improvement from an average (P)EROI for all feedstocks of 2.3 up to an average of 7.0 GJ/GJ. The carbon footprint can potentially be reduced from an average of 40 down to 18 kgCO_2eq/GJ. The environmental impact can potentially be reduced from an average of 5.6 down to 1.8 Pt/GJ. Internal energy production proved to be the most effective optimization. However, the use of optimization aforementioned will result in les green gas injected into the gas grid as it is partially consumed internally. Overall, the feedstock straw was the most energy efficient, where the feedstock harvest remains proved to be the most environmentally sustainable. Furthermore, transport

  12. Preparation and characterization of phase-pure anatase and rutile TiO2 powder by new chemistry route

    International Nuclear Information System (INIS)

    Pereira, E. A.; Montanhera, M.A.; Paula, F.R.; Spada, E.R.

    2014-01-01

    Titanium dioxide (TiO 2 ) is used in a wire range applications such as photocatalysis and sensor device. In this work is shown a new and effective method for the preparation of TiO 2 nanocrystalline in the crystallographic forms, anatase and rutile. The method involves dissolving the TiOSO 4 powder in H 2 O 2 solution and thermal treatment of amorphous precipitate. The technique of X-ray diffraction was used to follow the structure evolution of amorphous precipitate. Pure anatase structure and rutile are obtained at 600 deg C and 1000 deg C with a grain size estimated 24 and 55 nm respectively. TiO 2 nanoparticles is a promising alternative of the low cost whose potential for solar cells deserve a careful evaluation, especially in hybrid solar cells that employs TiO 2 as electron acceptor and as transport channels. (author)

  13. Effects of crystallization on structural and dielectric properties of thin amorphous films of (1 - x)BaTiO3-xSrTiO3 (x=0-0.5, 1.0)

    Science.gov (United States)

    Kawano, H.; Morii, K.; Nakayama, Y.

    1993-05-01

    The possibilities for fabricating solid solutions of (Ba1-x,Srx)TiO3 (x≤0.5,1.0) by crystallization of amorphous films and for improving their dielectric properties by adjusting the Sr content were investigated. Thin amorphous films were prepared from powder targets consisting of mixtures of BaTiO3 and SrTiO3 by sputtering with a neutralized Ar-ion beam. The amorphous films crystallized into (Ba1-x, Srx)TiO3 solid solutions with a cubic perovskite-type structure after annealing in air at 923 K for more than 1 h. The Debye-type dielectric relaxation was observed for the amorphous films, whereas the crystallized films showed paraelectric behavior. The relative dielectric constants were of the order of 20 for the amorphous samples, but increased greatly after crystallization to about 60-200, depending on the composition; a larger increase in the dielectric constant was observed in the higher Sr content films, in the range x≤0.5, which could be correlated with an increase in the grain size of the crystallites. The crystallization processes responsible for the difference in the grain size are discussed based on the microstructural observations.

  14. Watermelon juice: a promising feedstock supplement, diluent, and nitrogen supplement for ethanol biofuel production

    Directory of Open Access Journals (Sweden)

    Bruton Benny D

    2009-08-01

    Full Text Available Abstract Background Two economic factors make watermelon worthy of consideration as a feedstock for ethanol biofuel production. First, about 20% of each annual watermelon crop is left in the field because of surface blemishes or because they are misshapen; currently these are lost to growers as a source of revenue. Second, the neutraceutical value of lycopene and L-citrulline obtained from watermelon is at a threshold whereby watermelon could serve as starting material to extract and manufacture these products. Processing of watermelons to produce lycopene and L-citrulline, yields a waste stream of watermelon juice at the rate of over 500 L/t of watermelons. Since watermelon juice contains 7 to 10% (w/v directly fermentable sugars and 15 to 35 μmol/ml of free amino acids, its potential as feedstock, diluent, and nitrogen supplement was investigated in fermentations to produce bioethanol. Results Complete watermelon juice and that which did not contain the chromoplasts (lycopene, but did contain free amino acids, were readily fermentable as the sole feedstock or as diluent, feedstock supplement, and nitrogen supplement to granulated sugar or molasses. A minimum level of ~400 mg N/L (~15 μmol/ml amino nitrogen in watermelon juice was required to achieve maximal fermentation rates when it was employed as the sole nitrogen source for the fermentation. Fermentation at pH 5 produced the highest rate of fermentation for the yeast system that was employed. Utilizing watermelon juice as diluent, supplemental feedstock, and nitrogen source for fermentation of processed sugar or molasses allowed complete fermentation of up to 25% (w/v sugar concentration at pH 3 (0.41 to 0.46 g ethanol per g sugar or up to 35% (w/v sugar concentration at pH 5 with a conversion to 0.36 to 0.41 g ethanol per g sugar. Conclusion Although watermelon juice would have to be concentrated 2.5- to 3-fold to serve as the sole feedstock for ethanol biofuel production, the results

  15. Origins of amorphous interstellar grains

    International Nuclear Information System (INIS)

    Hasegawa, H.

    1984-01-01

    The existence of amorphous interstellar grains has been suggested from infrared observations. Some carbon stars show the far infrared emission with a lambda -1 wavelength dependence. Far infrared emission supposed to be due to silicate grains often show the lambda -1 wavelength dependence. Mid infrared spectra around 10 μm have broad structure. These may be due to the amorphous silicate grains. The condition that the condensed grains from the cosmic gas are amorphous is discussed. (author)

  16. Recent advances in co-amorphous drug formulations

    DEFF Research Database (Denmark)

    Dengale, Swapnil Jayant; Grohganz, Holger; Rades, Thomas

    2016-01-01

    with other amorphous stabilization techniques. Because of this, several research groups started to investigate the co-amorphous formulation approach, resulting in an increasing amount of scientific publications over the last few years. This study provides an overview of the co-amorphous field and its recent......Co-amorphous drug delivery systems have recently gained considerable interest in the pharmaceutical field because of their potential to improve oral bioavailability of poorly water-soluble drugs through drug dissolution enhancement as a result of the amorphous nature of the material. A co...... findings. In particular, we investigate co-amorphous formulations from the viewpoint of solid dispersions, describe their formation and mechanism of stabilization, study their impact on dissolution and in vivo performance and briefly outline the future potentials....

  17. Photoluminescence properties of powder and pulsed laser-deposited PbS nanoparticles in SiO2

    International Nuclear Information System (INIS)

    Dhlamini, M.S.; Terblans, J.J.; Ntwaeaborwa, O.M.; Ngaruiya, J.M.; Hillie, K.T.; Botha, J.R.; Swart, H.C.

    2008-01-01

    Thin films of lead sulfide (PbS) nanoparticles embedded in an amorphous silica (SiO 2 ) host were grown on Si(1 0 0) substrates at different temperatures by the pulsed laser deposition (PLD) technique. Surface morphology and photoluminescence (PL) properties of samples were analyzed with scanning electron microscopy (SEM) and a 458 nm Ar + laser, respectively. The PL data show a blue-shift from the normal emission at ∼3200 nm in PbS bulk to ∼560-700 nm in nanoparticulate PbS powders and thin films. Furthermore, the PL emission of the films was red-shifted from that of the powders at ∼560 to ∼660 nm. The blue-shifting of the emission wavelengths from 3200 to ∼560-700 nm is attributed to quantum confinement of charge carriers in the restricted volume of nanoparticles, while the red-shift between powders and thin-film PbS nanoparticles is speculated to be due to an increase in the defect concentration. The red-shift increased slightly with an increase in deposition temperature, which suggests that there has been a relative growth in particle sizes during the PLD of the films at higher temperatures. Generally, the PL emission of the powders was more intense than that of the films, although the intensity of some of the films was improved marginally by post-deposition annealing at 400 deg. C. This paper compares the PL properties of powder and pulsed laser-deposited thin films of PbS nanoparticles and the effects of deposition temperatures

  18. Nanostructured amorphous MnO{sub 2} prepared by reaction of KMnO{sub 4} with triethanolamine

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yanjing [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105 (China); Liu Enhui, E-mail: liuenhui99@sina.com.c [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105 (China); Li Limin; Huang Zhengzheng; Shen Haijie; Xiang Xiaoxia [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105 (China)

    2010-09-03

    Amorphous manganese dioxide is prepared by reaction of potassium permanganate with an organic reductant triethanolamine. The effect of heat-treatment temperature is studied on the characteristics of the materials. Power X-ray diffraction (XRD), scanning electron microscope (SEM) and N{sub 2} adsorption and desorption measurements are employed to investigate crystalline structure, surface morphology, the specific surface area and the pore size distribution. It is found that when the annealing temperature reaches up to 400 {sup o}C, the crystalline convert to {alpha}-MnO{sub 2} from amorphous MnO{sub 2}. The electrochemical characteristics of the prepared MnO{sub 2} powder are characterized by means of cyclic voltammetry (CV), experiments in 1.0 mol L{sup -1} Na{sub 2}SO{sub 4} electrolyte. The specific capacitance (SC) value is 251 F g{sup -1} that is obtained from the product annealing at 350 {sup o}C at a CV scan rate of 2 mV s{sup -1}. And charging-discharging measurement reveals the good stability of the prepared material.

  19. Characterisation of Arabica Coffee Pulp - Hay from Kintamani - Bali as Prospective Biogas Feedstocks

    Directory of Open Access Journals (Sweden)

    Hendroko Setyobudi Roy

    2018-01-01

    Full Text Available The huge amount of coffee pulp waste is an environmental problem. Anaerobic fermentation is one of the alternative solutions. However, availability of coffee pulp does not appear for year-round, whereas biogas needs continuous feedstocks for digester stability. This research uses coffee pulp from Arabica Coffee Factory at Mengani, Kintamani, Bali–Indonesia. The coffee pulp was transformed into coffee pulp-hay product by sun drying for preservations to extend the raw materials through the year. Characterization of coffee pulp-hay was conducted after to keep for 15 mo for review the prospect as biogas feedstocks. Several parameters were analyzed such as C/N ratio, volatile solids, carbohydrate, protein, fat, lignocellulose content, macro-micro nutrients, and density. The review results indicated that coffee pulp-hay is prospective raw material for biogas feedstock. This well-proven preservation technology was able to fulfill the continuous supply. Furthermore, some problems were found in the recent preliminary experiment related to the density and fungi growth in the conventional laboratory digester. Further investigation was needed to implement the coffee pulp – hay as biogas feedstocks.

  20. Colors and the evolution of amorphous galaxies

    International Nuclear Information System (INIS)

    Gallagher, J.S. III; Hunter, D.A.

    1987-01-01

    UBVRI and H-alpha photometric observations are presented for 16 amorphous galaxies and a comparison sample of Magellanic irregular (Im) and Sc spiral galaxies. These data are analyzed in terms of star-formation rates and histories in amorphous galaxies. Amorphous galaxies have mean global colors and star-formation rates per unit area that are similar to those in giant Im systems, despite differences in spatial distributions of star-forming centers in these two galactic structural classes. Amorphous galaxies differ from giant Im systems in having somewhat wider scatter in relationships between B - V and U - B colors, and between U - B and L(H-alpha)/L(B). This scatter is interpreted as resulting from rapid variations in star-formation rates during the recent past, which could be a natural consequence of the concentration of star-forming activity into centrally located, supergiant young stellar complexes in many amorphous galaxies. While the unusual spatial distribution and intensity of star formation in some amorphous galaxies is due to interactions with other galaxies, several amorphous galaxies are relatively isolated and thus the processes must be internal. The ultimate evolutionary fate of rapidly evolving amorphous galaxies remains unknown. 77 references

  1. Development and characterization of nifedipine-amino methacrylate copolymer solid dispersion powders with various adsorbents

    Directory of Open Access Journals (Sweden)

    Yotsanan Weerapol

    2017-07-01

    Full Text Available Solid dispersions of nifedipine (NDP, a poorly water-soluble drug, and amino methacrylate copolymer (AMCP with aid of adsorbent, that is, fumed silica, talcum, calcium carbonate, titanium dioxide, and mesoporous silica from rice husks (SRH, were prepared by solvent method. The physicochemical properties of solid dispersions, compared to their physical mixtures, were determined using powder X-ray diffractometry (PXRD and differential scanning calorimetry (DSC. The surface morphology of the prepared solid dispersions was examined by scanning electron microscopy (SEM. The dissolution of NDP from solid dispersions was compared to NDP powders. The effect of adsorbent type on NDP dissolution was also examined. The dissolution of NDP increased with the ratio of NDP:AMCP:adsorbent of 1:4:1 when compared to the other formulations. As indicated from PXRD patterns, DSC thermograms and SEM images, NDP was molecularly dispersed within polymer carrier or in an amorphous form, which confirmed the better dissolution of solid dispersions. Solid dispersions containing SRH provided the highest NDP dissolution, due to a porous nature of SRH, allowing dissolved drug to fill in the pores and consequently dissolve in the medium. The results suggested that solid dispersions containing adsorbents (SRH in particular demonstrated improved dissolution of poorly water-soluble drug when compared to NDP powder.

  2. Synthesis and electrochemical evaluation of an amorphous titanium dioxide derived from a solid state precursor

    Science.gov (United States)

    Joyce, Christopher D.; McIntyre, Toni; Simmons, Sade; LaDuca, Holly; Breitzer, Jonathan G.; Lopez, Carmen M.; Jansen, Andrew N.; Vaughey, J. T.

    Titanium oxides are an important class of lithium-ion battery electrodes owing to their good capacity and stability within the cell environment. Although most Ti(IV) oxides are poor electronic conductors, new methods developed to synthesize nanometer scale primary particles have achieved the higher rate capability needed for modern commercial applications. In this report, the anionic water stable titanium oxalate anion [TiO(C 2O 4) 2] 2- was isolated in high yield as the insoluble DABCO (1,4-diazabicyclo[2.2.2]octane) salt. Powder X-ray diffraction studies show that the titanium dioxide material isolated after annealing in air is initially amorphous, converts to N-doped anatase above 400 °C, then to rutile above 600 °C. Electrochemical studies indicate that the amorphous titanium dioxide phase within a carbon matrix has a stable cycling capacity of ∼350 mAh g -1. On crystallizing at 400 °C to a carbon-coated anatase the capacity drops to 210 mAh g -1, and finally upon carbon burn-off to 50 mAh g -1. Mixtures of the amorphous titanium dioxide and Li 4Ti 5O 12 showed a similar electrochemical profile and capacity to Li 4Ti 5O 12 but with the addition of a sloping region to the end of the discharge curve that could be advantageous for determining state-of-charge in systems using Li 4Ti 5O 12.

  3. Nanostructured Polypyrrole Powder: A Structural and Morphological Characterization

    Directory of Open Access Journals (Sweden)

    Edgar A. Sanches

    2015-01-01

    Full Text Available Polypyrrole (PPY powder was chemically synthesized using ferric chloride (FeCl3 and characterized by X-ray diffraction (XRD, Le Bail Method, Fourier Transform Infrared Spectrometry (FTIR, and Scanning Electron Microscopy (SEM. XRD pattern showed a broad scattering of a semicrystalline structure composed of main broad peaks centered at 2θ = 11.4°, 22.1°, and 43.3°. Crystallinity percentage was estimated by the ratio between the sums of the peak areas to the area of amorphous broad halo due to the amorphous phase and showed that PPY has around 20 (1%. FTIR analysis allowed assigning characteristic absorption bands in the structure of PPY. SEM showed micrometric particles of varying sizes with morphologies similar to cauliflower. Crystal data (monoclinic, space group P 21/c, a=7.1499 (2 Å, b=13.9470 (2 Å, c=17.3316 (2 Å, α=90 Å, β=61.5640 (2 Å and γ=90 Å were obtained using the FullProf package program under the conditions of the method proposed by Le Bail. Molecular relaxation was performed using the density functional theory (DFT and suggests that tetramer polymer chains are arranged along the “c” direction. Average crystallite size was found in the range of 20 (1 Å. A value of 9.33 × 10−9 S/cm was found for PPY conductivity.

  4. Assessing hydrological impacts of tree-based bioenergy feedstock

    CSIR Research Space (South Africa)

    Gush, Mark B

    2010-01-01

    Full Text Available This chapter provides a methodology for assessing the hydrological impacts of tree-based bioenergy feedstock. Based on experience gained in South Africa, it discusses the tasks required to reach an understanding of the likely water resource impacts...

  5. Greenhouse gas mitigation for U.S. plastics production: energy first, feedstocks later

    Science.gov (United States)

    Posen, I. Daniel; Jaramillo, Paulina; Landis, Amy E.; Griffin, W. Michael

    2017-03-01

    Plastics production is responsible for 1% and 3% of U.S. greenhouse gas (GHG) emissions and primary energy use, respectively. Replacing conventional plastics with bio-based plastics (made from renewable feedstocks) is frequently proposed as a way to mitigate these impacts. Comparatively little research has considered the potential for green energy to reduce emissions in this industry. This paper compares two strategies for reducing greenhouse gas emissions from U.S. plastics production: using renewable energy or switching to renewable feedstocks. Renewable energy pathways assume all process energy comes from wind power and renewable natural gas derived from landfill gas. Renewable feedstock pathways assume that all commodity thermoplastics will be replaced with polylactic acid (PLA) and bioethylene-based plastics, made using either corn or switchgrass, and powered using either conventional or renewable energy. Corn-based biopolymers produced with conventional energy are the dominant near-term biopolymer option, and can reduce industry-wide GHG emissions by 25%, or 16 million tonnes CO2e/year (mean value). In contrast, switching to renewable energy cuts GHG emissions by 50%-75% (a mean industry-wide reduction of 38 million tonnes CO2e/year). Both strategies increase industry costs—by up to 85/tonne plastic (mean result) for renewable energy, and up to 3000 tonne-1 plastic for renewable feedstocks. Overall, switching to renewable energy achieves greater emission reductions, with less uncertainty and lower costs than switching to corn-based biopolymers. In the long run, producing bio-based plastics from advanced feedstocks (e.g. switchgrass) and/or with renewable energy can further reduce emissions, to approximately 0 CO2e/year (mean value).

  6. Potential bioethanol feedstock availability around nine locations in the Republic of Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Deverell, R.; McDonnell, K.; Devlin, G. [Department of Biosystems Engineering, Agriculture and Food Science Building, University College Dublin, Belfield (Ireland)

    2009-07-01

    The Republic of Ireland, like many other countries is trying to diversify energy sources to counteract environmental, political and social concerns. Bioethanol from domestically grown agricultural crops is an indigenously produced alternative fuel that can potentially go towards meeting the goal of diversified energy supply. The Republic of Ireland's distribution of existing soils and agricultural land-uses limit arable crop land to around 10% of total agricultural area. Demand for land to produce arable crops is expected to decrease, which could open the opportunity for bioethanol production. Bioethanol production plants are required to be of a sufficient scale in order to compete economically with other fuel sources, it is important therefore to determine if enough land exists around potential ethanol plant locations to meet the potential demands for feedstock. This study determines, through the use of a developed GIS based model, the potential quantities of feedstock that is available in the hinterlands of nine locations in the Republic of Ireland. The results indicate that three locations can meet all its feedstock demands using indigenously grown sugarbeet, while only one location can meet its demands using a combination of indigenous wheat and straw as the two locally sourced feedstocks. (author)

  7. Potential Bioethanol Feedstock Availability Around Nine Locations in the Republic of Ireland

    Directory of Open Access Journals (Sweden)

    Rory Deverell

    2009-03-01

    Full Text Available The Republic of Ireland, like many other countries is trying to diversify energy sources to counteract environmental, political and social concerns. Bioethanol from domestically grown agricultural crops is an indigenously produced alternative fuel that can potentially go towards meeting the goal of diversified energy supply. The Republic of Ireland’s distribution of existing soils and agricultural land-uses limit arable crop land to around 10% of total agricultural area. Demand for land to produce arable crops is expected to decrease, which could open the opportunity for bioethanol production. Bioethanol production plants are required to be of a sufficient scale in order to compete economically with other fuel sources, it is important therefore to determine if enough land exists around potential ethanol plant locations to meet the potential demands for feedstock. This study determines, through the use of a developed GIS based model, the potential quantities of feedstock that is available in the hinterlands of nine locations in the Republic of Ireland. The results indicate that three locations can meet all its feedstock demands using indigenously grown sugarbeet, while only one location can meet its demands using a combination of indigenous wheat and straw as the two locally sourced feedstocks.

  8. Process for Generation of Hydrogen Gas from Various Feedstocks Using Thermophilic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Ooteghem Van, Suellen

    2005-09-13

    A method for producing hydrogen gas is provided comprising selecting a bacteria from the Order Thermotogales, subjecting the bacteria to a feedstock and to a suitable growth environment having an oxygen concentration below the oxygen concentration of water in equilibrium with air; and maintaining the environment at a predetermined pH and at a temperature of at least approximately 45 degrees C. for a time sufficient to allow the bacteria to metabolize the feedstock.

  9. Transgenic perennial biofuel feedstocks and strategies for bioconfinement

    Science.gov (United States)

    The use of transgenic tools for the improvement of plant feedstocks will be required to realize the full economic and environmental benefits of cellulosic and other biofuels, particularly from perennial plants. Traits that are targets for improvement of biofuels crops include he...

  10. Synthesis of carbon nitride powder by selective etching of TiC0.3N0.7 in chlorine-containing atmosphere at moderate temperature

    International Nuclear Information System (INIS)

    Sui Jian; Lu Jinjun

    2010-01-01

    We reported the synthesis of carbon nitride powder by extracting titanium from single inorganic precursor TiC 0.3 N 0.7 in chlorine-containing atmosphere at ambient pressure and temperature not exceeding 500 deg. C. The TiC 0.3 N 0.7 crystalline structure acted as a template, supplying active carbon and nitrogen atoms for carbon nitride when it was destroyed in chlorination. X-ray diffraction data showed that the obtained carbon nitride powders were amorphous, which was in good agreement with transmission electron microscope analysis. The composition and structure of carbon nitride powders were analyzed by employing Fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. Results indicated that disorder structure was most likely for the carbon nitride powders and the N content depended greatly on the chlorination temperature. Thermal analysis in flowing N 2 indicated that the mass loss started from 300 deg. C and the complete decomposition occurred at around 650 deg. C, confirming the low thermal stability of the carbon nitride material.

  11. Optimization of growth parameters of hydrogenated amorphous silicon-sulphur alloys

    International Nuclear Information System (INIS)

    Al-Dallal, S.; Aljishi, S.; Arekat, S.; Al-alawi, S.M.; Hammam, H.

    1995-01-01

    Hydrogenated amorphous silicon sulphur thin films were grown by capacitively coupled radio frequency glow discharge decomposition of SiH/sub 4/ + He) and H/sub 2/S + He) gas mixtures. In this work we report on a study undertaken to instigative the effect of deposition conditions on the optoelectronic properties of a-Si,S:H films. Three series of deposition conditions on the optoelectronic properties of a-Si,S:H films. Three series of films were prepared using a constant flow rate of the gaseous mixture while varying one of the other deposition parameters: substrate temperature, RF powder and process pressure. The films are characterized via IR measurements, optical transmission, photothermal deflection spectroscopy, photoluminescence, the constant photocurrent methods and conductivity measurements. Results indicate that a relatively high power level and a high substrate temperature are necessary to obtain the best films. (author) 8 figs

  12. New Strategies for Powder Compaction in Powder-based Rapid Prototyping Techniques

    OpenAIRE

    Budding, A.; Vaneker, T.H.J.

    2013-01-01

    In powder-based rapid prototyping techniques, powder compaction is used to create thin layers of fine powder that are locally bonded. By stacking these layers of locally bonded material, an object is made. The compaction of thin layers of powder mater ials is of interest for a wide range of applications, but this study solely focuses on the application for powder -based three-dimensional printing (e.g. SLS, 3DP). This research is primarily interested in powder compaction for creating membrane...

  13. Development of High Yield Feedstocks and Biomass Conversion Technology for Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Andrew G. [Univ. of Hawaii, Honolulu, HI (United States); Crow, Susan [Univ. of Hawaii, Honolulu, HI (United States); DeBeryshe, Barbara [Univ. of Hawaii, Honolulu, HI (United States); Ha, Richard [Hamakua Springs County Farms, Hilo, HI (United States); Jakeway, Lee [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Khanal, Samir [Univ. of Hawaii, Honolulu, HI (United States); Nakahata, Mae [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Ogoshi, Richard [Univ. of Hawaii, Honolulu, HI (United States); Shimizu, Erik [Univ. of Hawaii, Honolulu, HI (United States); Stern, Ivette [Univ. of Hawaii, Honolulu, HI (United States); Turano, Brian [Univ. of Hawaii, Honolulu, HI (United States); Turn, Scott [Univ. of Hawaii, Honolulu, HI (United States); Yanagida, John [Univ. of Hawaii, Honolulu, HI (United States)

    2015-04-09

    This project had two main goals. The first goal was to evaluate several high yielding tropical perennial grasses as feedstock for biofuel production, and to characterize the feedstock for compatible biofuel production systems. The second goal was to assess the integration of renewable energy systems for Hawaii. The project focused on high-yield grasses (napiergrass, energycane, sweet sorghum, and sugarcane). Field plots were established to evaluate the effects of elevation (30, 300 and 900 meters above sea level) and irrigation (50%, 75% and 100% of sugarcane plantation practice) on energy crop yields and input. The test plots were extensive monitored including: hydrologic studies to measure crop water use and losses through seepage and evapotranspiration; changes in soil carbon stock; greenhouse gas flux (CO2, CH4, and N2O) from the soil surface; and root morphology, biomass, and turnover. Results showed significant effects of environment on crop yields. In general, crop yields decrease as the elevation increased, being more pronounced for sweet sorghum and energycane than napiergrass. Also energy crop yields were higher with increased irrigation levels, being most pronounced with energycane and less so with sweet sorghum. Daylight length greatly affected sweet sorghum growth and yields. One of the energy crops (napiergrass) was harvested at different ages (2, 4, 6, and 8 months) to assess the changes in feedstock characteristics with age and potential to generate co-products. Although there was greater potential for co-products from younger feedstock, the increased production was not sufficient to offset the additional cost of harvesting multiple times per year. The feedstocks were also characterized to assess their compatibility with biochemical and thermochemical conversion processes. The project objectives are being continued through additional support from the Office of Naval Research, and the Biomass Research and Development

  14. Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production

    Directory of Open Access Journals (Sweden)

    Mendu Venugopal

    2011-10-01

    Full Text Available Abstract Background Lignin is a highly abundant biopolymer synthesized by plants as a complex component of plant secondary cell walls. Efforts to utilize lignin-based bioproducts are needed. Results Herein we identify and characterize the composition and pyrolytic deconstruction characteristics of high-lignin feedstocks. Feedstocks displaying the highest levels of lignin were identified as drupe endocarp biomass arising as agricultural waste from horticultural crops. By performing pyrolysis coupled to gas chromatography-mass spectrometry, we characterized lignin-derived deconstruction products from endocarp biomass and compared these with switchgrass. By comparing individual pyrolytic products, we document higher amounts of acetic acid, 1-hydroxy-2-propanone, acetone and furfural in switchgrass compared to endocarp tissue, which is consistent with high holocellulose relative to lignin. By contrast, greater yields of lignin-based pyrolytic products such as phenol, 2-methoxyphenol, 2-methylphenol, 2-methoxy-4-methylphenol and 4-ethyl-2-methoxyphenol arising from drupe endocarp tissue are documented. Conclusions Differences in product yield, thermal decomposition rates and molecular species distribution among the feedstocks illustrate the potential of high-lignin endocarp feedstocks to generate valuable chemicals by thermochemical deconstruction.

  15. Synthesis of amorphous zirconium oxide with luminescent characteristics; Sintesis de oxido de circonio amorfo con caracteristicas luminiscentes

    Energy Technology Data Exchange (ETDEWEB)

    Barrera S, M; Chavez G, M; Soto E, A M; Velasquez O, C; Garcia S, M A; Olvera T, L; Rivera M, T [UAM-I, 09340 Mexico D.F. (Mexico)

    2004-07-01

    It was prepared zirconium oxide, ZrO{sub 2}, by means of hydrolysis-condensation reactions (sol-gel method), using zirconium propoxide, Zr(C{sub 3}H{sub 7}O){sub 4}, as precursor and nitric acid, HNO{sub 3}, as catalyst of the hydrolysis reaction. In this synthesis it was used a molar ratio water-alkoxide, r=n{sub H2O}/n{sub Zr}(C{sub 3}H{sub 7}0){sub 4}, high, similar to 200, so that the hydrolysis happens quickly and the nucleation and growth are completed in very little time. The solid was characterized with Ftir spectrophotometry, Differential thermal analysis (Dta), Thermal gravimetric analysis (T G), X-ray diffraction of powders, Scanning electron microscopy (Sem) and X-ray Dispersion energy (EDX). The ZrO{sub 2} obtained by this way is amorphous even to 300 C and it consists of big aggregates. The amorphous ZrO{sub 2}, presents thermoluminescent behavior, after it was irradiated with UV radiation and beta particles of {sup 90}Sr/{sup 90}Y and it was thermally stimulated. (Author)

  16. Corrosion-resistant powder-metallurgy stainless steel powders and compacts therefrom

    International Nuclear Information System (INIS)

    Klar, E.; Ro, D.H.; Whitman, C.I.

    1980-01-01

    Disclosed is a process for improving the corrosion resistance of a stainless steel powder or compact thereof wherein the powder is produced by atomizing a melt of metals in an oxidizing environment whereby the resulting stainless steel powder is surface-enriched in silicon oxides. The process comprises adding an effective proportion of modifier metal to the melt prior to the atomization, the modifier metal selected from the group consisting of tin, aluminum, lead, zinc, magnesium, rare earth metals and like metals capable of enrichment about the surface of the resulting atomized stainless steel powder and effective under reductive sintering conditions in the depletion of the silicon oxides about the surface; and sintering the resulting atomized powder or a compact thereof under reducing conditions, the sintered powder or compact thereof being depleted in the silicon oxides and the corrosion resistance of the powder or compact thereof being improved thereby

  17. Structure, thermodynamics, and crystallization of amorphous hafnia

    International Nuclear Information System (INIS)

    Luo, Xuhui; Demkov, Alexander A.

    2015-01-01

    We investigate theoretically amorphous hafnia using the first principles melt and quench method. We identify two types of amorphous structures of hafnia. Type I and type II are related to tetragonal and monoclinic hafnia, respectively. We find type II structure to show stronger disorder than type I. Using the phonon density of states, we calculate the specific heat capacity for type II amorphous hafnia. Using the nudged elastic band method, we show that the averaged transition barrier between the type II amorphous hafnia and monoclinic phase is approximately 0.09 eV/HfO 2 . The crystallization temperature is estimated to be 421 K. The calculations suggest an explanation for the low thermal stability of amorphous hafnia

  18. Amorphous-crystalline transition in thermoelectric NbO2

    International Nuclear Information System (INIS)

    Music, Denis; Chen, Yen-Ting; Bliem, Pascal; Geyer, Richard W

    2015-01-01

    Density functional theory was employed to design enhanced amorphous NbO 2 thermoelectrics. The covalent-ionic nature of Nb–O bonding is identical in amorphous NbO 2 and its crystalline counterpart. However, the Anderson localisation occurs in amorphous NbO 2 , which may affect the transport properties. We calculate a multifold increase in the absolute Seebeck coefficient for the amorphous state. These predictions were critically appraised by measuring the Seebeck coefficient of sputtered amorphous and crystalline NbO 2 thin films with the identical short-range order. The first-order phase transition occurs at approximately 550 °C, but amorphous NbO 2 possesses enhanced transport properties at all temperatures. Amorphous NbO 2 , reaching  −173 μV K −1 , exhibits up to a 29% larger absolute Seebeck coefficient value, thereby validating the predictions. (paper)

  19. Modelling structure and properties of amorphous silicon boron nitride ceramics

    Directory of Open Access Journals (Sweden)

    Johann Christian Schön

    2011-06-01

    Full Text Available Silicon boron nitride is the parent compound of a new class of high-temperature stable amorphous ceramics constituted of silicon, boron, nitrogen, and carbon, featuring a set of properties that is without precedent, and represents a prototypical random network based on chemical bonds of predominantly covalent character. In contrast to many other amorphous materials of technological interest, a-Si3B3N7 is not produced via glass formation, i.e. by quenching from a melt, the reason being that the binary components, BN and Si3N4, melt incongruently under standard conditions. Neither has it been possible to employ sintering of μm-size powders consisting of binary nitrides BN and Si3N4. Instead, one employs the so-called sol-gel route starting from single component precursors such as TADB ((SiCl3NH(BCl2. In order to determine the atomic structure of this material, it has proven necessary to simulate the actual synthesis route.Many of the exciting properties of these ceramics are closely connected to the details of their amorphous structure. To clarify this structure, it is necessary to employ not only experimental probes on many length scales (X-ray, neutron- and electron scattering; complex NMR experiments; IR- and Raman scattering, but also theoretical approaches. These address the actual synthesis route to a-Si3B3N7, the structural properties, the elastic and vibrational properties, aging and coarsening behaviour, thermal conductivity and the metastable phase diagram both for a-Si3B3N7 and possible silicon boron nitride phases with compositions different from Si3N4: BN = 1 : 3. Here, we present a short comprehensive overview over the insights gained using molecular dynamics and Monte Carlo simulations to explore the energy landscape of a-Si3B3N7, model the actual synthesis route and compute static and transport properties of a-Si3BN7.

  20. Study of the mechanical stability and bioactivity of Bioglass(®) based glass-ceramic scaffolds produced via powder metallurgy-inspired technology.

    Science.gov (United States)

    Boccardi, Elena; Melli, Virginia; Catignoli, Gabriele; Altomare, Lina; Jahromi, Maryam Tavafoghi; Cerruti, Marta; Lefebvre, Louis-Philippe; De Nardo, Luigi

    2016-02-02

    Large bone defects are challenging to heal, and often require an osteoconductive and stable support to help the repair of damaged tissue. Bioglass-based scaffolds are particularly promising for this purpose due to their ability to stimulate bone regeneration. However, processing technologies adopted so far do not allow for the synthesis of scaffolds with suitable mechanical properties. Also, conventional sintering processes result in glass de-vitrification, which generates concerns about bioactivity. In this work, we studied the bioactivity and the mechanical properties of Bioglass(®) based scaffolds, produced via a powder technology inspired process. The scaffolds showed compressive strengths in the range of 5-40 MPa, i.e. in the upper range of values reported so far for these materials, had tunable porosity, in the range between 55 and 77%, and pore sizes that are optimal for bone tissue regeneration (100-500 μm). We immersed the scaffolds in simulated body fluid (SBF) for 28 d and analyzed the evolution of the scaffold mechanical properties and microstructure. Even if, after sintering, partial de-vitrification occurred, immersion in SBF caused ion release and the formation of a Ca-P coating within 2 d, which reached a thickness of 10-15 μm after 28 d. This coating contained both hydroxyapatite and an amorphous background, indicating microstructural amorphization of the base material. Scaffolds retained a good compressive strength and structural integrity also after 28 d of immersion (6 MPa compressive strength). The decrease in mechanical properties was mainly related to the increase in porosity, caused by its dissolution, rather than to the amorphization process and the formation of a Ca-P coating. These results suggest that Bioglass(®) based scaffolds produced via powder metallurgy-inspired technique are excellent candidates for bone regeneration applications.

  1. Light extinction in metallic powder beds: Correlation with powder structure

    International Nuclear Information System (INIS)

    Rombouts, M.; Froyen, L.; Gusarov, A.V.; Bentefour, E.H.; Glorieux, C.

    2005-01-01

    A theoretical correlation between the effective extinction coefficient, the specific surface area, and the chord length distribution of powder beds is verified experimentally. The investigated powder beds consist of metallic particles of several tens of microns. The effective extinction coefficients are measured by a light-transmission technique at a wavelength of 540 nm. The powder structure is characterized by a quantitative image analysis of powder bed cross sections resulting in two-point correlation functions and chord length distributions. The specific surface area of the powders is estimated by laser-diffraction particle-size analysis and by the two-point correlation function. The theoretically predicted tendency of increasing extinction coefficient with specific surface area per unit void volume is confirmed by the experiments. However, a significant quantitative discrepancy is found for several powders. No clear correlation of the extinction coefficient with the powder material and particle size, and morphology is revealed, which is in line with the assumption of geometrical optics

  2. Reclaimable Thermally Reversible Polymers for AM Feedstock, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — CRG proposes to continue efforts from the 2016 NASA SBIR Phase I topic H5.04 Reclaimable Thermally Reversible Polymers for AM Feedstock. In Phase II, CRG will refine...

  3. Lignin-containing Feedstock Hydrogenolysis for Biofuel Component Production

    Directory of Open Access Journals (Sweden)

    Elena Shimanskaya

    2018-01-01

    How to Cite: Shimanskaya, E.I., Stepacheva, A.A., Sulman, E.M., Rebrov, E.V., Matveeva, V.G. (2018. Lignin-containing Feedstock Hydrogenolysis for Biofuel Component Production. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 74-81 (doi:10.9767/bcrec.13.1.969.74-81

  4. Developing a sustainable bioprocessing strategy based on a generic feedstock.

    Science.gov (United States)

    Webb, C; Koutinas, Wang R; Wang, R

    2004-01-01

    Based on current average yields of wheat per hectare and the saccharide content of wheat grain, it is feasible to produce wheat-based alternatives to many petrochemicals. However, the requirements in terms of wheat utilization would be equivalent to 82% of current production if intermediates and primary building blocks such as ethylene, propylene, and butadiene were to be produced in addition to conventional bioproducts. If only intermediates and bioproducts were produced this requirement would fall to just 11%, while bioproducts alone would require only 7%. These requirements would be easily met if the global wheat yield per hectare of cultivated land was increased from the current average of 2.7 to 5.5 tonnes ha(-1) (well below the current maximum). Preliminary economic evaluation taking into account only raw material costs demonstrated that the use of wheat as a generic feedstock could be advantageous in the case of bioproducts and specific intermediate petrochemicals. Gluten plays a significant role considering the revenue occurring when it is sold as a by-product. A process leading to the production of a generic fermentation feedstock from wheat has been devised and evaluated in terms of efficiency and economics. This feedstock aims at providing a replacement for conventional fermentation media and petrochemical feedstocks. The process can be divided into four major stages--wheat milling; fermentation of whole wheat flour by A. awamori leading to the production of enzymes and fungal cells; glucose enhancement via enzymatic hydrolysis of flour suspensions; and nitrogen/micronutrient enhancement via fungal cell autolysis. Preliminary costings show that the operating cost of the process depends on plant capacity, cereal market price, presence and market value of added-value by-products, labour costs, and mode of processing (batch or continuous).

  5. Potential feedstock sources for ethanol production in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, Mohammad [Univ. of Florida, Gainesville, FL (United States); Hodges, Alan [Univ. of Florida, Gainesville, FL (United States)

    2015-10-01

    This study presents information on the potential feedstock sources that may be used for ethanol production in Florida. Several potential feedstocks for fuel ethanol production in Florida are discussed, such as, sugarcane, corn, citrus byproducts and sweet sorghum. Other probable impacts need to be analyzed for sugarcane to ethanol production as alternative uses of sugarcane may affect the quantity of sugar production in Florida. While citrus molasses is converted to ethanol as an established process, the cost of ethanol is higher, and the total amount of citrus molasses per year is insignificant. Sorghum cultivars have the potential for ethanol production. However, the agricultural practices for growing sweet sorghum for ethanol have not been established, and the conversion process must be tested and developed at a more expanded level. So far, only corn shipped from other states to Florida has been considered for ethanol production on a commercial scale. The economic feasibility of each of these crops requires further data and technical analysis.

  6. An overview of palm, jatropha and algae as a potential biodiesel feedstock in Malaysia

    International Nuclear Information System (INIS)

    Yunus, S; Abdullah, N R; Rashid, A A; Mamat, R

    2013-01-01

    The high demand to replace petroleum fuel makes renewable and sustainable sources such as Palm oil, Jatropha oil and Algae a main focus feedstock for biodiesel production in Malaysia. There are many studies conducted on Palm oil and Jatropha oil, however, the use of Algae as an alternative fuel is still in its infancy. Malaysia already implemented B5 based Palm oil as a feedstock and this biodiesel has been proven safe and can be used without any engine modification. The use of biodiesel produced from these feedstock will also developed domestic economic and provide job opportunities especially in the rural area. In addition, biodiesel has many advantages especially when dealing with the emissions produce as compared to petroleum fuel such as; it can reduce unwanted gases and particulate matter harmful to the atmosphere and mankind. Thus, this paper gathered and examines the most prominent engine emission produced from Palm oil and Jatropha feedstock and also to observe the potential of Algae to be one of the sources of alternative fuel in Malaysia

  7. Origin and chemical composition of the amorphous material from the intergrain pores of self-assembled cubic ZnS:Mn nanocrystals

    Science.gov (United States)

    Stefan, Mariana; Vlaicu, Ioana Dorina; Nistor, Leona Cristina; Ghica, Daniela; Nistor, Sergiu Vasile

    2017-12-01

    We have shown in previous investigations that the low temperature collective magnetism observed in mesoporous cubic ZnS:Mn nanocrystalline powders prepared by colloidal synthesis, with nominal doping concentrations above 0.2 at.%, is due to the formation of Mn2+ clusters with distributed antiferromagnetic coupling localized in an amorphous phase found between the cubic ZnS:Mn nanocrystals. Here we investigate the composition, origin and thermal annealing behavior of this amorphous phase in such a mesoporous ZnS:Mn sample doped with 5 at.% Mn nominal concentration. Correlated analytical transmission electron microscopy, multifrequency electron paramagnetic resonance and Fourier transform infrared spectroscopy data show that the amorphous nanomaterial consists of unreacted precursor hydrated zinc and manganese acetates trapped inside the pores and on the surface of the cubic ZnS nanocrystals. The decomposition of the acetates under isochronal annealing up to 270 °C, where the mesoporous structure is still preserved, lead to changes in the nature and strength of the magnetic interactions between the aggregated Mn2+ ions. These results strongly suggest the possibility to modulate the magnetic properties of such transition metal ions doped II-VI mesoporous structures by varying the synthesis conditions and/or by post-synthesis thermochemical treatments.

  8. Demand and supply of hydrogen as chemical feedstock in USA

    Science.gov (United States)

    Huang, C. J.; Tang, K.; Kelley, J. H.; Berger, B. J.

    1979-01-01

    Projections are made for the demand and supply of hydrogen as chemical feedstock in USA. Industrial sectors considered are petroleum refining, ammonia synthesis, methanol production, isocyanate manufacture, edible oil processing, coal liquefaction, fuel cell electricity generation, and direct iron reduction. Presently, almost all the hydrogen required is produced by reforming of natural gas or petroleum fractions. Specific needs and emphases are recommended for future research and development to produce hydrogen from other sources to meet the requirements of these industrial sectors. The data and the recommendations summarized in this paper are based on the Workshop 'Supply and Demand of Hydrogen as Chemical Feedstock' held at the University of Houston on December 12-14, 1977.

  9. Syngas. The flexible solution in a volatile feed-stock market

    Energy Technology Data Exchange (ETDEWEB)

    Wurzel, T. [Air Liquide Global E und C Solutions c/o Lurgi GmbH, Frankfurt a.M. (Germany)

    2013-11-01

    The paper presents the versatility of syngas allowing the extended application of new feedstock sources such as shale gas or coal to deliver fuels and chemicals traditionally derived from crude oil. In order to provide a holistic view on this topic of current interest, the syngas market, the pre-dominant production technologies and main economic consideration for selected applications are presented and analyzed. It can be concluded that a broad portfolio of well-mastered and referenced syngas production technologies which are continuously improved to meet actual market requirements (e.g. ability to valorize biomass) will remain key to enable economic solutions in a world characterized by growing dynamics with regards to the supply of (carbonaceous) feedstock. (orig.)

  10. Model for amorphous aggregation processes

    Science.gov (United States)

    Stranks, Samuel D.; Ecroyd, Heath; van Sluyter, Steven; Waters, Elizabeth J.; Carver, John A.; von Smekal, Lorenz

    2009-11-01

    The amorphous aggregation of proteins is associated with many phenomena, ranging from the formation of protein wine haze to the development of cataract in the eye lens and the precipitation of recombinant proteins during their expression and purification. While much literature exists describing models for linear protein aggregation, such as amyloid fibril formation, there are few reports of models which address amorphous aggregation. Here, we propose a model to describe the amorphous aggregation of proteins which is also more widely applicable to other situations where a similar process occurs, such as in the formation of colloids and nanoclusters. As first applications of the model, we have tested it against experimental turbidimetry data of three proteins relevant to the wine industry and biochemistry, namely, thaumatin, a thaumatinlike protein, and α -lactalbumin. The model is very robust and describes amorphous experimental data to a high degree of accuracy. Details about the aggregation process, such as shape parameters of the aggregates and rate constants, can also be extracted.

  11. Process for improving the energy density of feedstocks using formate salts

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Marshall Clayton; van Heiningen, Adriaan R.P.; Case, Paige A.

    2015-09-01

    Methods of forming liquid hydrocarbons through thermal deoxygenation of cellulosic compounds are disclosed. Aspects cover methods including the steps of mixing a levulinic acid salt-containing feedstock with a formic acid salt, exposing the mixture to a high temperature condition to form hydrocarbon vapor, and condensing the hydrocarbon vapor to form liquid hydrocarbons, where both the formic acid salt and the levulinic acid salt-containing feedstock decompose at the high temperature condition and wherein one or more of the mixing, exposing, and condensing steps is carried out a pressure between about vacuum and about 10 bar.

  12. Superplasticity of amorphous alloy

    International Nuclear Information System (INIS)

    Levin, Yu.B.; Likhachev, V.L.; Sen'kov, O.N.

    1988-01-01

    Results of mechanical tests of Co 57 Ni 10 Fe 5 Si 11 B 17 amorphous alloy are presented and the effect of crystallization, occurring during deformation process, on plastic low characteristics is investiagted. Superplasticity of amorphous tape is investigated. It is shown, that this effect occurs only when during deformation the crystallization takes place. Process model, based on the usage disclination concepts about glass nature, is suggested

  13. Progress in the production of bioethanol on starch-based feedstocks

    Directory of Open Access Journals (Sweden)

    Dragiša Savić

    2009-10-01

    Full Text Available Bioethanol produced from renewable biomass, such as sugar, starch, or lignocellulosic materials, is one of the alternative energy resources, which is both renewable and environmentally friendly. Although, the priority in global future ethanol production is put on lignocellulosic processing, which is considered as one of the most promising second-generation biofuel technologies, the utilizetion of lignocellulosic material for fuel ethanol is still under improvement. Sugar- based (molasses, sugar cane, sugar beet and starch-based (corn, wheat, triticale, potato, rice, etc. feedstock are still currently predominant at the industrial level and they are, so far, economically favorable compared to lingocelluloses. Currently, approx. 80 % of total world ethanol production is obtained from the fermentation of simple sugars by yeast. In Serbia, one of the most suitable and available agricultural raw material for the industrial ethanol production are cereals such as corn, wheat and triticale. In addition, surpluses of this feedstock are being produced in our country constantly. In this paper, a brief review of the state of the art in bioethanol production and biomass availability is given, pointing out the progress possibilities on starch-based production. The progress possibilities are discussed in the domain of feedstock choice and pretreatment, optimization of fermentation, process integration and utilization of the process byproducts.

  14. Synthesis of Antimony Doped Amorphous Carbon Films

    Science.gov (United States)

    Okuyama, H.; Takashima, M.; Akasaka, H.; Ohtake, N.

    2013-06-01

    We report the effects of antimony (Sb) doping on the electrical and optical properties of amorphous carbon (a-C:H) films grown on silicon and copper substrates by magnetron sputtering deposition. For film deposition, the mixture targets fabricated from carbon and antimony powders was used. The atomic concentration of carbon, hydrogen, and antimony, in the film deposited from the 1.0 mol% Sb containing target were 81, 17, 2 at.%, respectively. These elements were homogeneously distributed in the film. On the structural effect, the average continuous sp2 carbon bonding networks decreased with Sb concentration increasing, and defects in the films were increased with the Sb incorporation because atomic radius of Sb atoms is twice larger size than that of carbon. The optical gap and the electrical resistivity were carried out before and after the Sb doping. The results show that optical gap dropped from 3.15 to 3.04 eV corresponding to non-doping to Sb-doping conditions, respectively. The electrical resistivity reduced from 10.5 to 1.0 MΩm by the Sb doping. These results suggest the doping level was newly formed in the forbidden band.

  15. Synthesis of Antimony Doped Amorphous Carbon Films

    International Nuclear Information System (INIS)

    Okuyama, H; Takashima, M; Akasaka, H; Ohtake, N

    2013-01-01

    We report the effects of antimony (Sb) doping on the electrical and optical properties of amorphous carbon (a-C:H) films grown on silicon and copper substrates by magnetron sputtering deposition. For film deposition, the mixture targets fabricated from carbon and antimony powders was used. The atomic concentration of carbon, hydrogen, and antimony, in the film deposited from the 1.0 mol% Sb containing target were 81, 17, 2 at.%, respectively. These elements were homogeneously distributed in the film. On the structural effect, the average continuous sp 2 carbon bonding networks decreased with Sb concentration increasing, and defects in the films were increased with the Sb incorporation because atomic radius of Sb atoms is twice larger size than that of carbon. The optical gap and the electrical resistivity were carried out before and after the Sb doping. The results show that optical gap dropped from 3.15 to 3.04 eV corresponding to non-doping to Sb-doping conditions, respectively. The electrical resistivity reduced from 10.5 to 1.0 MΩm by the Sb doping. These results suggest the doping level was newly formed in the forbidden band.

  16. Amorphous silicon ionizing particle detectors

    Science.gov (United States)

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  17. Emerging trends in the stabilization of amorphous drugs.

    Science.gov (United States)

    Laitinen, Riikka; Löbmann, Korbinian; Strachan, Clare J; Grohganz, Holger; Rades, Thomas

    2013-08-30

    The number of active pharmaceutical substances having high therapeutic potential but low water solubility is constantly increasing, making it difficult to formulate these compounds as oral dosage forms. The solubility and dissolution rate, and thus potentially the bioavailability, of these poorly water-soluble drugs can be increased by the formation of stabilized amorphous forms. Currently, formulation as solid polymer dispersions is the preferred method to enhance drug dissolution and to stabilize the amorphous form of a drug. The purpose of this review is to highlight emerging alternative methods to amorphous polymer dispersions for stabilizing the amorphous form of drugs. First, an overview of the properties and stabilization mechanisms of amorphous forms is provided. Subsequently, formulation approaches such as the preparation of co-amorphous small-molecule mixtures and the use of mesoporous silicon and silica-based carriers are presented as potential means to increase the stability of amorphous pharmaceuticals. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. New Strategies for Powder Compaction in Powder-based Rapid Prototyping Techniques

    NARCIS (Netherlands)

    Budding, A.; Vaneker, Thomas H.J.

    2013-01-01

    In powder-based rapid prototyping techniques, powder compaction is used to create thin layers of fine powder that are locally bonded. By stacking these layers of locally bonded material, an object is made. The compaction of thin layers of powder mater ials is of interest for a wide range of

  19. Operating method of amorphous thin film semiconductor element

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Koshiro; Ono, Masaharu; Hanabusa, Akira; Osawa, Michio; Arita, Takashi

    1988-05-31

    The existing technologies concerning amorphous thin film semiconductor elements are the technologies concerning the formation of either a thin film transistor or an amorphous Si solar cell on a substrate. In order to drive a thin film transistor for electronic equipment control by the output power of an amorphous Si solar cell, it has been obliged to drive the transistor weth an amorphous solar cell which was formed on a substrate different from that for the transistor. Accordingly, the space for the amorphous solar cell, which was formed on the different substrate, was additionally needed on the substrate for the thin film transistor. In order to solve the above problem, this invention proposes an operating method of an amorphous thin film semiconductor element that after forming an amorphous Si solar cell through lamination on the insulation coating film which covers the thin film transistor formed on the substrate, the thin film transistor is driven by the output power of this solar cell. The invention eliminates the above superfluous space and reduces the size of the amorphous thin film semiconductor element including the electric source. (3 figs)

  20. Semi-mechanistic Model Applied to the Search for Economically Optimal Conditions and Blending of Gasoline Feedstock for Steam-cracking Process

    Directory of Open Access Journals (Sweden)

    Karaba Adam

    2016-01-01

    Full Text Available Steam-cracking is energetically intensive large-scaled process which transforms a wide range of hydrocarbons feedstock to petrochemical products. The dependence of products yields on feedstock composition and reaction conditions has been successfully described by mathematical models which are very useful tools for the optimization of cracker operation. Remaining problem is to formulate objective function for such an optimization. Quantitative criterion based on the process economy is proposed in this paper. Previously developed and verified industrial steam-cracking semi-mechanistic model is utilized as supporting tool for economic evaluation of selected gasoline feedstock. Economic criterion is established as the difference between value of products obtained by cracking of studied feedstock under given conditions and the value of products obtained by cracking of reference feedstock under reference conditions. As an example of method utilization, optimal reaction conditions were searched for each of selected feedstock. Potential benefit of individual cracking and cracking of grouped feedstocks in the contrast to cracking under the middle of optimums is evaluated and also compared to cracking under usual conditions.

  1. Bioethanol - Status report on bioethanol production from wood and other lignocellulosic feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Scott-Kerr, Chris; Johnson, Tony; Johnson, Barbara; Kiviaho, Jukka

    2010-09-15

    Lignocellulosic biomass is seen as an attractive feedstock for future supplies of renewable fuels, reducing the dependence on imported petroleum. However, there are technical and economic impediments to the development of commercial processes that utilise biomass feedstocks for the production of liquid fuels such as ethanol. Significant investment into research, pilot and demonstration plants is on-going to develop commercially viable processes utilising the biochemical and thermochemical conversion technologies for ethanol. This paper reviews the current status of commercial lignocellulosic ethanol production and identifies global production facilities.

  2. Crystallization inhibitors for amorphous oxides

    International Nuclear Information System (INIS)

    Reznitskij, L.A.; Filippova, S.E.

    1993-01-01

    Data for the last 10 years, in which experimental results of studying the temperature stabilization of x-ray amorphous oxides (including R 3 Fe 5 O 12 R-rare earths, ZrO 2 , In 2 O 3 , Sc 2 O 3 ) and their solid solution are presented, are generalized. Processes of amorphous oxide crystallization with the production of simple oxides, solid solutions and chemical compounds with different polyhedral structure, are investigated. Energy and crystallochemical criteria for selecting the doping inhibitor-components stabilizing the amorphous state are ascertained, temperatures and enthalpies of amorpous oxide crystallization are determined, examination of certain provisions of iso,orphous miscibility theory is conducted

  3. Biobutanol as a Potential Sustainable Biofuel - Assessment of Lignocellulosic and Waste-based Feedstocks

    Directory of Open Access Journals (Sweden)

    Johanna Niemisto

    2013-06-01

    Full Text Available This paper introduces the production process of an alternative transportation biofuel, biobutanol. European legislation concerning biofuels and their sustainability criteria are also briefly described. The need to develop methods to ensure more sustainable and efficient biofuel production processes is recommended. In addition, the assessment method to evaluate the sustainability of biofuels is considered and sustainability assessment of selected feedstocks for biobutanol production is performed. The benefits and potential of using lignocellulosic and waste materials as feedstocks in the biobutanol production process are also discussed. Sustainability assessment in this paper includes cultivation, harvest/collection and upstream processing (pretreatment of feedstocks, comparing four main biomass sources: food crops, non-food crops, food industry by-product and wood-based biomass. It can be concluded that the highest sustainable potential in Finland is when biobutanol production is integrated into pulp & paper mills.

  4. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  5. Advanced Systems for Preprocessing and Characterizing Coal-Biomass Mixtures as Next-Generation Fuels and Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Karmis, Michael [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Luttrell, Gerald [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Ripepi, Nino [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Bratton, Robert [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Dohm, Erich [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2014-09-30

    The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderless coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NOx, CO2, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.

  6. Shorea robusta: A sustainable biomass feedstock

    Directory of Open Access Journals (Sweden)

    Vishal Kumar Singh

    2016-09-01

    Full Text Available The biomass feedstock needs to be available in a manner that is sustainable as well as renewable. However, obtaining reliable and cost effective supplies of biomass feedstock produced in a sustainable manner can prove to be difficult. Traditional biomass, mainly in the form of fallen leaves, fuel wood or dried dung, has long been the renewable and sustainable energy source for cooking and heating. Present study accounts for the biomass of fallen leaves of Shorea robusta, also known as sal, sakhua or shala tree, in the campus of BIT Mesra (Ranchi. These leaves are being gathered and burnt rather than being sold commercially. They contain water to varying degrees which affects their energy content. Hence, measurement of moisture content is critical for its biomass assessment. The leaves were collected, weighed, oven dried at 100oC until constant weight, then dry sample was reweighed to calculate the moisture content that has been driven off. By subtraction of moisture content from the initial weight of leaves, biomass was calculated. Using Differential Scanning Calorimeter (DSC the heat content of the leaves was calculated and the elemental analysis of leaf was done by CHNSO elemental analyser. Further, total biomass and carbon content of Sal tree was calculated using allometric equations so as to make a comparison to the biomass stored in dried fallen leaves

  7. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the

  8. Ab initio simulation of amorphous silicon

    International Nuclear Information System (INIS)

    Cooper, N.C.; McKenzie, D.R.; Goringe, C.M.

    1999-01-01

    Full text: A first-principles Car-Parrinello molecular dynamics simulation of amorphous silicon is presented. Density Functional Theory is used to describe the forces between the atoms in a 64 atom supercell which is periodically repeated throughout space in order to generate an infinite network of atoms (a good approximation to a real solid). A quench from the liquid phase is used to achieve a quenched amorphous structure, which is subjected to an annealing cycle to improve its stability. The final, annealed network is in better agreement with experiment than any previous simulation of amorphous silicon. Significantly, the predicted average first-coordination numbers of 3.56 and 3.84 for the quenched and annealed structures from this simulation agree very closely with the experimental values of 3.55 and 3.90 respectively, whereas all previous simulations yielded first coordination numbers greater than 4. This improved agreement in coordination numbers is important because it supports the experimental finding that dangling bonds (which are associated with under-coordinated atoms) are more prevalent than floating bonds (the strained, longer bond of a five coordinate atom) in pure amorphous silicon. Finally, the effect of adding hydrogen to amorphous silicon was investigated by specifically placing hydrogen atoms at the likely defect sites. After a structural relaxation to optimise the positions of these hydrogen atoms, the localised electronic states associated with these defects are absent. Thus hydrogen is responsible for removing these defect states (which are able to trap carriers) from the edge of the band gap of the amorphous silicon. These results confirm the widely held ideas about the effect of hydrogen in producing remarkable improvements in the electronic properties of amorphous silicon

  9. Spin-glass like behaviour in the nanoporous Fe{sub 2}O{sub 3} with amorphous structure

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, M; Majumdar, S; Giri, S [Department of Solid State Physics and Center for Advanced Materials, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Bhaumik, A; Nandi, M [Department of Materials Science and Center for Advanced Materials, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Nakamura, H; Kobayashi, H; Kohara, T [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan)], E-mail: sspsg2@iacs.res.in

    2008-07-23

    The porous Fe{sub 2}O{sub 3} was synthesized chemically. The average size of the particle was {approx}85.0 nm, which was observed by scanning electron microscopy. The signature of porous structure was confirmed by a N{sub 2} adsorption/desorption isotherm and intense x-ray powder diffraction peak at low angle. The x-ray diffraction pattern at high angle indicates the amorphous structure. Moessbauer investigations show that the value of the hyperfine field is {approx}498.0 kOe at 4.2 K which is much smaller than that of the hyperfine field of crystalline {alpha}/{gamma}-Fe{sub 2}O{sub 3} and consistent with the values of amorphous Fe{sub 2}O{sub 3}. The temperature dependence of zero-field cooled magnetization exhibits a peak at 18.0 K (T{sub f}), where T{sub f} follows the Almeida-Thouless relation as T{sub f} {proportional_to} H{sup 2/3}. The ageing phenomenon of the magnetic relaxation below T{sub f} and the memory effect in the field-cooled magnetization indicate the typical features of the classical spin-glass compounds below the spin freezing temperature at T{sub f}.

  10. High Mobility Thin Film Transistors Based on Amorphous Indium Zinc Tin Oxide

    Directory of Open Access Journals (Sweden)

    Imas Noviyana

    2017-06-01

    Full Text Available Top-contact bottom-gate thin film transistors (TFTs with zinc-rich indium zinc tin oxide (IZTO active layer were prepared at room temperature by radio frequency magnetron sputtering. Sintered ceramic target was prepared and used for deposition from oxide powder mixture having the molar ratio of In2O3:ZnO:SnO2 = 2:5:1. Annealing treatment was carried out for as-deposited films at various temperatures to investigate its effect on TFT performances. It was found that annealing treatment at 350 °C for 30 min in air atmosphere yielded the best result, with the high field effect mobility value of 34 cm2/Vs and the minimum subthreshold swing value of 0.12 V/dec. All IZTO thin films were amorphous, even after annealing treatment of up to 350 °C.

  11. Mechanical stimulated reaction of metal/polymer mixed powders; Kinzoku/kobunshi kongo funmatsu no kikaiteki reiki hanno

    Energy Technology Data Exchange (ETDEWEB)

    Tobita, M.; Sakakibara, A.; Takemoto, Y. [Okayama University, Okayama (Japan). Faculty of Engineering; Iwabu, H. [Kurare Co. Ltd., Osaka (Japan)

    1999-12-15

    Mechanical grinding (MG) with mechanically stimulated reaction was performed on metal/polymer mixed powders. The starting materials used in this study were the metals of Mg, Ti and Mg{sub 2}Ni powders, arid polymer of PTFE, PVC and PE powders. The MG process was investigated using XRD, IR, SEM and TEM. According to XRD results, magnesium fluoride (MgF{sub 2}, TiF{sub 2}) and chloride (MgCl{sub 2}) were detected from MG products of the Mg/PTFE, Ti/PTFE and Mg/PVC blending systems, respectively. Explosive reaction was found during MG of both Mg/PTFE and Ti/PTFE. It was also confirmed by XRD results that the production of MgF{sub 2} had already been formed just before the explosive reaction in Mg/PTFE system. It was found from IR analysis that C-C single bond in the polymers, not only both in PTFE and PVC but also in PE, changed to double bond C=C. Hydrogen produced due to decomposition of PE on blending Mg{sub 2}Ni/PE was absorbed into C-Mg{sub 2}Ni-H as amorphous solutes. These mechanically stimulated reaction was powerful method for decomposition of engineering plastics. (author)

  12. Neutron irradiation induced amorphization of silicon carbide

    International Nuclear Information System (INIS)

    Snead, L.L.; Hay, J.C.

    1998-01-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 x 10 25 n/m 2 . Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density (-10.8%), elastic modulus as measured using a nanoindentation technique (-45%), hardness as measured by nanoindentation (-45%), and standard Vickers hardness (-24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C

  13. Thermal conversion of biomass to valuable fuels, chemical feedstocks and chemicals

    Science.gov (United States)

    Peters, William A [Lexington, MA; Howard, Jack B [Winchester, MA; Modestino, Anthony J [Hanson, MA; Vogel, Fredreric [Villigen PSI, CH; Steffin, Carsten R [Herne, DE

    2009-02-24

    A continuous process for the conversion of biomass to form a chemical feedstock is described. The biomass and an exogenous metal oxide, preferably calcium oxide, or metal oxide precursor are continuously fed into a reaction chamber that is operated at a temperature of at least 1400.degree. C. to form reaction products including metal carbide. The metal oxide or metal oxide precursor is capable of forming a hydrolizable metal carbide. The reaction products are quenched to a temperature of 800.degree. C. or less. The resulting metal carbide is separated from the reaction products or, alternatively, when quenched with water, hydolyzed to provide a recoverable hydrocarbon gas feedstock.

  14. Potential land competition between open-pond microalgae production and terrestrial dedicated feedstock supply systems in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Langholtz, Matthew H.; Coleman, Andre M.; Eaton, Laurence M.; Wigmosta, Mark S.; Hellwinckel, Chad M.; Brandt, Craig C.

    2016-08-01

    Biofuels produced from both terrestrial and algal biomass feedstocks can contribute to energy security while providing economic, environmental, and social benefits. To assess the potential for land competition between these two feedstock types in the United States, we evaluate a scenario in which 41.5 x 109 L yr-1 of second-generation biofuels are produced on pastureland, the most likely land base where both feedstock types may be deployed. This total includes 12.0 x 109 L yr-1 of biofuels from open-pond microalgae production and 29.5 x 109 L yr-1 of biofuels from terrestrial dedicated feedstock supply systems. Under these scenarios, open-pond microalgae production is projected to use 1.2 million ha of private pastureland, while terrestrial dedicated feedstock supply systems would use 14.0 million ha of private pastureland. A spatial meta-analysis indicates that potential competition for land under these scenarios would be concentrated in 110 counties, containing 1.0 and 1.7 million hectares of algal and terrestrial dedicated feedstock production, respectively. A land competition index applied to these 110 counties suggests that 38 to 59 counties could experience competition for upwards of 40% of a county’s pastureland. However, this combined 2.7 million ha represents only 2%-5% of total pastureland in the U.S., with the remaining 12.5 million ha of algal or terrestrial dedicated feedstock production on pastureland in non-competing areas.

  15. Effects of the amorphization on hysteresis loops of the amorphous spin-1/2 Ising system

    International Nuclear Information System (INIS)

    Essaoudi, I.; Ainane, A.; Saber, M.; Miguel, J.J. de

    2009-01-01

    We examine the effects of the amorphization on the hysteresis loops of the amorphous spin-1/2 Ising system using the effective field theory within a probability distribution technique that accounts for the self-spin correlation functions. The magnetization, the transverse and longitudinal susceptibilities, and pyromagnetic coefficient are also studied in detail

  16. Impact of Technology and Feedstock Choice on the Environmental Footprint of Biofuels

    Science.gov (United States)

    Schultz, P. B.; Dodder, R. S.

    2012-12-01

    The implementation of the U.S. Renewable Fuel Standard program (RFS2) has led to a dramatic shift in the use of biofuel in the U.S. transportation system over the last decade. To satisfy this demand, the production of U.S. corn-based ethanol has grown rapidly, with an average increase of over 25% annually from 2002 to 2010. RFS2 requires a similarly steep increase in the production of advanced biofuels, such as cellulosic ethanol. Unlike corn-based ethanol, which is derived from the biochemical fermentation of sugars in wet and dry mills, it is likely that a more diverse suite of technologies will need to be developed to be able to meet the advanced biofuel RFS2 targets, including biochemical as well as thermochemical (e.g., gasification and pyrolysis) approaches. Rather than relying on energy crops, a potential advantage of thermochemical approaches is the ability to use a wider variety of feedstocks, including municipal solid waste and wood waste. In this work, we conduct a system-level analysis to understand how technology and feedstock choice can impact the environmental footprint of biofuels in the U.S. We use a least-cost optimization model of the U.S. energy system to account for interactions between various components of the energy system: industrial, transportation, electric, and residential/commercial sectors. The model was used to understand the scale of feedstock demand required from dedicated energy crops, as well as other biomass feedstocks, in order to meet the RFS2 mandate. On a regional basis, we compare the overall water-consumption and land requirements for biofuels production given a suite of liquid-fuel production technologies. By considering a range of scenarios, we examine how the use of various feedstocks (e.g., agricultural residues, wood wastes, mill residues and municipal wastes) can be used to off-set environmental impacts as compared to relying solely on energy crops.

  17. Low-temperature crystallization of amorphous silicon and amorphous germanium by soft X-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Heya, Akira, E-mail: heya@eng.u-hyogo.ac.jp [Department of Materials Science and Chemistry, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671–2280 (Japan); Kanda, Kazuhiro [Laboratory of Advanced Science and Technology for Industry (LASTI), University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678–1205 (Japan); Toko, Kaoru; Sadoh, Taizoh [Department of Electronics, Kyushu University, 744 Nishi-ku, Motooka, Fukuoka 819–0395 (Japan); Amano, Sho [Laboratory of Advanced Science and Technology for Industry (LASTI), University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678–1205 (Japan); Matsuo, Naoto [Department of Materials Science and Chemistry, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671–2280 (Japan); Miyamoto, Shuji [Laboratory of Advanced Science and Technology for Industry (LASTI), University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678–1205 (Japan); Miyao, Masanobu [Department of Electronics, Kyushu University, 744 Nishi-ku, Motooka, Fukuoka 819–0395 (Japan); Mochizuki, Takayasu [Laboratory of Advanced Science and Technology for Industry (LASTI), University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678–1205 (Japan)

    2013-05-01

    The low-temperature-crystallization effects of soft X-ray irradiation on the structural properties of amorphous Si and amorphous Ge films were investigated. From the differences in crystallization between Si and Ge, it was found that the effects of soft X-ray irradiation on the crystallization strongly depended on the energy band gap and energy level. The crystallization temperatures of the amorphous Si and amorphous Ge films decreased from 953 K to 853 K and 773 K to 663 K, respectively. The decrease in crystallization temperature was also related to atoms transitioning into a quasi-nucleic phase in the films. The ratio of electron excitation and migration effects to thermal effects was controlled using the storage-ring current (photon flux density). Therefore, we believe that low-temperature crystallization can be realized by controlling atomic migration through electron excitation. - Highlights: • This work investigates the crystallization mechanism for soft X-ray irradiation. • The soft X-ray crystallization depended on the energy band gap and energy level. • The decrease in the crystallization temperature for Si and Ge films was 100 K. • This decrement was related to atoms transitioning into a quasi-nucleic phase.

  18. Pyrolysis of tyre powder using microwave thermogravimetric analysis: Effect of microwave power.

    Science.gov (United States)

    Song, Zhanlong; Yang, Yaqing; Zhou, Long; Zhao, Xiqiang; Wang, Wenlong; Mao, Yanpeng; Ma, Chunyuan

    2017-02-01

    The pyrolytic characteristics of tyre powder treated under different microwave powers (300, 500, and 700 W) were studied via microwave thermogravimetric analysis. The product yields at different power levels were studied, along with comparative analysis of microwave pyrolysis and conventional pyrolysis. The feedstock underwent preheating, intense pyrolysis, and final pyrolysis in sequence. The main and secondary weight loss peaks observed during the intense pyrolysis stage were attributed to the decomposition of natural rubbers and synthetic rubbers, respectively. The total mass loss rates, bulk temperatures, and maximum temperatures were distinctively higher at higher powers. However, the maximum mass loss rate (0.005 s -1 ), the highest yields of liquid product (53%), and the minimum yields of residual solid samples (43.83%) were obtained at 500 W. Compared with conventional pyrolysis, microwave pyrolysis exhibited significantly different behaviour with faster reaction rates, which can decrease the decomposition temperatures of both natural and synthetic rubber by approximately 110 °C-140 °C.

  19. Process for paraffin isomerization of a distillate range hydrocarbon feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N.Y.; Garwood, W.E.; McCullen, S.B.

    1993-01-19

    Various catalytic processes have been proposed to isomerize n-paraffins so as to lower the pour point of distillate range hydrocarbon feedstocks. However, many available feedstocks contain nitrogen impurities which tend to poison conventional paraffin isomerization catalysts. A process has been developed to obviate or alleviate this problem. According to the invention, the paraffin-containing feedstock is contacted with a crystalline aluminosilicate zeolite catalyst having pore openings defined by a ratio of sorption of n-hexane to o-xylene of over 3 vol % and the ability to crack 3-methylpentane in preference to 2,3 dimethylbutane under defined conditions. The zeolite catalyst includes a Group VIII metal and has a zeolite SiO[sub 2]/Al[sub 2]O[sub 3] ratio of at least 20:1. The contacting is carried out at 199-454 C and a pressure of 100-1,000 psig, preferably 250-600 psig. The group of medium pore zeolites which can be used in the process of the invention includes ZSM-22, ZSM-23, and ZSM-35. The Group VIII metals used in the catalyst are preferably selected from Pt, Pd, Ir, Os, Rh, and Ru and the metal is preferably incorporated into the zeolite by ion exchange up to a metal content of preferably 0.1-3 wt %. Experiments are described to illustrate the invention. 1 tab.

  20. Nanosized lead lanthanum titanate (PLT) ceramic powders synthesized by the oxidant peroxo method

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, Emerson R. [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Department of Chemistry, UFSCar-Federal University of Sao Carlos, Rod.Washingtin Luis km 235, CP 676, Sao Carlos SP 13565-9905 (Brazil)], E-mail: camargo@ufscar.br; Barrado, Cristiano M. [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Department of Chemistry, UFSCar-Federal University of Sao Carlos, Rod.Washingtin Luis km 235, CP 676, Sao Carlos SP 13565-9905 (Brazil); Ribeiro, Caue [EMBRAPA Instrumentacao Agropecuaria, Rua XV de Novembro 1452, Sao Carlos SP 13560-970 (Brazil)], E-mail: caue@cnpdia.embrapa.br; Longo, Elson [Department of Biochemistry, Chemistry Institute of Araraquara, UNESP-Sao Paulo State University, Rua Francisco Degni, CP 355, Araraquara SP 14801-907 (Brazil)], E-mail: elson@iq.unesp.br; Leite, Edson R. [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Department of Chemistry, UFSCar-Federal University of Sao Carlos, Rod.Washingtin Luis km 235, CP 676, Sao Carlos SP 13565-9905 (Brazil)], E-mail: derl@power.ufscar.br

    2009-05-05

    For the first time it is reported the synthesis of lead titanate modified with rare earth by the oxidant-peroxo method (OPM). Lanthanum was added up to 20% in mol through the dissolution of lanthanum oxide in nitric acid, followed by the addition of a solution of lead and lanthanum nitrate into an aqueous solution of titanium peroxo complexes. The amorphous precipitate formed was heat-treated at different temperatures in the range from 400 to 900 deg. C for crystallization. Powders were characterized by Raman spectroscopy and X-ray diffraction. Tetragonal perovskite structure was observed for the samples up to 15% of lanthanum substitution and cubic perovskite for sample with 20% of lanthanum. Crystallographic domains calculated by Scherrer equation showing a probable suppression of the crystallite growth in function of lanthanum content. It was observed shifting to lower frequencies of Raman modes in the range between 100 and 400 cm{sup -1} and the vanishing of the A1(2TO) and E(1LO) modes could be attributed to transition phase from tetragonal to cubic. Electronic microscopy image revealed that the powders annealed at height temperature are spherical with sharp size distribution.

  1. Nanosized lead lanthanum titanate (PLT) ceramic powders synthesized by the oxidant peroxo method

    International Nuclear Information System (INIS)

    Camargo, Emerson R.; Barrado, Cristiano M.; Ribeiro, Caue; Longo, Elson; Leite, Edson R.

    2009-01-01

    For the first time it is reported the synthesis of lead titanate modified with rare earth by the oxidant-peroxo method (OPM). Lanthanum was added up to 20% in mol through the dissolution of lanthanum oxide in nitric acid, followed by the addition of a solution of lead and lanthanum nitrate into an aqueous solution of titanium peroxo complexes. The amorphous precipitate formed was heat-treated at different temperatures in the range from 400 to 900 deg. C for crystallization. Powders were characterized by Raman spectroscopy and X-ray diffraction. Tetragonal perovskite structure was observed for the samples up to 15% of lanthanum substitution and cubic perovskite for sample with 20% of lanthanum. Crystallographic domains calculated by Scherrer equation showing a probable suppression of the crystallite growth in function of lanthanum content. It was observed shifting to lower frequencies of Raman modes in the range between 100 and 400 cm -1 and the vanishing of the A1(2TO) and E(1LO) modes could be attributed to transition phase from tetragonal to cubic. Electronic microscopy image revealed that the powders annealed at height temperature are spherical with sharp size distribution.

  2. Magnetomechanical coupling in thermal amorphous solids

    Science.gov (United States)

    Hentschel, H. George E.; Ilyin, Valery; Mondal, Chandana; Procaccia, Itamar

    2018-05-01

    Standard approaches to magnetomechanical interactions in thermal magnetic crystalline solids involve Landau functionals in which the lattice anisotropy and the resulting magnetization easy axes are taken explicitly into account. In glassy systems one needs to develop a theory in which the amorphous structure precludes the existence of an easy axis, and in which the constituent particles are free to respond to their local amorphous surroundings and the resulting forces. We present a theory of all the mixed responses of an amorphous solid to mechanical strains and magnetic fields. Atomistic models are proposed in which we test the predictions of magnetostriction for both bulk and nanofilm amorphous samples in the paramagnetic phase. The application to nanofilms with emergent self-affine free interfaces requires a careful definition of the film "width" and its change due to the magnetostriction effect.

  3. Vapour cloud explosion hazard greater with light feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Windebank, C.S.

    1980-03-03

    Because lighter chemical feedstocks such as propylene and butylenes are more reactive than LPG's they pose a greater risk of vapor cloud explosion, particularly during their transport. According to C.S. Windebank (Insurance Tech. Bur.), percussive unconfined vapor cloud explosions (PUVCE's) do not usually occur below the ten-ton threshold for saturated hydrocarbons but can occur well below this threshold in the case of unsaturated hydrocarbons such as propylene and butylenes. Boiling liquid expanding vapor explosions (BLEVE's) are more likely to be ''hot'' (i.e., the original explosion is associated with fire) than ''cold'' in the case of unsaturated hydrocarbons. No PUVCE or BLEVE incident has been reported in the UK. In the US, 16 out of 20 incidents recorded between 1970 and 1975 were related to chemical feedstocks, including propylene and butylenes, and only 4 were LPG-related. The average losses were $20 million per explosion. Between 1968 and 1978, 8% of LPG pipeline spillages led to explosions.

  4. Reliable Biomass Supply Chain Design under Feedstock Seasonality and Probabilistic Facility Disruptions

    Directory of Open Access Journals (Sweden)

    Zhixue Liu

    2017-11-01

    Full Text Available While biomass has been recognized as an important renewable energy source which has a range of positive impacts on the economy, environment, and society, the existence of feedstock seasonality and risk of service disruptions at collection facilities potentially compromises the efficiency and reliability of the energy supply system. In this paper, we consider reliable supply chain design for biomass collection against feedstock seasonality and time-varying disruption risks. We optimize facility location, inventory, biomass quantity, and shipment decisions in a multi-period planning horizon setting. A real-world case in Hubei, China is studied to offer managerial insights. Our computational results show that: (1 the disruption risk significantly affects both the optimal facility locations and the supply chain cost; (2 no matter how the failure probability changes, setting backup facilities can significantly decrease the total cost; and (3 the feedstock seasonality does not affect locations of the collection facilities, but it affects the allocations of collection facilities and brings higher inventory cost for the biomass supply chain.

  5. Preparation and characterization of rare earth modified nanocrystalline Al2O3/13 wt%TiO2 feedstock for plasma spraying.

    Science.gov (United States)

    Wang, Y; Tian, W; Yang, Y

    2009-02-01

    The preparation and characterization of RE modified nanocrystalline Al2O3/13 wt%TiO2 feedstock for plasma spraying are described in this paper. Taking individual nano particles as starting materials, by wet ball milling, spray drying, sintering and plasma treating, nanocrystalline plasma sprayable feedstock is prepared. The as-prepared feedstocks were analyzed by XRD, SEM, EDS, TEM and HRTEM methods. As shown from analyses results, the reconstituted agglomerate feedstock possesses spherical geometry, proper particle size, homogeneous composition distribution and nano scaled grains. There are three dimensional net structures in the prepared feedstock, which could be retained in coatings if the feedstock does not melt or partially melts during the plasma spray process. The three dimensional net structures could play an important role in improving crack propagation resistance and wear resistance of coatings. The reconstitution process and characterization methods discussed in this paper can also be applied to prepare intraclass nanocrystalline feedstock such as ZrO2/Y2O3 and Cr2O3 et al.

  6. Amorphization kinetics of Zr3Fe under electron irradiation

    International Nuclear Information System (INIS)

    Motta, A.T.; Howe, L.M.; Okamoto, P.R.

    1992-10-01

    0.9 MeV electron irradiations were performed at 28--220 K in a high-voltage electron microscope (HVEM). By measuring onset, spread and final size of the amorphous region, factoring in the Guassian distribution of the beam, a kinetic description of the amorphization in terms of dose, dose rate and temperature was obtained. The critical temperature for amorphization by electron irradiation was found to be ∼220 K, compared to 570--625 K for 40 Ar ion irradiation. Also, the dose-to-amorphization increased exponentially with temperature. Results indicated that the rate of growth of the amorphous region under the electron beam decreased with increasing temperature and the does-to-amorphization decreased with increasing dose rate. The size of the amorphous region saturated after a region dose, the final size decreasing with increasing temperature, and it was argued that this is related to the existence of a critical dose rate, which increased with temperature, below which no amorphization occurred. The above observations can be understood in the framework of the kinetics of damage accumulation under irradiation

  7. Microstructure and physical properties of laser Zn modified amorphous-nanocrystalline coating on a titanium alloy

    Science.gov (United States)

    Li, Jia-Ning; Gong, Shui-Li; Shi, Yi-Ning; Suo, Hong-Bo; Wang, Xi-Chang; Deng, Yun-Hua; Shan, Fei-Hu; Li, Jian-Quan

    2014-02-01

    A Zn modified amorphous-nanocrystalline coating was fabricated on a Ti-6Al-4V alloy by laser cladding of the Co-Ti-B4C-Zn-Y2O3 mixed powders. Such coating was researched by means of a scanning electron microscope (SEM) and a high resolution transmission electron microscope (HRTEM), etc. Experimental results indicated that the Co5Zn21 and TiB2 nanocrystalline phases were produced through in situ metallurgical reactions, which blocked the motion of dislocation, and TiB2 grew along (010), (111) and (024). The Co5Zn21 nanocrystals were produced attached to the ceramics, which mainly consisted of the Co nanoparticles embedded in a heterogeneous zinc, and had varied crystalline orientations.

  8. Rational use of fossil-fuel feedstocks and problems in catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Kalechits, I V

    1977-09-01

    A discussion of trends in the availability and cost of petrochemical feedstocks emhasizes the advances in catalyst technology that will be required to offset global shortages of petroleum and natural gas, including the development of more efficient cracking, hydrocracking, hydrotreating, and reforming catalysts for residue refining; the use of catalysts with 2 to 10 times the activity of existing systems, close to 100% selectivity, and high resistance to feedstock poisons to lower energy consumption in, and increase the efficiency of, petrochemical processes; the advantages of metal complex catalysts and possible heterogeneous homogeneous hybrids capable of operating at moderate or low temperatures and pressures; the need for high-temperature catalysts in coal liquefaction and gasification processes; the catalytic recovery of hydrocarbons from coal tar and shale; catalytic energy conversion and storage, fuel cells, etc. 23 references.

  9. Amorphization kinetics of Zr3Fe under electron irradiation

    International Nuclear Information System (INIS)

    Motta, A.T.; Howe, L.M.; Okamoto, P.R.

    1994-11-01

    Previous investigations using 40 Ar ion bombardments have revealed that Zr 3 Fe, which has an orthorhombic crystal structure, undergoes an irradiation-induced transformation from the crystalline to the amorphous state. In the present investigation, 0.9 MeV electron irradiations were performed at 28 - 220 K in a high-voltage electron microscope (HVEM). By measuring the onset, spread and final size of the amorphous region, factoring in the Gaussian distribution of the beam, a kinetic description of the amorphization in terms of dose, dose rate and temperature was obtained. The critical temperature for amorphization by electron irradiation was found to be ∼ 220 K, compared with 570 - 625 K for 40 Ar ion irradiation. Also, the dose-to-amorphization increased exponentially with temperature. Results indicated that the rate of growth of the amorphous region under the electron beam decreased with increasing temperature and the dose-to-amorphization decreased with increasing dose rate. The size of the amorphous region saturated after a given dose, the final size decreasing with increasing temperature, and it is argued that this is related to the existence of a critical dose rate, which increases with temperature, and below which no amorphization occurs. (author). 26 refs., 6 figs

  10. Mechanical response of melt-spun amorphous filaments

    International Nuclear Information System (INIS)

    Leal, A A; Reifler, F A; Hufenus, R; Mohanty, G; Michler, J

    2014-01-01

    High-speed melt spinning of a cyclo-olefin polymer (COP) and a copolyamide (CoPA) have been performed. Differential scanning calorimetry curves of the resulting monofilaments show that they remain in an amorphous state even after hot drawing. Wide angle x-ray diffraction patterns of undrawn and drawn COP filaments show that although the material remains in an amorphous state, a degree of orientation is induced in the polymer after drawing. The amorphous filaments show an enhanced bending recovery with respect to different semi-crystalline monofilaments commercially available. However, single fiber axial compressive testing indicates that the amorphous filaments exhibit a compressive modulus value which is 50% lower than what is observed for a reference semi-crystalline PET filament. Analysis of the compressive strains applied by the bending recovery test indicates that while the maximum applied strains remain well within the region of elastic deformation of the amorphous materials, the threshold between elastic and plastic deformation is reached for the semi-crystalline materials. (paper)

  11. Uniform surface modification of diatomaceous earth with amorphous manganese oxide and its adsorption characteristics for lead ions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Song; Li, Duanyang; Su, Fei; Ren, Yuping; Qin, Gaowu, E-mail: lis@atm.neu.edu.cn

    2014-10-30

    Graphical abstract: - Highlights: • A uniform MnO{sub 2} layer was anchored onto diatomite surface. • Kinetics and isotherms over MnO{sub 2} modified diatomite were studied. • The Pb(II) adsorption is based on ion-exchange mechanism. - Abstract: A novel method to produce composite sorbent material compromising porous diatomaceous earth (DE) and surface functionalized amorphous MnO{sub 2} is reported. Via a simple in situ redox reaction over the carbonized DE powders, a uniform layer of amorphous MnO{sub 2} was anchored onto the DE surface. The hybrid adsorbent was characterized by X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. The batch method has been employed to investigate the effects of surface coating on adsorption performance of DE. According to the equilibrium studies, the adsorption capacity of DE for adsorbing lead ions after MnO{sub 2} modification increased more than six times. And the adsorption of Pb{sup 2+} on the MnO{sub 2} surface is based on ion-exchange mechanism. The developed strategy presents a novel opportunity to prepare composite adsorbent materials by integrating nanocrystals with porous matrix.

  12. Achievement report for fiscal 1991 on Sunshine Program-entrusted research and development. Research and development of amorphous silicon solar cells (Research on amorphous silicon interface); 1991 nendo amorphous silicon taiyo denchi no kenkyu kaihatsu seika hokokusho. Amorphous silicon no kaimen no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    The amorphous solar cell interface has been under study for the enhancement of efficiency and reliability in amorphous solar cells, and this is the compilation of the results achieved in fiscal 1991. In the effort to enhance delta-doped amorphous silicon solar cell efficiency, an amorphous Si solar cell is built using a ZnO film as the transparent conductive film. As the result, an a-Si solar cell with a conversion efficiency of 11.5% is obtained. In the research on the suppression of photodegradation in a-Si, from the viewpoint that a reduction in the amount of hydrogen contained excessively in the film will be effective in decelerating photodegradation, a photoexcited hydrogen radical treatment method is newly proposed, and basic studies are conducted on it. As the result, it is found that an a-Si film processed by a 20-second hydrogen treatment at a substrate temperature of 460 degrees C exhibits a lower photodegradation rate than an ordinary a-Si film. In the research on the deposition of amorphous Si film, a VHF frequency is used instead of 13.56MHz for plasma, and an amorphous Si film is deposited efficiently at a lower voltage at which ions cause less damage. (NEDO)

  13. Amorphous titanium-oxide supercapacitors

    OpenAIRE

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2016-01-01

    The electric capacitance of an amorphous TiO2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7?mF/cm2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large r...

  14. Estimating Biofuel Feedstock Water Footprints Using System Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Inman, Daniel; Warner, Ethan; Stright, Dana; Macknick, Jordan; Peck, Corey

    2016-07-01

    Increased biofuel production has prompted concerns about the environmental tradeoffs of biofuels compared to petroleum-based fuels. Biofuel production in general, and feedstock production in particular, is under increased scrutiny. Water footprinting (measuring direct and indirect water use) has been proposed as one measure to evaluate water use in the context of concerns about depleting rural water supplies through activities such as irrigation for large-scale agriculture. Water footprinting literature has often been limited in one or more key aspects: complete assessment across multiple water stocks (e.g., vadose zone, surface, and ground water stocks), geographical resolution of data, consistent representation of many feedstocks, and flexibility to perform scenario analysis. We developed a model called BioSpatial H2O using a system dynamics modeling and database framework. BioSpatial H2O could be used to consistently evaluate the complete water footprints of multiple biomass feedstocks at high geospatial resolutions. BioSpatial H2O has the flexibility to perform simultaneous scenario analysis of current and potential future crops under alternative yield and climate conditions. In this proof-of-concept paper, we modeled corn grain (Zea mays L.) and soybeans (Glycine max) under current conditions as illustrative results. BioSpatial H2O links to a unique database that houses annual spatially explicit climate, soil, and plant physiological data. Parameters from the database are used as inputs to our system dynamics model for estimating annual crop water requirements using daily time steps. Based on our review of the literature, estimated green water footprints are comparable to other modeled results, suggesting that BioSpatial H2O is computationally sound for future scenario analysis. Our modeling framework builds on previous water use analyses to provide a platform for scenario-based assessment. BioSpatial H2O's system dynamics is a flexible and user

  15. Radiation tolerance of amorphous semiconductors

    International Nuclear Information System (INIS)

    Nicolaides, R.V.; DeFeo, S.; Doremus, L.W.

    1976-01-01

    In an attempt to determine the threshold radiation damage in amorphous semiconductors, radiation tests were performed on amorphous semiconductor thin film materials and on threshold and memory devices. The influence of flash x-rays and neutron radiation upon the switching voltages, on- and off-state characteristics, dielectric response, optical transmission, absorption band edge and photoconductivity were measured prior to, during and following irradiation. These extensive tests showed the high radiation tolerance of amorphous semiconductor materials. Electrical and optical properties, other than photoconductivity, have a neutron radiation tolerance threshold above 10 17 nvt in the steady state and 10 14 nvt in short (50 μsec to 16 msec) pulses. Photoconductivity increases by 1 1 / 2 orders of magnitude at the level of 10 14 nvt (short pulses of 50 μsec). Super flash x-rays up to 5000 rads (Si), 20 nsec, do not initiate switching in off-state samples which are voltage biased up to 90 percent of the threshold voltage. Both memory and threshold amorphous devices are capable of switching on and off during nuclear radiation transients at least as high as 2 x 10 14 nvt in 50 μsec pulses

  16. Spherical rhenium metal powder

    International Nuclear Information System (INIS)

    Leonhardt, T.; Moore, N.; Hamister, M.

    2001-01-01

    The development of a high-density, spherical rhenium powder (SReP) possessing excellent flow characteristics has enabled the use of advanced processing techniques for the manufacture of rhenium components. The techniques that were investigated were vacuum plasma spraying (VPS), direct-hot isostatic pressing (D-HIP), and various other traditional powder metallurgy processing methods of forming rhenium powder into near-net shaped components. The principal disadvantages of standard rhenium metal powder (RMP) for advanced consolidation applications include: poor flow characteristics; high oxygen content; and low and varying packing densities. SReP will lower costs, reduce processing times, and improve yields when manufacturing powder metallurgy rhenium components. The results of the powder characterization of spherical rhenium powder and the consolidation of the SReP are further discussed. (author)

  17. Feedstock quality : an important consideration in forest biomass supply

    Energy Technology Data Exchange (ETDEWEB)

    Ryans, M. [FP Innovations, Vancouver, BC (Canada). FERIC

    2009-07-01

    The move to forest-based sources of biomass requires an emphasis on the quality of forest residues. Customers set the feedstock requirements, and demand homogeneous and predictable quality. The top quality factors are appropriate moisture content, consistent particle size, chlorine content, and clean material. The seasonal variability of the resource means that suppliers must determine how to deliver a year-round supply with appropriate moisture content. Methods such as pre-piling and covering with a tarp are being tested. Although mills tailored for biomass deliveries have modernized boilers capable of burning a variety of biomass feedstocks at varying moisture contents, a 10 per cent reduction in moisture content can offer a good return on investment because suppliers could transports more energy content and less water per tonne of biomass. This presentation also discussed the range of equipment choices available for delivering the right-sized biomass, and outlined the right and wrong practices that influence biomass quality along the supply chain. figs.

  18. Measurement of loose powder density

    International Nuclear Information System (INIS)

    Akhtar, S.; Ali, A.; Haider, A.; Farooque, M.

    2011-01-01

    Powder metallurgy is a conventional technique for making engineering articles from powders. Main objective is to produce final products with the highest possible uniform density, which depends on the initial loose powder characteristics. Producing, handling, characterizing and compacting materials in loose powder form are part of the manufacturing processes. Density of loose metallic or ceramic powder is an important parameter for die design. Loose powder density is required for calculating the exact mass of powder to fill the die cavity for producing intended green density of the powder compact. To fulfill this requirement of powder metallurgical processing, a loose powder density meter as per ASTM standards is designed and fabricated for measurement of density. The density of free flowing metallic powders can be determined using Hall flow meter funnel and density cup of 25 cm/sup 3/ volume. Density of metal powders like cobalt, manganese, spherical bronze and pure iron is measured and results are obtained with 99.9% accuracy. (author)

  19. Photonic crystals, amorphous materials, and quasicrystals.

    Science.gov (United States)

    Edagawa, Keiichi

    2014-06-01

    Photonic crystals consist of artificial periodic structures of dielectrics, which have attracted much attention because of their wide range of potential applications in the field of optics. We may also fabricate artificial amorphous or quasicrystalline structures of dielectrics, i.e. photonic amorphous materials or photonic quasicrystals. So far, both theoretical and experimental studies have been conducted to reveal the characteristic features of their optical properties, as compared with those of conventional photonic crystals. In this article, we review these studies and discuss various aspects of photonic amorphous materials and photonic quasicrystals, including photonic band gap formation, light propagation properties, and characteristic photonic states.

  20. Environmental and energy system analysis of bio-methane production pathways : A comparison between feedstocks and process optimizations

    NARCIS (Netherlands)

    Pierie, F.; van Someren, C. E. J.; Benders, R. M. J.; Bekkering, J.; van Gemert, W. J. Th; Moll, H. C.

    2015-01-01

    The energy efficiency and sustainability of an anaerobic green gas production pathway was evaluated, taking into account five biomass feedstocks, optimization of the green gas production pathway, replacement of current waste management pathways by mitigation, and transport of the feedstocks.