WorldWideScience

Sample records for amorphous mixed oxides

  1. Selective oxidations on vanadiumoxide containing amorphous mixed oxides (AMM-V) with tert.-butylhydroperoxide

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Y.; Hunnius, M.; Storck, S.; Maier, W.F. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    1998-12-31

    The catalytic oxygen transfer properties of vanadium containing zeolites and vanadium based sol-gel catalysts with hydrogen peroxides are well known. The severe problem of vanadium leaching caused by the presence of the by-product water has been addressed. To avoid any interference with homogeneously catalyzed reactions, our study focusses on selective oxidations in a moisture-free medium with tert.-butylhydroperoxide. We have investigated the catalytic properties of amorphous microporous materials based on SiO{sub 2}, TiO{sub 2}, ZrO{sub 2} and Al{sub 2}O{sub 3} as matrix material and studied the effects of surface polarity on the oxidation of 1-octene and cyclohexane. (orig.)

  2. Lithium Storage in Microstructures of Amorphous Mixed-Valence Vanadium Oxide as Anode Materials.

    Science.gov (United States)

    Zhao, Di; Zheng, Lirong; Xiao, Ying; Wang, Xia; Cao, Minhua

    2015-07-08

    Constructing three-dimensional (3 D) nanostructures with excellent structural stability is an important approach for realizing high-rate capability and a high capacity of the electrode materials in lithium-ion batteries (LIBs). Herein, we report the synthesis of hydrangea-like amorphous mixed-valence VOx microspheres (a-VOx MSs) through a facile solvothermal method followed by controlled calcination. The resultant hydrangea-like a-VOx MSs are composed of intercrossed nanosheets and, thus, construct a 3 D network structure. Upon evaluation as an anode material for LIBs, the a-VOx MSs show excellent lithium-storage performance in terms of high capacity, good rate capability, and long-term stability upon extended cycling. Specifically, they exhibit very stable cycling behavior with a highly reversible capacity of 1050 mA h g(-1) at a rate of 0.1 A g(-1) after 140 cycles. They also show excellent rate capability, with a capacity of 390 mA h g(-1) at a rate as high as 10 A g(-1) . Detailed investigations on the morphological and structural changes of the a-VOx MSs upon cycling demonstrated that the a-VOx MSs went through modification of the local VO coordinations accompanied with the formation of a higher oxidation state of V, but still with an amorphous state throughout the whole discharge/charge process. Moreover, the a-VOx MSs can buffer huge volumetric changes during the insertion/extraction process, and at the same time they remain intact even after 200 cycles of the charge/discharge process. Thus, these microspheres may be a promising anode material for LIBs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Selective oxidation of benzene and cyclohexane using amorphous microporous mixed oxides; Selektive Oxidation von Benzol und Cyclohexan mit amorphen mikroporoesen Mischoxiden

    Energy Technology Data Exchange (ETDEWEB)

    Stoeckmann, M.

    2000-07-01

    Phenol was to be produced by direct oxidation of benzene with environment-friendly oxidants like hydrogen peroxide, oxygen, or ozone. Catalysts were amorphous microporous mixed oxides whose properties can be selected directly in the sol-gel synthesis process. Apart from benzene, also cyclohexane was oxidized with ozone using AMM catalysts in order to get more information on the potential of ozone as oxidant in heterogeneously catalyzed reactions. [German] Ziel dieser Arbeit war die Herstellung von Phenol durch die Direktoxidation von Benzol mit umweltfreundlichen Oxidationsmitteln wie Wasserstoffperoxid, Sauerstoff oder Ozon. Als Katalysatoren dienten amorphe mikroporoese Mischoxide, da deren Eigenschaften direkt in der Synthese durch den Sol-Gel-Prozess gezielt eingestellt werden koennen. Neben Benzol wurde auch Cyclohexan mit Ozon unter der Verwendung von AMM-Katalysatoren oxidiert, um das Potential von Ozon als Oxiationsmittel in heterogen katalysierten Reaktionen naeher zu untersuchen. (orig.)

  4. Amorphous Mixed-Valence Vanadium Oxide/Exfoliated Carbon Cloth Structure Shows a Record High Cycling Stability.

    Science.gov (United States)

    Song, Yu; Liu, Tian-Yu; Yao, Bin; Kou, Tian-Yi; Feng, Dong-Yang; Liu, Xiao-Xia; Li, Yat

    2017-04-01

    Previous studies show that vanadium oxides suffer from severe capacity loss during cycling in the liquid electrolyte, which has hindered their applications in electrochemical energy storage. The electrochemical instability is mainly due to chemical dissolution and structural pulverization of vanadium oxides during charge/discharge cyclings. In this study the authors demonstrate that amorphous mixed-valence vanadium oxide deposited on exfoliated carbon cloth (CC) can address these two limitations simultaneously. The results suggest that tuning the V 4+ /V 5+ ratio of vanadium oxide can efficiently suppress the dissolution of the active materials. The oxygen-functionalized carbon shell on exfoliated CC can bind strongly with VO x via the formation of COV bonding, which retains the electrode integrity and suppresses the structural degradation of the oxide during charging/discharging. The uptake of structural water during charging and discharging processes also plays an important role in activating the electrode material. The amorphous mixed-valence vanadium oxide without any protective coating exhibits record-high cycling stability in the aqueous electrolyte with no capacitive decay in 100 000 cycles. This work provides new insights on stabilizing vanadium oxide, which is critical for the development of vanadium oxide based energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Ambient-temperature NO oxidation over amorphous CrOx-ZrO2 mixed oxide catalysts: Significant promoting effect of ZrO2

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Aiyong; Guo, Yanglong; Gao, Feng; Peden, Charles H. F.

    2017-03-01

    Three series of Cr-based mixed oxides (Cr-Co, Cr-Fe, and Cr-Ni oxides) with high specific surface areas and amorphous textures are synthesized using a novel sol-gel method. These mixed oxides, in comparison to their pure metal oxide (CrOx, Co3O4, FeOx and NiO) counterparts, display enhanced performance for catalytic oxidation of low-concentration NO at room temperature. Over best performing catalysts, 100% NO conversion can be maintained up to 30 h of operation at a high space velocity of 45,000 ml g-1 h-1. The amorphous structure is found to be critical for these catalysts to maintain high activity and durability. Cr/M (M=Co, Fe and Ni) molar ratio, nitrate precursor decomposition temperature and catalyst calcination temperature are important criteria for the synthesis of the highly active catalysts. This work was supported by National Basic Research Program of China (2013CB933200), National Natural Science Foundation of China (21577035, 21577034), Commission of Science and Technology of Shanghai Municipality (15DZ1205305) and 111 Project (B08021). Aiyong Wang gratefully acknowledges the China Scholarship Council for the Joint-Training Scholarship Program with the Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. Department of Energy (DOE) by Battelle. FG and CHFP are supported by the U.S. DOE/Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office.

  6. Vanadium based amorphous mixed oxides used as negative electrodes of lithium batteries; Oxydes mixtes amorphes a base de vanadium comme electrodes negatives de batteries au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Guyomard, D.; Leroux, F.; Sigala, C.; Le Gal La Salle, A.; Piffard, Y. [Institut des Materiaux de Nantes, 44 (France). Laboratoire de Chimie des Solides

    1996-12-31

    This paper presents recent results concerning the chemical and electrochemical synthesis, the electrochemical properties and the characterization of two new families of amorphous oxides of formula Li{sub x}MVO{sub 4} (1oxides allows the low potential reversible insertion of lithium and can be used as negative electrodes in high performance lithium-ion batteries. (J.S.) 19 refs.

  7. Band gap tuning of amorphous Al oxides by Zr alloying

    DEFF Research Database (Denmark)

    Canulescu, Stela; Jones, N. C.; Borca, C. N.

    2016-01-01

    The optical band gap and electronic structure of amorphous Al-Zr mixed oxides, with Zr content ranging from4.8 to 21.9% were determined using vacuum ultraviolet (VUV) and X-ray absorption spectroscopy (XAS). Thelight scattering by the nano-porous structure of alumina at low wavelengths was estima...

  8. Intrinsic electron trapping in amorphous oxide

    Science.gov (United States)

    Strand, Jack; Kaviani, Moloud; Afanas’ev, Valeri V.; Lisoni, Judit G.; Shluger, Alexander L.

    2018-03-01

    We demonstrate that electron trapping at intrinsic precursor sites is endemic in non-glass-forming amorphous oxide films. The energy distributions of trapped electron states in ultra-pure prototype amorphous (a)-HfO2 insulator obtained from exhaustive photo-depopulation experiments demonstrate electron states in the energy range of 2–3 eV below the oxide conduction band. These energy distributions are compared to the results of density functional calculations of a-HfO2 models of realistic density. The experimental results can be explained by the presence of intrinsic charge trapping sites formed by under-coordinated Hf cations and elongated Hf–O bonds in a-HfO2. These charge trapping states can capture up to two electrons, forming polarons and bi-polarons. The corresponding trapping sites are different from the dangling-bond type defects responsible for trapping in glass-forming oxides, such as SiO2, in that the traps are formed without bonds being broken. Furthermore, introduction of hydrogen causes formation of somewhat energetically deeper electron traps when a proton is immobilized next to the trapped electron bi-polaron. The proposed novel mechanism of intrinsic charge trapping in a-HfO2 represents a new paradigm for charge trapping in a broad class of non-glass-forming amorphous insulators.

  9. Band gap tuning of amorphous Al oxides by Zr alloying

    Energy Technology Data Exchange (ETDEWEB)

    Canulescu, S., E-mail: stec@fotonik.dtu.dk; Schou, J. [Department of Photonics Engineering, Technical University of Denmark, 4000 Roskilde (Denmark); Jones, N. C.; Hoffmann, S. V. [ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus (Denmark); Borca, C. N.; Piamonteze, C. [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Rechendorff, K.; Nielsen, L. P.; Almtoft, K. P. [Danish Technological Institute, Kongsvang Alle 29, 8000 Aarhus (Denmark); Gudla, V. C.; Bordo, K.; Ambat, R. [Department of Mechanical Engineering, Technical University of Denmark, 2800 Kgs-Lyngby (Denmark)

    2016-08-29

    The optical band gap and electronic structure of amorphous Al-Zr mixed oxides with Zr content ranging from 4.8 to 21.9% were determined using vacuum ultraviolet and X-ray absorption spectroscopy. The light scattering by the nano-porous structure of alumina at low wavelengths was estimated based on the Mie scattering theory. The dependence of the optical band gap of the Al-Zr mixed oxides on the Zr content deviates from linearity and decreases from 7.3 eV for pure anodized Al{sub 2}O{sub 3} to 6.45 eV for Al-Zr mixed oxides with a Zr content of 21.9%. With increasing Zr content, the conduction band minimum changes non-linearly as well. Fitting of the energy band gap values resulted in a bowing parameter of ∼2 eV. The band gap bowing of the mixed oxides is assigned to the presence of the Zr d-electron states localized below the conduction band minimum of anodized Al{sub 2}O{sub 3}.

  10. Structure and Properties of Amorphous Transparent Conducting Oxides

    Science.gov (United States)

    Medvedeva, Julia

    Driven by technological appeal, the research area of amorphous oxide semiconductors has grown tremendously since the first demonstration of the unique properties of amorphous indium oxide more than a decade ago. Today, amorphous oxides, such as a-ITO, a-IZO, a-IGZO, or a-ZITO, exhibit the optical, electrical, thermal, and mechanical properties that are comparable or even superior to those possessed by their crystalline counterparts, pushing the latter out of the market. Large-area uniformity, low-cost low-temperature deposition, high carrier mobility, optical transparency, and mechanical flexibility make these materials appealing for next-generation thin-film electronics. Yet, the structural variations associated with crystalline-to-amorphous transition as well as their role in carrier generation and transport properties of these oxides are far from being understood. Although amorphous oxides lack grain boundaries, factors like (i) size and distribution of nanocrystalline inclusions; (ii) spatial distribution and clustering of incorporated cations in multicomponent oxides; (iii) formation of trap defects; and (iv) piezoelectric effects associated with internal strains, will contribute to electron scattering. In this work, ab-initio molecular dynamics (MD) and accurate density-functional approaches are employed to understand how the properties of amorphous ternary and quaternary oxides depend on quench rates, cation compositions, and oxygen stoichiometries. The MD results, combined with thorough experimental characterization, reveal that interplay between the local and long-range structural preferences of the constituent oxides gives rise to a complex composition-dependent structural behavior in the amorphous oxides. The proposed network models of metal-oxygen polyhedra help explain the observed intriguing electrical and optical properties in In-based oxides and suggest ways to broaden the phase space of amorphous oxide semiconductors with tunable properties. The

  11. Hole conduction pathways in transparent amorphous tin oxides

    Science.gov (United States)

    Wahila, Matthew; Lebens-Higgins, Zachary; Quackenbush, Nicholas; Piper, Louis; Butler, Keith; Hendon, Christopher; Walsh, Aron; Watson, Graeme

    P-type transparent amorphous oxide semiconductors (TAOS) have yet to be sufficiently demonstrated or commercialized, severely limiting the possible device architecture of transparent and flexible oxide electronics. The lack of p-type amorphous oxide candidates mainly originates from the directional oxygen 2 p character of their topmost valence states. Previous attempts to create p-type oxides have involved hybridization of the O 2 p with metal orbitals, such as with CuAlO2 and its Cu 3 d - O 2 p hybridization. However, the highly directional nature of the utilized orbitals means that structural disorder inhibits hybridization and severely disrupts hole-conduction pathways. Crystalline stannous oxide (SnO) and other lone-pair active post-transition metal oxides can have reduced localization at the valence band edge due to complex hybridization between the O 2 p, metal p, and spherical metal s-orbitals. I will discuss our investigation of structural disorder in SnO. Using a combination of synchrotron spectroscopy, and atomistic calculations, our investigation elucidates the important interplay between atomistic and electronic structure in establishing continuous hole conduction pathways at the valence band edge of transparent amorphous oxides.

  12. Amorphous tin-cadmium oxide films and the production thereof

    Science.gov (United States)

    Li, Xiaonan; Gessert, Timothy A

    2013-10-29

    A tin-cadmium oxide film having an amorphous structure and a ratio of tin atoms to cadmium atoms of between 1:1 and 3:1. The tin-cadmium oxide film may have an optical band gap of between 2.7 eV and 3.35 eV. The film may also have a charge carrier concentration of between 1.times.10.sup.20 cm.sup.-3 and 2.times.10.sup.20 cm.sup.-3. The tin cadmium oxide film may also exhibit a Hall mobility of between 40 cm.sup.2V.sup.-1 s.sup.-1 and 60 cm.sup.2V.sup.-1 s.sup.-1. Also disclosed is a method of producing an amorphous tin-cadmium oxide film as described and devices using same.

  13. Amorphization of metals by ion implantation and ion beam mixing

    International Nuclear Information System (INIS)

    Rauschenbach, B.; Heera, V.

    1988-01-01

    Amorphous metallic systems can be formed either by high-fluence ion implantation of glassforming species or by irradiation of layered metal systems with inert gas ions. Both techniques and experimental examples are presented. Empirical rules are discussed which predict whether a given system can be transformed into an amorphous phase. Influence of temperature, implantation dose and pre-existing crystalline metal composition on amorphization is considered. Examples are given of the implantation induced amorphous structure, recrystallization and formation of quasicrystalline structures. (author)

  14. Adsorption of lithium ion to amorphous hydrous aluminium oxide

    International Nuclear Information System (INIS)

    Wada, Hideo; Kitamura, Takao; Fujii, Ayako; Katoh, Shunsaku

    1982-01-01

    Adsorption process of lithium ion to amorphous hydrous aluminium oxide (a-HAO) was investigated by pH titration method with lithium chloride-lithium hydroxide mixed solution and X-ray diffraction analysis of a-HAO after pH titration. In the pH titration, the addition of hydroxide ion in amount from 0 to 4.0 mmol.g -1 gave no change to the pH of the solution and caused adsorption of lithium ion equivalent in amount to added hydroxide ion. X-ray diffraction analysis showed the formation of lithium hydrogenaluminate LiH (AlO 2 ) 2 .5H 2 O (LHA) in the a-HAO after pH titration. These results showed that adsorption of lithium ion by a-HAO was related to a reaction which consumed hydroxide ion and formed LHA. In order to elucidate detail process of the reaction, changes of pH, aluminium concentration and lithium concentration of the solution, respectively with time, were determined. The pH of the solution decreased in two stages. At the first stage of the pH decrease, the aluminium concentration increased whereas the lithium concentration did not change. At the second stage, the lithium concentration decreased together with the decrease of the aluminium concentration. It was inferred that adsorption of lithium ion proceeded through dissolution of a-HAO and precipitation of LHA. Theoretical adsorption capacity calculated from the above formula for LHA and aluminium content in a-HAO was 4.7 mmol.g -1 and agreed fairly well with observed value 4.0 mmol.g -1 . (author)

  15. Amorphous carbon nanofibres inducing high specific capacitance of deposited hydrous ruthenium oxide

    International Nuclear Information System (INIS)

    Barranco, V.; Pico, F.; Ibanez, J.; Lillo-Rodenas, M.A.; Linares-Solano, A.; Kimura, M.; Oya, A.; Rojas, R.M.; Amarilla, J.M.; Rojo, J.M.

    2009-01-01

    Composites consisting of ruthenium oxide particles deposited on amorphous carbon nanofibres are prepared by a repetitive impregnation procedure. The choice of amorphous carbon nanofibres as support of amorphous ruthenium oxide leads to composites in which the deposited oxide consists of aggregates of extremely small primary particles (1-1.5 nm-size) and showing high porosity (specific surface area of 450 m 2 g -1 ). This special deposition of the oxide seems to favour: (i) high oxide capacitance (1000 Fg -1 ) at high oxide loadings (up to 20 wt%) and (ii) high capacitance retention (ca. 80% from the initial oxide capacitance) at high current densities (200 mA cm -2 ). Amorphous carbon nanofibres are suitable supports for amorphous ruthenium oxide and perhaps for other amorphous oxides acting as active electrode materials.

  16. Thin-film amorphous silicon germanium solar cells with p-and n-type hydrogenated silicon oxide layers

    NARCIS (Netherlands)

    Si, F.T.; Isabella, O.; Zeman, M.

    2017-01-01

    Mixed-phase hydrogenated silicon oxide (SiOx:H) is applied to thin-film hydrogenated amorphous silicon germanium (a-SiGe:H) solar cells serving as both p-doped and n-doped layers. The bandgap of p-SiOx:H is adjusted to achieve a highly-transparent window layer while also providing a strong electric

  17. Temperature dependence of the amorphization process induced by ion beam mixing in a metallic bilayer

    International Nuclear Information System (INIS)

    Thome, L.; Benkoulal, T.; Jagielski, J.

    1994-01-01

    Amorphization induced by ion beam mixing has been investigated via Rutherford backscattering spectrometry and channelling experiments on a Zr/Ni bilayer as a function of the bombardment temperature. Irradiation was performed with various noble gas ions (Ne, Ar, Kr and Xe) in a temperature range between 100K and 500K. The results show that both the mixing and the amorphization processes are influenced by the temperature at which ion bombardment is performed. The mixing rate is much higher at 500K than at low temperature; conversely, the amorphization rate decreases as the temperature increases. The composition of the amorphous phase formed during mixing was also demonstrated to depend on the irradiation temperature. ((orig.))

  18. Ultrawide band gap amorphous oxide semiconductor, Ga–Zn–O

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junghwan, E-mail: JH.KIM@lucid.msl.titech.ac.jp [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Miyokawa, Norihiko; Sekiya, Takumi; Ide, Keisuke [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Toda, Yoshitake [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama (Japan)

    2016-09-01

    We fabricated amorphous oxide semiconductor films, a-(Ga{sub 1–x}Zn{sub x})O{sub y}, at room temperature on glass, which have widely tunable band gaps (E{sub g}) ranging from 3.47–4.12 eV. The highest electron Hall mobility ~ 7 cm{sup 2} V{sup −1} s{sup −1} was obtained for E{sub g} = ~ 3.8 eV. Ultraviolet photoemission spectroscopy revealed that the increase in E{sub g} with increasing the Ga content comes mostly from the deepening of the valence band maximum level while the conduction band minimum level remains almost unchanged. These characteristics are explained by their electronic structures. As these films can be fabricated at room temperature on plastic, this achievement extends the applications of flexible electronics to opto-electronic integrated circuits associated with deep ultraviolet region. - Highlights: • Incorporation of H/H{sub 2}O stabilizes the amorphous phase. • Ultrawide band gap (~ 3.8 eV) amorphous oxide semiconductor was fabricated. • The increase in band gap comes mostly from the deepening of the valence band maximum level. • Donor level is more likely aligned to the valence band maximum level.

  19. Crystallization process and magnetic properties of amorphous iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Phu, N D; Luong, N H; Chau, N; Hai, N H; Ngo, D T; Hoang, L H

    2011-01-01

    This paper studied the crystallization process, phase transition and magnetic properties of amorphous iron oxide nanoparticles prepared by the microwave heating technique. Thermal analysis and magnetodynamics studies revealed many interesting aspects of the amorphous iron oxide nanoparticles. The as-prepared sample was amorphous. Crystallization of the maghemite γ-Fe 2 O 3 (with an activation energy of 0.71 eV) and the hematite α-Fe 2 O 3 (with an activation energy of 0.97 eV) phase occurred at around 300 deg. C and 350 deg. C, respectively. A transition from the maghemite to the hematite occurred at 500 deg. C with an activation energy of 1.32 eV. A study of the temperature dependence of magnetization supported the crystallization and the phase transformation. Raman shift at 660 cm -1 and absorption band in the infrared spectra at 690 cm -1 showed the presence of disorder in the hematite phase on the nanoscale which is supposed to be the origin of the ferromagnetic behaviour of that antiferromagnetic phase.

  20. Amorphous gallium oxide grown by low-temperature PECVD

    KAUST Repository

    Kobayashi, Eiji

    2018-03-02

    Owing to the wide application of metal oxides in energy conversion devices, the fabrication of these oxides using conventional, damage-free, and upscalable techniques is of critical importance in the optoelectronics community. Here, the authors demonstrate the growth of hydrogenated amorphous gallium oxide (a-GaO:H) thin-films by plasma-enhanced chemical vapor deposition (PECVD) at temperatures below 200 °C. In this way, conformal films are deposited at high deposition rates, achieving high broadband transparency, wide band gap (3.5-4 eV), and low refractive index (1.6 at 500 nm). The authors link this low refractive index to the presence of nanoscale voids enclosing H, as indicated by electron energy-loss spectroscopy. This work opens the path for further metal-oxide developments by low-temperature, scalable and damage-free PECVD processes.

  1. Amorphous Hafnium-Indium-Zinc Oxide Semiconductor Thin Film Transistors

    Directory of Open Access Journals (Sweden)

    Sheng-Po Chang

    2012-01-01

    Full Text Available We reported on the performance and electrical properties of co-sputtering-processed amorphous hafnium-indium-zinc oxide (α-HfIZO thin film transistors (TFTs. Co-sputtering-processed α-HfIZO thin films have shown an amorphous phase in nature. We could modulate the In, Hf, and Zn components by changing the co-sputtering power. Additionally, the chemical composition of α-HfIZO had a significant effect on reliability, hysteresis, field-effect mobility (μFE, carrier concentration, and subthreshold swing (S of the device. Our results indicated that we could successfully and easily fabricate α-HfIZO TFTs with excellent performance by the co-sputtering process. Co-sputtering-processed α-HfIZO TFTs were fabricated with an on/off current ratio of ~106, higher mobility, and a subthreshold slope as steep as 0.55 V/dec.

  2. Bacterial adhesion on amorphous and crystalline metal oxide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Almaguer-Flores, Argelia [Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Silva-Bermudez, Phaedra, E-mail: suriel21@yahoo.com [Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, 14389 México D.F. (Mexico); Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Galicia, Rey; Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico)

    2015-12-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO{sub 2} and ZrO{sub 2} coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical–chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO{sub 2} > ZrO{sub 2}) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO{sub 2}, which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion. - Highlights: • Amorphous (a) and crystalline (c) TiO{sub 2} and ZrO{sub 2} coatings were deposited. • The atomic ordering influences the coatings surface charge and nano-topography. • The atomic ordering modifies the bacterial adhesion for the same surface chemistry. • S. aureus adhesion was lower on a-TiO{sub 2} and a-ZrO{sub 2} than on their c-oxide counterpart. • E. coli adhesion on a-TiO{sub 2} was lower than on the c-TiO{sub 2}.

  3. The oxidative pulverisation of mixed oxide fuels

    International Nuclear Information System (INIS)

    Rance, Peter; Beznosyuk, Vassily

    2005-01-01

    An investigation of the oxidation of mixed uranium-plutonium oxide (MOx) fuels containing from 5-30% plutonium (heavy metal basis) in air and oxygen atmospheres has been undertaken. MOx pellets prepared by a co-precipitation process were oxidised at temperatures from 600 to 1200degC, samples were reduced back to the MO 2 state and then re-oxidised. Weight changes were monitored during each procedure and the phases present in the products from each treatment were analysed using X-ray diffraction (XRD). Samples containing up to 10% Pu were oxidised sufficiently to cause pulverisation of the fuel matrix by a single oxidation treatment at 600degC whereas samples containing higher plutonium contents required a cycle of oxidation-reduction-oxidation cause them to become fragmented. XRD data suggests the formation of plutonium-rich and plutonium-lean grains during the reduction cycle and it is suggested that the oxidation of plutonium-lean grains during re-oxidation step is responsible for the break up of the pellets during this step. (author)

  4. Study of oxidation behaviour of Zr-based bulk amorphous alloy Zr 65 ...

    Indian Academy of Sciences (India)

    The oxidation behaviour of Zr-based bulk amorphous alloy Zr65Cu17.5Ni10Al7.5 has been studied in air environment at various temperatures in the temperature range 591–684 K using a thermogravimetric analyser (TGA). The oxidation kinetics of the alloy in the amorphous phase obeys the parabolic rate law for oxidation ...

  5. Unification of catalytic water oxidation and oxygen reduction reactions: amorphous beat crystalline cobalt iron oxides.

    Science.gov (United States)

    Indra, Arindam; Menezes, Prashanth W; Sahraie, Nastaran Ranjbar; Bergmann, Arno; Das, Chittaranjan; Tallarida, Massimo; Schmeißer, Dieter; Strasser, Peter; Driess, Matthias

    2014-12-17

    Catalytic water splitting to hydrogen and oxygen is considered as one of the convenient routes for the sustainable energy conversion. Bifunctional catalysts for the electrocatalytic oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are pivotal for the energy conversion and storage, and alternatively, the photochemical water oxidation in biomimetic fashion is also considered as the most useful way to convert solar energy into chemical energy. Here we present a facile solvothermal route to control the synthesis of amorphous and crystalline cobalt iron oxides by controlling the crystallinity of the materials with changing solvent and reaction time and further utilize these materials as multifunctional catalysts for the unification of photochemical and electrochemical water oxidation as well as for the oxygen reduction reaction. Notably, the amorphous cobalt iron oxide produces superior catalytic activity over the crystalline one under photochemical and electrochemical water oxidation and oxygen reduction conditions.

  6. Synthesis of amorphous zirconium oxide with luminescent characteristics

    International Nuclear Information System (INIS)

    Barrera S, M.; Chavez G, M.; Soto E, A.M.; Velasquez O, C.; Garcia S, M.A.; Olvera T, L.; Rivera M, T.

    2004-01-01

    It was prepared zirconium oxide, ZrO 2 , by means of hydrolysis-condensation reactions (sol-gel method), using zirconium propoxide, Zr(C 3 H 7 O) 4 , as precursor and nitric acid, HNO 3 , as catalyst of the hydrolysis reaction. In this synthesis it was used a molar ratio water-alkoxide, r=n H2O /n Zr (C 3 H 7 0) 4 , high, similar to 200, so that the hydrolysis happens quickly and the nucleation and growth are completed in very little time. The solid was characterized with Ftir spectrophotometry, Differential thermal analysis (Dta), Thermal gravimetric analysis (T G), X-ray diffraction of powders, Scanning electron microscopy (Sem) and X-ray Dispersion energy (EDX). The ZrO 2 obtained by this way is amorphous even to 300 C and it consists of big aggregates. The amorphous ZrO 2 , presents thermoluminescent behavior, after it was irradiated with UV radiation and beta particles of 90 Sr/ 90 Y and it was thermally stimulated. (Author)

  7. Water oxidation by amorphous cobalt-based oxides: volume activity and proton transfer to electrolyte bases.

    Science.gov (United States)

    Klingan, Katharina; Ringleb, Franziska; Zaharieva, Ivelina; Heidkamp, Jonathan; Chernev, Petko; Gonzalez-Flores, Diego; Risch, Marcel; Fischer, Anna; Dau, Holger

    2014-05-01

    Water oxidation in the neutral pH regime catalyzed by amorphous transition-metal oxides is of high interest in energy science. Crucial determinants of electrocatalytic activity were investigated for a cobalt-based oxide film electrodeposited at various thicknesses on inert electrodes. For water oxidation at low current densities, the turnover frequency (TOF) per cobalt ion of the bulk material stayed fully constant for variation of the thickness of the oxide film by a factor of 100 (from about 15 nm to 1.5 μm). Thickness variation changed neither the nanostructure of the outer film surface nor the atomic structure of the oxide catalyst significantly. These findings imply catalytic activity of the bulk hydrated oxide material. Nonclassical dependence on pH was observed. For buffered electrolytes with pKa values of the buffer base ranging from 4.7 (acetate) to 10.3 (hydrogen carbonate), the catalytic activity reflected the protonation state of the buffer base in the electrolyte solution directly and not the intrinsic catalytic properties of the oxide itself. It is proposed that catalysis of water oxidation occurs within the bulk hydrated oxide film at the margins of cobalt oxide fragments of molecular dimensions. At high current densities, the availability of a proton-accepting base at the catalyst-electrolyte interface controls the rate of water oxidation. The reported findings may be of general relevance for water oxidation catalyzed at moderate pH by amorphous transition-metal oxides. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Graphitic carbon growth on crystalline and amorphous oxide substrates using molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Kim Christine

    2011-01-01

    Full Text Available Abstract We report graphitic carbon growth on crystalline and amorphous oxide substrates by using carbon molecular beam epitaxy. The films are characterized by Raman spectroscopy and X-ray photoelectron spectroscopy. The formations of nanocrystalline graphite are observed on silicon dioxide and glass, while mainly sp2 amorphous carbons are formed on strontium titanate and yttria-stabilized zirconia. Interestingly, flat carbon layers with high degree of graphitization are formed even on amorphous oxides. Our results provide a progress toward direct graphene growth on oxide materials. PACS: 81.05.uf; 81.15.Hi; 78.30.Ly.

  9. Stability of a novel synthetic amorphous manganese oxide in contrasting soils

    Czech Academy of Sciences Publication Activity Database

    Ettler, V.; Knytl, V.; Komárek, M.; Della Puppa, L.; Bordas, F.; Mihaljevič, M.; Klementová, Mariana; Šebek, O.

    2014-01-01

    Roč. 214, FEB (2014), s. 2-9 ISSN 0016-7061 Institutional support: RVO:61388980 Keywords : Amorphous manganese oxide * Stability * Soils * Chemical stabilization * Pollution Subject RIV: CA - Inorganic Chemistry Impact factor: 2.772, year: 2014

  10. Solid-State Electrochromic Device Consisting of Amorphous WO3 and Various Thin Oxide Layers

    Science.gov (United States)

    Shizukuishi, Makoto; Shimizu, Isamu; Inoue, Eiichi

    1980-11-01

    A mixed oxide containing Cr2O3 was introduced into an amorphous WO3 solid-state electrochromic device (ECD) in order to improve its colour memory effect. The electrochromic characteristics were greatly affected by the chemical constituents of a dielectric layer on the a-WO3 layer. Particularly, long memory effect and low power dissipation were attained in a solid-state ECD consisting of a-WO3 and Cr2O3\\cdotV2O5(50 wt.%). Some electrochromic characteristics of the a-WO3/Cr2O3\\cdotV2O5 ECD and the role of V2O5 were investigated.

  11. Thermal oxidation of Zr–Cu–Al–Ni amorphous metal thin films

    Energy Technology Data Exchange (ETDEWEB)

    Oleksak, R.P.; Hostetler, E.B.; Flynn, B.T. [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331 (United States); McGlone, J.M.; Landau, N.P.; Wager, J.F. [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331 (United States); Stickle, W.F. [Hewlett-Packard Company, Corvallis, OR 97333 (United States); Herman, G.S., E-mail: greg.herman@oregonstate.edu [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331 (United States)

    2015-11-30

    The initial stages of thermal oxidation for Zr–Cu–Al–Ni amorphous metal thin films were investigated using X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. The as-deposited films had oxygen incorporated during sputter deposition, which helped to stabilize the amorphous phase. After annealing in air at 300 °C for short times (5 min) this oxygen was found to segregate to the surface or buried interface. Annealing at 300 °C for longer times leads to significant composition variation in both vertical and lateral directions, and formation of a surface oxide layer that consists primarily of Zr and Al oxides. Surface oxide formation was initially limited by back-diffusion of Cu and Ni (< 30 min), and then by outward diffusion of Zr (> 30 min). The oxidation properties are largely consistent with previous observations of Zr–Cu–Al–Ni metallic glasses, however some discrepancies were observed which could be explained by the unique sample geometry of the amorphous metal thin films. - Highlights: • Thermal oxidation of amorphous Zr–Cu–Al–Ni thin films was investigated. • Significant short-range inhomogeneities were observed in the amorphous films. • An accumulation of Cu and Ni occurs at the oxide/metal interface. • Diffusion of Zr was found to limit oxide film growth.

  12. Thermochemical, structural and electronic properties of amorphous oxides, nitrides and sulfides

    Science.gov (United States)

    Zawadzki, Pawel; Lany, Stephan

    2015-03-01

    Amorphous thin films materials become increasingly important components of many functional devices such as thin film displays, photovoltaic cells or thin film transistors. Due to lack of grain boundaries, they have superior uniformity and smoothest, flexibility and corrosion resistance. Amorphous thin films are typically prepared using physical vapor deposition (PVD) techniques at temperatures well below the melting point of deposited material (<0.2Tm). Computational models of amorphous structures, however, are almost elusively constructed from a high temperature equilibrated crystal melt using simulated annealing (SA) protocol. To account for low temperature growth conditions of amorphous thin films we recently developed a new simulation technique. The method, kinetically limited minimization (KLM), starts from a randomly initialized structure and minimizes the total energy in a number of local structural perturbation-relaxation events. We apply KLM to model amorphous structures of 20 binary oxides, nitrides and sulfides and compare their thermochemical, structural and electronic properties.

  13. Synthesis and characterization of black amorphous titanium oxide nanoparticles by spark discharge method

    Science.gov (United States)

    Sabzehparvar, Milad; Kiani, Fatemeh; Tabrizi, Nooshin Salman

    2018-01-01

    In the last decade, while crystalline titanium oxide nanoparticles have been extensively studied, the studies on amorphous polymorph nanoparticles are relatively rare and limited to the ab initio studies. We have synthesized black amorphous titanium oxide nanoparticles using, for the first time, spark ablation in the argon gas followed by oxidation at atmospheric conditions. The produced nanoparticles were characterized by various characterization methods to study their structure, size, morphology, surface area and optical properties. XRD analysis indicated the formation of an amorphous TiO2 phase together with Ti, TiO and Ti2O3 crystalline phases. FESEM demonstrated that the produced nanoparticles had a narrow size distribution. EDS analysis suggested the formation of nonstoichiometric titanium oxide. TEM and SAED analyses showed that the majority of nanoparticles were in amorphous state and possessed an average size of about 5.2 nm. A very high specific surface area of 310 m2/g was measured for the produced nanoparticles by the BJH analysis. These titanium oxide nanoparticles showed an optical band gap of around 3.2eV and an enhanced absorption in the whole visible spectrum measured by the UV-Vis and DRS analyses due to the oxygen deficiency. These results indicate that the spark ablation in the gas phase is a facile method for the synthesis of black amorphous titanium oxide nanoparticles.

  14. Surface segregations in amorphous magnetically soft alloy under oxidation

    International Nuclear Information System (INIS)

    Bayankin, V.A.; Vasil'ev, V.Yu.; Volkova, I.B.; Skvortsova, N.G.; Smirnova, O.I.

    1997-01-01

    Using the Auger electron spectroscopy and electron reflecting diffraction the effects of high temperature annealing and electro-chemical treatment on chemical composition and atomic structure of amorphous magnetically soft alloy Co 57 Fe 5 Ni 10 Si 11 B 7 were investigated. It is shown the surface layers on the base of silicon carbide are formed during annealing while during electro-chemical treatment a cobalt borides are formed. Besides, during electro-chemical treatment the amorphous structure with different interatomic space are saved depending on time. At the time, mechanical properties of the alloy are not worse and it may be used for manufacturing of magnetodrives from amorphous magnetically soft materials [ru

  15. Magnetic Properties of Amorphous Fe-Si-B Powder Cores Mixed with Pure Iron Powder

    Science.gov (United States)

    Kim, Hyeon-Jun; Nam, Seul Ki; Kim, Kyu-Sung; Yoon, Sung Chun; Sohn, Keun-Yong; Kim, Mi-Rae; Sul Song, Yong; Park, Won-Wook

    2012-10-01

    Amorphous Fe-Si-B alloy was prepared by melt-spinning, and then the ribbons were pulverized and ball-milled to make the amorphous powder of ˜25 µm in size. Subsequently those were mixed with pure iron powders with an average particle size of 3 µm, and 1.5 wt % water glass diluted by distilled water at the ratio of 1:2. The powder mixtures were cold compacted at 650 MPa in toroid die, and heat treated at 430-440 °C under a nitrogen atmosphere for 1 h and 30 min, respectively. The soft magnetic properties of powder core were investigated using a B-H analyzer and a flux meter at the frequency range of ˜100 kHz. The microstructure was observed using scanning electron microscope (SEM), and the density of the core was measured using the principle of Archimedes. Based on the experimental results, the amorphous powder mixed with pure iron powder showed the improved powder compactability, which resulted in the increased permeability and the reduced core loss.

  16. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen

    International Nuclear Information System (INIS)

    Sallis, S.; Williams, D. S.; Butler, K. T.; Walsh, A.; Quackenbush, N. F.; Junda, M.; Podraza, N. J.; Fischer, D. A.; Woicik, J. C.; White, B. E.; Piper, L. F. J.

    2014-01-01

    The origin of the deep subgap states in amorphous indium gallium zinc oxide (a-IGZO), whether intrinsic to the amorphous structure or not, has serious implications for the development of p-type transparent amorphous oxide semiconductors. We report that the deep subgap feature in a-IGZO originates from local variations in the oxygen coordination and not from oxygen vacancies. This is shown by the positive correlation between oxygen composition and subgap intensity as observed with X-ray photoelectron spectroscopy. We also demonstrate that the subgap feature is not intrinsic to the amorphous phase because the deep subgap feature can be removed by low-temperature annealing in a reducing environment. Atomistic calculations of a-IGZO reveal that the subgap state originates from certain oxygen environments associated with the disorder. Specifically, the subgap states originate from oxygen environments with a lower coordination number and/or a larger metal-oxygen separation.

  17. The Potential of Amorphous Solid Secondary Organic Aerosol to Form Mixed-Phase and Cirrus Clouds

    Science.gov (United States)

    Knopf, D. A.; Wang, B.; Lambe, A. T.; Massoli, P.; Onasch, T. B.; Davidovits, P.; Worsnop, D. R.

    2012-12-01

    Atmospheric ice formation by heterogeneous nucleation, which results in cirrus and mixed-phase cloud formation, is one of the least understood processes affecting the global radiation budget, the hydrological cycle, and water vapor distribution. It is commonly assumed that inorganic particles such as mineral dust and solid ammonium sulfate represent important atmospheric ice nuclei (IN). However, a growing body of evidence suggests that secondary organic aerosols (SOA), which are ubiquitous in the atmosphere, exist in a solid (glassy) state. This implies that SOA may also play a role in ice cloud formation by acting as IN, but has not previously been experimentally verified. Here, we report observations of water uptake and ice nucleation via condensation, immersion, and deposition modes initiated by amorphous SOA particles at temperatures from T = 200 - 250 K and relative humidity (RH) from subsaturation conditions up to water saturation. SOA particles with oxygen-to-carbon (O/C) ratios ranging from 0.3 to 1.0 are generated from gas-phase OH oxidation of naphthalene in a flow reactor. At T > 230 K, water uptake at subsaturation conditions is correlated with SOA oxidation level (O/C ratio). This initial water uptake is followed by a moisture-induced phase transition and subsequent immersion freezing. At T measurements of particle density, hygroscopicity, and bounced fraction, the latter indicating particle phase state. Above Tg, water uptake and immersion freezing is observed when the particles are liquid or semi-solid. Below Tg, deposition ice nucleation is observed when the particles are solid. The data show that particle phase and viscosity govern the particles' response to temperature and RH and provide a straightforward interpretation for the observed different heterogeneous ice nucleation pathways and water uptake by the laboratory-generated SOA and previously investigated fulvic acid surrogate particles and organic dominated field-collected particles. These

  18. Fabrication of amorphous silicon nanoribbons by atomic force microscope tip-induced local oxidation for thin film device applications

    International Nuclear Information System (INIS)

    Pichon, L; Rogel, R; Demami, F

    2010-01-01

    We demonstrate the feasibility of induced local oxidation of amorphous silicon by atomic force microscopy. The resulting local oxide is used as a mask for the elaboration of a thin film silicon resistor. A thin amorphous silicon layer deposited on a glass substrate is locally oxidized following narrow continuous lines. The corresponding oxide line is then used as a mask during plasma etching of the amorphous layer leading to the formation of a nanoribbon. Such an amorphous silicon nanoribbon is used for the fabrication of the resistor

  19. Characterisation of reduced graphene oxides prepared from natural flaky, lump and amorphous graphites

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Weijun; Li, Hongqiang, E-mail: lhq-18@163.com; Hu, Yang; Liu, Yanyan; Song, Shaoxian

    2016-06-15

    Highlights: • Natural flaky, lumpy and amorphous graphites were used to synthesis rGO. • Investigation the effect of the crystal morphology on the oxidation process of GrO and characteristics of prepared rGO. • Low graphitisation degree, big specific surface area and small lateral size were beneficial to the oxidation of graphite. - Abstract: The characterisation of reduced graphene oxides (rGOs) prepared from natural flaky, lumpy, and amorphous graphites using Hummers method was investigated. The prepared graphite oxides (GrOs) and rGOs were characterised by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, UV–vis spectroscopy, atomic force microscopy and electrochemical performance. The results showed that amorphous graphite was much easier to oxidise than lumpy and flaky graphites and was preferable for preparing single or double layer graphene because low graphitisation degree, high defect degree, high specific surface area and small crystal size were beneficial for (1) the oxidants to attack the exposed carbon atoms, (2) the intercalation of oxidants, and (3) the diffusion of oxidants between graphitic layers. In addition, rGO synthesised from amorphous graphite had the most defects and the smallest size of the in-plane sp{sup 2} domains compared to those obtained from the other two nature graphites.

  20. Ion and mixed conducting oxides as catalysts

    NARCIS (Netherlands)

    Gellings, P.J.; Bouwmeester, Henricus J.M.

    1992-01-01

    This paper gives a survey of the catalytic properties of solid oxides which display oxygen ion or mixed (i.e. ionic + electronic) conductivity. Particular consideration is given to the oxidation-reduction reactions of gas phase components, but attention is also devoted to oxygen exchange between gas

  1. Unipolar resistive switching behaviors in amorphous lutetium oxide films

    Science.gov (United States)

    Gao, Xu; Xia, Yidong; Xu, Bo; Kong, Jizhou; Guo, Hongxuan; Li, Kui; Li, Haitao; Xu, Hanni; Chen, Kai; Yin, Jiang; Liu, Zhiguo

    2010-10-01

    The resistive switching properties in the amorphous Lu2O3 films deposited by pulsed laser deposition have been investigated. Well unipolar switching behaviors of Pt/Lu2O3/Pt stacks were obtained. The memory cells exhibited a high resistance ratio over 1×103, fast programming speed within 30 ns, and no obvious degradation after an endurance of 300 switching cycles and a duration of 3.2×106 s. The first-principles calculation indicates that the oxygen vacancies in cubic Lu2O3 will form defective energy level below the bottom of conduction band, and reduce the band gap. The absence of grain boundaries in the amorphous Lu2O3 films helps us attribute the switching mechanism of such stacks to the possible redistribution of defects related to oxygen vacancies along the filamentary paths during the resistive switching process.

  2. Aqueous ultracapacitors using amorphous MnO2 and reduced graphene oxide

    Science.gov (United States)

    Mery, Adrien; Ghamouss, Fouad; Autret, Cécile; Farhat, Douaa; Tran-Van, François

    2016-02-01

    Herein, synthesis and characterization of amorphous MnO2 and application in asymmetric aqueous ultracapacitors are reported. Different amorphous manganese oxide (MnO2) materials were synthesized from the reduction of KMnO4 in different media such as ethanol (EtOH) or dimethylformamide (DMF). The electrochemical behavior of amorphous MnO2, labeled MnO2-Et and MnO2-DMF, were studied by using cyclic voltammetry, impedance spectroscopy, and galvanostatic cycling in aqueous electrolyte. XRD, BET, TEM, and SEM characterizations highlighted the amorphous nature and the nanostructuration of these MnO2 materials. BET measurement established that these amorphous MnO2 are mesoporous. In addition, MnO2-Et exhibits a larger specific surface area (168 m2 g-1), a narrower pore diameters distribution with lower diameters compared to MnO2-DMF. These results are in agreement with the electrochemical results. Indeed, MnO2-Et shows a higher specific capacitance and lower impedance in aqueous K2SO4 electrolyte. Furthermore, aqueous asymmetric ultracapacitors were assembled and studied using amorphous MnO2 as positive electrode and reduced graphene oxide (rGO) as negative electrode. These asymmetric systems exhibit an electrochemical stability for more than 20,000 galvanostatic cycles at current density of 1 A g-1 with an operating voltage of 2 V.

  3. Radiation induced amorphization resistance in A2O3-BO2 oxides

    International Nuclear Information System (INIS)

    Sickafus, Kurt E.; Valdez, James A.; Williams, Jesse R.; Grimes, Robin W.; Hawkins, Heather T.

    2002-01-01

    Much work has been devoted in recent years to identifying ceramic materials that can withstand high doses of radiation without incurring excessive defect accumulation, or suffering undesirable transformations such as amorphization. In this paper, it is proposed that a large range of A 2 O 3 -BO 2 oxide compositions, with structures related to the fluorite crystal structure, may exhibit exceptional resistance to radiation-induced amorphization. Results of heavy ion irradiations on selected A 2 O 3 -BO 2 oxide compounds are presented in support of this prediction

  4. Plutonium oxides and uranium and plutonium mixed oxides. Carbon determination

    International Nuclear Information System (INIS)

    Anon.

    Determination of carbon in plutonium oxides and uranium plutonium mixed oxides, suitable for a carbon content between 20 to 3000 ppm. The sample is roasted in oxygen at 1200 0 C, the carbon dioxide produced by combustion is neutralized by barium hydroxide generated automatically by coulometry [fr

  5. Thermal resistances of crystalline and amorphous few-layer oxide thin films

    Directory of Open Access Journals (Sweden)

    Liang Chen

    2017-11-01

    Full Text Available Thermal insulation at nanoscale is of crucial importance for non-volatile memory devices such as phase change memory and memristors. We perform non-equilibrium molecular dynamics simulations to study the effects of interface materials and structures on thermal transport across the few-layer dielectric nanostructures. The thermal resistance across few-layer nanostructures and thermal boundary resistance at interfaces consisting of SiO2/HfO2, SiO2/ZrO2 or SiO2/Al2O3 are obtained for both the crystalline and amorphous structures. Based on the comparison temperature profiles and phonon density of states, we show that the thermal boundary resistances are much larger in crystalline few-layer oxides than the amorphous ones due to the mismatch of phonon density of state between distinct oxide layers. Compared with the bulk SiO2, the increase of thermal resistance across crystalline few-layer oxides results from the thermal boundary resistance while the increase of thermal resistance across amorphous few-layer oxides is attributed to the lower thermal conductivity of the amorphous thin films.

  6. Study of oxidation behaviour of Zr-based bulk amorphous alloy ...

    Indian Academy of Sciences (India)

    Unknown

    5Ni10Al7⋅5 has been studied in air environment at various temperatures in the temperature range 591–684 K using a thermogravimetric analyser (TGA). The oxidation kinetics of the alloy in the amorphous phase obeys the parabolic rate law ...

  7. Structural and magnetic properties of amorphous iron oxide

    Science.gov (United States)

    Yusuf, S. M.; Mukadam, M. D.; De Teresa, J. M.; Ibarra, M. R.; Kohlbrecher, J.; Heinemann, A.; Wiedenmann, A.

    2010-02-01

    The structural and magnetic properties of amorphous Fe2O3 have been studied by polarized neutron small angle scattering, transmission electron microscopy (TEM) and dc magnetization techniques. The small angle neutron scattering (SANS) study shows two different lognormal distributions of particle sizes with mean diameters of ∼4.14 and 1.21 nm with standard deviations 0.33 and 0.40, respectively, and the structure factor corresponds to a mass fractal with a fractal dimension of 2.42. A short-range crystalline nature for these nanoparticles has been confirmed from the high resolution TEM study. The magnetic field and temperature dependent magnetization has been found to scale very well with the SANS signal. It is evident from the field dependent polarized SANS study that the spin clusters do not grow in size under applied field; rather a larger spin alignment occurs under field.

  8. Mixed iron-manganese oxide nanoparticles

    NARCIS (Netherlands)

    Lai, Jriuan; Shafi, Kurikka V.P.M.; Ulman, Abraham; Loos, Katja; Yang, Nan-Loh; Cui, Min-Hui; Vogt, Thomas; Estournès, Claude; Locke, Dave C.

    2004-01-01

    Designing nanoparticles for practical applications requires knowledge and control of how their desired properties relate to their composition and structure. Here, we present a detailed systematic study of mixed iron-manganese oxide nanoparticles, showing that ultrasonication provides the high-energy

  9. Thermal oxidation of reactively sputtered amorphous W80N20 films

    International Nuclear Information System (INIS)

    Vu, Q.T.; Pokela, P.J.; Garden, C.L.; Kolawa, E.; Raud, S.; Nicolet, M.

    1990-01-01

    The oxidation behavior of reactively sputtered amorphous tungsten nitride of composition W 80 N 20 was investigated in dry and wet oxidizing ambient in the temperature range of 450 degree C--575 degree C. A single WO 3 oxide phase is observed. The growth of the oxide follows a parabolic time dependence which is attributed to a process controlled by the diffusivity of the oxidant in the oxide. The oxidation process is thermally activated with an activation energy of 2.5±0.05 eV for dry ambient and 2.35±0.05 eV for wet ambient. The pre-exponential factor of the reaction constant for dry ambient is 1.1x10 21 A 2 /min; that for wet ambient is only about 10 times less and is equal to 1.3x10 20 A 2 /min

  10. Color-selective photodetection from intermediate colloidal quantum dots buried in amorphous-oxide semiconductors.

    Science.gov (United States)

    Cho, Kyung-Sang; Heo, Keun; Baik, Chan-Wook; Choi, Jun Young; Jeong, Heejeong; Hwang, Sungwoo; Lee, Sang Yeol

    2017-10-10

    We report color-selective photodetection from intermediate, monolayered, quantum dots buried in between amorphous-oxide semiconductors. The proposed active channel in phototransistors is a hybrid configuration of oxide-quantum dot-oxide layers, where the gate-tunable electrical property of silicon-doped, indium-zinc-oxide layers is incorporated with the color-selective properties of quantum dots. A remarkably high detectivity (8.1 × 10 13 Jones) is obtained, along with three major findings: fast charge separation in monolayered quantum dots; efficient charge transport through high-mobility oxide layers (20 cm 2  V -1  s -1 ); and gate-tunable drain-current modulation. Particularly, the fast charge separation rate of 3.3 ns -1 measured with time-resolved photoluminescence is attributed to the intermediate quantum dots buried in oxide layers. These results facilitate the realization of efficient color-selective detection exhibiting a photoconductive gain of 10 7 , obtained using a room-temperature deposition of oxide layers and a solution process of quantum dots. This work offers promising opportunities in emerging applications for color detection with sensitivity, transparency, and flexibility.The development of highly sensitive photodetectors is important for image sensing and optical communication applications. Cho et al., report ultra-sensitive photodetectors based on monolayered quantum dots buried in between amorphous-oxide semiconductors and demonstrate color-detecting logic gates.

  11. Alternative oxidation technologies for organic mixed waste

    International Nuclear Information System (INIS)

    Borduin, L.C.; Fewell, T.

    1998-01-01

    The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site (SRS), and direct chemical oxidation at Lawrence Livermore National Laboratory (LLNL). All three technologies are at advanced stages of development or are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory (LBNL), and steam reforming, a commercial process being supported by the Department of Energy (DOE). Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each of the technologies are presented

  12. Toward Adequate Operation of Amorphous Oxide Thin-Film Transistors for Low-Concentration Gas Detection.

    Science.gov (United States)

    Kim, Kyung Su; Ahn, Cheol Hyoun; Jung, Sung Hyeon; Cho, Sung Woon; Cho, Hyung Koun

    2018-03-28

    We suggest the use of a thin-film transistor (TFT) composed of amorphous InGaZnO (a-IGZO) as a channel and a sensing layer for low-concentration NO 2 gas detection. Although amorphous oxide layers have a restricted surface area when reacting with NO 2 gas, such TFT sensors have incomparable advantages in the aspects of electrical stability, large-scale uniformity, and the possibility of miniaturization. The a-IGZO thin films do not possess typical reactive sites and grain boundaries, so that the variation in drain current of the TFTs strictly originates from oxidation reaction between channel surface and NO 2 gas. Especially, the sensing data obtained from the variation rate of drain current makes it possible to monitor efficiently and quickly the variation of the NO 2 concentration. Interestingly, we found that enhancement-mode TFT (EM-TFT) allows discrimination of the drain current variation rate at NO 2 concentrations ≤10 ppm, whereas a depletion-mode TFT is adequate for discriminating NO 2 concentrations ≥10 ppm. This discrepancy is attributed to the ratio of charge carriers contributing to gas capture with respect to total carriers. This capacity for the excellent detection of low-concentration NO 2 gas can be realized through (i) three-terminal TFT gas sensors using amorphous oxide, (ii) measurement of the drain current variation rate for high selectivity, and (iii) an EM mode driven by tuning the electrical conductivity of channel layers.

  13. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN P-98-0002...

  14. Investigation of Mixed Oxide Catalysts for NO Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Szanyi, Janos; Karim, Ayman M.; Pederson, Larry R.; Kwak, Ja Hun; Mei, Donghai; Tran, Diana N.; Herling, Darrell R.; Muntean, George G.; Peden, Charles HF; Howden, Ken; Qi, Gongshin; Li, Wei

    2014-12-09

    The oxidation of engine-generated NO to NO2 is an important step in the reduction of NOx in lean engine exhaust because NO2 is required for the performance of the LNT technology [2], and it enhances the activities of ammonia selective catalytic reduction (SCR) catalysts [1]. In particular, for SCR catalysts an NO:NO2 ratio of 1:1 is most effective for NOx reduction, whereas for LNT catalysts, NO must be oxidized to NO2 before adsorption on the storage components. However, NO2 typically constitutes less than 10% of NOx in lean exhaust, so catalytic oxidation of NO is essential. Platinum has been found to be especially active for NO oxidation, and is widely used in DOC and LNT catalysts. However, because of the high cost and poor thermal durability of Pt-based catalysts, there is substantial interest in the development of alternatives. The objective of this project, in collaboration with partner General Motors, is to develop mixed metal oxide catalysts for NO oxidation, enabling lower precious metal usage in emission control systems. [1] M. Koebel, G. Madia, and M. Elsener, Catalysis Today 73, 239 (2002). [2] C. H. Kim, G. S. Qi, K. Dahlberg, and W. Li, Science 327, 1624 (2010).

  15. Water oxidation catalysis: an amorphous quaternary Ba-Sr-Co-Fe oxide as a promising electrocatalyst for the oxygen-evolution reaction.

    Science.gov (United States)

    Zhang, Cuijuan; Berlinguette, Curtis P; Trudel, Simon

    2016-01-25

    We present an amorphous quaternary Ba-Sr-Co-Fe oxide (a-BSCF) with a specific stoichiometry, readily fabricated via a photochemical decomposition method. a-BSCF demonstrates high catalytic activity towards the oxygen-evolution reaction (OER).

  16. The use of amorphous silica-alumina-based additive in the adhesive dry mixes of building materials

    Directory of Open Access Journals (Sweden)

    Loganina VI

    2018-01-01

    Full Text Available Proved the possibility of using amorphous aluminosilicate as a modifying agent for the adhesive dry mixes. Are given the data on the microstructure and chemical composition of the amorphous aluminosilicates. Installed , that the microstructure of the synthetic additives is characterized by particles of round shape, dimensions 5,208-5,704 μm, Also there are particles of elongated shape in size 7.13-8.56 μm. Predominate chemical elements O, Si, Na, S, and Al in quantity 60.69%, 31.26%, 24.23%, 18.69% and 8.29% respectively. Described the character changes in the rheological properties of cement-sand mortar, depending on the percentage of additives. Determined, that the introduction in the cement-sand mortar the additive based on amorphous aluminosilicate leads to higher values of plastic strength. Are given the model of cement stone strength using synthetic additives in the formulation. The results of the evaluation of the frost resistance of cement-based tile adhesives with the use of amorphous aluminosilicates as a modifying additive are presented. In the article is determined the mark on frost resistance of tile glue and frost resistance of the contact zone of tile glue. The evaluation of the performance properties of the layer of tile adhesive on the basis of cement, dry mixes. The calculation of the value of displacement of the adhesive layer made on the basis of the developed recipes cement dry mixes applied to a vertical surface. Experimental data obtained values of displacement tiles relative to the substrate. Described the results of physical and mechanical properties of tile adhesive made on the basis of the developed adhesive dry mix formulations.

  17. effects of mixed of mixed of mixed alkaline earth oxides in potash

    African Journals Online (AJOL)

    eobe

    2 DEPARTMENT OF MECHANICAL ENGINEERING, UNIVERSITY OF UYO,UYO, AKWA-IBOM STATE, NIGERIA. E-mail address mail address mail addresses: 1 oyeahama1@yahoo.com, 2 memetie@yahoo.com. ABSTRACT. The aim of this work is to investigate the effects of mixed alkaline earth oxide. The aim of this work ...

  18. Method to quantify the delocalization of electronic states in amorphous semiconductors and its application to assessing charge carrier mobility of p -type amorphous oxide semiconductors

    Science.gov (United States)

    de Jamblinne de Meux, A.; Pourtois, G.; Genoe, J.; Heremans, P.

    2018-01-01

    Amorphous semiconductors are usually characterized by a low charge carrier mobility, essentially related to their lack of long-range order. The development of such material with higher charge carrier mobility is hence challenging. Part of the issue comes from the difficulty encountered by first-principles simulations to evaluate concepts such as the electron effective mass for disordered systems since the absence of periodicity induced by the disorder precludes the use of common concepts derived from condensed matter physics. In this paper, we propose a methodology based on first-principles simulations that partially solves this problem, by quantifying the degree of delocalization of a wave function and of the connectivity between the atomic sites within this electronic state. We validate the robustness of the proposed formalism on crystalline and molecular systems and extend the insights gained to disordered/amorphous InGaZnO4 and Si. We also explore the properties of p -type oxide semiconductor candidates recently reported to have a low effective mass in their crystalline phases [G. Hautier et al., Nat. Commun. 4, 2292 (2013), 10.1038/ncomms3292]. Although in their amorphous phase none of the candidates present a valence band with delocalization properties matching those found in the conduction band of amorphous InGaZnO4, three of the seven analyzed materials show some potential. The most promising candidate, K2Sn2O3 , is expected to possess in its amorphous phase a slightly higher hole mobility than the electron mobility in amorphous silicon.

  19. Cyclical Annealing Technique To Enhance Reliability of Amorphous Metal Oxide Thin Film Transistors.

    Science.gov (United States)

    Chen, Hong-Chih; Chang, Ting-Chang; Lai, Wei-Chih; Chen, Guan-Fu; Chen, Bo-Wei; Hung, Yu-Ju; Chang, Kuo-Jui; Cheng, Kai-Chung; Huang, Chen-Shuo; Chen, Kuo-Kuang; Lu, Hsueh-Hsing; Lin, Yu-Hsin

    2018-02-26

    This study introduces a cyclical annealing technique that enhances the reliability of amorphous indium-gallium-zinc-oxide (a-IGZO) via-type structure thin film transistors (TFTs). By utilizing this treatment, negative gate-bias illumination stress (NBIS)-induced instabilities can be effectively alleviated. The cyclical annealing provides several cooling steps, which are exothermic processes that can form stronger ionic bonds. An additional advantage is that the total annealing time is much shorter than when using conventional long-term annealing. With the use of cyclical annealing, the reliability of the a-IGZO can be effectively optimized, and the shorter process time can increase fabrication efficiency.

  20. Synthesis and characterization of composites of mixed oxides of iron ...

    Indian Academy of Sciences (India)

    article/fulltext/boms/034/04/0843-0851. Keywords. Nanocomposites; polymer matrix; neodymium oxide; spinel ferrites; quadrupole splitting; Scherrer equation. Abstract. Nanocomposites of mixed oxides of iron and neodymium in polymer matrix of ...

  1. Amorphous iron–chromium oxide nanoparticles with long-term stability

    Energy Technology Data Exchange (ETDEWEB)

    Iacob, Mihail [“Petru Poni” Institute of Macromolecular Chemistry, Iasi 700487 (Romania); Institute of Chemistry of ASM, Academiei str. 3, Chisinau 2028, Republic of Moldova (Moldova, Republic of); Cazacu, Maria, E-mail: mcazacu@icmpp.ro [“Petru Poni” Institute of Macromolecular Chemistry, Iasi 700487 (Romania); Turta, Constantin [Institute of Chemistry of ASM, Academiei str. 3, Chisinau 2028, Republic of Moldova (Moldova, Republic of); Doroftei, Florica [“Petru Poni” Institute of Macromolecular Chemistry, Iasi 700487 (Romania); Botko, Martin; Čižmár, Erik; Zeleňáková, Adriana; Feher, Alexander [Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, SK-04154 Košice (Slovakia)

    2015-05-15

    Highlights: • Fe–Cr oxide nanoparticles with pre-established metals ratio were obtained. • The amorphous state and its long-term stability were highlighted by X-ray diffraction. • The average diameter of dried nanoparticles was 3.5 nm, as was estimated by TEM, AFM. • In hexane dispersion, nanoparticles with diameter in the range 2.33–4.85 nm were found. • Superparamagnetic state of NPs co-exists with diamagnetism of the organic layer. - Abstract: Iron–chromium nanoparticles (NPs) were obtained through the thermal decomposition of μ{sub 3}-oxo heterotrinuclear (FeCr{sub 2}O) acetate in the presence of sunflower oil and dodecylamine (DA) as surfactants. The average diameter of the NPs was 3.5 nm, as estimated on the basis of transmission electron microscopy and atomic force microscopy images. Both techniques revealed the formation of roughly approximated spheres with some irregularities and agglomerations in larger spherical assemblies of 50–100 nm. In hexane, NPs with diameters in the 2.33–4.85 nm range are individually dispersed, as emphasized by dynamic light scattering measurements. The amorphous nature of the product was emphasized by X-ray powder diffraction. The study of the magnetic properties shows the presence of superparamagnetic state of iron–chromium oxide NPs and the diamagnetic contribution from DA layer forming a shell of NPs.

  2. Selective propene oxidation on mixed metal oxide catalysts

    International Nuclear Information System (INIS)

    James, David William

    2002-01-01

    Selective catalytic oxidation processes represent a large segment of the modern chemical industry and a major application of these is the selective partial oxidation of propene to produce acrolein. Mixed metal oxide catalysts are particularly effective in promoting this reaction, and the two primary candidates for the industrial process are based on iron antimonate and bismuth molybdate. Some debate exists in the literature regarding the operation of these materials and the roles of their catalytic components. In particular, iron antimonate catalysts containing excess antimony are known to be highly selective towards acrolein, and a variety of proposals for the enhanced selectivity of such materials have been given. The aim of this work was to provide a direct comparison between the behaviour of bismuth molybdate and iron antimonate catalysts, with additional emphasis being placed on the component single oxide phases of the latter. Studies were also extended to other antimonate-based catalysts, including cobalt antimonate and vanadium antimonate. Reactivity measurements were made using a continuous flow microreactor, which was used in conjunction with a variety of characterisation techniques to determine relationships between the catalytic behaviour and the properties of the materials. The ratio of Fe/Sb in the iron antimonate catalyst affects the reactivity of the system under steady state conditions, with additional iron beyond the stoichiometric value being detrimental to the acrolein selectivity, while extra antimony provides a means of enhancing the selectivity by decreasing acrolein combustion. Studies on the single antimony oxides of iron antimonate have shown a similarity between the reactivity of 'Sb 2 O 5 ' and FeSbO 4 , and a significant difference between these and the Sb 2 O 3 and Sb 2 O 4 phases, implying that the mixed oxide catalyst has a surface mainly comprised of Sb 5+ . The lack of reactivity of Sb 2 O 4 implies a similarity of the surface with

  3. Sol-Gel/Hydrothermal Synthesis of Mixed Metal Oxide

    African Journals Online (AJOL)

    Mixed metal oxides of titanium and zinc nanocomposites were prepared through sol-gel method under hydrothermal condition ... Keywords: Nanocomposites, Titanium dioxide, Zinc oxide, Particle sizes, Optical property, X-Ray Diffraction. ABSTRACT. 321 ... doping with other semiconductors like zinc oxide, aluminium oxide ...

  4. Highly flexible resistive switching memory based on amorphous-nanocrystalline hafnium oxide films.

    Science.gov (United States)

    Shang, Jie; Xue, Wuhong; Ji, Zhenghui; Liu, Gang; Niu, Xuhong; Yi, Xiaohui; Pan, Liang; Zhan, Qingfeng; Xu, Xiao-Hong; Li, Run-Wei

    2017-06-01

    Flexible and transparent resistive switching memories are highly desired for the construction of portable and even wearable electronics. Upon optimization of the microstructure wherein an amorphous-nanocrystalline hafnium oxide thin film is fabricated, an all-oxide based transparent RRAM device with stable resistive switching behavior that can withstand a mechanical tensile stress of up to 2.12% is obtained. It is demonstrated that the superior electrical, thermal and mechanical performance of the ITO/HfO x /ITO device can be ascribed to the formation of pseudo-straight metallic hafnium conductive filaments in the switching layer, and is only limited by the choice of electrode materials. When the ITO bottom electrode is replaced with platinum metal, the mechanical failure threshold of the device can be further extended.

  5. Chronological change of electrical resistance in GeCu2Te3 amorphous film induced by surface oxidation

    International Nuclear Information System (INIS)

    Saito, Yuta; Shindo, Satoshi; Sutou, Yuji; Koike, Junichi

    2014-01-01

    Unusual chronological electrical resistance change behavior was investigated for amorphous GeCu 2 Te 3 phase change material. More than a 1 order decrease of electrical resistance was observed in the air even at room temperature. The resistance of the amorphous film gradually increased with increasing temperature and then showed a drop upon crystallization. Such unusual behavior was attributed to the oxidation of the amorphous GeCu 2 Te 3 film. From the compositional depth profile measurement, the GeCu 2 Te 3 film without any capping layer was oxidized in air at room temperature and the formed oxide was mainly composed of germanium oxide. Consequently, a highly-conductive Cu-rich layer was formed in the vicinity of the surface of the film, which reduced the total resistance of the film. The present results could provide insight into the chronological change of electrical resistance in amorphous chalcogenide materials, indicating that not only relaxation of the amorphous, but also a large atomic diffusion contributes to the chronological resistance change. (paper)

  6. Mixed hyperfine interaction in amorphous Fe-Zr sputtered films in external magnetic field - a 57Fe Moessbauer study

    International Nuclear Information System (INIS)

    Fries, S.M.; Crummenauer, J.; Wagner, H.-G.; Gonser, U.; Chien, C.L.

    1986-01-01

    Conventional 57 Fe-Moessbauer spectroscopy provides only information about the magnitude of the splitting QS in the case of electric quadrupole hyperfine interaction, but not on the sign of the main component of the electric field gradient (EFG) or the asymmetry parameter which are sensitive to the local environment of the 57 Fe nuclei. This kind of information is obtained by measurements in external magnetic fields. In the case of amorphous Fe-Zr sputtered films mixed hyperfine interaction leads to a clear change in the behaviour of the Zr-rich and the Fe-rich alloys, indicating the existence of magnetic clusters in the Fe-rich samples. (Auth.)

  7. Mediated electrochemical oxidation of mixed wastes

    International Nuclear Information System (INIS)

    Chiba, Z.

    1993-04-01

    The Mediated Electrochemical Oxidation (MEO) process was studied for destroying low-level combustible mixed wastes at Rocky Flats Plant. Tests were performed with non-radioactive surrogate materials: Trimsol for contaminated cutting oils, and reagent-grade cellulose for contaminated cellulosic wastes. Extensive testing was carried out on Trimsol in both small laboratory-scale apparatus and on a large-scale system incorporating an industrial-size electrochemical cell. Preliminary tests were also carried out in the small-scale system with cellulose. Operating and system parameters that were studied were: use of a silver-nitric acid versus a cobalt-sulfuric acid system, effect of electrolyte temperature, effect of acid concentration, and effect of current density. Destruction and coulombic efficiencies were calculated using data obtained from continuous carbon dioxide monitors and total organic carbon (TOC) analysis of electrolyte samples. For Trimsol, the best performance was achieved with the silver-nitrate system at high acid concentrations, temperatures, and current densities. Destruction efficiencies of 99% or greater, and coulombic efficiencies up to 70% were obtained. For the cellulose, high destruction efficiencies and reasonable coulombic efficiencies were obtained for both silver-nitrate and cobalt-sulfate systems

  8. Tailoring the optical and hydrophobic property of zinc oxide nanorod by coating with amorphous graphene

    Science.gov (United States)

    Pahari, D.; Das, N. S.; Das, B.; Chattopadhyay, K. K.; Banerjee, D.

    2016-09-01

    Zinc oxide (ZnO) nanorods were synthesized at room temperature on potassium permanganate activated silicon and glass substrate by simple chemical method using zinc acetate as precursor. To modify the surface energy of the as prepared ZnO thin films the samples were coated with amorphous graphene (a-G) synthesized by un-zipping of chemically synthesized amorphous carbon nanotubes (a-CNTs). All the pure and coated samples were characterized by x-ray diffraction, field emission scanning electron microscope, Raman spectroscopy, and Fourier transformed infrared spectroscopy. The roughness analysis of the as prepared samples was done by atomic force microscopic analysis. The detail optical properties of all the samples were studied with the help of a UV-Visible spectrophotometer. The surface energy of the as prepared pure and coated samples was calculated by measuring the contact angle of two different liquids. It is seen that the water repellence of ZnO nanorods got increased after they are being coated with a-Gs. Also even after UV irradiation the contact angle remain same unlike the case for the uncoated sample where the contact angle gets decreased significantly after UV irradiation. Existing Cassie-Wenzel model has been employed along with the Owen's approach to determine the different components of surface energy.

  9. Amorphous Oxide Thin Film Transistors with Nitrogen-Doped Hetero-Structure Channel Layers

    Directory of Open Access Journals (Sweden)

    Haiting Xie

    2017-10-01

    Full Text Available The nitrogen-doped amorphous oxide semiconductor (AOS thinfilm transistors (TFTs with double-stacked channel layers (DSCL were prepared and characterized. The DSCL structure was composed of nitrogen-doped amorphous InGaZnO and InZnO films (a-IGZO:N/a-IZO:N or a-IZO:N/a-IGZO:N and gave the corresponding TFT devices large field-effect mobility due to the presence of double conduction channels. The a-IZO:N/a-IGZO:N TFTs, in particular, showed even better electrical performance (µFE = 15.0 cm2・V−1・s−1, SS = 0.5 V/dec, VTH = 1.5 V, ION/IOFF = 1.1 × 108 and stability (VTH shift of 1.5, −0.5 and −2.5 V for positive bias-stress, negative bias-stress, and thermal stress tests, respectively than the a-IGZO:N/a-IZO:N TFTs. Based on the X-ray photoemission spectroscopy measurements and energy band analysis, we assumed that the optimized interface trap states, the less ambient gas adsorption, and the better suppression of oxygen vacancies in the a-IZO:N/a-IGZO:N hetero-structures might explain the better behavior of the corresponding TFTs.

  10. Disentangling the intricate atomic short-range order and electronic properties in amorphous transition metal oxides.

    Science.gov (United States)

    Triana, C A; Araujo, C Moyses; Ahuja, R; Niklasson, G A; Edvinsson, T

    2017-05-17

    Solid state materials with crystalline order have been well-known and characterized for almost a century while the description of disordered materials still bears significant challenges. Among these are the atomic short-range order and electronic properties of amorphous transition metal oxides [aTMOs], that have emerged as novel multifunctional materials due to their optical switching properties and high-capacity to intercalate alkali metal ions at low voltages. For decades, research on aTMOs has dealt with technological optimization. However, it remains challenging to unveil their intricate atomic short-range order. Currently, no systematic and broadly applicable methods exist to assess atomic-size structure, and since electronic localization is structure-dependent, still there are not well-established optical and electronic mechanisms for modelling the properties of aTMOs. We present state-of-the-art systematic procedures involving theory and experiment in a self-consistent computational framework to unveil the atomic short-range order and its role for the electronic properties. The scheme is applied to amorphous tungsten trioxide aWO 3 , which is the most studied electrochromic aTMO in spite of its unidentified atomic-size structure. Our approach provides a one-to-one matching of experimental data and corresponding model structure from which electronic properties can be directly calculated in agreement with the electronic transitions observed in the XANES spectra.

  11. XRD and RBS studies of quasi-amorphous zinc oxide layers produced by Atomic Layer Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Guziewicz, Elżbieta, E-mail: guzel@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Turos, Andrzej [Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw (Poland); National Centre for Nuclear Research, Soltana 7, 04-500 Otwock (Poland); Stonert, Anna [National Centre for Nuclear Research, Soltana 7, 04-500 Otwock (Poland); Snigurenko, Dmytro; Witkowski, Bartłomiej S. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Diduszko, Ryszard [Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw (Poland); Behar, Moni [Instituto de Fisica, Universidade do Rio Grande do Sul, 91501 Porto Alegre (Brazil)

    2016-08-01

    Although zinc oxide has been widely investigated for many important applications such as laser diodes, photovoltaics, and sensors, some basic properties of this material have not been established up to now. One of these are stopping power values which are crucial for the Rutherford Backscattering Spectrometry analysis. For this kind of measurements, amorphous materials should be used. In this paper we show the results of stopping power measurements for ZnO films grown by Atomic Layer Deposition. The films were grown on a silicon (100) substrate and parameters of the growth were chosen in a way that prevents crystallization of ZnO films. A series of ZnO films with thickness between 20 and 160 nm have been investigated. Extended film characterization has proven that the obtained nanopolycrystalline ZnO films can be considered as truly amorphous with respect to ion beam applications. ZnO films have been used for precise stopping power measurement of MeV He-ions in the energy range from 200 to 5000 keV. These results provide indispensable data for ion beam modification and analysis of ZnO. - Highlights: • Thin ZnO films of low crystallographic quality were obtained by Atomic Layer Deposition at 60 °C. • Nanopolycrystalline structure and atomically flat surface has been measured by X-ray diffraction. • Stopping power measurements show a very good agreement with the calculated values.

  12. Size modulation of nanocrystalline silicon embedded in amorphous silicon oxide by Cat-CVD

    International Nuclear Information System (INIS)

    Matsumoto, Y.; Godavarthi, S.; Ortega, M.; Sanchez, V.; Velumani, S.; Mallick, P.S.

    2011-01-01

    Different issues related to controlling size of nanocrystalline silicon (nc-Si) embedded in hydrogenated amorphous silicon oxide (a-SiO x :H) deposited by catalytic chemical vapor deposition (Cat-CVD) have been reported. Films were deposited using tantalum (Ta) and tungsten (W) filaments and it is observed that films deposited using tantalum filament resulted in good control on the properties. The parameters which can affect the size of nc-Si domains have been studied which include hydrogen flow rate, catalyst and substrate temperatures. The deposited samples are characterized by X-ray diffraction, HRTEM and micro-Raman spectroscopy, for determining the size of the deposited nc-Si. The crystallite formation starts for Ta-catalyst around the temperature of 1700 o C.

  13. Optical constants and band edge of amorphous zinc oxide thin films

    International Nuclear Information System (INIS)

    Khoshman, Jebreel M.; Kordesch, Martin E.

    2007-01-01

    The optical characteristics of amorphous zinc oxide (a-ZnO) thin films grown by radio frequency reactive magnetron sputtering on various substrates at temperature -8 -0.32, respectively. The band edge of the films on Si (100) and quartz has been determined by spectroscopic ellipsometry (3.39 ± 0.05 eV) and spectrophotometric (3.35 ± 0.05 eV) methods, respectively. From the angle dependence of the p-polarized reflectivity we deduce a Brewster angle of 60.5 deg. Measurement of the polarized optical properties shows a high transmissivity (81%-99%) and low absorptivity (< 5%) in the visible and near infrared regions at different angles of incidence. Also, we found that there was a higher absorptivity for wavelength < 370 nm. This wavelength, ∼ 370 nm, therefore indicated that the band edge for a-ZnO thin films is about 3.35 eV

  14. Characterization of an Amorphous Titanium Oxide Film Deposited onto a Nano-Textured Fluorination Surface

    Directory of Open Access Journals (Sweden)

    Pei-Yu Li

    2016-05-01

    Full Text Available The photocatalytic activity of an amorphous titanium oxide (a-TiOx film was modified using a two-step deposition. The fluorinated base layer with a nano-textured surface prepared by a selective fluorination etching process acted as growth seeds in the subsequent a-TiOx deposition. A nanorod-like microstructure was achievable from the resulting a-TiOx film due to the self-assembled deposition. Compared to the a-TiOx film directly deposited onto the untreated base layer, the rate constant of this fluorinate-free a-TiOx film surface for decomposing methylene blue (MB solution that was employed to assess the film’s photocatalytic activity was markedly increased from 0.0076 min−1 to 0.0267 min−1 as a mechanism for the marked increase in the specific surface area.

  15. Low-temperature formation of source–drain contacts in self-aligned amorphous oxide thin-film transistors

    NARCIS (Netherlands)

    Nag, M.; Muller, R.; Steudel, S.; Smout, S.; Bhoolokam, A.; Myny, K.; Schols, S.; Genoe, J.; Cobb, B.; Kumar, A.; Gelinck, G.; Fukui, Y.; Groeseneken, G.; Heremans, P.

    2015-01-01

    We demonstrated self-aligned amorphous-Indium-Gallium-Zinc-Oxide (a-IGZO) thin-film transistors (TFTs) where the source–drain (S/D) regions were made conductive via chemical reduction of the a-IGZO via metallic calcium (Ca). Due to the higher chemical reactivity of Ca, the process can be operated at

  16. Controllable Electrochemical Activities by Oxidative Treatment toward Inner-Sphere Redox Systems at N-Doped Hydrogenated Amorphous Carbon Films

    Directory of Open Access Journals (Sweden)

    Yoriko Tanaka

    2012-01-01

    Full Text Available The electrochemical activity of the surface of Nitrogen-doped hydrogenated amorphous carbon thin films (a-CNH, N-doped DLC toward the inner sphere redox species is controllable by modifying the surface termination. At the oxygen plasma treated N-doped DLC surface (O-DLC, the surface functional groups containing carbon doubly bonded to oxygen (C=O, which improves adsorption of polar molecules, were generated. By oxidative treatment, the electron-transfer rate for dopamine (DA positively charged inner-sphere redox analyte could be improved at the N-doped DLC surface. For redox reaction of 2,4-dichlorophenol, which induces an inevitable fouling of the anode surface by forming passivating films, the DLC surfaces exhibited remarkably higher stability and reproducibility of the electrode performance. This is due to the electrochemical decomposition of the passive films without the interference of oxygen evolution by applying higher potential. The N-doped DLC film can offer benefits as the polarizable electrode surface with the higher reactivity and higher stability toward inner-sphere redox species. By making use of these controllable electrochemical reactivity at the O-DLC surface, the selective detection of DA in the mixed solution of DA and uric acid could be achieved.

  17. [Ammonia oxidation kinetics of ammonia oxidizer mixed culture under the conditions of O2 and trace NO2 mixed gasses].

    Science.gov (United States)

    Zhang, Dai-Jun; Zu, Bo; Ren, Hong-Yang; Zhang, Ping; Cong, Li-Ying; Yan, Qing

    2008-01-01

    The kinetics of the NO2-dependent ammonia oxidation was developed for ammonia oxidizer mixed culture when there was no molecular oxygen in the batch tests. The kinetics parameters were determined, where the half saturate coefficient of NO2 was 0.821 micromol x L(-1), inhibition coefficient of NO2 concentration was 1.721 micromol x L(-1), and the maximum ammonia oxidation rate were 0.144 mg x (mg x h)(-1). After adding the volume fraction of O2 was 2% to trace NO2, the ammonia oxidation rates increased obviously. The maximum ammonia oxidation rate, 0.198 mg x (mg x h)(-1) occurred under the condition of the mixed gasses containing the volume fraction of O2 was 2% and 50 x 10(-6) NO2. Under the condition of mixed gasses containing the volume fraction of O2 was 21% to trace NO2, the ammonia oxidation rates further increased greatly. The maximum ammonia oxidation rate, 0.477 mg x (mg x h)(-1) occurred when the volume fraction of O2 was 21% and 100 x 10(-6) NO2 in the mixed gas, which is 3 times higher than the general aerobic ammonia oxidation rate. The function for NO2 apparently to enhance ammonia oxidation was suggested. The kinetics model of ammonia oxidation under the conditions of O2 and trace NO2 mixed gasses was developed. The model was validated by the results of ammonia oxidation experiments under the conditions of the mixed gasses containing 2% O2 and trace NO2. The mechanism for NO2 to enhance ammonia oxidation under the conditions of O2 and trace NO2 mixed gasses was discussed.

  18. Highly Efficient Performance and Conversion Pathway of Photocatalytic NO Oxidation on SrO-Clusters@Amorphous Carbon Nitride.

    Science.gov (United States)

    Cui, Wen; Li, Jieyuan; Dong, Fan; Sun, Yanjuan; Jiang, Guangming; Cen, Wanglai; Lee, S C; Wu, Zhongbiao

    2017-09-19

    This work demonstrates the first molecular-level conversion pathway of NO oxidation over a novel SrO-clusters@amorphous carbon nitride (SCO-ACN) photocatalyst, which is synthesized via copyrolysis of urea and SrCO 3 . The inclusion of SrCO 3 is crucial in the formation of the amorphous carbon nitride (ACN) and SrO clusters by attacking the intralayer hydrogen bonds at the edge sites of graphitic carbon nitride (CN). The amorphous nature of ACN can promote the transportation, migration, and transformation of charge carriers on SCO-ACN. And the SrO clusters are identified as the newly formed active centers to facilitate the activation of NO via the formation of Sr-NO δ(+) , which essentially promotes the conversion of NO to the final products. The combined effects of the amorphous structure and SrO clusters impart outstanding photocatalytic NO removal efficiency to the SCO-ACN under visible-light irradiation. To reveal the photocatalytic mechanism, the adsorption and photocatalytic oxidation of NO over CN and SCO-ACN are analyzed by in situ DRIFTS, and the intermediates and conversion pathways are elucidated and compared. This work presents a novel in situ DRIFTS-based strategy to explore the photocatalytic reaction pathway of NO oxidation, which is quite beneficial to understand the mechanism underlying the photocatalytic reaction and advance the development of photocatalytic technology for environmental remediation.

  19. Investigation into kinetics of sorption of some radionuclides by mixed sorbents based on amorphous niobium phosphate

    International Nuclear Information System (INIS)

    Belkina, R.M.; Sukharev, Yu.I.; Egorov, Yu.V.; Plotnikov, V.I.

    1977-01-01

    A study has been made of kinetics of sorption of radionuclides 110 Ag, 60 Co, and 51 Cr by samples of amorphous stoichiometric niobium (5) phosphate. Ratios of the concentration conductivity to the mean radius of sorbent particles were calculated which are proportional to diffusivities. Increased specificity towards Cr 3+ ions of samples of ion exchangeable niobium phosphate containing cerium and treated with 0.1N HCl was established. This effect was explained by formation and subsequent destruction of the copolymer oxo-ol matrix of niobium and cerium, as a result of which a gel is formed with mosaic structure being favourable for sorption of three-charged ions

  20. Amorphous Cobalt Vanadium Oxide as a Highly Active Electrocatalyst for Oxygen Evolution.

    Science.gov (United States)

    Liardet, Laurent; Hu, Xile

    2018-01-05

    The water-splitting reaction provides a promising mechanism to store renewable energies in the form of hydrogen fuel. The oxidation half-reaction, the oxygen evolution reaction (OER), is a complex four-electron process that constitutes an efficiency bottleneck in water splitting. Here we report a highly active OER catalyst, cobalt vanadium oxide. The catalyst is designed on the basis of a volcano plot of metal-OH bond strength and activity. The catalyst can be synthesized by a facile hydrothermal route. The most active pure-phase material ( a- CoVO x ) is X-ray amorphous and provides a 10 mA cm -2 current density at an overpotential of 347 mV in 1 M KOH electrolyte when immobilized on a flat substrate. The synthetic method can also be applied to coat a high-surface-area substrate such as nickel foam. On this three-dimensional substrate, the a- CoVO x catalyst is highly active, reaching 10 mA cm -2 at 254 mV overpotential, with a Tafel slope of only 35 mV dec -1 . This work demonstrates a- CoVO x as a promising electrocatalyst for oxygen evolution and validates M-OH bond strength as a practical descriptor in OER catalysis.

  1. Synthesis and characterization of amorphous poly(ethylene oxide)/poly(trimethylene carbonate) polymer blend electrolytes

    International Nuclear Information System (INIS)

    Rodrigues, L.C.; Silva, M.M.; Smith, M.J.

    2012-01-01

    Solid polymer electrolytes (SPEs) have been proposed as substitutes for conventional non-aqueous electrolytes in various electrochemical devices. These promising materials may be of interest in various practical devices including batteries, sensors and electrochromic displays as they can offer high performance in terms of specific energy and specific power (batteries), safe operation, form flexibility in device arquitecture and low manufacturing costs. Many different host polymers have been characterized over the last 30 years, however a relatively un-explored strategy involves the use of interpenetrating blends incorporating two or more polymers. Electrolyte systems based on interpenetrating blends of known host polymers, poly(ethylene oxide) and poly(trimethylene carbonate), doped with lithium perchlorate, were prepared by co-dissolution in acetonitrile. This combination of polymer components results in the formation of a material that may be applicable in batteries and electrochromic devices. The results of characterization of polymer electrolyte systems based on interpenetrating blends of amorphous poly(ethylene oxide) and poly(trimethylene carbonate) host matrices, with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as guest salt, are described in this study. Electrolytes with compositions of n between 5 and 15 (where n represents the total number of cation-coordinating units per lithium ion) were obtained as flexible, transparent and free-standing films that were characterized by measurements of conductivity, cyclic voltammetry, differential scanning calorimetry and thermogravimetry.

  2. Enhanced electrochemical performance of amorphous carbon nanotube-manganese-di-oxide-poly-pyrrole ternary nanohybrid

    Science.gov (United States)

    Pahari, D.; Das, N. S.; Das, B.; Howli, P.; Chattopadhyay, K. K.; Banerjee, D.

    2017-12-01

    Amorphous carbon nanotubes (a-CNTs) manganese di oxide (MnO2)-poly pyrrole (PPy) ternary nanocomposites have been synthesized by a simple chemical route. The as prepared samples have been characterized with different characterization tools that include field emission scanning and high resolution transmission electron microscopy, Raman, Fourier transformed infrared as well as UV-Vis spectroscopy. The electrochemical performance of all the as prepared pure and hybrid samples have been studied in detail. It has been seen that the ternary hybrid shows efficient electrochemical performance with high value of specific capacitance with good stability even up to 2000 cycles. The superior performance of the hybrid samples can be attributed to the strong synergistic effect between the components resulting electron shuttling along PPy main chains and inter-chain raising built-in continuous conductive network. The ternary composite approach offers an effective solution to enhance the device performance of metal-oxide based supercapacitors for long cycling applications. These studies can well speculate the existence of another supercapacitor hybrid for the use in environment friendly electrode and thus a pollution free nature.

  3. Synthesis and characterization of composites of mixed oxides of iron ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Nanocomposites of mixed oxides of iron and neodymium in polymer matrix of anilineformaldehyde are reported. The composites have been obtained by treating the aqueous solution of aniline, hydrochloric acid and formaldehyde with halide of iron and neodymium oxide. The infra-red spectra show broad ...

  4. Synthesis and characterization of composites of mixed oxides of iron ...

    Indian Academy of Sciences (India)

    Administrator

    Nanocomposites of mixed oxides of iron and neodymium in polymer matrix of aniline- formaldehyde are reported. The composites have been obtained by treating the aqueous solution of aniline, hydrochloric acid and formaldehyde with halide of iron and neodymium oxide. The infra-red spectra show broad peaks at ~ 590 ...

  5. Comparative electrochemical analysis of crystalline and amorphous anodized iron oxide nanotube layers as negative electrode for LIB.

    Science.gov (United States)

    Pervez, Syed Atif; Kim, Doohun; Farooq, Umer; Yaqub, Adnan; Choi, Jung-Hee; Lee, You-Jin; Doh, Chil-Hoon

    2014-07-23

    This work is a comparative study of the electrochemical performance of crystalline and amorphous anodic iron oxide nanotube layers. These nanotube layers were grown directly on top of an iron current collector with a vertical orientation via a simple one-step synthesis. The crystalline structures were obtained by heat treating the as-prepared (amorphous) iron oxide nanotube layers in ambient air environment. A detailed morphological and compositional characterization of the resultant materials was performed via transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and Raman spectroscopy. The XRD patterns were further analyzed using Rietveld refinements to gain in-depth information on their quantitative phase and crystal structures after heat treatment. The results demonstrated that the crystalline iron oxide nanotube layers exhibit better electrochemical properties than the amorphous iron oxide nanotube layers when evaluated in terms of the areal capacity, rate capability, and cycling performance. Such an improved electrochemical response was attributed to the morphology and three-dimensional framework of the crystalline nanotube layers offering short, multidirectional transport lengths, which favor rapid Li(+) ions diffusivity and electron transport.

  6. A structural analysis of W-Sb mixed oxide catalyst

    International Nuclear Information System (INIS)

    Lim, Y.S.; Jung, S.H.; Hong, S.-T.; Jung, S.M.; Kim, J.; Chae, J.H.; Lee, W.-H.

    2005-01-01

    An investigation on the structure of W-Sb mixed oxide catalyst, W 12 Sb x O y (x = 1, 3, 5), is proposed. The W-Sb mixed oxide powders were prepared by the calcination of aqueous precursors, antimony tartrate and ammoniummetatungstate, and characterized with scanning electron microscope, X-ray diffractometer, and transmission electron microscope. At low content of Sb (x = 1), the W-Sb mixed oxide powder consisted of polyhedral particles, and their crystal structure was triclinic WO 3 . At higher content (x = 3, 5), majority of the oxide powders were bar-shaped particles, consisting of triclinic WO 3 and tetragonal WO 3 . With electron diffraction pattern and simulation, Sb incorporation into the cuboctahedral sites of perovskite-like WO 3 was proved and its effect on the phase transition from triclinic to tetragonal was discussed

  7. Controllable film densification and interface flatness for high-performance amorphous indium oxide based thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Ou-Yang, Wei, E-mail: OUYANG.Wei@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Kizu, Takio; Gao, Xu; Lin, Meng-Fang; Tsukagoshi, Kazuhito, E-mail: OUYANG.Wei@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp [International Center for Materials Nanoarchitectronics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Nabatame, Toshihide [MANA Foundry and MANA Advanced Device Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-10-20

    To avoid the problem of air sensitive and wet-etched Zn and/or Ga contained amorphous oxide transistors, we propose an alternative amorphous semiconductor of indium silicon tungsten oxide as the channel material for thin film transistors. In this study, we employ the material to reveal the relation between the active thin film and the transistor performance with aid of x-ray reflectivity study. By adjusting the pre-annealing temperature, we find that the film densification and interface flatness between the film and gate insulator are crucial for achieving controllable high-performance transistors. The material and findings in the study are believed helpful for realizing controllable high-performance stable transistors.

  8. Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst

    Science.gov (United States)

    Morales-Guio, Carlos G.; Tilley, S. David; Vrubel, Heron; Grätzel, Michael; Hu, Xile

    2014-01-01

    Concerns over climate change resulting from accumulation of anthropogenic carbon dioxide in the atmosphere and the uncertainty in the amount of recoverable fossil fuel reserves are driving forces for the development of renewable, carbon-neutral energy technologies. A promising clean solution is photoelectrochemical water splitting to produce hydrogen using abundant solar energy. Here we present a simple and scalable technique for the deposition of amorphous molybdenum sulphide films as hydrogen evolution catalyst onto protected copper(I) oxide films. The efficient extraction of excited electrons by the conformal catalyst film leads to photocurrents of up to -5.7mAcm-2 at 0V versus the reversible hydrogen electrode (pH 1.0) under simulated AM 1.5 solar illumination. Furthermore, the photocathode exhibits enhanced stability under acidic environments, whereas photocathodes with platinum nanoparticles as catalyst deactivate more rapidly under identical conditions. The work demonstrates the potential of earth-abundant light-harvesting material and catalysts for solar hydrogen production.

  9. Defect-induced instability mechanisms of sputtered amorphous indium tin zinc oxide thin-film transistors

    Science.gov (United States)

    Park, Jinhee; Rim, You Seung; Li, Chao; Wu, Jiechen; Goorsky, Mark; Streit, Dwight

    2018-04-01

    We report the device performance and stability of sputtered amorphous indium-tin-zinc-oxide (ITZO) thin-film transistors as a function of oxygen ratio [O2/(Ar + O2)] during growth. Increasing the oxygen ratio enhanced the incorporation of oxygen during ITZO film growth and reduced the concentration of deep-level defects associated with oxygen vacancies. Under illumination with no bias stress, device stability and persistent photocurrent were improved with increased oxygen ratio. Bias stress tests of the devices were also performed with and without illumination. While high oxygen ratio growth conditions resulted in decreased deep-level oxygen vacancies in the ITZO material, the same conditions resulted in degradation of the interfacial layer between the ITZO channel and dielectric due to the migration of energetic oxygen ions to the interface. Therefore, when bias stress was applied, increased carrier trap density at the interface led to a decrease in device stability that offsets any improvement in the material itself. In order to take advantage of the improved ITZO material growth at a high oxygen ratio, the interface-related problems must be solved.

  10. Recovery of lithium from geothermal water by amorphous hydrous aluminium oxide

    International Nuclear Information System (INIS)

    Wada, Hideo; Kitamura, Takao; Ooi, Kenta; Katoh, Shunsaku

    1984-01-01

    Effects of chemical composition, temperature, and lithium concentration of geothermal water on lithium recovery by amorphous hydrous aluminium oxide (a-HAO) were investigated in order to evaluate the feasibility of this process. The results are summarized as follows: (1) Among various chemical consituents in geothermal water, silica interfered with the lithium adsorption. The lithium uptake decreased when silica concentration exceeded 73 mg/l under 100 mg/50 ml a-HAO to solution ratio. (2) The lithium uptake decreased with an increase of adsorption temperature and was not observed above 40 deg C. At higher temperature, the crystallization of a-HAO to bayerite occurred prior to lithium adsorption. (3) The lithium uptake increased with an increase of lithium concentration. Lithium uptake comparable with lithium contents in lithium ores was obtained at the lithium concentration of 30 mg/l at 20 deg C. These results show that a-HAO is applicable to collect lithium from geothermal water if silica can be removed before lithium adsorption. (author)

  11. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells.

    Science.gov (United States)

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J; Chang, Robert P H; Facchetti, Antonio; Marks, Tobin J

    2015-06-30

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor-inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.

  12. The microstructures and electrical properties of Y-doped amorphous vanadium oxide thin films

    Science.gov (United States)

    Gu, Deen; Zhou, Xin; Guo, Rui; Wang, Zhihui; Jiang, Yadong

    2017-03-01

    One of promising approaches for further improving the sensitivity of microbolometer arrays with greatly-reduced pixel size is using the thermal-sensitive materials with higher performance. In this paper, Y-doped vanadium oxide (VOx) thin films prepared by a reactively sputtering process exhibit enhanced performance for the microbolometer application compared with frequently-applied VOx thin films. Both undoped and Y-doped VOx thin films are amorphous due to the relatively low deposition temperature. Y-doped VOx thin films exhibit smoother surface morphology than VOx due to the restrained expansion of particles during depositions. Y-doping increases the temperature coefficient of resistivity by over 20% for the doping level of 1.30 at%. The change rate of resistivity, after aging for 72 h, of thin films was reduced from about 15% for undoped VOx to 2% due to the introduction of Y. Moreover, Y-doped VOx thin films have a low 1/f noise level as VOx ones. Y-doping provides an attractive approach for preparing VOx thermal-sensitive materials with enhanced performance for microbolometers.

  13. Long-term research in Japan: amorphous metals, metal oxide varistors, high-power semiconductors and superconducting generators

    Energy Technology Data Exchange (ETDEWEB)

    Hane, G.J.; Yorozu, M.; Sogabe, T.; Suzuki, S.

    1985-04-01

    The review revealed that significant activity is under way in the research of amorphous metals, but that little fundamental work is being pursued on metal oxide varistors and high-power semiconductors. Also, the investigation of long-term research program plans for superconducting generators reveals that activity is at a low level, pending the recommendations of a study currently being conducted through Japan's Central Electric Power Council.

  14. An investigation of mixed cation oxide glasses

    International Nuclear Information System (INIS)

    Brook, H.C.

    1999-02-01

    This study has been undertaken with several purposes in mind. Firstly, the author wished to ascertain whether EXAFS would show the mixed alkali (MAE) in a mixed alkali glass in shell parameters other than those for the first shell, as well as being a structural probe. Secondly, it was desired to see whether borate glasses show the MAE in EXAFS. Thirdly, the author attempted to ascertain whether cations of different charges would show an effect similar to the MAE. Fourthly, to use NMR as a second structure probe in an attempt to gain a better understanding of the structure. Fifthly, to perform electrical conductivity experiments to try to link the conductivity behaviour with structural changes. Finally, to attempt to develop a generalised explanation of the origins of the MAE and the variations in physical properties in glasses. (author)

  15. Charged Nanowire-Directed Growth of Amorphous Calcium Carbonate Nanosheets in a Mixed Solvent for Biomimetic Composite Films.

    Science.gov (United States)

    Liu, Yangyi; Liu, Lei; Chen, Si-Ming; Chang, Fu-Jia; Mao, Li-Bo; Gao, Huai-Ling; Ma, Tao; Yu, Shu-Hong

    2018-04-19

    Bio-inspired mineralization is an effective way for fabricating complicated inorganic materials, which inspires us to develop new methods to synthesize materials with fascinating properties. In this article, we report that the charged tellurium nanowires (TeNWs) can be used as bio-macromolecule analogues to direct the formation of amorphous calcium carbonate (ACC) nanosheets (ACCNs) in a mixed solvent. The effects of surface charges and the concentration of the TeNWs on the formation of ACCNs have been investigated. Particularly, the produced ACCNs can be functionalized by Fe3O4 nanoparticles to produce magnetic ACC/Fe3O4 hybrid nanosheets, which can be used to construct ACC/Fe3O4 composite films through a self-evaporation process. Moreover, sodium alginate-ACC nanocomposite films with remarkable toughness and good transmittance can also be fabricated by using such ACCNs as nanoscale building blocks. This mineralization approach in a mixed solvent using charged tellurium nanowires as bio-macromolecule analogues provides a new way for the synthesis of ACCNs, which can be used as nanoscale building blocks for fabrication of biomimetic composite films.

  16. Description of a reference mixed oxide fuel fabrication plant (MOFFP)

    International Nuclear Information System (INIS)

    1978-01-01

    In order to evaluate the environment impact, due to the Mixed Oxide Fuel Fabrication Plants, work has been initiated to describe the general design and operating conditions of a reference Mixed Oxide Fuel Fabrication Plant (MOFFP) for the 1990 time frame. The various reference data and basic assumptions for the reference MOFFP plant have been defined after discussion with experts. The data reported in this document are only made available to allow an evaluation of the environmental impact due to a reference MOFFP plant. These data have therefore not to be used as recommandation, standards, regulatory guides or requirements

  17. Oxidation and Carbidation of Laser-Ablated Amorphized Ti Particles in Carbon Monoxide

    Czech Academy of Sciences Publication Activity Database

    Jandová, Věra; Kupčík, Jaroslav; Bastl, Zdeněk; Šubrt, Jan; Pola, Josef

    2013-01-01

    Roč. 19, MAY (2013), s. 104-110 ISSN 1293-2558 Institutional support: RVO:67985858 ; RVO:61388980 ; RVO:61388955 Keywords : titanium * laser ablation * amorphization Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.679, year: 2013

  18. Electrothermal Annealing (ETA) Method to Enhance the Electrical Performance of Amorphous-Oxide-Semiconductor (AOS) Thin-Film Transistors (TFTs).

    Science.gov (United States)

    Kim, Choong-Ki; Kim, Eungtaek; Lee, Myung Keun; Park, Jun-Young; Seol, Myeong-Lok; Bae, Hagyoul; Bang, Tewook; Jeon, Seung-Bae; Jun, Sungwoo; Park, Sang-Hee K; Choi, Kyung Cheol; Choi, Yang-Kyu

    2016-09-14

    An electro-thermal annealing (ETA) method, which uses an electrical pulse of less than 100 ns, was developed to improve the electrical performance of array-level amorphous-oxide-semiconductor (AOS) thin-film transistors (TFTs). The practicality of the ETA method was experimentally demonstrated with transparent amorphous In-Ga-Zn-O (a-IGZO) TFTs. The overall electrical performance metrics were boosted by the proposed method: up to 205% for the trans-conductance (gm), 158% for the linear current (Ilinear), and 206% for the subthreshold swing (SS). The performance enhancement were interpreted by X-ray photoelectron microscopy (XPS), showing a reduction of oxygen vacancies in a-IGZO after the ETA. Furthermore, by virtue of the extremely short operation time (80 ns) of ETA, which neither provokes a delay of the mandatory TFTs operation such as addressing operation for the display refresh nor demands extra physical treatment, the semipermanent use of displays can be realized.

  19. Terahertz time domain spectroscopy of amorphous and crystalline aluminum oxide nanostructures synthesized by thermal decomposition of AACH

    Energy Technology Data Exchange (ETDEWEB)

    Mehboob, Shoaib, E-mail: smehboob@pieas.edu.pk [National Center for Nanotechnology, Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore 45650, Islamabad (Pakistan); Mehmood, Mazhar [National Center for Nanotechnology, Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore 45650, Islamabad (Pakistan); Ahmed, Mushtaq [National Institute of Lasers and Optronics (NILOP), Nilore 45650, Islamabad (Pakistan); Ahmad, Jamil; Tanvir, Muhammad Tauseef [National Center for Nanotechnology, Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore 45650, Islamabad (Pakistan); Ahmad, Izhar [National Institute of Lasers and Optronics (NILOP), Nilore 45650, Islamabad (Pakistan); Hassan, Syed Mujtaba ul [National Center for Nanotechnology, Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore 45650, Islamabad (Pakistan)

    2017-04-15

    The objective of this work is to study the changes in optical and dielectric properties with the transformation of aluminum ammonium carbonate hydroxide (AACH) to α-alumina, using terahertz time domain spectroscopy (THz-TDS). The nanostructured AACH was synthesized by hydrothermal treatment of the raw chemicals at 140 °C for 12 h. This AACH was then calcined at different temperatures. The AACH was decomposed to amorphous phase at 400 °C and transformed to δ* + α-alumina at 1000 °C. Finally, the crystalline α-alumina was achieved at 1200 °C. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were employed to identify the phases formed after calcination. The morphology of samples was studied using scanning electron microscopy (SEM), which revealed that the AACH sample had rod-like morphology which was retained in the calcined samples. THz-TDS measurements showed that AACH had lowest refractive index in the frequency range of measurements. The refractive index at 0.1 THZ increased from 2.41 for AACH to 2.58 for the amorphous phase and to 2.87 for the crystalline α-alumina. The real part of complex permittivity increased with the calcination temperature. Further, the absorption coefficient was highest for AACH, which reduced with calcination temperature. The amorphous phase had higher absorption coefficient than the crystalline alumina. - Highlights: • Aluminum oxide nanostructures were obtained by thermal decomposition of AACH. • Crystalline phases of aluminum oxide have higher refractive index than that of amorphous phase. • The removal of heavier ionic species led to the lower absorption of THz radiations.

  20. Selective oxidation of isobutane on V–Mo–O mixed oxide catalysts

    Directory of Open Access Journals (Sweden)

    GHEORGHITA MITRAN

    2008-01-01

    Full Text Available Four V–Mo–O mixed metal oxides were prepared, characterized and tested for the selective oxidation of isobutane in the temperature range 350–550 °C, at atmospheric pressure. Isobutane was mainly oxidized to iso-butene and carbon oxides. The systems with low vanadium contents showed low activities but high isobutene selectivities, while the systems with high vanadium contents showed high activities with high carbon oxides selectivities. The effects of temperature, contact time and the molar ratio iso-butane to oxygen on the conversion of isobutane and the selectivity of the oxidation were studied.

  1. Heterogeneous Partial (ammOxidation and Oxidative Dehydrogenation Catalysis on Mixed Metal Oxides

    Directory of Open Access Journals (Sweden)

    Jacques C. Védrine

    2016-01-01

    Full Text Available This paper presents an overview of heterogeneous partial (ammoxidation and oxidative dehydrogenation (ODH of hydrocarbons. The review has been voluntarily restricted to metal oxide-type catalysts, as the partial oxidation field is very broad and the number of catalysts is quite high. The main factors of solid catalysts for such reactions, designated by Grasselli as the “seven pillars”, and playing a determining role in catalytic properties, are considered to be, namely: isolation of active sites (known to be composed of ensembles of atoms, Me–O bond strength, crystalline structure, redox features, phase cooperation, multi-functionality and the nature of the surface oxygen species. Other important features and physical and chemical properties of solid catalysts, more or less related to the seven pillars, are also emphasized, including reaction sensitivity to metal oxide structure, epitaxial contact between an active phase and a second phase or its support, synergy effect between several phases, acid-base aspects, electron transfer ability, catalyst preparation and activation and reaction atmospheres, etc. Some examples are presented to illustrate the importance of these key factors. They include light alkanes (C1–C4 oxidation, ethane oxidation to ethylene and acetic acid on MoVTe(SbNb-O and Nb doped NiO, propene oxidation to acrolein on BiMoCoFe-O systems, propane (ammoxidation to (acrylonitrile acrylic acid on MoVTe(SbNb-O mixed oxides, butane oxidation to maleic anhydride on VPO: (VO2P2O7-based catalyst, and isobutyric acid ODH to methacrylic acid on Fe hydroxyl phosphates. It is shown that active sites are composed of ensembles of atoms whose size and chemical composition depend on the reactants to be transformed (their chemical and size features and the reaction mechanism, often of Mars and van Krevelen type. An important aspect is the fact that surface composition and surface crystalline structure vary with reaction on stream until

  2. Effects of Mixed Alkaline Earth Oxides in Potash Silicate Glass ...

    African Journals Online (AJOL)

    The aim of this work is to investigate the effects of mixed alkaline earth oxide in potash silicate glasses with regards to their physical properties. More recently; there has been an increase in the demand for light weight glasses which retains their physical and chemical properties for both domestic and industrial applications.

  3. Mixed alumina and cobalt containing plasma electrolytic oxide coatings

    Science.gov (United States)

    Yar-Mukhamedova, G. Sh; Ved', M. V.; Karakurkchi, A. V.; Sakhnenko, N. D.

    2017-06-01

    Principles of plasma electrolytic oxidation of the AL25 aluminum alloy in diphosphate alkali solutions containing cobalt(2+) cations are discussed. It has been established that a variation in the concentration of the electrolyte components provides the formation of mixed-oxide coatings consisting of the basic matrix materials and the cobalt oxides of different content. An increase in the cobalt oxide content in the coating is achieved by the variation in electrolysis current density as well as the treatment time due to both the electrochemical and thermo-chemical reactions at substrate surface and in spark region. Current density intervals that provide micro-globular surface formation and uniform cobalt distribution in the coating are determined. The composition and morphology of the surface causes high catalytic properties of synthesized materials, which confirmed the results of testing in model reaction CO and benzene oxidation as well as fuel combustion for various modes of engine operation.

  4. Factors affecting radium removal using mixed iron-manganese oxides

    Energy Technology Data Exchange (ETDEWEB)

    Mott, H.V. Singh, S.; Kondapally, V.R. (South Dakota School of Mines and Technology, Rapid City, SD (United States))

    1993-10-01

    Batch experiments confirmed that sorption of radium by a mixed iron-manganese oxide solid phase shows promise for treating radium-contaminated water. The capacities of these mixed oxides for sorption of radium depend on the composition of the solid phase, the pH of the aqueous solution, and the presence of competing cations. The removal of the oxide-radium complexes from aqueous suspension by manganese greensand filtration was also investigated. It was found that influent radium concentrations of 100 pCi/L were reduced to 2--9 pCi/L by this process. Additional study of the fate of radium in manganese greensand filters is recommended before this procedure is used for drinking water treatment.

  5. Photochemical oxidation: A solution for the mixed waste dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Prellberg, J.W.; Thornton, L.M.; Cheuvront, D.A. [Vulcan Peroxidation Systems, Inc., Tucson, AZ (United States)] [and others

    1995-12-31

    Numerous technologies are available to remove organic contamination from water or wastewater. A variety of techniques also exist that are used to neutralize radioactive waste. However, few technologies can satisfactorily address the treatment of mixed organic/radioactive waste without creating unacceptable secondary waste products or resulting in extremely high treatment costs. An innovative solution to the mixed waste problem is on-site photochemical oxidation. Liquid-phase photochemical oxidation has a long- standing history of successful application to the destruction of organic compounds. By using photochemical oxidation, the organic contaminants are destroyed on-site leaving the water, with radionuclides, that can be reused or disposed of as appropriate. This technology offers advantages that include zero air emissions, no solid or liquid waste formation, and relatively low treatment cost. Discussion of the photochemical process will be described, and several case histories from recent design testing, including cost analyses for the resulting full-scale installations, will be presented as examples.

  6. Factors affecting radium removal using mixed iron-manganese oxides

    International Nuclear Information System (INIS)

    Mott, H.V. Singh, S.; Kondapally, V.R.

    1993-01-01

    Batch experiments confirmed that sorption of radium by a mixed iron-manganese oxide solid phase shows promise for treating radium-contaminated water. The capacities of these mixed oxides for sorption of radium depend on the composition of the solid phase, the pH of the aqueous solution, and the presence of competing cations. The removal of the oxide-radium complexes from aqueous suspension by manganese greensand filtration was also investigated. It was found that influent radium concentrations of 100 pCi/L were reduced to 2--9 pCi/L by this process. Additional study of the fate of radium in manganese greensand filters is recommended before this procedure is used for drinking water treatment

  7. Codoping of zinc and tungsten for practical high-performance amorphous indium-based oxide thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kizu, Takio, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Tsukagoshi, Kazuhito, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Miyanaga, Miki; Awata, Hideaki [Advanced Materials R& D Laboratories, Sumitomo Electric Industries, Ltd., 1-1-1 Koyakita, Itami, Hyogo 664-0016 (Japan); Nabatame, Toshihide [MANA Foundry and MANA Advanced Device Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2015-09-28

    Using practical high-density sputtering targets, we investigated the effect of Zn and W codoping on the thermal stability of the amorphous film and the electrical characteristics in thin film transistors. zinc oxide is a potentially conductive component while W oxide is an oxygen vacancy suppressor in oxide films. The oxygen vacancy from In-O and Zn-O was suppressed by the W additive because of the high oxygen bond dissociation energy. With controlled codoping of W and Zn, we demonstrated a high mobility with a maximum mobility of 40 cm{sup 2}/V s with good stability under a negative bias stress in InWZnO thin film transistors.

  8. Activity and resistance of iron-containing amorphous, zeolitic and mesostructured materials for wet peroxide oxidation of phenol.

    Science.gov (United States)

    Calleja, G; Melero, J A; Martínez, F; Molina, R

    2005-05-01

    Iron-containing materials have been prepared following several strategies of synthesis and using different silica supports (amorphous, zeolitic and mesostructured materials). Activity and stability of these materials was evaluated on the wet peroxide oxidation of phenol under mild reaction conditions (100 degrees C, air pressure of 1MPa and stoichiometric amount of hydrogen peroxide for the complete mineralisation of phenol). Their catalytic performance was monitored in terms of phenol and total organic carbon (TOC) conversions, by-products distribution (aromatics compounds and carboxylic acids) and degree of metal leached into the aqueous solution. The nature and local environment of iron species is strongly dependent on the synthetic route, which dramatically influences their catalytic performance. Crystalline iron oxide species supported over mesostructured SBA-15 materials have demonstrated to be the most interesting catalysts for phenol degradation according to its high organic mineralisation, low sensitivity to leaching out and good oxidant efficiency.

  9. Carbonate mineralization via an amorphous calcium carbonate (ACC) pathway: Tuning polymorph selection by Mg, pH, and mixing environment

    Science.gov (United States)

    Dove, P. M.; Blue, C.; Mergelsberg, S. T.; Giuffre, A. J.; Han, N.; De Yoreo, J. J.

    2017-12-01

    Mineral formation by nonclassical processes is widespread with many pathways that include aggregation of nanoparticles, oriented attachment of fully formed crystals, and sequential nucleation/transformation of amorphous phases (De Yoreo et al., 2015, Science). Field observations indicate amorphous calcium carbonate (ACC) can be the initial precipitate when local conditions promote high supersaturations for short time periods. Examples include microbial mats, marine porewaters that undergo pulses of increased alkalinity, closed basin lakes, and sabkhas. The crystalline products exhibit diverse morphologies and complex elemental and isotopic signatures. This study quantifies relationships between solution composition and the crystalline polymorphs that transform from ACC (Blue et al., GCA, 2017). Our experimental design synthesized ACC under controlled conditions for a suite of compositions by tuning input pH, Mg/Ca, and total carbonate concentration. ACC products were allowed to transform within output suspensions under stirred or quiescent mixing while characterizing the polymorph and composition of evolving solutions and solids. We find that ACC transforms to crystalline polymorphs with a systematic relationship to solution composition to give a quantitative framework based upon solution aMg2+/aCa2+ and aCO32-/aCa2+. We also measure a polymorph-specific evolution of pH and Mg/Ca during the transformation that indicates the initial polymorph to form. Pathway is further modulated by stirring versus quiescent conditions. The findings reconcile discrepancies among previous studies of ACC to crystalline products and supports claims that monohydrocalcite may be an overlooked, transient phase during formation of some aragonite and calcite deposits. Organic additives and extreme pH are not required to tune composition and polymorph. Insights from this study reiterate the need to revisit long-standing dogmas regarding controls on CaCO3 polymorph selection. Classical models

  10. Amorphous nanosized Al–Ti–Mn trimetal hydrous oxides: synthesis, characterization and enhanced performance in arsenic removal

    Czech Academy of Sciences Publication Activity Database

    Thanh, D. N.; Bastl, Zdeněk; Černá, K.; Ulbrich, P.; Lederer, J.

    2016-01-01

    Roč. 6, č. 103 (2016), s. 100732-100742 ISSN 2046-2069 Institutional support: RVO:61388955 Keywords : RAY PHOTOELECTRON-SPECTROSCOPY * BINARY MIXED-OXIDE * Al-Ti-Mn trimetal hydrous oxides * AQUEOUS-SOLUTION Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.108, year: 2016

  11. Co-Mn-Al Mixed Oxides as Catalysts for Ammonia Oxidation to N2O.

    Czech Academy of Sciences Publication Activity Database

    Ludvíková, Jana; Jablońska, M.; Jirátová, Květa; Chmielarz, L.; Balabánová, Jana; Kovanda, F.; Obalová, L.

    2016-01-01

    Roč. 42, č. 3 (2016), s. 2669-2690 ISSN 0922-6168 R&D Projects: GA ČR GA14-13750S Institutional support: RVO:67985858 Keywords : Co-Mn-Al mixed oxides * catalytic ammonia oxidation * N2O production * mechanochemical production Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.369, year: 2016

  12. Electron donating and acid-base properties of cerium oxide and its mixed oxides with alumina

    International Nuclear Information System (INIS)

    Sugunan, S.; Jalaja, J.M.

    1994-01-01

    The electron donating properties of cerium oxide activated at 300, 500 and 800 degC and of its mixed oxides with alumina were examined based on the adsorption of electron acceptors exhibiting different electron affinities. The surface acidity/basicity of the oxides was determined by titrimetry; the H 0,max values are given. The limit of electron transfer from the oxide surface lies within the region of 1.77 and 2.40 eV in terms of the electron affinity of the electron acceptor. Cerium oxide promotes the electron donor nature of alumina while leaving the limit of electron transfer unchanged. 2 tabs., 4 figs., 13 refs

  13. Mixed hyperfine interaction - a tool to investigate the short range order and the strange magnetic behaviour of amorphous Fe-based binary alloys

    International Nuclear Information System (INIS)

    Fries, S.M.; Crummenauer, J.; Gonser, U.; Schaaf, P.; Chien, C.L.

    1989-01-01

    The Moessbauer study of the mixed magnetic dipole and electric quadrupole interaction in the paramagnetic state of amorphous Fe-Zr and Fe-Hf alloys is presented. Strong evidence for chemical short range order of the iron-pure alloys is found. The hyperfine parameters of the iron-rich alloys are marked by a complex applied field and temperature dependence, suggesting a not negligible spin-correlation well above Tc. (orig.)

  14. Catalytic soot oxidation over Ce- and Cu-doped hydrotalcites-derived mesoporous mixed oxides.

    Science.gov (United States)

    Wang, Zhongpeng; Wang, Liguo; He, Fang; Jiang, Zheng; Xiao, Tiancun; Zhang, Zhaoliang

    2014-09-01

    Ce- and Cu-doped hydrotalcites derived mixed oxides were prepared through co-precipitation and calcination method, and their catalytic activities for soot oxidation with O2 and O2/NO were investigated. The solids were characterized by XRD, TG-DTG, BET, H2-TPR, in situ FTIR and TPO techniques. All the catalysts precursors showed the typical diffraction patterns of hydrotalcite-like materials having layered structure. The derived mixed oxides exhibited mesoporous properties with specific surface area of 45-160 m2/g. After both Ce and Cu incorporated, mixed crystalline phases of CuO (tenorite), CeO2 (fluorite) and MgAl2O4 (spinel) were formed. As a result, the NO(x) adsorption capacity of this catalyst was largely increased to 201 μmol/g, meanwhile, it was also the most effective to convert NO into NO2 in the sorption process due to the enhanced reducibility. The in situ FTIR spectra revealed that NO(x) were stored mainly as chelating bidentate and monodentate nitrate. The interaction effect between Cu and Ce in the mixed oxide resulted in different NO(x) adsorption behavior. Compared with the non-catalyzed soot oxidation, soot conversion curves over the mixed oxides catalysts shift to low temperature in O2. The presence of NO in the gas phase significantly enhanced the soot oxidation activity with ignition temperature decreased to about 320 degrees C, which is due to NO conversion to NO2 over the catalyst followed by the reaction of NO2 with soot. This explains the cooperative effect of Ce and Cu in the mixed oxide on soot oxidation with high activity and 100% selectivity to CO2 formation.

  15. The oxidation of trichloroethylene over different mixed oxides derived from hydrotalcites

    OpenAIRE

    BLANCH RAGA, NEUS; Palomares Gimeno, Antonio Eduardo; Martínez Triguero, Luis Joaquín; Puche Panadero, Marta; Fetter, Geolar; Bosch, Pedro

    2014-01-01

    The activity of different Mg(Fe/Al), Ni(Fe/Al) and Co(Fe/Al) mixed oxides based on hydrotalcite-like compounds have been studied for the catalytic oxidation of trichloroethylene. It has been shown that the Co catalysts are more active than the Ni catalyst, being the Mg catalysts the less active ones. The activity of all the catalysts improves when iron is substituted by aluminum in the catalyst composition. The best results have been obtained with the CoAl mixed oxide derived from...

  16. Low-Temperature Synthesis of Hierarchical Amorphous Basic Nickel Carbonate Particles for Water Oxidation Catalysis.

    Science.gov (United States)

    Yang, Yisu; Liang, Fengli; Li, Mengran; Rufford, Thomas E; Zhou, Wei; Zhu, Zhonghua

    2015-07-08

    Amorphous nickel carbonate particles are catalysts for the oxygen evolution reaction (OER), which plays a critical role in the electrochemical splitting of water. The amorphous nickel carbonate particles can be prepared at a temperature as low as 60 °C by an evaporation-induced precipitation (EIP) method. The products feature hierarchical pore structures. The mass-normalized activity of the catalysts, measured at an overpotential of 0.35 V, was 55.1 A g(-1) , with a Tafel slope of only 60 mV dec(-1) . This catalytic activity is superior to the performance of crystalline NiOx particles and β-Ni(OH)2 particles, and compares favorably to state-of-the-art RuO2 catalysts. The activity of the amorphous nickel carbonate is remarkably stable during a 10 000 s chronoamperometry test. Further optimization of synthesis parameters reveals that the amorphous structure can be tuned by adjusting the H2 O/Ni ratio in the precursor mixture. These results suggest the potential application of easily prepared hierarchical basic nickel carbonate particles as cheap and robust OER catalysts with high activity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Characterization of the acid strength of SiO[sub 2]-ZrO[sub 2] mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bosman, H.J.M.; Kruissink, E.C.; Spoel, J. van der; Brink, F. van den (DSM Research B.V., Gelenee (Netherlands))

    1994-08-01

    The preparation of SiO[sub 2]-ZrO[sub 2] mixed oxides and the single oxides SiO[sub 2] and ZrO[sub 2] from H[sub 2]SiF[sub 6] and/or H[sub 2]ZrF[sub 6] is described. The catalysts are characterized using Hammett colour indicators, temperature programmed desorption of ammonia, XRD, XPS, and infrared spectroscopy. New IR bands and absence of XRD crystallinity show mixing of SiO[sub 2] and ZrO[sub 2] on an atomic scale in the amorphous coprecipitate. However, as could be concluded from the difference between surface concentrations of Zr and Si measured with XPS and the mean bulk concentrations, the ZrO[sub 2] precipitates somewhat more quickly than SiO[sub 2]. The acid strength of the SiO[sub 2]-ZrO[sub 2] mixed oxides corresponds to an H[sub 0] value between -11.4 and 13.8 (super-acidity). There is a fair correlation between the surface concentration of strong acid sites, determined from NH[sub 3] TPD, and the performance in the acid catalyzed dehydration of cyclohexanol to cyclohexene. In addition to the concentration of acid sites, their acid strength is an important factor determining the performance of the SiO[sub 2]-ZrO[sub 2] catalysts in the dehydration of cyclohexanol. The acid strength needed for the dehydration of cyclohexanol corresponds to H[sub 0] [<=] +2.8. Chemically mixed SiO[sub 2]-ZrO[sub 2] oxides contain strong acid sites as opposed to the single oxides SiO[sub 2] and ZrO[sub 2], which contain only weak acid sites. XPS shows an oxygen depletion on the surface of the mixed oxides, which indicates that the strong acid sites are of the Lewis type. 27 refs., 11 figs., 4 tabs.

  18. Design and synthesis of mixed oxides nanoparticles for biofuel applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Senniang [Iowa State Univ., Ames, IA (United States)

    2010-05-15

    The work in this dissertation presents the synthesis of two mixed metal oxides for biofuel applications and NMR characterization of silica materials. In the chapter 2, high catalytic efficiency of calcium silicate is synthesized for transesterfication of soybean oil to biodisels. Chapter 3 describes the synthesis of a new Rh based catalyst on mesoporous manganese oxides. The new catalyst is found to have higher activity and selectivity towards ethanol. Chapter 4 demonstrates the applications of solid-state Si NMR in the silica materials.

  19. Toward an Understanding of Thin-Film Transistor Performance in Solution-Processed Amorphous Zinc Tin Oxide (ZTO) Thin Films.

    Science.gov (United States)

    Sanctis, Shawn; Koslowski, Nico; Hoffmann, Rudolf; Guhl, Conrad; Erdem, Emre; Weber, Stefan; Schneider, Jörg J

    2017-06-28

    Amorphous zinc tin oxide (ZTO) thin films are accessible by a molecular precursor approach using mononuclear zinc(II) and tin(II) compounds with methoxyiminopropionic acid ligands. Solution processing of two precursor solutions containing a mixture of zinc and tin(II)-methoxyiminopropinato complexes results in the formation of smooth homogeneous thin films, which upon calcination are converted into the desired semiconducting amorphous ZTO thin films. ZTO films integrated within a field-effect transistor (FET) device exhibit an active semiconducting behavior in the temperature range between 250 and 400 °C, giving an increased performance, with mobility values between μ = 0.03 and 5.5 cm 2 /V s, with on/off ratios increasing from 10 5 to 10 8 when going from 250 to 400 °C. Herein, our main emphasis, however, was on an improved understanding of the material transformation pathway from weak to high performance of the semiconductor in a solution-processed FET as a function of the processing temperature. We have correlated this with the chemical composition and defects states within the microstructure of the obtained ZTO thin film via photoelectron spectroscopy (X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy), Auger electron spectroscopy, electron paramagnetic resonance spectroscopy, atomic force microscopy, and photoluminescence investigations. The critical factor observed for the improved performance within this ZTO material could be attributed to a higher tin concentration, wherein the contributions of point defects arising from the tin oxide within the final amorphous ZTO material play the dominant role in governing the transistor performance.

  20. The effects of localized tail states on charge transport mechanisms in amorphous zinc tin oxide Schottky diodes

    Science.gov (United States)

    Son, Youngbae; Peterson, Rebecca L.

    2017-12-01

    Temperature-dependent current–voltage measurements were performed on vertical Schottky diodes made with solution-processed amorphous zinc tin oxide (a-ZTO) semiconductor and palladium rectifying contacts. Above 260 K, forward bias electron transport occurs via thermionic emission over an inhomogeneous, voltage-dependent Schottky barrier with {\\bar{φ }}b0 = 0.72 eV, σ 0 = 0.12 eV, and A* = 44 A cm‑2 K‑2, where {\\bar{φ }}b0 and {σ }0 are the mean potential barrier and its standard deviation at zero bias, respectively, and A* is Richardson’s constant. For large currents, the series ohmic resistance of the bulk semiconductor dominates. At temperatures below 260 K, less carriers are excited from localized states below the conduction band edge, and space-charge-limited current (SCLC) dominates. The exponential tail density of states parameters extracted for a-ZTO are g tc = 1.34 × 1019 cm‑3 eV‑1 and kT t = 26 meV. The intermediate tail state density in a-ZTO, less than that of amorphous silicon and greater than that of amorphous indium gallium zinc oxide, allows for experimental observation of a temperature-dependent transition of bulk charge transport mechanisms in strong forward bias from semiconductor-like ohmic conduction near room temperature to insulator-like SCLC at lower temperatures. In reverse bias, the same tail states lead to modified Poole–Frenkel emission, reducing the leakage current. The frequency response of a half-wave rectifier and diode impedance spectroscopy confirm that the Schottky diode cut-off frequency is above 1 MHz.

  1. Grain growth kinetics in uranium-plutonium mixed oxides

    International Nuclear Information System (INIS)

    Sari, C.

    1986-01-01

    Grain growth rates were investigated in uranium-plutonium mixed oxide specimens with oxygen-to-metal ratios 1.97 and 2.0. The specimens in the form of cylindrical pellets were heated in a temperature gradient similar to that existing in a fast reactor. The results are in agreement with the cubic rate law. The mean grain size D(μm) after annealing for time t (min) is represented by D 3 -D 0 3 =1.11x10 12 . exp(-445870/RT).t and D 3 -D 0 3 =2.55x10 9 .exp(-319240/RT).t for specimens with overall oxygen-to-metal ratios 1.97 and 2.0, respectively (activation energies expressed in J/mol). An example for the influence of the oxygen-to-metal ratio on the grain growth in mixed oxide fuel during operation in a fast reactor is also given. (orig.)

  2. Microstructure and thermophysical characterization of mixed oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Freibert, Franz J [Los Alamos National Laboratory; Salich, Tarik A [Los Alamos National Laboratory; Schwartz, Daniel S [Los Alamos National Laboratory; Hampel, Fred G [Los Alamos National Laboratory; Mitchell, Jeremy N [Los Alamos National Laboratory; Davis, Charles C [Los Alamos National Laboratory; Neuman, Angelique D [Los Alamos National Laboratory; Willson, Steve P [Los Alamos National Laboratory; Dunwoody, John T [Los Alamos National Laboratory

    2009-01-01

    Pre-irradiated thermodynamic and microstructural properties of nuclear fuels form the necessary set of data against which to gauge fuel performance and irradiation damage evolution. This paper summarizes recent efforts in mixed-oxide and minor actinide-bearing mixed-oxide ceramic fuels fabrication and characterization at Los Alamos National Laboratory. Ceramic fuels (U{sub 1-x-y-z}u{sub x}Am{sub y}Np{sub z})O{sub 2} fabricated in the compositional ranges of 0.19 {le} x {le} 0.3 Pu, 0 {le} y {le} 0.05 Am, and O {le} z {le} O.03 Np exhibited a uniform crystalline face-centered cubic phase with an average grain size of 14{micro}m; however, electron microprobe analysis revealed segregation of NpO{sub 2} in minor actinide-bearing fuels. Immersion density and porosity analysis demonstrated an average density of 92.4% theoretical for mixed-oxide fuels and an average density of 89.5 % theoretical density for minor actinide-bearing mixed-oxide fuels. Examined fuels exhibited mean thermal expansion value of 12.56 x 10{sup -6} C{sup -1} for temperature range (100 C < T < 1500 C) and ambient temperature Young's modulus and Poisson's ratio of 169 GPa and of 0.327, respectively. Internal dissipation as determined from mechanical resonances of these ceramic fuels has shown promise as a tool to gauge microstructural integrity and to interrogate fundamental properties.

  3. AMOchar: Amorphous manganese oxide coating of biochar improves its efficiency at removing metal(loid)s from aqueous solutions.

    Science.gov (United States)

    Trakal, Lukáš; Michálková, Zuzana; Beesley, Luke; Vítková, Martina; Ouředníček, Petr; Barceló, Andreu Piqueras; Ettler, Vojtěch; Číhalová, Sylva; Komárek, Michael

    2018-06-01

    A novel sorbent made from biochar modified with an amorphous Mn oxide (AMOchar) was compared with pure biochar, pure AMO, AMO+biochar mixtures and biochar+birnessite composite for the removal of various metal(loid)s from aqueous solutions using adsorption and solid-state analyses. In comparison with the pristine biochar, both Mn oxide-biochar composites were able to remove significantly greater quantities of various metal(loid)s from the aqueous solutions, especially at a ratio 2:1 (AMO:biochar). The AMOchar proved most efficient, removing almost 99, 91 and 51% of Pb, As and Cd, respectively. Additionally, AMOchar and AMO+biochar mixture exhibited reduced Mn leaching, compared to pure AMO. Therefore, it is concluded that the synthesis of AMO and biochar is able to produce a double acting sorbent ('dorbent') of enhanced efficiency, compared with the individual deployment of their component materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Comparison of the electronic structure of amorphous versus crystalline indium gallium zinc oxide semiconductor: structure, tail states and strain effects

    Science.gov (United States)

    de Jamblinne de Meux, A.; Pourtois, G.; Genoe, J.; Heremans, P.

    2015-11-01

    We study the evolution of the structural and electronic properties of crystalline indium gallium zinc oxide (IGZO) upon amorphization by first-principles calculation. The bottom of the conduction band (BCB) is found to be constituted of a pseudo-band of molecular orbitals that resonate at the same energy on different atomic sites. They display a bonding character between the s orbitals of the metal sites and an anti-bonding character arising from the interaction between the oxygen and metal s orbitals. The energy level of the BCB shifts upon breaking of the crystal symmetry during the amorphization process, which may be attributed to the reduction of the coordination of the cationic centers. The top of the valence band (TVB) is constructed from anti-bonding oxygen p orbitals. In the amorphous state, they have random orientation, in contrast to the crystalline state. This results in the appearance of localized tail states in the forbidden gap above the TVB. Zinc is found to play a predominant role in the generation of these tail states, while gallium hinders their formation. Last, we study the dependence of the fundamental gap and effective mass of IGZO on mechanical strain. The variation of the gap under strain arises from the enhancement of the anti-bonding interaction in the BCB due to the modification of the length of the oxygen-metal bonds and/or to a variation of the cation coordination. This effect is less pronounced for the amorphous material compared to the crystalline material, making amorphous IGZO a semiconductor of choice for flexible electronics. Finally, the effective mass is found to increase upon strain, in contrast to regular materials. This counterintuitive variation is due to the reduction of the electrostatic shielding of the cationic centers by oxygen, leading to an increase of the overlaps between the metal orbitals at the origin of the delocalization of the BCB. For the range of strain typically met in flexible electronics, the induced

  5. Comparison of the electronic structure of amorphous versus crystalline indium gallium zinc oxide semiconductor: structure, tail states and strain effects

    International Nuclear Information System (INIS)

    De Jamblinne de Meux, A; Genoe, J; Heremans, P; Pourtois, G

    2015-01-01

    We study the evolution of the structural and electronic properties of crystalline indium gallium zinc oxide (IGZO) upon amorphization by first-principles calculation. The bottom of the conduction band (BCB) is found to be constituted of a pseudo-band of molecular orbitals that resonate at the same energy on different atomic sites. They display a bonding character between the s orbitals of the metal sites and an anti-bonding character arising from the interaction between the oxygen and metal s orbitals. The energy level of the BCB shifts upon breaking of the crystal symmetry during the amorphization process, which may be attributed to the reduction of the coordination of the cationic centers. The top of the valence band (TVB) is constructed from anti-bonding oxygen p orbitals. In the amorphous state, they have random orientation, in contrast to the crystalline state. This results in the appearance of localized tail states in the forbidden gap above the TVB. Zinc is found to play a predominant role in the generation of these tail states, while gallium hinders their formation. Last, we study the dependence of the fundamental gap and effective mass of IGZO on mechanical strain. The variation of the gap under strain arises from the enhancement of the anti-bonding interaction in the BCB due to the modification of the length of the oxygen–metal bonds and/or to a variation of the cation coordination. This effect is less pronounced for the amorphous material compared to the crystalline material, making amorphous IGZO a semiconductor of choice for flexible electronics. Finally, the effective mass is found to increase upon strain, in contrast to regular materials. This counterintuitive variation is due to the reduction of the electrostatic shielding of the cationic centers by oxygen, leading to an increase of the overlaps between the metal orbitals at the origin of the delocalization of the BCB. For the range of strain typically met in flexible electronics, the induced

  6. Fabrication of Amorphous Indium Gallium Zinc Oxide Thin Film Transistor by using Focused Ion Beam

    Science.gov (United States)

    Zhu, Wencong

    Compared with other transparent semiconductors, amorphous indium gallium zinc oxide (a-IGZO) has both good uniformity and high electron mobility, which make it as a good candidate for displays or large-scale transparent circuit. The goal of this research is to fabricate alpha-IGZO thin film transistor (TFT) with channel milled by focused ion beam (FIB). TFTs with different channel geometries can be achieved by applying different milling strategies, which facilitate modifying complex circuit. Technology Computer-Aided Design (TCAD) was also introduced to understand the effect of trapped charges on the device performance. The investigation of the trapped charge at IGZO/SiO2 interface was performed on the IGZO TFT on p-Silicon substrate with thermally grown SiO2 as dielectric. The subgap density-of-state model was used for the simulation, which includes conduction band-tail trap states and donor-like state in the subgap. The result shows that the de-trapping and donor-state ionization determine the interface trapped charge density at various gate biases. Simulation of IGZO TFT with FIB defined channel on the same substrate was also applied. The drain and source were connected intentionally during metal deposition and separated by FIB milling. Based on the simulation, the Ga ions in SiO2 introduced by the ion beam was drifted by gate bias and affects the saturation drain current. Both side channel and direct channel transparent IGZO TFTs were fabricated on the glass substrate with coated ITO. Higher ion energy (30 keV) was used to etch through the substrate between drain and source and form side channels at the corner of milled trench. Lower ion energy (16 keV) was applied to stop the milling inside IGZO thin film and direct channel between drain and source was created. Annealing after FIB milling removed the residual Ga ions and the devices show switch feature. Direct channel shows higher saturation drain current (~10-6 A) compared with side channel (~10-7 A) because

  7. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for the...

  8. Mechanism of Selenite Removal by a Mixed Adsorbent Based on Fe–Mn Hydrous Oxides Studied Using X-ray Absorption Spectroscopy

    KAUST Repository

    Chubar, Natalia

    2014-11-18

    © 2014 American Chemical Society. Selenium cycling in the environment is greatly controlled by various minerals, including Mn and Fe hydrous oxides. At the same time, such hydrous oxides are the main inorganic ion exchangers suitable (on the basis of their chemical nature) to sorb (toxic) anions, separating them from water solutions. The mechanism of selenite adsorption by the new mixed adsorbent composed of a few (amorphous and crystalline) phases [maghemite, MnCO3, and X-ray amorphous Fe(III) and Mn(III) hydrous oxides] was studied by extended X-ray absorption fine structure (EXAFS) spectroscopy [supported by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) data]. The complexity of the porous adsorbent, especially the presence of the amorphous phases of Fe(III) and Mn(III) hydrous oxides, is the main reason for its high selenite removal performance demonstrated by batch and column adsorption studies shown in the previous work. Selenite was bound to the material via inner-sphere complexation (via oxygen) to the adsorption sites of the amorphous Fe(III) and Mn(III) oxides. This anion was attracted via bidentate binuclear corner-sharing coordination between SeO3 2- trigonal pyramids and both FeO6 and MnO6 octahedra; however, the adsorption sites of Fe(III) hydrous oxides played a leading role in selenite removal. The contribution of the adsorption sites of Mn(III) oxide increased as the pH decreased from 8 to 6. Because most minerals have a complex structure (they are seldom based on individual substances) of various crystallinity, this work is equally relevant to environmental science and environmental technology because it shows how various solid phases control cycling of chemical elements in the environment.

  9. Ceria doped mixed metal oxide nanoparticles as oxidation catalysts: Synthesis and their characterization

    OpenAIRE

    Sultana, S.S.P.; Kishore, D.H.V.; Kuniyil, Mufsir; Khan, Mujeeb; Alwarthan, Abdulrahman; Prasad, K.R.S.; Labis, Joselito P.; Adil, S.F.

    2015-01-01

    Mixed metal nanoparticles (NPs) have attracted significant attention as catalysts for various organic transformations. In this study, we have demonstrated the preparation of nickel–manganese mixed metal oxide NPs doped with X% nano cerium oxide (X = 1, 3, 5 mol%) by a facile co-precipitation technique using surfactant and surfactant free methodologies. The as-synthesized materials were calcined at different temperatures (300 °C, 400 °C, and 500 °C), and were characterized using various spectr...

  10. Isotopic mixing in carbon monoxide catalyzed by zinc oxide

    International Nuclear Information System (INIS)

    Carnisio, G.; Garbassi, F.; Petrini, G.; Parravano, G.

    1978-01-01

    The rate of the isotopic mixing in CO has been studied at 300 0 C, for CO partial pressures from 6 to 100 Torr and a total pressure of 250 Torr on ZnO catalysts. Significant deviations from a first-order rate in p/sub co/ were found. The rate of oxygen exchange between ZnO and gas-phase CO was also measured and the results were employed to calculate the fraction of surface sites active for the CO isotopic mixing. Values on the order of 0.001 were found. The turnover rate and surface collision efficiency varied between 0.7 and 107 min -1 and 0.13 and 2.24 x 10 -8 , respectively. H 2 additions to CO increased the rate of isotopic mixing, whereas the rate of H 2 + D 2 was decreased by the presence of CO. The H 2 + D 2 rate was faster than that of isotopic mixing in CO, but as the ratio p/sub H 2 //p/sub co/ decreased the rates became about equal. It is argued that on ZnO samples, in which the rate of CO isotopic mixing and the rate of ZnO--CO oxygen exchange were influenced in a similar manner by the CO pressure, the isotopic mixing in CO took place via the ZnO oxygen, while oxide oxygen participation was not kinetically significant for ZnO samples in which the two reactions had different kinetics. The crucial factor controlling the path followed by the isotopic mixing in CO seems to be the surface Zn/O ratio, since a close correlation was found between the former and the reaction kinetics of the CO isotopic mixing reaction. Solid-state conditions which may vary the Zn/O surface ratio (foreign additions) are indicated. The implications of these findings to the problem of product selectivity from CO-H 2 mixtures reacting on metal oxide surfaces are discussed

  11. Impact of soft annealing on the performance of solution-processed amorphous zinc tin oxide thin-film transistors

    KAUST Repository

    Nayak, Pradipta K.

    2013-05-08

    It is demonstrated that soft annealing duration strongly affects the performance of solution-processed amorphous zinc tin oxide thin-film transistors. Prolonged soft annealing times are found to induce two important changes in the device: (i) a decrease in zinc tin oxide film thickness, and (ii) an increase in oxygen vacancy concentration. The devices prepared without soft annealing exhibited inferior transistor performances, in comparison to devices in which the active channel layer (zinc tin oxide) was subjected to soft annealing. The highest saturation field-effect mobility - 5.6 cm2 V-1 s-1 with a drain-to-source on-off current ratio (Ion/Ioff) of 2 × 108 - was achieved in the case of devices with 10-min soft-annealed zinc tin oxide thin films as the channel layer. The findings of this work identify soft annealing as a critical parameter for the processing of chemically derived thin-film transistors, and it correlates device performance to the changes in material structure induced by soft annealing. © 2013 American Chemical Society.

  12. Synthesis of amorphous zirconium oxide with luminescent characteristics; Sintesis de oxido de circonio amorfo con caracteristicas luminiscentes

    Energy Technology Data Exchange (ETDEWEB)

    Barrera S, M.; Chavez G, M.; Soto E, A.M.; Velasquez O, C.; Garcia S, M.A.; Olvera T, L.; Rivera M, T. [UAM-I, 09340 Mexico D.F. (Mexico)

    2004-07-01

    It was prepared zirconium oxide, ZrO{sub 2}, by means of hydrolysis-condensation reactions (sol-gel method), using zirconium propoxide, Zr(C{sub 3}H{sub 7}O){sub 4}, as precursor and nitric acid, HNO{sub 3}, as catalyst of the hydrolysis reaction. In this synthesis it was used a molar ratio water-alkoxide, r=n{sub H2O}/n{sub Zr}(C{sub 3}H{sub 7}0){sub 4}, high, similar to 200, so that the hydrolysis happens quickly and the nucleation and growth are completed in very little time. The solid was characterized with Ftir spectrophotometry, Differential thermal analysis (Dta), Thermal gravimetric analysis (T G), X-ray diffraction of powders, Scanning electron microscopy (Sem) and X-ray Dispersion energy (EDX). The ZrO{sub 2} obtained by this way is amorphous even to 300 C and it consists of big aggregates. The amorphous ZrO{sub 2}, presents thermoluminescent behavior, after it was irradiated with UV radiation and beta particles of {sup 90}Sr/{sup 90}Y and it was thermally stimulated. (Author)

  13. Structural and microstructural changes in the zirconium-indium mixed oxide system during the thermal treatment

    Science.gov (United States)

    Štefanić, G.; Štefanić, I. I.; Musić, S.; Ivanda, M.

    2011-05-01

    The zirconium-indium mixed oxide systems on both the zirconium- and the indium-rich side of the concentration range were prepared by co-precipitation from aqueous solutions of the corresponding salts, followed by washing and heat-treatment. The thermal behavior (up to 1000 °C) of the dried samples was examined by X-ray powder diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray spectrometry, differential thermal analysis and thermogravimetric measurements. The obtained results show that the increase in the amount of the second phase causes an increase of both the crystallization temperature of the amorphous precursors of ZrO 2, from 435 °C (0 mol.% of InO 1.5) to 476 °C (˜62 mol.% of InO 1.5), and of the topotactic transition temperature of cubic In(OH) 3 to cubic In 2O 3, from 259 °C (0 mol.% of ZrO 2) to 290 °C (˜25 mol.% of ZrO 2). The amorphous precursors of ZrO 2 phase exhibit an extended capability to incorporate In 3+ ions (more than 60 mol.%). With a rise in temperature the maximum solubility of In 3+ ions in the ZrO 2 lattice decreases from ˜55 mol.% in the crystallization products obtained after calcination at 400 °C to ˜10 mol.% after calcination at 1000 °C. The results of phase analysis indicate that the incorporation of In 3+ ions partially stabilized both the tetragonal and cubic ZrO 2 polymorphs. The maximum solubility of Zr 4+ ions in the starting In(OH) 3 lattice was estimated at ˜10 mol.%. Thermal treatment causes a small increase of Zr 4+ ion solubility limits, estimated at ˜15 mol.% in the cubic In 2O 3 lattice after calcination at 1000 °C. Precise lattice parameter measurements, by using Le Bail refinements of the powder diffraction patterns with added silicon as an internal standard, show that the incorporation of In 3+ ions caused a very small decrease of the cubic ZrO 2 lattice, while the incorporation of Zr 4+ ions had a negligible

  14. Cladding dimensional changes in mixed oxide fuel pins

    International Nuclear Information System (INIS)

    Makenas, B.J.; Jost, J.W.; Hales, J.W.

    1980-01-01

    Several types of stainless steel (304, 316, 316-20% Cold Worked, and 316 Titanium stabilized 20% CW) have been used as cladding for mixed oxide (U, Pu)O 2 fuel pins irradiated in EBR-II. All of the materials have performed satisfactorily in their respective experimental subassemblies but significant differences in swelling and inelastic strain behavior have been found at high fast fluences among the different materials and among different heats of the same material. Cladding diameter increases were measured for 622 developmental and FFTF reference design fuel pins which were irradiated in 19 experimental subassemblies. Fuel pin diameters were determined from multiangle axial trace profilometry measurements

  15. Irradiation creep of the mixed oxide UPuO2

    International Nuclear Information System (INIS)

    Combette, Patrick; Milet, Claude

    1976-01-01

    The irradiation creep under compression of the mixed oxide UO 2 -PuO 2 was studied up to fission yields of 6x10 13 fcm -3 s -1 , under stresses -2 , in the temperature range 700-900 deg C. The creep rate is proportional to the applied stress and fission yield, athermal in the studied temperature range and non-dependent of burnup (up to 30000MWjt -1 ). In a sample under compression, swelling is observed due to the formation of fission products during the irradiation and the swelling rate is of the same order that in a cladded fuel element [fr

  16. Analysis of the porosity distribution of mixed oxide pins

    International Nuclear Information System (INIS)

    Lieblich, M.; Lopez, J.

    1987-01-01

    In the frame of the Joint Irradiation Program IVO-FR2-Vg7 between the Centre of Nuclear Research of Karlsruhe (KfK), the irradiation of 30 mixed-oxide fuel rods in the FR2 experimental reactor was carried out. The pins were located in 10 single-walled NaK capsules. The behaviour of the fuel during its burnup was studied, mainly, the rest-porosity and cracking distribution in the pellet, partial densification, etc. In this work 3 pins from the capsule No. 165 were analyzed. The experimental results (pore and cracking profiles) were interpreted by the fuel rod code SATURN. (Author) 20 refs

  17. High performance solution-deposited amorphous indium gallium zinc oxide thin film transistors by oxygen plasma treatment

    KAUST Repository

    Nayak, Pradipta K.

    2012-05-16

    Solution-deposited amorphous indium gallium zinc oxide (a-IGZO) thin film transistors(TFTs) with high performance were fabricated using O2-plasma treatment of the films prior to high temperature annealing. The O2-plasma treatment resulted in a decrease in oxygen vacancy and residual hydrocarbon concentration in the a-IGZO films, as well as an improvement in the dielectric/channel interfacial roughness. As a result, the TFTs with O2-plasma treated a-IGZO channel layers showed three times higher linear field-effect mobility compared to the untreated a-IGZO over a range of processing temperatures. The O2-plasma treatment effectively reduces the required processing temperature of solution-deposited a-IGZO films to achieve the required performance.

  18. Amorphous Nickel-Cobalt-Borate Nanosheet Arrays for Efficient and Durable Water Oxidation Electrocatalysis under Near-Neutral Conditions.

    Science.gov (United States)

    Chen, Lanlan; Ren, Xiang; Teng, Wanqing; Shi, Pengfei

    2017-07-21

    Electrolytic hydrogen generation needs earth-abundant oxygen evolution reaction electrocatalysts that perform efficiently at mild pH. Here, the development of amorphous nickel-cobalt-borate nanosheet arrays on macroporous nickel foam (NiCo-Bi/NF) as a 3D catalyst electrode for high-performance water oxidation in near-neutral media is reported. To drive a current density of 10 mA cm -2 , the resulting NiCo-Bi/NF demands an overpotential of only 430 mV in 0.1 m potassium borate (K-Bi, pH 9.2). Moreover, it also shows long-term electrochemical durability with maintenance of catalytic activity for 20 h, achieving a high turnover frequency of 0.21 s -1 at an overpotential of 550 mV. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ceria doped mixed metal oxide nanoparticles as oxidation catalysts: Synthesis and their characterization

    Directory of Open Access Journals (Sweden)

    S.S.P. Sultana

    2015-11-01

    Full Text Available Mixed metal nanoparticles (NPs have attracted significant attention as catalysts for various organic transformations. In this study, we have demonstrated the preparation of nickel–manganese mixed metal oxide NPs doped with X% nano cerium oxide (X = 1, 3, 5 mol% by a facile co-precipitation technique using surfactant and surfactant free methodologies. The as-synthesized materials were calcined at different temperatures (300 °C, 400 °C, and 500 °C, and were characterized using various spectroscopic techniques, including, FTIR and XRD. SEM analysis, TEM analysis and TGA were employed to evaluate the structural properties of the as-prepared catalyst. These were evaluated for their catalytic behaviour towards the conversion of benzyl alcohol to benzaldehyde, which was used as a model reaction with molecular oxygen as oxidant. Furthermore, the effect of the variation of the percentage of nano ceria doping and the calcination temperature on the performance of as-prepared mixed metal catalysts was also evaluated. The kinetic studies of the reactions performed employing gas chromatographic technique have revealed that the mixed metal oxide catalyst doped with 5% nano ceria displayed excellent catalytc activity, among various catalysts synthesized.

  20. A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film transistors under positive gate bias stress

    NARCIS (Netherlands)

    Niang, K.M.; Barquinha, P.M.C.; Martins, R.F.P.; Cobb, B.; Powell, M.J.; Flewitt, A.J.

    2016-01-01

    Thin film transistors (TFTs) employing an amorphous indium gallium zinc oxide (a-IGZO) channel layer exhibit a positive shift in the threshold voltage under the application of positive gate bias stress (PBS). The time and temperature dependence of the threshold voltage shift was measured and

  1. Large scale integration of flexible non-volatile, re-addressable memories using P(VDF-TrFE) and amorphous oxide transistors

    NARCIS (Netherlands)

    Gelinck, G.H.; Cobb, B.; Breemen, A.J.J.M. van; Myny, K.

    2015-01-01

    Ferroelectric polymers and amorphous metal oxide semiconductors have emerged as important materials for re-programmable non-volatile memories and high-performance, flexible thin-film transistors, respectively. However, realizing sophisticated transistor memory arrays has proven to be a challenge,

  2. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    Science.gov (United States)

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  3. Highly conductive p-type amorphous oxides from low-temperature solution processing

    International Nuclear Information System (INIS)

    Li Jinwang; Tokumitsu, Eisuke; Koyano, Mikio; Mitani, Tadaoki; Shimoda, Tatsuya

    2012-01-01

    We report solution-processed, highly conductive (resistivity 1.3-3.8 mΩ cm), p-type amorphous A-B-O (A = Bi, Pb; B = Ru, Ir), processable at temperatures (down to 240 °C) that are compatible with plastic substrates. The film surfaces are smooth on the atomic scale. Bi-Ru-O was analyzed in detail. A small optical bandgap (0.2 eV) with a valence band maximum (VBM) below but very close to the Fermi level (binding energy E VBM = 0.04 eV) explains the high conductivity and suggests that they are degenerated semiconductors. The conductivity changes from three-dimensional to two-dimensional with decreasing temperature across 25 K.

  4. Studies on O/M ratio determination in uranium oxide, plutonium oxide and uranium-plutonium mixed oxide

    International Nuclear Information System (INIS)

    Sampath, S.; Chawla, K.L.

    1975-01-01

    Thermogravimetric studies were carried out in unsintered and sintered samples of uranium oxide, plutonium oxide and uranium-plutonium mixed oxide under different atmospheric conditions (air, argon and moist argon/hydrogen). Moisture loss was found to occur below 200 0 C for uranium dioxide samples, upto 700 0 C for sintered plutonium dioxide and negligible for sintered samples. The O/M ratios for non-stoichiometric uranium dioxide (sintered and unsintered), plutonium dioxide and mixed uranium and plutonium oxides (sintered) could be obtained with a precision of +- 0.002. Two reference states UOsub(2.000) and UOsub(2.656) were obtained for uranium dioxide and the reference state MOsub(2.000) was used for other cases. For unsintered plutonium dioxide samples, accurate O/M ratios could not be obtained of overlap of moisture loss with oxygen loss/gain. (author)

  5. [Synthesis and characterization of mixed metal oxide pigments].

    Science.gov (United States)

    Ding, Jie; Yue, Shi-juan; Liu, Cui-ge; Wei, Yong-ju; Meng, Tao; Jiang, Han-jie; Shi, Yong-zheng; Xu, Yi-zhuang; Yu, Jiang; Wu, Jin-guang

    2012-03-01

    In the present work, aluminum chloride and various soluble salts of doping ions were dissolved in water. In addition, urea and polyvinyl pyrrolidone (PVP) were also dissolved in the above aqueous solution under supersonic treatments. Then the solutions were heated to induce the hydrolysis of urea so that soluble aluminum and doping ions convert into insoluble hydroxide or carbonate gels. After calcinations, the obtained gels change to mixed metal oxide pigments whose color is related to type and concentrations of the doping ions. XRD characterization demonstrates that the diffraction patterns of the products are the same as that of alpha-alumina. Diffuse reflectance spectra of samples of the samples in UV-Vis regions show that the absorption bands for d-d transitions of the doping ions undergo considerable change as the coordinate environments change. In addition, L*, a* and b* values of the pigments were measured by using UV-Vis densitometer. SEM results indicate that the size of the pigment powders is in the range 200-300 nm. The pigments are quite stable since no evidence of dissolution was observed after the synthesized pigment is soaked for 24 hours. ICP test shows that very little amount of doped metal occurs in the corresponding filtrate. The above results suggest that these new kinds of mixed metal oxide pigments are stable, non-toxic, environmental friendly and they may be applicable in molten spinning process and provide a new chance for non-aqueous printing and dyeing industry.

  6. Equipment to weld fuel rods of mixed oxides

    International Nuclear Information System (INIS)

    Aparicio, G.; Orlando, O.S.; Olano, V.R.; Toubes, B.; Munoz, C.A.

    1987-01-01

    Two welding outfits system T1G were designed and constructed to weld fuel rods with mixed oxides pellets (uranium and plutonium). One of them is connected to a glove box where the loading of sheaths takes place. The sheaths are driven to the welder through a removable plug pusher in the welding chamber. This equipment was designed to perform welding tests changing the parameters (gas composition and pressure, welding current, electrode position, etc.). The components of the welder, such as plug holder, chamber closure and peripheral accessories, were designed and constructed taking into account the working pressures in the machine, which is placed in a controlled area and connected to a glove box, where special safety conditions are necessary. The equipment to weld fuel bars is complemented by another machine, located in cold area, of the type presently used in the fuel elements factory. This equipment has been designed to perform some welding operations in sheaths and mixed oxide rods of the type Atucha I and II. Both machines have a programmed power supply of wide range and a vacuum, and pressurizing system that allows the change of parameters. Both systems have special features of handling and operation. (Author)

  7. Modeling of Cd(II) sorption on mixed oxide

    International Nuclear Information System (INIS)

    Waseem, M.; Mustafa, S.; Naeem, A.; Shah, K.H.; Hussain, S.Y.; Safdar, M.

    2011-01-01

    Mixed oxide of iron and silicon (0.75 M Fe(OH)3:0.25 M SiO/sub 2/) was synthesized and characterized by various techniques like surface area analysis, point of zero charge (PZC), energy dispersive X-rays (EDX) spectroscopy, Thermogravimetric and differential thermal analysis (TG-DTA), Fourier transform infrared spectroscopy (FTIR) and X-rays diffraction (XRD) analysis. The uptake of Cd/sup 2+/ ions on mixed oxide increased with pH, temperature and metal ion concentration. Sorption data have been interpreted in terms of both Langmuir and Freundlich models. The Xm values at pH 7 are found to be almost twice as compared to pH 5. The values of both DH and DS were found to be positive indicating that the sorption process was endothermic and accompanied by the dehydration of Cd/sup 2+/. Further, the negative value of DG confirms the spontaneity of the reaction. The ion exchange mechanism was suggested to take place for each Cd/sup 2+/ ions at pH 5, whereas ion exchange was found coupled with non specific adsorption of metal cations at pH 7. (author)

  8. Fabrication and performance testing of CANDU mixed-oxide fuel

    International Nuclear Information System (INIS)

    Dimayuga, F.C.; Floyd, M.R.; Cox, D.S.

    2000-01-01

    AECL's mixed-oxide fuel fabrication activities are performed in the Recycle Fuel Fabrication Laboratories (RFFL) at the Chalk River Laboratories. Since the start-up of the RFFL in the mid-1970s, several fabrication campaigns have been conducted in the facility, producing various types of mixed-oxide (MOX) fuel, which were used for both irradiation and physics testing. More recently, CANDU fuel bundles containing 0.5 w-t % plutonium in natural uranium, produced in the RFFL, were successfully irradiated in the NRU reactor at powers up to 65 kW/m and to burnups ranging from 13 to 23 MW·d/kg HE. Two of the bundles had power histories that bound the normal powers and burnups of natural UO 2 CANDU fuel ( 2 fuel. Significantly more grain growth was observed than that expected for UO 2 fuel; however, this increase in grain growth had no effect on the overall performance of the fuel. Two other bundles operated to extended burnups of 19 to 23 MW·d/kg HE. Burnup extension above 15 MW·d/kg HE only had a small effect on FGR. (author)

  9. Mass transport in mixed conducting perovskite related oxides

    CERN Document Server

    Shaw, C K M

    2001-01-01

    mechanical and chemical stability of LSCN under practical operating temperatures have been measured and related to long term stability in typical SOFC assemblies. The phase stability and the effect of preparation conditions under different atmospheres on La sub 2 Ni sub 1 sub - sub x Co sub x O sub 4 sub + subdelta compounds were examined using high temperature X-ray diffraction. Fast oxygen uptake at low temperatures was observed in these studies indicating rapid oxygen diffusion, which was confirmed by isotope exchange investigations. The oxygen diffusion and surface exchange data obtained from IEDP-SIMS measurements of La sub 2 Ni sub 0 sub . sub 8 Co sub 0 sub . sub 2 O sub 4 sub + subdelta have enabled suppositions to be made regarding the reduction process and aided further interpretation of the defect model for these oxides. Mixed ionic electronic conducting oxides of the perovskite structure have attracted great interest in the field of solid oxide electrochemical devices. Their ability to allow poten...

  10. Iron-tellurium-selenium mixed oxide catalysts for the selective oxidation of propylene to acrolein

    International Nuclear Information System (INIS)

    Patel, B.M.; Price, G.L.

    1990-01-01

    This paper reports on iron-tellurium-selenium mixed oxide catalysts prepared by coprecipitation from aqueous solution investigated for the propylene to acrolein reaction in the temperature range 543-773 K. Infrared spectroscopy, electron dispersive X-ray analysis, X-ray diffraction, and isotopic tracer techniques have also been employed to characterize this catalytic system. Properties of the Fe-Te-Se mixed oxide catalysts have been compared with Fe-Te mixed oxides in an effort to deduce the functionality of Se. The selenium in the Fe-Te-Se-O catalyst has been found to be the hydrocarbon activating site. The activation energies for the acrolein and carbon dioxide formation are 71 and 54 kJ/mol, respectively. Reactions carried out with 18 O 2 have shown lattice oxygen to be primarily responsible for the formation of both acrolein and carbon dioxide. The initial and rate-determining step for acrolein formation is hydrogen abstraction as determined by an isotope effect associated with the C 3 D 6 reaction. No isotope effect is observed for carbon dioxide formation from C 3 D 6 suggesting that CO 2 is formed by parallel, not consecutive, oxidation of propylene

  11. Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode.

    Science.gov (United States)

    An, Qinyou; Lv, Fan; Liu, Qiuqi; Han, Chunhua; Zhao, Kangning; Sheng, Jinzhi; Wei, Qiulong; Yan, Mengyu; Mai, Liqiang

    2014-11-12

    Developing electrode materials with both high energy and power densities holds the key for satisfying the urgent demand of energy storage worldwide. In order to realize the fast and efficient transport of ions/electrons and the stable structure during the charge/discharge process, hierarchical porous Fe3O4/graphene nanowires supported by amorphous vanadium oxide matrixes have been rationally synthesized through a facile phase separation process. The porous structure is directly in situ constructed from the FeVO4·1.1H2O@graphene nanowires along with the crystallization of Fe3O4 and the amorphization of vanadium oxide without using any hard templates. The hierarchical porous Fe3O4/VOx/graphene nanowires exhibit a high Coulombic efficiency and outstanding reversible specific capacity (1146 mAh g(-1)). Even at the high current density of 5 A g(-1), the porous nanowires maintain a reversible capacity of ∼500 mAh g(-1). Moreover, the amorphization and conversion reactions between Fe and Fe3O4 of the hierarchical porous Fe3O4/VOx/graphene nanowires were also investigated by in situ X-ray diffraction and X-ray photoelectron spectroscopy. Our work demonstrates that the amorphous vanadium oxides matrixes supporting hierarchical porous Fe3O4/graphene nanowires are one of the most attractive anodes in energy storage applications.

  12. Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells

    KAUST Repository

    Barbe, Jeremy

    2017-02-08

    Chemical bath deposition (CBD) of tin oxide (SnO) thin films as an electron-transport layer (ETL) in a planar-heterojunction n-i-p organohalide lead perovskite and organic bulk-heterojunction (BHJ) solar cells is reported. The amorphous SnO (a-SnO) films are grown from a nontoxic aqueous bath of tin chloride at a very low temperature (55 °C) and do not require postannealing treatment to work very effectively as an ETL in a planar-heterojunction n-i-p organohalide lead perovskite or organic BHJ solar cells, in lieu of the commonly used ETL materials titanium oxide (TiO) and zinc oxide (ZnO), respectively. Ultraviolet photoelectron spectroscopy measurements on the glass/indium-tin oxide (ITO)/SnO/methylammonium lead iodide (MAPbI)/2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene device stack indicate that extraction of photogenerated electrons is facilitated by a perfect alignment of the conduction bands at the SnO/MAPbI interface, while the deep valence band of SnO ensures strong hole-blocking properties. Despite exhibiting very low electron mobility, the excellent interfacial energetics combined with high transparency (E > 4 eV) and uniform substrate coverage make the a-SnO ETL prepared by CBD an excellent candidate for the potentially low-cost and large-scale fabrication of organohalide lead perovskite and organic photovoltaics.

  13. Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells.

    Science.gov (United States)

    Barbé, Jérémy; Tietze, Max L; Neophytou, Marios; Murali, Banavoth; Alarousu, Erkki; Labban, Abdulrahman El; Abulikemu, Mutalifu; Yue, Wan; Mohammed, Omar F; McCulloch, Iain; Amassian, Aram; Del Gobbo, Silvano

    2017-04-05

    Chemical bath deposition (CBD) of tin oxide (SnO 2 ) thin films as an electron-transport layer (ETL) in a planar-heterojunction n-i-p organohalide lead perovskite and organic bulk-heterojunction (BHJ) solar cells is reported. The amorphous SnO 2 (a-SnO 2 ) films are grown from a nontoxic aqueous bath of tin chloride at a very low temperature (55 °C) and do not require postannealing treatment to work very effectively as an ETL in a planar-heterojunction n-i-p organohalide lead perovskite or organic BHJ solar cells, in lieu of the commonly used ETL materials titanium oxide (TiO 2 ) and zinc oxide (ZnO), respectively. Ultraviolet photoelectron spectroscopy measurements on the glass/indium-tin oxide (ITO)/SnO 2 /methylammonium lead iodide (MAPbI 3 )/2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene device stack indicate that extraction of photogenerated electrons is facilitated by a perfect alignment of the conduction bands at the SnO 2 /MAPbI 3 interface, while the deep valence band of SnO 2 ensures strong hole-blocking properties. Despite exhibiting very low electron mobility, the excellent interfacial energetics combined with high transparency (E gap,optical > 4 eV) and uniform substrate coverage make the a-SnO 2 ETL prepared by CBD an excellent candidate for the potentially low-cost and large-scale fabrication of organohalide lead perovskite and organic photovoltaics.

  14. Investigation of the oxidative dehydrogenation of n-butenes over mixed tin-antimony oxides

    Energy Technology Data Exchange (ETDEWEB)

    Varga, K.; Halasz, J.; Hernadi, K.; Fejes, P.

    1985-01-01

    The oxidative of n-butenes in the gaseous phase over mixed oxide catalysts SnO/sub 2/-SbO/sub 4/ was investigated in a pulse reactor and in a recirculatory flow reactor at 523-673 K. Over catalysts containing more than 50% tin, practically the total quantity of converted 1-butene was transformed into butadiene. The reaction of 2-butene depended to a considerable extent on the composition of the catalyst. The lowest conversion was found for the mixed oxide with Sn:Sb = 1:1, but in the formation of butadiene this was the most selective catalysts. The selectivity decreased appreciably as the reaction temperature rose. From measurements in the recirculatory flow reactor, apparent rate constants and activation energies of reactions were determined; the latter values for 1-butene and 2-butene, were 105 and 70 kJ mol/sup -1/, respectively. This difference was explained by the dissimilarity of the rate-determining steps in the two reactions. The oxidation of 2-butene precedes isomerization to 1-butene on surface acid sites, with subsequent conversion to butadiene on oxidation centers via a ..pi..-allyl surface intermediate.

  15. Interface Study on Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using High-k Gate Dielectric Materials

    Directory of Open Access Journals (Sweden)

    Yu-Hsien Lin

    2015-01-01

    Full Text Available We investigated amorphous indium gallium zinc oxide (a-IGZO thin film transistors (TFTs using different high-k gate dielectric materials such as silicon nitride (Si3N4 and aluminum oxide (Al2O3 at low temperature process (<300°C and compared them with low temperature silicon dioxide (SiO2. The IGZO device with high-k gate dielectric material will expect to get high gate capacitance density to induce large amount of channel carrier and generate the higher drive current. In addition, for the integrating process of integrating IGZO device, postannealing treatment is an essential process for completing the process. The chemical reaction of the high-k/IGZO interface due to heat formation in high-k/IGZO materials results in reliability issue. We also used the voltage stress for testing the reliability for the device with different high-k gate dielectric materials and explained the interface effect by charge band diagram.

  16. Different threshold and bipolar resistive switching mechanisms in reactively sputtered amorphous undoped and Cr-doped vanadium oxide thin films

    Science.gov (United States)

    Rupp, Jonathan A. J.; Querré, Madec; Kindsmüller, Andreas; Besland, Marie-Paule; Janod, Etienne; Dittmann, Regina; Waser, Rainer; Wouters, Dirk J.

    2018-01-01

    This study investigates resistive switching in amorphous undoped and Cr-doped vanadium oxide thin films synthesized by sputtering deposition at low oxygen partial pressure. Two different volatile threshold switching characteristics can occur as well as a non-volatile bipolar switching mechanism, depending on device stack symmetry and Cr-doping. The two threshold switching types are associated with different crystalline phases in the conduction filament created during an initial forming step. The first kind of threshold switching, observed for undoped vanadium oxide films, was, by its temperature dependence, proven to be associated with a thermally triggered insulator-to-metal transition in a crystalline VO2 phase, whereas the threshold switch observed in chromium doped films is stable up to 90 °C and shows characteristics of an electronically induced Mott transition. This different behaviour for undoped versus doped films has been attributed to an increased stability of V3+ due to the Cr3+ doping (as evidenced by X-ray photoelectron spectroscopy analysis), probably favouring the creation of a crystalline Cr-doped V2O3 phase (rather than a Cr-doped VO2 phase) during the energetic forming step. The symmetric Pt/a-(VCr)Ox/Pt device showing high temperature stable threshold switching may find interesting applications as a possible new selector device for resistive switching memory (ReRAM) crossbar arrays.

  17. Supported Mixed Oxide Catalysts for the Total Oxidation of Volatile Organic Compounds

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Jirátová, Květa

    2011-01-01

    Roč. 176, č. 1 (2011), s. 110-115 ISSN 0920-5861. [International Symposium on Air Pollution Abatement Catalysis (APAC) /2./. Cracow, 08.09.2010-10.09.2010] R&D Projects: GA ČR GAP106/10/1762; GA ČR GA106/09/1664 Institutional research plan: CEZ:AV0Z40720504 Keywords : layered double hydroxides * mixed oxides * ethanol total oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.407, year: 2011

  18. Amorphous and Crystalline Vanadium Oxides as High-Energy and High-Power Cathodes for Three-Dimensional Thin-Film Lithium Ion Batteries.

    Science.gov (United States)

    Mattelaer, Felix; Geryl, Kobe; Rampelberg, Geert; Dendooven, Jolien; Detavernier, Christophe

    2017-04-19

    Flexible wearable electronics and on-chip energy storage for wireless sensors drive rechargeable batteries toward thin-film lithium ion batteries. To enable more charge storage on a given surface, higher energy density materials are required, while faster energy storage and release can be obtained by going to thinner films. Vanadium oxides have been examined as cathodes in classical and thin-film lithium ion batteries for decades, but amorphous vanadium oxide thin films have been mostly discarded. Here, we investigate the use of atomic layer deposition, which enables electrode deposition on complex three-dimensional (3D) battery architectures, to obtain both amorphous and crystalline VO 2 and V 2 O 5 , and we evaluate their thin-film cathode performance. Very high volumetric capacities are found, alongside excellent kinetics and good cycling stability. Better kinetics and higher volumetric capacities were observed for the amorphous vanadium oxides compared to their crystalline counterparts. The conformal deposition of these vanadium oxides on silicon micropillar structures is demonstrated. This study shows the promising potential of these atomic layer deposited vanadium oxides as cathodes for 3D all-solid-state thin-film lithium ion batteries.

  19. Local structures around the substituted elements in mixed layered oxides.

    Science.gov (United States)

    Akama, Shota; Kobayashi, Wataru; Amaha, Kaoru; Niwa, Hideharu; Nitani, Hiroaki; Moritomo, Yutaka

    2017-03-02

    The chemical substitution of a transition metal (M) is an effective method to improve the functionality of a material, such as its electrochemical, magnetic, and dielectric properties. The substitution, however, causes local lattice distortion because the difference in the ionic radius (r) modifies the local interatomic distances. Here, we systematically investigated the local structures in the pure (x = 0.0) and mixed (x = 0.05 or 0.1) layered oxides, Na(M 1-x M' x )O 2 (M and M' are the majority and minority transition metals, respectively), by means of extended X-ray absorption fine structure (EXAFS) analysis. We found that the local interatomic distance (d M-O ) around the minority element approaches that around the majority element to reduces the local lattice distortion. We further found that the valence of the minority Mn changes so that its ionic radius approaches that of the majority M.

  20. Emission computer tomography on a Dodewaard mixed oxide fuel pin

    International Nuclear Information System (INIS)

    Buurveld, H.A.; Dassel, G.

    1993-12-01

    A nondestructive technique as well as a destructive PIE technique have been used to verify the results obtained with a newly 8-e computer tomography (GECT) system. Multi isotope Scanning (MIS), electron probe micro analysis (EPMA) and GECT were used on a mixed oxide (MOX) fuel rod from the Dodewaard reactor with an average burnup of 24 MWd/kg fuel. GECT shows migration of Cs to the periphery of fuel pellets and to radial cracks and pores in the fuel, whereas MIS shows Cs migration to pellet interfaces. The EPMA technique appeared not to be useful to show migration of Cs but, it shows the distribution of fission products from Pu. EPMA clearly shows the distribution of fission products from Pu, but did not reveal the Cs-migration. (orig./HP)

  1. Acceleration of Crystal Growth of Amorphous Griseofulvin by Low-Concentration Poly(ethylene oxide): Aspects of Crystallization Kinetics and Molecular Mobility.

    Science.gov (United States)

    Shi, Qin; Zhang, Chen; Su, Yuan; Zhang, Jie; Zhou, Dongshan; Cai, Ting

    2017-07-03

    This study aims to investigate the crystallization behavior and molecular dynamics of amorphous griseofulvin (GSF) in the presence of low-concentration poly(ethylene oxide) (PEO). We observe that the addition of 3% w/w PEO remarkably increases the crystal growth rate of GSF by two orders of magnitude in both the supercooled liquid and glassy states. The liquid dynamics of amorphous GSF in the presence and absence of PEO are characterized by dielectric spectroscopy. With an increase of the PEO content, the α-relaxation times of the systems decrease, indicating the increase of global molecular mobility. The couplings between molecular mobility and crystallization kinetics of GSF systems show strong time-dependences below T g . The overlapping of α-relaxation times of GSF in presence and absence of PEO as a function of T g /T suggest the "plasticization" effect of PEO additives. However, the crystallization kinetics of amorphous GSF containing low-concentration PEO do not overlap with those of pure GSF on a T g /T scale. The remarkable accelerating effect of crystal growth of amorphous GSF by low-concentration PEO can be partially attributed to the increase of global mobility. The high segmental mobility of PEO is expected to strongly affect the crystal growth rates of GSF. These findings are relevant for understanding and predicting the physical stability of amorphous pharmaceutical solid dispersions.

  2. Yttrium bismuth titanate pyrochlore mixed oxides for photocatalytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Merka, Oliver

    2012-10-18

    In this work, the sol-gel synthesis of new non-stoichiometric pyrochlore titanates and their application in photocatalytic hydrogen production is reported. Visible light response is achieved by introducing bismuth on the A site or by doping the B site by transition metal cations featuring partially filled d orbitals. This work clearly focusses on atomic scale structural changes induced by the systematical introduction of non-stoichiometry in pyrochlore mixed oxides and the resulting influence on the activity in photocatalytic hydrogen production. The materials were characterized in detail regarding their optical properties and their atomic structure. The pyrochlore structure tolerates tremendous stoichiometry variations. The non-stoichiometry in A{sub 2}O{sub 3} rich compositions is compensated by distortions in the cationic sub-lattice for the smaller Y{sup 3+} cation and by evolution of a secondary phase for the larger Bi{sup 3+} cation on the A site. For TiO{sub 2} rich compositions, the non-stoichiometry leads to a special vacancy formation in the A and optionally O' sites. It is shown that pyrochlore mixed oxides in the yttrium bismuth titanate system represent very active and promising materials for photocatalytic hydrogen production, if precisely and carefully tuned. Whereas Y{sub 2}Ti{sub 2}O{sub 7} yields stable hydrogen production rates over time, the bismuth richer compounds of YBiTi{sub 2}O{sub 7} and Bi{sub 2}Ti{sub 2}O{sub 7} are found to be not stable under irradiation. This drawback is overcome by applying a special co-catalyst system consisting of a precious metal core and a Cr{sub 2}O{sub 3} shell on the photocatalysts.

  3. Effect of oxygen deficiency on electronic properties and local structure of amorphous tantalum oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Denny, Yus Rama [Department of Physics Education, University of Sultan Ageng Tirtayasa, Banten 42435 (Indonesia); Firmansyah, Teguh [Department of Electrical Engineering, University of Sultan Ageng Tirtayasa, Banten 42435 (Indonesia); Oh, Suhk Kun [Department of Physics, Chungbuk National University, Cheongju 28644 (Korea, Republic of); Kang, Hee Jae, E-mail: hjkang@cbu.ac.kr [Department of Physics, Chungbuk National University, Cheongju 28644 (Korea, Republic of); Yang, Dong-Seok [Department of Physics Education, Chungbuk National University, Cheongju 28644 (Korea, Republic of); Heo, Sung; Chung, JaeGwan; Lee, Jae Cheol [Analytical Engineering Center, Samsung Advanced Institute of Technology, Suwon 16678 (Korea, Republic of)

    2016-10-15

    Highlights: • The effect of oxygen flow rate on electronic properties and local structure of tantalum oxide thin films was studied. • The oxygen deficiency induced the nonstoichiometric state a-TaOx. • A small peak at 1.97 eV above the valence band side appeared on nonstoichiometric Ta{sub 2}O{sub 5} thin films. • The oxygen flow rate can change the local electronic structure of tantalum oxide thin films. - Abstract: The dependence of electronic properties and local structure of tantalum oxide thin film on oxygen deficiency have been investigated by means of X-ray photoelectron spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), and X-ray absorption spectroscopy (XAS). The XPS results showed that the oxygen flow rate change results in the appearance of features in the Ta 4f at the binding energies of 23.2 eV, 24.4 eV, 25.8, and 27.3 eV whose peaks are attributed to Ta{sup 1+}, Ta{sup 2+}, Ta{sup 3+}/Ta{sup 4+}, and Ta{sup 5+}, respectively. The presence of nonstoichiometric state from tantalum oxide (TaOx) thin films could be generated by the oxygen vacancies. In addition, XAS spectra manifested both the increase of coordination number of the first Ta-O shell and a considerable reduction of the Ta-O bond distance with the decrease of oxygen deficiency.

  4. Product analysis during the thermo-oxidation of amorphous deuterated hydrocarbon films with NO2

    Directory of Open Access Journals (Sweden)

    D. Alegre

    2015-12-01

    Full Text Available The excellent thermo-oxidation properties of NO2 have been previously reported, pointing to fast carbon co-deposits removal even at temperatures as low as 200 °C. On the other hand, CO, CO2 and water have been found as the main gas products in oxidation by O2, but in NO2 they have not been confirmed. To make a more accurate assessment, the use of in-situ deposited deuterated hydrocarbon films—to be able to distinguish products from ambient, protonated ones—in a fully-baked chamber have been used in the present work, mainly aimed at detecting heavy (deuterated water among the reaction products. Other products from hydrogen isotopes could not be identified, but their production would be much lower than water. The ratio of the total deuterium to carbon products detected is lower by an order of magnitude than the D/C ratio of the film (0.04–0.07 to 0.4, probably associated to the difficulties of measuring water in a vacuum system, and the relatively large quantity of background water found. Furthermore, post-oxidation of CO to CO2 has been found for NO2 at any studied temperature, while for O2 a faster post-oxidation which only occurs at T > 275 °C was found. Finally, the implications of the water production in the use of thermo-oxidation in actual and future nuclear fusion devices are also addressed.

  5. Amorphous Zinc Oxide Integrated Wavy Channel Thin Film Transistor Based High Performance Digital Circuits

    KAUST Repository

    Hanna, Amir

    2015-12-04

    High performance thin film transistor (TFT) can be a great driving force for display, sensor/actuator, integrated electronics, and distributed computation for Internet of Everything applications. While semiconducting oxides like zinc oxide (ZnO) present promising opportunity in that regard, still wide area of improvement exists to increase the performance further. Here, we show a wavy channel (WC) architecture for ZnO integrated TFT which increases transistor width without chip area penalty, enabling high performance in material agnostic way. We further demonstrate digital logic NAND circuit using the WC architecture and compare it to the conventional planar architecture. The WC architecture circuits have shown 2× higher peak-to-peak output voltage for the same input voltage. They also have 3× lower high-to-low propagation delay times, respectively, when compared to the planar architecture. The performance enhancement is attributed to both extra device width and enhanced field effect mobility due to higher gate field electrostatics control.

  6. Preliminary comparison of three processes of AlN oxidation: dry, wet and mixed ones

    Directory of Open Access Journals (Sweden)

    Korbutowicz R.

    2016-03-01

    Full Text Available Three methods of AlN layers oxidation: dry, wet and mixed (wet with oxygen were compared. Some physical parameters of oxidized thin films of aluminum nitride (AlN layers grown on silicon Si(1 1 1 were investigated by means Energy-Dispersive X-ray Spectroscopy (EDS and Spectroscopic Ellipsometry (SE. Three series of the thermal oxidations processes were carried out at 1012 °C in pure nitrogen as carrying gas and various gas ambients: (a dry oxidation with oxygen, (b wet oxidation with water steam and (c mixed atmosphere with various process times. All the research methods have shown that along with the rising of the oxidation time, AlN layer across the aluminum oxide nitride transforms to aluminum oxide. The mixed oxidation was a faster method than the dry or wet ones.

  7. Amorphous silicon oxide layers for surface passivation and contacting of heterostructure solar cells of amorphous and crystalline silicon; Amorphe Siliziumoxidschichten zur Oberflaechenpassivierung und Kontaktierung von Heterostruktur-Solarzellen aus amorphen und kristallinem Silizium

    Energy Technology Data Exchange (ETDEWEB)

    Einsele, Florian

    2010-02-05

    Atomic hydrogen plays a dominant role in the passivation of crystalline silicon surfaces by layers of amorphous silicon. In order to research into this role, this thesis presents the method of hydrogen effusion from thin amorphous films of silicon (a-Si:H) and silicon oxide (a-SiO{sub x}:H). The oxygen concentration of the sub-stoichiometric a-SiO{sub x}:H films ranges up to 10 at.-%. The effusion experiment yields information about the content and thermal stability of hydrogen and about the microstructure of the films. A mathematical description of the diffusion process of atomic hydrogen yields an analytical expression of the effusion rate R{sub E} depending on the linearly increasing temperature in the experiment. Fitting of the calculated effusion rates R{sub E} to measured effusion spectra yields the diffusion coefficient of atomic hydrogen in a-SiO{sub x}:H. With increasing oxygen concentration, the diffusion coefficient of hydrogen in the a-SiO{sub x}:H films decreases. This is attributed to an increasing Si-H bond energy due to back bonded oxygen, resulting in a higher stability of hydrogen in the films. This result is confirmed by an increasing thermal stability of the p-type c-Si passivation with a-SiO{sub x}:H of increasing oxygen concentrations up to 5 at.-%. The passivation reaches very low recombination velocities of S < 10 cm/s at the interface. However, for higher oxygen concentrations up to 10 at.-%, the passivation quality decreases significantly. Here, infrared spectroscopy of Si-H vibrational modes and hydrogen effusion show an increase of hydrogen-rich interconnected voids in the films. This microstructure results in a high amount of molecular hydrogen (H{sub 2}) in the layers, which is not suitable for the saturation of c-Si interface defects. Annealing of the films at temperatures around 400 C leads to a release of H{sub 2} from the voids, as a result of which Si-Si bonds in the material reconstruct. Subsequently, hydrogen migration in the

  8. Contact resistance asymmetry of amorphous indium-gallium-zinc-oxide thin-film transistors by scanning Kelvin probe microscopy

    Science.gov (United States)

    Chen-Fei, Wu; Yun-Feng, Chen; Hai, Lu; Xiao-Ming, Huang; Fang-Fang, Ren; Dun-Jun, Chen; Rong, Zhang; You-Dou, Zheng

    2016-05-01

    In this work, a method based on scanning Kelvin probe microscopy is proposed to separately extract source/drain (S/D) series resistance in operating amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors. The asymmetry behavior of S/D contact resistance is deduced and the underlying physics is discussed. The present results suggest that the asymmetry of S/D contact resistance is caused by the difference in bias conditions of the Schottky-like junction at the contact interface induced by the parasitic reaction between contact metal and a-IGZO. The overall contact resistance should be determined by both the bulk channel resistance of the contact region and the interface properties of the metal-semiconductor junction. Project supported by the Key Industrial R&D Program of Jiangsu Province, China (Grant No. BE2015155), the Priority Academic Program Development of Higher Education Institutions of Jiangsu Province, China, and the Fundamental Research Funds for the Central Universities, China (Grant No. 021014380033).

  9. Analytical drain current model for symmetric dual-gate amorphous indium gallium zinc oxide thin-film transistors

    Science.gov (United States)

    Qin, Ting; Liao, Congwei; Huang, Shengxiang; Yu, Tianbao; Deng, Lianwen

    2018-01-01

    An analytical drain current model based on the surface potential is proposed for amorphous indium gallium zinc oxide (a-InGaZnO) thin-film transistors (TFTs) with a synchronized symmetric dual-gate (DG) structure. Solving the electric field, surface potential (φS), and central potential (φ0) of the InGaZnO film using the Poisson equation with the Gaussian method and Lambert function is demonstrated in detail. The compact analytical model of current–voltage behavior, which consists of drift and diffusion components, is investigated by regional integration, and voltage-dependent effective mobility is taken into account. Comparison results demonstrate that the calculation results obtained using the derived models match well with the simulation results obtained using a technology computer-aided design (TCAD) tool. Furthermore, the proposed model is incorporated into SPICE simulations using Verilog-A to verify the feasibility of using DG InGaZnO TFTs for high-performance circuit designs.

  10. Amorphous NiFe-OH/NiFeP Electrocatalyst Fabricated at Low Temperature for Water Oxidation Applications

    KAUST Repository

    Liang, Hanfeng

    2017-04-11

    Water splitting driven by electricity or sunlight is one of the most promising ways to address the global terawatt energy needs of future societies; however, its large-scale application is limited by the sluggish kinetics of the oxygen evolution reaction (OER). NiFe-based compounds, mainly oxides and hydroxides, are well-known OER catalysts and have been intensively studied; however, the utilization of the synergistic effect between two different NiFe-based materials to further boost the OER performance has not been achieved to date. Here, we report the rapid conversion of NiFe double hydroxide into metallic NiFeP using PH3 plasma treatment and further construction of amorphous NiFe hydroxide/NiFeP/Ni foam as efficient and stable oxygen-evolving anodes. The strong electronic interactions between NiFe hydroxide and NiFeP significantly lower the adsorption energy of H2O on the hybrid and thus lead to enhanced OER performance. As a result, the hybrid catalyst can deliver a geometrical current density of 300 mA cm–2 at an extremely low overpotential (258 mV, after ohmic-drop correction), along with a small Tafel slope of 39 mV decade–1 and outstanding long-term durability in alkaline media.

  11. Semiconductor to metallic transition in bulk accumulated amorphous indium-gallium-zinc-oxide dual gate thin-film transistor

    Directory of Open Access Journals (Sweden)

    Minkyu Chun

    2015-05-01

    Full Text Available We investigated the effects of top gate voltage (VTG and temperature (in the range of 25 to 70 oC on dual-gate (DG back-channel-etched (BCE amorphous-indium-gallium-zinc-oxide (a-IGZO thin film transistors (TFTs characteristics. The increment of VTG from -20V to +20V, decreases the threshold voltage (VTH from 19.6V to 3.8V and increases the electron density to 8.8 x 1018cm−3. Temperature dependent field-effect mobility in saturation regime, extracted from bottom gate sweep, show a critical dependency on VTG. At VTG of 20V, the mobility decreases from 19.1 to 15.4 cm2/V ⋅ s with increasing temperature, showing a metallic conduction. On the other hand, at VTG of - 20V, the mobility increases from 6.4 to 7.5cm2/V ⋅ s with increasing temperature. Since the top gate bias controls the position of Fermi level, the temperature dependent mobility shows metallic conduction when the Fermi level is above the conduction band edge, by applying high positive bias to the top gate.

  12. Selective metallization of amorphous-indium-gallium-zinc-oxide thin-film transistor by using helium plasma treatment

    Science.gov (United States)

    Jang, Hun; Lee, Su Jeong; Porte, Yoann; Myoung, Jae-Min

    2018-03-01

    In this study, the effects of helium (He) plasma treatment on amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) have been investigated. The He plasma treatment induced a dramatic decrease of the resistivity in a-IGZO thin films from 1.25 × 106 to 5.93 mΩ cm. After 5 min He plasma treatment, the a-IGZO films showed an increase in carrier concentration to 6.70 × 1019 cm-3 combined with a high hall mobility of 15.7 cm2 V-1 s-1. The conductivity improvement was linked to the formation of oxygen vacancies during the He plasma treatment, which was observed by x-ray photoelectron spectroscopy analysis. The a-IGZO films did not appear to be damaged on the surface following the plasma treatment and showed a high transmittance of about 88.3% at a wavelength of 550 nm. The He plasma-treated a-IGZO films were used as source/drain (S/D) electrodes in a-IGZO TFTs. The devices demonstrated promising characteristics, on pair with TFTs using Al electrodes, with a threshold voltage (V T) of -1.97 V, sub-threshold slope (SS) of 0.52 V/decade, saturation mobility (μ sat) of 8.75 cm2 V-1 s-1, and on/off current ratio (I on/I off) of 2.66 × 108.

  13. Temperature-dependent bias-stress-induced electrical instability of amorphous indium-gallium-zinc-oxide thin-film transistors

    Science.gov (United States)

    Qian, Hui-Min; Yu, Guang; Lu, Hai; Wu, Chen-Fei; Tang, Lan-Feng; Zhou, Dong; Ren, Fang-Fang; Zhang, Rong; Zheng, You-Liao; Huang, Xiao-Ming

    2015-07-01

    The time and temperature dependence of threshold voltage shift under positive-bias stress (PBS) and the following recovery process are investigated in amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors. It is found that the time dependence of threshold voltage shift can be well described by a stretched exponential equation in which the time constant τ is found to be temperature dependent. Based on Arrhenius plots, an average effective energy barrier Eτstress = 0.72 eV for the PBS process and an average effective energy barrier Eτrecovery = 0.58 eV for the recovery process are extracted respectively. A charge trapping/detrapping model is used to explain the threshold voltage shift in both the PBS and the recovery process. The influence of gate bias stress on transistor performance is one of the most critical issues for practical device development. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB301900 and 2011CB922100) and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China

  14. Coplanar amorphous-indium-gallium-zinc-oxide thin film transistor with He plasma treated heavily doped layer

    International Nuclear Information System (INIS)

    Jeong, Ho-young; Lee, Bok-young; Lee, Young-jang; Lee, Jung-il; Yang, Myoung-su; Kang, In-byeong; Mativenga, Mallory; Jang, Jin

    2014-01-01

    We report thermally stable coplanar amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) with heavily doped n + a-IGZO source/drain regions. Doping is through He plasma treatment in which the resistivity of the a-IGZO decreases from 2.98 Ω cm to 2.79 × 10 −3 Ω cm after treatment, and then it increases to 7.92 × 10 −2 Ω cm after annealing at 300 °C. From the analysis of X-ray photoelectron spectroscopy, the concentration of oxygen vacancies in He plasma treated n + a-IGZO does not change much after thermal annealing at 300 °C, indicating thermally stable n + a-IGZO, even for TFTs with channel length L = 4 μm. Field-effect mobility of the coplanar a-IGZO TFTs with He plasma treatment changes from 10.7 to 9.2 cm 2 /V s after annealing at 300 °C, but the performance of the a-IGZO TFT with Ar or H 2 plasma treatment degrades significantly after 300 °C annealing

  15. Physico-chemical characteristics of sulfated mixed oxides of Sn with some rare earth elements

    International Nuclear Information System (INIS)

    Jyothi, T.M.; Mirakar, S.P.; Sreekumar, K.; Sugunan, S.; Talawar, M.B.

    2000-01-01

    A series of binary mixed oxides of tin with three rare earth elements viz. La, Ce and Sm were prepared by coprecipitation method and sulfate treatment was performed by treating the mixed hydroxides with sulfuric acid or ammonium sulfate. The physico-chemical characterization has been done by XRD, BET-SA, SEM, EDX, TG-DTA and IR spectroscopy. Adsorption of n-butylamine was used to probe the acidic properties of the catalysts. The strength and distribution of acid sites depend on the mixed metal oxide composition, as well as on the preparation method. The rare earth modified sulfated tin oxide catalysis are more active in the oxidative dehydrogenation of cyclohexanol and cyclohexane, compared to the corresponding mixed oxide systems and sulfated tin oxide. Among the different sulfated oxide systems investigated, cerium promoted catalysts displayed a better selectivity towards dehydrogenation products. (author)

  16. Eco-friendly synthesis and characterization of Ni-Si nanoparticles mixed oxides as catalyst for partial oxidation of methane

    International Nuclear Information System (INIS)

    Fakhroueian, Z.; Farzaneh, F.

    2009-01-01

    The nanoparticles of Ni-Si mixed oxides were prepared by co-precipitation method using nickel nitrate; Ni(NO 3 ) 2 6H 2 O and tetraethyl orthosilicate. The products were characterized by X-ray diffraction, transmission electron microscopy, and hydrogen temperature program reduction (H 2 -TPR). The results revealed that Ni-Si mixed oxides particles were obtained with average particle size 1-2 nm. The Ni-Si nanoparticles mixed oxides successfully catalyzed the partial oxidation of methane to hydrogen and carbon monoxide (Syn gas) using a fixed-bed reactor with about 92% activity and high selectivity. No coke formation and deactivation of catalyst were observed during the course of reaction. Particularly significant is the similar reactivity of this catalyst with that of Ni-Ce-Zr mixed oxides

  17. Rational synthesis of multifunctional mixed metal oxides by hydrothermal techniques

    Science.gov (United States)

    Stampler, Evan Scott

    Low temperature (oxide chalcogenides, hexagonal rare-earth manganites, and silver delafossites with mixed cations on the B-site. These materials are of particular interest because they combine multiple functional properties, such as transparency and conductivity, or magnetism and ferroelectricity, in a single-phase material, thus enabling innovative technological applications. Phase-pure products were achieved by the appropriate combination of starting reagents, pH, and reaction temperature to control the solubility of the reactants. Phase-pure BiCuOS and BiCuOSe have been synthesized in high yield by a single-step hydrothermal reaction at low temperature (250°C) and pressure (oxidation of sulfide and selenide. BiCuOS (Eg = 1.09 eV) and BiCuOSe (Eg = 0.75 eV) have smaller band gaps compared to the p-type transparent conductor LaCuOS (Eg = 3.1 eV) but have significantly higher room temperature conductivities (sigma ≈ 0.08 S cm-1 and 3.3 S cm-1, respectively). The high molar solubility of Mn2O3 ([Mn 3+] ≈ 10-3 M) and the slightly amphoteric character of the late rare-earth sesquioxides were exploited in the hydrothermal synthesis of rare-earth manganites, LnMnO3 (Ln=Ho-Lu and Y). While alkaline conditions were necessary for the solubilization of manganese, a reaction temperature approximately 50°C above the transition temperature of the respective rare-earth trihydroxide (100-300°C) accelerated the transition to the more reactive and soluble rare-earth oxide hydroxide and the subsequent reaction to yield the LnMnO3 phase. The high solubility of Ag2O, [Ag+] ≈ 10 -2.5 M, enabled the synthesis of two new silver delafossite solid solutions with the formulae AgAl1-xGaxO2 and AgSc1-xInxO2 and five mixed B-site silver delafossites with the formulae AgBe0.5Ti0.5O2, AgMg0.5Ti0.5O2, AgNi0.5Ti 0.5O2, AgCu0.5Ti0.5O2, and AgZn0.5Ti0.5O2 at a reaction temperature of 210°C. The former were observed when the solubilities of both B-site trivalent cations were ≥ 10-5 M and

  18. Effect of mixed Ge/Si cross-linking on the physical properties of amorphous Ge-Si-Te networks

    Science.gov (United States)

    Gunasekera, K.; Boolchand, P.; Micoulaut, M.

    2014-04-01

    Amorphous GexSixTe1-2x glasses are studied as a function of composition by a combination of experimental and theoretical methods, allowing for a full description of the network structure in relationship with physico-chemical properties. Calorimetric and thermal measurements reveal that such glasses display an anomalous behavior across a range of compositions xc1=7.5% and Molecular Dynamics at selected compositions (Ge20Te80, Si20Te80, and Ge10Si10Te80). The numerical models reveal the quite different roles played by the modifier or network cross-linker Ge or Si atoms, Si being more tetrahedral in sp3 geometry, whereas Mössbauer spectroscopy shows that the nature of chemical bonding is dramatically changed around x ≃ 8%. The precise evolution of the local structure and chemical bonding ultimately allows understanding the origin of the intermediate phase in these complex tellurides.

  19. Preparation and characterization of amorphous SiO{sub 2} coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.L., E-mail: jlxu@nchu.edu.cn [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Xiao, Q.F.; Mei, D.D. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Zhong, Z.C., E-mail: zzhong2014@sina.com [The Institute for Rare Earth Magnetic Materials and Devices, Jiangxi University of Science and Technology, Ganzhou 341000 (China); Tong, Y.X. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Zheng, Y.F., E-mail: yfzheng@pku.edu.cn [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Li, L. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China)

    2017-03-15

    Amorphous SiO{sub 2} coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the “coral reef” like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 µm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO{sub 2} and a few amorphous Fe{sub 2}O{sub 3} and Nd{sub 2}O{sub 3}. The amorphous SiO{sub 2} coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees. - Highlights: • Amorphous SiO{sub 2} coatings were prepared on sintered NdFeB magnets by micro-arc oxidation. • The coatings presented excellent thermal shock resistance. • The corrosion resistance could be enhanced by one order of magnitude. • The MAO coatings slightly decreased the magnetic properties of the NdFeB samples.

  20. Preparation and characterization of amorphous SiO2 coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    International Nuclear Information System (INIS)

    Xu, J.L.; Xiao, Q.F.; Mei, D.D.; Zhong, Z.C.; Tong, Y.X.; Zheng, Y.F.; Li, L.

    2017-01-01

    Amorphous SiO 2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the “coral reef” like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 µm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO 2 and a few amorphous Fe 2 O 3 and Nd 2 O 3 . The amorphous SiO 2 coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees. - Highlights: • Amorphous SiO 2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation. • The coatings presented excellent thermal shock resistance. • The corrosion resistance could be enhanced by one order of magnitude. • The MAO coatings slightly decreased the magnetic properties of the NdFeB samples.

  1. Composition of the corrosion product oxide phases in the gaps of three LMFBR-type mixed oxide fuel pins

    International Nuclear Information System (INIS)

    Walker, C.T.

    1978-01-01

    Identification of the corrosion product oxide phases in the gaps of mixed oxide fuel pins clad with austenitic stainless steel is an important step in understanding the mechanisms of corrosion. Once the oxide is identified the reaction paths by which it is formed can be established. The corrosion product oxide will also be a reliable indication of the oxygen potential in the gap. A grey oxide phase which is recognised to contain the products of cladding corrosion is often observed in the gaps of mixed oxide fuel pins. Its main constituents are known to be chromium, caesium and oxygen, and recently the composition of the grey oxide phase in the gaps of three fuel pins was shown to be broadly similar, and it was proposed that the phase was essentially chromium oxide. (Auth.)

  2. Mixed conducting materials for partial oxidation of hydrocarbons

    Directory of Open Access Journals (Sweden)

    Frade, J. R.

    2004-06-01

    Full Text Available Thermodynamic calculations with additional conditions for the conservation of carbon and hydrogen were used to predict the gas composition obtained by partial oxidation of methane as a function of oxygen partial pressure and temperature; this was used to assess the stability and oxygen permeability requirements of mixed conducting membrane materials proposed for this purpose. A re-examination of known mixed conductors shows that most materials with highest permeability still fail to fulfil the requirements of stability under reducing conditions. Other materials possess sufficient stability but their oxygen permeability is insufficient. Different approaches were thus used to attempt to overcome those limitations, including changes in composition in the A and B site positions of ABO3 perovskites, and tests of materials with different structure types. Promising results were obtained mainly for some materials with perovskite or related K2NiF4-type structures. Limited stability of the most promising materials shows that one should rely mainly on kinetic limitations in the permeate side to protect the mixed conductor from severe reducing conditions.

    Se han usado cálculos termodinámicos con condiciones adicionales para la conservación del carbono e hidrógeno para predecir la composición del gas obtenido mediante la oxidación parcial del metano en función de la presión parcial de oxígeno y de la temperatura; esto se ha usado para asegurar los requerimientos de estabilidad y permeabilidad al oxígeno de los materiales conductores mixtos empleados como membrana para este propósito. Un nuevo exámen de los conductores mixtos conocidos muestra que la mayoría de los materiales con la mayor permeabilidad todavía fallan en el cumplimiento de los requerimientos de estabilidad bajo condiciones reductoras. Otros materiales poseen suficiente estabilidad, pero su permeabilidad al oxígeno es insuficiente. Por ello se han empleado diferentes

  3. Different Abilities of Eight Mixed Cultures of Methane-oxidizing Bacteria to Degrade TCE

    DEFF Research Database (Denmark)

    Broholm, Kim; Christensen, Thomas Højlund; Jensen, Bjørn K.

    1993-01-01

    The ability of eight mixed cultures of methane-oxidizing bacteria to degrade trichloroethylene (TCE) was examined in laboratory batch experiments. This is one of the first reported works studying TCE degradation by mixed cultures of methane-oxidizing bacteria at 10°C, a common temperature for soils...

  4. Modern methods of material accounting for mixed oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Eggers, R.F.; Pindak, J.L.; Brouns, R.J.; Williams, R.C.; Brite, D.W.; Kinnison, R.R.; Fager, J.E.

    1981-01-01

    The generic requirements loss detection, and response to alarms of a contemporary material control and accounting (MCandA) philosophy have been applied to a mixed oxide fuel fabrication plant to produce a detailed preliminary MCandA system design that is generally applicable to facilities of this type. This paper summarizes and discusses detailed results of the mixed oxide fuel fabrication plant study

  5. Characterization and simulation on antireflective coating of amorphous silicon oxide thin films with gradient refractive index

    Science.gov (United States)

    Huang, Lu; Jin, Qi; Qu, Xingling; Jin, Jing; Jiang, Chaochao; Yang, Weiguang; Wang, Linjun; Shi, Weimin

    2016-08-01

    The optical reflective properties of silicon oxide (SixOy) thin films with gradient refractive index are studied both theoretically and experimentally. The thin films are widely used in photovoltaic as antireflective coatings (ARCs). An effective finite difference time domain (FDTD) model is built to find the optimized reflection spectra corresponding to structure of SixOy ARCs with gradient refractive index. Based on the simulation analysis, it shows the variation of reflection spectra with gradient refractive index distribution. The gradient refractive index of SixOy ARCs can be obtained in adjustment of SiH4 to N2O ratio by plasma-enhanced chemical vapor deposition (PECVD) system. The optimized reflection spectra measured by UV-visible spectroscopy confirms to agree well with that simulated by FDTD method.

  6. Reducibility of ceria-lanthana mixed oxides under temperature programmed hydrogen and inert gas flow conditions

    International Nuclear Information System (INIS)

    Bernal, S.; Blanco, G.; Cifredo, G.; Perez-Omil, J.A.; Pintado, J.M.; Rodriguez-Izquierdo, J.M.

    1997-01-01

    The present paper deals with the preparation and characterization of La/Ce mixed oxides, with La molar contents of 20, 36 and 57%. We carry out the study of the structural, textural and redox properties of the mixed oxides, comparing our results with those for pure ceria. For this aim we use temperature programmed reduction (TPR), temperature programmed desorption (TPD), nitrogen physisorption at 77 K, X-ray diffraction and high resolution electron microscopy. The mixed oxides are more easy to reduce in a flow of hydrogen than ceria. Moreover, in an inert gas flow they release oxygen in higher amounts and at lower temperatures than pure CeO 2 . The textural stability of the mixed oxides is also improved by incorporation of lanthana. All these properties make the ceria-lanthana mixed oxides interesting alternative candidates to substitute ceria in three-way catalyst formulations. (orig.)

  7. Antineutrino monitoring of burning mixed oxide plutonium fuels

    Science.gov (United States)

    Hayes, A. C.; Trellue, H. R.; Nieto, Michael Martin; Wilson, W. B.

    2012-02-01

    Background: Antineutrino monitoring of reactors is an enhanced nuclear safeguard that is being explored by several international groups. A key question is whether such a scheme could be used to verify the destruction of plutonium loaded in a reactor as mixed oxide (MOX) fuel.Purpose: To explore the effectiveness of antineutrino monitoring for the purposes of nuclear accountability and safeguarding of MOX plutonium, we examine the magnitude and temporal variation in the antineutrino signals expected for different loadings of MOX fuels.Methods: Reactor burn simulations are carried out for four different MOX fuel loadings and the antineutrino signals as a function of fuel burnup are computed and compared.Results: The antineutrino signals from reactor-grade and weapons-grade MOX are shown to be distinct from those from burning low enriched uranium, and this signal difference increases as the MOX plutonium fraction of the reactor core increases.Conclusion: Antineutrino monitoring could be used to verify the destruction of plutonium in reactors, although verifying the grade of the plutonium being burned is found to be more challenging.

  8. Sensitivity analysis of characteristics of spent mixed oxide fuel

    International Nuclear Information System (INIS)

    Hagura, Naoto; Yoshida, Tadashi

    2008-01-01

    Prediction error was evaluated for decay heat and nuclide generation in spent mixed oxide (MOX) fuels on the basis of error files in JENDL-3.3. This computational analysis was performed using SWAT code system, ORIGEN2 code, and ERRORJ code. The results of nuclide generation error evaluation were compared with some discrepancies in the calculated values to experimental values (C/E ratio) which were already published and were obtained by analysis of post irradiated experiments (PIE) data. Though the discrepancies of some C/E values, especially those of americium and curium isotopes, ranged from a half to twice, the present error evaluation based on the error file of nuclide generation became 10% or less. We conclude that the discrepancy between calculation and the PIE data is almost factor 5 larger than that evaluated from the covariance data in JENDL-3.3. Therefore the practical error value of total decay heat should be 20% or more on 1 σ basis. (authors)

  9. Dissolution of mixed oxide spent fuel from FBR

    International Nuclear Information System (INIS)

    Sanyoshi, H.; Nishina, H.; Toyota, O.; Yamamoto, R.; Nemoto, S.; Okamoto, F.; Togashi, A.; Kawata, T.; Hayashi, S.

    1991-01-01

    At the Tokai Works of the Power Reactor and Nuclear Fuel Development Corporation (PNC), the Chemical Processing Facility (CPF) has been continuing operation since 1982 for laboratory scale hot experiments on reprocessing of FBR mixed oxide fuel. As a part of these experiments, dissolution experiments have been performed to define the key parameters affecting dissolution rates such as concentration of nitric acid, temperature and burnup and also to confirm the amount of insoluble residue. The dissolution rate of the irradiated fuel was determined to be in proportion to the 1.7 power of the nitric acid concentration. The activation energy determined from the experiments varied from 6 to 11 kcal/mol depending on the method of dissolution. The dissolution rate decreased as the fuel burnup increased in low nitric acid media below 5 mol/l. However, it was found that the effect of the burnup became negligible in a high concentration of nitric acid media. The amount of insoluble residue and its constituents were evaluated by changing the dissolution condition. (author)

  10. Investigation of the Carbon Monoxide Gas Sensing Characteristics of Tin Oxide Mixed Cerium Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Muhammad B. Haider

    2012-02-01

    Full Text Available Thin films of tin oxide mixed cerium oxide were grown on unheated substrates by physical vapor deposition. The films were annealed in air at 500 °C for two hours, and were characterized using X-ray photoelectron spectroscopy, atomic force microscopy and optical spectrophotometry. X-ray photoelectron spectroscopy and atomic force microscopy results reveal that the films were highly porous and porosity of our films was found to be in the range of 11.6–21.7%. The films were investigated for the detection of carbon monoxide, and were found to be highly sensitive. We found that 430 °C was the optimum operating temperature for sensing CO gas at concentrations as low as 5 ppm. Our sensors exhibited fast response and recovery times of 26 s and 30 s, respectively.

  11. Preparation and characterization of amorphous SiO2 coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    Science.gov (United States)

    Xu, J. L.; Xiao, Q. F.; Mei, D. D.; Zhong, Z. C.; Tong, Y. X.; Zheng, Y. F.; Li, L.

    2017-03-01

    Amorphous SiO2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the "coral reef" like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 μm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO2 and a few amorphous Fe2O3 and Nd2O3. The amorphous SiO2 coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees.

  12. Rational Design of a Water-Storable Hierarchical Architecture Decorated with Amorphous Barium Oxide and Nickel Nanoparticles as a Solid Oxide Fuel Cell Anode with Excellent Sulfur Tolerance.

    Science.gov (United States)

    Song, Yufei; Wang, Wei; Ge, Lei; Xu, Xiaomin; Zhang, Zhenbao; Julião, Paulo Sérgio Barros; Zhou, Wei; Shao, Zongping

    2017-11-01

    Solid oxide fuel cells (SOFCs), which can directly convert chemical energy stored in fuels into electric power, represent a useful technology for a more sustainable future. They are particularly attractive given that they can be easily integrated into the currently available fossil fuel infrastructure to realize an ideal clean energy system. However, the widespread use of the SOFC technology is hindered by sulfur poisoning at the anode caused by the sulfur impurities in fossil fuels. Therefore, improving the sulfur tolerance of the anode is critical for developing SOFCs for use with fossil fuels. Herein, a novel, highly active, sulfur-tolerant anode for intermediate-temperature SOFCs is prepared via a facile impregnation and limited reaction protocol. During synthesis, Ni nanoparticles, water-storable BaZr 0.4 Ce 0.4 Y 0.2 O 3- δ (BZCY) perovskite, and amorphous BaO are formed in situ and deposited on the surface of a Sm 0.2 Ce 0.8 O 1.9 (SDC) scaffold. More specifically, a porous SDC scaffold is impregnated with a well-designed proton-conducting perovskite oxide liquid precursor with the nominal composition of Ba(Zr 0.4 Ce 0.4 Y 0.2 ) 0.8 Ni 0.2 O 3- δ (BZCYN), calcined and reduced in hydrogen. The as-synthesized hierarchical architecture exhibits high H 2 electro-oxidation activity, excellent operational stability, superior sulfur tolerance, and good thermal cyclability. This work demonstrates the potential of combining nanocatalysts and water-storable materials in advanced electrocatalysts for SOFCs.

  13. Studies on mixed metal oxides solid solutions as heterogeneous catalysts

    Directory of Open Access Journals (Sweden)

    H. R. Arandiyan

    2009-03-01

    Full Text Available In this work, a series of perovskite-type mixed oxide LaMo xV1-xO3+δ powder catalysts (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0, with 0.5 < δ < 1.5, prepared by the sol-gel process and calcined at 750ºC, provide an attractive and effective alternative means of synthesizing materials with better control of morphology. Structures of resins obtained during the gel formation process by FT-IR spectroscopy and XRD analysis showed that all the LaMo xV1-xO3+δ samples are single phase perovskite-type solid solutions. The surface area (BET between 2.5 - 5.0 m²/g (x = 0.1 and 1.0 respectively increases with increasing Mo ratio in the samples. They show high purity, good chemical homogeneity, and lower calcinations temperatures as compared with the solid-state chemistry route. SEM coupled to EDS and thermogravimetric analysis/differential thermal analyses (TGA/DTA have been carried out in order to evaluate the homogeneity of the catalyst. Finally, the experimental studies show that the calcination temperature and Mo content exhibited a significant influence on catalytic activity. Among the LaMo xV1-xO3+δ samples, LaMo0.7V0.3O4.2 showed the best catalytic activity for the topic reaction and the best activity and stability for ethane reforming at 850ºC under 8 bar.

  14. Some alternatives to the mixed oxide fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Deonigi, D.E.; Eschbach, E.A.; Goldsmith, S.; Pankaskie, P.J.; Rohrmann, C.A.; Widrig, R.D.

    1977-02-01

    While on initial examination each of the six fuel cycle concepts (tandem cycle, extended burnup, fuel rejuvenation, coprocessing, partial reprocessing, and thorium) described in the report may have some potential for improving safeguards, none of the six appears to have any other major or compelling advantages over the mixed oxide (MOX) fuel cycle. Compared to the MOX cycle, all but coprocessing appear to have major disadvantages, including severe cost penalties. Three of the concepts-tandem, extended burnup, and rejuvenation--share the basic problems of the throwaway cycle (GESMO Alternative 6): without reprocessing, high-level waste volumes and costs are substantially increased, and overall uranium utilization decreases for three reasons. First, the parasitic fission products left in the fuel absorb neutrons in later irradiation steps reducing the overall neutronic efficiencies of these cycles. Second, discarded fuel still has sufficient fissile values to warrant recycle. Third, perhaps most important, the plutonium needed for breeder start-up will not be available; without the breeder, uranium utilization would drop by about a factor of sixty. Two of the concepts--coprocessing and partial reprocessing--involve variations of the basic MOX fuel cycle's chemical reprocessing step to make plutonium diversion potentially more difficult. These concepts could be used with the MOX fuel cycle or in conjunction with the tandem, extended burnup and rejuvenation concepts to eliminate some of the problems with those cycles. But in so doing, the basic impetus for those cycles--elimination of reprocessing for safeguards purposes--no longer exists. Of all the concepts considered, only coprocessing--and particularly the ''master blend'' version--appears to have sufficient promise to warrant a more detailed study. The master blend concept could possibly make plutonium diversion more difficult with minimal impact on the reprocessing and MOX fuel

  15. Some alternatives to the mixed oxide fuel cycle

    International Nuclear Information System (INIS)

    Deonigi, D.E.; Eschbach, E.A.; Goldsmith, S.; Pankaskie, P.J.; Rohrmann, C.A.; Widrig, R.D.

    1977-02-01

    While on initial examination each of the six fuel cycle concepts (tandem cycle, extended burnup, fuel rejuvenation, coprocessing, partial reprocessing, and thorium) described in the report may have some potential for improving safeguards, none of the six appears to have any other major or compelling advantages over the mixed oxide (MOX) fuel cycle. Compared to the MOX cycle, all but coprocessing appear to have major disadvantages, including severe cost penalties. Three of the concepts-tandem, extended burnup, and rejuvenation--share the basic problems of the throwaway cycle (GESMO Alternative 6): without reprocessing, high-level waste volumes and costs are substantially increased, and overall uranium utilization decreases for three reasons. First, the parasitic fission products left in the fuel absorb neutrons in later irradiation steps reducing the overall neutronic efficiencies of these cycles. Second, discarded fuel still has sufficient fissile values to warrant recycle. Third, perhaps most important, the plutonium needed for breeder start-up will not be available; without the breeder, uranium utilization would drop by about a factor of sixty. Two of the concepts--coprocessing and partial reprocessing--involve variations of the basic MOX fuel cycle's chemical reprocessing step to make plutonium diversion potentially more difficult. These concepts could be used with the MOX fuel cycle or in conjunction with the tandem, extended burnup and rejuvenation concepts to eliminate some of the problems with those cycles. But in so doing, the basic impetus for those cycles--elimination of reprocessing for safeguards purposes--no longer exists. Of all the concepts considered, only coprocessing--and particularly the ''master blend'' version--appears to have sufficient promise to warrant a more detailed study. The master blend concept could possibly make plutonium diversion more difficult with minimal impact on the reprocessing and MOX fuel fabrication operations

  16. Effect of Sr on the properties of Ce–Zr–La mixed oxides

    Directory of Open Access Journals (Sweden)

    RICHUAN RAO

    2006-03-01

    Full Text Available Ce–Zr–La–Sr mixed oxides, with different Sr contents, were prepared by the sol–gel method. In a flow-system microreactor, the reduction properties and the oxygen storage capacity (OSC of the Ce–Zr–La–Sr mixed oxides were investigated by a temperature programmed reduction (TPR and a pulse technique. It was shown that the properties of the Ce–Zr–La mixed oxides depend on the Sr content and that the optimum Sr content in the Ce–Zr–La–Sr mixed oxide is 3 mol%. The Ce–Zr–La–Sr mixed oxides doped with 3 mol% Sr (Ce0.52Zr0.4La0.05Sr0.03O1.945 has the largest specific surface area and better reduction properties and oxygen storage capacity in comparison to the other investigated samples. The XRD results of the Ce–Zr–La–Sr mixed oxides showed that their X-ray diffraction patterns are well in agreement with that of fluorite-type CeO2 with Sr ions incorporated into the Ce–Zr–La mixed oxide structures. With increasing calcination temperature, the intensity of the X-ray diffraction peaks increased, but no new peaks were observed. All of these indicate that the synthesized samples had good thermal stability.

  17. Electric charging/discharging characteristics of super capacitor, using de-alloying and anodic oxidized Ti-Ni-Si amorphous alloy ribbons.

    Science.gov (United States)

    Fukuhara, Mikio; Sugawara, Kazuyuki

    2014-01-01

    Charging/discharging behaviors of de-alloyed and anodic oxidized Ti-Ni-Si amorphous alloy ribbons were measured as a function of current between 10 pA and 100 mA, using galvanostatic charge/discharging method. In sharp contrast to conventional electric double layer capacitor (EDLC), discharging behaviors for voltage under constant currents of 1, 10 and 100 mA after 1.8 ks charging at 100 mA show parabolic decrease, demonstrating direct electric storage without solvents. The supercapacitors, devices that store electric charge on their amorphous TiO2-x surfaces that contain many 70-nm sized cavities, show the Ragone plot which locates at lower energy density region near the 2nd cells, and RC constant of 800 s (at 1 mHz), which is 157,000 times larger than that (5 ms) in EDLC.

  18. Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O: Experiment and ab initio calculations

    International Nuclear Information System (INIS)

    Nomura, Kenji; Ohta, Hiromichi; Hirano, Masahiro; Kamiya, Toshio; Uruga, Tomoya; Hosono, Hideo

    2007-01-01

    Ionic amorphous oxide semiconductors (IAOSs) are new materials for flexible thin film transistors that exhibit field-effect mobilities of ∼10 cm 2 V -1 s -1 [K. Nomura et al., Nature 488, 432 (2004)]. The local coordination structure in an IAOS, In-Ga-Zn-O (a-IGZO), was examined using extended x-ray absorption fine structure analysis combined with ab initio calculations. The short-range ordering and coordination structures in a-IGZO are similar to those in the corresponding crystalline phase, InGaZnO 4 , and edge-sharing structures consisting of In-O polyhedra remain in the amorphous structure. The In 3+ 5s orbitals form an extended state with a band effective mass of ∼0.2m e at the conduction band bottom

  19. Amorphous magnetism

    International Nuclear Information System (INIS)

    Rechenberg, H.R.

    1984-01-01

    The consequences of disorder on magnetic properties of solids are examined. In this context the word 'disorder' is not synonimous of structural amorphicity; chemical disorder can be achieved e.g. by randomly diffusing magnetic atoms on a nonmagnetic crystalline lattice. The name Amorphous Magnetism must be taken in a broad sense. (Author) [pt

  20. Efficient room temperature oxidation of cyclohexane over highly active hetero-mixed WO3/V2O5 oxide catalyst

    CSIR Research Space (South Africa)

    Makgwane, PR

    2014-09-01

    Full Text Available An efficient room temperature catalyzed oxidation of cyclohexane to cyclohexanone (K) and cyclohexanol (A) was achieved over hetero-mixed tungsten–vanadia (WO(sub3)/V(sub2)O(sub5)) using H(sub2)O(sub2) oxidant. WO(sub3)/V(sub2)O(sub5) exhibited high...

  1. Co3O4-CeO2 mixed oxide-based catalytic materials for diesel soot oxidation

    Czech Academy of Sciences Publication Activity Database

    Dhakad, M.; Mitshuhashi, T.; Rayalu, S.; Doggali, P.; Bakardjieva, Snejana; Šubrt, Jan; Fino, D.; Haneda, H.; Labhsetwar, N.

    2008-01-01

    Roč. 132, 1-4 (2008), s. 188-193 ISSN 0920-5861 R&D Projects: GA MŠk LC523 Institutional research plan: CEZ:AV0Z40320502 Keywords : soot oxidation * diesel particulate * Co3O4-CeO2 type mixed oxide Subject RIV: CA - Inorganic Chemistry Impact factor: 3.004, year: 2008

  2. Effect of nickel oxide seed layers on annealed-amorphous titanium oxide thin films prepared using plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng-Yang; Hong, Shao-Chyang [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Hwang, Fu-Tsai [Department of Electro-Optical Engineering, National United University, Miao-Li, 36003, Taiwan (China); Lai, Li-Wen [ITRI South, Industrial Technology Research Institute, Liujia, Tainan, 73445, Taiwan (China); Lin, Tan-Wei [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Liu, Day-Shan, E-mail: dsliu@sunws.nfu.edu.tw [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China)

    2011-10-31

    The effect of a nickel oxide (NiO{sub x}) seed layer on the crystallization and photocatalytic activity of the sequentially plasma-enhanced chemical vapor deposited amorphous titanium oxide (TiO{sub x}) thin film processed by a post-annealing process was investigated. The evolution of the crystalline structures, chemical bond configurations, and surface/cross-sectional morphologies of the annealed TiO{sub x} films, with and without a NiO{sub x} seed layer, was examined using X-ray diffractometer, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscope measurements. Thermo- and photo-induced hydrophilicity was determined by measuring the contact angle of water droplet. Photocatalytic activity after UV light irradiation was evaluated from the decolorization of a methylene blue solution. The crystallization temperature of the TiO{sub x} film, deposited on a NiO{sub x} seed layer, was found to be lower than that of a pure TiO{sub x} film, further improving the thermo- and photo-induced surface super-hydrophilicity. The TiO{sub x} film deposited onto the NiO{sub x} seed layer, resulting in significant cluster boundaries, showed a rough surface morphology and proved to alleviate the anatase crystal growth by increasing the post-annealing temperature, which yielded a more active surface area and prohibited the recombination of photogenerated electrons and holes. The photocatalytic activity of the NiO{sub x}/TiO{sub x} system with such a textured surface therefore was enhanced and optimized through an adequate post-annealing process.

  3. Continuous precipitation of mineral products: influence of mixing conditions on the co-precipitation of cerium-zirconium mixed oxides

    International Nuclear Information System (INIS)

    Di Patrizio, Nicolas

    2015-01-01

    An automated experimental set-up with rapid mixers is used to study the influence of mixing conditions on the co-precipitation of cerium-zirconium mixed oxides. The intensity of mixing is controlled by the inlet flow rates of the reacting solutions. An engulfment model is used to estimate a mixing time from the measurement of a segregation index by the Villermaux-Dushman reaction system. Three geometries of Hartridge Roughton mixers are compared. Mixing performance is better when a separate mixing chamber upstream of a narrower outlet pipe is present. A better mixing decreases the maximal reducibility temperature of the material and increases the crystal strains of the particles calcined at 1100 C. This is probably due to a better homogenization of the particles content. The important incorporation of nitrates in the particle at the outlet of the mixers shows precipitation occurs while the mixing process is not finished. This experimental result was confirmed by numerical simulation and an estimation of sur-saturations during the mixing process. (author)

  4. Optical refractive index and static permittivity of mixed Zr-Si oxide thin films prepared by ion beam induced CVD

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, F.J. [Centro Nacional de Aceleradores, Av. Thomas A. Edison, 7, 41092 Sevilla (Spain)], E-mail: fjferrer@us.es; Frutos, F. [E.T.S. de Ingenieria Informatica, Avda. Reina Mercedes, s/n, 41012 Sevilla (Spain); Garcia-Lopez, J. [Centro Nacional de Aceleradores, Av. Thomas A. Edison, 7, 41092 Sevilla (Spain); Gonzalez-Elipe, A.R.; Yubero, F. [Insituto de Ciencia de Materiales de Sevilla, c/ Americo vespucio, no. 49, 41092 Sevilla (Spain)

    2007-12-03

    Mixed oxides Zr{sub x}Si{sub 1-x}O{sub 2} (0 < x < 1) thin films have been prepared at room temperature by decomposition of (CH{sub 3}CH{sub 2}O){sub 3}SiH and Zr[OC(CH{sub 3}){sub 3}]{sub 4} volatile precursors induced by mixtures of O{sub 2}{sup +} and Ar{sup +} ions. The films were flat and amorphous independently of the Si/Zr ratio and did not present phase segregation of the pure single oxides (SiO{sub 2} and ZrO{sub 2}). A 10-23 at.% of H and 1-5 at.% of C atoms remained incorporated in the films depending on the mixture ratio of the Si and Zr precursors and the composition of the bombarding gas used during the deposition process. These impurities are mainly forming hydroxyl and carboxylic groups. Optical refractive index and static permittivity of the films were determined by reflection NIR-Vis spectroscopy and C-V electrical characterization, respectively. It is found that the refractive index increases non-linearly from 1.45 to 2.10 as the Zr content in the thin films increases. The static permittivity also increases non-linearly from {approx} 4 for pure SiO{sub 2} to {approx} 15 for pure ZrO{sub 2}. Optical and electrical characteristics of the films are justified by their impurity content and the available theories.

  5. Dopant selection for control of charge carrier density and mobility in amorphous indium oxide thin-film transistors: Comparison between Si- and W-dopants

    Energy Technology Data Exchange (ETDEWEB)

    Mitoma, Nobuhiko, E-mail: MITOMA.Nobuhiko@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Kizu, Takio; Lin, Meng-Fang; Tsukagoshi, Kazuhito, E-mail: MITOMA.Nobuhiko@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044 (Japan); Aikawa, Shinya [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044 (Japan); Research Institute for Science and Technology, Kogakuin University, Hachioji, Tokyo 192-0015 (Japan); Ou-Yang, Wei [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044 (Japan); Department of Physics, Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Gao, Xu [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044 (Japan); Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123 (China); Fujiwara, Akihiko [Research and Utilization Division, Japan Synchrotron Radiation Research Institute/SPring-8, Sayo, Hyogo 679-5198 (Japan); Nabatame, Toshihide [MANA Foundry and MANA Advanced Device Materials Group, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044 (Japan)

    2015-01-26

    The dependence of oxygen vacancy suppression on dopant species in amorphous indium oxide (a-InO{sub x}) thin film transistors (TFTs) is reported. In a-InO{sub x} TFTs incorporating equivalent atom densities of Si- and W-dopants, absorption of oxygen in the host a-InO{sub x} matrix was found to depend on difference of Gibbs free energy of the dopants for oxidation. For fully oxidized films, the extracted channel conductivity was higher in the a-InO{sub x} TFTs containing dopants of small ionic radius. This can be explained by a reduction in the ionic scattering cross sectional area caused by charge screening effects.

  6. Behavior of molybdenum in mixed-oxide fuel

    International Nuclear Information System (INIS)

    Giacchetti, G.; Sari, C.

    1976-01-01

    Metallic molybdenum, Mo--Ru--Rh--Pd alloys, barium, zirconium, and tungsten were added to uranium and uranium--plutonium oxides by coprecipitation and mechanical mixture techniques. This material was treated in a thermal gradient similar to that existing in fuel during irradiation to study the behavior of molybdenum in an oxide matrix as a function of the O/(U + Pu) ratio and some added elements. Result of ceramographic and microprobe analysis shows that when the overall O/(U + Pu) ratio is less than 2, molybdenum and Mo--Ru--Rh--Pd alloy inclusions are present in the uranium--plutonium oxide matrix. If the O/(U + Pu) ratio is greater than 2, molybdenum oxidizes to MoO 2 , which is gaseous at a temperature approximately 1000 0 C. Molybdenum oxide vapor reacts with barium oxide and forms a compound that exists as a liquid phase in the columnar grain region. Molybdenum oxide also reacts with tungsten oxide (tungsten is often present as an impurity in the fuel) and forms a compound that contains approximately 40 wt percent of actinide metals. The apparent solubility of molybdenum in uranium and uranium--plutonium oxides, determined by electron microprobe, was found to be less than 250 ppM both for hypo- and hyperstoichiometric fuels

  7. Magnetic properties of mesoporous cobalt-silica-alumina ternary mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Nabanita [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Seikh, Md. Motin [Department of Chemistry, Visva-Bharati University, Santiniketan, West Bengal (India); Bhaumik, Asim, E-mail: msab@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India)

    2013-02-15

    Mesoporous cobalt-silica-alumina mixed oxides with variable cobalt content have been synthesized through slow evaporation method by using Pluronic F127 non-ionic surfactant as template. N{sub 2} sorption analysis of the template-free mixed oxide samples revealed that these mesoporous materials have high BET surface areas together with large mesopores. Powder XRD, TEM, EDS, FT IR and EPR spectroscopic analysis have been employed to understand the nature of the mesophases, bonding and composition of the materials. Low temperature magnetic measurements of these mixed oxide materials show the presence of ferromagnetic correlation at elevated temperature though at low temperature paramagnetic to ferrimagnetic transition is observed. Highlights: Black-Right-Pointing-Pointer Mesoporous cobalt-silica-alumina ternary mixed oxides. Black-Right-Pointing-Pointer High surface area and mesoporosity in magnetic materials. Black-Right-Pointing-Pointer Ferromagnetic correlation at elevated temperature. Black-Right-Pointing-Pointer Low temperature paramagnetic to ferrimagnetic transition.

  8. Single crystal particles of a mesoporous mixed transition metal oxide with a wormhole structure.

    Science.gov (United States)

    Lee, B; Lu, D; Kondo, J N; Domen, K

    2001-10-21

    A new type of mesoporous mixed transition metal oxide of Nb and Ta (NbTa-TIT-1) has been prepared through a two-step calcination, which consists of single crystal particles with wormhole mesoporous structure.

  9. Different Abilities of Eight Mixed Cultures of Methane-oxidizing Bacteria to Degrade TCE

    DEFF Research Database (Denmark)

    Broholm, Kim; Christensen, Thomas Højlund; Jensen, Bjørn K.

    1993-01-01

    methanol, but only for a limited time period of about 5 days. Several explanations for the discontinued degradation of TCE are given. An experiment carried out to re-activate the methane-oxidizing bacteria after 8 days of growth on methanol by adding methane did not immediately result in degradation......The ability of eight mixed cultures of methane-oxidizing bacteria to degrade trichloroethylene (TCE) was examined in laboratory batch experiments. This is one of the first reported works studying TCE degradation by mixed cultures of methane-oxidizing bacteria at 10°C, a common temperature for soils...... and groundwaters. Only three of the eight mixed cultures were able to degrade TCE, or to degrade TCE fast enough to result in a significant removal of TCE within the experimental time, when the cultures used methane as growth substrate. The same three mixed cultures were able to degrade TCE when they oxidized...

  10. Insight into the photocatalytic activity of ZnCr-CO3 LDH and derived mixed oxides

    Czech Academy of Sciences Publication Activity Database

    Paušová, Š.; Krysa, J.; Jirkovský, Jaromír; Forano, C.; Mailhot, G.; Prevot, V.

    2015-01-01

    Roč. 170, JUL 01 (2015), s. 25-33 ISSN 0926-3373 Institutional support: RVO:61388955 Keywords : photocatalysis * layered double hydroxides * mixed oxides Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 8.328, year: 2015

  11. Development of an engineered safeguards system concept for a mixed-oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Chapman, L.D.; de Montmollin, J.M.; Deveney, J.E.; Fienning, W.C.; Hickman, J.W.; Watkins, L.D.; Winblad, A.E.

    1976-08-01

    An initial concept of an Engineered Safeguards System for a representative commercial mixed-oxide fuel fabrication facility is presented. Computer simulation techniques for evaluation and further development of the concept are described. An outline of future activity is included

  12. Titanium oxide modification with oxides of mixed cobalt valence for photo catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Alanis O, R.; Jimenez B, J., E-mail: jaime.jimenez@inin.gob.m [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    In the present work, heterogenous photo catalysis, a technique often used for organic compound degradation toxic in water, was used. The photo catalyst most often used in this technique is TiO{sub 2}, which due to its physical and chemical properties, can degrade a great number of organic compounds. In addition, in recent years it has been verified that the doping of semiconductors with metals or metallic oxides increases the photo catalytic activity of these semiconductors, which is why it was proposed for doping by the impregnating method using commercial TiO{sub 2} synthesized by the Degussa company (TiO{sub 2} Degussa P25) with and oxide of mixed cobalt valence (Co{sub 3}O{sub 4}) synthesized using the sol-gel method. The synthesized photo catalyst TiO{sub 2}/Co{sub 3}O{sub 4} was characterized by the techniques of X-ray diffraction, scanning electronic microscopy, Raman spectroscopy and finally, photo catalytic tests by means of the degradation of methylene blue. (Author)

  13. Titanium oxide modification with oxides of mixed cobalt valence for photo catalysis

    International Nuclear Information System (INIS)

    Alanis O, R.; Jimenez B, J.

    2010-01-01

    In the present work, heterogenous photo catalysis, a technique often used for organic compound degradation toxic in water, was used. The photo catalyst most often used in this technique is TiO 2 , which due to its physical and chemical properties, can degrade a great number of organic compounds. In addition, in recent years it has been verified that the doping of semiconductors with metals or metallic oxides increases the photo catalytic activity of these semiconductors, which is why it was proposed for doping by the impregnating method using commercial TiO 2 synthesized by the Degussa company (TiO 2 Degussa P25) with and oxide of mixed cobalt valence (Co 3 O 4 ) synthesized using the sol-gel method. The synthesized photo catalyst TiO 2 /Co 3 O 4 was characterized by the techniques of X-ray diffraction, scanning electronic microscopy, Raman spectroscopy and finally, photo catalytic tests by means of the degradation of methylene blue. (Author)

  14. Argonne National Laboratory's photo-oxidation organic mixed waste treatment system - installation and startup testing

    International Nuclear Information System (INIS)

    Shearer, T.L.; Nelson, R.A.; Torres, T.; Conner, C.; Wygmans, D.

    1997-01-01

    This paper describes the installation and startup testing of the Argonne National Laboratory (ANL-E) Photo-Oxidation Organic Mixed Waste Treatment System. This system will treat organic mixed (i.e., radioactive and hazardous) waste by oxidizing the organics to carbon dioxide and inorganic salts in an aqueous media. The residue will be treated in the existing radwaste evaporators. The system is installed in the Waste Management Facility at the ANL-E site in Argonne, Illinois. 1 fig

  15. Influence of Precipitation Method on Acid-Base Catalyzed Reactions over Mg-Zr Mixed Oxides

    OpenAIRE

    Kozlowski, J.; Behrens, M.; Schlögl, R.; Davis, R.

    2013-01-01

    To examine the promotional effect that zirconia has on magnesia in catalysis, mixed oxides were prepared by coprecipitation under controlled-pH conditions or rising-pH conditions. The resulting mixed oxides were characterized by using NH3 and CO2 adsorption microcalorimetry, X-ray diffraction, and scanning electron microscopy. The samples were also tested as catalysts for transesterification of tributyrin with methanol, coupling of acetone, and conversion of ethanol to ethene, ethanal, and bu...

  16. Feasibility Study of 1/3 Thorium-Plutonium Mixed Oxide Core

    OpenAIRE

    Cheuk Wah Lau; Henrik Nylén; Klara Insulander Björk; Urban Sandberg

    2014-01-01

    Thorium-plutonium mixed oxide (Th-MOX) fuel has become one of the most promising solutions to reduce a large and increasing plutonium stockpile. Compared with traditional uranium-plutonium mixed oxide (U-MOX) fuels, Th-MOX fuel has higher consumption rate of plutonium in LWRs. Besides, thorium based fuels have improved thermomechanical material properties compared with traditional U-MOX fuels. Previous studies on a full Th-MOX core have shown reduced efficiency in reactivity control mechanism...

  17. Fabrication of Nb2O5/SiO2 mixed oxides by reactive magnetron co-sputtering

    International Nuclear Information System (INIS)

    Juškevičius, Kęstutis; Audronis, Martynas; Subačius, Andrius; Kičas, Simonas; Tolenis, Tomas; Buzelis, Rytis; Drazdys, Ramutis; Gaspariūnas, Mindaugas; Kovalevskij, Vitalij; Matthews, Allan; Leyland, Adrian

    2015-01-01

    This paper investigates niobia/silica mixed oxide thin films deposited by reactive pulse-DC/RF magnetron co-sputtering of Nb and Si metal targets at room temperature. The reactive gas flow during the sputtering processes was either controlled by direct mass flow rate (i.e. constant reactive gas flow) or by an active feedback process control system. 61% and 137% higher deposition rates of Nb 2 O 5 and SiO 2 layers, respectively, were obtained using the latter technique as compared to constant reactive gas flow. Films exhibited bulk or near-bulk density. All mixture films produced in this study had an amorphous structure. A volume law of mixtures was used to determine the coating composition. It is shown that the fraction of SiO 2 or/and Nb 2 O 5 has a linear dependency on sputter target power density. On this basis, rugate filter coating designs can be easily deposited, where refractive index gradually varies between that of pure Nb 2 O 5 and pure SiO 2 . Substantially less inhomogeneity of coating mixtures was found in films produced using a reactive sputtering process with feedback-control. - Highlights: • 61% and 137% increase in deposition rates of Nb 2 O 5 and SiO 2 • Rugate coating designs can be readily deposited. • Nb 2 O 5 /SiO 2 mixture films exhibited bulk or near-bulk density. • Optimized process leads to stoichiometric and homogenous mixtures. • Films are amorphous and suitable for low loss optical coatings

  18. Amorphous nanophotonics

    CERN Document Server

    Scharf, Toralf

    2013-01-01

    This book represents the first comprehensive overview over amorphous nano-optical and nano-photonic systems. Nanophotonics is a burgeoning branch of optics that enables many applications by steering the mould of light on length scales smaller than the wavelength with devoted nanostructures. Amorphous nanophotonics exploits self-organization mechanisms based on bottom-up approaches to fabricate nanooptical systems. The resulting structures presented in the book are characterized by a deterministic unit cell with tailored geometries; but their spatial arrangement is not controlled. Instead of periodic, the structures appear either amorphous or random. The aim of this book is to discuss all aspects related to observable effects in amorphous nanophotonic material and aspects related to their design, fabrication, characterization and integration into applications. The book has an interdisciplinary nature with contributions from scientists in physics, chemistry and materials sciences and sheds light on the topic fr...

  19. Molten carbonate fuel cell cathode with mixed oxide coating

    Science.gov (United States)

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  20. Phase stability and oxygen transport properties of mixed ionic-electronic conducting oxides

    NARCIS (Netherlands)

    Yoo, C.-Y.

    2012-01-01

    The application of mixed ionic-electronic conducting oxides as oxygen separation membrane for the production of oxygen offers significant advantages over conventional cryogenic distillation. Perovskite- and fluorite-type oxides are promising candidates for such application. The research described in

  1. Effect of cobalt loading on the solid state properties and ethyl acetate oxidation performance of cobalt-cerium mixed oxides.

    Science.gov (United States)

    Konsolakis, M; Carabineiro, S A C; Marnellos, G E; Asad, M F; Soares, O S G P; Pereira, M F R; Órfão, J J M; Figueiredo, J L

    2017-06-15

    Cobalt-cerium mixed oxides were prepared by the wet impregnation method and evaluated for volatile organic compounds (VOCs) abatement, using ethyl acetate (EtAc) as model molecule. The impact of Co content on the physicochemical characteristics of catalysts and EtAc conversion was investigated. The materials were characterized by various techniques, including N 2 adsorption at -196°C, scanning electron microscopy (SEM), X-ray diffraction (XRD), H 2 -temperature programmed reduction (H 2 -TPR) and X-ray photoelectron spectroscopy (XPS) to reveal the structure-activity relationship. The obtained results showed the superiority of mixed oxides compared to bare CeO 2 and Co 3 O 4 , demonstrating a synergistic effect. The optimum oxidation performance was achieved with the sample containing 20wt.% Co (Co/Ce atomic ratio of ca. 0.75), in which complete conversion of EtAc was attained at 260°C. In contrast, temperatures above 300°C were required to achieve 100% conversion over the single oxides. Notably, a strong relationship between both the: (i) relative population, and (ii) facile reduction of lattice oxygen with the ethyl acetate oxidation activity was found, highlighting the key role of loosely bound oxygen species on VOCs oxidation. A synergistic Co-Ce interaction can be accounted for the enhanced reducibility of mixed oxides, linked with the increased mobility of lattice oxygen. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Innovative solid oxide fuel cells based on BaIn0.3Ti0.7O2.85 electrolyte and La2Mo2O9 amorphous reduced phase as anode material

    Science.gov (United States)

    Buvat, Gaëtan; Quarez, Eric; Joubert, Olivier

    2016-01-01

    This article presents elaboration of electrolyte-supported solid oxide fuel cells based on the oxide ion conductor BaIn0.3Ti0.7O2.85 (BIT07) as electrolyte, the amorphous reduced phase of La2Mo2O9 (La2Mo2O7-y) as anode which presents a mixed ionic and electronic conduction in low pO2 and La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) as cathode. Electrode materials have been deposited by screen-printing on BIT07 substrate. In order to avoid chemical reactivity between BIT07 and La2Mo2O9, a thin layer of Ce0.9Gd0.1O1.95 (CGO) has been used. Electrochemical performance of the single cell has been characterized by I-V measurements and impedance spectroscopy. Encouraging performance of 40 mW cm-2 at 700 °C is obtained with a thick electrolyte layer. Finally, ageing test of the cell at 700 °C during 800 h has been done with a low rate of performance loss of 4.4 × 10-3% h-1. No degradation of the electrolyte material is reported and stability of the anode material after operating the fuel cell is discussed.

  3. High purity samarium oxide from mixed rare earth carbonates

    International Nuclear Information System (INIS)

    Queiroz, Carlos A. da S.; Seneda, Jose A.; Vasconcellos, Mari E. de; Pedreira Filho, Walter dos R.

    2013-01-01

    A simple and economical chemical process for the production of highly pure samarium oxides is discussed. The raw material, which was used in the form of rare earth carbonates was produced industrially from the chemical treatment of Brazilian monazite. Ion exchange chromatography was performed using a strong cationic resin that is typically employed in water treatment processes to fractionate rare earth elements (REE) without the use of retention ions. Under these conditions, 99.9% pure Sm 2 O 3 was eluted using the ammonium salt of ethylenediaminetetraacetic acid (EDTA) at a controlled pH. The EDTA-samarium complex was separated from EDTA and then precipitated as oxalate and fired to samarium oxide. Molecular absorption spectrophotometry was used to monitor the samarium content during the proposed process, and sector field inductively coupled plasma mass spectrometry was used to certify the purity of the samarium oxide. Typical samarium oxide obtained from the proposed procedure contained the following contaminants in micrograms per gram: Sc (20.90); Y (11.80); La (8.4); Ce (4.3); Pr (2.5); Nd (5.1); Eu (94); Gd (114); Tb (3.6); Dy (2.5), Ho (2.3); Er (3.0); Tm (2.3); Yb (38,2); Lu (25.6). The high-purity samarium oxides produced in the present study can be used as an alternative to imported products in research and development applications. (author)

  4. Analysis impurity elements in mixed U-Th Oxide with emission spectrograph

    International Nuclear Information System (INIS)

    Simbolon, Sahat; Aryadi

    1996-01-01

    Analysis impurity elements of boron and cadmium in mixed U-Th oxide with emission spectrograph was done. Mixed U-Th oxide standard containing impurity elements was made by mixing 90 % uranium oxide and 10 % thorium oxide that was known concentration of each impurity elements. Thorax film plate was used to replace film SA1 as a film standard and carrier distillation of AgCI, Ga 2 O 3 and LiF was used during the excitation with DC arc. The most sensitive wavelength of impurity elements of boron and cadmium were used for analysis, on 249.77 nm and 228.8 nm respectively. Grating 590 groves/mm was used. Limit of detection for boron and cadmium was calculated by use standard error of estimation of each calibration curve. It was found detection limit of boron 0.19 ppm and cadmium 0.35 ppm

  5. Modification of Co-Mn-Al Mixed Oxide with Potassium and Its Effect on Deep Oxidation of VOC

    Czech Academy of Sciences Publication Activity Database

    Jirátová, Květa; Mikulová, Jana; Klempa, Jan; Grygar, Tomáš; Bastl, Zdeněk; Kovanda, F.

    2009-01-01

    Roč. 361, 1-2 (2009), s. 106-116 ISSN 0926-860X R&D Projects: GA ČR GA104/07/1400 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40320502; CEZ:AV0Z40400503 Keywords : mixed oxide catalysts * VOC total oxidation * potassium promoter Subject RIV: CC - Organic Chemistry Impact factor: 3.564, year: 2009

  6. Mixed conductivity in erbia-stabilized bismuth oxide

    NARCIS (Netherlands)

    Vinke, I.C.; Vinke, I.C.; Boukamp, Bernard A.; de Vries, K.J.; de Vries, Karel Jan; Burggraaf, Anthonie; Burggraaf, A.J.

    1992-01-01

    The mixed conducting solid solution 0.75Bi2O3−0.25Tb4O7 (BT40) was studied by impedance techniques using ionically blocking electrodes. These measurements confirmed the p-type electronic conductivity suggested in literature. In air at temperatures between 600 and 900 K the ionic transference number

  7. Uniform surface modification of diatomaceous earth with amorphous manganese oxide and its adsorption characteristics for lead ions

    Science.gov (United States)

    Li, Song; Li, Duanyang; Su, Fei; Ren, Yuping; Qin, Gaowu

    2014-10-01

    A novel method to produce composite sorbent material compromising porous diatomaceous earth (DE) and surface functionalized amorphous MnO2 is reported. Via a simple in situ redox reaction over the carbonized DE powders, a uniform layer of amorphous MnO2 was anchored onto the DE surface. The hybrid adsorbent was characterized by X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. The batch method has been employed to investigate the effects of surface coating on adsorption performance of DE. According to the equilibrium studies, the adsorption capacity of DE for adsorbing lead ions after MnO2 modification increased more than six times. And the adsorption of Pb2+ on the MnO2 surface is based on ion-exchange mechanism. The developed strategy presents a novel opportunity to prepare composite adsorbent materials by integrating nanocrystals with porous matrix.

  8. Rapid mixing chemical oxidative polymerization: an easy route to ...

    Indian Academy of Sciences (India)

    Administrator

    bon nanomaterial suspensions (Gedela et al 2012); here, the problems of poor solvability and/or dispersion of the constituent materials in the solvents used in synthesis protocols can be overcome. In this study, an easy method. (in situ chemical oxidative polymerization) to synthesize small diameter carbon nanotubes ...

  9. Enhanced Fe 2+ oxidation by mixed culture originated from hot ...

    African Journals Online (AJOL)

    For maximum oxidation efficiency and minimum amount of jarosite, a total of 30 experimental runs were conducted and the experimental data fitted to the experimental quadratic model. The analysis of variance (ANOVA) demonstrated that the model was highly significant. Three dimensional plots were illustrated to depict ...

  10. Surface Chemistry of Nano-Structured Mixed Metal Oxide Films

    Science.gov (United States)

    2012-12-11

    dehydration . Steady-state reactive molecular beam scattering (RMBS) shows that dehydration is the dominant reaction pathway on clean Mo(1 1 0), while C–Mo(1 1...photoelectrochemical water oxidation performance under simulated solar irradiation of hematite (α-Fe2O3) films synthesized by coevaporation of pure Si and Fe

  11. Structural and theoretical studies of mixed metal oxides

    International Nuclear Information System (INIS)

    Butler, V.

    1982-10-01

    Diffuse neutron scattering studies were made first on powdered samples of uranium/cerium oxide and, secondly, on single crystals of stoichiometric and reduced thorium/cerium oxide. The powder studies show that at low dopant concentrations, the cation distribution is random but, as the dopant concentration increases, considerable short range ordering takes place on the cation sublattice. The presence of oxygen vacancies at high temperature, when the cations are mobile, does not appear to affect the distribution of the cations. Powder neutron diffraction was carried out on stoichiometric and reduced samples of uranium/cerium oxide and, for comparison, on a reduced sample of 20 mole% CeO 2 in ThO 2 . In the former samples, separation of a second phase occurs on reduction of samples containing >= 20 mole% CeO 2 and, at all dopant concentrations, the level of reduction achieved is well below the expected value. The thorium/cerium oxide sample, on the other hand, is single-phase and fully reduced. Calculations performed using computer simulation techniques show that, in doped CeO 2 and ZrO 2 , the radius of the dopant ion is extremely important in determining the magnitude of the dopant-vacancy interaction and hence the ionic conductivity of the material. The results are discussed. (author)

  12. Mixed drink increased carbohydrate oxidation but not performance ...

    African Journals Online (AJOL)

    Kathryn van Boom

    It is well-established that consuming exogenous carbohydrate during prolonged physical activity improves performance.[1,2] The role of exogenous carbohydrate intake is hypothesised to provide additional substrate for oxidation[3] specifically influencing performance by decreasing endogenous liver glycogen utilisation ...

  13. Mixed drink increased carbohydrate oxidation but not performance ...

    African Journals Online (AJOL)

    ... improvement in 40 km time trial time between an isocaloric GP-only or a GP and fructose drink, and no differences in any of the measured variables other than exogenous carbohydrate oxidation at 90 minutes during the pre-time trial steady state ride. Keywords: multiple carbohydrate, cycling, endurance, glucose, fructose ...

  14. Enhancing the optoelectronic properties of amorphous zinc tin oxide by subgap defect passivation: A theoretical and experimental demonstration

    Czech Academy of Sciences Publication Activity Database

    Rucavado, E.; Jeangros, Q.; Urban, D. F.; Holovský, Jakub; Remeš, Zdeněk; Duchamp, M.; Landucci, F.; Dunin-Borkowski, R.E.; Körner, W.; Elsässer, C.; Hessler-Wyser, A.; Morales-Masis, M.; Ballif, C.

    2017-01-01

    Roč. 95, č. 24 (2017), s. 1-9, č. článku 245204. ISSN 2469-9950 R&D Projects: GA ČR GC16-10429J Institutional support: RVO:68378271 Keywords : TCO * ZnO * ZnSnO * amorphous TCO * photothermal deflection spectroscopy * DFT Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  15. Development of Mixed Ion-Electron Conducting Metal Oxides for Solid Oxide Fuel Cells

    Science.gov (United States)

    Kan, Wang Hay

    A solid oxide fuel cell (SOFC) is an energy conversion device, which directly converts chemical fuels (e.g., H2, C xHy) into electricity and heat with high efficiency up to 90%. The by-product of CO2 can be safely sequestrated or subsequently chemically transformed back into fuels (e.g., CO, CH 4) by electrolysis using renewable energy sources such as solar and wind. The state-of-the-art Ni-YSZ anode is de-activated in the presence of ppm level of H2S and forming coke in hydrocarbons. Currently, mixed ion and electron conductors (MIECs) are considered as alternatives for Ni-YSZ in SOFCs. The key goal of the research was to develop mixed ion-electron conducting metal oxides based on B-site disordered perovskite-type Ba(Ca,Nb)1-x MxO3-delta (M = Mn, Fe, Co), the B-site 1:1 ordered perovskite-type (M = Mn, Fe, Co) and the Sr2PbO4-type Sr2Ce1-xPrxO4 for SOFCs. Ba2(Ca,Nb)2-xMxO6-delta was chemically stable in 30 ppm levels of H2S at 600 °C for 24 h and in pure CO2 at 800 °C for 24 h. The thermal expansion coefficients (TEC) of the as-prepared ordered perovskites was found to be comparable to Zr0.84Y0.16O1.92 (YSZ). The near-surface concentration of Fe2+ in Ba2Ca 0.67Fe0.33NbO6-delta was found to be about 3 times higher than that in the bulk sample. The electrochemical performance of Ba2Ca0.67M0.33NbO6-delta was assessed by ac impedance spectroscopy using a YSZ supported half-cell. The area specific polarization resistance (ASR) of all samples was found to decrease with increasing temperature. The ASR for H2 gas oxidation can be correlated to the higher concentration of low valence Fe2+ species near-surface (nano-scale). BaCa0.335M0.165Nb0.5O3-delta crystallizes in the B-site disordered primitive perovskite (space group Pm-3m) at 900 °C in air, which can be converted into the B-site 1:2 ordered perovskite (space group P-3m1) at 1200 °C and the B-site 1:1 ordered double perovskite phase (space group Fm-3m ) at 1300 °C. The chemical stability of the perovskites in CO

  16. Reduction of mixed oxide spinels: nickel ferrite and alumina doped nickel ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Allender, J.; De Jonghe, L. C.

    1976-01-01

    When oxide ceramics are used in a hydrogen environment at elevated temperatures they will be reduced at a rate which can depend on a variety of parameters. The presence of minor amounts of alloying elements, e.g., can significantly alter the reduction rate. Since practical oxide ceramics generally contain mixed oxides of two or more metals, an understanding of the reduction behavior of mixed oxides, as well as an understanding of the effects of minor alloying elements in this, is important as a guide to extending the usefulness of oxide ceramics, and may serve to help in selecting raw materials that contain elements beneficial in improving resistance to reduction. In this paper, how the hydrogen reduction of nickel ferrites at 1000/sup 0/C is affected by the presence of 3.5 cation mole % aluminum in solid solution is studied.

  17. Study of Ce-Cu mixed oxide catalysts by in situ electrical conductivity measurements.

    Science.gov (United States)

    Popescu, Ionel; Piumetti, Marco; Bensaid, Samir; Marcu, Ioan-Cezar

    2017-12-06

    Three Ce-Cu mixed oxides, namely Ce 0.95 Cu 0.05 , Ce 0.6 Cu 0.4 and Ce 0.15 Cu 0.85 , along with pure CeO 2 and CuO were characterized by in situ electrical conductivity measurements. Their electrical conductivity was studied as a function of temperature and oxygen partial pressure, and was followed with time during successive exposure to air, nitrogen and different gaseous mixtures containing propane as a VOC model molecule, under conditions close to those of their catalytic applications. CeO 2 and CuO appeared to be n-type and p-type semiconductors, respectively, while the semiconducting behavior of the Ce-Cu mixed oxides depended on the oxide composition. The semiconductive and redox properties of the samples were correlated with their catalytic behavior in CO oxidation, ethene total oxidation and soot combustion.

  18. Establishment of cooperation basis of joint research on the mixed waste molten salt oxidation technology

    International Nuclear Information System (INIS)

    Yang, Hee Chul; Cho, Y. J.; Kim, J. H.; Yoo, J. H.; Yun, H. C.; Lee, D. G.

    2005-08-01

    Molten salt oxidation, MSO for short, is a robust technology that can effectively treat mixed waste (radioactive waste including hazardous metals or organics). It can safely and economically treat the difficult wastes such as not-easily destroyable toxic organic waste, medical waste, chemical warfare and energetic materials such as propellant and explosives, all of which are not easily treated by an incinerator or other currently existing thermal treatment system. Therefore, molten salt oxidation technology should be developed and utilized to treat a lot of niche waste stored in the nuclear and environmental industries. So, if we put the MSO technology to practical use by Korea-Vietnam joint research, we can reduce R and D fund for MSO technology by ourselves and we can expect an export of the outcome of nuclear R and D in Korea. For Establishment of cooperation basis of joint research concerning molten salt oxidation technology between KOREA and VIETNAM, in this research, We invited two Vietnamese researchers and we introduced our experimental scale molten salt oxidation system in order to let them understand molten salt oxidation technology. We also visited Viet man and we consulted about molten salt oxidation process. We held seminar on the mixed waste molten salt oxidation technology, discussed on the joint research on the mixed waste molten salt oxidation technology and finally we wrote MOU for joint research

  19. Establishment of cooperation basis of joint research on the mixed waste molten salt oxidation technology

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hee Chul; Cho, Y. J.; Kim, J. H.; Yoo, J. H.; Yun, H. C.; Lee, D. G

    2005-08-01

    Molten salt oxidation, MSO for short, is a robust technology that can effectively treat mixed waste (radioactive waste including hazardous metals or organics). It can safely and economically treat the difficult wastes such as not-easily destroyable toxic organic waste, medical waste, chemical warfare and energetic materials such as propellant and explosives, all of which are not easily treated by an incinerator or other currently existing thermal treatment system. Therefore, molten salt oxidation technology should be developed and utilized to treat a lot of niche waste stored in the nuclear and environmental industries. So, if we put the MSO technology to practical use by Korea-Vietnam joint research, we can reduce R and D fund for MSO technology by ourselves and we can expect an export of the outcome of nuclear R and D in Korea. For Establishment of cooperation basis of joint research concerning molten salt oxidation technology between KOREA and VIETNAM, in this research, We invited two Vietnamese researchers and we introduced our experimental scale molten salt oxidation system in order to let them understand molten salt oxidation technology. We also visited Viet man and we consulted about molten salt oxidation process. We held seminar on the mixed waste molten salt oxidation technology, discussed on the joint research on the mixed waste molten salt oxidation technology and finally we wrote MOU for joint research.

  20. Application of Ni-Oxide@TiO₂ Core-Shell Structures to Photocatalytic Mixed Dye Degradation, CO Oxidation, and Supercapacitors.

    Science.gov (United States)

    Lee, Seungwon; Lee, Jisuk; Nam, Kyusuk; Shin, Weon Gyu; Sohn, Youngku

    2016-12-20

    Performing diverse application tests on synthesized metal oxides is critical for identifying suitable application areas based on the material performances. In the present study, Ni-oxide@TiO₂ core-shell materials were synthesized and applied to photocatalytic mixed dye (methyl orange + rhodamine + methylene blue) degradation under ultraviolet (UV) and visible lights, CO oxidation, and supercapacitors. Their physicochemical properties were examined by field-emission scanning electron microscopy, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, and UV-visible absorption spectroscopy. It was shown that their performances were highly dependent on the morphology, thermal treatment procedure, and TiO₂ overlayer coating.

  1. Homogeneous Cobalt/Vanadium Complexes as Precursors for Functionalized Mixed Oxides in Visible-Light-Driven Water Oxidation.

    Science.gov (United States)

    Pavliuk, Mariia V; Mijangos, Edgar; Makhankova, Valeriya G; Kokozay, Vladimir N; Pullen, Sonja; Liu, Jia; Zhu, Jiefang; Styring, Stenbjörn; Thapper, Anders

    2016-10-20

    The heterometallic complexes (NH 4 ) 2 [Co(H 2 O) 6 ] 2 [V 10 O 28 ]⋅4 H 2 O (1) and (NH 4 ) 2 [Co(H 2 O) 5 (β-HAla)] 2 [V 10 O 28 ]⋅4 H 2 O (2) have been synthesized and used for the preparation of mixed oxides as catalysts for water oxidation. Thermal decomposition of 1 and 2 at relatively low temperatures (oxides CoV 2 O 6 /V 2 O 5 (3) and Co 2 V 2 O 7 /V 2 O 5 (4). The complexes (1, 2) and heterogeneous materials (3, 4) act as catalysts for photoinduced water oxidation. A modification of the thermal decomposition procedure allowed the deposition of mixed metal oxides (MMO) on a mesoporous TiO 2 film. The electrodes containing Co/V MMOs in TiO 2 films were used for electrocatalytic water oxidation and showed good stability and sustained anodic currents of about 5 mA cm -2 at 1.72 V versus relative hydrogen electrode (RHE). This method of functionalizing TiO 2 films with MMOs at relatively low temperatures (oxides with different functionality for applications in, for example, artificial photosynthesis. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Study of the catalytic activity of mixed non-stoichiometric uranium-thorium oxides in carbon monoxide oxidation

    International Nuclear Information System (INIS)

    Brau, G.

    1969-06-01

    The aim of this work has been to study the catalytic properties of non-stoichiometric uranium-thorium oxides having the general formula U x Th 1-x O 2+y , for the oxidation of carbon monoxide. The preparation of pure, homogeneous, isotropic solids having good structural stability and a surface area as high as possible calls for a strict control of the conditions of preparation of these oxides right from the preparation of 'mother salts': the mixed oxalates U x Th 1-x (C 2 O 4 ) 2 , 2H 2 O. A study has been made of their physico-chemical properties (overall and surface chemical constitution, texture, structure, electrical conductivity), as well as of their adsorption properties with respect to gaseous species occurring in the catalytic reaction. This analysis has made it possible to put forward a reaction mechanism based on successive oxidations and reductions of the active surface by the reactants. A study of the reactions kinetics has confirmed the existence of this oxidation-reduction mechanism which only occurs for oxides having a uranium content of above 0.0014. The carbon dioxide produced by the reaction acts as an inhibitor by blocking the sites on which carbon monoxide can be adsorbed. These non-stoichiometric mixed oxides are a particularly clear example of catalysis by oxygen exchange between the solid and the gas phase. (author) [fr

  3. Biological behavior of mixed sodium and plutonium oxide aerosols

    International Nuclear Information System (INIS)

    Metivier, H.

    1976-01-01

    New risks from sodium cooled fast breeders are due to solubilization of plutonium dioxide by sodium oxides. The resulting chemical forms of higher valency stage are more transportable than PuO 2 . Bone burden is about 100 times as high as observed with PuO 2 . Diffusion is fast, therapy must be started within 6 h. DTPA is still effective, however chelation efficiency is lower than in the case of Pu IV-DTPA chelation [fr

  4. Thermal diffusivity and conductivity of thorium- uranium mixed oxides

    Science.gov (United States)

    Saoudi, M.; Staicu, D.; Mouris, J.; Bergeron, A.; Hamilton, H.; Naji, M.; Freis, D.; Cologna, M.

    2018-03-01

    Thorium-uranium oxide pellets with high densities were prepared at the Canadian Nuclear Laboratories (CNL) by co-milling, pressing, and sintering at 2023 K, with UO2 mass contents of 0, 1.5, 3, 8, 13, 30, 60 and 100%. At the Joint Research Centre, Karlsruhe (JRC-Karlsruhe), thorium-uranium oxide pellets were prepared using the spark plasma sintering (SPS) technique with 79 and 93 wt. % UO2. The thermal diffusivity of (Th1-xUx)O2 (0 ≤ x ≤ 1) was measured at CNL and at JRC-Karlsruhe using the laser flash technique. ThO2 and (Th,U)O2 with 1.5, 3, 8 and 13 wt. % UO2 were found to be semi-transparent to the infrared wavelength of the laser and were coated with graphite for the thermal diffusivity measurements. This semi-transparency decreased with the addition of UO2 and was lost at about 30 wt. % of UO2 in ThO2. The thermal conductivity was deduced using the measured density and literature data for the specific heat capacity. The thermal conductivity for ThO2 is significantly higher than for UO2. The thermal conductivity of (Th,U)O2 decreases rapidly with increasing UO2 content, and for UO2 contents of 60% and higher, the conductivity of the thorium-uranium oxide fuel is close to UO2. As the mass difference between the Th and U atoms is small, the thermal conductivity decrease is attributed to the phonon scattering enhanced by lattice strain due to the introduction of uranium in ThO2 lattice. The new results were compared to the data available in the literature and were evaluated using the classical phonon transport model for oxide systems.

  5. Evolution of Defect Structures and Deep Subgap States during Annealing of Amorphous In-Ga-Zn Oxide for Thin-Film Transistors

    Science.gov (United States)

    Jia, Junjun; Suko, Ayaka; Shigesato, Yuzo; Okajima, Toshihiro; Inoue, Keiko; Hosomi, Hiroyuki

    2018-01-01

    We investigate the evolution behavior of defect structures and the subgap states in In-Ga-Zn oxide (IGZO) films with increasing postannealing temperature by means of extended x-ray absorption fine-structure (EXAFS) measurements, positron annihilation lifetime spectroscopy (PALS), and cathodoluminescence (CL) spectroscopy, aiming to understand the relationship between defect structures and subgap states. EXAFS measurements reveal the varied oxygen coordination numbers around cations during postannealing and confirm two types of point defects, namely, excess oxygen around Ga atoms and oxygen deficiency around In and/or Zn atoms. PALS suggests the existence of cation-vacancy (VM )-related clusters with neutral or negative charge in both amorphous and polycrystalline IGZO films. CL spectra show a main emission band at approximately 1.85 eV for IGZO films, and a distinct shoulder located at about 2.15 eV for IGZO films postannealed above 600 °C . These two emission bands are assigned to a recombination between the electrons in the conduction band and/or in the shallow donor levels near the conduction band and the acceptors trapped above the valence-band maximum. The shallow donors are attributed to the oxygen deficiency, and the acceptors are thought to possibly arise from the excess oxygen or the VM-related clusters. These results open up an alternative route for understanding the device instability of amorphous IGZO-based thin-film transistors, especially the presence of the neutral or negatively charged VM-related clusters in amorphous IGZO films.

  6. Solvent-Free Selective Oxidation of Toluene with O2 Catalyzed by Metal Cation Modified LDHs and Mixed Oxides

    Directory of Open Access Journals (Sweden)

    Xiaoli Wang

    2016-01-01

    Full Text Available A series of metal cation modified layered-double hydroxides (LDHs and mixed oxides were prepared and used to be the selective oxidation of toluene with O2. The results revealed that the modified LDHs exhibited much higher catalytic performance than their parent LDH and the modified mixed oxides. Moreover, the metal cations were also found to play important roles in the catalytic performance and stabilities of modified catalysts. Under the optimal reaction conditions, the highest toluene conversion reached 8.7% with 97.5% of the selectivity to benzyldehyde; moreover, the catalytic performance remained after nine catalytic runs. In addition, the reaction probably involved a free-radical mechanism.

  7. Thermal performance of fresh mixed-oxide fuel in a fast flux LMR [liquid metal reactor

    International Nuclear Information System (INIS)

    Ethridge, J.L.; Baker, R.B.

    1985-01-01

    A test was designed and irradiated to provide power-to-melt (heat generation rate necessary to initiate centerline fuel melting) data for fresh mixed-oxide UO 2 -PuO 2 fuel irradiated in a fast neutron flux under prototypic liquid metal reactor (LMR) conditions. The fuel pin parameters were selected to envelope allowable fabrication ranges and address mass production of LMR fuel using sintered-to-size techniques. The test included fuel pins with variations in fabrication technique, pellet density, fuel-to-cladding gap, Pu concentration, and fuel oxygen-to-metal ratios. The resulting data base has reestablished the expected power-to-melt in mixed-oxide fuels during initial reactor startup when the fuel temperatures are expected to be the highest. Calibration of heat transfer models of fuel pin performance codes with these data are providing more accurate capability for predicting steady-state thermal behavior of current and future mixed-oxide LMR fuels

  8. High temperature oxidation behaviour of nanostructured cermet coatings in a mixed CO2 - O2 environment

    Science.gov (United States)

    Farrokhzad, M. A.; Khan, T. I.

    2014-06-01

    Nanostructured ceramic-metallic (cermet) coatings composed of nanosized ceramic particles (α-Al2O3 and TiO2) dispersed in a nickel matrix were co-electrodeposited and then oxidized at 500°C, 600°C and 700°C in a mixed gas using a Thermo-gravimetric Analysis (TGA) apparatus. The mixed gas was composed of 15% CO2, 10% O2 and 75% N2. This research investigates the effects of CO2 and O2 partial pressures on time-depended oxidation rates for coatings and compared them to the results from atmospheric oxidation under similar temperatures. The increase in partial pressure of oxygen due to the presence of CO2 at each tested temperature was calculated and correlated to the oxidation rate of the coatings. The results showed that the presence of CO2 in the system increased the oxidation rate of cermet coatings when compared to atmospheric oxidation at the same temperature. It was also shown that the increase in the oxidation rate is not the result of CO2 acting as the primary oxidant but as a secondary oxidant which results in an increase of the total partial pressure of oxygen and consequently higher oxidation rates. The WDS and XRD analyses results showed that the presence of nanosized TiO2 particles in a nickel matrix can improve oxidation behaviour of the coatings by formation of Ni-Ti compounds on oxidizing surface of the coating which was found beneficiary in reducing the oxidation rates for cermet coatings.

  9. Ni–Ta–O mixed oxide catalysts for the low temperature oxidative dehydrogenation of ethane to ethylene

    KAUST Repository

    Zhu, Haibo

    2015-09-01

    The "wet" sol-gel and "dry" solid-state methods were used to prepare Ni-Ta-O mixed oxide catalysts. The resulting Ni-Ta oxides exhibit high activity and selectivity for the low temperature oxidative dehydrogenation of ethane to ethylene. The Ta/(Ni + Ta) atomic ratios (varying from 0 to 0.11 in "wet" sol-gel method, and from 0 to 0.20 in "dry" solid-state method) as well as the preparation methods used in the synthesis, play important roles in controlling catalyst structure, activity, selectivity and stability in the oxidative dehydrogenation of ethane. Electron microscopy characterizations (TEM, EELS mapping, and HAADF-STEM) clearly demonstrate that the Ta atoms are inserted into NiO crystal lattice, resulting in the formation of a new Ni-Ta oxide solid solution. More Ta atoms are found to be located at the lattice sites of crystal surface in sol-gel catalyst. While, a small amount of thin layer of Ta2O5 clusters are detected in solid-state catalyst. Further characterization by XRD, N2 adsorption, SEM, H2-TPR, XPS, and Raman techniques reveal different properties of these two Ni-Ta oxides. Due to the different properties of the Ni-Ta oxide catalysts prepared by two distinct approaches, they exhibit different catalytic behaviors in the ethane oxidative dehydrogenation reaction at low temperature. Thus, the catalytic performance of Ni-Ta-O mixed oxide catalysts can be systematically modified and tuned by selecting a suitable synthesis method, and then varying the Ta content. ©2015 Elsevier Inc. All rights reserved.

  10. Anodic ammonia oxidation to nitrogen gas catalyzed by mixed biofilms in bioelectrochemical systems

    International Nuclear Information System (INIS)

    Zhan, Guoqiang; Zhang, Lixia; Tao, Yong; Wang, Yujian; Zhu, Xiaoyu; Li, Daping

    2014-01-01

    In this paper we report ammonia oxidation to nitrogen gas using microbes as biocatalyst on the anode, with polarized electrode (+600 mV vs. Ag/AgCl) as electron acceptor. In batch experiments, the maximal rate of ammonia-N oxidation by the mixed culture was ∼ 60 mg L −1 d −1 , and nitrogen gas was the main products in anode compartment. Cyclic voltammetry for testing the electroactivity of the anodic biofilms revealed that an oxidation peak appeared at +600 mV (vs. Ag/AgCl), whereas the electrode without biofilms didn’t appear oxidation peak, indicating that the bioanode had good electroactivities for ammonia oxidation. Microbial community analysis of 16S rRNA genes based on high throughput sequencing indicated that the combination of the dominant genera of Nitrosomonas, Comamonas and Paracocus could be important for the electron transfer from ammonia oxidation to anode

  11. Amorphous silicon solar cells. Comparison of p-i-n and n-i-p structures with zinc-oxide front contact

    International Nuclear Information System (INIS)

    Wieder, S.

    1999-12-01

    This work compares amorphous silicon solar cells in the p-i-n and n-i-p structure. In both cell structures, sputtered zinc-oxide (ZnO) films were established as front contact. We developed smooth TCO films with high conductivity and high transparency. The required surface texture is achieved by a post deposition wet chemical etching step in diluted HCl. In both cell structures, a contact barrier emerges at the amorphous-p/ZnO interface. In both cases, the negative effects of the barrier on the electrical properties of the solar cell are avoided by the application of highly conductive, microcrystalline p-layers (μc-p), which were developed with the RF as well as the VHF deposition technique. We were able to clearly show that the optimum p-layer structure for a-Si:H solar cells with ZnO front contact is an amorphous/microcrystalline double-layer: The thin μc-p-layer provides a low-ohmic ZnO/p-contact, while an amorphous phase is essential in order to build up a high open-circuit voltage (V OC ). The optical optimization led to high quantum efficiencies in both cell types and showed an advantage of the n-i-p structure in the laboratory caused by the possible antireflection design of the front contact in this structure. We confirmed literature reports asserting a drop in the V oc of p-i-n cells when using elevated substrate temperatures during deposition of the i-layer material, while the decrease in V oc for the n-i-p cells simply correlates with the decrease of the band gap of the absorber material. The implementation of the developed materials led to a highly efficient a-Si:H/a-Si:H tandem cell in the p-i-n structure on sputtered ZnO with 9.2% stable efficiency after 900 h of light soaking. The transfer of the achieved results to module production is performed in an joint venture between research and industry. (orig.)

  12. Demonstration of a Mixed Oxide Process for Control of Corrosion and Microbiological Growth in Cooling Towers

    Science.gov (United States)

    2009-08-01

    placing a bed of quartz rocks in the bottom of the brine tank, where the salt precipitate can settle and dissolve into solution over time. The subse...developing the brine may negatively impact system performance. If food-grade table salt is used, it must be mixed in a brine tank containing a settling bed...oxidant solution is not a desalinization device for making fresh water from salt water, but instead uses salt water in making the on- site oxidant

  13. Magnetic behavior of Mg-Al-Zn-Fe mixed oxides from precursors layered double hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, M.I., E-mail: marcosivanoliva@gmail.com [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, M. Allende y H. de la Torre Ciudad Universitaria, 5000 Cordoba (Argentina); IFFAM AF (CONICET - FaMAF UNC), M. Allende y H. de la Torre Ciudad Universitaria, 5000 Cordoba (Argentina); Heredia, A. [CITeQ - Facultad R. Cordoba, Universidad Tecnologica Nacional Maestro Lopez esq. Cruz Roja Argentina, CP 5016 Cordoba (Argentina); Zandalazini, C.I. [Centro Laser de Ciencias Moleculares. INFIQC-FCQ-Grupo de Ciencia de Materiales-FaMAF-Universidad Nacional de Cordoba, Ciudad Universitaria, CP5000 Cordoba, Argentina CONICET (Argentina); Crivello, M. [CITeQ - Facultad R. Cordoba, Universidad Tecnologica Nacional Maestro Lopez esq. Cruz Roja Argentina, CP 5016 Cordoba (Argentina); Corchero, E. [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, M. Allende y H. de la Torre Ciudad Universitaria, 5000 Cordoba (Argentina)

    2012-08-15

    Mixed oxides of Mg-Al-Zn-Fe were obtained by calcination of layered double hydroxides (LDH) prepared by coprecipitation reaction with hydrothermal treatment. The structural characterization of precursors and oxides was carried out by X rays diffraction, showing increases of ZnO phase with the increase of the zinc content. Magnetic behavior was studied by vibrating sample magnetometer (VSM) and by a superconducting quantum interference device (SQUID) showing both paramagnetic and super paramagnetic behavior depending on both particles size and composition.

  14. Alkali Metals as Promoters in Co-Mn-Al Mixed Oxide for N2O Decomposition

    Czech Academy of Sciences Publication Activity Database

    Obalová, L.; Karásková, K.; Wach, A.; Kustrowski, P.; Mamulová-Kutláková, K.; Michalik, S.; Jirátová, Květa

    462-463, JUL 10 (2013), s. 227-235 ISSN 0166-9834 R&D Projects: GA TA ČR TA01020336 Grant - others:MŠMT(CZ) CZ.1.05/2.1.00/03/0100; MŠMT(CZ) CZ.1.07/2.3.00/20.0074 Institutional support: RVO:67985858 Keywords : layered double hydroxides * hydrothermal reaction * mixed oxides * supported catalysts * ethanol total oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  15. Decommissioning of a mixed oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Buck, S.; Colquhoun, A.

    1990-01-01

    Decommissioning of the coprecipitation plant, which made plutonium/uranium oxide fuel, is a lead project in the BNFL Sellafield decommissioning programme. The overall programme has the objectives of gaining data and experience in a wide range of decommissioning operations and hence in this specific project to pilot the decommissioning of plant heavily contaminated with plutonium and other actinides. Consequently the operations have been used to test improvements in temporary containment, contamination control and decontamination methods and also to develop in situ plutonium assay, plutonium recovery and size-reduction methods. Finally the project is also yielding data on manpower requirements, personnel radiation uptake and waste arisings to help in the planning of future decommissioning projects

  16. Uniform surface modification of diatomaceous earth with amorphous manganese oxide and its adsorption characteristics for lead ions

    International Nuclear Information System (INIS)

    Li, Song; Li, Duanyang; Su, Fei; Ren, Yuping; Qin, Gaowu

    2014-01-01

    Graphical abstract: - Highlights: • A uniform MnO 2 layer was anchored onto diatomite surface. • Kinetics and isotherms over MnO 2 modified diatomite were studied. • The Pb(II) adsorption is based on ion-exchange mechanism. - Abstract: A novel method to produce composite sorbent material compromising porous diatomaceous earth (DE) and surface functionalized amorphous MnO 2 is reported. Via a simple in situ redox reaction over the carbonized DE powders, a uniform layer of amorphous MnO 2 was anchored onto the DE surface. The hybrid adsorbent was characterized by X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. The batch method has been employed to investigate the effects of surface coating on adsorption performance of DE. According to the equilibrium studies, the adsorption capacity of DE for adsorbing lead ions after MnO 2 modification increased more than six times. And the adsorption of Pb 2+ on the MnO 2 surface is based on ion-exchange mechanism. The developed strategy presents a novel opportunity to prepare composite adsorbent materials by integrating nanocrystals with porous matrix

  17. Uniform surface modification of diatomaceous earth with amorphous manganese oxide and its adsorption characteristics for lead ions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Song; Li, Duanyang; Su, Fei; Ren, Yuping; Qin, Gaowu, E-mail: lis@atm.neu.edu.cn

    2014-10-30

    Graphical abstract: - Highlights: • A uniform MnO{sub 2} layer was anchored onto diatomite surface. • Kinetics and isotherms over MnO{sub 2} modified diatomite were studied. • The Pb(II) adsorption is based on ion-exchange mechanism. - Abstract: A novel method to produce composite sorbent material compromising porous diatomaceous earth (DE) and surface functionalized amorphous MnO{sub 2} is reported. Via a simple in situ redox reaction over the carbonized DE powders, a uniform layer of amorphous MnO{sub 2} was anchored onto the DE surface. The hybrid adsorbent was characterized by X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. The batch method has been employed to investigate the effects of surface coating on adsorption performance of DE. According to the equilibrium studies, the adsorption capacity of DE for adsorbing lead ions after MnO{sub 2} modification increased more than six times. And the adsorption of Pb{sup 2+} on the MnO{sub 2} surface is based on ion-exchange mechanism. The developed strategy presents a novel opportunity to prepare composite adsorbent materials by integrating nanocrystals with porous matrix.

  18. Effects of low-temperature (120 °C) annealing on the carrier concentration and trap density in amorphous indium gallium zinc oxide thin film transistors

    Science.gov (United States)

    Kim, Jae-sung; Oh, Byung Su; Piao, Mingxing; Joo, Min-Kyu; Jang, Ho-Kyun; Ahn, Seung-Eon; Kim, Gyu-Tae

    2014-12-01

    We report an investigation of the effects of low-temperature annealing on the electrical properties of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). X-ray photoelectron spectroscopy was used to characterize the charge carrier concentration, which is related to the density of oxygen vacancies. The field-effect mobility was found to decrease as a function of the charge carrier concentration, owing to the presence of band-tail states. By employing the transmission line method, we show that the contact resistance did not significantly contribute to the changes in device performance after annealing. In addition, using low-frequency noise analyses, we found that the trap density decreased by a factor of 10 following annealing at 120 °C. The switching operation and on/off ratio of the a-IGZO TFTs improved considerably after low-temperature annealing.

  19. Synthesis of coral-like tantalum oxide films via anodization in mixed organic-inorganic electrolytes.

    Directory of Open Access Journals (Sweden)

    Hongbin Yu

    Full Text Available We report a simple method to fabricate nano-porous tantalum oxide films via anodization with Ta foils as the anode at room temperature. A mixture of ethylene glycol, phosphoric acid, NH4F and H2O was used as the electrolyte where the nano-porous tantalum oxide could be synthesized by anodizing a tantalum foil for 1 h at 20 V in a two-electrode configuration. The as-prepared porous film exhibited a continuous, uniform and coral-like morphology. The diameters of pores ranged from 30 nm to 50 nm. The pores interlaced each other and the depth was about 150 nm. After calcination, the as-synthesized amorphous tantalum oxide could be crystallized to the orthorhombic crystal system. As observed in photocatalytic experiments, the coral-like tantalum oxide exhibited a higher photocatalytic activity for the degradation of phenol than that with a compact surface morphology, and the elimination rate of phenol increased by 66.7%.

  20. Redox kinetics of ceria-based mixed oxides in selective hydrogen combustion.

    Science.gov (United States)

    Blank, Jan Hendrik; Beckers, Jurriaan; Collignon, Paul F; Rothenberg, Gadi

    2007-12-03

    Ceria-based mixed oxides, in which about 10 mol % of the cerium is replaced by another metal, catalyze the selective combustion of hydrogen from a mixture of hydrogen, propane, and propene at 550 degrees C. This makes them attractive catalysts for the oxidative dehydrogenation of propane. Hydrogen combustion shifts the equilibrium to the products side, supplies energy for the endothermic dehydrogenation, and simplifies product separation. The type of metal added has an important effect on the catalytic properties. To gain insight into the process, a set consisting of six mixed oxides was synthesized and the catalytic properties and redox behavior were tested. The mixed oxides generally release more oxygen than plain ceria. Mixed oxides containing Bi, Cu, Fe, Pd or Ca release between 1.6 and 2.0 mg of oxygen per 100 mg sample (compared to only 1.2 mg for plain ceria). This result is important for reactions in which the catalyst acts as an oxygen reservoir, such as selective hydrogen combustion. The temperature at which oxygen is released is generally lower for the mixed oxides, and varies from 110 degrees C (for Cu-CeO2) to 550 degrees C (for Ca-CeO2), which enables catalytic applications over a wide temperature range. The reduction rate at 550 degrees C is related to the reduction onset of the catalysts. Those catalysts with a relatively low reduction temperature, such as Cu-, Mn-, Bi-, and Pb-CeO2, show a high reduction rate, whereas those with a high reduction temperature, such as Ca-CeO2, Fe-CeO2, and plain ceria, reduce at a slower rate. The latter catalysts also have a low selectivity towards hydrogen combustion. The influence of the catalyst composition and crystallite size on the activity and selectivity is discussed.

  1. Highly durable inverted-type organic solar cell using amorphous titanium oxide as electron collection electrode inserted between ITO and organic layer

    Energy Technology Data Exchange (ETDEWEB)

    Kuwabara, Takayuki; Yamaguchi, Takahiro; Takahashi, Kohshin [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Nakayama, Taketoshi; Uozumi, Konosuke [Research Material-Design Laboratory, Komatsu Seiren Co., Ltd., 2-5-2 Asahidai, Nomi, Ishikawa 923-1211 (Japan)

    2008-11-15

    An indium tin oxide/titanium oxide/[6,6]-phenyl C{sub 61} butyric acid methyl ester:regioregular poly(3-hexylthiophene)/poly(3,4-ethylenedioxylenethiophene):poly(4-styrene sulfonic acid)/Au type organic solar cell (ITO/TiO{sub x}/PCBM:P3HT/PEDOT:PSS/Au) with 1 cm{sup 2} active area, which is called ''inverted-type solar cell'', was developed using an ITO/amorphous titanium oxide (TiO{sub x}) electrode prepared by a sol-gel technique instead of a low functional electrode such as Al. The power conversion efficiency ({eta}) of 2.47% was obtained by irradiating AM 1.5G-100 mW cm{sup -2} simulated sunlight. We found that a photoconduction of TiO{sub x} by irradiating UV light containing slightly in the simulated sunlight was required to drive this solar cell. The device durability in an ambient atmosphere was maintained for more than 20 h under continuous light irradiation. Further, when the air-stable device was covered by a glass plate with a water getter sheet which was coated by an epoxy-UV resin as sealing material, the durability was still higher and over 96% of relative efficiency was observed even after continuous light irradiation for 120 h. (author)

  2. Influence of vanadium oxidation states on the performance of V-Mg-Al mixed-oxide catalysts for the oxidative dehydrogenation of propane

    Energy Technology Data Exchange (ETDEWEB)

    Schacht, L. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Ciencia de Materiales, Av. IPN s/n, Edificio 9, Col. Lindavista, 07738 Mexico D. F. (Mexico); Navarrete, J.; Schacht, P.; Ramirez, M. A., E-mail: pschacha@imp.m [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas No. 152, 07730 Mexico D. F. (Mexico)

    2010-07-01

    V-Mg-Al mixed-oxide catalysts for oxidative dehydrogenation of propane were prepared by thermal decomposition of Mg-Al-layered double hydroxides with vanadium interlayer doping. The obtained catalysts were tested for the oxidative dehydrogenation of propane, obtaining good results in catalytic activity (conversion 16.55 % and selectivity 99.97 %) Results indicated that catalytic performance of these materials depends on how vanadium is integrated in the layered structure, which is determined by the Mg/Al ratio. Vanadium interlayer doping modifies the oxidation state of vanadium and consequently catalytic properties. Surface properties were studied by X-ray photoelectron spectroscopic and diffuse reflectance, UV-visible spectroscopy, and temperature programmed reduction. The analyses provided information about the oxidation state, before and after the reaction. From these results, it is suggested that selectivity to propylene and catalytic activity depend mainly of vanadium oxidation state. (Author)

  3. Reverse micelles directed synthesis of TiO{sub 2}-CeO{sub 2} mixed oxides and investigation of their crystal structure and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Matejova, Lenka, E-mail: matejova@icpf.cas.cz [Institute of Chemical Process Fundamentals of the ASCR, v. v. i., Department of Catalysis and Reaction Engineering, Rozvojova 135, 165 02 Prague 6 (Czech Republic); Vales, Vaclav [Charles University in Prague, Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Fajgar, Radek [Institute of Chemical Process Fundamentals of the ASCR, v. v. i., Department of Aerosols and Laser Studies, Rozvojova 135, 165 02 Prague 6 (Czech Republic); Matej, Zdenek; Holy, Vaclav [Charles University in Prague, Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Solcova, Olga [Institute of Chemical Process Fundamentals of the ASCR, v. v. i., Department of Catalysis and Reaction Engineering, Rozvojova 135, 165 02 Prague 6 (Czech Republic)

    2013-02-15

    The synthesis of TiO{sub 2}-CeO{sub 2} mixed oxides based on the sol-gel process controlled within reverse micelles of non-ionic surfactant Triton X-114 in cyclohexane is reported. The crystallization, phase composition, trends in nanoparticles growth and porous structure properties are studied as a function of Ti:Ce molar composition and annealing temperature by in-situ X-ray diffraction, Raman spectroscopy and physisorption. The brannerite-type CeTi{sub 2}O{sub 6} crystallizes as a single crystalline phase at Ti:Ce molar composition of 70:30 and in the mixture with cubic CeO{sub 2} and anatase TiO{sub 2} for composition 50:50. At Ti:Ce molar ratios 90:10 and 30:70 the mixtures of TiO{sub 2} anatase, rutile and cubic CeO{sub 2} appear. In these mixtures TiO{sub 2} rutile is formed at higher temperatures than conventionally. Additionally, the amount of a present amorphous phase in individual mixtures was estimated from diffraction data. The porous structure morphology depends both on molar composition and annealing temperature. This is correlated with the presence of carbon impurities of different character. - Graphical abstract: The phase composition of Ti90--Ce10 and Ti50--Ce50 oxide mixtures as a function of annealing temperature. The amount of the amorphous phase was estimated and attributed to TiO{sub 2}. Highlights: Black-Right-Pointing-Pointer Ti/Ce oxides were prepared using reverse micelles of Triton X-114. Black-Right-Pointing-Pointer Crystallization of TiO{sub 2}, CeO{sub 2} or CeTi{sub 2}O{sub 6} depends on Ti:Ce molar ratio. Black-Right-Pointing-Pointer Amorphous phase attributed to TiO{sub 2} was identified. Black-Right-Pointing-Pointer Metal oxides surface area is influenced by the character of present carbon impurities.

  4. Dynamics and Thermochemistry of Oxygen Uptake by a Mixed Ce-Pr Oxide

    Science.gov (United States)

    Sinev, M. Yu.; Fattakhova, Z. T.; Bychkov, V. Yu.; Lomonosov, V. I.; Gordienko, Yu. A.

    2018-03-01

    The dynamics of oxygen uptake by mixed Ce0.55Pr0.45O2-x oxide is studied in a pulsed oxygen supply mode using in situ high-temperature heat flow differential scanning calorimetry. It is stated that the oxidation proceeds in two regimes: a fast one at the beginning of the oxidation process, and a slow one, which is controlled by the diffusion of oxygen through the bulk of the solid at the later stages of the process. Analysis of the shape of calorimetric profiles reveals some processes, accompanied by heat release, that occur in the sample in the absence of oxygen in the gas phase. These could be due to both the redistribution of consumed oxygen in the oxide lattice and the lattice relaxation associated with the transformation of phases with different arrangements of oxygen vacancies in them. The heat effect (which diminishes from 60 to 40 kJ/mol in the course of oxygen uptake) associated with the oxidation of the reduced form of mixed Ce-Pr oxide, corresponds to the oxidation of praseodymium ions from (3+) to (4+).

  5. Fabrication of iron-cerium mixed oxide: an efficient photocatalyst for ...

    African Journals Online (AJOL)

    We report herein the fabrication of nanostructured and mesoporous iron-cerium mixed oxides for photocatalytic application. Phase, electronic structure and other properties of the products were characterized by both low-angle and wide-angle X-ray diffraction, diffuse reflectance spectroscopy, transmission electron ...

  6. Fission gas behavior in mixed-oxide fuel during transient overpower

    International Nuclear Information System (INIS)

    Randklev, E.H.; Treibs, H.A.; Mastel, B.; Baldwin, D.L.

    1979-01-01

    Fission gas behavior can be important in determining fuel pin and core performance during a reactor transient. The results are presented of examinations characterizing the changes in microstructural distribution and retention of fission gas in fuel for a series of transient overpower (50 cents/s) tested mixed-oxide fuel pins and their steady state siblings

  7. A study of oxygen transport in mixed conducting oxides using isotopic exchange and conductivity relaxation

    NARCIS (Netherlands)

    den Otter, M.W.

    2000-01-01

    Mixed conducting oxygen ion conductors can be applied as membranes for the separation of oxygen from air, as electrodes for both oxygen pumps and solid oxide fuel cells. In these applications, oxygen molecules dissociate on the surface of the material. The atomic oxygen species pick up two electrons

  8. Sol-gel/hydrothermal synthesis of mixed metal oxide of Titanium and ...

    African Journals Online (AJOL)

    Mixed metal oxides of titanium and zinc nanocomposites were prepared through sol-gel method under hydrothermal condition using titanium oxy-(1, 2 - pentadione) and zinc acetate without hazardous additives. The resulting composites were characterized by X-Ray Diffractometer (XRD), Scanning Electron Microscope ...

  9. Supported Layered Double Hydroxide-Related Mixed Oxides and Their Application in the Total Oxidation of Volatile Organic Compounds

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Jirátová, Květa

    2011-01-01

    Roč. 53, č. 2 (2011), s. 305-316 ISSN 0169-1317 R&D Projects: GA ČR GAP106/10/1762; GA ČR GA106/09/1664 Institutional research plan: CEZ:AV0Z40720504 Keywords : layered double hydroxides * hydrothermal reaction * mixed oxides Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.474, year: 2011

  10. Storage capacity and oxygen mobility in mixed oxides from transition metals promoted by cerium

    International Nuclear Information System (INIS)

    Perdomo, Camilo; Pérez, Alejandro; Molina, Rafael; Moreno, Sonia

    2016-01-01

    Highlights: • Ce addition to the catalysts improves the availability of oxygen in the materials. • Mixed oxide with Co and Cu exhibits the best oxygen transport properties. • Co presence improves O 2 mobility in the catalysts. • The presence of Cu in the solids improves redox properties. - Abstract: The oxygen mobility and storage capacity of Ce-Co/Cu-MgAl or Ce–MgAl mixed oxides, obtained by hydrotalcite precursors, were evaluated using Toluene-temperature-programmed-reaction, 18 O 2 isotopic exchange and O 2 -H 2 titration. The presence of oxygen vacancies-related species was evaluated by means of Electron Paramagnetic Resonance. A correlation was found between the studied properties and the catalytic activity of the oxides in total oxidation processes. It was evidenced that catalytic activity depends on two related processes: the facility with which the solid can be reduced and its ability to regenerate itself in the presence of molecular oxygen in the gas phase. These processes are enhanced by Cu-Co cooperative effect in the mixed oxides. Additionally, the incorporation of Ce in the Co-Cu catalysts improved their oxygen transport properties.

  11. Effect of cooling rate on achieving thermodynamic equilibrium in uranium-plutonium mixed oxides

    Science.gov (United States)

    Vauchy, Romain; Belin, Renaud C.; Robisson, Anne-Charlotte; Hodaj, Fiqiri

    2016-02-01

    In situ X-ray diffraction was used to study the structural changes occurring in uranium-plutonium mixed oxides U1-yPuyO2-x with y = 0.15; 0.28 and 0.45 during cooling from 1773 K to room-temperature under He + 5% H2 atmosphere. We compare the fastest and slowest cooling rates allowed by our apparatus i.e. 2 K s-1 and 0.005 K s-1, respectively. The promptly cooled samples evidenced a phase separation whereas samples cooled slowly did not due to their complete oxidation in contact with the atmosphere during cooling. Besides the composition of the annealing gas mixture, the cooling rate plays a major role on the control of the Oxygen/Metal ratio (O/M) and then on the crystallographic properties of the U1-yPuyO2-x uranium-plutonium mixed oxides.

  12. Fabrication of uranium–americium mixed oxide pellet from microsphere precursors: Application of CRMP process

    Energy Technology Data Exchange (ETDEWEB)

    Remy, E. [Radiochemistry and Processes Department, CEA, Nuclear Energy Division, F-30207 Bagnols-sur-Cèze (France); Picart, S., E-mail: sebastien.picart@cea.fr [Radiochemistry and Processes Department, CEA, Nuclear Energy Division, F-30207 Bagnols-sur-Cèze (France); Delahaye, T. [Fuel Cycle Technology Department, CEA, Nuclear Energy Division, F-30207 Bagnols-sur-Cèze (France); Jobelin, I. [Radiochemistry and Processes Department, CEA, Nuclear Energy Division, F-30207 Bagnols-sur-Cèze (France); Lebreton, F.; Horlait, D. [Fuel Cycle Technology Department, CEA, Nuclear Energy Division, F-30207 Bagnols-sur-Cèze (France); Bisel, I. [Radiochemistry and Processes Department, CEA, Nuclear Energy Division, F-30207 Bagnols-sur-Cèze (France); Blanchart, P. [Heterogeneous Materials Research Group, Centre Européen de la Céramique, F-87068 Limoges (France); Ayral, A. [Institut Européen des Membranes, CNRS-ENSCM-UM2, CC47, University Montpellier 2, F-34095 Montpellier cedex 5 (France)

    2014-10-15

    Highlights: • Dust free process for (U,Am)O{sub 2} transmutation target fabrication. • Synthesis of U{sub 0.9}Am{sub 0.1}O{sub 2} mixed oxide microspheres from ion exchange resin. • Fabrication of dense U{sub 0.9}Am{sub 0.1}O{sub 2} pellet with 95% TD from mixed oxide microspheres. - Abstract: Mixed uranium–americium oxides are one of the materials envisaged for Americium Bearing Blankets dedicated to transmutation in fast neutron reactors. Recently, several processes have been developed in order to validate fabrication flowchart in terms of material specifications such as density and homogeneity but also to suggest simplifications for lowering industrial costs and hazards linked to dust generation of highly contaminating and irradiating compounds. This study deals with the application of an innovative route using mixed oxide microspheres obtained from metal loaded resin bead calcination, called Calcined Resin Microsphere Pelletization (CRMP). The synthesis of mixed oxide microsphere precursor of U{sub 0.9}Am{sub 0.1}O{sub 2±δ} is described as well as its characterisation. The use of this free-flowing precursor allows the pressing and sintering of one pellet of U{sub 0.9}Am{sub 0.1}O{sub 2±δ}. The ceramic obtained was characterised and results showed that its microstructure is dense and homogeneous and its density attains 95% of the theoretical density. This study validates the scientific feasibility of the CRMP process applied to the fabrication of uranium and americium-containing materials.

  13. Hierarchical Nanocomposite by the Integration of Reduced Graphene Oxide and Amorphous Carbon with Ultrafine MgO Nanocrystallites for Enhanced CO2Capture.

    Science.gov (United States)

    Li, Ping; Zeng, Hua Chun

    2017-11-07

    Exploring efficient and low-cost solid sorbents is essential for carbon capture and storage. Herein, a novel class of high-performance CO 2 adsorbent (rGO@MgO/C) is engineered based on the controllable integration of reduced graphene oxide (rGO), amorphous carbon, and MgO nanocrystallites. The optimized rGO@MgO/C nanocomposite exhibits remarkable CO 2 capture capacity (up to 31.5 wt % at 27 °C, 1 bar CO 2 , and 22.5 wt % under the simulated flue gas), fast sorption rate, and strong process durability. The enhanced capture capability of CO 2 is the best among all of the MgO-based sorbents reported so far. The high performance of rGO@MgO/C nanocomposite can be ascribed to the hierarchical architecture and special physicochemical features, including the sheet-on-sheet sandwich-like structure, ultrathin nanosheets with abundant nanopores, large surface area, and highly dispersed ultrafine MgO nanocrystallites (ca. 3 nm in size), together with the rGO sheets and in situ generated amorphous carbon that serve as a dual carbon support and protectant system with which to prevent MgO nanocrystallites from agglomeration. In addition, the CO 2 -uptake capacity at intermediate temperature (e.g., 350 °C) can be further improved threefold through alkali metal salt promotion treatment. This work provides a facile and effective strategy with which to engineer advanced graphene-based functional nanocomposites with rationally designed compositions and architectures for potential applications in the field of gas storage and separation.

  14. Selection of mixed conducting oxides for oxidative dehydrogenation of propane with pulse experiments

    NARCIS (Netherlands)

    Crapanzano, S.D.; Babych, Igor V.; Lefferts, Leonardus

    2010-01-01

    In this study, propane pulse experiments at 550 °C are used as a method to select suitable oxides for further operation of catalytic dense membrane reactor (CDMR) for oxidative dehydrogenation of propane. Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF), La2NiO4+δ (LN) and PrBaCo2O5+δ (PBC) powders were used as

  15. Polymeric Systems for Amorphous Δ9-Tetrahydrocannabinol Produced by a Hot-Melt Method. Part II: Effect of Oxidation Mechanisms and Chemical Interactions on Stability

    Science.gov (United States)

    MUNJAL, MANISH; ELSOHLY, MAHMOUD A.; REPKA, MICHAEL A.

    2010-01-01

    The objectives of the present research investigations were to (i) elucidate the mechanism for the oxidative degradation of Δ9-tetrahydrocannabinol (THC) in polymer matrix systems prepared by a hot-melt fabrication procedure, and (ii) study the potential for controlling these mechanisms to reduce the degradation of THC in solid dosage formulations. Various factors considered and applied included drug-excipient compatibility, use of antioxidants, cross-linking in polymeric matrices, microenvironment pH, and moisture effect. Instability of THC in polyethylene oxide (PEO)-vitamin E succinate (VES) patches was determined to be due to chemical interaction between the drug and the vitamin as well as with the atmospheric oxygen. Of the different classes and mechanisms of antioxidants studied, quenching of oxygen by reducing agents, namely, ascorbic acid was the most effective in stabilizing THC in PEO-VES matrices. Only 5.8% of the drug degraded in the ascorbic acid-containing patch as compared to the control (31.6%) after 2 months of storage at 40°C. This coupled with the cross-linking extent and adjustment of the pH microenvironment, which seemed to have an impact on the THC degradation, might be effectively utilized towards stabilization of the drug in these polymeric matrices and other pharmaceutical dosage forms. These studies are relevant to the development of a stable transmucosal matrix system for the therapeutic delivery of amorphous THC. PMID:16886199

  16. Homogeneous double-layer amorphous Si-doped indium oxide thin-film transistors for control of turn-on voltage

    Energy Technology Data Exchange (ETDEWEB)

    Kizu, Takio, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Tsukagoshi, Kazuhito, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044 (Japan); Aikawa, Shinya [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044 (Japan); Research Institute for Science and Technology, Kogakuin University, Hachioji, Tokyo 192-0015 (Japan); Nabatame, Toshihide [MANA Foundry and MANA Advanced Device Materials Group, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044 (Japan); Fujiwara, Akihiko [Department of Nanotechnology for Sustainable Energy, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Ito, Kazuhiro; Takahashi, Makoto [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2016-07-28

    We fabricated homogeneous double-layer amorphous Si-doped indium oxide (ISO) thin-film transistors (TFTs) with an insulating ISO cap layer on top of a semiconducting ISO bottom channel layer. The homogeneously stacked ISO TFT exhibited high mobility (19.6 cm{sup 2}/V s) and normally-off characteristics after annealing in air. It exhibited normally-off characteristics because the ISO insulator suppressed oxygen desorption, which suppressed the formation of oxygen vacancies (V{sub O}) in the semiconducting ISO. Furthermore, we investigated the recovery of the double-layer ISO TFT, after a large negative shift in turn-on voltage caused by hydrogen annealing, by treating it with annealing in ozone. The recovery in turn-on voltage indicates that the dense V{sub O} in the semiconducting ISO can be partially filled through the insulator ISO. Controlling molecule penetration in the homogeneous double layer is useful for adjusting the properties of TFTs in advanced oxide electronics.

  17. Large scale integration of flexible non-volatile, re-addressable memories using P(VDF-TrFE) and amorphous oxide transistors

    International Nuclear Information System (INIS)

    Gelinck, Gerwin H; Cobb, Brian; Van Breemen, Albert J J M; Myny, Kris

    2015-01-01

    Ferroelectric polymers and amorphous metal oxide semiconductors have emerged as important materials for re-programmable non-volatile memories and high-performance, flexible thin-film transistors, respectively. However, realizing sophisticated transistor memory arrays has proven to be a challenge, and demonstrating reliable writing to and reading from such a large scale memory has thus far not been demonstrated. Here, we report an integration of ferroelectric, P(VDF-TrFE), transistor memory arrays with thin-film circuitry that can address each individual memory element in that array. n-type indium gallium zinc oxide is used as the active channel material in both the memory and logic thin-film transistors. The maximum process temperature is 200 °C, allowing plastic films to be used as substrate material. The technology was scaled up to 150 mm wafer size, and offers good reproducibility, high device yield and low device variation. This forms the basis for successful demonstration of memory arrays, read and write circuitry, and the integration of these. (paper)

  18. Comparison of open cycles of uranium and mixed oxides of thorium-uranium using advanced reactors

    International Nuclear Information System (INIS)

    Gonçalves, Letícia C.; Maiorino, José R.

    2017-01-01

    A comparative study of the mass balance and production costs of uranium oxide fuels was carried out for an AP1000 reactor and thorium-uranium mixed oxide in a reactor proposal using thorium called AP-Th1000. Assuming the input mass values for a fuel load the average enrichment for both reactors as well as their feed mass was determined. With these parameters, the costs were calculated in each fuel preparation process, assuming the prices provided by the World Nuclear Association. The total fuel costs for the two reactors were quantitatively compared with 18-month open cycle. Considering enrichment of 20% for the open cycle of mixed U-Th oxide fuel, the total uranium consumption of this option was 50% higher and the cost due to the enrichment was 70% higher. The results show that the use of U-Th mixed oxide fuels can be advantageous considering sustainability issues. In this case other parameters and conditions should be investigated, especially those related to fuel recycling, spent fuel storage and reduction of the amount of transuranic radioactive waste

  19. Synthesis and characterization of brannerite wasteforms for the immobilization of mixed oxide fuel residues

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, D.J.; Stennett, M.C.; Hyatt, N.C. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD (United Kingdom)

    2016-07-01

    A possible method for the reduction of civil Pu stockpiles is the reuse of Pu in mixed oxide fuel (MOX). During MOX fuel production, residues unsuitable for further recycle will be produced. Due to their high actinide content MOX residues require immobilization within a robust host matrix. Although it is possible to immobilize actinides in vitreous wasteforms; ceramic phases, such as brannerite (UTi{sub 2}O{sub 6}), are attractive due to their high waste loading capacity and relative insolubility. A range of uranium brannerite, formulated Gd{sub x}U{sub 1-x}Ti{sub 2}O{sub 6}, were prepared using a mixed oxide route. Charge compensation of divalent and trivalent cations was expected to occur via the oxidation of U{sup 4+} to higher valence states (U{sup 5+} or U{sup 6+}). Gd{sup 3+} was added to act as a neutron absorber in the final Pu bearing wasteform. X-ray powder diffraction of synthesised specimens found that phase distribution was strongly affected by processing atmosphere (air or Ar). In all cases prototypical brannerite was formed accompanied by different secondary phases dependent on processing atmosphere. Microstructural analysis (SEM) of the sintered samples confirmed the results of the X-ray powder diffraction. The preliminary results presented here indicate that brannerite is a promising host matrix for mixed oxide fuel residues. (authors)

  20. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene.

    Science.gov (United States)

    Lu, Hanfeng; Kong, Xianxian; Huang, Haifeng; Zhou, Ying; Chen, Yinfei

    2015-06-01

    Cu-Mn, Cu-Mn-Ce, and Cu-Ce mixed-oxide catalysts were prepared by a citric acid sol-gel method and then characterized by XRD, BET, H2-TPR and XPS analyses. Their catalytic properties were investigated in the toluene combustion reaction. Results showed that the Cu-Mn-Ce ternary mixed-oxide catalyst with 1:2:4 mole ratios had the highest catalytic activity, and 99% toluene conversion was achieved at temperatures below 220°C. In the Cu-Mn-Ce catalyst, a portion of Cu and Mn species entered into the CeO2 fluorite lattice, which led to the formation of a ceria-based solid solution. Excess Cu and Mn oxides existed on the surface of the ceria-based solid solution. The coexistence of Cu-Mn mixed oxides and the ceria-based solid solution resulted in a better synergetic interaction than the Cu-Mn and Cu-Ce catalysts, which promoted catalyst reducibility, increased oxygen mobility, and enhanced the formation of abundant active oxygen species. Copyright © 2015. Published by Elsevier B.V.

  1. Soft chemical control of the crystal and magnetic structure of a layered mixed valent manganite oxide sulfide

    Directory of Open Access Journals (Sweden)

    Jack N. Blandy

    2015-04-01

    Full Text Available Oxidative deintercalation of copper ions from the sulfide layers of the layered mixed-valent manganite oxide sulfide Sr2MnO2Cu1.5S2 results in control of the copper-vacancy modulated superstructure and the ordered arrangement of magnetic moments carried by the manganese ions. This soft chemistry enables control of the structures and properties of these complex materials which complement mixed-valent perovskite and perovskite-related transition metal oxides.

  2. Reaction pathways for catalytic gas-phase oxidation of glycerol over mixed metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Suprun, W.; Glaeser, R.; Papp, H. [Leipzig Univ. (Germany). Inst. of Chemical Technology

    2011-07-01

    Glycerol as a main by-product from bio-diesel manufacture is a cheap raw material with large potential for chemical or biochemical transformations to value-added C3-chemicals. One possible way of glycerol utilization involves its catalytic oxidation to acrylic acid as an alternative to petrochemical routes. However, this catalytic conversion exhibits various problems such as harsh reaction conditions, severe catalyst coking and large amounts of undesired by-products. In this study, the reaction pathways for gas-phase conversion of glycerol over transition metal oxides (Mo, V und W) supported on TiO{sub 2} and SiO{sub 2} were investigated by two methods: (i) steady state experiments of glycerol oxidation and possible reactions intermediates, i.e., acrolein, 3-hydroxy propionaldehyde and acetaldehyde, and (ii) temperature-programmed surface reaction (TPSR) studies of glycerol conversion in the presence and in the absence of gas-phase oxygen. It is shown that the supported W-, V and Mo-oxides possess an ability to catalyze the oxidation of glycerol to acrylic acid. These investigations allowed us to gain a deeper insight into the reaction mechanism. Thus, based on the obtained results, three possible reactions pathways for the selective oxidation of glycerol to acrylic acid on the transition metal-containing catalysts are proposed. The major pathways in presence of molecular oxygen are a fast successive destructive oxidation of glycerol to CO{sub x} and the dehydration of glycerol to acrolein which is a rate-limiting step. (orig.)

  3. Mesoscopic Diffusion of Poly(ethylene oxide) in Pure and Mixed Solvents.

    Science.gov (United States)

    Zheng, Xiong; Anisimov, Mikhail A; Sengers, Jan V; He, Maogang

    2018-04-05

    We present results from an experimental dynamic light-scattering study of poly(ethylene oxide) (PEO) in both a pure solvent (water) and a mixed solvent (tert-butanol + water). The concentration dependence of the diffusive relaxation of the PEO molecules is found to be typical of polymers in a good solvent. However, the mesoscopic diffusive behavior of PEO in the mixed solvent is very different, indicating an initial collapse and subsequent reswelling of PEO caused by co-nonsolvency. Furthermore, in the solutions of PEO with very large molecular weights, we found additional hydrodynamic modes indicating the presence of PEO clusters and aggregates similar to those found by some other investigators.

  4. Detection of nitrogen dioxide using mixed tungsten oxide-based thick film semiconductor sensor.

    Science.gov (United States)

    Su, P-G; Ren-Jang, Wu; Fang-Pei, Nieh

    2003-03-10

    The thick film semiconductor sensor for NO(2) gas detection was fabricated by screen-printing method using a mixed WO(3)-based as sensing material. The sensing characteristics, such as response time, response linearity, sensitivity, working range, cross sensitivity, and long-term stability were further studied by using a WO(3)-based mixed with different metal oxides (SnO(2), TiO(2) and In(2)O(3)) and doped with noble metals (Au, Pd and Pt) as sensing materials was observed. The highest sensitivity for low concentrations (SnO(2)-Au as sensing material.

  5. Phase stability and oxygen transport properties of mixed ionic-electronic conducting oxides

    OpenAIRE

    Yoo, C.-Y.

    2012-01-01

    The application of mixed ionic-electronic conducting oxides as oxygen separation membrane for the production of oxygen offers significant advantages over conventional cryogenic distillation. Perovskite- and fluorite-type oxides are promising candidates for such application. The research described in this thesis is mainly focused on i) crystal chemistry and phase stability of either Zr- or Nb-substituted Ba0.5Sr0.5Co0.8Fe0.2O3-¿ (BSCF), and those of the parent perovskite phase, and ii) oxygen ...

  6. Thermochemical Properties of the Lattice Oxygen in W,Mn-Containing Mixed Oxide Catalysts for the Oxidative Coupling of Methane

    Science.gov (United States)

    Lomonosov, V. I.; Gordienko, Yu. A.; Sinev, M. Yu.; Rogov, V. A.; Sadykov, V. A.

    2018-03-01

    Mixed NaWMn/SiO2 oxide, samples containing individual components (Na, W, Mn) and their double combinations (Na-W, Na-Mn, W-Mn) supported on silica were studied by temperature programmed reduction (TPR) and desorption (TPD), and heat flow calorimetry during their reoxidation with molecular oxygen in pulse mode. The NaWMn/SiO2 mixed oxide was shown to contain two different types of reactive lattice oxygen. The weakly-bonded oxygen can be reversibly released from the oxide in a flow of inert gas in the temperature range of 575‒900°C, while the strongly-bonded oxygen can be removed during the reduction of the sample with hydrogen at 700-900°C. The measured thermal effect of oxygen consumption for these two oxygen forms are 185 and 350 kJ/mol, respectively. The amount of oxygen removed at reduction ( 443 μmol/g) considerably exceeded the amount desorbed in an inert gas flow ( 56 μmol/g). The obtained results suggest that the reversible oxygen desorption is due to the redox process in which manganese ions are involved, while during the temperature programmed reduction, mainly oxygen bonded with tungsten is removed.

  7. Oxidation kinetic analysis of a mixed uranium dicarbide and graphite compound

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, M., E-mail: mickael.marchand@cea.fr [Commissariat à l’Energie Atomique et aux énergies alternatives, CEA, CADARACHE, DEN, DEC, SPUA/Laboratoire des Combustibles Uranium, 13108 Saint Paul-lez-Durance Cedex (France); Fiquet, O., E-mail: olivier.fiquet@cea.fr [Commissariat à l’Energie Atomique et aux énergies alternatives, CEA, CADARACHE, DEN, DEC, SPUA/Laboratoire des Combustibles Uranium, 13108 Saint Paul-lez-Durance Cedex (France); Brothier, M. [Commissariat à l’Energie Atomique et aux énergies alternatives, CEA, CADARACHE, DEN, DEC, SPUA/Laboratoire des Combustibles Uranium, 13108 Saint Paul-lez-Durance Cedex (France)

    2013-06-15

    Highlights: ► Experimental study of uranium carbides and graphite powder oxidations. ► Single rate limiting step identification by extensive kinetic analysis. ► Pseudo-steady-state validation during chemical conversion. ► Combination of TGA, TDA, XRD and gas phase chromatography results. -- Abstract: The oxidation of a mixed uranium dicarbide and graphite powder has been investigated by simultaneous thermal gravimetric (TGA) and differential thermal (DTA) analyses coupled with gas phase chromatography. For isothermal oxidation conditions with temperatures below 330 °C, only the UC{sub 2} chemical phase is progressively oxidised into U{sub 3}O{sub 8} oxides. Parabolic weight gain curves as a function of oxidation over time were obtained. A detailed kinetic study is proposed to establish a pseudo-steady-state during the oxidation process. Using an experimental method based on the sudden temperature increases, a single rate-limiting step has been validated and then modelled by a 3D diffusion law. An apparent activation energy calculated from the Arrhenius representation has been evaluated at −35 kJ/mol, thus describing the diffusion of oxygen through the oxide layer.

  8. Sol-gel synthesis and characterization of mesoporous iron-titanium mixed oxide for catalytic application

    Energy Technology Data Exchange (ETDEWEB)

    Parida, K.M., E-mail: paridakulamani@yahoo.com [Colloids and Materials Chemistry Department, Institute of Minerals and Materials Technology, Bhubaneswar 751013, Orissa (India); Pradhan, Gajendra Kumar [Colloids and Materials Chemistry Department, Institute of Minerals and Materials Technology, Bhubaneswar 751013, Orissa (India)

    2010-10-01

    A mixed phase of mesoporous iron-titanium mixed oxide (ITMO) has been successfully synthesized by simple sol-gel technique by taking iron (II) sulphate and Ti-isopropoxide as the precursors and sodium dodecyl sulphate (SDS) as the surfactant. The prepared catalysts were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), diffuse reflectance UV-vis spectra (UV-vis DRS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic absorption spectroscopy (AAS), N{sub 2} adsorption-desorptions isotherm, temperature programmed desorption (TPD) and gas chromatography (GC). Low-angle XRD (LAXRD) as well as surface area analysis confirms the mesoporosity nature of the catalysts. The phase and crystallinity were revealed by XRD study. The crystallinity of the catalysts increased with increase in calcinations temperature. Catalysts screening were performed for oxidation of cyclohexane to cyclohexanol and cyclohexanone.

  9. Formation of peripheral porosity regions around urania in zirconia-urania mixed oxide powder compact sintering

    International Nuclear Information System (INIS)

    Das, P.; Choudhury, R.

    1992-01-01

    Sintering studies of zirconia-urania mixed oxide powder compacts (in stages of 5% urania up to a maximum of 20% addition) were carried out at temperatures between 1000-1400deg C for various soaking periods. The formation of a peripheral porosity region around comparatively coarser urania particle was a characteristic feature in this mixed oxide sintered compact. At even a higher sintering temperature (1800deg C), where extensive solid solution formation takes place, this porosity region demarcates the solutionized particles from the host zirconia apparently acting as a discontinuity in the system. Relative shrinkage difference between the dissimilar particles probably contributes to the porosity regions around the minor second phase at a lower temperature while at higher temperature generation of 'Kirkendall porosity' may be responsible for such an effect. (orig.)

  10. General features of conceptual design for the pilot plant to manufacture fuel rods from mixed oxides

    International Nuclear Information System (INIS)

    Quesada, C.A.; Adelfang, P.; Esteban, A.; Aparicio, G.; Friedenthal, M.; Orlando, O.S.

    1987-01-01

    This paper conceptually describes: 1) the processes in the manufacturing lines; 2) the distribution of quality controls and glove boxes in manufacturing lines; 3) the Control and Radiological Safety Room; 4) the Dressing Room; 5) the requirements of the ventilation system. The plant will be located in the first floor of the Radiochemical Processes Laboratory building, occupying a surface of 600 m 2 . The necessary equipment for the following manufacturing lines will be provided: a) conversion from Pu(NO3)4 to PuO 2 (through Pu(III)oxalate); b) manufacture of homogeneous of mixed oxides of U and Pu; c) manufacture of (U,Pu)O 2 pellets; d) manufacture of fuel rods of mixed uranium and plutonium oxides. (Author)

  11. Coordinated safeguards for materials management in a mixed-oxide fuel facility

    Energy Technology Data Exchange (ETDEWEB)

    Shipley, J.P.; Cobb, D.D.; Dietz, R.J.; Evans, M.L.; Schelonka, E.P.; Smith, D.B.; Walton, R.B.

    1977-02-01

    A coordinated safeguards system is described for safeguarding strategic quantities of special nuclear materials in mixed-oxide recycle fuel fabrication facilities. The safeguards system is compatible with industrial process requirements and combines maximum effectiveness consistent with modest cost and minimal process interference. It is based on unit process accounting using a combination of conventional and state-of-the-art NDA measurement techniques. The effectiveness of the system against single and multiple thefts is evaluated using computer modeling and simulation techniques.

  12. Coordinated safeguards for materials management in a mixed-oxide fuel facility

    International Nuclear Information System (INIS)

    Shipley, J.P.; Cobb, D.D.; Dietz, R.J.; Evans, M.L.; Schelonka, E.P.; Smith, D.B.; Walton, R.B.

    1977-02-01

    A coordinated safeguards system is described for safeguarding strategic quantities of special nuclear materials in mixed-oxide recycle fuel fabrication facilities. The safeguards system is compatible with industrial process requirements and combines maximum effectiveness consistent with modest cost and minimal process interference. It is based on unit process accounting using a combination of conventional and state-of-the-art NDA measurement techniques. The effectiveness of the system against single and multiple thefts is evaluated using computer modeling and simulation techniques

  13. K‑Doped Co−Mn−Al Mixed Oxide Catalyst for N2O Abatement from\

    Czech Academy of Sciences Publication Activity Database

    Pacultová, K.; Karásková, K.; Kovanda, F.; Jirátová, Květa; Šrámek, J.; Kustrovski, P.; Kotarba, A.; Chromčáková, Ž.; Kočí, K.; Obalová, L.

    2016-01-01

    Roč. 55, č. 26 (2016), s. 7076-7084 ISSN 0888-5885 R&D Projects: GA ČR GA14-13750S; GA TA ČR TA01020336 Institutional support: RVO:67985858 Keywords : Co-Mn-Al mixed oxide * N2O decomposition * HNO3 pilot plant Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.843, year: 2016

  14. Selectivity of layered double hydroxides and their derivative mixed metal oxides as sorbents of hydrogen sulfide.

    Science.gov (United States)

    Othman, Mohamed A; Zahid, Waleed M; Abasaeed, Ahmed E

    2013-06-15

    In the context of finding high efficient sorbent materials for removing hydrogen sulfide (H2S) from air stream, a screening study was performed to find the best combination of metals for the synthesis of layered double hydroxides (LDHs) and their derivative mixed metal oxides. Based on selectivity of 998 natural mineral species of sulfur-containing compounds, Cu(2+), Ni(2+) and Zn(2+) were selected as divalent metals, and Fe(3+), Al(3+) and Cr(3+) as trivalent metals to synthesis the LDHs sorbents. 10 LDHs materials and their calcined mixed metal oxides, Ni(0.66)Al(0.34), Cu(0.35)Ni(0.32)Al(0.33), Zn(0.66)Al(0.34), Cu(0.36)Zn(0.32)Al(0.32), Ni(0.64)Fe(0.36), Cu(0.35)Ni(0.31)Fe(0.34), Ni(0.66)Cr(0.34), Cu(0.35)Ni(0.31)Cr(0.34), Zn(0.66)Cr(0.34), Cu(0.33)Zn(0.32)Cr(0.35) were synthesized, characterized chemically and physically, and then tested using breakthrough test to determine their sulfur uptake. Ni(0.64)Fe(0.36) mixed metal oxides was found to have the best uptake of hydrogen sulfide (136 mg H₂S/g). Regeneration of spent Ni(0.64)Fe(0.36) mixed metal oxides was studied using two different mixture solutions, NaCl/NaOH and acetate-buffer/NaCl/NaOH. The latter mixture successfully desorbed the sulfur from the Ni0.64Fe0.36 sorbent for 2 cycles of regeneration/sorption. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Fabrication experience with mixed-oxide LWR fuels at the BELGONUCLEAIRE plant

    International Nuclear Information System (INIS)

    Vanhellemont, G.

    1979-01-01

    For nearly 20 years BELGONUCLEAIRE has been involved in a steadily growing effort to increase its production of mixed oxides. This programme has ranged from basic research and process development through a pilot-scale unit to today's mixed-oxide fuel fabrication plant at Dessel, which has been in operation for just over 5 years. The reference fabrication flow sheet includes UO 2 , PuO 2 and a scraped powder preparation, sintered ground pellets as well as rod fabrication and assembling. With regard to quality, attention is especially paid to the process monitoring and quality controls at the qualification step and during the routine production. Entirely different types of thermal UO 2 -PuO 2 fuel pellets, rods and assemblies have been manufactured for PWR and BWR operation. For these fabrications, some diagrams of the results with regard to the required technical specifications are presented. Special emphasis is placed on the occasional deviations of some finished products from the specifications and on the solutions applied to avoid such problems. Concerning the actual capacity of the mixed-oxide fuel fabrication plant, several limiting factors due to the nature of plutonium itself are discussed. Taking into account all these ambient limitations, a reference PWR mixed-oxide fuel output of nominally 18 t/a is obtained. The industrial feasibility of UO 2 -PuO 2 fuel fabrication has been thoroughly demonstrated by the present BELGONUCLEAIRE plant. The experience obtained has led to progressive improvements of the fabrication process and adaptation of the product controls in order to ensure the requested quality levels. (author)

  16. Simulated physical inventory verification exercise at a mixed-oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Reilly, D.; Augustson, R.

    1985-01-01

    A physical inventory verification (PIV) was simulated at a mixed-oxide fuel fabrication facility. Safeguards inspectors from the International Atomic Energy Agency (IAEA) conducted the PIV exercise to test inspection procedures under ''realistic but relaxed'' conditions. Nondestructive assay instrumentation was used to verify the plutonium content of samples covering the range of material types from input powders to final fuel assemblies. This paper describes the activities included in the exercise and discusses the results obtained. 5 refs., 1 fig., 6 tabs

  17. Molten salt oxidation of mixed waste: Preliminary bench-scale experiments without radioactivity

    International Nuclear Information System (INIS)

    Haas, P.A.; Rudolph, J.C.; Bell, J.T.

    1994-06-01

    Molten salt oxidation (MSO) is a process in which organic wastes are oxidized by sparging them with air through a bed of molten sodium carbonate (bp 851 degrees C) at ≥ 900 degrees C. This process is readily applicable to the mixed waste because acidic products from Cl, S, P, etc., in the waste, along with most metals and most radionuclides, are retained within the melt as oxides or salts. Rockwell International has studied the application of MSO to various wastes, including some mixed waste. A unit used by Rockwell to study the mixed waste treatment is presently in use at Oak Ridge National Laboratory (ORNL). ORNL's studies to date have concentrated on chemical flowsheet questions. Concerns that were studied included carbon monoxide (CO) emissions, NO x , emissions, and metal retention under a variety of conditions. Initial experiments show that CO emissions increase with increasing NaCl content in the melt, increasing temperature, and increasing airflow. Carbon monoxide content is especially high (> 2000 ppm) with high chlorine content (> 10%). Thermal NO x , emissions are relatively low ( x , The metal contents of the melt and of knockout pot samples of condensed salt show high volatilities of Cs as CsCl. Average condensed salt concentrations were 60% for barium and 100% for strontium and cobalt. The cerium disappeared -- perhaps from deposition on the alumina reactor walls

  18. Fabrication of uranium-americium mixed oxide pellet from microsphere precursors: Application of CRMP process

    Science.gov (United States)

    Remy, E.; Picart, S.; Delahaye, T.; Jobelin, I.; Lebreton, F.; Horlait, D.; Bisel, I.; Blanchart, P.; Ayral, A.

    2014-10-01

    Mixed uranium-americium oxides are one of the materials envisaged for Americium Bearing Blankets dedicated to transmutation in fast neutron reactors. Recently, several processes have been developed in order to validate fabrication flowchart in terms of material specifications such as density and homogeneity but also to suggest simplifications for lowering industrial costs and hazards linked to dust generation of highly contaminating and irradiating compounds. This study deals with the application of an innovative route using mixed oxide microspheres obtained from metal loaded resin bead calcination, called Calcined Resin Microsphere Pelletization (CRMP). The synthesis of mixed oxide microsphere precursor of U0.9Am0.1O2±δ is described as well as its characterisation. The use of this free-flowing precursor allows the pressing and sintering of one pellet of U0.9Am0.1O2±δ. The ceramic obtained was characterised and results showed that its microstructure is dense and homogeneous and its density attains 95% of the theoretical density. This study validates the scientific feasibility of the CRMP process applied to the fabrication of uranium and americium-containing materials.

  19. Basic design requirements for the containment system of a mixed oxide fuel fabrication plant

    International Nuclear Information System (INIS)

    Cardinale, A.; Grillo, P.

    1980-01-01

    This paper describes the updated basic design requirements for the containment system of a mixed oxide fuel fabrication plant. The design has been developed on the basis of safety goals, taking into account the environmental compatibility under both normal and accident conditions. The different sources of risk, which might cause a mixed oxide release to the environment, are analysed with regard to the system performances. In particular, this paper describes both the operational containment leakages and the basic accidents that could occur, such as a fire causing primary containment unavailability. In each possible accident situation a fault tree analysis was developed with the aim of defining the availability requirements of the most important components relevant to nuclear safety. The study points out that nuclear safety goals are attained using industrial process components, while a higher quality level is required only for components performing protection functions. Finally, a general discussion is carried out to prove the attainment of the previously stated goals, on the basis of the evaluation of releases and of their probability. The conclusion reached was that the environmental impact of a mixed oxide fuel fabrication plant can be kept at a very low level. (author)

  20. Selective oxidation of propene on bismuth molybdate and mixed oxides of tin and antimony and of uranium and antimony

    International Nuclear Information System (INIS)

    Pendleton, P.; Taylor, D.

    1976-01-01

    Propene + 18 0 2 reactions have been studied in a static reaction system on bismuth molybdate and mixed oxides of tin and antimony and of uranium and antimony. The [ 16 0] acrolein content of the total acrolein formed and the proportion of 16 0 in the oxygen of the carbon dioxide by-product have been determined. The results indicate that for each catalyst the lattice is the only direct source of the oxygen in the aldehyde, and that lattice and/or gas phase oxygen is used in carbon dioxide formation. Oxygen anion mobility appears to be greater in the molybdate catalyst than in the other two. (author)

  1. Promoting effects of thoria on the nickel-manganese mixed oxide catalysts for the aerobic oxidation of benzyl alcohol

    Directory of Open Access Journals (Sweden)

    S.S.P. Sultana

    2017-05-01

    Full Text Available Due to the recent advancement in the development of various characterization techniques, mixed metal oxide (MMO based catalysts have gained tremendous attention in the field of catalysis. In this study, we demonstrated the synthesis of a series of novel MMO based catalysts by a facile co-precipitation method. The detailed structure and composition of thoria promoted NiMnO catalysts was investigated using various microscopic and spectroscopic techniques such as, SEM, EDAX, XRD, TGA, BET and TPR. In order to study the effect of the content of thorium oxide on the catalytic activity of the as-prepared material various samples were prepared by the addition of low quantities of thorium oxide with 1%, 3% and 5% on NiMnO. The catalytic performances of the as-prepared catalysts were evaluated towards the aerobic oxidation of benzyl alcohol using molecular oxygen as oxidant. Furthermore, in order to investigate the effect of the calcination temperatures on the catalytic activities of the as-prepared materials, the samples were calcined at three different temperatures at 300 °C, 400 °C and 500 °C. The catalysts displayed significant enhancement in catalytic activity towards the catalytic conversion of benzyl alcohol (C6H5CH2OH to benzaldehyde (C6H5CHO. Detailed kinetic studies of the reactions using gas chromatography have revealed that the variation of calcination temperature and the percentage of thoria had significant effect on the catalytic performances of the materials. Among all synthesized catalysts ThO2-(5%-NiMnO catalyst calcined at 400 °C exhibited the highest catalytic performance and stability for the selective oxidation of alcohols.

  2. Electrochemical investigation of mixed metal oxide nanocomposite electrode for low temperature solid oxide fuel cell

    Science.gov (United States)

    Abbas, Ghazanfar; Raza, Rizwan; Ashfaq Ahmad, M.; Ajmal Khan, M.; Jafar Hussain, M.; Ahmad, Mukhtar; Aziz, Hammad; Ahmad, Imran; Batool, Rida; Altaf, Faizah; Zhu, Bin

    2017-10-01

    Zinc-based nanostructured nickel (Ni) free metal oxide electrode material Zn0.60/Cu0.20Mn0.20 oxide (CMZO) was synthesized by solid state reaction and investigated for low temperature solid oxide fuel cell (LTSOFC) applications. The crystal structure and surface morphology of the synthesized electrode material were examined by XRD and SEM techniques respectively. The particle size of ZnO phase estimated by Scherer’s equation was 31.50 nm. The maximum electrical conductivity was found to be 12.567 S/cm and 5.846 S/cm in hydrogen and air atmosphere, respectively at 600∘C. The activation energy of the CMZO material was also calculated from the DC conductivity data using Arrhenius plots and it was found to be 0.060 and 0.075 eV in hydrogen and air atmosphere, respectively. The CMZO electrode-based fuel cell was tested using carbonated samarium doped ceria composite (NSDC) electrolyte. The three layers 13 mm in diameter and 1 mm thickness of the symmetric fuel cell were fabricated by dry pressing. The maximum power density of 728.86 mW/cm2 was measured at 550∘C.

  3. Dry recovery test of plutonium-uranium mixed oxide fuel pellets

    International Nuclear Information System (INIS)

    Kinugasa, Manabu; Kawamata, Kazuhiko; Kashima, Sadamitsu

    1981-01-01

    The oxidation conditions for pulverizing directly Pu-U mixed oxide pellets without mechanical crushing were examined to simplify the process and to reduce radiation exposure during the dry recovery of highly enriched Pu pellets. The specimens used were the Pusub(0.3) Usub(0.7) Osub(2-x) pellets with different density, which were sintered at 1650 deg C for 2 hours under an atmosphere of 5 % H 2 - N 2 . The oxidation experiment was carried out under several conditions. The oxidation products were examined by weight gain, X-ray diffraction, appearance pictures, SEM photographs and so on. From these studies, it can be concluded that the oxidation in NO 2 diluted with air was very powerful, but if only the coarse spalling of Pusub(0.3) Usub(0.7) O 2 sintered pellets is required, it is sufficient to oxidize them in air for 1 hr in a temperature range from 400 to 600 deg C. (Asami, T.)

  4. Determination of the oxygen-metal-ratio of uranium-americium mixed oxides

    International Nuclear Information System (INIS)

    Bartscher, W.

    1982-01-01

    During the dissolution of uranium-americium mixed oxides in phosphoric acid under nitrogen tetravalent uranium is oxidized by tetravalent americium. The obtained hexavalent uranium is determined by constant potential coulometry. The coulombs measured are equivalent to the oxygen in excess of the minimum composition of UO 2 x AmO 1 . 5 . The total uranium content of the sample is determined in a subsequent coulometric titration. The oxygen-metal ratio of the sample can be calculated for a given uranium-americium ratio. An excess of uranium dioxide is necessary in order to suppress the oxidation of water by tetravalent americium. The standard deviation of the method is 0.0017 O/M units. (orig.) [de

  5. Electrical characteristics of mixed Zr-Si oxide thin films prepared by ion beam induced chemical vapor deposition at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, F.J., E-mail: fjferrer@us.e [Centro Nacional de Aceleradores (CSIC - U. Sevilla), Av. Thomas A. Edison 7, E-41092 Sevilla (Spain); Frutos, F. [E.T.S. de Ingenieria Informatica, Avda. Reina Mercedes s/n, E-41012 Sevilla (Spain); Garcia-Lopez, J. [Centro Nacional de Aceleradores (CSIC - U. Sevilla), Av. Thomas A. Edison 7, E-41092 Sevilla (Spain); Jimenez, C. [Laboratoire de Materiaux et de Genie Physique, BP 257 - INPGrenoble Minatec - 3 parvis Louis Neel - 38016 Grenoble (France); Yubero, F. [Instituto de Ciencia de Materiales de Sevilla (CSIC - U. Sevilla), c/ Americo Vespucio 49, E-41092 Sevilla (Spain)

    2009-07-31

    Mixed Zr-Si oxide thin films have been prepared at room temperature by ion beam decomposition of organometallic volatile precursors. The films were flat and amorphous. They did not present phase segregation of the pure single oxides. A significant amount of impurities (-C-, -CH{sub x}, -OH, and other radicals coming from partially decomposed precursors) remained incorporated in the films after the deposition process. This effect is minimized if the Ar content in the O{sub 2}/Ar bombarding gas is maximized. Static permittivity and breakdown electrical field of the films were determined by capacitance-voltage and current-voltage electrical measurements. It is found that the static permittivity increases non-linearly from {approx} 4 for pure SiO{sub 2} to {approx} 15 for pure ZrO{sub 2}. Most of the dielectric failures in the films were due to extrinsic breakdown failures. The maximum breakdown electrical field decreases from {approx} 10.5 MV/cm for pure SiO{sub 2} to {approx} 45 MV/cm for pure ZrO{sub 2}. These characteristics are justified by high impurity content of the thin films. In addition, the analysis of the conduction mechanisms in the formed dielectrics is consistent to Schottky and Poole-Frenkel emission for low and high electric fields applied, respectively.

  6. Mixed colloidal suspensions of reduced graphene oxide and layered metal oxide nanosheets: useful precursors for the porous nanocomposites and hybrid films of graphene/metal oxide.

    Science.gov (United States)

    Lee, Yu Ri; Kim, In Young; Kim, Tae Woo; Lee, Jang Mee; Hwang, Seong-Ju

    2012-02-20

    Homogeneously mixed colloidal suspensions of reduced graphene oxide, or RGO, and layered manganate nanosheets have been synthesized by a simple addition of the exfoliated colloid of RGO into that of layered MnO(2). The obtained mixed colloidal suspensions with the RGO/MnO(2) ratio of ≤0.3 show good colloidal stability without any phase separation and a negatively charged state with a zeta (ζ) potential of -30 to -40 mV. The flocculation of these mixed colloidal suspensions with lithium cations yields porous nanocomposites of Li/RGO-layered MnO(2) with high electrochemical activity and a markedly expanded surface area of around 70-100 m(2)  g(-1). Relative to the Li/RGO and Li/layered MnO(2) nanocomposites (≈116 and ≈167 F g(-1)), the obtained Li/RGO-layered MnO(2) nanocomposites deliver a larger capacitance of approximately 210 F g(-1) with good cyclability of around 95-97 % up to the 1000th cycle, thus indicating the positive effect of hybridization on the electrode performances of RGO and lithium manganate. Also, an electrophoretic deposition of the mixed colloidal suspensions makes it possible to easily fabricate uniform hybrid films composed of graphene and manganese oxide. The obtained films show a distinct electrochemical activity and a homogeneous distribution of RGO and MnO(2). The present experimental findings clearly demonstrate that the utilization of the mixed colloidal suspensions as precursors provides a facile and universal methodology to synthesize various types of graphene/metal oxide hybrid materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Mixed Oxides of Transition Metals as Catalysts for Total Ethanol Oxidation

    Czech Academy of Sciences Publication Activity Database

    Ludvíková, Jana; Jirátová, Květa; Kovanda, F.

    2012-01-01

    Roč. 66, č. 6 (2012), s. 589-597 ISSN 0366-6352. [International Conference of the Slovak Society of Chemical Engineering /38./. Tatranské Matliare, 23.05.2011-27.05.2011] R&D Projects: GA ČR GAP106/10/1762; GA ČR GD203/08/H032 Institutional research plan: CEZ:AV0Z40720504 Keywords : volatile organic compound * total oxidation * layered double hydroxidesLDH precursors Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.879, year: 2012

  8. A Mixed-Oxide Assembly Design for Rapid Disposition of Weapons Plutonium in Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Adams, Marvin L.

    2002-01-01

    We have created a new mixed-oxide (MOX) fuel assembly design for standard pressurized water reactors (PWRs). Design goals were to maximize the plutonium throughput while introducing the lowest perturbation possible to the control and safety systems of the reactor. Our assembly design, which we call MIX-33, offers some advantages for the disposition of weapons-grade plutonium; it increases the disposition rate by 8% while increasing the worth of control material, compared to a previous Westinghouse design. The MIX-33 design is based upon two ideas: the use of both uranium and plutonium fuel pins in the same assembly, and the addition of water holes in the assembly. The main result of this paper is that both of these ideas are effective at increasing Pu throughput and increasing the worth of control material. With this new design, according to our analyses, we can transition smoothly from a full low-enriched-uranium (LEU) core to a full MIX-33 core while meeting the operational and safety requirements of a standard PWR. Given an interruption of the MOX supply, we can transition smoothly back to full LEU while meeting safety margins and using standard LEU assemblies with uniform pinwise enrichment distribution. If the MOX supply is interrupted for only one cycle, the transition back to a full MIX-33 core is not as smooth; high peaking could cause power to be derated by a few percent for a few weeks at the beginning of one transition cycle

  9. Mixed ionic liquids/graphene-supported platinum nanoparticles as an electrocatalyst for methanol oxidation

    International Nuclear Information System (INIS)

    Shi, Guoyu; Wang, Zonghua; Xia, Jianfei; Bi, Sai; Li, Yue; Zhang, Feifei; Xia, Lin; Li, Yanhui; Xia, Yanzhi; Xia, Linhua

    2014-01-01

    Graphical abstract: A kind of mixed ionic liquids (ILs) of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4], IL1) and hexafluorophosphate ([bmim][PF6], IL2) was introduced to the functionalization of graphene (GN) nanosheets, which was used to the synthesis of platinum nanoparticles (Pt NPs) to obtain the Pt/IL1-IL2/GN nanocomposite. The as-prepared Pt/IL1-IL2/GN composites exhibited highly electrocatalytic activity (764.3 mA mg − 1Pt at 0.6 V vs. SCE) and stability toward methanol oxidation, demonstrating their promising potential as the anode catalyst for direct methanol fuel cells (DMFCs). - Highlights: • Pt/mixed ionic liquids/graphene composite catalyst was easily synthesized. • The special phase equilibrium characteristics exerted by the peculiar interactions between different ILs can promote the homogeneous growth of small Pt nanoparticles. • The as-made catalyst exhibited enhanced electro-catalytic performance for methanol oxidation. - Abstract: A kind of mixed ionic liquids (ILs) of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF 4 ], IL 1 ) and hexafluorophosphate ([bmim][PF 6 ], IL 2 ) was introduced to the functionalization of graphene (GN) nanosheets, which was used to the synthesis of platinum nanoparticles (Pt NPs) to obtain the Pt/IL 1 -IL 2 /GN nanocomposite. The interaction between mixed ILs and GN achieved a stable performance due to the excellent electronic and interfacial property of the fabricated nanocomposites, which was favorable for effective loading of Pt NPs on the IL 1 -IL 2 /GN support. The as-prepared Pt/IL 1 -IL 2 /GN composites exhibited highly electrocatalytic activity (764.3 mA mg −1 Pt at 0.6 V vs. SCE) and stability toward methanol oxidation, demonstrating their promising potential as the anode catalyst for direct methanol fuel cells (DMFCs)

  10. Status of plutonium recycle from mixed oxide fuel fabrication wastes (U,Pu)O2 facility activities

    International Nuclear Information System (INIS)

    Quesada, Calixto A.; Adelfang, Pablo; Greiner, G.; Orlando, Oscar S.; Mathot, Sergio R.

    1999-01-01

    Within the specific subject of mixed oxides corresponding to the Fuel Cycle activities performed at CNEA, the recovery of plutonium from wastes originated during tests and pre-fabrication stages is performed. (author)

  11. Mixed Waste Focus Area alternative oxidation technologies development and demonstration program

    International Nuclear Information System (INIS)

    Borduin, L.C.; Fewell, T.; Gombert, D.; Priebe, S.

    1998-01-01

    The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. The impetus for this support derives from regulatory and political hurdles frequently encountered by traditional thermal techniques, primarily incinerators. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. Whether thermal or nonthermal, the processes have the potential advantages of relatively low-volume gaseous emissions, generation of few or no dioxin/furan compounds, and operation at low enough temperatures that metals (except mercury) and most radionuclides are not volatilized. Technology development and demonstration are needed to confirm and realize the potential of AOTs and to compare them on an equal basis with their fully demonstrated thermal counterparts. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site, and direct chemical oxidation at Lawrence Livermore National Laboratory. All three technologies are at advanced stages of development or are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory, and team reforming, a commercial process being supported by Department of Energy. Related technologies include two low-flow, secondary oxidation processes (Phoenix and Thermatrix units) that have been tested at MSE, Inc., in Butte, Montana. Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each

  12. Catalytic activity of calcium-based mixed metal oxides nanocatalysts in transesterification reaction of palm oil

    Science.gov (United States)

    Hassan, Noraakinah; Ismail, Kamariah Noor; Hamid, Ku Halim Ku; Hadi, Abdul

    2017-12-01

    Nowadays, biodiesel has become the forefront development as an alternative diesel fuel derived from biological sources such as oils of plant and fats. Presently, the conventional transesterification of vegetable oil to biodiesel gives rise to some technological problem. In this sense, heterogeneous nanocatalysts of calcium-based mixed metal oxides were synthesized through sol-gel method. It was found that significant increase of biodiesel yield, 91.75 % was obtained catalyzed by CaO-NbO2 from palm oil compared to pure CaO of 53.99 % under transesterification conditions (methanol/oil ratio 10:1, reaction time 3 h, catalyst concentration 4 wt%, reaction temperature 60 °C, and mixing speed of 600 rpm). The phase structure and crystallinity as well as the texture properties of the prepared catalysts were characterized by X-ray Diffraction (XRD) and the textural properties were characterized by N2 adsorption-desorption analysis. Sol-gel method has been known as versatile method in controlling the structural and chemical properties of the catalyst. Calcium-based mixed oxide synthesized from sol-gel method was found to exist as smaller crystallite size with high surface area.

  13. Electrochemical behaviour of manganese & ruthenium mixed oxide@ reduced graphene oxide nanoribbon composite in symmetric and asymmetric supercapacitor

    Science.gov (United States)

    Ahuja, Preety; Ujjain, Sanjeev Kumar; Kanojia, Rajni

    2018-01-01

    This paper reports the interaction of 3d-4d transition metal mixed oxide as simultaneous existence of M(3d) and M(4d) expectedly enhance the electrochemical performance of the resulting composite. Electrochemical performance of MnO2-RuO2 nanoflakes reduced graphene oxide nanoribbon composite (MnO2-RuO2@GNR) is intensively explored in symmetric and asymmetric supercapacitor assembly. In situ incorporation of graphene oxide nanoribbon (GONR) during synthesis provides efficient binding sites for growth of MnO2-RuO2 nanoflakes via their surface functionalities. The interconnected MnO2-RuO2 nanoflakes via GNR form a network with enhanced diffusion kinetics leading to efficient supercapacitor performance. Fabricated asymmetric supercapacitor reveals energy density 60 Wh kg-1 at power density 14 kW kg-1. Based on the analysis of impedance data in terms of complex power, quick response time of supercapacitor reveals excellent power delivery of the device. Improved cycling stability after 7000 charge discharge cycles for symmetric and asymmetric supercapacitor highlights the buffering action of GNR and can be generalized for next generation high performance supercapacitor.

  14. Influence of Gold on Ce-Zr-Co Fluorite-Type Mixed Oxide Catalysts for Ethanol Steam Reforming

    Directory of Open Access Journals (Sweden)

    Véronique Pitchon

    2012-02-01

    Full Text Available The effect of gold presence on carbon monoxide oxidation and ethanol steam reforming catalytic behavior of two Ce-Zr-Co mixed oxides catalysts with a constant Co charge and different Ce/Zr ratios was investigated. The Ce-Zr-Co mixed oxides were obtained by the pseudo sol-gel like method, based on metallic propionates polymerization and thermal decomposition, whereas the gold-supported Ce-Zr-Co mixed oxides catalysts were prepared using the direct anionic exchange. The catalysts were characterized using XRD, TPR, and EDXS-TEM. The presence of Au in doped Ce-Zr-Co oxide catalyst decreases the temperature necessary to reduce the cobalt and the cerium loaded in the catalyst and favors a different reaction pathway, improving the acetaldehyde route by ethanol dehydrogenation, instead of the ethylene route by ethanol dehydration or methane re-adsorption, thus increasing the catalytic activity and selectivity into hydrogen.

  15. Low-temperature synthesis of Mn-based mixed metal oxides with novel fluffy structures as efficient catalysts for selective reduction of nitrogen oxides by ammonia.

    Science.gov (United States)

    Meng, Bo; Zhao, Zongbin; Chen, Yongsheng; Wang, Xuzhen; Li, Yong; Qiu, Jieshan

    2014-10-21

    A series of Mn-based mixed metal oxide catalysts (Co-Mn-O, Fe-Mn-O, Ni-Mn-O) with high surface areas were prepared via low temperature crystal splitting and exhibited extremely high catalytic activity for the low-temperature selective catalytic reduction of nitrogen oxides with ammonia.

  16. Co-Mn-Al Mixed Oxides on Anodized Aluminum Supports and Their Use as Catalysts in the Total Oxidation of Ethanol

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Jirátová, Květa; Ludvíková, Jana; Raabová, H.

    2013-01-01

    Roč. 464, AUG 15 (2013), s. 181-190 ISSN 0926-860X R&D Projects: GA ČR GAP106/10/1762 Institutional support: RVO:67985858 Keywords : layered double hydroxides * hydrothermal reaction * mixed oxides * supported catalysts * ethanol total oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.674, year: 2013

  17. Feasibility Study of 1/3 Thorium-Plutonium Mixed Oxide Core

    Directory of Open Access Journals (Sweden)

    Cheuk Wah Lau

    2014-01-01

    Full Text Available Thorium-plutonium mixed oxide (Th-MOX fuel has become one of the most promising solutions to reduce a large and increasing plutonium stockpile. Compared with traditional uranium-plutonium mixed oxide (U-MOX fuels, Th-MOX fuel has higher consumption rate of plutonium in LWRs. Besides, thorium based fuels have improved thermomechanical material properties compared with traditional U-MOX fuels. Previous studies on a full Th-MOX core have shown reduced efficiency in reactivity control mechanisms, stronger reactivity feedback, and a significantly lower fraction of delayed neutrons compared with a traditional uranium oxide (UOX core. These problems complicate the implementation of a full Th-MOX core in a similar way as for a traditional U-MOX core. In order to reduce and avoid some of these issues, the introduction of a lower fraction of Th-MOX fuel in the core is proposed. In this study, one-third of the assemblies are Th-MOX fuel, and the rest are traditional UOX fuel. The feasibility study is based on the Swedish Ringhals-3 PWR. The results show that the core characteristics are more similar to a traditional UOX core, and the fraction of delayed neutrons is within acceptable limits. Moreover, the damping of axial xenon oscillations induced by control rod insertions is almost 5 times more effective for the 1/3 Th-MOX core compared with the standard core.

  18. Mixed

    Directory of Open Access Journals (Sweden)

    Pau Baya

    2011-05-01

    Full Text Available Remenat (Catalan (Mixed, "revoltillo" (Scrambled in Spanish, is a dish which, in Catalunya, consists of a beaten egg cooked with vegetables or other ingredients, normally prawns or asparagus. It is delicious. Scrambled refers to the action of mixing the beaten egg with other ingredients in a pan, normally using a wooden spoon Thought is frequently an amalgam of past ideas put through a spinner and rhythmically shaken around like a cocktail until a uniform and dense paste is made. This malleable product, rather like a cake mixture can be deformed pulling it out, rolling it around, adapting its shape to the commands of one’s hands or the tool which is being used on it. In the piece Mixed, the contortion of the wood seeks to reproduce the plasticity of this slow heavy movement. Each piece lays itself on the next piece consecutively like a tongue of incandescent lava slowly advancing but with unstoppable inertia.

  19. Heat capacity measurements and XPS studies on uranium-lanthanum mixed oxides

    International Nuclear Information System (INIS)

    Venkata Krishnan, R.; Mittal, V.K.; Babu, R.; Senapati, Abhiram; Bera, Santanu; Nagarajan, K.

    2011-01-01

    Research highlights: → Heat capacity measurements were carried out on (U 1-y La y )O 2±x (y = 0.2, 0.4, 0.6, and 0.8) using differential scanning calorimeter (DSC) in the temperature range 298-800 K. → Enthalpy increment measurements were carried out on the above solid solution using high temperature drop calorimetry in the temperature range 800-1800 K. → Chemical states of U and La in the solid solutions of mixed oxides were determined using X-ray photoelectron spectroscopy (XPS). → The anomalous increase in the heat capacity is attributed to certain thermal excitation process namely Frenkel pair defect of oxygen. → From the XPS investigation, it is observed that the O/M ratio at the surface is higher than that to the bulk. → In uranium rich mixed oxide samples, the surface O/M is greater than 2 whereas that in La rich mixed oxides, it is less than 2, though the bulk O/M in all the samples are less than 2. - Abstract: Heat capacity measurements were carried out on (U 1-y La y )O 2±x (y = 0.2, 0.4, 0.6, and 0.8) using differential scanning calorimeter (DSC) in the temperature range 298-800 K. Enthalpy increment measurements were carried out on the above solid solutions using high temperature drop calorimetry in the temperature range 800-1800 K. Chemical states of U and La in the solid solutions of mixed oxides were determined using X-ray photoelectron spectroscopy (XPS). Oxygen to metal ratios of (U 1-y La y )O 2±x were estimated from the ratios of different chemical states of U present in the sample. Anomalous increase in the heat capacity is observed for (U 1-y La y )O 2±x (y = 0.4, 0.6 and 0.8) with onset temperatures in the range of 1000-1200 K. The anomalous increase in the heat capacity is attributed to certain thermal excitation process, namely, Frenkel pair defect of oxygen. The heat capacity value of (U 1-y La y )O 2±x (y = 0.2, 0.4, 0.6, and 0.8) at 298 K are 65.3, 64.1, 57.7, 51.9 J K -1 mol -1 , respectively. From the XPS investigations

  20. Polyethylene encapsulation of molten salt oxidation mixed low-level radioactive salt residues

    International Nuclear Information System (INIS)

    Lageraaen, P.R.; Kalb, P.D.; Grimmett, D.L.; Gay, R.L.; Newman, C.D.

    1995-01-01

    A limited scope treatability study was conducted for polyethylene encapsulation of salt residues generated by a Molten Salt Oxidation (MSO) technology demonstration at the Energy Technology Engineering Center (ETEC), operated by Rockwell International for the US Department of Energy (DOE). During 1992 and 1993, ETEC performed a demonstration with a prototype MSO unit and treated approximately 50 gallons of mixed waste comprised of radioactively contaminated oils produced by hot cell operations. A sample of the mixed waste contaminated spent salt was used during the BNL polyethylene encapsulation treatability study. A nominal waste loading of 50 wt % was successfully processed and waste form test specimens were made for Toxicity Characteristic Leaching Procedure (TCLP) testing. The encapsulated product was compared with base-line TCLP results for total chromium and was found to be well within allowable EPA guidelines

  1. Methodologies For Characterising Mixed Conducting Oxides For Oxygen Membrane And SOFC Cathode Application

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Søgaard, Martin; Plonczak, Pawel

    2012-01-01

    Two methods for detailed characterization of the process of oxygen exchange between the gas phase and a mixed conducting solid oxide are discussed. First, the use of solid electrolyte probes for measuring the change in oxygen activity over the surface of a mixed conductor is presented...... and advantages of the technique discussed. Secondly, the use of thin film model electrodes is treated. Studies of thin films applied by PLD on both sides of a YSZ single crystal are presented for three different film materials; La0.85Sr0.15MnO3, La0.6Sr0.4Fe0.8Co0.2O3 and La0.6Sr0.4CoO3. Variations in electrode...

  2. Mixed-component sulfone-sulfoxide tagged zinc IRMOFs:In situ ligand oxidation, carbon dioxide, and water sorption studies

    OpenAIRE

    Bryant, Macguire R; Burrows, Andrew D; Kepert, Cameron J; Southon, Peter D; Qazvini, Omid T; Telfer, Shane G; Richardson, Christopher

    2017-01-01

    Reported here are the syntheses and adsorption properties of a series of single- and mixed-component zinc IRMOFs derived from controlled ratios of sulfide and sulfone functionalized linear biphenyldicarboxylate (bpdc) ligands. During MOF synthesis the sulfide moieties undergo in situ oxidation, giving rise to sulfoxide functionalized ligands, which are incorporated to give mixed-component sulfoxide–sulfone functionalized MOFs. The single- and mixed-component systems all share the IRMOF-9 stru...

  3. Thorium/uranium mixed oxide nano-crystals: Synthesis, structural characterization and magnetic properties

    International Nuclear Information System (INIS)

    Hudry, Damien; Griveau, Jean-Christophe; Apostolidis, Christos; Colineau, Eric; Rasmussen, Gert; Walter, Olaf; Wang, Di; Venkata Sai Kiran Chakravadhaluna; Courtois, Eglantine; Kubel, Christian

    2014-01-01

    One of the primary aims of the actinide community within nano-science is to develop a good understanding similar to what is currently the case for stable elements. As a consequence, efficient, reliable and versatile synthesis techniques dedicated to the formation of new actinide-based nano-objects (e.g., nano-crystals) are necessary. Hence, a 'library' dedicated to the preparation of various actinide based nano-scale building blocks is currently being developed. Nano-scale building blocks with tunable sizes, shapes and compositions are of prime importance. So far, the non-aqueous synthesis method in highly coordinating organic media is the only approach which has demonstrated the capability to provide size and shape control of actinide-based nano-crystals (both for thorium and uranium, and recently extended to neptunium and plutonium). In this paper, we demonstrate that the non-aqueous approach is also well adapted to control the chemical composition of the nano-crystals obtained when mixing two different actinides. Indeed, the controlled hot co-injection of thorium acetylacetonate and uranyl acetate (together with additional capping agents) into benzyl ether can be used to synthesize thorium/uranium mixed oxide nano-crystals covering the full compositional spectrum. Additionally, we found that both size and shape are modified as a function of the thorium/uranium ratio. Finally, the magnetic properties of the different thorium/uranium mixed oxide nano-crystals were investigated. Contrary to several reports, we did not observe any ferromagnetic behavior. As a consequence, ferromagnetism cannot be described as a universal feature of nano-crystals of non-magnetic oxides as recently claimed in the literature. (authors)

  4. Removal of inhaled industrial mixed oxide aerosols from Beagle dogs by lung lavage and chelation therapy

    International Nuclear Information System (INIS)

    Muggenburg, B.A.; Mewhinney, J.A.; Eidson, A.F.; Guilmette, R.A.

    1978-01-01

    An experiment was conducted in 15 adult Beagle dogs to evaluate lung lavage and chelation therapy for the removal of inhaled particles of mixed actinide oxides. The dogs were divided into three groups of five dogs each. Each group was exposed to an aerosol from a different industrial process. Group 1 was exposed to mixed oxide material which had been calcined at 750 0 C collected from a ball milling process. Group 2 was exposed to mixed oxide material from a centerless grinding operation which had been previously heat treated to 1750 0 C. The third group was exposed to 239 PuO 2 not containing uranium from a V-blending procedure which had been heat treated at 850 0 C. After exposure, three dogs in each group were given ten lung lavages and 18 intravenous injections of calcium trisodium diethylenetriaminepentaacetate (DTPA). All dogs were sacrificed 64 days after inhalation exposure. The tissues were radioanalyzed for plutonium and americium. Fluorimetric analyses for uranium in the tissues are in progress. The urine, feces and lavage fluid are also being analyzed for plutonium, americium and uranium. The distribution of plutonium and americium expressed as percentages of the sacrifice body burden was similar in the tissues of the treated and unteated dogs. The lungs contained most of the radionuclides with a small amount in the liver, skeleton and tracheobronchial lymph nodes. The percentage of the sacrifice body burden of americium and plutonium that was present in the lung was less in the treated dogs and was higher in the TBLN's and skeleton than in the untreated dogs. The ratio of Pu/Am was higher in the lungs than in the original material obtained from the industrial sites suggesting a shorter retention time for americium than plutonium to 64 days in the dog

  5. Mediated electrochemical oxidation as an alternative to incineration for mixed wastes

    International Nuclear Information System (INIS)

    Chiba, Z.; Schumacher, B.; Lewis, P.; Murguia, L.

    1995-02-01

    Mediated Electrochemical Oxidation (MEO) is an aqueous process which oxidizes organics electrochemically at low temperatures and ambient pressures. The process can be used to treat mixed wastes containing hazardous organics by destroying the organic components of the wastes. The radioactive components of the wastes are dissolved in the electrolyte where they can be recovered if desired, or immobilized for disposal. The process of destroying organics is accomplished via a mediator, which is in the form of metallic ions in solution. At Lawrence Livermore National Laboratory (LLNL) we have worked with worked with several mediators, including silver, cobalt and cerium. We have tested mediators in nitric as well as sulfuric acids. We have recently completed extensive experimental studies on cobalt-sulfuric acid and silver-nitric acid systems for destroying the major organic components of Rocky Flats Plant combustible mixed wastes. Organics tested were: Trimsol (a cutting oil), cellulose (including paper and cloth), rubber (latex), plastics (Tyvek, polyethylene and polyvinyl chloride) and biomass (bacteria). The process was capable of destroying almost all of the organics tested, attaining high destruction efficiencies at reasonable coulombic efficiencies. The only exception was polyvinyl chloride, which was destroyed very slowly resulting in poor coulombic efficiencies. Besides the process development work mentioned above, we are working on the design of a pilot-plant scale integrated system to be installed in the Mixed Waste Management Facility (MWMF) at LLNL. The system will also be completely integrated with upstream and downstream processes (for example, feed preparation, off-gas and water treatment, and final forms encapsulation). The conceptual design for the NEO-MWMF system has been completed and preliminary design work has been initiated. Demonstration of the process with low-level mixed wastes is expected to commence in 1998

  6. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.; Smith, Colin D.; Wang, Yong

    2016-04-10

    tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  7. Neutronic feasibility of PWR core with mixed oxide fuels in the Republic of Korea

    International Nuclear Information System (INIS)

    Kim, Y.J.; Joo, H.K.; Jung, H.G.; Sohn, D.S.

    1997-01-01

    Neutronic feasibility of a PWR core with mixed oxide (MOX) fuels has been investigated as part of the feasibility study for recycling spent fuels in Korea. A typical 3-loop PWR with 900 MWe capacity is selected as reference plant to develop equilibrium core designs with low-leakage fuel management scheme, while incorporating various MOX loading. The fuel management analyses and limited safety analyses show that, safely stated, MOX recycling with 1/3 reload fraction can be accommodated for both annual and 18 month fuel cycle schemes in Korean PWRs, without major design modifications on the reactor systems. (author). 12 refs, 4 figs, 3 tabs

  8. Detailed description of an SSAC at the facility level for mixed oxide fuel fabrication facilities

    International Nuclear Information System (INIS)

    Jones, R.J.

    1985-09-01

    The purpose of this document is to provide a detailed description of a system for the accounting for and control of nuclear material in a mixed oxide fuel fabrication facility which can be used by a facility operator to establish his own system to comply with a national system for nuclear material accounting and control and to facilitate application of IAEA safeguards. The scope of this document is limited to descriptions of the following SSAC elements: (1) Nuclear Material Measurements; (2) Measurement Quality; (3) Records and Reports; (4) Physical Inventory Taking; (5) Material Balance Closing

  9. Application of a mixed metal oxide catalyst to a metallic substrate

    Science.gov (United States)

    Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)

    2009-01-01

    A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.

  10. Silica-based composite and mixed-oxide nanoparticles from atmospheric pressure flame synthesis

    Science.gov (United States)

    Akurati, Kranthi K.; Dittmann, Rainer; Vital, Andri; Klotz, Ulrich; Hug, Paul; Graule, Thomas; Winterer, Markus

    2006-08-01

    Binary TiO2/SiO2 and SnO2/SiO2 nanoparticles have been synthesized by feeding evaporated precursor mixtures into an atmospheric pressure diffusion flame. Particles with controlled Si:Ti and Si:Sn ratios were produced at various flow rates of oxygen and the resulting powders were characterized by BET (Brunauer-Emmett-Teller) surface area analysis, XRD, TEM and Raman spectroscopy. In the Si-O-Ti system, mixed oxide composite particles exhibiting anatase segregation formed when the Si:Ti ratio exceeded 9.8:1, while at lower concentrations only mixed oxide single phase particles were found. Arrangement of the species and phases within the particles correspond to an intermediate equilibrium state at elevated temperature. This can be explained by rapid quenching of the particles in the flame and is in accordance with liquid phase solubility data of Ti in SiO2. In contrast, only composite particles formed in the Sn-O-Si system, with SnO2 nanoparticles predominantly found adhering to the surface of SiO2 substrate nanoparticles. Differences in the arrangement of phases and constituents within the particles were observed at constant precursor mixture concentration and the size of the resultant segregated phase was influenced by varying the flow rate of the oxidant. The above effect is due to the variation of the residence time and quenching rate experienced by the binary oxide nanoparticles when varying the oxygen flow rate and shows the flexibility of diffusion flame aerosol reactors.

  11. Calcium-based mixed oxide catalysts for methanolysis of Jatropha curcas oil to biodiesel

    International Nuclear Information System (INIS)

    Taufiq-Yap, Y.H.; Lee, H.V.; Hussein, M.Z.; Yunus, R.

    2011-01-01

    Calcium-based mixed oxides catalysts (CaMgO and CaZnO) have been investigated for the transesterification of Jatropha curcas oil (JCO) with methanol, in order to evaluate their potential as heterogeneous catalysts for biodiesel production. Both CaMgO and CaZnO catalysts were prepared by coprecipitation method of the corresponding mixed metal nitrate solution in the presence of a soluble carbonate salt at ∼ pH 8-9. The catalysts were characterized by X-ray diffraction (XRD), temperature programmed desorption of CO 2 (CO 2 -TPD), scanning electron microscopy (SEM) and N 2 adsorption (BET). The conversion of JCO by CaMgO and CaZnO were studied and compared with calcium oxide (CaO), magnesium oxide (MgO) and zinc oxide (ZnO) catalysts. Both CaMgO and CaZnO catalysts showed high activity as CaO and were easily separated from the product. CaMgO was found more active than CaZnO in the transesterification of JCO with methanol. Under the suitable transesterification conditions at 338 K (catalyst amount = 4 wt. %, methanol/oil molar ratio = 15, reaction time = 6 h), the JCO conversion of more than 80% can be achieved over CaMgO and CaZnO catalysts. Even though CaO gave the highest activity, the conversion of JCO decreased significantly after reused for forth run whereas the conversion was only slightly lowered for CaMgO and CaZnO after sixth run.

  12. Effect of active-layer composition and structure on device performance of coplanar top-gate amorphous oxide thin-film transistors

    Science.gov (United States)

    Yue, Lan; Meng, Fanxin; Chen, Jiarong

    2018-01-01

    The thin-film transistors (TFTs) with amorphous aluminum-indium-zinc-oxide (a-AIZO) active layer were prepared by dip coating method. The dependence of properties of TFTs on the active-layer composition and structure was investigated. The results indicate that Al atoms acted as a carrier suppressor in IZO films. Meanwhile, it was found that the on/off current ratio (I on/off) of TFT was improved by embedding a high-resistivity AIZO layer between the low-resistivity AIZO layer and gate insulator. The improvement in I on/off was attributed to the decrease in off-state current of double-active-layer TFT due to an increase in the active-layer resistance and the contact resistance between active layer and source/drain electrode. Moreover, on-state current and threshold voltage (V th) can be mainly controlled through thickness and Al content of the low-resistivity AIZO layer. In addition, the saturation mobility (μ sat) of TFTs was improved with reducing the size of channel width or/and length, which was attributed to the decrease in trap states in the semiconductor and at the semiconductor/gate-insulator interface with the smaller channel width or/and shorter channel length. Thus, we can demonstrate excellent TFTs via the design of active-layer composition and structure by utilizing a low cost solution-processed method. The resulting TFT, operating in enhancement mode, has a high μ sat of 14.16 cm2 V‑1 s‑1, a small SS of 0.40 V/decade, a close-to-zero V th of 0.50 V, and I on/off of more than 105.

  13. Vaporization of actinide oxides in thermal treatment processes for mixed waste

    International Nuclear Information System (INIS)

    Ebbinghaus, B.B.; Krikorian, O.H.; Adamson, M.G.

    1994-01-01

    The purpose of this study is to evaluate the volatilities of U, Pu, and Am in thermal treatment processes for mixed wastes. The thermodynamics of vaporization U and Pu oxides in the presence of oxygen and water vapor and of U oxide in the presence of oxygen and chlorine were studied. Experimental studies of U oxide volatilities by previous authors have also been reviewed. For species where data are unavailable estimation methods were used to obtain free energies of formation of the gaseous species, The data are applied to thermal treatment processes in general and then more specifically to conditions representative of the Rocky Flats Plant Fluidized Bed Unit. (RFP FBU), molten salt oxidizer, and an incinerator. U volatilities are greatest ranging from 2.67 x 10 -7 gU/h in the RFP FBU to 4. 00 gU/h for typical incinerator conditions. Pu volatilities are almost 5 orders of magnitude less than U and Am volatilities are about 3 orders of magnitude less than Pu

  14. Plutonium-uranium mixed oxide characterization by coupling micro-X-ray diffraction and absorption investigations

    Science.gov (United States)

    Degueldre, C.; Martin, M.; Kuri, G.; Grolimund, D.; Borca, C.

    2011-09-01

    Plutonium-uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The potential differences of metal redox state and microstructural developments of the matrix before and after irradiation are commonly analysed by electron probe microanalysis. In this work the structure and next-neighbor atomic environments of Pu and U oxide features within unirradiated homogeneous MOX and irradiated (60 MW d kg -1) MOX samples was analysed by micro-X-ray fluorescence (μ-XRF), micro-X-ray diffraction (μ-XRD) and micro-X-ray absorption fine structure (μ-XAFS) spectroscopy. The grain properties, chemical bonding, valences and stoichiometry of Pu and U are determined from the experimental data gained for the unirradiated as well as for irradiated fuel material examined in the center of the fuel as well as in its peripheral zone (rim). The formation of sub-grains is observed as well as their development from the center to the rim (polygonization). In the irradiated sample Pu remains tetravalent (>95%) and no (oxidation in the rim zone. Any slight potential plutonium oxidation is buffered by the uranium dioxide matrix while locally fuel cladding interaction could also affect the redox of the fuel.

  15. Nanotubular Iridium-Cobalt Mixed Oxide Crystalline Architectures Inherited from Cobalt Oxide for Highly Efficient Oxygen Evolution Reaction Catalysis.

    Science.gov (United States)

    Yu, Areum; Lee, Chongmok; Kim, Myung Hwa; Lee, Youngmi

    2017-10-11

    Here, we report the unique transformation of one-dimensional tubular mixed oxide nanocomposites of iridium (Ir) and cobalt (Co) denoted as Ir x Co 1-x O y , where x is the relative Ir atomic content to the overall metal content. The formation of a variety of Ir x Co 1-x O y (0 ≤ x ≤ 1) crystalline tubular nanocomposites was readily achieved by electrospinning and subsequent calcination process. Structural characterization clearly confirmed that Ir x Co 1-x O y polycrystalline nanocomposites had a tubular morphology consisting of Ir/IrO 2 and Co 3 O 4 , where Ir, Co, and O were homogeneously distributed throughout the entire nanostructures. The facile formation of Ir x Co 1-x O y nanotubes was mainly ascribed to the inclination of Co 3 O 4 to form the nanotubes during the calcination process, which could play a critical role in providing a template of tubular structure and facilitating the formation of IrO 2 by being incorporated with Ir precursors. Furthermore, the electroactivity of obtained Ir x Co 1-x O y nanotubes was characterized for oxygen evolution reaction (OER) with rotating disk electrode voltammetry in 1 M NaOH aqueous solution. Among diverse Ir x Co 1-x O y , Ir 0.46 Co 0.54 O y nanotubes showed the best OER activity (the least-positive onset potential, greatest current density, and low Tafel slope), which was even better than that of commercial Ir/C. The Ir 0.46 Co 0.54 O y nanotubes also exhibited a high stability in alkaline electrolyte. Expensive Ir mixed with cheap Co at an optimum ratio showed a greater OER catalytic activity than pure Ir oxide, one of the most efficient OER catalysts.

  16. Effect of hydrothermal treatment on catalytic activity of amorphous mesoporous Cr2O3–ZrO2 nanomaterials for ethanol oxidation

    International Nuclear Information System (INIS)

    Mahmoud, Hala R.

    2015-01-01

    Mesoporous 0.25Cr 2 O 3 –0.75ZrO 2 binary oxide catalysts (CZ-H) with high specific surface areas were successfully synthesized by hydrothermal treatment. The effect of synthesis conditions, such as hydrothermal temperature and time of CZ-H nanomaterials were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopic (EDS), UV–vis diffuse reflectance spectroscopy (DRS) and N 2 adsorption–desorption measurements (BET). The XRD analysis indicated the formation of amorphous materials of binary oxides. The results showed that hydrothermal temperature and time of CZ-H nanomaterials had great influence on the average particle diameter and surface area. Under the optimum synthesis conditions, the best CZ-H nanomaterial synthesized at 210 °C for 3 h (i.e., CZ-H213), presented spherical structure with smallest average particle diameter found to be 1.5 nm and possessed highest surface area of 526.6 m 2 /g. Optical studies by UV–vis spectroscopy for the different CZ-H nanomaterials exhibit slightly blue shift from 3.20 to 3.33 eV due to quantum confined exciton absorption. Moreover, hydrothermal synthesis leads to catalysts with higher surface area and with better acid–base properties than conventional co-precipitation method. Compared to the other nanomaterials, the CZ-H213 catalyst appears to be the best candidate for further application in acid–base catalysis and reusability. - Graphical abstract: Display Omitted - Highlights: • Mesoporous 25%Cr 2 O 3 –75%ZrO 2 catalysts (CZ-H) were prepared by hydrothermal method. • The hydrothermal temperature and time modified the properties of CZ-H nanomaterials. • The best CZ-H nanomaterial synthesized at 210 °C for 3 h (i.e., CZ-H213). • A CZ-H213 nanomaterial had the highest S BET and smallest average particle diameter. • A mesoporous CZ-H213 used as a reusable active catalyst in the ethanol conversion

  17. Catalysts with Cu base supported in mixed oxides to generate H2: reformed of methanol in oxidant atmosphere

    International Nuclear Information System (INIS)

    Aguila M, M.M.; Perez H, R.; Rodriguez L, V.

    2006-01-01

    In this work, the characterization of Cu supported in CeO 2 -ZrO 2 , for to generate H 2 starting from the one reformed of methanol with water vapor and oxygen is presented. The sol-gel technique and classic impregnation for the obtaining of the supports and catalysts respectively were used. The materials were characterized by XRD, SEM, adsorption- desorption of N 2 and TPR. The catalytic materials presented crystalline phases associated with the zircon (tetragonal and monoclinic phase) and the ceria (cubic phase) depending on the CeO 2 /ZrO 2 relationship. The morphology of the catalysts was analyzed by SEM being observed semispheric particles for the rich materials in ZrO 2 and added planars in the rich materials in CeO 2 . The ceria addition to the zircon favors the specific area of the mixed oxides CeO 2 -ZrO 2 and it promotes the reducibility of the copper oxide at low temperatures. The rich catalysts in ceria also showed high activity in the methanol transformation and bigger selectivity toward the production of H 2 . This result is associated with the presence of copper species that decrease to low temperature present in the rich catalysts in ceria and that they are not present in the rich catalysts in zircon. (Author)

  18. Application of cylinder symmetry to iron and titanium oxidation by oxygen or hydrogen-water vapour mixes

    International Nuclear Information System (INIS)

    Raynaud, Pierre

    1980-01-01

    This research thesis addresses the study of the oxidation reaction in the case of corrosion of iron by oxygen, hydrogen sulphide or hydrogen-water vapour mixes, and in the case of oxidation of titanium and of titanium nitride by hydrogen-water vapour mixes. It first addresses the corrosion of iron by oxygen with an experiment performed in cylinder symmetry: description of operational conditions, discussion of kinetic curves, development of a law of generation of multiple layers in cylinder symmetry, analytical exploitation of experimental results. The second part addresses the oxidation of iron by hydrogen-water vapour mixes: experimental conditions, influence of temperature on kinetics, micrographic study (oxide morphology, coating morphology, interpretation of differences with the case of plane symmetry), discussion of the influence of cylinder symmetry on oxidation kinetics. The third part addresses the oxidation of titanium by hydrogen-water vapour mixes: global kinetic evolution, reaction products and micrographic examination, morphology and texture studies, discussion of the oxidation mechanism and of cylinder symmetry [fr

  19. Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba0.5Sr0.5Co0.8Fe0.2O3-δnanofilms with tunable oxidation state.

    Science.gov (United States)

    Chen, Gao; Zhou, Wei; Guan, Daqin; Sunarso, Jaka; Zhu, Yanping; Hu, Xuefeng; Zhang, Wei; Shao, Zongping

    2017-06-01

    Perovskite oxides exhibit potential for use as electrocatalysts in the oxygen evolution reaction (OER). However, their low specific surface area is the main obstacle to realizing a high mass-specific activity that is required to be competitive against the state-of-the-art precious metal-based catalysts. We report the enhanced performance of Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ (BSCF) for the OER with intrinsic activity that is significantly higher than that of the benchmark IrO 2 , and this result was achieved via fabrication of an amorphous BSCF nanofilm on a surface-oxidized nickel substrate by magnetron sputtering. The surface nickel oxide layer of the Ni substrate and the thickness of the BSCF film were further used to tune the intrinsic OER activity and stability of the BSCF catalyst by optimizing the electronic configuration of the transition metal cations in BSCF via the interaction between the nanofilm and the surface nickel oxide, which enables up to 315-fold enhanced mass-specific activity compared to the crystalline BSCF bulk phase. Moreover, the amorphous BSCF-Ni foam anode coupled with the Pt-Ni foam cathode demonstrated an attractive small overpotential of 0.34 V at 10 mA cm -2 for water electrolysis, with a BSCF loading as low as 154.8 μg cm -2 .

  20. Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba0.5Sr0.5Co0.8Fe0.2O3−δ nanofilms with tunable oxidation state

    Science.gov (United States)

    Chen, Gao; Zhou, Wei; Guan, Daqin; Sunarso, Jaka; Zhu, Yanping; Hu, Xuefeng; Zhang, Wei; Shao, Zongping

    2017-01-01

    Perovskite oxides exhibit potential for use as electrocatalysts in the oxygen evolution reaction (OER). However, their low specific surface area is the main obstacle to realizing a high mass-specific activity that is required to be competitive against the state-of-the-art precious metal–based catalysts. We report the enhanced performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) for the OER with intrinsic activity that is significantly higher than that of the benchmark IrO2, and this result was achieved via fabrication of an amorphous BSCF nanofilm on a surface-oxidized nickel substrate by magnetron sputtering. The surface nickel oxide layer of the Ni substrate and the thickness of the BSCF film were further used to tune the intrinsic OER activity and stability of the BSCF catalyst by optimizing the electronic configuration of the transition metal cations in BSCF via the interaction between the nanofilm and the surface nickel oxide, which enables up to 315-fold enhanced mass-specific activity compared to the crystalline BSCF bulk phase. Moreover, the amorphous BSCF–Ni foam anode coupled with the Pt–Ni foam cathode demonstrated an attractive small overpotential of 0.34 V at 10 mA cm−2 for water electrolysis, with a BSCF loading as low as 154.8 μg cm−2. PMID:28691090

  1. A magnetic route to measure the average oxidation state of mixed-valent manganese in manganese oxide octahedral molecular sieves (OMS).

    Science.gov (United States)

    Shen, Xiong-Fei; Ding, Yun-Shuang; Liu, Jia; Han, Zhao-Hui; Budnick, Joseph I; Hines, William A; Suib, Steven L

    2005-05-04

    A magnetic route has been applied for measurement of the average oxidation state (AOS) of mixed-valent manganese in manganese oxide octahedral molecular sieves (OMS). The method gives AOS measurement results in good agreement with titration methods. A maximum analysis deviation error of +/-7% is obtained from 10 sample measurements. The magnetic method is able to (1) confirm the presence of mixed-valent manganese and (2) evaluate AOS and the spin states of d electrons of both single oxidation state and mixed-valent state Mn in manganese oxides. In addition, the magnetic method may be extended to (1) determine AOS of Mn in manganese oxide OMS with dopant "diamagnetic" ions, such as reducible V5+ (3d0) ions, which is inappropriate for the titration method due to interference of redox reactions between these dopant ions and titration reagents, such as KMnO4, (2) evaluate the dopant "paramagnetic" ions that are present as clusters or in the OMS framework, and (3) determine AOS of other mixed-valent/single oxidation state ion systems, such as Mo3+(3d3)-Mo4+(3d2) systems and Fe3+ in FeCl3.

  2. Mixed oxides derived from layered double hydroxides as novel catalysts for phenol photodegradation

    Science.gov (United States)

    Puscasu, C. M.; Carja, G.; Mureseanu, M.; Zaharia, C.

    2017-08-01

    The removal of organic pollutants is nowadays a very challenging aspect of the environmental research. There are strong interests to develop novel semiconducting photocatalysts able to efficiently promote advanced oxidation reactions. The development of photocatalysts based on the mixtures of mixed oxides derived from layered double hydroxides (LDHs) - a family of naturally occurring anionic clays - might offer novel environmental-friendly solutions for the cost effective removal of organic pollutants. This work presents ZnO/ZnAl2O4, ZnO/Zn2TiO4 and ZnO/ZnCr2O4 as novel photocatalytic formulations for phenol degradation under UV irradiation. They were obtained by the controlled thermal treatment of the layered double hydroxides matrices (LDHs), as precursors materials, type ZnM-LDH (M = Al3+, Cr3+ or Ti4+). The LDHs were synthesized by the co-precipitation method at a constant pH. Controlled calcination at 650°C gives rise to solutions of mixed metal oxides. The structural and nanoarchitectonics characteristics of the studied catalysts were described by: XRD, SEM/TEM and TG/DTG techniques. Results show that in the photocatalytic process of the phenol degradation from aqueous solutions, ZnO/ZnCr2O4 and ZnO/ZnAl2O4 showed the best performance degrading ∼98% of phenol after 3.5 hs and 5 hs, respectively; while ZnO/Zn2TiO4 has degraded almost 80 % after 7.5 hs of UV irradiation. These results open new opportunities in the development of new cost effective photoresponsive formulations able to facilitate the photo-degradation of the organic pollution as “green” solution for removal of dangerous pollutants.

  3. Voltammetric and X-ray diffraction analysis of the early stages of the thermal crystallization of mixed Cu,Mn oxides

    Czech Academy of Sciences Publication Activity Database

    Grygar, Tomáš; Rojka, T.; Bezdička, Petr; Večerníková, Eva; Kovanda, F.

    2004-01-01

    Roč. 8, č. 4 (2004), s. 252-259 ISSN 1432-8488 R&D Projects: GA MŠk LN00A028 Institutional research plan: CEZ:AV0Z4032918 Keywords : amorphous phases * Cu,Mn oxides * hydrotalcite Subject RIV: CA - Inorganic Chemistry Impact factor: 0.984, year: 2004

  4. Results of the irradiation of mixed UO2 - PuO2 oxide fuel elements

    International Nuclear Information System (INIS)

    Mikailoff, H.; Mustelier, J.P.; Bloch, J.; Ezran, L.; Hayet, L.

    1966-01-01

    In order to study the behaviour of fuel elements used for the first charge of the reactor Rapsodie, a first batch of eleven needles was irradiated in the reactor EL3 and then examined. These needles (having a shape very similar lo that of the actual needles to be used) were made up of a stack of sintered mixed-oxide pellets: UO 2 containing about 10 per cent of PuO 2 . The density was 85 to 97 per cent of the theoretical, value. The diametral gap between the oxide and the stainless steel can was between 0,06 and 0,27 mm. The specific powers varied from 1230 to 2700 W/cm 3 and the can temperature was between 450 and 630 C. The maximum burn-up attained was 22000 MW days/tonne. Examination of the needles (metrology, radiography and γ-spectrography) revealed certain macroscopic changes, and the evolution of the fuel was shown by micrographic studies. These observations were used, together with flux measurements results, to calculate the temperature distribution inside the fuel. The volume of the fission gas produced was measured in some of the samples; the results are interpreted taking into account the temperature distribution in the oxide and the burn-up attained. Finally a study was made both of the behaviour of a fuel element whose central part was molten during irradiation, and of the effect of sodium which had penetrated into some of the samples following can rupture. (author) [fr

  5. Copper enhances the activity and salt resistance of mixed methane-oxidizing communities.

    Science.gov (United States)

    van der Ha, David; Hoefman, Sven; Boeckx, Pascal; Verstraete, Willy; Boon, Nico

    2010-08-01

    Effluents of anaerobic digesters are an underestimated source of greenhouse gases, as they are often saturated with methane. A post-treatment with methane-oxidizing bacterial consortia could mitigate diffuse emissions at such sites. Semi-continuously fed stirred reactors were used as model systems to characterize the influence of the key parameters on the activity of these mixed methanotrophic communities. The addition of 140 mg L(-1) NH (4) (+) -N had no significant influence on the activity nor did a temperature increase from 28 degrees C to 35 degrees C. On the other hand, addition of 0.64 mg L(-1) of copper(II) increased the methane removal rate by a factor of 1.5 to 1.7 since the activity of particulate methane monooxygenase was enhanced. The influence of different concentrations of NaCl was also tested, as effluents of anaerobic digesters often contain salt levels up to 10 g NaCl L(-1). At a concentration of 11 g NaCl L(-1), almost no methane-oxidizing activity was observed in the reactors without copper addition. Yet, reactors with copper addition exhibited a sustained activity in the presence of NaCl. A colorimetric test based on naphthalene oxidation showed that soluble methane monooxygenase was inhibited by copper, suggesting that the particulate methane monooxygenase was the active enzyme and thus more salt resistant. The results obtained demonstrate that the treatment of methane-saturated effluents, even those with increased ammonium (up to 140 mg L(-1) NH (4) (+) -N) and salt levels, can be mitigated by implementation of methane-oxidizing microbial consortia.

  6. Relationship between transport properties and phase transformations in mixed-conducting oxides

    International Nuclear Information System (INIS)

    Deng, Z.Q.; Yang, W.S.; Liu, W.; Chen, C.S.

    2006-01-01

    To elucidate the relationship between transport properties and phase transformations in mixed-conducting oxides, Sr 0.9 Ca 0.1 Co 0.89 Fe 0.11 O 3- δ (SCCFO) and SrCoO 3- δ (SCO) were chosen as the model materials and have been investigated in detail. Oxygen permeation measurements verified that both oxides are well permeable to oxygen at elevated temperatures, e.g., at 900 deg. C during a cooling procedure, oxygen permeation rates as large as 1.5 and 2.0 mL/min/cm 2 could be obtained with disk-shaped SCCFO and SCO membranes of thickness 1.5 mm, respectively. But when cooled to critical temperatures, the oxygen permeability of these kinds of oxides diminished sharply, which could be recovered by increasing the temperature again to certain values. Abrupt changes on electrical conductivity were also observed for both oxides around the same region of temperature as that of oxygen permeability. As indicated by high-temperature X-ray diffraction and thermal analysis, the SCCFO and SCO systems undergo phase transformation between a low-temperature orthorhombic brownmillerite structure (B) or a hexagonal 2H-type structure (H) and a high-temperature cubic perovskite structure (C), respectively. The present results suggest the observed abrupt changes in transport properties versus temperature are attributed to such phase transformation, which may be directly associated with the order-disorder transition of oxygen vacancies. Moreover, compared to the B/C transformation that mainly involves an order-disorder transition on the oxygen sublattice, the H/C one necessarily also involves the cooperative long-range reorganization on the cation sublattice. Therefore it occurs at a higher temperature and absorbs more heat quantity than those of B/C transformation

  7. Structure, activity and kinetics of supported molybdenum oxide and mixed molybdenum-vanadium oxide catalysts prepared by flame spray pyrolysis for propane OHD

    DEFF Research Database (Denmark)

    Høj, Martin; Kessler, Thomas; Beato, Pablo

    2013-01-01

    reflectance UV-vis spectroscopy and evaluated as catalysts for the oxidative dehydrogenation (ODH) of propane. The results show that samples with high specific surface areas between 122 and 182 m2/g were obtained, resulting in apparent MoOx and VOx surface densities from 0.7 to 7.7 nm -2 and 1.5 to 1.9 nm-2......, respectively. Raman spectroscopy, UV-vis spectroscopy and XRD confirmed the high dispersion of molybdenum and vanadia species on γ-Al2O3 as the main crystalline phase. Only at the highest loading of 15 wt% Mo, with theoretically more than monolayer coverage, some crystalline molybdenum oxide was observed....... For the mixed molybdenum-vanadium oxide catalysts the surface species were separate molybdenum oxide and vanadium oxide monomers at low loadings of molybdenum, but with increasing molybdenum loading interactions between surface molybdenum and vanadium oxide species were observed with Raman spectroscopy...

  8. Effect of H and OH desorption and diffusion on electronic structure in amorphous In-Ga-Zn-O metal-oxide-semiconductor diodes with various gate insulators

    Science.gov (United States)

    Hino, Aya; Morita, Shinya; Yasuno, Satoshi; Kishi, Tomoya; Hayashi, Kazushi; Kugimiya, Toshihiro

    2012-12-01

    Metal-oxide-semiconductor (MOS) diodes with various gate insulators (G/Is) were characterized by capacitance-voltage characteristics and isothermal capacitance transient spectroscopy (ICTS) to evaluate the effect of H and OH desorption and diffusion on the electronic structures in amorphous In-Ga-Zn-O (a-IGZO) thin films. The density and the distribution of the space charge were found to be varied depending on the nature of the G/I. In the case of thermally grown SiO2 (thermal SiO2) G/Is, a high space-charge region was observed near the a-IGZO and G/I interface. After thermal annealing, the space-charge density in the deeper region of the film decreased, whereas remained unchanged near the interface region. The ICTS spectra obtained from the MOS diodes with the thermal SiO2 G/Is consisted of two broad peaks at around 5 × 10-4 and 3 × 10-2 s before annealing, while one broad peak was observed at around 1 × 10-4 s at the interface and at around 1 × 10-3 s in the bulk after annealing. Further, the trap density was considerably high near the interface. In contrast, the space-charge density was high throughout the bulk region of the MOS diode when the G/I was deposited by chemical vapor deposition (CVD). The ICTS spectra from the MOS diodes with the CVD G/Is revealed the existence of continuously distributed trap states, suggesting formations of high-density tail states below the conduction band minimum. According to secondary ion mass spectroscopy analyses, desorption and outdiffusion of H and OH were clearly observed in the CVD G/I sample. These phenomena could introduce structural fluctuations in the a-IGZO films, resulting in the formation of the conduction band tail states. Thin-film transistors (TFTs) with the same gate structure as the MOS diodes were fabricated to correlate the electronic properties with the TFT performance, and it was found that TFTs with the CVD G/I showed a reduced saturation mobility. These results indicate that the electronic structures

  9. Direct observation of nanometer-scale amorphous layers and oxide crystallites at grain boundaries in polycrystalline Sr1−xKxFe2As2 superconductors

    KAUST Repository

    Wang, Lei

    2011-06-01

    We report here an atomic resolution study of the structure and composition of the grain boundaries in polycrystallineSr0.6K0.4Fe2As2superconductor. A large fraction of grain boundaries contain amorphous layers larger than the coherence length, while some others contain nanometer-scale crystallites sandwiched in between amorphous layers. We also find that there is significant oxygen enrichment at the grain boundaries. Such results explain the relatively low transport critical current density (Jc) of polycrystalline samples with respect to that of bicrystal films.

  10. High temperature oxidation behaviour of nanostructured cermet coatings in a mixed CO2 – O2 environment

    International Nuclear Information System (INIS)

    Farrokhzad, M A; Khan, T I

    2014-01-01

    Nanostructured ceramic-metallic (cermet) coatings composed of nanosized ceramic particles (α-Al 2 O3 and TiO 2 ) dispersed in a nickel matrix were co-electrodeposited and then oxidized at 500°C, 600°C and 700°C in a mixed gas using a Thermo-gravimetric Analysis (TGA) apparatus. The mixed gas was composed of 15% CO 2 , 10% O 2 and 75% N 2 . This research investigates the effects of CO 2 and O 2 partial pressures on time-depended oxidation rates for coatings and compared them to the results from atmospheric oxidation under similar temperatures. The increase in partial pressure of oxygen due to the presence of CO 2 at each tested temperature was calculated and correlated to the oxidation rate of the coatings. The results showed that the presence of CO 2 in the system increased the oxidation rate of cermet coatings when compared to atmospheric oxidation at the same temperature. It was also shown that the increase in the oxidation rate is not the result of CO2 acting as the primary oxidant but as a secondary oxidant which results in an increase of the total partial pressure of oxygen and consequently higher oxidation rates. The WDS and XRD analyses results showed that the presence of nanosized TiO 2 particles in a nickel matrix can improve oxidation behaviour of the coatings by formation of Ni-Ti compounds on oxidizing surface of the coating which was found beneficiary in reducing the oxidation rates for cermet coatings

  11. Spatial and temporal variability of nitrous oxide emissions in a mixed farming landscape of Denmark

    DEFF Research Database (Denmark)

    Schelde, Kirsten; Cellier, P; Bertolini, T

    2012-01-01

    Nitrous oxide (N2O) emissions from agricultural land are variable at the landscape scale due to variability in land use, management, soil type, and topography. A field experiment was carried out in a typical mixed farming landscape in Denmark, to investigate the main drivers of variations in N2O...... emissions, measured using static chambers. Measurements were made over a period of 20 months, and sampling was intensified during two weeks in spring 2009 when chambers were installed at ten locations or fields to cover different crops and topography and slurry was applied to three of the fields. N2O...... emissions during spring 2009 were relatively low, with maximum values below 20 ng N m−2 s−1. This applied to all land use types including winter grain crops, grasslands, meadows, and wetlands. Slurry application to wheat fields resulted in short-lived two-fold increases in emissions. The moderate N2O fluxes...

  12. Fabrication of 0.5-inch diameter FBR mixed oxide fuel pellets

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Benecke, M.W.; McCord, R.B.

    1979-01-01

    Large diameter (0.535 inch) mixed oxide fuel pellets for Fast Breeder Reactor application were successfully fabricated by the cold-press-and-sinter technique. Enriched UO 2 , PuO 2 -UO 2 , and PuO 2 -ThO 2 compositions were fabricated into nominally 90% theoretical density pellets for the UO 2 and PuO 2 -UO 2 compositions, and 88% and 93% T.D. for the PuO 2 -ThO 2 compositions. Some processing adjustments were required to achieve satisfactory pellet quality and density. Furnace heating rate was reduced from 200 to 50 0 C/h for the organic binder burnout cycle for the large, 0.535-inch diameter pellets to eliminate pellet cracking during sintering. Additional preslugging steps and die wall lubrication during pressing were used to eliminate pressing cracks in the PuO 2 -ThO 2 pellets

  13. The underwater coincidence counter for plutonium measurements in mixed-oxide fuel assemblies manual

    International Nuclear Information System (INIS)

    Eccleston, G.W.; Menlove, H.O.; Abhold, M.; Baker, M.; Pecos, J.

    1999-01-01

    This manual describes the Underwater Coincidence Counter (UWCC) that has been designed for the measurement of plutonium in mixed-oxide (MOX) fuel assemblies prior to irradiation. The UWCC uses high-efficiency 3 He neutron detectors to measure the spontaneous-fission and induced-fission rates in the fuel assembly. Measurements can be made on MOX fuel assemblies in air or underwater. The neutron counting rate is analyzed for singles, doubles, and triples time correlations to determine the 240 Pu effective mass per unit length of the fuel assembly. The system can verify the plutonium loading per unit length to a precision of less than 1% in a measurement time of 2 to 3 minutes. System design, components, performance tests, and operational characteristics are described in this manual

  14. Fuel-cladding mechanical interaction effects in fast reactor mixed oxide fuel

    International Nuclear Information System (INIS)

    Boltax, A.; Biancheria, A.

    1977-01-01

    Thermal and fast reactor irradiation experiments on mixed oxide fuel pins under steady-state and power change conditions reveal evidence for significant fuel-cladding mechanical interaction (FCMI) effects. Analytical studies with the LIFE-III fuel performance code indicate that high cladding stresses can be produced by general and local FCMI effects. Also, evidence is presented to show that local cladding strains can be caused by the accumulation of cesium at the fuel-cladding interface. Although it is apparent that steady-state FCMI effects have not given rise to cladding breaches in current fast reactors, it is anticipated that FCMI may become more important in the future because of interest in: higher fuel burnups; increased power ramp rates; load follow operation; and low swelling cladding alloys. (author)

  15. Autoradiographic measurement of Pu distribution in mixed-oxide nuclear fuel

    International Nuclear Information System (INIS)

    Green, D.R.; Rasmussen, D.E.; Gray, W.H.

    1976-09-01

    The autoradiographic method described was developed for rapid, economical determination of the Pu distribution and microhomogeneity in mixed oxide fuel. High Pu concentration regions of any size down to 13 microns in diameter can be reproducibly resolved using this method. The new method uses computerized scanning and analysis, and includes automatic self-calibration to virtually elimate variations resulting from photographic film and processing. The speed of this new method allows analysis of enough data to ensure statistical reliability of occurrence frequencies, even for sparse populations of Pu-rich regions with diameters greater than 60 microns. Determination of these occurrence frequencies is an important factor in controlling fuel quality to ensure safe, efficient operation in a Liquid Metal Fast Breeder Reactor

  16. A safeguards approach applicable to A plutonium mixed oxide powder plant

    International Nuclear Information System (INIS)

    Ismail, B.

    1988-01-01

    This report describes a safeguards approach possible to apply in a plutonium mixed oxide powder plant which handles large amounts of plutonium in the light of experience gained in some other plutonium bulk handling facilities in the nuclear fuel cycle under IAEA safeguards. The approach is based on performing two routine verifications of the nuclear material per month without interrupting the process operations in the plant combined with continual flow verifications for ongoing process and transfer operations; and two physical inventory verifications per year. The total annual effort to cover all the verifications was estimated to be in the range of 150 to 240 man day. The analysis of the approach showed that with further advances in the Non destructive assay measurement techniques for the determination of plutonium content in solutions and MOX powder would lead to development of the approach towards increase in effectiveness and decrease in the verification effort. 2 fig., 4 tab

  17. Technical specification: Mixed-oxide pellets for the light-water reactor irradiation demonstration test

    International Nuclear Information System (INIS)

    Cowell, B.S.

    1997-06-01

    This technical specification is a Level 2 Document as defined in the Fissile Materials Disposition Program Light-Water Reactor Mixed-oxide Fuel Irradiation Test Project Plan. It is patterned after the pellet specification that was prepared by Atomic Energy of Canada, Limited, for use by Los Alamos National Laboratory in fabrication of the test fuel for the Parallex Project, adjusted as necessary to reflect the differences between the Canadian uranium-deuterium reactor and light-water reactor fuels. This specification and the associated engineering drawing are to be utilized only for preparation of test fuel as outlined in the accompanying Request for Quotation and for additional testing as directed by Oak Ridge National Laboratory or the Department of Energy

  18. Fluorine and chlorine determination in mixed uranium-plutonium oxide fuel and plutonium dioxide

    International Nuclear Information System (INIS)

    Elinson, S.V.; Zemlyanukhina, N.A.; Pavlova, I.V.; Filatkina, V.P.; Tsvetkova, V.T.

    1981-01-01

    A technique of fluorine and chlorine determination in the mixed uranium-plutonium oxide fuel and plutonium dioxide, based on their simultaneous separation by means of pyrohydrolysis, is developed. Subsequently, fluorine is determined by photometry with alizarincomplexonate of lanthanum or according to the weakening of zirconium colouring with zylenol orange. Chlorine is determined using the photonephelometric method according to the reaction of chloride-ion interaction with silver nitrate or by spectrophotometric method according to the reaction with mercury rhodanide. The lower limit of fluorine determination is -6x10 -5 %, of chlorine- 1x10 -4 % in the sample of 1g. The relative mean quadratic deviation of the determination result (Ssub(r)), depends on the character of the material analyzed and at the content of nx10 -4 - nx10 -3 mass % is equal to from 0.05 to 0.32 for fluorine and from 0.11 to 0.35 for chlorine [ru

  19. Thorium-based mixed oxide fuel in a pressurized water reactor: A feasibility analysis with MCNP

    Science.gov (United States)

    Tucker, Lucas Powelson

    This dissertation investigates techniques for spent fuel monitoring, and assesses the feasibility of using a thorium-based mixed oxide fuel in a conventional pressurized water reactor for plutonium disposition. Both non-paralyzing and paralyzing dead-time calculations were performed for the Portable Spectroscopic Fast Neutron Probe (N-Probe), which can be used for spent fuel interrogation. Also, a Canberra 3He neutron detector's dead-time was estimated using a combination of subcritical assembly measurements and MCNP simulations. Next, a multitude of fission products were identified as candidates for burnup and spent fuel analysis of irradiated mixed oxide fuel. The best isotopes for these applications were identified by investigating half-life, photon energy, fission yield, branching ratios, production modes, thermal neutron absorption cross section and fuel matrix diffusivity. 132I and 97Nb were identified as good candidates for MOX fuel on-line burnup analysis. In the second, and most important, part of this work, the feasibility of utilizing ThMOX fuel in a pressurized water reactor (PWR) was first examined under steady-state, beginning of life conditions. Using a three-dimensional MCNP model of a Westinghouse-type 17x17 PWR, several fuel compositions and configurations of a one-third ThMOX core were compared to a 100% UO2 core. A blanket-type arrangement of 5.5 wt% PuO2 was determined to be the best candidate for further analysis. Next, the safety of the ThMOX configuration was evaluated through three cycles of burnup at several using the following metrics: axial and radial nuclear hot channel factors, moderator and fuel temperature coefficients, delayed neutron fraction, and shutdown margin. Additionally, the performance of the ThMOX configuration was assessed by tracking cycle length, plutonium destroyed, and fission product poison concentration.

  20. Synthesis, characterization and thermal expansion studies on thorium-praseodymium mixed oxide solid solutions

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Antony, M.P.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2010-01-01

    Full text: Thorium-praseodymium mixed oxide solid solutions containing 15, 25, 40 and 55 mole percent of praseodymia were synthesized by mixing the solutions of thorium nitrate in water and praseodymium oxide (Pr 6 O 11 ) in conc. HNO 3 . Subsequently, their hydroxides were co-precipitated by the addition of aqueous ammonia. Further the precipitate was dried at 50 deg C, calcined at 600 deg C for 4 hours and sintered at 1200 deg C for 6 h in air. X-ray diffraction measurements were performed for phase identification and lattice parameter derivation. Single-phase fluorite structure was observed for all the compositions. Bulk and theoretical densities of solid solutions were also determined by immersion and X-ray techniques. Thermal expansion coefficients and percentage linear thermal expansion of the solid solutions were determined using high temperature X-ray diffraction technique in the temperature range 300 to 1700 K for the first time. The room temperature lattice constants estimated for above compositions are 0.5578, 0.5565, 0.5545 and 0.5526 nm, respectively. The mean linear thermal expansion coefficients for the solid solutions are 15.48 x 10 -6 K -1 , 18.35 x 10 -6 K -1 , 22.65 x 10 -6 K -1 and 26.95 x 10 -6 K -1 , respectively. The percentage linear thermal expansions in this temperature range are 1.68, 1.89, 2.21 and 2.51 respectively. It is seen that the solid solutions are stable up to 1700 K. It is also seen that the effect and nature of the dopant are the important parameters influencing the thermal expansion of the ThO 2 . The lattice parameter of the solid solutions exhibited a decreasing trend with respect to praseodymia addition. The percentage linear thermal expansion of the solid solutions increases steadily with increasing temperature

  1. Evaluation of tubular reactor designs for supercritical water oxidation of U.S. Department of Energy mixed waste

    International Nuclear Information System (INIS)

    Barnes, C.M.

    1994-12-01

    Supercritical water oxidation (SCWO) is an emerging technology for industrial waste treatment and is being developed for treatment of the US Department of Energy (DOE) mixed hazardous and radioactive wastes. In the SCWO process, wastes containing organic material are oxidized in the presence of water at conditions of temperature and pressure above the critical point of water, 374 C and 22.1 MPa. DOE mixed wastes consist of a broad spectrum of liquids, sludges, and solids containing a wide variety of organic components plus inorganic components including radionuclides. This report is a review and evaluation of tubular reactor designs for supercritical water oxidation of US Department of Energy mixed waste. Tubular reactors are evaluated against requirements for treatment of US Department of Energy mixed waste. Requirements that play major roles in the evaluation include achieving acceptable corrosion, deposition, and heat removal rates. A general evaluation is made of tubular reactors and specific reactors are discussed. Based on the evaluations, recommendations are made regarding continued development of supercritical water oxidation reactors for US Department of Energy mixed waste

  2. Comparison of the redox activities of sol-gel and conventionally prepared Bi-Mo-Ti mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Wildberger, M.; Grundwaldt, J.D.; Mallat, T.; Baiker, A. [Lab. of Technical Chemistry, Swiss Federal Inst. of Technology, ETH-Zentrum, Zuerich (Switzerland)

    1998-12-31

    Novel sol-gel Bi-Mo-Ti oxides have been prepared and characterized by XRD, XPS, FT-Raman and HRTEM. The surface Bi{sup 3+} and Mo{sup 6+} species of some xerogels and an aerogel could be reduced and oxidized at room temperature, whereas the conventionally prepared reference materials were not reduced by H{sub 2} below 300 C. The unusual redox properties, under very mild conditions, are likely due to the unique morphology of Bi-Mo-oxides stabilized by titania. During butadiene oxidation to furan at above 400 C to sol-gel mixed oxides restructured considerably and their performance was barely better than that of titania-supported Bi-Mo oxides. (orig.)

  3. Mediated electrochemical oxidation treatment for Rocky Flats combustible low-level mixed waste. Final report, FY 1993 and 1994

    International Nuclear Information System (INIS)

    Chiba, Z.; Lewis, P.R.; Murguia, L.C.

    1994-09-01

    Mediated Electrochemical Oxidation (MEO) is an aqueous process which destroys hazardous organics by oxidizing a mediator at the anode of an electrochemical cell; the mediator in turn oxidizes the organics within the bulk of the electrolyte. With this process organics can be nearly completely destroyed, that is, the carbon and hydrogen present in the hydrocarbon are almost entirely mineralized to carbon dioxide and water. The MEO process is also capable of dissolving radioactive materials, including difficult-to-dissolve compounds such as plutonium oxide. Hence, this process can treat mixed wastes, by destroying the hazardous organic components of the waste, and dissolving the radioactive components. The radioactive material can be recovered if desired, or disposed of as non-mixed radioactive waste. The process is inherently safe, since the hazardous and radioactive materials are completely contained in the aqueous phase, and the system operates at low temperatures (below 80 degree C) and at ambient pressures

  4. Removal of Hazardous Pollutants from Wastewaters: Applications of TiO2-SiO2 Mixed Oxide Materials

    Directory of Open Access Journals (Sweden)

    Shivatharsiny Rasalingam

    2014-01-01

    Full Text Available The direct release of untreated wastewaters from various industries and households results in the release of toxic pollutants to the aquatic environment. Advanced oxidation processes (AOP have gained wide attention owing to the prospect of complete mineralization of nonbiodegradable organic substances to environmentally innocuous products by chemical oxidation. In particular, heterogeneous photocatalysis has been demonstrated to have tremendous promise in water purification and treatment of several pollutant materials that include naturally occurring toxins, pesticides, and other deleterious contaminants. In this work, we have reviewed the different removal techniques that have been employed for water purification. In particular, the application of TiO2-SiO2 binary mixed oxide materials for wastewater treatment is explained herein, and it is evident from the literature survey that these mixed oxide materials have enhanced abilities to remove a wide variety of pollutants.

  5. Mixed fuel strategy for carbon deposition mitigation in solid oxide fuel cells at intermediate temperatures.

    Science.gov (United States)

    Su, Chao; Chen, Yubo; Wang, Wei; Ran, Ran; Shao, Zongping; Diniz da Costa, João C; Liu, Shaomin

    2014-06-17

    In this study, we propose and experimentally verified that methane and formic acid mixed fuel can be employed to sustain solid oxide fuel cells (SOFCs) to deliver high power outputs at intermediate temperatures and simultaneously reduce the coke formation over the anode catalyst. In this SOFC system, methane itself was one part of the fuel, but it also played as the carrier gas to deliver the formic acid to reach the anode chamber. On the other hand, the products from the thermal decomposition of formic acid helped to reduce the carbon deposition from methane cracking. In order to clarify the reaction pathways for carbon formation and elimination occurring in the anode chamber during the SOFC operation, O2-TPO and SEM analysis were carried out together with the theoretical calculation. Electrochemical tests demonstrated that stable and high power output at an intermediate temperature range was well-maintained with a peak power density of 1061 mW cm(-2) at 750 °C. With the synergic functions provided by the mixed fuel, the SOFC was running for 3 days without any sign of cell performance decay. In sharp contrast, fuelled by pure methane and tested at similar conditions, the SOFC immediately failed after running for only 30 min due to significant carbon deposition. This work opens a new way for SOFC to conquer the annoying problem of carbon deposition just by properly selecting the fuel components to realize their synergic effects.

  6. Mixed alkali effect on the spectroscopic properties of alkali-alkaline earth oxide borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, G., E-mail: srinu123g@gmail.com; Ramesh, B.; Shareefuddin, Md.; Chary, M. N.; Sayanna, R. [Department of Physics, Osmania University, Hyderabad, Telangana, India. (India)

    2016-05-06

    The mixed alkali and alkaline earth oxide borate glass with the composition xK{sub 2}O - (25-x) Li{sub 2}O-12.5BaO-12.5MgO-50B{sub 2}O{sub 3} (x = 0, 5, 10, 15, 20 and 25mol %) and doped with 1mol% CuO were prepared by the melt quenching technique. From the optical absorption spectra the optical band gap, electronic polarizability(α{sub 0}2-), interaction parameter (A), theoretical and experimental optical basicity (Λ) values were evaluated. From the Electron Paramagnetic Resonance (EPR) spectral data the number of spins (N) and susceptibility (χ) were evaluated. The values of (α{sub 0}2-), and (Λ) increases with increasing of K{sub 2}O content and electronic polarizability and interaction parameter show opposite behaviuor which may be due to the creation of non-bridging oxygens and expansion of borate network. The reciprocal of susceptibility (1/χ) and spin concentration (N) as a function of K{sub 2}O content, varied nonlinearly which may be due to creation of non-bridging oxygens in the present glass system. This may be attributed to mixed alkali effect (MAE).

  7. Tunable Mixed Ionic/Electronic Conductivity and Permittivity of Graphene Oxide Paper for Electrochemical Energy Conversion.

    Science.gov (United States)

    Bayer, Thomas; Bishop, Sean R; Perry, Nicola H; Sasaki, Kazunari; Lyth, Stephen M

    2016-05-11

    Graphene oxide (GO) is a two-dimensional graphitic carbon material functionalized with oxygen-containing surface functional groups. The material is of interest in energy conversion, sensing, chemical processing, gas barrier, and electronics applications. Multilayer GO paper has recently been applied as a new proton conducting membrane in low temperature fuel cells. However, a detailed understanding of the electrical/dielectric properties, including separation of the ionic vs electronic contributions under relevant operating conditions, has so far been lacking. Here, the electrical conductivity and dielectric permittivity of GO paper are investigated in situ from 30 to 120 °C, and from 0 to 100% relative humidity (RH) using impedance spectroscopy. These are related to the water content, measured by thermogravimetric analysis. With the aid of electron blocking measurements, GO is demonstrated to be a mixed electronic-protonic conductor, and the ion transference number is derived for the first time. For RH > 40%, conductivity is dominated by proton transport (with a maximum of 0.5 mS/cm at 90 °C and 100% RH). For RH permittivity of GO paper increases with decreasing humidity, from ∼10 at 100% RH to several 1000 at 10% RH. These results underline the potential of GO for application not only as a proton conducting electrolyte but also as a mixed conducting electrode material under appropriate conditions. Such materials are highly applicable in electrochemical energy conversion and storage devices such as fuel cells and electrolyzers.

  8. Highly efficient electrochemical responses on single crystalline ruthenium-vanadium mixed metal oxide nanowires.

    Science.gov (United States)

    Chun, Sung Hee; Choi, Hyun-A; Kang, Minkyung; Koh, Moonjee; Lee, Nam-Suk; Lee, Sang Cheol; Lee, Minyung; Lee, Youngmi; Lee, Chongmok; Kim, Myung Hwa

    2013-09-11

    Highly efficient single crystalline ruthenium-vanadium mixed metal oxide (Ru1-xVxO2, 0≤x≤1) nanowires were prepared on a SiO2 substrate and a commercial Au microelectrode for the first time through a vapor-phase transport process by adjusting the mixing ratios of RuO2 and VO2 precursors. Single crystalline Ru1-xVxO2 nanowires show homogeneous solid-solution characteristics as well as the distinct feature of having remarkably narrow dimensional distributions. The electrochemical observations of a Ru1-xVxO2 (x=0.28 and 0.66)-decorated Au microelectrode using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) demonstrate favorable charge-transfer kinetics of [Fe(CN)6]3-/4- and Ru(NH3)6(3+/2+) couples compared to that of a bare Au microelectrode. The catalytic activity of Ru1-xVxO2 for oxygen and H2O2 reduction at neutral pH increases as the fraction of vanadium increases within our experimental conditions, which might be useful in the area of biofuel cells and biosensors.

  9. Optimization of Cs Content in Co-Mn-Al Mixed Oxide as Catalyst for N2O Decomposition.

    Czech Academy of Sciences Publication Activity Database

    Chromčáková, Ž.; Obalová, L.; Kustrowski, P.; Drozdek, M.; Karásková, K.; Jirátová, Květa; Kovanda, F.

    2015-01-01

    Roč. 41, č. 12 (2015), s. 9319-9332 ISSN 0922-6168. [Pannonian Symposium on Catalysis /12./. Třešť, 16.09.2014-20.09.2014] R&D Projects: GA ČR GA14-13750S Institutional support: RVO:67985858 Keywords : nitrous oxide * mixed oxide catalysts * cesium promoter * layered double hydroxides Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.833, year: 2015

  10. EBSD and TEM Characterization of High Burn-up Mixed Oxide Fuel

    International Nuclear Information System (INIS)

    Teague, Melissa C; Gorman, Brian P.; Miller, Brandon D; King, Jeffrey

    2014-01-01

    Understanding and studying the irradiation behavior of high burn-up oxide fuel is critical to licensing of future fast breeder reactors. Advancements in experimental techniques and equipment are allowing for new insights into previously irradiated samples. In this work dual column focused ion beam (FIB)/scanning electron microscope (SEM) was utilized to prepared transmission electron microscope samples from mixed oxide fuel with a burn-up of 6.7% FIMA. Utilizing the FIB/SEM for preparation resulted in samples with a dose rate of <0.5 mRem/h compared to approximately 1.1 R/h for a traditionally prepared TEM sample. The TEM analysis showed that the sample taken from the cooler rim region of the fuel pellet had approximately 2.5x higher dislocation density than that of the sample taken from the mid-radius due to the lower irradiation temperature of the rim. The dual column FIB/SEM was additionally used to prepared and serially slice approximately 25 um cubes. High quality electron back scatter diffraction (EBSD) were collected from the face at each step, showing, for the first time, the ability to obtain EBSD data from high activity irradiated fuel

  11. Water gas shift reaction over Cu catalyst supported by mixed oxide materials for fuel cell application

    Directory of Open Access Journals (Sweden)

    Tepamatr Pannipa

    2016-01-01

    Full Text Available The water gas shift activities of Cu on ceria and Gd doped ceria have been studied for the further enhancement of hydrogen purity [1] after the steam reforming of ethanol. The catalytic properties of commercial catalysts were also studied to compare with the as-prepared catalysts. Copper-containing cerium oxide materials are shown in this work to be suitable for the high temperature. Copper-ceria is a stable high-temperature shift catalyst, unlike iron-chrome catalysts that deactivate severely in CO2-rich gases. We found that 5%Cu/10%GDC(D has much higher activity than other copper ceria based catalysts. The finely dispersed CuO species is favorable to the higher activity, which explained the activity enhancement of this catalyst. The kinetics of the WGS reaction over Cu catalysts supported by mixed oxide materials were measured in the temperature range 200-400 °C. An independence of the CO conversion rate on CO2 and H2 was found.

  12. Influence of oxygen-metal ratio on mixed-oxide fuel performance

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Leggett, R.D.

    1979-04-01

    The fuel oxygen-to-metal ratio (O/M) is recognized as an important consideration for performance of uranium--plutonium oxide fuels. An overview of the effects of differing O/M's on the irradiation performance of reference design mixed-oxide fuel in the areas of chemical and mechanical behavior, thermal performance, and fission gas behavior is presented. The pellet fuel has a nominal composition of 75 wt% UO 2 + 25 wt% PuO 2 at a pellet density of approx. 90% TD. for nominal conditions this results in a smeared density of approx. 85%. The cladding in all cases is 20% CW type 316 stainless steel with an outer diameter of 5.84 to 6.35 mm. O/M has been found to significantly influence fuel pin chemistry, mainly FCCI and fission product and fuel migration. It has little effect on thermal performance and overall mechanical behavior or fission gas release. The effects of O/M (ranging from 1.938 to 1.984) in the areas of fuel pin chemistry, to date, have not resulted in any reduction in fuel pin performance capability to goal burnups of approx. 8 atom% or more

  13. Conversion of Syngas-Derived C2+ Mixed Oxygenates to C3-C5 Olefins over ZnxZryOz Mixed Oxides Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Colin D.; Lebarbier, Vanessa M.; Flake, Matthew D.; Ramasamy, Karthikeyan K.; Kovarik, Libor; Bowden, Mark E.; Onfroy, Thomas; Dagle, Robert A.

    2016-04-01

    In this study we report on a ZnxZryOz mixed oxide type catalyst capable of converting a syngas-derived C2+ mixed oxygenate feedstock to isobutene-rich olefins. Aqueous model feed comprising of ethanol, acetaldehyde, acetic acid, ethyl acetate, methanol, and propanol was used as representative liquid product derived from a Rh-based mixed oxygenate synthesis catalyst. Greater than 50% carbon yield to C3-C5 mixed olefins was demonstrated when operating at 400-450oC and 1 atm. In order to rationalize formation of the products observed feed components were individually evaluated. Major constituents of the feed mixture (ethanol, acetaldehyde, acetic acid, and ethyl acetate) were found to produce isobutene-rich olefins. C-C coupling was also demonstrated for propanol feedstock - a minor constituent of the mixed oxygenate feed - producing branched C6 olefins, revealing scalability to alcohols higher than ethanol following an analogous reaction pathway. Using ethanol and propanol feed mixtures, cross-coupling reactions produced mixtures of C4, C5, and C6 branched olefins. The presence of H2 in the feed was found to facilitate hydrogenation of the ketone intermediates, thus producing straight chain olefins as byproducts. While activity loss from coking is observed complete catalyst regeneration is achieved by employing mild oxidation. For conversion of the mixed oxygenate feed a Zr/Zn ratio of 2.5 and a reaction temperature of 450oC provides the best balance of stability, activity, and selectivity. X-ray diffraction and scanning transmission electron microscopy analysis reveals the presence of primarily cubic phase ZrO2 and a minor amount of the monoclinic phase, with ZnO being highly dispersed in the lattice. The presence of ZnO appears to stabilize the cubic phase resulting in less monoclinic phase as the ZnO concentration increases. Infrared spectroscopy shows the mixed oxide acid sites are characterized as primarily Lewis type acidity. The direct relationship between

  14. Application of Ni-Oxide@TiO2 Core-Shell Structures to Photocatalytic Mixed Dye Degradation, CO Oxidation, and Supercapacitors

    Directory of Open Access Journals (Sweden)

    Seungwon Lee

    2016-12-01

    Full Text Available Performing diverse application tests on synthesized metal oxides is critical for identifying suitable application areas based on the material performances. In the present study, Ni-oxide@TiO2 core-shell materials were synthesized and applied to photocatalytic mixed dye (methyl orange + rhodamine + methylene blue degradation under ultraviolet (UV and visible lights, CO oxidation, and supercapacitors. Their physicochemical properties were examined by field-emission scanning electron microscopy, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, and UV-visible absorption spectroscopy. It was shown that their performances were highly dependent on the morphology, thermal treatment procedure, and TiO2 overlayer coating.

  15. Amorphous Phases on the Surface of Mars

    Science.gov (United States)

    Rampe, E. B.; Morris, R. V.; Ruff, S. W.; Horgan, B.; Dehouck, E.; Achilles, C. N.; Ming, D. W.; Bish, D. L.; Chipera, S. J.

    2014-01-01

    Both primary (volcanic/impact glasses) and secondary (opal/silica, allophane, hisingerite, npOx, S-bearing) amorphous phases appear to be major components of martian surface materials based on orbital and in-situ measurements. A key observation is that whereas regional/global scale amorphous components include altered glass and npOx, local scale amorphous phases include hydrated silica/opal. This suggests widespread alteration at low water-to-rock ratios, perhaps due to snow/ice melt with variable pH, and localized alteration at high water-to-rock ratios. Orbital and in-situ measurements of the regional/global amorphous component on Mars suggests that it is made up of at least three phases: npOx, amorphous silicate (likely altered glass), and an amorphous S-bearing phase. Fundamental questions regarding the composition and the formation of the regional/global amorphous component(s) still remain: Do the phases form locally or have they been homogenized through aeolian activity and derived from the global dust? Is the parent glass volcanic, impact, or both? Are the phases separate or intimately mixed (e.g., as in palagonite)? When did the amorphous phases form? To address the question of source (local and/or global), we need to look for variations in the different phases within the amorphous component through continued modeling of the chemical composition of the amorphous phases in samples from Gale using CheMin and APXS data. If we find variations (e.g., a lack of or enrichment in amorphous silicate in some samples), this may imply a local source for some phases. Furthermore, the chemical composition of the weathering products may give insight into the formation mechanisms of the parent glass (e.g., impact glasses contain higher Al and lower Si [30], so we might expect allophane as a weathering product of impact glass). To address the question of whether these phases are separate or intimately mixed, we need to do laboratory studies of naturally altered samples made

  16. Development of a novel wet oxidation process for hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Dhooge, P.M.

    1994-01-01

    Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. The over all objective of the effort described here is to develop a novel catalytic wet oxidation process for the treatment of these multi-component wastes, with the aim of providing a versatile, non-thermal method which will destroy hazardous organic compounds while simultaneously containing and concentrating toxic and radioactive metals for recovery or disposal in a readily stabilized matrix. The DETOX process uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials. The metal catalysts are in the form of salts dissolved in a dilute acid solution. A typical catalyst composition is 60% ferric chloride, 3--4% hydrochloric acid, 0.13% platinum ions, and 0.13% ruthenium ions in a water solution. The catalyst solution is maintained at 423--473 K. Wastes are introduced into contact with the solution, where their organic portion is oxidized to carbon dioxide and water. If the organic portion is chlorinated, hydrogen chloride will be produced as a product. The process is a viable alternative to incineration for the treatment of organic mixed wastes. Estimated costs for waste treatment using the process are from $2.50/kg to $25.00/kg, depending on the size of the unit and the amount of waste processed. Process units can be mobile for on-site treatment of wastes. Results from phase 1 and 2, design and engineering studies, are described

  17. Dissolution of thorium/uranium mixed oxide in nitric acid-hydrofluoric acid solution

    International Nuclear Information System (INIS)

    Filgueiras, S.A.C.

    1984-01-01

    The dissolution process of thorium oxide and mixed uranium-thorium oxide is studied, as a step of the head-end of the fuel reprocessing. An extensive bibliography was analysed, concerning the main aspects of the system, specially the most important process variables. Proposed mechanisms and models for the thorium oxide dissolution are presented. The laboratory tests were performed in two phases: at first, powdered thoria was used as the material to be dissolved. The objective was to know how changes in he concentrations of the dissolvent solution components HNO 3 , HF and Al(NO 3 ) 3 affect the dissolution rate. The tests were planned according to the fractional factorial method. Thes results showed that it is advantageous to work with powdered material, since the reaction occurs rapidly. And, if the Thorex solution (HNO 3 13M, HF 0.05M and Al(NO 3 ) 3 0.10M) is a suitable dissolvent, it was verified that it is possible to reduce the concentration of either nitric or fluoridric acid, without reducing the reaction rate to an undesirable value. It was also observed significant interaction between the components of the dissolvent solution. In the second phase of the tests, (Th, 5%U)O 2 sintered pellets were used. The main goals were to know the pellets dissolution behaviour and to compare the results for different pellets among themselves. It was observed that the metallurgical history of the material strongly influences its dissolution, specially the density and the microstructure. It was also studied how the (Th,U)O 2 mass/Thorex solution volume ratio affects the time needed to obtain an 1 M Th/liter solution. The activation energy for the reaction was obtained. (Author) [pt

  18. Effects of photochemical oxidation on the mixing state and light absorption of black carbon in the urban atmosphere of China

    Science.gov (United States)

    Wang, Qiyuan; Huang, Rujin; Zhao, Zhuzi; Cao, Junji; Ni, Haiyan; Tie, Xuexi; Zhu, Chongshu; Shen, Zhenxing; Wang, Meng; Dai, Wenting; Han, Yongming; Zhang, Ningning; Prévôt, André S. H.

    2017-04-01

    The relationship between the refractory black carbon (rBC) aerosol mixing state and the atmospheric oxidation capacity was investigated to assess the possible influence of oxidants on the particles’ light absorption effects at two large cities in China. The number fraction of thickly-coated rBC particles (F rBC) was positively correlated with a measure of the oxidant concentrations (OX = O3 + NO2), indicating an enhancement of coated rBC particles under more oxidizing conditions. The slope of a linear regression of F rBC versus OX was 0.58% ppb-1 for Beijing and 0.84% ppb-1 for Xi’an, and these relationships provide some insights into the evolution of rBC mixing state in relation to atmospheric oxidation processes. The mass absorption cross-section of rBC (MACrBC) increased with OX during the daytime at Xi’an, at a rate of 0.26 m2 g-1 ppb-1, suggesting that more oxidizing conditions lead to internal mixing that enhances the light-absorbing capacity of rBC particles. Understanding the dependence of the increasing rates of F rBC and MACrBC as a function of OX may lead to improvements of climate models that deal with the warming effects, but more studies in different cities and seasons are needed to gauge the broader implications of these findings.

  19. Transparent conductive electrodes of mixed TiO2−x–indium tin oxide for organic photovoltaics

    KAUST Repository

    Lee, Kyu-Sung

    2012-05-22

    A transparent conductive electrode of mixed titanium dioxide (TiO2−x)–indium tin oxide (ITO) with an overall reduction in the use of indium metal is demonstrated. When used in organic photovoltaicdevices based on bulk heterojunction photoactive layer of poly (3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester, a power conversion efficiency of 3.67% was obtained, a value comparable to devices having sputtered ITO electrode. Surface roughness and optical efficiency are improved when using the mixed TiO2−x–ITO electrode. The consumption of less indium allows for lower fabrication cost of such mixed thin filmelectrode.

  20. Effect of preparation procedure on the formation of nanostructuredceria–zirconia mixed oxide catalysts for ethyl acetate oxidation:Homogeneous precipitation with urea vs template-assistedhydrothermal synthesis

    Czech Academy of Sciences Publication Activity Database

    Tsoncheva, T.; Ivanova, R.; Henych, Jiří; Dimitrov, M.; Kormunda, M.; Kovacheva, D.; Scotti, N.; Dal Santo, V.; Štengl, Václav

    2015-01-01

    Roč. 502, JUL (2015), s. 418-432 ISSN 0926-860X Institutional support: RVO:61388980 Keywords : Ceria–zirconia mixed oxides * Template -assisted hydrothermal method * Urea hydrolysis * Ethyl acetate oxidationa Subject RIV: CA - Inorganic Chemistry Impact factor: 4.012, year: 2015

  1. Uranium incorporation into amorphous silica.

    Science.gov (United States)

    Massey, Michael S; Lezama-Pacheco, Juan S; Nelson, Joey M; Fendorf, Scott; Maher, Kate

    2014-01-01

    High concentrations of uranium are commonly observed in naturally occurring amorphous silica (including opal) deposits, suggesting that incorporation of U into amorphous silica may represent a natural attenuation mechanism and promising strategy for U remediation. However, the stability of uranium in opaline silicates, determined in part by the binding mechanism for U, is an important factor in its long-term fate. U may bind directly to the opaline silicate matrix, or to materials such as iron (hydr)oxides that are subsequently occluded within the opal. Here, we examine the coordination environment of U within opaline silica to elucidate incorporation mechanisms. Precipitates (with and without ferrihydrite inclusions) were synthesized from U-bearing sodium metasilicate solutions, buffered at pH ∼ 5.6. Natural and synthetic solids were analyzed with X-ray absorption spectroscopy and a suite of other techniques. In synthetic amorphous silica, U was coordinated by silicate in a double corner-sharing coordination geometry (Si at ∼ 3.8-3.9 Å) and a small amount of uranyl and silicate in a bidentate, mononuclear (edge-sharing) coordination (Si at ∼ 3.1-3.2 Å, U at ∼ 3.8-3.9 Å). In iron-bearing synthetic solids, U was adsorbed to iron (hydr)oxide, but the coordination environment also contained silicate in both edge-sharing and corner-sharing coordination. Uranium local coordination in synthetic solids is similar to that of natural U-bearing opals that retain U for millions of years. The stability and extent of U incorporation into opaline and amorphous silica represents a long-term repository for U that may provide an alternative strategy for remediation of U contamination.

  2. The decomposition of mixed oxide Ag2Cu2O3: Structural features and the catalytic properties in CO and C2H4 oxidation

    Science.gov (United States)

    Svintsitskiy, Dmitry A.; Kardash, Tatyana Yu.; Slavinskaya, Elena M.; Stonkus, Olga A.; Koscheev, Sergei V.; Boronin, Andrei I.

    2018-01-01

    The mixed silver-copper oxide Ag2Cu2O3 with a paramelaconite crystal structure is a promising material for catalytic applications. The as-prepared sample of Ag2Cu2O3 consisted of brick-like particles extended along the [001] direction. A combination of physicochemical techniques such as TEM, XPS and XRD was applied to investigate the structural features of this mixed silver-copper oxide. The thermal stability of Ag2Cu2O3 was investigated using in situ XRD under different reaction conditions, including a catalytic CO + O2 mixture. The first step of Ag2Cu2O3 decomposition was accompanied by the appearance of ensembles consisting of silver nanoparticles with sizes of 5-15 nm. Silver nanoparticles were strongly oriented to each other and to the surface of the initial Ag2Cu2O3 bricks. Based on the XRD data, it was shown that the release of silver occurred along the a and b axes of the paramelaconite structure. Partial decomposition of Ag2Cu2O3 accompanied by the formation of silver nanoparticles was observed during prolonged air storage under ambient conditions. The high reactivity is discussed as a reason for spontaneous decomposition during Ag2Cu2O3 storage. The full decomposition of the mixed oxide into metallic silver and copper (II) oxide took place at temperatures higher than 300 °C regardless of the nature of the reaction medium (helium, air, CO + O2). Catalytic properties of partially and fully decomposed samples of mixed silver-copper oxide were measured in low-temperature CO oxidation and C2H4 epoxidation reactions.

  3. Technology, safety and costs of decommissioning a reference small mixed oxide fuel fabrication plant. Volume 1. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, C. E.; Murphy, E. S.; Schneider, K J

    1979-01-01

    Detailed technology, safety and cost information are presented for the conceptual decommissioning of a reference small mixed oxide fuel fabrication plant. Alternate methods of decommissioning are described including immediate dismantlement, safe storage for a period of time followed by dismantlement and entombment. Safety analyses, both occupational and public, and cost evaluations were conducted for each mode.

  4. Optimization of CeO2-ZrO2 mixed oxide catalysts for ethyl acetate combustion

    Czech Academy of Sciences Publication Activity Database

    Dimitrov, M.; Ivanova, R.; Štengl, Václav; Henych, Jiří; Kovacheva, D.; Tsoncheva, T.

    2015-01-01

    Roč. 47, č. 1 (2015), s. 323-329 ISSN 0324-1130 Institutional support: RVO:61388980 Keywords : nanosized CeO2-ZrO2 * mixed oxide phase * ethyl acetate combustion Subject RIV: CA - Inorganic Chemistry Impact factor: 0.229, year: 2015

  5. Thiophene Conversion and Ethanol Oxidation on SiO2-Supported 12-PMoV-Mixed Heteropoly Compounds

    Czech Academy of Sciences Publication Activity Database

    Spojakina, A. A.; Kostova, N. G.; Sow, Bineta; Stamenova, M. W.; Jirátová, Květa

    2001-01-01

    Roč. 65, 2-4 (2001), s. 315-321 ISSN 0920-5861 Institutional research plan: CEZ:AV0Z4072921 Keywords : thiophene conversion * ethanol oxidation * mixed heteropoly compounds Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.333, year: 2001

  6. Effect of Preparation Method on Catalytic Properties of Co-Mn-Al Mixed Oxides for N2O Decomposition.

    Czech Academy of Sciences Publication Activity Database

    Klyushina, A.; Pacultová, K.; Karásková, K.; Jirátová, Květa; Ritz, M.; Fridrichová, D.; Volodorskaja, A.; Obalová, L.

    2016-01-01

    Roč. 425, DEC 15 (2016), s. 237-247 ISSN 1381-1169 R&D Projects: GA ČR GA14-13750S Institutional support: RVO:67985858 Keywords : Co-Mn-Al mixed oxide * N2O decomposition * preparation methods Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.211, year: 2016

  7. Measurement and modelling of the defect chemistry and transport properties of ceramic oxide mixed ionic and electronic conductors

    DEFF Research Database (Denmark)

    Dalslet, Bjarke Thomas

    2008-01-01

    The subject of this thesis is ceramic mixed ionic and electronic conductors (MIECs). MIECs have potential uses, such as solid oxygen permeation membranes, as catalysts, and as components in fuel cells. The MIECs examined in this thesis are all oxide ion conducting materials. This thesis describes...

  8. General synthesis of vanadium-based mixed metal oxides hollow nanofibers for high performance lithium-ion batteries

    Science.gov (United States)

    Xiang, Juan; Yu, Xin-Yao; Paik, Ungyu

    2016-10-01

    Hollow nanostructured mixed metal oxides have recently been intensively investigated as electrode materials for energy storage and conversion due to their remarkable electrochemical properties. Although great efforts have been made, the synthesis of hollow nanostructured vanadium-based mixed metal oxides especially those with one dimensional structure is rarely reported. Vanadium-based mixed metal oxides are promising electrode materials for lithium-ion batteries with high capacity and good rate capability. Here, we develop a facile and general method for the synthesis of one dimensional MxV2O8 (M = Co, Ni, Fe) tubular structure through a simple single-spinneret electrospinning technique followed by a calcination process. As a demonstration, Co3V2O8 hollow nanofibers are evaluated as anode materials for lithium-ion batteries. As expected, benefiting from their unique one dimensional tubular structure, the as-synthesized Co3V2O8 exhibits excellent electrochemical properties for lithium storage. To be specific, it can deliver a high specific capacity of 900 mAh g-1 at 5 A g-1, and long cycling stability up to 2000 cycles. The present work makes a significant contribution to the design and synthesis of mixed metal oxides with one dimensional tubular structure, as well as their potential applications in electrochemical energy storage.

  9. Structure and growth of polymeric niobia-silica mixed-oxide sols for microporous molecular sieving membranes: A SAXS study

    NARCIS (Netherlands)

    Boffa, V.; Castricum, H.L.; Garcia, Ruben; Schmuhl, R.; Petukhov, Andrei V.; Blank, David H.A.; ten Elshof, Johan E.

    2009-01-01

    Branched polymeric niobia-silica (NS) mixed-oxide sols with a Nb:Si molar ratio between 0.33 and 0.8 were made by acid-catalyzed sol−gel synthesis and characterized using small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS). The growth rate of NS sols after addition of a niobium

  10. Measurement and modelling of the defect chemistry and transport properties of ceramic oxide mixed ionic and electronic conductors

    NARCIS (Netherlands)

    Dalslet, Bjarke Thomas

    2008-01-01

    The mixed ionic and electronic conducting fluorite and perovskite materials examined in this thesis are all oxide ion conducting materials. The defect chemistry and transport properties of a number of these materials are measured using: 1) a measurement technique using an oxygen pump and an

  11. A stochastic model of turbulent mixing with chemical reaction: Nitric oxide formulation in a plug-flow burner

    Science.gov (United States)

    Flagan, R. C.; Appleton, J. P.

    1973-01-01

    A stochastic model of turbulent mixing was developed for a reactor in which mixing is represented by n-body fluid particle interactions. The model was used to justify the assumption (made in previous investigations of the role of turbulent mixing on burner generated thermal nitric oxide and carbon monoxide emissions) that for a simple plug flow reactor, composition nonuniformities can be described by a Gaussian distribution function in the local fuel:air equivalence ratio. Recent extensions of this stochastic model to include the combined effects of turbulent mixing and secondary air entrainment on thermal generation of nitric oxide in gas turbine combustors are discussed. Finally, rate limited upper and lower bounds of the nitric oxide produced by thermal fixation of molecular nitrogen and oxidation of organically bound fuel nitrogen are estimated on the basis of the stochastic model for a plug flow burner; these are compared with experimental measurements obtained using a laboratory burner operated over a wide range of test conditions; good agreement is obtained.

  12. Novel synthesis of manganese and vanadium mixed oxide (V2O5/OMS-2) as an efficient and selective catalyst for the oxidation of alcohols in liquid phase

    International Nuclear Information System (INIS)

    Mahdavi, Vahid; Soleimani, Shima

    2014-01-01

    Graphical abstract: Oxidation of various alcohols is studied in the liquid phase over new composite mixed oxide (V 2 O 5 /OMS-2) catalyst using tert-butyl hydroperoxide (TBHP). The activity of V 2 O 5 /OMS-2 samples was considerably increased with respect to OMS-2 catalyst and these samples are found to be suitable for the selective oxidation of alcohols. - Highlights: • V 2 O 5 /K-OMS-2 with different V/Mn molar ratios prepared by the impregnation method. • Oxidation of alcohols was studied in the liquid phase over V 2 O 5 /K-OMS-2 catalyst. • V 2 O 5 /K-OMS-2 catalyst had excellent activity for alcohol oxidation. • Benzyl alcohol oxidation using excess TBHP followed a pseudo-first order kinetic. • The selected catalyst was reused without significant loss of activity. - Abstract: This work reports the synthesis and characterization of mixed oxide vanadium–manganese V 2 O 5 /K-OMS-2 at various V/Mn molar ratios and prepared by the impregnation method. Characterization of these new composite materials was made by elemental analysis, BET, XRD, FT-IR, SEM and TEM techniques. Results of these analyses showed that vanadium impregnated samples contained mixed phases of cryptomelane and crystalline V 2 O 5 species. Oxidation of various alcohols was studied in the liquid phase over the V 2 O 5 /K-OMS-2 catalyst using tert-butyl hydroperoxide (TBHP) and H 2 O 2 as the oxidant. Activity of the V 2 O 5 /K-OMS-2 samples was increased considerably with respect to K-OMS-2 catalyst due to the interaction of manganese oxide and V 2 O 5 . The kinetic of benzyl alcohol oxidation using excess TBHP over V 2 O 5 /K-OMS-2 catalyst was investigated at different temperatures and a pseudo-first order reaction was determined with respect to benzyl alcohol. The effects of reaction time, oxidant/alcohol molar ratio, reaction temperature, solvents, catalyst recycling potential and leaching were investigated

  13. Novel Montmorillonite/TiO2/MnAl-Mixed Oxide Composites Prepared from Inverse Microemulsions as Combustion Catalysts

    Directory of Open Access Journals (Sweden)

    Bogna D. Napruszewska

    2017-11-01

    Full Text Available A novel design of combustion catalysts is proposed, in which clay/TiO2/MnAl-mixed oxide composites are formed by intermixing exfoliated organo-montmorillonite with oxide precursors (hydrotalcite-like in the case of Mn-Al oxide obtained by an inverse microemulsion method. In order to assess the catalysts’ thermal stability, two calcination temperatures were employed: 450 and 600 °C. The composites were characterized with XRF (X-ray fluorescence, XRD (X-ray diffraction, HR SEM (high resolution scanning electron microscopy, N2 adsorption/desorption at −196 °C, and H2 TPR (temperature programmed reduction. Profound differences in structural, textural and redox properties of the materials were observed, depending on the presence of the TiO2 component, the type of neutralization agent used in the titania nanoparticles preparation (NaOH or NH3 (aq, and the temperature of calcination. Catalytic tests of toluene combustion revealed that the clay/TiO2/MnAl-mixed oxide composites prepared with the use of ammonia showed excellent activity, the composites obtained from MnAl hydrotalcite nanoparticles trapped between the organoclay layers were less active, but displayed spectacular thermal stability, while the clay/TiO2/MnAl-mixed oxide materials obtained with the aid of NaOH were least active. The observed patterns of catalytic activity bear a direct relation to the materials’ composition and their structural, textural, and redox properties.

  14. Mixed oxide fuels testing in the advanced test reactor to support plutonium disposition

    International Nuclear Information System (INIS)

    Ryskamp, J.M.; Sterbentz, J.W.; Chang, G.S.

    1995-09-01

    An intense worldwide effort is now under way to find means of reducing the stockpile of weapons-grade plutonium. One of the most attractive solutions would be to use WGPu as fuel in existing light water reactors (LWRs) in the form of mixed oxide (MOX) fuel - i.e., plutonia (PUO 2 ) mixed with urania (UO 2 ). Before U.S. reactors could be used for this purpose, their operating licenses would have to be amended. Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification, (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania, (3) The effects of WGPu isotopic composition, (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight, (5) The effects of americium and gallium in WGPu, (6) Fission gas release from MOX fuel pellets made from WGPu, (7) Fuel/cladding gap closure, (8) The effects of power cycling and off-normal events on fuel integrity, (9) Development of radial distributions of burnup and fission products, (10) Power spiking near the interfaces of MOX and urania fuel assemblies, and (11) Fuel performance code validation. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified

  15. Dual Electrospray Pyrolysis for Mixed Metal Oxide (and Carbon) Composite Nanoparticle Synthesis with Applications in Energy Storage

    Science.gov (United States)

    Tang, Justin; Liu, Wen; Wang, Hailiang; Gomez, Alessandro

    We present a novel approach to synthesizing mixed metal oxide nanoparticles with a continuous, scalable aerosol flow process using the electrospray. The electrospray is a liquid atomization technique that generates a monodisperse population of highly charged liquid droplets over a broad size range (nanometric to tens of microns). Each liquid droplet serves as a micro-reactor, containing a payload of suitable precursors (such as metal nitrides), allowing for precise control over particle composition and size. By using two electrosprays of opposite polarities, the two highly charged droplets plumes are electrostatically mixed to produce a charge-neutral aerosol. Electrostatically driven droplet-droplet collisions can also be used to control morphology to some degree. This aerosol is passed through a tubular furnace via carrier gas, pyrolizing the precursors to synthesize nanomaterials. We apply this approach to manganese oxide, cobalt oxide, and carbon composite nanoparticles for use in energy storage applications.

  16. Physical and spectroscopic studies of Cr{sup 3+} doped mixed alkaline earth oxide borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Samdani, E-mail: samdanimohd82@gmail.com [Department of Engineering, Salalah College of Technology, Salalah (Oman); Ramadevudu, G. [Department of Physics, Vasavi College of Engineering, Ibrahimbagh, Hyderabad 500031, Telangana (India); Chary, M. Narasimha; Shareefuddin, Md. [Department of Physics, Osmania University, Hyderabad 500007, Telangana (India)

    2017-01-15

    A series of mixed alkaline earth oxide glasses xMgO-(30-x)BaO-69.8B{sub 2}O{sub 3}-0.2Cr{sub 2}O{sub 3} were prepared and studied using electron paramagnetic resonance (EPR), optical absorption, Raman spectroscopy and photoluminescence experimental techniques. The optical absorption spectra revealed the characteristic octahedral symmetry of Cr{sup 3+}ions through three broad band transitions {sup 4}A{sub 2g}(F)→ {sup 4}T{sub 2g}(F), {sup 4}A{sub 2g}(F)→ {sup 4}T{sub 1g}(F), and {sup 4}A{sub 2g}(F)→ {sup 2}T{sub 1g}(P). The crystal field (Dq) and Racah parameters (B and C), the optical band gap and Urbach energies of the glass samples were also reported along with the physical properties like density and molar volume. In the EPR spectra three resonance signals corresponding to Cr3+ ions were observed. A broad signal with g = 5.110 was observed which belongs to the isolated Cr3+ centers localized in the strongly distorted octahedral (rhombic) sites of the glass network, a narrow signal (g = 1.960) corresponding to the Cr{sup 3+} centers in the weekly distorted (cubic) sites of the glass network, and a third very broad signal (g = 2.210) was also observed corresponding to Cr{sup 3+}- Cr{sup 3+} paired centers coupled by magnetic dipolar interaction. Another resonance signal with effective value g ≈ 4.220 was attributed to Fe{sup 3+} ions impurity. The number of spins (N) participating in the resonance and susceptibility (χ) values at room temperature were reported and their values varied in a non-linear manner with the composition exhibiting mixed oxide effect. The estimated molecular bonding coefficients (α) values indicated stronger ionic contribution. The Raman spectral investigations were carried out. The Photoluminescence spectra bands near 690 and 750 nm correspond to the Cr{sup 3+} centers in high and low field sites respectively. - Highlights: • Spectroscopic studies were made on alkaline earth borate glasses. • Three resonance signals

  17. Clay and oxide destabilization induced by mixed alum/macromolecular flocculation aids.

    Science.gov (United States)

    Pefferkorn, E

    2006-06-30

    The review points out typical differences and analogies of the bulk characteristics of aluminum ion complexed polyelectrolytes and of their adsorption behaviors when such systems were supplied to inorganic colloids such as oxides and clays. It reports some particular investigations that were carried out in aqueous media to determine (i) the nature of the interactions existing between clay or oxides, aluminum ions and polyelectrolytes and (ii) the effects on the interfacial characteristics and the colloid stability related to the relative concentrations of these different constituents. The investigations concerned the synthetic alumina/polyacrylic acid systems and the natural kaolinite/humic acid systems, as well as partly the mixed alumina/humic acid systems. Different adsorption features and destabilization kinetics were determined to develop within these systems. One of the main constraints of the investigation arose from the presence of three interacting components which developed amphoteric and amphipatic interactions, the latter being generated by the hydrophobic moieties induced by the aluminum ions/carboxylic acid groups ion-pairing. The investigations concerned the extent and the rate of transfer of hydrogen, aluminum ions and polyelectrolytes from the bulk solution to the solid surface. Electrical surface charge characteristics were expressed in terms of the zeta potential of the colloid/polymer complexes. The colloid stability of the systems was determined as a function of time at short and long terms. The variation as a function of time of the number and weight average masses was correlated with the variation with time of the zeta potential. All these systems were determined to reach the kinetic and thermodynamic equilibrium only slowly. Despite the fact that the supply of mixed coagulants provoked the initial aggregation and the subsequent fragmentation processes for both systems, the mechanisms responsible for the two processes were found to be

  18. Studies on carboxylated graphene oxide incorporated polyetherimide mixed matrix ultrafiltration membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kaleekkal, Noel Jacob, E-mail: noeljacob89@gmail.com [Membrane Laboratory, Department of Chemical Engineering, ACT, Anna University, Chennai, 600025 (India); Thanigaivelan, A., E-mail: thanichemstar@gmail.com [Membrane Laboratory, Department of Chemical Engineering, ACT, Anna University, Chennai, 600025 (India); Rana, Dipak, E-mail: rana@uottawa.ca [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Private, Ottawa, Ontario, K1N 6N5 (Canada); Mohan, D., E-mail: mohantarun@gmail.com [Membrane Laboratory, Department of Chemical Engineering, ACT, Anna University, Chennai, 600025 (India)

    2017-01-15

    In this work the graphene oxide prepared by the modified Hummers’ method was effectively carboxylated. These carboxylated graphene oxide (c-GO) microsheets was characterized by X-ray diffraction analysis, Raman shift, zeta potential, and their morphology was observed using a high resolution scanning/transmission electron microscopy. Polyetherimide mixed matrix membranes (MMMs) were fabricated by the non-solvent induced phase separation technique with varying concentration of this microsheet. The presence of these microsheets on the membrane surface was confirmed by Fourier transform infrared spectroscopy, Raman spectroscopy and could also be confirmed visually by optical images. The membranes were further characterized; they showed a greater water flux, higher porosity, and sufficient thermal stability. Incorporation of these microsheets improved the hydrophilicity of the membrane confirmed by the lower contact angle values, which in turn explained the lower interfacial free energy, the increase in work of adhesion, the higher solid-vapor free energy and the spreading coefficient. Membranes loaded with 0.3 wt% of c-GO showed a flux recovery of 94% and only a small flux decline even after 180 min of filtration of humic acid (HA) solution. The efficiency of these membranes in removal of HA, toxic metal ions was also investigated. The bacterial anti-adhesion property of c-GO in the membranes was also explored using Escherichia coli, as a model bio-foulant. The charge of the microsheets and their unique architecture imparts higher hydrophilicity and greater fouling resistance along with improved permeation flux when incorporated into the polymer matrix. - Highlights: • Novel membranes by incorporating carboxylated GO into polyetherimide matrix. • Modified membranes exhibited greater porosity, flux and high humic acid rejection. • Nanoplatelets improved the flux recovery ratio to >94%. • Liquid phase polymer based retention utilized for toxic heavy metal

  19. Oxidative stabilization of mixed mayonnaises made with linseed oil and saturated medium-chain triglyceride oil

    DEFF Research Database (Denmark)

    Raudsepp, Piret; Brüggemann, Dagmar A.; Lenferink, Aufried

    2014-01-01

    storage was lower in mixed mayonnaise compared to LSO mayonnaise, while in mixed oil mayonnaise the level of peroxides was constantly low. Mixed oil mayonnaise had a lower rate of oxygen consumption than mixed mayonnaise, LSO mayonnaise having the highest rate. The decay of water-soluble nitroxyl radicals...

  20. Method of CO and/or CO.sub.2 hydrogenation to higher hydrocarbons using doped mixed-metal oxides

    Science.gov (United States)

    Shekhawat, Dushyant; Berry, David A.; Haynes, Daniel J.; Abdelsayed, Victor; Smith, Mark W.; Spivey, James J.

    2017-03-21

    A method of hydrogenation utilizing a reactant gas mixture comprising a carbon oxide and a hydrogen agent, and a hydrogenation catalyst comprising a mixed-metal oxide containing metal sites supported and/or incorporated into the lattice. The mixed-metal oxide comprises a pyrochlore, a brownmillerite, or mixtures thereof doped at the A-site or the B-site. The metal site may comprise a deposited metal, where the deposited metal is a transition metal, an alkali metal, an alkaline earth metal, or mixtures thereof. Contact between the carbon oxide, hydrogen agent, and hydrogenation catalyst under appropriate conditions of temperature, pressure and gas flow rate generate a hydrogenation reaction and produce a hydrogenated product made up of carbon from the carbon oxide and some portion of the hydrogen agent. The carbon oxide may be CO, CO.sub.2, or mixtures thereof and the hydrogen agent may be H.sub.2. In a particular embodiment, the hydrogenated product comprises olefins, paraffins, or mixtures thereof.

  1. Method of CO and/or CO.sub.2 hydrogenation using doped mixed-metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Shekhawat, Dushyant; Berry, David A.; Haynes, Daniel J.; Abdelsayed, Victor; Smith, Mark W.; Spivey, James J.

    2015-10-06

    A method of hydrogenation utilizing a reactant gas mixture comprising a carbon oxide and a hydrogen agent, and a hydrogenation catalyst comprising a mixed-metal oxide containing metal sites supported and/or incorporated into the lattice. The mixed-metal oxide comprises a perovskite, a pyrochlore, a fluorite, a brownmillerite, or mixtures thereof doped at the A-site or the B-site. The metal site may comprise a deposited metal, where the deposited metal is a transition metal, an alkali metal, an alkaline earth metal, or mixtures thereof. Contact between the carbon oxide, hydrogen agent, and hydrogenation catalyst under appropriate conditions of temperature, pressure and gas flow rate generate a hydrogenation reaction and produce a hydrogenated product made up of carbon from the carbon oxide and some portion of the hydrogen agent. The carbon oxide may be CO, CO.sub.2, or mixtures thereof and the hydrogen agent may be H.sub.2. In a particular embodiment, the hydrogenated product comprises an alcohol, an olefin, an aldehyde, a ketone, an ester, an oxo-product, or mixtures thereof.

  2. International safeguards for a modern MOX (mixed-oxide) fuel fabrication facility

    Energy Technology Data Exchange (ETDEWEB)

    Pillay, K.K.S.; Stirpe, D.; Picard, R.R.

    1987-03-01

    Bulk-handling facilities that process plutonium for commercial fuel cycles offer considerable challenges to nuclear materials safeguards. Modern fuel fabrication facilities that handle mixed oxides of plutonium and uranium (MOX) often have large inventories of special nuclear materials in their process lines and in storage areas for feed and product materials. In addition, the remote automated processing prevalent at new MOX facilities, which is necessary to minimize radiation exposures to personnel, tends to limit access for measurements and inspections. The facility design considered in this study incorporates all these features as well as state-of-the-art measurement technologies for materials accounting. Key elements of International Atomic Energy Agency (IAEA) safeguards for such a fuel-cycle facility have been identified in this report, and several issues of primary importance to materials accountancy and IAEA verifications have been examined. We have calculated detection sensitivities for abrupt and protracted diversions of plutonium assuming a single materials balance area for all processing areas. To help achieve optimal use of limited IAEA inspection resources, we have calculated sampling plans for attributes/variables verification. In addition, we have demonstrated the usefulness of calculating sigma/sub (MUF-D)/ and detection probabilities corresponding to specified material-loss scenarios and resource allocations. The data developed and the analyses performed during this study can assist both the facility operator and the IAEA in formulating necessary safeguards approaches and verification procedures to implement international safeguards for special nuclear materials.

  3. Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel

    International Nuclear Information System (INIS)

    Cowell, B.S.; Fisher, S.E.

    1999-01-01

    The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option

  4. International safeguards for a modern MOX [mixed-oxide] fuel fabrication facility

    International Nuclear Information System (INIS)

    Pillay, K.K.S.; Stirpe, D.; Picard, R.R.

    1987-03-01

    Bulk-handling facilities that process plutonium for commercial fuel cycles offer considerable challenges to nuclear materials safeguards. Modern fuel fabrication facilities that handle mixed oxides of plutonium and uranium (MOX) often have large inventories of special nuclear materials in their process lines and in storage areas for feed and product materials. In addition, the remote automated processing prevalent at new MOX facilities, which is necessary to minimize radiation exposures to personnel, tends to limit access for measurements and inspections. The facility design considered in this study incorporates all these features as well as state-of-the-art measurement technologies for materials accounting. Key elements of International Atomic Energy Agency (IAEA) safeguards for such a fuel-cycle facility have been identified in this report, and several issues of primary importance to materials accountancy and IAEA verifications have been examined. We have calculated detection sensitivities for abrupt and protracted diversions of plutonium assuming a single materials balance area for all processing areas. To help achieve optimal use of limited IAEA inspection resources, we have calculated sampling plans for attributes/variables verification. In addition, we have demonstrated the usefulness of calculating σ/sub (MUF-D)/ and detection probabilities corresponding to specified material-loss scenarios and resource allocations. The data developed and the analyses performed during this study can assist both the facility operator and the IAEA in formulating necessary safeguards approaches and verification procedures to implement international safeguards for special nuclear materials

  5. Analysis of mixed oxide fuel loaded cores in the heavy water reactor FUGEN

    International Nuclear Information System (INIS)

    Ohtani, Tsukasa; Iijima, Takashi; Shiratori, Yoshitake

    2003-01-01

    Uranium-plutonium mixed oxide (MOX) fuel cores in the heavy reactor, FUGEN, were analyzed using the Advanced Thermal Reactor (ATR) type core design code system WIMS-ATR/POLESTAR and the accuracy of this code system also has been evaluated by means of operational data through the 34 burnup cycles and on-site γ-scanning data. The root mean square errors of calculated thermal neutron flux distributions were less than 5% compared with the power calibration monitor traverse data. The root mean square error of calculated power distributions was less than 4% compared with the γ-scanning data. The root mean square error of calculated burnup distributions was less than 3% compared with the γ-scanning data. The averaged effective multiplication factor was 1.000 and its standard deviation was 0.002. The calculation accuracy of void reactivity coefficient was ±3x10 -5 Δk/k% void for the equilibrium cores. The calculation accuracy of power coefficient was ±1.5 x 10 -5 Δk/k/%power. The accuracy of ATR type core design code system was enough for the core management in the Fugen Nuclear Power Station. (author)

  6. Calculational assessment of critical experiments with mixed oxide fuel pin arrays moderated by organic solution

    International Nuclear Information System (INIS)

    Smolen, G.R.

    1987-01-01

    Critical experiments have been conducted with organic-moderated mixed oxide (MOX) fuel pin assemblies at the Pacific Northwest Laboratory (PNL) Critical Mass Laboratory (CML). These experiments are part of a joint exchange program between the United States Department of Energy (USDOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan in the area of criticality data development. The purpose of these experiments is to benchmark computer codes and cross-section libraries and to assess the reactivity difference between systems moderated by water and those moderated by an organic solution. Past studies have indicated that some organic mixtures may be better moderators than water. This topic is of particular importance to the criticality safety of fuel processing plants where fissile material is dissolved in organic solutions during the solvent extraction process. In the past, it has been assumed that the codes and libraries benchmarked with water-moderated experiments were adequate when performing design and licensing studies of organic-moderated systems. Calculations presented in this paper indicated that the SCALE code system and the 27-energy-group cross-section accurately compute k-effectives for organic moderated MOX fuel-pin assemblies. Furthermore, the reactivity of an organic solution with a 32-vol-% TBP/68-vol-% NPH mixture in a heterogeneous configuration is the same, for practical purposes, as water. 5 refs

  7. Co2 Effect on the Catalytic Behavior of Alumina Supported Mixed Oxides

    International Nuclear Information System (INIS)

    Aouissi, A.; Aldhayan, D.; Mahdjoubi, H.A.

    2005-01-01

    The industrial catalysts for the reforming reactions suffer from coke which accelerates their deactivation. One of the remedy is to adjust the partial pressure of hydrogen. This work is focused on the work of CO2 on the total conversion of n-heptane and on its cyclization reaction into cyclohexane. The tests were carried out over a series of bifunctional catalysts constituted of mixed oxides supported on alumina. The catalysts, which are prepared by co-precipitation method, were characterized by means of atomic absorption spectroscopy and Fourier-transformed infrared spectroscopy (FTIR). Catalytic tests were carried out with and without carbon dioxide under atmospheric pressure. Results indicate that carbon dioxide influences the total activity of the catalysts and selectivity to form cyclohexane. So that, at 250C, the total conversion was high but the cyclohexane selectivity was low. In the range 250C-450C, results indicate an increase of both conversion and selectivity due to temperature increase, but fast deactivation was observed due to coke formation which can be removed by CO2 at higher temperatures. (author)

  8. Advanced oxidation and reduction processes: Closed-loop applications for mixed waste

    International Nuclear Information System (INIS)

    Coogan, J.J.; Tennant, R.A.; Rosocha, L.A.; Wantuck, P.J.

    1993-01-01

    At Los Alamos we are engaged in applying innovative oxidation and reduction technologies to the destruction of hazardous organics. Non thermal plasmas and relativistic electron-beams both involve the generation of free radicals and are applicable to a wide variety of mixed waste as closed-loop designs can be easily engineered. Silent discharge plasmas (SDP), long used for the generation of ozone, have been demonstrated in the laboratory to be effective in destroying hazardous organic compounds and offer an altemative to existing post-incineration and off-gas treatments. SDP generates very energetic electrons which efficiently create reactive free radicals, without adding the enthalpy associated with very high gas temperatures. A SDP cell has been used as a second stage to a LANL designed, packed-bed reactor (PBR) and has demonstrated DREs as high as 99.9999% for a variety of combustible liquid and gas-based waste streams containing scintillation fluids, nitrates, PCB surrogates, and both chlorinated and fluorinated solvents. Radiolytic treatment of waste using electron-beams and/or bremsstrahlung can be applied to a wide range of waste media (liquids, sludges, and solids). The efficacy and economy of these systems has been demonstrated for aqueous waste through both laboratory and pilot scale studies. We win present recent experimental and theoretical results for systems using stand alone SDP, combined PBR/SDP, and electron-beam treatment methods

  9. Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, B.S.; Fisher, S.E.

    1999-02-01

    The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

  10. Microwave assisted synthesis of manganese mixed oxide nanostructures using plastic templates

    Science.gov (United States)

    Leyva, A. G.; Stoliar, P.; Rosenbusch, M.; Lorenzo, V.; Levy, P.; Albonetti, C.; Cavallini, M.; Biscarini, F.; Troiani, H. E.; Curiale, J.; Sanchez, R. D.

    2004-11-01

    The synthesis method for obtaining sub-micrometric structures of rare earth manganese-based mixed oxide compounds is described. Pore wetting of porous polycarbonate templates with the liquid precursor was followed by a two-stage thermal treatment to obtain single phase La 0.325Pr 0.300Ca 0.375MnO 3 hollow and solid structures, with external diameter determined by the sacrificial template pore size. The first thermal stage, a microwave assisted denitration process, determines the shape of the structures. The second treatment, performed at 1073 K, allows to obtain the crystallographic structure of the compound. A variety of techniques (scanning and transmission electron microscopy, scanning probe microscopy) allowed to fully characterize the microstructure and morphology of these self-standing manganite nanostructures. For 1 μm pore size templates we obtained tubes, with external diameter around 800 nm and wall thickness around 150 nm; densely packed nanoparticles sized 20-50 nm are the building blocks of the walls. For pore size below 0.1 μm, solid nanowires were obtained, the size of constituent crystallites being around 10 nm. Overall obtained material exhibits ferromagnetic ordering below 200 K.

  11. Structural Investigation of (U0.7Pu0.3)O2-x Mixed Oxides.

    Science.gov (United States)

    Vigier, Jean-François; Martin, Philippe M; Martel, Laura; Prieur, Damien; Scheinost, Andreas C; Somers, Joseph

    2015-06-01

    Uranium-plutonium mixed oxide containing 30% of plutonium is a candidate fuel for several fast neutron and accelerator driven reactor systems. In this work, a detailed structural investigation on sol-gel synthesized stoichiometric U0.7Pu0.3O2.00 and substoichiometric U0.7Pu0.3O2-x, using X-ray diffraction (XRD), oxygen 17 magic angle spinning nuclear magnetic resonance ((17)O MAS NMR) and X-ray absorption spectroscopy is described. As observed by XRD, the stoichiometric U0.7Pu0.3O2.00 is monophasic with a lattice parameter in good agreement with Vegard's law, while the substoichiometric U0.7Pu0.3O2-x material is biphasic. Solid solution ideality in terms of a random distribution of metal atoms is proven for U0.7Pu0.3O2.00 with (17)O MAS NMR. X-ray absorption near-edge structure (XANES) spectroscopy shows the presence of plutonium(III) in U0.7Pu0.3O2-x. Extended X-ray absorption fine-structure (EXAFS) spectroscopy indicates a similar local structure around both cations, and comparison with XRD indicates a close similarity between uranium and plutonium local structures and the long-range ordering.

  12. Synthesis and Characterization of K-Ta Mixed Oxides for Hydrogen Generation in Photocatalysis

    Directory of Open Access Journals (Sweden)

    Beata Zielińska

    2012-01-01

    Full Text Available K-Ta mixed oxides photocatalysts have been prepared by impregnation followed by calcination. The influence of the reaction temperature (450°C–900°C on the phase formation, crystal morphology, and photocatalytic activity in hydrogen generation of the produced materials was investigated. The detailed analysis has revealed that all products exhibit high crystallinity and irregular structure. Moreover, two different crystal structures of potassium tantalates such as KTaO3 and K2Ta4O11 were obtained. It was also found that the sample composed of KTaO3 and traces of unreacted Ta2O5 (annealed at 600°C exhibits the highest activity in the reaction of photocatalytic hydrogen generation. The crystallographic phases, optical and vibronic properties were examined by X-ray diffraction (XRD and diffuse reflectance (DR UV-vis and resonance Raman spectroscopic methods, respectively. Morphology and chemical composition of the produced samples were studied using a high-resolution transmission electron microscope (HR-TEM and an energy dispersive X-ray spectrometer (EDX as its mode.

  13. Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, P.C.

    1997-11-01

    Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment.

  14. Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment

    International Nuclear Information System (INIS)

    Hsu, P.C.

    1997-01-01

    Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment

  15. Safety issues in fabricating mixed oxide fuel using surplus weapons plutonium

    International Nuclear Information System (INIS)

    Buksa, J.; Badwan, F.; Barr, M.; Motley, F.

    1998-07-01

    This paper presents an assessment of the safety issues and implications of fabricating mixed oxide (MOX) fuel using surplus weapons plutonium. The basis for this assessment is the research done at Los Alamos National Laboratory (LANL) in identifying and resolving the technical issues surrounding the production of PuO 2 feed, removal of gallium from the PuO 2 feed, the fabrication of test fuel, and the work done at the LANL plutonium processing facility. The use of plutonium in MOX fuel has been successfully demonstrated in Europe, where the experience has been almost exclusively with plutonium separated from commercial spent nuclear fuel. This experience in safely operating MOX fuel fabrication facilities directly applies to the fabrication and irradiation of MOX fuel made from surplus weapons plutonium. Consequently, this paper focuses on the technical difference between plutonium from surplus weapons, and light-water reactor recycled plutonium. Preliminary assessments and research lead to the conclusion that no new process or product safety concerns will arise from using surplus weapons plutonium in MOX fuel

  16. Performance of IN-706 and PE-16 cladding in mixed-oxide fuel pins

    International Nuclear Information System (INIS)

    Makenas, B.J.; Lawrence, L.A.; Jensen, B.W.

    1982-05-01

    Iron-nickel base, precipitation-strengthened alloys, IN-706 and PE-16, advanced alloy cladding considered for breeder reactor applications, were irradiated in mixed-oxide fuel pins in the HEDL-P-60 subassembly in EBR-II. Initial selection of candidate advanced alloys was done using only nonfueled materials test results. However, to establish the performance characteristics of the candidate cladding alloys, i.e., dimensional stability and structural integrity under conditions of high neutron flux, elevated temperature, and applied stress, it was necessary to irradiate fuel pins under typical operating conditions. Fuel pins were clad with solution treated IN-706 and PE-16 and irradiated to peak fluences of 6.1 x 10 22 n/cm 2 (E > .1 MeV) and 8.8 x 10 22 n/cm 2 (E > .1 MeV) respectively. Fabrication and operating parameters for the fuel pins with the advanced cladding alloy candidates are summarized. Irradiation of HEDL-P-60 was interrupted with the breach of a pin with IN-706 cladding at 5.1 at % and the test was terminated with cladding breach in a pin with PE-16 cladding at 7.6 at %

  17. Synthesis and characterization of Tin / Titanium mixed oxide nanoparticles doped with lanthanide for biomarking

    International Nuclear Information System (INIS)

    Paganini, Paula Pinheiro

    2012-01-01

    This work presents the synthesis, characterization and photo luminescent study of tin and titanium mixed oxide nanoparticles doped with europium, terbium and neodymium to be used with luminescent markers on biological systems. The syntheses were done by co-precipitation, protein sol-gel and Pechini methods and the nanoparticles were characterized by infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, X-ray diffraction and X-ray absorption spectroscopy. The photo luminescent properties studies were conducted for luminophores doped with europium, terbium and neodymium synthesized by coprecipitation method. For luminophore doped with europium it was possible to calculate the intensity parameters and quantum yield and it showed satisfactory results. In the case of biological system marking it was necessary the functionalization of these particles to allow them to bind to the biological part to be studied. So the nanoparticles were functionalized by microwave and Stöber methods and characterized by infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction obtaining qualitative response of functionalization efficacy. The ninhydrin spectroscopic method was used for quantification of luminophores functionalization. The photo luminescent studies of functionalized particles demonstrate the potential applying of these luminophores as luminescent markers. (author)

  18. Characterization of aerosols from industrial fabrication of mixed-oxide nuclear reactor fuels

    International Nuclear Information System (INIS)

    Hoover, M.D.; Newton, G.J.; Yeh, H.C.; Edison, A.F.

    1983-01-01

    Information on the characteristics of aerosols in three industrial facilities during fabrication of uranium and plutonium mixed-oxide reactor fuels is summarized. Aerosol characterization included measurements of air concentrations particle size distributions, particle morphology, aerosol electrostatic charge characteristics and in vitro dissolution. These were the physicochemical properties considered most relevant to evaluating the consequences of potential accidents wherein aerosols might be released from their normal containment and inhaled by workers. Alpha radioactivity concentrations in air ranged about 1-15,000 nCi/l, depending on the fabrication step and facility. Particle size distributions were approximately log-normal, and activity median aerodynamic diameter (AMAD) ranged 1.6-3.5 μm, with a geometric standard deviation of about 1.6. Electron microscopy indicated that particles were irregularly shaped agglomerates. In vitro dissolution half-times were on the order of years, with some dependence on aerosol size, temperature history and fabrication step. No unique potential exposure conditions were found in any step of the fabrication processes

  19. Development of probabilistic safety assessment method for mixed oxide fuel fabrication facilities

    International Nuclear Information System (INIS)

    Tamaki, Hitoshi; Yoshida, Kazuo; Watanabe, Norio; Muramatsu, Ken

    2006-01-01

    A Probabilistic Safety Assessment (PSA) procedure for Mixed Oxide (MOX) fuel fabrication facilities was developed. The procedure is a 'two-part five-step' approach which takes characteristics of MOX fuel fabrication facilities into consideration. In the first part, so-called preliminary PSA, the hazard analysis approach was applied, which consists of two analysis steps: Functional Failure Modes and Effects Analysis (FFMEA) and Risk Matrix Analysis. The FFMEA analyzes a variety of functions of equipment composing the facility to identify potential abnormal events exhaustively. In the Risk Matrix Analysis, these potential events are screened to select abnormal events as candidates to be analyzed in the second part, using two-dimensional matrix based on the likelihood evaluated by probabilistic index method and maximum unmitigated radioactive release calculated by the Five-Factor Formula. For the selected abnormal events, in the second part, so-called detailed PSA, accident sequences, their occurrence frequencies and consequences are analyzed. These three analysis steps correspond to PSA procedure for nuclear power plant. The applicability of the PSA procedure was demonstrated through the trial application to model plant of MOX fuel fabrication facility. (author)

  20. Portable calorimeter system for nondestructive assay of mixed-oxide fuels

    International Nuclear Information System (INIS)

    Roche, C.T.; Perry, R.B.; Lewis, R.N.; Jung, E.A.; Haumann, J.R.

    1978-04-01

    Calorimetric assay provides a precise, nondestructive method to determine sample Pu content based on the heat emitted by decaying radionuclides. This measurement, in combination with a gamma-spectrometer analysis of sample isotopic content, yields the total sample Pu mass. The technique is applicable to sealed containers and is essentially independent of sample matrix configuration and elemental composition. Conventional calorimeter designs employ large water-bath heat sinks and lack the portability needed by inspection personnel. The ANL air-chamber isothermal calorimeters are low-thermal-capacitance devices which eliminate the need for large constant-temperature heat sinks. These instruments are designed to use a feedback system that applies power to maintain the sample chamber at a constant electrical resistance and, therefore, at a constant temperature. The applied-power difference between a Pu-containing sample and a blank determines the radioactive-decay power. The operating characteristics of a calorimeter designed for assaying mixed-oxide powders, fuel pellets, and Pu-containing solutions are discussed. This device consists of the calorimeter, sample preheatr, and a microprocessor-controlled data-acquisition system. The small-sample device weighs 18 kg and has a measurement cycle of 20 min, with a precision of 0.1% at 10 mW. A 100-min gamma-ray measurement gives the specific power with a precision of better than 1% for samples containing 1 to 2 g of plutonium

  1. Mesoporous mixed metal oxides derived from P123-templated Mg-Al layered double hydroxides

    International Nuclear Information System (INIS)

    Wang Jun; Zhou Jideng; Li Zhanshuang; He Yang; Lin Shuangshuang; Liu Qi; Zhang Milin; Jiang Zhaohua

    2010-01-01

    We report the preparation of mesoporous mixed metal oxides (MMOs) through a soft template method. Different amounts of P123 were used as structure directing agent to synthesize P123-templated Mg-Al layered double hydroxides (LDHs). After calcination of as-synthesized LDHs at 500 o C, the ordered mesopores were obtained by removal of P123. The mesoporous Mg-Al MMOs fabricated by using 2 wt% P123 exhibited a high specific surface area of 108.1 m 2 /g, and wide distribution of pore size (2-18 nm). An investigation of the 'memory effect' of the mesoporous MMOs revealed that they were successfully reconstructed to ibuprofen intercalated LDHs having different gallery heights, which indicated different intercalation capacities. Due to their mesoporosity these unique MMOs have particular potential as drug or catalyst carriers. - Graphical abstract: Ordered mesoporous Mg-Al MMOs can be obtained through the calcination of P123-templated Mg-Al-CO 3 LDHs. The pore diameter is 2.2 nm. At the presence of ibuprofen, the Mg-Al MMOs can recover to Mg-Al-IBU LDHs, based on its 'remember effect'. Display Omitted

  2. Amorphous iron (II) carbonate

    DEFF Research Database (Denmark)

    Sel, Ozlem; Radha, A.V.; Dideriksen, Knud

    2012-01-01

    Abstract The synthesis, characterization and crystallization energetics of amorphous iron (II) carbonate (AFC) are reported. AFC may form as a precursor for siderite (FeCO3). The enthalpy of crystallization (DHcrys) of AFC is similar to that of amorphous magnesium carbonate (AMC) and more...

  3. Synthesis of Mixed Cu/Ce Oxide Nanoparticles by the Oil-in-Water Microemulsion Reaction Method

    Directory of Open Access Journals (Sweden)

    Kelly Pemartin-Biernath

    2016-06-01

    Full Text Available Cerium oxide and mixed Cu/Ce oxide nanoparticles were prepared by the oil-in-water (O/W microemulsion reaction method in mild conditions. The Cu/Ce molar ratio was varied between 0/100 and 50/50. According to X-ray diffraction (XRD, below 30/70 Cu/Ce molar ratio, the materials presented a single phase consistent with cubic fluorite CeO2. However, above Cu/Ce molar ratio 30/70, an excess monoclinic CuO phase in coexistence with the predominant Cu/Ce mixed oxide was detected by XRD and High-Resolution Transmission Electron Microscopy (HRTEM. Raman spectroscopy showed that oxygen vacancies increased significantly as the Cu content was increased. Band gap (Eg was investigated as a function of the Cu/Ce molar ratio, resulting in values from 2.91 eV for CeO2 to 2.32 eV for the mixed oxide with 30/70 Cu/Ce molar ratio. These results indicate that below 30/70 Cu/Ce molar ratio, Cu2+ is at least partially incorporated into the ceria lattice and very well dispersed in general. In addition, the photodegradation of Indigo Carmine dye under visible light irradiation was explored for selected samples; it was shown that these materials can remove such contaminants, either by adsorption and/or photodegradation. The results obtained will encourage investigation into the optical and photocatalytic properties of these mixed oxides, for widening their potential applications.

  4. Evaluation of the structure of amorphous tungsten oxide W28O72 by the combination of electron-, X-ray- and neutron-diffraction (three-beam experiment)

    International Nuclear Information System (INIS)

    Ankele, J.; Mayer, J.

    2006-01-01

    From the combination of quantitative electron-diffraction data with X-ray- and neutron-diffraction data (so-called three-beam experiment) the partial structure factors and pair correlation functions of amorphous sputter deposited W 28 O 72 were determined. On the basis of the experimental atomic distances and coordination numbers, and by comparison with crystalline WO 3 , a structural model was developed, which consists of twisted WO 6 octahedra. Reverse Monte Carlo simulation in accordance with the experimental data was performed to verify the results. (orig.)

  5. Magnetoimpedance Effect in CoFeMoSiB As-Quenched and Surface Modified Amorphous Ribbons in the Presence of Igon Oxide Nanoparticles of Water-Based Ferrofluid

    Directory of Open Access Journals (Sweden)

    Zahra Lotfollahi

    2017-01-01

    Full Text Available Giant magnetoimpedance (GMI has been proposed as a powerful technique for biosensing. In GMI biosensors based on the magnetic label detection the change of the impedance of sensitive element under the application of an external magnetic field was analyzed in the presence of magnetic nanoparticles in a test solution. Amorphous ribbon-based GMI biodetectors have an advantage of low operation frequency and low cost. In this work, magnetic and GMI properties of amorphous Co68.6Fe3.9Mo3.0Si12.0B12.5 ribbons were studied in as-quenched and surface modified states both without and in the presence of maghemite ferrofluid. After the surface modification the coercivity was slightly increased and saturation magnetization decreased in good agreement with increase of the surface roughness, a decrease of magnetic elements concentrations in the surface layer, and formation of a surface protective oxide layer. The GMI difference for as-quenched ribbons in absence and in the presence of ferrofluid was measurable for the frequency range of 2 to 10 MHz and the current intensities of 1 to 20 mA. Although the proposed surface modification by the ultrasound treatment did not improve the sensitivity limit for ferrofluid detection, it did not decrease it either.

  6. Oxidative stabilization of mixed mayonnaises made with linseed oil and saturated medium-chain triglyceride oil

    NARCIS (Netherlands)

    Raudsepp, P.; Brüggemann, D.A.; Lenferink, Aufrid T.M.; Otto, Cornelis; Andersen, M.L.

    2014-01-01

    Mayonnaises, made with either saturated medium chain triglyceride (MCT) oil or unsaturated purified linseed oil (LSO), were mixed. Raman confocal microspectrometry demonstrated that lipid droplets in mixed mayonnaise remained intact containing either MCT oil or LSO. Peroxide formation during storage

  7. Designed synthesis of tunable amorphous carbon nanotubes (a ...

    Indian Academy of Sciences (India)

    Administrator

    Page 1. Electronic Supplementary Material. Graphical abstract. Designed synthesis of tunable amorphous carbon nanotubes (a-CNTs) by a novel route and their oxidation resistance properties by Longlong. Xu et al (pp 1397–1402).

  8. Hydrogen in amorphous silicon

    International Nuclear Information System (INIS)

    Peercy, P.S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH 1 ) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon

  9. Development of ORIGEN libraries for mixed oxide (MOX) fuel assembly designs

    Energy Technology Data Exchange (ETDEWEB)

    Mertyurek, Ugur, E-mail: mertyureku@ornl.gov; Gauld, Ian C., E-mail: gauldi@ornl.gov

    2016-02-15

    Highlights: • ORIGEN MOX library generation process is described. • SCALE burnup calculations are validated against measured MOX fuel samples from the MALIBU program. • ORIGEN MOX libraries are verified using the OECD Phase IV-B benchmark. • There is good agreement for calculated-to-measured isotopic distributions. - Abstract: ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup. The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. The nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.

  10. Performance of fast reactor mixed-oxide fuels pins during extended overpower transients

    International Nuclear Information System (INIS)

    Tsai, H.; Neimark, L.A.; Asaga, T.; Shikakura, S.

    1991-02-01

    The Operational Reliability Testing (ORT) program, a collaborative effort between the US Department of Energy and the Power Reactor and Nuclear Fuel Development Corp. (PNC) of Japan, was initiated in 1982 to investigate the behavior of mixed-oxide fuel pin under various slow-ramp transient and duty-cycle conditions. In the first phase of the program, a series of four extended overpower transient tests, with severity sufficient to challenge the pin cladding integrity, was conducted. The objectives of the designated TOPI-1A through -1D tests were to establish the cladding breaching threshold and mechanisms, and investigate the thermal and mechanical effects of the transient on pin behavior. The tests were conducted in EBR-2, a normally steady-state reactor. The modes of transient operation in EBR-2 were described in a previous paper. Two ramp rates, 0.1%/s and 10%/s, were selected to provide a comparison of ramp-rate effects on fuel behavior. The test pins chosen for the series covered a range of design and pre-test irradiation parameters. In the first test (1A), all pins maintained their cladding integrity during the 0.1%/s ramp to 60% peak overpower. Fuel pins with aggressive designs, i.e., high fuel- smear density and/or thin cladding, were, therefore, included in the follow-up 1B and 1C tests to enhance the likelihood of achieving cladding breaching. In the meantime, a higher pin overpower capability, to greater than 100%, was established by increasing the reactor power limit from 62.5 to 75 MWt. In this paper, the significant results of the 1B and 1C tests are presented. 4 refs., 5 figs., 1 tab

  11. Preparation and characterization of vanadia-titania mixed oxide for immobilization of Serratia rubidaea CCT 5732 and Klebsiella marcescens bacteria

    International Nuclear Information System (INIS)

    Saragiotto Colpini, Leda Maria; Correia Goncalves, Regina A.; Goncalves, Jose Eduardo; Maieru Macedo Costa, Creusa

    2008-01-01

    Vanadia-titania mixed oxide was synthesized by sol-gel method and characterized by several techniques. Texturally, it is formed by mesopores and presents high-specific surface area and controlled porosity. Scanning electron microscopy revealed that vanadium is homogeneously distributed in the material. Structurally, it was possible to identify characteristic V=O stretching bands by IR. The analysis of X-ray diffraction showed that the material, particularly vanadium, is highly dispersed. Application experiments were carried out through the immobilization of Serratia rubidae CCT 5732 and Klebsiella marcescens bacteria by adsorption on the surface of mixed oxide. The micrographies revealed that the bacteria were adsorbed on the entire support, with average surface densities of 8.55 x 10 11 cells/m 2 (Serratia rubidae CCT 5732) and 3.40 x 10 11 cells/m 2 (K. marcescens)

  12. Calibration Tools for Measurement of Highly Enriched Uranium in Oxide and Mixed Uranium-Plutonium Oxide with a Passive-Active Neutron Drum Shuffler

    International Nuclear Information System (INIS)

    Mount, M; O'Connell, W; Cochran, C; Rinard, P

    2003-01-01

    Lawrence Livermore National Laboratory (LLNL) has completed an extensive effort to calibrate the LLNL passive-active neutron drum (PAN) shuffler (Canberra Model JCC-92) for accountability measurement of highly enriched uranium (HEU) oxide and HEU in mixed uranium-plutonium (U-Pu) oxide. Earlier papers described the PAN shuffler calibration over a range of item properties by standards measurements and an extensive series of detailed simulation calculations. With a single normalization factor, the simulations agree with the HEU oxide standards measurements to within ±1.2% at one standard deviation. Measurement errors on mixed U-Pu oxide samples are in the ±2% to ±10% range, or ±20 g for the smaller items. The purpose of this paper is to facilitate transfer of the LLNL procedure and calibration algorithms to external users who possess an identical, or equivalent, PAN shuffler. Steps include (1) measurement of HEU standards or working reference materials (WRMs); (2) MCNP simulation calculations for the standards or WRMs and a range of possible masses in the same containers; (3) a normalization of the calibration algorithms using the standard or WRM measurements to account for differences in the 252 Cf source strength, the delayed-neutron nuclear data, effects of the irradiation protocol, and detector efficiency; and (4) a verification of the simulation series trends against like LLNL results. Tools include EXCEL/Visual Basic programs which pre- and post-process the simulations, control the normalization, and embody the calibration algorithms

  13. Two-stage unified stretched-exponential model for time-dependence of threshold voltage shift under positive-bias-stresses in amorphous indium-gallium-zinc oxide thin-film transistors

    Science.gov (United States)

    Jeong, Chan-Yong; Kim, Hee-Joong; Hong, Sae-Young; Song, Sang-Hun; Kwon, Hyuck-In

    2017-08-01

    In this study, we show that the two-stage unified stretched-exponential model can more exactly describe the time-dependence of threshold voltage shift (ΔV TH) under long-term positive-bias-stresses compared to the traditional stretched-exponential model in amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). ΔV TH is mainly dominated by electron trapping at short stress times, and the contribution of trap state generation becomes significant with an increase in the stress time. The two-stage unified stretched-exponential model can provide useful information not only for evaluating the long-term electrical stability and lifetime of the a-IGZO TFT but also for understanding the stress-induced degradation mechanism in a-IGZO TFTs.

  14. Electrochemical properties of mixed conducting (La,M)(CoFe) oxide perovskites (M=3DSr, Ca, and Ba)

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.W.; Armstrong, T.R.; Bates, J.L. [and others

    1996-04-01

    Electrical properties and oxygen permeation properties of solid mixed-conducting electrolytes (La,M)(CoFe) oxide perovskites (M=3DSr, Ca, and Ba) have been characterized. These materials are potentially useful as passive membranes to separate high purity oxygen from air and as the cathode in a fuel cell. Dilatometric linear expansion measurements were performed as a function of temperature and oxygen partial pressure to evaluate the stability.

  15. Physics of amorphous metals

    CERN Document Server

    Kovalenko, Nikolai P; Krey, Uwe

    2008-01-01

    The discovery of bulk metallic glasses has led to a large increase in the industrial importance of amorphous metals, and this is expected to continue. This book is the first to describe the theoretical physics of amorphous metals, including the important theoretical development of the last 20 years.The renowned authors stress the universal aspects in their description of the phonon or magnon low-energy excitations in the amorphous metals, e.g. concerning the remarkable consequences of the properties of these excitations for the thermodynamics at low and intermediate temperatures. Tunneling

  16. Amorphization within the tablet

    DEFF Research Database (Denmark)

    Doreth, Maria; Hussein, Murtadha Abdul; Priemel, Petra A.

    2017-01-01

    , the feasibility of microwave irradiation to prepare amorphous solid dispersions (glass solutions) in situ was investigated. Indomethacin (IND) and polyvinylpyrrolidone K12 (PVP) were tableted at a 1:2 (w/w) ratio. In order to study the influence of moisture content and energy input on the degree of amorphization......, tablet formulations were stored at different relative humidity (32, 43 and 54% RH) and subsequently microwaved using nine different power-time combinations up to a maximum energy input of 90 kJ. XRPD results showed that up to 80% (w/w) of IND could be amorphized within the tablet. mDSC measurements...

  17. Hydrogenated amorphous silicon photonics

    Science.gov (United States)

    Narayanan, Karthik

    2011-12-01

    Silicon Photonics is quickly proving to be a suitable interconnect technology for meeting the future goals of on-chip bandwidth and low power requirements. However, it is not clear how silicon photonics will be integrated into CMOS chips, particularly microprocessors. The issue of integrating photonic circuits into electronic IC fabrication processes to achieve maximum flexibility and minimum complexity and cost is an important one. In order to minimize usage of chip real estate, it will be advantageous to integrate in three-dimensions. Hydrogenated amorphous silicon (a-Si:H) is emerging as a promising material for the 3-D integration of silicon photonics for on-chip optical interconnects. In addition, a-Si:H film can be deposited using CMOS compatible low temperature plasma-enhanced chemical vapor deposition (PECVD) process at any point in the fabrication process allowing maximum flexibility and minimal complexity. In this thesis, we demonstrate a-Si:H as a high performance alternate platform to crystalline silicon, enabling backend integration of optical interconnects in a hybrid photonic-electronic network-on-chip architecture. High quality passive devices are fabricated on a low-loss a-Si:H platform enabling wavelength division multiplexing schemes. We demonstrate a broadband all-optical modulation scheme based on free-carrier absorption effect, which can enable compact electro-optic modulators in a-Si:H. Furthermore, we comprehensively characterize the optical nonlinearities in a-Si:H and observe that a-Si:H exhibits enhanced nonlinearities as compared to crystalline silicon. Based on the enhanced nonlinearities, we demonstrate low-power four-wave mixing in a-Si:H waveguides enabling high speed all-optical devices in an a-Si:H platform. Finally, we demonstrate a novel data encoding scheme using thermal and all-optical tuning of silicon waveguides, increasing the spectral efficiency in an interconnect link.

  18. Detection of liquid petroleum gas using mixed nanosized tungsten oxide-based thick-film semiconductor sensor.

    Science.gov (United States)

    Chaudhari, G N; Bende, A M; Bodade, A B; Patil, S S; Manorama, S V

    2006-03-15

    The thick-film semiconductor sensor for liquid petroleum gas (LPG) detection was fabricated using a mixed WO(3)-based sensor. We present the characterization of both their structural properties by means of XRD measurements and the electrical characteristics by using gas-sensing properties. The sensing characteristics such as sensitivity, working range, cross-sensitivity and response time were studied by using nanosized WO(3)-based mixed with different metal oxides (SnO(2), TiO(2) and In(2)O(3)) and doped with noble metals (Au, Pd and Pt). The WO(3)-based mixed with 5 wt.% In(2)O(3) and 0.5 wt.% Pd showed the higher sensing characteristic at low concentration of LPG sensor at an operating temperature 225 degrees C.

  19. Total Oxidation of Ethanol over Layered Double Hydroxide-Related Mixed Oxide Catalysts: Effect of Cation Composition.

    Czech Academy of Sciences Publication Activity Database

    Jirátová, Květa; Kovanda, F.; Ludvíková, Jana; Balabánová, Jana; Klempa, Jan

    2016-01-01

    Roč. 277, NOV 15 (2016), s. 61-67 ISSN 0920-5861. [Czech-Italian- Spanish Conference on Molecular Sieves and Catalysis /16./. Amantea, 14.06.2015-17.06.2015] R&D Projects: GA ČR GA14-13750S Institutional support: RVO:67985858 Keywords : layered double hydroxides * transition metal oxides * vox oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.636, year: 2016

  20. Total Oxidation of Ethanol over Layered Double Hydroxide-Related Mixed Oxide Catalysts: Effect of Cation Composition.

    Czech Academy of Sciences Publication Activity Database

    Jirátová, Květa; Kovanda, F.; Ludvíková, Jana; Balabánová, Jana; Klempa, Jan

    2016-01-01

    Roč. 277, NOV 15 (2016), s. 61-67 ISSN 0920-5861. [Czech-Italian-Spanish Conference on Molecular Sieves and Catalysis /16./. Amantea, 14.06.2015-17.06.2015] R&D Projects: GA ČR GA14-13750S Institutional support: RVO:67985858 Keywords : layered double hydroxides * transition metal oxides * vox oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.636, year: 2016

  1. Synthesis and Photocatalytic Activity of One-dimensional ZnO-Zn2SnO4 Mixed Oxide Nanowires

    Science.gov (United States)

    Bai, Xue-lian; Pan, Nan; Wang, Xiao-ping; Wang, Hai-qian

    2008-02-01

    Mixed oxide photocatalysts, ZnO-Zn2SnO4 (ZnO-ZTO) nanowires with different sizes were prepared by a simple thermal evaporation method. The ZnO-ZTO nanowires were characterized with a scanning electron microscope, X-ray diffraction, high-resolution transmission electron microscopy, energy-dispersive spectrometer, and X-ray photoelectron spectra. The photocatalytic activity of the ZnO-ZTO mixed nanowires were studied by observing the photodegradation behaviors of methyl orange aqueous solution. The results suggest that the ZnO-ZTO mixed oxide nanowires have a higher photocatalytic activity than pure ZnO and Zn2SnO4 nanowires. The photocatalyst concentration in the solution distinctly affects the degradation rate, and our results show that higher photodegradation efficiency can be achieved with a smaller amount of ZnO-ZTO nanowire catalyst, as compared to the pure ZnO and ZTO nanowires. Moreover, the photocatalytic activity can also be enhanced by reducing the average diameter of the nanowires. The activity of pure ZnO and ZTO nanowires are also enhanced by physically mixing them. These results can be explained by the synergism between the two semiconductors.

  2. Effects of Calcination Temperature and Acid-Base Properties on Mixed Potential Ammonia Sensors Modified by Metal Oxides

    Science.gov (United States)

    Satsuma, Atsushi; Katagiri, Makoto; Kakimoto, Shiro; Sugaya, Satoshi; Shimizu, Kenichi

    2011-01-01

    Mixed potential sensors were fabriated using yttria-stabilized zirconia (YSZ) as a solid electrolyte and a mixture of Au and various metal oxides as a sensing electrode. The effects of calcination temperature ranging from 600 to 1,000 °C and acid-base properties of the metal oxides on the sensing properties were examined. The selective sensing of ammonia was achieved by modification of the sensing electrode using MoO3, Bi2O3 and V2O5, while the use of WO3, Nb2O5 and MgO was not effective. The melting points of the former group were below 820 °C, while those of the latter group were higher than 1,000 °C. Among the former group, the selective sensing of ammonia was strongly dependent on the calcination temperature, which was optimum around melting point of the corresponding metal oxides. The good spreading of the metal oxides on the electrode is suggested to be one of the important factors. In the former group, the relative response of ammonia to propene was in the order of MoO3 > Bi2O3 > V2O5, which agreed well with the acidity of the metal oxides. The importance of the acidic properties of metal oxides for ammonia sensing was clarified. PMID:22319402

  3. Effects of Calcination Temperature and Acid-Base Properties on Mixed Potential Ammonia Sensors Modified by Metal Oxides

    Directory of Open Access Journals (Sweden)

    Kenichi Shimizu

    2011-02-01

    Full Text Available Mixed potential sensors were fabriated using yttria-stabilized zirconia (YSZ as a solid electrolyte and a mixture of Au and various metal oxides as a sensing electrode. The effects of calcination temperature ranging from 600 to 1,000 °C and acid-base properties of the metal oxides on the sensing properties were examined. The selective sensing of ammonia was achieved by modification of the sensing electrode using MoO3, Bi2O3 and V2O5, while the use of WO3, Nb2O5 and MgO was not effective. The melting points of the former group were below 820 °C, while those of the latter group were higher than 1,000 °C. Among the former group, the selective sensing of ammonia was strongly dependent on the calcination temperature, which was optimum around melting point of the corresponding metal oxides. The good spreading of the metal oxides on the electrode is suggested to be one of the important factors. In the former group, the relative response of ammonia to propene was in the order of MoO3 > Bi2O3 > V2O5, which agreed well with the acidity of the metal oxides. The importance of the acidic properties of metal oxides for ammonia sensing was clarified.

  4. A high-throughput reactor system for optimization of Mo–V–Nb mixed oxide catalyst composition in ethane ODH

    KAUST Repository

    Zhu, Haibo

    2015-01-01

    75 Mo-V-Nb mixed oxide catalysts with a broad range of compositions were prepared by a simple evaporation method, and were screened for the ethane oxidative dehydrogenation (ODH) reaction. The compositions of these 75 catalysts were systematically changed by varying the Nb loading, and the Mo/V molar ratio. Characterization by XRD, XPS, H2-TPR and SEM revealed that an intimate structure is formed among the 3 components. The strong interaction among different components leads to the formation of a new phase or an "intimate structure". The dependency of conversion and selectivity on the catalyst composition was clearly demonstrated from the results of high-throughput testing. The optimized Mo-V-Nb molar composition was confirmed to be composed of a Nb content of 4-8%, a Mo content of 70-83%, and a V content of 12-25%. The enhanced catalytic performance of the mixed oxides is obviously due to the synergistic effects of the different components. The optimized compositions for ethane ODH revealed in our high-throughput tests and the structural information provided by our characterization studies can serve as the starting point for future efforts to improve the catalytic performance of Mo-V-Nb oxides. This journal is © The Royal Society of Chemistry.

  5. Reduced Cu–Co–Al Mixed Metal Oxides for the Ring-Opening of Furfuryl Alcohol to Produce Renewable Diols

    Energy Technology Data Exchange (ETDEWEB)

    Sulmonetti, Taylor P. [School; amp, Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States; Hu, Bo [School; amp, Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States; Lee, Sungsik [Advanced; Agrawal, Pradeep K. [School; amp, Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States; Jones, Christopher W. [School; amp, Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States

    2017-08-29

    The ring-opening of furfuryl alcohol to diol products, including 1,2-pentanediol and 1,5- pentanediol, is investigated over reduced Cu-Co-Al mixed metal oxides in a liquid phase batch reactor under H2 pressure. These catalysts are synthesized through the calcination of layered double hydroxides (LDH) to yield well-dispersed, porous mixed metal oxides, which upon reduction displayed activity towards diols, mainly the valuable monomer 1,5-pentanediol. The addition of Cu facilitated the reduction of Co oxide species at lower temperatures, and under optimized conditions a yield towards 1,5-pentanediol of 44% (total diol yield of 62%) was achieved. Various characterization techniques including TPR, XPS, and XAS are employed to elucidate the structure of the catalysts, suggesting the formation of both metallic (Co and Cu) and oxide (CoO) species after reduction and passivation. Ultimately, this study demonstrates the promising characteristics that non-precious multi-metal catalysts have for the conversion of biomass derived platform molecules to plastic precursors

  6. Development of Impregnated Agglomerate Pelletization (IAP) process for fabrication of (Th,U)O 2 mixed oxide pellets

    Science.gov (United States)

    Khot, P. M.; Nehete, Y. G.; Fulzele, A. K.; Baghra, Chetan; Mishra, A. K.; Afzal, Mohd.; Panakkal, J. P.; Kamath, H. S.

    2012-01-01

    Impregnated Agglomerate Pelletization (IAP) technique has been developed at Advanced Fuel Fabrication Facility (AFFF), BARC, Tarapur, for manufacturing (Th, 233U)O 2 mixed oxide fuel pellets, which are remotely fabricated in hot cell or shielded glove box facilities to reduce man-rem problem associated with 232U daughter radionuclides. This technique is being investigated to fabricate the fuel for Indian Advanced Heavy Water Reactor (AHWR). In the IAP process, ThO 2 is converted to free flowing spheroids by powder extrusion route in an unshielded facility which are then coated with uranyl nitrate solution in a shielded facility. The dried coated agglomerate is finally compacted and then sintered in oxidizing/reducing atmosphere to obtain high density (Th,U)O 2 pellets. In this study, fabrication of (Th,U)O 2 mixed oxide pellets containing 3-5 wt.% UO 2 was carried out by IAP process. The pellets obtained were characterized using optical microscopy, XRD and alpha autoradiography. The results obtained were compared with the results for the pellets fabricated by other routes such as Coated Agglomerate Pelletization (CAP) and Powder Oxide Pelletization (POP) route.

  7. Investigation of TiO2 based Mixed-metal Oxide Catalysts for the Production of Hydrogen

    Science.gov (United States)

    Luo, Si

    Abstract of the Dissertation. Investigation of TiO2 based Mixed-metal Oxide Catalysts for the Production of Hydrogen. by. Si Luo. Doctor of Philosophy. in. Chemistry. Stony Brook University. 2017. The environmental impacts of fossil fuel consumption and the resulting global warming have attracted increasing attention to technologies and fuels that are both sustainable and renewable in the 21st century. To date, hydrogen has been proposed as an encouraging candidate of the next generation of chemical fuels, which meets all demands for carbon free and efficient chemistries that could be produced from a variety of sources. However, despite tremendous efforts, there is a clear need to develop new catalysts for the production of hydrogen through catalytic processes that are sustainable, such as in the photocatalytic splitting of water (PCS: H2O → H2 + 0.5O2) and the water-gas shift process (WGS: CO + H2O → H2 + CO2). This thesis is primarily motivated by this challenge and has focused on the photochemical and thermal production of H2 by the employment of novel TiO2 based catalysts. TiO2 is one of the most widely studied photocatalysts in all history, due to its relatively high activity, robust stability, safety and low cost. In this thesis, several TiO2-based mixed metal oxide nano catalysts (CeOx-TiO2, Ru-TiO2, Ga-TiO2) have been synthesized with carefully controlled morphology/structure and with inclusion of co-catalysts (Pt). These novel materials were comprehensively characterized to better understand their morphology, crystal structure, and electronic properties in an attempt to unravel phenomena responsible for high catalytic performance for the production of H2 from H2O. We have discovered the importance of low-dimensional metal oxide and interfacial stabilized nano-scaled mixed metal oxides for H2 production, while learning how best to tune such structure to optimize both thermal and photochemical conversion. Optimized structure and/or composition have been

  8. Electrochemical catalysis of styrene epoxidation with films of manganese dioxide nanoparticles, and, Synthesis of mixed metal oxides using ultrasonic nozzle spray and microwaves

    Science.gov (United States)

    Espinal, Laura

    Films of polyions and octahedral layered manganese oxide (OL-1) nanoparticles on carbon electrodes made by layer-by-layer alternate electrostatic adsorption were active for electrochemical catalysis of styrene epoxidation in solution in the presence of hydrogen peroxide and oxygen. The highest catalytic turnover was obtained by using applied voltage -0.6 V vs. SCE, O2, and 100 mM H2O2. 18O isotope labeling experiments suggested oxygen incorporation from three different sources: molecular oxygen, hydrogen peroxide and/or lattice oxygen from OL-1 depending on the potential applied and the oxygen and hydrogen peroxide concentrations. Oxygen and hydrogen peroxide activate the OL-1 catalyst for the epoxidation. The pathway for styrene epoxidation in the highest yields required oxygen, hydrogen peroxide and a reducing voltage, and may involve an activated oxygen species in the OL-1 matrix. Multicomponent metal oxide (MMO) crystallites were prepared by spraying a reactant solution into a receiving solution or air under microwave radiation at atmospheric pressure. The injection of nitric acid solution through an ultrasonic nozzle into a receiving solution of metal precursor and the use of microwave radiation were combined to form a novel preparation technique called the nozzle-spray/microwave (NMW) method. The inclusion of an additional step, the in situ mixing of precursor solutions prior to their injection through the ultrasonic nozzle spray, led to another procedure called the in situ/nozzle-spray/microwave (INM) method. For comparison, MMO materials with the same metal constituents as those prepared by our novel techniques were prepared by conventional hydrothermal (CH) methods. Fresh materials prepared by NMW, INM and CH methods were heat treated to study the effect of calcination. All materials were characterized before and after calcination using XRD, SEM, Bet, and ICP. The NMW method produces particles with rod-like morphologies different from those obtained using

  9. Chemical and Radiochemical Composition of Thermally Stabilized Plutonium Oxide from the Plutonium Finishing Plant Considered as Alternate Feedstock for the Mixed Oxide Fuel Fabrication Facility

    International Nuclear Information System (INIS)

    Tingey, Joel M.; Jones, Susan A.

    2005-01-01

    Eighteen plutonium oxide samples originating from the Plutonium Finishing Plant (PFP) on the Hanford Site were analyzed to provide additional data on the suitability of PFP thermally stabilized plutonium oxides and Rocky Flats oxides as alternate feedstock to the Mixed Oxide Fuel Fabrication Facility (MFFF). Radiochemical and chemical analyses were performed on fusions, acid leaches, and water leaches of these 18 samples. The results from these destructive analyses were compared with nondestructive analyses (NDA) performed at PFP and the acceptance criteria for the alternate feedstock. The plutonium oxide materials considered as alternate feedstock at Hanford originated from several different sources including Rocky Flats oxide, scrap from the Remote Mechanical C-Line (RMC) and the Plutonium Reclamation Facility (PRF), and materials from other plutonium conversion processes at Hanford. These materials were received at PFP as metals, oxides, and solutions. All of the material considered as alternate feedstock was converted to PuO2 and thermally stabilized by heating the PuO2 powder at 950 C in an oxidizing environment. The two samples from solutions were converted to PuO2 by precipitation with Mg(OH)2. The 18 plutonium oxide samples were grouped into four categories based on their origin. The Rocky Flats oxide was divided into two categories, low- and high-chloride Rocky Flats oxides. The other two categories were PRF/RMC scrap oxides, which included scrap from both process lines and oxides produced from solutions. The two solution samples came from samples that were being tested at Pacific Northwest National Laboratory because all of the plutonium oxide from solutions at PFP had already been processed and placed in 3013 containers. These samples originated at the PFP and are from plutonium nitrate product and double-pass filtrate solutions after they had been thermally stabilized. The other 16 samples originated from thermal stabilization batches before canning at

  10. To study the flow property of seven commercially available zinc oxide eugenol impression material at various time intervals after mixing.

    Science.gov (United States)

    Katna, Vishal; Suresh, S; Vivek, Sharma; Meenakshi, Khandelwal; Ankita, Gaur

    2014-12-01

    Aims and objective of the study was to evaluate the flow property of seven commercially available zinc oxide eugenol impression materials at various time intervals, after mixing 49 samples (seven groups) were fabricated for flow property of the material. The sample were fabricated as equal length of base and accelerator paste of the test materials was taken on the glass slab and mixed with a rigid stainless steel spatula as per manufacturers recommendation till the homogenous mix was obtained. The mix material was loaded in glass syringe and 0.5 ml material was injected on a cellophane sheet placed on marked glass plate. A cellophane sheet and glass plate 70 and 500 g weight was carefully placed on freshly dispensed zinc oxide eugenol impression paste sequentially. The diameter of the mix was noted after 30 s and 1 min of load application and also after the final set of material. The diameter gives the flow of material. The samples were stored at the room temperature. The data of the flow property was analyzed with analysis of variance, Post hoc test and t test. The flow of the zinc oxide eugenol impression paste after 30 s, 1 min and final set of load application for Group A to Group G was noted. Maximum flow was seen for Group G zinc oxide eugenol impression material followed by Group F, D, E, B, C and A in descending order respectively after 30 s, where as the flow property changed after 1 min in the sequence of maximum for Group G followed by Group E, D, B, A, C, and F. Lastly after final set of the impression material the flow maximum for Group G followed by Group E, D, C, F, A and B in descending order. Based on statistical analysis of the results and within in the limitations of this in-vitro study, the following conclusions were drawn that; the flow of zinc oxide eugenol impression material after 30 s, 1 min and that after the final set was maximum for P.S.P. (Group G) and the flow for PYREX (Group A) was minimum.

  11. Evaluation of Chemical Structure and Resistance Switching Characteristics of Undoped Titanium Oxide and Titanium-Yttrium Mixed Oxide

    Science.gov (United States)

    Ohta, Akio; Goto, Yuta; Wei, Guobin; Murakami, Hideki; Higashi, Seiichiro; Miyazaki, Seiichi

    2011-10-01

    We have studied the chemical bonding features in the region near the TiO2/Pt interface after resistance change to gain a better understanding of the mechanism of resistance switching in TiO2-based resistance random access memory (ReRAM). For the Pt/TiO2/Pt structure after resistance switching, oxidation of the Pt electrode at the Pt/TiO2 interface in switching from a high resistance state (HRS) to a low resistance state (LRS) and reduction of this Pt-oxide in switching from the LRS to the HRS were observed by hard X-ray photoelectron spectroscopy. The result suggests that the generation of oxygen vacancies in the Ti-oxide matrix is responsible for the formation of the conductive pass resulting in the LRS and that repeatable redox reaction at the Pt/TiO2 interface plays an important role in resistance switching behavior. To modify the oxide network, which leads to the change in the conduction pass formation, trivalent Y ions were added to the oxide matrix of quadrivalent Ti ions. Raman scattering and X-ray diffraction measurements show that the crystallization of TiO2 by thermal annealing was suppressed by the Y2O3 addition. In Au/TiYxOy/Pt structures, it has been demonstrated that the variations in resistance switching voltages are markedly suppressed by the Y2O3 addition to TiO2.

  12. Catalytic transformations of biomass substrates using mixed metal oxides derived from substituted hydrotalcites

    Science.gov (United States)

    Macala, Gerald Stephen, II

    Fueled by seemingly endless reserves of cheap and easily accessible fossil energy, the industrial age has brought to the developed world tremendous advances in human health and well being. Unfortunately the burning of fossil fuels has also been implicated in increasing atmospheric CO2 concentrations and global climate change. Concerns about short-term and long-term supply further build a case for the need for alternative energy sources. Biomass derived materials are a tantalizing source of fuels and fine chemicals. Unlike petroleum derived hydrocarbons, biomass can be both renewable and carbon neutral. Crops can be regenerated annually or even more often in tropical climates, and since the captured carbon originates as atmospheric CO2, the overall cycle has the potential to be nearly carbon neutral regardless of the final fate of the carbon. In contrast to petroleum derived hydrocarbons, which can often be made more valuable by adding functionality, biomass derived materials are already highly functionalized and can usually be made more valuable by selective removal of functionality. The development of robust catalysts capable of selective defuntionalization of biomass derived substrates remains an important challenge with potentially enormous economic and societal impact. In addition to being robust and selective, catalysts should preferably be heterogeneous to allow for easier removal and regeneration after the reaction is complete. New materials consisting of Mg-Al hydrotalcite-like structures, with a limiting percentage of Mg or Al substituted with other M2+ or M3+ cations, were synthesized by a co-precipitation process in basic aqueous solution with carbonate as counterion. Calcination of these materials at 460 °C resulted in evolution of CO2 and water and yielded high surface area mixed metal oxides with enhanced reactivity. Materials were characterized by ICP for elemental analysis, XRD for structural information, XPS for surface elemental analysis and TEM

  13. Synthesis, characterization and magnetic behavior of Mg–Fe–Al mixed oxides based on layered double hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Heredia, Angélica C., E-mail: angelicacheredia@gmail.com [Universidad Tecnológica Nacional, Facultad Regional Córdoba-CITeQ, Maestro López esq. Cruz Roja Argentina, Ciudad Universitaria, 5016 Córdoba (Argentina); Oliva, Marcos I. [IFEG, Universidad Nacional de Córdoba, Córdoba (Argentina); CONICET (Argentina); Agú, Ulises [Universidad Tecnológica Nacional, Facultad Regional Córdoba-CITeQ, Maestro López esq. Cruz Roja Argentina, Ciudad Universitaria, 5016 Córdoba (Argentina); CONICET (Argentina); Zandalazini, Carlos I. [CONICET (Argentina); INFIQC, FCQ Universidad Nacional de Córdoba, Córdoba (Argentina); Marchetti, Sergio G. [CINDECA, UNLP, Buenos Aires (Argentina); Herrero, Eduardo R.; Crivello, Mónica E. [Universidad Tecnológica Nacional, Facultad Regional Córdoba-CITeQ, Maestro López esq. Cruz Roja Argentina, Ciudad Universitaria, 5016 Córdoba (Argentina)

    2013-09-15

    In the present work, Mg–Al–Fe layered double hydroxides were prepared by coprecipitation reaction with hydrothermal treatment. The characterization of precursors and their corresponding calcinated products (mixed oxides) were carried out by X ray diffraction, X-ray photoelectron spectroscopy (XPS), termogravimetric analysis and differential scanning calorimetry, diffuse reflectance UV–vis spectroscopy, specific surface area, Mössbauaer and magnetic properties. The Fe{sup 3+} species were observed in tetrahedrally and octahedrally coordination in brucite layered. The XPS analysis shows that the Fe{sup 3+} ions can be found in two coordination environments (tetrahedral and octahedral) as mixed oxides, and as spinel-structure. Oxides show a decrease in the specific surface areas when the iron loading is increased. The magnetic and Mössbauaer response show that MgAlFe mixed oxides are different behaviours such as different population ratios of ferromagnetic, weak-ferromagnetic, paramagnetic and superparamagnetic phases. The better crystallization of spinel structure with increased temperature, is correlated with the improved magnetic properties. - Highlights: • Mg–Al–Fe were successfully prepared by coprecipitation with hydrothermal treatment. • MgO, α-Fe{sub 2}O{sub 3,} MgFe{sub 2}O{sub 4} were detected by XRD in the calcined samples. • The Fe{sup 3+} is in tetrahedral and octahedral coordination in the brucite layered. • The specific surface area is directly related with the iron content. • The magnetic properties and MgFe{sub 2}O{sub 4} improve with increasing calcination temperature.

  14. Performance of Platinum and Gold Catalysts Supported on Ceria-Zirconia Mixed Oxide in the Oxidation of Chlorobenzene

    Czech Academy of Sciences Publication Activity Database

    Topka, Pavel; Delaigle, R.; Kaluža, Luděk; Gaigneaux, E.M.

    2015-01-01

    Roč. 253, SEP 15 (2015), s. 172-177 ISSN 0920-5861 R&D Projects: GA ČR GP13-24186P Institutional support: RVO:67985858 Keywords : oxidation * chlorobenzene * zirconia Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.312, year: 2015

  15. Preparation of mixed oxides (Th,U)O{sub 2}: an evaluation of different techniques; Estudos de diferentes rotas de preparacao de oxidos binarios de torio e uranio

    Energy Technology Data Exchange (ETDEWEB)

    Ayoub, Jamil Mahmoud Said

    1999-07-01

    An evaluation of different ways of obtaining (Th-U)O{sub 2} mixed oxides is described. Coprecipitation, mechanical mixing of uranium and thorium powders, and the sol-gel technique were studied in order to get a large spectrum of knowledge of the process performance. The use of ultrasonic waves for the homogenization of the hydroxide mixture and microwave heating for powder drying was also investigated. Sol-gel showed the best results regarding the specific area for obtained samples. Oxide drying by microwave is an effective method to get mixed oxides for fuel fabrication. Neither coprecipitation nor mechanical mixing of the thorium and uranium oxide powders is suitable for the purpose. The obtained data are less than 70% than those achieved when sol-gel process is performed. Electronic microscopy, X-ray fluorescence and diffraction, thermogravimetry, specific gravidity and specific area determination (BET) used for sample characterization were convenient and accomplished good results. (author)

  16. Some recent results on the correlation of nano-structural and redox properties in ceria-zirconia mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bernal, S. [Departamento de Ciencia de los Materiales, Ingenieria Metalurgica y Quimica Inorganica, Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, E-11510 Puerto Real (Cadiz) (Spain)], E-mail: serafin.bernal@uca.es; Blanco, G.; Calvino, J.J.; Hernandez, J.C.; Perez-Omil, J.A.; Pintado, J.M.; Yeste, M.P. [Departamento de Ciencia de los Materiales, Ingenieria Metalurgica y Quimica Inorganica, Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, E-11510 Puerto Real (Cadiz) (Spain)

    2008-02-28

    Some recent results on the redox behaviour of thermally aged ceria-zirconia mixed oxides with Ce/Zr molar ratios typically ranging from 50/50 to 70/30 are briefly reviewed. In accordance with them, a tentative model allowing us to correlate ageing conditions, surface and bulk nano-structural properties of the oxides, and changes occurred in their redox behaviour is proposed. As revealed by the analysis of appropriate chemical studies and the nano-structural information provided with High Resolution Transmission (HREM) and High Angle Annular Dark Field-Scanning Transmission (HAADF-STEM) electron microscopies, the presence/absence of a pyrochlore-related {kappa}-phase in the aged oxides plays a key role in determining their redox response. In the low-temperature region (T{sub red} {<=} 773 K), the enhanced reducibility exhibited by the oxide resulting from a high-temperature reduction/mild re-oxidation ageing cycle (SR-MO sample) is interpreted as due to kinetic reasons, the occurrence of the {kappa}-like phase in its surface being responsible for a faster H{sub 2} chemisorption, the rate controlling step of the overall reduction process. By contrast, in the high-temperature range (T{sub red} {>=} 973 K), the observed differences of reducibility would have a thermodynamic origin, which may be correlated with the total amount of {kappa}-like phase present in the aged sample.

  17. Destruction of hazardous and mixed wastes using mediated electrochemical oxidation in a Ag(II)HNO3 bench scale system

    International Nuclear Information System (INIS)

    Balazs, B.; Chiba, Z.; Hsu, P.; Lewis, P.; Murguia, L.; Adamson, M.

    1997-01-01

    Mediated Electrochemical Oxidation (MEO) is a promising technology for the destruction of organic containing wastes and the remediation of mixed wastes containing transuranic components. The combination of a powerful oxidant and an acid solution allows the conversion of nearly all organics, whether present in hazardous or in mixed waste, to carbon dioxide. Insoluble transuranics are dissolved in this process and may be recovered by separation and precipitation.The MEO technique offers several advantages which are inherent in the system. First, the oxidation/dissolution processes are accomplished at near ambient pressures and temperatures (30-70 degrees C). Second, all waste stream components and oxidation products (with the exception of evolved gases) are contained in an aqueous environment. This electrolyte acts as an accumulator for inorganics which were present in the original waste stream, and the large volume of electrolyte provides a thermal buffer for the energy released during oxidation of the organics. Third, the generation of secondary waste is minimal, as the process needs no additional reagents. Finally, the entire process can be shut down by simply turning off the power, affording a level of control unavailable in some other techniques.Numerous groups, both in the United States and Europe, have made substantial progress in the last decade towards understanding the mechanistic pathways, kinetics, and engineering aspects of the process. At Lawrence Livermore National Laboratory, substantial contributions have been made to this knowledge base in these areas and others. Conceptual design and engineering development have been completed for a pilot plant-scale MEO system, and numerous data have been gathered on the efficacy of the process for a wide variety of anticipated waste components. This presentation will review the data collected at LLNL for a bench scale system based primarily on the use of a Ag(II) mediator in a nitric acid electrolyte; results

  18. Aerosol synthesis and electrochemical analysis of niobium mixed-metal oxides for the ethanol oxidation reaction in acid and alkaline electrolyte

    Science.gov (United States)

    Konopka, Daniel A.

    Direct ethanol fuel cells are especially important among emerging electrochemical power systems with the potential to offset a great deal of the energy demand currently met through the use of fossil fuels. Ethanol can be refined from petroleum sources or attained from renewable biomass, and is more easily and safely stored and transported than hydrogen, methanol or gasoline. The full energy potential of ethanol in fuel cells can only be realized if the reaction follows a total oxidation pathway to produce CO2. This must be achieved by the development of advanced catalysts that are electrically conductive, stable in corrosive environments, contain a high surface area on which the reaction can occur, and exhibit a bi-functional effect for the ethanol oxidation reaction (EOR). The latter criterion is achievable in mixed-metal systems. Platinum is an effective metal for catalyzing surface reactions of many adsorbates and is usually implemented in the form of Pt nanoparticles supported on inexpensive carbon. This carbon is believed to be neutral in the catalysis of Pt. Instead, carbon can be replaced with carefully designed metals and metal oxides as co-catalysis or support structures that favorably alter the electronic structure of Pt slightly through a strong metal support interaction, while also acting as an oxygen source near adsorbates to facilitate the total oxidation pathway. Niobium mixed-metal-oxides were explored in this study as bi-functional catalyst supports to Pt nanoparticles. We developed a thermal aerosol synthesis process by which mesoporous powders of mixed-metal-oxides decorated with Pt nanoparticles could be obtained from liquid precursors within ˜5 seconds or less, followed by carefully refined chemical and thermal post-treatments. Exceptionally high surface areas of 170--180m2/g were achieved via a surfactant-templated 3D wormhole-type porosity, comparable on a per volume basis to commercial carbon blacks and high surface area silica supports

  19. Ca-Sr-Ga-Nb mixed oxide system for high temperature superconductor substrate applications

    Energy Technology Data Exchange (ETDEWEB)

    Erdei, S.; Cross, L.E.; Ainger, F.W.; Bhalla, A. (Materials Research Lab., The Pennsylvania State Univ., Univ. Park, Pennsylvania (United States))

    1994-05-01

    Twin-free crystals with relatively low melting temperatures are desirable as substrates for high temperature superconductor (HTSC) oxide substrate materials. In the selection of new oxide substrate compositions, special requirements (e.g. suitable dielectric properties for microwave application and perovskite structure with good lattice matching with YBa[sub 2]Cu[sub 3]O[sub 7-[delta

  20. Sorption behaviour of uranium and thorium on hydrous tin oxide from aqueous and mixed-solvent HNO3 media

    International Nuclear Information System (INIS)

    Misak, N.Z.; Salama, H.N.; El-Naggar, I.M.

    1983-01-01

    In aqueous nitric acid, uranyl and thorium ions seem to be sorbed on hydrous tin oxide mainly by a cation exchange mechanism. In 10 - 3 M aqueous solutions, the hydrous oxide prefers thorium to uranium at the relative low pH values, while the reverse is true at the higher pH values. The exchange of uranium is particle diffusion controlled while that of thorium is chemically controlled, and the isotherms point to the presence of different-energy sites in the hydrous oxide. Except for the solutions containing 80% of methanol, ethanol, or acetone, cation exchange is probably still the main mechanism of sorption of uranium. Anionic sorption of thorium seems to occur in all the mixed-solvent solutions and is perhaps the main mechanism in 80% ethanol. The equilibrium distribution coefficient K sub (d) increases almost in all cases with organic solvent content, probably due to dehydration of sorbed ions and to increasing superposition on anionic sorption. Unlike the aqueous medium, large U/Th separation factors are achieved in many of the mixed-solvent solutions and separation schemes are suggested. (Authors)

  1. Support effect on the structure and CO oxidation activity of Cu-Cr mixed oxides over Al2O3 and SiO2

    International Nuclear Information System (INIS)

    Pantaleo, G.; Liotta, L.F.; Venezia, A.M.; Deganello, G.; Ezzo, E.M.; El Kherbawi, M.A.; Atia, H.

    2009-01-01

    Cu-Cr based catalysts supported on silica and alumina with 5 wt% total loading of (CuO + Cr 2 O 3 ), in different molar ratios, were prepared by wet impregnation. The samples were studied by nitrogen adsorption isotherms (BET), temperature-programmed reduction (TPR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Their catalytic activity was tested in the CO oxidation reaction. Different structures were obtained in dependence of the support, the atomic ratio and the calcination temperature. In particular, whereas on Al 2 O 3 there was no experimental evidence for interaction between Cu and Cr, over the silica supported systems formation of new phases CuCr 2 O 4 and CuCrO 2 occurred. Moreover, due to the different metal support interaction the increasing calcination temperature affected differently the surface segregation process of the two oxides. Indeed, at variance with the alumina case, Cu and Cr were found to segregate at the surface of the silica systems. The catalytic tests in CO oxidation indicated a synergetic effect between copper and chromium in the mixed oxides supported on silica and calcined at 500 deg. C. An increased calcination temperature affected negatively the activity due to surface sintering and formation of less active phases

  2. Advanced Mixing of Fuel/Oxidant System in High Speed Gaseous Flows Stage 1

    National Research Council Canada - National Science Library

    Bityurin, Valentin

    2000-01-01

    ...) pulse electrical discharge, and (2) by MHD interaction. The task of this activity is to develop an integrated model including all significant mechanisms of in-flow mixing and controlling means...

  3. Surface-Activated Amorphous Alloy Fuel Electrodes for Methanol Fuel Cell

    OpenAIRE

    Asahi, Kawashima; Koji, Hashimoto; The Research Institute for Iron, Steel and Other Metals; The Research Institute for Iron, Steel and Other Metals

    1983-01-01

    Amorphous alloy electrodes for electrochemical oxidation of methanol and its derivatives were obtained by the surface activation treatment consisting of electrodeposition of zinc on as-quenched amorphous alloy substrates, heating at 200-300℃ for 30 min, and subsequently leaching of zinc in an alkaline solution. The surface activation treatment provided a new method for the preparation of a large surface area on the amorphous alloys. The best result for oxidation of methanol, sodium formate an...

  4. Structural amorphous steels

    International Nuclear Information System (INIS)

    Lu, Z.P.; Liu, C.T.; Porter, W.D.; Thompson, J.R.

    2004-01-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist's dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed

  5. Solar energy as an alternate energy source to mixed oxide fuels in light-water cooled reactors

    International Nuclear Information System (INIS)

    Bertini, H.W.

    1977-01-01

    Supplemental information pertaining to the generic environmental impact statement on the Pu recycling process for mixed oxide light-water cooled reactors (GESMO) was requested from several sources. In particular, the role of alternate sources of energy was to be explored and the implications of these alternate sources to the question of Pu recycle in LWRs were to be investigated. In this vein, solar energy as an alternate source is the main subject of this report, along with other information related to solar energy. The general conclusion is that solar energy should have little effect on the decisions concerning GESMO

  6. Electronic structure of mixed caesium actinide oxides Cs2AnO4 (An = U, Np, Pu, Am)

    Science.gov (United States)

    Kovács, Attila

    2018-01-01

    Relativistic multireference CASSCF/CASPT2 calculations have been performed on the mixed caesium actinide oxide molecules Cs2AnO4 with An = U, Np, Pu and Am. Probing the lowest-energy spin multiplicities the spin-orbit-free (SF) ground and low-energy excited states have been evaluated and characterised. After optimizing the molecular geometries of the SF ground states further calculations have been performed taking into account spin-orbit (SO) coupling. The SO ground and vertical low-lying excited states have been characterised.

  7. Mixed Oxide Supported MoO3 Catalyst: Preparation, Characterization and Activities in Nitration of o-xylene

    OpenAIRE

    S.M. Kemdeo; V.S. Sapkal; G.N. Chaudhari

    2010-01-01

    TiO2-ZrO2 mixed oxide support was prepared and impregnated with 12 wt % MoO3 and calcined at various temperatures. The resultant catalyst systems were characterized by XRD, FT-IR, BET, SEM, NH3-TPD and pyridine adsorbed FT-IR methods to know the physico-chemical changes occurred in course of thermal treatment. Activities of these catalysts were tested by employing them in the nitration of o-xylene. Mostly, 500 oC calcined catalyst sample was found to be most active for nitration reactio...

  8. Mixed Oxide Supported MoO3 Catalyst: Preparation, Characterization and Activities in Nitration of o-xylene

    OpenAIRE

    S.M. Kemdeo; G.N. Chaudhari; V.S. Sapkal

    2010-01-01

    TiO2-ZrO2 mixed oxide support was prepared and impregnated with 12 wt % MoO3 and calcined at various temperatures. The resultant catalyst systems were characterized by XRD, FT-IR, BET, SEM, NH3-TPD and pyridine adsorbed FT-IR methods to know the physico-chemical changes occurred in course of thermal treatment. Activities of these catalysts were tested by employing them in the nitration of o-xylene. Mostly, 500 oC calcined catalyst sample was found to be most active for nitration reaction. Cat...

  9. Note: Application of CR-39 plastic nuclear track detectors for quality assurance of mixed oxide fuel pellets

    Science.gov (United States)

    Kodaira, S.; Kurano, M.; Hosogane, T.; Ishikawa, F.; Kageyama, T.; Sato, M.; Kayano, M.; Yasuda, N.

    2015-05-01

    A CR-39 plastic nuclear track detector was used for quality assurance of mixed oxide fuel pellets for next-generation nuclear power plants. Plutonium (Pu) spot sizes and concentrations in the pellets are significant parameters for safe use in the plants. We developed an automatic Pu detection system based on dense α-radiation tracks in the CR-39 detectors. This system would greatly improve image processing time and measurement accuracy, and will be a powerful tool for rapid pellet quality assurance screening.

  10. Structure and electronic properties of MoVO type mixed-metal oxides - a combined view by experiment and theory.

    Science.gov (United States)

    Chiu, Cheng-Chau; Vogt, Thomas; Zhao, Lili; Genest, Alexander; Rösch, Notker

    2015-08-21

    In this review we address recent efforts from experimental and theoretical side to study MoVO-type mixed metal oxides (MMOs) and their properties. We illustrate how structures of MMOs have been evaluated using a large variety of experimental techniques, such as electron microscopy, neutron diffraction, and X-ray diffraction. Furthermore, we discuss the current view on structure-catalysis correlations, derived from recent experiments. In a second part, we examine useful tools of theoretical chemistry for exploring MoVO-type systems. We discuss the need for using hybrid DFT methods and we analyze how, in the context of MMOs studies, semi-local DFT approximations can encounter problems due to a notable self-interaction error when describing oxidic species and reactions on them. In addition, we discuss various aspects of the model that are important when attempting to map complex MMO systems.

  11. Strain Field in Ultrasmall Gold Nanoparticles Supported on Cerium-Based Mixed Oxides. Key Influence of the Support Redox State.

    Science.gov (United States)

    López-Haro, Miguel; Yoshida, Kenta; Del Río, Eloy; Pérez-Omil, José A; Boyes, Edward D; Trasobares, Susana; Zuo, Jian-Min; Gai, Pratibha L; Calvino, José J

    2016-05-03

    Using a method that combines experimental and simulated Aberration-Corrected High Resolution Electron Microscopy images with digital image processing and structure modeling, strain distribution maps within gold nanoparticles relevant to real powder type catalysts, i.e., smaller than 3 nm, and supported on a ceria-based mixed oxide have been determined. The influence of the reduction state of the support and particle size has been examined. In this respect, it has been proven that reduction even at low temperatures induces a much larger compressive strain on the first {111} planes at the interface. This increase in compression fully explains, in accordance with previous DFT calculations, the loss of CO adsorption capacity of the interface area previously reported for Au supported on ceria-based oxides.

  12. MLS/Aura L2 Nitrous Oxide (N2O) Mixing Ratio V003

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2N2O is the EOS Aura Microwave Limb Sounder (MLS) standard product for nitrous oxide derived from radiances measured primarily by the 640 GHz radiometer (Band 12)...

  13. MLS/Aura Level 2 Nitrous Oxide (N2O) Mixing Ratio V004

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2N2O is the EOS Aura Microwave Limb Sounder (MLS) standard product for nitrous oxide derived from radiances measured primarily by the 640 GHz radiometer (Band 12)...

  14. Hydroxylation of benzene to phenol over magnetic recyclable nanostructured CuFe mixed-oxide catalyst

    CSIR Research Space (South Africa)

    Makgwane, PR

    2015-03-01

    Full Text Available A highly active and magnetically recyclable nanostructured copper–iron oxide (CuFe) catalyst has been synthesized for hydroxylation of benzene to phenol under mild reaction conditions. The obtained catalytic results were correlated with the catalyst...

  15. MLS/Aura L2 Nitrous Oxide (N2O) Mixing Ratio V002

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2N2O is the EOS Aura Microwave Limb Sounder (MLS) standard product for nitrous oxide derived from radiances measured primarily by the 640 GHz radiometer (Band 12)...

  16. Nanostructured Metal Oxides And Mixed Metal Oxides, Methods Of Making These Nanoparticles, And Methods Of Their Use

    KAUST Repository

    Polshettiwar, Vivek

    2013-04-11

    Embodiments of the present disclosure provide for nanoparticles, methods of making nanoparticles, methods of using the nanoparticles, and the like. Nanoparticles of the present disclosure can have a variety of morphologies, which may lead to their use in a variety of technologies and processes. Nanoparticles of the present may be used in sensors, optics, mechanics, circuits, and the like. In addition, nanoparticles of the present disclosure may be used in catalytic reactions, for CO oxidation, as super-capacitors, in hydrogen storage, and the like.

  17. Study of the dissolution of (U,P)O2 mixed oxides with a high plutonium content

    International Nuclear Information System (INIS)

    Fournier, S.

    2001-01-01

    Plutonium from nuclear reactors is partially integrated in the fuel cycle as Mixed OXide (U,Pu)O 2 (MOX). Their dissolution in nitric acid is needed to reprocess them in present reprocessing plants. The main difficulty of this study is that dissolution is a phenomenon depending on solution characteristics as well as the structural properties of the pellets, which depend themselves on the material fabrication process. After showing kinetic and thermodynamic dissolution data of mixed oxides in nitric media, an inventory of the parameters which affect the dissolution process has been made. A separable variable concept was introduced in order to describe the process by studying separately the role of chemical parameters of the solution and geometric parameters of the material. The first part of the study estimates the effect of nitric solution chemical parameters (concentrations, acidity, temperature) on the dissolution and underlines the role of the oxide surface protonation step. The second part of this work deals with the study of surface area evolution for materials with controlled plutonium rich heterogeneities. Experimental results show that the pellet surface undergoes erosion and is progressively weakened by the formation of fault lines in the bulk of the material followed by the dispersion of sub-millimeter fragments in the solution. An heterogeneous kinetic model derived from study of solid-gas interface systems has been applied to fuel pellets dissolution, allowing a mechanism to be proposed, based on surface dissolution of the oxide as well as fault creation in the volume. The dissolution kinetics are therefore dependant on the microstructure and mechanical strength and cohesion of the pellets. (author)

  18. DRIFT study of CuO-CeO₂-TiO₂ mixed oxides for NOx reduction with NH₃ at low temperatures.

    Science.gov (United States)

    Chen, Lei; Si, Zhichun; Wu, Xiaodong; Weng, Duan

    2014-06-11

    A CuO-CeO2-TiO2 catalyst for selective catalytic reduction of NOx with NH3 (NH3-SCR) at low temperatures was prepared by a sol-gel method and characterized by X-ray diffraction, Brunner-Emmett-Teller surface area, ultraviolet-visible spectroscopy, H2 temperature-programmed reduction, scanning electron microscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS). The CuO-CeO2-TiO2 ternary oxide catalyst shows excellent NH3-SCR activity in a low-temperature range of 150-250 °C. Lewis acid sites generated from Cu(2+) are the main active sites for ammonia activation at low temperature, which is crucial for low temperature NH3-SCR activity. The introduction of ceria results in increased reducibility of CuO species and strong interactions between CuO particles with the matrix. The interactions between copper, cerium and titanium oxides lead to high dispersion of metal oxides with increased active oxygen and enhanced catalyst acidity. Homogeneously mixed metal oxides facilitate the "fast SCR" reaction among Cu(2+)-NO, nitrate (coordinated on cerium sites) and ammonia (on titanium sites) on the CuO-CeO2-TiO2 catalyst at low temperatures.

  19. Deterioration of yttria-stabilized zirconia by boron carbide alone or mixed with metallic or oxidized Fe, Cr, Zr mixtures

    Science.gov (United States)

    De Bremaecker, A.; Ayrault, L.; Clément, B.

    2014-08-01

    In the frame of severe accident conditions (PHEBUS FPT3 test), different experiments were carried out on the interactions of 20% yttria-stabilized zirconia (YSZ) and 20% ceria-stab zirconia with boron carbide or its oxidation products (B2O3): either tests under steam between 1230° and 1700 °C with B4C alone or B4C mixed with metals, either tests under Ar with boron oxide present in a mixture of iron and chromium oxides. In all cases an interaction was observed with formation of intergranular yttrium borate. At 1700 °C boron oxide is able to “pump out” the Y stabiliser from the YSZ grains but also some trace elements (Ca and Al) and to form a eutectic containing YBO3 and yttrium calcium oxy-borate (YCOB). At the same time a substantial swelling (“bloating”) of the zirconia happens, qualitatively similar to the foaming of irradiated fuel in contact with a Zr-melt. In all samples the lowering of the Y (or Ce)-content in the YSZ grains is so sharp that in the interaction layers zirconia is no longer stabilized. This is important when YSZ is envisaged as simulant of UO2 or as inert matrix for Am-transmutation.

  20. Intraspecies diversity of Lactobacillus sakei response to oxidative stress and variability of strain performance in mixed strains challenges.

    Science.gov (United States)

    Guilbaud, Morgan; Zagorec, Monique; Chaillou, Stéphane; Champomier-Vergès, Marie-Christine

    2012-04-01

    Lactobacillus sakei is a meat-borne lactic acid bacterium species exhibiting a wide genomic diversity. We have investigated the diversity of response to various oxidative compounds, between L. sakei strains, among a collection representing the genomic diversity. We observed various responses to the different compounds as well as a diversity of response depending on the aeration conditions used for cell growth. A principal component analysis revealed two main phenotypic groups, partially correlating with previously described genomic clusters. We designed strains mixes composed of three different strains, in order to examine the behavior of each strain, when cultured alone or in the presence of other strains. The strains composing the mixtures were chosen as diverse as possible, i.e. exhibiting diverse responses to oxidative stress and belonging to different genomic clusters. Growth and survival rates of each strain were monitored under various aeration conditions, with or without heme supplementation. The results obtained suggest that some strains may act as "helper" or "burden" strains depending on the oxidative conditions encountered during incubation. This study confirms that resistance to oxidative stress is extremely variable within the L. sakei species and that this property should be considered when investigating starter performance in the complex meat bacterial ecosystems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. GHz-rate optical parametric amplifier in hydrogenated amorphous silicon

    International Nuclear Information System (INIS)

    Wang, Ke-Yao; Foster, Amy C

    2015-01-01

    We demonstrate optical parametric amplification operating at GHz-rates at telecommunications wavelengths using a hydrogenated amorphous silicon waveguide through the nonlinear optical process of four-wave mixing. We investigate how the parametric amplification scales with repetition rate. The ability to achieve amplification at GHz-repetition rates shows hydrogenated amorphous silicon’s potential for telecommunication applications and a GHz-rate optical parametric oscillator. (paper)

  2. Redox properties and VOC oxidation activity of Cu catalysts supported on Ce{sub 1−x}Sm{sub x}O{sub δ} mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Konsolakis, Michalis, E-mail: mkonsol@science.tuc.gr [Laboratory of Physical Chemistry and Chemical Processes, Department of Sciences, Technical University of Crete, University Campus, 73100 Chania (Greece); Carabineiro, Sónia A.C., E-mail: scarabin@fe.up.pt [Laboratório de Catálise e Materiais (LCM), Laboratório Associado LSRE/LCM, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto (Portugal); Tavares, Pedro B. [CQVR, Centro de Química – Vila Real, Departamento de Química, Universidade de Trás-os-Montes e Alto Douro, 5001-911 Vila Real (Portugal); Figueiredo, José L. [Laboratório de Catálise e Materiais (LCM), Laboratório Associado LSRE/LCM, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto (Portugal)

    2013-10-15

    Highlights: • Complete elimination of ethyl acetate is achieved at 260 °C with Cu/CeO{sub 2} catalysts. • Samarium has a detrimental impact on VOC oxidation, proportional to its content. • Incorporation of Sm in ceria has a detrimental effect on textural characteristics and reducibility. • Increase of Sm/Ce ratio results in a more reduced Cu species, inactive for VOC oxidation. • A correlation between VOC activity and catalysts redox properties is established. -- Abstract: A series of Cu catalysts supported on Ce{sub 1−x}Sm{sub x}O{sub δ} mixed oxides with different molar contents (x = 0, 0.25, 0.5, 0.75 and 1), was prepared by wet impregnation and evaluated for volatile organic compounds (VOC) abatement, employing ethyl acetate as model molecule. An extensive characterization study was undertaken in order to correlate the morphological, structural and surface properties of catalysts with their oxidation activity. The optimum performance was obtained with Cu/CeO{sub 2} catalyst, which offers complete conversion of ethyl acetate into CO{sub 2} at temperatures as low as 260 °C. The catalytic performance of Cu/Ce{sub 1−x}Sm{sub x}O{sub δ} was interpreted on the basis of characterization studies, showing that incorporation of samarium in ceria has a detrimental effect on the textural characteristics and reducibility of catalysts. Moreover, high Sm/Ce atomic ratios (from 1 to 3) resulted in a more reduced copper species, compared to CeO{sub 2}-rich supports, suggesting the inability of these species to take part in the redox mechanism of VOC abatement. Sm/Ce surface atomic ratios are always much higher than the nominal ratios indicating an impoverishment of catalyst surface in cerium oxide, which is detrimental for VOC activity.

  3. Determination of the O/M ratios of polynary uranium oxides by Ce(IV)-Fe(II) back titration after dissolution in mixed sulphuric and phosphoric acids

    International Nuclear Information System (INIS)

    Fujino, T.; Sato, N.; Yamada, K.

    1996-01-01

    Uranium (IV) in polynary uranium oxides is determined after the solid has been dissolved in a warm mixed solution of sulphuric and phosphoric acids containing excess Ce(IV). The latter is titrated with a Fe(II) standard solution using ferroin as indicator. This method is especially effective for (mixed) uranium oxides which are difficult to dissolve in hot Ce(IV) sulphuric acid. The standard deviation of the determined x value in polynary oxides is estimated to be below ± 0.004 for samples of 10-30 mg. (orig.)

  4. Determination of the O/M ratios of polynary uranium oxides by Ce(IV)-Fe(II) back titration after dissolution in mixed sulphuric and phosphoric acids.

    Science.gov (United States)

    Fujino, T; Sato, N; Yamada, K

    1996-01-01

    Uranium (IV) in polynary uranium oxides is determined after the solid has been dissolved in a warm mixed solution of sulphuric and phosphoric acids containing excess Ce(IV). The latter is titrated with a Fe(II) standard solution using ferroin as indicator. This method is especially effective for (mixed) uranium oxides which are difficult to dissolve in hot Ce(IV) sulphuric acid. The standard deviation of the determined x value in polynary oxides is estimated to be below +/- 0.004 for samples of 10-30 mg.

  5. Synthesis and CO Oxidation Activity of 1D Mixed Binary Oxide CeO2-LaO x Supported Gold Catalysts

    Science.gov (United States)

    Yu, Huanhuan; Zhong, Siyuan; Zhu, Baolin; Huang, Weiping; Zhang, Shoumin

    2017-11-01

    One-dimensional (1D) Ce-La nanorods with different La contents (Ce and La in the molar ratio of 1:0, 3:1, 1:1, 1:3, and 0:1) were synthesized by hydrothermal process. Au/Ce-La nanorod catalysts were obtained by a modified deposition-precipitation method. The samples were characterized by N2 adsorption-desorption (BET), ICP, X-ray diffraction (XRD), SEM, TEM, EDX, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), and temperature-programmed reduction (H2-TPR). It revealed that La existed as LaO x in the 1D nanorods. The catalysis results demonstrated that the mixed binary Ce-La nanorod oxides could be a good support for gold catalysts. The contents of La had an important influence on the catalytic performance of Au/Ce-La nanorod catalysts. Among the catalysts, when the Ce/La molar ratio was 3:1, the 1.0%Au/Ce0.75-La0.25 nanorods pretreated at 300 °C showed the best activity among the catalysts for CO oxidation, which could convert CO completely at 30 °C. The catalysts also performed high temperature resistance and good stability for CO oxidation at the reaction temperatures of 40, 70, and 200 °C.

  6. Synthesis and CO Oxidation Activity of 1D Mixed Binary Oxide CeO2-LaOxSupported Gold Catalysts.

    Science.gov (United States)

    Yu, Huanhuan; Zhong, Siyuan; Zhu, Baolin; Huang, Weiping; Zhang, Shoumin

    2017-11-02

    One-dimensional (1D) Ce-La nanorods with different La contents (Ce and La in the molar ratio of 1:0, 3:1, 1:1, 1:3, and 0:1) were synthesized by hydrothermal process. Au/Ce-La nanorod catalysts were obtained by a modified deposition-precipitation method. The samples were characterized by N 2 adsorption-desorption (BET), ICP, X-ray diffraction (XRD), SEM, TEM, EDX, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), and temperature-programmed reduction (H 2 -TPR). It revealed that La existed as LaO x in the 1D nanorods. The catalysis results demonstrated that the mixed binary Ce-La nanorod oxides could be a good support for gold catalysts. The contents of La had an important influence on the catalytic performance of Au/Ce-La nanorod catalysts. Among the catalysts, when the Ce/La molar ratio was 3:1, the 1.0%Au/Ce 0.75 -La 0.25 nanorods pretreated at 300 °C showed the best activity among the catalysts for CO oxidation, which could convert CO completely at 30 °C. The catalysts also performed high temperature resistance and good stability for CO oxidation at the reaction temperatures of 40, 70, and 200 °C.

  7. Direct Determination of Oxidation States of Uranium in Mixed-Valent Uranium Oxides Using Total Reflection X-ray Fluorescence X-ray Absorption Near-Edge Spectroscopy.

    Science.gov (United States)

    Sanyal, Kaushik; Khooha, Ajay; Das, Gangadhar; Tiwari, M K; Misra, N L

    2017-01-03

    Total reflection X-ray fluorescence (TXRF)-based X-ray absorption near-edge spectroscopy has been used to determine the oxidation state of uranium in mixed-valent U 3 O 8 and U 3 O 7 uranium oxides. The TXRF spectra of the compounds were measured using variable X-ray energies in the vicinity of the U L 3 edge in the TXRF excitation mode at the microfocus beamline of the Indus-2 synchrotron facility. The TXRF-based X-ray absorption near-edge spectroscopy (TXRF-XANES) spectra were deduced from the emission spectra measured using the energies below and above the U L 3 edge in the XANES region. The data processing using TXRF-XANES spectra of U(IV), U(V), and U(VI) standard compounds revealed that U present in U 3 O 8 is a mixture of U(V) and U(VI), whereas U in U 3 O 7 is mixture of U(IV) and U(VI). The results obtained in this study are similar to that reported in literature using the U M edge. The present study has demonstrated the possibility of application of TXRF for the oxidation state determination and elemental speciation of radioactive substances in a nondestructive manner with very small amount of sample requirement.

  8. Thermodynamics of alkali ion exchange from methanolic solutions on hydrous stannic oxide: Excess thermodynamic functions of mixing

    International Nuclear Information System (INIS)

    Misak, N.Z.; Mikhail, E.M.; Ghoneimy, H.F.

    1996-01-01

    Hydrous oxides are important adsorbents and ion exchangers whose use is particularly important in the nuclear fuel cycle and in isotope separation. One of their major advantages is their stability at relatively high radiation doses and temperatures. The thermodynamics of Li/Na and Li/Cs exchange on hydrous stannic oxide (α-stannic acid) was studied in aqueous and methanolic solutions. With respect to ΔG degree, the results in the aqueous medium are qualitatively similar to those for a β-stannic acid sample. For ΔH degree and ΔS degree, contrary results are obtained, possible reasons for which are discussed. The addition of methanol generally leads to a decrease in ΔG degree due to the changed entropy term. When comparison could be made (consistent standard states), the data of transfer thermodynamics showed that the effect of this addition on ion-solvent interactions is the major effect. However, the excess thermodynamic functions of mixing, calculated at different loadings, showed that upon the addition of methanol, the excess enthalpy and entropy of mixing decrease considerably at relatively low loadings and increase at high loadings. As these functions express the departure of the exchange reaction from ideality due to interactions (ion-fixed site and ion-solvent) in the solid phase, it was concluded that alcohol addition affects these interactions. This was not revealed in the transfer data where the whole-exchanger composition range was considered

  9. Ceramic processing of uranium-plutonium mixed oxide fuels (U1-yPuy)O2 with high plutonium content

    International Nuclear Information System (INIS)

    Vauchy, Romain; Robisson, Anne-Charlotte; Audubert, Fabienne; Hodaj, Fiqiri

    2014-01-01

    The ternary thermodynamic U-Pu-O system has been studied for decades for MOX fuel applications but the phase diagram is still not precisely described mostly in the UO 2 -PuO 2 -Pu 2 O 3 sub-system. Furthermore, uranium-plutonium mixed oxides containing high amounts of plutonium are now being considered within the scope of future nuclear reactors. Within this framework, obtaining homogeneous mixed oxides by powder metallurgy is paramount. The studied process is based on UO 2 and PuO 2 co-milling and applied to compounds with high Pu content. The objective of this study is obtaining microstructures free of local heterogeneities in the U-Pu distribution which are not suitable for research studies. Furthermore, in case of prospective irradiation application, local high Pu concentrations lead to 'hot spots' in the material influencing the fission gas release behaviour such as the thermal conductivity which may raise a number of safety issues. This study describes the effect of some fabrication parameters on the powder morphology and/or, on the final microstructure (e.g. U-Pu distribution). The co-milling, sieving and sintering steps were investigated within this scope and the resulting powders and pellets were characterised by X-ray diffraction (XRD) and optical microscopy observations, respectively. (authors)

  10. Improvement of power generation of microbial fuel cell by integrating tungsten oxide electrocatalyst with pure or mixed culture biocatalysts

    International Nuclear Information System (INIS)

    Varanasi, Jhansi L.; Nayak, Arpan K.; Sohn, Youngku; Pradhan, Debabrata; Das, Debabrata

    2016-01-01

    Highlights: • WO 3 as an efficient electrocatalyst for microbial fuel cell. • Effect of nanocatalyst depends on the type of biocatalyst used. • Significant improvement in biocatalysis with WO 3 modified electrodes. • Amendment of WO 3 improves capacitive properties of anodes. • Pt/WO 3 composites provide maximum power densities. - Abstract: The anode of microbial fuel cell was impregnated with tungsten oxide (WO 3 ) and platinum-tungsten oxide (Pt/WO 3 ) nanocomposites to improve its power generation. The amended anodes were tested against pure and mixed culture type of biocatalysts. Improved performance was exhibited by the modified electrodes as compared to the uncatalyzed electrodes using both biocatalysts. However, pure culture showed higher power outputs as compared to the enriched mixed consortia. The maximum power density up to 0.15 mW cm −2 (1.46 W m −2 ) was obtained using pure culture which was almost 45% higher as compared to uncatalyzed electrodes. The anode modification also helped in lowering the charge transfer resistance and improving the coulombic efficiencies of the MFCs. High capacitance with nanostructure catalysts implied their role in holding an electric charge while SEM and epifluorescent images revealed enhanced bacterial adhesion. The high electrode conductivity, stability, and biocompatibility of the modified anodes make them more attractive for practical microbial fuel cell applications.

  11. The surface behaviour and catalytic properties of Nd2-XSrXCoO4±Λ mixed oxides

    Directory of Open Access Journals (Sweden)

    Laitao Luo

    2006-12-01

    Full Text Available The mixed oxides, Nd2-xSrxCoO4±λ (0.4 ≤ x ≤ 1.2, ( = non-stochiometric oxygen with the K2NiF4 structure were prepared by the polyglycol gel method and used as catalysts for NO reduction. The samples were investigated by IR, TPD, TPR, and XRD methods and iodometry and the effects of the coefficient x on the structure and catalytic activity of the samples were studied. The results show that the Nd2-xSrxCoO4±λ mixed oxides have the K2NiF4 structure; other phases are found when x 1.2. The amount of Co3+ and the lattice oxygen in Nd2-xSrxCoO4±λ increase with increasing x. The catalytic activity of Nd2-xSrxCoO4±λfor NO reduction is closely correlated with the concentration of oxygen vacancies and the amount of Co3+.

  12. Reactivity of oxygen ions in mixed oxides in dehydrogenation of propane

    NARCIS (Netherlands)

    Crapanzano, S.D.

    2010-01-01

    Propane pulse experiments are used as a method to select suitable oxides as oxygen supplier for operation of catalytic dense membrane reactor (CDMR) in oxidative dehydrogenation of propane. Ba0.5Sr0.5Co0.8Fe0.2O3-d (BSCF), La2NiO4+d (LN), La2Ni0.9V0.1O4.15+d (LNV-10) and PrBaCo2O5+d (PBC) powders

  13. Amorphous carbon enhancement of hydrogen penetration into UO2

    International Nuclear Information System (INIS)

    Zalkind, S.; Shamir, N.; Gouder, T.; Akhvlediani, R.; Hoffman, A.

    2014-01-01

    In a previous study, it was demonstrated that an amorphous carbon layer, deposited on a native oxide covered uranium surface, significantly enhances the interaction of hydrogen with the uranium metal. Fig. 1[2], demonstrates the preferential hydrogen attack (forming uranium hydride) on the carbon covered area of the naturally oxidized uranium metal

  14. Mechanisms of oxidative stress and alterations in gene expression by Libby six-mix in human mesothelial cells

    Directory of Open Access Journals (Sweden)

    Hillegass Jedd M

    2010-09-01

    Full Text Available Abstract Background Exposures to an amphibole fiber in Libby, Montana cause increases in malignant mesothelioma (MM, a tumor of the pleural and peritoneal cavities with a poor prognosis. Affymetrix microarray/GeneSifter analysis was used to determine alterations in gene expression of a human mesothelial cell line (LP9/TERT-1 by a non-toxic concentration (15×106 μm2/cm2 of unprocessed Libby six-mix and negative (glass beads and positive (crocidolite asbestos controls. Because manganese superoxide dismutase (MnSOD; SOD2 was the only gene upregulated significantly (p 6 μm2/cm2 and toxic concentrations (75×106 μm2/cm2 of Libby six-mix. Results Exposure to 15×106 μm2/cm2 Libby six-mix elicited significant (p SOD2; 4-fold at 8 h and 111 gene changes at 24 h, including a 5-fold increase in SOD2. Increased levels of SOD2 mRNA at 24 h were also confirmed in HKNM-2 normal human pleural mesothelial cells by qRT-PCR. SOD2 protein levels were increased at toxic concentrations (75×106 μm2/cm2 of Libby six-mix at 24 h. In addition, levels of copper-zinc superoxide dismutase (Cu/ZnSOD; SOD1 protein were increased at 24 h in all mineral groups. A dose-related increase in SOD2 activity was observed, although total SOD activity remained unchanged. Dichlorodihydrofluorescein diacetate (DCFDA fluorescence staining and flow cytometry revealed a dose- and time-dependent increase in reactive oxygen species (ROS production by LP9/TERT-1 cells exposed to Libby six-mix. Both Libby six-mix and crocidolite asbestos at 75×106 μm2/cm2 caused transient decreases (p HO-1 in LP9/TERT-1 and HKNM-2 cells. Conclusions Libby six-mix causes multiple gene expression changes in LP9/TERT-1 human mesothelial cells, as well as increases in SOD2, increased production of oxidants, and transient decreases in intracellular GSH. These events are not observed at equal surface area concentrations of nontoxic glass beads. Results support a mechanistic basis for the importance of SOD2

  15. Mixed Oxidant Process for Control of Biological Growth in Cooling Towers

    Science.gov (United States)

    2010-02-01

    Generation Process • Electrolysis of salt to generate chlorine biocides • Small-scale electrolytic cell generates biocide on site, on demand from a...Laboratory US Army Corps of Engineers Engineer Research & Development Center Construction Engineering Research Laboratory Brine and Oxidant Tanks

  16. Oxidation-sulfidation behavior of Ni aluminide in oxygen-sulfur mixed-gas atmospheres

    International Nuclear Information System (INIS)

    Natesan, K.

    1988-01-01

    Oxidation-sulfidation studies were conducted with sheet samples of nickel aluminide, containing 23.5 at. % Al, 0.5 at. % Hf, and 0.2 at. % B, in an annealed condition and after preoxidation treatments. Continuous weight-change measurements were made by a thermogravimetric technique in exposure atmospheres of air, a low-pO/sub 2/ gas mixture, and low-pO/sub 2/ gas mixtures with several levels of sulfur. The air-exposed specimens developed predominantly nickel oxide; the specimen exposed to a low-pO/sub 2/ environment developed an aluminum oxide scale. As the sulfur content of the gas mixture increased, the alumina scale exhibited spallation and the alloy tended to form nickel sulfide as the reaction phase. The results indicated that the sulfidation reaction of nickel aluminide specimens (both bare and preoxidized) was determined by the rate of transport of nickel from the substrate through the scale to the gas/alumina scale interface, the mechanical integrity of the oxide scale, and the H/sub 2/S concentration in the exposure environment

  17. Physical Properties of Mixed Conductor Solid Oxide Fuel Cell Anodes of Doped CeO2

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Lindegaard, Thomas; Hansen, Uffe Rud

    1994-01-01

    conductivity vs. oxygen partial pressure. For both typesof conductivity a dependence on dopant valency was observed. The electronic conductivity was independent of dopantradius in contrast to the ionic which was highly dependent. These measured physical properties are compared with the idealrequirements...... for solid oxide fuel cell anodes. Not all requirements are fulfilled. Measures to compensate for this arediscussed....

  18. Effect of Promoters in Co-Mn-Al Mixed Oxide Catalyst on N2O Decomposition

    Czech Academy of Sciences Publication Activity Database

    Karásková, K.; Obalová, L.; Jirátová, Květa; Kovanda, F.

    2010-01-01

    Roč. 160, č. 2 (2010), s. 480-487 ISSN 1385-8947 R&D Projects: GA ČR GA106/09/1664 Institutional research plan: CEZ:AV0Z40720504 Keywords : nitrous oxide * catalytic decomposition * promoter effect Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.074, year: 2010

  19. Degradation of organophosphorus pesticide parathion methyl on nanostructured titania-iron mixed oxides

    Czech Academy of Sciences Publication Activity Database

    Henych, Jiří; Štengl, Václav; Slušná, Michaela; Matys Grygar, Tomáš; Janoš, P.; Kuráň, P.; Šťastný, M.

    2015-01-01

    Roč. 344, JUL (2015), s. 9-16 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GAP106/12/1116 Institutional support: RVO:61388980 Keywords : Titania-iron oxides * Homogeneous hydrolysis * Degradation of organophosphates * Parathion methyl Subject RIV: CA - Inorganic Chemistry Impact factor: 3.150, year: 2015

  20. Testing of wet scrap recovery equipment for mixed oxide scrap reprocessing

    International Nuclear Information System (INIS)

    Demiter, J.A.; Klem, M.J.; Owen, T.J.

    1984-08-01

    The Wet Scrap Recovery (WSR) program was initiated at the Hanford Engineering Development Laboratory (HEDL) by Westinghouse Hanford Company in Richland, Washington to demonstrate fuel fabrication scrap recovery and reconversion to fuel grade oxide powder using the continuous coprecipitation-calcination (COPRECAL) conversion process. Advancements in process control equipment and instrumentation were also developed and demonstrated