WorldWideScience

Sample records for amorphous mixed oxides

  1. Selective oxidations on vanadiumoxide containing amorphous mixed oxides (AMM-V) with tert.-butylhydroperoxide

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Y.; Hunnius, M.; Storck, S.; Maier, W.F. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    1998-12-31

    The catalytic oxygen transfer properties of vanadium containing zeolites and vanadium based sol-gel catalysts with hydrogen peroxides are well known. The severe problem of vanadium leaching caused by the presence of the by-product water has been addressed. To avoid any interference with homogeneously catalyzed reactions, our study focusses on selective oxidations in a moisture-free medium with tert.-butylhydroperoxide. We have investigated the catalytic properties of amorphous microporous materials based on SiO{sub 2}, TiO{sub 2}, ZrO{sub 2} and Al{sub 2}O{sub 3} as matrix material and studied the effects of surface polarity on the oxidation of 1-octene and cyclohexane. (orig.)

  2. Selective oxidation of benzene and cyclohexane using amorphous microporous mixed oxides; Selektive Oxidation von Benzol und Cyclohexan mit amorphen mikroporoesen Mischoxiden

    Energy Technology Data Exchange (ETDEWEB)

    Stoeckmann, M.

    2000-07-01

    Phenol was to be produced by direct oxidation of benzene with environment-friendly oxidants like hydrogen peroxide, oxygen, or ozone. Catalysts were amorphous microporous mixed oxides whose properties can be selected directly in the sol-gel synthesis process. Apart from benzene, also cyclohexane was oxidized with ozone using AMM catalysts in order to get more information on the potential of ozone as oxidant in heterogeneously catalyzed reactions. [German] Ziel dieser Arbeit war die Herstellung von Phenol durch die Direktoxidation von Benzol mit umweltfreundlichen Oxidationsmitteln wie Wasserstoffperoxid, Sauerstoff oder Ozon. Als Katalysatoren dienten amorphe mikroporoese Mischoxide, da deren Eigenschaften direkt in der Synthese durch den Sol-Gel-Prozess gezielt eingestellt werden koennen. Neben Benzol wurde auch Cyclohexan mit Ozon unter der Verwendung von AMM-Katalysatoren oxidiert, um das Potential von Ozon als Oxiationsmittel in heterogen katalysierten Reaktionen naeher zu untersuchen. (orig.)

  3. Ambient-temperature NO oxidation over amorphous CrOx-ZrO2 mixed oxide catalysts: Significant promoting effect of ZrO2

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Aiyong; Guo, Yanglong; Gao, Feng; Peden, Charles H. F.

    2017-03-01

    Three series of Cr-based mixed oxides (Cr-Co, Cr-Fe, and Cr-Ni oxides) with high specific surface areas and amorphous textures are synthesized using a novel sol-gel method. These mixed oxides, in comparison to their pure metal oxide (CrOx, Co3O4, FeOx and NiO) counterparts, display enhanced performance for catalytic oxidation of low-concentration NO at room temperature. Over best performing catalysts, 100% NO conversion can be maintained up to 30 h of operation at a high space velocity of 45,000 ml g-1 h-1. The amorphous structure is found to be critical for these catalysts to maintain high activity and durability. Cr/M (M=Co, Fe and Ni) molar ratio, nitrate precursor decomposition temperature and catalyst calcination temperature are important criteria for the synthesis of the highly active catalysts. This work was supported by National Basic Research Program of China (2013CB933200), National Natural Science Foundation of China (21577035, 21577034), Commission of Science and Technology of Shanghai Municipality (15DZ1205305) and 111 Project (B08021). Aiyong Wang gratefully acknowledges the China Scholarship Council for the Joint-Training Scholarship Program with the Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. Department of Energy (DOE) by Battelle. FG and CHFP are supported by the U.S. DOE/Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office.

  4. Novel Low Temperature Processing for Enhanced Properties of Ion Implanted Thin Films and Amorphous Mixed Oxide Thin Film Transistors

    Science.gov (United States)

    Vemuri, Rajitha

    This research emphasizes the use of low energy and low temperature post processing to improve the performance and lifetime of thin films and thin film transistors, by applying the fundamentals of interaction of materials with conductive heating and electromagnetic radiation. Single frequency microwave anneal is used to rapidly recrystallize the damage induced during ion implantation in Si substrates. Volumetric heating of the sample in the presence of the microwave field facilitates quick absorption of radiation to promote recrystallization at the amorphous-crystalline interface, apart from electrical activation of the dopants due to relocation to the substitutional sites. Structural and electrical characterization confirm recrystallization of heavily implanted Si within 40 seconds anneal time with minimum dopant diffusion compared to rapid thermal annealed samples. The use of microwave anneal to improve performance of multilayer thin film devices, e.g. thin film transistors (TFTs) requires extensive study of interaction of individual layers with electromagnetic radiation. This issue has been addressed by developing detail understanding of thin films and interfaces in TFTs by studying reliability and failure mechanisms upon extensive stress test. Electrical and ambient stresses such as illumination, thermal, and mechanical stresses are inflicted on the mixed oxide based thin film transistors, which are explored due to high mobilities of the mixed oxide (indium zinc oxide, indium gallium zinc oxide) channel layer material. Semiconductor parameter analyzer is employed to extract transfer characteristics, useful to derive mobility, subthreshold, and threshold voltage parameters of the transistors. Low temperature post processing anneals compatible with polymer substrates are performed in several ambients (oxygen, forming gas and vacuum) at 150 °C as a preliminary step. The analysis of the results pre and post low temperature anneals using device physics fundamentals

  5. Vanadium based amorphous mixed oxides used as negative electrodes of lithium batteries; Oxydes mixtes amorphes a base de vanadium comme electrodes negatives de batteries au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Guyomard, D.; Leroux, F.; Sigala, C.; Le Gal La Salle, A.; Piffard, Y. [Institut des Materiaux de Nantes, 44 (France). Laboratoire de Chimie des Solides

    1996-12-31

    This paper presents recent results concerning the chemical and electrochemical synthesis, the electrochemical properties and the characterization of two new families of amorphous oxides of formula Li{sub x}MVO{sub 4} (1oxides allows the low potential reversible insertion of lithium and can be used as negative electrodes in high performance lithium-ion batteries. (J.S.) 19 refs.

  6. Amorphous titanium-oxide supercapacitors

    Science.gov (United States)

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2016-10-01

    The electric capacitance of an amorphous TiO2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7 mF/cm2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large resistance and small capacitance on the amorphous TiO2-x surface, illuminated a red LED for 37 ms after it was charged with 1 mA at 10 V. The fabricated device showed no dielectric breakdown up to 1,100 V. Based on this approach, further advances in the development of amorphous titanium-dioxide supercapacitors might be attained by integrating oxide ribbons with a micro-electro mechanical system.

  7. Apatite Formation from Amorphous Calcium Phosphate and Mixed Amorphous Calcium Phosphate/Amorphous Calcium Carbonate.

    Science.gov (United States)

    Ibsen, Casper J S; Chernyshov, Dmitry; Birkedal, Henrik

    2016-08-22

    Crystallization from amorphous phases is an emerging pathway for making advanced materials. Biology has made use of amorphous precursor phases for eons and used them to produce structures with remarkable properties. Herein, we show how the design of the amorphous phase greatly influences the nanocrystals formed therefrom. We investigate the transformation of mixed amorphous calcium phosphate/amorphous calcium carbonate phases into bone-like nanocrystalline apatite using in situ synchrotron X-ray diffraction and IR spectroscopy. The speciation of phosphate was controlled by pH to favor HPO4 (2-) . In a carbonate free system, the reaction produces anisotropic apatite crystallites with large aspect ratios. The first formed crystallites are highly calcium deficient and hydrogen phosphate rich, consistent with thin octacalcium phosphate (OCP)-like needles. During growth, the crystallites become increasingly stoichiometric, which indicates that the crystallites grow through addition of near-stoichiometric apatite to the OCP-like initial crystals through a process that involves either crystallite fusion/aggregation or Ostwald ripening. The mixed amorphous phases were found to be more stable against phase transformations, hence, the crystallization was inhibited. The resulting crystallites were smaller and less anisotropic. This is rationalized by the idea that a local phosphate-depletion zone formed around the growing crystal until it was surrounded by amorphous calcium carbonate, which stopped the crystallization.

  8. Role of Amorphous Manganese Oxide in Nitrogen Loss

    Institute of Scientific and Technical Information of China (English)

    LILIANG-MO; WUQI-TU

    1991-01-01

    Studies have been made,by 15N-tracer technique on nitrogen loss resulting from adding amorphous manganese oxide to NH4+-N medium under anaerobic conditions.The fact that the total nitrogen recovery was decreased and that 15NO2,15N2O,15N14NO,15NO,15N2 and 15N14N were emitted has proved that,like amorphous iron oxide,amorphous manganese oxide can also act as an electron acceptor in the oxidation of NH4+-N under anaerobic conditions and give rise to nitrogen loss.This once again illustrates another mechanism by which the loss of ammonium nitrogen in paddy soils is brought about by amorphous iron and manganese oxides.The quantity of nitrogen loss by amorphous manganese oxide increased with an increase in the amount of amorphous manganese oxide added and lessened with time of its aging.The nitrogen loss resulting from amorphous manganese oxide was less than that from amorphous iron oxide.And the nitrogen loss resulting from amorphous manganese oxide was less than that from amorphous iron oxide.And the nitrogen loss by cooperation of amorphous manganese oxide and microorganisms (soil suspension) was larger than that by amorphous manganese oxide alone.In the system,nitrogen loss was associated with the specific surface ares and oxidation-reduction of amorphous manganese oxide.However,their quantitative relationship and the exact reaction processes of nitrogen loss induced by amorphous manganese oxide remain to be further studied.

  9. Interactions of hydrogen with amorphous hafnium oxide

    Science.gov (United States)

    Kaviani, Moloud; Afanas'ev, Valeri V.; Shluger, Alexander L.

    2017-02-01

    We used density functional theory (DFT) calculations to study the interaction of hydrogen with amorphous hafnia (a -HfO2 ) using a hybrid exchange-correlation functional. Injection of atomic hydrogen, its diffusion towards electrodes, and ionization can be seen as key processes underlying charge instability of high-permittivity amorphous hafnia layers in many applications. Hydrogen in many wide band gap crystalline oxides exhibits negative-U behavior (+1 and -1 charged states are thermodynamically more stable than the neutral state) . Our results show that in a -HfO2 hydrogen is also negative-U, with charged states being the most thermodynamically stable at all Fermi level positions. However, metastable atomic hydrogen can share an electron with intrinsic electron trapping precursor sites [Phys. Rev. B 94, 020103 (2016)., 10.1103/PhysRevB.94.020103] forming a [etr -+O -H ] center, which is lower in energy on average by about 0.2 eV. These electron trapping sites can affect both the dynamics and thermodynamics of the interaction of hydrogen with a -HfO2 and the electrical behavior of amorphous hafnia films in CMOS devices.

  10. Band gap tuning of amorphous Al oxides by Zr alloying

    DEFF Research Database (Denmark)

    Canulescu, Stela; Jones, N. C.; Borca, C. N.;

    2016-01-01

    minimum changes non-linearly as well.Fitting of the energy band gap values resulted in a bowing parameter of 2 eV. The band gap bowing of themixed oxides is assigned to the presence of the Zr d-electron states localized below the conduction bandminimum of anodized Al2O3.......The optical band gap and electronic structure of amorphous Al-Zr mixed oxides, with Zr content ranging from4.8 to 21.9% were determined using vacuum ultraviolet (VUV) and X-ray absorption spectroscopy (XAS). Thelight scattering by the nano-porous structure of alumina at low wavelengths...... was estimated based on the Miescattering theory. The dependence of the optical band gap of the Al-Zr mixed oxides on Zr content deviatesfrom linearity and decreases from 7.3 eV for pure anodized Al2O3 to 6.45 eV for Al-Zr mixed oxide with Zrcontent of 21.9%. With increasing Zr content, the conduction band...

  11. Negative Magnetoresistance in Amorphous Indium Oxide Wires

    Science.gov (United States)

    Mitra, Sreemanta; Tewari, Girish C.; Mahalu, Diana; Shahar, Dan

    2016-11-01

    We study magneto-transport properties of several amorphous Indium oxide nanowires of different widths. The wires show superconducting transition at zero magnetic field, but, there exist a finite resistance at the lowest temperature. The R(T) broadening was explained by available phase slip models. At low field, and far below the superconducting critical temperature, the wires with diameter equal to or less than 100 nm, show negative magnetoresistance (nMR). The magnitude of nMR and the crossover field are found to be dependent on both temperature and the cross-sectional area. We find that this intriguing behavior originates from the interplay between two field dependent contributions.

  12. Structure and Properties of Amorphous Transparent Conducting Oxides

    Science.gov (United States)

    Medvedeva, Julia

    Driven by technological appeal, the research area of amorphous oxide semiconductors has grown tremendously since the first demonstration of the unique properties of amorphous indium oxide more than a decade ago. Today, amorphous oxides, such as a-ITO, a-IZO, a-IGZO, or a-ZITO, exhibit the optical, electrical, thermal, and mechanical properties that are comparable or even superior to those possessed by their crystalline counterparts, pushing the latter out of the market. Large-area uniformity, low-cost low-temperature deposition, high carrier mobility, optical transparency, and mechanical flexibility make these materials appealing for next-generation thin-film electronics. Yet, the structural variations associated with crystalline-to-amorphous transition as well as their role in carrier generation and transport properties of these oxides are far from being understood. Although amorphous oxides lack grain boundaries, factors like (i) size and distribution of nanocrystalline inclusions; (ii) spatial distribution and clustering of incorporated cations in multicomponent oxides; (iii) formation of trap defects; and (iv) piezoelectric effects associated with internal strains, will contribute to electron scattering. In this work, ab-initio molecular dynamics (MD) and accurate density-functional approaches are employed to understand how the properties of amorphous ternary and quaternary oxides depend on quench rates, cation compositions, and oxygen stoichiometries. The MD results, combined with thorough experimental characterization, reveal that interplay between the local and long-range structural preferences of the constituent oxides gives rise to a complex composition-dependent structural behavior in the amorphous oxides. The proposed network models of metal-oxygen polyhedra help explain the observed intriguing electrical and optical properties in In-based oxides and suggest ways to broaden the phase space of amorphous oxide semiconductors with tunable properties. The

  13. Growth model of lantern-like amorphous silicon oxide nanowires

    Science.gov (United States)

    Wu, Ping; Zou, Xingquan; Chi, Lingfei; Li, Qiang; Xiao, Tan

    2007-03-01

    Silicon oxide nanowire assemblies with lantern-like morphology were synthesized by thermal evaporation of the mixed powder of SnO2 and active carbon at 1000 °C and using the silicon wafer as substrate and source. The nano-lanterns were characterized by a scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), energy-dispersive spectroscope (EDS) and selective area electron diffraction (SAED). The results show that the nano-lantern has symmetrical morphology, with one end connecting with the silicon wafer and the other end being the tin ball. The diameter of the nano-lantern is about 1.5-3.0 µm. Arc silicon oxide nanowire assemblies between the two ends have diameters ranging from 70 to 150 nm. One single catalyst tin ball catalyzes more than one amorphous nanowires' growth. In addition, the growth mechanism of the nano-lantern is discussed and a growth model is proposed. The multi-nucleation sites round the Sn droplet's perimeter are responsible for the formation of many SiOx nanowires. The growing direction of the nanowires is not in the same direction of the movement of the catalyst tin ball, resulting in the bending of the nanowires and forming the lantern-like silicon oxide morphology. The controllable synthesis of the lantern-like silicon oxide nanostructure may have potential applications in the photoelectronic devices field.

  14. Growth model of lantern-like amorphous silicon oxide nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Wu Ping; Zou Xingquan; Chi Lingfei; Li Qiang; Xiao Tan [Department of Physics, Shantou University, Shantou 515063 (China)

    2007-03-28

    Silicon oxide nanowire assemblies with lantern-like morphology were synthesized by thermal evaporation of the mixed powder of SnO{sub 2} and active carbon at 1000 deg. C and using the silicon wafer as substrate and source. The nano-lanterns were characterized by a scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), energy-dispersive spectroscope (EDS) and selective area electron diffraction (SAED). The results show that the nano-lantern has symmetrical morphology, with one end connecting with the silicon wafer and the other end being the tin ball. The diameter of the nano-lantern is about 1.5-3.0 {mu}m. Arc silicon oxide nanowire assemblies between the two ends have diameters ranging from 70 to 150 nm. One single catalyst tin ball catalyzes more than one amorphous nanowires' growth. In addition, the growth mechanism of the nano-lantern is discussed and a growth model is proposed. The multi-nucleation sites round the Sn droplet's perimeter are responsible for the formation of many SiO{sub x} nanowires. The growing direction of the nanowires is not in the same direction of the movement of the catalyst tin ball, resulting in the bending of the nanowires and forming the lantern-like silicon oxide morphology. The controllable synthesis of the lantern-like silicon oxide nanostructure may have potential applications in the photoelectronic devices field.

  15. Nanostructured amorphous nickel oxide with enhanced antioxidant activity

    Energy Technology Data Exchange (ETDEWEB)

    Madhu, G. [Department of Physics, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695581 (India); Department of Physics, University College, Thiruvananthapuram, Kerala 695034 (India); Biju, V., E-mail: bijunano@gmail.com [Department of Physics, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695581 (India)

    2015-07-15

    Highlights: • Synthesis of nanostructured amorphous nickel oxide by a facile chemical route. • Enhanced antioxidant activity of amorphous NiO compared to crystalline samples. • Role of O{sup 2−} vacancies and high specific surface area in antioxidant activity. • Use of DC conductivity, XPS and BET to explain enhanced antioxidant activity. - Abstract: Nanostructured amorphous nickel oxide was synthesized by the thermal decomposition of nickel chloride–ethanol amine complex. The X-ray diffraction and Transmission Electron Microscopic studies established the amorphous nature of the sample. The Fourier Transform Infrared, Scanning Electron Microscopy, Energy Dispersive and X-ray Photoelectron Spectroscopic studies of the sample revealed the formation of NiO. The specific surface area of the sample is measured using Brunauer–Emmett–Teller analysis and the mesoporous nature of the sample is established through Barrett–Joyner–Halenda pore size distribution analysis. The antioxidant activity of the amorphous sample measured by 1,1-diphenyl-2-picryl hydrazyl (DPPH) scavenging is found to be nearly twice greater than that reported for nanocrystalline NiO samples. The estimated radical scavenging activity of the sample is correlated with the DC conductivity values measured in vacuum and air ambience. The enhanced antioxidant activity of the amorphous NiO is accounted by the increase in the concentration of O{sup 2−} vacancies and the specific surface area. The Ni 2p and O 1s X-ray Photoelectron Spectroscopic studies of the sample support the inference.

  16. Upconversion spectroscopy of erbium in amorphous aluminum oxide microstructures

    NARCIS (Netherlands)

    Agazzi, L.; Wörhoff, K.; Pollnau, M.

    2012-01-01

    The influence of energy migration and energy-transfer upconversion (ETU) among neighboring erbium ions on luminescence decay and steady-state population densities in amorphous aluminum oxide microstructures is investigated by means of photoluminescence decay measurements under quasi-CW excitation. .

  17. Band gap structure modification of amorphous anodic Al oxide film by Ti-alloying

    DEFF Research Database (Denmark)

    Canulescu, Stela; Rechendorff, K.; Borca, C. N.;

    2014-01-01

    The band structure of pure and Ti-alloyed anodic aluminum oxide has been examined as a function of Ti concentration varying from 2 to 20 at. %. The band gap energy of Ti-alloyed anodic Al oxide decreases with increasing Ti concentration. X-ray absorption spectroscopy reveals that Ti atoms...... are not located in a TiO2 unit in the oxide layer, but rather in a mixed Ti-Al oxide layer. The optical band gap energy of the anodic oxide layers was determined by vacuum ultraviolet spectroscopy in the energy range from 4.1 to 9.2 eV (300–135 nm). The results indicate that amorphous anodic Al2O3 has a direct...

  18. Electrochromic study on amorphous tungsten oxide films by sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuan, E-mail: cli10@yahoo.com [Department of Biomedical Engineering, National Yang Ming University, Taipei 11221, Taiwan (China); Department of Mechanical Engineering, National Central University, Jhongli, Taoyuan 32001, Taiwan (China); Hsieh, J.H. [Department of Materials Engineering, Ming Chi University of Technology, Taishan, Taipei 24301, Taiwan (China); Hung, Ming-Tsung [Department of Mechanical Engineering, National Central University, Jhongli, Taoyuan 32001, Taiwan (China); Huang, B.Q. [Department of Biomedical Engineering, National Yang Ming University, Taipei 11221, Taiwan (China)

    2015-07-31

    Tungsten oxide films under different oxygen flow rates are deposited by DC sputtering. The voltage change at target and analyses for the deposited films by X-ray diffraction, scanning electronic microscope, X-ray photoelectron spectroscopy and ultraviolet–visible-near infrared spectroscopy consistently indicate that low oxygen flow rate (5 sccm) only creates metal-rich tungsten oxide films, while higher oxygen flow rate (10–20 sccm) assures the deposition of amorphous WO{sub 3} films. To explore the electrochromic function of deposited WO{sub 3} films, we use electrochemical tests to perform the insertion of lithium ions and electrons into films. The WO{sub 3} films switch between color and bleach states effectively by both potentiostat and cyclic voltammetry. Quantitative evaluation on electrochemical tests indicates that WO{sub 3} film with composition close to its stoichiometry is an optimal choice for electrochromic function. - Highlights: • Amorphous WO{sub 3} films are deposited by DC sputtering under different O{sub 2} flow rates. • Higher oxygen flow rate (> 10 sccm) assures the deposition of amorphous WO{sub 3} films. • Both potentiostat and cyclic voltammetry make WO{sub 3} films switch its color. • An optimal electrochromic WO{sub 3} is to make films close to its stoichiometry.

  19. Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors

    Science.gov (United States)

    Kim, Chang-Jung; Kim, Sangwook; Lee, Je-Hun; Park, Jin-Seong; Kim, Sunil; Park, Jaechul; Lee, Eunha; Lee, Jaechul; Park, Youngsoo; Kim, Joo Han; Shin, Sung Tae; Chung, U.-In

    2009-12-01

    We developed amorphous hafnium-indium-zinc oxide (HIZO) thin films as oxide semiconductors and investigated the films electrically and physically. Adding of hafnium (Hf) element can suppress growing the columnar structure and drastically decrease the carrier concentration and hall mobility in HIZO films. The thin film transistors (TFTs) with amorphous HIZO active channel exhibit good electrical properties with field effect mobility of around 10 cm2/Vs, S of 0.23 V/decade, and high Ion/off ratio of over 108, enough to operate the next electronic devices. In particular, under bias-temperature stress test, the HIZO TFTs with 0.3 mol % (Hf content) showed only 0.46 V shift in threshold voltage, compared with 3.25 V shift in HIZO TFT (0.1 mol %). The Hf ions may play a key role to improve the instability of TFTs due to high oxygen bonding ability. Therefore, the amorphous HIZO semiconductor will be a prominent candidate as an operation device for large area electronic applications.

  20. Amorphous Hafnium-Indium-Zinc Oxide Semiconductor Thin Film Transistors

    Directory of Open Access Journals (Sweden)

    Sheng-Po Chang

    2012-01-01

    Full Text Available We reported on the performance and electrical properties of co-sputtering-processed amorphous hafnium-indium-zinc oxide (α-HfIZO thin film transistors (TFTs. Co-sputtering-processed α-HfIZO thin films have shown an amorphous phase in nature. We could modulate the In, Hf, and Zn components by changing the co-sputtering power. Additionally, the chemical composition of α-HfIZO had a significant effect on reliability, hysteresis, field-effect mobility (μFE, carrier concentration, and subthreshold swing (S of the device. Our results indicated that we could successfully and easily fabricate α-HfIZO TFTs with excellent performance by the co-sputtering process. Co-sputtering-processed α-HfIZO TFTs were fabricated with an on/off current ratio of ~106, higher mobility, and a subthreshold slope as steep as 0.55 V/dec.

  1. Transparent amorphous zinc oxide thin films for NLO applications

    Science.gov (United States)

    Zawadzka, A.; Płóciennik, P.; Strzelecki, J.; Sahraoui, B.

    2014-11-01

    This review focuses on the growth and optical properties of amorphous zinc oxide (ZnO) thin films. A high quality ZnO films fabricated by dip-coating (sol-gel) method were grown on quartz and glass substrates at temperature equal to 350 K. The amorphous nature of the films was verified by X-ray diffraction. Atomic Force Microscopy was used to evaluate the surface morphology of the films. The optical characteristics of amorphous thin films have been investigated in the spectral range 190-1100 nm. Measurement of the polarized optical properties was shows a high transmissivity (80-99%) and low absorptivity (<5%) in the visible and near infrared regions at different angles of incidence. Linear optical properties were investigated by classic and Time-Resolved Photoluminescence (TRPL) measurements. Photoluminescence spectrum exhibits a strong ultraviolet emission while the visible emission is very weak. An innovative TRPL technique has enabled the measurement of the photoluminescence decay time as a function of temperature. TRPL measurements reveal a multiexponential decay behavior typical for amorphous thin films. Second and third harmonic generation measurements were performed by means of the rotational Maker fringe technique using Nd:YAG laser at 1064 nm in picosecond regime for investigations of the nonlinear optical properties. The obtained values of second and third order nonlinear susceptibilities were found to be high enough for the potential applications in the optical switching devices based on refractive index changes. Presented spectra confirm high structural and optical quality of the investigated zinc oxide thin films.

  2. Bacterial adhesion on amorphous and crystalline metal oxide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Almaguer-Flores, Argelia [Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Silva-Bermudez, Phaedra, E-mail: suriel21@yahoo.com [Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, 14389 México D.F. (Mexico); Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Galicia, Rey; Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico)

    2015-12-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO{sub 2} and ZrO{sub 2} coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical–chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO{sub 2} > ZrO{sub 2}) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO{sub 2}, which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion. - Highlights: • Amorphous (a) and crystalline (c) TiO{sub 2} and ZrO{sub 2} coatings were deposited. • The atomic ordering influences the coatings surface charge and nano-topography. • The atomic ordering modifies the bacterial adhesion for the same surface chemistry. • S. aureus adhesion was lower on a-TiO{sub 2} and a-ZrO{sub 2} than on their c-oxide counterpart. • E. coli adhesion on a-TiO{sub 2} was lower than on the c-TiO{sub 2}.

  3. Lithium ion transport in a model of amorphous polyethylene oxide.

    Energy Technology Data Exchange (ETDEWEB)

    Boinske, P. T.; Curtiss, L.; Halley, J. W.; Lin, B.; Sutjianto, A.; Chemical Engineering; Univ. of Minnesota

    1996-01-01

    We have made a molecular dynamics study of transport of a single lithium ion in a previously reported model of amorphous polyethylene oxide. New ab initio calculations of the interaction of the lithium ion with 1,2-dimethoxyethane and with dimethyl ether are reported which are used to determine force fields for the simulation. We report preliminary calculations of solvation energies and hopping barriers and a calculation of the ionic conductivity which is independent of any assumptions about the mechanism of ion transport. We also report some details of a study of transport of the trapped lithium ion on intermediate time and length scales.

  4. Unification of catalytic water oxidation and oxygen reduction reactions: amorphous beat crystalline cobalt iron oxides.

    Science.gov (United States)

    Indra, Arindam; Menezes, Prashanth W; Sahraie, Nastaran Ranjbar; Bergmann, Arno; Das, Chittaranjan; Tallarida, Massimo; Schmeißer, Dieter; Strasser, Peter; Driess, Matthias

    2014-12-17

    Catalytic water splitting to hydrogen and oxygen is considered as one of the convenient routes for the sustainable energy conversion. Bifunctional catalysts for the electrocatalytic oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are pivotal for the energy conversion and storage, and alternatively, the photochemical water oxidation in biomimetic fashion is also considered as the most useful way to convert solar energy into chemical energy. Here we present a facile solvothermal route to control the synthesis of amorphous and crystalline cobalt iron oxides by controlling the crystallinity of the materials with changing solvent and reaction time and further utilize these materials as multifunctional catalysts for the unification of photochemical and electrochemical water oxidation as well as for the oxygen reduction reaction. Notably, the amorphous cobalt iron oxide produces superior catalytic activity over the crystalline one under photochemical and electrochemical water oxidation and oxygen reduction conditions.

  5. The atomic structure of ternary amorphous TixSi1-xO2 hybrid oxides.

    Science.gov (United States)

    Landmann, M; Köhler, T; Rauls, E; Frauenheim, T; Schmidt, W G

    2014-06-25

    Atomic length-scale order characteristics of binary and ternary amorphous oxides are presented within the framework of ab initio theory. A combined numerically efficient density functional based tight-binding molecular dynamics and density functional theory approach is applied to model the amorphous (a) phases of SiO2 and TiO2 as well as the amorphous phase of atomically mixed TixSi1-xO2 hybrid-oxide alloys over the entire composition range. Short and mid-range order in the disordered material phases are characterized by bond length and bond-angle statistics, pair distribution function analysis, coordination number and coordination polyhedra statistics, as well as ring statistics. The present study provides fundamental insights into the order characteristics of the amorphous hybrid-oxide frameworks formed by versatile types of TiOn and SiOm coordination polyhedra. In a-SiO2 the fourfold crystal coordination of Si ions is almost completely preserved and the atomic structure is widely dominated by ring-like mid-range order characteristics. In contrast, the structural disorder of a-TiO2 arises from short-range disorder in the local coordination environment of the Ti ion. The coordination number analysis indicates a large amount of over and under-coordinated Ti ions (coordination defects) in a-TiO2. Aside from the ubiquitous distortions of the crystal-like coordinated polyhedra, even the basic coordination-polyhedra geometry type changes for a significant fraction of TiO6 units (geometry defects). The combined effects of topological and chemical disorder in a-TixSi1-xO2 alloys lead to a continuos increase in both the Si as well as the Ti coordination number with the chemical composition x. The important roles of intermediate fivefold coordination states of Ti and Si cations are highlighted for ternary a-TixSi1-xO2 as well as for binary a-TiO2. The continuous decrease in ring size with increasing Ti content reflects the progressive loss of mid-range order structure

  6. Oxidation of fluorinated amorphous carbon (a-CF(x)) films.

    Science.gov (United States)

    Yun, Yang; Broitman, Esteban; Gellman, Andrew J

    2010-01-19

    Amorphous fluorinated carbon (a-CF(x)) films have a variety of potential technological applications. In most such applications these films are exposed to air and undergo partial surface oxidation. X-ray photoemission spectroscopy has been used to study the oxidation of fresh a-CF(x) films deposited by magnetron sputtering. The oxygen sticking coefficient measured by exposure to low pressures (<10(-3) Torr) of oxygen at room temperature is on the order of S approximately 10(-6), indicating that the surfaces of these films are relatively inert to oxidation when compared with most metals. The X-ray photoemission spectra indicate that the initial stages of oxygen exposure (<10(7) langmuirs) result in the preferential oxidation of the carbon atoms with zero or one fluorine atom, perhaps because these carbon atoms are more likely to be found in configurations with unsaturated double bonds and radicals than carbon atoms with two or three fluorine atoms. Exposure of the a-CF(x) film to atmospheric pressures of air (effective exposure of 10(12) langmuirs to O(2)) results in lower levels of oxygen uptake than the low pressure exposures (<10(7) langmuirs). It is suggested that this is the result of oxidative etching of the most reactive carbon atoms, leaving a relatively inert surface. Finally, low pressure exposures to air result in the adsorption of both nitrogen and oxygen onto the surface. Some of the nitrogen adsorbed on the surface at low pressures is in a reversibly adsorbed state in the sense that subsequent exposure to low pressures of O(2) results in the displacement of nitrogen by oxygen. Similarly, when an a-CF(x) film oxidized in pure O(2) is exposed to low pressures of air, some of the adsorbed oxygen is displaced by nitrogen. It is suggested that these forms of nitrogen and oxygen are bound to free radical sites in the film.

  7. Atomic structure of the amorphous nonstoichiometric silicon oxides and nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Gritsenko, V A [Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2008-07-31

    In addition to amorphous SiO{sub 2} and Si{sub 3}N{sub 4}, the two key dielectric film materials used in modern silicon devices, the fabrication technology of nonstoichiometric SiO{sub x}N{sub y}, SiN{sub x}, and SiO{sub x} compounds is currently under development. Varying the chemical composition of these compounds allows a wide range of control over their physical - specifically, optical and electrical - properties. The development of technology for synthesizing such films requires a detailed understanding of their atomic structure. Current views on the atomic structure of nonstoichiometric silicon nitrides and oxides are reviewed and summarized. (reviews of topical problems)

  8. Synthesis of novel amorphous calcium carbonate by sono atomization for reactive mixing.

    Science.gov (United States)

    Kojima, Yoshiyuki; Kanai, Makoto; Nishimiya, Nobuyuki

    2012-03-01

    Droplets of several micrometers in size can be formed in aqueous solution by atomization under ultrasonic irradiation at 2 MHz. This phenomenon, known as atomization, is capable of forming fine droplets for use as a reaction field. This synthetic method is called SARM (sono atomization for reactive mixing). This paper reports on the synthesis of a novel amorphous calcium carbonate formed by SARM. The amorphous calcium carbonate, obtained at a solution concentration of 0.8 mol/dm(3), had a specific surface area of 65 m(2)/g and a composition of CaCO(3)•0.5H(2)O as determined using thermogravimetric/differential thermal analysis (TG-DTA). Because the ACC had a lower hydrate composition than conventional amorphous calcium carbonate (ACC), the ACC synthesized in this paper was very stable at room temperature.

  9. Bacterial nanometric amorphous Fe-based oxide: a potential lithium-ion battery anode material.

    Science.gov (United States)

    Hashimoto, Hideki; Kobayashi, Genki; Sakuma, Ryo; Fujii, Tatsuo; Hayashi, Naoaki; Suzuki, Tomoko; Kanno, Ryoji; Takano, Mikio; Takada, Jun

    2014-04-23

    Amorphous Fe(3+)-based oxide nanoparticles produced by Leptothrix ochracea, aquatic bacteria living worldwide, show a potential as an Fe(3+)/Fe(0) conversion anode material for lithium-ion batteries. The presence of minor components, Si and P, in the original nanoparticles leads to a specific electrode architecture with Fe-based electrochemical centers embedded in a Si, P-based amorphous matrix.

  10. Finite-size effects in amorphous indium oxide

    Science.gov (United States)

    Mitra, Sreemanta; Tewari, Girish C.; Mahalu, Diana; Shahar, Dan

    2016-04-01

    We study the low-temperature magnetotransport properties of several highly disordered amorphous indium oxide (a:InO) samples. Simultaneously fabricated devices comprising a two-dimensional (2D) film and 10 -μ m -long wires of different widths were measured to investigate the effect of size as we approach the 1D limit, which is around 4 times the correlation length, and happens to be around 100 nm for a:InO. The film and the wires showed magnetic field (B )-induced superconductor to insulator transition (SIT). In the superconducting side, the resistance increased with decrease in wire width, whereas an opposite trend is observed in the insulating side. We find that this effect can be explained in light of charge-vortex duality picture of the SIT. Resistance of the 2D film follows an activated behavior over the temperature (T ), whereas, the wires show a crossover from the high-T -activated to a T -independent behavior. At high-temperature regime the wires' resistance follow the film's until they deviate and became independent of T . We find that the temperature at which this deviation occurs evolves with the magnetic field and the width of the wire, which show the effect of finite size on the transport.

  11. Electronic transport in mixed-phase hydrogenated amorphous/nanocrystalline silicon thin films

    Science.gov (United States)

    Wienkes, Lee Raymond

    Interest in mixed-phase silicon thin film materials, composed of an amorphous semiconductor matrix in which nanocrystalline inclusions are embedded, stems in part from potential technological applications, including photovoltaic and thin film transistor technologies. Conventional mixed-phase silicon films are produced in a single plasma reactor, where the conditions of the plasma must be precisely tuned, limiting the ability to adjust the film and nanoparticle parameters independently. The films presented in this thesis are deposited using a novel dual-plasma co-deposition approach in which the nanoparticles are produced separately in an upstream reactor and then injected into a secondary reactor where an amorphous silicon film is being grown. The degree of crystallinity and grain sizes of the films are evaluated using Raman spectroscopy and X-ray diffraction respectively. I describe detailed electronic measurements which reveal three distinct conduction mechanisms in n-type doped mixed-phase amorphous/nanocrystalline silicon thin films over a range of nanocrystallite concentrations and temperatures, covering the transition from fully amorphous to ~30% nanocrystalline. As the temperature is varied from 470 to 10 K, we observe activated conduction, multiphonon hopping (MPH) and Mott variable range hopping (VRH) as the nanocrystal content is increased. The transition from MPH to Mott-VRH hopping around 100K is ascribed to the freeze out of the phonon modes. A conduction model involving the parallel contributions of these three distinct conduction mechanisms is shown to describe both the conductivity and the reduced activation energy data to a high accuracy. Additional support is provided by measurements of thermal equilibration effects and noise spectroscopy, both done above room temperature (>300 K). This thesis provides a clear link between measurement and theory in these complex materials.

  12. Ultraflexible polymer solar cells using amorphous zinc-indium-tin oxide transparent electrodes.

    Science.gov (United States)

    Zhou, Nanjia; Buchholz, Donald B; Zhu, Guang; Yu, Xinge; Lin, Hui; Facchetti, Antonio; Marks, Tobin J; Chang, Robert P H

    2014-02-01

    Polymer solar cells are fabricated on highly conductive, transparent amorphous zinc indium tin oxide (a-ZITO) electrodes. For two representative active layer donor polymers, P3HT and PTB7, the power conversion efficiencies (PCEs) are comparable to reference devices using polycrystalline indium tin oxide (ITO) electrodes. Benefitting from the amorphous character of a-ZITO, the new devices are highly flexible and can be repeatedly bent to a radius of 5 mm without significant PCE reduction.

  13. Magnetic Properties of Amorphous Fe-Si-B Powder Cores Mixed with Pure Iron Powder

    Science.gov (United States)

    Kim, Hyeon-Jun; Nam, Seul Ki; Kim, Kyu-Sung; Yoon, Sung Chun; Sohn, Keun-Yong; Kim, Mi-Rae; Sul Song, Yong; Park, Won-Wook

    2012-10-01

    Amorphous Fe-Si-B alloy was prepared by melt-spinning, and then the ribbons were pulverized and ball-milled to make the amorphous powder of ˜25 µm in size. Subsequently those were mixed with pure iron powders with an average particle size of 3 µm, and 1.5 wt % water glass diluted by distilled water at the ratio of 1:2. The powder mixtures were cold compacted at 650 MPa in toroid die, and heat treated at 430-440 °C under a nitrogen atmosphere for 1 h and 30 min, respectively. The soft magnetic properties of powder core were investigated using a B-H analyzer and a flux meter at the frequency range of ˜100 kHz. The microstructure was observed using scanning electron microscope (SEM), and the density of the core was measured using the principle of Archimedes. Based on the experimental results, the amorphous powder mixed with pure iron powder showed the improved powder compactability, which resulted in the increased permeability and the reduced core loss.

  14. Thermal oxidation of Zr–Cu–Al–Ni amorphous metal thin films

    Energy Technology Data Exchange (ETDEWEB)

    Oleksak, R.P.; Hostetler, E.B.; Flynn, B.T. [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331 (United States); McGlone, J.M.; Landau, N.P.; Wager, J.F. [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331 (United States); Stickle, W.F. [Hewlett-Packard Company, Corvallis, OR 97333 (United States); Herman, G.S., E-mail: greg.herman@oregonstate.edu [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331 (United States)

    2015-11-30

    The initial stages of thermal oxidation for Zr–Cu–Al–Ni amorphous metal thin films were investigated using X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. The as-deposited films had oxygen incorporated during sputter deposition, which helped to stabilize the amorphous phase. After annealing in air at 300 °C for short times (5 min) this oxygen was found to segregate to the surface or buried interface. Annealing at 300 °C for longer times leads to significant composition variation in both vertical and lateral directions, and formation of a surface oxide layer that consists primarily of Zr and Al oxides. Surface oxide formation was initially limited by back-diffusion of Cu and Ni (< 30 min), and then by outward diffusion of Zr (> 30 min). The oxidation properties are largely consistent with previous observations of Zr–Cu–Al–Ni metallic glasses, however some discrepancies were observed which could be explained by the unique sample geometry of the amorphous metal thin films. - Highlights: • Thermal oxidation of amorphous Zr–Cu–Al–Ni thin films was investigated. • Significant short-range inhomogeneities were observed in the amorphous films. • An accumulation of Cu and Ni occurs at the oxide/metal interface. • Diffusion of Zr was found to limit oxide film growth.

  15. Bandgap and Carrier Transport Engineering of Quantum Confined Mixed Phase Nanocrystalline/Amorphous Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Tianyuan; Klafehn, Grant; Kendrick, Chito; Theingi, San; Airuoyo, Idemudia; Lusk, Mark T.; Stradins, Paul; Taylor, Craig; Collins, Reuben T.

    2016-11-21

    Mixed phase nanocrystalline/amorphous-silicon (nc/a-Si:H) thin films with band-gap higher than bulk silicon are prepared by depositing silicon nanoparticles (SiNPs), prepared in a separate deposition zone, and hydrogenated amorphous silicon (a-Si:H), simultaneously. Since the two deposition phases are well decoupled, optimized parameters for each component can apply to the growth process. Photoluminescence spectroscopy (PL) shows that the embedded SiNPs are small enough to exhibit quantum confinement effects. The low temperature PL measurements on the mixed phase reveal a dominant emission feature, which is associated with SiNPs surrounded by a-Si:H. In addition, we compare time dependent low temperature PL measurements for both a-Si:H and mixed phase material under intensive laser exposure for various times up to two hours. The PL intensity of a-Si:H with embedded SiNPs degrades much less than that of pure a-Si:H. We propose this improvement of photostability occurs because carriers generated in the a-Si:H matrix quickly transfer into SiNPs and recombine there instead of recombining in a-Si:H and creating defect states (Staebler-Wronski Effect).

  16. Remarkably stable amorphous metal oxide grown on Zr-Cu-Be metallic glass.

    Science.gov (United States)

    Lim, Ka Ram; Kim, Chang Eun; Yun, Young Su; Kim, Won Tae; Soon, Aloysius; Kim, Do Hyang

    2015-12-14

    In the present study, we investigated the role of an aliovalent dopant upon stabilizing the amorphous oxide film. We added beryllium into the Zr50Cu50 metallic glass system, and found that the amorphous oxide layer of Be-rich phase can be stabilized even at elevated temperature above Tg of the glass matrix. The thermal stability of the amorphous oxide layer is substantially enhanced due to Be addition. As confirmed by high-temperature cross-section HR-TEM, fully disordered Be-added amorphous layer is observed, while the rapid crystallization is observed without Be. To understand the role of Be, we employed ab-initio molecular dynamics to compare the mobility of ions with/without Be dopant, and propose a disordered model where Be dopant occupies Zr vacancy and induces structural disorder to the amorphous phase. We find that the oxygen mobility is slightly suppressed due to Be dopant, and Be mobility is unexpectedly lower than that of oxygen, which we attribute to the aliovalent nature of Be dopant whose diffusion always accompany multiple counter-diffusion of other ions. Here, we explain the origin of superior thermal stability of amorphous oxide film in terms of enhanced structural disorder and suppressed ionic mobility due to the aliovalent dopant.

  17. Ferroelectric-Like Properties of Amorphous Metal Oxide Thin Films Prepared by Sol-Gel Technique.

    Science.gov (United States)

    Xu, Yuhuan

    1995-01-01

    Advances in the field of both optical and electrical integrated circuit devices require new thin film materials. Ferroelectric materials have attractive properties such as hysteresis behavior, pyroelectricity, piezoelectricity and nonlinear optical properties. Many ferroelectric thin films have been successfully prepared from metal organic compounds via sol-gel processing. Thus far, research has concentrated upon polycrystalline or epitaxial ferroelectric films. For amorphous ferroelectric thin films, preliminary experimental results in our laboratory indicated that these amorphous films possessed good ferroelectric -like properties. The purpose of this research is (1) to fabricate amorphous metal oxide thin films by the sol-gel technique, (2) to determine whether these amorphous metal oxide thin films have ferroelectric-like properties and (3) to propose a theoretical model ("ferrons model") to explain the ferroelectric-like properties of amorphous thin films, which deals with a structure of permanent dipoles of "partially ordered clusters" (ferrons) in the amorphous films. The theoretical model is based on our experimental results of thin films of two amorphous materials (barium titanite and lead zirconate titanate). This research may provide a new functional material which could be useful for producing integrated electronic and electrooptic devices.

  18. Mixed iron-manganese oxide nanoparticles

    NARCIS (Netherlands)

    Lai, Jriuan; Shafi, Kurikka V.P.M.; Ulman, Abraham; Loos, Katja; Yang, Nan-Loh; Cui, Min-Hui; Vogt, Thomas; Estournès, Claude; Locke, Dave C.

    2004-01-01

    Designing nanoparticles for practical applications requires knowledge and control of how their desired properties relate to their composition and structure. Here, we present a detailed systematic study of mixed iron-manganese oxide nanoparticles, showing that ultrasonication provides the high-energy

  19. Aqueous ultracapacitors using amorphous MnO2 and reduced graphene oxide

    Science.gov (United States)

    Mery, Adrien; Ghamouss, Fouad; Autret, Cécile; Farhat, Douaa; Tran-Van, François

    2016-02-01

    Herein, synthesis and characterization of amorphous MnO2 and application in asymmetric aqueous ultracapacitors are reported. Different amorphous manganese oxide (MnO2) materials were synthesized from the reduction of KMnO4 in different media such as ethanol (EtOH) or dimethylformamide (DMF). The electrochemical behavior of amorphous MnO2, labeled MnO2-Et and MnO2-DMF, were studied by using cyclic voltammetry, impedance spectroscopy, and galvanostatic cycling in aqueous electrolyte. XRD, BET, TEM, and SEM characterizations highlighted the amorphous nature and the nanostructuration of these MnO2 materials. BET measurement established that these amorphous MnO2 are mesoporous. In addition, MnO2-Et exhibits a larger specific surface area (168 m2 g-1), a narrower pore diameters distribution with lower diameters compared to MnO2-DMF. These results are in agreement with the electrochemical results. Indeed, MnO2-Et shows a higher specific capacitance and lower impedance in aqueous K2SO4 electrolyte. Furthermore, aqueous asymmetric ultracapacitors were assembled and studied using amorphous MnO2 as positive electrode and reduced graphene oxide (rGO) as negative electrode. These asymmetric systems exhibit an electrochemical stability for more than 20,000 galvanostatic cycles at current density of 1 A g-1 with an operating voltage of 2 V.

  20. Observation of the amorphous zinc oxide recrystalline process by molecular dynamics simulation.

    Science.gov (United States)

    Lin, Ken-Huang; Sun, Shih-Jye; Ju, Shin-Pon; Tsai, Jen-Yu; Chen, Hsin-Tsung; Hsieh, Jin-Yuan

    2013-02-21

    The detailed structural variations of amorphous zinc oxide (ZnO) as well as wurtzite (B4) and zinc blende (B3) crystal structures during the temperature elevation process were observed by molecular dynamics simulation. The amorphous ZnO structure was first predicted through the simulated-annealing basin-hopping algorithm with the criterion to search for the least stable structure. The density and X-ray diffraction profiles of amorphous ZnO of the structure were in agreement with previous reports. The local structural transformation among different local structures and the recrystalline process of amorphous ZnO at higher temperatures are observed and can explain the structural transformation and recrystalline mechanism in a corresponding experiment [Bruncko et al., Thin Solid Films 520, 866-870 (2011)].

  1. Amorphous state in the mixed phase of quark-hadron phase transition in protoneutron stars

    CERN Document Server

    Yasutake, Nobutoshi; Tatsumi, Toshitaka

    2012-01-01

    We study the quark-hadron mixed phase in protoneutron stars, where neutrinos are trapped and lepton number becomes a conserved quantity besides the baryon number and electric charge. Considering protoneutron star matter as a ternary system, the Gibbs conditions are applied together with the Coulomb interaction. We find there appears no crystalline ("pasta") structure in the regime of high lepton-number fraction; the size of pasta becomes very large and the geometrical structure becomes mechanically unstable due to the charge screening effect. Consequently the whole system is separated into two bulk regions like an amorphous state, where the surface effect is safely neglected. The local charge neutrality is approximately attained there. After neutrinos are ejected, the matter becomes a binary system. Charge neutrality is globally ensured and the pasta structures appear there. These features are important to consider the quark-hadron phase transition during the evolution of protoneutron stars.

  2. Carbon-Incorporated Amorphous Indium Zinc Oxide Thin-Film Transistors

    Science.gov (United States)

    Parthiban, S.; Park, K.; Kim, H.-J.; Yang, S.; Kwon, J.-Y.

    2014-11-01

    We propose the use of amorphous-carbon indium zinc oxide (a-CIZO) as a channel material for thin-film transistor (TFT) fabrication. This study chose a carbon dopant as a carrier suppressor and strong oxygen binder in amorphous-indium zinc oxide (a-IZO) channel material. a-CIZO thin films were deposited using radiofrequency (RF) sputtering and postannealed at 150°C. X-ray diffraction and transmission electron microscopy analysis revealed that the film remained amorphous even after postannealing. The a-CIZO TFT postannealed at 150°C exhibited saturation field-effect mobility of 16.5 cm2 V-1 s-1 and on-off current ratio of ˜4.3 × 107.

  3. Deep Subgap Feature in Amorphous Indium Gallium Zinc Oxide. Evidence Against Reduced Indium

    Energy Technology Data Exchange (ETDEWEB)

    Sallis, Shawn [Binghamton Univ., NY (United States); Quackenbush, Nicholas F. [Binghamton Univ., NY (United States); Williams, Deborah S. [Binghamton Univ., NY (United States); Senger, Mikell [Binghamton Univ., NY (United States); Woicik, Joseph C. [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); White, Bruce E. [Binghamton Univ., NY (United States); Piper, Louis F. [Binghamton Univ., NY (United States)

    2015-01-14

    Amorphous indium gallium zinc oxide (a-IGZO) is the archetypal transparent amorphous oxide semiconductor. In spite of the gains made with a-IGZO over amorphous silicon in the last decade, the presence of deep subgap states in a-IGZO active layers facilitate instabilities in thin film transistor properties under negative bias illumination stress. Several candidates could contribute to the formation of states within the band gap. We present evidence against In+ lone pair active electrons as the origin of the deep subgap features. No In+ species are observed, only In0 nano-crystallites under certain oxygen deficient growth conditions. Our results further support under coordinated oxygen as the source of the deep subgap states.

  4. Deep subgap feature in amorphous indium gallium zinc oxide: Evidence against reduced indium

    Energy Technology Data Exchange (ETDEWEB)

    Sallis, Shawn; Williams, Deborah S. [Materials Science and Engineering, Binghamton University, Binghamton, New York, 13902 (United States); Quackenbush, Nicholas F.; Senger, Mikell [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York, 13902 (United States); Woicik, Joseph C. [Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899 (United States); White, Bruce E.; Piper, Louis F.J. [Materials Science and Engineering, Binghamton University, Binghamton, New York, 13902 (United States); Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York, 13902 (United States)

    2015-07-15

    Amorphous indium gallium zinc oxide (a-IGZO) is the archetypal transparent amorphous oxide semiconductor. Despite the gains made with a-IGZO over amorphous silicon in the last decade, the presence of deep subgap states in a-IGZO active layers facilitate instabilities in thin film transistor properties under negative bias illumination stress. Several candidates could contribute to the formation of states within the band gap. Here, we present evidence against In{sup +} lone pair active electrons as the origin of the deep subgap features. No In{sup +} species are observed, only In{sup 0} nano-crystallites under certain oxygen deficient growth conditions. Our results further support under coordinated oxygen as the source of the deep subgap states. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Formation of amorphous Ti alloy layers by excimer laser mixing of Ti on AISI 304 stainless-steel surfaces

    Science.gov (United States)

    Jervis, T. R.; Nastasi, M.; Zocco, T. G.; Martin, J. A.

    1988-07-01

    We used excimer laser radiation at 308 nm to mix thin layers of Ti into AISI 304 stainless steel. Different numbers of shots at a fluence about twice the threshold for melting varied the amount of mixing. When mixing is sufficiently complete, an amorphous surface layer is formed with Ti substituting for Fe on a one-to-one basis in the alloy. The laser mixing process, unlike Ti ion implantation, does not result in high incorporation of C in the processed layer, although some C from surface and interface contamination is incorporated into the surface layer.

  6. Widespread oxidized and hydrated amorphous silicates in CR chondrites matrices: Implications for alteration conditions and H2 degassing of asteroids

    Science.gov (United States)

    Le Guillou, Corentin; Changela, Hitesh G.; Brearley, Adrian J.

    2015-06-01

    The CR chondrites carry one of the most pristine records of the solar nebula materials that accreted to form planetesimals. They have experienced very variable degrees of aqueous alteration, ranging from incipient alteration in their matrices to the complete hydration of all of their components. In order to constrain their chemical alteration pathways and the conditions of alteration, we have investigated the mineralogy and Fe oxidation state of silicates in the matrices of 8 CR chondrites, from type 3 to type 1. Fe-L edge X-ray Absorption Near Edge Structure (XANES) was performed on matrix FIB sections using synchrotron-based scanning transmission X-ray microscopy (STXM). The Fe3+ / ∑ Fe ratio of submicron silicate particles was obtained and coordinated with TEM observations. In all the least altered CR chondrites (QUE 99177, EET 87770, EET 92042, LAP 02342, GRA 95229 and Renazzo), we find that the matrices consist of abundant submicron Fe-rich hydrated amorphous silicate grains, mixed with nanometer-sized phyllosilicates. The Fe3+ / ∑ Fe ratios of both amorphous and nanocrystalline regions are very high with values ranging from 68 to 78%. In the most altered samples (Al Rais and GRO 95577), fine-grained phyllosilicates also have a high Fe3+ / ∑ Fe ratio (around 70%), whereas the coarse, micrometer-sized phyllosilicates are less oxidized (down to 55%) and have a lower iron content. These observations suggest the following sequence: submicron Fe2+-amorphous silicate particles were the building blocks of CR matrices; after accretion they were quickly hydrated and oxidized, leading to a metastable, amorphous gel-like phase. Nucleation and growth of crystalline phyllosilicates was kinetically-limited in most type 3 and 2 CRs, but increased as alteration became more extensive in Al Rais and GRO 95577. The decreasing Fe3+ / ∑ Fe ratio is interpreted as a result of the transfer of Fe3+ from silicates to oxides during growth, while aqueous alteration progressed

  7. Selective propene oxidation on mixed metal oxide catalysts

    CERN Document Server

    James, D W

    2002-01-01

    Selective catalytic oxidation processes represent a large segment of the modern chemical industry and a major application of these is the selective partial oxidation of propene to produce acrolein. Mixed metal oxide catalysts are particularly effective in promoting this reaction, and the two primary candidates for the industrial process are based on iron antimonate and bismuth molybdate. Some debate exists in the literature regarding the operation of these materials and the roles of their catalytic components. In particular, iron antimonate catalysts containing excess antimony are known to be highly selective towards acrolein, and a variety of proposals for the enhanced selectivity of such materials have been given. The aim of this work was to provide a direct comparison between the behaviour of bismuth molybdate and iron antimonate catalysts, with additional emphasis being placed on the component single oxide phases of the latter. Studies were also extended to other antimonate-based catalysts, including coba...

  8. A mixed flow reactor method to synthesize amorphous calcium carbonate under controlled chemical conditions.

    Science.gov (United States)

    Blue, Christina R; Rimstidt, J Donald; Dove, Patricia M

    2013-01-01

    This study describes a new procedure to synthesize amorphous calcium carbonate (ACC) from well-characterized solutions that maintain a constant supersaturation. The method uses a mixed flow reactor to prepare ACC in significant quantities with consistent compositions. The experimental design utilizes a high-precision solution pump that enables the reactant solution to continuously flow through the reactor under constant mixing and allows the precipitation of ACC to reach steady state. As a proof of concept, we produced ACC with controlled Mg contents by regulating the Mg/Ca ratio of the input solution and the carbonate concentration and pH. Our findings show that the Mg/Ca ratio of the reactant solution is the primary control for the Mg content in ACC, as shown in previous studies, but ACC composition is further regulated by the carbonate concentration and pH of the reactant solution. The method offers promise for quantitative studies of ACC composition and properties and for investigating the role of this phase as a reactive precursor to biogenic minerals.

  9. Heterogeneous catalysis of mixed oxides perovskite and heteropoly catalysts

    CERN Document Server

    Misono, M

    2014-01-01

    Mixed oxides are the most widely used catalyst materials for industrial catalytic processes. The principal objective of this book is to describe systematically the mixed oxide catalysts, from their fundamentals through their practical applications.  After describing concisely general items concerning mixed oxide and mixed oxide catalysts, two important mixed oxide catalyst materials, namely, heteropolyacids and perovskites, are taken as typical examples and discussed in detail. These two materials have several advantages: 1. They are, respectively, typical examples of salts of oxoacids an

  10. Room-temperature fabrication of light-emitting thin films based on amorphous oxide semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junghwan, E-mail: JH.KIM@lucid.msl.titech.ac.jp; Miyokawa, Norihiko; Ide, Keisuke [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Toda, Yoshitake [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama (Japan)

    2016-01-15

    We propose a light-emitting thin film using an amorphous oxide semiconductor (AOS) because AOS has low defect density even fabricated at room temperature. Eu-doped amorphous In-Ga-Zn-O thin films fabricated at room temperature emitted intense red emission at 614 nm. It is achieved by precise control of oxygen pressure so as to suppress oxygen-deficiency/excess-related defects and free carriers. An electronic structure model is proposed, suggesting that non-radiative process is enhanced mainly by defects near the excited states. AOS would be a promising host for a thin film phosphor applicable to flexible displays as well as to light-emitting transistors.

  11. Critical experiments with mixed oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Harris, D.R. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1997-06-01

    This paper very briefly outlines technical considerations in performing critical experiments on weapons-grade plutonium mixed oxide fuel assemblies. The experiments proposed would use weapons-grade plutonium and Er{sub 2}O{sub 3} at various dissolved boron levels, and for specific fuel assemblies such as the ABBCE fuel assembly with five large water holes. Technical considerations described include the core, the measurements, safety, security, radiological matters, and licensing. It is concluded that the experiments are feasible at the Rensselaer Polytechnic Institute Reactor Critical Facility. 9 refs.

  12. Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model

    Energy Technology Data Exchange (ETDEWEB)

    Baltrusaitis, Jonas, E-mail: job314@lehigh.edu [Department of Chemical Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015 (United States); PhotoCatalytic Synthesis group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Meander 229, P.O. Box 217, 7500 AE Enschede (Netherlands); Mendoza-Sanchez, Beatriz [CRANN, Chemistry School, Trinity College Dublin, Dublin (Ireland); Fernandez, Vincent [Institut des Matériaux Jean Rouxel, 2 rue de la Houssinière, BP 32229, F-44322 Nantes Cedex 3 (France); Veenstra, Rick [PhotoCatalytic Synthesis group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Meander 229, P.O. Box 217, 7500 AE Enschede (Netherlands); Dukstiene, Nijole [Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas (Lithuania); Roberts, Adam [Kratos Analytical Ltd, Trafford Wharf Road, Wharfside, Manchester, M17 1GP (United Kingdom); Fairley, Neal [Casa Software Ltd, Bay House, 5 Grosvenor Terrace, Teignmouth, Devon TQ14 8NE (United Kingdom)

    2015-01-30

    Highlights: • We analyzed and modeled spectral envelopes of complex molybdenum oxides. • Molybdenum oxide films of varying valence and crystallinity were synthesized. • MoO{sub 3} and MoO{sub 2} line shapes from experimental data were created. • Informed amorphous sample model (IASM) developed. • Amorphous molybdenum oxide XPS envelopes were interpreted. - Abstract: Accurate elemental oxidation state determination for the outer surface of a complex material is of crucial importance in many science and engineering disciplines, including chemistry, fundamental and applied surface science, catalysis, semiconductors and many others. X-ray photoelectron spectroscopy (XPS) is the primary tool used for this purpose. The spectral data obtained, however, is often very complex and can be subject to incorrect interpretation. Unlike traditional XPS spectra fitting procedures using purely synthetic spectral components, here we develop and present an XPS data processing method based on vector analysis that allows creating XPS spectral components by incorporating key information, obtained experimentally. XPS spectral data, obtained from series of molybdenum oxide samples with varying oxidation states and degree of crystallinity, were processed using this method and the corresponding oxidation states present, as well as their relative distribution was elucidated. It was shown that monitoring the evolution of the chemistry and crystal structure of a molybdenum oxide sample due to an invasive X-ray probe could be used to infer solutions to complex spectral envelopes.

  13. Photocatalytic oxidative desulfurization of dibenzothiophene catalyzed by amorphous TiO{sub 2} in ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenshuai; Xu, Yehai; Li, Huaming; Dai, Bilian; Xu, Hui; Wang, Chao; Chao, Yanhong; Liu, Hui [Jiangsu University, Zhenjiang (China)

    2014-02-15

    Three types of TiO{sub 2} were synthesized by a hydrolysis and calcination method. The catalysts were characterized by X-ray powder diffraction (XRD), diffuse reflectance spectrum (DRS), Raman spectra, and X-ray photoelectron spectroscopy (XPS). The XRD and Raman spectra indicated that amorphous TiO{sub 2} was successfully obtained at 100 .deg. C. The results indicated that amorphous TiO{sub 2} achieved the highest efficiency of desulfurization. The photocatalytic oxidation of dibenzothiophene (DBT), benzothiophene (BT), 4,6-dimethyldibenzothiophene (4,6-DMDBT) and dodecanethiol (RSH) in model oil was studied at room temperature (30 .deg. C) with three catalysts. The system contained amorphous TiO{sub 2}, H{sub 2}O{sub 2}, and [Bmim]BF{sub 4} ionic liquid, ultraviolet (UV), which played vitally important roles in the photocatalytic oxidative desulfurization. Especially, the molar ratio of H{sub 2}O{sub 2} and sulfur (O/S) was only 2 : 1, which corresponded to the stoichiometric reaction. The sulfur removal of DBT-containing model oil with amorphous TiO{sub 2} could reach 96.6%, which was apparently superior to a system with anatase TiO{sub 2} (23.6%) or with anatase - rutile TiO{sub 2} (18.2%). The system could be recycled seven times without a signicant decrease in photocatalytic activity.

  14. Oxidative Damage and Energy Metabolism Disorder Contribute to the Hemolytic Effect of Amorphous Silica Nanoparticles

    Science.gov (United States)

    Jiang, Lizhen; Yu, Yongbo; Li, Yang; Yu, Yang; Duan, Junchao; Zou, Yang; Li, Qiuling; Sun, Zhiwei

    2016-02-01

    Amorphous silica nanoparticles (SiNPs) have been extensively used in biomedical applications due to their particular characteristics. The increased environmental and iatrogenic exposure of SiNPs gained great concerns on the biocompatibility and hematotoxicity of SiNPs. However, the studies on the hemolytic effects of amorphous SiNPs in human erythrocytes are still limited. In this study, amorphous SiNPs with 58 nm were selected and incubated with human erythrocytes for different times (30 min and 2 h) at various concentrations (0, 10, 20, 50, and 100 μg/mL). SiNPs induced a dose-dependent increase in percent hemolysis and significantly increased the malondialdehyde (MDA) content and decreased the superoxide dismutase (SOD) activity, leading to oxidative damage in erythrocytes. Hydroxyl radical (·OH) levels were detected by electron spin resonance (ESR), and the decreased elimination rates of ·OH showed SiNPs induced low antioxidant ability in human erythrocytes. Na+-K+ ATPase activity and Ca2+-Mg2+ ATPase activity were found remarkably inhibited after SiNP treatment, possibly causing energy sufficient in erythrocytes. Percent hemolysis of SiNPs was significantly decreased in the presence of N-acetyl-cysteine (NAC) and adenosine diphosphate (ADP). It was concluded that amorphous SiNPs caused dose-dependent hemolytic effects in human erythrocytes. Oxidative damage and energy metabolism disorder contributed to the hemolytic effects of SiNPs in vitro.

  15. Characterization of amorphous hydrogenated carbon films deposited by MFPUMST at different ratios of mixed gases

    Indian Academy of Sciences (India)

    Haiyang Dai; Changyong Zhan; Hui Jiang; Ningkang Huang

    2012-12-01

    Amorphous hydrogenated carbon films (-C:H) on -type (100) silicon wafers were prepared with a middle frequency pulsed unbalanced magnetron sputtering technique (MFPUMST) at different ratios of methane–argon gases. The band characteristics, mechanical properties as well as refractive index were measured by Raman spectra, X-ray photoelectron spectroscopy (XPS), nano-indentation tests and spectroscopic ellipsometry. It is found that the 3 fraction increases with increasing Ar concentration in the range of 17–50%, and then decreases when Ar concentration exceeds 50%. The nano-indentation tests reveal that nano-hardness and elastic modulus of the films increase with increasing Ar concentration in the range of 17–50%, while decreases with increasing Ar concentration from 50% to 86%. The variations in the nano-hardness and the elastic modulus could be interpreted due to different 3 fractions in the prepared -C:H films. The variation of refractive index with wavelength have the same tendency for the -C:H films prepared at different Ar concentrations, they decrease with increasing wavelength from 600 to 1700 nm. For certain wavelengths within 600–1700 nm, refractive index has the highest value at the Ar concentration of 50%, and it is smaller at the Ar concentration of 86% than at 17%. The results given above indicate that ratio of mixed gases has a strong influence on bonding configuration and properties of -C:H films during deposition. The related mechanism is discussed in this paper.

  16. High-performance solution-processed amorphous zinc-indium-tin oxide thin-film transistors.

    Science.gov (United States)

    Kim, Myung-Gil; Kim, Hyun Sung; Ha, Young-Geun; He, Jiaqing; Kanatzidis, Mercouri G; Facchetti, Antonio; Marks, Tobin J

    2010-08-04

    Films of the high-performance solution-processed amorphous oxide semiconductor a-ZnIn(4)Sn(4)O(15), grown from 2-methoxyethanol/ethanolamine solutions, were used to fabricate thin-film transistors (TFTs) in combination with an organic self-assembled nanodielectric as the gate insulator. This structurally dense-packed semiconductor composition with minimal Zn(2+) incorporation strongly suppresses transistor off-currents without significant mobility degradation, and affords field-effect electron mobilities of approximately 90 cm(2) V(-1) s(-1) (104 cm(2) V(-1) s(-1) maximum obtained for patterned ZITO films), with I(on)/I(off) ratio approximately 10(5), a subthreshhold swing of approximately 0.2 V/dec, and operating voltage <2 V for patterned devices with W/L = 50. The microstructural and electronic properties of ZITO semiconductor film compositions in the range Zn(9-2x)In(x)Sn(x)O(9+1.5x) (x = 1-4) and ZnIn(8-x)Sn(x)O(13+0.5x) (x = 1-7) were systematically investigated to elucidate those factors which yield optimum mobility, I(on)/I(off), and threshold voltage parameters. It is shown that structural relaxation and densification by In(3+) and Sn(4+) mixing is effective in reducing carrier trap sites and in creating carrier-generating oxygen vacancies. In contrast to the above results for TFTs fabricated with the organic self-assembled nanodielectric, ZnIn(4)Sn(4)O(15) TFTs fabricated with SiO(2) gate insulators exhibit electron mobilities of only approximately 11 cm(2) V(-1) s(-1) with I(on)/I(off) ratios approximately 10(5), and a subthreshhold swing of approximately 9.5 V/dec.

  17. Adsorption of Cr(VI) from synthetic solutions and electroplating wastewaters on amorphous aluminium oxide.

    Science.gov (United States)

    Alvarez-Ayuso, E; García-Sánchez, A; Querol, X

    2007-04-02

    The adsorption behaviour of amorphous aluminium oxide was studied with respect to Cr(VI) in order to consider its application to purify electroplating wastewaters. A batch method was employed using Cr(VI) concentrations ranged from 10 to 200mg/l. The Langmuir model was found to describe the adsorption process well, offering a maximum adsorption capacity of 78.1mg/g. The effect of ionic strength (0-0.1M KNO(3)), pH (3-9) and competitive solutes (molar ratio [Cr(VI)]/[SO(4)(2-)]=1 and 100) on the retention process was evaluated. Cr(VI) adsorption on amorphous aluminium oxide appeared to be dependent on ionic strength with a more pronounced effect in acid conditions. Conversely, adsorption was not affected by pH in acid medium, but decreased when pH sifted to alkaline values. The presence of SO(4)(2-) greatly reduced Cr(VI) removal across the entire pH range when both solutes were present in similar concentrations. Amorphous aluminium oxide also showed a high adsorption capacity when used in the purification of Cr(VI) electroplating wastewaters. The adsorbent doses required to attain more than 90% of Cr(VI) removal varied between 1 and 5 g/l depending on Cr(VI) concentration in wastewaters.

  18. Analytical chemistry methods for mixed oxide fuel, March 1985

    Energy Technology Data Exchange (ETDEWEB)

    1985-03-01

    This standard provides analytical chemistry methods for the analysis of materials used to produce mixed oxide fuel. These materials are ceramic fuel and insulator pellets and the plutonium and uranium oxides and nitrates used to fabricate these pellets.

  19. LOW TEMPERATURE OPTICAL PROPERTIES OF AMORPHOUS OXIDE NANOCLUSTERS IN POLYMETHYL METHACRYLATE MATRIX

    Institute of Scientific and Technical Information of China (English)

    V. V. VOLKOV; WANG ZHONG-LIN; Zou BING-SUO; XIE SI-SHEN

    2000-01-01

    We studied the temperature-dependent steady-state and time-resolved fluorescence properties of very small (1-2 nm) ZnO, CdO, and PbO amorphous nanoclusters prepared in AOT reverse micelles and imbedded in polymethyl methacrylate(PMMA) films. X-ray diffraction and electron diffraction and imaging indicate that these structures are amorphous. These amorphous oxide nanoclusters demonstrate similar structural, electronic, and optical properties. Properties of steady-state fluorescence spectra indicate the unique localization of electronic states due to the amorphous structure. ZnO and CdO show double-band fluorescence structure, which is due to the spin-orbital splitting, similar to Cu2O. Time-resolved fluorescence studies of the nanoclusters in the polymer reveal two lifetime components, as found in solution. The slow component reflects relaxation processes from band-tail states while the fast component may be related to high-lying extended states. The temperature dependence of fast fluorescence component reveals the presence of exciton hopping between anharmonic wells at temperatures higher than 200K. We correlate the barrier height between two wells formed around local atoms with the inter-atomic distance and bond ionicity.

  20. Preparation and Characterization of Amorphous Silica and Calcium Oxide from Agricultural Wastes

    OpenAIRE

    Supachai Sompech; Thananchai Dasri; Sukhontip Thaomola

    2016-01-01

    Rice husk ash and bagasse ash were agricultural wastes that provide an abundanceof the silica (SiO2) source and the chicken eggshells and duck eggshells were important sources forcalcium oxide (CaO). Therefore, in this study the rice husk ash and bagasse ash were used as raw materials for synthesisofsilica powder,while chicken eggshells and duck eggshells were synthesized forthe calcium oxide.The results from the XRD pattern clearly showedthe structural formation of amorphous SiO2 and CaO pha...

  1. Mechanisms of lithium transport in amorphous polyethylene oxide

    Science.gov (United States)

    Duan, Yuhua; Halley, J. W.; Curtiss, Larry; Redfern, Paul

    2005-02-01

    We report calculations using a previously reported model of lithium perchlorate in polyethylene oxide in order to understand the mechanism of lithium transport in these systems. Using an algorithm suggested by Voter, we find results for the diffusion rate which are quite close to experimental values. By analysis of the individual events in which large lithium motions occur during short times, we find that no single type of rearrangement of the lithium environment characterizes these events. We estimate the free energies of the lithium ion as a function of position during these events by calculation of potentials of mean force and thus derive an approximate map of the free energy as a function of lithium position during these events. The results are consistent with a Marcus-like picture in which the system slowly climbs a free energy barrier dominated by rearrangement of the polymer around the lithium ions, after which the lithium moves very quickly to a new position. Reducing the torsion forces in the model causes the diffusion rates to increase.

  2. Magnesium-Aluminum-Zirconium Oxide Amorphous Ternary Composite: A Dense and Stable Optical Coating

    Science.gov (United States)

    Sahoo, N. K.; Shapiro, A. P.

    1998-01-01

    In the present work, the process parameter dependent optical and structural properties of MgO-Al(2)O(3)-ZrO(2) ternary mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases and process dependent material composition of films have been investigated through the use of Atomic Force Microscopy (AFM), X-ray diffraction analysis and Energy Dispersive X- ray (EDX) analysis. EDX analysis made evident the correlation between the optical constants and the process dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.

  3. Cathodo- and photoluminescence increase in amorphous hafnium oxide under annealing in oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, E. V., E-mail: ivanova@mail.ioffe.ru; Zamoryanskaya, M. V. [Ioffe Physical Technical Institute (Russian Federation); Pustovarov, V. A. [Ural State Technical University (Russian Federation); Aliev, V. Sh.; Gritsenko, V. A. [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Yelisseyev, A. P. [Russian Academy of Sciences, Institute of Geology and Mineralogy, Siberian Branch (Russian Federation)

    2015-04-15

    Cathodo- and photoluminescence of amorphous nonstoichiometric films of hafnium oxide are studied with the aim to verify the hypothesis that oxygen vacancies are responsible for the luminescence. To produce oxygen vacancies, hafnium oxide was enriched in surplus metal during synthesis. To reduce the oxygen concentration, the film was annealed in oxygen. A qualitative control of the oxygen concentration was carried out by the refractive index. In the initial, almost stoichiometric films we observed a 2.7-eV band in cathodoluminescence. Annealing in oxygen results in a considerable increase in its intensity, as well as in the appearance of new bands at 1.87, 2.14, 3.40, and 3.6 eV. The observed emission bands are supposed to be due to single oxygen vacancies and polyvacancies in hafnium oxide. The luminescence increase under annealing in an oxygen atmosphere may be a result of the emission quenching effect.

  4. Energy-dependent relaxation time in quaternary amorphous oxide semiconductors probed by gated Hall effect measurements

    Science.gov (United States)

    Socratous, Josephine; Watanabe, Shun; Banger, Kulbinder K.; Warwick, Christopher N.; Branquinho, Rita; Barquinha, Pedro; Martins, Rodrigo; Fortunato, Elvira; Sirringhaus, Henning

    2017-01-01

    Despite the success of exploiting the properties of amorphous oxide semiconductors for device applications, the charge transport in these materials is still not clearly understood. The observation of a definite Hall voltage suggests that electron transport in the conduction band is free-electron-like. However, the temperature dependence of the Hall and field-effect mobilities cannot be explained using a simple bandlike model. Here, we perform gated Hall effect measurements in field-effect transistors, which allow us to make two independent estimates of the charge carrier concentration and determine the Hall factor providing information on the energy dependence of the relaxation time. We demonstrate that the Hall factor in a range of sputtered and solution-processed quaternary amorphous oxides, such as a-InGaZnO, is close to two, while in ternary oxides, such as InZnO, it is near unity. This suggests that quaternary elements like Ga act as strong ionized impurity scattering centers in these materials.

  5. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors

    Science.gov (United States)

    Nomura, Kenji; Ohta, Hiromichi; Takagi, Akihiro; Kamiya, Toshio; Hirano, Masahiro; Hosono, Hideo

    2004-11-01

    Transparent electronic devices formed on flexible substrates are expected to meet emerging technological demands where silicon-based electronics cannot provide a solution. Examples of active flexible applications include paper displays and wearable computers. So far, mainly flexible devices based on hydrogenated amorphous silicon (a-Si:H) and organic semiconductors have been investigated. However, the performance of these devices has been insufficient for use as transistors in practical computers and current-driven organic light-emitting diode displays. Fabricating high-performance devices is challenging, owing to a trade-off between processing temperature and device performance. Here, we propose to solve this problem by using a novel semiconducting material-namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)-for the active channel in transparent thin-film transistors (TTFTs). The a-IGZO is deposited on polyethylene terephthalate at room temperature and exhibits Hall effect mobilities exceeding 10cm2V-1s-1, which is an order of magnitude larger than for hydrogenated amorphous silicon. TTFTs fabricated on polyethylene terephthalate sheets exhibit saturation mobilities of 6-9cm2V-1s-1, and device characteristics are stable during repetitive bending of the TTFT sheet.

  6. Nitrogen-doped amorphous oxide semiconductor thin film transistors with double-stacked channel layers

    Science.gov (United States)

    Xie, Haiting; Wu, Qi; Xu, Ling; Zhang, Lei; Liu, Guochao; Dong, Chengyuan

    2016-11-01

    The amorphous oxide semiconductor (AOS) thin film transistors (TFTs) with the double-stacked channel layers (DSCL) combing the amorphous InZnO (a-IZO) films and the nitrogen-doped amorphous InGaZnO (a-IGZO:N) films were proposed and fabricated, which showed the excellent performance with the field-effect mobility of 49.6 cm2 V-1 s-1 and the subthreshold swing of 0.5 V/dec. More interestingly, very stable properties were observed in the bias stress and light illumination tests for these a-IZO/a-IGZO:N TFTs, as seemed to be the evident improvements over the prior arts. The improved performance and stability might be mainly due to the hetero-junctions in the channel layers and less interface/bulk trap density from the in situ nitrogen doping process in the a-IGZO layers. In addition, the passivation effect of the a-IGZO:N films also made some contributions to the stable properties exhibited in these novel DSCL TFTs.

  7. Low-temperature solution-processed amorphous indium tin oxide field-effect transistors.

    Science.gov (United States)

    Kim, Hyun Sung; Kim, Myung-Gil; Ha, Young-Geun; Kanatzidis, Mercouri G; Marks, Tobin J; Facchetti, Antonio

    2009-08-12

    Amorphous indium tin oxide (ITO)-based thin-film transistors (TFTs) were fabricated on various dielectrics [SiO(2) and self-assembled nanodielectrics (SANDs)] by spin-coating an ITO film precursor solution consisting of InCl(3) and SnCl(4) as the sources of In(3+) and Sn(4+), respectively, methoxyethanol (solvent), and ethanolamine (base). These films can be annealed at temperatures T(a) 0.2 cm(2) V(-1) s(-1), which is encouraging for processing on plastic substrates.

  8. High stability of amorphous hafnium-indium-zinc-oxide thin film transistor

    Science.gov (United States)

    Chong, Eugene; Jo, Kyoung Chul; Lee, Sang Yeol

    2010-04-01

    Time dependence of the threshold voltage (Vth) shift in amorphous hafnium-indium-zinc oxide (a-HIZO) thin film transistor has been reported under on-current bias temperature stress measured at 60 °C. X-ray photoelectron spectroscopy results show the decrease in oxygen vacancies by Hf metal cations in a-HIZO systems after annealing process. High stability of a-HIZO systems has been observed due to low charge injection from the channel layer. Hf metal cations have been effectively incorporated into the IZO thin films as a suppressor against both the oxygen deficiencies and the carrier generation.

  9. Optimizing amorphous indium zinc oxide film growth for low residual stress and high electrical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mukesh [Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401 (United States); Sigdel, A.K. [Department of Physics and Astronomy, University of Denver, Denver, CO 80208 (United States); National Center for Photovoltaics, National Renewal Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401 (United States); Gennett, T.; Berry, J.J.; Perkins, J.D.; Ginley, D.S. [National Center for Photovoltaics, National Renewal Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401 (United States); Packard, C.E., E-mail: cpackard@mines.edu [Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401 (United States); National Center for Photovoltaics, National Renewal Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401 (United States)

    2013-10-15

    With recent advances in flexible electronics, there is a growing need for transparent conductors with optimum conductivity tailored to the application and nearly zero residual stress to ensure mechanical reliability. Within amorphous transparent conducting oxide (TCO) systems, a variety of sputter growth parameters have been shown to separately impact film stress and optoelectronic properties due to the complex nature of the deposition process. We apply a statistical design of experiments (DOE) approach to identify growth parameter–material property relationships in amorphous indium zinc oxide (a-IZO) thin films and observed large, compressive residual stresses in films grown under conditions typically used for the deposition of highly conductive samples. Power, growth pressure, oxygen partial pressure, and RF power ratio (RF/(RF + DC)) were varied according to a full-factorial test matrix and each film was characterized. The resulting regression model and analysis of variance (ANOVA) revealed significant contributions to the residual stress from individual growth parameters as well as interactions of different growth parameters, but no conditions were found within the initial growth space that simultaneously produced low residual stress and high electrical conductivity. Extrapolation of the model results to lower oxygen partial pressures, combined with prior knowledge of conductivity–growth parameter relationships in the IZO system, allowed the selection of two promising growth conditions that were both empirically verified to achieve nearly zero residual stress and electrical conductivities >1480 S/cm. This work shows that a-IZO can be simultaneously optimized for high conductivity and low residual stress.

  10. Amorphous iron–chromium oxide nanoparticles with long-term stability

    Energy Technology Data Exchange (ETDEWEB)

    Iacob, Mihail [“Petru Poni” Institute of Macromolecular Chemistry, Iasi 700487 (Romania); Institute of Chemistry of ASM, Academiei str. 3, Chisinau 2028, Republic of Moldova (Moldova, Republic of); Cazacu, Maria, E-mail: mcazacu@icmpp.ro [“Petru Poni” Institute of Macromolecular Chemistry, Iasi 700487 (Romania); Turta, Constantin [Institute of Chemistry of ASM, Academiei str. 3, Chisinau 2028, Republic of Moldova (Moldova, Republic of); Doroftei, Florica [“Petru Poni” Institute of Macromolecular Chemistry, Iasi 700487 (Romania); Botko, Martin; Čižmár, Erik; Zeleňáková, Adriana; Feher, Alexander [Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, SK-04154 Košice (Slovakia)

    2015-05-15

    Highlights: • Fe–Cr oxide nanoparticles with pre-established metals ratio were obtained. • The amorphous state and its long-term stability were highlighted by X-ray diffraction. • The average diameter of dried nanoparticles was 3.5 nm, as was estimated by TEM, AFM. • In hexane dispersion, nanoparticles with diameter in the range 2.33–4.85 nm were found. • Superparamagnetic state of NPs co-exists with diamagnetism of the organic layer. - Abstract: Iron–chromium nanoparticles (NPs) were obtained through the thermal decomposition of μ{sub 3}-oxo heterotrinuclear (FeCr{sub 2}O) acetate in the presence of sunflower oil and dodecylamine (DA) as surfactants. The average diameter of the NPs was 3.5 nm, as estimated on the basis of transmission electron microscopy and atomic force microscopy images. Both techniques revealed the formation of roughly approximated spheres with some irregularities and agglomerations in larger spherical assemblies of 50–100 nm. In hexane, NPs with diameters in the 2.33–4.85 nm range are individually dispersed, as emphasized by dynamic light scattering measurements. The amorphous nature of the product was emphasized by X-ray powder diffraction. The study of the magnetic properties shows the presence of superparamagnetic state of iron–chromium oxide NPs and the diamagnetic contribution from DA layer forming a shell of NPs.

  11. High-stability transparent amorphous oxide TFT with a silicon-doped back-channel layer

    Science.gov (United States)

    Lee, Hyoung-Rae; Park, Jea-Gun

    2014-10-01

    We significantly reduced various electrical instabilities of amorphous indium gallium zinc oxide thin-film transistors (TFTs) by using the co-deposition of silicon on an a-IGZO back channel. This process showed improved stability of the threshold voltage ( V th ) under high temperature and humidity and negative gate-bias illumination stress (NBIS) without any reduction of IDS. The enhanced stability was achieved with silicon, which has higher metal-oxide bonding strengths than gallium does. Additionally, SiO X distributed on the a-IGZO surface reduced the adsorption and the desorption of H2O and O2. This process is applicable to the TFT manufacturing process with a variable sputtering target.

  12. Preparation and Characterization of Amorphous Silica and Calcium Oxide from Agricultural Wastes

    Directory of Open Access Journals (Sweden)

    Supachai Sompech

    2016-08-01

    Full Text Available Rice husk ash and bagasse ash were agricultural wastes that provide an abundanceof the silica (SiO2 source and the chicken eggshells and duck eggshells were important sources forcalcium oxide (CaO. Therefore, in this study the rice husk ash and bagasse ash were used as raw materials for synthesisofsilica powder,while chicken eggshells and duck eggshells were synthesized forthe calcium oxide.The results from the XRD pattern clearly showedthe structural formation of amorphous SiO2 and CaO phase. While the FTIR results indicated that the spectrums which displayedthe characteristic peaks of the functional groups presenting in the SiO2 and CaOpowder. However, the SEM images revealed that the particles agglomerated, various sizes and the particle size were found to be in micron level.

  13. Microstructural study of oxidation of carbon-rich amorphous boron carbide coating

    Institute of Scientific and Technical Information of China (English)

    Bin ZENG; Zu-de FENG; Si-wei LI; Yong-sheng LIU

    2008-01-01

    Carbon-rich amorphous boron carbide (BxC) coatings were annealed at 400℃, 700℃, 1000℃ and 1200℃ for 2 h in air atmosphere. The microstructure and composition of the as-deposited and annealed coat-ings were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-Raman spectro-scopy and energy dispersive X-ray spectroscopy (EDS). All of the post-anneal characterizations demonstrated the ability of carbon-rich BxC coatings to protect the graphite substrate against oxidation. Different oxidation modes of the coatings were found at low temperature (400℃), moderate temperature (700℃) and high temper-ature (1000℃ and 1200℃). Finally, the feasibility of the application of carbon-rich BxC instead of pyrolytic car-bon (PyC) as a fiber/matrix interlayer in ceramics-matrix composites (CMCs) is discussed here.

  14. Enhanced disinfection efficiency of mechanically mixed oxidants with free chlorine.

    Science.gov (United States)

    Son, Hyunju; Cho, Min; Kim, Jaeeun; Oh, Byungtaek; Chung, Hyenmi; Yoon, Jeyong

    2005-02-01

    To the best of our knowledge, this study is the first investigation to be performed into the potential benefits of mechanically mixed disinfectants in controlling bacterial inactivation. The purpose of this study was to evaluate the disinfection efficiency of mechanically mixed oxidants with identical oxidant concentrations, which were made by adding small amounts of subsidiary oxidants, namely ozone (O3), chlorine dioxide (ClO2), hydrogen peroxide (H2O2) and chlorite (ClO2(-)), to free available chlorine (Cl2), using Bacillus subtilis spores as the indicator microorganisms. The mechanically mixed oxidants containing Cl2/O3, Cl2/ClO2 and Cl2/ClO2(-) showed enhanced efficiencies (of up to 52%) in comparison with Cl2 alone, whereas no significant difference was observed between the mixed oxidant, Cl2/H2O2, and Cl2 alone. This enhanced disinfection efficiency can be explained by the synergistic effect of the mixed oxidant itself and the effect of intermediates such as ClO2(-)/ClO2, which are generated from the reaction between an excess of Cl2 and a small amount of O3/ClO2(-). Overall, this study suggests that mechanically mixed oxidants incorporating excess chlorine can constitute a new and moderately efficient method of disinfection.

  15. Estimation of the composition parameter of electrochemically colored amorphous hydrogen tungsten oxide films

    Science.gov (United States)

    Kaneko, Hiroko; Miyake, Kiyoshi

    1989-07-01

    The electrical and optical steady state observed in electrochemical coloration has been studied using asymmetric cells consisting of evaporated amorphous tungsten oxide films with 350-6000 Å thickness. The counter electrode used is indium wire, steel wire, or antimony-tin oxide film, and the electrolyte is a 1-N H2SO4 aqueous solution containing 10 vol % glycerol. The current and optical transmittance of the cells decrease with increasing time during coloration, and simultaneously reach a steady state. The optical density (λ=0.5 μm) in the steady state is proportional to the thickness of the tungsten oxide film, and the absorption coefficient at λ=0.5 μm of the colored oxide film in the state is approximately 9.0×104 cm-1. The effective charges which contribute to the coloration of films calculated from the charge injected until the electro-optical steady state were found to be 1.03-1.20×103 C/cm3. Assuming that the evaporated tungsten oxide films used have a distorted ReO3 structure, and that a hydrogen tungsten bronze HxWO3 is formed by coloration, the composition parameter x calculated from the average value of the effective charge, is 0.36, which is comparable with that of hydrogen tungsten bronze H0.33WO3 obtained for the colored crystalline WO3 films.

  16. Competing weak localization and weak antilocalization in amorphous indium-gallium-zinc-oxide thin-film transistors

    Science.gov (United States)

    Wang, Wei-Hsiang; Lyu, Syue-Ru; Heredia, Elica; Liu, Shu-Hao; Jiang, Pei-hsun; Liao, Po-Yung; Chang, Ting-Chang; Chen, Hua-Mao

    2017-01-01

    We have investigated the gate-voltage dependence and the temperature dependence of the magnetoconductivity of amorphous indium-gallium-zinc-oxide thin-film transistors. A weak-localization feature is observed at small magnetic fields on top of an overall negative magnetoconductivity at higher fields. An intriguing controllable competition between weak localization and weak antilocalization is observed by tuning the gate voltage or by varying the temperature. Our findings reflect controllable quantum interference competition in the electron systems in amorphous indium-gallium-zinc-oxide thin-film transistors.

  17. Effect of hydrogen on dynamic charge transport in amorphous oxide thin film transistors

    Science.gov (United States)

    Kim, Taeho; Nam, Yunyong; Hur, Ji-Hyun; Park, Sang-Hee Ko; Jeon, Sanghun

    2016-08-01

    Hydrogen in zinc oxide based semiconductors functions as a donor or a defect de-activator depending on its concentration, greatly affecting the device characteristics of oxide thin-film transistors (TFTs). Thus, controlling the hydrogen concentration in oxide semiconductors is very important for achieving high mobility and minimizing device instability. In this study, we investigated the charge transport dynamics of the amorphous semiconductor InGaZnO at various hydrogen concentrations as a function of the deposition temperature of the gate insulator. To examine the nature of dynamic charge trapping, we employed short-pulse current-voltage and transient current-time measurements. Among various examined oxide devices, that with a high hydrogen concentration exhibits the best performance characteristics, such as high saturation mobility (10.9 cm2 v-1 s-1), low subthreshold slope (0.12 V/dec), and negligible hysteresis, which stem from low defect densities and negligible transient charge trapping. Our finding indicates that hydrogen atoms effectively passivate the defects in subgap states of the bulk semiconductor, minimizing the mobility degradation and threshold voltage instability. This study indicates that hydrogen plays a useful role in TFTs by improving the device performance and stability.

  18. Codeposition of amorphous zinc tin oxide using high power impulse magnetron sputtering: characterisation and doping

    Science.gov (United States)

    Tran, H. N.; Mayes, E. L. H.; Murdoch, B. J.; McCulloch, D. G.; McKenzie, D. R.; Bilek, M. M. M.; Holland, A. S.; Partridge, J. G.

    2017-04-01

    Thin film zinc tin oxide (ZTO) has been energetically deposited at 100 °C using high power impulse magnetron sputtering (HiPIMS). Reactive co-deposition from Zn (HiPIMS mode) and Sn (DC magnetron sputtering mode) targets yielded a gradient in the Zn:Sn ratio across a 4-inch diameter sapphire substrate. The electrical and optical properties of the film were studied as a function of composition. As-deposited, the films were amorphous, transparent and semi-insulating. Hydrogen was introduced by post-deposition annealing (1 h, 500 °C, 100 mTorr H2) and resulted in significantly increased conductivity with no measurable structural alterations. After annealing, Hall effect measurements revealed n-type carrier concentrations of ∼1 × 1017 cm‑3 and mobilities of up to 13 cm2 V‑1 s–1. These characteristics are suitable for device applications and proved stable. X-ray photoelectron spectroscopy was used to explore the valence band structure and to show that downward surface band-bending resulted from OH attachment. The results suggest that HiPIMS can produce dense, high quality amorphous ZTO suitable for applications including transparent thin film transistors.

  19. Tailoring the optical and hydrophobic property of zinc oxide nanorod by coating with amorphous graphene

    Science.gov (United States)

    Pahari, D.; Das, N. S.; Das, B.; Chattopadhyay, K. K.; Banerjee, D.

    2016-09-01

    Zinc oxide (ZnO) nanorods were synthesized at room temperature on potassium permanganate activated silicon and glass substrate by simple chemical method using zinc acetate as precursor. To modify the surface energy of the as prepared ZnO thin films the samples were coated with amorphous graphene (a-G) synthesized by un-zipping of chemically synthesized amorphous carbon nanotubes (a-CNTs). All the pure and coated samples were characterized by x-ray diffraction, field emission scanning electron microscope, Raman spectroscopy, and Fourier transformed infrared spectroscopy. The roughness analysis of the as prepared samples was done by atomic force microscopic analysis. The detail optical properties of all the samples were studied with the help of a UV-Visible spectrophotometer. The surface energy of the as prepared pure and coated samples was calculated by measuring the contact angle of two different liquids. It is seen that the water repellence of ZnO nanorods got increased after they are being coated with a-Gs. Also even after UV irradiation the contact angle remain same unlike the case for the uncoated sample where the contact angle gets decreased significantly after UV irradiation. Existing Cassie-Wenzel model has been employed along with the Owen's approach to determine the different components of surface energy.

  20. XRD and RBS studies of quasi-amorphous zinc oxide layers produced by Atomic Layer Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Guziewicz, Elżbieta, E-mail: guzel@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Turos, Andrzej [Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw (Poland); National Centre for Nuclear Research, Soltana 7, 04-500 Otwock (Poland); Stonert, Anna [National Centre for Nuclear Research, Soltana 7, 04-500 Otwock (Poland); Snigurenko, Dmytro; Witkowski, Bartłomiej S. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Diduszko, Ryszard [Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw (Poland); Behar, Moni [Instituto de Fisica, Universidade do Rio Grande do Sul, 91501 Porto Alegre (Brazil)

    2016-08-01

    Although zinc oxide has been widely investigated for many important applications such as laser diodes, photovoltaics, and sensors, some basic properties of this material have not been established up to now. One of these are stopping power values which are crucial for the Rutherford Backscattering Spectrometry analysis. For this kind of measurements, amorphous materials should be used. In this paper we show the results of stopping power measurements for ZnO films grown by Atomic Layer Deposition. The films were grown on a silicon (100) substrate and parameters of the growth were chosen in a way that prevents crystallization of ZnO films. A series of ZnO films with thickness between 20 and 160 nm have been investigated. Extended film characterization has proven that the obtained nanopolycrystalline ZnO films can be considered as truly amorphous with respect to ion beam applications. ZnO films have been used for precise stopping power measurement of MeV He-ions in the energy range from 200 to 5000 keV. These results provide indispensable data for ion beam modification and analysis of ZnO. - Highlights: • Thin ZnO films of low crystallographic quality were obtained by Atomic Layer Deposition at 60 °C. • Nanopolycrystalline structure and atomically flat surface has been measured by X-ray diffraction. • Stopping power measurements show a very good agreement with the calculated values.

  1. High thermal stability of the amorphous oxide in Ti44.5Cu44.5Zr7Be4 metallic glass

    Directory of Open Access Journals (Sweden)

    Sung Hyun Park

    2015-11-01

    Full Text Available The oxidation behavior of Ti44.5Cu44.5Zr7Be4 metallic glass has been investigated. The oxide layer with a fully amorphous structure forms when heated up to the SCL temperature region, indicating that the presence of Be in the oxide layer improves the thermal stability of the amorphous oxide. The amorphous oxide is stable even when heated above the crystallization onset temperature. The thickness of the amorphous oxide layer reaches to ∼160 nm when heated up to 773 K. The oxide layer grows in both inward and outward directions, leaving Cu-enriched crystalline particles at the middle section of the oxide layer.

  2. Foaming of amorphous drug delivery systems prepared by hot melt mixing and extrusion

    Science.gov (United States)

    Terife, Graciela

    Currently there is considerable interest from both academe and pharmaceutical industry in exploring foaming processes and their products in drug delivery applications. However, there is still little knowledge of the impact of the morphology of the foamed structures on the performance of drug products in spite of some publications in this area. Therefore, the main objective of this dissertation is to gain a fundamental understanding of the correlation between foam morphology and performance of amorphous drug delivery systems, which are comprised of an Active Pharmaceutical Ingredient (API) and Polymer excipient. The Hot Melt Extrusion (HME) process is used to compound the following API / polymer binary systems: Indomethacin (INM) with SoluplusRTM (PVCap-PVAc-PEG); Carbamazepine (CBZ) with PVCap-PVAc-PEG; and INM with EudragitRTM EPO. Comprehensive characterization of these binary systems carried out by combining Differential Scanning Calorimetry, Fourier Transform Infrared spectroscopy, X-Ray Diffraction, and Scanning Electron Microscopy, shows that in all HME-prepared and foamed samples the APIs are amorphous and dissolved in the polymer excipients. The most important contributions of this dissertation can be grouped into three areas: (a) an understanding of the mechanisms by which foamed dosage forms can lead to faster API release, as well as the key morphological aspects of the cellular structures to achieve this, (b) an understanding of the correlation between the mechanism controlling the release of an API from an amorphous dosage and the enhancement in its release rate upon foaming, and (c) an understanding of the impact of the morphology of the cellular structures in the milling efficiency of HME products and the dissolution performance of the particles produced. In the first area, foamed amorphous solid solutions with three different morphologies are produced through the batch foaming process. A strong correlation between foam morphology and the enhancement

  3. Optical and electrical studies of cerium mixed oxides

    Science.gov (United States)

    Sherly, T. R.; Raveendran, R.

    2014-10-01

    The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.

  4. Optical and electrical studies of cerium mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Sherly, T. R., E-mail: trsherly@gmail.com [Post Graduate Department of Physics, Sanathana Dharma College, Alappuzha, Kerala (India); Raveendran, R. [Nanoscience Research Laboratory, Sree Narayana College, Kollam, Kerala 691001 (India)

    2014-10-15

    The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.

  5. Controllable Electrochemical Activities by Oxidative Treatment toward Inner-Sphere Redox Systems at N-Doped Hydrogenated Amorphous Carbon Films

    Directory of Open Access Journals (Sweden)

    Yoriko Tanaka

    2012-01-01

    Full Text Available The electrochemical activity of the surface of Nitrogen-doped hydrogenated amorphous carbon thin films (a-CNH, N-doped DLC toward the inner sphere redox species is controllable by modifying the surface termination. At the oxygen plasma treated N-doped DLC surface (O-DLC, the surface functional groups containing carbon doubly bonded to oxygen (C=O, which improves adsorption of polar molecules, were generated. By oxidative treatment, the electron-transfer rate for dopamine (DA positively charged inner-sphere redox analyte could be improved at the N-doped DLC surface. For redox reaction of 2,4-dichlorophenol, which induces an inevitable fouling of the anode surface by forming passivating films, the DLC surfaces exhibited remarkably higher stability and reproducibility of the electrode performance. This is due to the electrochemical decomposition of the passive films without the interference of oxygen evolution by applying higher potential. The N-doped DLC film can offer benefits as the polarizable electrode surface with the higher reactivity and higher stability toward inner-sphere redox species. By making use of these controllable electrochemical reactivity at the O-DLC surface, the selective detection of DA in the mixed solution of DA and uric acid could be achieved.

  6. Numerical simulation of offset-drain amorphous oxide-based thin-film transistors

    Science.gov (United States)

    Jeong, Jaewook

    2016-11-01

    In this study, we analyzed the electrical characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) with an offset-drain structure by technology computer aided design (TCAD) simulation. When operating in a linear region, an enhancement-type TFT shows poor field-effect mobility because most conduction electrons are trapped in acceptor-like defects in an offset region when the offset length (L off) exceeds 0.5 µm, whereas a depletion-type TFT shows superior field-effect mobility owing to the high free electron density in the offset region compared with the trapped electron density. When operating in the saturation region, both types of TFTs show good field-effect mobility comparable to that of a reference TFT with a large gate overlap. The underlying physics of the depletion and enhancement types of offset-drain TFTs are systematically analyzed.

  7. Self-aligned coplanar amorphous indium zinc oxide thin-film transistors with high performance

    Science.gov (United States)

    Park, Jae Chul; Lee, Ho-Nyeon

    2015-01-01

    Self-aligned coplanar amorphous indium zinc oxide thin-film transistors (a-IZO TFTs) were fabricated. The a-IZO TFTs had a field-effect mobility of μFE = 24.4 cm2 V-1 s-1, a subthreshold slope of 180 mV/dec, and an on/off ratio of 109. As the channel length decreased, the threshold voltage VTH shifted to more negative voltages, and μFE increased due to the diffused carriers from the contact regions. The intrinsic field-effect mobility was estimated to be 15.05 cm2 V-1 s-1 in the linear mode and 13.28 cm2 V-1 s-1 in saturation mode. Under positive/negative bias-temperature-illumination stress, the shift in VTH was less than ±0.7 V after 11,000 s.

  8. Low-temperature formation of source–drain contacts in self-aligned amorphous oxide thin-film transistors

    NARCIS (Netherlands)

    Nag, M.; Muller, R.; Steudel, S.; Smout, S.; Bhoolokam, A.; Myny, K.; Schols, S.; Genoe, J.; Cobb, B.; Kumar, A.; Gelinck, G.; Fukui, Y.; Groeseneken, G.; Heremans, P.

    2015-01-01

    We demonstrated self-aligned amorphous-Indium-Gallium-Zinc-Oxide (a-IGZO) thin-film transistors (TFTs) where the source–drain (S/D) regions were made conductive via chemical reduction of the a-IGZO via metallic calcium (Ca). Due to the higher chemical reactivity of Ca, the process can be operated at

  9. Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing

    Science.gov (United States)

    Llordés, Anna; Wang, Yang; Fernandez-Martinez, Alejandro; Xiao, Penghao; Lee, Tom; Poulain, Agnieszka; Zandi, Omid; Saez Cabezas, Camila A.; Henkelman, Graeme; Milliron, Delia J.

    2016-12-01

    Amorphous transition metal oxides are recognized as leading candidates for electrochromic window coatings that can dynamically modulate solar irradiation and improve building energy efficiency. However, their thin films are normally prepared by energy-intensive sputtering techniques or high-temperature solution methods, which increase manufacturing cost and complexity. Here, we report on a room-temperature solution process to fabricate electrochromic films of niobium oxide glass (NbOx) and `nanocrystal-in-glass’ composites (that is, tin-doped indium oxide (ITO) nanocrystals embedded in NbOx glass) via acid-catalysed condensation of polyniobate clusters. A combination of X-ray scattering and spectroscopic characterization with complementary simulations reveals that this strategy leads to a unique one-dimensional chain-like NbOx structure, which significantly enhances the electrochromic performance, compared to a typical three-dimensional NbOx network obtained from conventional high-temperature thermal processing. In addition, we show how self-assembled ITO-in-NbOx composite films can be successfully integrated into high-performance flexible electrochromic devices.

  10. Enhanced photoelectrochemical water oxidation on bismuth vanadate by electrodeposition of amorphous titanium dioxide.

    Science.gov (United States)

    Eisenberg, David; Ahn, Hyun S; Bard, Allen J

    2014-10-08

    n-BiVO4 is a promising semiconductor material for photoelectrochemical water oxidation. Although most thin-film syntheses yield discontinuous BiVO4 layers, back reduction of photo-oxidized products on the conductive substrate has never been considered as a possible energy loss mechanism in the material. We report that a 15 s electrodeposition of amorphous TiO2 (a-TiO2) on W:BiVO4/F:SnO2 blocks this undesired back reduction and dramatically improves the photoelectrochemical performance of the electrode. Water oxidation photocurrent increases by up to 5.5 times, and its onset potential shifts negatively by ∼500 mV. In addition to blocking solution-mediated recombination at the substrate, the a-TiO2 film-which is found to lack any photocatalytic activity in itself-is hypothesized to react with surface defects and deactivate them toward surface recombination. The proposed treatment is simple and effective, and it may easily be extended to a wide variety of thin-film photoelectrodes.

  11. Carrier Transport at Metal/Amorphous Hafnium-Indium-Zinc Oxide Interfaces.

    Science.gov (United States)

    Kim, Seoungjun; Gil, Youngun; Choi, Youngran; Kim, Kyoung-Kook; Yun, Hyung Joong; Son, Byoungchul; Choi, Chel-Jong; Kim, Hyunsoo

    2015-10-14

    In this paper, the carrier transport mechanism at the metal/amorphous hafnium-indium-zinc oxide (a-HIZO) interface was investigated. The contact properties were found to be predominantly affected by the degree of interfacial reaction between the metals and a-HIZO; that is, a higher tendency to form metal oxide phases leads to excellent Ohmic contact via tunneling, which is associated with the generated donor-like oxygen vacancies. In this case, the Schottky-Mott theory is not applicable. Meanwhile, metals that do not form interfacial metal oxide, such as Pd, follow the Schottky-Mott theory, which results in rectifying Schottky behavior. The Schottky characteristics of the Pd contact to a-HIZO can be explained in terms of the barrier inhomogeneity model, which yields a mean barrier height of 1.40 eV and a standard deviation of 0.14 eV. The work function of a-HIZO could therefore be estimated as 3.7 eV, which is in good agreement with the ultraviolet photoelectron spectroscopy (3.68 eV). Our findings will be useful for establishing a strategy to form Ohmic or Schottky contacts to a-HIZO films, which will be essential for fabricating reliable high-performance electronic devices.

  12. A tunable amorphous p-type ternary oxide system: The highly mismatched alloy of copper tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Isherwood, Patrick J. M., E-mail: P.J.M.Isherwood@lboro.ac.uk; Walls, John M. [CREST, School of Electronic, Electrical and Systems Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Butler, Keith T.; Walsh, Aron [Centre for Sustainable Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2015-09-14

    The approach of combining two mismatched materials to form an amorphous alloy was used to synthesise ternary oxides of CuO and SnO{sub 2}. These materials were analysed across a range of compositions, and the electronic structure was modelled using density functional theory. In contrast to the gradual reduction in optical band gap, the films show a sharp reduction in both transparency and electrical resistivity with copper contents greater than 50%. Simulations indicate that this change is caused by a transition from a dominant Sn 5s to Cu 3d contribution to the upper valence band. A corresponding decrease in energetic disorder results in increased charge percolation pathways: a “compositional mobility edge.” Contributions from Cu(II) sub band-gap states are responsible for the reduction in optical transparency.

  13. Microstructure and oxygen evolution of Fe-Ce mixed oxides by redox treatment

    Science.gov (United States)

    Li, Kongzhai; Haneda, Masaaki; Ning, Peihong; Wang, Hua; Ozawa, Masakuni

    2014-01-01

    The relationship between structure and reduction/redox properties of Fe-Ce mixed oxides with a Fe content of 5, 10, 20 or 30 mol%, prepared by a coprecipitation method, were investigated by XRD, Raman, TEM, TPR and TPO techniques. It is found that all the iron ions can be incorporated into the ceria lattice to form a solid solution for the FeCe 5 (Fe 5%) sample, but amorphous or crystal Fe2O3 particles were found to be present on the Fe-Ce oxide samples with higher the iron content. The reducibility of single solid solution was much better than the pure CeO2, and the appearance of dispersed Fe2O3 particles improved the surface reducibility of materials. The iron ions incorporated into the CeO2 lattice accelerated the oxygen release from bulk to surface, and surface Fe2O3 particles in close contact to CeO2 acted as a catalyst for the reaction between solid solution and hydrogen. The microstructure of exposed Fe2O3 with Ce-Fe-O solid solution allows the Fe-Ce mixed oxides to own good reducibility and high OSC, which also counteracts the deactivation of the reducibility resulting from the sintering of materials in the redox cycling.

  14. Chemical interaction of Ce-Fe mixed oxides for methane selective oxidation

    Institute of Scientific and Technical Information of China (English)

    祝星; 杜云鹏; 王华; 魏永刚; 李孔斋; 孙令玥

    2014-01-01

    Chemical interaction of Ce-Fe mixed oxides was investigated in methane selective oxidation via methane temperature pro-grammed reduction and methane isothermal reaction tests over Ce-Fe oxygen carriers. In methane temperature programmed reduction test, Ce-Fe oxide behaved complete oxidation at the lower temperature and selective oxidation at higher temperatures. Ce-Fe mixed oxides with the Fe content in the range of 0.1-0.5 was able to produce syngas with high selectivity in high-temperature range (800-900 °C), and a higher Fe amount over 0.5 seemed to depress the CO formation. In isothermal reaction, complete oxidation oc-curred at beginning following with selective oxidation later. Ce1-xFexO2-δ oxygen carriers (x≤0.5) were proved to be suitable for the selective oxidation of methane. Ce-Fe mixed oxides had the well-pleasing reducibility with high oxygen releasing rate and CO selec-tivity due to the interaction between Ce and Fe species. Strong chemical interaction of Ce-Fe mixed oxides originated from both Fe* activated CeO2 and Ce3+ activated iron oxides (FeOm), and those chemical interaction greatly enhanced the oxygen mobility and se-lectivity.

  15. Interaction of Amorphous Silica Nanoparticles with Erythrocytes in Vitro: Role of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2014-07-01

    Full Text Available Background/Aims: The use of engineered nanomaterials in the form of nanoparticles (NP for various biomedical applications, as well as in consumer products, has raised concerns about their safety for human health. These NP are intended to be administered directly into the circulation following intravenous injection, or they may reach the circulation following other routes of administration such as oral or inhalation, and interact with circulating cells such as erythrocytes. However, little is known about the interaction of amorphous SiNP with erythrocytes. Methods: We studied the interaction of amorphous silica nanoparticles (SiNP at various concentrations (1, 5, 25 and 125µg/ml with mouse erythrocytes in vitro. Results: Incubation of erythrocytes with SiNP caused a dose-dependent hemolytic effect. Likewise, the activity of lactate dehydrogenase was dose-dependently increased by SiNP. Transmission electron microscopy analysis revealed that SiNP are taken up by erythrocytes. Lipid erythrocyte susceptibility to in vitro peroxidation measured by malondialdehyde showed a significant and dose-dependent increase in erythrocytes. SiNP also enhanced the antioxidant activities of superoxide dismutase (SOD, catalase and reduced glutathione (GSH. Moreover, SiNP increased caspase 3, triggered annexin V-binding and caused a dose-dependent increase of cytosolic calcium concentration. Conclusion: It can be concluded that SiNP cause a dose-dependent hemolytic activity and are taken up by the erythrocytes. We also found that SiNP induce the occurrence of oxidative activity, apoptosis and increase cytosolic Ca2+, which may explain their haemolytic activity. Our in vitro data suggest that SiNP may, plausibly, lead to anemia and circulatory disorders in vivo.

  16. High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel

    Science.gov (United States)

    Jeong, Jae Kyeong; Jeong, Jong Han; Yang, Hui Won; Park, Jin-Seong; Mo, Yeon-Gon; Kim, Hye Dong

    2007-09-01

    The authors report the fabrication of high performance thin film transistors (TFTs) with an amorphous indium gallium zinc oxide (a-IGZO) channel, which was deposited by cosputtering using a dual IGZO and indium zinc oxide (IZO) target. The effect of the indium content on the device performance of the a-IGZO TFTs was investigated. At a relatively low IZO power of 400W, the field-effect mobility (μFE) and subthreshold gate swing (S) of the a-IGZO TFTs were dramatically improved to 19.3cm2/Vs and 0.35V/decade, respectively, compared to those (11.2cm2/Vs and 1.11V/decade) for the TFTs with the a-IGZO channel (reference sample) prepared using only the IGZO target. The enhancement in the subthreshold IDS-VGS characteristics at an IZO power of 400W compared to those of the reference sample was attributed to the reduction of the interface trap density rather than the reduction of the bulk defects of the a-IGZO channel.

  17. Amorphous cobalt potassium phosphate microclusters as efficient photoelectrochemical water oxidation catalyst

    Science.gov (United States)

    Zhang, Ye; Zhao, Chunsong; Dai, Xuezeng; Lin, Hong; Cui, Bai; Li, Jianbao

    2013-12-01

    A novel amorphous cobalt potassium phosphate hydrate compound (KCoPO4·H2O) is identified to be active photocatalyst for oxygen evolution reaction (OER) to facilitate hydrogen generation from water photolysis. It has been synthesized through a facile and cost-effective solution-based precipitation method using earth-abundant materials. Its highly porous structure and large surface areas are found to be responsible for the excellent electrochemical performance featuring a low OER onset at ˜550 mVSCE and high current density in alkaline condition. Unlike traditional cobalt-based spinel oxides (Co3O4, NiCo2O4) and phosphate (Co-Pi, Co(PO3)2) electrocatalysts, with proper energy band alignment for light-assisted water oxidation, cobalt potassium phosphate hydrate also exhibits robust visible-light response, generating a photocurrent density of ˜200 μA cm-2 at 0.7 VSCE. This catalyst could thus be considered as a promising candidate to perform photoelectrochemical water splitting.

  18. Electrical, electronic and optical properties of amorphous indium zinc tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Denny, Yus Rama [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Department of Electrical Engineering, University of Sultan Ageng Tirtayasa, Banten, Serang, 42435 (Indonesia); Lee, Kangil; Seo, Soonjoo; Oh, Suhk Kun [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kang, Hee Jae, E-mail: hjkang@cbu.ac.kr [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Yang, Dong Seok [Department of Physics Education, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Heo, Sung; Chung, Jae Gwan; Lee, Jae Cheol [Analytical Engineering Center, Samsung Advanced Institute of Technology, Suwon 440-600 (Korea, Republic of)

    2014-10-01

    Highlights: • The electronic property of indium zinc tin oxide thin films was investigated by using XPS and REELS. • The band gap varied with different In/Zn/Sn compositions. • The EXAFS results showed that the smaller Zn–Zn separation distance led to higher electron mobility. • The Sn/Zn composition ratio played a crucial role in improving the electrical properties of a-IZTO thin films. - Abstract: The electrical and optical properties of amorphous indium zinc tin oxide (a-IZTO) thin films were examined as a function of chemical composition. Effects of Sn/Zn composition ratio and In content on the electrical and optical properties of a-IZTO thin films are discussed. The electron mobility of thin film transistors with higher Sn/Zn composition ratio was dramatically improved due to a shorter zinc–zinc separation distance. The thin film transistor with the composition of In:Zn:Sn = 20:48:32 exhibits a high mobility of 30.6 cm{sup 2} V{sup −1} s{sup −1} and a high on–off current ratio of 10{sup 9}.

  19. Stabilization of FGD gypsum for its disposal in landfills using amorphous aluminium oxide as a fluoride retention additive.

    Science.gov (United States)

    Alvarez-Ayuso, E; Querol, X

    2007-09-01

    The applicability of amorphous aluminium oxide as a fluoride retention additive to flue gas desulphurisation (FGD) gypsum was studied as a way of stabilizing this by-product for its disposal in landfills. Using a batch method the sorption behaviour of amorphous aluminium oxide was evaluated at the pH (about 6.5) and background electrolyte conditions (high chloride and sulphate concentrations) found in FGD gypsum leachates. It was found that fluoride sorption on amorphous aluminium oxide was a very fast process with equilibrium attained within the first half an hour of interaction. The sorption process was well described by the Langmuir model, offering a maximum fluoride sorption capacity of 61.7 mg g(-1). Fluoride sorption was unaffected by chloride co-existing ions, while slightly decreased (about 20%) by competing sulphate ions. The use of amorphous aluminium oxide in the stabilization of FGD gypsum proved to greatly decreased its fluoride leachable content (in the range 5-75% for amorphous aluminium oxide doses of 0.1-2%, as determined by the European standard EN 12457-4 [EN-12457-4 Characterization of waste-leaching-compliance test for leaching of granular waste materials and sludges-Part 4: one stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 10mm (without or with size reduction)]), assuring the characterization of this by-product as a waste acceptable at landfills of non-hazardous wastes according to the Council Decision 2003/33/EC [Council Decision 2003/33/EC of 19 December 2002. Establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC] on landfill of wastes. Furthermore, as derived from column leaching studies, the proposed stabilization system proved to be highly effective in simulated conditions of disposal, displaying a fluoride leaching reduction value about 81% for an amorphous aluminium oxide added amount of 2%.

  20. The role of hydrogenated amorphous silicon oxide buffer layer on improving the performance of hydrogenated amorphous silicon germanium single-junction solar cells

    Science.gov (United States)

    Sritharathikhun, Jaran; Inthisang, Sorapong; Krajangsang, Taweewat; Krudtad, Patipan; Jaroensathainchok, Suttinan; Hongsingtong, Aswin; Limmanee, Amornrat; Sriprapha, Kobsak

    2016-12-01

    Hydrogenated amorphous silicon oxide (a-Si1-xOx:H) film was used as a buffer layer at the p-layer (μc-Si1-xOx:H)/i-layer (a-Si1-xGex:H) interface for a narrow band gap hydrogenated amorphous silicon germanium (a-Si1-xGex:H) single-junction solar cell. The a-Si1-xOx:H film was deposited by plasma enhanced chemical vapor deposition (PECVD) at 40 MHz in a same processing chamber as depositing the p-type layer. An optimization of the thickness of the a-Si1-xOx:H buffer layer and the CO2/SiH4 ratio was performed in the fabrication of the a-Si1-xGex:H single junction solar cells. By using the wide band gap a-Si1-xOx:H buffer layer with optimum thickness and CO2/SiH4 ratio, the solar cells showed an improvement in the open-circuit voltage (Voc), fill factor (FF), and short circuit current density (Jsc), compared with the solar cells fabricated using the conventional a-Si:H buffer layer. The experimental results indicated the excellent potential of the wide-gap a-Si1-xOx:H buffer layers for narrow band gap a-Si1-xGex:H single junction solar cells.

  1. Selective oxidation of isobutane on V–Mo–O mixed oxide catalysts

    Directory of Open Access Journals (Sweden)

    GHEORGHITA MITRAN

    2008-01-01

    Full Text Available Four V–Mo–O mixed metal oxides were prepared, characterized and tested for the selective oxidation of isobutane in the temperature range 350–550 °C, at atmospheric pressure. Isobutane was mainly oxidized to iso-butene and carbon oxides. The systems with low vanadium contents showed low activities but high isobutene selectivities, while the systems with high vanadium contents showed high activities with high carbon oxides selectivities. The effects of temperature, contact time and the molar ratio iso-butane to oxygen on the conversion of isobutane and the selectivity of the oxidation were studied.

  2. Photochemical oxidation: A solution for the mixed waste dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Prellberg, J.W.; Thornton, L.M.; Cheuvront, D.A. [Vulcan Peroxidation Systems, Inc., Tucson, AZ (United States)] [and others

    1995-12-31

    Numerous technologies are available to remove organic contamination from water or wastewater. A variety of techniques also exist that are used to neutralize radioactive waste. However, few technologies can satisfactorily address the treatment of mixed organic/radioactive waste without creating unacceptable secondary waste products or resulting in extremely high treatment costs. An innovative solution to the mixed waste problem is on-site photochemical oxidation. Liquid-phase photochemical oxidation has a long- standing history of successful application to the destruction of organic compounds. By using photochemical oxidation, the organic contaminants are destroyed on-site leaving the water, with radionuclides, that can be reused or disposed of as appropriate. This technology offers advantages that include zero air emissions, no solid or liquid waste formation, and relatively low treatment cost. Discussion of the photochemical process will be described, and several case histories from recent design testing, including cost analyses for the resulting full-scale installations, will be presented as examples.

  3. Investigation of Phase Mixing in Amorphous Solid Dispersions of AMG 517 in HPMC-AS Using DSC, Solid-State NMR, and Solution Calorimetry.

    Science.gov (United States)

    Calahan, Julie L; Azali, Stephanie C; Munson, Eric J; Nagapudi, Karthik

    2015-11-02

    Intimate phase mixing between the drug and the polymer is considered a prerequisite to achieve good physical stability for amorphous solid dispersions. In this article, spray dried amorphous dispersions (ASDs) of AMG 517 and HPMC-as were studied by differential scanning calorimetry (DSC), solid-state NMR (SSNMR), and solution calorimetry. DSC analysis showed a weakly asymmetric (ΔTg ≈ 13.5) system with a single glass transition for blends of different compositions indicating phase mixing. The Tg-composition data was modeled using the BKCV equation to accommodate the observed negative deviation from ideality. Proton spin-lattice relaxation times in the laboratory and rotating frames ((1)H T1 and T1ρ), as measured by SSNMR, were consistent with the observation that the components of the dispersion were in intimate contact over a 10-20 nm length scale. Based on the heat of mixing calculated from solution calorimetry and the entropy of mixing calculated from the Flory-Huggins theory, the free energy of mixing was calculated. The free energy of mixing was found to be positive for all ASDs, indicating that the drug and polymer are thermodynamically predisposed to phase separation at 25 °C. This suggests that miscibility measured by DSC and SSNMR is achieved kinetically as the result of intimate mixing between drug and polymer during the spray drying process. This kinetic phase mixing is responsible for the physical stability of the ASD.

  4. Amorphous indium-gallium-zinc-oxide as electron transport layer in organic photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Arora, H. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Phelma–Grenoble INP, 3 Parvis Louis Néel, 38016 Grenoble Cedex 01 (France); Malinowski, P. E., E-mail: pawel.malinowski@imec.be; Chasin, A.; Cheyns, D.; Steudel, S.; Schols, S. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Heremans, P. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); ESAT, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Leuven (Belgium)

    2015-04-06

    Amorphous indium-gallium-zinc-oxide (a-IGZO) is demonstrated as an electron transport layer (ETL) in a high-performance organic photodetector (OPD). Dark current in the range of 10 nA/cm{sup 2} at a bias voltage of −2 V and a high photoresponse in the visible spectrum were obtained in inverted OPDs with poly(3-hexylthiophene) and phenyl-C{sub 61}-butyric acid methyl ester active layer. The best results were obtained for the optimum a-IGZO thickness of 7.5 nm with specific detectivity of 3 × 10{sup 12} Jones at the wavelength of 550 nm. The performance of the best OPD devices using a-IGZO was shown to be comparable to state-of-the-art devices based on TiO{sub x} as ETL, with higher rectification achieved in reverse bias. Yield and reproducibility were also enhanced with a-IGZO, facilitating fabrication of large area OPDs. Furthermore, easier integration with IGZO-based readout backplanes can be envisioned, where the channel material can be used as photodiode buffer layer after additional treatment.

  5. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells.

    Science.gov (United States)

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J; Chang, Robert P H; Facchetti, Antonio; Marks, Tobin J

    2015-06-30

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor-inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.

  6. Lithium perchlorate ion pairing in a model of amorphous polyethylene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Halley, J.W.; Duan, Y. [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Curtiss, L.A.; Baboul, A.G. [Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    1999-08-01

    We report a molecular dynamics study of pairing and dynamics of lithium cation and perchlorate anion in a previously reported model of amorphous polyethylene oxide. We are particularly interested in the question of whether these ions pair in the model, as previously reported experimentally. We calculate the potential of mean force between a lithium and perchlorate ion in the system for several temperatures when a pair of ions is at various separation distances in our model. We find evidence for two minima in the potential of mean force, one at lithium{endash}chlorine separations of 3.5 {Angstrom} and about 6.5 {Angstrom}. We studied the same system with five ion pairs in the system and again find two minima at the same separation distances but in this case there is evidence of entropic effects in the binding free energy of the pairs at 3.5 {Angstrom}. A study of radial distribution functions permits us to deduce information concerning the structure of the paired states. {copyright} {ital 1999 American Institute of Physics.}

  7. The microstructures and electrical properties of Y-doped amorphous vanadium oxide thin films

    Science.gov (United States)

    Gu, Deen; Zhou, Xin; Guo, Rui; Wang, Zhihui; Jiang, Yadong

    2017-03-01

    One of promising approaches for further improving the sensitivity of microbolometer arrays with greatly-reduced pixel size is using the thermal-sensitive materials with higher performance. In this paper, Y-doped vanadium oxide (VOx) thin films prepared by a reactively sputtering process exhibit enhanced performance for the microbolometer application compared with frequently-applied VOx thin films. Both undoped and Y-doped VOx thin films are amorphous due to the relatively low deposition temperature. Y-doped VOx thin films exhibit smoother surface morphology than VOx due to the restrained expansion of particles during depositions. Y-doping increases the temperature coefficient of resistivity by over 20% for the doping level of 1.30 at%. The change rate of resistivity, after aging for 72 h, of thin films was reduced from about 15% for undoped VOx to 2% due to the introduction of Y. Moreover, Y-doped VOx thin films have a low 1/f noise level as VOx ones. Y-doping provides an attractive approach for preparing VOx thermal-sensitive materials with enhanced performance for microbolometers.

  8. Heterogeneous Partial (ammOxidation and Oxidative Dehydrogenation Catalysis on Mixed Metal Oxides

    Directory of Open Access Journals (Sweden)

    Jacques C. Védrine

    2016-01-01

    Full Text Available This paper presents an overview of heterogeneous partial (ammoxidation and oxidative dehydrogenation (ODH of hydrocarbons. The review has been voluntarily restricted to metal oxide-type catalysts, as the partial oxidation field is very broad and the number of catalysts is quite high. The main factors of solid catalysts for such reactions, designated by Grasselli as the “seven pillars”, and playing a determining role in catalytic properties, are considered to be, namely: isolation of active sites (known to be composed of ensembles of atoms, Me–O bond strength, crystalline structure, redox features, phase cooperation, multi-functionality and the nature of the surface oxygen species. Other important features and physical and chemical properties of solid catalysts, more or less related to the seven pillars, are also emphasized, including reaction sensitivity to metal oxide structure, epitaxial contact between an active phase and a second phase or its support, synergy effect between several phases, acid-base aspects, electron transfer ability, catalyst preparation and activation and reaction atmospheres, etc. Some examples are presented to illustrate the importance of these key factors. They include light alkanes (C1–C4 oxidation, ethane oxidation to ethylene and acetic acid on MoVTe(SbNb-O and Nb doped NiO, propene oxidation to acrolein on BiMoCoFe-O systems, propane (ammoxidation to (acrylonitrile acrylic acid on MoVTe(SbNb-O mixed oxides, butane oxidation to maleic anhydride on VPO: (VO2P2O7-based catalyst, and isobutyric acid ODH to methacrylic acid on Fe hydroxyl phosphates. It is shown that active sites are composed of ensembles of atoms whose size and chemical composition depend on the reactants to be transformed (their chemical and size features and the reaction mechanism, often of Mars and van Krevelen type. An important aspect is the fact that surface composition and surface crystalline structure vary with reaction on stream until

  9. Can the structure of amorphous indium gallium zinc oxide be described in terms of a few polyhedral motifs?

    OpenAIRE

    Divya; Prasad, R; Deepak

    2016-01-01

    The coordination polyhedra around the cations are the building blocks of ionic solids. In context of amorphous InGaZn oxide (a-IGZO), even though the coordination polyhedra are irregularly arranged, it will be beneficial to identify them. In this work, we address the questions, (a) is it possible to classify all the polyhedra that occur in a-IGZO into only a few distinct groups? and (b) are these the same polyhedral motifs as those observed in the crystalline indium gallium zinc oxide (c-IGZO...

  10. Determination of the optical band gap for amorphous and nanocrystalline copper oxide thin films prepared by SILAR technique

    Science.gov (United States)

    Abdel Rafea, M.; Roushdy, N.

    2009-01-01

    Amorphous copper oxide films were deposited using the SILAR technique. Both Cu2O and CuO crystallographic phases exist in deposited and annealed films. Crystallization and growth processes by annealing at temperatures up to 823 K form grains with nano- and micro-spherical shapes. The calculated crystallite size from the XRD measurement was found to be in the range 14-21 nm while nano-spheres in the diameter range 50-100 nm were observed by SEM micrographs. The band gap for amorphous film was found to be 2.3 eV which increased slowly to 2.4 eV by annealing the film at 373 K. This was explained by defect redistribution in amorphous films. Annealing in the temperature range 373-673 K decreased the band gap gradually to 1.85 eV. The decrease of the band gap with annealing temperature in the range 373-673 K agrees well with the Brus model of the energy gap confinement effect in nanostructured semiconducting materials. Annealing in the temperature range 673-823 K decreases the band gap slowly to 1.7 eV due to the smaller contribution of the confinement effect. Below 573 K, Cu2O is the most probable crystalline phase in the film, while Cu2O and CuO crystalline phases may coexist at annealing temperatures above 573 K due to further oxidation of Cu2O. A wider transmittance spectral window in the visible region was obtained by controlling the annealing conditions of the amorphous copper oxide film and its applicability to the window layer of solar cell was suggested.

  11. Determination of the optical band gap for amorphous and nanocrystalline copper oxide thin films prepared by SILAR technique

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Rafea, M; Roushdy, N [Electronic Materials Department, Advanced Technologies and New Materials Institute, Mubarak City for Scientific Research and Technology Applications, PO Box 21934, New Borg El-Arab City, Alexandria (Egypt)], E-mail: m.abdelrafea@mucsat.sci.eg

    2009-01-07

    Amorphous copper oxide films were deposited using the SILAR technique. Both Cu{sub 2}O and CuO crystallographic phases exist in deposited and annealed films. Crystallization and growth processes by annealing at temperatures up to 823 K form grains with nano- and micro-spherical shapes. The calculated crystallite size from the XRD measurement was found to be in the range 14-21 nm while nano-spheres in the diameter range 50-100 nm were observed by SEM micrographs. The band gap for amorphous film was found to be 2.3 eV which increased slowly to 2.4 eV by annealing the film at 373 K. This was explained by defect redistribution in amorphous films. Annealing in the temperature range 373-673 K decreased the band gap gradually to 1.85 eV. The decrease of the band gap with annealing temperature in the range 373-673 K agrees well with the Brus model of the energy gap confinement effect in nanostructured semiconducting materials. Annealing in the temperature range 673-823 K decreases the band gap slowly to 1.7 eV due to the smaller contribution of the confinement effect. Below 573 K, Cu{sub 2}O is the most probable crystalline phase in the film, while Cu{sub 2}O and CuO crystalline phases may coexist at annealing temperatures above 573 K due to further oxidation of Cu{sub 2}O. A wider transmittance spectral window in the visible region was obtained by controlling the annealing conditions of the amorphous copper oxide film and its applicability to the window layer of solar cell was suggested.

  12. Design and synthesis of mixed oxides nanoparticles for biofuel applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Senniang [Iowa State Univ., Ames, IA (United States)

    2010-05-15

    The work in this dissertation presents the synthesis of two mixed metal oxides for biofuel applications and NMR characterization of silica materials. In the chapter 2, high catalytic efficiency of calcium silicate is synthesized for transesterfication of soybean oil to biodisels. Chapter 3 describes the synthesis of a new Rh based catalyst on mesoporous manganese oxides. The new catalyst is found to have higher activity and selectivity towards ethanol. Chapter 4 demonstrates the applications of solid-state Si NMR in the silica materials.

  13. Development of advanced mixed oxide fuels for plutonium management

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, S.; Beard, C.; Buksa, J.; Butt, D.; Chidester, K.; Havrilla, G.; Ramsey, K.

    1997-06-01

    A number of advanced Mixed Oxide (MOX) fuel forms are currently being investigated at Los Alamos National Laboratory that have the potential to be effective plutonium management tools. Evolutionary Mixed Oxide (EMOX) fuel is a slight perturbation on standard MOX fuel, but achieves greater plutonium destruction rates by employing a fractional nonfertile component. A pure nonfertile fuel is also being studied. Initial calculations show that the fuel can be utilized in existing light water reactors and tailored to address different plutonium management goals (i.e., stabilization or reduction of plutonium inventories residing in spent nuclear fuel). In parallel, experiments are being performed to determine the feasibility of fabrication of such fuels. Initial EMOX pellets have successfully been fabricated using weapons-grade plutonium.

  14. Microstructure and thermophysical characterization of mixed oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Freibert, Franz J [Los Alamos National Laboratory; Salich, Tarik A [Los Alamos National Laboratory; Schwartz, Daniel S [Los Alamos National Laboratory; Hampel, Fred G [Los Alamos National Laboratory; Mitchell, Jeremy N [Los Alamos National Laboratory; Davis, Charles C [Los Alamos National Laboratory; Neuman, Angelique D [Los Alamos National Laboratory; Willson, Steve P [Los Alamos National Laboratory; Dunwoody, John T [Los Alamos National Laboratory

    2009-01-01

    Pre-irradiated thermodynamic and microstructural properties of nuclear fuels form the necessary set of data against which to gauge fuel performance and irradiation damage evolution. This paper summarizes recent efforts in mixed-oxide and minor actinide-bearing mixed-oxide ceramic fuels fabrication and characterization at Los Alamos National Laboratory. Ceramic fuels (U{sub 1-x-y-z}u{sub x}Am{sub y}Np{sub z})O{sub 2} fabricated in the compositional ranges of 0.19 {le} x {le} 0.3 Pu, 0 {le} y {le} 0.05 Am, and O {le} z {le} O.03 Np exhibited a uniform crystalline face-centered cubic phase with an average grain size of 14{micro}m; however, electron microprobe analysis revealed segregation of NpO{sub 2} in minor actinide-bearing fuels. Immersion density and porosity analysis demonstrated an average density of 92.4% theoretical for mixed-oxide fuels and an average density of 89.5 % theoretical density for minor actinide-bearing mixed-oxide fuels. Examined fuels exhibited mean thermal expansion value of 12.56 x 10{sup -6} C{sup -1} for temperature range (100 C < T < 1500 C) and ambient temperature Young's modulus and Poisson's ratio of 169 GPa and of 0.327, respectively. Internal dissipation as determined from mechanical resonances of these ceramic fuels has shown promise as a tool to gauge microstructural integrity and to interrogate fundamental properties.

  15. Structure Characterization of Semiconducting Tin and Tungsten Mixed Oxides

    Science.gov (United States)

    Solis, J. L.; Frantti, J.; Lantto, V.; Häggström, L.; Wikner, M.

    Mixed-oxide powders of tin and tungsten were made by heating various mixtures of SnO and WO3 powders, corresponding to the nominal formula SnxWO3+x with x between 0.5 and 2.0, in an argon atmosphere at 600°C for 15 hours. The α-SnWO4 phase was the result of heating of an equi-molar mixture of SnO and WO3 powders. In addition to 119Sn Mössbauer experiments, X-ray diffraction and Raman spectroscopy were used to study the phase structures of the mixed-oxide powders. Mössbauer spectra from all samples show a small peak at ∽0mm/s from phase(s) like rutile SnO2, and a larger peak doublet centred at ∽3.4mm/s from the α-SnWO4 phase, where tin is in the form Sn4+ and Sn2+, respectively. Another peak doublet centred at ∽3.0mm/s was needed to obtain reasonable fits for samples with x≥1.3. This doublet originates from an undocumented phase where tin is also in the divalent form Sn2+. 119Sn Mössbauer spectroscopy made it possible to reveal the relative amounts of the two valence states of tin in the mixed-oxide structures. Raman spectroscopy as the other probe for ``local'' structures was insensitive to reveal the changes in the phase structures between different mixed-oxide samples up to x=1.72, but an extra peak at ∽890cm-1 in the Raman spectrum from the sample with x=2.0 indicates also the presence of the undocumented phase.

  16. Distribution of Local Open-Circuit Voltage on Amorphous and Nanocrystalline Mixed-Phase Si:H and SiGe:H Solar Cells (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C.-S.; Moutinho, H. R.; Al-Jassim, M. M.; Kazmerski, L. L.; Yan, B.; Yang, J.; Guha, S.

    2006-05-01

    By combining SKPM and AFM, they have developed a method to measure the local V{sub oc} distribution in mixed-phase solar cells. The results clearly show the nanocrystalline aggregation. The V{sub oc} is smaller in the nanocrystalline aggregates than in the surrounding amorphous matrix, and the transition from the low to high V{sub oc} is a gradual change. Although there are some lateral charge redistributions, a clear distinction between the amorphous and nanocrystalline regions has been observed. The current SKPM results and previous C-AFM results provide extra support for the two-diode model for explaining the carrier transport in the mixed-phase solar cells.

  17. Poole-Frenkel behavior in amorphous oxide thin-film transistors prepared on SiOC

    Science.gov (United States)

    Oh, Teresa

    2014-05-01

    The electron behavior in amorphous indium-gallium-zinc-oxide thin film transistors (a-IGZO TFTs) depends on the polar characteristics of SiOC, which is used as a gate dielectric. The properties of the interface between the semiconductor and SiOC were defined by using a Schottky contact with a low potential barrier and Poole-Frenkel contacts with a high potential barrier. The leakage current of SiOC, which was used as a gate insulator, decreased at the Poole-Frenkel contacts because of the high potential barrier. The ambipolar properties in the field effect transistor were observed to depend on the various characteristics of SiOC, which ranged from its behaving as an ideal insulator or as a material with a high dielectric constant. The resistance of the a-IGZO channel changed from positive to negative at SiOC, which had the lowest polarity. As to the conduction due to the diffusion current, the mobility increased with increasing carrier concentrations. However, the drift carrier conduction was related to the reduced mobility at higher carrier concentrations. The performance of the transistors was enhanced by the tunneling and the diffusion currents Rather than by the drift current caused by trapping. The Schottky contact and the Poole-Frenkel (PF) contacts at an interface between the IGZO channel and the SiOC were defined according to the heights of potential barriers caused by the depletion layer. The leakage current was very low about 10-12 A at SiOC with PF contacts because of the height of potential barrier was double that with a Schottky contact because the tunneling conductance due to the diffusion current originated from the PF contacts of non-polar SiOC.

  18. Poole-Frenkel behavior in amorphous oxide thin-film transistors prepared on SiOC

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Teresa [Cheongju University, Cheongju (Korea, Republic of)

    2014-05-15

    The electron behavior in amorphous indium-gallium-zinc-oxide thin film transistors (a-IGZO TFTs) depends on the polar characteristics of SiOC, which is used as a gate dielectric. The properties of the interface between the semiconductor and SiOC were defined by using a Schottky contact with a low potential barrier and Poole-Frenkel contacts with a high potential barrier. The leakage current of SiOC, which was used as a gate insulator, decreased at the Poole-Frenkel contacts because of the high potential barrier. The ambipolar properties in the field effect transistor were observed to depend on the various characteristics of SiOC, which ranged from its behaving as an ideal insulator or as a material with a high dielectric constant. The resistance of the a-IGZO channel changed from positive to negative at SiOC, which had the lowest polarity. As to the conduction due to the diffusion current, the mobility increased with increasing carrier concentrations. However, the drift carrier conduction was related to the reduced mobility at higher carrier concentrations. The performance of the transistors was enhanced by the tunneling and the diffusion currents Rather than by the drift current caused by trapping. The Schottky contact and the Poole-Frenkel (PF) contacts at an interface between the IGZO channel and the SiOC were defined according to the heights of potential barriers caused by the depletion layer. The leakage current was very low about 10{sup -12} A at SiOC with PF contacts because of the height of potential barrier was double that with a Schottky contact because the tunneling conductance due to the diffusion current originated from the PF contacts of non-polar SiOC.

  19. Selective oxidation of benzylic alcohols using copper-manganese mixed oxide nanoparticles as catalyst

    Directory of Open Access Journals (Sweden)

    Roushown Ali

    2015-07-01

    Full Text Available The catalytic activity of copper-manganese (CuMn2 mixed oxide nanoparticles (Cu/Mn = 1:2 has been studied for the selective oxidation of benzylic alcohols to the corresponding aldehydes using molecular oxygen as an oxidizing agent. The CuMn2 mixed oxide showed excellent catalytic activity for the oxidation of benzylic alcohols to the corresponding aldehydes with high selectivity (>99%. The complete conversion (100% of all the benzylic alcohols to the corresponding aldehydes is achieved within a short reaction period at 102 °C. The catalytic performance is obtained to be dependent on the electronic and steric effects of the substituents present on the phenyl ring. Electron withdrawing and bulky groups attached to the phenyl ring required longer reaction time for a complete conversion of the benzylic alcohols.

  20. Electrothermal Annealing (ETA) Method to Enhance the Electrical Performance of Amorphous-Oxide-Semiconductor (AOS) Thin-Film Transistors (TFTs).

    Science.gov (United States)

    Kim, Choong-Ki; Kim, Eungtaek; Lee, Myung Keun; Park, Jun-Young; Seol, Myeong-Lok; Bae, Hagyoul; Bang, Tewook; Jeon, Seung-Bae; Jun, Sungwoo; Park, Sang-Hee K; Choi, Kyung Cheol; Choi, Yang-Kyu

    2016-09-14

    An electro-thermal annealing (ETA) method, which uses an electrical pulse of less than 100 ns, was developed to improve the electrical performance of array-level amorphous-oxide-semiconductor (AOS) thin-film transistors (TFTs). The practicality of the ETA method was experimentally demonstrated with transparent amorphous In-Ga-Zn-O (a-IGZO) TFTs. The overall electrical performance metrics were boosted by the proposed method: up to 205% for the trans-conductance (gm), 158% for the linear current (Ilinear), and 206% for the subthreshold swing (SS). The performance enhancement were interpreted by X-ray photoelectron microscopy (XPS), showing a reduction of oxygen vacancies in a-IGZO after the ETA. Furthermore, by virtue of the extremely short operation time (80 ns) of ETA, which neither provokes a delay of the mandatory TFTs operation such as addressing operation for the display refresh nor demands extra physical treatment, the semipermanent use of displays can be realized.

  1. Distribution of Local Open-Circuit Voltage on Amorphous and Nanocrystalline Mixed-Phase Si:H and SiGe:H Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C.-S.; Moutinho, H. R.; Al-Jassim, M. M.; Kazmerski, L. L.; Yan, B.; Owens, J. M.; Yang, J.; Guha, S.

    2006-05-01

    Local open-circuit voltage (Voc) distributions on amorphous and nanocrystalline mixed-phase silicon solar cells were measured using a scanning Kelvin probe microscope (SKPM) on the p layer of an n-i-p structure without the top ITO contact. During the measurement, the sample was illuminated with a laser beam that was used for the atomic force microscopy (AFM). Therefore, the surface potential measured by SKPM is the sum of the local Voc and the difference in workfunction between the p layer and the AFM tip. Comparing the SKPM and AFM images, we find that nanocrystallites aggregate in the amorphous matrix with an aggregation size of {approx}0.5 ..mu..m in diameter, where many nanometer-size grains are clustered. The Voc distribution shows valleys in the nanocrystalline aggregation area. The transition from low to high Voc regions is a gradual change within a distance of about 1 ..mu..m. The minimum Voc value in the nanocrystalline clusters in the mixed-phase region is larger than the Voc of a nc-Si:H single-phase solar cell. These results could be due to lateral photo-charge redistribution between the two phases. We have also carried out local Voc measurements on mixed-phase SiGe:H alloy solar cells. The magnitudes of Voc in the amorphous and nanocrystalline regions are consistent with the J-V measurements.

  2. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  3. 40 CFR 721.10147 - Acrylate derivative of alkoxysilylalkane ester and mixed metal oxides (generic).

    Science.gov (United States)

    2010-07-01

    ... alkoxysilylalkane ester and mixed metal oxides (generic). 721.10147 Section 721.10147 Protection of Environment... alkoxysilylalkane ester and mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to... ester and mixed metal oxides (PMN P-07-198) is subject to reporting under this section for...

  4. Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses

    Science.gov (United States)

    Ma, Jane; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Cohen, Joel M.; Demokritou, Philip; Castranova, Vincent

    2015-01-01

    Recently cerium compounds have been used in a variety of consumer products, including diesel fuel additives, to increase fuel combustion efficiency and decrease diesel soot emissions. However, cerium oxide (CeO2) nanoparticles have been detected in the exhaust, which raises a health concern. Previous studies have shown that exposure of rats to nanoscale CeO2 by intratracheal instillation (IT) induces sustained pulmonary inflammation and fibrosis. In the present study, male Sprague–Dawley rats were exposed to CeO2 or CeO2 coated with a nano layer of amorphous SiO2 (aSiO2/CeO2) by a single IT and sacrificed at various times post-exposure to assess potential protective effects of the aSiO2 coating. The first acellular bronchoalveolar lavage (BAL) fluid and BAL cells were collected and analyzed from all exposed animals. At the low dose (0.15 mg/kg), CeO2 but not aSiO2/CeO2 exposure induced inflammation. However, at the higher doses, both particles induced a dose-related inflammation, cytotoxicity, inflammatory cytokines, matrix metalloproteinase (MMP)-9, and tissue inhibitor of MMP at 1 day post-exposure. Morphological analysis of lung showed an increased inflammation, surfactant and collagen fibers after CeO2 (high dose at 3.5 mg/kg) treatment at 28 days post-exposure. aSiO2 coating significantly reduced CeO2-induced inflammatory responses in the airspace and appeared to attenuate phospholipidosis and fibrosis. Energy dispersive X-ray spectroscopy analysis showed Ce and phosphorous (P) in all particle-exposed lungs, whereas Si was only detected in aSiO2/CeO2-exposed lungs up to 3 days after exposure, suggesting that aSiO2 dissolved off the CeO2 core, and some of the CeO2 was transformed to CePO4 with time. These results demonstrate that aSiO2 coating reduce CeO2-induced inflammation, phospholipidosis and fibrosis. PMID:26210349

  5. Control and characterization of the structural, electrical, and optical properties of amorphous zinc-indium-tin oxide thin films.

    Science.gov (United States)

    Buchholz, D Bruce; Liu, Jun; Marks, Tobin J; Zhang, Ming; Chang, Robert P H

    2009-10-01

    Zinc-indium-tin oxide (ZITO) films are grown by pulsed-laser deposition in which 30% of the indium in the In(2)O(3) structure is replaced by substitution with zinc and tin in equal molar proportions: In(2-2x)Zn(x)Sn(x)O(3), where x = 0.3. Films grown at 25 and 100 degrees C exhibit electron diffraction patterns (EDPs) typical of amorphous materials. At a deposition temperature of 200 degrees C, evidence of crystallinity begins to appear in the EDP data and becomes more evident in films deposited at 400 degrees C. The advent of crystallinity affects the electrical properties of the ZITO film, and the effect is ascribed to the boundaries between phases in the films. The electrical and optical properties of the amorphous ZITO films grown at 25 degrees C are dependent on the oxygen partial pressure (P(O(2))) during film growth, transitioning from a high-mobility (36 cm(2)/V x s) conductor (sigma approximately 1700 S/cm) at P(O(2)) = 5 mTorr to a high-mobility semiconductor at P(O(2)) approximately 20 mTorr. Field-effect transistors (FETs) prepared with as-deposited amorphous ZITO channel layers on p(+)-Si/300 nm SiO(2) substrates yield FETs with on/off ratios of 10(6), off currents of 10(-8) A, and field-effect saturation mobilities of 10 cm(2)/V x s.

  6. Amorphous GeOx-Coated Reduced Graphene Oxide Balls with Sandwich Structure for Long-Life Lithium-Ion Batteries.

    Science.gov (United States)

    Choi, Seung Ho; Jung, Kyeong Youl; Kang, Yun Chan

    2015-07-01

    Amorphous GeOx-coated reduced graphene oxide (rGO) balls with sandwich structure are prepared via a spray-pyrolysis process using polystyrene (PS) nanobeads as sacrificial templates. This sandwich structure is formed by uniformly coating the exterior and interior of few-layer rGO with amorphous GeOx layers. X-ray photoelectron spectroscopy analysis reveals a Ge:O stoichiometry ratio of 1:1.7. The amorphous GeOx-coated rGO balls with sandwich structure have low charge-transfer resistance and fast Li(+)-ion diffusion rate. For example, at a current density of 2 A g(-1), the GeOx-coated rGO balls with sandwich and filled structures and the commercial GeO2 powders exhibit initial charge capacities of 795, 651, and 634 mA h g(-1), respectively; the corresponding 700th-cycle charge capacities are 758, 579, and 361 mA h g(-1). In addition, at a current density of 5 A g(-1), the rGO balls with sandwich structure have a 1600th-cycle reversible charge capacity of 629 mA h g(-1) and a corresponding capacity retention of 90.7%, as measured from the maximum reversible capacity at the 100th cycle.

  7. Thermoelectric and electrical properties of micro-quantity Sn-doped amorphous indium-zinc oxide thin films

    Science.gov (United States)

    Byeon, Jayoung; Kim, Seohan; Lim, Jae-Hong; Song, Jae Yong; Park, Sun Hwa; Song, Pungkeun

    2017-01-01

    To realize high thermoelectric performance, it was tried to control both high electrical conductivity (σ) and low thermal conductivity (K) for the Sn-doped indium-zinc oxide films prepared by DC magnetron sputtering. The highest power factor was obtained post-annealed at 200 °C due to the highest σ. However, the highest figure of merit was obtained annealed at 500 °C. It could be attributed to both amorphous structure with low K by phonon and the highest Hall mobility. Thermoelectric and electrical properties of the film could be controlled by both heat treatment and Sn doping with high bond enthalpy.

  8. Effect of Channel Layer Thickness on Characteristics and Stability of Amorphous Hafnium-Indium-Zinc Oxide Thin Film Transistors

    Science.gov (United States)

    Kim, Sun-Jae; Lee, Soo-Yeon; Lee, Young-Wook; Lee, Woo-Geun; Yoon, Kap-Soo; Kwon, Jang-Yeon; Han, Min-Koo

    2011-02-01

    We investigated the channel layer thickness dependence of the characteristics and stability in amorphous hafnium indium zinc-oxide (HIZO) thin film transistors (TFTs). HIZO TFTs were prepared with various channel thicknesses from 400 to 700 Å. In HIZO TFTs, carrier concentration is considerably high, which leads to channel layer thickness dependence. The threshold voltages of TFTs negatively shifted as the channel thickness increased. The threshold voltage shift at a high temperature is more severe in TFTs with thicker channel layers. The channel thickness dependence of the bias stability of HIZO TFTs is closely related to the back interface, rather than the bulk state.

  9. Temperature effect on negative bias-induced instability of HfInZnO amorphous oxide thin film transistor

    Science.gov (United States)

    Kwon, Dae Woong; Kim, Jang Hyun; Chang, Ji Soo; Kim, Sang Wan; Kim, Wandong; Park, Jae Chul; Song, Ihun; Kim, Chang Jung; Jung, U. In; Park, Byung-Gook

    2011-02-01

    Negative bias-induced instability of amorphous hafnium indium zinc oxide (α-HIZO) thin film transistors (TFTs) was investigated at various temperatures. In order to examine temperature-induced effects, fabricated TFTs with different combinations of gate insulator and gate metal were stressed by a negative gate bias at various temperatures. As a result, it is proved that negative bias-induced hole-trapping in the gate insulators and temperature-enhanced electron injection from the gate metals occurs at the same time at all temperatures, and the instability of HIZO TFT is more affected by the dominant factor out of the two mechanisms.

  10. Mechanism of Selenite Removal by a Mixed Adsorbent Based on Fe–Mn Hydrous Oxides Studied Using X-ray Absorption Spectroscopy

    KAUST Repository

    Chubar, Natalia

    2014-11-18

    © 2014 American Chemical Society. Selenium cycling in the environment is greatly controlled by various minerals, including Mn and Fe hydrous oxides. At the same time, such hydrous oxides are the main inorganic ion exchangers suitable (on the basis of their chemical nature) to sorb (toxic) anions, separating them from water solutions. The mechanism of selenite adsorption by the new mixed adsorbent composed of a few (amorphous and crystalline) phases [maghemite, MnCO3, and X-ray amorphous Fe(III) and Mn(III) hydrous oxides] was studied by extended X-ray absorption fine structure (EXAFS) spectroscopy [supported by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) data]. The complexity of the porous adsorbent, especially the presence of the amorphous phases of Fe(III) and Mn(III) hydrous oxides, is the main reason for its high selenite removal performance demonstrated by batch and column adsorption studies shown in the previous work. Selenite was bound to the material via inner-sphere complexation (via oxygen) to the adsorption sites of the amorphous Fe(III) and Mn(III) oxides. This anion was attracted via bidentate binuclear corner-sharing coordination between SeO3 2- trigonal pyramids and both FeO6 and MnO6 octahedra; however, the adsorption sites of Fe(III) hydrous oxides played a leading role in selenite removal. The contribution of the adsorption sites of Mn(III) oxide increased as the pH decreased from 8 to 6. Because most minerals have a complex structure (they are seldom based on individual substances) of various crystallinity, this work is equally relevant to environmental science and environmental technology because it shows how various solid phases control cycling of chemical elements in the environment.

  11. Preparation of Well Dispersed and Ultra-Fine Ce(Zr)O2 Mixed Oxide by Mechanochemical Processing

    Institute of Scientific and Technical Information of China (English)

    程昌明; 李永绣; 周雪珍; 陈伟凡

    2004-01-01

    Ultra-fine CeO2-ZrO2 mixed oxide was successfully synthesized by wet-solid phase mechanochemical processing, Ce2(CO3)3·8H2O, ZrOCl2·xH2O and ammonia were used as reactants. It is found that the crystalline Ce2(CO3)3·8H2O and ZrOCl2·xH2O are changed to amorphous cerium and zirconium hydroxide precursor after milling with ammonia, and Ce0.15Zr0.85O2 mixed oxide with pure tetragonal phase structure and medium particle size(D50)less than 1μm is formed by calcining precursor over 673 K. The XRD patterns indicate that the crystal unite size increases with rising calcining temperature due to crystal growth. However, the particle size and BET surface area of the Ce(Zr)O2 mixed oxide decreases with rising calcining temperature, which may be attributed to the contract of particles and the vanish of holes inside grains.

  12. Synthesis and characterization of mixed melilite-type oxides

    Science.gov (United States)

    Granata, V.; Ubaldini, A.; Fittipaldi, R.; Rocco, L.; Pace, S.; Vecchione, A.

    2017-01-01

    The melilite-type oxides are potential targets for exploring interesting magnetic and electronic properties as well as multiferroicity and magnetoelectric effects. Polycrystalline samples of Ba2Cu1-xMnxGe2O7 have been synthesized by solid state reaction method. The morphology and chemical composition of the samples have been investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). By using powder X-ray diffraction, the phase composition of the synthesized compounds and the evolution of their crystallographic axes as a function of the doping have been systematically studied. The synthesis of the polycrystalline compounds reported in this work is a prerequisite for the growth of high quality single crystals of mixed melilite-type oxides essential for the investigations of the complex magnetic phase diagram of these non-centrosymmetric systems.

  13. Ceria doped mixed metal oxide nanoparticles as oxidation catalysts: Synthesis and their characterization

    Directory of Open Access Journals (Sweden)

    S.S.P. Sultana

    2015-11-01

    Full Text Available Mixed metal nanoparticles (NPs have attracted significant attention as catalysts for various organic transformations. In this study, we have demonstrated the preparation of nickel–manganese mixed metal oxide NPs doped with X% nano cerium oxide (X = 1, 3, 5 mol% by a facile co-precipitation technique using surfactant and surfactant free methodologies. The as-synthesized materials were calcined at different temperatures (300 °C, 400 °C, and 500 °C, and were characterized using various spectroscopic techniques, including, FTIR and XRD. SEM analysis, TEM analysis and TGA were employed to evaluate the structural properties of the as-prepared catalyst. These were evaluated for their catalytic behaviour towards the conversion of benzyl alcohol to benzaldehyde, which was used as a model reaction with molecular oxygen as oxidant. Furthermore, the effect of the variation of the percentage of nano ceria doping and the calcination temperature on the performance of as-prepared mixed metal catalysts was also evaluated. The kinetic studies of the reactions performed employing gas chromatographic technique have revealed that the mixed metal oxide catalyst doped with 5% nano ceria displayed excellent catalytc activity, among various catalysts synthesized.

  14. Preparation and properties of amorphous titania-coated zinc oxide nanoparticles

    Science.gov (United States)

    Liao, Min-Hung; Hsu, Chih-Hsiung; Chen, Dong-Hwang

    2006-07-01

    Amorphous TiO 2-coated ZnO nanoparticles were prepared by the solvothermal synthesis of ZnO nanoparticles in ethanol and the followed by sol-gel coating of TiO 2 nanolayer. The analyses of X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed that the resultant ZnO nanoparticles were hexagonal with a wurtzite structure and a mean diameter of about 60 nm. Also, after TiO 2 coating, the TEM images clearly indicated the darker ZnO nanoparticles being surrounded by the lighter amorphous TiO 2 layers. The zeta potential analysis revealed the pH dependence of zeta potentials for ZnO nanoparticles shifted completely to that for TiO 2 nanoparticles after TiO 2 coating, confirming the formation of core-shell structure and suggesting the coating of TiO 2 was achieved via the adhesion of the hydrolyzed species Ti-O - to the positively charged surface of ZnO nanoparticles. Furthermore, the analyses of Fourier transform infrared (FTIR) and Raman spectra were also conducted to confirm that amorphous TiO 2 were indeed coated on the surface of ZnO nanoparticles. In addition, the analyses of ultraviolet-visible (UV-VIS) and photoluminescence (PL) spectra revealed that the absorbance of amorphous TiO 2-coated ZnO nanoparticles at 375 nm gradually decreased with an increase in the Ti/Zn molar ratio and the time for TiO 2 coating, and the emission intensity of ZnO cores could be significantly enhanced by the amorphous TiO 2 shell.

  15. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    Science.gov (United States)

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  16. Amorphous silica nanoparticles trigger nitric oxide/peroxynitrite imbalance in human endothelial cells: inflammatory and cytotoxic effects

    Science.gov (United States)

    Corbalan, J Jose; Medina, Carlos; Jacoby, Adam; Malinski, Tadeusz; Radomski, Marek W

    2011-01-01

    Background The purpose of this study was to investigate the mechanism of noxious effects of amorphous silica nanoparticles on human endothelial cells. Methods Nanoparticle uptake was examined by transmission electron microscopy. Electrochemical nanosensors were used to measure the nitric oxide (NO) and peroxynitrite (ONOO−) released by a single cell upon nanoparticle stimulation. The downstream inflammatory effects were measured by an enzyme-linked immunosorbent assay, real-time quantitative polymerase chain reaction, and flow cytometry, and cytotoxicity was measured by lactate dehydrogenase assay. Results We found that the silica nanoparticles penetrated the plasma membrane and rapidly stimulated release of cytoprotective NO and, to a greater extent, production of cytotoxic ONOO−. The low [NO]/[ONOO−] ratio indicated increased nitroxidative/oxidative stress and correlated closely with endothelial inflammation and necrosis. This imbalance was associated with nuclear factor κB activation, upregulation of key inflammatory factors, and cell death. These effects were observed in a nanoparticle size-dependent and concentration-dependent manner. Conclusion The [NO]/[ONOO−] imbalance induced by amorphous silica nanoparticles indicates a potentially deleterious effect of silica nanoparticles on vascular endothelium. PMID:22131828

  17. Low-Temperature Photochemically Activated Amorphous Indium-Gallium-Zinc Oxide for Highly Stable Room-Temperature Gas Sensors.

    Science.gov (United States)

    Jaisutti, Rawat; Kim, Jaeyoung; Park, Sung Kyu; Kim, Yong-Hoon

    2016-08-10

    We report on highly stable amorphous indium-gallium-zinc oxide (IGZO) gas sensors for ultraviolet (UV)-activated room-temperature detection of volatile organic compounds (VOCs). The IGZO sensors fabricated by a low-temperature photochemical activation process and exhibiting two orders higher photocurrent compared to conventional zinc oxide sensors, allowed high gas sensitivity against various VOCs even at room temperature. From a systematic analysis, it was found that by increasing the UV intensity, the gas sensitivity, response time, and recovery behavior of an IGZO sensor were strongly enhanced. In particular, under an UV intensity of 30 mW cm(-2), the IGZO sensor exhibited gas sensitivity, response time and recovery time of 37%, 37 and 53 s, respectively, against 750 ppm concentration of acetone gas. Moreover, the IGZO gas sensor had an excellent long-term stability showing around 6% variation in gas sensitivity over 70 days. These results strongly support a conclusion that a low-temperature solution-processed amorphous IGZO film can serve as a good candidate for room-temperature VOCs sensors for emerging wearable electronics.

  18. Structure and Catalytic Behavior of CuO-ZrO-CeO2 Mixed Oxides

    Institute of Scientific and Technical Information of China (English)

    王恩过; 陈诵英

    2002-01-01

    The effect of doping CuO on the structure and properties of zirconia-ceria mixed oxide was studied. The results show that addition of CuO decreases the reduction temperature of ceria, and stabilizes the cubic structure of mixed oxides, and enhances catalytic activity of CuO-ZrO-CeO2 mixed oxides for CO oxidation. Increasing ceria content in the mixed oxides can enhance the catalytic activity, but some impurities such as sulfate make catalytic activity falling. There is little effect of calcination temperature on catalytic activities, implying that these catalysts are effective with good thermal stability.

  19. Amorphous TiO2-coated reduced graphene oxide hybrid nanostructures for polymer composites with low dielectric loss

    Science.gov (United States)

    Tong, Wangshu; Zhang, Yihe; Yu, Li; Lv, Fengzhu; Liu, Leipeng; Zhang, Qian; An, Qi

    2015-10-01

    Nanocomposite of poly(vinylidene fluoride-co-hexafluoropropylene) incorporated with titanium dioxide-modified reduced graphene oxide sheets (rGO-TiO2/PVDF-HFP) was prepared by in situ assembling TiO2 on graphene oxide (GO), and its dielectric properties were carefully characterized. The GO layers were completely coated with amorphous TiO2. The dielectric permittivity increased stably as rGO-TiO2 content increased, and the loss was low at low frequencies. TiO2 inter-layer acted as an inter-particle barrier to prevent direct contact of rGO, which provided a new simple way for tuning the dielectric properties of polymer composites with low dielectric loss by controlling the structure of fillers.

  20. Photoresist-Free Fully Self-Patterned Transparent Amorphous Oxide Thin-Film Transistors Obtained by Sol-Gel Process

    Science.gov (United States)

    Lim, Hyun Soo; Rim, You Seung; Kim, Hyun Jae

    2014-04-01

    We demonstrated self-patterned solution-processed amorphous oxide semiconductor thin-film transistors (TFTs) using photosensitive sol-gels. The photosensitive sol-gels were synthesized by adding β-diketone compounds, i.e., benzoylacetone and acetylacetone, to sol-gels. The chemically modified photosensitive sol-gels showed a high optical absorption at specific wavelengths due to the formation of metal chelate bonds. Photoreactions of the modified solutions enabled a photoresist-free process. Moreover, Zn-Sn-O with a high Sn ratio, which is hard to wet-etch using conventional photolithography due to its chemical durability, was easily patterned via the self-patterning process. Finally, we fabricated a solution-processed oxide TFT that included fully self-patterned electrodes and an active layer.

  1. Distribution of Local Open-Circuit Voltage on Amorphous and Nanocrystalline Mixed-Phase Si:H and SiGe:H Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C.-S.; Moutinho, H. R.; Al-Jassim, M. M.; Kazmerski, L. L.; Yan, B.; Owens, J. M.; Yang, J.; Guha, S.

    2006-01-01

    Local open-circuit voltage (V{sub oc}) distributions on amorphous and nanocrystalline mixed-phase silicon solar cells were measured using a scanning Kelvin probe microscope (SKPM) on the p layer of an n-i-p structure without the top ITO contact. During the measurement, the sample was illuminated with a laser beam that was used for the atomic force microscopy (AFM). Therefore, the surface potential measured by SKPM is the sum of the local V{sub oc} and the difference in workfunction between the p layer and the AFM tip. Comparing the SKPM and AFM images, we find that nanocrystallites aggregate in the amorphous matrix with an aggregation size of {approx}0.5 {micro}m in diameter, where many nanometer-size grains are clustered. The V{sub oc} distribution shows valleys in the nanocrystalline aggregation area. The transition from low to high V{sub oc} regions is a gradual change within a distance of about 1 {micro}m. The minimum V{sub oc} value in the nanocrystalline clusters in the mixed-phase region is larger than the V{sub oc} of a nc-Si:H single-phase solar cell. These results could be due to lateral photo-charge redistribution between the two phases. We have also carried out local V{sub oc} measurements on mixed-phase SiGe:H alloy solar cells. The magnitudes of V{sub oc} in the amorphous and nanocrystalline regions are consistent with the J-V measurements.

  2. Mass transport in mixed conducting perovskite related oxides

    CERN Document Server

    Shaw, C K M

    2001-01-01

    mechanical and chemical stability of LSCN under practical operating temperatures have been measured and related to long term stability in typical SOFC assemblies. The phase stability and the effect of preparation conditions under different atmospheres on La sub 2 Ni sub 1 sub - sub x Co sub x O sub 4 sub + subdelta compounds were examined using high temperature X-ray diffraction. Fast oxygen uptake at low temperatures was observed in these studies indicating rapid oxygen diffusion, which was confirmed by isotope exchange investigations. The oxygen diffusion and surface exchange data obtained from IEDP-SIMS measurements of La sub 2 Ni sub 0 sub . sub 8 Co sub 0 sub . sub 2 O sub 4 sub + subdelta have enabled suppositions to be made regarding the reduction process and aided further interpretation of the defect model for these oxides. Mixed ionic electronic conducting oxides of the perovskite structure have attracted great interest in the field of solid oxide electrochemical devices. Their ability to allow poten...

  3. Metallic and Insulating Interfaces of Amorphous SrTiO3-Based Oxide Heterostructures

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Pryds, Nini; Kleibeuker, Josée E.

    2011-01-01

    AlO3, SrTiO3, and yttria-stabilized zirconia films. On the other hand, samples of amorphous La7/8Sr1/8MnO3 films on SrTiO3 substrates remain insulating. The interfacial conductivity results from the formation of oxygen vacancies near the interface, suggesting that the redox reactions on the surface...

  4. Complex nanospherulites of zinc oxide and native amorphous boron in the lunar regolith from Mare Crisium

    Science.gov (United States)

    Mokhov, A. V.; Kartashov, P. M.; Gornostaeva, T. A.; Asadulin, En. E.; Bogatikov, O. A.

    2013-01-01

    During the study of tea-colored impact glass fragments from the sample of lunar regolith delivered to Earth by the Luna 24 automatic station by transmission electron microscopy, the composition variations of the previously described high-carbonaceous film, the presence of at least three composition types of glasses, and unusual nanospherulites with Zn-B-N-O composition were discovered. As a part of a nonuniform high-carbonaceous oxygen-bearing film, sites enriched in either Na, S, Si, or Ca were detected. All these sites, as well as the whole film, are electron-amorphous; however, crystalline graphite was also found. Two types of nanospherulites are composed of amorphous ZnO and regular interstratifications of crystalline ZnO and amorphous boron layers with insignificant participation of adsorbed nitrogen. It is supposed that the formation of zinc-boron nanospherulites was caused by a fast-flowing explosive process and probably was modulated by high-frequency acoustic oscillations in a cloud of evaporated high-temperature ionized gas during the impact event.

  5. Oxidation control of fluxes for mixed-valent inorganic oxide materials synthesis

    Science.gov (United States)

    Schrier, Marc David

    This dissertation is concerned with controlling the flux synthesis and ensuing physical properties of mixed-valence metal oxides. Molten alkali metal nitrates and hydroxides have been explored to determine and exploit their variable redox chemistries for the synthesis of mixed-valent oxide materials. Cationic and anionic additives have been utilized in these molten salts to control the relative concentrations of the redox-active species present to effectively tune and cap the electrochemical potential of the flux. Atoms like bismuth, copper, and manganese are capable of providing different numbers of electrons for bonding. With appropriate doping near the metal-insulator transition, many of these mixed-valent inorganic metal oxides exhibit extraordinary electronic and magnetic properties. Traditionally, these materials have been prepared by classical high temperature solid state routes where microscopic homogeneity is hard to attain. In these routes, the starting composition dictates the doping level, and in turn, the formal oxidation state achieved. Molten flux syntheses developed in this work have provided the potential for preparing single-phase, homogeneous, and crystalline materials. The redox-active fluxes provide a medium for enhanced doping and mixed-valency control in which the electrochemical potential adjusts the formal oxidation state, and the doping takes place to maintain charge neutrality. The two superconductor systems investigated are: (1) the potassium-doped barium bismuth oxides, and (2) the alkali metal- and alkaline earth metal-doped lanthanum copper oxides. Controlled oxidative doping has been achieved in both systems by two different approaches. The superconducting properties of these materials have been assessed, and the materials have been characterized by powder X-ray diffraction and e-beam microprobe elemental analyses. In the course of these studies, several other materials have been identified. Analysis of these materials, and the

  6. Perovskite-type Mixed Oxides Catalyst for Complete Oxidation of Acetone

    Institute of Scientific and Technical Information of China (English)

    DUAN; ZhiYing

    2001-01-01

    The catalytic oxidation of VOCs (volatile organic compounds) is an attractive subject in the field of environmental protection now. Furthermore, most countries have made out regulations m controlling the maximum content of VOCs in some places. Presently, the leading way of domestic and foreign means to eliminate VOCs is to completely oxidize VOCs into carbon dioxide and water in presence of noble metal catalyst. But noble metal is expensive for lack of resource[2]. So it is insistent to research a low-cost catalyst for removal of VOCs. In this work, we have used some base metals (such as La, Sr, Ce, Ni, Cu) to synthesize mixed oxides catalyst supported on γ-A12O3. We have investigated the catalytic properties in the complete oxidation of acetone over the catalyst prepared and achieved an exciting result.……

  7. Perovskite-type Mixed Oxides Catalyst for Complete Oxidation of Acetone

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ The catalytic oxidation of VOCs (volatile organic compounds) is an attractive subject in the field of environmental protection now. Furthermore, most countries have made out regulations m controlling the maximum content of VOCs in some places. Presently, the leading way of domestic and foreign means to eliminate VOCs is to completely oxidize VOCs into carbon dioxide and water in presence of noble metal catalyst. But noble metal is expensive for lack of resource[2]. So it is insistent to research a low-cost catalyst for removal of VOCs. In this work, we have used some base metals (such as La, Sr, Ce, Ni, Cu) to synthesize mixed oxides catalyst supported on γ-A12O3. We have investigated the catalytic properties in the complete oxidation of acetone over the catalyst prepared and achieved an exciting result.

  8. Properties of mixed molybdenum oxide iridium oxide thin films synthesized by spray pyrolysis

    Science.gov (United States)

    Patil, P. S.; Kawar, R. K.; Sadale, S. B.; Inamdar, A. I.; Deshmukh, H. P.

    2006-09-01

    Molybdenum-doped iridium oxide thin films have been deposited onto corning glass- and fluorine-doped tin oxide coated corning glass substrates at 350 °C by using a pneumatic spray pyrolysis technique. An aqueous solution of 0.01 M ammonium molybdate was mixed with 0.01 M iridium trichloride solution in different volume proportions and the resultant solution was used as a precursor solution for spraying. The as-deposited samples were annealed at 600 °C in air medium for 1 h. The structural, electrical and optical properties of as-deposited and annealed Mo-doped iridium oxide were studied and values of room temperature electrical resistivity, and thermoelectric power were estimated. The as-deposited samples with 2% Mo doping exhibit more pronounced electrochromism than other samples, including pristine Ir oxide.

  9. Characterization of manganese-gallium mixed oxide powders

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Escribano, V.; Fernandez Lopez, E.; Sanchez Huidobro, P. [Universidad de Salamanca, Dept. de Quimica Inorganica (Spain); Panizza, M.; Resini, C.; Busca, G. [UNiversita di Genova, Dipt. di Ingegneria Chimica e di Processo, Genova (Italy); Resini, C. [Istituto Nazionale di Fisica della Materia, INFM (Spain); Gallardo- Amores, J.M. [Universidad Complutense, Dept. de Quimica Inorganica, Lab. Complutense de Altas Presiones, Madrid (Spain)

    2003-12-01

    Mn-Ga mixed oxides have been prepared by coprecipitation of the corresponding oxo-hydroxides as powders and have been characterized in relation to their structural and optical properties. The materials have been characterized by XRD, TG-DTA, skeletal IR and UV-visible-NIR spectroscopies. Large solubility of Mn in the diaspore type {alpha}-GaOOH oxo-hydroxide has been found. The spinel related structures of hausmannite Mn{sub 3}O{sub 4} and of {beta}-gallia present large reciprocal solubilities at least in a metastable form. At high temperature also bixbyite-type {alpha}-Mn{sub O3} solid solutions containing up to 20% at. Ga have been observed. (authors)

  10. Yttrium bismuth titanate pyrochlore mixed oxides for photocatalytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Merka, Oliver

    2012-10-18

    In this work, the sol-gel synthesis of new non-stoichiometric pyrochlore titanates and their application in photocatalytic hydrogen production is reported. Visible light response is achieved by introducing bismuth on the A site or by doping the B site by transition metal cations featuring partially filled d orbitals. This work clearly focusses on atomic scale structural changes induced by the systematical introduction of non-stoichiometry in pyrochlore mixed oxides and the resulting influence on the activity in photocatalytic hydrogen production. The materials were characterized in detail regarding their optical properties and their atomic structure. The pyrochlore structure tolerates tremendous stoichiometry variations. The non-stoichiometry in A{sub 2}O{sub 3} rich compositions is compensated by distortions in the cationic sub-lattice for the smaller Y{sup 3+} cation and by evolution of a secondary phase for the larger Bi{sup 3+} cation on the A site. For TiO{sub 2} rich compositions, the non-stoichiometry leads to a special vacancy formation in the A and optionally O' sites. It is shown that pyrochlore mixed oxides in the yttrium bismuth titanate system represent very active and promising materials for photocatalytic hydrogen production, if precisely and carefully tuned. Whereas Y{sub 2}Ti{sub 2}O{sub 7} yields stable hydrogen production rates over time, the bismuth richer compounds of YBiTi{sub 2}O{sub 7} and Bi{sub 2}Ti{sub 2}O{sub 7} are found to be not stable under irradiation. This drawback is overcome by applying a special co-catalyst system consisting of a precious metal core and a Cr{sub 2}O{sub 3} shell on the photocatalysts.

  11. Calculational Benchmark Problems for VVER-1000 Mixed Oxide Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Emmett, M.B.

    2000-03-17

    Standard problems were created to test the ability of American and Russian computational methods and data regarding the analysis of the storage and handling of Russian pressurized water reactor (VVER) mixed oxide fuel. Criticality safety and radiation shielding problems were analyzed. Analysis of American and Russian multiplication factors for fresh fuel storage for low-enriched uranium (UOX), weapons- (MOX-W) and reactor-grade (MOX-R) MOX differ by less than 2% for all variations of water density. For shielding calculations for fresh fuel, the ORNL results for the neutron source differ from the Russian results by less than 1% for UOX and MOX-R and by approximately 3% for MOX-W. For shielding calculations for fresh fuel assemblies, neutron dose rates at the surface of the assemblies differ from the Russian results by 5% to 9%; the level of agreement for gamma dose varies depending on the type of fuel, with UOX differing by the largest amount. The use of different gamma group structures and instantaneous versus asymptotic decay assumptions also complicate the comparison. For the calculation of dose rates from spent fuel in a shipping cask, the neutron source for UOX after 3-year cooling is within 1% and for MOX-W within 5% of one of the Russian results while the MOX-R difference is the largest at over 10%. These studies are a portion of the documentation required by the Russian nuclear regulatory authority, GAN, in order to certify Russian programs and data as being acceptably accurate for the analysis of mixed oxide fuels.

  12. Impact of soft annealing on the performance of solution-processed amorphous zinc tin oxide thin-film transistors.

    Science.gov (United States)

    Nayak, Pradipta K; Hedhili, Mohamed N; Cha, Dongkyu; Alshareef, H N

    2013-05-01

    It is demonstrated that soft annealing duration strongly affects the performance of solution-processed amorphous zinc tin oxide thin-film transistors. Prolonged soft annealing times are found to induce two important changes in the device: (i) a decrease in zinc tin oxide film thickness, and (ii) an increase in oxygen vacancy concentration. The devices prepared without soft annealing exhibited inferior transistor performances, in comparison to devices in which the active channel layer (zinc tin oxide) was subjected to soft annealing. The highest saturation field-effect mobility-5.6 cm(2) V(-1) s(-1) with a drain-to-source on-off current ratio (Ion/Ioff) of 2 × 10(8)-was achieved in the case of devices with 10-min soft-annealed zinc tin oxide thin films as the channel layer. The findings of this work identify soft annealing as a critical parameter for the processing of chemically derived thin-film transistors, and it correlates device performance to the changes in material structure induced by soft annealing.

  13. Impact of soft annealing on the performance of solution-processed amorphous zinc tin oxide thin-film transistors

    KAUST Repository

    Nayak, Pradipta K.

    2013-05-08

    It is demonstrated that soft annealing duration strongly affects the performance of solution-processed amorphous zinc tin oxide thin-film transistors. Prolonged soft annealing times are found to induce two important changes in the device: (i) a decrease in zinc tin oxide film thickness, and (ii) an increase in oxygen vacancy concentration. The devices prepared without soft annealing exhibited inferior transistor performances, in comparison to devices in which the active channel layer (zinc tin oxide) was subjected to soft annealing. The highest saturation field-effect mobility - 5.6 cm2 V-1 s-1 with a drain-to-source on-off current ratio (Ion/Ioff) of 2 × 108 - was achieved in the case of devices with 10-min soft-annealed zinc tin oxide thin films as the channel layer. The findings of this work identify soft annealing as a critical parameter for the processing of chemically derived thin-film transistors, and it correlates device performance to the changes in material structure induced by soft annealing. © 2013 American Chemical Society.

  14. Co-catalytic effect of Rh and Ru for the ethanol electro-oxidation in amorphous microparticulated alloys

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Tamara C.; Pierna, Angel R.; Barroso, Javier [Dpto. de Ingenieria Quimica y del Medio Ambiente, Universidad del Pais Vasco, San Sebastian (Spain)

    2011-11-15

    The ethanol electro-oxidation on platinum catalyst in acid media leads to the formation of acetaldehyde and acetic acid as main products. Another problem is the poisoning of the electro-catalyst surface with CO formed during the fuel oxidation reaction. To increase the performance of Direct Ethanol Fuel Cells (DEFCs) it is necessary to develop new electrode materials or modification of the existing Pt catalysts. This work presents the electrochemical response to ethanol and CO oxidation of different compositional amorphous alloys obtained by ball milling technique, used as electrodes. Alloys with Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Rh{sub 0.4} and Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Rh{sub 0.2}Ru{sub 0.2} composi-tions were studied. The current density towards ethanol oxidation decreases with the presence of ruthenium; however, this electrode shows the best tolerance to CO, with lower surface coverage (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Oxidative stress, inflammation, and DNA damage in multiple organs of mice acutely exposed to amorphous silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Nemmar A

    2016-03-01

    Full Text Available Abderrahim Nemmar,1 Priya Yuvaraju,1 Sumaya Beegam,1 Javed Yasin,2 Elsadig E Kazzam,2 Badreldin H Ali3 1Department of Physiology, 2Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE; 3Department of Pharmacology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Al-Khoudh, Sultanate of Oman Abstract: The use of amorphous silica (SiO2 in biopharmaceutical and industrial fields can lead to human exposure by injection, skin penetration, ingestion, or inhalation. However, the in vivo acute toxicity of amorphous SiO2 nanoparticles (SiNPs on multiple organs and the mechanisms underlying these effects are not well understood. Presently, we investigated the acute (24 hours effects of intraperitoneally administered 50 nm SiNPs (0.25 mg/kg on systemic toxicity, oxidative stress, inflammation, and DNA damage in the lung, heart, liver, kidney, and brain of mice. Lipid peroxidation was significantly increased by SiNPs in the lung, liver, kidney, and brain, but was not changed in the heart. Similarly, superoxide dismutase and catalase activities were significantly affected by SiNPs in all organs studied. While the concentration of tumor necrosis factor α was insignificantly increased in the liver and brain, its increase was statistically significant in the lung, heart, and kidney. SiNPs induced a significant elevation in pulmonary and renal interleukin 6 and interleukin-1 beta in the lung, liver, and brain. Moreover, SiNPs caused a significant increase in DNA damage, assessed by comet assay, in all the organs studied. SiNPs caused leukocytosis and increased the plasma activities of lactate dehydrogenase, creatine kinase, alanine aminotranferase, and aspartate aminotransferase. These results indicate that acute systemic exposure to SiNPs causes oxidative stress, inflammation, and DNA damage in several major organs, and highlight the need for thorough evaluation

  16. The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells

    NARCIS (Netherlands)

    Demontis, V.; Sanna, C.; Melskens, J.; Santbergen, R.; Smets, A.H.M.; Damiano, A.; Zeman, M.

    2013-01-01

    Thin oxide interlayers are commonly added to the back reflector of thin-film silicon solar cells to increase their current. To gain more insight in the enhancement mechanism, we tested different back reflector designs consisting of aluminium-doped zinc oxide (ZnO:Al) and/or hydrogenated silicon oxid

  17. Applications of Metal/Mixed Metal Oxides as Photocatalyst: (A Review

    Directory of Open Access Journals (Sweden)

    Avnish Kumar Arora

    2016-08-01

    Full Text Available Metal oxides/ Mixed metal oxides have wide applications as catalyst, Adsorbents, Superconductors, semiconductors, ceramics, antifungal agents and also have spacious applications in medicines. This review article is focused on their applications as photocatalyst in various organic reactions.

  18. Flexible amorphous oxide thin-film transistors on polyimide substrate for AMOLED

    Science.gov (United States)

    Xu, Zhiping; Li, Min; Xu, Miao; Zou, Jianhua; Gao, Zhuo; Pang, Jiawei; Guo, Ying; Zhou, Lei; Wang, Chunfu; Fu, Dong; Peng, Junbiao; Wang, Lei; Cao, Yong

    2014-10-01

    We report a flexible amorphous Lanthanide doped In-Zn-O (IZO) thin-film transistor (TFT) backplane on polyimide (PI) substrate. In order to de-bond the PI film from the glass carrier easily after the flexible AMOLED process, a special inorganic film is deposited on the glass before the PI film is coated. The TFT exhibited a field-effect mobility of 6.97 cm2V-1 s-1, a subthreshold swing of 0.248 V dec-1, and an Ion/Ioff ratio of 5.19×107, which is sufficient to drive the OLEDs.

  19. Synthesis of amorphous zirconium oxide with luminescent characteristics; Sintesis de oxido de circonio amorfo con caracteristicas luminiscentes

    Energy Technology Data Exchange (ETDEWEB)

    Barrera S, M.; Chavez G, M.; Soto E, A.M.; Velasquez O, C.; Garcia S, M.A.; Olvera T, L.; Rivera M, T. [UAM-I, 09340 Mexico D.F. (Mexico)

    2004-07-01

    It was prepared zirconium oxide, ZrO{sub 2}, by means of hydrolysis-condensation reactions (sol-gel method), using zirconium propoxide, Zr(C{sub 3}H{sub 7}O){sub 4}, as precursor and nitric acid, HNO{sub 3}, as catalyst of the hydrolysis reaction. In this synthesis it was used a molar ratio water-alkoxide, r=n{sub H2O}/n{sub Zr}(C{sub 3}H{sub 7}0){sub 4}, high, similar to 200, so that the hydrolysis happens quickly and the nucleation and growth are completed in very little time. The solid was characterized with Ftir spectrophotometry, Differential thermal analysis (Dta), Thermal gravimetric analysis (T G), X-ray diffraction of powders, Scanning electron microscopy (Sem) and X-ray Dispersion energy (EDX). The ZrO{sub 2} obtained by this way is amorphous even to 300 C and it consists of big aggregates. The amorphous ZrO{sub 2}, presents thermoluminescent behavior, after it was irradiated with UV radiation and beta particles of {sup 90}Sr/{sup 90}Y and it was thermally stimulated. (Author)

  20. Methane combustion over lanthanum-based perovskite mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Arandiyan, Hamidreza [New South Wales Univ., Sydney (Australia). School of Chemical Engineering

    2015-11-01

    This book presents current research into the catalytic combustion of methane using perovskite-type oxides (ABO{sub 3}). Catalytic combustion has been developed as a method of promoting efficient combustion with minimum pollutant formation as compared to conventional catalytic combustion. Recent theoretical and experimental studies have recommended that noble metals supported on (ABO{sub 3}) with well-ordered porous networks show promising redox properties. Three-dimensionally ordered macroporous (3DOM) materials with interpenetrated and regular mesoporous systems have recently triggered enormous research activity due to their high surface areas, large pore volumes, uniform pore sizes, low cost, environmental benignity, and good chemical stability. These are all highly relevant in terms of the utilization of natural gas in light of recent catalytic innovations and technological advances. The book is of interest to all researchers active in utilization of natural gas with novel catalysts. The research covered comes from the most important industries and research centers in the field. The book serves not only as a text for researcher into catalytic combustion of methane, 3DOM perovskite mixed oxide, but also explores the field of green technologies by experts in academia and industry. This book will appeal to those interested in research on the environmental impact of combustion, materials and catalysis.

  1. Melting behavior of mixed U-Pu oxides under oxidizing conditions

    Science.gov (United States)

    Strach, Michal; Manara, Dario; Belin, Renaud C.; Rogez, Jacques

    2016-05-01

    In order to use mixed U-Pu oxide ceramics in present and future nuclear reactors, their physical and chemical properties need to be well determined. The behavior of stoichiometric (U,Pu)O2 compounds is relatively well understood, but the effects of oxygen stoichiometry on the fuel performance and stability are often still obscure. In the present work, a series of laser melting experiments were carried out to determine the impact of an oxidizing atmosphere, and in consequence the departure from a stoichiometric composition on the melting behavior of six mixed uranium plutonium oxides with Pu content ranging from 14 to 62 wt%. The starting materials were disks cut from sintered stoichiometric pellets. For each composition we have performed two laser melting experiments in pressurized air, each consisting of four shots of different duration and intensity. During the experiments we recorded the temperature at the surface of the sample with a pyrometer. Phase transitions were qualitatively identified with the help of a reflected blue laser. The observed phase transitions occur at a systematically lower temperature, the lower the Pu content of the studied sample. It is consistent with the fact that uranium dioxide is easily oxidized at elevated temperatures, forming chemical species rich in oxygen, which melt at a lower temperature and are more volatile. To our knowledge this campaign is a first attempt to quantitatively determine the effect of O/M on the melting temperature of MOX.

  2. Melting behavior of mixed U–Pu oxides under oxidizing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Strach, Michal [CEA, DEN, DTEC, SECA, LCC, Cadarache F-13108, Saint-Paul-Lez-Durance (France); IM2NP, UMR CNRS 7334 – Aix Marseille University, Case 251, Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20 (France); Manara, Dario [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Belin, Renaud C. [CEA, DEN, DTEC, SECA, LCC, Cadarache F-13108, Saint-Paul-Lez-Durance (France); Rogez, Jacques [IM2NP, UMR CNRS 7334 – Aix Marseille University, Case 251, Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20 (France)

    2016-05-01

    In order to use mixed U–Pu oxide ceramics in present and future nuclear reactors, their physical and chemical properties need to be well determined. The behavior of stoichiometric (U,Pu)O{sub 2} compounds is relatively well understood, but the effects of oxygen stoichiometry on the fuel performance and stability are often still obscure. In the present work, a series of laser melting experiments were carried out to determine the impact of an oxidizing atmosphere, and in consequence the departure from a stoichiometric composition on the melting behavior of six mixed uranium plutonium oxides with Pu content ranging from 14 to 62 wt%. The starting materials were disks cut from sintered stoichiometric pellets. For each composition we have performed two laser melting experiments in pressurized air, each consisting of four shots of different duration and intensity. During the experiments we recorded the temperature at the surface of the sample with a pyrometer. Phase transitions were qualitatively identified with the help of a reflected blue laser. The observed phase transitions occur at a systematically lower temperature, the lower the Pu content of the studied sample. It is consistent with the fact that uranium dioxide is easily oxidized at elevated temperatures, forming chemical species rich in oxygen, which melt at a lower temperature and are more volatile. To our knowledge this campaign is a first attempt to quantitatively determine the effect of O/M on the melting temperature of MOX.

  3. Improvement in gate bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors using microwave irradiation

    Science.gov (United States)

    Jo, Kwang-Won; Cho, Won-Ju

    2014-11-01

    In this study, we evaluated the effects of microwave irradiation (MWI) post-deposition-annealing (PDA) treatment on the gate bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) and compared the results with a conventional thermal annealing PDA treatment. The MWI-PDA-treated a-IGZO TFTs exhibited enhanced electrical performance as well as improved long-term stability with increasing microwave power. The positive turn-on voltage shift (ΔVON) as a function of stress time with positive bias and varying temperature was precisely modeled on a stretched-exponential equation, suggesting that charge trapping is a dominant mechanism in the instability of MWI-PDA-treated a-IGZO TFTs. The characteristic trapping time and average effective barrier height for electron transport indicate that the MWI-PDA treatment effectively reduces the defects in a-IGZO TFTs, resulting in a superior resistance against gate bias stress.

  4. High performance solution-deposited amorphous indium gallium zinc oxide thin film transistors by oxygen plasma treatment

    KAUST Repository

    Nayak, Pradipta K.

    2012-05-16

    Solution-deposited amorphous indium gallium zinc oxide (a-IGZO) thin film transistors(TFTs) with high performance were fabricated using O2-plasma treatment of the films prior to high temperature annealing. The O2-plasma treatment resulted in a decrease in oxygen vacancy and residual hydrocarbon concentration in the a-IGZO films, as well as an improvement in the dielectric/channel interfacial roughness. As a result, the TFTs with O2-plasma treated a-IGZO channel layers showed three times higher linear field-effect mobility compared to the untreated a-IGZO over a range of processing temperatures. The O2-plasma treatment effectively reduces the required processing temperature of solution-deposited a-IGZO films to achieve the required performance.

  5. A compact model and direct parameters extraction techniques For amorphous gallium-indium-zinc-oxide thin film transistors

    Science.gov (United States)

    Moldovan, Oana; Castro-Carranza, Alejandra; Cerdeira, Antonio; Estrada, Magali; Barquinha, Pedro; Martins, Rodrigo; Fortunato, Elvira; Miljakovic, Slobodan; Iñiguez, Benjamin

    2016-12-01

    An advanced compact and analytical drain current model for the amorphous gallium indium zinc oxide (GIZO) thin film transistors (TFTs) is proposed. Its output saturation behavior is improved by introducing a new asymptotic function. All model parameters were extracted using an adapted version of the Universal Method and Extraction Procedure (UMEM) applied for the first time for GIZO devices in a simple and direct form. We demonstrate the correct behavior of the model for negative VDS, a necessity for a complete compact model. In this way we prove the symmetry of source and drain electrodes and extend the range of applications to both signs of VDS. The model, in Verilog-A code, is implemented in Electronic Design Automation (EDA) tools, such as Smart Spice, and compared with measurements of TFTs. It describes accurately the experimental characteristics in the whole range of GIZO TFTs operation, making the model suitable for the design of circuits using these types of devices.

  6. Optical absorption and small-polaron hopping in oxygen deficient and lithium-ion-intercalated amorphous titanium oxide films

    Science.gov (United States)

    Triana, C. A.; Granqvist, C. G.; Niklasson, G. A.

    2016-01-01

    Optical absorption in oxygen-deficient and Li+-ion inserted titanium oxide films was studied in the framework of small-polaron hopping. Non-stoichiometric TiOy films with 1.68 ≤ y ≤ 2.00 were deposited by reactive DC magnetron sputtering and were subjected to electrochemical intercalation of Li+-ions and charge-balancing electrons to obtain LixTiOy films with 0.12 ≤ x ≤ 0.34. Dispersion analysis was applied to calculate the complex dielectric function ɛ(ℏω) ≡ ɛ1(ℏω) + i ɛ2(ℏω) from numerical inversion of optical transmittance and reflectance spectra; a superposition of Tauc-Lorentz and Lorentz oscillator models was used for this purpose. Data on ɛ2(ℏω) were employed to calculate the optical conductivity and fit this property to a small-polaron model for disordered systems with strong electron-phonon interaction and involving transitions near the Fermi level. The introduction of oxygen vacancies and/or Li+ insertion yielded band gap widening by ˜0.20-0.35 eV, and both processes induced similar low-energy optical absorption. The small-polaron-based analysis indicated increases in the Fermi level by ˜0.15-0.3 eV for sub-stoichiometric and/or Li+-inserted films. This suggests the existence of polaronic Ti3+ states in the lower part of the conduction band arising from transfer of electrons from oxygen vacancies and/or inserted Li+ species. The present article is a sequel to an earlier paper on oxygen-deficient and/or Li+-inserted amorphous WOy thin films and forms part of a comprehensive investigation of optical absorption in amorphous transition metal oxides with different valence states of the metallic ions.

  7. A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film transistors under positive gate bias stress

    NARCIS (Netherlands)

    Niang, K.M.; Barquinha, P.M.C.; Martins, R.F.P.; Cobb, B.; Powell, M.J.; Flewitt, A.J.

    2016-01-01

    Thin film transistors (TFTs) employing an amorphous indium gallium zinc oxide (a-IGZO) channel layer exhibit a positive shift in the threshold voltage under the application of positive gate bias stress (PBS). The time and temperature dependence of the threshold voltage shift was measured and analyse

  8. Highly stable, mesoporous mixed lanthanum-cerium oxides with tailored structure and reducibility

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shuang; Broitman, Esteban; Wang, Yanan; Cao, Anmin; Veser, Goetz

    2011-05-01

    Pure and mixed lanthanum and cerium oxides were synthesized via a reverse microemulsion-templated route. This approach yields highly homogeneous and phase-stable mixed oxides with high surface areas across the entire range of La:Ce ratios from pure lanthana to pure ceria. Surprisingly, all mixed oxides show the fluorite crystal structure of ceria, even for lanthanum contents as high as 90%. Varying the La:Ce ratio not only allows tailoring of the oxide morphology (lattice parameter, pore structure, particle size, and surface area), but also results in a fine-tuning of the reducibility of the oxide which can be explained by the creation of oxygen vacancies in the ceria lattice upon La addition. Such finely controlled syntheses, which enable the formation of stable, homogeneous mixed oxides across the entire composition range, open the path towards functional tailoring of oxide materials, such as rational catalyst design via fine-tuning of redox activity.

  9. Different Abilities of Eight Mixed Cultures of Methane-oxidizing Bacteria to Degrade TCE

    DEFF Research Database (Denmark)

    Broholm, Kim; Christensen, Thomas Højlund; Jensen, Bjørn K.

    1993-01-01

    The ability of eight mixed cultures of methane-oxidizing bacteria to degrade trichloroethylene (TCE) was examined in laboratory batch experiments. This is one of the first reported works studying TCE degradation by mixed cultures of methane-oxidizing bacteria at 10°C, a common temperature for soils...

  10. 76 FR 65544 - Standard Format and Content of License Applications for Mixed Oxide Fuel Fabrication Facilities

    Science.gov (United States)

    2011-10-21

    ... issuance of the guide (74 FR 36780). The comment period closed on September 21, 2009. The staff's responses... COMMISSION Standard Format and Content of License Applications for Mixed Oxide Fuel Fabrication Facilities... Format and Content of License Applications for Mixed Oxide Fuel Fabrication Facilities.'' This...

  11. Selective oxidation of propane to acrylic acid over mixed metal oxide catalysts

    Institute of Scientific and Technical Information of China (English)

    Wei Zheng; Zhenxing Yu; Ping Zhang; Yuhang Zhang; Hongying Fu; Xiaoli Zhang; Qiquan Sun; Xinguo Hu

    2008-01-01

    The effects of metal atomic ratio, water content, oxygen content, and calcination temperature on the catalytic perfor-mances of MoVTeNbO mixed oxide catalyst system for the selective oxidation of propane to acrylic acid have been investigated and discussed. Among the catalysts studied, it was found that the MoVTeNbO catalyst calcined at a temperature of 600 ℃ showed the best performance in terms of propane conversion and selectivity for acrylic acid under an atmosphere of nitrogen. An effective MoVTeNbO oxide catalyst for propane selective oxidation to acrylic acid was obtained with a combination of a preferred metal atomic ratio (Mo1 V0.31Te0.23Nb0.12). The optimum reaction condition for the selective oxidation of propane was the molar ratio of C3H81 :O2 : H2O : N1 = 4.4 : 12.8 : 15.3 : 36.9. Under such conditions, the conversion of propane and the maximum yield of acrylic acid reached about 50% and 21%, respectively.

  12. UV-visible spectroscopic analysis of electrical properties in alkali metal-doped amorphous zinc tin oxide thin-film transistors.

    Science.gov (United States)

    Lim, Keon-Hee; Kim, Kyongjun; Kim, Seonjo; Park, Si Yun; Kim, Hyungjun; Kim, Youn Sang

    2013-06-04

    Solution-processed and alkali metals, such as Li and Na, are introduced in doped amorphous zinc tin oxide (ZTO) semiconductor TFTs, which show better electrical performance, such as improved field effect mobility, than intrinsic amorphous ZTO semiconductor TFTs. Furthermore, by using spectroscopic UV-visible analysis we propose a comprehensive technique for monitoring the improved electrical performance induced by alkali metal doping in terms of the change in optical properties. The change in the optical bandgap supported by the Burstein-Moss theory could successfully show a mobility increase that is related to interstitial doping of alkali metal in ZTO semiconductors.

  13. Characterisation of Fe-Cr-Al mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo Amores, J.M. [Universidad Complutense de Madrid (Spain). Dept. de Quimica Inorg.; Sanchez Escribano, V. [Departamento de Quimica Inorganica, Universidad, Salamanca (Spain); Busca, G. [Istituto di Chimica, Facolta di Ingegneria, Universita, P.le J.F. Kennedy, I-16129, Genova (Italy)

    1999-08-16

    Several samples of iron chromium aluminium mixed oxides with different composition have been prepared by coprecipitation at controlled pH starting from the corresponding nitrate salts and following dried at 393 K and calcination at 673 K for 3 h and 1173 K for 3 h. The powders have been characterised by XRD, FT-IR and DR UV-Vis spectroscopies, DTA-TG thermal analyses and measurements of BET surface area. It has been found alumina is soluble into {alpha}-FeCrO{sub 3} phase up to near 20%. These samples are stable at 1243 K with a relative high specific surface area. The {gamma},{theta}{yields}{alpha} phase transition is shifted towards higher temperatures by increasing Al content, being not detectable when {alpha}-FeCrO{sub 3} phase is the main phase. Surface chromates species are identified by the different techniques used and their amount seem to depend directly on the specific surface area of each sample. (orig.) 36 refs.

  14. Novel mesoporous mixed Nb-M (M = V, Mo, and Sb) oxides for oxidative dehydrogenation of propane.

    Science.gov (United States)

    Yuan, Li; Bhatt, Salil; Beaucage, Gregory; Guliants, Vadim V; Mamedov, Sergey; Soman, Rajiv S

    2005-12-15

    Novel thermally stable mesoporous mixed metal Nb-M (M = V, Mo and Sb) oxides were synthesized in the presence of a nonionic Pluronic P123 surfactant. These oxides displayed promising pore structures and chemical compositions for selective oxidative functionalization of propane: high surface areas (up to 200 m2/g), large pore sizes (5-14 nm), and high pore volumes (up to 0.46 cm3/g). The oxidative dehydrogenation of propane to propylene over mesoporous mixed metal Nb-M oxides employed as a probe reaction suggested that the M component was dispersed as the molecular surface species and also formed a solid solution with NbOx in the inorganic walls of these mesoporous mixed metal oxides.

  15. Co-Al Mixed Oxides Prepared via LDH Route Using Microwaves or Ultrasound: Application for Catalytic Toluene Total Oxidation

    Directory of Open Access Journals (Sweden)

    Eric Genty

    2015-05-01

    Full Text Available Co6Al2HT hydrotalcite-like compounds were synthesized by three different methods: co-precipitation, microwaves-assisted and ultrasound-assisted methods. The mixed oxides obtained after calcination were studied by several techniques: XRD, TEM, H2-TPR and XPS. They were also tested as catalysts in the reaction of total oxidation of toluene. The physico-chemical studies revealed a modification of the structural characteristics (surface area, morphology as well as of the reducibility of the formed mixed oxides. The solid prepared by microwaves-assisted synthesis was the most active. Furthermore, a relationship between the ratio of Co2+ on the surface, the reducibility of the Co-Al mixed oxide and the T50 in toluene oxidation was demonstrated. This suggests a Mars Van Krevelen mechanism for toluene total oxidation on these catalysts.

  16. Difference in high-temperature oxidation resistance of amorphous Zr-Si-N and W-Si-N films with a high Si content

    Energy Technology Data Exchange (ETDEWEB)

    Zeman, P. [Department of Physics, University of West Bohemia, Univerzitni 22, 306 14 Plzen (Czech Republic)]. E-mail: zemanp@kfy.zcu.cz; Musil, J. [Department of Physics, University of West Bohemia, Univerzitni 22, 306 14 Plzen (Czech Republic)

    2006-09-30

    The high-temperature oxidation resistance of amorphous Zr-Si-N and W-Si-N films with a high Si content ({>=}20 at.%) deposited by reactive dc magnetron sputtering at different partial pressures of nitrogen was systematically investigated by means of a symmetrical high-resolution thermogravimetry in a flowing air up to an annealing temperature of 1300 deg. C (a temperature limit for Si(1 0 0) substrate). Additional analyses including X-ray diffraction (XRD), light optical microscopy (LOM), scanning electron microscopy (SEM), atomic force microscopy (AFM), and microhardness measurement were carried out as well. The obtained results showed (i) an excellent high-temperature oxidation resistance of the Zr-Si-N films up to 1300 deg. C, (ii) a considerably lower oxidation resistance of the W-Si-N films. The W-Si-N films are completely oxidized at 800 deg. C with a subsequent volatilization of unstable WO {sub x} oxides. On the other hand, the Zr-Si-N films are oxidized only very slightly on the surface, where a stable oxide barrier layer preventing further inward oxygen diffusion is formed. The thickness of the oxide layer is only about of 3% of the total film thickness. The phase composition, thermal stability of individual phases and amorphous structure were found to be key factors to achieve a high oxidation resistance.

  17. Comparison of the electrical and optical properties of direct current and radio frequency sputtered amorphous indium gallium zinc oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jianke, E-mail: yaojk@pkusz.edu.cn [School of Computer and Information Engineering, Shenzhen Graduate School of Peking University, Shenzhen 518055 (China); Gong, Li [Instrumental Analysis and Research Center, Sun Yat-Sen University, Guangzhou 10275 (China); Xie, Lei [School of Computer and Information Engineering, Shenzhen Graduate School of Peking University, Shenzhen 518055 (China); Zhang, Shengdong, E-mail: zhangsd@pku.edu.cn [School of Computer and Information Engineering, Shenzhen Graduate School of Peking University, Shenzhen 518055 (China); Institute of Microelectronics, Peking University, Beijing 100871 (China)

    2013-01-01

    The electrical and optical properties of direct current and radio frequency (RF) sputtered amorphous indium gallium zinc oxide (a-IGZO) films are compared. It is found that the RF sputtered a-IGZO films have better stoichiometry (In:Ga:Zn:O = 1:1:1:2.5–3.0), lower electrical conductivity (σ < 8 S/cm), higher refractive index (n = 1.9–2.0) and larger band gap (E{sub g} = 3.02–3.29 eV), and show less shift of Fermi level (△ E{sub F} ∼ 0.26 eV) and increased concentration of electrons (△ N{sub e} ∼ 10{sup 4}) in the conduction band with the reduction concentration of oxygen vacancy (V{sub O}). Although a-IGZO has intensively been studied for a semiconductor channel material of thin film transistors in next-generation flat panel displays, its fundamental material parameters have not been thoroughly reported. In this work, the work function (φ) of a-IGZO films is tested with the ultraviolet photoelectron spectroscopy. It is found that the φ of a-IGZO films is in the range of 4.0–5.0 eV depending on the V{sub O}. - Highlights: ► Amorphous InGaZnO{sub 4} (a-IGZO) films were prepared with different sputtering modes. ► Electrical and optical properties of the different films were compared. ► Fermi level (△E{sub F}) shift in a-IGZO films were tested by X-ray photoelectron spectroscopy. ► The relation of △E{sub F} with the properties of a-IGZO films were discussed. ► Work function was tested by ultraviolet photoelectron spectroscopy.

  18. Interface Study on Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using High-k Gate Dielectric Materials

    Directory of Open Access Journals (Sweden)

    Yu-Hsien Lin

    2015-01-01

    Full Text Available We investigated amorphous indium gallium zinc oxide (a-IGZO thin film transistors (TFTs using different high-k gate dielectric materials such as silicon nitride (Si3N4 and aluminum oxide (Al2O3 at low temperature process (<300°C and compared them with low temperature silicon dioxide (SiO2. The IGZO device with high-k gate dielectric material will expect to get high gate capacitance density to induce large amount of channel carrier and generate the higher drive current. In addition, for the integrating process of integrating IGZO device, postannealing treatment is an essential process for completing the process. The chemical reaction of the high-k/IGZO interface due to heat formation in high-k/IGZO materials results in reliability issue. We also used the voltage stress for testing the reliability for the device with different high-k gate dielectric materials and explained the interface effect by charge band diagram.

  19. Investigation of the Carbon Monoxide Gas Sensing Characteristics of Tin Oxide Mixed Cerium Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Muhammad B. Haider

    2012-02-01

    Full Text Available Thin films of tin oxide mixed cerium oxide were grown on unheated substrates by physical vapor deposition. The films were annealed in air at 500 °C for two hours, and were characterized using X-ray photoelectron spectroscopy, atomic force microscopy and optical spectrophotometry. X-ray photoelectron spectroscopy and atomic force microscopy results reveal that the films were highly porous and porosity of our films was found to be in the range of 11.6–21.7%. The films were investigated for the detection of carbon monoxide, and were found to be highly sensitive. We found that 430 °C was the optimum operating temperature for sensing CO gas at concentrations as low as 5 ppm. Our sensors exhibited fast response and recovery times of 26 s and 30 s, respectively.

  20. Sol-gel derived oxides and mixed oxides catalysts with narrow mesoporous distribution

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel sol-gel process for preparing oxides and mixed oxides sols from precipitation and peptization process is reported in this article. Inorganic salts are used as raw materials in this study. It is found that the amount of acid has great influence on the stability and particle diameter distribution of the precursor sols. Ultrasonic treatment is used to prepare alumina sol at room temperature. The result of 27Al NMR shows that there exist Al137+ species in the sol. By controlling the sol particles with narrow particle diameter distribution, alumina, titania and silica-alumina (SA) materials with narrow mesoporous distribution are formed by regular packing of sol particles during gelation without using any templates. The results also show that the structure and particle diameter distribution of precursor sol determine the final materials' texture.

  1. Study of oxidation behaviour of Zr-based bulk amorphous alloy Zr65Cu17.5Ni10Al7.5 by thermogravimetric analyser

    Indian Academy of Sciences (India)

    A Dhawan; K Raetzke; F Faupel; S K Sharma

    2001-06-01

    The oxidation behaviour of Zr-based bulk amorphous alloy Zr65Cu17.5Ni10Al7.5 has been studied in air environment at various temperatures in the temperature range 591–684 K using a thermogravimetric analyser (TGA). The oxidation kinetics of the alloy in the amorphous phase obeys the parabolic rate law for oxidation in the temperature range 591–664 K. The values of the activation energy and pre-factor as calculated from the Arrhenius temperature dependence of the rate constants have been found to be 1.80 eV and 2.12 × 109 g cm–2.sec–1/2, respectively.

  2. Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model

    Science.gov (United States)

    Baltrusaitis, Jonas; Mendoza-Sanchez, Beatriz; Fernandez, Vincent; Veenstra, Rick; Dukstiene, Nijole; Roberts, Adam; Fairley, Neal

    2015-01-01

    Accurate elemental oxidation state determination for the outer surface of a complex material is of crucial importance in many science and engineering disciplines, including chemistry, fundamental and applied surface science, catalysis, semiconductors and many others. X-ray photoelectron spectroscopy (XPS) is the primary tool used for this purpose. The spectral data obtained, however, is often very complex and can be subject to incorrect interpretation. Unlike traditional XPS spectra fitting procedures using purely synthetic spectral components, here we develop and present an XPS data processing method based on vector analysis that allows creating XPS spectral components by incorporating key information, obtained experimentally. XPS spectral data, obtained from series of molybdenum oxide samples with varying oxidation states and degree of crystallinity, were processed using this method and the corresponding oxidation states present, as well as their relative distribution was elucidated. It was shown that monitoring the evolution of the chemistry and crystal structure of a molybdenum oxide sample due to an invasive X-ray probe could be used to infer solutions to complex spectral envelopes.

  3. Catalytic wet air oxidation with Ni- and Fe-doped mixed oxides derived from hydrotalcites.

    Science.gov (United States)

    Ovejero, G; Rodríguez, A; Vallet, A; Gómez, P; García, J

    2011-01-01

    Catalytic wet air oxidation of Basic Yellow 11 (BY11), a basic dye, was studied in a batch reactor. Layered double hydroxides with the hydrotalcite-like structure containing nickel or iron cations have been prepared by coprecipitation and subsequently calcined leading to Ni- and Fe-doped mixed oxides, respectively. Compared with the results in the wet air oxidation of BY11, these catalysts showed high activity for total organic carbon (TOC), toxicity and dye removal at 120 degrees C and 50 bars after 120 min. It has been demonstrated that the activity depended strongly on the presence of catalyst. The results show that catalysts containing nickel provide a higher extent of oxidation of the dye whereas the reaction carried out with the iron catalyst is faster. The Ni and Fe dispersion determined from the TPR results was higher for the catalysts with a lower Ni or Fe content and decreased for higher Ni or Fe contents. On the basis of activity and selectivity, the Ni containing catalyst with the medium (3%) Ni content was found to be the best catalyst. Finally, a relationship between metal content of the catalyst and reaction rate has been established.

  4. Oxidative stabilization of mixed mayonnaises made with linseed oil and saturated medium-chain triglyceride oil

    DEFF Research Database (Denmark)

    Raudsepp, Piret; Brüggemann, Dagmar A.; Lenferink, Aufried;

    2014-01-01

    Mayonnaises, made with either saturated medium chain triglyceride (MCT) oil or unsaturated purified linseed oil (LSO), were mixed. Raman confocal microspectrometry demonstrated that lipid droplets in mixed mayonnaise remained intact containing either MCT oil or LSO. Peroxide formation during stor...... simply diluting unsaturated triglycerides with saturated triglycerides is causing the oxidative stabilization observed for mixed mayonnaise and mixed oil mayonnaise. © 2013 Elsevier Ltd. All rights reserved.......Mayonnaises, made with either saturated medium chain triglyceride (MCT) oil or unsaturated purified linseed oil (LSO), were mixed. Raman confocal microspectrometry demonstrated that lipid droplets in mixed mayonnaise remained intact containing either MCT oil or LSO. Peroxide formation during...... storage was lower in mixed mayonnaise compared to LSO mayonnaise, while in mixed oil mayonnaise the level of peroxides was constantly low. Mixed oil mayonnaise had a lower rate of oxygen consumption than mixed mayonnaise, LSO mayonnaise having the highest rate. The decay of water-soluble nitroxyl radicals...

  5. Oxidation kinetics of hydrogenated amorphous carbon (a-CH(x)) overcoats for magnetic data storage media.

    Science.gov (United States)

    Yun, Yang; Ma, Xiaoding; Gui, Jing; Broitman, Esteban; Gellman, Andrew J

    2007-05-08

    The oxidation kinetics of a-CHx overcoats during exposure to oxygen and water vapor have been measured using X-ray photoemission spectroscopy (XPS) in an apparatus that allows oxidation and analysis of freshly deposited a-CHx overcoats without prior exposure of the overcoats to air. The uptake of oxygen on the surfaces of the a-CHx overcoats has been measured at O2 and H2O pressures in the range 10(-7)-10(-3) Torr at room temperature. The uptake of oxygen during O2 exposures on the order of 10(7) Langmuirs leads to saturation of the a-CHx overcoat surfaces at oxidation levels on the order of 20%. This indicates that the surfaces of a-CHx overcoats are relatively inert to oxidation in the sense that the dissociative sticking coefficient of O2 is approximately 10(-6). Oxygen uptake during exposure to H2O vapor is similar to the uptake during exposure to O2 gas. Although the surfaces of the a-CHx overcoats are quite inhomogeneous, it has been possible to model the uptake of oxygen on their surfaces using a fairly simple Langmuir-Hinshelwood mechanism. Interestingly, the saturation coverage of oxygen during exposure to air at atmospheric pressure is approximately 6%, significantly lower than that obtained during low-pressure exposure to O2 gas or H2O vapor.

  6. Photochromism of amorphous molybdenum oxide films with different initial Mo{sup 5+} relative concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Rouhani, Mehdi [Institute of Materials Research and Engineering, Agency for Science, Technology And Research, 3 Research Link, 117602 (Singapore); Foo, Yong L. [Singapore Institute of Technology, EFG Bank Building, 25 North Bridge Road 03-01 179104 (Singapore); Hobley, Jonathan; Pan, Jisheng; Subramanian, Gomathy Sandhya [Institute of Materials Research and Engineering, Agency for Science, Technology And Research, 3 Research Link, 117602 (Singapore); Yu, Xiaojiang [Singapore Synchrotron Light Source, National University of Singapore 5 Research Link, 117603 (Singapore); Rusydi, Andrivo [Singapore Synchrotron Light Source, National University of Singapore 5 Research Link, 117603 (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, 117551 (Singapore); Gorelik, Sergey, E-mail: goreliks@imre.a-star.edu.sg [Institute of Materials Research and Engineering, Agency for Science, Technology And Research, 3 Research Link, 117602 (Singapore)

    2013-05-15

    We report the effect of deposition conditions on the intrinsic color and photochromic properties of amorphous MoO{sub 3} thin films (a-films) deposited by R.F. unbalanced magnetron sputtering. Optical transmission spectroscopy was used to measure optical properties of the films. The conversion between Mo{sup 6+} and Mo{sup 5+} for as-deposited and UV irradiated films was characterized using XPS. Raman spectroscopy was used to confirm that the results of XPS were consistent with the bulk of the films. It is shown that absorption coefficient of as-deposited films increases with Mo{sup 5+} content. The temporal evolution of absorption coefficients for all films under UV light irradiation is measured using optical transmission spectroscopy. The largest change in absorption was observed for the film with the highest initial Mo{sup 5+} content. The temporal evolution of absorption coefficients for all the films shows initial fast rise within first minute of irradiation. XPS and Raman results show that for all films Mo{sup 5+} content increases as a result of UV irradiation except for the film with the highest initial Mo{sup 5+} content, for which the Mo{sup 5+} content decreases relative to Mo{sup 6+} despite the fact that the absorption of the film continues to rise. Further understanding of this mechanism is important since it will lead to enhanced photochromism and extend the photo-colorability of the films beyond the point at which the conversion of Mo{sup 6+} to Mo{sup 5+} is saturated.

  7. Effect of Sr on the properties of Ce–Zr–La mixed oxides

    Directory of Open Access Journals (Sweden)

    RICHUAN RAO

    2006-03-01

    Full Text Available Ce–Zr–La–Sr mixed oxides, with different Sr contents, were prepared by the sol–gel method. In a flow-system microreactor, the reduction properties and the oxygen storage capacity (OSC of the Ce–Zr–La–Sr mixed oxides were investigated by a temperature programmed reduction (TPR and a pulse technique. It was shown that the properties of the Ce–Zr–La mixed oxides depend on the Sr content and that the optimum Sr content in the Ce–Zr–La–Sr mixed oxide is 3 mol%. The Ce–Zr–La–Sr mixed oxides doped with 3 mol% Sr (Ce0.52Zr0.4La0.05Sr0.03O1.945 has the largest specific surface area and better reduction properties and oxygen storage capacity in comparison to the other investigated samples. The XRD results of the Ce–Zr–La–Sr mixed oxides showed that their X-ray diffraction patterns are well in agreement with that of fluorite-type CeO2 with Sr ions incorporated into the Ce–Zr–La mixed oxide structures. With increasing calcination temperature, the intensity of the X-ray diffraction peaks increased, but no new peaks were observed. All of these indicate that the synthesized samples had good thermal stability.

  8. Dopant selection for control of charge carrier density and mobility in amorphous indium oxide thin-film transistors: Comparison between Si- and W-dopants

    Science.gov (United States)

    Mitoma, Nobuhiko; Aikawa, Shinya; Ou-Yang, Wei; Gao, Xu; Kizu, Takio; Lin, Meng-Fang; Fujiwara, Akihiko; Nabatame, Toshihide; Tsukagoshi, Kazuhito

    2015-01-01

    The dependence of oxygen vacancy suppression on dopant species in amorphous indium oxide (a-InOx) thin film transistors (TFTs) is reported. In a-InOx TFTs incorporating equivalent atom densities of Si- and W-dopants, absorption of oxygen in the host a-InOx matrix was found to depend on difference of Gibbs free energy of the dopants for oxidation. For fully oxidized films, the extracted channel conductivity was higher in the a-InOx TFTs containing dopants of small ionic radius. This can be explained by a reduction in the ionic scattering cross sectional area caused by charge screening effects.

  9. Product analysis during the thermo-oxidation of amorphous deuterated hydrocarbon films with NO2

    Directory of Open Access Journals (Sweden)

    D. Alegre

    2015-12-01

    Full Text Available The excellent thermo-oxidation properties of NO2 have been previously reported, pointing to fast carbon co-deposits removal even at temperatures as low as 200 °C. On the other hand, CO, CO2 and water have been found as the main gas products in oxidation by O2, but in NO2 they have not been confirmed. To make a more accurate assessment, the use of in-situ deposited deuterated hydrocarbon films—to be able to distinguish products from ambient, protonated ones—in a fully-baked chamber have been used in the present work, mainly aimed at detecting heavy (deuterated water among the reaction products. Other products from hydrogen isotopes could not be identified, but their production would be much lower than water. The ratio of the total deuterium to carbon products detected is lower by an order of magnitude than the D/C ratio of the film (0.04–0.07 to 0.4, probably associated to the difficulties of measuring water in a vacuum system, and the relatively large quantity of background water found. Furthermore, post-oxidation of CO to CO2 has been found for NO2 at any studied temperature, while for O2 a faster post-oxidation which only occurs at T > 275 °C was found. Finally, the implications of the water production in the use of thermo-oxidation in actual and future nuclear fusion devices are also addressed.

  10. Oxidation Prevention Properties of Reduced Graphene Oxide Mixed with 1-Octanethiol-Coated Copper Nanopowder Composites

    Directory of Open Access Journals (Sweden)

    Danee Cho

    2016-01-01

    Full Text Available 1-Octanethiol-coated Cu nanoparticles were mixed with reduced graphene oxide (rGO to fabricate Cu nanoinks with enhanced oxidation prevention. Graphene oxide (GO was synthesized using modified Hummer’s method and rGO was reduced from GO using hydrazine hydrate. Copper nanoinks were fabricated with varying concentrations of rGO (Cu : rGO ratios of 100 : 1, 500 : 1, and 1000 : 1 wt.%. The coating layers on the copper nanoparticles and rGO were observed using transmission electron microscopy and characterized by X-ray photoemission spectroscopy, X-ray diffraction, and Raman spectroscopy. It was observed that surface roughness increased as the concentration of rGO in Cu patterns increased, and an optimized Cu : rGO weight ratio of 1,000 : 1 was established. After sintering, the electrical properties and corrosion resistance of copper patterns both with and without rGO were measured and monitored for 200 days. The copper pattern with rGO (Cu : rGO = 1,000 : 1 was found to maintain its initial resistivity (1.63 × 10−7 Ω·m for 150 days. Corrosion tests were conducted to confirm the oxidation prohibition of rGO. The resistance polarization (Rp of the copper pattern was measured to be 1.5 times higher than that of the copper pattern without rGO. Thus, rGO was shown to prevent oxidation and improve the conductivity of copper patterns.

  11. Amorphous Zinc Oxide Integrated Wavy Channel Thin Film Transistor Based High Performance Digital Circuits

    KAUST Repository

    Hanna, Amir

    2015-12-04

    High performance thin film transistor (TFT) can be a great driving force for display, sensor/actuator, integrated electronics, and distributed computation for Internet of Everything applications. While semiconducting oxides like zinc oxide (ZnO) present promising opportunity in that regard, still wide area of improvement exists to increase the performance further. Here, we show a wavy channel (WC) architecture for ZnO integrated TFT which increases transistor width without chip area penalty, enabling high performance in material agnostic way. We further demonstrate digital logic NAND circuit using the WC architecture and compare it to the conventional planar architecture. The WC architecture circuits have shown 2× higher peak-to-peak output voltage for the same input voltage. They also have 3× lower high-to-low propagation delay times, respectively, when compared to the planar architecture. The performance enhancement is attributed to both extra device width and enhanced field effect mobility due to higher gate field electrostatics control.

  12. Catalytic performance for methane combustion of supported Mn-Ce mixed oxides

    Institute of Scientific and Technical Information of China (English)

    SHI Limin; CHU Wei; QU Fenfen; HU Jinyan; LI Minmin

    2008-01-01

    A series of supported Mn-Ce mixed oxide catalysts were prepared by the impregnation method and used for the oxidation of methane. The catalysts were characterized by N2 adsorption (BET), X-ray diffraction (XRD), laser Raman spectrum (LRS), and temperature programmed reduction (TPR) techniques. The XRD and LRS results confirmed the high dispersion of active components or formation of solid solution between manganese and cerium oxides in the bulk and on the surface of mixed oxide catalysts. The reducibility was remarka-bly promoted by the stronger synergistic interaction between the two oxides from H2-TPR measurements. As expected, all the experimental mixed oxide catalysts showed excellent activity for methane combustion at low temperature. Especially, for the catalyst with Mn-Ce ratio 3:7, methane conversion reached 92% at a temperature as low as 470 ℃.

  13. Amorphous silicon oxide layers for surface passivation and contacting of heterostructure solar cells of amorphous and crystalline silicon; Amorphe Siliziumoxidschichten zur Oberflaechenpassivierung und Kontaktierung von Heterostruktur-Solarzellen aus amorphen und kristallinem Silizium

    Energy Technology Data Exchange (ETDEWEB)

    Einsele, Florian

    2010-02-05

    Atomic hydrogen plays a dominant role in the passivation of crystalline silicon surfaces by layers of amorphous silicon. In order to research into this role, this thesis presents the method of hydrogen effusion from thin amorphous films of silicon (a-Si:H) and silicon oxide (a-SiO{sub x}:H). The oxygen concentration of the sub-stoichiometric a-SiO{sub x}:H films ranges up to 10 at.-%. The effusion experiment yields information about the content and thermal stability of hydrogen and about the microstructure of the films. A mathematical description of the diffusion process of atomic hydrogen yields an analytical expression of the effusion rate R{sub E} depending on the linearly increasing temperature in the experiment. Fitting of the calculated effusion rates R{sub E} to measured effusion spectra yields the diffusion coefficient of atomic hydrogen in a-SiO{sub x}:H. With increasing oxygen concentration, the diffusion coefficient of hydrogen in the a-SiO{sub x}:H films decreases. This is attributed to an increasing Si-H bond energy due to back bonded oxygen, resulting in a higher stability of hydrogen in the films. This result is confirmed by an increasing thermal stability of the p-type c-Si passivation with a-SiO{sub x}:H of increasing oxygen concentrations up to 5 at.-%. The passivation reaches very low recombination velocities of S < 10 cm/s at the interface. However, for higher oxygen concentrations up to 10 at.-%, the passivation quality decreases significantly. Here, infrared spectroscopy of Si-H vibrational modes and hydrogen effusion show an increase of hydrogen-rich interconnected voids in the films. This microstructure results in a high amount of molecular hydrogen (H{sub 2}) in the layers, which is not suitable for the saturation of c-Si interface defects. Annealing of the films at temperatures around 400 C leads to a release of H{sub 2} from the voids, as a result of which Si-Si bonds in the material reconstruct. Subsequently, hydrogen migration in the

  14. Amorphous silicon oxide layers for surface passivation and contacting of heterostructure solar cells of amorphous and crystalline silicon; Amorphe Siliziumoxidschichten zur Oberflaechenpassivierung und Kontaktierung von Heterostruktur-Solarzellen aus amorphen und kristallinem Silizium

    Energy Technology Data Exchange (ETDEWEB)

    Einsele, Florian

    2010-02-05

    Atomic hydrogen plays a dominant role in the passivation of crystalline silicon surfaces by layers of amorphous silicon. In order to research into this role, this thesis presents the method of hydrogen effusion from thin amorphous films of silicon (a-Si:H) and silicon oxide (a-SiO{sub x}:H). The oxygen concentration of the sub-stoichiometric a-SiO{sub x}:H films ranges up to 10 at.-%. The effusion experiment yields information about the content and thermal stability of hydrogen and about the microstructure of the films. A mathematical description of the diffusion process of atomic hydrogen yields an analytical expression of the effusion rate R{sub E} depending on the linearly increasing temperature in the experiment. Fitting of the calculated effusion rates R{sub E} to measured effusion spectra yields the diffusion coefficient of atomic hydrogen in a-SiO{sub x}:H. With increasing oxygen concentration, the diffusion coefficient of hydrogen in the a-SiO{sub x}:H films decreases. This is attributed to an increasing Si-H bond energy due to back bonded oxygen, resulting in a higher stability of hydrogen in the films. This result is confirmed by an increasing thermal stability of the p-type c-Si passivation with a-SiO{sub x}:H of increasing oxygen concentrations up to 5 at.-%. The passivation reaches very low recombination velocities of S < 10 cm/s at the interface. However, for higher oxygen concentrations up to 10 at.-%, the passivation quality decreases significantly. Here, infrared spectroscopy of Si-H vibrational modes and hydrogen effusion show an increase of hydrogen-rich interconnected voids in the films. This microstructure results in a high amount of molecular hydrogen (H{sub 2}) in the layers, which is not suitable for the saturation of c-Si interface defects. Annealing of the films at temperatures around 400 C leads to a release of H{sub 2} from the voids, as a result of which Si-Si bonds in the material reconstruct. Subsequently, hydrogen migration in the

  15. Synthesis and Characterization of Mixed Metal Oxide Nanocomposite Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gash, A; Pantoya, M; Jr., J S; Zhao, L; Shea, K; Simpson, R; Clapsaddle, B

    2003-11-18

    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology, affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. Furthermore, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. As a result, the desired organic functionality is well dispersed throughout the composite material on the nanoscale. By introducing a fuel metal into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of these metal oxide/silicon oxide nanocomposites and their performance as energetic materials will be discussed.

  16. Designed synthesis of tunable amorphous carbon nanotubes (a-CNTs) by a novel route and their oxidation resistance properties

    Indian Academy of Sciences (India)

    Longlong Xu; Yifu Zhang; Xiongzhi Zhang; Yu Huang; Xiaoyu Tan; Chi Huang; Xiao Mei; Fei Niu; Changgong Meng; Gongzhen Cheng

    2014-10-01

    Tunable amorphous carbon nanotubes (a-CNTs) were successfully synthesized using V3O7.H2O and glucose solution as the starting materials by a novel route for the first time. The as-obtained samples were separately characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), energy-dispersive spectrometer (EDS), elemental analysis (EA), Fourier transform infrared spectroscopy (FT–IR) and Raman spectrum. The results showed that the as-obtained a-CNTs had uniform diameters with outer diameter ranging from 140 to 250 nm and inner diameter about 28 nm on an average, and their length was up to several micrometres. No VO residues remaining in a-CNTs showed the as-obtained a-CNTs with high purity. The as-prepared a-CNTs were a kind of hydrogenated a-CNTs containing both the 3- and 2-type carbons. Furthermore, the thermal stability of the as-obtained a-CNTs in the air atmosphere were investigated by thermo-gravimetric/differential thermal analyser (TG-DTA), revealing that the as-obtained a-CNTs had good thermal stability and oxidation resistance below 300 °C in air.

  17. In situ X-Ray Absorption Spectro-Electrochemical Study of Amorphous Tin-Based Composite Oxide Material

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, A. N.; Mukerjee, S.; Yang, X. Q.; McBreen, J.

    1998-11-01

    We have measured the XAFS spectra of a sample of tin-based composite oxide (TCO) material with a nominal composition of Sn{sub 1.0}B{sub 0.56}P{sub 0.40}Al{sub 0.42}O{sub 3.47} during the discharge and charge cycles in an ''in situ'' configuration. Our results confirm the amorphous nature of TCO and show that Sn in TCO is coordinated with 3 oxygen atoms at a distance of 2.12 {angstrom}. Upon discharging, initially, Li interacts with the electrochemically active Sn-O center forming metallic Sn in the form of clusters containing just a few atoms. Upon further discharge, Li alloys with Sn forming initially highly dispersed forms of Li{sub 2}Sn{sub 5} and/or LiSn and then Li{sub 7}Sn{sub 3}, Li{sub 5}Sn{sub 2}, Li{sub 13}Sn{sub 5}, or Li{sub 7}Sn{sub 2}. The true nature of the formed alloys could be significantly different from that of the corresponding crystalline phases. Upon charging, metallic Sn is produced with a Sn-Sn distance intermediate to those of gray and white Sn.

  18. Contact resistance asymmetry of amorphous indium-gallium-zinc-oxide thin-film transistors by scanning Kelvin probe microscopy

    Science.gov (United States)

    Chen-Fei, Wu; Yun-Feng, Chen; Hai, Lu; Xiao-Ming, Huang; Fang-Fang, Ren; Dun-Jun, Chen; Rong, Zhang; You-Dou, Zheng

    2016-05-01

    In this work, a method based on scanning Kelvin probe microscopy is proposed to separately extract source/drain (S/D) series resistance in operating amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors. The asymmetry behavior of S/D contact resistance is deduced and the underlying physics is discussed. The present results suggest that the asymmetry of S/D contact resistance is caused by the difference in bias conditions of the Schottky-like junction at the contact interface induced by the parasitic reaction between contact metal and a-IGZO. The overall contact resistance should be determined by both the bulk channel resistance of the contact region and the interface properties of the metal-semiconductor junction. Project supported by the Key Industrial R&D Program of Jiangsu Province, China (Grant No. BE2015155), the Priority Academic Program Development of Higher Education Institutions of Jiangsu Province, China, and the Fundamental Research Funds for the Central Universities, China (Grant No. 021014380033).

  19. Ce-Fe-O mixed oxide as oxygen carrier for the direct partial oxidation of methane to syngas

    Institute of Scientific and Technical Information of China (English)

    魏永刚; 王华; 李孔斋

    2010-01-01

    The Ce-Fe-O mixed oxide with a ratio of Ce/Fe=7:3, which was prepared by coprecipitation method and employed as oxygen carrier, for direct partial oxidation of methane to syngas in the absence of gaseous oxygen was explored. The mixed oxide was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), and the catalytic performances were studied in a fixed-bed quartz reactor and a thermogravimetric reactor, respectively. Approximately 99.4% H2 se...

  20. Nanoparticles of TiAlZr mixed oxides as supports of hydrodesulfurization catalysts: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kraleva, E., E-mail: ekraleva@gmail.com [Institute of Biodiversity and Ecosystems Research, Bulgarian Academy of Sciences, Sofia, Gagarin st.2 (Bulgaria); Spojakina, A. [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Saladino, M.L. [Dipartimento di Chimica ' S. Cannizzaro' , Universita di Palermo and INSTM-Udr Palermo, Parco d' Orleans II Viale delle Scienze pad 17, I-90128 Palermo,Italy (Italy); Caponetti, E. [Dipartimento di Chimica ' S. Cannizzaro' , Universita di Palermo and INSTM-Udr Palermo, Parco d' Orleans II Viale delle Scienze pad 17, I-90128 Palermo,Italy (Italy); Centro Grandi Apparecchiature - UniNetLab, Universita di Palermo, Via F. Marini 14, I-90128 Palermo (Italy); Nasillo, G. [Centro Grandi Apparecchiature - UniNetLab, Universita di Palermo, Via F. Marini 14, I-90128 Palermo (Italy); Jiratova, K. [Institute of Chemical Process Fundamentals, 16502 Prague 6 (Czech Republic)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Preparation of ternary mixed oxide by sol-gel method. Black-Right-Pointing-Pointer Catalytic properties of the three-mixed oxides. Black-Right-Pointing-Pointer Heteropolyacid H{sub 3}PMo{sub 12}O{sub 40} and its cobalt salt Co{sub 1.5}PMo{sub 12}O{sub 40} that of active components in catalytic systems for thiophene hydrodesulfurization (HDS). - Abstract: TiAlZr mixed oxides, synthesized using sol-gel method, were characterized and used as supports of hydrodesulfurization catalysts (12 wt% Mo) prepared by impregnation either with molybdenum heteropolyacid H{sub 3}PMo{sub 12}O{sub 40} or its cobalt salt Co{sub 1.5}PMo{sub 12}O{sub 40}. Structure, morphology and textural properties of oxides and catalysts were characterized using X-ray powder diffraction (XRD), Raman spectroscopy, Nitrogen adsorption porosimetry, TEM-EDS, temperature-programmed desorption (TPD) and temperature-programmed reduction (TPR) techniques. Activity of the catalytic systems was tested in thiophene hydrodesulfurization (HDS). No formation of a new oxide phase was revealed in the synthesized mixed materials. However the effect of separated oxides on the structure of ternary oxides was observed. Maximum in HDS activity of Mo containing samples was determined by optimum content of alumina in the mixed oxides. Incorporation of cobalt into the heteropolyacid increased the HDS activity about two times and masked the effect of the support composition.

  1. Ethanol steam reforming over Mg-Al mixed-oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, L.J.; Hudgins, R.R.; Silveston, P.L.; Croiset, E. [Waterloo Univ., ON (Canada). Dept. of Chemical Engineering

    2007-07-01

    Eight magnesium-aluminium (Mg-Al) mixed oxides and magnesium oxide (MgO) and aluminium oxide (Al{sub 2}O{sub 3}) were studied in order to identify the most effective Mg-Al mixed oxide for hydrogen production via ethanol steam reforming. Co-precipitated precursors were calcinated to prepare the Mg-Al mixed oxides. Activity and selectivity of the mixed oxides for ethanol steam reforming were evaluated at 773 and 923 K. Results showed that all catalysts performed poorly during the steam reforming reaction, and produced low rates of hydrogen, carbon monoxide (CO) and carbon dioxide (CO{sub 2}). Catalysts with an MgAl{sub 2}O{sub 4} spinel crystal structure gave the best performance at both reaction temperatures. However, carbon deposits were discovered on all catalysts for reactions performed at 923 K. Co-precipitation resulted in more effective contact between the Mg and Al in the form of Mg-Al LDO and MgAL{sub 2}O{sub 3}. The absence of pure oxides suggested that Mg and Al were chemically coupled in the mixed oxide catalysts. Results of the study showed that the catalyst with an atomic ratio of 0.66 Mg1Al2 was the most active and achieved the highest rates of production for hydrogen. 14 refs., 3 tabs., 1 fig.

  2. Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures

    Energy Technology Data Exchange (ETDEWEB)

    Bacelar-Nicolau, P.; Johnson, D.B. [Univ. of Wales, Bangor (United Kingdom). School of Biological Sciences

    1999-02-01

    Seven strains of heterotrophic iron-oxidizing acidophilic bacteria were examined to determine their abilities to promote oxidative dissolution of pyrite (FeS{sub 2}) when they were grown in pure cultures and in mixed cultures with sulfur-oxidizing Thiobacillus spp. Only one of the isolates (strain T-24) oxidized pyrite when it was grown in pyrite-basal salts medium. However, when pyrite-containing cultures were supplemented with 0.02% (wt/vol) yeast extract, most of the isolates oxidized pyrite, and one (strain T-24) promoted rates of mineral dissolution similar to the rates observed with the iron-oxidizing autotroph Thiobacillus ferroxidans. Pyrite oxidation by another isolate (strain T-21) occurred in cultures containing between 0.005 and 0.05% (wt/vol) yeast extract but was completely inhibited in cultures containing 0.5% yeast extract. Ferrous iron was also needed for mineral dissolution by the iron-oxidizing heterotrophs, indicating that these organisms oxidize pyrite via the indirect mechanism. Mixed cultures of three isolates (strains T-21, T-232, and T-24) and the sulfur-oxidizing autotroph Thiobacillus thiooxidans promoted pyrite dissolution; since neither strains T-21 and T-23 nor T. thiooxidans could oxidize this mineral in yeast extract-free media, this was a novel example of bacterial synergism. Mixed cultures of strains T-21 and T-23 and the sulfur-oxidizing mixotroph Thiobacillus acidophilus also oxidized pyrite but to a lesser extent than did mixed cultures containing T. thiooxidans. Pyrite leaching by strain T -23 grown in an organic compound-rich medium and incubated either shaken or unshaken was also assessed. The potential environmental significance of iron-oxidizing heterotrophs in accelerating pyrite oxidation is discussed.

  3. Study on Catalysts with Rhodium Loading on Different Cerium-Zirconium Mixed Oxides

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The catalysts with Rh loading on different cerium-zirconium mixed oxides were characterized by BET, H2-TPR and OSC. The effects of different cerium-zirconium mixed oxides on catalytic performance and thermal stability of Rh loaded catalyst were studied. The results show that: (1) Rh can enhance cerium-zirconium mixed oxides OSC and catalytic reaction rates; (2) cerium-zirconium mixed oxides with high Ce contents and low Zr contents are more favorable to the stability of catalysts. Moreover, the contents of CeO2 have important effect on catalysts characteristics, and the addition of some rare earth components, such as La, Pr and Nd also have some influences.

  4. Optical refractive index and static permittivity of mixed Zr-Si oxide thin films prepared by ion beam induced CVD

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, F.J. [Centro Nacional de Aceleradores, Av. Thomas A. Edison, 7, 41092 Sevilla (Spain)], E-mail: fjferrer@us.es; Frutos, F. [E.T.S. de Ingenieria Informatica, Avda. Reina Mercedes, s/n, 41012 Sevilla (Spain); Garcia-Lopez, J. [Centro Nacional de Aceleradores, Av. Thomas A. Edison, 7, 41092 Sevilla (Spain); Gonzalez-Elipe, A.R.; Yubero, F. [Insituto de Ciencia de Materiales de Sevilla, c/ Americo vespucio, no. 49, 41092 Sevilla (Spain)

    2007-12-03

    Mixed oxides Zr{sub x}Si{sub 1-x}O{sub 2} (0 < x < 1) thin films have been prepared at room temperature by decomposition of (CH{sub 3}CH{sub 2}O){sub 3}SiH and Zr[OC(CH{sub 3}){sub 3}]{sub 4} volatile precursors induced by mixtures of O{sub 2}{sup +} and Ar{sup +} ions. The films were flat and amorphous independently of the Si/Zr ratio and did not present phase segregation of the pure single oxides (SiO{sub 2} and ZrO{sub 2}). A 10-23 at.% of H and 1-5 at.% of C atoms remained incorporated in the films depending on the mixture ratio of the Si and Zr precursors and the composition of the bombarding gas used during the deposition process. These impurities are mainly forming hydroxyl and carboxylic groups. Optical refractive index and static permittivity of the films were determined by reflection NIR-Vis spectroscopy and C-V electrical characterization, respectively. It is found that the refractive index increases non-linearly from 1.45 to 2.10 as the Zr content in the thin films increases. The static permittivity also increases non-linearly from {approx} 4 for pure SiO{sub 2} to {approx} 15 for pure ZrO{sub 2}. Optical and electrical characteristics of the films are justified by their impurity content and the available theories.

  5. Study on Mg/Fe Mixed Oxides Derived from Hydrotalite as De—SOx Catalyst

    Institute of Scientific and Technical Information of China (English)

    GuangLanZHUO; YinFeiCHEN; 等

    2002-01-01

    A novel class of desulfurization agent derived from hydrotalcite has been developed and its activity for SOx uptake have been investigated. The results showed that the Mg/Fe mixed oxide having high SOx uptake ability at a broad reaction temperature (e.g.673K-973K). The Mg/Fe ratio of the mixed oxide strongly affect the desulfurization role of the material and it can be used repeatly without much loss of SOx uptake ability.

  6. Study on Mg/Fe Mixed Oxides Derived from Hydrotalcite as De-SOx Catalyst

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A novel class of desulfurization agent derived from hydrotalcite has been developed and its activity for Sox uptake have been investigated. The results showed that the Mg/Fe mixed oxide having high Sox uptake ability at a broad reaction temperature (e.g. 673K ~ 973K). The Mg/Fe ratio of the mixed oxide strongly affect the desulfurization role of the material and it can be used repeatly without much loss of Sox uptake ability.

  7. Flotation of cobalt bearing minerals from a mixed copper-cobalt oxidized ore

    OpenAIRE

    2012-01-01

    M.Tech. (Extraction Metallurgy) The techniques for the flotation of mixed copper and cobalt bearing oxide ores using the sulphidization method in order to recover the oxidized copper and cobalt bearing minerals have been well documented by previous researchers. These processes have been successfully implemented in many of the metallurgical plant operations in the Democratic Republic of Congo (DRC). The mixed copper and cobalt oxidised ores from this region present significant chal-lenges t...

  8. Synthesis and Characterization of Mixed Metal Oxide Nanocomposite Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Clapsaddle, B; Gash, A; Plantier, K; Pantoya, M; Jr., J S; Simpson, R

    2004-04-27

    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. By introducing a fuel metal, such as aluminum, into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. In addition, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. These organic additives can cause the generation of gas upon ignition of the materials, therefore resulting in a composite material that can perform pressure/volume work. Furthermore, the desired organic functionality is well dispersed throughout the composite material on the nanoscale with the other components, and is therefore subject to the same increased reaction kinetics. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of iron(III) oxide/organosilicon oxide nanocomposites and their performance as energetic materials will be discussed.

  9. Methodologies For Characterising Mixed Conducting Oxides For Oxygen Membrane And SOFC Cathode Application

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Søgaard, Martin; Plonczak, Pawel

    2012-01-01

    Two methods for detailed characterization of the process of oxygen exchange between the gas phase and a mixed conducting solid oxide are discussed. First, the use of solid electrolyte probes for measuring the change in oxygen activity over the surface of a mixed conductor is presented and advanta...

  10. Titanium oxide modification with oxides of mixed cobalt valence for photo catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Alanis O, R.; Jimenez B, J., E-mail: jaime.jimenez@inin.gob.m [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    In the present work, heterogenous photo catalysis, a technique often used for organic compound degradation toxic in water, was used. The photo catalyst most often used in this technique is TiO{sub 2}, which due to its physical and chemical properties, can degrade a great number of organic compounds. In addition, in recent years it has been verified that the doping of semiconductors with metals or metallic oxides increases the photo catalytic activity of these semiconductors, which is why it was proposed for doping by the impregnating method using commercial TiO{sub 2} synthesized by the Degussa company (TiO{sub 2} Degussa P25) with and oxide of mixed cobalt valence (Co{sub 3}O{sub 4}) synthesized using the sol-gel method. The synthesized photo catalyst TiO{sub 2}/Co{sub 3}O{sub 4} was characterized by the techniques of X-ray diffraction, scanning electronic microscopy, Raman spectroscopy and finally, photo catalytic tests by means of the degradation of methylene blue. (Author)

  11. Conversion of Russian weapon-grade plutonium into oxide for mixed oxide (MOX) fuel fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Glagovski, E.; Zakharkin, B. [A.A. Bochvar All-Russian Research Institute of Inorganic Materials, Russian Research Center, Moscow (Russian Federation); Kolotilov, Y. [Specialized State Design Institute, GSPI, Moscow (Russian Federation); Glagolenko, Y.; Skobtsov, A. [Mayak Production Association, Ozyorsk (Russian Federation); Zygmunt, S.; Mason, C.; Hahn, W.; Durrer, R. [Los Alamos National Lab., Nuclear Materials and Technology Div. NMT, Los Alamos, N.M. (United States); Thomas, S. [National Nuclear Security Administration, Washington DC (United States); Sicard, B.; Brossard, P.; Herlet, N. [CEA Marcoule 30 (France); Fraize, G.; Villa, A. [Cogema, 78 - Saint Quentin en Yvelines (France)

    2001-07-01

    Progress has been made in the Russian Federation towards the conversion of Russian weapons-grade plutonium (W-Pu) into plutonium oxide (PuO{sub 2}) suitable for further manufacture into mixed oxide (MOX) fuels. This program is funded both by French Commissariat at the Atomic Energy (CEA) and the US National Nuclear Security Administration (NNSA). The French program was started in the frame of the two cooperation agreements signed between Russian Federation and France in November 1992 concerning dismantling of nuclear weapons and the use of their nuclear materials for civilian purposes. The US program was started in 1998 in response to US proliferation concerns and the acknowledged international need to decrease available W-Pu. Russia has selected both the conversion process and the manufacturing site. This paper discusses the present state of development towards fulfilling this mission: the demonstration plant designed to process small amounts of Pu and validate all process stages and the industrial plant that will process up to 5 metric tons of Pu per year. (author)

  12. Preparation and characterization of amorphous SiO2 coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    Science.gov (United States)

    Xu, J. L.; Xiao, Q. F.; Mei, D. D.; Zhong, Z. C.; Tong, Y. X.; Zheng, Y. F.; Li, L.

    2017-03-01

    Amorphous SiO2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the "coral reef" like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 μm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO2 and a few amorphous Fe2O3 and Nd2O3. The amorphous SiO2 coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees.

  13. Ferroelectric switching of poly(vinylidene difluoride-trifluoroethylene) in metal-ferroelectric-semiconductor non-volatile memories with an amorphous oxide semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Gelinck, G. H., E-mail: Gerwin.Gelinck@tno.nl [Holst Centre/TNO, High Tech Campus 31, 5656 AE Eindhoven (Netherlands); Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Breemen, A. J. J. M. van; Cobb, B. [Holst Centre/TNO, High Tech Campus 31, 5656 AE Eindhoven (Netherlands)

    2015-03-02

    Ferroelectric polarization switching of poly(vinylidene difluoride-trifluoroethylene) is investigated in different thin-film device structures, ranging from simple capacitors to dual-gate thin-film transistors (TFT). Indium gallium zinc oxide, a high mobility amorphous oxide material, is used as semiconductor. We find that the ferroelectric can be polarized in both directions in the metal-ferroelectric-semiconductor (MFS) structure and in the dual-gate TFT under certain biasing conditions, but not in the single-gate thin-film transistors. These results disprove the common belief that MFS structures serve as a good model system for ferroelectric polarization switching in thin-film transistors.

  14. Preparation of amorphous aluminum oxide-hydroxide nanoparticles in amphiphilic silicone-based copolymer microemulsions.

    Science.gov (United States)

    Berkovich, Yana; Aserin, Abraham; Wachtel, Ellen; Garti, Nissim

    2002-01-01

    Organo-inorgano nanocomposites with colloidal dimensions have interesting optical, catalytic, and mechanical properties, particularly when such hybrids are reinforced with transition metal oxide nanoparticles. Nanoparticles with a mean size of 1.0-2.4 nm are obtained through hydrolysis of aluminum isopropoxide in the L(2) phase of amphiphilic (PDMS-POE) polydimethylsiloxane-polyoxyethylene Silwet L-7607-octanol/acetylacetone-water mixtures. The particle sizes are related weakly to the microemulsion composition: 0.8-1.2 nm for 20 wt% Silwet L-7607 and 2.0-2.4 nm for 50 wt% Silwet L-7607. Protection of the particles against aggregation is ensured through their confinement in the intraaggregate colloidal domains. Factors affecting the hydrolysis-condensation process of acetylacetone-complexed aluminum isopropoxide in copolymer-poor and copolymer-rich regions of PDMS-POE W/O microemulsions are studied by Fourier transform infrared spectroscopy, small angle X-ray scattering, and transmission electron microscopy. Prepared nanoparticulate dispersions possess long-term stability and form clear mixtures in different organic polar and nonpolar solvents.

  15. Tunneling phenomenon of amorphous indium-gallium-zinc-oxide thin film transistors for flexible display

    Science.gov (United States)

    Oh, Teresa

    2015-09-01

    It is an importance to understand the contact mechanism at interfaces between dielectric and channel materials to improve the performance of thin film transistors. Oxide semiconductor has proposed as promising candidate for transparent flexible application, whose development requires greater understand and control of their electron contacts. The performance of IGZO/SiOC TFTs depended on properties of SiOC as a gate insulator. SiOC exhibited a range of systematic interface electronic structure that can be understood at the atomic scale to provide a comprehensive feature of Schottky barrier and Ohmic contacts. The conduction of TFTs prepared on low polar SiOC was progressed by the tunneling behavior. The ambipolar transfer characteristics in tunneling transistors were done by a spontaneous potential barrier of SiOC such as the Schottky barrier (SB) in a short range and Ohmic contact in a long range. TFTs on SiOC with Poole-Frenkel contact as high SB operated under the threshold voltage, and then became free from the threshold voltage shift. However, the TFTs on high polar SiOC with Ohmic contact in a short range was also showed the unipolar characteristics by the trapping behavior as well as instability owing to the operation at high drain bias voltage over the threshold voltage. [Figure not available: see fulltext.

  16. Authigenic iron oxide formation in the estuarine mixing zone of the Yangtze River

    Science.gov (United States)

    Fan, D. J.; Neuser, R. D.; Sun, X. G.; Yang, Z. S.; Guo, Z. G.; Zhai, S. K.

    2008-02-01

    Estuaries are elementary geochemical fronts where river water and seawater mix. Within this mixing zone, iron and other non-conservative elements can undergo complex reactions to form new solid phases. In order to understand authigenic iron oxide formation in the Yangtze River Estuary, two onsite water-mixing sets of experiments were conducted, one by mixing variable amounts of unfiltered Yangtze River water with filtered East China Sea water of different salinity (set 1), the other by mixing variable amounts of filtered Yangtze River water with filtered East China Sea water of different salinity (set 2). In set 2, the minerals newly formed in the course of mixing were investigated by means of a scanning electron microscope fitted with an energy-dispersive X-ray analytical system. It was found that ferrihydrite and lepidocrocite were formed in these mixing experiments, coexisting in nearly equal amounts. These iron oxides appear as aggregated particles with a large grain-size range of several microns to more than 100 μm. The electrolytic properties of seawater played an important role in the formation of these authigenic iron oxides. Kaolinite and organic aggregates were also found in the experimentally mixed pre-filtered waters. Amounts of newly formed suspended matter (set 2) were one to three orders of magnitude lower than those of total suspended matter (TSM) (set 1). This implies that newly formed minerals represent only a very small proportion of TSM in the estuarine mixing zone of the Yangtze River.

  17. Degradation of organophosphorus pesticide parathion methyl on nanostructured titania-iron mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Henych, Jiří, E-mail: henych@iic.cas.cz [Department of Material Chemistry, Institute of Inorganic Chemistry AS CR v.v.i., 25068 Řež (Czech Republic); Štengl, Václav; Slušná, Michaela; Matys Grygar, Tomáš [Department of Material Chemistry, Institute of Inorganic Chemistry AS CR v.v.i., 25068 Řež (Czech Republic); Janoš, Pavel; Kuráň, Pavel; Štastný, Martin [Faculty of the Environment, J.E. Purkyně University, Králova Výšina 7, 400 96 Ústí nad Labem (Czech Republic)

    2015-07-30

    Highlights: • Ti–Fe mixed oxides were synthesized via low-temperature one-pot method. • Mixed oxides were used for degradation of parathion methyl. • Pure reference oxide samples showed no degradation ability. • Mixed oxides reached 70% degree of conversion of parathion methyl. - Abstract: Titania-iron mixed oxides with various Ti:Fe ratio were prepared by homogeneous hydrolysis of aqueous solutions of titanium(IV) oxysulphate and iron(III) sulphate with urea as a precipitating agent. The synthesized samples were characterized by X-ray diffraction, Raman and infrared spectroscopy, scanning and transmission electron microscopy, XRF analysis, specific surface area (BET) and porosity determination (BJH). These oxides were used for degradation of organophosporus pesticide parathion methyl. The highest degradation efficiency approaching <70% was found for the samples with Ti:Fe ratio 0.25:1 and 1:0.25. Contrary, parathion methyl was not degraded on the surfaces of pure oxides. In general, the highest degradation rate exhibited samples consisted of the iron or titanium oxide containing a moderate amount of the admixture. However, distinct correlations between the degradation rate and the sorbent composition were not identified.

  18. Mechanical properties of amorphous indium–gallium–zinc oxide thin films on compliant substrates for flexible optoelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, D.W., E-mail: DWM172@bham.ac.uk [University of Birmingham, School of Metallurgy and Materials, Edgbaston, Birmingham, B15 2TT (United Kingdom); Waddingham, R.; Flewitt, A.J. [University of Cambridge, Electrical Engineering Division, Department of Engineering, J J Thomson Avenue, Cambridge CB3 0FA,United Kingdom (United Kingdom); Sierros, K.A. [West Virginia University, Mechanical & Aerospace Engineering, Morgantown, WV 26506 (United States); Bowen, J. [Open University, Department of Engineering and Innovation, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Kukureka, S.N. [University of Birmingham, School of Metallurgy and Materials, Edgbaston, Birmingham, B15 2TT (United Kingdom)

    2015-11-02

    Amorphous indium–gallium–zinc-oxide (a-IGZO) thin films were deposited using RF magnetron sputtering on polyethylene naphthalate (PEN) and polyethylene terephthalate (PET) flexible substrates and their mechanical flexibility investigated using uniaxial tensile and buckling tests coupled with in situ optical microscopy. The uniaxial fragmentation test demonstrated that the crack onset strain of the IGZO/PEN was ~ 2.9%, which is slightly higher than that of IGZO/PET. Also, uniaxial tensile crack density analysis suggests that the saturated crack spacing of the film is strongly dependent on the mechanical properties of the underlying polymer substrate. Buckling test results suggest that the crack onset strain (equal to ~ 1.2%, of the IGZO/polymer samples flexed in compression to ~ 5.7 mm concave radius of curvature) is higher than that of the samples flexed with the film being in tension (convex bending) regardless whether the substrate is PEN or PET. The saturated crack density of a-IGZO film under the compression buckling mode is smaller than that of the film under the tensile buckling mode. This could be attributed to the fact that the tensile stress encouraged this crack formation originating from surface defects in the coating. It could also be due to the buckling delamination of the thin coating from the substrate at a lower strain than that at which a crack initiates during flexing in compression. These results provide useful information on the mechanical reliability of a-IGZO films for the development of flexible electronics. - Highlights: • Mechanical flexibility of IGZO thin films investigated by uniaxial tensile and buckling tests • Uniaxial fragmentation gives crack onset strain for IGZO/PEN of 2.9% (higher than for IGZO/PET.) • Saturated crack spacing strongly dependent on mechanical properties of polymer substrate • Crack onset strain in concave bending higher than in convex bending for both substrates.

  19. Control of differential strain during heating and cooling of mixed conducting metal oxide membranes

    Science.gov (United States)

    Carolan, Michael Francis

    2007-12-25

    Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side and a permeate side, which method comprises controlling the differential strain between the oxidant feed side and the permeate side by varying either or both of the oxygen partial pressure and the total gas pressure on either or both of the oxidant feed side and the permeate side of the membrane while changing the temperature of the membrane from a first temperature to a second temperature.

  20. Mixed conductivity in terbia-stabilized bismuth oxide

    NARCIS (Netherlands)

    Vinke, I.C.; Boukamp, B.A.; Vries, de K.J.; Burggraaf, A.J.

    1992-01-01

    The mixed conducting solid solution 0.75Bi2O3−0.25Tb4O7 (BT40) was studied by impedance techniques using ionically blocking electrodes. These measurements confirmed the p-type electronic conductivity suggested in literature. In air at temperatures between 600 and 900 K the ionic transference number

  1. Effect of nickel oxide seed layers on annealed-amorphous titanium oxide thin films prepared using plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng-Yang; Hong, Shao-Chyang [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Hwang, Fu-Tsai [Department of Electro-Optical Engineering, National United University, Miao-Li, 36003, Taiwan (China); Lai, Li-Wen [ITRI South, Industrial Technology Research Institute, Liujia, Tainan, 73445, Taiwan (China); Lin, Tan-Wei [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Liu, Day-Shan, E-mail: dsliu@sunws.nfu.edu.tw [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China)

    2011-10-31

    The effect of a nickel oxide (NiO{sub x}) seed layer on the crystallization and photocatalytic activity of the sequentially plasma-enhanced chemical vapor deposited amorphous titanium oxide (TiO{sub x}) thin film processed by a post-annealing process was investigated. The evolution of the crystalline structures, chemical bond configurations, and surface/cross-sectional morphologies of the annealed TiO{sub x} films, with and without a NiO{sub x} seed layer, was examined using X-ray diffractometer, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscope measurements. Thermo- and photo-induced hydrophilicity was determined by measuring the contact angle of water droplet. Photocatalytic activity after UV light irradiation was evaluated from the decolorization of a methylene blue solution. The crystallization temperature of the TiO{sub x} film, deposited on a NiO{sub x} seed layer, was found to be lower than that of a pure TiO{sub x} film, further improving the thermo- and photo-induced surface super-hydrophilicity. The TiO{sub x} film deposited onto the NiO{sub x} seed layer, resulting in significant cluster boundaries, showed a rough surface morphology and proved to alleviate the anatase crystal growth by increasing the post-annealing temperature, which yielded a more active surface area and prohibited the recombination of photogenerated electrons and holes. The photocatalytic activity of the NiO{sub x}/TiO{sub x} system with such a textured surface therefore was enhanced and optimized through an adequate post-annealing process.

  2. Microwave synthesis and electrochemical characterization of Mn/Ni mixed oxide for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Prasankumar, T.; Jose, Sujin P., E-mail: sujamystica@yahoo.com [School of Physics, Madurai Kamaraj University, Madurai-625021, Tamil Nadu (India); Ilangovan, R.; Venkatesh, K. S. [Department of Nanoscience and Technology, Alagappa University, Karaikudi-630003, Tamil Nadu (India)

    2015-06-24

    Nanostructured Mn/Ni mixed metal oxide was synthesized at ambient temperature by facile microwave irradiation technique. The crystal structure and surface morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. X-ray diffraction analysis confirmed the formation of Mn/Ni mixed oxide in rhombohedral phase and the grain size calculated was found to be 87 nm. The irregular spherical morphology of the prepared sample was exhibited by the SEM images. The characteristic peaks of FTIR at about 630 cm{sup −1} and 749 cm{sup −1} were attributed to the Mn-O and Ni-O stretching vibrations respectively. The presence of both Mn and Ni in the prepared sample was validated by the EDS spectra which in turn confirmed the formation of mixed oxide. Cyclic voltammetry and galvanostatic chargedischarge measurements were employed to investigate the electrochemical performance of the mixed oxide. The cyclic voltammetry curves demonstrated good capacitive performance of the sample in the potential window −0.2V to 0.9V. The charge discharge study revealed the suitability of the prepared mixed oxide for the fabrication of supercapacitor electrode.

  3. Preparation and Cycling Performance of Iron or Iron Oxide Containing Amorphous Al-Li Alloys as Electrodes

    Directory of Open Access Journals (Sweden)

    Franziska Thoss

    2014-12-01

    Full Text Available Crystalline phase transitions cause volume changes, which entails a fast destroying of the electrode. Non-crystalline states may avoid this circumstance. Herein we present structural and electrochemical investigations of pre-lithiated, amorphous Al39Li43Fe13Si5-powders, to be used as electrode material for Li-ion batteries. Powders of master alloys with the compositions Al39Li43Fe13Si5 and Al39Li43Fe13Si5 + 5 mass-% FeO were prepared via ball milling and achieved amorphous/nanocrystalline states after 56 and 21.6 h, respectively. In contrast to their Li-free amorphous pendant Al78Fe13Si9, both powders showed specific capacities of about 400 and 700 Ah/kgAl, respectively, after the third cycle.

  4. Physico-chemical studies of cuprous oxide (Cu{sub 2}O) nanoparticles coated on amorphous carbon nanotubes (α-CNTs)

    Energy Technology Data Exchange (ETDEWEB)

    Johan, Mohd Rafie, E-mail: mrafiej@um.edu.my; Meriam Suhaimy, Syazwan Hanani; Yusof, Yusliza, E-mail: yus_liza@siswa.um.edu.my

    2014-01-15

    Amorphous carbon nanotubes (α-CNTs) were synthesized by a chemical reaction between ferrocene and ammonium chloride at a temperature (∼250 °C) in an air furnace. As- synthesized α-CNTs were purified with deionized water and hydrochloric acid. A purified α-CNTs were hybridized with cuprous oxide nanoparticles (Cu{sub 2}O) through a simple chemical process. Morphology of the samples was analyzed with field emission scanning electron microscope (FESEM) and transmission electron microscopy (TEM). Fourier transform infrared (FTIR) spectra showed the attachment of acidic functional groups onto the surface of α-CNTs and the formation of hybridized α-CNTs-Cu{sub 2}O. Raman spectra reveal the amorphous nature of the carbon. X-ray diffraction (XRD) pattern confirmed the amorphous phase of the carbon and the formation of Cu{sub 2}O crystalline phase. The coating of Cu{sub 2}O was confirmed by FESEM, TEM, and XRD. Optical absorption of the samples has also been investigated and the quantum confinement effect was illustrated in the absorption spectra.

  5. Solvent-Free Selective Oxidation of Toluene with O2 Catalyzed by Metal Cation Modified LDHs and Mixed Oxides

    Directory of Open Access Journals (Sweden)

    Xiaoli Wang

    2016-01-01

    Full Text Available A series of metal cation modified layered-double hydroxides (LDHs and mixed oxides were prepared and used to be the selective oxidation of toluene with O2. The results revealed that the modified LDHs exhibited much higher catalytic performance than their parent LDH and the modified mixed oxides. Moreover, the metal cations were also found to play important roles in the catalytic performance and stabilities of modified catalysts. Under the optimal reaction conditions, the highest toluene conversion reached 8.7% with 97.5% of the selectivity to benzyldehyde; moreover, the catalytic performance remained after nine catalytic runs. In addition, the reaction probably involved a free-radical mechanism.

  6. Bias-induced migration of ionized donors in amorphous oxide semiconductor thin-film transistors with full bottom-gate and partial top-gate structures

    Directory of Open Access Journals (Sweden)

    Mallory Mativenga

    2012-09-01

    Full Text Available Bias-induced charge migration in amorphous oxide semiconductor thin-film transistors (TFTs confirmed by overshoots of mobility after bias stressing dual gated TFTs is presented. The overshoots in mobility are reversible and only occur in TFTs with a full bottom-gate (covers the whole channel and partial top-gate (covers only a portion of the channel, indicating a bias-induced uneven distribution of ionized donors: Ionized donors migrate towards the region of the channel that is located underneath the partial top-gate and the decrease in the density of ionized donors in the uncovered portion results in the reversible increase in mobility.

  7. Active oxygen by Ce–Pr mixed oxide nanoparticles outperform diesel soot combustion Pt catalysts

    OpenAIRE

    Guillén Hurtado, Noelia; Garcia-Garcia, Avelina; Bueno López, Agustín

    2015-01-01

    A Ce0.5Pr0.5O2 mixed oxide has been prepared with the highest surface area and smallest particle size ever reported (125 m2/g and 7 nm, respectively), also being the most active diesel soot combustion catalyst ever tested under realistic conditions if catalysts forming highly volatile species are ruled out. This Ce–Pr mixed oxide is even more active than a reference platinum-based commercial catalyst. This study provides an example of the efficient participation of oxygen species released by ...

  8. Storage capacity and oxygen mobility in mixed oxides from transition metals promoted by cerium

    Science.gov (United States)

    Perdomo, Camilo; Pérez, Alejandro; Molina, Rafael; Moreno, Sonia

    2016-10-01

    The oxygen mobility and storage capacity of Ce-Co/Cu-MgAl or Ce-MgAl mixed oxides, obtained by hydrotalcite precursors, were evaluated using Toluene-temperature-programmed-reaction, 18O2 isotopic exchange and O2-H2 titration. The presence of oxygen vacancies-related species was evaluated by means of Electron Paramagnetic Resonance. A correlation was found between the studied properties and the catalytic activity of the oxides in total oxidation processes. It was evidenced that catalytic activity depends on two related processes: the facility with which the solid can be reduced and its ability to regenerate itself in the presence of molecular oxygen in the gas phase. These processes are enhanced by Cu-Co cooperative effect in the mixed oxides. Additionally, the incorporation of Ce in the Co-Cu catalysts improved their oxygen transport properties.

  9. Visibly transparent and radiopaque inorganic organic composites from flame-made mixed-oxide fillers

    Energy Technology Data Exchange (ETDEWEB)

    Maedler, Lutz [University of California, Los Angeles, Department of Chemical Engineering (United States)], E-mail: lutz@seas.ucla.edu; Krumeich, Frank [Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences (Switzerland); Burtscher, Peter; Moszner, Norbert [Ivoclar Vivadent AG (Liechtenstein)

    2006-08-15

    Radiopaque composites have been produced from flame-made ytterbium/silica mixed oxide within a crosslinked methacrylate resin matrix. The refractive index of the filler powder increased with ytterbium oxide loading. A high transparency was achieved for a matching refractive index of the filler powder and the polymer in comparison to commercial materials with 52 wt% ceramic filling. It was demonstrated that powder homogeneity with regard to particle morphology and distribution of the individual metal atoms is essential to obtain a highly transparent composite. In contrast, segregation of crystalline single-oxide phases drastically decreased the composite transparency despite similar specific surface areas, refractive indices and overall composition. The superior physical strength, transparency and radiopacity compared to composites made from conventional silica based-fillers makes the flame-made mixed-oxide fillers especially attractive for dental restoration materials.

  10. Amorphous nanophotonics

    CERN Document Server

    Scharf, Toralf

    2013-01-01

    This book represents the first comprehensive overview over amorphous nano-optical and nano-photonic systems. Nanophotonics is a burgeoning branch of optics that enables many applications by steering the mould of light on length scales smaller than the wavelength with devoted nanostructures. Amorphous nanophotonics exploits self-organization mechanisms based on bottom-up approaches to fabricate nanooptical systems. The resulting structures presented in the book are characterized by a deterministic unit cell with tailored geometries; but their spatial arrangement is not controlled. Instead of periodic, the structures appear either amorphous or random. The aim of this book is to discuss all aspects related to observable effects in amorphous nanophotonic material and aspects related to their design, fabrication, characterization and integration into applications. The book has an interdisciplinary nature with contributions from scientists in physics, chemistry and materials sciences and sheds light on the topic fr...

  11. Magnetic behavior of Mg-Al-Zn-Fe mixed oxides from precursors layered double hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, M.I., E-mail: marcosivanoliva@gmail.com [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, M. Allende y H. de la Torre Ciudad Universitaria, 5000 Cordoba (Argentina); IFFAM AF (CONICET - FaMAF UNC), M. Allende y H. de la Torre Ciudad Universitaria, 5000 Cordoba (Argentina); Heredia, A. [CITeQ - Facultad R. Cordoba, Universidad Tecnologica Nacional Maestro Lopez esq. Cruz Roja Argentina, CP 5016 Cordoba (Argentina); Zandalazini, C.I. [Centro Laser de Ciencias Moleculares. INFIQC-FCQ-Grupo de Ciencia de Materiales-FaMAF-Universidad Nacional de Cordoba, Ciudad Universitaria, CP5000 Cordoba, Argentina CONICET (Argentina); Crivello, M. [CITeQ - Facultad R. Cordoba, Universidad Tecnologica Nacional Maestro Lopez esq. Cruz Roja Argentina, CP 5016 Cordoba (Argentina); Corchero, E. [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, M. Allende y H. de la Torre Ciudad Universitaria, 5000 Cordoba (Argentina)

    2012-08-15

    Mixed oxides of Mg-Al-Zn-Fe were obtained by calcination of layered double hydroxides (LDH) prepared by coprecipitation reaction with hydrothermal treatment. The structural characterization of precursors and oxides was carried out by X rays diffraction, showing increases of ZnO phase with the increase of the zinc content. Magnetic behavior was studied by vibrating sample magnetometer (VSM) and by a superconducting quantum interference device (SQUID) showing both paramagnetic and super paramagnetic behavior depending on both particles size and composition.

  12. Ni–Ta–O mixed oxide catalysts for the low temperature oxidative dehydrogenation of ethane to ethylene

    KAUST Repository

    Zhu, Haibo

    2015-09-01

    The "wet" sol-gel and "dry" solid-state methods were used to prepare Ni-Ta-O mixed oxide catalysts. The resulting Ni-Ta oxides exhibit high activity and selectivity for the low temperature oxidative dehydrogenation of ethane to ethylene. The Ta/(Ni + Ta) atomic ratios (varying from 0 to 0.11 in "wet" sol-gel method, and from 0 to 0.20 in "dry" solid-state method) as well as the preparation methods used in the synthesis, play important roles in controlling catalyst structure, activity, selectivity and stability in the oxidative dehydrogenation of ethane. Electron microscopy characterizations (TEM, EELS mapping, and HAADF-STEM) clearly demonstrate that the Ta atoms are inserted into NiO crystal lattice, resulting in the formation of a new Ni-Ta oxide solid solution. More Ta atoms are found to be located at the lattice sites of crystal surface in sol-gel catalyst. While, a small amount of thin layer of Ta2O5 clusters are detected in solid-state catalyst. Further characterization by XRD, N2 adsorption, SEM, H2-TPR, XPS, and Raman techniques reveal different properties of these two Ni-Ta oxides. Due to the different properties of the Ni-Ta oxide catalysts prepared by two distinct approaches, they exhibit different catalytic behaviors in the ethane oxidative dehydrogenation reaction at low temperature. Thus, the catalytic performance of Ni-Ta-O mixed oxide catalysts can be systematically modified and tuned by selecting a suitable synthesis method, and then varying the Ta content. ©2015 Elsevier Inc. All rights reserved.

  13. Comparative study of structural, optical and impedance measurements on V{sub 2}O{sub 5} and V-Ce mixed oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Malini, D. Rachel [Department of Physics, The American College, Madurai-625 012 (India); Sanjeeviraja, C., E-mail: sanjeeviraja@rediffmail.com [Department of Physic, Alagappa Chettiar College of Engg. & Tech., Karaikudi-630 004 (India)

    2015-06-24

    Vanadium pentoxide (V{sub 2}O{sub 5}) and Vanadium-Cerium mixed oxide thin films at different molar ratios of V{sub 2}O{sub 5} and CeO{sub 2} have been deposited at 200 W rf power by rf planar magnetron sputtering in pure argon atmosphere. The structural and optical properties were studied by taking X-ray diffraction and transmittance and absorption spectra respectively. The amorphous thin films show an increase in transmittance and optical bandgap with increase in CeO{sub 2} content in as-prepared thin films. The impedance measurements for as-deposited thin films show an increase in electrical conductivity with increase in CeO{sub 2} material.

  14. Transport processes in mixed conducting oxides: combining time domain experiments and frequency domain analysis

    NARCIS (Netherlands)

    Boukamp, Bernard A.; Otter, den Matthijs W.; Bouwmeester, Henny J.M.

    2004-01-01

    The conductivity relaxation (CR) method is often used for measuring the surface transfer rate, Ktr, and the bulk diffusion coefficient, $$\\tilde{D},$$ for oxygen transport in mixed conducting oxides (MIECs). The time domain analysis of the obtained CR response is rather complex and is based on lsquo

  15. A study of oxygen transport in mixed conducting oxides using isotopic exchange and conductivity relaxation

    NARCIS (Netherlands)

    Otter, den Matthijs Willem

    2000-01-01

    Mixed conducting oxygen ion conductors can be applied as membranes for the separation of oxygen from air, as electrodes for both oxygen pumps and solid oxide fuel cells. In these applications, oxygen molecules dissociate on the surface of the material. The atomic oxygen species pick up two electrons

  16. Nickel/magnesium-lanthanum mixed oxide catalyst in the Kumada-coupling.

    Science.gov (United States)

    Kiss, Arpád; Hell, Zoltán; Bálint, Mária

    2010-01-21

    A new, heterogeneous, magnesium-lanthanum mixed oxide solid base-supported nickel(ii) catalyst was developed. The catalyst was used successfully in the Kumada coupling of aryl halides, especially aryl bromides. The optimal reaction conditions of the coupling were determined.

  17. 78 FR 9431 - Shaw AREVA MOX Services, LLC (Mixed Oxide Fuel Fabrication Facility); Order Approving Indirect...

    Science.gov (United States)

    2013-02-08

    ... COMMISSION [NRC-2011-0081; Docket No. 70-3098; Construction Authorization No. CAMOX-001] Shaw AREVA MOX... Construction Authorization I Shaw AREVA MOX Services, LLC (MOX Services) holds Construction ] Authorization (CA) CAMOX-001 for construction of a Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) at the...

  18. 76 FR 22735 - Shaw AREVA MOX Services, Mixed Oxide Fuel Fabrication Facility; License Amendment Request, Notice...

    Science.gov (United States)

    2011-04-22

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Shaw AREVA MOX Services, Mixed Oxide Fuel Fabrication Facility; License Amendment Request, Notice.... Introduction The NRC has received, by letter dated February 8, 2011, an amendment request from Shaw AREVA...

  19. Homogeneous double-layer amorphous Si-doped indium oxide thin-film transistors for control of turn-on voltage

    Science.gov (United States)

    Kizu, Takio; Aikawa, Shinya; Nabatame, Toshihide; Fujiwara, Akihiko; Ito, Kazuhiro; Takahashi, Makoto; Tsukagoshi, Kazuhito

    2016-07-01

    We fabricated homogeneous double-layer amorphous Si-doped indium oxide (ISO) thin-film transistors (TFTs) with an insulating ISO cap layer on top of a semiconducting ISO bottom channel layer. The homogeneously stacked ISO TFT exhibited high mobility (19.6 cm2/V s) and normally-off characteristics after annealing in air. It exhibited normally-off characteristics because the ISO insulator suppressed oxygen desorption, which suppressed the formation of oxygen vacancies (VO) in the semiconducting ISO. Furthermore, we investigated the recovery of the double-layer ISO TFT, after a large negative shift in turn-on voltage caused by hydrogen annealing, by treating it with annealing in ozone. The recovery in turn-on voltage indicates that the dense VO in the semiconducting ISO can be partially filled through the insulator ISO. Controlling molecule penetration in the homogeneous double layer is useful for adjusting the properties of TFTs in advanced oxide electronics.

  20. Photo-induced low temperature synthesis of nanocrystalline UO2, ThO2 and mixed UO2-ThO2 oxides

    Science.gov (United States)

    Pavelková, Tereza; Čuba, Václav; Šebesta, Ferdinand

    2013-11-01

    Photochemically induced preparation of nanocrystalline uranium and/or thorium oxides is based on UV radiation induced formation of amorphous solid precursor in aqueous solutions containing uranium and/or thorium nitrate and ammonium formate. Subsequent heat treatment under various atmospheres leads to formation of nanocrystalline UO2, ThO2 or UO2-ThO2 solid solution at minimum temperatures in the interval 300-550 °C. The materials consist of nanoparticles from 3 to 15 nm in diameter and with narrow size distribution. The initial solutions contain soluble salts of respective metals and OH radical scavenger (ammonium formate) satisfying the "CHON principle". Solutions may be used without further adjustment (e.g. saturation by inert gases or adjusting pH). Photo-induced precipitation proceeds at room temperature and does not require strict control of reaction conditions (pH, temperature). Due to negligible amounts of carbon in solid precursor formed from any solution, it is possible to prepare crystalline nanomaterials containing U(IV) oxide from solid precursors directly via heat treatment in Ar + H2 atmosphere without pre-calcination in air. Mild heat treatment (450-550 °C) results in formation of oxides with well-developed nanocrystals. In the case of mixed oxides, high level of interaction of both components was observed, resulting in the formation of solid solution U0.56Th0.44O2 at 300 °C or higher.

  1. Electrospun mixed oxide photocatalysts to decompose dyes in water

    Science.gov (United States)

    Divya, Sherlyn

    In this work, four catalysts have been studied for their photocatalytic efficiency by testing each with methylene blue dye solution. Three catalysts were synthesized by the electrospinning method and then compared with the fourth commercially available catalyst for their photocatalytic activity. The basic metal oxide studied was titanium dioxide. Nanocomposite mats of pure titania, copper doped titania and copper doped degussa P25 titania, were synthesized using the electrospinning method. The pure titania and copper doped titania nanocomposites possessed the anatase phase which was obtained by annealing the as-spun nanocomposites at 4500C. All the catalysts were analyzed for their photocatalytic activity both under ultra-violet light and under visible light. The aim of this work was to synthesize titania photocatalysts, demonstrate their photocatalytic activity with methylene blue solution under UV-light and visible light and compare their activities with the commercial titanium dioxide (degussa P25). It is important to synthesize visible light active photocatalysts as these could be activated under a wide spectrum of natural sunlight unlike the degussa titanium dioxide. Doping was incorporated in order to narrow the band gap energy of the photocatalyst for achieving higher efficiency especially under visible light irradiation. The morphology and size of the synthesized photocatalysts were studied by characterizing them with Scanning Electron Microscopy, Energy Dispersive X-Ray Spectroscopy, Transmission Electron Microscopy and X-Ray Diffraction. The photocatalytic activity tests were carried out using UV-Vis Spectroscopy. It was found that the electrospun pure titania and copper doped titania fibers were activated under the visible light spectrum unlike the degussa titanium dioxide. The copper doped titania provided to be the most efficient photocatalyst under visible light radiation and the importance of this finding can be extended for treating industrial

  2. Synthesis of Coral-Like Tantalum Oxide Films via Anodization in Mixed Organic-Inorganic Electrolytes

    Science.gov (United States)

    Yu, Hongbin; Zhu, Suiyi; Yang, Xia; Wang, Xinhong; Sun, Hongwei; Huo, Mingxin

    2013-01-01

    We report a simple method to fabricate nano-porous tantalum oxide films via anodization with Ta foils as the anode at room temperature. A mixture of ethylene glycol, phosphoric acid, NH4F and H2O was used as the electrolyte where the nano-porous tantalum oxide could be synthesized by anodizing a tantalum foil for 1 h at 20 V in a two–electrode configuration. The as-prepared porous film exhibited a continuous, uniform and coral-like morphology. The diameters of pores ranged from 30 nm to 50 nm. The pores interlaced each other and the depth was about 150 nm. After calcination, the as-synthesized amorphous tantalum oxide could be crystallized to the orthorhombic crystal system. As observed in photocatalytic experiments, the coral-like tantalum oxide exhibited a higher photocatalytic activity for the degradation of phenol than that with a compact surface morphology, and the elimination rate of phenol increased by 66.7%. PMID:23799106

  3. Synthesis of coral-like tantalum oxide films via anodization in mixed organic-inorganic electrolytes.

    Directory of Open Access Journals (Sweden)

    Hongbin Yu

    Full Text Available We report a simple method to fabricate nano-porous tantalum oxide films via anodization with Ta foils as the anode at room temperature. A mixture of ethylene glycol, phosphoric acid, NH4F and H2O was used as the electrolyte where the nano-porous tantalum oxide could be synthesized by anodizing a tantalum foil for 1 h at 20 V in a two-electrode configuration. The as-prepared porous film exhibited a continuous, uniform and coral-like morphology. The diameters of pores ranged from 30 nm to 50 nm. The pores interlaced each other and the depth was about 150 nm. After calcination, the as-synthesized amorphous tantalum oxide could be crystallized to the orthorhombic crystal system. As observed in photocatalytic experiments, the coral-like tantalum oxide exhibited a higher photocatalytic activity for the degradation of phenol than that with a compact surface morphology, and the elimination rate of phenol increased by 66.7%.

  4. Partial oxidation of methane to syngas in a mixed-conducting oxygen permeable membrane reactor

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Mixed-conducting oxygen permeable membranes represent a class of novel ceramic membranes, which exhibit mixed oxygen ionic and electronic conductivities. At high temperatures, oxygen can permeate through the membrane from the high to low oxygen pressure side under an oxygen concentration gradient. Theoretically, the permselectivity of oxygen is 100%. Recently, a novel mixed-conducting membrane--Ba0.5Sr0.5Co0.8Fe0.2O3-δ has been developed, which shows extremely high oxygen permeability and promising stability. Furthermore, the reactor made with such membranes was successfully applied to the partial oxidation of methane to syngas reaction using air as the oxygen source, which realized the coupling of the separation of oxygen from air and the partial oxidation of membrane reaction in one process. At 850℃, methane conversion >88%, CO selectivity >97% and oxygen permeation rate of about 7.8 mL/(cm2.min) were obtained.

  5. Bimetallic bonding and mixed oxide formation in the Ga-Pd-CeO2 system

    Science.gov (United States)

    Skála, Tomáš; Tsud, Nataliya; Prince, Kevin C.; Matolín, Vladimír

    2011-08-01

    The interaction of gallium and palladium with 2 nm CeO2(111) layers grown on Cu(111) was studied by core level photoelectron spectroscopy and resonant valence band spectroscopy. Palladium alone interacted weakly with ceria layers. Gallium deposited on cerium dioxide formed a mixed Ga2O3-Ce2O3 oxide of 1:1 stoichiometry (cerium gallate CeGaO3), with both metals in the M3+ oxidation state. Increasing Ga coverages led to the formation of lower oxidation states, i.e., Ga1+ in Ga2O oxide and metallic Ga0. Palladium deposited onto this complex system interacted with gallium leading to a breakage of Ga-ceria bonds, a decrease of the oxidation state of gallium, and formation of a Ga-Pd intermetallic alloy in which all components (CeO2, CeGaO3, Ga2O, Ga-Pd, and Pd) are in equilibrium.

  6. Storage capacity and oxygen mobility in mixed oxides from transition metals promoted by cerium

    Energy Technology Data Exchange (ETDEWEB)

    Perdomo, Camilo [Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 45-03, Bogotá (Colombia); Pérez, Alejandro [Grupo de Investigación Fitoquímica (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá D.C (Colombia); Molina, Rafael [Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 45-03, Bogotá (Colombia); Moreno, Sonia, E-mail: smorenog@unal.edu.co [Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 45-03, Bogotá (Colombia)

    2016-10-15

    Highlights: • Ce addition to the catalysts improves the availability of oxygen in the materials. • Mixed oxide with Co and Cu exhibits the best oxygen transport properties. • Co presence improves O{sub 2} mobility in the catalysts. • The presence of Cu in the solids improves redox properties. - Abstract: The oxygen mobility and storage capacity of Ce-Co/Cu-MgAl or Ce–MgAl mixed oxides, obtained by hydrotalcite precursors, were evaluated using Toluene-temperature-programmed-reaction, {sup 18}O{sub 2} isotopic exchange and O{sub 2}-H{sub 2} titration. The presence of oxygen vacancies-related species was evaluated by means of Electron Paramagnetic Resonance. A correlation was found between the studied properties and the catalytic activity of the oxides in total oxidation processes. It was evidenced that catalytic activity depends on two related processes: the facility with which the solid can be reduced and its ability to regenerate itself in the presence of molecular oxygen in the gas phase. These processes are enhanced by Cu-Co cooperative effect in the mixed oxides. Additionally, the incorporation of Ce in the Co-Cu catalysts improved their oxygen transport properties.

  7. Influence of vanadium oxidation states on the performance of V-Mg-Al mixed-oxide catalysts for the oxidative dehydrogenation of propane

    Energy Technology Data Exchange (ETDEWEB)

    Schacht, L. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Ciencia de Materiales, Av. IPN s/n, Edificio 9, Col. Lindavista, 07738 Mexico D. F. (Mexico); Navarrete, J.; Schacht, P.; Ramirez, M. A., E-mail: pschacha@imp.m [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas No. 152, 07730 Mexico D. F. (Mexico)

    2010-07-01

    V-Mg-Al mixed-oxide catalysts for oxidative dehydrogenation of propane were prepared by thermal decomposition of Mg-Al-layered double hydroxides with vanadium interlayer doping. The obtained catalysts were tested for the oxidative dehydrogenation of propane, obtaining good results in catalytic activity (conversion 16.55 % and selectivity 99.97 %) Results indicated that catalytic performance of these materials depends on how vanadium is integrated in the layered structure, which is determined by the Mg/Al ratio. Vanadium interlayer doping modifies the oxidation state of vanadium and consequently catalytic properties. Surface properties were studied by X-ray photoelectron spectroscopic and diffuse reflectance, UV-visible spectroscopy, and temperature programmed reduction. The analyses provided information about the oxidation state, before and after the reaction. From these results, it is suggested that selectivity to propylene and catalytic activity depend mainly of vanadium oxidation state. (Author)

  8. Porous microspheres of manganese-cerium mixed oxides by a polyvinylpyrrolidone assisted solvothermal method

    Science.gov (United States)

    Schmit, F.; Bois, L.; Chiriac, R.; Toche, F.; Chassagneux, F.; Descorme, C.; Besson, M.; Khrouz, L.

    2017-04-01

    Mixed cerium manganese oxides were synthesized using a polyvinylpyrrolidone (PVP) assisted solvothermal method. Materials obtained after calcination at 400 °C were characterized by X-ray diffraction, scanning and transmission electron microscopies, electron paramagnetic resonance (EPR), Raman spectroscopy, thermal analysis and nitrogen adsorption/desorption isotherms. The influence of the synthesis parameters on the oxide structure, such as the Mn:Ce ratio or the amount of PVP, was discussed. Micrometric spheres of mixed Mn-Ce oxides, resulting from the aggregation of 100 nm porous snowflakes, were successfully synthesized. These snowflakes were formed from the aggregation of smaller oriented crystallites (size 4 nm). The hydrothermal stability of these materials was also investigated.

  9. Control of the optical properties of silicon and chromium mixed oxides deposited by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Vergara, L., E-mail: vergara@icmm.csic.e [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain); Galindo, R. Escobar [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain); Centro de Microanalisis de Materiales, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Martinez, R. [AIN, Centro de Ingenieria Avanzada de Superficies, 31191 Cordovilla, Pamplona (Spain); Sanchez, O. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain); Palacio, C. [Departamento de Fisica Aplicada, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Albella, J.M. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain)

    2011-03-31

    The development of mixed-oxide thin films allows obtaining materials with better properties than those of the different binary oxides, which makes them suitable for a great number of applications in different fields, such as tribology, optics or microelectronics. In this paper we investigate the deposition of mixed chromium and silicon oxides deposited by reactive magnetron sputtering with a view to use them as optical coatings with an adjustable refractive index. These films have been characterized by means of Rutherford backscattering spectrometry, Auger electron spectroscopy, X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy and spectroscopic ellipsometry so as to determine how the deposition conditions influence the characteristics of the material. We have found that the deposition parameter whose influence determines the properties of the films to a greater extent is the amount of oxygen in the reactive sputtering gas.

  10. Synergy of FexCe1−xO2 mixed oxides for N2O decomposition

    NARCIS (Netherlands)

    Perez-Alonso, F.J.; Melián-Cabrera, I.; López Granados, M.; Kapteijn, F.; Fierro, J.L.G.

    2006-01-01

    Fe–Ce mixed oxides prepared by coprecipitation showed considerable synergy in N2O decomposition when compared with pure metal oxide counterparts. The mixed system also displayed higher stability in reaction at high temperature. Through characterisation by XRD, XPS and TPR, the activity–stability imp

  11. Synergy of FexCe1-xO2 mixed oxides for N2O decomposition

    NARCIS (Netherlands)

    Perez-Alonso, FJ; Melian Cabrera, Ignacio; Granados, ML; Kapteijn, F; Fierro, JLG

    2006-01-01

    Fe-Ce mixed oxides prepared by coprecipitation showed considerable synergy in N2O decomposition when compared with pure metal oxide counterparts. The mixed system also displayed higher stability in reaction at high temperature. Through characterisation by XRD, XPS and TPR, the activity-stability imp

  12. Photo-oxidation of organic compounds in liquid low-level mixed wastes at the INEL

    Energy Technology Data Exchange (ETDEWEB)

    Gering, K.L.; Schwendiman, G.L.

    1996-08-01

    A bench-scale oxidation apparatus is implemented to study the effectiveness of using an artificial ultraviolet source, a 175-watt medium pressure mercury vapor lamp, to enhance the destruction of organic contaminants in water with chemical oxidants. The waste streams used in this study are samples or surrogates of mixed wastes at the Idaho National Engineering Laboratory. The contaminants that are investigated include methylene chloride, 1,1,1-trichlorethane, 1, 1-dichlororethane, acetone, 2-propanol, and ethylenediamine tetraacetic acid. We focus on H{sub 2}O{sub 2}-based oxidizers for our treatment scheme, which include the UV/H{sub 2}O{sub 2} system, the dark Fenton system (H{sub 2}O{sub 2}/Fe{sup 2+}), and the photo- assisted Fenton system (UV/H{sub 2}O{sub 2}/Fe{sup 3+}) is used in particular. Variables include concentration of the chemical oxidizer, concentration of the organic contaminant, and the elapsed reaction time. Results indicate that the photo-assisted Fenton system provides the best overall performance of the oxidizing systems listed above, where decreases in concentrations of methylene chloride, 1,1,1- trichloroethane, 1,1-dichlororethane, 2-propanol, and ethylenediamine tetraacetic acid were seen. However, UV-oxidation treatment provided no measurable benefit for a mixed waste containing acetone in the presence of 2-propanol.

  13. Synthesis methods and character of iron-based mixed-anion superconductor with suppression of the amorphous FeAs impurity phase

    Science.gov (United States)

    Fujioka, Masaya; Ozaki, Toshinori; Okazaki, Hiroyuki; Saleem, Denholme; Deguchi, Keita; Demura, Satoshi; Hara, Hiroshi; Watanabe, Tohru; Takeya, Hiroyuki; Yamaguchi, Takahide; Kumakura, Hiroaki; Takano, Yoshihiko

    2013-03-01

    To obtain the high superconducting properties of polycrystalline SmFeAsO1-xFx, we investigated the following three synthesis methods: a high pressure synthesis, a low temperature synthesis with gradual cooling and a metal added synthesis. Generally, polycrystalline SmFeAsO1-xFx is composed of superconducting grains and a little amorphous FeAs compounds. These areas randomly co-exist and amorphous areas are located between the superconducting grains. Therefore, we suggest that the superconducting current is prevented by the amorphous areas. In fact, although the single crystal of this material shows a large critical current density of 106 A/cm2, polycrystalline SmFeAsO1-xFx shows a significant depression of critical current density due to this grain boundary blocking effect. To obtain a high global critical current density, it is important to investigate how to remove the amorphous FeAs. It is found that the impurity phase of amorphous FeAs is decreased by using the above three synthesis methods.

  14. CexTi1-xO2 Mixed Oxides Supported CuO Catalyst for NO Reduction by CO

    Institute of Scientific and Technical Information of China (English)

    楼莉萍; 蒋晓原; 陈英旭; 吕光烈; 周仁贤; 郑小明

    2003-01-01

    CexTi1-xO2 mixed oxides of different mole ratios (x=0, 0.1, 0.2~0.9, 1.0) were prepared by co-precipitation of TiCl4 with Ce(NO3)3 and then loaded with different amounts of CuO. The effects of CuO on NO+CO reaction were investigated, and the structure and reductive properties of various CuO/CexTi1-xO2 were characterized by the methodologies of BET, TPR and XRD. The results show that different Ce/Ti mole ratios and calcination temperatures induce changes of structure and reductive properties of the CexTi1-xO2 mixed oxides. When x=0.1~0.5, amorphous CeTi2O6 phase mainly forms at 650 ℃ compared to the formation of CeTi2O6 which crystallizes at 800 ℃. When x>0.6, some TiO2 enters the CeO2 lattice and a CeO2-TiO2 solid solution is formed. The activity of 6%CuO/CexTi1-xO2 calcined at 650 ℃ is largely affected by the x values, which is the highest when x=0.3, 0.4 and 0.9. The NO conversion reaches 70% at a reaction temperature of 150 ℃. By comparison, the x values have little effect on the activity of 6%CuO/CexTi1-xO2 calcined at 800 ℃. There are strong interactions between CuO and CeTi2O6, I.e., formation of the CeTi2O6 phase shifts the CuO reduction peak temperature from 380 to 200 ℃, and CuO, in turn, shifts the CeTi2O6 reduction peak temperature from 600 to 300 ℃.

  15. Determination of mechanism for soot oxidation with NO on potassium supported Mg-Al hydrotalcite mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Su, Q.; Gao, X. [Institute of Internal Combustion Engine, Dalian University of Technology, Dalian (China); Li, Q.; Wang, Z.; Zhang, Z. [School of Chemistry and Chemical Engineering, University of Jinan, Jinan (China)

    2011-11-15

    Soot oxidation with NO (in the absence of gas phase O{sub 2}) on potassium-supported Mg-Al hydrotalcite mixed oxides (K/MgAlO) was studied using a temperature-programmed reaction and in situ FTIR techniques. Nitrite and the ketene group were identified as the reaction intermediates and thus a nitrite-ketene mechanism was proposed in which surface active oxygen on K sites of K/MgAlO is transferred to soot by NO through nitrites. In the absence of gas phase O{sub 2}, soot oxidation with NO at lower temperatures (below 450 C) is limited by the amount of active oxygen on the K sites. This kind of active oxygen is not reusable but can be replenished in the presence of gas phase O{sub 2}. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Oxidative dehydrogenation of isobutane over supported V–Mo mixed oxides

    Directory of Open Access Journals (Sweden)

    IOAN-CEZAR MARCU

    2010-08-01

    Full Text Available Vanadium–molybdenum oxides supported on Al2O3, CeO2 and TiO2 were prepared by a “wet” impregnation method, characterized using XRD, N2 adsorption, UV–Vis spectroscopy, electrical conductivity measurements and tested in the oxidative dehydrogenation of isobutane. The catalytic performance in the oxidative dehydrogenation of isobutane at 400–550 °C depended on the nature of support and on the content of VMoO species on the support. The catalysts supported on alumina were more active and selective than those supported on ceria and titania.

  17. Soft chemical control of the crystal and magnetic structure of a layered mixed valent manganite oxide sulfide

    Directory of Open Access Journals (Sweden)

    Jack N. Blandy

    2015-04-01

    Full Text Available Oxidative deintercalation of copper ions from the sulfide layers of the layered mixed-valent manganite oxide sulfide Sr2MnO2Cu1.5S2 results in control of the copper-vacancy modulated superstructure and the ordered arrangement of magnetic moments carried by the manganese ions. This soft chemistry enables control of the structures and properties of these complex materials which complement mixed-valent perovskite and perovskite-related transition metal oxides.

  18. Degradation of organophosphorus pesticide parathion methyl on nanostructured titania-iron mixed oxides

    Science.gov (United States)

    Henych, Jiří; Štengl, Václav; Slušná, Michaela; Matys Grygar, Tomáš; Janoš, Pavel; Kuráň, Pavel; Štastný, Martin

    2015-07-01

    Titania-iron mixed oxides with various Ti:Fe ratio were prepared by homogeneous hydrolysis of aqueous solutions of titanium(IV) oxysulphate and iron(III) sulphate with urea as a precipitating agent. The synthesized samples were characterized by X-ray diffraction, Raman and infrared spectroscopy, scanning and transmission electron microscopy, XRF analysis, specific surface area (BET) and porosity determination (BJH). These oxides were used for degradation of organophosporus pesticide parathion methyl. The highest degradation efficiency approaching degraded on the surfaces of pure oxides. In general, the highest degradation rate exhibited samples consisted of the iron or titanium oxide containing a moderate amount of the admixture. However, distinct correlations between the degradation rate and the sorbent composition were not identified.

  19. A hybrid water-splitting cycle using copper sulfate and mixed copper oxides

    Science.gov (United States)

    Schreiber, J. D.; Remick, R. J.; Foh, S. E.; Mazumder, M. M.

    1980-01-01

    The Institute of Gas Technology has derived and developed a hybrid thermochemical water-splitting cycle based on mixed copper oxides and copper sulfate. Similar to other metal oxide-metal sulfate cycles that use a metal oxide to 'concentrate' electrolytically produced sulfuric acid, this cycle offers the advantage of producing oxygen (to be vented) and sulfur dioxide (to be recycled) in separate steps, thereby eliminating the need of another step to separate these gases. The conceptual process flow-sheet efficiency of the cycle promises to exceed 50%. It has been completely demonstrated in the laboratory with recycled materials. Research in the electrochemical oxidation of sulfur dioxide to produce sulfuric acid and hydrogen performed at IGT indicates that the cell performance goals of 200 mA/sq cm at 0.5 V will be attainable using relatively inexpensive electrode materials.

  20. Selection of mixed conducting oxides for oxidative dehydrogenation of propane with pulse experiments

    NARCIS (Netherlands)

    Crapanzano, Salvatore; Babich, Igor V.; Lefferts, Leon

    2011-01-01

    In this study, propane pulse experiments at 550 °C are used as a method to select suitable oxides for further operation of catalytic dense membrane reactor (CDMR) for oxidative dehydrogenation of propane. Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF), La2NiO4+δ (LN) and PrBaCo2O5+δ (PBC) powders were used as mode

  1. Self-aligned top-gate amorphous indium zinc oxide thin-film transistors exceeding low-temperature poly-Si transistor performance.

    Science.gov (United States)

    Park, Jae Chul; Lee, Ho-Nyeon; Im, Seongil

    2013-08-14

    Thin-film transistor (TFT) is a key component of active-matrix flat-panel displays (AMFPDs). These days, the low-temperature poly silicon (LTPS) TFTs are to match with advanced AMFPDs such as the active matrix organic light-emitting diode (AMOLED) display, because of their high mobility for fast pixel switching. However, the manufacturing process of LTPS TFT is quite complicated, costly, and scale-limited. Amorphous oxide semiconductor (AOS) TFT technology is another candidate, which is as simple as that of conventioanl amorphous (a)-Si TFTs in fabrication but provides much superior device performances to those of a-Si TFTs. Hence, various AOSs have been compared with LTPS for active channel layer of the advanced TFTs, but have always been found to be relatively inferior to LTPS. In the present work, we clear the persistent inferiority, innovating the device performaces of a-IZO TFT by adopting a self-aligned coplanar top-gate structure and modifying the surface of a-IZO material. Herein, we demonstrate a high-performance simple-processed a-IZO TFT with mobility of ∼157 cm(2) V(-1) s(-1), SS of ∼190 mV dec(-1), and good bias/photostabilities, which overall surpass the performances of high-cost LTPS TFTs.

  2. XPS study of surface absorbed oxygen of ABO3 mixed oxides

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xin; YANG Qiuhua; CUI Jinjin

    2008-01-01

    Perovskite-type complex oxides ABO3 (A=Sr, La;B=Mn, Fe, Co) were prepared by citric acid method. The degradation of water-solubilized dyes was carried out using the mixed oxides as photocatalyst. The surface absorbed oxygen was analyzed using X-ray photoelectron spectroscopy (XPS). The results indicated that there was a relationship between the photocatalytic activity and the content of the surface absorbed oxygen. The higher the content of the surface absorbed oxygen was, the better the performance of the photocatalyst.

  3. Bi–Mn mixed metal organic oxide: A novel 3d-6p mixed metal coordination network

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Fa-Nian, E-mail: fshi@ua.pt [School of Science, Shenyang University of Technology, 110870 Shenyang (China); Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Rosa Silva, Ana [Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Bian, Liang [Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, Xinjiang (China)

    2015-05-15

    A new terminology of metal organic oxide (MOO) was given a definition as a type of coordination polymers which possess the feature of inorganic connectivity between metals and the direct bonded atoms and show 1D, 2D or 3D inorganic sub-networks. One such compound was shown as an example. A 3d-6p (Mn–Bi. Named MOOMnBi) mixed metals coordination network has been synthesized via hydrothermal method. The new compound with the molecular formula of [MnBi{sub 2}O(1,3,5-BTC){sub 2}]{sub n} (1,3,5-BTC stands for benzene-1,3,5-tricarboxylate) was characterized via single crystal X-ray diffraction technique that revealed a very interesting 3-dimensional (3D) framework with Bi{sub 4}O{sub 2}(COO){sub 12} clusters which are further connected to Mn(COO){sub 6} fragments into a 2D MOO. The topology study indicates an unprecedented topological type with the net point group of (4{sup 13}.6{sup 2})(4{sup 13}.6{sup 8})(4{sup 16}.6{sup 5})(4{sup 18}.6{sup 10})(4{sup 22}.6{sup 14})(4{sup 3}) corresponding to 3,6,7,7,8,9-c hexa-nodal net. MOOMnBi shows catalytic activity in the synthesis of (E)-α,β-unsaturated ketones. - Graphical abstract: This metal organic framework (MOF) is the essence of a 2D metal organic oxide (MOO). - Highlights: • New concept of metal organic oxide (MOO) was defined and made difference from metal organic framework. • New MOO of MOOMnBi was synthesized by hydrothermal method. • Crystal structure of MOOMnBi was determined by single crystal X-ray analysis. • The catalytic activity of MOOMnBi was studied showing reusable after 2 cycles.

  4. Experimental approach and atomistic simulations to investigate the radiation tolerance of complex oxides: Application to the amorphization of pyrochlores

    Science.gov (United States)

    Sattonnay, G.; Thomé, L.; Sellami, N.; Monnet, I.; Grygiel, C.; Legros, C.; Tetot, R.

    2014-05-01

    Both experimental approach and atomistic simulations are performed in order to investigate the influence of the composition of pyrochlores on their radiation tolerance. Therefore, Gd2Ti2O7 and Gd2Zr2O7 were irradiated with 4 MeV Au and 92 MeV Xe ions in order to study the structural changes induced by low and high-energy irradiations. XRD results show that, for both irradiations, the structural modifications are strongly dependent on the sample composition: Gd2Ti2O7 is readily amorphized, whereas Gd2Zr2O7 is transformed into a radiation-resistant anion-deficient fluorite structure. Using atomistic simulations with new interatomic potentials derived from the SMTB-Q model, the lattice properties and the defect formation energies were calculated in Gd2Ti2O7 and Gd2Zr2O7. Calculations show that titanates have a more covalent character than zirconates. Moreover, in Gd2Ti2O7 the formation of cation antisite defects leads to strong local distortions around Ti-defects and to a decrease of the Ti coordination number, which are not observed in Gd2Zr2O7. Thus, the radiation resistance is related to the defect stability: the accumulation of structural distortions around Ti-defects could drive the Gd2Ti2O7 amorphization induced by irradiation.

  5. Sol-gel synthesis and characterization of mesoporous iron-titanium mixed oxide for catalytic application

    Energy Technology Data Exchange (ETDEWEB)

    Parida, K.M., E-mail: paridakulamani@yahoo.com [Colloids and Materials Chemistry Department, Institute of Minerals and Materials Technology, Bhubaneswar 751013, Orissa (India); Pradhan, Gajendra Kumar [Colloids and Materials Chemistry Department, Institute of Minerals and Materials Technology, Bhubaneswar 751013, Orissa (India)

    2010-10-01

    A mixed phase of mesoporous iron-titanium mixed oxide (ITMO) has been successfully synthesized by simple sol-gel technique by taking iron (II) sulphate and Ti-isopropoxide as the precursors and sodium dodecyl sulphate (SDS) as the surfactant. The prepared catalysts were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), diffuse reflectance UV-vis spectra (UV-vis DRS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic absorption spectroscopy (AAS), N{sub 2} adsorption-desorptions isotherm, temperature programmed desorption (TPD) and gas chromatography (GC). Low-angle XRD (LAXRD) as well as surface area analysis confirms the mesoporosity nature of the catalysts. The phase and crystallinity were revealed by XRD study. The crystallinity of the catalysts increased with increase in calcinations temperature. Catalysts screening were performed for oxidation of cyclohexane to cyclohexanol and cyclohexanone.

  6. Direct electrochemical production of Ti-10W alloys from mixed oxide preform precursors

    Energy Technology Data Exchange (ETDEWEB)

    Dring, K. [Imperial College London, Department of Materials, London SW7 2AZ (United Kingdom)]. E-mail: kevin.dring@imperial.ac.uk; Bhagat, R. [Imperial College London, Department of Materials, London SW7 2AZ (United Kingdom); Jackson, M. [Imperial College London, Department of Materials, London SW7 2AZ (United Kingdom); Dashwood, R. [Imperial College London, Department of Materials, London SW7 2AZ (United Kingdom); Inman, D. [Imperial College London, Department of Materials, London SW7 2AZ (United Kingdom)

    2006-08-10

    Ti-W alloys were produced via electrochemical reduction of TiO{sub 2}-WO{sub 3} mixed oxide preforms in a pre-electrolysed, molten calcium chloride electrolyte at 1173 K. Electrolysis voltages of 1500-3200 mV were applied for times ranging from 6 to 24 h across a graphite anode and Grade 2 commercial purity (CP) titanium cathodic current collector, which supported the ceramic precursors. Low-oxygen, homogeneous material was subsequently water washed and characterized to determine the level of residual species remaining from the reduction process, such as Cl and Ca. The microstructure (porosity and microchemistry) of the reduced material and microstructural examination of the mixed oxide feedstock (particle morphology, size and chemistry) were characterized using a field emission gun scanning electron microscope (FEG-SEM) with backscattered electron imaging (BSE) and X-ray energy dispersive spectrometry (X-EDS)

  7. Synthesis of mesoporous cerium-zirconium mixed oxides by hydrothermal templating method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Mesoporous cerium-zirconium mixed oxides were prepared by hydrothermal method using cetyl trimethyl ammonium bromide (CTAB) as template.The effects of amount of template,pH value of solution and hydrothermal temperature on mesostructure of samples were systematically investigated.The final products were characterized by XRD,TEM,FT-IR,and BET.The results indicate that all the cerium-zirconium mixed oxides present a meso-structure.At molar ratio of n(CTAB)/n((Ce)+(Zr))=0.15,pH value of 9,and hydrothermal temperature of 120 ℃,the samples obtained possess a specific surface area of 207.9 m2/g with pore diameter of 3.70 nm and pore volume of 0.19 cm3/g.

  8. Oxidation kinetic analysis of a mixed uranium dicarbide and graphite compound

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, M., E-mail: mickael.marchand@cea.fr [Commissariat à l’Energie Atomique et aux énergies alternatives, CEA, CADARACHE, DEN, DEC, SPUA/Laboratoire des Combustibles Uranium, 13108 Saint Paul-lez-Durance Cedex (France); Fiquet, O., E-mail: olivier.fiquet@cea.fr [Commissariat à l’Energie Atomique et aux énergies alternatives, CEA, CADARACHE, DEN, DEC, SPUA/Laboratoire des Combustibles Uranium, 13108 Saint Paul-lez-Durance Cedex (France); Brothier, M. [Commissariat à l’Energie Atomique et aux énergies alternatives, CEA, CADARACHE, DEN, DEC, SPUA/Laboratoire des Combustibles Uranium, 13108 Saint Paul-lez-Durance Cedex (France)

    2013-06-15

    Highlights: ► Experimental study of uranium carbides and graphite powder oxidations. ► Single rate limiting step identification by extensive kinetic analysis. ► Pseudo-steady-state validation during chemical conversion. ► Combination of TGA, TDA, XRD and gas phase chromatography results. -- Abstract: The oxidation of a mixed uranium dicarbide and graphite powder has been investigated by simultaneous thermal gravimetric (TGA) and differential thermal (DTA) analyses coupled with gas phase chromatography. For isothermal oxidation conditions with temperatures below 330 °C, only the UC{sub 2} chemical phase is progressively oxidised into U{sub 3}O{sub 8} oxides. Parabolic weight gain curves as a function of oxidation over time were obtained. A detailed kinetic study is proposed to establish a pseudo-steady-state during the oxidation process. Using an experimental method based on the sudden temperature increases, a single rate-limiting step has been validated and then modelled by a 3D diffusion law. An apparent activation energy calculated from the Arrhenius representation has been evaluated at −35 kJ/mol, thus describing the diffusion of oxygen through the oxide layer.

  9. Transparent multi-level-cell nonvolatile memory with dual-gate amorphous indium-gallium-zinc oxide thin-film transistors

    Science.gov (United States)

    Ahn, Min-Ju; Cho, Won-Ju

    2016-12-01

    A fully transparent, nonvolatile charge-trap-flash memory that is based on amorphous indium-gallium-zinc-oxide thin film transistors was fabricated with a dual gate (DG) structure for a multi-level-cell (MLC) application. A large memory window was obtained at a low program voltage in the DG read-operation mode owing to the capacitive-coupling effect between the front gate and the back gate. The MLC was implemented by using the DG read-operation mode with four highly stable levels, as follows: A large threshold-voltage difference >3.5 V per level was obtained under a low program voltage <14 V with a fast program speed of 1 ms. In contrast, the conventional single gate operation mode was incompatible with the MLC application.

  10. Low-frequency noise in amorphous indium-gallium-zinc oxide thin-film transistors with an inverse staggered structure and an SiO2 gate insulator

    Science.gov (United States)

    Park, Jae Chul; Lee, Ho-Nyeon

    2014-05-01

    We report the low-frequency noise (LFN) behavior of amorphous indium-gallium-zinc oxide thin-film transistors with an inverse staggered structure and an SiO2 gate insulator. The normalized noise power spectral density depended on channel length, L, with the form 1/L2, and on the gate bias voltage, VG, and threshold voltage, VTH, with the form 1/(VG - VTH)β where 1.5 < β < 2.1. In addition, the scattering constant α was less than 105 Ω. These results suggest that the contact resistance has a significant role in the LFN behavior and the charge-carrier density fluctuation is the dominant origin of LFN.

  11. Back-channel-etch amorphous indium-gallium-zinc oxide thin-film transistors: The impact of source/drain metal etch and final passivation

    Science.gov (United States)

    Nag, Manoj; Bhoolokam, Ajay; Steudel, Soeren; Chasin, Adrian; Myny, Kris; Maas, Joris; Groeseneken, Guido; Heremans, Paul

    2014-11-01

    We report on the impact of source/drain (S/D) metal (molybdenum) etch and the final passivation (SiO2) layer on the bias-stress stability of back-channel-etch (BCE) configuration based amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). It is observed that the BCE configurations TFTs suffer poor bias-stability in comparison to etch-stop-layer (ESL) TFTs. By analysis with transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), as well as by a comparative analysis of contacts formed by other metals, we infer that this poor bias-stability for BCE transistors having Mo S/D contacts is associated with contamination of the back channel interface, which occurs by Mo-containing deposits on the back channel during the final plasma process of the physical vapor deposited SiO2 passivation.

  12. Study on interface characteristics in amorphous indium-gallium-zinc oxide thin-film transistors by using low-frequency noise and temperature dependent mobility measurements

    Science.gov (United States)

    Wu, Chenfei; Huang, Xiaoming; Lu, Hai; Yu, Guang; Ren, Fangfang; Chen, Dunjun; Zhang, Rong; Zheng, Youdou

    2015-07-01

    In this work, the interface properties of amorphous indium-gallium-zinc oxide thin film transistors annealed at different temperatures ranging from 150 to 250 °C are studied by temperature dependent mobility and low-frequency noise (LFN) characterizations. The dominant scattering mechanism for carrier transport is found to be Coulomb scattering based on gate bias and temperature dependent mobility measurement. Meanwhile, as the annealing temperature increases, the dominant mechanism of LFN within the device channel varies from carrier number fluctuation to carrier mobility fluctuation. The border trap density as well as the distribution properties of charged border traps is deduced. The present results suggest that annealing at higher temperature has a more remarkable effect on removing deeper border traps than traps closer to the channel/dielectric interface.

  13. Generic origin of subgap states in transparent amorphous semiconductor oxides illustrated for the cases of In-Zn-O and In-Sn-O

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, Wolfgang; Urban, Daniel F.; Elsaesser, Christian [Fraunhofer Institute for Mechanics of Materials IWM, Woehlerstr. 11, 79108, Freiburg (Germany)

    2015-07-15

    We present a microscopic interpretation for the appearance and behaviour of subgap states in stoichiometric and oxygen-deficient, amorphous In-Zn-O (a-IZO) and In-Sn-O (a-ITO) derived from a density functional theory analysis using a self-interaction-correction scheme. Our findings concerning the defect structures and the resulting deep levels are qualitatively similar to earlier results on a-IGZO and a-ZTO and in agreement with recent experimental results. Based on our extensive set of DFT results for In-, Sn-, Zn- based oxides we develop a general concept of the subgap states which is applicable to these systems. Electronic defect levels in the lower half of the band gap are created by undercoordinated oxygen atoms while local oxygen deficiencies cause defect levels in the upper part of the band gap. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Influence of the Cation Ratio on Optical and Electrical Properties of Amorphous Zinc-Tin-Oxide Thin Films Grown by Pulsed Laser Deposition.

    Science.gov (United States)

    Bitter, Sofie; Schlupp, Peter; Bonholzer, Michael; von Wenckstern, Holger; Grundmann, Marius

    2016-04-11

    Continuous composition spread (CCS) methods allow fast and economic exploration of composition dependent properties of multielement compounds. Here, a CCS method was applied for room temperature pulsed laser deposition (PLD) of amorphous zinc-tin-oxide to gain detailed insight into the influence of the zinc-to-tin cation ratio on optical and electrical properties of this ternary compound. Our CCS approach for a large-area offset PLD process utilizes a segmented target and thus makes target exchange or movable masks in the PLD chamber obsolete. Cation concentrations of 0.08-0.82 Zn/(Zn + Sn) were achieved across single 50 × 50 mm(2) glass substrates. The electrical conductivity increases for increasing tin content, and the absorption edge shifts to lower energies. The free carrier concentration can be tuned from 10(20) to 10(16) cm(-3) by variation of the cation ratio from 0.1 to 0.5 Zn/(Zn + Sn).

  15. Coordinated safeguards for materials management in a mixed-oxide fuel facility

    Energy Technology Data Exchange (ETDEWEB)

    Shipley, J.P.; Cobb, D.D.; Dietz, R.J.; Evans, M.L.; Schelonka, E.P.; Smith, D.B.; Walton, R.B.

    1977-02-01

    A coordinated safeguards system is described for safeguarding strategic quantities of special nuclear materials in mixed-oxide recycle fuel fabrication facilities. The safeguards system is compatible with industrial process requirements and combines maximum effectiveness consistent with modest cost and minimal process interference. It is based on unit process accounting using a combination of conventional and state-of-the-art NDA measurement techniques. The effectiveness of the system against single and multiple thefts is evaluated using computer modeling and simulation techniques.

  16. Mineral and iron oxidation at low temperatures by pure and mixed cultures of acidophilic microorganisms.

    Science.gov (United States)

    Dopson, Mark; Halinen, Anna-Kaisa; Rahunen, Nelli; Ozkaya, Bestamin; Sahinkaya, Erkan; Kaksonen, Anna H; Lindström, E Börje; Puhakka, Jaakko A

    2007-08-01

    An enrichment culture from a boreal sulfide mine environment containing a low-grade polymetallic ore was tested in column bioreactors for simulation of low temperature heap leaching. PCR-denaturing gradient gel electrophoresis and 16S rRNA gene sequencing revealed the enrichment culture contained an Acidithiobacillus ferrooxidans strain with high 16S rRNA gene similarity to the psychrotolerant strain SS3 and a mesophilic Leptospirillum ferrooxidans strain. As the mixed culture contained a strain that was within a clade with SS3, we used the SS3 pure culture to compare leaching rates with the At. ferrooxidans type strain in stirred tank reactors for mineral sulfide dissolution at various temperatures. The psychrotolerant strain SS3 catalyzed pyrite, pyrite/arsenopyrite, and chalcopyrite concentrate leaching. The rates were lower at 5 degrees C than at 30 degrees C, despite that all the available iron was in the oxidized form in the presence of At. ferrooxidans SS3. This suggests that although efficient At. ferrooxidans SS3 mediated biological oxidation of ferrous iron occurred, chemical oxidation of the sulfide minerals by ferric iron was rate limiting. In the column reactors, the leaching rates were much less affected by low temperatures than in the stirred tank reactors. A factor for the relatively high rates of mineral oxidation at 7 degrees C is that ferric iron remained in the soluble phase whereas, at 21 degrees C the ferric iron precipitated. Temperature gradient analysis of ferrous iron oxidation by this enrichment culture demonstrated two temperature optima for ferrous iron oxidation and that the mixed culture was capable of ferrous iron oxidation at 5 degrees C.

  17. Catalytic combustion of soot over Ru-doped mixed oxides catalysts

    Institute of Scientific and Technical Information of China (English)

    LF Nascimento; RF Martins; OA Serra

    2014-01-01

    We employed modified substrates as outer heterogeneous catalysts to reduce the soot originating from the incomplete die-sel combustion. Here, we proposed that ceria (CeO2)-based catalysts could lower the temperature at which soot combustion occurred from 610 ºC to values included in the operation range of diesel exhausts (270-400 ºC). Here, we used the sol-gel method to synthesize catalysts based on mixed oxides (ZnO:CeO2) deposited on cordierite substrates, and modified by ruthenium nanoparticles. The presence of ZnO in these mixed oxides produced defects associated with oxygen vacancies, improving thermal stability, redox potential, sulfur resistance, and oxygen storage. We evaluated the morphological and structural properties of the material by X-ray diffraction (XRD), Brumauer-emmett-teller method (BET), temperature programmed reduction (H2-TPR), scanning electron micros-copy (SEM), and transmission electron microscopy (TEM). We investigated how the addition of Ru (0.5 wt.%) affected the catalytic activity of ZnO:CeO2 in terms of soot combustion. Thermogravimetric analysis (TG/DTA) revealed that presence of the catalyst de-creased the soot combustion temperature by 250 ºC, indicating that the oxygen species arose at low temperatures, which was the main reason for the high reactivity of the oxidation reactions. Comparative analysis of soot emission by diffuse reflectance spectroscopy (DRS) showed that the catalyst containing Ru on the mixed oxide-impregnated cordierite samples efficiently oxidized soot in a diesel stationary motor:soot emission decreased 80%.

  18. Mixed

    Directory of Open Access Journals (Sweden)

    Pau Baya

    2011-05-01

    Full Text Available Remenat (Catalan (Mixed, "revoltillo" (Scrambled in Spanish, is a dish which, in Catalunya, consists of a beaten egg cooked with vegetables or other ingredients, normally prawns or asparagus. It is delicious. Scrambled refers to the action of mixing the beaten egg with other ingredients in a pan, normally using a wooden spoon Thought is frequently an amalgam of past ideas put through a spinner and rhythmically shaken around like a cocktail until a uniform and dense paste is made. This malleable product, rather like a cake mixture can be deformed pulling it out, rolling it around, adapting its shape to the commands of one’s hands or the tool which is being used on it. In the piece Mixed, the contortion of the wood seeks to reproduce the plasticity of this slow heavy movement. Each piece lays itself on the next piece consecutively like a tongue of incandescent lava slowly advancing but with unstoppable inertia.

  19. Catalysis of the rare earth containing mixed oxides Ln2CuO4 in phenol hydroxylation

    Institute of Scientific and Technical Information of China (English)

    刘持标; 赵震; 叶兴凯; 吴越

    1997-01-01

    Mixed oxides Ln2CuO4±λ(Ln=La,Pr,Nd,Sm,Gd) with K2NiF4 structure were prepared Their crystal structures were studied with XRD and IR spectra.Meanwhile,the average valence of Cu ions and non stoichiometric oxygen (λ) were determined through chemical analyses.Catalysis of the above-mentioned mixed oxides in the phenol hydroxylation was investigated.Results show that the catalysis of these mixed oxides has close relation with their structures and composition.Substitution of A site atom in Ln2CuO4λ has a great influence on then eatalysis in the phenol hydroxylation.

  20. Catalytic wet-oxidation of a mixed liquid waste: COD and AOX abatement.

    Science.gov (United States)

    Goi, D; de Leitenburg, C; Trovarelli, A; Dolcetti, G

    2004-12-01

    A series of catalytic wet oxidation (CWO) reactions, at temperatures of 430-500 K and in a batch bench-top pressure vessel were carried out utilizing a strong wastewater composed of landfill leachate and heavily organic halogen polluted industrial wastewater. A CeO2-SiO2 mixed oxide catalyst with large surface area to assure optimal oxidation performance was prepared. The catalytic process was examined during batch reactions controlling Chemical Oxygen Demand (COD) and Adsorbable Organic Halogen (AOX) parameters, resulting AOX abatement to achieve better effect. Color and pH were also controlled during batch tests. A simple first order-two stage reaction behavior was supposed and verified with the considered parameters. Finally an OUR test was carried out to evaluate biodegradability changes of wastewater as a result of the catalytic reaction.

  1. Surface and bulk aspects of mixed oxide catalytic nanoparticles: oxidation and dehydration of CH(3)OH by polyoxometallates.

    Science.gov (United States)

    Nakka, Lingaiah; Molinari, Julie E; Wachs, Israel E

    2009-10-28

    The molecular structures and surface chemistry of mixed metal oxide heteropolyoxo vanadium tungstate (H(3+x)PW(12-x)V(x)O(40) with x = 0, 1, 2, and 3) Keggin nanoparticles (NPs), where vanadium is incorporated into the primary Keggin structure, and supported VO(x) on tungstophosphoric acid (TPA, H(3)PW(12)O(40)), where vanadium is present on the surface of the Keggin unit, were investigated with solid-state magic angle spinning (51)V NMR, FT-IR, in situ Raman, in situ UV-vis, CH(3)OH temperature-programmed surface reaction (TPSR), and steady-state methanol oxidation. The incorporated VO(x) unit possesses one terminal V horizontal lineO bond, four bridging V-O-W/V bonds, and one long V-O-P bond in the primary Keggin structure, and the supported VO(x) unit possesses a similar coordination in the secondary structure under ambient conditions. The specific redox reaction rate for VO(x) in the Keggin primary structure is comparable to that of bulk V(2)O(5) and the more active supported vanadium oxide catalysts. The specific acidic reaction rate for the WO(x) in the TPA Keggin, however, is orders of magnitude greater than found for bulk WO(3), supported tungsten oxide catalysts, and even the highly acidic WO(3)-ZrO(2) catalyst synthesized by coprecipitation of ammonium metatungstate and ZrO(OH)(2). From CH(3)OH-TPSR and in situ Raman spectroscopy it was found that incorporation of vanadium oxide into the primary Keggin structure is also accompanied by the formation of surface VO(x) species at secondary sites on the Keggin outer surface. Both CH(3)OH-TPSR and steady-state methanol oxidation studies demonstrated that the surface VO(x) species on the Keggin outer surface are significantly less active than the VO(x) species incorporated into the primary Keggin structure. The presence of the less active surface VO(x) sites in the Keggins, thus, decreases the specific reaction rates for both methanol oxidation and methanol dehydration. During methanol oxidation/dehydration (O(2

  2. Late-occurring pulmonary pathologies following inhalation of mixed oxide (uranium + plutonium oxide) aerosol in the rat.

    Science.gov (United States)

    Griffiths, N M; Van der Meeren, A; Fritsch, P; Abram, M-C; Bernaudin, J-F; Poncy, J L

    2010-09-01

    Accidental exposure by inhalation to alpha-emitting particles from mixed oxide (MOX: uranium and plutonium oxide) fuels is a potential long-term health risk to workers in nuclear fuel fabrication plants. For MOX fuels, the risk of lung cancer development may be different from that assigned to individual components (plutonium, uranium) given different physico-chemical characteristics. The objective of this study was to investigate late effects in rat lungs following inhalation of MOX aerosols of similar particle size containing 2.5 or 7.1% plutonium. Conscious rats were exposed to MOX aerosols and kept for their entire lifespan. Different initial lung burdens (ILBs) were obtained using different amounts of MOX. Lung total alpha activity was determined by external counting and at autopsy for total lung dose calculation. Fixed lung tissue was used for anatomopathological, autoradiographical, and immunohistochemical analyses. Inhalation of MOX at ILBs ranging from 1-20 kBq resulted in lung pathologies (90% of rats) including fibrosis (70%) and malignant lung tumors (45%). High ILBs (4-20 kBq) resulted in reduced survival time (N = 102; p MOX, similar to results for industrial plutonium oxide alone (1.9% Gy). Staining with antibodies against Surfactant Protein-C, Thyroid Transcription Factor-1, or Oct-4 showed differential labeling of tumor types. In conclusion, late effects following MOX inhalation result in similar risk for development of lung tumors as compared with industrial plutonium oxide.

  3. Surface composition and catalytic activity of La-Fe mixed oxides for methane oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fengxiang [School of Chemistry, Beijing Institute of Technology, Liangxiang East Road, Beijing 102488 (China); Li, Zhanping [Analysis Center, Tsinghua University, Beijing 100084 (China); Ma, Hongwei [School of Chemistry, Beijing Institute of Technology, Liangxiang East Road, Beijing 102488 (China); Gao, Zhiming, E-mail: zgao@bit.edu.cn [School of Chemistry, Beijing Institute of Technology, Liangxiang East Road, Beijing 102488 (China)

    2015-10-01

    Graphical abstract: - Highlights: • The sample with La/Fe atomic ratio of 0.94 is single phase perovskite La{sub 0.94}FeO{sub 3−d}. • The excess ironic oxide exists on the surface of the perovskite crystallites. • La{sup 3+} ions are enriched on surface of the oxides even for the La{sub 0.68}Fe sample. - Abstract: Four La-Fe oxide samples with La/Fe atomic ratio y = 1.02 ∼ 0.68 (denoted as LayFe) were prepared by the citrate method. The samples had a decreased specific surface area with the La/Fe atomic ratio decreasing. XRD pattern proved that the sample La{sub 0.94}Fe is single phase perovskite La{sub 0.94}FeO{sub 3−d}. Phase composition of the samples was estimated by the Rietveld refinement method. XPS analyses indicate that La{sup 3+} ions are enriched on surface of crystallites for all the samples, and surface carbonate ions are relatively abundant on the samples La{sub 1.02}Fe and La{sub 0.94}Fe. Catalytic activity for methane oxidation per unit surface area of the samples is in the order of La{sub 0.68}Fe > La{sub 0.76}Fe > La{sub 0.94}Fe > La{sub 1.02}Fe both in the presence and in the absence of gaseous oxygen. A reason for this order would be the higher concentration of Fe{sup 3+} ion on the surface of the samples La{sub 0.68}Fe and La{sub 0.76}Fe.

  4. Structure, activity and kinetics of supported molybdenum oxide and mixed molybdenum-vanadium oxide catalysts prepared by flame spray pyrolysis for propane OHD

    DEFF Research Database (Denmark)

    Høj, Martin; Kessler, Thomas; Beato, Pablo

    2013-01-01

    A series of molybdenum oxide (2 to 15 wt% Mo) and mixed molybdenum-vanadium oxide (4 to 15 wt% Mo and 2 wt% V) on alumina catalysts have been synthesized by flame spray pyrolysis (FSP). The materials were structurally characterized by BET surface area, X-ray diffraction (XRD), Raman and diffuse......, respectively. Raman spectroscopy, UV-vis spectroscopy and XRD confirmed the high dispersion of molybdenum and vanadia species on γ-Al2O3 as the main crystalline phase. Only at the highest loading of 15 wt% Mo, with theoretically more than monolayer coverage, some crystalline molybdenum oxide was observed....... For the mixed molybdenum-vanadium oxide catalysts the surface species were separate molybdenum oxide and vanadium oxide monomers at low loadings of molybdenum, but with increasing molybdenum loading interactions between surface molybdenum and vanadium oxide species were observed with Raman spectroscopy...

  5. Characterizing Amorphous Silicates in Extraterrestrial Materials

    Science.gov (United States)

    Fu, X.; Wang, A.; Krawczynski, M. J.

    2015-12-01

    Amorphous silicates are common in extraterrestrial materials. They are seen in the matrix of carbonaceous chondrites as well as in planetary materials. Tagish Lake is one of the most primitive carbonaceous meteorites in which TEM and XRD analyses found evidence for poorly crystalline phyllosilicate-like species; Raman spectra revealed amorphous silicates with variable degree of polymerization and low crystallinity. On Mars, CheMin discovered amorphous phases in all analyzed samples, and poorly crystalline smectite in mudstone samples. These discoveries pose questions on the crystallinity of phyllosilicates found by remote sensing on Mars, which is directly relevant to aqueous alteration during geologic history of Mars. Our goal is to use spectroscopy to better characterize amorphous silicates. We use three approaches: (1) using silicate glasses synthesized with controlled chemistry to study the effects of silicate polymerization and (2) using phyllosilicates synthesized with controlled hydrothermal treatment to study the effect of crystallinity on vibrational spectroscopy, finally (3) to use the developed correlations in above two steps to study amorphous phases in meteorites, and those found in future missions to Mars. In the 1st step, silicate glasses were synthesized from pure oxides in a range of NBO/T ratios (from 0 to 4). Depending on the targeted NBO/T and composition of mixed oxides, temperatures for each experiment fell in a range from 1260 to 1520 °C, run for ~ 4 hrs. The melt was quenched in liquid N2 or water. Homogeneity of glass was checked under optical microscopy. Raman spectra were taken over 100 spots on small chips free of bubbles and crystals. We have observed that accompanying an increase of NBO/T, there is a strengthening and a position shift of the Raman peak near 1000 cm-1 (Si-Onon-bridging stretching mode), and the weakening of broad Raman peaks near 500 cm-1 (ring breathing mode) and 700cm-1 (Si-Obridging-Si mode). We are building the

  6. Electrical characteristics of mixed Zr-Si oxide thin films prepared by ion beam induced chemical vapor deposition at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, F.J., E-mail: fjferrer@us.e [Centro Nacional de Aceleradores (CSIC - U. Sevilla), Av. Thomas A. Edison 7, E-41092 Sevilla (Spain); Frutos, F. [E.T.S. de Ingenieria Informatica, Avda. Reina Mercedes s/n, E-41012 Sevilla (Spain); Garcia-Lopez, J. [Centro Nacional de Aceleradores (CSIC - U. Sevilla), Av. Thomas A. Edison 7, E-41092 Sevilla (Spain); Jimenez, C. [Laboratoire de Materiaux et de Genie Physique, BP 257 - INPGrenoble Minatec - 3 parvis Louis Neel - 38016 Grenoble (France); Yubero, F. [Instituto de Ciencia de Materiales de Sevilla (CSIC - U. Sevilla), c/ Americo Vespucio 49, E-41092 Sevilla (Spain)

    2009-07-31

    Mixed Zr-Si oxide thin films have been prepared at room temperature by ion beam decomposition of organometallic volatile precursors. The films were flat and amorphous. They did not present phase segregation of the pure single oxides. A significant amount of impurities (-C-, -CH{sub x}, -OH, and other radicals coming from partially decomposed precursors) remained incorporated in the films after the deposition process. This effect is minimized if the Ar content in the O{sub 2}/Ar bombarding gas is maximized. Static permittivity and breakdown electrical field of the films were determined by capacitance-voltage and current-voltage electrical measurements. It is found that the static permittivity increases non-linearly from {approx} 4 for pure SiO{sub 2} to {approx} 15 for pure ZrO{sub 2}. Most of the dielectric failures in the films were due to extrinsic breakdown failures. The maximum breakdown electrical field decreases from {approx} 10.5 MV/cm for pure SiO{sub 2} to {approx} 45 MV/cm for pure ZrO{sub 2}. These characteristics are justified by high impurity content of the thin films. In addition, the analysis of the conduction mechanisms in the formed dielectrics is consistent to Schottky and Poole-Frenkel emission for low and high electric fields applied, respectively.

  7. Nano-vanadium oxide thin films in mixed phase for microbolometer applications

    Energy Technology Data Exchange (ETDEWEB)

    Subrahmanyam, A; Bharat Kumar Reddy, Y [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India); Nagendra, C L [LEOS, ISRO, Peenya Industrial Estate, Bangalore 560060 (India)], E-mail: manu@iitm.ac.in

    2008-10-07

    Among the several phases of vanadium oxide, mixed phases of VO{sub 2} and V{sub 2}O{sub 5} are preferred for uncooled micro-bolometers with low noise. The aim of this investigation is to achieve mixed phase VO{sub 2} and V{sub 2}O{sub 5} thin films with nanometre grain sizes and high temperature coefficient of resistance (TCR). Since the phase depends upon the oxygen reactivity, these vanadium oxide thin films are prepared by reactive electron beam evaporation at different oxygen flow rates and substrate temperatures. The mixed phases have been evaluated through x-ray diffraction and x-ray photo emission studies. The temperature dependence of resistance has shown that the films grown at 473 K with 2.8 x 10{sup -5} mbar chamber pressure of oxygen (VO{sub 2} : V{sub 2}O{sub 5} ratio of 36 : 64) have the highest TCR of -3.2 K{sup -1} with a reasonable low resistance (120 {omega}/square)

  8. Selective oxidations of a dithiolate complex produce a mixed sulfonate/thiolate complex.

    Science.gov (United States)

    Chohan, Balwant S; Maroney, Michael J

    2006-03-06

    Oxygenation or peroxidation of a planar, tetracoordinate, low-spin nickel(II) complex of a N2S2-donor ligand, (N,N'-dimethyl-N,N'-bis(2-mecaptoethyl)-1, 3-propanediaminato)nickel(II), proceeds via the formation of a mixed sulfinate/thiolate complex and leads to the production of a novel dimeric complex containing both sulfonate and thiolate ligands. Thus, reaction proceeds via selective oxidation of the sulfinate sulfur atom, leaving the thiolate reduced. The novel sulfonate/thiolate complex has been isolated and characterized by electospray ionization mass spectrometry and single-crystal X-ray diffraction. Crystals form in the monoclinic space group P2(1)/c with cell dimensions a = 8.4647(12) A, b = 12.592(3) A, and c = 12.531(2) A, angles alpha = gamma = 90 degrees and beta = 106.645(11) degrees , and Z = 2. The structure was refined to R = 5.20% and R(w) = 12.86% [I > 2sigma(I)]. The isolation of this mixed sulfonate/thiolate complex from oxidation of a mixed sulfinate/thiolate complex provides experimental evidence for the formation of a sulfonate ligand via a Ni-O-O-SO2R intermediate, as suggested by recent density functional theory calculations.

  9. Argonne National Laboratory`s photo-oxidation organic mixed waste treatment system - installation and startup testing

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, T.L.; Nelson, R.A.; Torres, T.; Conner, C.; Wygmans, D.

    1997-09-01

    This paper describes the installation and startup testing of the Argonne National Laboratory (ANL-E) Photo-Oxidation Organic Mixed Waste Treatment System. This system will treat organic mixed (i.e., radioactive and hazardous) waste by oxidizing the organics to carbon dioxide and inorganic salts in an aqueous media. The residue will be treated in the existing radwaste evaporators. The system is installed in the Waste Management Facility at the ANL-E site in Argonne, Illinois. 1 fig.

  10. Optical and Chemical Properties of Mixed-valent Rhenium Oxide Films Synthesized by Reactive DC Magnetron Sputtering

    Science.gov (United States)

    2015-04-03

    AFRL-RX-WP-JA-2015-0178 OPTICAL AND CHEMICAL PROPERTIES OF MIXED- VALENT RHENIUM OXIDE FILMS SYNTHESIZED BY REACTIVE DC MAGNETRON...To) 06 May 2010 – 16 March 2015 4. TITLE AND SUBTITLE OPTICAL AND CHEMICAL PROPERTIES OF MIXED-VALENT RHENIUM OXIDE FILMS SYNTHESIZED BY REACTIVE ...DC MAGNETRON SPUTTERING (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR(S) (see

  11. High-pressure Gas Activation for Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors at 100 °C.

    Science.gov (United States)

    Kim, Won-Gi; Tak, Young Jun; Du Ahn, Byung; Jung, Tae Soo; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-03-14

    We investigated the use of high-pressure gases as an activation energy source for amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs). High-pressure annealing (HPA) in nitrogen (N2) and oxygen (O2) gases was applied to activate a-IGZO TFTs at 100 °C at pressures in the range from 0.5 to 4 MPa. Activation of the a-IGZO TFTs during HPA is attributed to the effect of the high-pressure environment, so that the activation energy is supplied from the kinetic energy of the gas molecules. We reduced the activation temperature from 300 °C to 100 °C via the use of HPA. The electrical characteristics of a-IGZO TFTs annealed in O2 at 2 MPa were superior to those annealed in N2 at 4 MPa, despite the lower pressure. For O2 HPA under 2 MPa at 100 °C, the field effect mobility and the threshold voltage shift under positive bias stress were improved by 9.00 to 10.58 cm(2)/V.s and 3.89 to 2.64 V, respectively. This is attributed to not only the effects of the pressurizing effect but also the metal-oxide construction effect which assists to facilitate the formation of channel layer and reduces oxygen vacancies, served as electron trap sites.

  12. Influence of molybdenum source/drain electrode contact resistance in amorphous zinc–tin-oxide (a-ZTO) thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dong-Suk; Kang, Yu-Jin; Park, Jae-Hyung [Department of Nanoscale Semiconductor Engineering, Hanyang University, 17 Haengdang-dong, Seoungdong-ku, Seoul 133-791 (Korea, Republic of); Jeon, Hyung-Tag [Department of Materials Science and Engineering, Hanyang University, 17 Haengdang-dong, Seoungdong-ku, Seoul 133-791 (Korea, Republic of); Park, Jong-Wan, E-mail: jwpark@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, 17 Haengdang-dong, Seoungdong-ku, Seoul 133-791 (Korea, Republic of)

    2014-10-15

    Highlights: • We developed and investigated source/drain electrodes in oxide TFTs. • The Mo S/D electrodes showed good output characteristics. • Intrinsic TFT parameters were calculated by the transmission line method. - Abstract: This paper investigates the feasibility of a low-resistivity electrode material (Mo) for source/drain (S/D) electrodes in thin film transistors (TFTs). The effective resistances between Mo source/drain electrodes and amorphous zinc–tin-oxide (a-ZTO) thin film transistors were studied. Intrinsic TFT parameters were calculated by the transmission line method (TLM) using a series of TFTs with different channel lengths measured at a low source/drain voltage. The TFTs fabricated with Mo source/drain electrodes showed good transfer characteristics with a field-effect mobility of 10.23 cm{sup 2}/V s. In spite of slight current crowding effects, the Mo source/drain electrodes showed good output characteristics with a steep rise in the low drain-to-source voltage (V{sub DS}) region.

  13. High-pressure Gas Activation for Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors at 100 °C

    Science.gov (United States)

    Kim, Won-Gi; Tak, Young Jun; Du Ahn, Byung; Jung, Tae Soo; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-03-01

    We investigated the use of high-pressure gases as an activation energy source for amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs). High-pressure annealing (HPA) in nitrogen (N2) and oxygen (O2) gases was applied to activate a-IGZO TFTs at 100 °C at pressures in the range from 0.5 to 4 MPa. Activation of the a-IGZO TFTs during HPA is attributed to the effect of the high-pressure environment, so that the activation energy is supplied from the kinetic energy of the gas molecules. We reduced the activation temperature from 300 °C to 100 °C via the use of HPA. The electrical characteristics of a-IGZO TFTs annealed in O2 at 2 MPa were superior to those annealed in N2 at 4 MPa, despite the lower pressure. For O2 HPA under 2 MPa at 100 °C, the field effect mobility and the threshold voltage shift under positive bias stress were improved by 9.00 to 10.58 cm2/V.s and 3.89 to 2.64 V, respectively. This is attributed to not only the effects of the pressurizing effect but also the metal-oxide construction effect which assists to facilitate the formation of channel layer and reduces oxygen vacancies, served as electron trap sites.

  14. A transparent diode with high rectifying ratio using amorphous indium-gallium-zinc oxide/SiN{sub x} coupled junction

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myung-Jea; Kim, Myeong-Ho; Choi, Duck-Kyun, E-mail: duck@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-08-03

    We introduce a transparent diode that shows both high rectifying ratio and low leakage current at process temperature below 250 °C. This device is clearly distinguished from all previous transparent diodes in that the rectifying behavior results from the junction between a semiconductor (amorphous indium-gallium-zinc oxide (a-IGZO)) and insulator (SiN{sub x}). We systematically study the properties of each junction within the device structure and demonstrate that the a-IGZO/SiN{sub x} junction is the source of the outstanding rectification. The electrical characteristics of this transparent diode are: 2.8 A/cm{sup 2} on-current density measured at −7 V; lower than 7.3 × 10{sup −9} A/cm{sup 2} off-current density; 2.53 ideality factor; and high rectifying ratio of 10{sup 8}–10{sup 9}. Furthermore, the diode structure has a transmittance of over 80% across the visible light range. The operating principle of the indium-tin oxide (ITO)/a-IGZO/SiN{sub x}/ITO device was examined with an aid of the energy band diagram and we propose a preliminary model for the rectifying behavior. Finally, we suggest further directions for research on this transparent diode.

  15. Influence of Gold on Ce-Zr-Co Fluorite-Type Mixed Oxide Catalysts for Ethanol Steam Reforming

    Directory of Open Access Journals (Sweden)

    Véronique Pitchon

    2012-02-01

    Full Text Available The effect of gold presence on carbon monoxide oxidation and ethanol steam reforming catalytic behavior of two Ce-Zr-Co mixed oxides catalysts with a constant Co charge and different Ce/Zr ratios was investigated. The Ce-Zr-Co mixed oxides were obtained by the pseudo sol-gel like method, based on metallic propionates polymerization and thermal decomposition, whereas the gold-supported Ce-Zr-Co mixed oxides catalysts were prepared using the direct anionic exchange. The catalysts were characterized using XRD, TPR, and EDXS-TEM. The presence of Au in doped Ce-Zr-Co oxide catalyst decreases the temperature necessary to reduce the cobalt and the cerium loaded in the catalyst and favors a different reaction pathway, improving the acetaldehyde route by ethanol dehydrogenation, instead of the ethylene route by ethanol dehydration or methane re-adsorption, thus increasing the catalytic activity and selectivity into hydrogen.

  16. Preparation and characterization of Cu-Ce-La mixed oxide as water-gas shift catalyst for fuel cells application

    Institute of Scientific and Technical Information of China (English)

    ZHI Keduan; LIU Quansheng; ZHAO Ruigang; HE Runxia; ZHANG Lifeng

    2008-01-01

    Cu-Ce-La mixed oxides were prepared by three precipitation methods (coprecipitation, homogeneous precipitation, and deposition precipitation) with variable precipitators and characterized using X-ray diffraction, BET, temperature-programmed reduction, and catalytic reaction for the water-gas shift. The Cu-Ce-La mixed oxide prepared by coprecipitation method with NaOH as precipitator presented the highest activity and thermal stability. Copper ion substituted quadrevalent ceria entered CeO2 (111) framework was in favor of activity and thermal stability of catalyst. The crystallinity of fresh catalysts increased with the reduction process. La3+ or Ce4+ substituted copper ion entered the CeO2 framework during reduction process. The coexistence of surface copper oxide (crystalline) and pure bulk crystalline copper oxide both contributed to the high activity and thermal stability of Cu-Ce-La mixes oxide catalyst.

  17. Feasibility Study of 1/3 Thorium-Plutonium Mixed Oxide Core

    Directory of Open Access Journals (Sweden)

    Cheuk Wah Lau

    2014-01-01

    Full Text Available Thorium-plutonium mixed oxide (Th-MOX fuel has become one of the most promising solutions to reduce a large and increasing plutonium stockpile. Compared with traditional uranium-plutonium mixed oxide (U-MOX fuels, Th-MOX fuel has higher consumption rate of plutonium in LWRs. Besides, thorium based fuels have improved thermomechanical material properties compared with traditional U-MOX fuels. Previous studies on a full Th-MOX core have shown reduced efficiency in reactivity control mechanisms, stronger reactivity feedback, and a significantly lower fraction of delayed neutrons compared with a traditional uranium oxide (UOX core. These problems complicate the implementation of a full Th-MOX core in a similar way as for a traditional U-MOX core. In order to reduce and avoid some of these issues, the introduction of a lower fraction of Th-MOX fuel in the core is proposed. In this study, one-third of the assemblies are Th-MOX fuel, and the rest are traditional UOX fuel. The feasibility study is based on the Swedish Ringhals-3 PWR. The results show that the core characteristics are more similar to a traditional UOX core, and the fraction of delayed neutrons is within acceptable limits. Moreover, the damping of axial xenon oscillations induced by control rod insertions is almost 5 times more effective for the 1/3 Th-MOX core compared with the standard core.

  18. Low-temperature synthesis of Mn-based mixed metal oxides with novel fluffy structures as efficient catalysts for selective reduction of nitrogen oxides by ammonia.

    Science.gov (United States)

    Meng, Bo; Zhao, Zongbin; Chen, Yongsheng; Wang, Xuzhen; Li, Yong; Qiu, Jieshan

    2014-10-21

    A series of Mn-based mixed metal oxide catalysts (Co-Mn-O, Fe-Mn-O, Ni-Mn-O) with high surface areas were prepared via low temperature crystal splitting and exhibited extremely high catalytic activity for the low-temperature selective catalytic reduction of nitrogen oxides with ammonia.

  19. Fabrication of pulsed-laser deposited V-W-Nd mixed-oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Yusuke; Venkatachalam, S.; Kaneko, Yoshikazu [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511 (Japan); Kanno, Yoshinori [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511 (Japan)], E-mail: kanno@yamanashi.ac.jp

    2007-11-15

    V-W-Nd mixed-oxide films were prepared by pulse-laser deposition (PLD) technique from the targets sintered at different temperatures. X-ray photoelectron spectroscopy (XPS) data indicate that the films fabricated from the targets sintered at low temperature were composed of various mixed valences. Raman spectroscopy shows that V-W-Nd films were composed of the vanadates as NdVO{sub 4}, and the W{sup 6+} doping supplements the formation of vanadate. Atomic force microscopy (AFM) image of the films fabricated from the target sintered at 923 K reveals the average particle size is estimated around 86 nm. The surface morphology of the films roughness shows a dramatic change at 923-943 K.

  20. Molten salt oxidation of mixed waste: Preliminary bench-scale experiments without radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Haas, P.A.; Rudolph, J.C.; Bell, J.T.

    1994-06-01

    Molten salt oxidation (MSO) is a process in which organic wastes are oxidized by sparging them with air through a bed of molten sodium carbonate (bp 851 {degrees}C) at {ge} 900{degrees}C. This process is readily applicable to the mixed waste because acidic products from Cl, S, P, etc., in the waste, along with most metals and most radionuclides, are retained within the melt as oxides or salts. Rockwell International has studied the application of MSO to various wastes, including some mixed waste. A unit used by Rockwell to study the mixed waste treatment is presently in use at Oak Ridge National Laboratory (ORNL). ORNL`s studies to date have concentrated on chemical flowsheet questions. Concerns that were studied included carbon monoxide (CO) emissions, NO{sub x}, emissions, and metal retention under a variety of conditions. Initial experiments show that CO emissions increase with increasing NaCl content in the melt, increasing temperature, and increasing airflow. Carbon monoxide content is especially high (> 2000 ppm) with high chlorine content (> 10%). Thermal NO{sub x}, emissions are relatively low ( < 5 ppm) at temperatures < 1000{degrees}C. However, most (85--100%) of the nitrogen in the feed as organic nitrate or amine was released as NO{sub x}, The metal contents of the melt and of knockout pot samples of condensed salt show high volatilities of Cs as CsCl. Average condensed salt concentrations were 60% for barium and 100% for strontium and cobalt. The cerium disappeared -- perhaps from deposition on the alumina reactor walls.

  1. Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: Experimental mixing of acid rock drainage and ambient river water

    Science.gov (United States)

    Balistrieri, L.S.; Borrok, D.M.; Wanty, R.B.; Ridley, W.I.

    2008-01-01

    Fractionation of Cu and Zn isotopes during adsorption onto amorphous ferric oxyhydroxide is examined in experimental mixtures of metal-rich acid rock drainage and relatively pure river water and during batch adsorption experiments using synthetic ferrihydrite. A diverse set of Cu- and Zn-bearing solutions was examined, including natural waters, complex synthetic acid rock drainage, and simple NaNO3 electrolyte. Metal adsorption data are combined with isotopic measurements of dissolved Cu (65Cu/63Cu) and Zn (66Zn/64Zn) in each of the experiments. Fractionation of Cu and Zn isotopes occurs during adsorption of the metal onto amorphous ferric oxyhydroxide. The adsorption data are modeled successfully using the diffuse double layer model in PHREEQC. The isotopic data are best described by a closed system, equilibrium exchange model. The fractionation factors (??soln-solid) are 0.99927 ?? 0.00008 for Cu and 0.99948 ?? 0.00004 for Zn or, alternately, the separation factors (??soln-solid) are -0.73 ?? 0.08??? for Cu and -0.52 ?? 0.04??? for Zn. These factors indicate that the heavier isotope preferentially adsorbs onto the oxyhydroxide surface, which is consistent with shorter metal-oxygen bonds and lower coordination number for the metal at the surface relative to the aqueous ion. Fractionation of Cu isotopes also is greater than that for Zn isotopes. Limited isotopic data for adsorption of Cu, Fe(II), and Zn onto amorphous ferric oxyhydroxide suggest that isotopic fractionation is related to the intrinsic equilibrium constants that define aqueous metal interactions with oxyhydroxide surface sites. Greater isotopic fractionation occurs with stronger metal binding by the oxyhydroxide with Cu > Zn > Fe(II).

  2. Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: Experimental mixing of acid rock drainage and ambient river water

    Science.gov (United States)

    Balistrieri, Laurie S.; Borrok, David M.; Wanty, Richard B.; Ridley, W. Ian

    2008-01-01

    Fractionation of Cu and Zn isotopes during adsorption onto amorphous ferric oxyhydroxide is examined in experimental mixtures of metal-rich acid rock drainage and relatively pure river water and during batch adsorption experiments using synthetic ferrihydrite. A diverse set of Cu- and Zn-bearing solutions was examined, including natural waters, complex synthetic acid rock drainage, and simple NaNO3 electrolyte. Metal adsorption data are combined with isotopic measurements of dissolved Cu (65Cu/63Cu) and Zn (66Zn/64Zn) in each of the experiments. Fractionation of Cu and Zn isotopes occurs during adsorption of the metal onto amorphous ferric oxyhydroxide. The adsorption data are modeled successfully using the diffuse double layer model in PHREEQC. The isotopic data are best described by a closed system, equilibrium exchange model. The fractionation factors (αsoln-solid) are 0.99927 ± 0.00008 for Cu and 0.99948 ± 0.00004 for Zn or, alternately, the separation factors (Δsoln-solid) are -0.73 ± 0.08‰ for Cu and -0.52 ± 0.04‰ for Zn. These factors indicate that the heavier isotope preferentially adsorbs onto the oxyhydroxide surface, which is consistent with shorter metal-oxygen bonds and lower coordination number for the metal at the surface relative to the aqueous ion. Fractionation of Cu isotopes also is greater than that for Zn isotopes. Limited isotopic data for adsorption of Cu, Fe(II), and Zn onto amorphous ferric oxyhydroxide suggest that isotopic fractionation is related to the intrinsic equilibrium constants that define aqueous metal interactions with oxyhydroxide surface sites. Greater isotopic fractionation occurs with stronger metal binding by the oxyhydroxide with Cu > Zn > Fe(II).

  3. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.; Smith, Colin D.; Wang, Yong

    2016-04-10

    tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  4. Catalytic activity of titania zirconia mixed oxide catalyst for dimerization eugenol

    Science.gov (United States)

    Tursiloadi, S.; Kristiani, A.; Jenie, S. N. Aisyiyah; Laksmono, J. A.

    2017-01-01

    Clove oil has been found to possess antibacterial, antifungal, antiviral, antitumor, antioxidant and insecticidal properties. The major compound of clove oil is eugenol about 49-87%. Eugenol as phenolic compounds exhibits antioxidant and antimicrobial activities. The derivative compound of eugenol, dieugenol, show antioxidant potency better than parent eugenol. A series of TiO2-ZrO2 mixed oxides (TZ) with various titanium contents from 0 to 100wt%, prepared by using sol gel method were tested their catalytic activity for dimerization eugenol, Their catalytic activity show that these catalysts resulted a low yield of dimer eugenol, dieugenol, about 2-9 % and the purity is more than 50%.

  5. PREPARATION AND PROPERTIES OF Co-Fe MIXED OXIDES OBTAINED BY CALCINATION OF LAYERED DOUBLE HYDROXIDES

    Directory of Open Access Journals (Sweden)

    M. E. Pérez Bernal

    2004-12-01

    Full Text Available Solids containing Co(II and Fe(III with molar ratios of 2/1, 3/2, 1/1, 2/3 and 1/2 have been synthetised by coprecipitation at constant pH. All they displayed a hydrotalcite-like structure with interlayer carbonate, which crystallinity decreases as the iron content was increased. No other crystalline phase was identified, even in the Fe-rich samples. They have been characterised by powder X-ray diffraction, FT-IR spectroscopy, thermal analysis (differential thermal analysis, thermogravimetric analysis and temperature-programmed reduction, in addition to specific surface area assessment by nitrogen adsorption at -196°C. A minor oxidation of Co(II to Co(III is observed in the Co-rich samples, although it reverses again to Co(II upon calcination in oxygen at ca. 850°C. Thermal decomposition takes place in a single step up to ca. 350°C, and the specific surface area increases with the iron content, probably because of the presence of hydrated amorphous iron oxides. The solids calcined at 1200°C in air contain crystalline CoO, Co3O4 and CoFe2O4 (spinel, this one being the dominant phase, and only phase detected for large Fe contents. Metallic species are more easily reduced in the original solids than in the calcined ones, and in all cases iron seems to be reduced at a higher temperature than cobalt.

  6. Application of Ni-Oxide@TiO2 Core-Shell Structures to Photocatalytic Mixed Dye Degradation, CO Oxidation, and Supercapacitors

    OpenAIRE

    Seungwon Lee; Jisuk Lee; Kyusuk Nam; Weon Gyu Shin; Youngku Sohn

    2016-01-01

    Performing diverse application tests on synthesized metal oxides is critical for identifying suitable application areas based on the material performances. In the present study, Ni-oxide@TiO2 core-shell materials were synthesized and applied to photocatalytic mixed dye (methyl orange + rhodamine + methylene blue) degradation under ultraviolet (UV) and visible lights, CO oxidation, and supercapacitors. Their physicochemical properties were examined by field-emission scanning electron microscop...

  7. Fabrication of Nb{sub 2}O{sub 5}/SiO{sub 2} mixed oxides by reactive magnetron co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Juškevičius, Kęstutis, E-mail: kestutis.juskevicius@ftmc.lt [Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius (Lithuania); Audronis, Martynas, E-mail: m.audronis@yahoo.co.uk [Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin street, S1 3JD (United Kingdom); Subačius, Andrius; Kičas, Simonas; Tolenis, Tomas; Buzelis, Rytis; Drazdys, Ramutis; Gaspariūnas, Mindaugas; Kovalevskij, Vitalij [Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius (Lithuania); Matthews, Allan; Leyland, Adrian [Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin street, S1 3JD (United Kingdom)

    2015-08-31

    This paper investigates niobia/silica mixed oxide thin films deposited by reactive pulse-DC/RF magnetron co-sputtering of Nb and Si metal targets at room temperature. The reactive gas flow during the sputtering processes was either controlled by direct mass flow rate (i.e. constant reactive gas flow) or by an active feedback process control system. 61% and 137% higher deposition rates of Nb{sub 2}O{sub 5} and SiO{sub 2} layers, respectively, were obtained using the latter technique as compared to constant reactive gas flow. Films exhibited bulk or near-bulk density. All mixture films produced in this study had an amorphous structure. A volume law of mixtures was used to determine the coating composition. It is shown that the fraction of SiO{sub 2} or/and Nb{sub 2}O{sub 5} has a linear dependency on sputter target power density. On this basis, rugate filter coating designs can be easily deposited, where refractive index gradually varies between that of pure Nb{sub 2}O{sub 5} and pure SiO{sub 2}. Substantially less inhomogeneity of coating mixtures was found in films produced using a reactive sputtering process with feedback-control. - Highlights: • 61% and 137% increase in deposition rates of Nb{sub 2}O{sub 5} and SiO{sub 2} • Rugate coating designs can be readily deposited. • Nb{sub 2}O{sub 5}/SiO{sub 2} mixture films exhibited bulk or near-bulk density. • Optimized process leads to stoichiometric and homogenous mixtures. • Films are amorphous and suitable for low loss optical coatings.

  8. The Applications of Mixed Metal Oxides to Capture the CO2 and Convert to Syn-Gas

    Directory of Open Access Journals (Sweden)

    A. G. Gaikwad

    2015-01-01

    Full Text Available AbstractThe applicationsof different mixed metal oxides were explored for the capture of CO2and convert of CO2 to syn-gas. The several samples of the mixedmetal oxides were prepared by the sol gel, solid-solid fusion, precipitation,molten salt and template methods in order to investigate the performance ofmixed mtal oxides to the CO2 applications. These samples werecalcined for the 3h in air at 900 oC. The mixed metal oxides sampleswere characterized by acidity/ basicity, surface area, XRD pattern, SEM imagesand to capture CO2. The basicity and surface area of the samples of mixedmetal oxides were found to be in the range from 0.7 to 15.7 mmol g-1and 2.24 to 138.76 m2 g-1, respectively. The obtainedresults of prepared mixed metal oxides by different method were compared forthe purpose of searching the efficient materials. The temperature profiles of thecaptured CO2 by the samples of mixed metal oxides were obtained inthe range 100 to 800 oC. The captured CO2 was found to bein the range from 7.36 to 26.93 wt%. The conversions of CO2 bymethane were explored to syn-gas over the mixed metal oxides including the calciumiron lanthanum mixed metal oxides and Pd (5 wt %/Al2O3at 700 oC with the gas hourly space velocities (GHSV 6000 ml h-1g-1 of methane, 6000 ml h-1 g-1 of CO2and 24000 ml h-1 g-1 of helium.

  9. Silica-based composite and mixed-oxide nanoparticles from atmospheric pressure flame synthesis

    Science.gov (United States)

    Akurati, Kranthi K.; Dittmann, Rainer; Vital, Andri; Klotz, Ulrich; Hug, Paul; Graule, Thomas; Winterer, Markus

    2006-08-01

    Binary TiO2/SiO2 and SnO2/SiO2 nanoparticles have been synthesized by feeding evaporated precursor mixtures into an atmospheric pressure diffusion flame. Particles with controlled Si:Ti and Si:Sn ratios were produced at various flow rates of oxygen and the resulting powders were characterized by BET (Brunauer-Emmett-Teller) surface area analysis, XRD, TEM and Raman spectroscopy. In the Si-O-Ti system, mixed oxide composite particles exhibiting anatase segregation formed when the Si:Ti ratio exceeded 9.8:1, while at lower concentrations only mixed oxide single phase particles were found. Arrangement of the species and phases within the particles correspond to an intermediate equilibrium state at elevated temperature. This can be explained by rapid quenching of the particles in the flame and is in accordance with liquid phase solubility data of Ti in SiO2. In contrast, only composite particles formed in the Sn-O-Si system, with SnO2 nanoparticles predominantly found adhering to the surface of SiO2 substrate nanoparticles. Differences in the arrangement of phases and constituents within the particles were observed at constant precursor mixture concentration and the size of the resultant segregated phase was influenced by varying the flow rate of the oxidant. The above effect is due to the variation of the residence time and quenching rate experienced by the binary oxide nanoparticles when varying the oxygen flow rate and shows the flexibility of diffusion flame aerosol reactors.

  10. Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors

    Science.gov (United States)

    Karahan, Aydın; Buongiorno, Jacopo

    2010-01-01

    An engineering code to model the irradiation behavior of UO2-PuO2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.

  11. ''MBE-Litho'': 3 nm-thick amorphous GaAs oxidized thin film functioning as highly sensitive inorganic resist for EB lithography and oxide mask for selective processes

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Kazuhiro; Hirokawa, Yuki; Ushio, Shoji; Kaneko, Tadaaki [Department of Physics, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2011-02-15

    Molecular beam epitaxy (MBE) is one of the growth methods, which has been widely used for single crystalline semiconductor materials. In this study, we report a novel function of a 3 nm-thick amorphous GaAs thin layer deposited using MBE at room temperature. Its oxidized region exposed to H{sub 2}O-vapor ambient works as a highly sensitive inorganic resist film for low-energy electron-beam (LE-EB) lithography of 1-5 keV. In this method, the surface area modified by LE-EB direct writing provides a thermally stable oxide pattern, which can be directly applied to successive selective processes such as etching and growth under MBE environment. All the condition required for its selective etching/growth is to remove the background residual GaAs oxide of EB non-irradiated area in the same UHV chamber. Thus, MBE gives the simplest and most efficient solution to all the processes including the resist film pre-depositing, the background oxide removing and the successive etching/growth functions. We call this solution ''MBE-Litho ''. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Evaluation of Co-precipitation Processes for the Synthesis of Mixed-Oxide Fuel Feedstock Materials

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Emory D [ORNL; Voit, Stewart L [ORNL; Vedder, Raymond James [ORNL

    2011-06-01

    The focus of this report is the evaluation of various co-precipitation processes for use in the synthesis of mixed oxide feedstock powders for the Ceramic Fuels Technology Area within the Fuels Cycle R&D (FCR&D) Program's Advanced Fuels Campaign. The evaluation will include a comparison with standard mechanical mixing of dry powders and as well as other co-conversion methods. The end result will be the down selection of a preferred sequence of co-precipitation process for the preparation of nuclear fuel feedstock materials to be used for comparison with other feedstock preparation methods. A review of the literature was done to identify potential nitrate-to-oxide co-conversion processes which have been applied to mixtures of uranium and plutonium to achieve recycle fuel homogeneity. Recent studies have begun to study the options for co-converting all of the plutonium and neptunium recovered from used nuclear fuels, together with appropriate portions of recovered uranium to produce the desired mixed oxide recycle fuel. The addition of recycled uranium will help reduce the safeguard attractiveness level and improve proliferation resistance of the recycled fuel. The inclusion of neptunium is primarily driven by its chemical similarity to plutonium, thus enabling a simple quick path to recycle. For recycle fuel to thermal-spectrum light water reactors (LWRs), the uranium concentration can be {approx}90% (wt.), and for fast spectrum reactors, the uranium concentration can typically exceed 70% (wt.). However, some of the co-conversion/recycle fuel fabrication processes being developed utilize a two-step process to reach the desired uranium concentration. In these processes, a 50-50 'master-mix' MOX powder is produced by the co-conversion process, and the uranium concentration is adjusted to the desired level for MOX fuel recycle by powder blending (milling) the 'master-mix' with depleted uranium oxide. In general, parameters that must be

  13. Study of sodium dodecyl sulfate-poly(propylene oxide) methacrylate mixed micelles.

    Science.gov (United States)

    Bastiat, Guillaume; Grassl, Bruno; Khoukh, Abdel; François, Jeanne

    2004-07-01

    Sodium dodecyl sulfate (SDS)-poly(propylene oxide) methacrylate (PPOMA) (of molecular weight M(w) = 434 g x mol(-1)) mixtures have been studied using conductimetry, static light scattering, fluorescence spectroscopy, and 1H NMR. It has been shown that SDS and PPOMA form mixed micelles, and SDS and PPOMA aggregation numbers, N(ag SDS) and N(ag PPOMA), have been determined. Total aggregation numbers of the micelles (N(ag SDS) + N(ag PPOMA)) and those of SDS decrease upon increasing the weight ratio R = PPOMA/SDS. Localization of PPOMA inside the mixed micelles is considered (i) using 1H NMR to localize the methacrylate function at the hydrophobic core-water interface and (ii) by studying the SDS-PPO micellar system (whose M(w) = 400 g x mol(-1)). Both methods have indicated that the PPO chain of the macromonomer is localized at the SDS micelle surface. Models based on the theorical prediction of the critical micellar concentration of mixed micelles and structural model of swollen micelles are used to confirm the particular structure proposed for the SDS-PPOMA system, i.e., the micelle hydrophobic core is primarily composed of the C12 chains of the sodium dodecyl sulfate, the hydrophobic core-water interface is made up of the SDS polar heads as well as methacrylate functions of the PPOMA, the PPO chains of the macromonomer are adsorbed preferentially on the surface, i.e., on the polar heads of the SDS.

  14. Dynamics of nitrogen oxides and ozone above and within a mixed hardwood forest in northern Michigan

    Directory of Open Access Journals (Sweden)

    B. Seok

    2013-08-01

    Full Text Available The dynamic behavior of nitrogen oxides (NOx = NO + NO2 and ozone (O3 above and within the canopy at the University of Michigan Biological Station AmeriFlux (UMBS Flux site was investigated by continuous multi-height vertical gradient measurements during the summer and the fall of 2008. A daily maximum in nitric oxide (NO mixing ratios was consistently observed during the morning hours between 06:00 and 09:00 EST above the canopy. Daily NO maxima ranged between 0.1 and 2 ppbv (with a median of 0.3 ppbv, which were 2 to 20 times above the atmospheric background. The sources and causes of the morning NO maximum were evaluated using NOx and O3 measurements and synoptic and micrometeorological data. Numerical simulations with a multi-layer canopy-exchange model were done to further support this analysis. The observations indicated that the morning NO maximum was caused by the photolysis of NO2 from non-local air masses, which were transported into the canopy from aloft during the morning breakup of the nocturnal boundary layer. The analysis of simulated process tendencies indicated that the downward turbulent transport of NOx into the canopy compensates for the removal of NOx through chemistry and dry deposition. The sensitivity of NOx and O3 concentrations to soil and foliage NOx emissions was also assessed with the model. Uncertainties associated with the emissions of NOx from the soil or from leaf-surface nitrate photolysis did not explain the observed diurnal behavior in NOx (and O3 and, in particular, the morning peak in NOx mixing ratios. However, a ~30% increase in early morning NOx and NO peak mixing ratios was simulated when a foliage exchange NO2 compensation point was considered. This increase suggests the potential importance of leaf-level, bidirectional exchange of NO2 in understanding the observed temporal variability in NOx at UMBS.

  15. Optical properties of thin films of mixed Ni–W oxide made by reactive DC magnetron sputtering

    OpenAIRE

    Valyukh, I.; Green, S.V.; Granqvist, C. G.; Niklasson, G. A.; Valyukh, S; Arwin, H.

    2011-01-01

    Thin films of NixW1-x oxides with x = 0.05, 0.19, 0.43 and 0.90 were studied. Films with thicknesses in the range 125-250 nm were deposited on silicon wafers at room temperature by reactive DC magnetron co-sputtering from targets of Ni and W. The films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), and spectroscopic ellipsometry (SE). XRD spectra and SEM micrographs showed that all films were amorphous and possessed a columnar structure. The ellipsometric...

  16. Improvement in reliability of amorphous indium-gallium-zinc oxide thin-film transistors with Teflon/SiO2 bilayer passivation under gate bias stress

    Science.gov (United States)

    Fan, Ching-Lin; Tseng, Fan-Ping; Li, Bo-Jyun; Lin, Yu-Zuo; Wang, Shea-Jue; Lee, Win-Der; Huang, Bohr-Ran

    2016-02-01

    The reliability of amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) with Teflon/SiO2 bilayer passivation prepared under positive and negative gate bias stresses (PGBS and NGBS, respectively) was investigated. Heavier electrical degradation was observed under PGBS than under NGBS, indicating that the environmental effects under PGBS are more evident than those under NGBS. The device with bilayer passivation under PGBS shows two-step degradation. The positive threshold voltage shifts during the initial stressing period (before 500 s), owing to the charges trapped in the gate insulator or at the gate insulator/a-IGZO active layer interface. The negative threshold voltage shift accompanies the increase in subthreshold swing (SS) for the continuous stressing period (after 500 s) owing to H2O molecules from ambience diffused within the a-IGZO TFTs. It is believed that Teflon/SiO2 bilayer passivation can effectively improve the reliability of the a-IGZO TFTs without passivation even though the devices are stressed under gate bias.

  17. Damage-free back channel wet-etch process in amorphous indium-zinc-oxide thin-film transistors using a carbon-nanofilm barrier layer.

    Science.gov (United States)

    Luo, Dongxiang; Zhao, Mingjie; Xu, Miao; Li, Min; Chen, Zikai; Wang, Lang; Zou, Jianhua; Tao, Hong; Wang, Lei; Peng, Junbiao

    2014-07-23

    Amorphous indium-zinc-oxide thin film transistors (IZO-TFTs) with damage-free back channel wet-etch (BCE) process were investigated. A carbon (C) nanofilm was inserted into the interface between IZO layer and source/drain (S/D) electrodes as a barrier layer. Transmittance electron microscope images revealed that the 3 nm-thick C nanofilm exhibited a good corrosion resistance to a commonly used H3PO4-based etchant and could be easily eliminated. The TFT device with a 3 nm-thick C barrier layer showed a saturated field effect mobility of 14.4 cm(2) V(-1) s(-1), a subthreshold swing of 0.21 V/decade, an on-to-off current ratio of 8.3 × 10(10), and a threshold voltage of 2.0 V. The favorable electrical performance of this kind of IZO-TFTs was due to the protection of the inserted C to IZO layer in the back-channel-etch process. Moreover, the low contact resistance of the devices was proved to be due to the graphitization of the C nanofilms after annealing. In addition, the hysteresis and thermal stress testing confirmed that the usage of C barrier nanofilms is an effective method to fabricate the damage-free BCE-type devices with high reliability.

  18. Effects of contact resistance on the evaluation of charge carrier mobilities and transport parameters in amorphous zinc tin oxide thin-film transistors

    Science.gov (United States)

    Schulz, Leander; Yun, Eui-Jung; Dodabalapur, Ananth

    2014-06-01

    Accurate determination of the charge transport characteristics of amorphous metal-oxide transistors requires the mitigation of the effects of contact resistance. The use of additional electrodes as voltage probes can overcome contact resistance-related limitations and yields accurate charge carrier mobility values, trap depths and temperature and carrier density dependencies of mobility as well as trap depths. We show that large differences in measured charge carrier mobility values are obtained when such contact resistances are not factored out. Upon exclusion of the contact resistance, the true temperature dependence of charge carrier mobility appears in the form of two clearly distinct mobility regimes. Analyzing these revealed mobility regions leads to a more accurate determination of the underlying transport physics, which shows that contact resistance-related artefacts yield incorrect trends of trap depth with gate voltage, potentially leading to a misconstruction of the charge transport picture. Furthermore, a comparison of low- and high-mobility samples indicates that the observed effects are more general.

  19. Comparison of electrorheological performance between urea-coated and graphene oxide-wrapped core-shell structured amorphous TiO2 nanoparticles

    Science.gov (United States)

    Dong, Xufeng; Huo, Shuang; Qi, Min

    2016-01-01

    Polar molecules and graphene oxide (GO) have been used as the shell materials to prepare core-shell structured particles with enhanced electrorheological (ER) properties. Nevertheless, few studies compared the ER performance and stability of the suspensions with the two kinds of shell. In this study, urea and GO are used as the shell materials to prepare TiO2/urea and TiO2/GO core-shell particles-based ER fluids, respectively. Particle characterization results indicate the two kinds of core-shell structured particles present little change in size, morphology and crystal structure compared with the bare amorphous TiO2. Some polar groups are distributed on the surface of the two kinds of core-shell structured particles, which is responsible for their improved ER performance with respect to the bare TiO2 particles. The TiO2/GO particles-based ER fluid presents higher yield stress, lower leakage current density, better sedimentation stability but lower ER efficiency than the TiO2/urea particles-based sample. The larger surface area, stronger connection with the bare TiO2 particles, and larger number of polar groups of the GO-coating is the possible reason for the different properties of TiO2/GO particles-based ER fluid compared with the TiO2/urea particles-based sample.

  20. Edge effect enhanced electron field emission in top assembled reduced graphene oxide assisted by amorphous CNT-coated carbon cloth substrate

    Directory of Open Access Journals (Sweden)

    Rajarshi Roy

    2013-01-01

    Full Text Available In this work a hybrid structure assembly of amorphous carbon nanotubes (a-CNTs -reduced graphene oxide (RGO has been fabricated on carbon cloth/PET substrates for enhanced edge effect assisted flexible field emission device application. The carbon nanostructures prepared by chemical processes were finally deposited one over the other by a simple electrophoretic deposition (EPD method on carbon cloth (CC fabric. The thin films were then characterized by X-ray diffraction (XRD, Fourier transformed infrared spectroscopy (FTIR, field emission scanning electron microscopy (FESEM and high resolution transmission electron microscope (HRTEM. Field assisted electron emission measurement was performed on this hybrid structure. It was observed that the hybrid carbon nanostructure showed exceptional field emission properties with outstanding low turn-on and threshold field (Eto∼ 0.26 Vμm−1, Eth ∼ 0.55 Vμm1. These observed results are far better compared to standalone and plasma etched edge enhanced RGO systems due to the bottom layer a-CNTs bed which assisted in significant enhancement of edge effect in RGO sheets.

  1. Hydration of ordinary portland cements made from raw mix containing transition element oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kakali, G.; Tsivilis, S.; Tsialtas, A. [National Technical Univ. of Athens (Greece)

    1998-03-01

    The use of industrial wastes, such as waste tires, waste oil, non-ferrous metal slag, or waste molding sand, as alternative raw materials and fuel in cement plants has been established from an environmental and recycling point of view and is expected to increase in the future. Cement is broadly used, among other hydraulic binders, in the solidification and stabilization of industrial and municipal wastes. This tendency to the use of wastes in the cement industry or the utilization of cement for the handling of wastes has led to the presence of several transition element compounds in the clinker and/or in the hydrated cement. The subject of this paper is the study of the hydration process in cements made from raw mixes containing transition element oxides. The oxides used are ZrO{sub 2}, V{sub 2}O{sub 5}, Ni{sub 2}O{sub 3}, CuO, Co{sub 2}O{sub 3}, MnO, Cr{sub 2}O{sub 3}, TiO{sub 2}, MoO{sub 3}, and ZnO, and their percentage in the raw mixes is 2% w/w. The cement pastes are cured in water for 24 h, 48 h, 7 days and 28 days. Hydration rate and products are studied by means of X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. As it is concluded, the added oxides provoke, in general, a retardation of the hydration reactions. The effect is stronger during the first 2 days and becomes negligible at 28 days. The addition of CuO strongly delays the hydration even after 28 days. Its action is related to the formation of Cu(OH){sub 2} during the first days of hydration.

  2. A magnetic route to measure the average oxidation state of mixed-valent manganese in manganese oxide octahedral molecular sieves (OMS).

    Science.gov (United States)

    Shen, Xiong-Fei; Ding, Yun-Shuang; Liu, Jia; Han, Zhao-Hui; Budnick, Joseph I; Hines, William A; Suib, Steven L

    2005-05-04

    A magnetic route has been applied for measurement of the average oxidation state (AOS) of mixed-valent manganese in manganese oxide octahedral molecular sieves (OMS). The method gives AOS measurement results in good agreement with titration methods. A maximum analysis deviation error of +/-7% is obtained from 10 sample measurements. The magnetic method is able to (1) confirm the presence of mixed-valent manganese and (2) evaluate AOS and the spin states of d electrons of both single oxidation state and mixed-valent state Mn in manganese oxides. In addition, the magnetic method may be extended to (1) determine AOS of Mn in manganese oxide OMS with dopant "diamagnetic" ions, such as reducible V5+ (3d0) ions, which is inappropriate for the titration method due to interference of redox reactions between these dopant ions and titration reagents, such as KMnO4, (2) evaluate the dopant "paramagnetic" ions that are present as clusters or in the OMS framework, and (3) determine AOS of other mixed-valent/single oxidation state ion systems, such as Mo3+(3d3)-Mo4+(3d2) systems and Fe3+ in FeCl3.

  3. Characterization of CeO2-ZrO2 mixed oxides prepared by two different co-precipitation methods

    Institute of Scientific and Technical Information of China (English)

    YUE Mei; CUI Meisheng; ZHANG Na; LONG Zhiqi; HUANG Xiaowei

    2013-01-01

    A series of cerium zirconium mixed oxides were prepared by two co-precipitation methods using magnesium hydrogen carbonate (MHC) and mixed ammonia-ammonia hydrogen carbonate (AAHC) as precipitant respectively.The crystal structure,BET surface area and morphology of the produced cerium zirconium mixed oxides were characterized by X-ray diffraction (XRD),Brumauer-Emmett-Teller (BET) and scanning electron microscopy (SEM) techniques.The reduction-oxidation behavior and oxygen storage capacity (OSC) performance were also studied by temperature programmed reduction (TPR) and oxygen pulse chemical adsorption methods.The XRD results demonstrated that the cerium zirconium mixed oxides obtained by both methods possessed structure of cubic solid solution phase.The fresh surface area calcinated at 600 ℃,aged surface area after 1000 ℃ and OSC at 500 ℃ of cerium zirconium mixed oxides were determined to be 89.337,34.784 m2/g,and 567 μmol O2/g for MHC method and 122.010,46.307 m2/g,and 665 μmol O2/g for AAHC method,respectively.

  4. Molecular dynamics study of the mechanical loss in amorphous pure and doped silica

    Energy Technology Data Exchange (ETDEWEB)

    Hamdan, Rashid; Trinastic, Jonathan P.; Cheng, H. P., E-mail: cheng@qtp.ufl.edu [Department of Physics and Quantum Theory Project, University of Florida, Gainesville, Florida 32611 (United States)

    2014-08-07

    Gravitational wave detectors and other precision measurement devices are limited by the thermal noise in the oxide coatings on the mirrors of such devices. We have investigated the mechanical loss in amorphous oxides by calculating the internal friction using classical, atomistic molecular dynamics simulations. We have implemented the trajectory bisection method and the non-local ridge method in the DL-POLY molecular dynamics simulation software to carry out those calculations. These methods have been used to locate the local potential energy minima that a system visits during a molecular dynamics trajectory and the transition state between any two consecutive minima. Using the numerically calculated barrier height distributions, barrier asymmetry distributions, relaxation times, and deformation potentials, we have calculated the internal friction of pure amorphous silica and silica mixed with other oxides. The results for silica compare well with experiment. Finally, we use the numerical calculations to comment on the validity of previously used theoretical assumptions.

  5. Microbial Ecology Assessment of Mixed Copper Oxide/Sulfide Dump Leach Operation

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, D F; Thompson, D N; Noah, K S

    1999-06-01

    Microbial consortia composed of complex mixtures of autotrophic and heterotrophic bacteria are responsible for the dissolution of metals from sulfide minerals. Thus, an efficient copper bioleaching operation depends on the microbial ecology of the system. A microbial ecology study of a mixed oxide/sulfide copper leaching operation was conducted using an "overlay" plating technique to differentiate and identify various bacterial consortium members of the genera Thiobacillus, Leptospirillum, Ferromicrobium, and Acidiphilium. Two temperatures (30C and 45C) were used to select for mesophilic and moderately thermophilic bacteria. Cell numbers varied from 0-106 cells/g dry ore, depending on the sample location and depth. After acid curing for oxide leaching, no viable bacteria were recovered, although inoculation of cells from raffinate re-established a microbial population after three months. Due to the low pH of the operation, very few non-iron-oxidizing acidophilic heterotrophs were recovered. Moderate thermophiles were isolated from the ore samples. Pregnant liquor solutions (PLS) and raffinate both contained a diversity of bacteria. In addition, an intermittently applied waste stream that contained high levels of arsenic and fluoride was tested for toxicity. Twenty vol% waste stream in PLS killed 100% of the cells in 48 hours, indicating substantial toxicity and/or growth inhibition. The data indicate that bacteria populations can recover after acid curing, and that application of the waste stream to the dump should be avoided. Monitoring the microbial ecology of the leaching operation provided significant information that improved copper recovery.

  6. Tuning Oleophobicity of Silicon Oxide Surfaces with Mixed Monolayers of Aliphatic and Fluorinated Alcohols.

    Science.gov (United States)

    Lee, Austin W H; Gates, Byron D

    2016-12-13

    We demonstrate the formation of mixed monolayers derived from a microwave-assisted reaction of alcohols with silicon oxide surfaces in order to tune their surface oleophobicity. This simple, rapid method provides an opportunity to precisely tune the constituents of the monolayers. As a demonstration, we sought fluorinated alcohols and aliphatic alcohols as reagents to form monolayers from two distinct constituents for tuning the surface oleophobicity. The first aspect of this study sought to identify a fluorinated alcohol that formed monolayers with a relatively high surface coverage. It was determined that 1H,1H,2H,2H-perfluoro-1-octanol yielded high quality monolayers with a water contact angle (WCA) value of ∼110° and contact angle values of ∼80° with toluene and hexadecane exhibiting both an excellent hydrophobicity and oleophobicity. Tuning of the oleophobicity of the modified silicon oxide surfaces was achieved by controlling the molar ratio of 1H,1H,2H,2H-perfluoro-1-octanol within the reaction mixtures. Surface oleophobicity progressively decreased with a decrease in the fluorinated alcohol content while the monolayers maintained their hydrophobicity with WCA values of ∼110°. The simple and reliable approach to preparing monolayers of a tuned composition that is described in this article can be utilized to control the fluorocarbon content of the hydrophobic monolayers on silicon oxide surfaces.

  7. Effect of different mixing ways in palladium/ceria-zirconia/alumina preparation on partial oxidation of methane

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qingwei; WEN Jing; SHEN Meiqing; WANG Jun

    2008-01-01

    The effect of the mixing ways of Ce0.7Zr0.3O2-Al2O3 mixed oxides on the partial oxidations of methane (POM) was investigated over Pd/Ce0.7Zr0.3O2-Al2O3 catalysts, the mixing ways including salt precursor mixing (ATOM), precipitator mixing (MOL), and powder mechanically mixing (MECH), respectively. The test results indicated that among the three samples, Pd/ATOM had the best catalytic activity,while Pd/MOL had the best stability in the stability test. Both the activity sequences of the fresh and used samples were consistent with the order of Pd dispersion. According to the X-ray diffraction (XRD) and BET characterization, the interaction of Ce4+, Zr4+, and Al3+ in the ATOM mixed oxide was in favor of performing higher catalytic activity and thermal stability. The stability test indicated that Pd/MOL had the highest Pd dispersion and least coke formation on the active sites calculated by the H2-chemisorption and TG results, which was consid-ered to relate to its superior activity of POM to other catalysts.

  8. Atomic scale structure of amorphous aluminum oxyhydroxide, oxide and oxycarbide films probed by very high field (27)Al nuclear magnetic resonance.

    Science.gov (United States)

    Baggetto, L; Sarou-Kanian, V; Florian, P; Gleizes, A N; Massiot, D; Vahlas, C

    2017-03-15

    The atomic scale structure of aluminum in amorphous alumina films processed by direct liquid injection chemical vapor deposition from aluminum tri-isopropoxide (ATI) and dimethyl isopropoxide (DMAI) is investigated by solid-state (27)Al nuclear magnetic resonance (SSNMR) using a very high magnetic field of 20.0 T. This study is performed as a function of the deposition temperature in the range 300-560 °C, 150-450 °C, and 500-700 °C, for the films processed from ATI, DMAI (+H2O), and DMAI (+O2), respectively. While the majority of the films are composed of stoichiometric aluminum oxide, other samples are partially or fully hydroxylated at low temperature, or contain carbidic carbon when processed from DMAI above 500 °C. The quantitative analysis of the SSNMR experiments reveals that the local structure of these films is built from AlO4, AlO5, AlO6 and Al(O,C)4 units with minor proportions of the 6-fold aluminum coordination and significant amounts of oxycarbides in the films processed from DMAI (+O2). The aluminum coordination distribution as well as the chemical shift distribution indicate that the films processed from DMAI present a higher degree of structural disorder compared to the films processed from ATI. Hydroxylation leads to an increase of the 6-fold coordination resulting from the trend of OH groups to integrate into AlO6 units. The evidence of an additional environment in films processed from DMAI (+O2) by (27)Al SSNMR and first-principle NMR calculations on Al4C3 and Al4O4C crystal structures supports that carbon is located in Al(O,C)4 units. The concentration of this coordination environment strongly increases with increasing process temperature from 600 to 700 °C favoring a highly disordered structure and preventing from crystallizing into γ-alumina. The obtained results are a valuable guide to the selection of process conditions for the CVD of amorphous alumina films with regard to targeted applications.

  9. Interplay between hopping and band transport in high-mobility disordered semiconductors at large carrier concentrations: The case of the amorphous oxide InGaZnO

    Science.gov (United States)

    Fishchuk, I. I.; Kadashchuk, A.; Bhoolokam, A.; de Jamblinne de Meux, A.; Pourtois, G.; Gavrilyuk, M. M.; Köhler, A.; Bässler, H.; Heremans, P.; Genoe, J.

    2016-05-01

    We suggest an analytic theory based on the effective medium approximation (EMA) which is able to describe charge-carrier transport in a disordered semiconductor with a significant degree of degeneration realized at high carrier concentrations, especially relevant in some thin-film transistors (TFTs), when the Fermi level is very close to the conduction-band edge. The EMA model is based on special averaging of the Fermi-Dirac carrier distributions using a suitably normalized cumulative density-of-state distribution that includes both delocalized states and the localized states. The principal advantage of the present model is its ability to describe universally effective drift and Hall mobility in heterogeneous materials as a function of disorder, temperature, and carrier concentration within the same theoretical formalism. It also bridges a gap between hopping and bandlike transport in an energetically heterogeneous system. The key assumption of the model is that the charge carriers move through delocalized states and that, in addition to the tail of the localized states, the disorder can give rise to spatial energy variation of the transport-band edge being described by a Gaussian distribution. It can explain a puzzling observation of activated and carrier-concentration-dependent Hall mobility in a disordered system featuring an ideal Hall effect. The present model has been successfully applied to describe experimental results on the charge transport measured in an amorphous oxide semiconductor, In-Ga-Zn-O (a-IGZO). In particular, the model reproduces well both the conventional Meyer-Neldel (MN) compensation behavior for the charge-carrier mobility and inverse-MN effect for the conductivity observed in the same a-IGZO TFT. The model was further supported by ab initio calculations revealing that the amorphization of IGZO gives rise to variation of the conduction-band edge rather than to the creation of localized states. The obtained changes agree with the one we

  10. Electrolytic reduction of mixed (Fe, Ti) oxide using molten calcium chloride electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Panigrahi, Mrutyunjay, E-mail: mp@mail.tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aobaku, Sendai 980-8577 (Japan); Iizuka, Atsushi; Shibata, Etsuro; Nakamura, Takashi [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aobaku, Sendai 980-8577 (Japan)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer Tan et al. have electrolyzed mixtures of TiO{sub 2} and Fe{sub 2}O{sub 3} to produce alloys containing Fe-Ti intermetallic phases such as FeTi and Fe{sub 2}Ti using the FFC process. However, the produced alloys have a porous structure with many carbon impurities, e.g., titanium carbide (TiC). Most of the carbon contamination could be caused by the presence of carbon particles in the porous alloy structure. They did not mention any obvious ways of excluding carbon and other impurities, and only suggested that the use of mixed oxides with refined structures or using a single phase, namely ilmenite (FeO{center_dot}TiO{sub 2}), were methods of decreasing impurities in the formed alloys. For future industrialization, there is an urgent need for obvious ways of producing purer Fe-Ti alloys with dense structures, rather than porous structures, as these absorb carbon impurities. Black-Right-Pointing-Pointer Finally, we successfully reduced to a highly purified Fe-Ti intermetallic alloy of FeTi and {beta}-Ti (FeTi{sub 4}) phases. FeTi phases of size around 5-10 {mu}m were dispersed in a matrix of the {beta}-Ti (FeTi{sub 4}) phase. The carbon content of the electrolyzed alloy was as low as less than 0.01 mass%. It was suggested that the dense structure of the alloy of FeTi and {beta}-Ti (FeTi{sub 4}) avoided the inclusion of carbon particle impurities, unlike the porous alloy structure. - Abstract: The production of high-purity metals or alloys using effective technologies is critical for future industrialization. With this aim in mind, a fundamental study of electrolysis in molten CaCl{sub 2} electrolytes was conducted to develop a new production process for ferrotitanium (Fe-Ti) intermetallic alloys. Mixed solid oxides of TiO{sub 2} and Fe{sub 2}O{sub 3} were used in a molar ratio of 5.44:1.00. In this composition of Ti and Fe, FeTi and {beta}-Ti containing iron can co-exist in equilibrium. A mixed solid (Fe, Ti) oxide was reduced

  11. Bright blue photoluminescence from a mixed tin and manganese oxide xerogel prepared via sol-hydrothermal-gel process

    Institute of Scientific and Technical Information of China (English)

    Xiang Xia; Cheng Xiao-Feng; He Shao-Bo; Yuan Xiao-Dong; Zheng Wan-Guo; Li Zhi-Jie; Liu Chun-Ming; Zhou Wei-Lie; Zu Xiao-Tao

    2011-01-01

    A new blue photoluminescent material,a mixed tin and manganese oxide xerogel,is prepared via sol-hydrothermalgel process assisted by citric acid.The composition xerogel exhibits strong blue emission at room temperature,with an emission maximum at 434 nm under short (234 nm) or long-wavelength (343 nm) ultraviolet excitation.The photoluminescent excitation spectrum of the mixed tin and manganese oxide xerogel,monitored at an intensity maximum wavelength of 434 nm of the emission,consists of two excitation peaks at 234 nm and 343 nm.With heat treatment temperature increasing from 110 ℃ to 200 ℃,the blue emission intensity increases remarkably,whereas it is almost completely quenched after being treated at 300 ℃.The carbon impurities in the mixed tin and manganese oxide xerogel,confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy,should be responsible for the bright blue photoluminescence.

  12. Influence of thermal treatments on the basic and catalytic properties of Mg,Al-mixed oxides derived from hydrotalcites

    Directory of Open Access Journals (Sweden)

    R. Bastiani

    2004-06-01

    Full Text Available This work studied the influence of calcination conditions on basic properties and catalytic performance of Mg,Al-mixed oxides derived from a hydrotalcite sample (Al/(Al+Mg=0.20. Various heating rates, calcination atmospheres and lengths of calcination at 723K were evaluated. TPD of CO2 and retroaldolization of diacetone alcohol (DAA were used to determine the basic properties of the mixed oxides. The basic site density determined by TPD of CO2 showed a better correlation with catalytic activity for acetone/citral aldol condensation than the relative basicity obtained from retroaldolization of DAA. Calcination atmosphere was the parameter that influenced most the basic and the catalytic properties of the Mg,Al-mixed oxides, with calcination under dry air being the best choice.

  13. Hydrothermal Synthesis, Characterization and Catalytic Properties of Nanoporous MoO3/ZrO2 Mixed Oxide

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A nanoporous MoO3/ZrO2 mixed oxide was hydrothermally synthesized by hydrolyzing zirconium isopropoxide in the presence of a cationic surfactant, cetyltrimethylammonium bromide(CTAB). The crystal structure and the acidity of the obtained nanoporous MoO3/ZrO2 mixed oxide were determined by means of XRD, N2 adsorption-desorption and NH3-TPD, respectively. The isobutane/butene alkylation over the MoO3/ZrO2 catalyst was carried out in a fixed bed reactor. The results reveal that ZrO2 in MoO3/ZrO2 exists mainly in the tetragonal phase, and the catalyst samples possess large specific surface areas as well as moderate acidity for isobutane/butene alkylation. Compared with samples prepared by impregnation and sol-gel processes, MoO3/ZrO2 mixed oxide samples prepared in this work have a better catalytic activity.

  14. Nanoporous composites prepared by a combination of SBA-15 with Mg-Al mixed oxides. Water vapor sorption properties.

    Science.gov (United States)

    Pérez-Verdejo, Amaury; Sampieri, Alvaro; Pfeiffer, Heriberto; Ruiz-Reyes, Mayra; Santamaría, Juana-Deisy; Fetter, Geolar

    2014-01-01

    This work presents two easy ways for preparing nanostructured mesoporous composites by interconnecting and combining SBA-15 with mixed oxides derived from a calcined Mg-Al hydrotalcite. Two different Mg-Al hydrotalcite addition procedures were implemented, either after or during the SBA-15 synthesis (in situ method). The first procedure, i.e., the post-synthesis method, produces a composite material with Mg-Al mixed oxides homogeneously dispersed on the SBA-15 nanoporous surface. The resulting composites present textural properties similar to the SBA-15. On the other hand, with the second procedure (in situ method), Mg and Al mixed oxides occur on the porous composite, which displays a cauliflower morphology. This is an important microporosity contribution and micro and mesoporous surfaces coexist in almost the same proportion. Furthermore, the nanostructured mesoporous composites present an extraordinary water vapor sorption capacity. Such composites might be utilized as as acid-base catalysts, adsorbents, sensors or storage nanomaterials.

  15. Nanoporous composites prepared by a combination of SBA-15 with Mg–Al mixed oxides. Water vapor sorption properties

    Directory of Open Access Journals (Sweden)

    Amaury Pérez-Verdejo

    2014-08-01

    Full Text Available This work presents two easy ways for preparing nanostructured mesoporous composites by interconnecting and combining SBA-15 with mixed oxides derived from a calcined Mg–Al hydrotalcite. Two different Mg–Al hydrotalcite addition procedures were implemented, either after or during the SBA-15 synthesis (in situ method. The first procedure, i.e., the post-synthesis method, produces a composite material with Mg–Al mixed oxides homogeneously dispersed on the SBA-15 nanoporous surface. The resulting composites present textural properties similar to the SBA-15. On the other hand, with the second procedure (in situ method, Mg and Al mixed oxides occur on the porous composite, which displays a cauliflower morphology. This is an important microporosity contribution and micro and mesoporous surfaces coexist in almost the same proportion. Furthermore, the nanostructured mesoporous composites present an extraordinary water vapor sorption capacity. Such composites might be utilized as as acid-base catalysts, adsorbents, sensors or storage nanomaterials.

  16. Assessment of the genotoxic potential of two zinc oxide sources (amorphous and nanoparticles) using the in vitro micronucleus test and the in vivo wing somatic mutation and recombination test.

    Science.gov (United States)

    Reis, Érica de Melo; de Rezende, Alexandre Azenha Alves; Santos, Diego Vilela; de Oliveria, Pollyanna Francielli; Nicolella, Heloisa Diniz; Tavares, Denise Crispim; Silva, Anielle Christine Almeida; Dantas, Noelio Oliveira; Spanó, Mário Antônio

    2015-10-01

    In this study, we evaluated the toxic and genotoxic potential of zinc oxide nanoparticles (ZnO NPs) of 20 nm and the mutagenic potential of these ZnO NPs as well as that of an amorphous ZnO. Toxicity was assessed by XTT colorimetric assay. ZnO NPs were toxic at concentrations equal to or higher than 240.0 μM. Genotoxicity was assessed by in vitro Cytokinesis Block Micronucleus Assay (CBMN) in V79 cells. ZnO NPs were genotoxic at 120.0 μM. The mutagenic potential of amorphous ZnO and the ZnO NPs was assayed using the wing Somatic Mutation and Recombination Test (SMART) of Drosophila melanogaster. In the Standard cross, the amorphous ZnO and ZnO NPs were not mutagenic. Nevertheless, Marker trans-heterozygous individuals from the High bioactivation cross treated with amorphous ZnO (6.25 mM) and ZnO NPs (12.50 mM) displayed a significant increased number of mutant spots when compared with the negative control. In conclusion, the results were not dose related and indicate that only higher concentrations of ZnO NPs were toxic and able to induce genotoxicity in V79 cells. The increase in mutant spots observed in D. melanogaster was generated due to mitotic recombination, rather than mutational events.

  17. Mixed transition-metal oxides: design, synthesis, and energy-related applications.

    Science.gov (United States)

    Yuan, Changzhou; Wu, Hao Bin; Xie, Yi; Lou, Xiong Wen David

    2014-02-03

    A promising family of mixed transition-metal oxides (MTMOs) (designated as Ax B3-x O4 ; A, B=Co, Ni, Zn, Mn, Fe, etc.) with stoichiometric or even non-stoichiometric compositions, typically in a spinel structure, has recently attracted increasing research interest worldwide. Benefiting from their remarkable electrochemical properties, these MTMOs will play significant roles for low-cost and environmentally friendly energy storage/conversion technologies. In this Review, we summarize recent research advances in the rational design and efficient synthesis of MTMOs with controlled shapes, sizes, compositions, and micro-/nanostructures, along with their applications as electrode materials for lithium-ion batteries and electrochemical capacitors, and efficient electrocatalysts for the oxygen reduction reaction in metal-air batteries and fuel cells. Some future trends and prospects to further develop advanced MTMOs for next-generation electrochemical energy storage/conversion systems are also presented.

  18. Thermochemical prediction of chemical form distributions of fission products in LWR mixed oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Kouki; Furuya, Hirotaka [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1998-06-01

    Radial distribution of chemical forms of fission products (FPs) in LWR mixed oxide (MOX) fuel pins was theoretically predicted by a thermochemical computer code SOLGASMIX-PV. The amounts of fission products generated in the fuel were calculated by ORIGEN-2 code, and the radial distributions of temperature and oxygen potential were calculated by taking the neutron depression and oxygen redistribution in the fuel into account. A fuel pellet was radially divided into 51 sections and chemical forms of FPs were calculated in each section. The effects of linear heat rating (LHR) and average O/U ratio on radial distribution of chemical form were evaluated. It was found that the radial distribution of chemical forms depends strongly on the LHR and the O/M ratio, and is not proportional to that of burnup. (author)

  19. Molecular data of mixed metal oxides with importance in nuclear safety

    Science.gov (United States)

    Kovács, Attila; Konings, Rudy J. M.

    2016-08-01

    The gas-phase structural and spectroscopic properties of selected mixed metal oxides (Cs2CrO4, Cs2MnO4, Cs2MoO4, Cs2RuO4, BaMoO4, BaMoO3) have been calculated using Density Functional Theory (DFT). The possible structural isomers have been analyzed and for the found global minima the vibrational (IR, Raman) spectra have been predicted taking into account also anharmonic corrections. The bonding properties have been characterized by means of the Natural Bond Orbital analysis model while the low-lying excited electronic states have been calculated using time-dependent DFT. In order to assess the stability of the target species the dissociation enthalpies have been evaluated.

  20. Fluorine and chlorine determination in mixed uranium-plutonium oxide fuel and plutonium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Elinson, S.V.; Zemlyanukhina, N.A.; Pavlova, I.V.; Filatkina, V.P.; Tsvetkova, V.T.

    1981-01-01

    A technique of fluorine and chlorine determination in the mixed uranium-plutonium oxide fuel and plutonium dioxide, based on their simultaneous separation by means of pyrohydrolysis, is developed. Subsequently, fluorine is determined by photometry with alizarincomplexonate of lanthanum or according to the weakening of zirconium colouring with zylenol orange. Chlorine is determined using the photonephelometric method according to the reaction of chloride-ion interaction with silver nitrate or by spectrophotometric method according to the reaction with mercury rhodanide. The lower limit of fluorine determination is -6x10/sup -5/ %, of chlorine- 1x10/sup -4/% in the sample of 1g. The relative mean quadratic deviation of the determination result (Ssub(r)), depends on the character of the material analyzed and at the content of nx10/sup -4/ - nx10/sup -3/ mass % is equal to from 0.05 to 0.32 for fluorine and from 0.11 to 0.35 for chlorine.

  1. The underwater coincidence counter for plutonium measurements in mixed-oxide fuel assemblies manual

    Energy Technology Data Exchange (ETDEWEB)

    G. W. Eccleston; H. O. Menlove; M. Abhold; M. Baker; J. Pecos

    1999-05-01

    This manual describes the Underwater Coincidence Counter (UWCC) that has been designed for the measurement of plutonium in mixed-oxide (MOX) fuel assemblies prior to irradiation. The UWCC uses high-efficiency {sup 3}He neutron detectors to measure the spontaneous-fission and induced-fission rates in the fuel assembly. Measurements can be made on MOX fuel assemblies in air or underwater. The neutron counting rate is analyzed for singles, doubles, and triples time correlations to determine the {sup 240}Pu effective mass per unit length of the fuel assembly. The system can verify the plutonium loading per unit length to a precision of less than 1% in a measurement time of 2 to 3 minutes. System design, components, performance tests, and operational characteristics are described in this manual.

  2. Effect of CO2 on the Conversion of Isobutane over Iron, Cerium and Molybdenum Mixed Oxides

    Directory of Open Access Journals (Sweden)

    Daifallah Al-Dhayan

    2016-10-01

    Full Text Available A series of cerium and iron mixed oxide catalysts were prepared by thermal decomposition of Fe1.5PMo12O40 and Ce1.5PMo12O40 heteropolyanions mixture. The prepared catalysts have been characterized and tested for the conversion of isobutane in the presence of CO2. Characterization by XRD showed that besides Fe2O3 and CeO2, α-MoO3 was the main phase formed after thermal treatment. The effect of the support, the reaction temperature, and the presence of H2O in the reactant mixture was investigated. It has been found that the support enhanced both the conversion and isobutene selectivity. As for the reaction temperature and addition of water, it has been found that increasing the temperature increased both the conversion and isobutene selectivity, whereas the presence of water increased the isobutene selectivity but decreased the conversion.

  3. Conversion of Syngas-Derived C2+ Mixed Oxygenates to C3-C5 Olefins over ZnxZryOz Mixed Oxides Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Colin D.; Lebarbier, Vanessa M.; Flake, Matthew D.; Ramasamy, Karthikeyan K.; Kovarik, Libor; Bowden, Mark E.; Onfroy, Thomas; Dagle, Robert A.

    2016-04-01

    In this study we report on a ZnxZryOz mixed oxide type catalyst capable of converting a syngas-derived C2+ mixed oxygenate feedstock to isobutene-rich olefins. Aqueous model feed comprising of ethanol, acetaldehyde, acetic acid, ethyl acetate, methanol, and propanol was used as representative liquid product derived from a Rh-based mixed oxygenate synthesis catalyst. Greater than 50% carbon yield to C3-C5 mixed olefins was demonstrated when operating at 400-450oC and 1 atm. In order to rationalize formation of the products observed feed components were individually evaluated. Major constituents of the feed mixture (ethanol, acetaldehyde, acetic acid, and ethyl acetate) were found to produce isobutene-rich olefins. C-C coupling was also demonstrated for propanol feedstock - a minor constituent of the mixed oxygenate feed - producing branched C6 olefins, revealing scalability to alcohols higher than ethanol following an analogous reaction pathway. Using ethanol and propanol feed mixtures, cross-coupling reactions produced mixtures of C4, C5, and C6 branched olefins. The presence of H2 in the feed was found to facilitate hydrogenation of the ketone intermediates, thus producing straight chain olefins as byproducts. While activity loss from coking is observed complete catalyst regeneration is achieved by employing mild oxidation. For conversion of the mixed oxygenate feed a Zr/Zn ratio of 2.5 and a reaction temperature of 450oC provides the best balance of stability, activity, and selectivity. X-ray diffraction and scanning transmission electron microscopy analysis reveals the presence of primarily cubic phase ZrO2 and a minor amount of the monoclinic phase, with ZnO being highly dispersed in the lattice. The presence of ZnO appears to stabilize the cubic phase resulting in less monoclinic phase as the ZnO concentration increases. Infrared spectroscopy shows the mixed oxide acid sites are characterized as primarily Lewis type acidity. The direct relationship between

  4. Mixed Nanostructured Ti-W Oxides Films for Efficient Electrochromic Windows

    Directory of Open Access Journals (Sweden)

    Nguyen Nang Dinh

    2012-01-01

    Full Text Available With the aim to enhance the electrochromic (EC efficiency and electrochemical stability of electrochromic devices (ECD, mixed nanostructured TiO2/WO3 films were prepared by an electrochemical deposition method with the purpose of adding WO3 nanoparticles to porous nanocrystalline doctor-blade TiO2 (nc-TiO2 films. The results of the characterization of electrochromic properties in 1 M LiClO4 + propylene carbonate (LiClO4 + PC of both the nc-TiO2/F-doped tin oxide (FTO and WO3/TiO2/FTO configurations showed the reversible coloration and bleaching of the ECDs. The response time of the ECD coloration of WO3/TiO2/FTO was found to be as small as 2 sec, and its coloration efficiency (CE as high as 35.7 cm2 × C−1. By inserting WO3 nanoparticles into the porous TiO2 structures, WO3/TiO2 heterojunctions were formed in the films, consequently enabling both the CE and electrochemical stability of the working electrodes to be considerably enhanced. Since a large-area WO3/TiO2 can be prepared by the doctor-blade technique followed by the electrochemical deposition process, mixed nanostructured Ti-W oxides electrodes constitute a good candidate for smart window applications, taking advantage of the excellent coloration and stability properties as well as the simple and economical fabrication process involved.

  5. Thorium-based mixed oxide fuel in a pressurized water reactor: A feasibility analysis with MCNP

    Science.gov (United States)

    Tucker, Lucas Powelson

    This dissertation investigates techniques for spent fuel monitoring, and assesses the feasibility of using a thorium-based mixed oxide fuel in a conventional pressurized water reactor for plutonium disposition. Both non-paralyzing and paralyzing dead-time calculations were performed for the Portable Spectroscopic Fast Neutron Probe (N-Probe), which can be used for spent fuel interrogation. Also, a Canberra 3He neutron detector's dead-time was estimated using a combination of subcritical assembly measurements and MCNP simulations. Next, a multitude of fission products were identified as candidates for burnup and spent fuel analysis of irradiated mixed oxide fuel. The best isotopes for these applications were identified by investigating half-life, photon energy, fission yield, branching ratios, production modes, thermal neutron absorption cross section and fuel matrix diffusivity. 132I and 97Nb were identified as good candidates for MOX fuel on-line burnup analysis. In the second, and most important, part of this work, the feasibility of utilizing ThMOX fuel in a pressurized water reactor (PWR) was first examined under steady-state, beginning of life conditions. Using a three-dimensional MCNP model of a Westinghouse-type 17x17 PWR, several fuel compositions and configurations of a one-third ThMOX core were compared to a 100% UO2 core. A blanket-type arrangement of 5.5 wt% PuO2 was determined to be the best candidate for further analysis. Next, the safety of the ThMOX configuration was evaluated through three cycles of burnup at several using the following metrics: axial and radial nuclear hot channel factors, moderator and fuel temperature coefficients, delayed neutron fraction, and shutdown margin. Additionally, the performance of the ThMOX configuration was assessed by tracking cycle length, plutonium destroyed, and fission product poison concentration.

  6. The incorporation of graphene oxide into polysulfone mixed matrix membrane for CO2/CH4 separation

    Science.gov (United States)

    Zahri, K.; Goh, P. S.; Ismail, A. F.

    2016-06-01

    Carbon dioxide (CO2) is often found as the main impurity in natural gas, where methane (CH4) is the major component. The presence of CO2 in natural gas leads to several problems such as reducing the energy content of natural gas and cause pipeline corrosion. Thus it must be removed to meet specifications (CO2 ≤ 2 mol%) before the gas can be delivered to the pipeline. In this work, hollow fiber mixed matrix membrane (MMM) were fabricated by embedding graphene oxide (GO) into a polysulfone (PSf) polymer matrix to improve membrane properties as well as its separation performance towards CO2/CH4 gas. The membrane properties were investigated for pristine membrane and mixed matrix membrane filled with filler loading of 0.25%. The synthesized GO and properties of fabricated membranes were characterized and studied using TEM, AFM, XRD, FTIR and SEM respectively. The permeance of pure gases and ideal selectivity of CO2/CH4 gas were determined using pure gas permeation experiment. GO has affinity towards CO2 gas. The nanosheet structure creates path for small molecule gas and restricted large molecule gas to pass through the membrane. The incorporation of GO in PSf polymer enhanced the permeance of CO 2 and CO2/CH4 separation from 64.47 to 86.80 GPU and from 19 to 25 respectively.

  7. Tunable Mixed Ionic/Electronic Conductivity and Permittivity of Graphene Oxide Paper for Electrochemical Energy Conversion.

    Science.gov (United States)

    Bayer, Thomas; Bishop, Sean R; Perry, Nicola H; Sasaki, Kazunari; Lyth, Stephen M

    2016-05-11

    Graphene oxide (GO) is a two-dimensional graphitic carbon material functionalized with oxygen-containing surface functional groups. The material is of interest in energy conversion, sensing, chemical processing, gas barrier, and electronics applications. Multilayer GO paper has recently been applied as a new proton conducting membrane in low temperature fuel cells. However, a detailed understanding of the electrical/dielectric properties, including separation of the ionic vs electronic contributions under relevant operating conditions, has so far been lacking. Here, the electrical conductivity and dielectric permittivity of GO paper are investigated in situ from 30 to 120 °C, and from 0 to 100% relative humidity (RH) using impedance spectroscopy. These are related to the water content, measured by thermogravimetric analysis. With the aid of electron blocking measurements, GO is demonstrated to be a mixed electronic-protonic conductor, and the ion transference number is derived for the first time. For RH > 40%, conductivity is dominated by proton transport (with a maximum of 0.5 mS/cm at 90 °C and 100% RH). For RH proton conducting electrolyte but also as a mixed conducting electrode material under appropriate conditions. Such materials are highly applicable in electrochemical energy conversion and storage devices such as fuel cells and electrolyzers.

  8. Mixed fuel strategy for carbon deposition mitigation in solid oxide fuel cells at intermediate temperatures.

    Science.gov (United States)

    Su, Chao; Chen, Yubo; Wang, Wei; Ran, Ran; Shao, Zongping; Diniz da Costa, João C; Liu, Shaomin

    2014-06-17

    In this study, we propose and experimentally verified that methane and formic acid mixed fuel can be employed to sustain solid oxide fuel cells (SOFCs) to deliver high power outputs at intermediate temperatures and simultaneously reduce the coke formation over the anode catalyst. In this SOFC system, methane itself was one part of the fuel, but it also played as the carrier gas to deliver the formic acid to reach the anode chamber. On the other hand, the products from the thermal decomposition of formic acid helped to reduce the carbon deposition from methane cracking. In order to clarify the reaction pathways for carbon formation and elimination occurring in the anode chamber during the SOFC operation, O2-TPO and SEM analysis were carried out together with the theoretical calculation. Electrochemical tests demonstrated that stable and high power output at an intermediate temperature range was well-maintained with a peak power density of 1061 mW cm(-2) at 750 °C. With the synergic functions provided by the mixed fuel, the SOFC was running for 3 days without any sign of cell performance decay. In sharp contrast, fuelled by pure methane and tested at similar conditions, the SOFC immediately failed after running for only 30 min due to significant carbon deposition. This work opens a new way for SOFC to conquer the annoying problem of carbon deposition just by properly selecting the fuel components to realize their synergic effects.

  9. Removal of Hazardous Pollutants from Wastewaters: Applications of TiO2-SiO2 Mixed Oxide Materials

    Directory of Open Access Journals (Sweden)

    Shivatharsiny Rasalingam

    2014-01-01

    Full Text Available The direct release of untreated wastewaters from various industries and households results in the release of toxic pollutants to the aquatic environment. Advanced oxidation processes (AOP have gained wide attention owing to the prospect of complete mineralization of nonbiodegradable organic substances to environmentally innocuous products by chemical oxidation. In particular, heterogeneous photocatalysis has been demonstrated to have tremendous promise in water purification and treatment of several pollutant materials that include naturally occurring toxins, pesticides, and other deleterious contaminants. In this work, we have reviewed the different removal techniques that have been employed for water purification. In particular, the application of TiO2-SiO2 binary mixed oxide materials for wastewater treatment is explained herein, and it is evident from the literature survey that these mixed oxide materials have enhanced abilities to remove a wide variety of pollutants.

  10. Comparison of the redox activities of sol-gel and conventionally prepared Bi-Mo-Ti mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Wildberger, M.; Grundwaldt, J.D.; Mallat, T.; Baiker, A. [Lab. of Technical Chemistry, Swiss Federal Inst. of Technology, ETH-Zentrum, Zuerich (Switzerland)

    1998-12-31

    Novel sol-gel Bi-Mo-Ti oxides have been prepared and characterized by XRD, XPS, FT-Raman and HRTEM. The surface Bi{sup 3+} and Mo{sup 6+} species of some xerogels and an aerogel could be reduced and oxidized at room temperature, whereas the conventionally prepared reference materials were not reduced by H{sub 2} below 300 C. The unusual redox properties, under very mild conditions, are likely due to the unique morphology of Bi-Mo-oxides stabilized by titania. During butadiene oxidation to furan at above 400 C to sol-gel mixed oxides restructured considerably and their performance was barely better than that of titania-supported Bi-Mo oxides. (orig.)

  11. Transparent conductive electrodes of mixed TiO2−x–indium tin oxide for organic photovoltaics

    KAUST Repository

    Lee, Kyu-Sung

    2012-05-22

    A transparent conductive electrode of mixed titanium dioxide (TiO2−x)–indium tin oxide (ITO) with an overall reduction in the use of indium metal is demonstrated. When used in organic photovoltaicdevices based on bulk heterojunction photoactive layer of poly (3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester, a power conversion efficiency of 3.67% was obtained, a value comparable to devices having sputtered ITO electrode. Surface roughness and optical efficiency are improved when using the mixed TiO2−x–ITO electrode. The consumption of less indium allows for lower fabrication cost of such mixed thin filmelectrode.

  12. Properties of TiO2-SiO2 Mixed Oxides and Photocatalytic Oxidation of Heptane and Sulfur Dioxide

    Institute of Scientific and Technical Information of China (English)

    XIE Chao; XU Zi-li; YANG Qiu-jing; LI Na; WANG De-bao; DU Yao-guo

    2005-01-01

    A series of TiO2-XSiO2[X denotes the molar fraction(%) of silica in the mixed oxides] with different n(Ti)/n(Si) ratios was prepared with ammonia water as a hydrolysis catalyst. The photocatalysts prepared were characterized by XRD, thermal analysis, FTIR, UV-Vis and SPS. The characterization results of FTIR and UV-Vis spectra show that Ti atoms were gradually changed from octahedral coordination to tetrahedral coordination with the addition of silica, which is not beneficial for obtaining strong Brnsted acidity and higher photocatalytic activity. The photocatalytic activity experiments, which were conducted by using heptane(or SO2) as the model reactant, showed that TiO2-SiO2 containing a suitable amount of silica can exhibit much higher photocatalytic activity than pure TiO2. The enhanced photocatalytic activity can be attributed to three following factors: (1) smaller crystalline size; (2) higher thermal stability; (3) the new strong Brnsted acidity.

  13. Mg-Fe-mixed oxides derived from layered double hydroxides: A study of the surface properties

    Directory of Open Access Journals (Sweden)

    Marinković-Nedučin Radmila P.

    2011-01-01

    Full Text Available The influence of surface properties on the selectivity of the synthesized catalysts was studied, considering that their selectivity towards particular hydrocarbons is crucial for their overall activity in the chosen Fischer- -Tropsch reaction. Magnesium- and iron-containing layered double hydroxides (LDH, with the general formula: [Mg1-xFex(OH2](CO3x/2?mH2O, x = = n(Fe/(n(Mg+n(Fe, synthesized with different Mg/Fe ratio and their thermally derived mixed oxides were investigated. Magnesium was chosen because of its basic properties, whereas iron was selected due to its well-known high Fischer-Tropsch activity, redox properties and the ability to form specific active sites in the layered LDH structure required for catalytic application. The thermally less stable multiphase system (synthesized outside the optimal single LDH phase range with additional Fe-phase, having a lower content of surface acid and base active sites, a lower surface area and smaller fraction of smaller mesopores, showed higher selectivity in the Fischer-Tropsch reaction. The results of this study imply that the metastability of derived multiphase oxides structure has a greater influence on the formation of specific catalyst surface sites than other investigated surface properties.

  14. EBSD and TEM characterization of high burn-up mixed oxide fuel

    Science.gov (United States)

    Teague, Melissa; Gorman, Brian; Miller, Brandon; King, Jeffrey

    2014-01-01

    Understanding and studying the irradiation behavior of high burn-up oxide fuel is critical to licensing of future fast breeder reactors. Advancements in experimental techniques and equipment are allowing for new insights into previously irradiated samples. In this work dual column focused ion beam (FIB)/scanning electron microscope (SEM) was utilized to prepared transmission electron microscope samples from mixed oxide fuel with a burn-up of 6.7% FIMA. Utilizing the FIB/SEM for preparation resulted in samples with a dose rate of <0.5 mRem/h compared to ∼1.1 R/h for a traditionally prepared TEM sample. The TEM analysis showed that the sample taken from the cooler rim region of the fuel pellet had ∼2.5× higher dislocation density than that of the sample taken from the mid-radius due to the lower irradiation temperature of the rim. The dual column FIB/SEM was additionally used to prepared and serially slice ∼25 μm cubes. High quality electron back scatter diffraction (EBSD) were collected from the face at each step, showing, for the first time, the ability to obtain EBSD data from high activity irradiated fuel.

  15. Vapor phase hydrogenation of furfural over nickel mixed metal oxide catalysts derived from layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Sulmonetti, Taylor P.; Pang, Simon H.; Claure, Micaela Taborga; Lee, Sungsik; Cullen, David A.; Agrawal, Pradeep K.; Jones, Christopher W.

    2016-05-01

    The hydrogenation of furfural is investigated over various reduced nickel mixed metal oxides derived from layered double hydroxides (LDHs) containing Ni-Mg-Al and Ni-Co-Al. Upon reduction, relatively large Ni(0) domains develop in the Ni-Mg-Al catalysts, whereas in the Ni-Co-Al catalysts smaller metal particles of Ni(0) and Co(0), potentially as alloys, are formed, as evidenced by XAS, XPS, STEM and EELS. All the reduced Ni catalysts display similar selectivities towards major hydrogenation products (furfuryl alcohol and tetrahydrofurfuryl alcohol), though the side products varied with the catalyst composition. The 1.1Ni-0.8Co-Al catalyst showed the greatest activity per titrated site when compared to the other catalysts, with promising activity compared to related catalysts in the literature. The use of base metal catalysts for hydrogenation of furanic compounds may be a promising alternative to the well-studied precious metal catalysts for making biomass-derived chemicals if catalyst selectivity can be improved in future work by alloying or tuning metal-oxide support interactions.

  16. Water gas shift reaction over Cu catalyst supported by mixed oxide materials for fuel cell application

    Directory of Open Access Journals (Sweden)

    Tepamatr Pannipa

    2016-01-01

    Full Text Available The water gas shift activities of Cu on ceria and Gd doped ceria have been studied for the further enhancement of hydrogen purity [1] after the steam reforming of ethanol. The catalytic properties of commercial catalysts were also studied to compare with the as-prepared catalysts. Copper-containing cerium oxide materials are shown in this work to be suitable for the high temperature. Copper-ceria is a stable high-temperature shift catalyst, unlike iron-chrome catalysts that deactivate severely in CO2-rich gases. We found that 5%Cu/10%GDC(D has much higher activity than other copper ceria based catalysts. The finely dispersed CuO species is favorable to the higher activity, which explained the activity enhancement of this catalyst. The kinetics of the WGS reaction over Cu catalysts supported by mixed oxide materials were measured in the temperature range 200-400 °C. An independence of the CO conversion rate on CO2 and H2 was found.

  17. Enrichment and characteristics of mixed methane-oxidizing bacteria from a Chinese coal mine.

    Science.gov (United States)

    Jiang, Hao; Duan, Changhong; Luo, Mingfang; Xing, Xin-Hui

    2016-12-01

    In methane-rich environments, methane-oxidizing bacteria usually occur predominantly among consortia including other types of microorganisms. In this study, artificial coal bed gas and methane gas were used to enrich mixed methanotrophic cultures from the soil of a coal mine in China, respectively. The changes in microbial community structure and function during the enrichment were examined. The microbial diversity was reduced as the enrichment proceeded, while the capacity for methane oxidation was significantly enhanced by the increased abundance of methanotrophs. The proportion of type II methanotrophs increased greatly from 7.84 % in the sampled soil to about 50 % in the enrichment cultures, due to the increase of methane concentration. After the microbial community of the cultures got stable, Methylomonas and Methylocystis became the dominant type I and type II methanotrophs, while Methylophilus was the prevailing methylotroph. The sequences affiliated with pigment-producing strains, Methylomonas rubra, Hydrogenophaga sp. AH-24, and Flavobacterium cucumis, could explain the orange appearance of the cultures. Comparing the two cultures, the multi-carbon sources in the artificial coal bed gas caused more variety of non-methanotrophic bacteria, but did not help to maintain the diversity or to increase the quantity and activity of methanotrophs. The results could help to understand the succession and interaction of microbial community in a methane-driven ecosystem.

  18. A solid oxide photoelectrochemical cell with UV light-driven oxygen storage in mixed conducting electrodes

    Science.gov (United States)

    Walch, Gregor; Rotter, Bernhard; Brunauer, Georg Christoph; Esmaeili, Esmaeil; Opitz, Alexander Karl; Kubicek, Markus; Summhammer, Johann; Ponweiser, Karl

    2017-01-01

    A single crystalline SrTiO3 working electrode in a zirconia-based solid oxide electrochemical cell is illuminated by UV light at temperatures of 360–460 °C. In addition to photovoltaic effects, this leads to the build-up of a battery-type voltage up to more than 300 mV. After switching off UV light, this voltage only slowly decays. It is caused by UV-induced oxygen incorporation into the mixed conducting working electrode and thus by changes of the oxygen stoichiometry δ in SrTiO3–δ under UV illumination. These changes of the oxygen content could be followed in time-dependent voltage measurements and also manifest themselves in time-dependent resistance changes during and after UV illumination. Discharge currents measured after UV illumination reveal that a large fraction of the existing oxygen vacancies in SrTiO3 become filled under UV light. Additional measurements on cells with TiO2 thin film electrodes show the broader applicability of this novel approach for transforming light into chemical energy and thus the feasibility of solid oxide photoelectrochemical cells (SOPECs) in general and of a “light-charged oxygen battery” in particular. PMID:28261480

  19. Influence of source and drain contacts on the properties of indium-gallium-zinc-oxide thin-film transistors based on amorphous carbon nanofilm as barrier layer.

    Science.gov (United States)

    Luo, Dongxiang; Xu, Hua; Zhao, Mingjie; Li, Min; Xu, Miao; Zou, Jianhua; Tao, Hong; Wang, Lei; Peng, Junbiao

    2015-02-18

    Amorphous indium-gallium-zinc-oxide thin film transistors (α-IGZO TFTs) with damage-free back channel wet-etch (BCE) process were achieved by introducing a carbon nanofilm as a barrier layer. We investigate the effects of different source-and-drain (S/D) materials on TFT performance. We find the TFT with Ti/C S/D electrodes exhibits a superior performance with higher output current, lower threshold voltage, and higher effective electron mobility compared to that of Mo/C S/D electrodes. Transmittance electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) are employed to analysis the interfacial interaction between S/D metal/C/α-IGZO layers. The results indicate that the better performance of TFTs with Ti/C electrodes should be attributed to the formations of Ti-C and Ti-O at the Ti/C-contact regions, which lead to a lower contact resistance, whereas Mo film is relatively stable and does not react easily with C nanofilm, resulting in a nonohmic contact behavior between Mo/C and α-IGZO layer. However, both kinds of α-IGZO TFTs show good stability under thermal bias stress, indicating that the inserted C nanofilms could avoid the impact on the α-IGZO channel regions during S/D electrodes formation. Finally, we successfully fabricated a high-definition active-matrix organic lighting emitting diode prototype driven by α-IGZO TFTs with Ti/C electrodes in a pilot line.

  20. Microbial Ecology Assessment of Mixed Copper Oxide/Sulfide Dump Leach Operation

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, Debby Fox; Thompson, David Neal; Noah, Karl Scott

    1999-06-01

    Microbial consortia composed of complex mixtures of autotrophic and heterotrophic bacteria are responsible for the dissolution of metals from sulfide minerals. Thus, an efficient copper bioleaching operation depends on the microbial ecology of the system. A microbial ecology study of a mixed oxide/sulfide copper leaching operation was conducted using an "overlay" plating technique to differentiate and identify various bacterial consortium members of the genera Thiobacillus, “Leptospirillum”, “Ferromicrobium”, and Acidiphilium. Two temperatures (30°C and 45°C) were used to select for mesophilic and moderately thermophilic bacteria. Cell numbers varied from 0-106 cells/g dry ore, depending on the sample location and depth. After acid curing for oxide leaching, no viable bacteria were recovered, although inoculation of cells from raffinate re-established a microbial population after three months. Due to low the pH of the operation, very few non-iron-oxidizing acidophilic heterotrophs were recovered. Moderate thermophiles were isolated from the ore samples. Pregnant liquor solutions (PLS) and raffinate both contained a diversity of bacteria. In addition, an intermittently applied waste stream that contained high levels of arsenic and fluoride was tested for toxicity. Twenty vol% waste stream in PLS killed 100% of the cells in 48 hours, indicating substantial toxicity and/or growth inhibition. The data indicate that bacteria populations can recover after acid curing, and that application of the waste stream to the dump should be avoided. Monitoring the microbial ecology of the leaching operation provided significant information that improved copper recovery.

  1. Surface structure of crystalline and amorphous chromia catalysts for the selective catalytic reduction of nitric oxide. 2. Diffuse reflectance FTIR study of thermal treatment and oxygen adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Schraml-Marth, M.; Wokaun, A. (Univ. of Bayreuth (Germany)); Curry-Hyde, H.E.; Baiker, A. (Swiss Federal Inst. of Tech., Zuerich (Switzerland))

    1992-02-01

    The activation of crystalline and amorphous chromia surfaces by thermal pretreatment in argon and oxygen adsorption at 473 K has been studied by diffuse reflectance FTIR and Raman spectroscopy. The formation of coordinatively unsaturated chromium sites during thermal activation is monitored by observing the evolution of Cr{double bond}O stretching absorptions both in the fundamental and overtone regions of the FTIR spectrum. On {alpha}-Cr{sub 2}O{sub 3}, labile surface oxygen species are largely removed at 498 K, whereas on the amorphous chromia surface, labile oxygen is more tightly bound. As a consequence, coordinatively unsaturated chromium sites are generated on amorphous chromia to a lesser extent than on {alpha}-Cr{sub 2}O{sub 3}. Upon high-temperature oxygen treatment, O{sub 2} is dissociatively adsorbed. Coordinatively unsaturated sites are occupied by the added oxygen, as manifested by an increase in the number of Cr{double bond}O oscillators. Fine structure in the Cr{double bond}O absorptions of the amorphous chromia is observed for the first time, and is tentatively assigned to various types of surface sites. Raman spectroscopic characterization of the amorphous chromia surface reveals laser-induced dehydration and creation of coordinatively unsaturated surface Cr{double bond}O sites, accompanied by progressive crystallization of the amorphous substrate. Differences between crystalline and amorphous chromia with respect to their SCR activity are correlated with the higher density of labile oxygen species available on the surface of amorphous chromia under SCR reaction conditions (423-473 K).

  2. Application of Ni-Oxide@TiO2 Core-Shell Structures to Photocatalytic Mixed Dye Degradation, CO Oxidation, and Supercapacitors

    Directory of Open Access Journals (Sweden)

    Seungwon Lee

    2016-12-01

    Full Text Available Performing diverse application tests on synthesized metal oxides is critical for identifying suitable application areas based on the material performances. In the present study, Ni-oxide@TiO2 core-shell materials were synthesized and applied to photocatalytic mixed dye (methyl orange + rhodamine + methylene blue degradation under ultraviolet (UV and visible lights, CO oxidation, and supercapacitors. Their physicochemical properties were examined by field-emission scanning electron microscopy, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, and UV-visible absorption spectroscopy. It was shown that their performances were highly dependent on the morphology, thermal treatment procedure, and TiO2 overlayer coating.

  3. Effect of loading content of copper oxides on performance of Mn-Cu mixed oxide catalysts for catalytic combustion of benzene

    Institute of Scientific and Technical Information of China (English)

    CAO Hongyan; LI Xiaoshuang; CHEN Yaoqiang; GONG Maochu; WANG Jianli

    2012-01-01

    A series of Mn-Cu mixed oxide catalysts were prepared by precipitation method.The catalysts were characterized by N2 adsorption-desorption,H2-TPR and XPS.When the loading ratio of manganese oxides to copper oxides was 8:2 or 7:3,the catalysts possessed better catalytic activity,and benzene was converted completely at 558 K.Results of H2-TPR showed that the loading of a small amount of copper oxides decreased the reduction temperature of catalysts.Results of XPS showed that the loading of a small amount of copper oxides increased the proportion of manganese and defective oxygen on the surface of catalysts,and stabilized manganese at higher oxidation state.And the catalyst with the loading ratio 7:3 was a little worse than 8:2,since the interaction between manganese oxides and copper oxides is too strong,copper oxides migrate to the surface of catalysts and manganese oxides in excess are immerged.

  4. Effect of hydrothermal treatment on catalytic activity of amorphous mesoporous Cr{sub 2}O{sub 3}–ZrO{sub 2} nanomaterials for ethanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Hala R., E-mail: halamahmoud2@yahoo.com

    2015-07-15

    Mesoporous 0.25Cr{sub 2}O{sub 3}–0.75ZrO{sub 2} binary oxide catalysts (CZ-H) with high specific surface areas were successfully synthesized by hydrothermal treatment. The effect of synthesis conditions, such as hydrothermal temperature and time of CZ-H nanomaterials were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopic (EDS), UV–vis diffuse reflectance spectroscopy (DRS) and N{sub 2} adsorption–desorption measurements (BET). The XRD analysis indicated the formation of amorphous materials of binary oxides. The results showed that hydrothermal temperature and time of CZ-H nanomaterials had great influence on the average particle diameter and surface area. Under the optimum synthesis conditions, the best CZ-H nanomaterial synthesized at 210 °C for 3 h (i.e., CZ-H213), presented spherical structure with smallest average particle diameter found to be 1.5 nm and possessed highest surface area of 526.6 m{sup 2}/g. Optical studies by UV–vis spectroscopy for the different CZ-H nanomaterials exhibit slightly blue shift from 3.20 to 3.33 eV due to quantum confined exciton absorption. Moreover, hydrothermal synthesis leads to catalysts with higher surface area and with better acid–base properties than conventional co-precipitation method. Compared to the other nanomaterials, the CZ-H213 catalyst appears to be the best candidate for further application in acid–base catalysis and reusability. - Graphical abstract: Display Omitted - Highlights: • Mesoporous 25%Cr{sub 2}O{sub 3}–75%ZrO{sub 2} catalysts (CZ-H) were prepared by hydrothermal method. • The hydrothermal temperature and time modified the properties of CZ-H nanomaterials. • The best CZ-H nanomaterial synthesized at 210 °C for 3 h (i.e., CZ-H213). • A CZ-H213 nanomaterial had the highest S{sub BET} and smallest average particle diameter. • A mesoporous CZ-H213 used as a reusable active catalyst in the ethanol

  5. Measurement and modelling of the defect chemistry and transport properties of ceramic oxide mixed ionic and electronic conductors

    DEFF Research Database (Denmark)

    Dalslet, Bjarke Thomas

    2008-01-01

    The subject of this thesis is ceramic mixed ionic and electronic conductors (MIECs). MIECs have potential uses, such as solid oxygen permeation membranes, as catalysts, and as components in fuel cells. The MIECs examined in this thesis are all oxide ion conducting materials. This thesis describes...

  6. Measurement and modelling of the defect chemistry and transport properties of ceramic oxide mixed ionic and electronic conductors

    NARCIS (Netherlands)

    Dalslet, Bjarke Thomas

    2008-01-01

    The mixed ionic and electronic conducting fluorite and perovskite materials examined in this thesis are all oxide ion conducting materials. The defect chemistry and transport properties of a number of these materials are measured using: 1) a measurement technique using an oxygen pump and an electrol

  7. Technology, safety and costs of decommissioning a reference small mixed oxide fuel fabrication plant. Volume 1. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, C. E.; Murphy, E. S.; Schneider, K J

    1979-01-01

    Detailed technology, safety and cost information are presented for the conceptual decommissioning of a reference small mixed oxide fuel fabrication plant. Alternate methods of decommissioning are described including immediate dismantlement, safe storage for a period of time followed by dismantlement and entombment. Safety analyses, both occupational and public, and cost evaluations were conducted for each mode.

  8. General synthesis of vanadium-based mixed metal oxides hollow nanofibers for high performance lithium-ion batteries

    Science.gov (United States)

    Xiang, Juan; Yu, Xin-Yao; Paik, Ungyu

    2016-10-01

    Hollow nanostructured mixed metal oxides have recently been intensively investigated as electrode materials for energy storage and conversion due to their remarkable electrochemical properties. Although great efforts have been made, the synthesis of hollow nanostructured vanadium-based mixed metal oxides especially those with one dimensional structure is rarely reported. Vanadium-based mixed metal oxides are promising electrode materials for lithium-ion batteries with high capacity and good rate capability. Here, we develop a facile and general method for the synthesis of one dimensional MxV2O8 (M = Co, Ni, Fe) tubular structure through a simple single-spinneret electrospinning technique followed by a calcination process. As a demonstration, Co3V2O8 hollow nanofibers are evaluated as anode materials for lithium-ion batteries. As expected, benefiting from their unique one dimensional tubular structure, the as-synthesized Co3V2O8 exhibits excellent electrochemical properties for lithium storage. To be specific, it can deliver a high specific capacity of 900 mAh g-1 at 5 A g-1, and long cycling stability up to 2000 cycles. The present work makes a significant contribution to the design and synthesis of mixed metal oxides with one dimensional tubular structure, as well as their potential applications in electrochemical energy storage.

  9. 77 FR 70193 - Shaw Areva MOX Services (Mixed Oxide Fuel Fabrication Facility); Notice of Atomic Safety and...

    Science.gov (United States)

    2012-11-23

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Shaw Areva MOX Services (Mixed Oxide Fuel Fabrication Facility); Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR 2.313(c) and 2.321(b), the Atomic Safety and...

  10. Dual Electrospray Pyrolysis for Mixed Metal Oxide (and Carbon) Composite Nanoparticle Synthesis with Applications in Energy Storage

    Science.gov (United States)

    Tang, Justin; Liu, Wen; Wang, Hailiang; Gomez, Alessandro

    We present a novel approach to synthesizing mixed metal oxide nanoparticles with a continuous, scalable aerosol flow process using the electrospray. The electrospray is a liquid atomization technique that generates a monodisperse population of highly charged liquid droplets over a broad size range (nanometric to tens of microns). Each liquid droplet serves as a micro-reactor, containing a payload of suitable precursors (such as metal nitrides), allowing for precise control over particle composition and size. By using two electrosprays of opposite polarities, the two highly charged droplets plumes are electrostatically mixed to produce a charge-neutral aerosol. Electrostatically driven droplet-droplet collisions can also be used to control morphology to some degree. This aerosol is passed through a tubular furnace via carrier gas, pyrolizing the precursors to synthesize nanomaterials. We apply this approach to manganese oxide, cobalt oxide, and carbon composite nanoparticles for use in energy storage applications.

  11. Conversion of ethanol to 1,3-butadiene over Na doped ZnxZryOz mixed metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Baylon, Rebecca A.; Sun, Junming; Wang, Yong

    2016-01-01

    Despite numerous studies on different oxide catalysts for the ethanol to 1,3-butadiene reaction, few have identified active sites (i.e., type of acidity) correlated to the catalytic performances. In this work, the type of acidity needed for ethanol to 1,3-butadiene conversion has been studied over Zn/Zr mixed oxide catalysts. Specifically, synthesis method, Zn/Zr ratio, and Na doping have been used to control the surface acid-base properties, as confirmed by characterizations such as NH3-TPD and IR-Py techniques. The 2000 ppm Na doped Zn1Zr10Oz-H with balanced base and weak Bronsted acid sites was found to give not only high selectivity to 1,3-butadiene (47%) at near complete ethanol conversion (97%), but also exhibited a much higher 1,3-butadiene productivity than other mixed oxides studied.

  12. Dynamics of nitrogen oxides and ozone above and within a mixed hardwood forest in Northern Michigan

    Directory of Open Access Journals (Sweden)

    B. Seok

    2012-12-01

    Full Text Available The dynamic behavior of nitrogen oxides (NOx = NO + NO2 and ozone (O3 above and within the canopy at the University of Michigan Biological Station AmeriFlux (UMBS Flux site was investigated by continuous multi-height vertical gradient measurements during the summer and the fall of 2008. A daily maximum in nitric oxide (NO levels was consistently observed during the morning hours between 06:00 and 09:00 EST above the canopy. Daily NO maxima ranged between 0.2 and 2 ppbv (with a median of 0.3 ppbv, which was 2 to 20 times above its atmospheric background. The sources and causes of this NO maximum were evaluated using NOx and O3 measurements and synoptic and micrometeorological data. This analysis was further supported by numerical simulations with a multi-layer canopy exchange model implemented into a single-column chemistry-climate model. The observations indicated that the morning NO maximum was caused by the photolysis of NO2 from non-local air masses, which were transported into the canopy from aloft during the morning breakup of the nocturnal boundary layer. The analysis of simulated process tendencies indicated that the downward turbulent transport of NOx into the canopy compensates for the removal of NOx through chemistry and dry deposition. The sensitivity of NOx and O3 concentrations on soil and foliage NOx emissions was also assessed with the model. Uncertainties associated with the emissions of NOx from the soil or from leaf-surface nitrate photolysis did not explain the observed diurnal behavior in NOx (and O3, and in particular, the morning NOx peak mixing ratio. However, when considering the existence of a NO2 compensation point, an increase in the early morning NOx and NO peak mixing ratios by ~30% was simulated. This increase suggests the potential

  13. Mixed-phase oxide catalyst based on Mn-mullite (Sm, Gd)Mn2O5 for NO oxidation in diesel exhaust.

    Science.gov (United States)

    Wang, Weichao; McCool, Geoffrey; Kapur, Neeti; Yuan, Guang; Shan, Bin; Nguyen, Matt; Graham, Uschi M; Davis, Burtron H; Jacobs, Gary; Cho, Kyeongjae; Hao, Xianghong

    2012-08-17

    Oxidation of nitric oxide (NO) for subsequent efficient reduction in selective catalytic reduction or lean NO(x) trap devices continues to be a challenge in diesel engines because of the low efficiency and high cost of the currently used platinum (Pt)-based catalysts. We show that mixed-phase oxide materials based on Mn-mullite (Sm, Gd)Mn(2)O(5) are an efficient substitute for the current commercial Pt-based catalysts. Under laboratory-simulated diesel exhaust conditions, this mixed-phase oxide material was superior to Pt in terms of cost, thermal durability, and catalytic activity for NO oxidation. This oxide material is active at temperatures as low as 120°C with conversion maxima of ~45% higher than that achieved with Pt. Density functional theory and diffuse reflectance infrared Fourier transform spectroscopy provide insights into the NO-to-NO(2) reaction mechanism on catalytically active Mn-Mn sites via the intermediate nitrate species.

  14. Phase relations and ionic transport behaviour in new mixed oxides of ceria–zirconia–gadolinia

    Energy Technology Data Exchange (ETDEWEB)

    Anithakumari, P.; Grover, V., E-mail: vinita@barc.gov.in; Tyagi, A.K.

    2015-10-25

    The present study investigates structure and the phase relations observed in complex oxide systems obtained by substituting Gd{sub 2}O{sub 3} in the mixed oxide (Ce{sub 0.8}Zr{sub 0.2})O{sub 2}. The X-ray diffraction studies performed on this system revealed two single-phasic phase-fields; fluorite-type (F-type) and C-type. The transformation from F-type to C-type structure was observed at 60 mol% Gd{sup 3+} substitution. The Raman spectroscopic studies, however, reveal further fine structural insights wherein the F-type region was observed only up to 30 mol% of Gd{sup 3+} which was followed by the co-existence of C-type ordered region and F-type region. The single-phasic C-type phase-field was observed only beyond 80 mol% Gd{sup 3+}-substitution. The AC impedance analysis revealed minimum in the activation energy and maximum in ionic conductivity values as a function of Gd{sup 3+}-content. An antagonistic interplay of activation energy and pre-exponential factor is explained as the major factor behind this behaviour. The determination of migration and association energies supported the trend observed in the ionic conductivity values as a function of Gd{sup 3+}-content. The activation energies for hopping are in good agreement with migration activation energies thus establishing that the conduction mechanism involved hopping of oxygen ions. - Highlights: • Presence of single-phasic F- and C-type phases was revealed by XRD studies. • Both, inter-anionic repulsions and ionic sizes governed the lattice parameters. • C-type micro domains in F-type region and vice versa observed by Raman spectra. • High conductivity of 30% Gd{sup 3+} doped sample agrees with low association energy. • Similar migration and hopping energies reveal the hopping mechanism for conduction.

  15. O/M ratio measurement in pure and mixed oxide fuels - where are we now?

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, J.; Chidester, K.; Thompson, M. [Los Alamos National Lab., NM (United States)

    2001-07-01

    The scale-down in the US and Russian nuclear weapons stockpiles has produced a surplus of weapons grade plutonium and highly enriched uranium. The incorporation into mixed-oxide fuel (MOX) is one of the currently favored routes for surplus weapons-grade plutonium. The use of MOX as a nuclear reactor fuel is well established, particularly in Europe and Japan but not in the US. The primary purpose of this investigation was to evaluate existing analytical techniques for their applicability to O/M (oxygen-to-metal ratio) measurements of MOX derived from excess weapons plutonium. The second objective of this investigation was to bring up-to-date the literature on O/M measurement methods, which has not been undertaken in over 20 years. There are several classification schemes that can be used to organize O/M measurement methods. The most popular schemes are based on (a) whether the analysis is performed in solution (wet chemical) or on solid material (dry), and (b) whether the concentration of major constituents are analyzed directly (direct) or are inferred (indirect). Solid state coulometric titration is currently used extensively in studies of phase equilibria, defect chemistry, thermochemical measurement of oxides, including ferrites. Regardless of which indirect method is used (solid state coulometric titration or thermogravimetry), a primary, direct method will also be required for the establishment of the MO{sub 2} reference state, determination of method bias, and periodic calibration. It was recommended that the following direct method be adapted for this purpose: oxygen measurement by inert gas fusion/carbon reduction, and total U, Pu by controlled potential coulometry. In a table are listed the experimental values of accuracy for about 30 O/M methods. (A.C.)

  16. An experimental study of perovskite-structured mixed ionic- electronic conducting oxides and membranes

    Science.gov (United States)

    Zeng, Pingying

    In recent decades, ceramic membranes based on mixed ionic and electronic conducting (MIEC) perovskite-structured oxides have received many attentions for their applications for air separation, or as a membrane reactor for methane oxidation. While numerous perovskite oxide materials have been explored over the past two decades; there are hardly any materials with sufficient practical economic value and performance for large scale applications, which justifies continuing the search for new materials. The main purposes of this thesis study are: (1) develop several novel SrCoO3-delta based MIEC oxides, SrCoCo1-xMxO3-delta, based on which membranes exhibit excellent oxygen permeability; (2) investigate the significant effects of the species and concentration of the dopants M (metal ions with fixed valences) on the various properties of these membranes; (3) investigate the significant effects of sintering temperature on the microstructures and performance of oxygen permeation membranes; and (4) study the performance of oxygen permeation membranes as a membrane reactor for methane combustion. To stabilize the cubic phase structure of the SrCoO3-delta oxide, various amounts of scandium was doped into the B-site of SrCoO 3-delta to form a series of new perovskite oxides, SrScxCoCo 1-xO3-delta (SSCx, x = 0-0.7). The significant effects of scandium-doping concentration on the phase structure, electrical conductivity, sintering performance, thermal and structural stability, cathode performance, and oxygen permeation performance of the SSCx membranes, were systematically studied. Also for a more in-depth understanding, the rate determination steps for the oxygen transport process through the membranes were clarified by theoretical and experimental investigation. It was found that only a minor amount of scandium (5 mol%) doping into the B-site of SrCoO3-delta can effectively stabilize the cubic phase structure, and thus significantly improve the electrical conductivity and

  17. Molten salt oxidation of mixed wastes: Separation of radioactive materials and Resource Conservation and Recovery Act (RCRA) materials

    Energy Technology Data Exchange (ETDEWEB)

    Bell, J.T.; Haas, P.A.; Rudolph, J.C.

    1993-12-01

    The Oak Ridge National Laboratory (ORNL) is involved in a program to apply a molten salt oxidation (MSO) process to the treatment of mixed wastes at Oak Ridge and other Department of Energy (DOE) sites. Mixed wastes are defined as those wastes that contain both radioactive components, which are regulated by the atomic energy legislation, and hazardous waste components, which are regulated under the Resource Conservation and Recovery Act (RCRA). A major part of our ORNL program involves the development of separation technologies that are necessary for the complete treatment of mixed wastes. The residues from the MSO treatment of the mixed wastes must be processed further to separate the radioactive components, to concentrate and recycle residues, or to convert the residues into forms acceptable for final disposal. This paper is a review of the MSO requirements for separation technologies, the information now available, and the concepts for our development studies.

  18. Damage in refractory oxides and ion beam mixing at metal-oxide interfaces induced by GeV ions and 20 MeV cluster beam

    Energy Technology Data Exchange (ETDEWEB)

    Thevenard, P.A.; Beranger, M.; Canut, B.; Ramos, S.M.M. [Univ. Claude Bernard-Lyon I, Villeurbanne (France). Dept. de Physique des Materiaux

    1996-12-31

    Defect creation in refractory oxides known to be insensitive to radiolysis, was shown to take place by high level electronic excitations induced by swift heavy ions or energetic cluster bombardments. Depending on the oxide a threshold in electronic energy loss for damage production was observed: MgO 22 keV/nm, Al{sub 2}O{sub 3} 20 keV/nm and LiNbO{sub 3} 6 keV/nm. A very strong dependence on the energy deposited for the defect production was evidenced above the threshold. In MgO, both point and extended defects were created whereas in Al{sub 2}O{sub 3} only extended defects were observed and in LiNbO{sub 3} amorphization in the ion track was evidenced. Atomic displacements due to the giant electronic excitations can be revealed at metal-oxide interfaces in the case of Na nanoprecipitates embedded in MgO single crystals.

  19. Method of CO and/or CO.sub.2 hydrogenation using doped mixed-metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Shekhawat, Dushyant; Berry, David A.; Haynes, Daniel J.; Abdelsayed, Victor; Smith, Mark W.; Spivey, James J.

    2015-10-06

    A method of hydrogenation utilizing a reactant gas mixture comprising a carbon oxide and a hydrogen agent, and a hydrogenation catalyst comprising a mixed-metal oxide containing metal sites supported and/or incorporated into the lattice. The mixed-metal oxide comprises a perovskite, a pyrochlore, a fluorite, a brownmillerite, or mixtures thereof doped at the A-site or the B-site. The metal site may comprise a deposited metal, where the deposited metal is a transition metal, an alkali metal, an alkaline earth metal, or mixtures thereof. Contact between the carbon oxide, hydrogen agent, and hydrogenation catalyst under appropriate conditions of temperature, pressure and gas flow rate generate a hydrogenation reaction and produce a hydrogenated product made up of carbon from the carbon oxide and some portion of the hydrogen agent. The carbon oxide may be CO, CO.sub.2, or mixtures thereof and the hydrogen agent may be H.sub.2. In a particular embodiment, the hydrogenated product comprises an alcohol, an olefin, an aldehyde, a ketone, an ester, an oxo-product, or mixtures thereof.

  20. Method of CO and/or CO.sub.2 hydrogenation to higher hydrocarbons using doped mixed-metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Shekhawat, Dushyant; Berry, David A.; Haynes, Daniel J.; Abdelsayed, Victor; Smith, Mark W.; Spivey, James J.

    2017-03-21

    A method of hydrogenation utilizing a reactant gas mixture comprising a carbon oxide and a hydrogen agent, and a hydrogenation catalyst comprising a mixed-metal oxide containing metal sites supported and/or incorporated into the lattice. The mixed-metal oxide comprises a pyrochlore, a brownmillerite, or mixtures thereof doped at the A-site or the B-site. The metal site may comprise a deposited metal, where the deposited metal is a transition metal, an alkali metal, an alkaline earth metal, or mixtures thereof. Contact between the carbon oxide, hydrogen agent, and hydrogenation catalyst under appropriate conditions of temperature, pressure and gas flow rate generate a hydrogenation reaction and produce a hydrogenated product made up of carbon from the carbon oxide and some portion of the hydrogen agent. The carbon oxide may be CO, CO.sub.2, or mixtures thereof and the hydrogen agent may be H.sub.2. In a particular embodiment, the hydrogenated product comprises olefins, paraffins, or mixtures thereof.

  1. Synthesis and Characterization of K-Ta Mixed Oxides for Hydrogen Generation in Photocatalysis

    Directory of Open Access Journals (Sweden)

    Beata Zielińska

    2012-01-01

    Full Text Available K-Ta mixed oxides photocatalysts have been prepared by impregnation followed by calcination. The influence of the reaction temperature (450°C–900°C on the phase formation, crystal morphology, and photocatalytic activity in hydrogen generation of the produced materials was investigated. The detailed analysis has revealed that all products exhibit high crystallinity and irregular structure. Moreover, two different crystal structures of potassium tantalates such as KTaO3 and K2Ta4O11 were obtained. It was also found that the sample composed of KTaO3 and traces of unreacted Ta2O5 (annealed at 600°C exhibits the highest activity in the reaction of photocatalytic hydrogen generation. The crystallographic phases, optical and vibronic properties were examined by X-ray diffraction (XRD and diffuse reflectance (DR UV-vis and resonance Raman spectroscopic methods, respectively. Morphology and chemical composition of the produced samples were studied using a high-resolution transmission electron microscope (HR-TEM and an energy dispersive X-ray spectrometer (EDX as its mode.

  2. Decommissioning of a mixed oxide fuel fabrication plant at Winfrith Technolgy Centre

    Energy Technology Data Exchange (ETDEWEB)

    Pengelly, M.G.A. [AEA Technology, Dorchester (United Kingdom)

    1994-01-01

    The Alpha Materials Laboratory (Building A52) at Winfrith contained a mixed oxide fuel fabrication plant which had a capability of producing 10 te/yr of pelleted/compacted fuel and was in operation from 1962 until 1980, when the requirement for this type of fuel in the UK diminished, and the plant became surplus to requirements. A program to develop decommissioning techniques for plutonium plants was started in 1983, addressing the following aspects of alpha plant decommissioning: (1) Re-usable containment systems, (2) Strippable coating technology, (3) Mobile air filtration plant, (4) Size reduction primarily using cold cutting, (5) techniques, (6) Waste packing, and (7) Alpha plant decommissioning methodology. The technology developed has been used to safely and efficiently decommission radioactive plant and equipment including Pu contaminated glove boxes. (63 glove boxes to date) The technology has been widely adopted in the United Kingdom and elsewhere. This paper outlines the general strategies adopted and techniques used for glove box decommissioning in building A52.

  3. Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, P.C.

    1997-11-01

    Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment.

  4. Percolation Theory in Solid Oxide Fuel Cell Composite Electrodes with a Mixed Electronic and Ionic Conductor

    Directory of Open Access Journals (Sweden)

    Meng Ni

    2013-03-01

    Full Text Available Percolation theory is generalized to predict the effective properties of specific solid oxide fuel cell composite electrodes, which consist of a pure ion conducting material (e.g., YSZ or GDC and a mixed electron and ion conducting material (e.g., LSCF, LSCM or CeO2. The investigated properties include the probabilities of an LSCF particle belonging to the electron and ion conducting paths, percolated three-phase-boundary electrochemical reaction sites, which are based on different assumptions, the exposed LSCF surface electrochemical reaction sites and the revised expressions for the inter-particle ionic conductivities among LSCF and YSZ materials. The effects of the microstructure parameters, such as the volume fraction of the LSCF material, the particle size distributions of both the LSCF and YSZ materials (i.e., the mean particle radii and the non-dimensional standard deviations, which represent the particle size distributions and the porosity are studied. Finally, all of the calculated results are presented in non-dimensional forms to provide generality for practical application. Based on these results, the relevant properties can be easily evaluated, and the microstructure parameters and intrinsic properties of each material are specified.

  5. Melting behavior of (Th,U)O2 and (Th,Pu)O2 mixed oxides

    Science.gov (United States)

    Ghosh, P. S.; Kuganathan, N.; Galvin, C. O. T.; Arya, A.; Dey, G. K.; Dutta, B. K.; Grimes, R. W.

    2016-10-01

    The melting behaviors of pure ThO2, UO2 and PuO2 as well as (Th,U)O2 and (Th,Pu)O2 mixed oxides (MOX) have been studied using molecular dynamics (MD) simulations. The MD calculated melting temperatures (MT) of ThO2, UO2 and PuO2 using two-phase simulations, lie between 3650-3675 K, 3050-3075 K and 2800-2825 K, respectively, which match well with experiments. Variation of enthalpy increments and density with temperature, for solid and liquid phases of ThO2, PuO2 as well as the ThO2 rich part of (Th,U)O2 and (Th,Pu)O2 MOX are also reported. The MD calculated MT of (Th,U)O2 and (Th,Pu)O2 MOX show good agreement with the ideal solidus line in the high thoria section of the phase diagram, and evidence for a minima is identified around 5 atom% of ThO2 in the phase diagram of (Th,Pu)O2 MOX.

  6. Luminescence studies of rare earth doped yttrium gadolinium mixed oxide phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Som, S.; Choubey, A. [Department of Applied Physics, Indian School of Mines, Dhanbad, Jharkhand 826004 (India); Sharma, S.K., E-mail: sksharma_ism@yahoo.co.in [Department of Applied Physics, Indian School of Mines, Dhanbad, Jharkhand 826004 (India)

    2012-09-01

    This paper reports the photoluminescence and thermoluminescence properties of gamma ray induced rare earth doped yttrium gadolinium mixed oxide phosphor. The europium (Eu{sup 3+}) was used as rare earth dopant. The phosphor was prepared by chemical co-precipitation method according to the formula (Y{sub 2-x-y}Gd{sub x}) O{sub 3}: Eu{sub y}{sup 3+} (x=0.5; y=0.05). The photoluminescence emission spectrum of the prepared phosphor shows intense peaks in the red region at 615 nm for {sup 5}D{sub 0}{yields}{sup 7}F{sub 2} transitions and the photoluminescence excitation spectra show a broad band located around 220-270 nm for the emission wavelength fixed at 615 nm. The thermoluminescence studies were carried out after irradiating the phosphor by gamma rays in the dose range from 100 Gy to 1 KGy. In the thermoluminescence glow curves, one single peak was observed at about 300 Degree-Sign C of which the intensity increases linearly in the studied dose range of gamma rays. The glow peak was deconvoluted by GlowFit program and the kinetic parameters associated with the deconvoluted peaks were calculated. The kinetic parameters were also calculated by various glow curve shape and heating rate methods.

  7. Luminescence studies of rare earth doped yttrium gadolinium mixed oxide phosphor

    Science.gov (United States)

    Som, S.; Choubey, A.; Sharma, S. K.

    2012-09-01

    This paper reports the photoluminescence and thermoluminescence properties of gamma ray induced rare earth doped yttrium gadolinium mixed oxide phosphor. The europium (Eu3+) was used as rare earth dopant. The phosphor was prepared by chemical co-precipitation method according to the formula (Y2-x-yGdx) O3: Euy3+ (x=0.5; y=0.05). The photoluminescence emission spectrum of the prepared phosphor shows intense peaks in the red region at 615 nm for 5D0→7F2 transitions and the photoluminescence excitation spectra show a broad band located around 220-270 nm for the emission wavelength fixed at 615 nm. The thermoluminescence studies were carried out after irradiating the phosphor by gamma rays in the dose range from 100 Gy to 1 KGy. In the thermoluminescence glow curves, one single peak was observed at about 300 °C of which the intensity increases linearly in the studied dose range of gamma rays. The glow peak was deconvoluted by GlowFit program and the kinetic parameters associated with the deconvoluted peaks were calculated. The kinetic parameters were also calculated by various glow curve shape and heating rate methods.

  8. Low-Frequency Mechanical Spectroscopy of Lanthanum Cobaltite Based Mixed Conducting Oxides

    Directory of Open Access Journals (Sweden)

    Wu Xiu Sheng

    2016-09-01

    Full Text Available The low-frequency mechanical spectra of lanthanum cobaltite based mixed conducting oxides have been measured using a computer-controlled inverted torsion pendulum. The results indicate that the internal friction spectra and shear modulus depend on the Sr doping contents (x. For undoped samples, no internal friction peak is observed. However, for La0.8Sr0.2CoO3‒δ, three internal friction peaks (P2, P3 and P4 are observed. In addition to these peaks, two more peaks (P0 and P1 are observed in La0.6Sr0.4CoO3‒δ. The P0 and P1 peaks show characteristics of a phase transition, while the P2, P3 and P4 peaks are of relaxation-type. Our analysis suggests that the P0 peak is due to a phase separation and the P1 peak is related to the ferromagnetic–paramagnetic phase transition. The P2, P3 and P4 peaks are associated with the motion of domain walls. The formation of this kind of domain structure is a consequence of a transformation from the paraelastic cubic phase to the ferroelastic rhombohedral phase. With partial substitution of Fe for Co, only one peak is observed, which is discussed as a result of different microstructure.

  9. O/M RATIO MEASUREMENT IN PURE AND MIXED OXIDE FULES - WHERE ARE WE NOW?

    Energy Technology Data Exchange (ETDEWEB)

    J. RUBIN; ET AL

    2000-12-01

    The oxygen-to-metal (O/M) ratio is one of the most critical parameters of nuclear fuel fabrication, and its measurement is closely monitored for manufacturing process control and to ensure the service behavior of the final product. Thermogravimetry is the most widely used method, the procedure for which has remained largely unchanged since its development some thirty years ago. It was not clear to us, however, that this method is still the optimum one in light of advances in instrumentation, and in the current regulatory environment, particularly with regard to waste management and disposal. As part of the MOX fuel fabrication program at Los Alamos, we conducted a comprehensive review of methods for O/M measurements in UO{sub 2}, PuO{sub 2} and mixed oxide fuels for thermal reactors. A concerted effort was made to access information not available in the open literature. We identified approximately thirty five experimental methods that (a) have been developed with the intent of measuring O/M, (b) provided O/M indirectly by suitable reduction of the measured data, or (c) could provide O/M data with suitable data reduction or when combined with other methods. We will discuss the relative strengths and weaknesses of these methods in their application to current routine and small-lot production environment.

  10. Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, B.S.; Fisher, S.E.

    1999-02-01

    The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

  11. Thermally induced growth of ZnO nanocrystals on mixed metal oxide surfaces.

    Science.gov (United States)

    Inayat, Alexandra; Makky, Ayman; Giraldo, Jose; Kuhnt, Andreas; Busse, Corinna; Schwieger, Wilhelm

    2014-06-23

    An in situ method for the growth of ZnO nanocrystals on Zn/Al mixed metal oxide (MMO) surfaces is presented. The key to this method is the thermal treatment of Zn/Al layered double hydroxides (Zn/Al LDHs) in the presence of nitrate anions, which results in partial demixing of the LDH/MMO structure and the subsequent crystallization of ZnO crystals on the surface of the forming MMO layers. In a first experimental series, thermal treatment of Zn/Al LDHs with different fractions of nitrate and carbonate in the interlayer space was examined by thermogravimetry coupled with mass spectrometry (TG-MS) and in situ XRD. In a second experimental series, Zn/Al LDHs with only carbonate in the interlayer space were thermally treated in the presence of different amounts of an external nitrate source (NH4NO3). All obtained Zn/Al MMO samples were analysed by electron microscopy, nitrogen physisorption and powder X-ray diffraction. The gas phase formed during nitrate decomposition turned out to be responsible for the formation of crystalline ZnO nanoparticles. Accordingly, both interlayer nitrate and the presence of ammonium nitrate led to the formation of supported ZnO nanocrystals with mean diameters between 100 and 400 nm, and both methods offer the possibility to tailor the amount and size of the ZnO crystals by means of the amount of nitrate.

  12. Direct observation of nanometer-scale amorphous layers and oxide crystallites at grain boundaries in polycrystalline Sr1−xKxFe2As2 superconductors

    KAUST Repository

    Wang, Lei

    2011-06-01

    We report here an atomic resolution study of the structure and composition of the grain boundaries in polycrystallineSr0.6K0.4Fe2As2superconductor. A large fraction of grain boundaries contain amorphous layers larger than the coherence length, while some others contain nanometer-scale crystallites sandwiched in between amorphous layers. We also find that there is significant oxygen enrichment at the grain boundaries. Such results explain the relatively low transport critical current density (Jc) of polycrystalline samples with respect to that of bicrystal films.

  13. Preparation of Nanocrystalline Rare Earth Mixed Oxides DyFexCo1-xO3-δ and Its Conductivity

    Institute of Scientific and Technical Information of China (English)

    任引哲; 王建英; 刘二保

    2002-01-01

    Nanocrystalline rare earth mixed oxides DyFexCo1-xO3-δ were prepared by sol-gel method and characterized by X-ray diffraction (XRD), thermogravimetric analysis (TG-DTA) and scanning electron microscope (SEM). The results show that DyFexCo1-xO3-δ has the structure of perovskite type at 800 ℃ for 2 h calcination. The conductivity of the materials at different temperature was measured by four-probe instrumentation and two-pole method. The results show that the conductivity of mixed oxides DyFexCo1-xO3-δ is higher than those of un-mixed oxides DyFeO3 and DyCoO3 and the conductivity is the best at x=0.8 in the matter of DyFexCo1-xO3-δ. The conductivity of these materials always increases with the temperature rising and there is an apparent change between 600 and 800 ℃. However, the spinodals are different with different ration of Fe3+ and Co3+. This kind of oxide is a conductive pottery material.

  14. Decolourisation of Acid Orange 7 recalcitrant auto-oxidation coloured by-products using an acclimatised mixed bacterial culture.

    Science.gov (United States)

    Bay, Hui Han; Lim, Chi Kim; Kee, Thuan Chien; Ware, Ismail; Chan, Giek Far; Shahir, Shafinaz; Ibrahim, Zaharah

    2014-03-01

    This study focuses on the biodegradation of recalcitrant, coloured compounds resulting from auto-oxidation of Acid Orange 7 (AO7) in a sequential facultative anaerobic-aerobic treatment system. A novel mixed bacterial culture, BAC-ZS, consisting of Brevibacillus panacihumi strain ZB1, Lysinibacillus fusiformis strain ZB2, and Enterococcus faecalis strain ZL bacteria were isolated from environmental samples. The acclimatisation of the mixed culture was carried out in an AO7 decolourised solution. The acclimatised mixed culture showed 98 % decolourisation within 2 h of facultative anaerobic treatment using yeast extract and glucose as co-substrate. Subsequent aerobic post treatment caused auto-oxidation reaction forming dark coloured compounds that reduced the percentage decolourisation to 73 %. Interestingly, further agitations of the mixed culture in the solution over a period of 48 h significantly decolourise the coloured compounds and increased the decolourisation percentage to 90 %. Analyses of the degradation compounds using UV-visible spectrophotometer, Fourier transform infrared spectroscopy (FTIR) and high performance liquid chromatography (HPLC) showed complete degradation of recalcitrant AO7 by the novel BAC-ZS. Phytotoxicity tests using Cucumis sativus confirmed the dye solution after post aerobic treatment were less toxic compared to the parent dye. The quantitative real-time PCR revealed that E. faecalis strain ZL was the dominant strain in the acclimatised mix culture.

  15. Synthesis of Mixed Cu/Ce Oxide Nanoparticles by the Oil-in-Water Microemulsion Reaction Method

    Directory of Open Access Journals (Sweden)

    Kelly Pemartin-Biernath

    2016-06-01

    Full Text Available Cerium oxide and mixed Cu/Ce oxide nanoparticles were prepared by the oil-in-water (O/W microemulsion reaction method in mild conditions. The Cu/Ce molar ratio was varied between 0/100 and 50/50. According to X-ray diffraction (XRD, below 30/70 Cu/Ce molar ratio, the materials presented a single phase consistent with cubic fluorite CeO2. However, above Cu/Ce molar ratio 30/70, an excess monoclinic CuO phase in coexistence with the predominant Cu/Ce mixed oxide was detected by XRD and High-Resolution Transmission Electron Microscopy (HRTEM. Raman spectroscopy showed that oxygen vacancies increased significantly as the Cu content was increased. Band gap (Eg was investigated as a function of the Cu/Ce molar ratio, resulting in values from 2.91 eV for CeO2 to 2.32 eV for the mixed oxide with 30/70 Cu/Ce molar ratio. These results indicate that below 30/70 Cu/Ce molar ratio, Cu2+ is at least partially incorporated into the ceria lattice and very well dispersed in general. In addition, the photodegradation of Indigo Carmine dye under visible light irradiation was explored for selected samples; it was shown that these materials can remove such contaminants, either by adsorption and/or photodegradation. The results obtained will encourage investigation into the optical and photocatalytic properties of these mixed oxides, for widening their potential applications.

  16. Amorphous LiCoO2sbnd Li2SO4 active materials: Potential positive electrodes for bulk-type all-oxide solid-state lithium batteries with high energy density

    Science.gov (United States)

    Nagao, Kenji; Hayashi, Akitoshi; Deguchi, Minako; Tsukasaki, Hirofumi; Mori, Shigeo; Tatsumisago, Masahiro

    2017-04-01

    Newly amorphous Li2-x/100Cox/100S1-x/100O4-x/50 (xLiCoO2·(100-x)Li2SO4 (mol%)) positive electrode active materials are synthesized using mechanochemical techniques. SEM observation indicates that average radii of the Li1.2Co0.8S0.2O2.4 (80LiCoO2·20Li2SO4 (mol%)) particles are about 3 μm. HR-TEM images indicate that the particles comprise nano-crystalline and amorphous phases. The crystalline phase is attributable to cubic LiCoO2 phase. These active materials exhibit a high electronic conductivity of around 10-5-10-1 S cm-1 and an ionic conductivity of around 10-7-10-6 S cm-1 at room temperature. Bulk-type all-oxide solid-state cells (Lisbnd In alloy/Li3BO3-based glass-ceramic electrolyte/amorphous Li2-x/100Cox/100S1-x/100O4-x/50) are fabricated by pressing at room temperature without high temperature sintering. Although the cell with the milled LiCoO2 shows no capacity, the cell using the Li1.2Co0.8S0.2O2.4 electrode with no conductive components (ca. 150 μm thickness) operates as a secondary battery at 100 °C, with an average discharge potential of 3.3 V (vs. Li+/Li) and discharge capacity of 163 mAh g-1. A positive electrode with large amounts of active materials is suitable for achieving high energy density in all-solid-state batteries. These newly synthesized amorphous Li2-x/100Cox/100S1-x/100O4-x/50 electrodes with ionic and electronic conductivities and good processability meet that demand.

  17. Ceria-Based Mixed Oxide Supported Nano-Gold as an Efficient and Durable Heterogeneous Catalyst for Oxidative Dehydrogenation of Amines to Imines Using Molecular Oxygen

    Directory of Open Access Journals (Sweden)

    Bashir Ahmad Dar

    2012-06-01

    Full Text Available The present work is intended to determine the catalytic activity of Mixed Oxide supported gold for aerobic oxidative dehydrogenation of amines to imines using Ceria as a main constituent of the each support. The model catalysts Au/CeO2:TiO2 Au/CeO2:SiO2, Au/CeO2:ZrO2 and Au/CeO2:Al2Os were prepared by deposition co-precipitation method and deposition of gold was determined by EDEX analysis. The supported nano-gold catalyzes the dehydrogenation of secondary amines to imines without loss of activity. On recycling good amount of product yield is obtained. Oxidation of secondary amines to imines is carried at 100˚C and almost 90 % conversion was obtained with >99% selectivity. © 2012 BCREC UNDIP. All rights reservedReceived: 26th December 2011; Revised: 7th June 2012; Accepted: 13rd June 2012[How to Cite: B.A. Dar, M. Sharma, B. Singh. (2012. Ceria-Based Mixed Oxide Supported Nano-Gold as an Efficient and Durable Heterogeneous Catalyst for Oxidative Dehydrogenation of Amines to Imines Using Molecular Oxygen. Bulletin of Chemical Reaction Engineering & Catalysis, 7(1: 79-84.  doi:10.9767/bcrec.7.1.1257.79-84][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.1257.79-84 ] | View in 

  18. Synthesis and characterization of composites of mixed oxides of iron and neodymium in polymer matrix of aniline–formaldehyde

    Indian Academy of Sciences (India)

    Sajdha; H N Sheikh; B L Kalsotra; N Kumar; S Kumar

    2011-07-01

    Nanocomposites of mixed oxides of iron and neodymium in polymer matrix of anilineformaldehyde are reported. The composites have been obtained by treating the aqueous solution of aniline, hydrochloric acid and formaldehyde with halide of iron and neodymium oxide. The infra-red spectra show broad peaks at ∼ 590 cm-1 and at ∼ 610 cm-1 due to the presence of oxides of both iron and neodymium. In heated samples, the absorption peaks due to metal oxides are better resolved. A broad and strong peak in XRD spectra at 2 value of 35.69920 corresponds to spinel -Fe2O3. 57Fe Mössbauer spectrum for unheated sample gives Mössbauer parameters, i.e. isomer shift (), quadrupole splitting ( ) and effective magnetic field (Heff). Transmission electron microscopy (TEM) micrographs reveal well dispersed particles at different magnifications. Vibrating sample magnetometry (VSM) studies indicate that the ferrite nanoparticles exhibit characteristics of ferromagnetism.

  19. Antimony (V) Oxide Adsorbed on a Silica-Zirconia Mixed Oxide Obtained by the Sol-Gel Processing Method: Preparation and Acid Properties

    OpenAIRE

    Zaitseva,Galina; Gushikem,Yoshitaka

    2002-01-01

    The preparation, degree of dispersion, thermal stability and Lewis and Brønsted acidity of antimony (V) oxide adsorbed on SiO2/ZrO2 mixed oxide, previously prepared by the sol-gel processing method, are described herein. The samples SiO2/ZrO2/Sb2O5, with compositions (in wt %): (a) Zr= 8.1 and Sb= 6.3; (b) Zr= 14.9 and Sb= 11.4, were prepared. Scanning electron microscopy images connected to a X-ray energy dispersive spectrometer showed that both metals, Zr and Sb, were highly dispersed ...

  20. Studies of the formation of homogeneous mixed silicon-titanium/zirconium oxides by the sol-gel route

    OpenAIRE

    Hudson, Melanie

    1994-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. This thesis is concerned with the preparation of mixed silicon-titanium oxides (Ti02=4.1-21.9wt%) and silicon-zirconium oxides (Zr02=4.1-22.Iwt%) by the sol-gel route. Methods of preparing homogeneous Si02-TiO2 gels and SiO2-Zr02 gels have been explored. In this work bis(acetylacetonato)titanium diisopropoxide or bis(acetylacetonato)zirconium dipropoxide and tetraethyl orthosilicate (TEOS...

  1. A small-angle neutron scattering study of sodium dodecyl sulfate-poly(propylene oxide) methacrylate mixed micelles.

    Science.gov (United States)

    Bastiat, Guillaume; Grassl, Bruno; Borisov, Oleg; Lapp, Alain; François, Jeanne

    2006-03-15

    Mixed micelle of protonated or deuterated sodium dodecyl sulfate (SDS and SDSd25, respectively) and poly(propylene oxide) methacrylate (PPOMA) are studied by small-angle neutron scattering (SANS). In all the cases the scattering curves exhibit a peak whose position changes with the composition of the system. The main parameters which characterize mixed micelles, i.e., aggregation numbers of SDS and PPOMA, geometrical dimensions of the micelles and degree of ionisation are evaluated from the analysis of the SANS curves. The position q(max) of the correlation peak can be related to the average aggregation numbers of SDS-PPOMA and SDSd25-PPOMA mixed micelles. It is found that the aggregation number of SDS decreases upon increasing the weight ratio PPOMA/SDS (or SDSd25). The isotopic combination, which uses the "contrast effect" between the two micellar systems, has allowed us to determine the mixed micelle composition. Finally, the SANS curves were adjusted using the RMSA for the structure factor S(q) of charged spherical particles and the form factor P(q) of spherical core-shell particle. This analysis confirms the particular core-shell structure of the SDS-PPOMA mixed micelle, i.e., a SDS "core" micelle surrounded by the shell formed by PPOMA macromonomers. The structural parameters of mixed micelles obtained from the analysis of the SANS data are in good agreement with those determined previously by conductimetry and fluorescence studies.

  2. Managing plutonium in Britain. Current options[Mixed oxide nuclear fuels; Nuclear weapons

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This is the report of a two day meeting to discuss issues arising from the reprocessing of plutonium and production of mixed oxide nuclear fuels in Britain. It was held at Charney Manor, near Oxford, on June 25 and 26, 1998, and was attended by 35 participants, including government officials, scientists, policy analysts, representatives of interested NGO's, journalists, a Member of Parliament, and visiting representatives from the US and Irish governments. The topic of managing plutonium has been a consistent thread within ORG's work, and was the subject of one of our previous reports, CDR 12. This particular seminar arose out of discussions earlier in the year between Dr. Frank Barnaby and the Rt. Hon. Michael Meacher MP, Minister for the Environment. With important decisions about the management of plutonium in Britain pending, ORG undertook to hold a seminar at which all aspects of the subject could be aired. A number of on-going events formed the background to this initiative. The first was British Nuclear Fuels' [BNFL] application to the Environment Agency to commission a mixed oxide fuel [MOX] plant at Sellafield. The second was BNFL's application to vary radioactive discharge limits at Sellafield. Thirdly, a House of Lords Select Committee was in process of taking evidence, on the disposal of radioactive waste. Fourthly, the Royal Society, in a recent report entitled Management of Separated Plutonium, recommended that 'the Government should commission a comprehensive review... of the options for the management of plutonium'. Four formal presentations were made to the meeting, on the subjects of Britain's plutonium policy, commercial prospects for plutonium use, problems of plutonium accountancy, and the danger of nuclear terrorism, by experts from outside the nuclear industry. It was hoped that the industry's viewpoint would also be heard, and BNFL were invited to present a paper, but declined on the grounds that they

  3. High-level neutron-coincidence-counter (HLNCC) implementation: assay of the plutonium content of mixed-oxide fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Foley, J E; Bosler, G E

    1982-04-01

    The portable High-Level Neutron Coincidence Counter is used to assay the /sup 240/Pu-effective loading of a reference mixed-oxide fuel assembly by neutron coincidence counting. We have investigated the effects on the coincidence count rate of the total fuel loading (UO/sub 2/ + PuO/sub 2/), the fissile loading, the fuel rod diameter, and the fuel rod pattern. The coincidence count rate per gram of /sup 240/Pu-effective per centimeter is primarily dependent on the total fuel loading of the assembly; the higher the loading, the higher the coincidence count rate. Detailed procedures for the assay of mixed-oxide fuel assemblies are developed.

  4. Electrolytic trichloroethene degradation using mixed metal oxide coated titanium mesh electrodes.

    Science.gov (United States)

    Petersen, Matthew A; Sale, Thomas C; Reardon, Kenneth F

    2007-04-01

    Electrochemical systems provide a low cost, versatile, and controllable platform to potentially treat contaminants in water, including chlorinated solvents. Relative to bare metal or noble metal amended materials, dimensionally stable electrode materials such as mixed metal oxide coated titanium (Ti/MMO) have advantages in terms of stability and cost, important factors for sustainable remediation solutions. Here, we report the use of Ti/MMO as an effective cathode substrate for treatment of trichloroethene (TCE). TCE degradation in a batch reactor was measured as the decrease of TCE concentration over time and the corresponding evolution of chloride; notably, this occurred without the formation of commonly encountered chlorinated intermediates. The reaction was initiated when Ti/MMO cathode potentials were less than -0.8 V vs. the standard hydrogen electrode, and the rate of TCE degradation increased linearly with progressively more negative potentials. The maximum pseudo-first-order heterogeneous rate constant was approximately 0.05 cm min(-1), which is comparable to more commonly used cathode materials such as nickel. In laboratory-scale flow-though column reactors designed to simulate permeable reactive barriers (PRBs), TCE concentrations were reduced by 80-90%. The extent of TCE flux reduction increased with the applied potential difference across the electrodes and was largely insensitive to the spacing distance between the electrodes. This is the first report of the electrochemical reduction of a chlorinated organic contaminant at a Ti/MMO cathode, and these results support the use of this material in PRBs as a possible approach to manage TCE plume migration.

  5. Influence of nutrients on oxidation of low level methane by mixed methanotrophic consortia.

    Science.gov (United States)

    Karthikeyan, Obulisamy Parthiba; Chidambarampadmavathy, Karthigeyan; Nadarajan, Saravanan; Heimann, Kirsten

    2016-03-01

    Low-level methane emissions from coal mine ventilation air (CMV-CH4; i.e., 1 % CH4) can significantly contribute to global climate change, and therefore, treatment is important to reduce impacts. To investigate CMV-CH4 abatement potential, five different mixed methanotrohic consortia (MMCs) were established from soil/sediment sources, i.e., landfill top cover soil, bio-solid compost, vegetated humus soil, estuarine and marine sediments. Enrichment conditions for MMCs were as follows: nitrate mineral salt (NMS) medium, pH ~ 6.8; 25 °C; 20-25 % CH4; agitation 200 rpm; and culture period 20 days, in mini-bench-top bioreactors. The enriched cultures were supplemented with extra carbon (methanol 0.5-1.5 %, formate 5-15 mM, and acetate 5-15 mM), nitrogen (nitrate 0.5-1.5 g L(-1), ammonium 0.1-0.5 g L(-1), or urea: 0.1-0.5 g L(-1)), and trace elements (copper 1-5 μM, iron 1-5 μM, and zinc 1-5 μM) in different batch experiments to improve low-level CH4 abatement. Average CH4 oxidation capacities (MOCs) of MMCs varied between 1.712 ± 0.032 and 1.963 ± 0.057 mg g(-1)DWbiomass h(-1). Addition of formate improved the MOCs of MMCs, but the dose-response varied for different MMCs. Acetate, nitrate and copper had no significant effect on MOCs, while addition of methanol, ammonium, urea, iron and zinc impacted negatively. Overall, MMCs enriched from marine sediments and landfill top cover soil showed high MOCs which were largely resilient to nutrient supplementation, suggesting a strong potential for biofilter development for industrial low-level CH4 abatement, such as those present in CMV.

  6. Development of ORIGEN libraries for mixed oxide (MOX) fuel assembly designs

    Energy Technology Data Exchange (ETDEWEB)

    Mertyurek, Ugur, E-mail: mertyureku@ornl.gov; Gauld, Ian C., E-mail: gauldi@ornl.gov

    2016-02-15

    Highlights: • ORIGEN MOX library generation process is described. • SCALE burnup calculations are validated against measured MOX fuel samples from the MALIBU program. • ORIGEN MOX libraries are verified using the OECD Phase IV-B benchmark. • There is good agreement for calculated-to-measured isotopic distributions. - Abstract: ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup. The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. The nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.

  7. Electrochemical properties of mixed conducting (La,M)(CoFe) oxide perovskites (M=3DSr, Ca, and Ba)

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.W.; Armstrong, T.R.; Bates, J.L. [and others

    1996-04-01

    Electrical properties and oxygen permeation properties of solid mixed-conducting electrolytes (La,M)(CoFe) oxide perovskites (M=3DSr, Ca, and Ba) have been characterized. These materials are potentially useful as passive membranes to separate high purity oxygen from air and as the cathode in a fuel cell. Dilatometric linear expansion measurements were performed as a function of temperature and oxygen partial pressure to evaluate the stability.

  8. Rational design of Mg-Al mixed oxide-supported bimetallic catalysts for dry reforming of methane

    Energy Technology Data Exchange (ETDEWEB)

    Tsyganok, Andrey I. [Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, D' Iorio Hall, 10 Marie Curie Street, Ottawa, Ont. (Canada); Inaba, Mieko [Natural Gas Technology Development Team, Teikoku Oil Co., 9-23-30 Kitakarasuyama, Setagaya-ku, Tokyo 157-0061 (Japan); Tsunoda, Tatsuo; Uchida, Kunio; Suzuki, Kunio; Hayakawa, Takashi [Institute for Materials and Chemical Process, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565 (Japan); Takehira, Katsuomi [Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan)

    2005-09-18

    A novel synthetic strategy for preparing bimetallic Ru-M (M=Cr, Fe, Co, Ni and Cu) catalysts, supported on Mg-Al mixed oxide, has been introduced. It was based on a 'memory effect', i.e. on the ability of Mg-Al mixed oxide to reconstruct a layered structure upon rehydration with an aqueous solution. By repeated calcinations-rehydration cycles, layered double hydroxide (LDH) precursors of catalysts containing two different metals were synthesized. Bimetallic catalysts were then generated (1) in situ from LDH under methane reforming reaction conditions and (2) from mixed metal oxides obtained by preliminary LDH calcination. Among all the LDH-derived catalysts, a Ru{sup 0.1%}-Ni{sup 5.0%}/MgAlO{sub x} sample revealed the highest activity and selectivity to syngas, a suitable durability and a low coking capacity. A promoting effect of ruthenium on catalytic function of supported nickel was demonstrated. Preliminary LDH calcination was shown to markedly affect the catalytic activity of the derived catalysts and especially their coking properties.

  9. Synthesis and Photocatalytic Activity of One-dimensional ZnO-Zn2SnO4 Mixed Oxide Nanowires

    Institute of Scientific and Technical Information of China (English)

    Xue-lian Bai; Nan Pan; Xiao-ping Wang; Hai-qian Wang

    2008-01-01

    Mixed oxide photocatalysts,ZnO-Zn2SnO4(ZnO-ZTO) nanowires with different sizes were prepared by a simple thermal evaporation method.The ZnO-ZTO nanowires were characterized with a scanning electron microscope,X-ray diffraction,high-resolution transmission electron microscopy,energy-dispersive spectrometer,and X-ray photoelectron spectra.The photocatalytic activity of the ZnO-ZTO mixed nanowires were studied by observing the photodegradation behaviors of methyl orange aqueous solution.The results suggest that the ZnO-ZTO mixed oxide nanowires have a higher photocatalytic activity than pure ZnO and Zn2SnO4 nanowires.The photocatalyst concentration in the solution distinctly affects the degradation rate,and our results show that higher photodegradation efficiency can be achieved with a smaller amount of ZnO-ZTO nanowire catalyst,as compared to the pure ZnO and ZTO nanowires.Moreover,the photocatalytic activity can also be enhanced by reducing the average diameter of the nanowires.The activity of pure ZnO and ZTO nanowires are also enhanced by physically mixing them.These results can be explained by the synergism between the two semiconductors.

  10. A high-throughput reactor system for optimization of Mo–V–Nb mixed oxide catalyst composition in ethane ODH

    KAUST Repository

    Zhu, Haibo

    2015-01-01

    75 Mo-V-Nb mixed oxide catalysts with a broad range of compositions were prepared by a simple evaporation method, and were screened for the ethane oxidative dehydrogenation (ODH) reaction. The compositions of these 75 catalysts were systematically changed by varying the Nb loading, and the Mo/V molar ratio. Characterization by XRD, XPS, H2-TPR and SEM revealed that an intimate structure is formed among the 3 components. The strong interaction among different components leads to the formation of a new phase or an "intimate structure". The dependency of conversion and selectivity on the catalyst composition was clearly demonstrated from the results of high-throughput testing. The optimized Mo-V-Nb molar composition was confirmed to be composed of a Nb content of 4-8%, a Mo content of 70-83%, and a V content of 12-25%. The enhanced catalytic performance of the mixed oxides is obviously due to the synergistic effects of the different components. The optimized compositions for ethane ODH revealed in our high-throughput tests and the structural information provided by our characterization studies can serve as the starting point for future efforts to improve the catalytic performance of Mo-V-Nb oxides. This journal is © The Royal Society of Chemistry.

  11. Development of Impregnated Agglomerate Pelletization (IAP) process for fabrication of (Th,U)O 2 mixed oxide pellets

    Science.gov (United States)

    Khot, P. M.; Nehete, Y. G.; Fulzele, A. K.; Baghra, Chetan; Mishra, A. K.; Afzal, Mohd.; Panakkal, J. P.; Kamath, H. S.

    2012-01-01

    Impregnated Agglomerate Pelletization (IAP) technique has been developed at Advanced Fuel Fabrication Facility (AFFF), BARC, Tarapur, for manufacturing (Th, 233U)O 2 mixed oxide fuel pellets, which are remotely fabricated in hot cell or shielded glove box facilities to reduce man-rem problem associated with 232U daughter radionuclides. This technique is being investigated to fabricate the fuel for Indian Advanced Heavy Water Reactor (AHWR). In the IAP process, ThO 2 is converted to free flowing spheroids by powder extrusion route in an unshielded facility which are then coated with uranyl nitrate solution in a shielded facility. The dried coated agglomerate is finally compacted and then sintered in oxidizing/reducing atmosphere to obtain high density (Th,U)O 2 pellets. In this study, fabrication of (Th,U)O 2 mixed oxide pellets containing 3-5 wt.% UO 2 was carried out by IAP process. The pellets obtained were characterized using optical microscopy, XRD and alpha autoradiography. The results obtained were compared with the results for the pellets fabricated by other routes such as Coated Agglomerate Pelletization (CAP) and Powder Oxide Pelletization (POP) route.

  12. Effects of Calcination Temperature and Acid-Base Properties on Mixed Potential Ammonia Sensors Modified by Metal Oxides

    Directory of Open Access Journals (Sweden)

    Kenichi Shimizu

    2011-02-01

    Full Text Available Mixed potential sensors were fabriated using yttria-stabilized zirconia (YSZ as a solid electrolyte and a mixture of Au and various metal oxides as a sensing electrode. The effects of calcination temperature ranging from 600 to 1,000 °C and acid-base properties of the metal oxides on the sensing properties were examined. The selective sensing of ammonia was achieved by modification of the sensing electrode using MoO3, Bi2O3 and V2O5, while the use of WO3, Nb2O5 and MgO was not effective. The melting points of the former group were below 820 °C, while those of the latter group were higher than 1,000 °C. Among the former group, the selective sensing of ammonia was strongly dependent on the calcination temperature, which was optimum around melting point of the corresponding metal oxides. The good spreading of the metal oxides on the electrode is suggested to be one of the important factors. In the former group, the relative response of ammonia to propene was in the order of MoO3 > Bi2O3 > V2O5, which agreed well with the acidity of the metal oxides. The importance of the acidic properties of metal oxides for ammonia sensing was clarified.

  13. Effects of calcination temperature and acid-base properties on mixed potential ammonia sensors modified by metal oxides.

    Science.gov (United States)

    Satsuma, Atsushi; Katagiri, Makoto; Kakimoto, Shiro; Sugaya, Satoshi; Shimizu, Kenichi

    2011-01-01

    Mixed potential sensors were fabriated using yttria-stabilized zirconia (YSZ) as a solid electrolyte and a mixture of Au and various metal oxides as a sensing electrode. The effects of calcination temperature ranging from 600 to 1,000 °C and acid-base properties of the metal oxides on the sensing properties were examined. The selective sensing of ammonia was achieved by modification of the sensing electrode using MoO(3), Bi(2)O(3) and V(2)O(5), while the use of WO(3,) Nb(2)O(5) and MgO was not effective. The melting points of the former group were below 820 °C, while those of the latter group were higher than 1,000 °C. Among the former group, the selective sensing of ammonia was strongly dependent on the calcination temperature, which was optimum around melting point of the corresponding metal oxides. The good spreading of the metal oxides on the electrode is suggested to be one of the important factors. In the former group, the relative response of ammonia to propene was in the order of MoO(3) > Bi(2)O(3) > V(2)O(5), which agreed well with the acidity of the metal oxides. The importance of the acidic properties of metal oxides for ammonia sensing was clarified.

  14. [Amorphization in pharmaceutical technology].

    Science.gov (United States)

    Révész, Piroska; Laczkovich, Orsolya; Eros, István

    2004-01-01

    The amorphization of crystalline active ingredients may be necessary because of the polymorphism of the active substance, the poor water-solubility of the drug material, difficult processing in the crystalline form and the taking out of a patent for a new (amorphous) form. This article introduces protocols for amorphization, which use methods traditionally applied in pharmaceutical technology. The protocols involve three possible routes: solvent methods, hot-melt technologies and milling procedures. With this presentation, the authors suggest help for practising experts to find the correct amorphization method.

  15. Synthesis, characterization and magnetic behavior of Mg–Fe–Al mixed oxides based on layered double hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Heredia, Angélica C., E-mail: angelicacheredia@gmail.com [Universidad Tecnológica Nacional, Facultad Regional Córdoba-CITeQ, Maestro López esq. Cruz Roja Argentina, Ciudad Universitaria, 5016 Córdoba (Argentina); Oliva, Marcos I. [IFEG, Universidad Nacional de Córdoba, Córdoba (Argentina); CONICET (Argentina); Agú, Ulises [Universidad Tecnológica Nacional, Facultad Regional Córdoba-CITeQ, Maestro López esq. Cruz Roja Argentina, Ciudad Universitaria, 5016 Córdoba (Argentina); CONICET (Argentina); Zandalazini, Carlos I. [CONICET (Argentina); INFIQC, FCQ Universidad Nacional de Córdoba, Córdoba (Argentina); Marchetti, Sergio G. [CINDECA, UNLP, Buenos Aires (Argentina); Herrero, Eduardo R.; Crivello, Mónica E. [Universidad Tecnológica Nacional, Facultad Regional Córdoba-CITeQ, Maestro López esq. Cruz Roja Argentina, Ciudad Universitaria, 5016 Córdoba (Argentina)

    2013-09-15

    In the present work, Mg–Al–Fe layered double hydroxides were prepared by coprecipitation reaction with hydrothermal treatment. The characterization of precursors and their corresponding calcinated products (mixed oxides) were carried out by X ray diffraction, X-ray photoelectron spectroscopy (XPS), termogravimetric analysis and differential scanning calorimetry, diffuse reflectance UV–vis spectroscopy, specific surface area, Mössbauaer and magnetic properties. The Fe{sup 3+} species were observed in tetrahedrally and octahedrally coordination in brucite layered. The XPS analysis shows that the Fe{sup 3+} ions can be found in two coordination environments (tetrahedral and octahedral) as mixed oxides, and as spinel-structure. Oxides show a decrease in the specific surface areas when the iron loading is increased. The magnetic and Mössbauaer response show that MgAlFe mixed oxides are different behaviours such as different population ratios of ferromagnetic, weak-ferromagnetic, paramagnetic and superparamagnetic phases. The better crystallization of spinel structure with increased temperature, is correlated with the improved magnetic properties. - Highlights: • Mg–Al–Fe were successfully prepared by coprecipitation with hydrothermal treatment. • MgO, α-Fe{sub 2}O{sub 3,} MgFe{sub 2}O{sub 4} were detected by XRD in the calcined samples. • The Fe{sup 3+} is in tetrahedral and octahedral coordination in the brucite layered. • The specific surface area is directly related with the iron content. • The magnetic properties and MgFe{sub 2}O{sub 4} improve with increasing calcination temperature.

  16. Mg-AI Mixed Oxides Supported Bimetallic Au-Pd Nanoparticles with Superior Catalytic Properties in Aerobic Oxidation of Benzyl Alcohol and Glycerol

    Institute of Scientific and Technical Information of China (English)

    王亮; 张伟; 曾尚景; 苏党生; 孟祥举; 肖丰收

    2012-01-01

    Nano-sized Au and Pd catalysts are favorable for oxidations with molecular oxygen, and the preparation of this kind of nanoparticles with high catalytic activities is strongly desirable. We report a successful synthesis of bimetal- lic Au-Pd nanoparticles with rich edge and comer sites on unique support of Mg-AI mixed oxides (Au-Pd/MAO), which are favorable for producing metal nanoparticles with high degree of coordinative unsaturation of metal atoms The systematic microscopic characterizations confirm the bimetallic Au-Pd nanoparticles are present as Au-Pd alloy The irregular shape of the bimetallic nanoparticles are directly observed in HRTEM images. As we expected, Au-Pd/MAO gives very excellent catalytic performances in the aerobic oxidation of benzyl alcohol and glycerol. For example, Au-Pd/MAO shows very high TOF of 91000 h i at 433 K with molecular oxygen at air pressure in solvent-free oxidation of benzyl alcohol; this catalyst also shows relatively high selectivity for tartronic acid (TA- RAC, 36.6%) at high conversion (98.5%) in aerobic oxidation of glycerol. The superior catalytic properties of Au-Pd/MAO would be potentially important tbr production of fine chemicals.

  17. Preparation of mixed oxides (Th,U)O{sub 2}: an evaluation of different techniques; Estudos de diferentes rotas de preparacao de oxidos binarios de torio e uranio

    Energy Technology Data Exchange (ETDEWEB)

    Ayoub, Jamil Mahmoud Said

    1999-07-01

    An evaluation of different ways of obtaining (Th-U)O{sub 2} mixed oxides is described. Coprecipitation, mechanical mixing of uranium and thorium powders, and the sol-gel technique were studied in order to get a large spectrum of knowledge of the process performance. The use of ultrasonic waves for the homogenization of the hydroxide mixture and microwave heating for powder drying was also investigated. Sol-gel showed the best results regarding the specific area for obtained samples. Oxide drying by microwave is an effective method to get mixed oxides for fuel fabrication. Neither coprecipitation nor mechanical mixing of the thorium and uranium oxide powders is suitable for the purpose. The obtained data are less than 70% than those achieved when sol-gel process is performed. Electronic microscopy, X-ray fluorescence and diffraction, thermogravimetry, specific gravidity and specific area determination (BET) used for sample characterization were convenient and accomplished good results. (author)

  18. Noise-like pulse based on dissipative four-wave-mixing with photonic crystal fiber filled by reduced graphene oxide

    CERN Document Server

    Gao, Lei; Huang, Wei

    2014-01-01

    A noise-like pulse based on dissipative four-wave-mixing in a fiber cavity with photonic crystal fiber filled by reduced graphene oxide is proposed. Due to large evanescent field provided by 3 cm photonic crystal fiber and ultrahigh nonlinearity of reduced graphene oxide, this mixed structure provides excellent saturable absorption and high nonlinearity, which are necessary for generating four-wave-mixing (FWM). We experimentally prove that the mode-locked laser transfers its energy from center wavelength to sidebands through degenerate FWM, and new frequencies are generated via cascaded FWM among those sidebands. During this process, the frequencies located in various orders of longitudinal modes of the ring cavity are supported, and others are suppressed due to destructive interference. As the longitudinal modes of the cavity with a spacing of 6.874 MHz are partially supported, the loosely fixed phase relationship results in noise-like pulse with a coherent peak of 530 fs locating on a pedestal of 730.693 p...

  19. Influence of Na diffusion on thermochromism of vanadium oxide films and suppression through mixed-alkali effect

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Mark J.; Wang, Junlan, E-mail: junlan@u.washington.edu

    2015-10-15

    Highlights: • Vanadium oxide films were reactively sputtered on three types of glass substrates. • Na diffusion from soda-lime glass undesirably inhibited thermochromism. • Na diffusion was suppressed by replacing half of sodium in glass with potassium. • Mixed-alkali effect promotes thermochromic VO{sub 2} films on glass substrates. - Abstract: Vanadium(IV) oxide possesses a reversible first-order phase transformation near 68 °C. Potential applications of the material include advanced optical devices and thermochromic smart windows. In this study, vanadium oxide films were grown on three types of glass substrates using reactive DC magnetron sputtering and were then annealed in air. The substrates were characterized with energy-dispersive X-ray spectroscopy, and the films were characterized with X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and UV-Vis-NIR spectrophotometry. The results show that the composition of the substrate has a major impact on the microstructure and optical properties of the deposited films. Sodium (Na) in the glass can undesirably inhibit thermochromism; however, replacing half of the Na with potassium (K) suppresses the Na diffusion and promotes the nucleation of pure VO{sub 2} with superior thermochromic functionality. The improved performance is attributed to the mixed-alkali effect between Na and K. These findings are both scientifically and technologically important since soda (Na{sub 2}O) is an essential flux material in glass products such as windows.

  20. Nanocomposites of polyimide and mixed oxide nanoparticles for high performance nanohybrid gate dielectrics in flexible thin film transistors

    Science.gov (United States)

    Kim, Ju Hyun; Hwang, Byeong-Ung; Kim, Do-Il; Kim, Jin Soo; Seol, Young Gug; Kim, Tae Woong; Lee, Nae-Eung

    2017-01-01

    Organic gate dielectrics in thin film transistors (TFTs) for flexible display have advantages of high flexibility yet have the disadvantage of low dielectric constant (low-k). To supplement low-k characteristics of organic gate dielectrics, an organic/inorganic nanocomposite insulator loaded with high-k inorganic oxide nanoparticles (NPs) has been investigated but high loading of high-k NPs in polymer matrix is essential. Herein, compositing of over-coated polyimide (PI) on self-assembled (SA) layer of mixed HfO2 and ZrO2 NPs as inorganic fillers was used to make dielectric constant higher and leakage characteristics lower. A flexible TFT with lower the threshold voltage and high current on/off ratio could be fabricated by using the hybrid gate dielectric structure of the nanocomposite with SA layer of mixed NPs on ultrathin atomic-layer deposited Al2O3.

  1. Observations of reactive nitrogen oxide fluxes by eddy covariance above two mid-latitude North American mixed hardwood forests

    Directory of Open Access Journals (Sweden)

    J. A. Geddes

    2013-10-01

    Full Text Available Significant knowledge gaps persist in the understanding of forest–atmosphere exchange of reactive nitrogen oxides, partly due to a lack of direct observations. Chemical transport models require representations of dry deposition over a variety of land surface types, and the role of canopy exchange of NOx (= NO + NO2 is highly uncertain. Biosphere–atmosphere exchange of NOx and NOy (= NOx + HNO3 + PANs + RONO2 + pNO3− + ... was measured by eddy covariance above a mixed hardwood forest in central Ontario (HFWR, and a mixed hardwood forest in northern lower Michigan (PROPHET during the summers of 2011 and 2012 respectively. NOx and NOy mixing ratios were measured by a custom built two-channel analyzer based on chemiluminescence, with selective NO2 conversion via LED photolysis and NOy conversion via a hot molybdenum converter. Consideration of interferences from water and O3, and random uncertainty of the calculated fluxes are discussed. NOy flux observations were predominantly of deposition at both locations. The magnitude of deposition scaled with NOy mixing ratios, resulting in campaign-average deposition velocities close to 0.6 cm s−1 at both locations. A~period of highly polluted conditions (NOy concentrations up to 18 ppb showed distinctly different flux characteristics than the rest of the campaign. Integrated daily average NOy flux was 0.14 mg (N m−2 day−1 and 0.34 mg (N m−2 day−1 at HFWR and PROPHET respectively. Concurrent wet deposition measurements were used to estimate the contributions of dry deposition to total reactive nitrogen oxide inputs, found to be 22% and 40% at HFWR and PROPHET, respectively.

  2. Synthesis, characterization, and activity of yttrium(III) nitrate complexes bearing tripodal phosphine oxide and mixed phosphine-phosphine oxide ligands.

    Science.gov (United States)

    Sues, Peter E; Lough, Alan J; Morris, Robert H

    2012-09-03

    A series of four tripodal phosphine oxide ligands, (OPR(2))(2)CHCH(2)POR(2) (1a-1d), and four mixed phosphine-phosphine oxide ligands, (OPR(2))(2)CHCH(2)PR(2) (3a-3d), were synthesized and coordinated to yttrium to produce Y(NO(3))(3)[(OPR(2))(2)CHCH(2)POR(2)] (2a-2d) and Y(NO(3))(3)[(OPR(2))(2)CHCH(2)PR(2)](OPPh(3)) (4a-4d) complexes. The previously reported ligand 1a and unknown phosphine oxide ligands 1b-1d were generated in an unprecedented trisubstitution reaction of bromoacetaldehyde diethyl acetal, while the novel partially reduced ligands 3a-3d were synthesized from 1a-1d according to a known literature protocol for the selective monoreduction of bisphosphine oxides. The neutral yttrium complexes 2a-2d are nine-coordinate and display a tricapped trigonal-prismatic geometry. Complexes 4a-4d are also neutral, nine-coordinate species and have a pendant phosphine functionality, which provides the potential to form bimetallic early-late transition-metal complexes. Additionally, yttrium complexes 2a-2d were activated with base and tested for the ring-opening polymerization of ε-caprolactone, but the results showed that base by itself was significantly more effective than the yttrium species investigated.

  3. Deactivation of a mixed oxide catalyst of Mo-V-Te-Nb-O composition in the reaction of oxidative ethane dehydrogenation

    Science.gov (United States)

    Mishanin, I. I.; Kalenchuk, A. N.; Maslakov, K. I.; Lunin, V. V.; Koklin, A. E.; Finashina, E. D.; Bogdan, V. I.

    2016-06-01

    The operational stability of a mixed oxide catalyst of Mo-V-Te-Nb-O composition in the oxidative dehydrogenation of ethane (ratio of C2H6: O2 = 3: 1) is studied in a flow reactor at temperatures of 340-400°C, a pressure of 1 atm, and a WHSV of the feed mixture of 800 h-1. It is found that the selectivity toward ethylene is 98% at 340°C, but the conversion of ethane at this temperature is only 6%; when the temperature is raised to 400°C, the conversion of ethane is increased to 37%, while the selectivity toward ethylene is reduced to 85%. Using physical and chemical means (XPS, SEM), it is found that the lack of oxidant in the reaction mixture leads to irreversible changes in the catalyst, i.e., reduced selectivity and activity. Raising the reaction temperature to 400°C allows the reduction of tellurium by ethane, from the +6 oxidation state to the zerovalent state, with its subsequent sublimation and the destruction of the catalytically active and selective phase; in its characteristics, the catalyst becomes similar to the Mo-V-Nb-O system containing no tellurium.

  4. Growth of amorphous zinc tin oxide films using plasma-enhanced atomic layer deposition from bis(1-dimethylamino-2-methyl-2propoxy)tin, diethylzinc, and oxygen plasma

    Science.gov (United States)

    Han, Jeong Hwan; Lee, Byoung Kook; Jung, Eun Ae; Kim, Hyo-Suk; Kim, Seong Jun; Kim, Chang Gyoun; Chung, Taek-Mo; An, Ki-Seok

    2015-12-01

    Amorphous ZnSnOx (ZTO) films were prepared using plasma-enhanced atomic layer deposition (PEALD) in a temperature range of 100-200 °C. Metal-organic precursors of Sn(dmamp)2 (dmamp = bis(1-dimethylamino-2-methyl-2-propoxide) and diethylzinc were employed as sources of Sn and Zn, respectively, in combination with O2 plasma as a reactant. Sn levels in the ZTO films were controlled by varying the SnO2/ZnO cycle ratio from 0 to 8. According to the growth behaviour of the ZTO film by alternating SnO2 and ZnO PEALD cycles, it was observed that ZnO growth on Sn-rich ZTO film is retarded, whereas SnO2 growth is enhanced on Zn-rich ZTO film. The chemical states of the ZTO films were confirmed by X-ray photoelectron spectroscopy (XPS); the chemical compositions of the ZTO films were characterised by XPS depth profiling. Grazing-angle X-ray diffraction revealed that the PEALD ZTO films possess an amorphous structure, irrespective of Sn levels from 20 to 59 at.%. ZTO films with intermediate Sn at.% exhibited smooth surface morphology compared to binary ZnO and SnO2 films. Additionally, the step coverage of a ZTO film deposited on hole pattern with an aspect ratio of 8 and opening diameter of 110 nm was about 93%, suggesting the realisation of self-limited growth.

  5. NO(x) decomposition, storage and reduction over novel mixed oxide catalysts derived from hydrotalcite-like compounds.

    Science.gov (United States)

    Yu, Jun Jie; Cheng, Jie; Ma, Chun Yan; Wang, Hai Lin; Li, Lan Dong; Hao, Zheng Ping; Xu, Zhi Ping

    2009-05-15

    Effective control and removal of nitrogen oxides (NO(x)) emission from vehicles exhausts under lean-burn condition is one of the most important targets in scientific research of environmental protection. A comprehensive introduction of NO(x) storage and reduction (NSR), the most promising lean-NO(x) control technology, is given including the sum-up of NSR materials, catalytic activity and related reaction mechanisms. Emphasis is put on the novel multifunctional NSR catalysts, derived from hydrotalcite-like compounds, with characteristic of simultaneous NO(x) strorage-decomposition-reduction. Finally, future research directions in the area of lean-NO(x) control based on mixed oxide catalysts derived from hydrotalcite-like materials is also proposed.

  6. Preparation and conductivity of nanocrystalline rare earth mixed oxides SmFe1-xCoxO3-δ

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Nanocrystalline rare earth mixed oxides SmFe1 xCoxO3-δ were prepared by sol-gel method at 1 073 K for 2h calcination and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that SmFe1-xCoxO3-δ has the structure ofperovskite type. The conductivity of the materials increases with the temperature rising and the maximum conductivity at 1 073 K is 2.6 S/cm with the best mole ratio of Fe3+ to Co3+ being 1: 4. This kind of oxide is a conductive ceramic material by means of conduction of electron and oxygen anion.

  7. Density functional theory model of amorphous zinc oxide (a-ZnO) and a-X0.375Z0.625O (X= Al, Ga and In)

    Science.gov (United States)

    Pandey, Anup; Scherich, Heath; Drabold, D. A.

    2017-01-01

    Density functional theory (DFT) calculations are carried out to study the structure and electronic structure of amorphous zinc oxide (a-ZnO). The models were prepared by the "melt-quench" method. The models are chemically ordered with some coordination defects. The effect of trivalent dopants in the structure and electronic properties of a-ZnO is investigated. Models of a-X_0.375 Z_0.625 O (X=Al, Ga and In) were also prepared by the "melt- quench" method. The trivalent dopants reduce the four-fold Zn and O, thereby introducing some coordination defects in the network. The dopants prefer to bond with O atom. The network topology is discussed in detail. Dopants reduce the gap in EDOS by producing defect states minimum while maintaining the extended nature of the conduction band edge.

  8. Trehalose amorphization and recrystallization.

    Science.gov (United States)

    Sussich, Fabiana; Cesàro, Attilio

    2008-10-13

    The stability of the amorphous trehalose prepared by using several procedures is presented and discussed. Amorphization is shown to occur by melting (T(m)=215 degrees C) or milling (room temperature) the crystalline anhydrous form TRE-beta. Fast dehydration of the di-hydrate crystalline polymorph, TRE-h, also produces an amorphous phase. Other dehydration procedures of TRE-h, such as microwave treatment, supercritical extraction or gentle heating at low scan rates, give variable fractions of the polymorph TRE-alpha, that undergo amorphization upon melting (at lower temperature, T(m)=130 degrees C). Additional procedures for amorphization, such as freeze-drying, spray-drying or evaporation of trehalose solutions, are discussed. All these procedures are classified depending on the capability of the undercooled liquid phase to undergo cold crystallization upon heating the glassy state at temperatures above the glass transition temperature (T(g)=120 degrees C). The recrystallizable amorphous phase is invariably obtained by the melt of the polymorph TRE-alpha, while other procedures always give an amorphous phase that is unable to crystallize above T(g). The existence of two different categories is analyzed in terms of the transformation paths and the hypothesis that the systems may exhibit different molecular mobilities.

  9. Physical Properties of Mixed Conductor Solid Oxide Fuel Cell Anodes of Doped CeO2

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Lindegaard, Thomas; Hansen, Uffe Rud

    1994-01-01

    Samples of CeO2 doped with oxides such as CaO and Gd2O3 were prepared. Their conductivities and expansions onreduction were measured at 1000°C, and the thermal expansion coefficients in the range 50 to 1000°C were determined. Theionic and electronic conductivity were derived from curves of total...... for solid oxide fuel cell anodes. Not all requirements are fulfilled. Measures to compensate for this arediscussed....

  10. Synthesis and characterization of ordered hexagonal and cubic mesoporous tin oxides via mixed-surfactant templates route.

    Science.gov (United States)

    Wang, Yude; Ma, Chunlai; Sun, Xiaodan; Li, Hengde

    2005-06-15

    Ordered hexagonal and cubic mesoporous tin oxides were synthesized for the first time in the presence of mixed cationic and neutral surfactants (a mixture of cetyltrimethylammonium bromide cationic surfactant and dodecylamine neutral surfactant) with different alkali and simple inorganic precursors at room temperature. In the synthesis systems, the dodecylamine neutral surfactant may function as a polar organic cosolvent and cosurfactant. The formation of the tin oxide mesostructured material was proposed to be due to the presence of hydrogen-bonding interactions between the supramolecular template and inorganic precursors Sn4+ and OH-, which were assumed to self-assemble around the cationic surfactant molecules. The materials are characterized by X-ray powder diffraction, transmission electron microscopy, thermogravimetric analysis, and N2 adsorption/desorption isotherm. The surface areas of materials evaluated from the N2 sorption isotherms are about 248 m(2)/g for hexagonal mesoporous tin oxide (SnH) and 281 m(2)/g for cubic mesoporous tin oxide (Sn-C) for calcination at 350 degrees C.

  11. Deterioration of yttria-stabilized zirconia by boron carbide alone or mixed with metallic or oxidized Fe, Cr, Zr mixtures

    Energy Technology Data Exchange (ETDEWEB)

    De Bremaecker, A., E-mail: adbremae@sckcen.be [Belgian Nuclear Research Center (SCK-CEN), NMS, Mol (Belgium); Ayrault, L., E-mail: laurent.ayrault@cea.fr [Institut de Radio-Protection et Sûreté Nucléaire/DPAM/SEMIC, Bât 702, CEN de Cadarache BP3, F-13115 Saint-Paul-lez-Durance (France); Clément, B. [Institut de Radio-Protection et Sûreté Nucléaire/DPAM/SEMIC, Bât 702, CEN de Cadarache BP3, F-13115 Saint-Paul-lez-Durance (France)

    2014-08-01

    In the frame of severe accident conditions (PHEBUS FPT3 test), different experiments were carried out on the interactions of 20% yttria-stabilized zirconia (YSZ) and 20% ceria-stab zirconia with boron carbide or its oxidation products (B{sub 2}O{sub 3}): either tests under steam between 1230° and 1700 °C with B{sub 4}C alone or B{sub 4}C mixed with metals, either tests under Ar with boron oxide present in a mixture of iron and chromium oxides. In all cases an interaction was observed with formation of intergranular yttrium borate. At 1700 °C boron oxide is able to “pump out” the Y stabiliser from the YSZ grains but also some trace elements (Ca and Al) and to form a eutectic containing YBO{sub 3} and yttrium calcium oxy-borate (YCOB). At the same time a substantial swelling (“bloating”) of the zirconia happens, qualitatively similar to the foaming of irradiated fuel in contact with a Zr-melt. In all samples the lowering of the Y (or Ce)-content in the YSZ grains is so sharp that in the interaction layers zirconia is no longer stabilized. This is important when YSZ is envisaged as simulant of UO{sub 2} or as inert matrix for Am-transmutation.

  12. DRIFT study of CuO-CeO₂-TiO₂ mixed oxides for NOx reduction with NH₃ at low temperatures.

    Science.gov (United States)

    Chen, Lei; Si, Zhichun; Wu, Xiaodong; Weng, Duan

    2014-06-11

    A CuO-CeO2-TiO2 catalyst for selective catalytic reduction of NOx with NH3 (NH3-SCR) at low temperatures was prepared by a sol-gel method and characterized by X-ray diffraction, Brunner-Emmett-Teller surface area, ultraviolet-visible spectroscopy, H2 temperature-programmed reduction, scanning electron microscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS). The CuO-CeO2-TiO2 ternary oxide catalyst shows excellent NH3-SCR activity in a low-temperature range of 150-250 °C. Lewis acid sites generated from Cu(2+) are the main active sites for ammonia activation at low temperature, which is crucial for low temperature NH3-SCR activity. The introduction of ceria results in increased reducibility of CuO species and strong interactions between CuO particles with the matrix. The interactions between copper, cerium and titanium oxides lead to high dispersion of metal oxides with increased active oxygen and enhanced catalyst acidity. Homogeneously mixed metal oxides facilitate the "fast SCR" reaction among Cu(2+)-NO, nitrate (coordinated on cerium sites) and ammonia (on titanium sites) on the CuO-CeO2-TiO2 catalyst at low temperatures.

  13. Deterioration of yttria-stabilized zirconia by boron carbide alone or mixed with metallic or oxidized Fe, Cr, Zr mixtures

    Science.gov (United States)

    De Bremaecker, A.; Ayrault, L.; Clément, B.

    2014-08-01

    In the frame of severe accident conditions (PHEBUS FPT3 test), different experiments were carried out on the interactions of 20% yttria-stabilized zirconia (YSZ) and 20% ceria-stab zirconia with boron carbide or its oxidation products (B2O3): either tests under steam between 1230° and 1700 °C with B4C alone or B4C mixed with metals, either tests under Ar with boron oxide present in a mixture of iron and chromium oxides. In all cases an interaction was observed with formation of intergranular yttrium borate. At 1700 °C boron oxide is able to “pump out” the Y stabiliser from the YSZ grains but also some trace elements (Ca and Al) and to form a eutectic containing YBO3 and yttrium calcium oxy-borate (YCOB). At the same time a substantial swelling (“bloating”) of the zirconia happens, qualitatively similar to the foaming of irradiated fuel in contact with a Zr-melt. In all samples the lowering of the Y (or Ce)-content in the YSZ grains is so sharp that in the interaction layers zirconia is no longer stabilized. This is important when YSZ is envisaged as simulant of UO2 or as inert matrix for Am-transmutation.

  14. Hybrid Co-deposition of Mixed-Valent Molybdenum-Germanium Oxides (MoxGeyOz): A Route to Tunable Optical Transmission (Postprint)

    Science.gov (United States)

    2015-08-05

    2009) 4215–4220. [91] A. Bandi, Electrochemical reduction of carbon dioxide on conductivemetallic oxides, J. Electrochem. Soc. 137 (1990) 2157–2160...substoichiometric transition metal oxides, including Ni [15], Co [15,19], Fe [15], Cu [15,18], W [15,17], and Mo [15], within a dielectric silicon dioxide ...depositing mixed oxides include the use of alloyed targets [41–45], affixing strips of various materials to the target surface [15,17–19], and co

  15. Amorphous iron (II) carbonate

    DEFF Research Database (Denmark)

    Sel, Ozlem; Radha, A.V.; Dideriksen, Knud;

    2012-01-01

    exothermic than that of amorphous calcium carbonate (ACC). This suggests that enthalpy of crystallization in carbonate systems is ionic-size controlled, which may have significant implications in a wide variety of conditions, including geological sequestration of anthropogenic carbon dioxide.......Abstract The synthesis, characterization and crystallization energetics of amorphous iron (II) carbonate (AFC) are reported. AFC may form as a precursor for siderite (FeCO3). The enthalpy of crystallization (DHcrys) of AFC is similar to that of amorphous magnesium carbonate (AMC) and more...

  16. Effect of mixed rare earth oxides and CaCO3 modification on the microstructure of an in-situ Mg2Si/Al-Si composite

    Institute of Scientific and Technical Information of China (English)

    LIU Zheng; LIN Jixing; JING Qingxiu

    2009-01-01

    The effects of mixed rare earth oxides and CaCO3 on the microstructure of an in-situ Mg2Si/Al-Si hypereutectic alloy composite were investigated by optical microscope, scanning electron microscope, and energy dispersive spectrum analysis. The results showed that the morphology of the primary Mg2Si phase particles changed from irregular or crosses to polygonal shape, their sizes decreased from 75 μm to about 25 μm, and the compound of both the oxide and CaCO3 was better than either the single mixed rare earth oxides or CaCO3.

  17. Nanostructured Metal Oxides And Mixed Metal Oxides, Methods Of Making These Nanoparticles, And Methods Of Their Use

    KAUST Repository

    Polshettiwar, Vivek

    2013-04-11

    Embodiments of the present disclosure provide for nanoparticles, methods of making nanoparticles, methods of using the nanoparticles, and the like. Nanoparticles of the present disclosure can have a variety of morphologies, which may lead to their use in a variety of technologies and processes. Nanoparticles of the present may be used in sensors, optics, mechanics, circuits, and the like. In addition, nanoparticles of the present disclosure may be used in catalytic reactions, for CO oxidation, as super-capacitors, in hydrogen storage, and the like.

  18. 40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acryloxy alkanoic alkane derivative... Significant New Uses for Specific Chemical Substances § 721.10148 Acryloxy alkanoic alkane derivative with...) The chemical substance identified generically as acryloxy alkanoic alkane derivative with mixed...

  19. Mixed polaronic-ionic conduction in lithium borate glasses and glass-ceramics containing copper oxide

    Science.gov (United States)

    Khalil, M. M. I.

    2007-03-01

    The effect of electric field strength on conduction in lithium borate glasses doped with CuO with different concentration was studied and the value of the jump distance of charge carrier was calculated. The conductivity measurements indicate that the conduction is due to non-adiabatic hopping of polarons and the activation energies are found to be temperature and concentration dependent. Lithium borate glasses are subjected to carefully-programmed thermal treatments which cause the nucleation and growth of crystalline phases. X-ray diffraction analysis confirmed the amorphous nature for the investigated glass sample and the formation of crystalline phase for annealed samples at 650 °C. The main separated crystalline phase is Li2B8O13. The scanning electron micrographs of some selected glasses showed a significant change in the morphology of the films investigated due to heat treatment of the glass samples. It was found that the dc-conductivity decreases with an increase of the HT temperature. The decrease of dc conductivity, with an increase of the HT temperature, can be related to the decrease in the number of free ions in the glass matrix. There is deviation from linearity at high temperature regions in the logσ-1/T plots for all investigated doped samples at a certain temperature at which the transition from polaronic to ionic conduction occurs. The hopping of small polarons is dominant at low temperatures, whereas the hopping of Li+ ions dominates at high temperatures.

  20. Mixed polaronic-ionic conduction in lithium borate glasses and glass-ceramics containing copper oxide

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, M.M.I. [National Center for Radiation Research and Technology, Radiation Physics Department, Cairo (Egypt)

    2007-03-15

    The effect of electric field strength on conduction in lithium borate glasses doped with CuO with different concentration was studied and the value of the jump distance of charge carrier was calculated. The conductivity measurements indicate that the conduction is due to non-adiabatic hopping of polarons and the activation energies are found to be temperature and concentration dependent. Lithium borate glasses are subjected to carefully-programmed thermal treatments which cause the nucleation and growth of crystalline phases. X-ray diffraction analysis confirmed the amorphous nature for the investigated glass sample and the formation of crystalline phase for annealed samples at 650 C. The main separated crystalline phase is Li{sub 2}B{sub 8}O{sub 13}. The scanning electron micrographs of some selected glasses showed a significant change in the morphology of the films investigated due to heat treatment of the glass samples. It was found that the dc-conductivity decreases with an increase of the HT temperature. The decrease of dc conductivity, with an increase of the HT temperature, can be related to the decrease in the number of free ions in the glass matrix. There is deviation from linearity at high temperature regions in the log{sigma}-1/T plots for all investigated doped samples at a certain temperature at which the transition from polaronic to ionic conduction occurs. The hopping of small polarons is dominant at low temperatures, whereas the hopping of Li{sup +} ions dominates at high temperatures. (orig.)

  1. Electrical Conductivity of Sintered Chromia Mixed with TiO2,CuO and Mn-Oxides

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The electrical conductivity of sintered Cr2O3 mixed with 2% and 5% (in molar fraction) TiO2 or CuO was investigated in the temperature range 500~900℃ in air and in Ar/4 vol. pct H2 atmospheres. The effect of different Mn-oxides on the electrical conductivity of Cr2O3 was also studied under the same conditions.From the conductivity measurements it is established that additions of TiO2 change the defect structure of Cr2O3 and the effect of TiO2 on the electrical conductivity is controlled by TiO2 concentration as well as temperature and O2 partial pressure of the surrounding atmosphere. The conductivity of Cr2O3 increased in air and decreased in the Ar/H2 atmosphere by CuO additions. The effect of CuO was discussed with possible changes in the defect concentration in Cr2O3. Mixing of Cr2O3 with different Mn-oxides at the same Mn to metal atom fraction decreased the conductivity in air and in Ar/H2 atmospheres. No clear correlation between the spinel fraction and the changes in conductivity could be found.

  2. Design of amphoteric mixed oxides of zinc and Group 3 elements (Al, Ga, In): migration effects on basic features.

    Science.gov (United States)

    Mekki-Berrada, Adrien; Grondin, Didier; Bennici, Simona; Auroux, Aline

    2012-03-28

    The design of new amphoteric catalysts is of great interest for several industrial processes, especially those covering dehydration and dehydrogenation phenomena. Adsorption microcalorimetry was used to monitor the design of mixed oxides of zinc with Group 3 elements (aluminium, gallium, indium) with amphoteric character and enhanced specific surface area. Acid-base features were found to evolve non-linearly with the relative amounts of metal, and the strengths of the created acidic or basic sites were measured by adsorption microcalorimetry. A panel of bifunctional catalysts of various acid-base (amounts, strengths) and redox character was obtained. Besides, special interest was given to In-Zn mixed oxides for their enhanced basicity: this series of catalysts displays important basic features of high strength (q(diff) (SO₂ ads.) > 200 kJ mol(SO₂)⁻¹ in substantial amounts (1 - 2 μmol m(catalyst)⁻²), whose impact on efficiency or selectivity in catalytic dehydration/dehydrogenation can be valuable.

  3. Observations of reactive nitrogen oxide fluxes by eddy covariance above two midlatitude North American mixed hardwood forests

    Science.gov (United States)

    Geddes, J. A.; Murphy, J. G.

    2014-03-01

    Significant knowledge gaps persist in the understanding of forest-atmosphere exchange of reactive nitrogen oxides, partly due to a lack of direct observations. Chemical transport models require representations of dry deposition over a variety of land surface types, and the role of canopy exchange of NOx (= NO + NO2) is highly uncertain. Biosphere-atmosphere exchange of NOx and NOy (= NOx + HNO3 + PANs + RONO2 + pNO3- + ...) was measured by eddy covariance above a mixed hardwood forest in central Ontario (Haliburton Forest and Wildlife Reserve, or HFWR), and a mixed hardwood forest in northern lower Michigan (Program for Research on Oxidants: Photochemistry, Emissions and Transport, or PROPHET) during the summers of 2011 and 2012 respectively. NOx and NOy mixing ratios were measured by a custom-built two-channel analyser based on chemiluminescence, with selective NO2 conversion via LED photolysis and NOy conversion via a hot molybdenum converter. Consideration of interferences from water vapour and O3, and random uncertainty of the calculated fluxes are discussed. NOy flux observations were predominantly of deposition at both locations. In general, the magnitude of deposition scaled with NOy mixing ratios. Average midday (12:00-16:00) deposition velocities at HFWR and PROPHET were 0.20 ± 0.25 and 0.67 ± 1.24 cm s-1 respectively. Average nighttime (00:00-04:00) deposition velocities were 0.09 ± 0.25 cm s-1 and 0.08 ± 0.16 cm s-1 respectively. At HFWR, a period of highly polluted conditions (NOy concentrations up to 18 ppb) showed distinctly different flux characteristics than the rest of the campaign. Integrated daily average NOy flux was -0.14 mg (N) m-2 day-1 and -0.34 mg (N) m-2 day-1 (net deposition) at HFWR and PROPHET respectively. Concurrent wet deposition measurements were used to estimate the contributions of dry deposition to total reactive nitrogen oxide inputs, found to be 22 and 40% at HFWR and PROPHET respectively.

  4. Amorphous Solid Water:

    DEFF Research Database (Denmark)

    Wenzel, Jack; Linderstrøm-Lang, C. U.; Rice, Stuart A.

    1975-01-01

    The structure factor of amorphous solid D2O deposited from the vapor at 10°K has been obtained by measuring the neutron diffraction spectrum in the wave vector transfer from 0.8 to 12.3 reciprocal angstroms. The results indicate that the phase investigated is amorphous and has a liquiid-like stru......The structure factor of amorphous solid D2O deposited from the vapor at 10°K has been obtained by measuring the neutron diffraction spectrum in the wave vector transfer from 0.8 to 12.3 reciprocal angstroms. The results indicate that the phase investigated is amorphous and has a liquiid...

  5. Amorphous pharmaceutical solids.

    Science.gov (United States)

    Vranić, Edina

    2004-07-01

    Amorphous forms are, by definition, non-crystalline materials which possess no long-range order. Their structure can be thought of as being similar to that of a frozen liquid with the thermal fluctuations present in a liquid frozen out, leaving only "static" structural disorder. The amorphous solids have always been an essential part of pharmaceutical research, but the current interest has been raised by two developments: a growing attention to pharmaceutical solids in general, especially polymorphs and solvates and a revived interest in the science of glasses and the glass transition. Amorphous substances may be formed both intentionally and unintentionally during normal pharmaceutical manufacturing operations. The properties of amorphous materials can be exploited to improve the performance of pharmaceutical dosage forms, but these properties can also give rise to unwanted effects that need to be understood and managed in order for the systems to perform as required.

  6. Oxidative performance and surface properties of Co-containing mixed oxides having the K2NiF4 structure

    Directory of Open Access Journals (Sweden)

    XIAOMAO YANG

    2004-10-01

    Full Text Available The complexed oxides Nd2–xSrxCoO4 (0.4 0.8, the lattice distortion decreased with increasing x. The results of O2–TPD showed that amount of desorption of lattice oxygen over Nd2–xSrxCoO4 increased with x, however, the amount of chemidesorption of oxygen decreased. With increasing x, the high-temperature reduction peak in H2–TPR of Nd2–xSrxCoO4 shifted to higher temperatures, however, the low-temperature reduction peak shifted to lower temperatures, which showed that the activity of the lattice oxygen and the thermal stability of Nd2–xSrxCoO4 increased with increasing x.

  7. Chemical thermodynamics of Cs and Te fission product interactions in irradiated LMFBR mixed-oxide fuel pins

    Science.gov (United States)

    Adamson, M. G.; Aitken, E. A.; Lindemer, T. B.

    1985-02-01

    A combination of fuel chemistry modelling and equilibrium thermodynamic calculations has been used to predict the atom ratios of Cs and Te fission products (Cs:Te) that find their way into the fuel-cladding interface region of irradiated stainless steel-clad mixed-oxide fast breeder reactor fuel pins. It has been concluded that the ratio of condensed, chemically-associated Cs and Te in the interface region,Čs:Te, which in turn determines the Te activity, is controlled by an equilibrium reaction between Cs 2Te and the oxide fuel, and that the value of Čs:Te is, depending on fuel 0:M, either equal to or slightly less than 2:1. Since Cs and Te fission products are both implicated as causative agents in FCCI (fission product-assisted inner surface attack of stainless steel cladding) and in FPLME (fission product-assisted liquid metal embrittlement of AISI-Type 316), the observed out-of-pile Cs:Te thresholds for FCCI (4˜:1) and FPLME (2˜:1) have been rationalized in terms of Cs:Te thermochemistry and phase equilibria. Also described in the paper is an updated chemical evolution model for reactive/volatile fission product behavior in irradiated oxide pins.

  8. Calibration of the Lawrence Livermore National Laboratory Passive-Active Neutron Drum Shuffler for Measurement of Highly Enriched Uranium in Mixed Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Mount, M; O' Connell, W; Cochran, C; Rinard, P; Dearborn, D; Endres, E

    2002-05-23

    As a follow-on to the Lawrence Livermore National Laboratory (LLNL) effort to calibrate the LLNL passive-active neutron drum (PAN) shuffler for measurement of highly enriched uranium (HEU) oxide, a method has been developed to extend the use of the PAN shuffler to the measurement of HEU in mixed uranium-plutonium (U-Pu) oxide. This method uses the current LLNL HEU oxide calibration algorithms, appropriately corrected for the mixed U-Pu oxide assay time, and recently developed PuO{sub 2} calibration algorithms to yield the mass of {sup 235}U present via differences between the expected count rate for the PuO{sub 2} and the measured count rate of the mixed U-Pu oxide. This paper describes the LLNL effort to use PAN shuffler measurements of units of certified reference material (CRM) 149 [uranium (93% Enriched) Oxide - U{sub 3}O{sub 8} Standard for Neutron Counting Measurements] and CRM 146 [Uranium Isotopic Standard for Gamma Spectrometry Measurements] and a selected set of LLNL PuO{sub 2}-bearing containers in consort with Monte Carlo simulations of the PAN shuffler response to each to (1) establish and validate a correction to the HEU calibration algorithm for the mixed U-Pu oxide assay time, (2) develop a PuO{sub 2} calibration algorithm that includes the effect of PuO{sub 2} density (2.4 g/cm{sup 3} to 4.8 g/cm{sup 3}) and container size (8.57 cm to 9.88 cm inside diameter and 9.60 cm to 13.29 cm inside height) on the PAN shuffler response, and (3) develop and validate the method for establishing the mass of {sup 235}U present in an unknown of mixed U-Pu oxide.

  9. Mixed oxide semiconductor CuInAlO4 nanoparticles: synthesis, structure and photocatalytic properties

    Science.gov (United States)

    Xu, Jian; Qin, Chuanxiang; Bi, Shala; Wan, Yingpeng; Huang, Yanlin; Wang, Yaorong; Seo, Hyo Jin

    2017-01-01

    CuInAlO4 nanoparticles were synthesized via the facile sol-gel route. The phase formations were investigated by x-ray powder diffraction and structure refinements. The morphological characteristic of the nano-oxides was tested with scanning electron microscopy, transmission electron microscopy, energy-dispersive spectra, N2-adsorption-desorption isotherms and the x-ray photoelectron spectrum. The optical absorption, band energy and structures of the nanoparticles were measured. CuInAlO4 has wide optical absorption from UV to visible wavelength. The nano-oxides have a narrow band energy of 2.191 eV. The photocatalysis ability of CuInAlO4 nanoparticles was confirmed by its efficient photodegradation on methylene blue (MB) dye under the excitation of the visible wavelengths: CuInAlO4 demonstrates efficient photocatalysis on MB photodegradation.

  10. In-situ investigation of the calcination process of mixed oxide xerogels with Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Panitz, J.C. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The controlled calcination of materials derived by sol-gel reactions is important for the evolution of the final structure. Raman spectroscopy is an ideal tool for the identification of surface species under in-situ conditions, as demonstrated in the following for the example of a molybdenum oxide-silica xerogel. Raman spectra of this particular sample were recorded at temperatures as high as 1173 K, and compared with those of a reference material.(author) 3 figs., 4 refs.

  11. Influence of the charge trap density distribution in a gate insulator on the positive-bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors

    Science.gov (United States)

    Kim, Eungtaek; Kim, Choong-Ki; Lee, Myung Keun; Bang, Tewook; Choi, Yang-Kyu; Park, Sang-Hee Ko; Choi, Kyung Cheol

    2016-05-01

    We investigated the positive-bias stress (PBS) instability of thin film transistors (TFTs) composed of different types of first-gate insulators, which serve as a protection layer of the active surface. Two different deposition methods, i.e., the thermal atomic layer deposition (THALD) and plasma-enhanced ALD (PEALD) of Al2O3, were applied for the deposition of the first GI. When THALD was used to deposit the GI, amorphous indium-gallium-zinc oxide (a-IGZO) TFTs showed superior stability characteristics under PBS. For example, the threshold voltage shift (ΔVth) was 0 V even after a PBS time (tstress) of 3000 s under a gate voltage (VG) condition of 5 V (with an electrical field of 1.25 MV/cm). On the other hand, when the first GI was deposited by PEALD, the ΔVth value of a-IGZO TFTs was 0.82 V after undergoing an identical amount of PBS. In order to interpret the disparate ΔVth values resulting from PBS quantitatively, the average oxide charge trap density (NT) in the GI and its spatial distribution were investigated through low-frequency noise characterizations. A higher NT resulted during in the PEALD type GI than in the THALD case. Specifically, the PEALD process on a-IGZO layer surface led to an increasing trend of NT near the GI/a-IGZO interface compared to bulk GI owing to oxygen plasma damage on the a-IGZO surface.

  12. Effect of dolomite, magnesium oxide (MgO) and chalk (CaCO3) on in vitro fermentation of amorphous and crystalline cellulose and meadow hay using inoculum from sheep.

    Science.gov (United States)

    Váradyová, Zora; Baran, Miroslav; Zawadzki, Wojciech; Siroka, Peter

    2003-01-01

    Some minerals can influence some biochemical parameters of rumen fermentation. The objective of this experiment was to determine the effect of different amounts (0.1, 0.25 and 0.5 g) of dolomite and to compare the effect of dolomite, magnesium oxide (MgO) and chalk (CaCO3) upon the end products of rumen fermentation in vitro. Amorphous and crystalline cellulose as well as meadow hay were used as substrates and incubated with buffered rumen fluid in sealed fermentation bottles. In dependence on the amount of dolomite and the kind of substrate an inhibitory effect of dolomite on methane production was evident. Significant differences of methane production were found between the controls, crystalline cellulose and meadow hay with 0.5 g of dolomite. An increase of total gas production was observed for cellulose with both 0.25 and 0.5 g of dolomite and also for meadow hay with 0.5 g of dolomite. It can be concluded that there was a remarkable effect of dolomite on methane production and also a slight effect of magnesium oxide and chalk as compared to the effect of dolomite on the fermentation parameters of incubated substrates.

  13. Hydrotalcite-derived cobalt-aluminum mixed oxide catalysts for toluene combustion

    Science.gov (United States)

    Białas, Anna; Mazur, Michal; Natkański, Piotr; Dudek, Barbara; Kozak, Marek; Wach, Anna; Kuśtrowski, Piotr

    2016-01-01

    Hydrotalcite-like compounds (HTlcs) containing cobalt and aluminum (intended Co/Al molar ratio = 3.0) were coprecipitated at 30, 50 and 70 °C. Their crystallinity, which was confirmed by powder X-ray diffraction, increased with the precipitation temperature. Furthermore, HTlcs with various cobalt contents were prepared at 70 °C. Thermogravimetric analysis showed that HTlcs were transformed into stable oxides at 550 °C. The decrease in the crystallite size of the formed spinels with the increase in the precipitation temperature was observed. Low temperature sorption of nitrogen revealed meso-macroporous nature of the oxides with extended interparticle porosity. Aluminum segregated on the samples surface, which contained various amounts of lattice and adsorbed/electrophilic oxygen as detected by X-ray electron spectroscopy. The high ratio of lattice to adsorbed/electrophilic oxygen found for the sample with Co/Al = 3:1 caused that it turned out to be the most efficient catalyst in the total oxidation of toluene (50% conversion at 257 °C).

  14. In-situ fabrication of cobalt oxide / sulphide mixed phase nanoparticles in Polyphenylenesulphide matrix

    Directory of Open Access Journals (Sweden)

    Narendra Rumale

    2013-03-01

    Full Text Available A novel approach for the in-situ fabrication of combined cobalt oxide / sulphide nanoparticles in sulphur containing polymer polyphenylenesulphide (PPS by polymer inorganic solid-solid reaction technique is reported here. At present, there is considerable interest in polymer-metal chalcogenides / oxides based nano-composites on account of their optical, magnetic, electronic and catalytic properties. We have demonstrated the suitability of solid-solid reaction methodology by reacting commonly available cobalt precursors with engineering thermoplastic PPS. The cobalt precursor was reacted with PPS in 1:1, 1:5, 1:10, and 1:15 molar ratios, respectively, by heating the mixture at the melting temperature of the polymer (285 ºC for six hours. The resultant products were characterized by X-ray diffractometry (XRD, Field-emission scanning electron microscopy (FESEM, Thermogravimetric analysis (TGA, Differential scanning calorimetry (DSC, Diffuse reflectance spectroscopy (DRS techniques and High resolution transmission electron microscope (HRTEM. The shift in melting temperature of PPS was observed. Increase in absorption peak is observed in the range of 320 to 370 nm with the increase in PPS concentration. Resultant nanoparticles of cobalt sulphide and cobalt oxide embedded in the PPS matrix showed spherical and distorted rod like morphology.

  15. Effect of an Al2O3/TiO2 Passivation Layer on the Performance of Amorphous Zinc-Tin Oxide Thin-Film Transistors

    Science.gov (United States)

    Han, Dong-Suk; Park, Jae-Hyung; Kang, Min-Soo; Shin, So-Ra; Jung, Yeon-Jae; Choi, Duck-Kyun; Park, Jong-Wan

    2015-02-01

    The effect of an Al2O3/TiO2 stacked passivation layer on the performance of amorphous ZnSnO ( a-ZTO) thin-film transistors (TFTs) was investigated by comparing field-effect mobility ( μ FE) and subthreshold swing after passivation layer deposition. The values observed were 4.7 cm2/Vs and 0.64 V/decade, respectively, for uncoated TFTs and 4.6 cm2/Vs and 0.62 V/decade for passivated TFTs. In addition, excellent water vapor transmission was observed for electron beam-irradiated Al2O3/TiO2-passivated poly(ether sulfone) substrates in a humidity test, because the Al2O3/TiO2 passivation layer can enhance the interface properties between Al2O3 and TiO2. To investigate the origin of this enhancement, we performed x-ray photoelectron spectroscopy of both unpassivated and Al2O3/TiO2-passivated TFTs with a-ZTO back-channel layers after Ar annealing.

  16. A rationale for the development of thermally stable nanostructured CeO2-ZrO2-containing mixed oxides

    Institute of Scientific and Technical Information of China (English)

    Roberta Di Monte; Jan Ka(s)par; Heather Bradshaw; Colin Norman

    2008-01-01

    CeO2-ZeO2 solid solutions are extensively used as oxygen storage promoters in the current automotive three-way catalysts. High thermal stability of the textural properties is one of the most important requirements for practical application since temperatures up to 1273 K are easily experienced by these materials under real working conditions. In the present paper, we investigated how hydrothermal treatments applied to cakes of doped and undoped ZrO2-rich CeO2-ZrO2 precursors might improve the thermal stability of the final CeO2-ZrO2 solid solution. A rationale was developed that allowed to correlate the morphology of the hydrothermally treated cake with the thermal stability at 1273 K of the final product, which did not depend on the composition of the mixed oxides.

  17. Synthesis of multifunctional nanostructured zinc-iron mixed oxide photocatalyst by a simple solution-combustion technique.

    Science.gov (United States)

    Pradhan, Gajendra Kumar; Martha, Satyabadi; Parida, K M

    2012-02-01

    A series of nanostructure zinc-iron mixed oxide photocatalysts have been fabricated by solution-combustion method using urea as the fuel, and nitrate salts of both iron and zinc as the metal source. Different characterization tools, such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), diffuse reflectance UV-visible spectra (DRUV-vis), electron microscopy, and photoelectrochemical measurement were employed to establish the structural, electronic, and optical properties of the material. Electron microscopy confirmed the nanostructure of the photocatalyst. The synthesized photocatalysts were examined towards photodegradation of 4-chloro-2-nitro phenol (CNP), rhodamine 6G (R6G), and photocatalytic hydrogen production under visible light (λ ≥ 400 nm). The photocatalyst having zinc to iron ratio of 50:50 showed best photocatalytic activity among all the synthesized photocatalysts.

  18. Emission computer tomography on a Dodewaard mixed oxide fuel pin. Comparative PIE work with non-destructive and destructive techniques

    Energy Technology Data Exchange (ETDEWEB)

    Buurveld, H.A.; Dassel, G.

    1993-12-01

    A nondestructive technique as well as a destructive PIE technique have been used to verify the results obtained with a newly 8-e computer tomography (GECT) system. Multi isotope Scanning (MIS), electron probe micro analysis (EPMA) and GECT were used on a mixed oxide (MOX) fuel rod from the Dodewaard reactor with an average burnup of 24 MWd/kg fuel. GECT shows migration of Cs to the periphery of fuel pellets and to radial cracks and pores in the fuel, whereas MIS shows Cs migration to pellet interfaces. The EPMA technique appeared not to be useful to show migration of Cs but, it shows the distribution of fission products from Pu. EPMA clearly shows the distribution of fission products from Pu, but did not reveal the Cs-migration. (orig./HP)

  19. Exchange bias in a mixed metal oxide based magnetocaloric compound YFe0.5Cr0.5O3

    Science.gov (United States)

    Sharma, Mohit K.; Singh, Karan; Mukherjee, K.

    2016-09-01

    We report a detailed investigation of magnetization, magnetocaloric effect and exchange bias studies on a mixed metal oxide YFe0.5Cr0.5O3 belonging to perovskite family. Our results reveal that the compound is in canted magnetic state (CMS) where ferromagnetic correlations are present in an antiferromagnetic state. Magnetic entropy change of this compound follows a power law (∆SM∼Hm) dependence of magnetic field. In this compound, inverse magnetocaloric effect (IMCE) is observed below 260 K while conventional magnetocaloric effect (CMCE) above it. The exponent 'm' is found to be independent of temperature and field only in the IMCE region. Investigation of temperature and magnetic field dependence studies of exchange bias, reveal a competition between effective Zeeman energy of the ferromagnetic regions and anisotropic exchange energy at the interface between ferromagnetic and antiferromagnetic regions. Variation of exchange bias due to temperature and field cycling is also investigated.

  20. Structural studies and c dependence in La2-DyCaBa2Cu4+O type mixed oxide superconductors

    Indian Academy of Sciences (India)

    S Rayaprol; Krushna Mavani; C M Thaker; D S Rana; Keka Chakravorty; S K Paranjape; M Ramanadham; Nilesh A Kulkarni; D G Kuberkar

    2002-05-01

    A new series of mixed oxide superconductors with the stoichiometric composition La2-DyCaBa2Cu4+O ( = 0.0 - 0.5, = 2) has been studied for structural and superconductiong properties. Our earlier studies on La2-(Y/Er)CaBa2Cu4+O series, show a strong dependence of c on hole concentration (sh). In the present work, the results of the analysis of the neutron diffraction measurements at room temprerature on = 0.3 and 0.5 samples are reported. It is interesting to know that Ca substitutes for both La and Ba site with concomitant displacement of La onto Ba site. Superconductivity studies show that maximum c is obtained for = 0.5, = 1.0 sample (c ∼ 75 K), for La1.5Dy0.5Ca1Ba2Cu5O (La-2125).

  1. Hydrotalcite-derived cobalt–aluminum mixed oxide catalysts for toluene combustion

    Energy Technology Data Exchange (ETDEWEB)

    Białas, Anna, E-mail: anbialas@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, Kraków 30-060 (Poland); Mazur, Michal; Natkański, Piotr; Dudek, Barbara [Faculty of Chemistry, Jagiellonian University, Ingardena 3, Kraków 30-060 (Poland); Kozak, Marek [Division of Petroleum Processing, Oil and Gas Institute, Łukasiewicza 1, Kraków 31-429 (Poland); Wach, Anna; Kuśtrowski, Piotr [Faculty of Chemistry, Jagiellonian University, Ingardena 3, Kraków 30-060 (Poland)

    2016-01-30

    Graphical abstract: - Highlights: • Crystallinity of CoAl3 HT-like compounds increases with coprecipitation temperature. • After calcination CoAl3HTlcs with larger crystallites form low crystalline spinels. • The surface of Co{sub 3}O{sub 4} or Co{sub 2}AlO{sub 4}spinels is enriched in aluminum. • CoAl3 spinel is the most efficient catalyst in toluene combustion with T50 = 257 °C. • Catalytic activity results from the high lattice/adsorbed, electrophilic oxygen ratio. - Abstract: Hydrotalcite-like compounds (HTlcs) containing cobalt and aluminum (intended Co/Al molar ratio = 3.0) were coprecipitated at 30, 50 and 70 °C. Their crystallinity, which was confirmed by powder X-ray diffraction, increased with the precipitation temperature. Furthermore, HTlcs with various cobalt contents were prepared at 70 °C. Thermogravimetric analysis showed that HTlcs were transformed into stable oxides at 550 °C. The decrease in the crystallite size of the formed spinels with the increase in the precipitation temperature was observed. Low temperature sorption of nitrogen revealed meso-macroporous nature of the oxides with extended interparticle porosity. Aluminum segregated on the samples surface, which contained various amounts of lattice and adsorbed/electrophilic oxygen as detected by X-ray electron spectroscopy. The high ratio of lattice to adsorbed/electrophilic oxygen found for the sample with Co/Al = 3:1 caused that it turned out to be the most efficient catalyst in the total oxidation of toluene (50% conversion at 257 °C).

  2. Fluoride adsorption studies on mixed-phase nano iron oxides prepared by surfactant mediation-precipitation technique

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, M., E-mail: mamatamohapatra@yahoo.com [Institute of Minerals and Materials Technology, Acharyavihar, Bhubaneswar 751 013, Orissa (India); Rout, K. [Institute of Minerals and Materials Technology, Acharyavihar, Bhubaneswar 751 013, Orissa (India); Singh, P. [Murdoch University, Perth, Western Australia (Australia); Anand, S. [Institute of Minerals and Materials Technology, Acharyavihar, Bhubaneswar 751 013, Orissa (India); Layek, S.; Verma, H.C. [Indian Institute of Technology, Kanpur (India); Mishra, B.K. [Institute of Minerals and Materials Technology, Acharyavihar, Bhubaneswar 751 013, Orissa (India)

    2011-02-28

    Mixed nano iron oxides powder containing goethite ({alpha}-FeOOH), hematite ({alpha}-Fe{sub 2}O{sub 3}) and ferrihydrite (Fe{sub 5}HO{sub 8}.4H{sub 2}O) was synthesized through surfactant mediation-precipitation route using cetyltrimethyl ammonium bromide (CTAB). The X-ray diffraction, FTIR, TEM, Moessbauer spectroscopy were employed to characterize the sample. These studies confirmed the nano powder contained 77% goethite, 9% hematite and 14% ferrihydrite. Fluoride adsorption onto the synthesized sample was investigated using batch adsorption method. The experimental parameters chosen for adsorption studies were: pH (3.0-10.0), temperature (35-55 deg. C), concentrations of adsorbent (0.5-3.0 g/L), adsorbate (10-100 mg/L) and some anions. Adsorption of fluoride onto mixed iron oxide was initially very fast followed by a slow adsorption phase. By varying the initial pH in the range of 3.0-10.0, maximum adsorption was observed at a pH of 5.75. Presence of either SO{sub 4}{sup 2-} or Cl{sup -} adversely affected the adsorption of fluoride in the order of SO{sub 4}{sup 2-} > Cl{sup -}. The FTIR studies of fluoride loaded adsorbent showed that partly the adsorption on the surface took place at surface hydroxyl sites. Moessbauer studies indicated that the overall absorption had gone down after fluoride adsorption that implies it has reduced the crystalline bond strength. The relative absorption area of ferrihydrite was marginally increased from 14 to 17%.

  3. Complex Formation Between Lysozyme and Stabilized Micelles with a Mixed Poly(ethylene oxide)/Poly(acrylic acid) Shell.

    Science.gov (United States)

    Karayianni, Maria; Gancheva, Valeria; Pispas, Stergios; Petrov, Petar

    2016-03-10

    The electrostatic complexation between lysozyme and stabilized polymeric micelles (SPMs) with a poly(acrylic acid) (PAA) or a mixed poly(ethylene oxide)/poly(acrylic acid) (PEO/PAA) shell (SPMs with a mixed shell, SPMMS) and a temperature-responsive poly(propylene oxide) (PPO) core was investigated by means of dynamic, static, and electrophoretic light scattering. The SPMs and different types of SPMMS used resulted from the self-assembly of PAA-PPO-PAA triblock copolymer chains, or PAA-PPO-PAA and PEO-PPO-PEO triblock copolymer chain mixtures (with varying chain lengths and molar ratios) in aqueous solutions at pH 10 and the subsequent cross-linking of their PPO cores via loading and photo-cross-linking of pentaerythritol tetraacrylate (PETA). The solution behavior, structure and properties of the formed complexes at pH 7 and 0.01 M ionic strength, were studied as a function of the protein concentration in the solution (the concentration of the stabilized micelles was kept constant) or equivalently the ratio of the two components. The complexation process and properties of the complexes proved to be dependent on the protein concentration, while of particular interest was the effect of the structure of the shell of the SPMs on the stability/solubility of the complexes. Finally, the fluorescence and mid infrared spectroscopic investigation of the structure of the complexed protein showed that, although a small stretching of the protein molecules occurred in some cases, no protein denaturation takes place upon complexation.

  4. Strategy towards cost-effective low-temperature solid oxide fuel cells: A mixed-conductive membrane comprised of natural minerals and perovskite oxide

    Science.gov (United States)

    Xia, Chen; Cai, Yixiao; Wang, Baoyuan; Afzal, Muhammad; Zhang, Wei; Soltaninazarlou, Aslan; Zhu, Bin

    2017-02-01

    Our previous work has revealed the feasibility of natural hematite as an electrolyte material for solid oxide fuel cells (SOFCs), tailoring SOFCs to be a more economically competitive energy conversion technology. In the present work, with the aim of exploring more practical uses of natural minerals, a novel composite hematite/LaCePrOx-La0.6Sr0.4Co0.2Fe0.8O3-δ (hematite/LCP-LSCF) has been developed from natural hematite ore, rare-earth mineral LaCePr-carbonate, and perovskite oxide LSCF as a functional membrane in SOFCs. The heterogeneity, nanostructure and mixed-conductive property of the composite were investigated. The results showed that the hematite/LCP-30 wt% LSCF composite possessed balanced ionic and electronic conductivities, with an ionic conductivity as high as 0.153 S cm-1 at 600 °C. The as-designed fuel cell using the hematite/LCP-LSCF membrane exhibited encouraging power outputs of 303 - 662 mW cm-2 at 500 - 600 °C. These findings show that the hematite/LCP-LSCF based fuel cell is a viable strategy for developing cost-effective and practical low-temperature SOFCs (LTSOFCs).

  5. Rational design of mixed ionic and electronic conducting perovskite oxides for solid oxide fuel cell anode materials: A case study for doped SrTiO3

    Energy Technology Data Exchange (ETDEWEB)

    Suthirakun, Suwit; Xiao, Guoliang; Ammal, Salai Cheettu; Chen, Fanglin; zur Loye, Hans-Conrad; Heyden, Andreas

    2014-01-01

    The effect of p- and n-type dopants on ionic and electronic conductivity of SrTiO3 based perovskites were investigated both computationally and experimentally. Specifically, we performed density functional theory (DFT) calculations of Na- and La-doped SrTiO3 and Na- and Nb-doped SrTiO3 systems. Constrained ab initio thermodynamic calculations were used to evaluate the phase stability and reducibility of doped SrTiO3 under both oxidizing and reducing synthesis conditions, as well as under anodic solid oxide fuel cell (SOFC) conditions. The density of states (DOS) of these materials was analyzed to study the effects of p- and n-doping on the electronic conductivity. Furthermore, Na- and La-doped SrTiO3 and Na- and Nb-doped SrTiO3 samples were experimentally prepared and the conductivity was measured to confirm our computational predictions. The experimental observations are in very good agreement with the theoretical predictions that doping n-doped SrTiO3 with small amounts of p-type dopants promotes both the ionic and electronic conductivity of the material. This doping strategy is valid independent of p- and n-doping site and permits the synthesis of perovskite based mixed ionic/electronic conductors.

  6. Recent advances in co-amorphous drug formulations

    DEFF Research Database (Denmark)

    Dengale, Swapnil Jayant; Grohganz, Holger; Rades, Thomas;

    2016-01-01

    Co-amorphous drug delivery systems have recently gained considerable interest in the pharmaceutical field because of their potential to improve oral bioavailability of poorly water-soluble drugs through drug dissolution enhancement as a result of the amorphous nature of the material. A co-amorpho...... findings. In particular, we investigate co-amorphous formulations from the viewpoint of solid dispersions, describe their formation and mechanism of stabilization, study their impact on dissolution and in vivo performance and briefly outline the future potentials.......Co-amorphous drug delivery systems have recently gained considerable interest in the pharmaceutical field because of their potential to improve oral bioavailability of poorly water-soluble drugs through drug dissolution enhancement as a result of the amorphous nature of the material. A co-amorphous...... system is characterized by the use of only low molecular weight components that are mixed into a homogeneous single-phase co-amorphous blend. The use of only low molecular weight co-formers makes this approach very attractive, as the amount of amorphous stabilizer can be significantly reduced compared...

  7. Mixed-valent metals bridged by a radical ligand: fact or fiction based on structure-oxidation state correlations.

    Science.gov (United States)

    Sarkar, Biprajit; Patra, Srikanta; Fiedler, Jan; Sunoj, Raghavan B; Janardanan, Deepa; Lahiri, Goutam Kumar; Kaim, Wolfgang

    2008-03-19

    Electron-rich Ru(acac)2 (acac- = 2,4-pentanedionato) binds to the pi electron-deficient bis-chelate ligands L, L = 2,2'-azobispyridine (abpy) or azobis(5-chloropyrimidine) (abcp), with considerable transfer of negative charge. The compounds studied, (abpy)Ru(acac)2 (1), meso-(mu-abpy)[Ru(acac)2]2 (2), rac-(mu-abpy)[Ru(acac)2]2 (3), and (mu-abcp)[Ru(acac)2]2 (4), were calculated by DFT to assess the degree of this metal-to-ligand electron shift. The calculated and experimental structures of 2 and 3 both yield about 1.35 A for the length of the central N-N bond which suggests a monoanion character of the bridging ligand. The NBO analysis confirms this interpretation, and TD-DFT calculations reproduce the observed intense long-wavelength absorptions. While mononuclear 1 is calculated with a lower net ruthenium-to-abpy charge shift as illustrated by the computed 1.30 A for d(N-N), compound 4 with the stronger pi accepting abcp bridge is calculated with a slightly lengthened N-N distance relative to that of 2. The formulation of the dinuclear systems with monoanionic bridging ligands implies an obviously valence-averaged Ru(III)Ru(II) mixed-valent state for the neutral molecules. Mixed valency in conjunction with an anion radical bridging ligand had been discussed before in the discussion of MLCT excited states of symmetrically dinuclear coordination compounds. Whereas 1 still exhibits a conventional electrochemical and spectroelectrochemical behavior with metal centered oxidation and two ligand-based one-electron reduction waves, the two one-electron oxidation and two one-electron reduction processes for each of the dinuclear compounds Ru2.5(L*-)Ru2.5 reveal more unusual features via EPR and UV-vis-NIR spectroelectrochemistry. In spite of intense near-infrared absorptions, the EPR results show that the first reduction leads to Ru(II)(L*-)Ru(II) species, with an increased metal contribution for system 4*-. The second reduction to Ru(II)(L2-)Ru(II) causes the

  8. Toward the Control of the Creation of Mixed Monolayers on Glassy Carbon Surfaces by Amine Oxidation.

    Science.gov (United States)

    Groppi, Jessica; Bartlett, Philip N; Kilburn, Jeremy D

    2016-01-18

    A versatile and simple methodology for the creation of mixed monolayers on glassy carbon (GC) surfaces was developed, using an osmium-bipyridyl complex and anthraquinone as model redox probes. The work consisted in the electrochemical grafting on GC of a mixture of mono-protected diamine linkers in varying ratios which, after attachment to the surface, allowed orthogonal deprotection. After optimisation of the deprotection conditions, it was possible to remove one of the protecting groups selectively, couple a suitable osmium complex and cap the residual free amines. The removal of the second protecting group allowed the coupling of anthraquinone. The characterisation of the resulting surfaces by cyclic voltammetry showed the variation of the surface coverage of the two redox centres in relation to the initial ratio of the linking amine in solution.

  9. Role of energetic mixed-oxide-fuel-sodium thermal interactions in liquid metal fast breeder reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Fauske, H.K.

    1976-01-01

    Based upon analysis, numerous experiments and examination of all known occurrences of large-mass vapor explosions, the following general behavior principle has emerged: Mixing of large quantities of a hot and cold liquid, a necessary condition for developing sustained pressures and large damage potential from thermal interaction, requires spontaneous nucleation upon contact. Since the contact temperature for the mixed-oxide-fuel-sodium system is well below the spontaneous-nucleation temperature for liquid sodium, the current interesting controversy regarding spontaneous nucleation and its role in the vapor-explosion mechanism itself is largely irrelevant for this system. Therefore, current practice is to use the pressure-volume curve determined by the expanding fuel vapor following a postulated hydrodynamic disassembly (which generally results from considering a number of unrealistic physical processes to occur) for safety evaluation. It follows that for reactors like FFTF and CRBR, the extremely unlikely event of a core meltdown is predicted to occur safely, with essentially no energetics involved.

  10. INVESTIGATION OF MIXED METAL SORBENT/CATALYSTS FOR THE SIMULTANEOUS REMOVAL OF SULFUR AND NITROGEN OXIDES

    Energy Technology Data Exchange (ETDEWEB)

    Ates Akyurtlu; Jale F. Akyurtle

    2001-08-01

    Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}.

  11. Development and sintering of alumina based mixed oxide ceramic products for sensor applications in petroleum industries

    Energy Technology Data Exchange (ETDEWEB)

    Yadava, Y.P.; Muniz, L.B.; Aguiar, L.A.R.; Sanguinetti Ferreira, R.A. [Departamento de Engenharia Mecanica, Universidade Federal de Pernambuco, CEP 50741-530, Recife-PE (Brazil); Albino Aguiar, J. [Departamento de Fisica, Universidade Federal de Pernambuco, CEP 50670-901 Recife-PE (Brazil)

    2005-07-01

    In petroleum production, different types of sensors are required to monitor temperature, pressure, leakage of inflammable gases, etc. These sensors work in very hostile environmental conditions and frequently suffer from abrasion and corrosion problems. Presently perovskite oxide based ceramic materials are increasingly being used for such purposes, due to their highly inert behavior in hostile environment. In the present work, we have developed and characterized alumina based complex perovskite oxide ceramics, Ba{sub 2}AlSnO{sub 5.5}. These ceramics were prepared by solid state reaction process and produced in the form of circular discs by uniaxial pressure compaction technique. Green ceramic bodies were sintered at different sintering temperatures (1200 to 1500 deg. C) in air atmosphere. Structural and microstructural characteristics of sintered Ba{sub 2}AlMO{sub 5.5} were studied by XRD and SEM techniques. Mechanical properties were tested by Vickers microhardness tests. Ceramics sintered in the temperature range 1300 deg. C 1400 deg. C presented best results in terms of microstructural characteristics and mechanical performance. (authors)

  12. Mixed valence as a necessary criteria for quasi-two dimensional electron gas in oxide hetero-interfaces

    Science.gov (United States)

    Singh, Vijeta; Pulikkotil, J. J.

    2017-02-01

    The origin of quasi-two dimensional electron gas at the interface of polar-nonpolar oxide hetero-structure, such as LaAlO3/SrTiO3, is debated over electronic reconstruction and defects/disorder models. Common to these models is the partial valence transformation of substrate Ti ions from its equilibrium 4 + state to an itinerant 3 + state. Given that the Hf ions have a lower ionization potential than Ti due to the 4 f orbital screening, one would expect a hetero-interface conductivity in the polar-nonpolar LaAlO3/SrHfO3 system as well. However, our first principles calculations show the converse. Unlike the Ti3+ -Ti4+ valence transition which occur at a nominal energy cost, the barrier energy associated with its isoelectronic Hf3+ -Hf4+ counterpart is very high, hence suppressing the formation of quasi-two dimensional electron gas at LaAlO3/SrHfO3 hetero-interface. These calculations, therefore, emphasize on the propensity of mixed valence at the interface as a necessary condition for an oxide hetero-structure to exihibit quasi two-dimensional electron gas.

  13. Fabrication of solution-processed amorphous indium zinc oxide thin-film transistors at low temperatures using deep-UV irradiation under wet conditions

    Science.gov (United States)

    Park, Jee Ho; Chae, Soo Sang; Yoo, Young Bum; Lee, Ji Hoon; Lee, Tae Il; Baik, Hong Koo

    2014-03-01

    We fabricated solution-processed indium zinc oxide (IZO) thin film transistors (TFTs) at annealing temperatures as low as 250 °C using deep UV (DUV) irradiation in water vapor medium. The DUV light decomposed the carbon compounds in the IZO films, and the hydroxyl radicals generated when water vapor reacted with ozone effectively oxidized the films. These phenomena were confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Finally, we fabricated DUV-treated IZO TFTs in water-vapor medium at 250 °C with a mobility of 1.2 cm2/Vs and an on/off current ratio of 2.66 × 106.

  14. Influence of Different Subsistence States of CeO2-ZrO2 Mixed Oxides in Catalyst Coating on Catalytic Properties

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The metallic substrate-catalysts with different subsistence states of CeO2-ZrO2 mixed oxides were prepared and the catalytic properties were investigated. The studies on CeO2-ZrO2-V2O5-CuO mixed oxides which were prepared by coprecipitation, show that the doping of V5+ and Cu2+ in CeO2-ZrO2 mixed oxides can enhance the catalytic activity and thermal stability of coating materials. Moreover, different additives were doped in slurries of γ-Al2O3 to investigate the influence of additives on oxidation activity of catalysts. The mixture of ceria-zirconia, alkali metals and other rare earths acting as additives exhibits promotion effect on oxidation activity by optimizing the distribution of oxygen on the surface and in the bulk of ceria species. This mentioned mixture was mixed with γ-Al2O3 and a newly proposed active component to prepare a new catalyst. Afterward, the influence of thermal treatment on the new catalyst were investigated by calcinations at 500, 650, 750, 800, 850 and 900 ℃ for 2 h. The light-off curves of CO and HC show that after being treated at 650~750 ℃, catalysts present the best activity. XRD patterns show that ceria and zirconia species in the newly proposed active component form a phase of extra CeO2-ZrO2 mixed oxides on the surface of catalysts after the thermal treatment at 750 ℃, which has practical value for improving the preparation process and promoting the catalytic properties. Moreover, XPS results imply the existence of Ce1-xPdxO2-σ and Ce1-xPtxO2-σ on the surface of these treated samples, which may show influence on the catalytic activities.

  15. Nanoscale Transformations in Metastable, Amorphous, Silicon-Rich Silica.

    Science.gov (United States)

    Mehonic, Adnan; Buckwell, Mark; Montesi, Luca; Munde, Manveer Singh; Gao, David; Hudziak, Stephen; Chater, Richard J; Fearn, Sarah; McPhail, David; Bosman, Michel; Shluger, Alexander L; Kenyon, Anthony J

    2016-09-01

    Electrically biasing thin films of amorphous, substoichiometric silicon oxide drives surprisingly large structural changes, apparent as density variations, oxygen movement, and ultimately, emission of superoxide ions. Results from this fundamental study are directly relevant to materials that are increasingly used in a range of technologies, and demonstrate a surprising level of field-driven local reordering of a random oxide network.

  16. Structure and oxygen storage capacity of Pr-doped Ce0.26Zr0.74O2 mixed oxides

    Institute of Scientific and Technical Information of China (English)

    RAN Rui; WENG Duan; WU Xiaodong; FAN Jun; WANG Lei; WU Xiaodi

    2011-01-01

    Binary Ce-Zr (CZ),Pr-Zr (PZ) and ternary Ce-Zr-Pr (CZP) mixed oxides were prepared by an ammonia-aided co-precipitation method,and were aged in a steam/air flow at 1050 ℃.X-my diffraction (XRD),Raman spectra,X-photon spectra (XPS) and CO temperature programmed reduction (TPR) were carried out to characterize the micro-structure and reducibility of catalysts.The oxygen storage capacity (OSC) was evaluated with CO serving as probe gas.The results showed that a pseudo cubic structure was formed for the Zr-rich ceria-zirconia mixed oxides with Pr doping.The insertion of Pr prevented the phase segregation of the mixed oxides during the hydrothermal ageing.The Pr doped samples showed better redox performances in comparison with CZ,and the sample doped with 5 wt.% Pr showed the most remarkably promoted dynamic oxygen storage capacity.This phenomenon was closely related to both the reducibility and oxygen mobility of the mixed oxides.The introduction of praseodymium into ceria-zirconia could accelerate the oxygen migration by increasing the amount of oxygen vacancies,although it was difficult for Pr3+ ions themselves to participate in the oxygen exchange process.

  17. An X-ray photoelectron spectroscopy study of the acidity of SiO{sub 2}-ZrO{sub 2} mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bosman, H.J.M.; Pijpers, A.P.; Jaspers, A.W.M.A. [DSM Research B.V., MD Geleen (Netherlands)

    1996-07-01

    X-ray photoelectron spectroscopy (XPS) of SiO{sub 2}-ZrO{sub 2} mixed oxides was studied. Surface acidity was investigated in light of the relationship between acidity and catalytic effects. 28 refs., 12 figs., 3 tabs.

  18. On amorphization and nanocomposite formation in Al–Ni–Ti system by mechanical alloying

    Indian Academy of Sciences (India)

    K Das; G K Dey; B S Murty; S K Pabi

    2005-11-01

    Amorphous structure generated by mechanical alloying (MA) is often used as a precursor for generating nanocomposites through controlled devitrification. The amorphous forming composition range of ternary Al–Ni–Ti system was calculated using the extended Miedema's semi-empirical model. Eleven compositions of this system showing a wide range of negative enthalpy of mixing (− mix) and amorphization (− amor) of the constituent elements were selected for synthesis by MA. The Al88Ni6Ti6 alloy with relatively small negative mix (−0.4 kJ/mol) and amor (−14.8 kJ/mol) became completely amorphous after 120 h of milling, which is possibly the first report of complete amorphization of an Al-based rare earth element free Al–TM–TM system (TM = transition metal) by MA. The alloys of other compositions selected had much more negative mix and amor; but they yielded either nanocomposites of partial amorphous and crystalline structure or no amorphous phase at all in the as-milled condition, evidencing a high degree of stability of the intermetallic phases under the MA environment. Hence, the negative mix and amor are not so reliable for predicting the amorphization in the present system by MA.

  19. High-performance low-cost back-channel-etch amorphous gallium-indium-zinc oxide thin-film transistors by curing and passivation of the damaged back channel.

    Science.gov (United States)

    Park, Jae Chul; Ahn, Seung-Eon; Lee, Ho-Nyeon

    2013-12-11

    High-performance, low-cost amorphous gallium-indium-zinc oxide (a-GIZO) thin-film-transistor (TFT) technology is required for the next generation of active-matrix organic light-emitting diodes. A back-channel-etch structure is the most appropriate device structure for high-performance, low-cost a-GIZO TFT technology. However, channel damage due to source/drain etching and passivation-layer deposition has been a critical issue. To solve this problem, the present work focuses on overall back-channel processes, such as back-channel N2O plasma treatment, SiOx passivation deposition, and final thermal annealing. This work has revealed the dependence of a-GIZO TFT characteristics on the N2O plasma radio-frequency (RF) power and frequency, the SiH4 flow rate in the SiOx deposition process, and the final annealing temperature. On the basis of these results, a high-performance a-GIZO TFT with a field-effect mobility of 35.7 cm(2) V(-1) s(-1), a subthreshold swing of 185 mV dec(-1), a switching ratio exceeding 10(7), and a satisfactory reliability was successfully fabricated. The technology developed in this work can be realized using the existing facilities of active-matrix liquid-crystal display industries.

  20. 适用于非晶氧化锌薄膜晶体管的表面势紧凑模型%A Compact Model Available for the Surface Potential of Amorphous Zinc Oxide Thin-film Transistors

    Institute of Scientific and Technical Information of China (English)

    梁论飞; 邓婉玲; 马晓玉; 黄君凯

    2015-01-01

    基于泊松方程和高斯定理,采用非迭代算法,在考虑非晶氧化锌薄膜晶体管(Amorphous zinc oxide thin film transistors,a-ZnO TFTs)带隙能态的指数带尾态和深能态的完整分布条件下,解析地建立了a-ZnO TFTs的表面势紧凑模型.与数值迭代算法的计算结果进行比较,该紧凑模型的绝对误差低至10-5V数量级,且提高了计算效率;与其它实验拟合的陷阱态密度结果对比,进一步验证了模型的正确性.最后,提出的表面势紧凑模型可适用于a-ZnO TFTs器件漏电流模型的建构及其电路的仿真应用.

  1. 4.0-inch Active-Matrix Organic Light-Emitting Diode Display Integrated with Driver Circuits Using Amorphous In-Ga-Zn-Oxide Thin-Film Transistors with Suppressed Variation

    Science.gov (United States)

    Ohara, Hiroki; Sasaki, Toshinari; Noda, Kousei; Ito, Shunichi; Sasaki, Miyuki; Endo, Yuta; Yoshitomi, Shuhei; Sakata, Junichiro; Serikawa, Tadashi; Yamazaki, Shunpei

    2010-03-01

    We have newly developed a 4.0-in. quarter video graphics array (QVGA) active-matrix organic light-emitting diode (AMOLED) display integrated with gate and source driver circuits using amorphous In-Ga-Zn-oxide (IGZO) thin-film transistors (TFTs). Focusing on a passivation layer in an inverted staggered bottom gate structure, the threshold voltage of the TFTs can be controlled to have “normally-off” characteristics with suppressed variation by using a SiOx layer formed by sputtering with a low hydrogen content. In addition, small subthreshold swing S/S of 0.19 V/decade, high field-effect mobility µFE of 11.5 cm2 V-1 s-1, and threshold voltage Vth of 1.27 V are achieved. The deposition conditions of the passivation layer and other processes are optimized, and variation in TFT characteristics is suppressed, whereby high-speed operation in gate and source driver circuits can be achieved. Using these driver circuits, the 4.0-in. QVGA AMOLED display integrated with driver circuits can be realized.

  2. A simple route to improve rate performance of LiFePO4/reduced graphene oxide composite cathode by adding Mg2+ via mechanical mixing

    Science.gov (United States)

    Huang, Yuan; Liu, Hao; Gong, Li; Hou, Yanglong; Li, Quan

    2017-04-01

    Introducing Mg2+ to LiFePO4 and reduced graphene oxide composite via mechanical mixing and annealing leads to largely improved rate performance of the cathode (e.g. ∼78 mA h g-1 at 20 C for LiFePO4 and reduced graphene oxide composite with Mg2+ introduction vs. ∼37 mA h g-1 at 20 C for LiFePO4 and reduced graphene oxide composite). X-ray photoelectron spectroscopy unravels that the enhanced reduction of Fe2+ to Fe0 occurs in the simultaneous presence of Mg2+ and reduced graphene oxide, which is beneficial for the rate capability of cathode. The simple fabrication process provides a simple and effective means to improve the rate performance of the LiFePO4 and reduced graphene oxide composite cathode.

  3. Fe(II)Ti(IV)O3 mixed oxide monolayer at rutile TiO2(011): Structures and reactivities

    Science.gov (United States)

    Wen, Zhan-Hui; Halpegamage, Sandamali; Gong, Xue-Qing; Batzill, Matthias

    2016-11-01

    Mixed-metal oxide monolayer grown at an oxide support is of great potential in applications like heterogeneous catalysis. In this work, the experimentally obtained ordered mixed FeTiO3 oxide monolayer supported by rutile TiO2(011) surface has been carefully studied with density functional theory calculations. The genetic algorithm based optimization scheme has been employed to improve the searching capacity for possible structures, and a well ordered mixed Fe(II)Ti(IV)O3 monolayer oxide structure much more stable than the one proposed previously has been successfully located. The new surface structure consists of uniformly distributed Ti and Fe cations in the ratio of 2:1. The simulated Scanning Tunneling Microscopy image based on this model is well consistent with the experimental one. Our calculations have shown that the O vacancy formation energy is rather high at the surface. We have also studied the adsorption of O2 and CO at the exposed Fe sites on the surface as well as their reactions. The adsorption energies of O2 are generally higher than those of CO. The catalytic cycle of CO oxidation following an Eley-Rideal type mechanism has been located for CO to react with surface adsorbed O2 and O.

  4. Fully Oxidized and Mixed-Valent Polyoxomolybdates Structured by Bisphosphonates with Pendant Pyridine Groups: Synthesis, Structure and Photochromic Properties

    Directory of Open Access Journals (Sweden)

    Olivier Oms

    2015-06-01

    Full Text Available Hybrid organic-inorganic polyoxometalates (POMs were synthesized in water by the reaction of a MoVI precursor with bisphosphonate ligands functionalized by pyridine groups. The fully oxidized POM [(MoVI3O82(O(O3PC(O(C3H6NH2CH2C5H4NHPO32]4− has been isolated as water insoluble pure Na salt (NaMo6(Ale-4Py2 or mixed Na/K salt (NaKMo6(Ale-4Py2 and their structure solved using single-crystal X-ray diffraction. The mixed-valent complex [(MoV2O4(MoVI2O62{O3PC(O(C3H6N(CH2C5H4N2(MoVIO3PO3}2]8− was obtained as an ammonium salt (NH4Mo6(AlePy2Mo2, in the presence of a reducing agent (hydrazine. 31P NMR spectroscopic studies in aqueous media have allowed determining the pH stability domain of NH4Mo6(AlePy2Mo2. NaMo6(Ale-4Py2 and NaKMo6(Ale-4Py2 exhibit remarkable solid-state photochromic properties in ambient conditions. Under UV excitation, they develop a very fast color-change from white to deep purple and proved to be the fastest photochromic organoammonium/POM systems. The coloration kinetics has been fully quantified for both salts and is discussed in light of the hydrogen-bonding networks.

  5. Synthesis and Characterization of Mixed-Conducting Corrosion Resistant Oxide Supports

    Energy Technology Data Exchange (ETDEWEB)

    Ramani, Vijay K. [Washington Univ., St. Louis, MO (United States)

    2015-01-31

    An extensive search and evaluation of electrochemically stable catalyst supports (including metal oxides like RuO2-SiO2, RuO2-TiO2, and ITO was perfomed during the 4 years of the project. The suports were also catalyzed by deposition of Pt and tested for its performance and electrochemical stability in RDE and fuel cell experiments. For testing the electrochemical stability and fuel cell performance of the catalysts and supports, we have employed the protocols in use at the Department of Energy and Nissan Technological Center North America (NTCNA). The use of such procedures allows a precise and reproducible estimation of the performance and stability of the materials and permits comparisons among laboratories and DOE funded projects. RuO2-SiO2 catalyst supports showed no loss in surface area during start-stop stability tests that were performed by cycling the electrode potential between 0 V to 1.8 V for 1000 cycles. Catalyzed support (40% Pt/RuO2-SiO2; 1:1 mole ratio) were tested in a PEFC, resulting in a current density of 750 mA/cm2 at 0.6 Volts, and a maximum power density of 570 mW/cm2. Measurements were conducted at 80 ºC with 75% relative humidity of the inlet gases (H2/O2); Pt loadings were 0.4 mg/cm2 at the cathode and 0.2 mg/cm2 at the anode. Start-stop stability tests for support and catalyzed support performed in RDE and PEFC set-ups have confirmed RuO2-TiO2 support stability. The beginning of life performance was exactly equal to end of life performance (in an MEA that has been subjected to severe start-stop cycling for 10,000 start/stop cycles between 1 V to 1.5 V). This result was in sharp contrast to baseline Pt/C catalyst that showed significant performance deterioration after accelerated stability tests. The Pt/TRO showed minimal loss in performance upon exposure to start-stop cycles. The loss in cell voltage at 1 A/cm2 at 100% RH was almost 700 mV for Pt/C whereas it was only ca. 15 mV for Pt/TRO. 40% RH data (of inlet gases) revealed a similar

  6. Effects of asphalt rejuvenator on thermal and mechanical properties on oxidized hot mixed asphalt pavements

    Science.gov (United States)

    Farace, Nicholas A.; Buttlar, William G.; Reis, Henrique

    2016-04-01

    The utilization of asphalt rejuvenator, and its effectiveness for restoring thermal and mechanical properties was investigated via Disk-shaped Compact Tension (DC(T)) and acoustic emission (AE) testing for determining mechanical properties and embrittlement temperatures of the mixtures. During the DC(T) testing the fracture energies and peak loads were used to measure the resistance of the rejuvenated asphalt to low temperature cracking. The AE testing monitored the acoustic emission activity while the specimens were cooled from room temperature to -40 °C to estimate the temperature at which thermal cracking began (i.e. the embrittlement temperature). First, a baseline response was obtained by obtaining the mechanical and thermal response of virgin HMA samples and HMA samples that had been exposed to oxidative aging for 36 hours at 135°C. The results showed the virgin samples had much higher peak loads and fracture energies than the 36 hours aged samples. Acoustic Emission showed similar results with the virgin samples having embrittlement temperatures 10 °C cooler than the 36 hours aged specimens. Then, overaged for 36 hours specimens were treated different amounts of rejuvenator (10%, 15%, and 20% by weight of binder content) and left to dwell for increased amount of time periods varying from one to eight weeks. It was observed that the AE results showed an improvement of embrittlement temperature with increasing with the dwell times. The 8 weeks specimens had cooler embrittlement temperatures than the virgin specimens. Finally, the low temperature effects on fracture energy and peak load of the rejuvenated asphalt was investigated. Rejuvenator was applied (10% by weight of binder) to specimens aged 36 hours at 135 °C, and the dwell time was varied from 1 to 4 weeks. The results showed that the peak loads were restored to levels of the virgin specimens, and the fracture energies improved to levels beyond that of the virgin specimens. The results also showed a

  7. Nitrous oxide net exchange in a beech dominated mixed forest in Switzerland measured with a quantum cascade laser spectrometer

    Directory of Open Access Journals (Sweden)

    W. Eugster

    2007-04-01

    Full Text Available Nitrous oxide fluxes were measured at the Lägeren CarboEurope IP flux site over the multi-species mixed forest dominated by European beech and Norway spruce. Measurements were carried out during a four-week period in October–November 2005 during leaf senescence. Fluxes were measured with a standard ultrasonic anemometer in combination with a quantum cascade laser absorption spectrometer that measured N2O, CO2, and H2O mixing ratios simultaneously at 5 Hz time resolution. To distinguish insignificant fluxes from significant ones it is proposed to use a new approach based on the significance of the correlation coefficient between vertical wind speed and mixing ratio fluctuations. This procedure eliminated roughly 56% of our half-hourly fluxes. Based on the remaining, quality checked N2O fluxes we quantified the mean efflux at 0.8 ± 0.4 μmol m−2 h−1 (mean ± standard error. Most of the contribution to the N2O flux occurred during a 6.5-h period starting 4.5 h before each precipitation event. No relation with precipitation amount could be found. Visibility data representing fog density and duration at the site indicate that wetting of the canopy may have as strong an effect on N2O effluxes as does below-ground microbial activity. It is speculated that above-ground N2O production from the senescing leaves at high moisture (fog, drizzle, onset of precipitation event may be responsible for part of the measured flux. In comparison with the annual CO2 budget of –342 g C m−2 yr−1 it is estimated that concurrent N2O fluxes offset at least 5% of the greenhouse forcing reduction via net CO2 uptake.

  8. Yttrium aluminum garnet (YAG) obtained by rare-earth mixed oxide (RE{sub 2}O{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Castro, D.F.; Daguano, J.K.M.F.; Rodrigues Junior, D., E-mail: claudinei@demar.eel.usp.b [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia; Santos, C. [Centro Universitario de Volta Redonda (MEMAT/UNIFOA), RJ (Brazil); Suzuki, P.A. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Silva, O.M.M. [Centro Tecnico Aeroespacial (CTA-IAE), Sao Jose dos Campos, SP (Brazil). Inst. de Atividades Espaciais. Div. de Materiais

    2010-07-01

    In this work, the substitution of commercial Y{sub 2}O{sub 3} by a rare earth mixed oxide, RE{sub 2}O{sub 3}, to form Yttrium aluminum Garnet-Y{sub 3}Al{sub 5}O{sub 12}, was investigated. Al{sub 2}O{sub 3}:Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3}:RE{sub 2}O{sub 3} powder-mixtures, in a molar ratio of 60:40, were milled and subsequently cold uniaxially-pressed. Compacts were sintered at 1000, 1400 or 1600 deg C, for 120 minutes. RE{sub 2}O{sub 3} oxide was characterized by high-resolution synchrotron X-ray diffraction (HRXRD) and compared to Y{sub 2}O{sub 3}. X-ray diffraction pattern of the RE{sub 2}O{sub 3} indicates a true solid solution formation. Rietveld refinement of the sintered YAG and (RE)AG reveled a similar crystal structure to the YAGs obtained by the use of Al{sub 2}O{sub 3}-Y{sub 2}O{sub 3} or Al{sub 2}O{sub 3}-RE{sub 2}O{sub 3} respectively. Microstructural analysis of both, YAG or (RE)AG, revealed similar grain sizes of about 2.5 {mu}m besides mechanical properties, with hardness of 400HV and fracture toughness of 3.8MPa.m1/2. It could be, thus, demonstrated that pure Y{sub 2}O{sub 3} can be substituted by the rare-earth solid solution, RE{sub 2}O{sub 3}, in the formation YAGs, presenting similar microstructural and mechanical properties. (author)

  9. Roles of Bulk and Surface Chemistry in the Oxygen Exchange Kinetics and Related Properties of Mixed Conducting Perovskite Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Nicola H. Perry

    2016-10-01

    Full Text Available Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic, and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER, Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance.

  10. Ce1-xLaxOy solid solution prepared from mixed rare earth chloride for soot oxidation

    Institute of Scientific and Technical Information of China (English)

    韩雪; 王亚飞; 郝红蕊; 郭荣贵; 胡运生; 蒋文全

    2016-01-01

    Ce1–xLaxOy solid solution was simply prepared using mixed rare earth chloride (RECl3·xH2O, RE=Ce, La>99%, containing unseparated Ce and La from rare earth metallurgical industry) as precursor by ultrasonic-assisted co-precipitation method with differ-ent ultrasonic frequencies (CLf,f=200, 400, 600, 800, 1000 Hz). A compared Ce1–xLaxOy solid solution (CL*) was also prepared by the same mothod with 10% less precipitant. X-ray diffraction results confirmed the formation of Ce1–xLaxOy solid solution, and the crystal structures of these catalysts were not very sensitive to ultrasonic frequency and precipitant amount. However, both of the fac-tors had obvious effect on morphology and surface area of CL, and precipitant amount seem to play a more crucial role than ultra-sonic frequency for Ce1–xLaxOy solid solution preparation. When soot and catalyst were tight contacted, the peak temperature (Tpeak) of soot oxidation and oxygen reducing temperature for CLf catalysts decreased linearly with increasing surface area. Under loose contact condition, theTpeak had obvious negative correlation with H2 consumption. It was inferred that good reducibility of the Ce1–xLaxOy solid solution favored the soot oxidation reaction. The Ce1–xLaxOy solid solution prepared from unseparated rare earth chloride showed a good soot oxidaiton activity. Controlling the preparation conditions to prepare a CL catalyst would high surface area will enhance its reducibility and activity.

  11. Gas Transport Properties of Polybenzimidazole and Poly(Phenylene Oxide) Mixed Matrix Membranes Incorporated with PDA-Functionalised Titanate Nanotubes

    Science.gov (United States)

    Giel, V.; Perchacz, M.; Kredatusová, J.; Pientka, Z.

    2017-01-01

    Functionalised titanate nanotubes (TiNTs) were incorporated to poly(5,5-bisbenzimidazole-2,2-diyl-1,3-phenylene) (PBI) or poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) for improving the interfacial compatibility between the polymer matrix and inorganic material and for altering the gas separation performance of the neat polymer membranes. Functionalisation consisted in oxidative polymerisation of dopamine-hydrochloride on the surface of non-functionalised TiNTs. Transmission electron microscopy (TEM) confirmed that a thin polydopamine (PDA) layer was created on the surface of TiNTs. 1.5, 3, 6, and 9 wt.% of PDA-functionalised TiNTs (PDA-TiNTs) were dispersed to each type of polymer matrix to create so-called mixed matrix membranes (MMMs). Infrared spectroscopy confirmed that -OH and -NH groups exist on the surface of PDA-TiNTs and that the nanotubes interact via H-bonding with PBI but not with PPO. The distribution of PDA-TiNTs in the MMMs was to some extent uniform as scanning electron microscope (SEM) studies showed. Beyond, PDA-TiNTs exhibit positive effect on gas transport properties, resulting in increased selectivities of MMMs. The addition of nanotubes caused a decrease in permeabilities but an increase in selectivities. It is shown that 9 wt.% of PDA-TiNTs in PBI gave a rise to CO2/N2 and CO2/CH4 selectivities of 112 and 63 %, respectively. In case of PPO-PDA-TiNT MMMs, CO2/N2 and CO2/CH4 selectivity increased about 25 and 17 %, respectively. Sorption measurement showed that the presence of PDA-TiNTs in PBI caused an increase in CO2 sorption, whereas the influence on other gases is less noticeable.

  12. Properties of amorphous carbon

    CERN Document Server

    2003-01-01

    Amorphous carbon has a wide range of properties that are primarily controlled by the different bond hydridisations possible in such materials. This allows for the growth of an extensive range of thin films that can be tailored for specific applications. Films can range from those with high transparency and are hard diamond-like, through to those which are opaque, soft and graphitic-like. Films with a high degree of sp3 bonding giving the diamond-like properties are used widely by industry for hard coatings. Application areas including field emission cathodes, MEMS, electronic devices, medical and optical coatings are now close to market. Experts in amorphous carbon have been drawn together to produce this comprehensive commentary on the current state and future prospects of this highly functional material.

  13. Magnetostrictive amorphous bimetal sensors

    CERN Document Server

    Mehnen, L; Kaniusas, E

    2000-01-01

    The paper describes the application of a magnetostrictive amorphous ribbon (AR) for the detection of bending. In order to increase sensitivity, a bimetal structure is used which consists of AR and a nonmagnetic carrier ribbon. Several methods for the preparation of the bimetal are discussed. Results of the bending sensitivities are given for various combinations of the material types indicating crucial problems of bimetal preparation.

  14. Quantum dot based on tin/titanium mixed oxide doped with europium synthesized by protein sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Paganini, Paula P.; Felinto, Maria Claudia F.C., E-mail: paulapaganini@usp.b, E-mail: mfelinto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Brito, Hermi F., E-mail: hefbrito@iq.usp.b [Universidade de Sao Paulo (IQ/USP), Sao Paulo, SP (Brazil). Inst. de Quimica. Lab. de Elementos do Bloco f

    2011-07-01

    Special luminescence biomarkers have been developed to find more sensitive fluoroimmunoassay methods. A new generation of these biomarkers is the semiconductors nanocrystals, known as quantum dots, doped with lanthanides. The use of lanthanides ions as luminescent markers has many advantages, for example a security method, low cost, high specificity and also the luminescence can be promptly measured with high sensibility and accuracy. The protein sol-gel is a modification of conventional method, in which the coconut water replacing the alkoxides normally used. The advantage is that, the proteins present in coconut water bind chemically with metal salts forming a polymer chain. This work presents nanoparticles based on tin/titanium mixed oxide doped with 3% of europium synthesized by protein sol-gel method. The nanoparticles were burned at 300 deg C, 500 deg C, 800 deg C and 1100 deg C. The samples were analyzed and characterized by thermal analysis, X-ray powder diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscopy (SEM). The synthesis was effective and the nanoparticles showed nanometric size and structural differences with the annealing. To be used in the fluoroimmunoassays tests, these particles need to be functionalized before be connect with biological molecules and after this process, these nanoparticles going to be submitted at gamma radiation for sterilization. (author)

  15. Anodic aluminum oxide films formed in mixed electrolytes of oxalic and sulfuric acid and their optical constants

    Science.gov (United States)

    Zhao, Li-Rong; Wang, Jian; Li, Yan; Wang, Cheng-Wei; Zhou, Feng; Liu, Wei-Min

    2010-01-01

    Porous anodic aluminum oxide (AAO) films were fabricated electrochemically in the mixed electrolytes with various volume ratios of 0.3 M C 2H 2O 4 and 0.3 M H 2SO 4. The transmission spectra with the interference fringes were measured and the modified Swanepoel method was used to determine the optical constants of the free standing AAO films. The calculated thickness agrees well with the measured thickness from the FE-SEM images of the cross section, which indicates that the modified Swanepoel method is very fit for the determination of the optical constants of the free standing AAO films. Meantime, with the decrease of the volume ratio of C 2H 2O 4 and H 2SO 4, the refractive index and thickness of AAO films increase, but the extinction coefficient decreases. The optical band gap is appropriately fitted to the direct transition model proposed by Tauc in the strong-absorption region of investigated films, and is derived from Tauc's extrapolation. The reasons were investigated.

  16. Biodiesel synthesis by TiO2-ZnO mixed oxide nanocatalyst catalyzed palm oil transesterification process.

    Science.gov (United States)

    Madhuvilakku, Rajesh; Piraman, Shakkthivel

    2013-12-01

    Biodiesel is a promising alternating environmentally benign fuel to mineral diesel. For the development of easier transesterification process, stable and active heterogeneous mixed metal oxide of TiO2-ZnO and ZnO nanocatalysts were synthesized and exploited for the palm oil transesterification process. The synthesized catalysts were characterized by XRD, FT-IR, and FE-SEM studies for their structural and morphological characteristics. It was found that TiO2-ZnO nanocatalyst exhibits good catalytic activity and the catalytic performance was greatly depends on (i) catalyst concentration (ii) methanol to oil molar ratio (iii) reaction temperature and (iv) reaction time. A highest 98% of conversion was obtained at the optimum reaction parameters with 200 mg of catalyst loading and the biodiesel was analyzed by TLC and (1)H NMR techniques. The TiO2-ZnO nanocatalyst shows good catalytic performance over the ZnO catalyst, which could be a potential candidate for the large-scale biodiesel production from palm oil at the reduced temperature and time.

  17. Optical and chemical properties of mixed-valent rhenium oxide films synthesized by reactive DC magnetron sputtering

    Science.gov (United States)

    Murphy, Neil R.; Gallagher, Regina C.; Sun, Lirong; Jones, John G.; Grant, John T.

    2015-07-01

    Mixed-valent rhenium oxide thin films were deposited using reactive magnetron sputtering employing a metallic rhenium target within an oxygen-argon environment. The oxygen and argon flow rates were systematically varied, while the extinction coefficient, k, of the deposited layers was monitored using in situ spectroscopic ellipsometry. In situ monitoring was used to identify absorption features specific to ReO3, namely, the minimization of k brought on by the gap between interband absorption features in the UV at 310 nm and the onset of free electron absorption at wavelengths above 540 nm. Based on these results, oxygen flow ratios of 50% and 60% were shown to produce films having optical properties characteristic of ReO3, and thus, were selected for detailed ex situ characterization. Chemical analysis via X-ray photoelectron spectroscopy confirmed that all films consisted largely of ReO3, but had some contributions from Re2O3, ReO2 and Re2O7. Additional monitoring of the chemistry, as a function of environmental exposure time, indicated a correlation between structural instability and the presence of Re2O3 and Re2O7 in the films.

  18. Los Alamos National Laboratory summary plan to fabricate mixed oxide lead assemblies for the fissile material disposition program

    Energy Technology Data Exchange (ETDEWEB)

    Buksa, J.J.; Eaton, S.L.; Trellue, H.R.; Chidester, K.; Bowidowicz, M.; Morley, R.A.; Barr, M.

    1997-12-01

    This report summarizes an approach for using existing Los Alamos National Laboratory (Laboratory) mixed oxide (MOX) fuel-fabrication and plutonium processing capabilities to expedite and assure progress in the MOX/Reactor Plutonium Disposition Program. Lead Assembly MOX fabrication is required to provide prototypic fuel for testing in support of fuel qualification and licensing requirements. It is also required to provide a bridge for the full utilization of the European fabrication experience. In part, this bridge helps establish, for the first time since the early 1980s, a US experience base for meeting the safety, licensing, safeguards, security, and materials control and accountability requirements of the Department of Energy and Nuclear Regulatory Commission. In addition, a link is needed between the current research and development program and the production of disposition mission fuel. This link would also help provide a knowledge base for US regulators. Early MOX fabrication and irradiation testing in commercial nuclear reactors would provide a positive demonstration to Russia (and to potential vendors, designers, fabricators, and utilities) that the US has serious intent to proceed with plutonium disposition. This report summarizes an approach to fabricating lead assembly MOX fuel using the existing MOX fuel-fabrication infrastructure at the Laboratory.

  19. Sequential Fenton oxidation and hydrothermal treatment to improve the effect of pretreatment and enzymatic hydrolysis on mixed hardwood.

    Science.gov (United States)

    Jeong, So-Yeon; Lee, Jae-Won

    2016-01-01

    Sequential Fenton oxidation (FO) and hydrothermal treatment were performed to improve the effect of pretreatment and enzymatic hydrolysis of mixed hardwood. The molar ratio of the Fenton reagent (FeSO4·7H2O and H2O2) was 1:25, and the reaction time was 96h. During the reaction, little or no weight loss of biomass was observed. The concentration of Fe(2+) was determined and was found to increase continuously during FO. Hydrothermal treatment at 190-210°C for 10-80min was performed following FO. Sequential FO and hydrothermal treatment showed positive effects on pretreatment and enzymatic hydrolysis. Xylose concentration in the hydrolysate was as high as 14.16g/L when FO-treated biomass was treated at 190°C, while its concentration in the raw material was 3.72g/L. After 96h of enzymatic hydrolysis, cellulose conversion in the biomass obtained following sequential treatment was 69.58-79.54%. In contrast, the conversion in the raw material (without FO) was 64.41-67.92%.

  20. Fabrication process for sintered mixed oxides soluble in nitric acid from nitrate solutions. [nuclear fuels]. Procede d'obtention d'oxydes mixtes frittes solubles dans l'acide nitrique a partir de solutions de nitrates

    Energy Technology Data Exchange (ETDEWEB)

    Bachelard, R.; Germanaz, P.

    1987-10-02

    Mixed oxide nuclear fuels are obtained by mixing the nitrate solutions, concentration, heat treatment for an intermediary mixed oxide containing U(VI) and Pu(IV or VI), calcination to obtain U/sub 3/O/sub 8/, reduction in U(IV) and Pu(IV), pelletizing, sintering and machining. Less wastes are produced and the fuel pellets are soluble in nitric acid.