WorldWideScience

Sample records for amorphous metals high-performance

  1. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Material (HPCRM) Development

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Choi, J S; Saw, C; Haslam, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D' Amato, A; Aprigliano, L

    2008-01-09

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  2. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Materials (HPCRM) Development Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Choi, J; Saw, C; Haslem, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D' Amato, A; Aprigliano, L

    2009-03-16

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal make this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of these iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  3. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings

    International Nuclear Information System (INIS)

    Farmer, J C; Haslam, J J; Wong, F; Ji, X; Day, S D; Branagan, D J; Marshall, M C; Meacham, B E; Buffa, E J; Blue, C A; Rivard, J K; Beardsley, M B; Weaver, D T; Aprigliano, L F; Kohler, L; Bayles, R; Lemieux, E J; Wolejsza, T M; Martin, F J; Yang, N; Lucadamo, G; Perepezko, J H; Hildal, K; Kaufman, L; Heuer, A H; Ernst, F; Michal, G M; Kahn, H; Lavernia, E J

    2004-01-01

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an ''integral drip shield'' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent

  4. A High-Performance Corrosion-Resistant Iron-Based Amorphous Metal - The Effects of Composition, Structure and Environment on Corrosion Resistance

    International Nuclear Information System (INIS)

    Farmer, J.; Haslam, J.; Day, D.; Lian, T.; Saw, C.; Hailey, P.; Choi, J.S.; Rebak, R.; Yang, N.; Bayles, R.; Aprigliano, L.; Payer, J.; Perepezko, J.; Hildal, K.; Lavernia, E.; Ajdelsztajn, L.; Branagan, D.; Beardsley, B.

    2007-01-01

    The passive film stability of several Fe-based amorphous metal formulations have been found to be comparable to that of high-performance Ni-based alloys, and superior to that of stainless steels, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. Chromium (Cr), molybdenum (Mo) and tungsten (W) provide corrosion resistance; boron (B) enables glass formation; and rare earths such as yttrium (Y) lower critical cooling rate (CCR). The high boron content of this particular amorphous metal also makes it an effective neutron absorber, and suitable for criticality control applications, as discussed in companion publications. Corrosion data for SAM2X5 (Fe 49.7 Cr 17.7 Mn 1.9 Mo 7.4 W 1.6 B 15.2 C 3.8 Si 2.4 ) is discussed here. (authors)

  5. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Choi, J; Haslam, J; Day, S; Yang, N; Headley, T; Lucadamo, G; Yio, J; Chames, J; Gardea, A; Clift, M; Blue, G; Peters, W; Rivard, J; Harper, D; Swank, D; Bayles, R; Lemieux, E; Brown, R; Wolejsza, T; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Lavernia, E; Schoenung, J; Ajdelsztajn, L; Dannenberg, J; Graeve, O; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Boudreau, J

    2007-09-20

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer

  6. Physics of amorphous metals

    CERN Document Server

    Kovalenko, Nikolai P; Krey, Uwe

    2008-01-01

    The discovery of bulk metallic glasses has led to a large increase in the industrial importance of amorphous metals, and this is expected to continue. This book is the first to describe the theoretical physics of amorphous metals, including the important theoretical development of the last 20 years.The renowned authors stress the universal aspects in their description of the phonon or magnon low-energy excitations in the amorphous metals, e.g. concerning the remarkable consequences of the properties of these excitations for the thermodynamics at low and intermediate temperatures. Tunneling

  7. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

    2007-09-19

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.

  8. Anomalous magnetoresistance in amorphous metals

    International Nuclear Information System (INIS)

    Kuz'menko, V.M.; Vladychkin, A.N.; Mel'nikov, V.I.; Sudovtsev, A.I.

    1984-01-01

    The magnetoresistance of amorphous Bi, Ca, V and Yb films is investigated in fields up to 4 T at low temperatures. For all metals the magnetoresistance is positive, sharply decreases with growth of temperature and depends anomalously on the magnetic field strength. For amorphous superconductors the results agree satisfactorily with the theory of anomalous magnetoresistance in which allowance is made for scattering of electrons by the superconducting fluctuations

  9. Amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-04-01

    Nanoelectromechanical (NEM) switch is an interesting ultra-low power option which can operate in the harsh environment and can be a complementary element in complex digital circuitry. Although significant advancement is happening in this field, report on ultra-low voltage (pull-in) switch which offers high switching speed and area efficiency is yet to be made. One key challenge to achieve such characteristics is to fabricate nano-scale switches with amorphous metal so the shape and dimensional integrity are maintained to achieve the desired performance. Therefore, we report a tungsten alloy based amorphous metal with fabrication process development of laterally actuated dual gated NEM switches with 100 nm width and 200 nm air-gap to result in <5 volts of actuation voltage (Vpull-in). © 2013 IEEE.

  10. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings Evaluation of Corrosion Resistance FY05 HPCRM Annual Report No. Rev. 1DOE-DARPA Co-Sponsored Advanced Materials Program

    International Nuclear Information System (INIS)

    Farmer, J C; Haslam, J J; Day, S D

    2007-01-01

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer

  11. Analytical theory of noncollinear amorphous metallic magnetism

    International Nuclear Information System (INIS)

    Kakehashi, Y.; Uchida, T.

    2001-01-01

    Analytical theory of noncollinear magnetism in amorphous metals is proposed on the basis of the Gaussian model for the distribution of the interatomic distance and the saddle-point approximation. The theory removes the numerical difficulty in the previous theory based on the Monte-Carlo sampling method, and reasonably describes the magnetic properties of amorphous transition metals

  12. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    Science.gov (United States)

    Farmer, Joseph C [Tracy, CA; Wong, Frank M. G. [Livermore, CA; Haslam, Jeffery J [Livermore, CA; Yang, Nancy [Lafayette, CA; Lavernia, Enrique J [Davis, CA; Blue, Craig A [Knoxville, TN; Graeve, Olivia A [Reno, NV; Bayles, Robert [Annandale, VA; Perepezko, John H [Madison, WI; Kaufman, Larry [Brookline, MA; Schoenung, Julie [Davis, CA; Ajdelsztajn, Leo [Walnut Creek, CA

    2009-11-17

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  13. Ta-based amorphous metal thin films

    Energy Technology Data Exchange (ETDEWEB)

    McGlone, John M., E-mail: mcglone@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331-5501 (United States); Olsen, Kristopher R. [Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003 (United States); Stickle, William F.; Abbott, James E.; Pugliese, Roberto A.; Long, Greg S. [Hewlett-Packard Company, Corvallis, OR, 97333 (United States); Keszler, Douglas A. [Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003 (United States); Wager, John F. [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331-5501 (United States)

    2015-11-25

    With their lack of grains and grain boundaries, amorphous metals are known to possess advantageous mechanical properties and enhanced chemical stability relative to crystalline metals. Commonly, however, they exhibit poor high-temperature stability because of their metastable nature. Here, we describe two new Ta-based ternary metal thin films that retain thermal stability to 600 °C and above. The new thin-film compositions, Ta{sub 2}Ni{sub 2}Si{sub 1} and Ta{sub 2}Mo{sub 2}Si{sub 1}, are amorphous, exhibiting ultra-smooth surfaces (<0.4 nm) and resistivities typical of amorphous metals (224 and 177 μΩ cm, respectively). - Highlights: • New Ta-based amorphous metals were sputter deposited from individual targets. • As-deposited amorphous structure was confirmed through diffraction techniques. • Electrical and surface properties were characterized and possess smooth surfaces. • No evidence of crystallization up to 600 °C (TaNiSi) and 800 °C (TaMoSi). • Ultra-smooth surfaces remained unchanged up to crystallization temperature.

  14. Amorphous metal matrix composite ribbons

    International Nuclear Information System (INIS)

    Barczy, P.; Szigeti, F.

    1998-01-01

    Composite ribbons with amorphous matrix and ceramic (SiC, WC, MoB) particles were produced by modified planar melt flow casting methods. Weldability, abrasive wear and wood sanding examinations were carried out in order to find optimal material and technology for elevated wear resistance and sanding durability. The correlation between structure and composite properties is discussed. (author)

  15. Plasma deposition of amorphous metal alloys

    Science.gov (United States)

    Hays, Auda K.

    1986-01-01

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  16. Powder metallurgical high performance materials. Proceedings. Volume 1: high performance P/M metals

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    The proceedings of this sequence of seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. There the ingenuity and assiduous work of thousands of scientists and engineers striving for progress in the field of powder metallurgy is documented in more than 2000 contributions covering some 30000 pages. The 15th Plansee Seminar was convened under the general theme 'Powder Metallurgical High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (author)

  17. Hollow Amorphous MnSnO3 Nanohybrid with Nitrogen-Doped Graphene for High-Performance Lithium Storage

    International Nuclear Information System (INIS)

    Liu, Peng; Hao, Qingli; Xia, Xifeng; Lei, Wu; Xia, Hui; Chen, Ziyang; Wang, Xin

    2016-01-01

    97.3% over 1000 cycles was obtained. This work opens new opportunities to fabricate the high-performance electrode materials with heterostructure for lithium storage systems, especially for novel multi-metal oxide based nanocomposites with high cycling stability.

  18. Amorphization of metals by ion implantation and ion beam mixing

    International Nuclear Information System (INIS)

    Rauschenbach, B.; Heera, V.

    1988-01-01

    Amorphous metallic systems can be formed either by high-fluence ion implantation of glassforming species or by irradiation of layered metal systems with inert gas ions. Both techniques and experimental examples are presented. Empirical rules are discussed which predict whether a given system can be transformed into an amorphous phase. Influence of temperature, implantation dose and pre-existing crystalline metal composition on amorphization is considered. Examples are given of the implantation induced amorphous structure, recrystallization and formation of quasicrystalline structures. (author)

  19. Atomic Distribution in Catalytic Amorphous Metals

    Directory of Open Access Journals (Sweden)

    Sanghita Mridha

    2015-01-01

    Full Text Available The atomic distribution in catalytically active metallic glass alloys, Pd43Cu27Ni10P20 and Pt57.5Cu14.7Ni5.3P22.5, was investigated using three-dimensional atom probe microscopy. Atom probe analysis showed uniform distribution of constituent elements for both the starting amorphous alloys, with no phase separation. Both the crystallized alloys showed eutectic microstructure with a very sharp interface (~0.5 nm as determined from atom probe. The atomic distribution in the devitrified state is explained based on the “fragile liquid” behavior for these noble-metal glassy alloys.

  20. Single-crystal metal growth on amorphous insulating substrates.

    Science.gov (United States)

    Zhang, Kai; Pitner, Xue Bai; Yang, Rui; Nix, William D; Plummer, James D; Fan, Jonathan A

    2018-01-23

    Metal structures on insulators are essential components in advanced electronic and nanooptical systems. Their electronic and optical properties are closely tied to their crystal quality, due to the strong dependence of carrier transport and band structure on defects and grain boundaries. Here we report a method for creating patterned single-crystal metal microstructures on amorphous insulating substrates, using liquid phase epitaxy. In this process, the patterned metal microstructures are encapsulated in an insulating crucible, together with a small seed of a differing material. The system is heated to temperatures above the metal melting point, followed by cooling and metal crystallization. During the heating process, the metal and seed form a high-melting-point solid solution, which directs liquid epitaxial metal growth. High yield of single-crystal metal with different sizes is confirmed with electron backscatter diffraction images, after removing the insulating crucible. Unexpectedly, the metal microstructures crystallize with the [Formula: see text] direction normal to the plane of the film. This platform technology will enable the large-scale integration of high-performance plasmonic and electronic nanosystems.

  1. High performance sinter-HIP for hard metals

    International Nuclear Information System (INIS)

    Hongxia Chen; Deming Zhang; Yang Li; Jingping Chen

    2001-01-01

    The horizontal sinter-HIP equipment with great charge capacity and high performance, developed and manufactured by Central Iron and Steel Research Institute(CISRI), is mainly used for sintering and condensation of hard metals. This equipment is characterized by large hot zone, high heating speed, good temperature uniformity and fast cooling system. The equipment can provide uniform hot zone with temperature difference less than 6 o C at 1500-1600 o C and 6-10 MPa by controlling temperature, pressure and circulation of gas precisely. Using large scale horizontal sinter-HIP equipment to produce hard matals have many advantages such as stable quality, high efficiency of production, high rate of finished products and low production cost, so this equipment is a good choice for manufacturer of hard metals. (author)

  2. Mechanical Performance of Amorphous Metallic Cellular Structures

    Science.gov (United States)

    Schramm, Joseph P.

    Metallic glass and metallic glass matrix composites are excellent candidates for application in cellular structures because of their outstanding plastic yield strengths and their ability to deform plastically prior to fracture. The mechanical performance of metallic-glass and metallic-glass-matrix-composite honeycomb structures are discussed, and their strength and energy absorption capabilities examined in quasi-static compression tests for both in-plane and out-of-plane loading. These structures exhibit strengths and energy absorption that well exceed the performance of similar structures made from crystalline metals. The strength and energy absorption capabilities of amorphous metal foams produced by a powder metallurgy process are also examined, showing that foams produced by this method can be highly porous and are able to inherit the strength of the parent metallic glass and absorb large amounts of energy. The mechanical properties of a highly stochastic set of foams are examined at low and high strain rates. It is observed that upon a drastic increase in strain rate, the dominant mechanism of yielding for these foams undergoes a change from elastic buckling to plastic yielding. This mechanism change is thought to be the result of the rate of the mechanical test approaching or even eclipsing the speed of elastic waves in the material.

  3. High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes

    KAUST Repository

    Baby, Rakhi Raghavan

    2011-01-01

    Metal oxide nanoparticles were chemically anchored onto graphene nanosheets (GNs) and the resultant composites - SnO2/GNs, MnO2/GNs and RuO2/GNs (58% of GNs loading) - coated over conductive carbon fabric substrates were successfully used as supercapacitor electrodes. The results showed that the incorporation of metal oxide nanoparticles improved the capacitive performance of GNs due to a combination of the effect of spacers and redox reactions. The specific capacitance values (with respect to the composite mass) obtained for SnO2/GNs (195 F g-1) and RuO 2/GNs (365 F g-1) composites at a scan rate of 20 mV s-1 in the present study are the best ones reported to date for a two electrode configuration. The resultant supercapacitors also exhibited high values for maximum energy (27.6, 33.1 and 50.6 W h kg-1) and power densities (15.9, 20.4 and 31.2 kW kg-1) for SnO2/GNs, MnO2/GNs and RuO2/GNs respectively. These findings demonstrate the importance and great potential of metal oxide/GNs based composite coated carbon fabric in the development of high-performance energy-storage systems. © 2011 The Royal Society of Chemistry.

  4. Controllable film densification and interface flatness for high-performance amorphous indium oxide based thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Ou-Yang, Wei, E-mail: OUYANG.Wei@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Kizu, Takio; Gao, Xu; Lin, Meng-Fang; Tsukagoshi, Kazuhito, E-mail: OUYANG.Wei@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp [International Center for Materials Nanoarchitectronics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Nabatame, Toshihide [MANA Foundry and MANA Advanced Device Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-10-20

    To avoid the problem of air sensitive and wet-etched Zn and/or Ga contained amorphous oxide transistors, we propose an alternative amorphous semiconductor of indium silicon tungsten oxide as the channel material for thin film transistors. In this study, we employ the material to reveal the relation between the active thin film and the transistor performance with aid of x-ray reflectivity study. By adjusting the pre-annealing temperature, we find that the film densification and interface flatness between the film and gate insulator are crucial for achieving controllable high-performance transistors. The material and findings in the study are believed helpful for realizing controllable high-performance stable transistors.

  5. Large-size high-performance transparent amorphous silicon sensors for laser beam position detection

    International Nuclear Information System (INIS)

    Calderon, A.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto, A.L.; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Luque, J.M.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C.; Koehler, C.; Lutz, B.; Schubert, M.B.; Werner, J.H.

    2006-01-01

    We present the measured performance of a new generation of semitransparent amorphous silicon position detectors. They have a large sensitive area (30x30mm 2 ) and show good properties such as a high response (about 20mA/W), an intrinsic position resolution better than 3μm, a spatial-point reconstruction precision better than 10μm, deflection angles smaller than 10μrad and a transmission power in the visible and NIR higher than 70%

  6. Large Size High Performance Transparent Amorphous Silicon Sensors for Laser Beam Position Detection and Monitoring

    International Nuclear Information System (INIS)

    Calderon, A.; Martinez Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto; Alberdi, J.; Arce, P.; Barcala, J. M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Luque, J. M.; Molinero, A.; Navarrete, J.; Oller, J. C.; Kohler, C.; Lutz, B.; Schubert, M. B.

    2006-01-01

    We present the measured performance of a new generation of semitransparente amorphous silicon position detectors. They have a large sensitive area (30 x 30 mm2) and show good properties such as a high response (about 20 mA/W), an intinsic position resolution better than 3 m, a spatial point reconstruction precision better than 10 m, deflection angles smaller than 10 rad and a transmission power in the visible and NIR higher than 70%. In addition, multipoint alignment monitoring, using up to five sensors lined along a light path of about 5 meters, can be achieved with a resolution better than 20m. (Author)

  7. Transmissive metallic contact for amorphous silicon solar cells

    Science.gov (United States)

    Madan, A.

    1984-11-29

    A transmissive metallic contact for amorphous silicon semiconductors includes a thin layer of metal, such as aluminum or other low work function metal, coated on the amorphous silicon with an antireflective layer coated on the metal. A transparent substrate, such as glass, is positioned on the light reflective layer. The metallic layer is preferably thin enough to transmit at least 50% of light incident thereon, yet thick enough to conduct electricity. The antireflection layer is preferably a transparent material that has a refractive index in the range of 1.8 to 2.2 and is approximately 550A to 600A thick.

  8. Amorphous Zinc Oxide Integrated Wavy Channel Thin Film Transistor Based High Performance Digital Circuits

    KAUST Repository

    Hanna, Amir

    2015-12-04

    High performance thin film transistor (TFT) can be a great driving force for display, sensor/actuator, integrated electronics, and distributed computation for Internet of Everything applications. While semiconducting oxides like zinc oxide (ZnO) present promising opportunity in that regard, still wide area of improvement exists to increase the performance further. Here, we show a wavy channel (WC) architecture for ZnO integrated TFT which increases transistor width without chip area penalty, enabling high performance in material agnostic way. We further demonstrate digital logic NAND circuit using the WC architecture and compare it to the conventional planar architecture. The WC architecture circuits have shown 2× higher peak-to-peak output voltage for the same input voltage. They also have 3× lower high-to-low propagation delay times, respectively, when compared to the planar architecture. The performance enhancement is attributed to both extra device width and enhanced field effect mobility due to higher gate field electrostatics control.

  9. High Performance High Temperature Thermoelectric Composites with Metallic Inclusions

    Science.gov (United States)

    Ma, James M. (Inventor); Bux, Sabah K. (Inventor); Fleurial, Jean-Pierre (Inventor); Ravi, Vilupanur A. (Inventor); Firdosy, Samad A. (Inventor); Star, Kurt (Inventor); Kaner, Richard B. (Inventor)

    2017-01-01

    The present invention provides a composite thermoelectric material. The composite thermoelectric material can include a semiconductor material comprising a rare earth metal. The atomic percent of the rare earth metal in the semiconductor material can be at least about 20%. The composite thermoelectric material can further include a metal forming metallic inclusions distributed throughout the semiconductor material. The present invention also provides a method of forming this composite thermoelectric material.

  10. Amorphous Metals and Composites as Mirrors and Mirror Assemblies

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Davis, Gregory L. (Inventor); Agnes, Gregory S. (Inventor); Shapiro, Andrew A. (Inventor)

    2016-01-01

    A mirror or mirror assembly fabricated by molding, pressing, assembling, or depositing one or more bulk metal glass (BMG), bulk metal glass composite (BMGMC), or amorphous metal (AM) parts and where the optical surface and backing of the mirror can be fabricated without machining or polishing by utilizing the unique molding capabilities of this class of materials.

  11. High performance solution-deposited amorphous indium gallium zinc oxide thin film transistors by oxygen plasma treatment

    KAUST Repository

    Nayak, Pradipta K.

    2012-05-16

    Solution-deposited amorphous indium gallium zinc oxide (a-IGZO) thin film transistors(TFTs) with high performance were fabricated using O2-plasma treatment of the films prior to high temperature annealing. The O2-plasma treatment resulted in a decrease in oxygen vacancy and residual hydrocarbon concentration in the a-IGZO films, as well as an improvement in the dielectric/channel interfacial roughness. As a result, the TFTs with O2-plasma treated a-IGZO channel layers showed three times higher linear field-effect mobility compared to the untreated a-IGZO over a range of processing temperatures. The O2-plasma treatment effectively reduces the required processing temperature of solution-deposited a-IGZO films to achieve the required performance.

  12. Superconducting and normal properties of metallic amorphous systems

    International Nuclear Information System (INIS)

    Esquinazi, P.D.

    1983-02-01

    The superconducting and transport properties (superconducing critical temperature, superconducting critical currents, electric resistivity and thermal conductivity) of the amorphous alloys La 70 Cu 30 and Zr 70 Cu 30 prepared by melt spinning have been investigated. The modification of these properties when, the initial amorphous metals relax to other metastable state under thermal treatment at below crystallization temperatures, have also been studied. (M.E.L.) [es

  13. How and When Metals React in High Performance Explosives

    Science.gov (United States)

    Anderson, Paul

    2017-06-01

    The reaction kinetics of aluminum and other metals in detonations has long been studied with the goal to obtain the full enthalpy energy of aluminum oxidation at early timeframes. This requires the oxidation reaction to occur at the same rate as explosive CHNO compounds. While the literature claims some success with model formulations, few fielded formulations obtain such performance due to competing carbon oxidation of the inert formulation binder ingredients. Moreover, from gas analysis data in detonation calorimetry, it is hypothesized that high pressure/high temperature gas equilibrium concentrations are one of some factors that play a role in obtaining early reactivity of metals in the detonation. The mechanism of these reactions and the effect on detonation responses such as detonation pressure and velocity will be discussed Membership pending.

  14. Ceramic Replaces Metal In High Performance Optomechanical Structures

    Science.gov (United States)

    Vasquez, Peter; Fox, Robert L.; Sandford, Stephen P.

    1995-01-01

    Recently developed ceramic materials and fabrication techniques integrated by Langley Research Center workers to produce superior optomechanical structures for spacecraft and aircraft instrumentation. Basic features of these novel supports, such as dimensional stability, low cost, and ease of fabrication, also make them ideal for many commerical optical systems as well. Ceramic supports for optical components and benches offer important advantages over usual metal parts. Ceramic materials expand and contract only slightly with changes in temperature. Moreover, they are relatively inexpensive and lightweight.

  15. Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode

    KAUST Repository

    Wu, Hui

    2010-10-13

    Transparent electrodes, indespensible in displays and solar cells, are currently dominated by indium tin oxide (ITO) films although the high price of indium, brittleness of films, and high vacuum deposition are limiting their applications. Recently, solution-processed networks of nanostructures such as carbon nanotubes (CNTs), graphene, and silver nanowires have attracted great attention as replacements. A low junction resistance between nanostructures is important for decreasing the sheet resistance. However, the junction resistances between CNTs and boundry resistances between graphene nanostructures are too high. The aspect ratios of silver nanowires are limited to ∼100, and silver is relatively expensive. Here, we show high-performance transparent electrodes with copper nanofiber networks by a low-cost and scalable electrospinning process. Copper nanofibers have ultrahigh aspect ratios of up to 100000 and fused crossing points with ultralow junction resistances, which result in high transmitance at low sheet resistance, e.g., 90% at 50 Ω/sq. The copper nanofiber networks also show great flexibility and stretchabilty. Organic solar cells using copper nanowire networks as transparent electrodes have a power efficiency of 3.0%, comparable to devices made with ITO electrodes. © 2010 American Chemical Society.

  16. Figure and finish characterization of high performance metal mirrors

    International Nuclear Information System (INIS)

    Takacs, P.Z.; Church, E.L.

    1991-10-01

    Most metal mirrors currently used in synchrotron radiation (SR) beam lines to reflect soft x-rays are made of electroless nickel plate on an aluminum substrate. This material combination has allowed optical designers to incorporate exotic cylindrical aspheres into grazing incidence x-ray beam-handling systems by taking advantage of single-point diamond machining techniques. But the promise of high-quality electroless nickel surfaces has generally exceeded the performance. We will examine the evolution of electroless nickel surfaces through a study of the quality of mirrors delivered for use at the National Synchrotron Light Source over the past seven years. We have developed techniques to assess surface quality based on the measurement of surface roughness and figure errors with optical profiling instruments. It is instructive to see how the quality of the surface is related to the complexity of the machine operations required to produce it

  17. Energy reversible switching from amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-08-01

    We report observation of energy reversible switching from amorphous metal based nanoelectromechanical (NEM) switch. For ultra-low power electronics, NEM switches can be used as a complementary switching element in many nanoelectronic system applications. Its inherent zero power consumption because of mechanical detachment is an attractive feature. However, its operating voltage needs to be in the realm of 1 volt or lower. Appropriate design and lower Young\\'s modulus can contribute achieving lower operating voltage. Therefore, we have developed amorphous metal with low Young\\'s modulus and in this paper reporting the energy reversible switching from a laterally actuated double electrode NEM switch. © 2013 IEEE.

  18. Features of exoelectron emission in amorphous metallic alloys

    CERN Document Server

    Veksler, A S; Morozov, I L; Semenov, A L

    2001-01-01

    The peculiarities of the photothermostimulated exoelectron emission in amorphous metallic alloys of the Fe sub 6 sub 4 Co sub 2 sub 1 B sub 1 sub 5 composition are studied. It is established that the temperature dependences of the exoelectron emission spectrum adequately reflect the two-stage character of the amorphous alloy transition into the crystalline state. The exoelectron emission spectrum is sensitive to the variations in the modes of the studied sample thermal treatment. The thermal treatment of the amorphous metallic alloy leads to growth in the intensity of the exoelectrons yield. The highest growth in the intensify of the exoelectron emission was observed in the alloys at the initial stage of their crystallization

  19. Amorphous Metal Composites for use in Long-Life, Low-Temperature Gearboxes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed concept is to explore the use of Amorphous Metals (AMs) and Amorphous Metal Composites (AMCs) (fabricated entirely at JPL) for use as gears and bearing...

  20. High performance high-κ/metal gate complementary metal oxide semiconductor circuit element on flexible silicon

    KAUST Repository

    Sevilla, Galo T.

    2016-02-29

    Thinned silicon based complementary metal oxide semiconductor(CMOS)electronics can be physically flexible. To overcome challenges of limited thinning and damaging of devices originated from back grinding process, we show sequential reactive ion etching of silicon with the assistance from soft polymeric materials to efficiently achieve thinned (40 μm) and flexible (1.5 cm bending radius) silicon based functional CMOSinverters with high-κ/metal gate transistors. Notable advances through this study shows large area of silicon thinning with pre-fabricated high performance elements with ultra-large-scale-integration density (using 90 nm node technology) and then dicing of such large and thinned (seemingly fragile) pieces into smaller pieces using excimer laser. The impact of various mechanical bending and bending cycles show undeterred high performance of flexible siliconCMOSinverters. Future work will include transfer of diced silicon chips to destination site, interconnects, and packaging to obtain fully flexible electronic systems in CMOS compatible way.

  1. Amorphous metal formulations and structured coatings for corrosion and wear resistance

    Science.gov (United States)

    Farmer, Joseph C [Tracy, CA

    2011-12-13

    A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.

  2. Amorphous Metallic Alloys: Pathways for Enhanced Wear and Corrosion Resistance

    Science.gov (United States)

    Aditya, Ayyagari; Felix Wu, H.; Arora, Harpreet; Mukherjee, Sundeep

    2017-11-01

    Amorphous metallic alloys are widely used in bulk form and as coatings for their desirable corrosion and wear behavior. Nevertheless, the effects of heat treatment and thermal cycling on these surface properties are not well understood. In this study, the corrosion and wear behavior of two Zr-based bulk metallic glasses were evaluated in as-cast and thermally relaxed states. Significant improvement in wear rate, friction coefficient, and corrosion penetration rate was seen for both alloys after thermal relaxation. A fully amorphous structure was retained with thermal relaxation below the glass transition. There was an increase in surface hardness and elastic modulus for both alloys after relaxation. The improvement in surface properties was explained based on annihilation of free volume.

  3. Formation of amorphous metal alloys by chemical vapor deposition

    Science.gov (United States)

    Mullendore, Arthur W.

    1990-01-01

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures or organometallic compounds and metalloid hydrides, e.g., transition metal carbonyl such as nickel carbonyl, and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit.

  4. One-Pot Synthesis of Tunable Crystalline Ni3 S4 @Amorphous MoS2 Core/Shell Nanospheres for High-Performance Supercapacitors.

    Science.gov (United States)

    Zhang, Yu; Sun, Wenping; Rui, Xianhong; Li, Bing; Tan, Hui Teng; Guo, Guilue; Madhavi, Srinivasan; Zong, Yun; Yan, Qingyu

    2015-08-12

    Transition metal sulfides gain much attention as electrode materials for supercapacitors due to their rich redox chemistry and high electrical conductivity. Designing hierarchical nanostructures is an efficient approach to fully utilize merits of each component. In this work, amorphous MoS(2) is firstly demonstrated to show specific capacitance 1.6 times as that of the crystalline counterpart. Then, crystalline core@amorphous shell (Ni(3)S(4)@MoS(2)) is prepared by a facile one-pot process. The diameter of the core and the thickness of the shell can be independently tuned. Taking advantages of flexible protection of amorphous shell and high capacitance of the conductive core, Ni(3)S(4) @amorphous MoS(2) nanospheres are tested as supercapacitor electrodes, which exhibit high specific capacitance of 1440.9 F g(-1) at 2 A g(-1) and a good capacitance retention of 90.7% after 3000 cycles at 10 A g(-1). This design of crystalline core@amorphous shell architecture may open up new strategies for synthesizing promising electrode materials for supercapacitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Oxide nanostructures hyperbranched with thin and hollow metal shells for high-performance nanostructured battery electrodes.

    Science.gov (United States)

    Xia, Xinhui; Xiong, Qinqin; Zhang, Yongqi; Tu, Jiangping; Ng, Chin Fan; Fan, Hong Jin

    2014-06-25

    High-performance electrochemical energy storage (EES) devices require the ability to modify and assemble electrode materials with superior reactivity and structural stability. The fabrication of different oxide/metal core-branch nanoarrays with adjustable components and morphologies (e.g., nanowire and nanoflake) is reported on different conductive substrates. Hollow metal branches (or shells) wrapped around oxide cores are realized by electrodeposition using ZnO nanorods as a sacrificial template. In battery electrode application, the thin hollow metal branches can provide a mechanical protection of the oxide core and a highly conductive path for charges. As a demonstration, arrays of Co3O4/Ni core-branch nanowires are evaluated as the anode for lithium ion batteries. The thin metal branches evidently improve the electrochemical performance with higher specific capacity, rate capability, and capacity retention than the unmodified Co3O4 counterparts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Codoping of zinc and tungsten for practical high-performance amorphous indium-based oxide thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kizu, Takio, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Tsukagoshi, Kazuhito, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Miyanaga, Miki; Awata, Hideaki [Advanced Materials R& D Laboratories, Sumitomo Electric Industries, Ltd., 1-1-1 Koyakita, Itami, Hyogo 664-0016 (Japan); Nabatame, Toshihide [MANA Foundry and MANA Advanced Device Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2015-09-28

    Using practical high-density sputtering targets, we investigated the effect of Zn and W codoping on the thermal stability of the amorphous film and the electrical characteristics in thin film transistors. zinc oxide is a potentially conductive component while W oxide is an oxygen vacancy suppressor in oxide films. The oxygen vacancy from In-O and Zn-O was suppressed by the W additive because of the high oxygen bond dissociation energy. With controlled codoping of W and Zn, we demonstrated a high mobility with a maximum mobility of 40 cm{sup 2}/V s with good stability under a negative bias stress in InWZnO thin film transistors.

  7. Field Performance of Three-Phase Amorphous Metal Core Distribution Transformers at Pearl Harbor, Hawaii

    Science.gov (United States)

    1990-08-01

    the electrical performance and operational reliability of the amorphous metal core transformers compared to conventional silicon- steel transformers...electrical performance and operational reliability of the amorphous metal core transformers compared to conventional silicon- steel transformers, and...electric utilities, power distribution I& PRICE CODE 17. SECURITY CLASIFICATION 1 0S. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF

  8. Low thermal budget annealing technique for high performance amorphous In-Ga-ZnO thin film transistors

    Directory of Open Access Journals (Sweden)

    Joong-Won Shin

    2017-07-01

    Full Text Available In this paper, we investigate a low thermal budget post-deposition-annealing (PDA process for amorphous In-Ga-ZnO (a-IGZO oxide semiconductor thin-film-transistors (TFTs. To evaluate the electrical characteristics and reliability of the TFTs after the PDA process, microwave annealing (MWA and rapid thermal annealing (RTA methods were applied, and the results were compared with those of the conventional annealing (CTA method. The a-IGZO TFTs fabricated with as-deposited films exhibited poor electrical characteristics; however, their characteristics were improved by the proposed PDA process. The CTA-treated TFTs had excellent electrical properties and stability, but the CTA method required high temperatures and long processing times. In contrast, the fabricated RTA-treated TFTs benefited from the lower thermal budget due to the short process time; however, they exhibited poor stability. The MWA method uses a low temperature (100 °C and short annealing time (2 min because microwaves transfer energy directly to the substrate, and this method effectively removed the defects in the a-IGZO TFTs. Consequently, they had a higher mobility, higher on-off current ratio, lower hysteresis voltage, lower subthreshold swing, and higher interface trap density than TFTs treated with CTA or RTA, and exhibited excellent stability. Based on these results, low thermal budget MWA is a promising technology for use on various substrates in next generation displays.

  9. Scattering effect of the high-index dielectric nanospheres for high performance hydrogenated amorphous silicon thin-film solar cells.

    Science.gov (United States)

    Yang, Zhenhai; Gao, Pingqi; Zhang, Cheng; Li, Xiaofeng; Ye, Jichun

    2016-07-26

    Dielectric nanosphere arrays are considered as promising light-trapping designs with the capability of transforming the freely propagated sunlight into guided modes. This kinds of designs are especially beneficial to the ultrathin hydrogenated amorphous silicon (a-Si:H) solar cells due to the advantages of using lossless material and easily scalable assembly. In this paper, we demonstrate numerically that the front-sided integration of high-index subwavelength titanium dioxide (TiO2) nanosphere arrays can significantly enhance the light absorption in 100 nm-thick a-Si:H thin films and thus the power conversion efficiencies (PCEs) of related solar cells. The main reason behind is firmly attributed to the strong scattering effect excited by TiO2 nanospheres in the whole waveband, which contributes to coupling the light into a-Si:H layer via two typical ways: 1) in the short-waveband, the forward scattering of TiO2 nanospheres excite the Mie resonance, which focuses the light into the surface of the a-Si:H layer and thus provides a leaky channel; 2) in the long-waveband, the transverse waveguided modes caused by powerful scattering effectively couple the light into almost the whole active layer. Moreover, the finite-element simulations demonstrate that photocurrent density (Jph) can be up to 15.01 mA/cm(2), which is 48.76% higher than that of flat system.

  10. Homochiral metal-organic framework used as a stationary phase for high-performance liquid chromatography.

    Science.gov (United States)

    Kong, Jiao; Zhang, Mei; Duan, Ai-Hong; Zhang, Jun-Hui; Yang, Rui; Yuan, Li-Ming

    2015-02-01

    Metal-organic frameworks are promising porous materials. Chiral metal-organic frameworks have attracted considerable attention in controlling enantioselectivity. In this study, a homochiral metal-organic framework [Co(2) (D-cam)(2) (TMDPy)] (D-cam = D-camphorates, TMDPy = 4,4'-trimethylenedipyridine) with a non-interpenetrating primitive cubic net has been used as a chiral stationary phase in high-performance liquid chromatography. It has allowed the successful separation of six positional isomers and six chiral compounds. The good selectivity and baseline separation, or at least 60% valley separation, confirmed its excellent molecular recognition characteristics. The relative standard deviations for the retention time of run-to-run and column-to-column were less than 1.8 and 3.1%, respectively. These results demonstrate that [Co(2) (D-cam)(2) (TMDPy)] may represent a promising chiral stationary phase for use in high-performance liquid chromatography. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. PREFACE: 13th International Conference on Liquid and Amorphous Metals

    Science.gov (United States)

    Popel, Pjotr; Gelchinskii, Boris; Sidorov, Valeriy; Son, Leonid; Sabirzjanov, Alexandre

    2007-06-01

    The state of the art in the field of liquid and amorphous metals and alloys is regularly updated through two series of complementary international conferences, the LAM (Liquid and Amorphous Metals) and the RQ (Rapidly Quenched Materials). The first series of the conferences started as LM-1 in 1966 at Brookhaven for the basic understanding of liquid metals. The subsequent LM conferences were held in Tokyo (1972) and Bristol (1976). The conference was renewed in Grenoble (1980) as a LAM conference including amorphous metals and continued in Los Angeles (1983), Garmisch-Partenkirchen (1986), Kyoto (1989), Vienna (1992), Chicago (1995), Dortmund (1998), Yokohama (2001) and Metz (2004). The conferences are mainly devoted to liquid and amorphous metals and alloys. However, communications on some non-metallic systems such as semi conductors, quasicrystals etc, were accepted as well. The conference tradition strongly encourages the participation of junior researchers and graduate students. The 13th conference of the LAM series was organized in Ekaterinburg, Russia, by the Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences (IMet UB RAS) and Ural State Pedagogical University (USPU) and held on 8-13 July 2007 under the chairmanship of Professors Pjotr Popel (USPU) and Boris Gelchinskii (IMet UB RAS). There were 242 active and about 60 guest participants from 20 countries who attended the conference. There were no parallel sessions and all oral reports were separated into three groups: invited talks (40 min), full-scale (25 min) and brief (15 min) oral reports. The program included 10 sessions, ranging from purely theoretical subjects to technological application of molten and amorphous alloys. The following sessions took place: A) Electronic structure and transport, magnetic properties; B) Phase transitions; C) Structure; D) Atomic dynamics and transport; E) Thermodynamics; F) Modelling, simulation; G) Surface and interface; H) Mechanical properties

  12. High-performance ion-exchange chromatography of alkali metals with conductivity detection

    International Nuclear Information System (INIS)

    Ahmad, M.; Khan, A.R.

    1981-01-01

    High-performance ion-exchange chromatography of alkali metal and ammonium ions was studied using a conductivity meter as detector. Elution with 0.003 N mitric acid gave excellent resolution. Sensitivity levels, for a 200 micro litre injection, vary from 5 ppm for potassium to 0.1 ppm for lithium. A method to decrease retention times by reducing the exchange capacity of the cation exchange column used by loading it with calciumions, without affecting the resolation, has been described. Application of the method to water, soil and uranium dioxide samples has been demonstrated. (author)

  13. Composite Li metal anode with vertical graphene host for high performance Li-S batteries

    Science.gov (United States)

    Zhang, Y. J.; Liu, S. F.; Wang, X. L.; Zhong, Y.; Xia, X. H.; Wu, J. B.; Tu, J. P.

    2018-01-01

    Efficient and stable operation of a lithium metal anode has become the enabling factor for next-generation high energy density storage system. Here, vertical graphene (VG) arrays are used as the scaffold structure for high performance Li metal batteries. The melt infusion method is employed to encapsulate Li inside the VG scaffold structure, and the lithiophilic Si layer is coated onto the array surface by magnetron sputtering to assist this melt-infusion process. The porous scaffold structure can control the volume expansion and inhibit the formation of dendritic lithium significantly, leading to the excellent electrochemical performance of the Li composite anode. In addition, the Li-S full batteries with the composite anode display enhanced cycling reversibility.

  14. Application of metal foam heat exchangers for a high-performance liquefied natural gas regasification system

    International Nuclear Information System (INIS)

    Kim, Dae Yeon; Sung, Tae Hong; Kim, Kyung Chun

    2016-01-01

    The intermediate fluid vaporizer has wide applications in the regasification of LNG (liquefied natural gas). The heat exchanger performance is one of the main contributors to the thermodynamic and cost effectiveness of the entire LNG regasification system. Within the paper, the authors discuss a new concept for a compact heat exchanger with a micro-cellular structure medium to minimize volume and mass and to increase thermal efficiency. Numerical calculations have been conducted to design a metal-foam filled plate heat exchanger and a shell-and-tube heat exchanger using published experimental correlations. The geometry of both heat exchangers was optimized using the conditions of thermolators in LNG regasification systems. The heat transfer and pressure drop performance was predicted to compare the heat exchangers. The results show that the metal-foam plate heat exchanger has the best performance at different channel heights and mass flow rates of fluid. In the optimized configurations, the metal-foam plate heat exchanger has a higher heat transfer rate and lower pressure drop than the shell-and-tube heat exchanger as the mass flow rate of natural gas is increased. - Highlights: • A metal foam heat exchanger is proposed for LNG regasification system. • Comparison was made with a shell and tube heat exchanger. • Heat transfer and pressure drop characteristics were estimated. • The geometry of both heat exchangers is optimized for thermolators. • It can be used as a compact and high performance thermolators.

  15. From spent graphite to amorphous sp2+sp3 carbon-coated sp2 graphite for high-performance lithium ion batteries

    Science.gov (United States)

    Ma, Zhen; Zhuang, Yuchan; Deng, Yaoming; Song, Xiaona; Zuo, Xiaoxi; Xiao, Xin; Nan, Junmin

    2018-02-01

    Today, with the massive application of lithium ion batteries (LIBs) in the portable devices and electric vehicles, to supply the active materials with high-performances and then to recycle their wastes are two core issues for the development of LIBs. In this paper, the spent graphite (SG) in LIBs is used as raw materials to fabricate two comparative high-capacity graphite anode materials. Based on a microsurgery-like physical reconstruction, the reconstructed graphite (RG) with a sp2+sp3 carbon surface is prepared through a microwave exfoliation and subsequent spray drying process. In contrast, the neural-network-like amorphous sp2+sp3 carbon-coated graphite (AC@G) is synthesized using a self-reconfigurable chemical reaction strategy. Compared with SG and commercial graphite (CG), both RG and AC@G have enhanced specific capacities, from 311.2 mAh g-1 and 360.7 mAh g-1 to 409.7 mAh g-1 and 420.0 mAh g-1, at 0.1C after 100 cycles. In addition, they exhibit comparable cycling stability, rate capability, and voltage plateau with CG. Because the synthesis of RG and AC@G represents two typical physical and chemical methods for the recycling of SG, these results on the sp2+sp3 carbon layer coating bulk graphite also reveal an approach for the preparation of high-performance graphite anode materials derived from SG.

  16. High Performance Platinum Group Metal Free Membrane Electrode Assemblies through Control of Interfacial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ayers, Katherine [Proton Energy Systems, Wallingford, CT (United States); Capuano, Christopher [Proton Energy Systems, Wallingford, CT (United States); Atanassov, Plamen [Univ. of New Mexico, Albuquerque, NM (United States); Mukerjee, Sanjeev [Northeastern Univ., Boston, MA (United States); Hickner, Michael [Pennsylvania State Univ., University Park, PA (United States)

    2017-11-29

    The quantitative goal of this project was to produce a high-performance anion exchange membrane water electrolyzer (AEM-WE) completely free of platinum group metals (PGMs), which could operate for at least 500 hours with less than 50 microV/hour degradation, at 500 mA/cm2. To achieve this goal, work focused on the optimization of electrocatalyst conductivity, with dispersion and utilization in the membrane electrode assembly (MEA) improved through refinement of deposition techniques. Critical factors were also explored with significant work undertaken by Northeastern University to further understand catalyst-membrane-ionomer interfaces and how they differ from liquid electrolyte. Water management and optimal cell operational parameters were established through the design, fabrication, and test of a new test station at Proton specific for AEM evaluation. Additionally, AEM material stability and robustness at high potentials and gas evolution conditions were advanced at Penn State.

  17. A high-performance complementary inverter based on transition metal dichalcogenide field-effect transistors.

    Science.gov (United States)

    Cho, Ah-Jin; Park, Kee Chan; Kwon, Jang-Yeon

    2015-01-01

    For several years, graphene has been the focus of much attention due to its peculiar characteristics, and it is now considered to be a representative 2-dimensional (2D) material. Even though many research groups have studied on the graphene, its intrinsic nature of a zero band-gap, limits its use in practical applications, particularly in logic circuits. Recently, transition metal dichalcogenides (TMDs), which are another type of 2D material, have drawn attention due to the advantage of having a sizable band-gap and a high mobility. Here, we report on the design of a complementary inverter, one of the most basic logic elements, which is based on a MoS2 n-type transistor and a WSe2 p-type transistor. The advantages provided by the complementary metal-oxide-semiconductor (CMOS) configuration and the high-performance TMD channels allow us to fabricate a TMD complementary inverter that has a high-gain of 13.7. This work demonstrates the operation of the MoS2 n-FET and WSe2 p-FET on the same substrate, and the electrical performance of the CMOS inverter, which is based on a different driving current, is also measured.

  18. Corrosion-resistant amorphous metallic films of Mo49Cr33B18 alloy

    Science.gov (United States)

    Ramesham, R.; Distefano, S.; Fitzgerald, D.; Thakoor, A. P.; Khanna, S. K.

    1987-01-01

    Corrosion-resistant amorphous metallic alloy films of Mo49Cr33B18 with a crystallization temperature of 590 C were deposited onto glass and quartz substrates by magnetron sputter-quench technique. The amorphous nature of the films was confirmed by their diffuse X-ray diffraction patterns. The deposited films are densely packed (zone T) and exhibit low stress and good adhesion to the substrate. Corrosion current of as-deposited coating of MoCrB amorphous metallic alloy is approximately three orders of magnitude less than the corrosion current of 304 stainless steel in 1N H2SO4 solution.

  19. Electrophoretic Deposition for the Fabrication of High-Performance Metal-Ceramic Hybrid Cladding

    International Nuclear Information System (INIS)

    Park, Junghwan; Jung, Yangil; Park, Dongjun; Kim, Hyungil; Park, Jeongyong; Koo, Yanghyun

    2014-01-01

    Metal-ceramic hybrid cladding consisting of a Zr liner and SiC f /SiC composite is one of the candidate systems. To achieve a high-performance metal-ceramic hybrid cladding, it is important to synthesize the SiC f /SiC composites with high flexural strength. The most common interphases, such as pyrolytic carbon (PyC) and boron nitride (BN) coating, have been applied on the surface of SiC fibers by chemical vapor deposition (CVD) or chemical vapor infiltration (CVI). In addition, the SiC matrix phase for SiC f /SiC composites has been commonly formed by CVI and polymer infiltration and pyrolysis (PIP), which are very costly and complicated processes. For this reason, the fabrication process of SiC f /SiC composites that is low-cost and simple has been strongly needed. In this study, weak phase coating using a commercial colloidal carbon black suspension was performed on SiC fibers through electrophoretic deposition (EPD), and carbon-coated SiC f /SiC composites were fabricated by EPD. The mechanical properties at room temperature were evaluated to investigate the effect of the carbon interfacial layer on the mechanical properties of carbon-coated SiC f /SiC composites. In this study, it was concluded that the EPD method is effective for homogeneous carbon black coating on SiC fibers, and that the carbon coating layer on SiC fibers plays an important role in optimizing the interface between fibers and the matrix, and enhances the toughness of carbon-coated SiC f /SiC composites during fracture

  20. Macroscopic and microscopic magnetism of metal-metalloid amorphous alloys

    International Nuclear Information System (INIS)

    Vasconcellos, M.A.Z.; Fichtner, P.F.P.; Livi, F.P.; Costa, M.I. da; Baibich, M.N.

    1984-01-01

    In this paper is investigated the interrelation between macroscopic and microscopic magnetic phenomena using experimetnal data from Moessbauer effect and the magnetization of layers of amorphous (Fe 1-x Ni x ) 80 B 20 . The Moessbauer effect measurement show a distribution of hyperfine fields in Fe site as well as a likely distribution of isomeric shifts (M.W.O.) [pt

  1. Exploring Two-Dimensional Transport Phenomena in Metal Oxide Heterointerfaces for Next-Generation, High-Performance, Thin-Film Transistor Technologies.

    Science.gov (United States)

    Labram, John G; Lin, Yen-Hung; Anthopoulos, Thomas D

    2015-11-04

    In the last decade, metal oxides have emerged as a fascinating class of electronic material, exhibiting a wide range of unique and technologically relevant characteristics. For example, thin-film transistors formed from amorphous or polycrystalline metal oxide semiconductors offer the promise of low-cost, large-area, and flexible electronics, exhibiting performances comparable to or in excess of incumbent silicon-based technologies. Atomically flat interfaces between otherwise insulating or semiconducting complex oxides, are also found to be highly conducting, displaying 2-dimensional (2D) charge transport properties, strong correlations, and even superconductivity. Field-effect devices employing such carefully engineered interfaces are hoped to one day compete with traditional group IV or III-V semiconductors for use in the next-generation of high-performance electronics. In this Concept article we provide an overview of the different metal oxide transistor technologies and potential future research directions. In particular, we look at the recent reports of multilayer oxide thin-film transistors and the possibility of 2D electron transport in these disordered/polycrystalline systems and discuss the potential of the technology for applications in large-area electronics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Thermal oxidation of Zr–Cu–Al–Ni amorphous metal thin films

    Energy Technology Data Exchange (ETDEWEB)

    Oleksak, R.P.; Hostetler, E.B.; Flynn, B.T. [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331 (United States); McGlone, J.M.; Landau, N.P.; Wager, J.F. [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331 (United States); Stickle, W.F. [Hewlett-Packard Company, Corvallis, OR 97333 (United States); Herman, G.S., E-mail: greg.herman@oregonstate.edu [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331 (United States)

    2015-11-30

    The initial stages of thermal oxidation for Zr–Cu–Al–Ni amorphous metal thin films were investigated using X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. The as-deposited films had oxygen incorporated during sputter deposition, which helped to stabilize the amorphous phase. After annealing in air at 300 °C for short times (5 min) this oxygen was found to segregate to the surface or buried interface. Annealing at 300 °C for longer times leads to significant composition variation in both vertical and lateral directions, and formation of a surface oxide layer that consists primarily of Zr and Al oxides. Surface oxide formation was initially limited by back-diffusion of Cu and Ni (< 30 min), and then by outward diffusion of Zr (> 30 min). The oxidation properties are largely consistent with previous observations of Zr–Cu–Al–Ni metallic glasses, however some discrepancies were observed which could be explained by the unique sample geometry of the amorphous metal thin films. - Highlights: • Thermal oxidation of amorphous Zr–Cu–Al–Ni thin films was investigated. • Significant short-range inhomogeneities were observed in the amorphous films. • An accumulation of Cu and Ni occurs at the oxide/metal interface. • Diffusion of Zr was found to limit oxide film growth.

  3. KF-loaded mesoporous Mg-Fe bi-metal oxides: high performance transesterification catalysts for biodiesel production.

    Science.gov (United States)

    Tao, Guiju; Hua, Zile; Gao, Zhe; Zhu, Yan; Zhu, Yan; Chen, Yu; Shu, Zhu; Zhang, Lingxia; Shi, Jianlin

    2013-09-21

    Using newly developed mesoporous Mg-Fe bi-metal oxides as supports, a novel kind of high performance transesterification catalysts for biodiesel production has been synthesized. More importantly, the impregnation solvent was for the first time found to substantially affect the structures and catalytic performances of the resultant transesterification catalysts.

  4. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    Science.gov (United States)

    Farmer, Joseph C; Wong, Frank M.G.; Haslam, Jeffery J; Ji, Xiaoyan; Day, Sumner D; Blue, Craig A; Rivard, John D.K.; Aprigliano, Louis F; Kohler, Leslie K; Bayles, Robert; Lemieux, Edward J; Yang, Nancy; Perepezko, John H; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J

    2013-09-03

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  5. Replication of surface features from a master model to an amorphous metallic article

    Science.gov (United States)

    Johnson, William L.; Bakke, Eric; Peker, Atakan

    1999-01-01

    The surface features of an article are replicated by preparing a master model having a preselected surface feature thereon which is to be replicated, and replicating the preselected surface feature of the master model. The replication is accomplished by providing a piece of a bulk-solidifying amorphous metallic alloy, contacting the piece of the bulk-solidifying amorphous metallic alloy to the surface of the master model at an elevated replication temperature to transfer a negative copy of the preselected surface feature of the master model to the piece, and separating the piece having the negative copy of the preselected surface feature from the master model.

  6. A Review on Recent Applications of High-Performance Liquid Chromatography in Metal Determination and Speciation Analysis.

    Science.gov (United States)

    Rekhi, Heena; Rani, Susheela; Sharma, Neha; Malik, Ashok Kumar

    2017-11-02

    High-performance liquid chromatography (HPLC) has several advantages over the conventional methods due to their operational simplicity. It is a vital tool to determine metal ions having same mass but different electronic configuration, to separate complex mixtures and to resolve ions that may be indistinguishable by mass spectrometry alone. Metal ions play vital role in many biological processes and involved in setting up of many diseases. Therefore, the development of simple methods for the detection and quantification of metals in real samples might serve as diagnostic tools for various diseases. This review article focuses on the recent main feature of this technique, i.e. speciation of metal ions and their applications to series of problem of metal ion chemistry in different environmental matrixes. Speciation of metals is of increasing interest and has a great importance because of bioavailability, environmental mobility, toxicity and potential risk of metals. With the capability of partitioning the complex species of different metal ions, HPLC is an efficient technique for this task. This review summarizes recent advances in the development of HPLC to the fundamental understanding of metal ion chemistry in the environment and discusses all the issues that still need a lot of consideration. It has been classified into different sections depending on the role of HPLC in separation used and metal speciation; furthermore, the underlying sample preconcentration techniques and detection systems involved for the determination of metal ions and their applications were discussed.

  7. Simulation of localized surface plasmon in metallic nanoparticles embedded in amorphous silicon

    Science.gov (United States)

    Fantoni, A.; Fernandes, M.; Vygranenko, Y.; Louro, P.; Vieira, M.; Texeira, D.; Ribeiro, A.; Alegria, E.

    2017-08-01

    We propose the development and realization of a plasmonic structure based on the LSP interaction of metal nanoparticles with an embedding matrix of amorphous silicon. This structure need to be usable as the basis for a sensor device applied in biomedical applications, after proper functionalization with selective antibodies. The final sensor structure needs to be low cost, compact and disposable. The study reported in this paper aims to analyze different materials for nanoparticles and embedding medium composition. Metals of interest for nanoparticles composition are Aluminum, Gold and Alumina. As a preliminary approach to this device, we study in this work the optical properties of metal nanoparticles embedded in an amorphous silicon matrix, as a function of size, aspect-ratio and metal type. Following an analysis based on the exact solution of the Mie theory, experimental measurements realized with arrays of metal nanoparticles are compared with the simulations.

  8. Amorphous Metals for Opto-Mechanical Fixtures and Mechanisms Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The new JPL Metallurgy Facility is a small-scale foundry-type laboratory with capabilities for fabricating new metal alloys and metal-matrix-composites, casting...

  9. A Fundamental Approach to Developing Aluminium based Bulk Amorphous Alloys based on Stable Liquid Metal Structures and Electronic Equilibrium - 154041

    Science.gov (United States)

    2017-03-28

    AFRL-AFOSR-JP-TR-2017-0027 A Fundamental Approach to Developing Aluminium -based Bulk Amorphous Alloys based on Stable Liquid-Metal Structures and...to 16 Dec 2016 4.  TITLE AND SUBTITLE A Fundamental Approach to Developing Aluminium -based Bulk Amorphous Alloys based on Stable Liquid-Metal...Air Force Research Laboratory for accurately predicting compositions of new amorphous alloys specifically based on aluminium with properties superior

  10. Bacterial adhesion on amorphous and crystalline metal oxide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Almaguer-Flores, Argelia [Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Silva-Bermudez, Phaedra, E-mail: suriel21@yahoo.com [Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, 14389 México D.F. (Mexico); Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Galicia, Rey; Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico)

    2015-12-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO{sub 2} and ZrO{sub 2} coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical–chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO{sub 2} > ZrO{sub 2}) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO{sub 2}, which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion. - Highlights: • Amorphous (a) and crystalline (c) TiO{sub 2} and ZrO{sub 2} coatings were deposited. • The atomic ordering influences the coatings surface charge and nano-topography. • The atomic ordering modifies the bacterial adhesion for the same surface chemistry. • S. aureus adhesion was lower on a-TiO{sub 2} and a-ZrO{sub 2} than on their c-oxide counterpart. • E. coli adhesion on a-TiO{sub 2} was lower than on the c-TiO{sub 2}.

  11. Metallic Amorphous Thin Films and Heterostructures with Tunable Magnetic Properties

    OpenAIRE

    Zamani, Atieh

    2015-01-01

    The primary focus of this thesis is to study the effect of doping on magnetic properties in amorphous Fe100−xZrx alloys. Samples with compositions of x = 7,11.6 and 12 at.% were implanted with different concentrations of H. Moreover, the samples with a composition of x = 7 at.% were also implanted with He, B, C and N. Magnetic measurements were performed, using SQUID magnetometry and MOKE, in order to compare the as-grown and the implanted films. The Curie temperature (Tc) increases and the c...

  12. Crystalline and amorphous rare-earth metallic compounds

    International Nuclear Information System (INIS)

    Burzo, E.

    1975-01-01

    During the last years the study of magnetic behaviour of rare-earth (or yttrium) compounds with cobalt and iron has growth of interest. This interest of justified by a large area of experimental and theoretical problems coming into being in the study of some rare-earth materials as well as in their technical applications. In the last three years a great number of new rare earth materials were studied and also new models explaining the magnetic behaviour of these systems have been used. In this paper we refer especially to some typical systems in order to analyse the magnetic behaviour of iron and cobalt and also the part played by the magnetic interactions in the values of the cobalt or iron moments. The model used will be generally the molecular field model. In the second chapter we present comparatively the structure of crystalline and amorphous compounds for further correlation with the magnetic properties. In chapter III we analyse the magnetic interactions in some crystalline and amorphous rare-earth alloys. Finally, we exemplify the ways in which we ensure better requried characteristics by the technical utilizations of these materials. These have in view the modifications of the magnetic interactions and are closely related with the analysis made in chapter III

  13. Study by positron annihilation of defects in metals, crystalline or amorphous alloys and in semiconductors

    International Nuclear Information System (INIS)

    Moumene, M.

    1984-07-01

    In this work lifetime of positron is used to study vacancies in different systems irradiated by electrons: pure metals (Fe, Zn), diluted (FeCo, FeAu) and concentrated (Cu 3 Au) alloys, semiconductors (CdTe, ZnTe) and amorphous alloys. Results on vacancy migration temperature and of the formation of two or three-dimensional vacancy clusters are given [fr

  14. High performance, high durability non-precious metal fuel cell catalysts

    Science.gov (United States)

    Wood, Thomas E.; Atanasoski, Radoslav; Schmoeckel, Alison K.

    2016-03-15

    This invention relates to non-precious metal fuel cell cathode catalysts, fuel cells that contain these catalysts, and methods of making the same. The fuel cell cathode catalysts are highly nitrogenated carbon materials that can contain a transition metal. The highly nitrogenated carbon materials can be supported on a nanoparticle substrate.

  15. Break-down of Losses in High Performing Metal-Supported Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Kromp, Alexander; Nielsen, Jimmi; Blennow Tullmar, Peter

    2012-01-01

    Metal supported SOFC designs offer competitive advantages such as reduced material costs and improved mechanical robustness. On the other hand, disadvantages might arise due to possible corrosion of the porous metal parts during processing and operation at high fuel utilization. In this paper we...

  16. Long-term research in Japan: amorphous metals, metal oxide varistors, high-power semiconductors and superconducting generators

    Energy Technology Data Exchange (ETDEWEB)

    Hane, G.J.; Yorozu, M.; Sogabe, T.; Suzuki, S.

    1985-04-01

    The review revealed that significant activity is under way in the research of amorphous metals, but that little fundamental work is being pursued on metal oxide varistors and high-power semiconductors. Also, the investigation of long-term research program plans for superconducting generators reveals that activity is at a low level, pending the recommendations of a study currently being conducted through Japan's Central Electric Power Council.

  17. A high-performance, flexible and robust metal nanotrough-embedded transparent conducting film for wearable touch screen panels

    Science.gov (United States)

    Im, Hyeon-Gyun; An, Byeong Wan; Jin, Jungho; Jang, Junho; Park, Young-Geun; Park, Jang-Ung; Bae, Byeong-Soo

    2016-02-01

    We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband.We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07657a

  18. Flexible strain sensors with high performance based on metallic glass thin film

    Science.gov (United States)

    Xian, H. J.; Cao, C. R.; Shi, J. A.; Zhu, X. S.; Hu, Y. C.; Huang, Y. F.; Meng, S.; Gu, L.; Liu, Y. H.; Bai, H. Y.; Wang, W. H.

    2017-09-01

    Searching strain sensitive materials for electronic skin is of crucial significance because of the restrictions of current materials such as poor electrical conductivity, large energy consumption, complex manufacturing process, and high cost. Here, we report a flexible strain sensor based on the Zr55Cu30Ni5Al10 metallic glass thin film which we name metallic glass skin. The metallic glass skin, synthesized by ion beam deposition, exhibits piezoresistance effects with a gauge factor of around 2.86, a large detectable strain range (˜1% or 180° bending angle), and good conductivity. Compared to other e-skin materials, the temperature coefficient of resistance of the metallic glass skin is extremely low (9.04 × 10-6 K-1), which is essential for the reduction in thermal drift. In addition, the metallic glass skin exhibits distinct antibacterial behavior desired for medical applications, also excellent reproducibility and repeatability (over 1000 times), nearly perfect linearity, low manufacturing cost, and negligible energy consumption, all of which are required for electronic skin for practical applications.

  19. High performance organic photovoltaics with plasmonic-coupled metal nanoparticle clusters.

    Science.gov (United States)

    Park, Hyung Il; Lee, Seunghoon; Lee, Ju Min; Nam, Soo Ah; Jeon, Taewoo; Han, Sang Woo; Kim, Sang Ouk

    2014-10-28

    Performance enhancement of organic photovoltaics using plasmonic nanoparticles has been limited without interparticle plasmon coupling. We demonstrate high performance organic photovoltaics employing gold nanoparticle clusters with controlled morphology as a plasmonic component. Near-field coupling at the interparticle gaps of nanoparticle clusters gives rise to strong enhancement in localized electromagnetic field, which led to the significant improvement of exciton generation and dissociation in the active layer of organic solar cells. A power conversion efficiency of 9.48% is attained by employing gold nanoparticle clusters at the bottom of the organic active layer. This is one of the highest efficiency values reported thus far for the single active layer organic photovoltaics.

  20. High-performance heterogeneous catalysis with surface-exposed stable metal nanoparticles.

    Science.gov (United States)

    Huang, Ning; Xu, Yanhong; Jiang, Donglin

    2014-11-27

    Protection of metal nanoparticles from agglomeration is critical for their functions and applications. The conventional method for enhancing their stability is to cover them with passivation layers to prevent direct contact. However, the presence of a protective shell blocks exposure of the metal species to reactants, thereby significantly impeding the nanoparticles' utility as catalysts. Here, we report that metal nanoparticles can be prepared and used in a surface-exposed state that renders them inherently catalytically active. This strategy is realised by spatial confinement and electronic stabilisation with a dual-module mesoporous and microporous three-dimensional π-network in which surface-exposed nanoparticles are crystallised upon in situ reduction. The uncovered palladium nanoparticles serve as heterogeneous catalysts that are exceptionally active in water, catalyse unreactive aryl chlorides for straightforward carbon-carbon bond formation and are stable for repeated use in various types of cross couplings. Therefore, our results open new perspectives in developing practical heterogeneous catalysts.

  1. A novel biomimetic approach to the design of high-performance ceramic/metal composites

    Energy Technology Data Exchange (ETDEWEB)

    Launey, Maximilien E.; Munch, Etienne; Alsem, Daan Hein; Saiz, Eduardo; Tomsia, Antoni P.; Ritchie, Robert O.

    2009-08-01

    The prospect of extending natural biological design to develop new synthetic ceramic-metal composite materials is examined. Using ice-templating of ceramic suspensions and subsequent metal infiltration, we demonstrate that the concept of ordered hierarchical design can be applied to create fine-scale laminated ceramic-metal (bulk) composites that are inexpensive, lightweight and display exceptional damage-tolerance properties. Specifically, Al{sub 2}O{sub 3}/Al-Si laminates with ceramic contents up to approximately 40 vol% and with lamellae thicknesses down to 10 {micro}m were processed and characterized. These structures achieve an excellent fracture toughness of 40 MPa{radical}m at a tensile strength of approximately 300 MPa. Salient toughening mechanisms are described together with further toughening strategies.

  2. High performance metal-supported solid oxide fuel cells with Gd-doped ceria barrier layers

    DEFF Research Database (Denmark)

    Klemensø, Trine; Nielsen, Jimmi; Blennow Tullmar, Peter

    2011-01-01

    Metal-supported solid oxide fuel cells are believed to have commercial advantages compared to conventional anode (Ni–YSZ) supported cells, with the metal-supported cells having lower material costs, increased tolerance to mechanical and thermal stresses, and lower operational temperatures...... at 650 °C and 0.6 V, were obtained on cells with barrier layers fabricated by magnetron sputtering. The performance is dependent on the density of the barrier layer, indicating Sr2+ diffusion is occurring at the intermediate SOFC temperatures. The optimized design further demonstrate improved durability...

  3. Contribution to diffusion mechanism study in amorphous metallic alloys

    International Nuclear Information System (INIS)

    Delaye, Jean-Marc

    1993-01-01

    This work is dedicated to the study of the vacancy diffusion mechanism in mono-elementary and binary amorphous Lennard-Jones systems, by a molecular dynamics method. The first chapter is a review of the preceding works performed before the beginning of this thesis, the method of simulation is described in the second chapter. We showed in the following chapters that the vacancies, introduced by the removal of one atom, remain stable on a large percentage of sites, especially in the binary system. By calculating some thermodynamical values, formation and migration enthalpies and entropies, we showed that the vacancy mechanism is magnified in a disordered system, as compared to a crystal of the same composition, and therefore can explain the magnitudes of the experimental diffusion coefficients. In parallel, to measure diffusion coefficients, we have settled an experimental method based on the evolution of the resistivity of a multilayer sample during interdiffusion, a gold-silver multilayer in our case (chapter six). By measurements under pressure, the activation volume is determined and our results agree well with the preceding ones. (author) [fr

  4. A Tunable Molten-Salt Route for Scalable Synthesis of Ultrathin Amorphous Carbon Nanosheets as High-Performance Anode Materials for Lithium-Ion Batteries.

    Science.gov (United States)

    Wang, Yixian; Tian, Wei; Wang, Luhai; Zhang, Haoran; Liu, Jialiang; Peng, Tingyue; Pan, Lei; Wang, Xiaobo; Wu, Mingbo

    2018-02-14

    Amorphous carbon is regarded as a promising alternative to commercial graphite as the lithium-ion battery anode due to its capability to reversibly store more lithium ions. However, the structural disorder with a large number of defects can lead to low electrical conductivity of the amorphous carbon, thus limiting its application for high power output. Herein, ultrathin amorphous carbon nanosheets were prepared from petroleum asphalt through tuning the carbonization temperature in a molten-salt medium. The amorphous nanostructure with expanded carbon interlayer spacing can provide substantial active sites for lithium storage, while the two-dimensional (2D) morphology can facilitate fast electrical conductivity. As a result, the electrodes deliver a high reversible capacity, outstanding rate capability, and superior cycling performance (579 and 396 mAh g -1 at 2 and 5 A g -1 after 900 cycles). Furthermore, full cells consisting of the carbon anodes coupled with LiMn 2 O 4 cathodes exhibit high specific capacity (608 mAh g -1 at 50 mA g -1 ) and impressive cycling stability with slow capacity loss (0.16% per cycle at 200 mA g -1 ). The present study not only paves the way for industrial-scale synthesis of advanced carbon materials for lithium-ion batteries but also deepens the fundamental understanding of the intrinsic mechanism of the molten-salt method.

  5. A metallization and bonding approach for high performance carbon nanotube thermal interface materials

    International Nuclear Information System (INIS)

    Cross, Robert; Graham, Samuel; Cola, Baratunde A; Fisher, Timothy; Xu Xianfan; Gall, Ken

    2010-01-01

    A method has been developed to create vertically aligned carbon nanotube (VACNT) thermal interface materials that can be attached to a variety of metallized surfaces. VACNT films were grown on Si substrates using standard CVD processing followed by metallization using Ti/Au. The coated CNTs were then bonded to metallized substrates at 220 deg. C. By reducing the adhesion of the VACNTs to the growth substrate during synthesis, the CNTs can be completely transferred from the Si growth substrate and used as a die attachment material for electronic components. Thermal resistance measurements using a photoacoustic technique showed thermal resistances as low as 1.7 mm 2 K W -1 for bonded VACNT films 25-30 μm in length and 10 mm 2 K W -1 for CNTs up to 130 μm in length. Tensile testing demonstrated a die attachment strength of 40 N cm -2 at room temperature. Overall, these metallized and bonded VACNT films demonstrate properties which are promising for next-generation thermal interface material applications.

  6. Role of Metal Contacts in High-Performance Phototransistors Based on WSe 2 Monolayers

    KAUST Repository

    Zhang, Wenjing

    2014-08-26

    Phototransistors based on monolayer transition metal dichalcogenides (TMD) have high photosensitivity due to their direct band gap transition. However, there is a lack of understanding of the effect of metal contacts on the performance of atomically thin TMD phototransistors. Here, we fabricate phototransistors based on large-area chemical vapor deposition (CVD) tungsten diselenide (WSe2) monolayers contacted with the metals of different work function values. We found that the low Schottky-contact WSe2 phototransistors exhibit a very high photo gain (105) and specific detectivity (1014Jones), values higher than commercial Si- and InGaAs-based photodetectors; however, the response speed is longer than 5 s in ambient air. In contrast, the high Schottky-contact phototransistors display a fast response time shorter than 23 ms, but the photo gain and specific detectivity decrease by several orders of magnitude. Moreover, the fast response speed of the high Schottky-contact devices is maintained for a few months in ambient air. This study demonstrates that the contact plays an important role in TMD phototransistors, and barrier height tuning is critical for optimizing the photoresponse and photoresponsivity. © 2014 American Chemical Society.

  7. High-Performance Transition Metal Phosphide Alloy Catalyst for Oxygen Evolution Reaction.

    Science.gov (United States)

    Liu, Kewei; Zhang, Changlin; Sun, Yuandong; Zhang, Guanghui; Shen, Xiaochen; Zou, Feng; Zhang, Haichang; Wu, Zhenwei; Wegener, Evan C; Taubert, Clinton J; Miller, Jeffrey T; Peng, Zhenmeng; Zhu, Yu

    2018-01-23

    Oxygen evolution reaction (OER) is a pivotal process in many energy conversion and storage techniques, such as water splitting, regenerative fuel cells, and rechargeable metal-air batteries. The synthesis of stable, efficient, non-noble metal-based electrocatalysts for OER has been a long-standing challenge. In this work, a facile and scalable method to synthesize hollow and conductive iron-cobalt phosphide (Fe-Co-P) alloy nanostructures using an Fe-Co metal organic complex as a precursor is described. The Fe-Co-P alloy exhibits excellent OER activity with a specific current density of 10 mA/cm 2 being achieved at an overpotential as low as 252 mV. The current density at 1.5 V (vs reversible hydrogen electrode) of the Fe-Co-P catalyst is 30.7 mA/cm 2 , which is more than 3 orders of magnitude greater than that obtained with state-of-the-art Fe-Co oxide catalysts. Our mechanistic experiments and theoretical analysis suggest that the electrochemical-induced high-valent iron stabilizes the cobalt in a low-valent state, leading to the simultaneous enhancement of activity and stability of the OER catalyst.

  8. Synthesis of high performance ceramic fibers by chemical vapor deposition for advanced metallics reinforcing

    Science.gov (United States)

    Revankar, Vithal; Hlavacek, Vladimir

    1991-01-01

    The chemical vapor deposition (CVD) synthesis of fibers capable of effectively reinforcing intermetallic matrices at elevated temperatures which can be used for potential applications in high temperature composite materials is described. This process was used due to its advantage over other fiber synthesis processes. It is extremely important to produce these fibers with good reproducible and controlled growth rates. However, the complex interplay of mass and energy transfer, blended with the fluid dynamics makes this a formidable task. The design and development of CVD reactor assembly and system to synthesize TiB2, CrB, B4C, and TiC fibers was performed. Residual thermal analysis for estimating stresses arising form thermal expansion mismatch were determined. Various techniques to improve the mechanical properties were also performed. Various techniques for improving the fiber properties were elaborated. The crystal structure and its orientation for TiB2 fiber is discussed. An overall view of the CVD process to develop CrB2, TiB2, and other high performance ceramic fibers is presented.

  9. Amorphous TiO2 Shells: A Vital Elastic Buffering Layer on Silicon Nanoparticles for High-Performance and Safe Lithium Storage.

    Science.gov (United States)

    Yang, Jianping; Wang, Yunxiao; Li, Wei; Wang, Lianjun; Fan, Yuchi; Jiang, Wan; Luo, Wei; Wang, Yang; Kong, Biao; Selomulya, Cordelia; Liu, Hua Kun; Dou, Shi Xue; Zhao, Dongyuan

    2017-12-01

    Smart surface coatings of silicon (Si) nanoparticles are shown to be good examples for dramatically improving the cyclability of lithium-ion batteries. Most coating materials, however, face significant challenges, including a low initial Coulombic efficiency, tedious processing, and safety assessment. In this study, a facile sol-gel strategy is demonstrated to synthesize commercial Si nanoparticles encapsulated by amorphous titanium oxide (TiO 2 ), with core-shell structures, which show greatly superior electrochemical performance and high-safety lithium storage. The amorphous TiO 2 shell (≈3 nm) shows elastic behavior during lithium discharging and charging processes, maintaining high structural integrity. Interestingly, it is found that the amorphous TiO 2 shells offer superior buffering properties compared to crystalline TiO 2 layers for unprecedented cycling stability. Moreover, accelerating rate calorimetry testing reveals that the TiO 2 -encapsulated Si nanoparticles are safer than conventional carbon-coated Si-based anodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Capacity extended bismuth-antimony cathode for high-performance liquid metal battery

    Science.gov (United States)

    Dai, Tao; Zhao, Yue; Ning, Xiao-Hui; Lakshmi Narayan, R.; Li, Ju; Shan, Zhi-wei

    2018-03-01

    Li-Bi based liquid metal batteries (LMBs) have attracted interest due to their potential for solving grid scale energy storage problems. In this study, the feasibility of replacing the bismuth cathode with a bismuth-antimony alloy cathode in lithium based LMBs is investigated. The influence of the Bi:Sb ratio on voltage characteristics is evaluated via the constant current discharge method and electrochemical titration. On observing the cross section of the electrode at various stages of discharge, it is determined that both Sb and Bi form solid intermetallics with Li on the cathode. Additionally, the addition of Bi not only reduces the melting temperature of the Bi:Sb intermetallic but also actively contributes to the electrode capacity. Thereafter, a Li|LiCl-LiF|Sb-Bi liquid metal battery with 3 A h nameplate capacity, assembled and cycled at 1 C rate, is found to possess a stable capacity for over 160 cycles. The overall performance of this battery is discussed in the context of cost effectiveness, energy and coulombic efficiencies.

  11. Directional and short-range ordering kinetics in metallic alloys, crystalline and amorphous

    International Nuclear Information System (INIS)

    Hillairet, J.

    1985-01-01

    This presentation describes the methods (resistometric and anelastic) based on analysis of stress-induced directional ordering and short-range ordering and their application to the study of metallic alloys, crystalline and amorphous. It focuses on the determination of the atomic mobility and point defect properties. It discusses also the structural information which can be gained by Zener relaxation studies about the order-disorder transition and self-induced directional ordering phenomena

  12. High-Performance Direct Methanol Fuel Cells with Precious-Metal-Free Cathode.

    Science.gov (United States)

    Li, Qing; Wang, Tanyuan; Havas, Dana; Zhang, Hanguang; Xu, Ping; Han, Jiantao; Cho, Jaephil; Wu, Gang

    2016-11-01

    Direct methanol fuel cells (DMFCs) hold great promise for applications ranging from portable power for electronics to transportation. However, apart from the high costs, current Pt-based cathodes in DMFCs suffer significantly from performance loss due to severe methanol crossover from anode to cathode. The migrated methanol in cathodes tends to contaminate Pt active sites through yielding a mixed potential region resulting from oxygen reduction reaction and methanol oxidation reaction. Therefore, highly methanol-tolerant cathodes must be developed before DMFC technologies become viable. The newly developed reduced graphene oxide (rGO)-based Fe-N-C cathode exhibits high methanol tolerance and exceeds the performance of current Pt cathodes, as evidenced by both rotating disk electrode and DMFC tests. While the morphology of 2D rGO is largely preserved, the resulting Fe-N-rGO catalyst provides a more unique porous structure. DMFC tests with various methanol concentrations are systematically studied using the best performing Fe-N-rGO catalyst. At feed concentrations greater than 2.0 m, the obtained DMFC performance from the Fe-N-rGO cathode is found to start exceeding that of a Pt/C cathode. This work will open a new avenue to use nonprecious metal cathode for advanced DMFC technologies with increased performance and at significantly reduced cost.

  13. Localized corrosion of high performance metal alloys in an acid/salt environment

    Science.gov (United States)

    Macdowell, L. G.; Ontiveros, C.

    1991-01-01

    Various vacuum jacketed cryogenic supply lines at the Space Shuttle launch site at Kennedy Space Center use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch, fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the thin walled 304L stainless steel flex hoses. A search was done to find a more corrosion resistant replacement material. The study focussed on 19 metal alloys. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, and long term exposure at a beach corrosion testing site. Based on the results of these tests, several nickel based alloys were found to have very high resistance to this corrosive environment. Also, there was excellent agreement between the electrochemical tests and the actual beach exposure tests. This suggests that electrochemical testing may be useful for narrowing the field of potential candidate alloys before subjecting samples to long term beach exposure.

  14. An unconventional rapid synthesis of high performance metal-organic framework membranes.

    Science.gov (United States)

    Shah, Miral N; Gonzalez, Mariel A; McCarthy, Michael C; Jeong, Hae-Kwon

    2013-06-25

    Metal-organic frameworks (MOFs) are attractive for gas separation membrane applications due to their microporous channels with tunable pore shape, size, and functionality. Conventional MOF membrane fabrication techniques, namely in situ and secondary growth, pose challenges for their wider commercial applications. These challenges include reproducility, scalability, and high manufacturing cost. Recognizing that the coordination chemistry of MOFs is fundamentally different from the covalent chemistry of zeolites, we developed a radically different strategy for MOF membrane synthesis. Using this new technique, we were able to produce continuous well-intergrown membranes of prototypical MOFs, HKUST-1 and ZIF-8, in a relatively short period of time (tens of min). With a minimal consumption of precursors and a greatly simplified synthesis protocol, our new technique provides potential for a continuous, scalable, reproducible, and easily commercializable route for the rapid synthesis of MOF membranes. RTD-prepared MOF membranes show greatly improved gas separation performances as compared to those prepared by conventional solvothermal methods, indicating improved membrane microstructure.

  15. Vibrational and optical properties of amorphous metals: Progress report, July 1, 1987--June 30, 1988

    International Nuclear Information System (INIS)

    Lannin, J.S.

    1988-02-01

    Substantial progress has been achieved in the three areas of Raman scattering, inelastic neutron scattering and optical studies of amorphous metal alloys. In the Raman area, studies of amorphous disilicides of Ni and W, a-NiSi 2 and a-WSi 2 , were obtained that provide information on both the dynamics and short range order in the amorphous phase. Measurements of the Raman spectra have been compared to the neutron weighted densities of states of the corresponding crystalline systems. A detailed evaluation of the inelastic neutron spectra of the concentrated Ni alloy of a-Ni/sub .95/Tb/sub .05/ has recently been completed. Optical measurements of the real and imaginary parts of the dielectric function of a-Ni/sub .95/Tb/sub .05/ were also performed during this year using the technique of spectroscopic ellipsometry. Raman scattering measurements were performed on the amorphous state of the counterpart of the high temperature superconductor of crystalline YBa 2 Cu 3 O/sub x/

  16. A metal/Al2O3/ZrO2/SiO2/Si (MAZOS) structure for high-performance non-volatile memory application

    International Nuclear Information System (INIS)

    Liu, Jing; Wang, Qin; Long, Shibing; Zhang, Manhong; Liu, Ming

    2010-01-01

    In this paper, we report a metal/Al 2 O 3 /ZrO 2 /SiO 2 /Si (MAZOS) structure with a ZrO 2 charge-trapping layer for non-volatile memory application. The superiority of this device over the traditional metal/Al 2 O 3 /Si 3 N 4 /SiO 2 /Si (MANOS) devices is much better data retention and enhanced program/erase efficiency. The MAZOS device exhibits excellent memory characteristics, including a large memory window of 7.1 V under ±11 V capacitance–voltage sweep, and a greatly improved data retention (only 16% charge loss for 10 years time) along with good endurance. The MAZOS device has a strong potential for future high-performance non-volatile memory application

  17. Probing Stochastic Nano-Scale Inelastic Events in Stressed Amorphous Metal

    Science.gov (United States)

    Yang, Y.; Fu, X. L.; Wang, S.; Liu, Z. Y.; Ye, Y. F.; Sun, B. A.; Liu, C. T.

    2014-10-01

    One fundamental yet longstanding issue in materials science is how local inelasticity arises within an amorphous structure before yielding occurs. Although many possible scenarios were postulated or predicted by theories and simulations,however, direct experimental evidence has been lacking today due to the lack of a sensitive way to detect nano-scale inelasticity. Through the carefully designed microcompression method as coupled with the state-of-art nano-scale electric resistance measurement, we here unfold a stochastic inelastic deformation process in a Zr-based metallic glass, which takes place via the recurrence of two types of short-lived inelastic events causing structural damage and recovery, respectively, prior to yielding. Our current findings reveal that these stochastic events not only self-organize into sub-critical events due to elastic coupling, but also compete with each other in a way that enables the whole amorphous structure to self-heal as well as to sustain local damage.

  18. Controllable electrical properties of metal-doped In2O3 nanowires for high-performance enhancement-mode transistors.

    Science.gov (United States)

    Zou, Xuming; Liu, Xingqiang; Wang, Chunlan; Jiang, Ying; Wang, Yong; Xiao, Xiangheng; Ho, Johnny C; Li, Jinchai; Jiang, Changzhong; Xiong, Qihua; Liao, Lei

    2013-01-22

    In recent years, In(2)O(3) nanowires (NWs) have been widely explored in many technological areas due to their excellent electrical and optical properties; however, most of these devices are based on In(2)O(3) NW field-effect transistors (FETs) operating in the depletion mode, which induces relatively higher power consumption and fancier circuit integration design. Here, n-type enhancement-mode In(2)O(3) NW FETs are successfully fabricated by doping different metal elements (Mg, Al, and Ga) in the NW channels. Importantly, the resulting threshold voltage can be effectively modulated through varying the metal (Mg, Ga, and Al) content in the NWs. A series of scaling effects in the mobility, transconductance, threshold voltage, and source-drain current with respect to the device channel length are also observed. Specifically, a small gate delay time (0.01 ns) and high on-current density (0.9 mA/μm) are obtained at 300 nm channel length. Furthermore, Mg-doped In(2)O(3) NWs are then employed to fabricate NW parallel array FETs with a high saturation current (0.5 mA), on/off ratio (>10(9)), and field-effect mobility (110 cm(2)/V·s), while the subthreshold slope and threshold voltage do not show any significant changes. All of these results indicate the great potency for metal-doped In(2)O(3) NWs used in the low-power, high-performance thin-film transistors.

  19. Development and performance analysis of a metallic micro-direct methanol fuel cell for high-performance applications

    Science.gov (United States)

    Zhang, Bo; Zhang, Yufeng; He, Hong; Li, Jianmin; Yuan, Zhenyu; Na, Chaoran; Liu, Xiaowei

    As a promising candidate for conventional micro-power sources, the micro-direct methanol fuel cell (μDMFC) is currently attracting increased attention due to its various advantages and prospective suitability for portable applications. This paper reports the design, fabrication and analysis of a high-performance μDMFC with two metal current collectors. Employing micro-stamping technology, the current collectors are fabricated on 300-μm-thick stainless steel plates. The flow fields for both cathode and anode are uniform in shape and size. Two sheets of stainless steel mesh are added between the membrane electrode assembly (MEA) and current collectors in order to improve cell performance. To avoid electrochemical corrosion, titanium nitride (TiN) layers with thickness of 500 nm are deposited onto the surface of current collectors and stainless steel mesh. The performance of this metallic μDMFC is thoroughly studied by both simulation and experimental methods. The results show that all the parameters investigated, including current collector material, stainless steel mesh, anode feeding mode, methanol concentration, anode flow rate, and operating temperature have significant effects on cell performance. Moreover, the results show that under optimal operating conditions, the metallic μDMFC exhibits promising performance, yielding a maximum power density of 65.66 mW cm -2 at 40 °C and 115.0 mW cm -2 at 80 °C.

  20. Selective heavy metals removal from waters by amorphous zirconium phosphate: behavior and mechanism.

    Science.gov (United States)

    Pan, Bingcai; Zhang, Qingrui; Du, Wei; Zhang, Weiming; Pan, Bingjun; Zhang, Qingjian; Xu, Zhengwen; Zhang, Quanxing

    2007-07-01

    Selective removal of heavy metals from water has been of considerable concern for several decades. In the present study, the amorphous zirconium phosphate (ZrP) was synthesized and characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron micrography (SEM), thermogravimetric analysis (TGA) as well as pH-titration experiments. Uptake of heavy metals including lead, cadmium, and zinc onto ZrP was studied by using a polystyrene sulfonic-acid exchanger D-001 as a reference sorbent and Ca(2+) as a competing cation due to its ubiquity in natural or industrial waters. The results indicated that the uptake of heavy metals onto ZrP is essentially an ion-exchange process and dependent upon solution pH. In comparison with D-001, ZrP exhibited more favorable sorption of heavy metals particularly in terms of high selectivity, as indicated by the distribution coefficients of ZrP even several orders higher than D-001 towards heavy metals when calcium ion coexisted at a high level in solution. The Fourier transform-infrared (FT-IR) spectroscopic investigation indicated that the uptake of calcium, cadmium, and zinc ions onto ZrP is only driven by the electrostatic interaction, while that of lead ion is possibly dependent upon the inner-sphere complex formation with ZrP. XPS results further elucidated that ZrP displays different sorption affinity towards heavy metals in the same order as selectivity sequence of Pb(2+)>Zn(2+) approximately Cd(2+)>Ca(2+), which can be explained by hard and soft acids and bases (HASB) theory. Moreover, uptake of heavy metals onto ZrP approached to equilibrium quickly and the used ZrP could be readily regenerated for reuse by the dilute HCl solution. Thus, all the results suggest that amorphous ZrP has excellent potential as a sorption material for water treatment.

  1. Silica-Polypyrrole Hybrids as High-Performance Metal-Free Electrocatalysts for the Hydrogen Evolution Reaction in Neutral Media.

    Science.gov (United States)

    Feng, Jin-Xian; Xu, Han; Ye, Sheng-Hua; Ouyang, Gangfeng; Tong, Ye-Xiang; Li, Gao-Ren

    2017-07-03

    Constructing inorganic-organic hybrids with superior properties in terms of water adsorption and activation will lead to catalysts with significantly enhanced electrocatalytic activity in the hydrogen evolution reaction (HER) in environmentally benign neutral media. Herein, we report SiO 2 -polypyrrole (PPy) hybrid nanotubes supported on carbon fibers (CFs) (SiO 2  /PPy NTs-CFs) as inexpensive and high-performance electrocatalysts for the HER in neutral media. Because of the strong electronic interactions between SiO 2 and PPy, the SiO 2 uniquely serves as the centers for water adsorption and activation, and accordingly promotes the HER. The metal-free SiO 2  /PPy NTs-CFs displayed high catalytic activity in the HER in neutral media, such as a low onset potential and small Tafel slope, as well as excellent long-term durability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. General Synthesis of Transition-Metal Oxide Hollow Nanospheres/Nitrogen-Doped Graphene Hybrids by Metal-Ammine Complex Chemistry for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Chen, Jiayuan; Wu, Xiaofeng; Gong, Yan; Wang, Pengfei; Li, Wenhui; Mo, Shengpeng; Peng, Shengpan; Tan, Qiangqiang; Chen, Yunfa

    2018-02-09

    We present a general and facile synthesis strategy, on the basis of metal-ammine complex chemistry, for synthesizing hollow transition-metal oxides (Co 3 O 4 , NiO, CuO-Cu 2 O, and ZnO)/nitrogen-doped graphene hybrids, potentially applied in high-performance lithium-ion batteries. The oxygen-containing functional groups of graphene oxide play a prerequisite role in the formation of hollow transition-metal oxides on graphene nanosheets, and a significant hollowing process occurs only when forming metal (Co 2+ , Ni 2+ , Cu 2+ , or Zn 2+ )-ammine complex ions. Moreover, the hollowing process is well correlated with the complexing capacity between metal ions and NH 3 molecules. The significant hollowing process occurs for strong metal-ammine complex ions including Co 2+ , Ni 2+ , Cu 2+ , and Zn 2+ ions, and no hollow structures formed for weak and/or noncomplex Mn 2+ and Fe 3+ ions. Simultaneously, this novel strategy can also achieve the direct doping of nitrogen atoms into the graphene framework. The electrochemical performance of two typical hollow Co 3 O 4 or NiO/nitrogen-doped graphene hybrids was evaluated by their use as anodic materials. It was demonstrated that these unique nanostructured hybrids, in contrast with the bare counterparts, solid transition-metal oxides/nitrogen-doped graphene hybrids, perform with significantly improved specific capacity, superior rate capability, and excellent capacity retention. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Direct conversion of radioactive and chemical waste containing metals, ceramics, amorphous solids, and organics to glass

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1994-01-01

    The Glass Material Oxidation and Dissolution System (CMODS) is a new process for direct conversion of radioactive, mixed, and chemical wastes to glass. The wastes can be in the chemical forms of metals, ceramics, amorphous solids, and organics. GMODS destroys organics and it incorporates heavy metals and radionuclides into a glass. Processable wastes may include miscellaneous spent fuels (SF), SF hulls and hardware, plutonium wastes in different forms, high-efficiency particulate air (HEPA) filters, ion-exchange resins, failed equipment, and laboratory wastes. Thermodynamic calculations indicate theoretical feasibility. Small-scale laboratory experiments (< 100 g per test) have demonstrated chemical laboratory feasibility for several metals. Additional work is needed to demonstrate engineering feasibility

  4. Investigation of the influence of pretreatment parameters on the surface characteristics of amorphous metal for use in power industry

    Science.gov (United States)

    Nieroda, Jolanta; Rybak, Andrzej; Kmita, Grzegorz; Sitarz, Maciej

    2018-05-01

    Metallic glasses are metallic materials, which exhibit an amorphous structure. These are mostly three or more component alloys, and some of them are magnetic metals. Materials of this kind are characterized by high electrical resistivity and at the same time exhibit very good magnetic properties (e.g. low-magnetization loss). The above mentioned properties are very useful in electrical engineering industry and this material is more and more popular as a substance for high-efficiency electrical devices production. This industry area is still evolving, and thus even higher efficiency of apparatus based on amorphous material is expected. A raw material must be carefully investigated and characterized before the main production process is started. Presented work contains results of complementary examination of amorphous metal Metglas 2605. Studies involve two ways to obtain clean and oxidized surface with high reactivity, namely degreasing followed by annealing process and plasma treatment. The amorphous metal parameters were examined by means of several techniques: surface free energy (SFE) measurements by sessile drop method, X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and both ex situ and in situ Raman spectroscopy. Additionally, influence of plasma parameters on wetting properties were optimized in systematic way with Design of Experiments (DOE) method. A wide range of used methods allow to fully investigate the amorphous metal material during preliminary preparation of surface. Obtained results provide information about appropriate parameters that should be applied in order to obtain highly reactive surface with functional oxide layer on it.

  5. An Amorphous Noble-Metal-Free Electrocatalyst that Enables Nitrogen Fixation under Ambient Conditions.

    Science.gov (United States)

    Lv, Chade; Yan, Chunshuang; Chen, Gang; Ding, Yu; Sun, Jingxue; Zhou, Yansong; Yu, Guihua

    2018-02-23

    N 2 fixation by the electrocatalytic nitrogen reduction reaction (NRR) under ambient conditions is regarded as a potential approach to achieve NH 3 production, which still heavily relies on the Haber-Bosch process at the cost of huge energy and massive production of CO 2 . A noble-metal-free Bi 4 V 2 O 11 /CeO 2 hybrid with an amorphous phase (BVC-A) is used as the cathode for electrocatalytic NRR. The amorphous Bi 4 V 2 O 11 contains significant defects, which play a role as active sites. The CeO 2 not only serves as a trigger to induce the amorphous structure, but also establishes band alignment with Bi 4 V 2 O 11 for rapid interfacial charge transfer. Remarkably, BVC-A shows outstanding electrocatalytic NRR performance with high average yield (NH 3 : 23.21 μg h -1  mg -1 cat. , Faradaic efficiency: 10.16 %) under ambient conditions, which is superior to the Bi 4 V 2 O 11 /CeO 2 hybrid with crystalline phase (BVC-C) counterpart. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Disentangling the intricate atomic short-range order and electronic properties in amorphous transition metal oxides.

    Science.gov (United States)

    Triana, C A; Araujo, C Moyses; Ahuja, R; Niklasson, G A; Edvinsson, T

    2017-05-17

    Solid state materials with crystalline order have been well-known and characterized for almost a century while the description of disordered materials still bears significant challenges. Among these are the atomic short-range order and electronic properties of amorphous transition metal oxides [aTMOs], that have emerged as novel multifunctional materials due to their optical switching properties and high-capacity to intercalate alkali metal ions at low voltages. For decades, research on aTMOs has dealt with technological optimization. However, it remains challenging to unveil their intricate atomic short-range order. Currently, no systematic and broadly applicable methods exist to assess atomic-size structure, and since electronic localization is structure-dependent, still there are not well-established optical and electronic mechanisms for modelling the properties of aTMOs. We present state-of-the-art systematic procedures involving theory and experiment in a self-consistent computational framework to unveil the atomic short-range order and its role for the electronic properties. The scheme is applied to amorphous tungsten trioxide aWO 3 , which is the most studied electrochromic aTMO in spite of its unidentified atomic-size structure. Our approach provides a one-to-one matching of experimental data and corresponding model structure from which electronic properties can be directly calculated in agreement with the electronic transitions observed in the XANES spectra.

  7. High-Performance Black Multicrystalline Silicon Solar Cells by a Highly Simplified Metal-Catalyzed Chemical Etching Method

    KAUST Repository

    Ying, Zhiqin

    2016-05-20

    A wet-chemical surface texturing technique, including a two-step metal-catalyzed chemical etching (MCCE) and an extra alkaline treatment, has been proven as an efficient way to fabricate high-efficiency black multicrystalline (mc) silicon solar cells, whereas it is limited by the production capacity and the cost cutting due to the complicated process. Here, we demonstrated that with careful control of the composition in etching solution, low-aspect-ratio bowl-like nanostructures with atomically smooth surfaces could be directly achieved by improved one-step MCCE and with no posttreatment, like alkali solution. The doublet surface texture of implementing this nanobowl structure upon the industrialized acidic-textured surface showed concurrent improvement in optical and electrical properties for realizing 18.23% efficiency mc-Si solar cells (156 mm × 156 mm), which is sufficiently higher than 17.7% of the solely acidic-textured cells in the same batch. The one-step MCCE method demonstrated in this study may provide a cost-effective way to manufacture high-performance mc-Si solar cells for the present photovoltaic industry. © 2016 IEEE.

  8. Energy-Saving Electrolytic Hydrogen Generation: Ni2P Nanoarray as a High-Performance Non-Noble-Metal Electrocatalyst.

    Science.gov (United States)

    Tang, Chun; Zhang, Rong; Lu, Wenbo; Wang, Zao; Liu, Danni; Hao, Shuai; Du, Gu; Asiri, Abdullah M; Sun, Xuping

    2017-01-16

    It is highly attractive but challenging to develop earth-abundant electrocatalysts for energy-saving electrolytic hydrogen generation. Herein, we report that Ni 2 P nanoarrays grown in situ on nickel foam (Ni 2 P/NF) behave as a durable high-performance non-noble-metal electrocatalyst for hydrazine oxidation reaction (HzOR) in alkaline media. The replacement of the sluggish anodic oxygen evolution reaction with such the more thermodynamically favorable HzOR enables energy-saving electrochemical hydrogen production with the use of Ni 2 P/NF as a bifunctional catalyst for anodic HzOR and cathodic hydrogen evolution reaction. When operated at room temperature, this two-electrode electrolytic system drives 500 mA cm -2 at a cell voltage as low as 1.0 V with strong long-term electrochemical durability and 100 % Faradaic efficiency for hydrogen evolution in 1.0 m KOH aqueous solution with 0.5 m hydrazine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Formation of Fe-Nb-X (X=Zr, Ti) amorphous alloys from pure metal elements by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Zhiyu [National Engineering Research Center of Near-net-shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640 (China); Tang Cuiyong, E-mail: hnrtcy@163.com [National Engineering Research Center of Near-net-shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640 (China); Ngai, Tungwai Leo; Yang Chao; Li Yuanyuan [National Engineering Research Center of Near-net-shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640 (China)

    2012-01-15

    Fe-based amorphous powders of Fe{sub 56}Nb{sub 6}Zr{sub 38} and Fe{sub 60}Nb{sub 6}Ti{sub 34} based on binary eutectic were prepared by mechanical alloying starting from mixtures of pure metal powders. The amorphization behavior and thermal stability were examined by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and differential scanning calorimetry. Results show that Fe{sub 56}Nb{sub 6}Zr{sub 38} alloy has a better glass forming ability and a relatively lower thermal stability comparing with Fe{sub 60}Nb{sub 6}Ti{sub 34} alloy. The prepared amorphous powders have homogeneous element distribution and no obvious contaminants coming from mechanical alloying. The synthesized amorphous powders offer the potential for consolidation to full density with desirable mechanical properties through the powder metallurgy methods.

  10. Research report of FY 1997 on the industrial science and technology development. Technology development of super-metal (technology development of nano-amorphous structural control materials); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu Shin Energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku seika hokokusho. Super metal no gijutsu kaihatsu (nano-amorphous kozo seigyo zairyo no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research and development of the innovative metals have been conducted, by which the weight reduction of members can be done by drastically improving the strength compared with conventional metals. For the high-rate cluster deposition and super plastic forming technologies, research and development of aluminum-based light-weight materials have been conducted, which provides excellent strength, toughness, and super plastic formability at room temperature. For the high-density energy utilization and control technology (amorphous-A), super-metals have been investigated as high dew point and corrosion resistance materials used for waste incinerators operated under the very severe conditions. These are expected to be applied to the apparatuses and equipment due to their excellent properties. For the controlled cooling technology (amorphous-B), super-metals with excellent soft magnetic characteristics and degree of shape freedom have been investigated for high performance and high efficiency devices including electric/electronic/communication devices, power transmission devices, and various industrial devices and parts. These are expected to contribute to the creation of new markets and the improvement of international competitive force. 123 refs., 160 figs., 33 tabs.

  11. Highly Conductive Porous Transition Metal Dichalcogenides via Water Steam Etching for High-Performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    Xiao, Zhubing; Yang, Zhi; Zhou, Liujiang; Zhang, Linjie; Wang, Ruihu

    2017-06-07

    Lithium-sulfur (Li-S) batteries show significant advantages for next-generation energy storage systems owing to their high energy density and cost effectiveness. The main challenge in the development of long-life and high-performance Li-S batteries is to simultaneously facilitate the redox kinetics of sulfur species and suppress the shuttle effect of polysulfides. In this contribution, we present a general and green water-steam-etched approach for the fabrication of H- and O-incorporated porous TiS 2 (HOPT). The conductivity, porosity, chemisorptive capability, and electrocatalytic activity of HOPT are enhanced significantly when compared with those of raw TiS 2 . The synthetic method can be expanded to the fabrication of other highly conductive transition metal dichalcogenides such as porous NbS 2 and CoS 2 . The as-obtained HOPT can serve as both a substitute of conductive agents and an additive of interlayer materials. The optimal electrode delivers discharge capacities of 950 mA h g -1 after 300 cycles at 0.5 C and 374 mA h g -1 after 1000 cycles at 10 C. Impressively, an unprecedented reversible capacity of 172 mA h g -1 is achieved after 2500 cycles at 30 C, and the average capacity fading rate per cycle is as low as 0.015%. Importantly, four half-cells based on this electrode in series could drive 60 light-emitting diode indicator modules (the nominal power 3 W) after 20 s of charging. The instantaneous current and power of this device on reaching 275 A g -1 and 2611 W g -1 , respectively, indicate outstanding high-power discharge performance and potential applications in electric vehicles and other large-scale energy storage systems.

  12. Fabrication of high-performance metal ion doped iron oxide electrode for supercapacitor applications through a novel platform

    Science.gov (United States)

    Aghazadeh, Mustafa; Karimzadeh, Isa

    2017-10-01

    We provide a novel electrodeposition platform of undoped and Eu3+ doped iron oxide nanoparticles (Eu-IONPs) from an additive-free electrolyte containing Fe(NO3)3, FeCl2 and EuCl3. The prepared IONPs were analyzed using x-ray diffraction, field emission electron microscopy and energy-dispersive x-ray techniques, and the obtained data showed successful electrosynthesis of magnetite nanoparticles (size  ≈  10 nm) doped with about 10 wt% Eu3+ ions. The Eu-IONPs were used as supercapacitor electrode materials, and characterized by cyclic voltammetry and galvanostatic charge–discharge measurements. The as-synthesized Eu-IONPs exhibit remarkable pseudocapacitive activities including high specific capacitances of 212.5 and 153.2 F g‑1 at 0.5 and 2 A g‑1, respectively, and excellent cycling stabilities of 93.9% and 86.5% after 2000 discharging cycles. Furthermore, vibrational sample magnetometer data confirmed better superparamagnetic performance of Eu-IONPs (Ms  =  72.8 emu g‑1, Mr  =  0.24 emu g‑1 and H Ci  =  3.48 G) as compared with pure IONPs (Ms  =  51.92 emu g‑1, Mr  =  0.95 emu g‑1 and H Ci  =  14.62 G) due to exhibiting lower Mr and H Ci values. This novel synthetic platform of metal ion doped iron oxide is potentially a convenient way to fabricate high-performance iron oxide electrodes for energy storage systems.

  13. Digital image processing of nanometer-size metal particles on amorphous substrates

    Science.gov (United States)

    Soria, F.; Artal, P.; Bescos, J.; Heinemann, K.

    1989-01-01

    The task of differentiating very small metal aggregates supported on amorphous films from the phase contrast image features inherently stemming from the support is extremely difficult in the nanometer particle size range. Digital image processing was employed to overcome some of the ambiguities in evaluating such micrographs. It was demonstrated that such processing allowed positive particle detection and a limited degree of statistical size analysis even for micrographs where by bare eye examination the distribution between particles and erroneous substrate features would seem highly ambiguous. The smallest size class detected for Pd/C samples peaks at 0.8 nm. This size class was found in various samples prepared under different evaporation conditions and it is concluded that these particles consist of 'a magic number' of 13 atoms and have cubooctahedral or icosahedral crystal structure.

  14. Three-terminal nanoelectromechanical switch based on tungsten nitride—an amorphous metallic material

    KAUST Repository

    Mayet, Abdulilah M.

    2015-12-04

    © 2016 IOP Publishing Ltd. Nanoelectromechanical (NEM) switches inherently have zero off-state leakage current and nearly ideal sub-threshold swing due to their mechanical nature of operation, in contrast to semiconductor switches. A challenge for NEM switches to be practical for low-power digital logic application is their relatively large operation voltage which can result in higher dynamic power consumption. Herein we report a three-terminal laterally actuated NEM switch fabricated with an amorphous metallic material: tungsten nitride (WNx). As-deposited WNx thin films have high Young\\'s modulus (300 GPa) and reasonably high hardness (3 GPa), which are advantageous for high wear resistance. The first prototype WNx switches are demonstrated to operate with relatively low control voltage, down to 0.8 V for an air gap thickness of 150 nm.

  15. Influence of the microstructure on the corrosion behavior of magnetron sputter-quenched amorphous metallic alloys

    Science.gov (United States)

    Thakoor, A. P.; Khanna, S. K.; Williams, R. M.; Landel, R. F.

    1983-01-01

    The microstructure and corrosion behavior of magnetron sputter deposited amorphous metallic films of (Mo6ORu40)82B18 under varying sputtering atmospheres have been investigated. The microstructural details and topology of the films have been studied by scanning electron microscopy and correlated with the deposition conditions. By reducing the pressure of pure argon gas, the characteristic features of rough surface and columnar growth full of vertical voids can be converted into a mirror-smooth finish with very dense deposits. Films deposited in the presence of O2 or N2 exhibit columnar structure with vertical voids. Film deposited in pure argon at low pressure show remarkably high corrosion resistance due to the formation of a uniform passive surface layer. The influence of the microstructure and surface texture on the corrosion behavior is discussed.

  16. Coercivity of domain wall motion in thin films of amorphous rare earth-transition metal alloys

    Science.gov (United States)

    Mansuripur, M.; Giles, R. C.; Patterson, G.

    1991-01-01

    Computer simulations of a two dimensional lattice of magnetic dipoles are performed on the Connection Machine. The lattice is a discrete model for thin films of amorphous rare-earth transition metal alloys, which have application as the storage media in erasable optical data storage systems. In these simulations, the dipoles follow the dynamic Landau-Lifshitz-Gilbert equation under the influence of an effective field arising from local anisotropy, near-neighbor exchange, classical dipole-dipole interactions, and an externally applied field. Various sources of coercivity, such as defects and/or inhomogeneities in the lattice, are introduced and the subsequent motion of domain walls in response to external fields is investigated.

  17. Structural order and magnetism of rare-earth metallic amorphous alloys

    International Nuclear Information System (INIS)

    Maurer, M.

    1984-01-01

    Local symmetry (as evaluated from the electric field gradient tensor) and radial distribution functions (obtained by EXAFS measurement) are determined in a series of amorphous rare-earth base alloys. Local order is found to increase with the extent of heteroatomic interactions. Various magnetic phases (including ferromagnetic, spin-glass, reentrant spin-glass) occur for europium alloys with simple metals (Mg, Zn, Cd, Al, Au, ...). This variety reflects the sensitivity of exchange interactions to the presence of non-s conduction electrons. Asperomagnetic structures are established for the Dy alloys. The crystalline electric field interactions at the Dy 3+ ions are interpreted with the help of local symmetry data. Quadratic axial and non-axial crystal field terms are sufficient and necessary in order to account for the hyperfine and bulk experimental results [fr

  18. Effect of chromium and phosphorus on the physical properties of iron and titanium-based amorphous metallic alloy films

    Science.gov (United States)

    Distefano, S.; Rameshan, R.; Fitzgerald, D. J.

    1991-01-01

    Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. Some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique are reported. The films were characterized using differential scanning calorimetry, stress analysis, SEM, XRD, SIMS, electron microprobe, and potentiodynamic polarization techniques.

  19. Adsorption behavior of some metal ions on hydrated amorphous titanium dioxide surface

    Directory of Open Access Journals (Sweden)

    Panit Sherdshoopongse

    2005-09-01

    Full Text Available Titanium dioxide was prepared from titanium tetrachloride and diluted ammonia solution at low temperature. The product obtained was characterized by XRD, EDXRF, TGA, DSC, and FT-IR techniques. It was found that the product was in the form of hydrated amorphous titanium dioxide, TiO2·1.6H2O (ha- TiO2. Ha-TiO2 exhibits high BET surface area at 449 m2/g. Adsorptions of metal ions onto the ha-TiO2 surface were investigated in the batch equilibrium experiments, using Mn(II, Fe(III, Cu(II, and Pb(II solutions. The concentrations of metal ions were determined by atomic absorption spectrometer. The adsorption isotherms of all metal ions were studied at pH 7. The adsorption of Mn(II, Cu(II, and Pb(II ions on ha-TiO2 conformed to the Langmuir isotherm while that of Fe(III fit equally well to both Langmuir and Freundlich isotherms.

  20. High-performance InGaN/GaN Quantum-Disks-in-Nanowires Light-emitters for Monolithic Metal-Optoelectronics

    KAUST Repository

    Zhao, Chao

    2016-11-21

    The first droop-free, reliable, and high-power InGaN/GaN quantum-disks-in-nanowires light-emitting diode on molybdenum substrates was demonstrated. The high performance was achieved through the epitaxial growth of high-quality nanowires on the all-metal stack of TiN/Ti/Mo.

  1. Nanocomposite metal amorphous-carbon thin films deposited by hybrid PVD and PECVD technique.

    Science.gov (United States)

    Teixeira, V; Soares, P; Martins, A J; Carneiro, J; Cerqueira, F

    2009-07-01

    Carbon based films can combine the properties of solid lubricating graphite structure and hard diamond crystal structure, i.e., high hardness, chemical inertness, high thermal conductivity and optical transparency without the crystalline structure of diamond. Issues of fundamental importance associated with nanocarbon coatings are reducing stress, improving adhesion and compatibility with substrates. In this work new nanocomposite coatings with improved toughness based in nanocrystalline phases of metals and ceramics embedded in amorphous carbon matrix are being developed within the frame of a research project: nc-MeNxCy/a-C(Me) with Me = Mo, Si, Al, Ti, etc. Carbide forming metal/carbon (Me/C) composite films with Me = Mo, W or Ti possess appropriate properties to overcome the limitation of pure DLC films. These novel coating architectures will be adopted with the objective to decrease residual stress, improve adherence and fracture toughness, obtain low friction coefficient and high wear-resistance. Nanocomposite DLC's films were deposited by hybrid technique using a PVD-Physically Vapor Deposition (magnetron sputtering) and Plasma Enhanced Chemical Vapor Deposition (PECVD), by the use of CH4 gas. The parameters varied were: deposition time, substrate temperature (180 degrees C) and dopant (Si + Mo) of the amorphous carbon matrix. All the depositions were made on silicon wafers and steel substrates precoated with a silicon inter-layer. The characterisation of the film's physico-mechanical properties will be presented in order to understand the influence of the deposition parameters and metal content used within the a-C matrix in the thin film properties. Film microstructure and film hybridization state was characterized by Raman Spectroscopy. In order to characterize morphology SEM and AFM will be used. Film composition was measured by Energy-Dispersive X-ray analysis (EDS) and by X-ray photoelectron spectroscopy (XPS). The contact angle for the produced DLC's on

  2. FY 1999 report on the results of the development of technology of super metal. Development of nano/amorphous structure control materials; 1999 nendo super metal no gijutsu kaihatsu seika hokokusho. Nano amorphous kozo seigyo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing the amount of energy consumption of transportation equipment such as automobiles, the development is made of innovative metal materials enabling the weight reduction of members relatively on the basis of simple chemical components and by making more substantial improvement of characteristics such as strength and toughness than in the existing metals. For it, the following R and D are conducted in which nano crystal structure and non-equilibrium phase structure such as amorphous are controlled to the limits: 1) particle micro-dispersion technology; 2) high speed super plastic formation technology; 3) high density energy utilization control technology; 4) control cooling technology. In 1), study was made of alloy components and effects of the creation process which are needed for achievement of the nano level of crystal grain. In 2), conditions of vapor deposition and production in high speed particle deposition method are optimally selected, and amorphous and nano crystal structures can easily be produced. In 3), high corrosion-resistant amorphous alloy bulk materials with 5mm thickness and 10mm diameter were successfully trially manufactured. In 4), a bulk amorphous specimen with 10mm outer diameter, 6mm inner diameter and 1mm thickness which was fabricated in the forging method indicated favorable magnetic properties. A method to make a specimen which is more stable is being studied. (NEDO)

  3. Development of solid-state joining technology of dissimilar metals using amorphous metastable alloy powders

    International Nuclear Information System (INIS)

    Lee, Min Ku; Rhee, Chang Kyu; Uhm, Young Rang; Park, Jin Ju; Lee, Jeong Gu; Kim, Gwang Ho; Hong, Sung Mo; Lee, Jong Geuk; Kim, Kyoung Ho

    2007-04-01

    Many nuclear components such as nozzles, steam generator, pipes, condensers, and heat exchangers require a realization of the reliable and high-performance joining or welding between the dissimilar metals or alloys, despite the fact that their melting points, thermal expansion coefficients and physical properties are quite different from each other. The conventional arc welding processes (SMAW, TIG), however, which is currently used as a welding process for NPP components, have not met the requirements of obtaining a reliable and high-quality dissimilar joints, as demonstrated from a number of the previously reported accidents or material failures in the welded joints. This originates from the various weaknesses of the arc welding processes (more than 1700 .deg. C) such as high residual stresses which is sensitive to SCC, porous or deformed joint structures, a formation of grain-coarsened HAZ and an induced degradation of the base metals in the vicinity of the joint. Moreover, they are not applicable to a joining of the dissimilar metals when their melting point or mechanical/physical properties are quite different. In this research, the low-temperature joining (700 .deg. C - 800 .deg. C) and simultaneously strong diffusion bonding technologies between the dissimilar Ti and Cu metals have been developed for the applications to the dissimilar joints of various nuclear tube components

  4. Effect of patch borders on coercivity in amorphous rare earth-transition metal thin films

    Science.gov (United States)

    Patterson, G.; Fu, H.; Giles, R. C.; Mansuripur, M.

    1991-01-01

    The coercivity at the micron scale is a very important property of magneto-optical media. It is a key factor that determines the magnetic domain wall movement and domain reversal. How the coercivity is influenced by a special type of patch borders is discussed. Patch formation is a general phenomenon in growth processes of amorphous rare earth transition metal thin films. Different patches may stem from different seeds and the patch borders are formed when they merge. Though little is known about the exact properties of the borders, we may expect that the exchange interaction at the patch border is weaker than that within a patch, since there is usually a spatial gap between two patches. Computer simulations were performed on a 2-D hexagonal lattice consisting of 37 complete patches with random shape and size. From the series of simulations we may conclude that the domain in the patch with borders of 30 percent exchange strength can expand most easily to the whole lattice, because the exchange strength can expand most easily to the whole lattice, because the exchange strength of the border is not too high to prevent the domain from growing within the patch and it is not too low to prevent the domain from expanding beyond the patch.

  5. HIGHWAY INFRASTRUCTURE FOCUS AREA NEXT-GENERATION INFRASTRUCTURE MATERIALS VOLUME I - TECHNICAL PROPOSAL & MANAGEMENTENHANCEMENT OF TRANSPORTATION INFRASTRUCTURE WITH IRON-BASED AMORPHOUS-METAL AND CERAMIC COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C

    2007-12-04

    The infrastructure for transportation in the United States allows for a high level of mobility and freight activity for the current population of 300 million residents, and several million business establishments. According to a Department of Transportation study, more than 230 million motor vehicles, ships, airplanes, and railroads cars were used on 6.4 million kilometers (4 million miles) of highways, railroads, airports, and waterways in 1998. Pipelines and storage tanks were considered to be part of this deteriorating infrastructure. The annual direct cost of corrosion in the infrastructure category was estimated to be approximately $22.6 billion in 1998. There were 583,000 bridges in the United States in 1998. Of this total, 200,000 bridges were steel, 235,000 were conventional reinforced concrete, 108,000 bridges were constructed using pre-stressed concrete, and the balance was made using other materials of construction. Approximately 15 percent of the bridges accounted for at this point in time were structurally deficient, primarily due to corrosion of steel and steel reinforcement. Iron-based amorphous metals, including SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been developed, and have very good corrosion resistance. These materials have been prepared as a melt-spun ribbons, as well as gas atomized powders and thermal-spray coatings. During electrochemical testing in several environments, including seawater at 90 C, the passive film stabilities of these materials were found to be comparable to that of more expensive high-performance alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. These materials also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation

  6. Hybrid graphene-metal oxide solution processed electron transport layers for large area high-performance organic photovoltaics.

    Science.gov (United States)

    Beliatis, Michail J; Gandhi, Keyur K; Rozanski, Lynn J; Rhodes, Rhys; McCafferty, Liam; Alenezi, Mohammad R; Alshammari, Abdullah S; Mills, Christopher A; Jayawardena, K D G Imalka; Henley, Simon J; Silva, S Ravi P

    2014-04-02

    Solution processed core-shell nano-structures of metal oxide-reduced graphene oxide (RGO) are used as improved electron transport layers (ETL), leading to an enhancement in photocurrent charge transport in PCDTBT:PC70 BM for both single cell and module photovoltaic devices. As a result, the power conversion efficiency for the devices with RGO-metal oxides for ETL increases 8% in single cells and 20% in module devices. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. General synthesis of vanadium-based mixed metal oxides hollow nanofibers for high performance lithium-ion batteries

    Science.gov (United States)

    Xiang, Juan; Yu, Xin-Yao; Paik, Ungyu

    2016-10-01

    Hollow nanostructured mixed metal oxides have recently been intensively investigated as electrode materials for energy storage and conversion due to their remarkable electrochemical properties. Although great efforts have been made, the synthesis of hollow nanostructured vanadium-based mixed metal oxides especially those with one dimensional structure is rarely reported. Vanadium-based mixed metal oxides are promising electrode materials for lithium-ion batteries with high capacity and good rate capability. Here, we develop a facile and general method for the synthesis of one dimensional MxV2O8 (M = Co, Ni, Fe) tubular structure through a simple single-spinneret electrospinning technique followed by a calcination process. As a demonstration, Co3V2O8 hollow nanofibers are evaluated as anode materials for lithium-ion batteries. As expected, benefiting from their unique one dimensional tubular structure, the as-synthesized Co3V2O8 exhibits excellent electrochemical properties for lithium storage. To be specific, it can deliver a high specific capacity of 900 mAh g-1 at 5 A g-1, and long cycling stability up to 2000 cycles. The present work makes a significant contribution to the design and synthesis of mixed metal oxides with one dimensional tubular structure, as well as their potential applications in electrochemical energy storage.

  8. Low temperature irradiation effects on iron boron based amorphous metallic alloys

    International Nuclear Information System (INIS)

    Audouard, A.

    1982-09-01

    Three Fe-B amorphous alloys (Fe 80 B 20 , Fe 27 Mo 2 B 20 and Fe 75 B 25 ) and the crystallized Fe 3 B alloy have been irradiated at the temperature of liquid hydrogen. Electron irradiation and irradiation by 10 B fission fragments induce point defects in amorphous alloys. These defects are characterized by an intrinsic resistivity and a formation volume. The threshold energy for the displacement of iron atoms has also been calculated. Irradiation by 235 U fission fragments induces some important structural modifications in the amorphous alloys [fr

  9. Transition metal doped poly(aniline-co-pyrrole)/multi-walled carbon nanotubes nanocomposite for high performance supercapacitor electrode materials

    International Nuclear Information System (INIS)

    Dhibar, Saptarshi; Bhattacharya, Pallab; Hatui, Goutam; Das, C.K.

    2015-01-01

    Highlights: • The CuCl 2 doped copolymer (PANI and PPy)/MWCNTs nanocomposite was prepared. • The nanocomposite achieved highest specific capacitance of 383 F/g at a 0.5 A/g. • Nanocomposite exhibits better energy density as well as power density. • The nanocomposite also showed better electrical conductivity at room temperature. • The nanocomposite can be used as promising electrode materials for supercapacitor. - Abstract: In this present communication, copolymer of polyaniline (PANI) and polypyrrole (PPy) that is poly(aniline-co-pyrrole) [poly(An-co-Py)], copper chloride (CuCl 2 ) doped poly(aniline-co-pyrrole) [poly(An-co-Py) Cu], and CuCl 2 doped poly(aniline-co-pyrrole)/multi walled carbon nanotubes (MWCNTs) [poly(An-co-Py) Cu CNT] nanocomposite have been prepared by a simple and inexpensive in-situ chemical oxidative polymerization method, using ammonium persulfate (APS) as oxidant and hydrochloric acid (HCl) as dopant and investigated as high performance supercapacitor electrode materials. The possible interaction between CuCl 2 with copolymers and MWCNTs was investigated by Fourier transform infrared spectroscopy (FTIR) and UV–visible spectroscopy analysis. The morphological characteristic of all the electrode materials were analyzed by Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) study. The electrochemical characterizations of all the electrode materials were carried out by three electrode probe method where, standard calomel electrode and platinum were used as reference and counter electrodes, respectively. Among all the electrode materials, poly(An-co-Py) Cu CNT nanocomposite achieved highest specific capacitance value of 383 F/g at 0.5 A/g scan rate. The nanocomposite showed better electrical conductivity at room temperature and also attained nonlinear current–voltage characteristic. Based on the superior electrochemical as well as other properties the as prepared nanocomposite can be used

  10. Transition metal doped poly(aniline-co-pyrrole)/multi-walled carbon nanotubes nanocomposite for high performance supercapacitor electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Dhibar, Saptarshi; Bhattacharya, Pallab; Hatui, Goutam; Das, C.K., E-mail: chapal12@yahoo.co.in

    2015-03-15

    Highlights: • The CuCl{sub 2} doped copolymer (PANI and PPy)/MWCNTs nanocomposite was prepared. • The nanocomposite achieved highest specific capacitance of 383 F/g at a 0.5 A/g. • Nanocomposite exhibits better energy density as well as power density. • The nanocomposite also showed better electrical conductivity at room temperature. • The nanocomposite can be used as promising electrode materials for supercapacitor. - Abstract: In this present communication, copolymer of polyaniline (PANI) and polypyrrole (PPy) that is poly(aniline-co-pyrrole) [poly(An-co-Py)], copper chloride (CuCl{sub 2}) doped poly(aniline-co-pyrrole) [poly(An-co-Py) Cu], and CuCl{sub 2} doped poly(aniline-co-pyrrole)/multi walled carbon nanotubes (MWCNTs) [poly(An-co-Py) Cu CNT] nanocomposite have been prepared by a simple and inexpensive in-situ chemical oxidative polymerization method, using ammonium persulfate (APS) as oxidant and hydrochloric acid (HCl) as dopant and investigated as high performance supercapacitor electrode materials. The possible interaction between CuCl{sub 2} with copolymers and MWCNTs was investigated by Fourier transform infrared spectroscopy (FTIR) and UV–visible spectroscopy analysis. The morphological characteristic of all the electrode materials were analyzed by Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) study. The electrochemical characterizations of all the electrode materials were carried out by three electrode probe method where, standard calomel electrode and platinum were used as reference and counter electrodes, respectively. Among all the electrode materials, poly(An-co-Py) Cu CNT nanocomposite achieved highest specific capacitance value of 383 F/g at 0.5 A/g scan rate. The nanocomposite showed better electrical conductivity at room temperature and also attained nonlinear current–voltage characteristic. Based on the superior electrochemical as well as other properties the as prepared

  11. Metallic amorphous electrodeposited molybdenum coating from aqueous electrolyte: Structural, electrical and morphological properties under current density

    Energy Technology Data Exchange (ETDEWEB)

    Nemla, Fatima [LEPCM, Department of Physics, University of Batna (Algeria); Cherrad, Djellal, E-mail: cherradphisic@yahoo.fr [Laboratory for Developing New Materials and Their Characterizations, University of Setif (Algeria)

    2016-07-01

    Graphical abstract: - Highlights: • Although difficulties related to electrodeposition of Mo films, we have successfully coated onto a cooper substrate. • A good formation of bcc Mo phase and lattice parameter was very accurate. • It seems that electrical properties of our samples are good and suitable as back contact for thin film solar cells. • It seems that grain size, microstrain and dislocation density are all managed and correlated to retain the resistivity to a considerable minimum value. - Abstract: Molybdenum coatings are extensively utilized as back contact for CIGS-based solar cells. However, their electrodeposition from aqueous electrolyte still sophisticates, since long time, owing to the high reactivity with oxygen. In this study, we present a successful 30 min electrodeposition experiment of somewhat thick (∼0.98–2.9 μm) and of moderate surface roughness RMS (∼47–58 nm), metallic bright Mo coating from aqueous electrolyte containing molybdate ions. XRD analysis and Hall Effect measurements have been used to confirm the presence of Mo. The crystal structure of deposits was slightly amorphous in nature to body centred cubic structure (bcc) Mo (110), (211) and (220) face. Lattice parameters exhibit some weak fluctuated tensile stress when compared to the reference lattice parameter. Additionally, our calculated lattice parameters are in good agreement with some previous works from literature. Discussions on the grain growth prove that they are constrained by grain boundary energy not the thickness effect. Further discussions were made on the electrical resistivity and surface morphology. Resonance scattering of Fermi electrons are expected to contribute towards the variation in the film resistivity through the carrier mobility limitation. However, studied samples might be qualified as candidates for solar cell application.

  12. High speed cinematography of cracks spreading under failure of amorphous metallic alloys

    International Nuclear Information System (INIS)

    Tabachnikova, E.D.; Golovin, Y.I.; Makarov, M.V.; Shibkov, A.A.

    1997-01-01

    The results of experimental investigation of crack propagation velocity in amorphous alloys are presented. It is shown that there exists some correlation between crack velocity and fracture mode and morphology (orig.)

  13. Temperature dependence of the amorphization process induced by ion beam mixing in a metallic bilayer

    International Nuclear Information System (INIS)

    Thome, L.; Benkoulal, T.; Jagielski, J.

    1994-01-01

    Amorphization induced by ion beam mixing has been investigated via Rutherford backscattering spectrometry and channelling experiments on a Zr/Ni bilayer as a function of the bombardment temperature. Irradiation was performed with various noble gas ions (Ne, Ar, Kr and Xe) in a temperature range between 100K and 500K. The results show that both the mixing and the amorphization processes are influenced by the temperature at which ion bombardment is performed. The mixing rate is much higher at 500K than at low temperature; conversely, the amorphization rate decreases as the temperature increases. The composition of the amorphous phase formed during mixing was also demonstrated to depend on the irradiation temperature. ((orig.))

  14. Low temperature irradiation effects on iron-boron based amorphous metallic alloys

    International Nuclear Information System (INIS)

    Audouard, Alain.

    1983-01-01

    Three iron-boron amorphous alloys and the crystalline Fe 3 B alloy have been irradiated at liquid hydrogen temperature. 2,4 MeV electron irradiation induces the creation of point defects in the amorphous alloys as well as in the crystalline Fe 3 B alloy. These point defects can be assimilated to iron ''Frenkel pairs''. They have been characterized by determining their intrinsic electrical resistivity and their formation volume. The displacement threshold energy of iron atoms has also been determined. 10 B fission fragments induce, in these amorphous alloys, displacement cascades which lead to stable vacancy rich zones. This irradiation also leads to a structural disorder in relation with the presence of defects. 235 U fission fragments irradiation modifies drastically the structure of the amorphous alloys. The results have been interpreted on the basis of the coexistence of two opposite processes which induce local disorder and crystallisation respectively [fr

  15. Amorphous Metal Tungsten Nitride and its Application for Micro and Nanoelectromechanical Applications

    KAUST Repository

    Mayet, Abdulilah M.

    2016-05-01

    The objective of this doctoral thesis is to develop, engineer and investigate an amorphous metal tungsten nitride (aWNx) and to study its functionality for applications focused on electromechanical system at the nano-scale. Charge transport based solid state device oriented complementary metal oxide semiconductor (CMOS) electronics have reached a level where they are scaled down to nearly their fundamental limits regarding switching speed, off state power consumption and the on state power consumption due to the fundamental limitation of sub-threshold slope (SS) remains at 60 mV/dec. NEM switch theoretically and practically offers the steepest sub-threshold slope and practically has shown zero static power consumption due to their physical isolation originated from the nature of their mechanical operation. Fundamental challenges remain with NEM switches in context of their performance and reliability: (i) necessity of lower pull-in voltage comparable to CMOS technology; (ii) operation in ambient/air; (iii) increased ON current and decreased ON resistance; (iv) scaling of devices and improved mechanical and electrical contacts; and (v) high endurance. The “perfect” NEM switch should overcome all the above-mentioned challenges. Here, we show such a NEM switch fabricated with aWNx to show (i) sub-0.3-volt operation; (ii) operation in air and vacuum; (iii) ON current as high as 0.5 mA and ON resistance lower than 5 kΩ; (iv) improved mechanical contact; and the most importantly (v) continuous switching of 8 trillion cycles for more than 10 days with the highest switching speed is 30 nanosecond without hysteresis. In addition, tungsten nitride could be the modern life vine by fulfilling the demand of biodegradable material for sustainable life regime. Transient electronics is a form of biodegradable electronics as it is physically disappearing totally or partially after performing the required function. The fabricated aWNx suites this category very well, despite not

  16. Nitrogen-modified carbon nanostructures derived from metal-organic frameworks as high performance anodes for Li-ion batteries

    International Nuclear Information System (INIS)

    Shen, Cai; Zhao, Chongchong; Xin, Fengxia; Cao, Can; Han, Wei-Qiang

    2015-01-01

    Here, we report preparation of nitrogen-modified nanostructure carbons through carbonization of Cu-based metal organic nanofibers at 700 °C under argon gas atmosphere. After removal of copper through chemical treatment with acids, pure N-modified nanostructure carbon with a nitrogen content of 8.62 wt% is obtained. When use as anodes for lithium-ion battery, the nanostructure carbon electrode has a discharge capacity of 853.1 mAh g −1 measured at a current of 500 mA g −1 after 800 cycles.

  17. High performance SERS on nanoporous gold substrates synthesized by chemical de-alloying a Au-based metallic glass

    Science.gov (United States)

    Xue, Yanpeng; Scaglione, Federico; Rizzi, Paola; Battezzati, Livio

    2017-12-01

    A Au20Cu48Ag7Pd5Si20 metallic glass precursor has been used to synthesize nanoporous gold by chemical de-alloying in a mixture of HNO3 and HF. Gold ligaments of size ranging from 45 to 100 nm were obtained as a function of HNO3 concentration, electrolyte temperature and de-alloying time. The as-prepared nanoporous gold exhibited strong surface enhanced Raman scattering (SERS) effect using 4,4‧-bi-pyridine as probe molecule. For application in melamine sensing, the detection limit of 10-6 M was achieved, which indicated that this biocompatible material has great potential as SERS active substrate.

  18. Metal transport and remobilisation in a basin affected by acid mine drainage: the role of ochreous amorphous precipitates.

    Science.gov (United States)

    Consani, Sirio; Carbone, Cristina; Dinelli, Enrico; Balić-Žunić, Tonci; Cutroneo, Laura; Capello, Marco; Salviulo, Gabriella; Lucchetti, Gabriella

    2017-06-01

    Metal-polluted mine waters represent a major threat to the quality of waters and sediments in a downstream basin. At the confluence between acidic mine waters and the unpolluted waters of the Gromolo Torrent (Liguria, North-West Italy), the massive formation of an ochreous amorphous precipitate takes place. This precipitate forms a soft blanket that covers the torrent bed and can be observed down to its mouth in the sea. The aim of this work is to evaluate the dispersion of metals in the Gromolo Torrent basin from the abandoned Cu-Fe sulphide mine of Libiola to the Ligurian Sea and to assess the metal remobilisation from the amorphous precipitates. The mineralogy of the superficial sediments collected in the torrent bed and the concentrations of different elements of environmental concern (Cu, Zn, Cd, Co, Cr, Mn, Ni, Pb, As, and Sb) were therefore analysed. The results showed that the precipitates contain high concentration of Fe, Al, Cu, and Zn, significantly modifying the bulk chemistry of the Gromolo Torrent sediments. In order to evaluate the possible remobilisation of ecotoxic elements from the amorphous precipitates, bulk leaching tests were performed with both deionised and seawater. Bulk leaching tests with deionised water mobilised primarily high Pb amounts, but also relatively high concentrations of Fe, Al, Cu, and Zn are released in the leachate. In seawater tests, Fe, Al, Cu, and Zn were released in smaller amounts, while other elements like Mn, Cd, Co, and Ni increased in the released fraction. Pb was still strongly released as in deionised water experiments. The results show that the interaction of precipitates and seawater can remobilise high concentrations of metals, thus affecting the surrounding environment.

  19. Iminodiacetic acid functionalised organopolymer monoliths: application to the separation of metal cations by capillary high-performance chelation ion chromatography.

    Science.gov (United States)

    Moyna, Áine; Connolly, Damian; Nesterenko, Ekaterina; Nesterenko, Pavel N; Paull, Brett

    2013-03-01

    Lauryl methacrylate-co-ethylene dimethacrylate monoliths were polymerised within fused silica capillaries and subsequently photo-grafted with varying amounts of glycidyl methacrylate (GMA). The grafted monoliths were then further modified with iminodiacetic acid (IDA), resulting in a range of chelating ion-exchange monoliths of increasing capacity. The IDA functional groups were attached via ring opening of the epoxy group on the poly(GMA) structure. Increasing the amount of attached poly(GMA), via photo-grafting with increasing concentrations of GMA, from 15 to 35%, resulted in a proportional and controlled increase in the complexation capacity of the chelating monoliths. Scanning capacitively coupled contactless conductivity detection (sC(4)D) was used to characterise and verify homogenous distribution of the chelating ligand along the length of the capillaries non-invasively. Chelation ion chromatographic separations of selected transition and heavy metals were carried out, with retention factor data proportional to the concentration of grafted poly(GMA). Average peak efficiencies of close to 5,000 N/m were achieved, with the isocratic separation of Na, Mg(II), Mn(II), Co(II), Cd(II) and Zn(II) possible on a 250-mm-long monolith. Multiple monolithic columns produced to the same recipes gave RSD data for retention factors of ions). The monolithic chelating ion-exchanger was applied to the separation of alkaline earth and transition metal ions spiked in natural and potable waters.

  20. A high-performance ultrasonic system for the simultaneous transmission of data and power through solid metal barriers.

    Science.gov (United States)

    Lawry, Tristan J; Wilt, Kyle R; Ashdown, Jon D; Scarton, Henry A; Saulnier, Gary J

    2013-01-01

    This paper presents a system capable of simultaneous high-power and high-data-rate transmission through solid metal barriers using ultrasound. By coaxially aligning a pair of piezoelectric transducers on opposite sides of a metal wall and acoustically coupling them to the barrier, an acoustic- electric transmission channel is formed which prevents the need for physical penetration. Independent data and power channels are utilized, but they are only separated by 25.4 mm to reduce the system's form factor. Commercial off-the-shelf components and evaluation boards are used to create realtime prototype hardware and the full system is capable of transmitting data at 17.37 Mbps and delivering 50 W of power through a 63.5-mm thick steel wall. A synchronous multi-carrier communication scheme (OFDM) is used to achieve a very high spectral efficiency and to ensure that there is only minor interference between the power and data channels. Also presented is a discussion of potential enhancements that could be made to greatly improve the power and data-rate capabilities of the system. This system could have a tremendous impact on improving safety and preserving structural integrity in many military applications (submarines, surface ships, unmanned undersea vehicles, armored vehicles, planes, etc.) as well as in a wide range of commercial, industrial, and nuclear systems.

  1. High-performance zno transistors processed via an aqueous carbon-free metal oxide precursor route at temperatures between 80-180 °c

    KAUST Repository

    Lin, Yenhung

    2013-06-25

    An aqueous and carbon-free metal-oxide precursor route is used in combination with a UV irradiation-assisted low-temperature conversion method to fabricate low-voltage ZnO transistors with electron mobilities exceeding 10 cm2/Vs at temperatures <180°C. Because of its low temperature requirements the method allows processing of high-performance transistors onto temperature sensitive substrates such as plastic. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Nitrogen-doped Carbon Derived from ZIF-8 as a High-performance Metal-free Catalyst for Acetylene Hydrochlorination

    Science.gov (United States)

    Chao, Songlin; Zou, Fang; Wan, Fanfan; Dong, Xiaobin; Wang, Yanlin; Wang, Yuxuan; Guan, Qingxin; Wang, Guichang; Li, Wei

    2017-01-01

    Acetylene hydrochlorination is a major industrial technology for manufacturing vinyl chloride monomer in regions with abundant coal resources; however, it is plagued by the use of mercury(II) chloride catalyst. The development of a nonmercury catalyst has been extensively explored. Herein, we report a N-doped carbon catalyst derived from ZIF-8 with both high activity and quite good stability. The acetylene conversion reached 92% and decreased slightly during a 200 h test at 220 °C and atmospheric pressure. Experimental studies and theoretical calculations indicate that C atoms adjacent to the pyridinic N are the active sites, and coke deposition covering pyridinic N is the main reason for catalyst deactivation. The performance of those N-doped carbons makes it possible for practical applications with further effort. Furthermore, the result also provides guidance for designing metal-free catalysts for similar reactions.

  3. In Situ Stringing of Metal Organic Frameworks by SiC Nanowires for High-Performance Electromagnetic Radiation Elimination.

    Science.gov (United States)

    Zhang, Kun; Wu, Fan; Xie, Aming; Sun, Mengxiao; Dong, Wei

    2017-09-27

    The design of novel hybrid nanostructures has been seen as an effective route to tune the properties of materials. Herein, we provide an in situ growth strategy to efficiently construct kebab-like hybrids, which are composed of one-dimensional SiC nanowires stringing polyhedral metal organic frameworks (MOFs). Through a heat-treatment process regardless of under air or argon, these hybrids generate an excellent electromagnetic absorption (EMA) ability. We comprehensively explored the growth and calcination process of these hybrids as well as their EMA enhanced mechanism. The results indicate that the MOFs kept as shrunken polyhedrons under air but decomposed to small particles under argon, due to the different calcination mechanism. In addition, the enhanced EMA ability should be attributed to the combined influences of the reduced dielectric constant, enlarged aspect ratio, and enhanced interface polarization. This research opens up the rational designs and applications of novel materials by the hybridizing of nanomaterials in multidimensions.

  4. Size exclusion and anion exchange high performance liquid chromatography for characterizing metals bound to marine dissolved organic matter

    International Nuclear Information System (INIS)

    García-Otero, Natalia; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2013-01-01

    Highlights: ► Fractionation methods for assessing metals bound to marine DOM were developed. ► SEC and AEC with UV detection and hyphenated with inductively coupled plasma-mass spectrometry were used. ► SEC-UV showed marine DOM of molecular weights from 16 to 1 kDa. ► Cobalt, manganese, strontium and zinc are bound to marine DOM. - Abstract: Size exclusion chromatography (SEC) followed by anion exchange chromatography (AEC) hyphenated with inductively coupled plasma-mass spectrometry (ICP-MS) was applied for fractionating metals bound to marine dissolved organic matter (DOM). Surface seawater samples (100 L) were subjected to tangential flow ultrafiltration (10,000 Da cut off) for isolating and pre-concentrating dissolved large molecules. The isolated fraction (retentate) consisted of 1 L, which was further freeze-dried and re-dissolved to 250 mL with ultrapure water. After HI Trap desalting of the re-dissolved retentate, SEC with UV detection showed marine DOM ranging from 6.5 kDa (lower than the permeable volume of the SEC column) to 16 kDa. A further characterization of this fraction by AEC with UV detection revealed the existence of four groups of macromolecules exhibiting retention times of 2.3, 2.8, 4.5 and 14.0 min. AEC hyphenated with ICP-MS showed the presence of strontium and zinc in the first AE fraction isolated from the SEC fraction; while manganese was found to be bound to the second AE fraction. Cobalt was found to be bound to molecules comprising the third AE fraction.

  5. Size exclusion and anion exchange high performance liquid chromatography for characterizing metals bound to marine dissolved organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Otero, Natalia; Bermejo-Barrera, Pilar [Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, Avenida das Ciencias, s/n, 15782 Santiago de Compostela (Spain); Moreda-Pineiro, Antonio, E-mail: antonio.moreda@usc.es [Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, Avenida das Ciencias, s/n, 15782 Santiago de Compostela (Spain)

    2013-01-14

    Highlights: Black-Right-Pointing-Pointer Fractionation methods for assessing metals bound to marine DOM were developed. Black-Right-Pointing-Pointer SEC and AEC with UV detection and hyphenated with inductively coupled plasma-mass spectrometry were used. Black-Right-Pointing-Pointer SEC-UV showed marine DOM of molecular weights from 16 to 1 kDa. Black-Right-Pointing-Pointer Cobalt, manganese, strontium and zinc are bound to marine DOM. - Abstract: Size exclusion chromatography (SEC) followed by anion exchange chromatography (AEC) hyphenated with inductively coupled plasma-mass spectrometry (ICP-MS) was applied for fractionating metals bound to marine dissolved organic matter (DOM). Surface seawater samples (100 L) were subjected to tangential flow ultrafiltration (10,000 Da cut off) for isolating and pre-concentrating dissolved large molecules. The isolated fraction (retentate) consisted of 1 L, which was further freeze-dried and re-dissolved to 250 mL with ultrapure water. After HI Trap desalting of the re-dissolved retentate, SEC with UV detection showed marine DOM ranging from 6.5 kDa (lower than the permeable volume of the SEC column) to 16 kDa. A further characterization of this fraction by AEC with UV detection revealed the existence of four groups of macromolecules exhibiting retention times of 2.3, 2.8, 4.5 and 14.0 min. AEC hyphenated with ICP-MS showed the presence of strontium and zinc in the first AE fraction isolated from the SEC fraction; while manganese was found to be bound to the second AE fraction. Cobalt was found to be bound to molecules comprising the third AE fraction.

  6. High performance inkjet-printed metal oxide thin film transistors via addition of insulating polymer with proper molecular weight

    Science.gov (United States)

    Sun, Dawei; Chen, Cihai; Zhang, Jun; Wu, Xiaomin; Chen, Huipeng; Guo, Tailiang

    2018-01-01

    Fabrication of metal oxide thin film transistor (MOTFT) arrays using the inkjet printing process has caused tremendous interest for low-cost and large-area flexible electronic devices. However, the inkjet-printed MOTFT arrays usually exhibited a non-uniform geometry due to the coffee ring effect, which restricted their commercial application. Therefore, in this work, a strategy is reported to control the geometry and enhance device performance of inkjet-printed MOTFT arrays by the addition of an insulating polymer to the precursor solution prior to film deposition. Moreover, the impact of the polymer molecular weight (MW) on the geometry, chemical constitution, crystallization, and MOTFT properties of inkjet-printed metal oxide depositions was investigated. The results demonstrated that with an increase of MW of polystyrene (PS) from 2000 to 200 000, the coffee ring was gradually faded and the coffee ring effect was completely eliminated when MW reached 200 000, which is associated with the enhanced viscosity with the insulating polymer, providing a high resistance to the outward capillary flow, which facilitated the depinning of the contact line, leading to the elimination of the coffee ring. More importantly, the carrier mobility increased significantly from 4.2 cm2 V-1 s-1 up to 13.7 cm2 V-1 s-1 as PS MW increased from 2000 to 200 000, which was about 3 times that of the pristine In2O3 TFTs. Grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy results indicated that PS doping of In2O3 films not only frustrated crystallization but also altered chemical constitution by enhancing the formation of the M-O structure, both of which facilitated the carrier transport. These results demonstrated that the simple polymer additive process provides a promising method that can efficiently control the geometry of MO arrays during inkjet printing and maximize the device performance of MOTFT arrays, which showed great potential for the application in next

  7. Low Cost Metal Carbide Nanocrystals as Binding and Electrocatalytic Sites for High Performance Li-S Batteries.

    Science.gov (United States)

    Zhou, Fei; Li, Zheng; Luo, Xuan; Wu, Tong; Jiang, Bin; Lu, Lei-Lei; Yao, Hong-Bin; Antonietti, Markus; Yu, Shu-Hong

    2018-02-14

    Lithium sulfur (Li-S) batteries are considered as promising energy storage systems for the next generation of batteries due to their high theoretical energy densities and low cost. Much effort has been made to improve the practical energy densities and cycling stability of Li-S batteries via diverse designs of materials nanostructure. However, achieving simultaneously good rate capabilities and stable cycling of Li-S batteries is still challenging. Herein, we propose a strategy to utilize a dual effect of metal carbide nanoparticles decorated on carbon nanofibers (MC NPs-CNFs) to realize high rate performance, low hysteresis, and long cycling stability of Li-S batteries in one system. The adsorption experiments of lithium polysulfides (LiPS) to MC NPs and corresponding theoretical calculations demonstrate that LiPS are likely to be adsorbed and diffused on the surface of MC NPs because of their moderate chemical bonding. MC NPs turn out to have also an electrocatalytic role and accelerate electrochemical redox reactions of LiPS, as proven by cyclic voltammetry analysis. The fabricated Li-S batteries based on the W 2 C NPs-CNFs hybrid electrodes display not only high specific capacity of 1200 mAh/g at 0.2C but also excellent rate performance and cycling stability, for example, a model setup can be operated at 1C for 500 cycles maintaining a final specific capacity of 605 mAh/g with a degradation rate as low as 0.06%/cycle.

  8. Synthesis and Electrospraying of Nanoscale MOF (Metal Organic Framework) for High-Performance CO2 Adsorption Membrane

    Science.gov (United States)

    Wahiduzzaman; Allmond, Kelsey; Stone, John; Harp, Spencer; Mujibur, Khan

    2017-01-01

    We report the sonochemical synthesis of MOF (metal organic framework) nanoparticles of 30-200 nm in size and electrospraying of those particles on electrospun nanofibers to process a MOF-attached nanofibrous membrane. This membrane displayed significant selectivity towards CO2 and capacity of adsorbing with 4000-5000 ppm difference from a mixed gas flow of 1% CO2 and 99% N2. Applying ultrasonic waves during the MOF synthesis offered rapid dispersion and formation of crystalline MOF nanoparticles in room temperature. The MOF nanoparticles of 100-200 nm in size displayed higher surface area and adsorption capacity comparing to that of 30-60 nm in size. Nanofibrous membrane was produced by electrospinning of MOF blended PAN solution followed by electrospraying of additional MOF nanoparticles. This yielded uniform MOF deposition on nanofibers, occurred due to electrostatic attraction between highly charged nanoparticles and conductive nanofibers. A test bench for real-time CO2 adsorption at room temperature was built with non-dispersive Infrared (NDIR) CO2 sensors. Comparative tests were performed on the membrane to investigate its enhanced adsorption capacity. Three layers of the as-produced membranes displayed CO2 adsorption for approximately 2 h. Thermogravimetric analysis (TGA) of the membrane showed the thermal stability of the MOF and PAN up to 290 and 425 °C, respectively.

  9. High-Performance Flexible Thin-Film Transistors Based on Single-Crystal-like Silicon Epitaxially Grown on Metal Tape by Roll-to-Roll Continuous Deposition Process.

    Science.gov (United States)

    Gao, Ying; Asadirad, Mojtaba; Yao, Yao; Dutta, Pavel; Galstyan, Eduard; Shervin, Shahab; Lee, Keon-Hwa; Pouladi, Sara; Sun, Sicong; Li, Yongkuan; Rathi, Monika; Ryou, Jae-Hyun; Selvamanickam, Venkat

    2016-11-02

    Single-crystal-like silicon (Si) thin films on bendable and scalable substrates via direct deposition are a promising material platform for high-performance and cost-effective devices of flexible electronics. However, due to the thick and unintentionally highly doped semiconductor layer, the operation of transistors has been hampered. We report the first demonstration of high-performance flexible thin-film transistors (TFTs) using single-crystal-like Si thin films with a field-effect mobility of ∼200 cm 2 /V·s and saturation current, I/l W > 50 μA/μm, which are orders-of-magnitude higher than the device characteristics of conventional flexible TFTs. The Si thin films with a (001) plane grown on a metal tape by a "seed and epitaxy" technique show nearly single-crystalline properties characterized by X-ray diffraction, Raman spectroscopy, reflection high-energy electron diffraction, and transmission electron microscopy. The realization of flexible and high-performance Si TFTs can establish a new pathway for extended applications of flexible electronics such as amplification and digital circuits, more than currently dominant display switches.

  10. Evaluation of drug loading capabilities of γ-cyclodextrin-metal organic frameworks by high performance liquid chromatography.

    Science.gov (United States)

    Xu, Xiaonan; Wang, Caifen; Li, Haiyan; Li, Xue; Liu, Botao; Singh, Vikramjeet; Wang, Shuxia; Sun, Lixin; Gref, Ruxandra; Zhang, Jiwen

    2017-03-10

    Drug loading into γ-cyclodextrin-metal organic frameworks (γ-CD-MOFs) using the impregnation approach is a laborious process. In this study, a γ-CD-MOF construct (2-5μm particle diameter) was used as the stationary phase under HPLC conditions with the aim to correlate retention properties and drug loading capability of the CD-based structure. Ketoprofen, fenbufen and diazepam were chosen as model drugs with m-xylene as a control analyte to investigate the correlation of drug loading and their chromatographic behaviour in the γ-CD-MOF column. Furthermore, γ-CD itself was also prepared as the stationary phase by coupling with silica in the column to illustrate the enhanced interaction between drugs and γ-CD-MOF as a reference. The retention and loading efficiency of the drugs were determined with different ratios of hexane and ethanol (10:90, 20:80, 50:50, 80:20, 90:10, v/v) at temperatures of 20, 25, 30 and 37°C. With the increment in hexane content, the loading efficiency of ketoprofen and fenbufen increased from 2.39±0.06% to 4.38±0.04% and from 5.82±0.94% to 6.37±0.29%, respectively. The retention time and loading efficiency of ketoprofen and diazepam were the lowest at 30°C while those of fenbufen had the different tendency. The excellent relation between the retention and loading efficiency onto γ-CD-MOF could be clearly observed through mobile phase and temperature investigation. In conclusion, a highly efficient chromatographic method has been established to evaluate the drug loading capability of γ-CD-MOF. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. High performance flexible metal oxide/silver nanowire based transparent conductive films by a scalable lamination-assisted solution method

    Directory of Open Access Journals (Sweden)

    Hua Yu

    2017-03-01

    Full Text Available Flexible MoO3/silver nanowire (AgNW/MoO3/TiO2/Epoxy electrodes with comparable performance to ITO were fabricated by a scalable solution-processed method with lamination assistance for transparent and conductive applications. Silver nanoparticle-based electrodes were also prepared for comparison. Using a simple spin-coating and lamination-assisted planarization method, a full solution-based approach allows preparation of AgNW-based composite electrodes at temperatures as low as 140 °C. The resulting flexible AgNW-based electrodes exhibit higher transmittance of 82% at 550 nm and lower sheet resistance about 12–15 Ω sq−1, in comparison with the values of 68% and 22–25 Ω sq−1 separately for AgNP based electrodes. Scanning electron microscopy (SEM and Atomic force microscopy (AFM reveals that the multi-stacked metal-oxide layers embedded with the AgNWs possess lower surface roughness (<15 nm. The AgNW/MoO3 composite network could enhance the charge transport and collection efficiency by broadening the lateral conduction range due to the built of an efficient charge transport network with long-sized nanowire. In consideration of the manufacturing cost, the lamination-assisted solution-processed method is cost-effective and scalable, which is desire for large-area fabrication. While in view of the materials cost and comparable performance, this AgNW-based transparent and conductive electrodes is potential as an alternative to ITO for various optoelectronic applications.

  12. Development of an SU-8 MEMS process with two metal electrodes using amorphous silicon as a sacrificial material

    KAUST Repository

    Ramadan, Khaled S.

    2013-02-08

    This work presents an SU-8 surface micromachining process using amorphous silicon as a sacrificial material, which also incorporates two metal layers for electrical excitation. SU-8 is a photo-patternable polymer that is used as a structural layer for MEMS and microfluidic applications due to its mechanical properties, biocompatibility and low cost. Amorphous silicon is used as a sacrificial layer in MEMS applications because it can be deposited in large thicknesses, and can be released in a dry method using XeF2, which alleviates release-based stiction problems related to MEMS applications. In this work, an SU-8 MEMS process was developed using ;-Si as a sacrificial layer. Two conductive metal electrodes were integrated in this process to allow out-of-plane electrostatic actuation for applications like MEMS switches and variable capacitors. In order to facilitate more flexibility for MEMS designers, the process can fabricate dimples that can be conductive or nonconductive. Additionally, this SU-8 process can fabricate SU-8 MEMS structures of a single layer of two different thicknesses. Process parameters were optimized for two sets of thicknesses: thin (5-10 m) and thick (130 m). The process was tested fabricating MEMS switches, capacitors and thermal actuators. © 2013 IOP Publishing Ltd.

  13. AMOchar: Amorphous manganese oxide coating of biochar improves its efficiency at removing metal(loid)s from aqueous solutions.

    Science.gov (United States)

    Trakal, Lukáš; Michálková, Zuzana; Beesley, Luke; Vítková, Martina; Ouředníček, Petr; Barceló, Andreu Piqueras; Ettler, Vojtěch; Číhalová, Sylva; Komárek, Michael

    2018-06-01

    A novel sorbent made from biochar modified with an amorphous Mn oxide (AMOchar) was compared with pure biochar, pure AMO, AMO+biochar mixtures and biochar+birnessite composite for the removal of various metal(loid)s from aqueous solutions using adsorption and solid-state analyses. In comparison with the pristine biochar, both Mn oxide-biochar composites were able to remove significantly greater quantities of various metal(loid)s from the aqueous solutions, especially at a ratio 2:1 (AMO:biochar). The AMOchar proved most efficient, removing almost 99, 91 and 51% of Pb, As and Cd, respectively. Additionally, AMOchar and AMO+biochar mixture exhibited reduced Mn leaching, compared to pure AMO. Therefore, it is concluded that the synthesis of AMO and biochar is able to produce a double acting sorbent ('dorbent') of enhanced efficiency, compared with the individual deployment of their component materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Metallic glasses: viable tool materials for the production of surface microstructures in amorphous polymers by micro-hot-embossing

    International Nuclear Information System (INIS)

    Henann, David L; Srivastava, Vikas; Taylor, Hayden K; Hale, Melinda R; Hardt, David E; Anand, Lallit

    2009-01-01

    Metallic glasses possess unique mechanical properties which make them attractive materials for fabricating components for a variety of applications. For example, the commercial Zr-based metallic glasses possess high tensile strengths (≈2.0 GPa), good fracture toughnesses (≈10–50 MPa√m) and good wear and corrosion resistances. A particularly important characteristic of metallic glasses is their intrinsic homogeneity to the nanoscale because of the absence of grain boundaries. This characteristic, coupled with their unique mechanical properties, makes them ideal materials for fabricating micron-scale components, or high-aspect-ratio micro-patterned surfaces, which may in turn be used as dies for the hot-embossing of polymeric microfluidic devices. In this paper we consider a commercially available Zr-based metallic glass which has a glass transition temperature of T g ≈ 350 °C and describe the thermoplastic forming of a tool made from this material, which has the (negative) microchannel pattern for a simple microfluidic device. This tool was successfully used to produce the microchannel pattern by micro-hot-embossing of the amorphous polymers poly(methyl methacrylate) (T g ≈ 115 °C) and Zeonex-690R (T g ≈ 136 °C) above their glass transition temperatures. The metallic glass tool was found to be very robust, and it was used to produce hundreds of high-fidelity micron-scale embossed patterns without degradation or failure

  15. Carbon-Coated Fe3O4/VOx Hollow Microboxes Derived from Metal-Organic Frameworks as a High-Performance Anode Material for Lithium-Ion Batteries.

    Science.gov (United States)

    Zhao, Zhi-Wei; Wen, Tao; Liang, Kuang; Jiang, Yi-Fan; Zhou, Xiao; Shen, Cong-Cong; Xu, An-Wu

    2017-02-01

    As the ever-growing demand for high-performance power sources, lithium-ion batteries with high storage capacities and outstanding rate performance have been widely considered as a promising storage device. In this work, starting with metal-organic frameworks, we have developed a facile approach to the synthesis of hybrid Fe 3 O 4 /VO x hollow microboxes via the process of hydrolysis and ion exchange and subsequent calcination. In the constructed architecture, the hollow structure provides an efficient lithium ion diffusion pathway and extra space to accommodate the volume expansion during the insertion and extraction of Li + . With the assistance of carbon coating, the obtained Fe 3 O 4 /VO x @C microboxes exhibit excellent cyclability and enhanced rate performance when employed as an anode material for lithium-ion batteries. As a result, the obtained Fe 3 O 4 /VO x @C delivers a high Coulombic efficiency (near 100%) and outstanding reversible specific capacity of 742 mAh g -1 after 400 cycles at a current density of 0.5 A g -1 . Moreover, a remarkable reversible capacity of 556 mAh g -1 could be retained even at a current density of 2 A g -1 . This study provides a fundamental understanding for the rational design of other composite oxides as high-performance electrode materials for lithium-ion batteries.

  16. Control of single-electron charging of metallic nanoparticles onto amorphous silicon surface.

    Science.gov (United States)

    Weis, Martin; Gmucová, Katarína; Nádazdy, Vojtech; Capek, Ignác; Satka, Alexander; Kopáni, Martin; Cirák, Július; Majková, Eva

    2008-11-01

    Sequential single-electron charging of iron oxide nanoparticles encapsulated in oleic acid/oleyl amine envelope and deposited by the Langmuir-Blodgett technique onto Pt electrode covered with undoped hydrogenated amorphous silicon film is reported. Single-electron charging (so-called quantized double-layer charging) of nanoparticles is detected by cyclic voltammetry as current peaks and the charging effect can be switched on/off by the electric field in the surface region induced by the excess of negative/positive charged defect states in the amorphous silicon layer. The particular charge states in amorphous silicon are created by the simultaneous application of a suitable bias voltage and illumination before the measurement. The influence of charged states on the electric field in the surface region is evaluated by the finite element method. The single-electron charging is analyzed by the standard quantized double layer model as well as two weak-link junctions model. Both approaches are in accordance with experiment and confirm single-electron charging by tunnelling process at room temperature. This experiment illustrates the possibility of the creation of a voltage-controlled capacitor for nanotechnology.

  17. Structural and electronic properties of binary amorphous aluminum alloys with transition metals and rare earth metals; Strukturelle und elektronische Eigenschaften binaerer amorpher Aluminiumlegierungen mit Uebergangsmetallen und Metallen der Seltenen Erden

    Energy Technology Data Exchange (ETDEWEB)

    Stiehler, Martin

    2012-02-03

    The influence of the d-states of the transition metals on the structure formation in amorphous alloys has so far only been inadequately understood. The present work aims to elaborate additional contributions to the understanding of binary amorphous aluminum alloys with transition metals. Special emphasis was placed on alloys with a subgroup of the transition metals, the rare earth metals. Within the scope of the present work, layers of Al-Ce in the region of 15at% Ce-80at% Ce were produced by sequential flash evaporation at 4.2K in the high vacuum, and characterized electronically by electrical resistance and Hall effect measurements as well as structurally by transmission electron diffraction. In addition, studies of plasma resonance were carried out by means of electron energy loss spectroscopy. In the range of 25at% Ce-60at% Ce, homogeneous amorphous samples were obtained. Especially the structural investigations were made difficult by oxidation of the material. The influence of the Ce-4f electrons manifests itself mainly in the low-temperature and magnetoresistance, both of which are dominated by the Kondo effect. The Hall effect in Al-Ce is dominated by anomalous components over the entire temperature range (2K-320K), which are attributed to skew-scattering effects, also due to Ce-4f electrons. Down to 2K there was no macroscopic magnetic order. In the region 2K-20K, the existence of clusters of ordered magnetic moments is concluded. For T> 20K, paramagnetic behavior occurs. With regard to the structural and electronic properties, a-Al-Ce can be classified as a group with a-Al- (Sc, Y, La). In the sense of plasma resonance, a-Al-Ce is excellently arranged in a system known from other Al transition metal alloys. Furthermore, by increasing the results of binary amorphous Al transition metal alloys from the literature, it has been found that the structure formation in these systems is closely linked to a known but still unexplained structure-forming effect that

  18. Long-range electron transfer over graphene-based catalyst for high-performing oxygen reduction reactions: importance of size, N-doping, and metallic impurities.

    Science.gov (United States)

    Choi, Chang Hyuck; Lim, Hyung-Kyu; Chung, Min Wook; Park, Jong Cheol; Shin, Hyeyoung; Kim, Hyungjun; Woo, Seong Ihl

    2014-06-25

    N-doped carbon materials are considered as next-generation oxygen reduction reaction (ORR) catalysts for fuel cells due to their prolonged stability and low cost. However, the underlying mechanism of these catalysts has been only insufficiently identified, preventing the rational design of high-performing catalysts. Here, we show that the first electron is transferred into O2 molecules at the outer Helmholtz plane (ET-OHP) over a long range. This is in sharp contrast to the conventional belief that O2 adsorption must precede the ET step and thus that the active site must possess as good an O2 binding character as that which occurs on metallic catalysts. Based on the ET-OHP mechanism, the location of the electrode potential dominantly characterizes the ORR activity. Accordingly, we demonstrate that the electrode potential can be elevated by reducing the graphene size and/or including metal impurities, thereby enhancing the ORR activity, which can be transferred into single-cell operations with superior stability.

  19. Ni3FeN-Supported Fe3Pt Intermetallic Nanoalloy as a High-Performance Bifunctional Catalyst for Metal-Air Batteries.

    Science.gov (United States)

    Cui, Zhiming; Fu, Gengtao; Li, Yutao; Goodenough, John B

    2017-08-07

    Electrocatalysts for both the oxygen reduction and evolution reactions (ORR and OER) are vital for the performances of rechargeable metal-air batteries. Herein, we report an advanced bifunctional oxygen electrocatalyst consisting of porous metallic nickel-iron nitride (Ni 3 FeN) supporting ordered Fe 3 Pt intermetallic nanoalloy. In this hybrid catalyst, the bimetallic nitride Ni 3 FeN mainly contributes to the high activity for the OER while the ordered Fe 3 Pt nanoalloy contributes to the excellent activity for the ORR. Robust Ni 3 FeN-supported Fe 3 Pt catalysts show superior catalytic performance to the state-of-the-art ORR catalyst (Pt/C) and OER catalyst (Ir/C). The Fe 3 Pt/Ni 3 FeN bifunctional catalyst enables Zn-air batteries to achieve a long-term cycling performance of over 480 h at 10 mA cm -2 with high efficiency. The extraordinarily high performance of the Fe 3 Pt/Ni 3 FeN bifunctional catalyst makes it a very promising air cathode in alkaline electrolyte. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cyclical Annealing Technique To Enhance Reliability of Amorphous Metal Oxide Thin Film Transistors.

    Science.gov (United States)

    Chen, Hong-Chih; Chang, Ting-Chang; Lai, Wei-Chih; Chen, Guan-Fu; Chen, Bo-Wei; Hung, Yu-Ju; Chang, Kuo-Jui; Cheng, Kai-Chung; Huang, Chen-Shuo; Chen, Kuo-Kuang; Lu, Hsueh-Hsing; Lin, Yu-Hsin

    2018-02-26

    This study introduces a cyclical annealing technique that enhances the reliability of amorphous indium-gallium-zinc-oxide (a-IGZO) via-type structure thin film transistors (TFTs). By utilizing this treatment, negative gate-bias illumination stress (NBIS)-induced instabilities can be effectively alleviated. The cyclical annealing provides several cooling steps, which are exothermic processes that can form stronger ionic bonds. An additional advantage is that the total annealing time is much shorter than when using conventional long-term annealing. With the use of cyclical annealing, the reliability of the a-IGZO can be effectively optimized, and the shorter process time can increase fabrication efficiency.

  1. Thin metal layer as transparent electrode in n-i-p amorphous silicon solar cells

    Directory of Open Access Journals (Sweden)

    Theuring Martin

    2014-07-01

    Full Text Available In this paper, transparent electrodes, based on a thin silver film and a capping layer, are investigated. Low deposition temperature, flexibility and low material costs are the advantages of this type of electrode. Their applicability in structured n-i-p amorphous silicon solar cells is demonstrated in simulation and experiment. The influence of the individual layer thicknesses on the solar cell performance is discussed and approaches for further improvements are given. For the silver film/capping layer electrode, a higher solar cell efficiency could be achieved compared to a reference ZnO:Al front contact.

  2. A study of the diffusion mechanism in glasses: a theoretical and experimental study of tracers diffusion in amorphous metallic alloys

    International Nuclear Information System (INIS)

    Loirat, Yanick

    1999-01-01

    The principal aims of this work are a better understanding of the experimental situation in amorphous metallic alloys and a tentative explanation of the role of collective mechanisms in matter transport. Self- and solute-diffusion of Hf, Au and Cu tracers in amorphous Ni Zr alloy have been studied. We study by SIMS analysis the broadening of the concentration profile with temperature and pressure, in thin amorphous layers which were prepared by sputtering and properly relaxed. The diffusion coefficient variation with temperature shows an Arrhenius behaviour for all of our tracers. The activation energy amount to 1.55 eV for Cu, 1.65 eV for Au and 1.78 eV for Hf and corresponds to nearly one half of the corresponding energy in crystalline zirconium. The diffusion coefficients variation with hydrostatic pressure yields an activation volume equal to one half of an average atomic volume of our matrix for medium and large sized tracers Au, Hf and a smaller activation volume for Cu. The second part of our work consists of numerical simulations of atomic displacements in a generic glass by two complementary methods. In a Lennard-Jones alloy with size effect, we observe by molecular dynamics (MD) some correlated displacements which consist of substitution cycles or chains. The associated energy of these collective events represents nearly 15 pc of that found in crystalline Lennard- Jones. The systematic exploration of energy surface in space configuration made with activation-relaxation technique ART yields energy distributions of stable and saddles positions and opens the way to an evaluation of diffusion coefficients. The events found by ART are qualitatively close to MD ones, but the averaged activation energy associated with these events represents only 10 pc of the crystalline one. This clearly points towards the limit of Lennard-Jones potential, which is not enough representative of actual glasses. This is the reason why an interaction model closer to amorphous

  3. Preface: Proceedings of the 13th Conference on Liquid and Amorphous Metals (LAM13) (Ekaterinburg, Russia, 8 14 July 2007)

    Science.gov (United States)

    Popel, Pjotr; Gelchinskii, Boris; Sidorov, Valeriy

    2008-03-01

    The most recent developments in the field of liquid and amorphous metals and alloys are regularly updated through two complementary international conferences: the liquid and amorphous metals conference (LAM) and the rapidly quenched materials (RQ) conference. The first series of conferences started as LM1 in 1966 at Brookhaven for the basic understanding of liquid metals. The subsequent LM conferences were held in Tokyo (1972) and Bristol (1976). The conference was renewed in Grenoble (1980) as a LAM conference including amorphous metals and continued in Los Angeles (1983), Garmisch-Partenkirchen (1986), Kyoto (1989), Vienna (1992), Chicago (1995), Dortmund (1998), Yokohama (2001) and Metz (2004). The conferences are mainly devoted to liquid and amorphous metals and alloys. However, communications on some non-metallic systems such as semiconductors, quasicrystals etc, are also accepted. The conference tradition strongly encourages participation from junior researchers and graduate students. The 13th conference of the LAM series was organized in Ekaterinburg, Russia, by the Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences (IMet UB RAS) and the Ural State Pedagogical University (USPU), and held from 8-14 July 2007 under the chairmanship of Professors Pjotr Popel (USPU) and Boris Gelchinskii (IMet UB RAS). Two hundred and forty two active participants and about 60 guest participants from 20 countries attended the conference. There were no parallel sessions and all oral reports were separated into three groups: invited talks (40 min), full-scale oral reports (25 min), and brief oral reports (15 min). The program included ten sessions, ranging from purely theoretical subjects to the technological application of molten and amorphous alloys. The following sessions took place: A: Electronic structure and transport, magnetic properties; B: Phase transitions; C: Structure; D: Atomic dynamics and transport; E: Thermodynamics; F: Modelling

  4. Change of quasilattice constant during amorphous-to-quasicrystalline phase transformation in Zr65Al7.5Ni10Cu7.5Ag10 metallic glass

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Rasmussen, A.R.; Jensen, C.H.

    2002-01-01

    The amorphous-to-quasicrystalline phase transformation in a Zr65Al7.5Ni10Cu7.5Ag10 metallic glass has been investigated by monitoring the quasilattice constant and the composition of quasicrystalline particles in the samples annealed in vacuum at 663 K for various times. It is found......Cu7.5Ag10 metallic glass is a nonpolymorphous reaction....

  5. Separation properties of the MIL-125(Ti) Metal-Organic Framework in high-performance liquid chromatography revealing cis/trans selectivity.

    Science.gov (United States)

    Van der Perre, Stijn; Liekens, Anuschka; Bueken, Bart; De Vos, Dirk E; Baron, Gino V; Denayer, Joeri F M

    2016-10-21

    Monodisperse MIL-125(Ti) Metal-Organic Framework crystals were synthesized and studied as stationary phase in high performance liquid chromatography (HPLC). Different pure compounds and model mixtures (including stereoisomer mixtures) were injected from which chromatographic parameters, including selectivities and resolution factors, were determined to evaluate the adsorption properties and separation performance of MIL-125(Ti) in liquid phase. The MIL-125(Ti) framework displayed a trans selectivity for cis/trans difunctionalized cyclohexane molecules with high selectivity and resolution for 1,3-dimethylcyclohexane and 4-ethylcyclohexanol. The slurry-packed column was further characterized via van Deemter analysis. Fitting of the van Deemter equation through the experimental points allowed to define the contributions of the different processes to plate height with a significant proportion of the A-term, reflecting the importance of a good crystal packing. Although high in comparison to commercial HPLC stationary phases, a very good plate height of around 50μm was found. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Constructing Multifunctional Metallic Ni Interface Layers in the g-C3N4Nanosheets/Amorphous NiS Heterojunctions for Efficient Photocatalytic H2Generation.

    Science.gov (United States)

    Wen, Jiuqing; Xie, Jun; Zhang, Hongdan; Zhang, Aiping; Liu, Yingju; Chen, Xiaobo; Li, Xin

    2017-04-26

    The construction of exceptionally robust and high-quality semiconductor-cocatalyst heterojunctions remains a grand challenge toward highly efficient and durable solar-to-fuel conversion. Herein, novel graphitic carbon nitride (g-C 3 N 4 ) nanosheets decorated with multifunctional metallic Ni interface layers and amorphous NiS cocatalysts were fabricated via a facile three-step process: the loading of Ni(OH) 2 nanosheets, high-temperature H 2 reduction, and further deposition of amorphous NiS nanosheets. The results demonstrated that both robust metallic Ni interface layers and amorphous NiS can be utilized as electron cocatalysts to markedly boost the visible-light H 2 evolution over g-C 3 N 4 semiconductor. The optimized g-C 3 N 4 -based photocatalyst containing 0.5 wt % Ni and 1.0 wt % NiS presented the highest hydrogen evolution of 515 μmol g -1 h -1 , which was about 2.8 and 4.6 times as much as those obtained on binary g-C 3 N 4 -1.0%NiS and g-C 3 N 4 -0.5%Ni, respectively. Apparently, the metallic Ni interface layers play multifunctional roles in enhancing the visible-light H 2 evolution, which could first collect the photogenerated electrons from g-C 3 N 4 , and then accelerate the surface H 2 -evolution reaction kinetics over amorphous NiS cocatalysts. More interestingly, the synergetic effects of metallic Ni and amorphous NiS dual-layer electron cocatalysts could also improve the TEOA-oxidation capacity through upshifting the VB levels of g-C 3 N 4 . Comparatively speaking, the multifunctional metallic Ni layers are dominantly favorable for separating and transferring photoexcited charge carriers from g-C 3 N 4 to amorphous NiS cocatalysts owing to the formation of Schottky junctions, whereas the amorphous NiS nanosheets are mainly advantageous for decreasing the thermodynamic overpotentials for surface H 2 -evolution reactions. It is hoped that the implantation of multifunctional metallic interface layers can provide a versatile approach to enhance the

  7. A study of the diffusion mechanisms in amorphous metallic alloys: diffusion and diffusion under high pressure in an amorphous NiZr alloy; Contribution a l`etude des mecanismes de transport dans les materiaux metalliques amorphes: diffusion et diffusion sous pression dans NiZr amorphe

    Energy Technology Data Exchange (ETDEWEB)

    Grandjean, A.

    1996-03-01

    The aim of this work is a better understanding of the diffusion mechanism in amorphous metallic alloys. Then interdiffusion and hafnium diffusion in amorphous NiZr alloy have been studied. Samples used are made by sputtering co-deposition under vacuum and are well relaxed before the diffusion measurements. The time evolution of resistivity during annealing due to the decay of a composition modulated film has been measured and from this change in resistivity interdiffusion coefficients have been determined. Dependence of Hf diffusion on temperature and pressure has been studied using (SIMS). In this two cases, the diffusion process obeys an Arrhenius law and gives an activation energy of 1.33 eV for interdiffusion, and 0.76 eV for Hf diffusion. An effect of pressure on Hf diffusion has been found leading to an activation volume of 8.5 angstrom{sup 3}. Thanks to these results, two approaches of the diffusion mechanisms in these systems have been proposed. The first comes from a comparison with the diffusion mechanisms in crystalline metals, that is to say by point defects. The second is an hypothesis of collective motions in these non crystalline alloys. (author).

  8. High-throughput exploration of thermoelectric and mechanical properties of amorphous NbO2 with transition metal additions

    International Nuclear Information System (INIS)

    Music, Denis; Geyer, Richard W.; Hans, Marcus

    2016-01-01

    To increase the thermoelectric efficiency and reduce the thermal fatigue upon cyclic heat loading, alloying of amorphous NbO 2 with all 3d and 5d transition metals has systematically been investigated using density functional theory. It was found that Ta fulfills the key design criteria, namely, enhancement of the Seebeck coefficient and positive Cauchy pressure (ductility gauge). These quantum mechanical predictions were validated by assessing the thermoelectric and elastic properties on combinatorial thin films, which is a high-throughput approach. The maximum power factor is 2813 μW m −1  K −2 for the Ta/Nb ratio of 0.25, which is a hundredfold increment compared to pure NbO 2 and exceeds many oxide thermoelectrics. Based on the elasticity measurements, the consistency between theory and experiment for the Cauchy pressure was attained within 2%. On the basis of the electronic structure analysis, these configurations can be perceived as metallic, which is consistent with low electrical resistivity and ductile behavior. Furthermore, a pronounced quantum confinement effect occurs, which is identified as the physical origin for the Seebeck coefficient enhancement.

  9. High-throughput exploration of thermoelectric and mechanical properties of amorphous NbO2 with transition metal additions

    Science.gov (United States)

    Music, Denis; Geyer, Richard W.; Hans, Marcus

    2016-07-01

    To increase the thermoelectric efficiency and reduce the thermal fatigue upon cyclic heat loading, alloying of amorphous NbO2 with all 3d and 5d transition metals has systematically been investigated using density functional theory. It was found that Ta fulfills the key design criteria, namely, enhancement of the Seebeck coefficient and positive Cauchy pressure (ductility gauge). These quantum mechanical predictions were validated by assessing the thermoelectric and elastic properties on combinatorial thin films, which is a high-throughput approach. The maximum power factor is 2813 μW m-1 K-2 for the Ta/Nb ratio of 0.25, which is a hundredfold increment compared to pure NbO2 and exceeds many oxide thermoelectrics. Based on the elasticity measurements, the consistency between theory and experiment for the Cauchy pressure was attained within 2%. On the basis of the electronic structure analysis, these configurations can be perceived as metallic, which is consistent with low electrical resistivity and ductile behavior. Furthermore, a pronounced quantum confinement effect occurs, which is identified as the physical origin for the Seebeck coefficient enhancement.

  10. Semiconductor to metallic transition in bulk accumulated amorphous indium-gallium-zinc-oxide dual gate thin-film transistor

    Directory of Open Access Journals (Sweden)

    Minkyu Chun

    2015-05-01

    Full Text Available We investigated the effects of top gate voltage (VTG and temperature (in the range of 25 to 70 oC on dual-gate (DG back-channel-etched (BCE amorphous-indium-gallium-zinc-oxide (a-IGZO thin film transistors (TFTs characteristics. The increment of VTG from -20V to +20V, decreases the threshold voltage (VTH from 19.6V to 3.8V and increases the electron density to 8.8 x 1018cm−3. Temperature dependent field-effect mobility in saturation regime, extracted from bottom gate sweep, show a critical dependency on VTG. At VTG of 20V, the mobility decreases from 19.1 to 15.4 cm2/V ⋅ s with increasing temperature, showing a metallic conduction. On the other hand, at VTG of - 20V, the mobility increases from 6.4 to 7.5cm2/V ⋅ s with increasing temperature. Since the top gate bias controls the position of Fermi level, the temperature dependent mobility shows metallic conduction when the Fermi level is above the conduction band edge, by applying high positive bias to the top gate.

  11. High-throughput exploration of thermoelectric and mechanical properties of amorphous NbO{sub 2} with transition metal additions

    Energy Technology Data Exchange (ETDEWEB)

    Music, Denis, E-mail: music@mch.rwth-aachen.de; Geyer, Richard W.; Hans, Marcus [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, 52074 Aachen (Germany)

    2016-07-28

    To increase the thermoelectric efficiency and reduce the thermal fatigue upon cyclic heat loading, alloying of amorphous NbO{sub 2} with all 3d and 5d transition metals has systematically been investigated using density functional theory. It was found that Ta fulfills the key design criteria, namely, enhancement of the Seebeck coefficient and positive Cauchy pressure (ductility gauge). These quantum mechanical predictions were validated by assessing the thermoelectric and elastic properties on combinatorial thin films, which is a high-throughput approach. The maximum power factor is 2813 μW m{sup −1} K{sup −2} for the Ta/Nb ratio of 0.25, which is a hundredfold increment compared to pure NbO{sub 2} and exceeds many oxide thermoelectrics. Based on the elasticity measurements, the consistency between theory and experiment for the Cauchy pressure was attained within 2%. On the basis of the electronic structure analysis, these configurations can be perceived as metallic, which is consistent with low electrical resistivity and ductile behavior. Furthermore, a pronounced quantum confinement effect occurs, which is identified as the physical origin for the Seebeck coefficient enhancement.

  12. Metal (Ag/Ti)-Containing Hydrogenated Amorphous Carbon Nanocomposite Films with Enhanced Nanoscratch Resistance: Hybrid PECVD/PVD System and Microstructural Characteristics.

    Science.gov (United States)

    Constantinou, Marios; Nikolaou, Petros; Koutsokeras, Loukas; Avgeropoulos, Apostolos; Moschovas, Dimitrios; Varotsis, Constantinos; Patsalas, Panos; Kelires, Pantelis; Constantinides, Georgios

    2018-03-30

    This study aimed to develop hydrogenated amorphous carbon thin films with embedded metallic nanoparticles (a-C:H:Me) of controlled size and concentration. Towards this end, a novel hybrid deposition system is presented that uses a combination of Plasma Enhanced Chemical Vapor Deposition (PECVD) and Physical Vapor Deposition (PVD) technologies. The a-C:H matrix was deposited through the acceleration of carbon ions generated through a radio-frequency (RF) plasma source by cracking methane, whereas metallic nanoparticles were generated and deposited using terminated gas condensation (TGC) technology. The resulting material was a hydrogenated amorphous carbon film with controlled physical properties and evenly dispersed metallic nanoparticles (here Ag or Ti). The physical, chemical, morphological and mechanical characteristics of the films were investigated through X-ray reflectivity (XRR), Raman spectroscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) and nanoscratch testing. The resulting amorphous carbon metal nanocomposite films (a-C:H:Ag and a-C:H:Ti) exhibited enhanced nanoscratch resistance (up to +50%) and low values of friction coefficient (<0.05), properties desirable for protective coatings and/or solid lubricant applications. The ability to form nanocomposite structures with tunable coating performance by potentially controlling the carbon bonding, hydrogen content, and the type/size/percent of metallic nanoparticles opens new avenues for a broad range of applications in which mechanical, physical, biological and/or combinatorial properties are required.

  13. Metal (Ag/Ti-Containing Hydrogenated Amorphous Carbon Nanocomposite Films with Enhanced Nanoscratch Resistance: Hybrid PECVD/PVD System and Microstructural Characteristics

    Directory of Open Access Journals (Sweden)

    Marios Constantinou

    2018-03-01

    Full Text Available This study aimed to develop hydrogenated amorphous carbon thin films with embedded metallic nanoparticles (a–C:H:Me of controlled size and concentration. Towards this end, a novel hybrid deposition system is presented that uses a combination of Plasma Enhanced Chemical Vapor Deposition (PECVD and Physical Vapor Deposition (PVD technologies. The a–C:H matrix was deposited through the acceleration of carbon ions generated through a radio-frequency (RF plasma source by cracking methane, whereas metallic nanoparticles were generated and deposited using terminated gas condensation (TGC technology. The resulting material was a hydrogenated amorphous carbon film with controlled physical properties and evenly dispersed metallic nanoparticles (here Ag or Ti. The physical, chemical, morphological and mechanical characteristics of the films were investigated through X-ray reflectivity (XRR, Raman spectroscopy, Scanning Electron Microscopy (SEM, Atomic Force Microscopy (AFM, Transmission Electron Microscopy (TEM and nanoscratch testing. The resulting amorphous carbon metal nanocomposite films (a–C:H:Ag and a–C:H:Ti exhibited enhanced nanoscratch resistance (up to +50% and low values of friction coefficient (<0.05, properties desirable for protective coatings and/or solid lubricant applications. The ability to form nanocomposite structures with tunable coating performance by potentially controlling the carbon bonding, hydrogen content, and the type/size/percent of metallic nanoparticles opens new avenues for a broad range of applications in which mechanical, physical, biological and/or combinatorial properties are required.

  14. The Effects of Strain-Annealing on Tuning Permeability and Lowering Losses in Fe-Ni-Based Metal Amorphous Nanocomposites

    Science.gov (United States)

    Aronhime, Natan; DeGeorge, Vincent; Keylin, Vladimir; Ohodnicki, Paul; McHenry, Michael E.

    2017-11-01

    Fe-Ni-based metal amorphous nanocomposites with a range of compositions (Fe100- x Ni x )80Nb4Si2B14 (30 ≤ x ≤ 70) are investigated for motor and transformer applications, where it is beneficial to have tunable permeability. It is shown that strain annealing offers an effective method for tuning permeability in these alloys. For an Fe-rich alloy, permeability increased from 4000 to 16,000 with a positive magnetostriction. In a Ni-rich alloy, permeability decreased from 290 to 40 with a negative magnetostriction. Significant elongations (above 60%) are observed during strain annealing at high stress. Crystallization products have been determined in all alloys heated to 480°C. γ-FeNi is formed in all alloys, while (Fe30Ni70)80Nb4Si2B14 also undergoes secondary crystallization at temperatures of approximately 480°C to form a phase with the Cr23C6-type structure and a likely composition of Fe21Nb2B6. Toroidal losses have been measured for (Fe70Ni30)80Nb4Si y B16- y (0 ≤ y ≤ 3) at various annealing temperatures. At an induction of 1 T and frequency of 400 Hz and 1 kHz, the toroidal losses obtained are W1.0T, 400 Hz = 0.9 W/kg and W1.0T, 1 kHz = 2.3 W/kg, respectively. These losses are lower than losses recently reported for state of the art 3.0% and 6.5% silicon steels, a Metglas Fe-based amorphous alloy, and some Fe-based nanocomposites.

  15. Development and initial characterization of amorphous metals rich in W and/or RE

    Energy Technology Data Exchange (ETDEWEB)

    Giessen, B.C.; Polk, D.E.

    1978-01-01

    Studies of refractory metal alloys concentrated on two families of such alloys: ternary tungsten alloys and binary T/sub 5/-T/sub 9/ alloys. The former were selected because of the possibility of finding desirable glasses consisting of low-cost components; the latter were chosen because they could be quenched into metallic glasses with high thermal stability and good toughness. Alloys selected for study were prepared by arc-melting and were subsequently rapidly quenched in an arc furnace quenching unit. Considerable difficulties were encountered in preparing metal--metalloid alloys, such as W--B, as well as alloys combining high melting and low melting transition metals, such as W and Ni. Brittleness of ductility as revealed by a bend test was noted. Measurements were made up to 1000 K and resistivity measurements up to 1300 K. The probe for electrical resistivity measurements at high temperatures has been constructed and tested. To determine the elastic (Young's) moduli of new metallic glasses prepared in this program, equipment utilizing the pulse--echo method was set up.

  16. Influences of ultrathin amorphous buffer layers on GaAs/Si grown by metal-organic chemical vapor deposition

    Science.gov (United States)

    Hu, Haiyang; Wang, Jun; Cheng, Zhuo; Yang, Zeyuan; Yin, Haiying; Fan, Yibing; Ma, Xing; Huang, Yongqing; Ren, Xiaomin

    2018-04-01

    In this work, a technique for the growth of GaAs epilayers on Si, combining an ultrathin amorphous Si buffer layer and a three-step growth method, has been developed to achieve high crystalline quality for monolithic integration. The influences of the combined technique for the crystalline quality of GaAs on Si are researched in this article. The crystalline quality of GaAs epilayer on Si with the combined technique is investigated by scanning electron microscopy, double crystal X-ray diffraction (DCXRD), photoluminescence, and transmission electron microscopy measurements. By means of this technique, a 1.8-µm-thick high-quality GaAs/Si epilayer was grown by metal-organic chemical vapor deposition. The full-width at half-maximum of the DCXRD rocking curve in the (400) reflection obtained from the GaAs/Si epilayers is about 163 arcsec. Compared with only using three-step growth method, the current technique reduces etch pit density from 3 × 106 cm-2 to 1.5 × 105 cm-2. The results demonstrate that the combined technique is an effective approach for reducing dislocation density in GaAs epilayers on Si.

  17. High performance homes

    DEFF Research Database (Denmark)

    Beim, Anne; Vibæk, Kasper Sánchez

    2014-01-01

    Can prefabrication contribute to the development of high performance homes? To answer this question, this chapter defines high performance in more broadly inclusive terms, acknowledging the technical, architectural, social and economic conditions under which energy consumption and production occur....... Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy...

  18. Development of a low loss magnetic composite utilizing amorphous metal flake. Third semi-annual progress report, 19 September 1979-18 March 1980

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.

    1980-04-01

    The objective of this project is to determine the feasibility of casting amorphous metal ribbon in the shape of a helix with properties suitable for motor applications. The tasks include (1) determination of the casting parameters required to produce a helical ribbon, (2) evaluation of magnetic properties and methods for bonding, and (3) developing methods for patterning a wheel for producing motor slots in as-cast ribbon.

  19. Investigation into the Origin of Magnetic Properties of Amorphous Metallic Alloys.

    Science.gov (United States)

    1981-10-01

    gratefully acknowledged. References Alben R C, Budnick J I and ( argill i S III 1976 Merallt (lasseN ed H J Leamy and J Gilman (Metals [Park, Ohio: American...cast annealed Q 20 as 4nMs Os 4nM5 Alloy System emu/8 kG emu/g kG Reference 0. 5 l-e-B 180 16.7 184 17.0 1II 46,.( le -B-C 180 16.9 184 17.3 [21, (4] 25...Dans les alliages pour paliers au phosphore, le phosphore segrege au cours du recuit, cc qui conduit i une fragilisation de l’echantillon. Dans cet

  20. Upper critical fields and superconducting transition temperatures of some zirconium-base amorphous transition-metal alloys

    International Nuclear Information System (INIS)

    Karkut, M.G.; Hake, R.R.

    1983-01-01

    Superconducting upper critical fields H/sub c/2(T), transition temperatures T/sub c/, and normal-state electrical resistivities rho/sub n/ have been measured in the amorphous transition-metal alloy series Zr/sub 1-z/Co/sub x/, Zr/sub 1-x/Ni/sub x/, (Zr/sub 1-x/Ti/sub x/)/sub 0.78/Ni/sub 0.22/, and (Zr/sub 1-x/Nb/sub x/)/sub 0.78/Ni/sub 0.22/. Structural integrity of these melt-spun alloys is indicated by x-ray, density, bend-ductility, normal-state electrical resistivity, superconducting transition width, and mixed-state flux-pinning measurements. The specimens display T/sub c/ = 2.1--3.8 K, rho/sub n/ = 159--190 μΩ cm, and Vertical Bar(dH/sub c/2/dT)cVertical Bar = 28--36 kG/K. These imply electron mean free paths lroughly-equal2--6 A, zero-temperature Ginzburg-Landau coherence distances xi/sub G/0roughly-equal50--70 A, penetration depths lambda/sub G/0roughly-equal(7--10) x 10 3 A, and extremely high dirtiness parameters xi 0 /lroughly-equal300--1300. All alloys display H/sub c/2(T) curves with negative curvature and (with two exceptions) fair agreement with the standard dirty-limit theory of Werthamer, Helfand, Hohenberg, and Maki (WHHM) for physically reasonable values of spin-orbit-coupling induced, electron-spin-flip scattering time tau/sub so/. This is in contrast to the anomalously elevated H/sub c/2(T) behavior which is nearly linear in T that is observed by some, and the unphysically low-tau/sub so/ fits to WHHM theory obtained by others, for various amorphous alloys

  1. New high performances fluoroelastomers

    Energy Technology Data Exchange (ETDEWEB)

    Arcella, Vincenzo; Brinati, Giulio; Apostolo, Marco [Ausimont R and D, Bollate (Italy)

    1997-03-01

    Fluoroelastomers are amorphous polymers designed for high demanding applications in hostile environments. The presence of fluorine in the polymer backbone imparts to the structure the ability to withstand very high temperatures and, at the same time, high resistance to chemical attack. However, the presence of fluorine is also a source of drawbacks, such as high chain stiffness and difficulties to obtain permanent networks. In the present paper recent Ausimont developments in the field of fluoroelastomers are presented.

  2. Effect of H and OH desorption and diffusion on electronic structure in amorphous In-Ga-Zn-O metal-oxide-semiconductor diodes with various gate insulators

    Science.gov (United States)

    Hino, Aya; Morita, Shinya; Yasuno, Satoshi; Kishi, Tomoya; Hayashi, Kazushi; Kugimiya, Toshihiro

    2012-12-01

    Metal-oxide-semiconductor (MOS) diodes with various gate insulators (G/Is) were characterized by capacitance-voltage characteristics and isothermal capacitance transient spectroscopy (ICTS) to evaluate the effect of H and OH desorption and diffusion on the electronic structures in amorphous In-Ga-Zn-O (a-IGZO) thin films. The density and the distribution of the space charge were found to be varied depending on the nature of the G/I. In the case of thermally grown SiO2 (thermal SiO2) G/Is, a high space-charge region was observed near the a-IGZO and G/I interface. After thermal annealing, the space-charge density in the deeper region of the film decreased, whereas remained unchanged near the interface region. The ICTS spectra obtained from the MOS diodes with the thermal SiO2 G/Is consisted of two broad peaks at around 5 × 10-4 and 3 × 10-2 s before annealing, while one broad peak was observed at around 1 × 10-4 s at the interface and at around 1 × 10-3 s in the bulk after annealing. Further, the trap density was considerably high near the interface. In contrast, the space-charge density was high throughout the bulk region of the MOS diode when the G/I was deposited by chemical vapor deposition (CVD). The ICTS spectra from the MOS diodes with the CVD G/Is revealed the existence of continuously distributed trap states, suggesting formations of high-density tail states below the conduction band minimum. According to secondary ion mass spectroscopy analyses, desorption and outdiffusion of H and OH were clearly observed in the CVD G/I sample. These phenomena could introduce structural fluctuations in the a-IGZO films, resulting in the formation of the conduction band tail states. Thin-film transistors (TFTs) with the same gate structure as the MOS diodes were fabricated to correlate the electronic properties with the TFT performance, and it was found that TFTs with the CVD G/I showed a reduced saturation mobility. These results indicate that the electronic structures

  3. High Performance Macromolecular Material

    National Research Council Canada - National Science Library

    Forest, M

    2002-01-01

    .... In essence, most commercial high-performance polymers are processed through fiber spinning, following Nature and spider silk, which is still pound-for-pound the toughest liquid crystalline polymer...

  4. High Performance Macromolecular Materials

    National Research Council Canada - National Science Library

    Forest, M. G; Choate, Eric; Zheng, Xiaoyu; Zhou, Ruhai; Cui, Zhenlu; Zhou, Hong

    2006-01-01

    ... property characterization. The materials considered are nano-rods and nano-clays in aqueous and polymeric solvents, which are flight technology targets for high performance properties ranging from electrical, thermal...

  5. High Performance Marine Vessels

    CERN Document Server

    Yun, Liang

    2012-01-01

    High Performance Marine Vessels (HPMVs) range from the Fast Ferries to the latest high speed Navy Craft, including competition power boats and hydroplanes, hydrofoils, hovercraft, catamarans and other multi-hull craft. High Performance Marine Vessels covers the main concepts of HPMVs and discusses historical background, design features, services that have been successful and not so successful, and some sample data of the range of HPMVs to date. Included is a comparison of all HPMVs craft and the differences between them and descriptions of performance (hydrodynamics and aerodynamics). Readers will find a comprehensive overview of the design, development and building of HPMVs. In summary, this book: Focuses on technology at the aero-marine interface Covers the full range of high performance marine vessel concepts Explains the historical development of various HPMVs Discusses ferries, racing and pleasure craft, as well as utility and military missions High Performance Marine Vessels is an ideal book for student...

  6. Production of amorphous metal layers using ion implantation and investigation of the related modification of some surface properties

    International Nuclear Information System (INIS)

    Hoang Dac Luc; Vu Hoang Lam.

    1993-01-01

    Amorphous layers were produced by implanting B + ions into Al at 50 keV. The modification of the electrochemical corrosion resistance and the mechanical strength of implanted specimen was investigated. (author). 2 refs, 1 tab, 2 figs

  7. Micromechanics of Amorphous Metal/Polymer Hybrid Structures with 3D Cellular Architectures: Size Effects, Buckling Behavior, and Energy Absorption Capability.

    Science.gov (United States)

    Mieszala, Maxime; Hasegawa, Madoka; Guillonneau, Gaylord; Bauer, Jens; Raghavan, Rejin; Frantz, Cédric; Kraft, Oliver; Mischler, Stefano; Michler, Johann; Philippe, Laetitia

    2017-02-01

    By designing advantageous cellular geometries and combining the material size effects at the nanometer scale, lightweight hybrid microarchitectured materials with tailored structural properties are achieved. Prior studies reported the mechanical properties of high strength cellular ceramic composites, obtained by atomic layer deposition. However, few studies have examined the properties of similar structures with metal coatings. To determine the mechanical performance of polymer cellular structures reinforced with a metal coating, 3D laser lithography and electroless deposition of an amorphous layer of nickel-boron (NiB) is used for the first time to produce metal/polymer hybrid structures. In this work, the mechanical response of microarchitectured structures is investigated with an emphasis on the effects of the architecture and the amorphous NiB thickness on their deformation mechanisms and energy absorption capability. Microcompression experiments show an enhancement of the mechanical properties with the NiB thickness, suggesting that the deformation mechanism and the buckling behavior are controlled by the brittle-to-ductile transition in the NiB layer. In addition, the energy absorption properties demonstrate the possibility of tuning the energy absorption efficiency with adequate designs. These findings suggest that microarchitectured metal/polymer hybrid structures are effective in producing materials with unique property combinations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries

    Science.gov (United States)

    Cha, Eunho; Patel, Mumukshu D.; Park, Juhong; Hwang, Jeongwoon; Prasad, Vish; Cho, Kyeongjae; Choi, Wonbong

    2018-04-01

    Among the candidates to replace Li-ion batteries, Li-S cells are an attractive option as their energy density is about five times higher ( 2,600 Wh kg-1). The success of Li-S cells depends in large part on the utilization of metallic Li as anode material. Metallic lithium, however, is prone to grow parasitic dendrites and is highly reactive to several electrolytes; moreover, Li-S cells with metallic Li are also susceptible to polysulfides dissolution. Here, we show that 10-nm-thick two-dimensional (2D) MoS2 can act as a protective layer for Li-metal anodes, greatly improving the performances of Li-S batteries. In particular, we observe stable Li electrodeposition and the suppression of dendrite nucleation sites. The deposition and dissolution process of a symmetric MoS2-coated Li-metal cell operates at a current density of 10 mA cm-2 with low voltage hysteresis and a threefold improvement in cycle life compared with using bare Li-metal. In a Li-S full-cell configuration, using the MoS2-coated Li as anode and a 3D carbon nanotube-sulfur cathode, we obtain a specific energy density of 589 Wh kg-1 and a Coulombic efficiency of 98% for over 1,200 cycles at 0.5 C. Our approach could lead to the realization of high energy density and safe Li-metal-based batteries.

  9. Validation of MCNP6 Version 1.0 with the ENDF/B-VII.1 Cross Section Library for Plutonium Metals, Oxides, and Solutions on the High Performance Computing Platform Moonlight

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Bryan Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gough, Sean T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-05

    This report documents a validation of the MCNP6 Version 1.0 computer code on the high performance computing platform Moonlight, for operations at Los Alamos National Laboratory (LANL) that involve plutonium metals, oxides, and solutions. The validation is conducted using the ENDF/B-VII.1 continuous energy group cross section library at room temperature. The results are for use by nuclear criticality safety personnel in performing analysis and evaluation of various facility activities involving plutonium materials.

  10. High performance homes

    DEFF Research Database (Denmark)

    Beim, Anne; Vibæk, Kasper Sánchez

    2014-01-01

    Can prefabrication contribute to the development of high performance homes? To answer this question, this chapter defines high performance in more broadly inclusive terms, acknowledging the technical, architectural, social and economic conditions under which energy consumption and production occur....... Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy...... efficient to operate and valuable for building communities. Herein discussed are two successful examples of low energy prefabricated housing projects built in Copenhagen Denmark, which embraced both the constraints and possibilities offered by prefabrication....

  11. Danish High Performance Concretes

    DEFF Research Database (Denmark)

    Nielsen, M. P.; Christoffersen, J.; Frederiksen, J.

    1994-01-01

    In this paper the main results obtained in the research program High Performance Concretes in the 90's are presented. This program was financed by the Danish government and was carried out in cooperation between The Technical University of Denmark, several private companies, and Aalborg University...

  12. High performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, M.B. [comp.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  13. In vitro metal ion release and biocompatibility of amorphous Mg67Zn28Ca5 alloy with/without gelatin coating.

    Science.gov (United States)

    Chan, W Y; Chian, K S; Tan, M J

    2013-12-01

    Amorphous zinc-rich Mg-Zn-Ca alloys have exhibited good tissue compatibility and low hydrogen evolution in vivo. However, suboptimal cell-surface interaction on magnesium alloy surface observed in vitro could lead to reduced integration with host tissue for regenerative purpose. This study aims to improve cell-surface interaction of amorphous Mg67Zn28Ca5 alloy by coating a gelatin layer by electrospinning. Coated/uncoated alloys were immersed and extracted for 3 days under different CO2. The immersion results showed that pH and metal ion release in the alloy extracts were affected by gelatin coating and CO2, suggesting their roles in alloy biocorrosion and a mechanism has been proposed for the alloy-CO2 system with/without coating. Cytotoxicity results are evident that gelatin-coated alloy with 2-day crosslinking not only exhibited no indirect cytotoxicity, but also supported attachment of L929 and MG63 cell lines around/on the alloy with high viability. Therefore, amorphous Mg67Zn28Ca5 alloy coated with gelatin by electrospinning technique provides a useful method to improve alloy biocompatibility. © 2013 Elsevier B.V. All rights reserved.

  14. Carboxyl and negative charge-functionalized superparamagnetic nanochains with amorphous carbon shell and magnetic core: synthesis and their application in removal of heavy metal ions.

    Science.gov (United States)

    Wang, Hui; Chen, Qian-Wang; Chen, Jian; Yu, Bin-Xing; Hu, Xian-Yi

    2011-11-01

    This communication describes carboxyl-functionalized nanochains with amorphous carbon shell (18 nm) and magnetic core using ferrocene as a single reactant under the induction of an external magnetic field (0.40 T), which shows a superparamagnetic behavior and magnetization saturation of 38.6 emu g(-1). Because of mesoporous structure (3.8 nm) and surface negative charge (-35.18 mV), the nanochains can be used as adsorbent for removing the heavy metal ions (90%) from aqueous solution.

  15. Amorphous magnetism

    International Nuclear Information System (INIS)

    Rechenberg, H.R.

    1984-01-01

    The consequences of disorder on magnetic properties of solids are examined. In this context the word 'disorder' is not synonimous of structural amorphicity; chemical disorder can be achieved e.g. by randomly diffusing magnetic atoms on a nonmagnetic crystalline lattice. The name Amorphous Magnetism must be taken in a broad sense. (Author) [pt

  16. Composite films of metal doped CoS/carbon allotropes; efficient electrocatalyst counter electrodes for high performance quantum dot-sensitized solar cells.

    Science.gov (United States)

    Khalili, Seyede Sara; Dehghani, Hossein; Afrooz, Malihe

    2017-05-01

    This study reports the enhanced catalytic ability of metal ions-doped CoS and CoS/carbon allotrope counter electrodes (CEs) (synthesized using a successive ionic layer adsorption and reaction (SILAR) method) to improve the power conversion efficiency (η) in quantum dot-sensitized solar cells (QDSSCs). Firstly, doping effects of different metal ions (Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ ) in the CoS CE on the QDSSCs performance have been investigated. Overall, among the different metal doped CoS CEs, the best energy conversion efficiency of 2.19%, achieved for Sr, is the highest reported for QDSSCs constructed with metal doped CoS. A sandwich structural Sr- and Ba-CoS/carbon allotrope (graphene sheet (GS), graphene oxide (GO) and carbon nanotube (CNT)) composite CEs have been prepared by repeating electrophoretic deposition (EPD) of carbon materials and deposition of CoS nanoparticles. Dramatic enhancements of η have been observed with the Sr- and Ba-CoS/GO CEs based QDSSCs (∼76% and ∼41%, respectively), which is higher than that of the bare CoS CE. Because of the large specific surface area and superior electrical conductivity of GS, GO and CNT and the high electrocatalytic activity of CoS, these CEs show an improvement in the photocurrent density in the cells, as revealed from electrochemical and spectral data. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Fundamentals of amorphous solids structure and properties

    CERN Document Server

    Stachurski, Zbigniew H

    2014-01-01

    Long awaited, this textbook fills the gap for convincing concepts to describe amorphous solids. Adopting a unique approach, the author develops a framework that lays the foundations for a theory of amorphousness. He unravels the scientific mysteries surrounding the topic, replacing rather vague notions of amorphous materials as disordered crystalline solids with the well-founded concept of ideal amorphous solids. A classification of amorphous materials into inorganic glasses, organic glasses, glassy metallic alloys, and thin films sets the scene for the development of the model of ideal amorph

  18. High-Performance Networking

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    The series will start with an historical introduction about what people saw as high performance message communication in their time and how that developed to the now to day known "standard computer network communication". It will be followed by a far more technical part that uses the High Performance Computer Network standards of the 90's, with 1 Gbit/sec systems as introduction for an in depth explanation of the three new 10 Gbit/s network and interconnect technology standards that exist already or emerge. If necessary for a good understanding some sidesteps will be included to explain important protocols as well as some necessary details of concerned Wide Area Network (WAN) standards details including some basics of wavelength multiplexing (DWDM). Some remarks will be made concerning the rapid expanding applications of networked storage.

  19. High performance polymeric foams

    International Nuclear Information System (INIS)

    Gargiulo, M.; Sorrentino, L.; Iannace, S.

    2008-01-01

    The aim of this work was to investigate the foamability of high-performance polymers (polyethersulfone, polyphenylsulfone, polyetherimide and polyethylenenaphtalate). Two different methods have been used to prepare the foam samples: high temperature expansion and two-stage batch process. The effects of processing parameters (saturation time and pressure, foaming temperature) on the densities and microcellular structures of these foams were analyzed by using scanning electron microscopy

  20. High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Traian Oneţ

    2009-01-01

    Full Text Available The paper presents the last studies and researches accomplished in Cluj-Napoca related to high performance concrete, high strength concrete and self compacting concrete. The purpose of this paper is to raid upon the advantages and inconveniences when a particular concrete type is used. Two concrete recipes are presented, namely for the concrete used in rigid pavement for roads and another one for self-compacting concrete.

  1. Strong Metal-Support Interaction: Growth of Individual Carbon Nanofibers from Amorphous Carbon Interacting with an Electron Beam

    DEFF Research Database (Denmark)

    Zhang, Wei; Kuhn, Luise Theil

    2013-01-01

    The article discusses the growth behavior of carbon nanofibers (CNFs). It mentions that CNFs can be synthesized using methods such as arc-discharge, laser ablation and chemical vapor deposition. It further states that CNFs can be grown from a physical mixing of amorphous carbon and CGO...

  2. A facile and general preparation of high-performance noble-metal-based free-standing nanomembranes by a reagentless interfacial self-assembly strategy

    Science.gov (United States)

    Wu, Haoxi; He, Haili; Zhai, Yujuan; Li, Haijuan; Lai, Jianping; Jin, Yongdong

    2012-10-01

    As a simple and flexible 2D platform, the water-air interface is envisioned as an environmentally-friendly approach to prepare ultrathin free-standing nanomembranes (FNMs) of monolayered nanoparticles of interest via interfacial self-assembly. However, attempts so far have been rather rare due to the lack of efficient methods. In this article, we report on a facile and general strategy for fabrication of a family of noble metal-based FNMs by a simple and reagentless interfacial self-assembly tactics to prepare functional (plasmonic or catalytic) FNMs, such as Au, Ag, Pd, Pt-FNMs and their bimetallic hybrids, Ag/Au-FNMs and Pd/Pt-FNMs. The organic solvent-free process, varying somewhat from metal to metal only in precursors, reducing agents and dosage of reagents used, is found to be a general phenomenon and ligand-independent (irrespective of the monolayer quality of the resulting FNMs), allowing the growth of high-quality noble metal-based FNMs with well-defined nanoparticulate and monolayer morphology as large as several square centimeters. Heat treatment (boiling) is performed to accelerate the formation of FNMs within 15 min. More significantly, the as-prepared plasmonic Au-FNMs acting as a SERS substrate show a superior activity; whereas the resulting catalytic Pd-FNMs, except for their excellent ethanol electrooxidation performance, exhibit higher electrocatalytic activity for formic acid oxidation than commercial catalysts.As a simple and flexible 2D platform, the water-air interface is envisioned as an environmentally-friendly approach to prepare ultrathin free-standing nanomembranes (FNMs) of monolayered nanoparticles of interest via interfacial self-assembly. However, attempts so far have been rather rare due to the lack of efficient methods. In this article, we report on a facile and general strategy for fabrication of a family of noble metal-based FNMs by a simple and reagentless interfacial self-assembly tactics to prepare functional (plasmonic or

  3. Technology breakthroughs in high performance metal-oxide-semiconductor devices for ultra-high density, low power non-volatile memory applications

    Science.gov (United States)

    Hong, Augustin Jinwoo

    Non-volatile memory devices have attracted much attention because data can be retained without power consumption more than a decade. Therefore, non-volatile memory devices are essential to mobile electronic applications. Among state of the art non-volatile memory devices, NAND flash memory has earned the highest attention because of its ultra-high scalability and therefore its ultra-high storage capacity. However, human desire as well as market competition requires not only larger storage capacity but also lower power consumption for longer battery life time. One way to meet this human desire and extend the benefits of NAND flash memory is finding out new materials for storage layer inside the flash memory, which is called floating gate in the state of the art flash memory device. In this dissertation, we study new materials for the floating gate that can lower down the power consumption and increase the storage capacity at the same time. To this end, we employ various materials such as metal nanodot, metal thin film and graphene incorporating complementary-metal-oxide-semiconductor (CMOS) compatible processes. Experimental results show excellent memory effects at relatively low operating voltages. Detailed physics and analysis on experimental results are discussed. These new materials for data storage can be promising candidates for future non-volatile memory application beyond the state of the art flash technologies.

  4. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.

    Science.gov (United States)

    Kim, Hyungki; Song, Intek; Park, Chibeom; Son, Minhyeok; Hong, Misun; Kim, Youngwook; Kim, Jun Sung; Shin, Hyun-Joon; Baik, Jaeyoon; Choi, Hee Cheul

    2013-08-27

    We report that high-quality single-layer graphene (SLG) has been successfully synthesized directly on various dielectric substrates including amorphous SiO2/Si by a Cu-vapor-assisted chemical vapor deposition (CVD) process. The Cu vapors produced by the sublimation of Cu foil that is suspended above target substrates without physical contact catalyze the pyrolysis of methane gas and assist nucleation of graphene on the substrates. Raman spectra and mapping images reveal that the graphene formed on a SiO2/Si substrate is almost defect-free and homogeneous single layer. The overall quality of graphene grown by Cu-vapor-assisted CVD is comparable to that of the graphene grown by regular metal-catalyzed CVD on a Cu foil. While Cu vapor induces the nucleation and growth of SLG on an amorphous substrate, the resulting SLG is confirmed to be Cu-free by synchrotron X-ray photoelectron spectroscopy. The SLG grown by Cu-vapor-assisted CVD is fabricated into field effect transistor devices without transfer steps that are generally required when SLG is grown by regular CVD process on metal catalyst substrates. This method has overcome two important hurdles previously present when the catalyst-free CVD process is used for the growth of SLG on fused quartz and hexagonal boron nitride substrates, that is, high degree of structural defects and limited size of resulting graphene, respectively.

  5. Amorphous Metal-Free Room-Temperature Phosphorescent Small Molecules with Multicolor Photoluminescence via a Host-Guest and Dual-Emission Strategy.

    Science.gov (United States)

    Li, Dengfeng; Lu, Feifei; Wang, Jie; Hu, Wende; Cao, Xiao-Ming; Ma, Xiang; Tian, He

    2018-02-07

    Metal-free room-temperature phosphorescence (RTP) materials offer unprecedented potentials for photoelectric and biochemical materials due to their unique advantages of long lifetime and low toxicity. However, the achievements of phosphorescence at ambient condition so far have been mainly focused on ordered crystal lattice or on embedding into rigid matrices, where the preparation process might bring out poor repeatability and limited application. In this research, a series of amorphous organic small molecular compounds were developed with efficient RTP emission through conveniently modifying phosphor moieties to β-cyclodextrin (β-CD). The hydrogen bonding between the cyclodextrin derivatives immobilizes the phosphors to suppress the nonradiative relaxation and shields phosphors from quenchers, which enables such molecules to emit efficient RTP emission with decent quantum yields. Furthermore, one such cyclodextrin derivative was utilized to construct a host-guest system incorporating a fluorescent guest molecule, exhibiting excellent RTP-fluorescence dual-emission properties and multicolor emission with a wide range from yellow to purple including white-light emission. This innovative and universal strategy opens up new research paths to construct amorphous metal-free small molecular RTP materials and to design organic white-light-emitting materials using a single supramolecular platform.

  6. Clojure high performance programming

    CERN Document Server

    Kumar, Shantanu

    2013-01-01

    This is a short, practical guide that will teach you everything you need to know to start writing high performance Clojure code.This book is ideal for intermediate Clojure developers who are looking to get a good grip on how to achieve optimum performance. You should already have some experience with Clojure and it would help if you already know a little bit of Java. Knowledge of performance analysis and engineering is not required. For hands-on practice, you should have access to Clojure REPL with Leiningen.

  7. High performance AC drives

    CERN Document Server

    Ahmad, Mukhtar

    2010-01-01

    This book presents a comprehensive view of high performance ac drives. It may be considered as both a text book for graduate students and as an up-to-date monograph. It may also be used by R & D professionals involved in the improvement of performance of drives in the industries. The book will also be beneficial to the researchers pursuing work on multiphase drives as well as sensorless and direct torque control of electric drives since up-to date references in these topics are provided. It will also provide few examples of modeling, analysis and control of electric drives using MATLAB/SIMULIN

  8. Analytical models for development of high performance metal targets irradiated in IPEN-CNEN/SP Cyclone 30 and Cyclone 18 cyclotrons

    International Nuclear Information System (INIS)

    Oliveira, Henrique Barcellos de

    2009-01-01

    Analytical models were developed that describe the basic elements for metal targets irradiation in cyclotrons. Important parameters such as maximum beam current value and thermal power deposited on target were obtained and compared with practical situations. In an unprecedented way, were determined analytically the features found in intense thermal transient situations, when high protons concentrations in a small region of the beam cause intense temperature gradients in small regions of the target. Comparing with results found in the literature showed that the developed models are satisfactory, in view of all limitations of the proposed model. (author)

  9. High performance liquid chromatographic separation of beryllium from some transition metals produced in high energy proton irradiations of medium mass elements: measurement of (p,7Be) cross sections

    International Nuclear Information System (INIS)

    Fassbender, M.; Spellerberg, S.; Qaim, S.M.

    1996-01-01

    A high performance liquid chromatographic (HPLC) method was developed for the separation of 7 Be formed in high energy proton irradiation of medium mass elements like Fe, Cu etc. The bulk of the target material was removed in a preseparation step. Thereafter beryllium was obtained in a high purity within a few minutes elution time using a mixture of 5 mM citric acid and 1.0 mM pyridinedicarboxylic acid as eluent and a SYKAM KO2 analytical cation-exchange column. The effect of Be-carrier on the quality of separation was investigated. The quality of separation deteriorated with the increasing Be-carrier column loading. A certain amount of Be-carrier was, however, necessary in order to quantitate the results. By using low Be-carrier amounts (∝100 μg) and determining the elution yield via a conductometric method, it was possible to obtain quantitative separation results. Besides the analytical column, a semi-preparative column was also used, and the Be separation yield determined gravimetrically. The cross sections for the (p, 7 Be) process on Cu obtained using the two separation columns (analytical and semipreparative) and the two separation yield determination methods agreed within 15%. (orig.)

  10. DOE-DARPA High-Performance Corrosion-Resistant Materials (HPCRM), Annual HPCRM Team Meeting & Technical Review

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Brown, B; Bayles, B; Lemieux, T; Choi, J; Ajdelsztajn, L; Dannenberg, J; Lavernia, E; Schoenung, J; Branagan, D; Blue, C; Peter, B; Beardsley, B; Graeve, O; Aprigliano, L; Yang, N; Perepezko, J; Hildal, K; Kaufman, L; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Lewandowski, J; Boudreau, J

    2007-09-21

    The overall goal is to develop high-performance corrosion-resistant iron-based amorphous-metal coatings for prolonged trouble-free use in very aggressive environments: seawater & hot geothermal brines. The specific technical objectives are: (1) Synthesize Fe-based amorphous-metal coating with corrosion resistance comparable/superior to Ni-based Alloy C-22; (2) Establish processing parameter windows for applying and controlling coating attributes (porosity, density, bonding); (3) Assess possible cost savings through substitution of Fe-based material for more expensive Ni-based Alloy C-22; (4) Demonstrate practical fabrication processes; (5) Produce quality materials and data with complete traceability for nuclear applications; and (6) Develop, validate and calibrate computational models to enable life prediction and process design.

  11. Amorphous nanophotonics

    CERN Document Server

    Scharf, Toralf

    2013-01-01

    This book represents the first comprehensive overview over amorphous nano-optical and nano-photonic systems. Nanophotonics is a burgeoning branch of optics that enables many applications by steering the mould of light on length scales smaller than the wavelength with devoted nanostructures. Amorphous nanophotonics exploits self-organization mechanisms based on bottom-up approaches to fabricate nanooptical systems. The resulting structures presented in the book are characterized by a deterministic unit cell with tailored geometries; but their spatial arrangement is not controlled. Instead of periodic, the structures appear either amorphous or random. The aim of this book is to discuss all aspects related to observable effects in amorphous nanophotonic material and aspects related to their design, fabrication, characterization and integration into applications. The book has an interdisciplinary nature with contributions from scientists in physics, chemistry and materials sciences and sheds light on the topic fr...

  12. Simultaneous determination of carbohydrates, carboxylic acids, alcohols, and metals in foods by high-performance liquid chromatography inductively coupled plasma atomic emission spectrometry.

    Science.gov (United States)

    Paredes, Eduardo; Maestre, Salvador E; Prats, Soledad; Todolí, José L

    2006-10-01

    The applicability of the HPLC-ICP-AES coupling for the simultaneous determination of carbohydrates, carboxylic acids, alcohols, and metals in a single chromatographic run has been demonstrated in the present work. Five saccharides, glucose, fructose, sucrose, sorbitol, and lactose; five carboxylic acids, citric, tartaric, malic, lactic, and acetic; and three alcohols, glycerol, ethanol, and methanol, have been determined. A H+ cation exchange column has been used to separate these compounds. The chromatograms have been obtained by monitoring the carbon emission signal at 193.09 nm. The results obtained by HPLC-ICP-AES have been compared against those found with conventional detection systems (i.e., refractive index, UV, and photodyode array detectors). The HPLC-ICP-AES method has shown the following features: (i) organic compounds and metals can be simultaneously determined; (ii) the detection method is universal; (iii) for nonvolatile organic compounds, a complete calibration line can be obtained from a single injection; and (iv) it provides absolute limits of detection similar to or lower than those found with conventional detection systems (i.e., on the order of several tens of nanograms of organic compound). The methodology has been validated through the analysis of food samples such as juices, isotonic beverages, wines, and a certified nonfat milk powder sample.

  13. High Performance Window Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hun, Diana E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Desjarlais, Andre Omer [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-12-01

    The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Traco partnered to develop high-performance windows for commercial building that are cost-effective. The main performance requirement for these windows was that they needed to have an R-value of at least 5 ft2∙ F∙h/Btu. This project seeks to quantify the potential energy savings from installing these windows in commercial buildings that are at least 20 years old. To this end, we are conducting evaluations at a two-story test facility that is representative of a commercial building from the 1980s, and are gathering measurements on the performance of its windows before and after double-pane, clear-glazed units are upgraded with R5 windows. Additionally, we will use these data to calibrate EnergyPlus models that we will allow us to extrapolate results to other climates. Findings from this project will provide empirical data on the benefits from high-performance windows, which will help promote their adoption in new and existing commercial buildings. This report describes the experimental setup, and includes some of the field and simulation results.

  14. High performance data transfer

    Science.gov (United States)

    Cottrell, R.; Fang, C.; Hanushevsky, A.; Kreuger, W.; Yang, W.

    2017-10-01

    The exponentially increasing need for high speed data transfer is driven by big data, and cloud computing together with the needs of data intensive science, High Performance Computing (HPC), defense, the oil and gas industry etc. We report on the Zettar ZX software. This has been developed since 2013 to meet these growing needs by providing high performance data transfer and encryption in a scalable, balanced, easy to deploy and use way while minimizing power and space utilization. In collaboration with several commercial vendors, Proofs of Concept (PoC) consisting of clusters have been put together using off-the- shelf components to test the ZX scalability and ability to balance services using multiple cores, and links. The PoCs are based on SSD flash storage that is managed by a parallel file system. Each cluster occupies 4 rack units. Using the PoCs, between clusters we have achieved almost 200Gbps memory to memory over two 100Gbps links, and 70Gbps parallel file to parallel file with encryption over a 5000 mile 100Gbps link.

  15. Structural amorphous steels

    International Nuclear Information System (INIS)

    Lu, Z.P.; Liu, C.T.; Porter, W.D.; Thompson, J.R.

    2004-01-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist's dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed

  16. Large scale integration of flexible non-volatile, re-addressable memories using P(VDF-TrFE) and amorphous oxide transistors

    NARCIS (Netherlands)

    Gelinck, G.H.; Cobb, B.; Breemen, A.J.J.M. van; Myny, K.

    2015-01-01

    Ferroelectric polymers and amorphous metal oxide semiconductors have emerged as important materials for re-programmable non-volatile memories and high-performance, flexible thin-film transistors, respectively. However, realizing sophisticated transistor memory arrays has proven to be a challenge,

  17. Reduced graphene oxide supported MnS nanotubes hybrid as a novel non-precious metal electrocatalyst for oxygen reduction reaction with high performance

    Science.gov (United States)

    Tang, Yongfu; Chen, Teng; Guo, Wenfeng; Chen, Shunji; Li, Yanshuai; Song, Jianzheng; Chang, Limin; Mu, Shichun; Zhao, Yufeng; Gao, Faming

    2017-09-01

    Electronic structure of Mn cations, electric conductivity of active materials and three dimensional structure for mass transport play vital roles in the electrocatalytic activity of Mn-based electrocatalysts for oxygen reduction reaction (ORR). To construct efficient and robust Mn-based electrocatalysts, MnS nanotubes anchored on reduced graphene oxide (MnS-NT@rGO) hybrid was synthesized and used as a novel non-precious metal electrocatalyst for ORR. The formation of nano-tubular structure, which offers more active sites and suitable channels for mass transport to enhance the electrocatalytic activity towards ORR, are carefully illustrated based on the core-dissolution/shell-recrystallization type Ostwald ripening effect. Tuned electronic structure of Mn cations, enhanced electric conductivity and suitable nano-tubular structure endow MnS-NT@rGO electrocatalyst comparative catalytic activity to commercial 20 wt % Pt/C in alkaline electrolyte. The MnS-NT@rGO electrocatalyst exhibits higher catalytic activity than rGO supported MnS nanoparticles (MnS-NP@rGO) and MnS nanotubes without rGO substrate (MnS-NT), as well as rGO supported Mn(OH)2 (Mn(OH)2@rGO) and rGO supported MnO (MnO@rGO). Moreover, the MnS-NT@rGO electrocatalyst shows superior durability and methanol tolerance to commercial Pt/C.

  18. A Universal Strategy for Hollow Metal Oxide Nanoparticles Encapsulated into B/N Co-Doped Graphitic Nanotubes as High-Performance Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Tabassum, Hassina; Zou, Ruqiang; Mahmood, Asif; Liang, Zibin; Wang, Qingfei; Zhang, Hao; Gao, Song; Qu, Chong; Guo, Wenhan; Guo, Shaojun

    2018-02-01

    Yolk-shell nanostructures have received great attention for boosting the performance of lithium-ion batteries because of their obvious advantages in solving the problems associated with large volume change, low conductivity, and short diffusion path for Li + ion transport. A universal strategy for making hollow transition metal oxide (TMO) nanoparticles (NPs) encapsulated into B, N co-doped graphitic nanotubes (TMO@BNG (TMO = CoO, Ni 2 O 3 , Mn 3 O 4 ) through combining pyrolysis with an oxidation method is reported herein. The as-made TMO@BNG exhibits the TMO-dependent lithium-ion storage ability, in which CoO@BNG nanotubes exhibit highest lithium-ion storage capacity of 1554 mA h g -1 at the current density of 96 mA g -1 , good rate ability (410 mA h g -1 at 1.75 A g -1 ), and high stability (almost 96% storage capacity retention after 480 cycles). The present work highlights the importance of introducing hollow TMO NPs with thin wall into BNG with large surface area for boosting LIBs in the terms of storage capacity, rate capability, and cycling stability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Porous metal-organic framework Cu3(BTC)2as catalyst used in air-cathode for high performance of microbial fuel cell.

    Science.gov (United States)

    Tian, Pei; Liu, Di; Li, Kexun; Yang, Tingting; Wang, Junjie; Liu, Yi; Zhang, Song

    2017-11-01

    Metal-organic framework Cu 3 (BTC) 2 , prepared by an easy hydrothermal method, was used as the oxygen-based catalyst in microbial fuel cell (MFC). The maximum power density of Cu 3 (BTC) 2 modified air-cathode MFC was 1772±15mWm -2 , almost 1.8 times higher than the control. BET results disclosed high specific surface area of 2159.7m 2 g -1 and abundant micropores structure. Regular octahedron and porous surface of Cu 3 (BTC) 2 were observed in SEM. XPS testified the existence of divalent copper in the extended 3D frameworks, which importantly acted as the Lewis-acid sites or redox centers in ORR. Additionally, the total resistance decreased by 42% from 17.60 to 10.24Ω compared with bare AC electrode. The rotating disk electrode test results showed a four-electron transfer pathway for Cu 3 (BTC) 2 , which was crucial for electrochemical catalytic activity. All the structural and electrochemical advantages make Cu 3 (BTC) 2 a promising catalyst for ORR in MFC. Copyright © 2017. Published by Elsevier Ltd.

  20. CoFe2O4 derived-from bi-metal organic frameworks wrapped with graphene nanosheets as advanced anode for high-performance lithium ion batteries

    Science.gov (United States)

    Yang, Hongxun; Zhang, Kaixuan; Wang, Yang; Yan, Chao; Lin, Shengling

    2018-04-01

    CoFe2O4/graphene nanosheets (GNS) nanocomposites derived from bi-metal organic frameworks and graphene oxides were firstly synthesized via a facile one-pot chemical precipitation with subsequent thermal decomposition method. The as-prepared CoFe2O4/GNS were characterized by XRD, Raman, SEM, TEM and BET adsorption-desorption. As an anode for lithium ion batteries, the CoFe2O4/GNS nanocomposites exhibited an obvious enhancement electrochemical property in terms of a higher discharge capacity of 1061.7 mAh g-1 after 100 cycles at 100 mA g-1 with 75.1% capacity retention and the excellent reversible capacity of 956.2 mAh g-1 when the charge-discharge rate returned from 2 A g-1 to 0.1 A g-1 after 60 cycles. This enhancement could be attributed to the synergistic effects between Co and Fe oxides, and the graphene nanosheets which could not only accommodate the volume variations of CoFe2O4 nanoparticles during cycling, but also improve the contact area between electrolyte and electrodes.

  1. Integration of open metal sites and Lewis basic sites for construction of a Cu MOF with rare chiral Oh type of cage for high performance of methane purification

    KAUST Repository

    Shi, Zhan

    2018-01-18

    A Cu MOF [Cu4(PMTD)2(H2O)3]·20H2O, 1, (Where PMTD is (1,4-phenylenebis(5-methyl-4H-1,2,4-triazole-3,4-diyl)bis(5-carboxylato-3,1-phenylene)bis(hydroperoxymethanide) with rare chiral Oh type of cage and dual functionalities of open metal sites and Lewis basic sites based on a designed U-shaped ligand was synthesized by hydrothermal method. It exhibits high-capacity of CO2, C2 and C3 hydrocarbon storage capacity under atmospheric pressure as well as high H2 (1.96% wt) adsorption capacity at 77K. Methane purification capacity was tested and verified step by step. Isosteric heats (Qst) study reveals that CH4 has the weakest van der Waals host- guest interactions among the seven gases at 298K. Ideal adsorbed solution theory (IAST) calculation reveals that compound 1 is more selective toward CO2, C2H6 and C3H8 over CH4 in further calculating its separation capacity, as exemplified for CO2/CH4 (50:50, 5:95), C2H6/CH4 (50:50, 5:95) or C3H8/CH4 (50:50, 5:95) binary gas mixtures. Breakthrough experiments show that 1 has a significantly higher adsorption capacity for CO2, C2H6 and C3H8 than CH4. The selective adsorption properties of 1 make it a promising candidate for methane purification.

  2. The investigation of ZnO:Al2O3/metal composite back reflectors in amorphous silicon germanium thin film solar cells

    International Nuclear Information System (INIS)

    Wang Guang-Hong; Zhao Lei; Yan Bao-Jun; Chen Jing-Wei; Wang Ge; Diao Hong-Wei; Wang Wen-Jing

    2013-01-01

    Different aluminum-doped ZnO (AZO)/metal composite thin films, including AZO/Ag/Al, AZO/Ag/nickel—chromium alloy (NiCr), and AZO/Ag/NiCr/Al, are utilized as the back reflectors of p—i—n amorphous silicon germanium thin film solar cells. NiCr is used as diffusion barrier layer between Ag and Al to prevent mutual diffusion, which increases the short circuit current density of solar cell. NiCr and NiCr/Al layers are used as protective layers of Ag layer against oxidation and sulfurization, the higher efficiency of solar cell is achieved. The experimental results show that the performance of a-SiGe solar cell with AZO/Ag/NiCr/Al back reflector is best. The initial conversion efficiency is achieved to be 8.05%

  3. Mechanical property evaluations of an amorphous metallic/ceramic multilayer and its role in improving fatigue properties of 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheng-Min [Nano Technology Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Jeng, R.J.; Yu, Chia-Chi; Chang, Chia-Hao [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Li, Chia-Lin [Department of Materials Science and Engineering and Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Chu, Jinn P., E-mail: jpchu@mail.ntust.edu.tw [Nano Technology Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2016-08-01

    We have used nanoindentation to investigate mechanical properties of 200-nm-thick amorphous multilayer consisting of alternating layers of Zr-based thin film metallic glass (TFMG) and holmium scandium oxide (HSO). Nanoindentation results show that TFMG/HSO multilayer exhibits the high hardness and Young's modulus. Owing to its high hardness, smooth surface, and good adhesion properties, TFMG/HSO multilayer is then employed as a protective coating to improve the four-point bending fatigue properties of 316L stainless steel. With coating, the fatigue life is increased from 2.4×10{sup 5} to 4.9×10{sup 6} cycles, at the stress of 700 MPa. A crack retardation mechanism has been proposed to explain the role of TFMG/HSO multilayer in improving fatigue properties of 316L stainless steel substrate.

  4. Conductivity of laser printed copper structures limited by nano-crystal grain size and amorphous metal droplet shell

    International Nuclear Information System (INIS)

    Winter, Shoshana; Zenou, Michael; Kotler, Zvi

    2016-01-01

    We present a study of the morphology and electrical properties of copper structures which are printed by laser induced forward transfer from bulk copper. The percentage of voids and the oxidation levels are too low to account for the high resistivities (∼4 to 14 times the resistivity of bulk monocrystalline copper) of these structures. Transmission electron microscope (TEM) images of slices cut from the printed areas using a focused ion beam (FIB) show nano-sized crystal structures with grain sizes that are smaller than the electron free path length. Scattering from such grain boundaries causes a significant increase in the resistivity and can explain the measured resistivities of the structures. The TEM images also show a nano-amorphous layer (∼5 nm) at the droplet boundaries which also contributes to the overall resistivity. Such morphological characteristics are best explained by the ultrafast cooling rate of the molten copper droplets during printing. (paper)

  5. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  6. Hydrogen in disordered and amorphous solids

    International Nuclear Information System (INIS)

    Bambakidis, G; Bowman, R.C.

    1986-01-01

    This book presents information on the following topoics: elements of the theory of amorphous semiconductors; electronic structure of alpha-SiH; fluctuation induced gap states in amorphous hydrogenated silicon; hydrogen on semiconductor surfaces; the influence of hydrogen on the defects and instabilities in hydrogenated amorphous silicon; deuteron magnetic resonance in some amorphous semiconductors; formation of amorphous metals by solid state reactions of hydrogen with an intermetallic compound; NMR studies of the hydrides of disordered and amorphous alloys; neutron vibrational spectroscopy of disordered metal-hydrogen system; dynamical disorder of hydrogen in LaNi /SUB 5-y/ M /SUB y/ hydrides studied by quasi-elastic neutron scattering; recent studies of intermetallic hydrides; tritium in Pd and Pd /SUB 0.80/ Sg /SUB 0.20/ ; and determination of hydrogen concentration in thin films of absorbing materials

  7. Development of high performance cladding

    International Nuclear Information System (INIS)

    Kiuchi, Kiyoshi

    2003-01-01

    The developments of superior next-generation light water reactor are requested on the basis of general view points, such as improvement of safety, economics, reduction of radiation waste and effective utilization of plutonium, until 2030 year in which conventional reactor plants should be renovate. Improvements of stainless steel cladding for conventional high burn-up reactor to more than 100 GWd/t, developments of manufacturing technology for reduced moderation-light water reactor (RMWR) of breeding ratio beyond 1.0 and researches of water-materials interaction on super critical pressure-water cooled reactor are carried out in Japan Atomic Energy Research Institute. Stable austenite stainless steel has been selected for fuel element cladding of advanced boiling water reactor (ABWR). The austenite stain less has the superiority for anti-irradiation properties, corrosion resistance and mechanical strength. A hard spectrum of neutron energy up above 0.1 MeV takes place in core of the reduced moderation-light water reactor, as liquid metal-fast breeding reactor (LMFBR). High performance cladding for the RMWR fuel elements is required to get anti-irradiation properties, corrosion resistance and mechanical strength also. Slow strain rate test (SSRT) of SUS 304 and SUS 316 are carried out for studying stress corrosion cracking (SCC). Irradiation tests in LMFBR are intended to obtain irradiation data for damaged quantity of the cladding materials. (M. Suetake)

  8. On the structural-optical properties of Al-containing amorphous Si thin films and the metal-induced crystallization phenomenon

    International Nuclear Information System (INIS)

    Zanatta, A. R.; Kordesch, M. E.

    2014-01-01

    Amorphous (a-)Si-based materials always attracted attention of the scientific community, especially after their use in commercial devices like solar cells and thin film transistors in the 1980s. In addition to their technological importance, the study of a-Si-based materials also present some interesting theoretical-practical challenges. Their crystallization as induced by metal species is one example, which is expected to influence the development of electronic-photovoltaic devices. In fact, the amorphous-to-crystalline transformation of the a-SiAl system has been successfully applied to produce solar cells suggesting that further improvements can be achieved. Stimulated by these facts, this work presents a comprehensive study of the a-SiAl system. The samples, with Al contents in the ∼0−15 at. % range, were made in the form of thin films and were characterized by different spectroscopic techniques. The experimental results indicated that: (a) increasing amounts of Al changed both the atomic structure and the optical properties of the samples; (b) thermal annealing induced the crystallization of the samples at temperatures that depend on the Al concentration; and (c) the crystallization process was also influenced by the annealing duration and the structural disorder of the samples. All of these aspects were addressed in view of the existing models of the a-Si crystallization, which were also discussed to some extent. Finally, the ensemble of experimental results suggest an alternative method to produce cost-effective crystalline Si films with tunable structural-optical properties

  9. On the structural-optical properties of Al-containing amorphous Si thin films and the metal-induced crystallization phenomenon

    Science.gov (United States)

    Zanatta, A. R.; Kordesch, M. E.

    2014-08-01

    Amorphous (a-)Si-based materials always attracted attention of the scientific community, especially after their use in commercial devices like solar cells and thin film transistors in the 1980s. In addition to their technological importance, the study of a-Si-based materials also present some interesting theoretical-practical challenges. Their crystallization as induced by metal species is one example, which is expected to influence the development of electronic-photovoltaic devices. In fact, the amorphous-to-crystalline transformation of the a-SiAl system has been successfully applied to produce solar cells suggesting that further improvements can be achieved. Stimulated by these facts, this work presents a comprehensive study of the a-SiAl system. The samples, with Al contents in the ˜0-15 at. % range, were made in the form of thin films and were characterized by different spectroscopic techniques. The experimental results indicated that: (a) increasing amounts of Al changed both the atomic structure and the optical properties of the samples; (b) thermal annealing induced the crystallization of the samples at temperatures that depend on the Al concentration; and (c) the crystallization process was also influenced by the annealing duration and the structural disorder of the samples. All of these aspects were addressed in view of the existing models of the a-Si crystallization, which were also discussed to some extent. Finally, the ensemble of experimental results suggest an alternative method to produce cost-effective crystalline Si films with tunable structural-optical properties.

  10. Selective metallization of amorphous-indium-gallium-zinc-oxide thin-film transistor by using helium plasma treatment

    Science.gov (United States)

    Jang, Hun; Lee, Su Jeong; Porte, Yoann; Myoung, Jae-Min

    2018-03-01

    In this study, the effects of helium (He) plasma treatment on amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) have been investigated. The He plasma treatment induced a dramatic decrease of the resistivity in a-IGZO thin films from 1.25 × 106 to 5.93 mΩ cm. After 5 min He plasma treatment, the a-IGZO films showed an increase in carrier concentration to 6.70 × 1019 cm-3 combined with a high hall mobility of 15.7 cm2 V-1 s-1. The conductivity improvement was linked to the formation of oxygen vacancies during the He plasma treatment, which was observed by x-ray photoelectron spectroscopy analysis. The a-IGZO films did not appear to be damaged on the surface following the plasma treatment and showed a high transmittance of about 88.3% at a wavelength of 550 nm. The He plasma-treated a-IGZO films were used as source/drain (S/D) electrodes in a-IGZO TFTs. The devices demonstrated promising characteristics, on pair with TFTs using Al electrodes, with a threshold voltage (V T) of -1.97 V, sub-threshold slope (SS) of 0.52 V/decade, saturation mobility (μ sat) of 8.75 cm2 V-1 s-1, and on/off current ratio (I on/I off) of 2.66 × 108.

  11. Evaluation of metallic brackets adhesion after the use of bleaching gels with and without amorphous calcium phosphate (ACP: in vitro study

    Directory of Open Access Journals (Sweden)

    Sissy Maria Mendes Machado

    2013-06-01

    Full Text Available OBJECTIVE: To evaluate in vitro the effects of tooth whitening using gel with Amorphous Calcium Phosphate (ACP on the bond strength of metal brackets. METHODS: Thirty-six bovine incisors were sectioned at the crown-root interface, and the crowns were then placed in PVC cylinders. The specimens were divided into 3 groups (n = 12 according to whitening treatment and type of gel used, as follows: G1 (control = no whitening; G2 = whitening with gel not containing ACP (Whiteness Perfect - FGM, G3 = whitening with gel containing ACP (Nite White ACP - Discus Dental. Groups G2 and G3 were subjected to 14 cycles of whitening followed by an interval of 15 days before the bonding of metal brackets. Shear bond strength testing was performed on a Kratos universal test machine at a speed of 0.5 mm/min. After the mechanical test, the specimens were assessed to determine the adhesive remnant index (ARI. The results were subjected to ANOVA, Tukey's test and Kruskal-Wallis test (5%. RESULTS: Significant differences were noted between the groups. Control group (G1 = 11.10 MPa showed a statistically higher shear bond strength than the groups that underwent whitening (G2 = 5.40 Mpa, G3 = 3.73 MPa, which did not differ from each other. There were no significant differences between the groups in terms of ARI. CONCLUSION: Tooth whitening reduces the bond strength of metal brackets, whereas the presence of ACP in the whitening gel has no bearing on the results.

  12. High Performance Electronics on Flexible Silicon

    KAUST Repository

    Sevilla, Galo T.

    2016-09-01

    Over the last few years, flexible electronic systems have gained increased attention from researchers around the world because of their potential to create new applications such as flexible displays, flexible energy harvesters, artificial skin, and health monitoring systems that cannot be integrated with conventional wafer based complementary metal oxide semiconductor processes. Most of the current efforts to create flexible high performance devices are based on the use of organic semiconductors. However, inherent material\\'s limitations make them unsuitable for big data processing and high speed communications. The objective of my doctoral dissertation is to develop integration processes that allow the transformation of rigid high performance electronics into flexible ones while maintaining their performance and cost. In this work, two different techniques to transform inorganic complementary metal-oxide-semiconductor electronics into flexible ones have been developed using industry compatible processes. Furthermore, these techniques were used to realize flexible discrete devices and circuits which include metal-oxide-semiconductor field-effect-transistors, the first demonstration of flexible Fin-field-effect-transistors, and metal-oxide-semiconductors-based circuits. Finally, this thesis presents a new technique to package, integrate, and interconnect flexible high performance electronics using low cost additive manufacturing techniques such as 3D printing and inkjet printing. This thesis contains in depth studies on electrical, mechanical, and thermal properties of the fabricated devices.

  13. Ultra-Flexible, Invisible Thin-Film Transistors Enabled by Amorphous Metal Oxide/Polymer Channel Layer Blends

    Science.gov (United States)

    2015-02-25

    200 nm thick amor - phous Zn 0.3 In 1.4 Sn 0.3 O 3 (a-ZITO) fi lm was deposited on Ary- lite by pulsed laser deposition (PLD) to function as the gate...level. Thus, appropriate polymer incorporation promotes the amor - phous state but allows a suffi cient density of connected InO x polyhedra for effi...continuous and uniform. In conclusion, we have successfully developed a new low temperature route (as low as 225 °C) to high-mobility amor - phous metal

  14. Formation of quasicrystals and amorphous-to-quasicrystalline phase transformation kinetics in Zr65Al7.5Ni10Cu7.5Ag10 metallic glass under pressure

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Zhuang, Yanxin; Rasmussen, Helge Kildahl

    2001-01-01

    The effect of pressure on the formation of quasicrystals and the amorphous-to-quasicrystalline phase transformation kinetics in the supercooled liquid region for a Zr65Al7.5Ni10Cu7.5Ag10 metallic glass have been investigated by in situ high-pressure and high-temperature nonisothermal and isothermal...... and growth models together with the Johnson-Mehl-Avrami model. The Avrami exponent was found to be near I at all four temperatures, also indicating that atomic diffusion might involve in the amorphous-to-quasicrystalline phase transformation for the Zr65Cu7.5Al7.5Ni10Ag10 metallic glass. It is found...

  15. Multifunctional phosphonic acid self-assembled monolayers on metal oxides as dielectrics, interface modification layers and semiconductors for low-voltage high-performance organic field-effect transistors.

    Science.gov (United States)

    Ma, Hong; Acton, Orb; Hutchins, Daniel O; Cernetic, Nathan; Jen, Alex K-Y

    2012-11-07

    Insulating and semiconducting molecular phosphonic acid (PA) self-assembled monolayers (SAMs) have been developed for applications in organic field-effect transistors (OFETs) for low-power, low-cost flexible electronics. Multifunctional SAMs on ultrathin metal oxides, such as hafnium oxide and aluminum oxide, are shown to enable (1) low-voltage (sub 2 V) OFETs through dielectric and interface engineering on rigid and plastic substrates, (2) simultaneous one-component modification of source-drain and dielectric surfaces in bottom-contact OFETs, and (3) SAM-FETs based on molecular monolayer semiconductors. The combination of excellent dielectric and interfacial properties results in high-performance OFETs with low-subthreshold slopes down to 75 mV dec(-1), high I(on)/I(off) ratios of 10(5)-10(7), contact resistance down to 700 Ω cm, charge carrier mobilities of 0.1-4.6 cm(2) V(-1) s(-1), and general applicability to solution-processed and vacuum-deposited n-type and p-type organic and polymer semiconductors.

  16. Formation of amorphous alloys by mechanical alloying for platinum group metal-M(M=Zr or Al) system; Mechanical alloying ni yoru kikinzoku (Pd,Pt) to M(Zr aruiwa Al) tono kongo funmatsu no hishoshitsuka

    Energy Technology Data Exchange (ETDEWEB)

    Tsuzuki, T.; Arakawa, T. [Kinki Univ., Higashi-Osaka, Osaka (Japan)

    1998-08-15

    The intermetallic compounds containing precious metals such as platinum white gold are widely used in chemistry or industry as catalysts. These alloy catalysts are mainly used in grinding the materials prepared by solidifying liquids. The authors of the paper attempt to prepare alloy powders of precious metal with Zr or Al by mechanical alloying (MA). As an object of applying them on a catalyst, alloy powders of precious metals (Pd and Pt) and M (Zr or Al) are regulated by the mechanical alloying reaction, and the results show that the Pd and Pt show different MA reaction while using Al as the M, the former generates an intermetallic compound as PdAl during the halfway point of the MA reaction, but the later generates amorphous powders. But, each of them generates amorphous alloys only while using Zr and the M. As a result of differential thermal analysis and electrical resistivity measurement investigating the crystalline process of the obtained amorphous alloys, it is clarified that the Pt-Al base alloy shows higher crystalline temperature compared with the other alloys. 8 refs., 6 figs.

  17. High performance soft magnetic materials

    CERN Document Server

    2017-01-01

    This book provides comprehensive coverage of the current state-of-the-art in soft magnetic materials and related applications, with particular focus on amorphous and nanocrystalline magnetic wires and ribbons and sensor applications. Expert chapters cover preparation, processing, tuning of magnetic properties, modeling, and applications. Cost-effective soft magnetic materials are required in a range of industrial sectors, such as magnetic sensors and actuators, microelectronics, cell phones, security, automobiles, medicine, health monitoring, aerospace, informatics, and electrical engineering. This book presents both fundamentals and applications to enable academic and industry researchers to pursue further developments of these key materials. This highly interdisciplinary volume represents essential reading for researchers in materials science, magnetism, electrodynamics, and modeling who are interested in working with soft magnets. Covers magnetic microwires, sensor applications, amorphous and nanocrystalli...

  18. RavenDB high performance

    CERN Document Server

    Ritchie, Brian

    2013-01-01

    RavenDB High Performance is comprehensive yet concise tutorial that developers can use to.This book is for developers & software architects who are designing systems in order to achieve high performance right from the start. A basic understanding of RavenDB is recommended, but not required. While the book focuses on advanced topics, it does not assume that the reader has a great deal of prior knowledge of working with RavenDB.

  19. Metal-organic framework MIL-101 as sorbent based on double-pumps controlled on-line solid-phase extraction coupled with high-performance liquid chromatography for the determination of flavonoids in environmental water samples.

    Science.gov (United States)

    Liu, Yue; Hu, Jia; Li, Yan; Li, Xiao-Shuang; Wang, Zhong-Liang

    2016-10-01

    A novel method with high sensitivity for the rapid determination of chrysin, apigenin and luteolin in environment water samples was developed by double-pumps controlled on-line solid-phase extraction (SPE) coupled with high-performance liquid chromatography (HPLC). In the developed technique, metal organic framework MIL-101 was synthesized and applied as a sorbent for SPE. The as-synthesized MIL-101 was characterized by scanning electron microscope, X-ray diffraction spectrometry, thermal gravimetric analysis and micropore physisorption analysis. The MIL-101 behaved as a fast kinetics in the adsorption of chrysin, apigenin and luteolin. On-line SPE of chrysin, apigenin and luteolin was processed by loading a sample solution at a flow rate of 1.0 mL/min for 10 min. The extracted analytes were subsequently eluted into a ZORBAX Bonus-RP analytical column (25 cm long × 4.6 mm i.d.) for HPLC separation under isocratic condition with a mobile phase (MeOH: ACN: 0.02 M H 3 PO 4 = 35:35:30) at a flow rate of 1.0 mL/min. Experimental conditions, including ionic strength, sample pH, sample loading rates, sample loading time and desorption analytes time, were further optimized to obtain efficient preconcentration and high-precision determination of the analytes mentioned above. The method achieved the merits of simplicity, rapidity, sensitivity, wide linear range and high sample throughput. The possible mechanism for the adsorption of flavonoids on MIL-101 was proposed. The developed method has been applied to determine trace chrysin, apigenin and luteolin in a variety of environmental water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. INL High Performance Building Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer D. Morton

    2010-02-01

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design

  1. High performance flexible heat pipes

    Science.gov (United States)

    Shaubach, R. M.; Gernert, N. J.

    1985-01-01

    A Phase I SBIR NASA program for developing and demonstrating high-performance flexible heat pipes for use in the thermal management of spacecraft is examined. The program combines several technologies such as flexible screen arteries and high-performance circumferential distribution wicks within an envelope which is flexible in the adiabatic heat transport zone. The first six months of work during which the Phase I contract goal were met, are described. Consideration is given to the heat-pipe performance requirements. A preliminary evaluation shows that the power requirement for Phase II of the program is 30.5 kilowatt meters at an operating temperature from 0 to 100 C.

  2. High Performance Bulk Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  3. High-Performance Operating Systems

    DEFF Research Database (Denmark)

    Sharp, Robin

    1999-01-01

    Notes prepared for the DTU course 49421 "High Performance Operating Systems". The notes deal with quantitative and qualitative techniques for use in the design and evaluation of operating systems in computer systems for which performance is an important parameter, such as real-time applications......, communication systems and multimedia systems....

  4. High performance in software development

    CERN Multimedia

    CERN. Geneva; Haapio, Petri; Liukkonen, Juha-Matti

    2015-01-01

    What are the ingredients of high-performing software? Software development, especially for large high-performance systems, is one the most complex tasks mankind has ever tried. Technological change leads to huge opportunities but challenges our old ways of working. Processing large data sets, possibly in real time or with other tight computational constraints, requires an efficient solution architecture. Efficiency requirements span from the distributed storage and large-scale organization of computation and data onto the lowest level of processor and data bus behavior. Integrating performance behavior over these levels is especially important when the computation is resource-bounded, as it is in numerics: physical simulation, machine learning, estimation of statistical models, etc. For example, memory locality and utilization of vector processing are essential for harnessing the computing power of modern processor architectures due to the deep memory hierarchies of modern general-purpose computers. As a r...

  5. Neo4j high performance

    CERN Document Server

    Raj, Sonal

    2015-01-01

    If you are a professional or enthusiast who has a basic understanding of graphs or has basic knowledge of Neo4j operations, this is the book for you. Although it is targeted at an advanced user base, this book can be used by beginners as it touches upon the basics. So, if you are passionate about taming complex data with the help of graphs and building high performance applications, you will be able to get valuable insights from this book.

  6. High-performance sports medicine.

    Science.gov (United States)

    Speed, Cathy

    2013-02-01

    High performance sports medicine involves the medical care of athletes, who are extraordinary individuals and who are exposed to intensive physical and psychological stresses during training and competition. The physician has a broad remit and acts as a 'medical guardian' to optimise health while minimising risks. This review describes this interesting field of medicine, its unique challenges and priorities for the physician in delivering best healthcare.

  7. HIMARS: A High Performance PBL

    Science.gov (United States)

    2014-08-01

    School hiMARS: A high PeRfoRMAnce Pbl By: Jacques S. Gansler and William Lucyshyn 18 56 U N IV ERSITY O F M A R Y L A N D UMD-LM-14-182 Report...REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE HIMARS: A High Performance PBL 5a. CONTRACT NUMBER 5b. GRANT...11 The PBL Model ............................................................................................................. 12

  8. High-Performance Data Converters

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    Novel techniques for multi-bit oversampled data conversion are described. State-of-the-art oversampled data converters are analyzed, leading to the conclusion that their performance is limited mainly by low-resolution signal representation. To increase the resolution, high-performance, high......, because that requires a high-resolution loop quantizer which introduces only a small delay. Generally, it is not acceptable to design the loop quantizer as a high-resolution flash quantizer because they require a large chip area and high power consumption. Pipeline techniques are proposed to circumvent...

  9. Preferential alkali metal adduct formation by cis geometrical isomers of dicaffeoylquinic acids allows for efficient discrimination from their trans isomers during ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry

    CSIR Research Space (South Africa)

    Makola, MM

    2016-03-01

    Full Text Available discrimination of the geometrical isomers of these molecules has proven to be an elusive task. UV-irradiated methanolic solutions of diCQA were analyzed using an ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC...

  10. Crystal and molecular simulation of high-performance polymers.

    Science.gov (United States)

    Colquhoun, H M; Williams, D J

    2000-03-01

    Single-crystal X-ray analyses of oligomeric models for high-performance aromatic polymers, interfaced to computer-based molecular modeling and diffraction simulation, have enabled the determination of a range of previously unknown polymer crystal structures from X-ray powder data. Materials which have been successfully analyzed using this approach include aromatic polyesters, polyetherketones, polythioetherketones, polyphenylenes, and polycarboranes. Pure macrocyclic homologues of noncrystalline polyethersulfones afford high-quality single crystals-even at very large ring sizes-and have provided the first examples of a "protein crystallographic" approach to the structures of conventionally amorphous synthetic polymers.

  11. Development of Microwave-Excited Plasma-Enhanced Metal-Organic Chemical Vapor Deposition System for Forming Ferroelectric Sr2(Ta1-x,Nbx)2O7 Thin Film on Amorphous SiO2

    Science.gov (United States)

    Takahashi, Ichirou; Funaiwa, Kiyoshi; Azumi, Keita; Yamashita, Satoru; Shirai, Yasuyuki; Hirayama, Masaki; Teramoto, Akinobu; Sugawa, Shigetoshi; Ohmi, Tadahiro

    2007-04-01

    Sr2(Ta1-x,Nbx)2O7 (STN; x = 0.3) is suitable for use as ferroelectric gate field-effect transistors (FETs) for one-transistor-type ferroelectric memory devices, because it has a low dielectric constant. For applications using metal-ferroelectric-insulator-semiconductor (MFIS) FETs, crystallization of ferroelectric film on insulator is necessary. Perovskite STN can be successfully obtained on amorphous SiO2 by ferroelectric-multilayer-stack (FMLS) deposition, which uses alternating steps of STN sputtering deposition and oxygen radical treatment. In this study, we report on a newly developed microwave-excited plasma-enhanced metal-organic chemical vapor deposition (MOCVD) system, in which STN can be deposited in radical oxygen atmosphere. We succeeded in the fabrication of STN on amorphous SiO2 in a single process. The IrO2/STN (200 nm)/SiO2 (10 nm)/p-type Si device shows capacitance-voltage (C-V) hysteresis curves and a memory window of 1.2 V with a 5 V writing operation.

  12. Decal Electronics: Printable Packaged with 3D Printing High-Performance Flexible CMOS Electronic Systems

    KAUST Repository

    Sevilla, Galo T.

    2016-10-14

    High-performance complementary metal oxide semiconductor electronics are flexed, packaged using 3D printing as decal electronics, and then printed in roll-to-roll fashion for highly manufacturable printed flexible high-performance electronic systems.

  13. Complex Amorphous Dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    van Dover, Robert Bruce [Cornell Univ., Ithaca, NY (United States)

    2014-11-22

    This work focused on synthesizing a wide range of oxides containing two or more metals, and measuring their properties. Many simple metal oxides such as zirconium oxide, have been extensively studied in the past. We developed a technique in which we create a large number of compositions simultaneously and examine their behavior to understand trends and identify high performance materials. Superior performance generally comes in the form of increased responsiveness; in the materials we have studied this may mean more electrical charge for a given voltage in a capacitor, faster switching for a given drive in a transistor, more current for a given voltage in an ionic conductor, or more current for a given illumination in a solar cell. Some of the materials we have identified may find use in decreasing the power needed to operate integrated circuits, other materials could be useful for solar power or other forms of energy conversion.

  14. High Performance Proactive Digital Forensics

    International Nuclear Information System (INIS)

    Alharbi, Soltan; Traore, Issa; Moa, Belaid; Weber-Jahnke, Jens

    2012-01-01

    With the increase in the number of digital crimes and in their sophistication, High Performance Computing (HPC) is becoming a must in Digital Forensics (DF). According to the FBI annual report, the size of data processed during the 2010 fiscal year reached 3,086 TB (compared to 2,334 TB in 2009) and the number of agencies that requested Regional Computer Forensics Laboratory assistance increasing from 689 in 2009 to 722 in 2010. Since most investigation tools are both I/O and CPU bound, the next-generation DF tools are required to be distributed and offer HPC capabilities. The need for HPC is even more evident in investigating crimes on clouds or when proactive DF analysis and on-site investigation, requiring semi-real time processing, are performed. Although overcoming the performance challenge is a major goal in DF, as far as we know, there is almost no research on HPC-DF except for few papers. As such, in this work, we extend our work on the need of a proactive system and present a high performance automated proactive digital forensic system. The most expensive phase of the system, namely proactive analysis and detection, uses a parallel extension of the iterative z algorithm. It also implements new parallel information-based outlier detection algorithms to proactively and forensically handle suspicious activities. To analyse a large number of targets and events and continuously do so (to capture the dynamics of the system), we rely on a multi-resolution approach to explore the digital forensic space. Data set from the Honeynet Forensic Challenge in 2001 is used to evaluate the system from DF and HPC perspectives.

  15. Self-sustained cycle of hydrolysis and etching at solution/solid interfaces: a general strategy to prepare metal oxide micro-/nanostructured arrays for high-performance electrodes.

    Science.gov (United States)

    Zhang, Yingmeng; Zhang, Weixin; Yang, Zeheng; Gu, Heyun; Zhu, Qing; Yang, Shihe; Li, Mei

    2015-03-23

    Assembling micro-/nanostructured arrays on conducting substrates allows the integration of multiple functionalities into modern electronic devices. Herein, a novel self-sustained cycle of hydrolysis and etching (SCHE) is exploited to selectively synthesize an extensive series of metal oxide micro-/nanostructured arrays on a wide range of metal substrates, establishing the generality and efficacy of the strategy. To demonstrate the potential application of this method, the as-prepared NiO porous nanobelt array was directly used as the anode for lithium-ion batteries, exhibiting excellent capacity and rate capability. Conclusively, the SCHE strategy offers a systematic approach to design metal oxide micro-/nanostructured arrays on metal substrates, which are valuable not only for lithium-ion batteries but also for other energy conversion and storage systems and electronic devices at large. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    2004-01-01

    The present paper describes the preparation and properties of bulk amorphous quarternary Mg-based alloys and the influence of additional elements on the ability of the alloy to form bulk amorphous. The main goal is to find a Mg-based alloy system which shows both high strength to weight ratio...... and a low glass transition temperature. The alloys were prepared by using a relatively simple technique, i.e. rapid cooling of the melt in a copper wedge mould. The essential structural changes that are achieved by going from the amorphous to the crystalline state through the supercooled liquid state...... are discussed in this paper. On the basis of these measurements phase diagrams of the different systems were constructed. Finally, it is demonstrated that when pressing the bulk amorphous alloy onto a metallic dies at temperatures within the supercooled liquid region, the alloy faithfully replicates the surface...

  17. High performance fuel technology development

    Energy Technology Data Exchange (ETDEWEB)

    Koon, Yang Hyun; Kim, Keon Sik; Park, Jeong Yong; Yang, Yong Sik; In, Wang Kee; Kim, Hyung Kyu [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    {omicron} Development of High Plasticity and Annular Pellet - Development of strong candidates of ultra high burn-up fuel pellets for a PCI remedy - Development of fabrication technology of annular fuel pellet {omicron} Development of High Performance Cladding Materials - Irradiation test of HANA claddings in Halden research reactor and the evaluation of the in-pile performance - Development of the final candidates for the next generation cladding materials. - Development of the manufacturing technology for the dual-cooled fuel cladding tubes. {omicron} Irradiated Fuel Performance Evaluation Technology Development - Development of performance analysis code system for the dual-cooled fuel - Development of fuel performance-proving technology {omicron} Feasibility Studies on Dual-Cooled Annular Fuel Core - Analysis on the property of a reactor core with dual-cooled fuel - Feasibility evaluation on the dual-cooled fuel core {omicron} Development of Design Technology for Dual-Cooled Fuel Structure - Definition of technical issues and invention of concept for dual-cooled fuel structure - Basic design and development of main structure components for dual- cooled fuel - Basic design of a dual-cooled fuel rod.

  18. HIGH-PERFORMANCE COATING MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2007-01-01

    Corrosion, erosion, oxidation, and fouling by scale deposits impose critical issues in selecting the metal components used at geothermal power plants operating at brine temperatures up to 300 C. Replacing these components is very costly and time consuming. Currently, components made of titanium alloy and stainless steel commonly are employed for dealing with these problems. However, another major consideration in using these metals is not only that they are considerably more expensive than carbon steel, but also the susceptibility of corrosion-preventing passive oxide layers that develop on their outermost surface sites to reactions with brine-induced scales, such as silicate, silica, and calcite. Such reactions lead to the formation of strong interfacial bonds between the scales and oxide layers, causing the accumulation of multiple layers of scales, and the impairment of the plant component's function and efficacy; furthermore, a substantial amount of time is entailed in removing them. This cleaning operation essential for reusing the components is one of the factors causing the increase in the plant's maintenance costs. If inexpensive carbon steel components could be coated and lined with cost-effective high-hydrothermal temperature stable, anti-corrosion, -oxidation, and -fouling materials, this would improve the power plant's economic factors by engendering a considerable reduction in capital investment, and a decrease in the costs of operations and maintenance through optimized maintenance schedules.

  19. Ground Glass Pozzolan in Conventional, High, and Ultra-High Performance Concrete

    OpenAIRE

    Tagnit-Hamou Arezki; Zidol Ablam; Soliman Nancy; Deschamps Joris; Omran Ahmed

    2018-01-01

    Ground-glass pozzolan (G) obtained by grinding the mixed-waste glass to same fineness of cement can act as a supplementary-cementitious material (SCM), given that it is an amorphous and a pozzolanic material. The G showed promising performances in different concrete types such as conventional concrete (CC), high-performance concrete (HPC), and ultra-high performance concrete (UHPC). The current paper reports on the characteristics and performance of G in these concrete types. The use of G pro...

  20. Powder metallurgical high performance materials. Proceedings. Volume 3: general topics

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    The proceedings of these seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. The 15 th Plansee Seminar was convened under the general theme 'Powder Metallurgy High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (boteke)

  1. Hydrogenated amorphous silicon photonics

    Science.gov (United States)

    Narayanan, Karthik

    2011-12-01

    Silicon Photonics is quickly proving to be a suitable interconnect technology for meeting the future goals of on-chip bandwidth and low power requirements. However, it is not clear how silicon photonics will be integrated into CMOS chips, particularly microprocessors. The issue of integrating photonic circuits into electronic IC fabrication processes to achieve maximum flexibility and minimum complexity and cost is an important one. In order to minimize usage of chip real estate, it will be advantageous to integrate in three-dimensions. Hydrogenated amorphous silicon (a-Si:H) is emerging as a promising material for the 3-D integration of silicon photonics for on-chip optical interconnects. In addition, a-Si:H film can be deposited using CMOS compatible low temperature plasma-enhanced chemical vapor deposition (PECVD) process at any point in the fabrication process allowing maximum flexibility and minimal complexity. In this thesis, we demonstrate a-Si:H as a high performance alternate platform to crystalline silicon, enabling backend integration of optical interconnects in a hybrid photonic-electronic network-on-chip architecture. High quality passive devices are fabricated on a low-loss a-Si:H platform enabling wavelength division multiplexing schemes. We demonstrate a broadband all-optical modulation scheme based on free-carrier absorption effect, which can enable compact electro-optic modulators in a-Si:H. Furthermore, we comprehensively characterize the optical nonlinearities in a-Si:H and observe that a-Si:H exhibits enhanced nonlinearities as compared to crystalline silicon. Based on the enhanced nonlinearities, we demonstrate low-power four-wave mixing in a-Si:H waveguides enabling high speed all-optical devices in an a-Si:H platform. Finally, we demonstrate a novel data encoding scheme using thermal and all-optical tuning of silicon waveguides, increasing the spectral efficiency in an interconnect link.

  2. High performance light water reactor

    International Nuclear Information System (INIS)

    Squarer, D.; Schulenberg, T.; Struwe, D.; Oka, Y.; Bittermann, D.; Aksan, N.; Maraczy, C.; Kyrki-Rajamaeki, R.; Souyri, A.; Dumaz, P.

    2003-01-01

    The objective of the high performance light water reactor (HPLWR) project is to assess the merit and economic feasibility of a high efficiency LWR operating at thermodynamically supercritical regime. An efficiency of approximately 44% is expected. To accomplish this objective, a highly qualified team of European research institutes and industrial partners together with the University of Tokyo is assessing the major issues pertaining to a new reactor concept, under the co-sponsorship of the European Commission. The assessment has emphasized the recent advancement achieved in this area by Japan. Additionally, it accounts for advanced European reactor design requirements, recent improvements, practical design aspects, availability of plant components and the availability of high temperature materials. The final objective of this project is to reach a conclusion on the potential of the HPLWR to help sustain the nuclear option, by supplying competitively priced electricity, as well as to continue the nuclear competence in LWR technology. The following is a brief summary of the main project achievements:-A state-of-the-art review of supercritical water-cooled reactors has been performed for the HPLWR project.-Extensive studies have been performed in the last 10 years by the University of Tokyo. Therefore, a 'reference design', developed by the University of Tokyo, was selected in order to assess the available technological tools (i.e. computer codes, analyses, advanced materials, water chemistry, etc.). Design data and results of the analysis were supplied by the University of Tokyo. A benchmark problem, based on the 'reference design' was defined for neutronics calculations and several partners of the HPLWR project carried out independent analyses. The results of these analyses, which in addition help to 'calibrate' the codes, have guided the assessment of the core and the design of an improved HPLWR fuel assembly. Preliminary selection was made for the HPLWR scale

  3. High performance MEAs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    The aim of the present project is through modeling, material and process development to obtain significantly better MEA performance and to attain the technology necessary to fabricate stable catalyst materials thereby providing a viable alternative to current industry standard. This project primarily focused on the development and characterization of novel catalyst materials for the use in high temperature (HT) and low temperature (LT) proton-exchange membrane fuel cells (PEMFC). New catalysts are needed in order to improve fuel cell performance and reduce the cost of fuel cell systems. Additional tasks were the development of new, durable sealing materials to be used in PEMFC as well as the computational modeling of heat and mass transfer processes, predominantly in LT PEMFC, in order to improve fundamental understanding of the multi-phase flow issues and liquid water management in fuel cells. An improved fundamental understanding of these processes will lead to improved fuel cell performance and hence will also result in a reduced catalyst loading to achieve the same performance. The consortium have obtained significant research results and progress for new catalyst materials and substrates with promising enhanced performance and fabrication of the materials using novel methods. However, the new materials and synthesis methods explored are still in the early research and development phase. The project has contributed to improved MEA performance using less precious metal and has been demonstrated for both LT-PEM, DMFC and HT-PEM applications. New novel approach and progress of the modelling activities has been extremely satisfactory with numerous conference and journal publications along with two potential inventions concerning the catalyst layer. (LN)

  4. Determination of properties of high temperature superconductors and amorphous metallic alloys using positron annihilation techniques. Final report for the period 15 January 1992 - 15 July 1995

    International Nuclear Information System (INIS)

    Kristiak, J.

    1995-11-01

    The positron lifetime results obtained on amorphous thermally treated Ni 25 Zr 55 Al 20 alloy indicate that positrons annihilate at places with different properties. The observed shifts of positron lifetime distribution were analyzed in the terms of a relaxation of free-volume, i.e. chemical (CSRO) and topological (TSRO) short range ordering. The upper limit of the activation energy of CSRO and TSRO relaxation was determined to be 2.2eV and 2.6eV, respectively. Positron lifetime τ and Doppler broadening of the annihilation line measurements on very pure C 60 sample as a function of temperature between 120 and 300 K have been reported. A rapid change of τ was observed between 240 and 250 K. This results indicate that the lattice from C 60 molecules is undergoing a phase transition and the phases coexist over an ∼ 10K range. The annihilation of positrons in amorphous tetramethylpoly-carbonate has been investigated in the temperature range from 30 to 300 K. The observed dependences of the mean lifetime of oPs and its relative intensity 1 on temperature were interpreted within the framework of the microstructural free-volume concept. The man radius of free space (hole) was deduced to be around 3,1.10 -10 m. Refs, figs, tabs

  5. Amorphous iron (II) carbonate

    DEFF Research Database (Denmark)

    Sel, Ozlem; Radha, A.V.; Dideriksen, Knud

    2012-01-01

    Abstract The synthesis, characterization and crystallization energetics of amorphous iron (II) carbonate (AFC) are reported. AFC may form as a precursor for siderite (FeCO3). The enthalpy of crystallization (DHcrys) of AFC is similar to that of amorphous magnesium carbonate (AMC) and more...

  6. Indoor Air Quality in High Performance Schools

    Science.gov (United States)

    High performance schools are facilities that improve the learning environment while saving energy, resources, and money. The key is understanding the lifetime value of high performance schools and effectively managing priorities, time, and budget.

  7. Carpet Aids Learning in High Performance Schools

    Science.gov (United States)

    Hurd, Frank

    2009-01-01

    The Healthy and High Performance Schools Act of 2002 has set specific federal guidelines for school design, and developed a federal/state partnership program to assist local districts in their school planning. According to the Collaborative for High Performance Schools (CHPS), high-performance schools are, among other things, healthy, comfortable,…

  8. Towards the determination of sulfonamides in meat samples: A magnetic and mesoporous metal-organic framework as an efficient sorbent for magnetic solid phase extraction combined with high-performance liquid chromatography.

    Science.gov (United States)

    Xia, Lian; Liu, Lijie; Lv, Xiaoxia; Qu, Fei; Li, Guoliang; You, Jinmao

    2017-06-02

    A magnetic, mesoporous core/shell structured Fe 3 O 4 @JUC-48 nanocomposite was synthesized and employed as a magnetic solid phase extraction (MSPE) sorbent for the determination of trace sulfonamides (SAs) in meat samples. The synthesized nanocomposite was characterized by X-ray diffraction, Fourier transform infrared spectra, transmission electron microscopy, scanning electron microscopy, Brunner-Emmet-Teller, and vibrating sample magnetometry; the Fe 3 O 4 @JUC-48 nanocomposite exhibited a distinctive morphology, large surface area, high magnetism, open adsorption sites, and high chemical stability. By combining the optimized MSPE conditions with high performance liquid chromatography diode array detection, an accurate and sensitive method for the determination of 5 SAs, including sulfadiazine (SDZ), sulfathiazole (STZ), sulfamerazine (SMR), sulfamethazine (SMZ), and sulfamethoxypyridazine (SMP), was developed. The method exhibited good linearity in the range of 3.97-1000ng/g with R ranging from 0.9991 to 0.9994, high sensitivity with LODs ranging from 1.73 to 5.23ng/g, adequate recoveries between 76.1 and 102.6% with low relative standard deviations ranging from 2.1 to 6.4%, and high precision with RSD<4.5%. The Fe 3 O 4 @JUC-48 magnetic nanocomposite is a promising sorbent for the rapid and efficient extraction of SAs from complex biological samples such as chicken, pork, and shrimp. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Optimization of charge-carrier generation in amorphous-silicon thin-film tandem solar cell backed by two-dimensional metallic surface-relief grating

    Science.gov (United States)

    Civiletti, Benjamin J.; Anderson, Tom H.; Ahmad, Faiz; Monk, Peter B.; Lakhtakia, Akhlesh

    2017-08-01

    The rigorous coupled-wave approach was implemented in a three-dimensional setting to calculate the chargecarrier-generation rate in a thin-film solar cell with multiple amorphous-silicon p-i-n junctions. The solar cell comprised a front antireflection window; three electrically isolated p-i-n junctions in tandem; and a periodically corrugated silver back-reflector with hillock-shaped corrugations arranged on a hexagonal lattice. The differential evolution algorithm (DEA) was used to maximize the charge-carrier-generation rate over a set of selected optical and electrical parameters. This optimization exercise minimized the bandgap of the topmost i-layer but all other parameters turned out to be uninfluential. More importantly, the exercise led to a configuration that would very likely render the solar cell inefficient. Therefore, another optimization exercise was conducted to maximize power density. The resulting configuration was optimal over all parameters.

  10. Spray-combustion synthesis: efficient solution route to high-performance oxide transistors.

    Science.gov (United States)

    Yu, Xinge; Smith, Jeremy; Zhou, Nanjia; Zeng, Li; Guo, Peijun; Xia, Yu; Alvarez, Ana; Aghion, Stefano; Lin, Hui; Yu, Junsheng; Chang, Robert P H; Bedzyk, Michael J; Ferragut, Rafael; Marks, Tobin J; Facchetti, Antonio

    2015-03-17

    Metal-oxide (MO) semiconductors have emerged as enabling materials for next generation thin-film electronics owing to their high carrier mobilities, even in the amorphous state, large-area uniformity, low cost, and optical transparency, which are applicable to flat-panel displays, flexible circuitry, and photovoltaic cells. Impressive progress in solution-processed MO electronics has been achieved using methodologies such as sol gel, deep-UV irradiation, preformed nanostructures, and combustion synthesis. Nevertheless, because of incomplete lattice condensation and film densification, high-quality solution-processed MO films having technologically relevant thicknesses achievable in a single step have yet to be shown. Here, we report a low-temperature, thickness-controlled coating process to create high-performance, solution-processed MO electronics: spray-combustion synthesis (SCS). We also report for the first time, to our knowledge, indium-gallium-zinc-oxide (IGZO) transistors having densification, nanoporosity, electron mobility, trap densities, bias stability, and film transport approaching those of sputtered films and compatible with conventional fabrication (FAB) operations.

  11. Transformation processes during annealing of Al-amorphous alloys

    International Nuclear Information System (INIS)

    Petrescu, N.; Petrescu, M.; Calin, M.; Jianu, A.D.; Fecioru, M.

    1993-01-01

    As the amorphous aluminum alloys represent the newest achievement in rapid solidification of Al-based high strength heat resistent materials, a study was undertaken on the amorphous alloys in the Al-RE-TM system, the rare-earth metal being a lanthanide mixture and the transition metal a Ni-Fe substitution in definite proportions. The decomposition on heating of the most highly alloyed amorphous alloy in the investigated series is characterized by differential thermal analysis, electron microscopy and X-ray diffraction. (orig.)

  12. Transformation processes during annealing of Al-amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Petrescu, N. (Polytechnic Inst. Bucharest, Faculty Materials Science and Engineering, Bucharest (Romania)); Petrescu, M. (Polytechnic Inst. Bucharest, Faculty Materials Science and Engineering, Bucharest (Romania)); Calin, M. (Polytechnic Inst. Bucharest, Faculty Materials Science and Engineering, Bucharest (Romania)); Jianu, A.D. (Polytechnic Inst. Bucharest, Faculty Materials Science and Engineering, Bucharest (Romania) IFTM-Bucharest (Romania)); Fecioru, M. (Polytechnic Inst. Bucharest, Faculty Materials Science and Engineering, Bucharest (Romania) DACIA Enterprise-Bucharest (Romania))

    1993-11-01

    As the amorphous aluminum alloys represent the newest achievement in rapid solidification of Al-based high strength heat resistent materials, a study was undertaken on the amorphous alloys in the Al-RE-TM system, the rare-earth metal being a lanthanide mixture and the transition metal a Ni-Fe substitution in definite proportions. The decomposition on heating of the most highly alloyed amorphous alloy in the investigated series is characterized by differential thermal analysis, electron microscopy and X-ray diffraction. (orig.).

  13. Hydrogen in amorphous silicon

    International Nuclear Information System (INIS)

    Peercy, P.S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH 1 ) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon

  14. A novel p-type and metallic dual-functional Cu-Al2O3 ultra-thin layer as the back electrode enabling high performance of thin film solar cells.

    Science.gov (United States)

    Lin, Qinxian; Su, Yantao; Zhang, Ming-Jian; Yang, Xiaoyang; Yuan, Sheng; Hu, Jiangtao; Lin, Yuan; Liang, Jun; Pan, Feng

    2016-09-14

    Increasing the open-circuit voltage (Voc) along with the fill factor (FF) is pivotal for the performance improvement of solar cells. In this work, we report the design and construction of a new structure of CdS/CdTe/Al2O3/Cu using the atomic layer deposition (ALD) method, and then we control Cu diffusion through the Al2O3 atomic layer into the CdTe layer. Surprisingly, this generates a novel p-type and metallic dual-functional Cu-Al2O3 atomic layer. Due to this dual-functional character of the Cu-Al2O3 layer, an efficiency improvement of 2% in comparison with the standard cell was observed. This novel dual-functional back contact structure could also be introduced into other thin film solar cells for their efficiency improvement.

  15. Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Hasan, E-mail: h.bagheri@bmsu.ac.ir [Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hajian, Ali [Laboratory for Sensors, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges Köhler Allee 103, 79110 Freiburg (Germany); Rezaei, Mosayeb; Shirzadmehr, Ali [Young Researchers and Elite Club, Hamedan Branch, Islamic Azad University, Hamedan (Iran, Islamic Republic of)

    2017-02-15

    Highlights: • An electrochemical sensor based on Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide modified glassy carbon electrode was developed. • Simultaneous electrochemical determination of nitrate and nitrite by fabricated sensor was performed. • Modification improved the sensitivity and detection limit of the method. • It is a useful method for determining of nitrate and nitrite in various real samples. - Abstract: In the present research, we aimed to fabricate a novel electrochemical sensor based on Cu metal nanoparticles on the multiwall carbon nanotubes-reduced graphene oxide nanosheets (Cu/MWCNT/RGO) for individual and simultaneous determination of nitrite and nitrate ions. The morphology of the prepared nanocomposite on the surface of glassy carbon electrode (GCE) was characterized using various methods including scanning electron microscopy (SEM), atomic force microscopy (AFM), and electrochemical impedance spectroscopy. Under optimal experimental conditions, the modified GCE showed excellent catalytic activity toward the electro-reduction of nitrite and nitrate ions (pH = 3.0) with a significant increase in cathodic peak currents in comparison with the unmodified GCE. By square wave voltammetry (SWV) the fabricated sensor demonstrated wide dynamic concentration ranges from 0.1 to 75 μM with detection limits (3S{sub b}/m) of 30 nM and 20 nM method for nitrite and nitrate ions, respectively. Furthermore, the applicability of the proposed modified electrode was demonstrated by measuring the concentration of nitrite and nitrate ions in the tap and mineral waters, sausages, salami, and cheese samples.

  16. Amorphization within the tablet

    DEFF Research Database (Denmark)

    Doreth, Maria; Hussein, Murtadha Abdul; Priemel, Petra A.

    2017-01-01

    , the feasibility of microwave irradiation to prepare amorphous solid dispersions (glass solutions) in situ was investigated. Indomethacin (IND) and polyvinylpyrrolidone K12 (PVP) were tableted at a 1:2 (w/w) ratio. In order to study the influence of moisture content and energy input on the degree of amorphization......, tablet formulations were stored at different relative humidity (32, 43 and 54% RH) and subsequently microwaved using nine different power-time combinations up to a maximum energy input of 90 kJ. XRPD results showed that up to 80% (w/w) of IND could be amorphized within the tablet. mDSC measurements...

  17. Alternative High-Performance Ceramic Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Sundaram, S. K. [Alfred Univ., NY (United States)

    2017-02-01

    This final report (M5NU-12-NY-AU # 0202-0410) summarizes the results of the project titled “Alternative High-Performance Ceramic Waste Forms,” funded in FY12 by the Nuclear Energy University Program (NEUP Project # 12-3809) being led by Alfred University in collaboration with Savannah River National Laboratory (SRNL). The overall focus of the project is to advance fundamental understanding of crystalline ceramic waste forms and to demonstrate their viability as alternative waste forms to borosilicate glasses. We processed single- and multiphase hollandite waste forms based on simulated waste streams compositions provided by SRNL based on the advanced fuel cycle initiative (AFCI) aqueous separation process developed in the Fuel Cycle Research and Development (FCR&D). For multiphase simulated waste forms, oxide and carbonate precursors were mixed together via ball milling with deionized water using zirconia media in a polyethylene jar for 2 h. The slurry was dried overnight and then separated from the media. The blended powders were then subjected to melting or spark plasma sintering (SPS) processes. Microstructural evolution and phase assemblages of these samples were studied using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion analysis of x-rays (EDAX), wavelength dispersive spectrometry (WDS), transmission electron spectroscopy (TEM), selective area x-ray diffraction (SAXD), and electron backscatter diffraction (EBSD). These results showed that the processing methods have significant effect on the microstructure and thus the performance of these waste forms. The Ce substitution into zirconolite and pyrochlore materials was investigated using a combination of experimental (in situ XRD and x-ray absorption near edge structure (XANES)) and modeling techniques to study these single phases independently. In zirconolite materials, a transition from the 2M to the 4M polymorph was observed with increasing Ce content. The resulting

  18. Heavy ions amorphous semiconductors irradiation study

    International Nuclear Information System (INIS)

    Benmalek, M.

    1978-01-01

    The behavior of amorphous semiconductors (germanium and germanium and arsenic tellurides) under ion bombardment at energies up to 2 MeV was studied. The irradiation induced modifications were followed using electrical parameter changes (resistivity and activation energy) and by means of the transmission electron microscopy observations. The electrical conductivity enhancement of the irradiated samples was interpreted using the late conduction theories in amorphous compounds. In amorphous germanium, Electron Microscopy showed the formations of 'globules', these defects are similar to voids observed in irradiated metals. The displacement cascade theory was used for the interpretation of the irradiation induced defects formation and a coalescence mechanism of growth was pointed out for the vacancy agglomeration [fr

  19. STRUCTURAL INTERACTIONS OF HYDROGEN WITH BULK AMORPHOUS MICROSTRUCTURES IN METALLIC SYSTEMS UNDERSTANDING THE ROLE OF PARTIAL CRYSTALLINITY ON PERMEATION AND EMBRITTLEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, Kyle; Fox, Elise; Korinko, Paul; Adams, Thad

    2010-05-10

    The development of metallic glasses in bulk form has led to a resurgence of interest into the utilization of these materials for a variety of applications. A potentially exciting application for these bulk metallic glass (BMG) materials is their use as composite membranes to replace high cost Pd/Pd-alloy membranes for enhanced gas separation processes. One of the major drawbacks to the industrial use of Pd/Pd-alloy membranes is that during cycling above and below a critical temperature an irreversible change takes place in the palladium lattice structure which can result in significant damage to the membrane. Furthermore, the cost associated with Pd-based membranes is a potential detractor for their continued use and BMG alloys offer a potentially attractive alternative. Several BMG alloys have been shown to possess high permeation rates, comparable to those measured for pure Pd metal. In addition, high strength and toughness when either in-situ or ex-situ second phase dispersoids are present. Both of these properties, high permeation and high strength/toughness, potentially make these materials attractive for gas separation membranes that could resist hydrogen 'embrittlement'. However, a fundamental understanding of the relationship between partially crystalline 'structure'/devitrification and permeation/embrittlement in these BMG materials is required in order to determine the operating window for separation membranes and provide additional input to the material synthesis community for improved alloy design. This project aims to fill the knowledge gap regarding the impact of crystallization on the permeation properties of metallic glass materials. The objectives of this study are to (i) determine the crystallization behavior in different gas environments of Fe and Zr based commercially available bulk metallic glass and (ii) quantify the effects of partial crystallinity on the hydrogen permeation properties of these metallic glass membranes.

  20. High performance carbon nanocomposites for ultracapacitors

    Science.gov (United States)

    Lu, Wen

    2012-10-02

    The present invention relates to composite electrodes for electrochemical devices, particularly to carbon nanotube composite electrodes for high performance electrochemical devices, such as ultracapacitors.

  1. Micromachined high-performance RF passives in CMOS substrate

    International Nuclear Information System (INIS)

    Li, Xinxin; Ni, Zao; Gu, Lei; Wu, Zhengzheng; Yang, Chen

    2016-01-01

    This review systematically addresses the micromachining technologies used for the fabrication of high-performance radio-frequency (RF) passives that can be integrated into low-cost complementary metal-oxide semiconductor (CMOS)-grade (i.e. low-resistivity) silicon wafers. With the development of various kinds of post-CMOS-compatible microelectromechanical systems (MEMS) processes, 3D structural inductors/transformers, variable capacitors, tunable resonators and band-pass/low-pass filters can be compatibly integrated into active integrated circuits to form monolithic RF system-on-chips. By using MEMS processes, including substrate modifying/suspending and LIGA-like metal electroplating, both the highly lossy substrate effect and the resistive loss can be largely eliminated and depressed, thereby meeting the high-performance requirements of telecommunication applications. (topical review)

  2. Laser additive manufacturing of high-performance materials

    CERN Document Server

    Gu, Dongdong

    2015-01-01

    This book entitled “Laser Additive Manufacturing of High-Performance Materials” covers the specific aspects of laser additive manufacturing of high-performance new materials components based on an unconventional materials incremental manufacturing philosophy, in terms of materials design and preparation, process control and optimization, and theories of physical and chemical metallurgy. This book describes the capabilities and characteristics of the development of new metallic materials components by laser additive manufacturing process, including nanostructured materials, in situ composite materials, particle reinforced metal matrix composites, etc. The topics presented in this book, similar as laser additive manufacturing technology itself, show a significant interdisciplinary feature, integrating laser technology, materials science, metallurgical engineering, and mechanical engineering. This is a book for researchers, students, practicing engineers, and manufacturing industry professionals interested i...

  3. Powder metallurgical high performance materials. Proceedings. Volume 4: late papers

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    This is the fourth volume (late papers) of the 15th International Plansee seminar 2001 which general theme was 'Powder metallurgical high performance materials'. The seminar looked beyond the refractory metals and cemented carbides, which remain as its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. This volume 4 contains papers dealing with high performance P/M metals (ITER and fusion reactors, solid targets, materials microstructure, novel alloys, etc.), P/M hard materials ( production and characterization, tungsten carbides, titanium carbides, microstructural design, coatings composition and performance, etc.) and general topics. From 37 papers 24 correspond to INIS subject scope and they were indexed separately. (nevyjel)

  4. Strategy Guideline: High Performance Residential Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  5. High Performance Grinding and Advanced Cutting Tools

    CERN Document Server

    Jackson, Mark J

    2013-01-01

    High Performance Grinding and Advanced Cutting Tools discusses the fundamentals and advances in high performance grinding processes, and provides a complete overview of newly-developing areas in the field. Topics covered are grinding tool formulation and structure, grinding wheel design and conditioning and applications using high performance grinding wheels. Also included are heat treatment strategies for grinding tools, using grinding tools for high speed applications, laser-based and diamond dressing techniques, high-efficiency deep grinding, VIPER grinding, and new grinding wheels.

  6. Metal-induced crystallization fundamentals and applications

    CERN Document Server

    Wang, Zumin; Mittemeijer, Eric J

    2014-01-01

    Introduction to Metal-Induced CrystallizationAtomic Mechanisms and Interface Thermodynamics of Metal-Induced Crystallization of Amorphous Semiconductors at Low TemperaturesThermodynamics and Kinetics of Layer Exchange upon Low-Temperature Annealing Amorphous Si/Polycrystalline Al Layered StructuresMetal-Induced Crystallization by Homogeneous Insertion of Metallic Species in Amorphous SemiconductorsAluminum-Induced Crystallization: Applications in Photovoltaic TechnologiesApplications of Metal-Induced Crystallization for Advanced Flat-Panel DisplaysLaser-Assisted Meta

  7. Amorphous carbon enhancement of hydrogen penetration into UO2

    International Nuclear Information System (INIS)

    Zalkind, S.; Shamir, N.; Gouder, T.; Akhvlediani, R.; Hoffman, A.

    2014-01-01

    In a previous study, it was demonstrated that an amorphous carbon layer, deposited on a native oxide covered uranium surface, significantly enhances the interaction of hydrogen with the uranium metal. Fig. 1[2], demonstrates the preferential hydrogen attack (forming uranium hydride) on the carbon covered area of the naturally oxidized uranium metal

  8. High performance liquid chromatographic determination of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-08

    sulphonate (synthesized). Instrumentation. The chromatographic apparatus consisted of a Cecil 1200 series. 1000 high performance liquid chromatograph. The analytical column was ODS hypersil C18,5 µm particle size in 250 mm ...

  9. Strategies and Experiences Using High Performance Fortran

    National Research Council Canada - National Science Library

    Shires, Dale

    2001-01-01

    .... High performance Fortran (HPF) is a relative new addition to the Fortran dialect It is an attempt to provide an efficient high-level Fortran parallel programming language for the latest generation of been debatable...

  10. High Performance Space Pump, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — PDT is proposing a High Performance Space Pump based upon an innovative design using several technologies. The design will use a two-stage impeller, high temperature...

  11. High-performance computing using FPGAs

    CERN Document Server

    Benkrid, Khaled

    2013-01-01

    This book is concerned with the emerging field of High Performance Reconfigurable Computing (HPRC), which aims to harness the high performance and relative low power of reconfigurable hardware–in the form Field Programmable Gate Arrays (FPGAs)–in High Performance Computing (HPC) applications. It presents the latest developments in this field from applications, architecture, and tools and methodologies points of view. We hope that this work will form a reference for existing researchers in the field, and entice new researchers and developers to join the HPRC community.  The book includes:  Thirteen application chapters which present the most important application areas tackled by high performance reconfigurable computers, namely: financial computing, bioinformatics and computational biology, data search and processing, stencil computation e.g. computational fluid dynamics and seismic modeling, cryptanalysis, astronomical N-body simulation, and circuit simulation.     Seven architecture chapters which...

  12. HPTA: High-Performance Text Analytics

    OpenAIRE

    Vandierendonck, Hans; Murphy, Karen; Arif, Mahwish; Nikolopoulos, Dimitrios S.

    2017-01-01

    One of the main targets of data analytics is unstructured data, which primarily involves textual data. High-performance processing of textual data is non-trivial. We present the HPTA library for high-performance text analytics. The library helps programmers to map textual data to a dense numeric representation, which can be handled more efficiently. HPTA encapsulates three performance optimizations: (i) efficient memory management for textual data, (ii) parallel computation on associative dat...

  13. Fabrication of metallic glass structures

    Science.gov (United States)

    Cline, C.F.

    1983-10-20

    Amorphous metal powders or ribbons are fabricated into solid shapes of appreciable thickness by the application of compaction energy. The temperature regime wherein the amorphous metal deforms by viscous flow is measured. The metal powders or ribbons are compacted within the temperature regime.

  14. The effect of metallization contact resistance on the measurement of the field effect mobility of long-channel unannealed amorphous In–Zn–O thin film transistors

    International Nuclear Information System (INIS)

    Lee, Sunghwan; Park, Hongsik; Paine, David C.

    2012-01-01

    The effect of contact resistance on the measurement of the field effect mobility of compositionally homogeneous channel indium zinc oxide (IZO)/IZO metallization thin film transistors (TFTs) is reported. The TFTs studied in this work operate in depletion mode as n-channel field effect devices with a field effect mobility calculated in the linear regime (μ FE ) of 20 ± 1.9 cm 2 /Vs and similar of 18 ± 1.3 cm 2 /Vs when calculated in the saturation regime (μ FE sat ). These values, however, significantly underestimate the channel mobility since a large part of the applied drain voltage is dropped across the source/drain contact interface. The transmission line method was employed to characterize the contact resistance and it was found that the conducting-IZO/semiconducting-IZO channel contact is highly resistive (specific contact resistance, ρ C > 100 Ωcm 2 ) and, further, this contact resistance is modulated with applied gate voltage. Accounting for the contact resistance (which is large and modulated by gate voltage), the corrected μ FE is shown to be 39 ± 2.6 cm 2 /Vs which is consistent with Hall mobility measurements of high carrier density IZO.

  15. High performance flexible electronics for biomedical devices.

    Science.gov (United States)

    Salvatore, Giovanni A; Munzenrieder, Niko; Zysset, Christoph; Kinkeldei, Thomas; Petti, Luisa; Troster, Gerhard

    2014-01-01

    Plastic electronics is soft, deformable and lightweight and it is suitable for the realization of devices which can form an intimate interface with the body, be implanted or integrated into textile for wearable and biomedical applications. Here, we present flexible electronics based on amorphous oxide semiconductors (a-IGZO) whose performance can achieve MHz frequency even when bent around hair. We developed an assembly technique to integrate complex electronic functionalities into textile while preserving the softness of the garment. All this and further developments can open up new opportunities in health monitoring, biotechnology and telemedicine.

  16. Decal electronics for printed high performance cmos electronic systems

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-11-23

    High performance complementary metal oxide semiconductor (CMOS) electronics are critical for any full-fledged electronic system. However, state-of-the-art CMOS electronics are rigid and bulky making them unusable for flexible electronic applications. While there exist bulk material reduction methods to flex them, such thinned CMOS electronics are fragile and vulnerable to handling for high throughput manufacturing. Here, we show a fusion of a CMOS technology compatible fabrication process for flexible CMOS electronics, with inkjet and conductive cellulose based interconnects, followed by additive manufacturing (i.e. 3D printing based packaging) and finally roll-to-roll printing of packaged decal electronics (thin film transistors based circuit components and sensors) focusing on printed high performance flexible electronic systems. This work provides the most pragmatic route for packaged flexible electronic systems for wide ranging applications.

  17. Strategy Guideline. Partnering for High Performance Homes

    Energy Technology Data Exchange (ETDEWEB)

    Prahl, Duncan [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. This guide is intended for use by all parties associated in the design and construction of high performance homes. It serves as a starting point and features initial tools and resources for teams to collaborate to continually improve the energy efficiency and durability of new houses.

  18. High performance bio-integrated devices

    Science.gov (United States)

    Kim, Dae-Hyeong; Lee, Jongha; Park, Minjoon

    2014-06-01

    In recent years, personalized electronics for medical applications, particularly, have attracted much attention with the rise of smartphones because the coupling of such devices and smartphones enables the continuous health-monitoring in patients' daily life. Especially, it is expected that the high performance biomedical electronics integrated with the human body can open new opportunities in the ubiquitous healthcare. However, the mechanical and geometrical constraints inherent in all standard forms of high performance rigid wafer-based electronics raise unique integration challenges with biotic entities. Here, we describe materials and design constructs for high performance skin-mountable bio-integrated electronic devices, which incorporate arrays of single crystalline inorganic nanomembranes. The resulting electronic devices include flexible and stretchable electrophysiology electrodes and sensors coupled with active electronic components. These advances in bio-integrated systems create new directions in the personalized health monitoring and/or human-machine interfaces.

  19. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses

    Science.gov (United States)

    Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K.; Mukherjee, Sundeep

    2016-06-01

    High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe-Co metallic glass system of composition [(Co1-x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent ‘Stoner type’ magnetization for the amorphous alloys in contrast to ‘Heisenberg type’ in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study.

  20. Towards High Performance in Industrial Refrigeration Systems

    DEFF Research Database (Denmark)

    Thybo, C.; Izadi-Zamanabadi, Roozbeh; Niemann, H.

    2002-01-01

    Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design in industr...... in industrial refrigeration systems.......Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design...

  1. High performance computing at Sandia National Labs

    Energy Technology Data Exchange (ETDEWEB)

    Cahoon, R.M.; Noe, J.P.; Vandevender, W.H.

    1995-10-01

    Sandia`s High Performance Computing Environment requires a hierarchy of resources ranging from desktop, to department, to centralized, and finally to very high-end corporate resources capable of teraflop performance linked via high-capacity Asynchronous Transfer Mode (ATM) networks. The mission of the Scientific Computing Systems Department is to provide the support infrastructure for an integrated corporate scientific computing environment that will meet Sandia`s needs in high-performance and midrange computing, network storage, operational support tools, and systems management. This paper describes current efforts at SNL/NM to expand and modernize centralized computing resources in support of this mission.

  2. High performance parallel I/O

    CERN Document Server

    Prabhat

    2014-01-01

    Gain Critical Insight into the Parallel I/O EcosystemParallel I/O is an integral component of modern high performance computing (HPC), especially in storing and processing very large datasets to facilitate scientific discovery. Revealing the state of the art in this field, High Performance Parallel I/O draws on insights from leading practitioners, researchers, software architects, developers, and scientists who shed light on the parallel I/O ecosystem.The first part of the book explains how large-scale HPC facilities scope, configure, and operate systems, with an emphasis on choices of I/O har

  3. Thermal interface pastes nanostructured for high performance

    Science.gov (United States)

    Lin, Chuangang

    thermal paste that is particularly effective for smooth surfaces was obtained by using nanoclay platelets (obtained by organic modification and subsequent chemical exfoliation) as the solid component. The superiority of the nanoclay paste for smooth surfaces is attributed to the submicrometer bond line thickness. Electrically nonconductive high-performance thermal paste was obtained by using either fumed alumina or fumed zinc oxide. The nonconductivity serves to avoid short circuiting in the electronic application environment. The fumed oxides are as effective as carbon black, but are advantageous in their electrical nonconductivity. Without fuming, the oxides are less effective. The silane coating on fumed metal oxides helps. Electrically nonconductive thermal pastes have also been attained using carbon as the thermally conductive solid component. Either fumed alumina or nanoclay is used to break the electrical connectivity of the carbon in the paste to obtain electrical nonconductivity. Among the nanostrucutred pastes developed in this dissertation research, the nanoclay (0.6 vol.%) paste is recommended for smooth surfaces. With the overall performance for smooth and rough surfaces considered, the carbon black (Tokai, 15 vol.%) paste is recommended. Carbon black (Tokai) is more effective than carbon black (Cabot), due to its small aggregate size. All the pastes developed are much more effective than carbon nanotube arrays investigated by others. The rheological behavior of the thermal pastes was studied under strain sweep, frequency sweep, steady state flow and temperature ramping. In the absence of a solid component, the vehicle is Newtonian and fluid-like. In the presence of a solid component, the paste is a Bingham plastic that exhibits shear thinning and mainly solid-like behavior. The addition of antioxidants enhances the solid-like character, increases the yield stress, the plastic viscosity and the bond line thickness, and decreases the thermal contact

  4. Validated High Performance Liquid Chromatography Method for ...

    African Journals Online (AJOL)

    Purpose: To develop a simple, rapid and sensitive high performance liquid chromatography (HPLC) method for the determination of cefadroxil monohydrate in human plasma. Methods: Schimadzu HPLC with LC solution software was used with Waters Spherisorb, C18 (5 μm, 150mm × 4.5mm) column. The mobile phase ...

  5. Project materials [Commercial High Performance Buildings Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-01-01

    The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

  6. High performance computing on vector systems

    CERN Document Server

    Roller, Sabine

    2008-01-01

    Presents the developments in high-performance computing and simulation on modern supercomputer architectures. This book covers trends in hardware and software development in general and specifically the vector-based systems and heterogeneous architectures. It presents innovative fields like coupled multi-physics or multi-scale simulations.

  7. Teacher Accountability at High Performing Charter Schools

    Science.gov (United States)

    Aguirre, Moises G.

    2016-01-01

    This study will examine the teacher accountability and evaluation policies and practices at three high performing charter schools located in San Diego County, California. Charter schools are exempted from many laws, rules, and regulations that apply to traditional school systems. By examining the teacher accountability systems at high performing…

  8. Toward High Performance in Industrial Refrigeration Systems

    OpenAIRE

    Thybo, C.; Izadi-Zamanabadi, Roozbeh; Niemann, H.

    2002-01-01

    Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design in industrial refrigeration systems.

  9. Technology Leadership in Malaysia's High Performance School

    Science.gov (United States)

    Yieng, Wong Ai; Daud, Khadijah Binti

    2017-01-01

    Headmaster as leader of the school also plays a role as a technology leader. This applies to the high performance schools (HPS) headmaster as well. The HPS excel in all aspects of education. In this study, researcher is interested in examining the role of the headmaster as a technology leader through interviews with three headmasters of high…

  10. Optimization and validation of high performance liquid ...

    African Journals Online (AJOL)

    Optimization and validation of high performance liquid chromatography-ultra violet method for quantitation of metoprolol in rabbit plasma: application to ... Methods: Mobile phase of methanol and 50 mM ammonium dihydrogen phosphate solution (50:50) at pH 3.05 was used for separation of metoprolol on BDS hypersil ...

  11. High performance structural ceramics for nuclear industry

    International Nuclear Information System (INIS)

    Pujari, Vimal K.; Faker, Paul

    2006-01-01

    A family of Saint-Gobain structural ceramic materials and products produced by its High performance Refractory Division is described. Over the last fifty years or so, Saint-Gobain has been a leader in developing non oxide ceramic based novel materials, processes and products for application in Nuclear, Chemical, Automotive, Defense and Mining industries

  12. Debugging a high performance computing program

    Science.gov (United States)

    Gooding, Thomas M.

    2013-08-20

    Methods, apparatus, and computer program products are disclosed for debugging a high performance computing program by gathering lists of addresses of calling instructions for a plurality of threads of execution of the program, assigning the threads to groups in dependence upon the addresses, and displaying the groups to identify defective threads.

  13. Toward High Performance in Industrial Refrigeration Systems

    DEFF Research Database (Denmark)

    Thybo, C.; Izadi-Zamanabadi, Roozbeh; Niemann, H.

    2002-01-01

    Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design in industr...... in industrial refrigeration systems....

  14. Towards high performance in industrial refrigeration systems

    DEFF Research Database (Denmark)

    Thybo, C.; Izadi-Zamanabadi, R.; Niemann, Hans Henrik

    2002-01-01

    Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design in industr...... in industrial refrigeration systems....

  15. High Performance Expectations: Concept and causes

    DEFF Research Database (Denmark)

    Andersen, Lotte Bøgh; Jacobsen, Christian Bøtcher

    2017-01-01

    High performance expectations (HPE) are central in public management because employees tend to contribute more when their leaders have high expectations to them. However, we know little about how leaders make it clear to employees that they have these high expectations. Building on transformation...

  16. High Performance Networks for High Impact Science

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Mary A.; Bair, Raymond A.

    2003-02-13

    This workshop was the first major activity in developing a strategic plan for high-performance networking in the Office of Science. Held August 13 through 15, 2002, it brought together a selection of end users, especially representing the emerging, high-visibility initiatives, and network visionaries to identify opportunities and begin defining the path forward.

  17. Amorphous Semiconductor Alloys

    Science.gov (United States)

    Madan, Arun

    1985-08-01

    Amorphous silicon (a-Si) based alloys have attracted a considerable amount of interest because of their applications in a wide variety of technologies. However, the major effort has concentrated on inexpensive photovoltaic device applications and has moved from a laboratory curiosity in the early 1970's to viable commercial applications in the 1980's. Impressive progress in this field has been made since the group at University of Dundee demonstrated that a low defect, device quality hydrogenated amorphous silicon (a-Si:H) 12 material could be produced using the radio frequency (r.f.) glow discharge in SiH4 gas ' and that the material could be doped n- and p-type.3 These results spurred a worldwide interest in a-Si based alloys, especially for photovoltaic devices which has resulted in a conversion efficiency approaching 12%. There is now a quest for even higher conversion efficiencies by using the multijunction cell approach. This necessitates the synthesis of new materials of differing bandgaps, which in principle amorphous semiconductors can achieve. In this article, we review some of this work and consider from a device and a materials point of view the hurdles which have to be overcome before this type of concept can be realized.

  18. Separation and estimation of lanthanides using high performance liquid chromatography

    International Nuclear Information System (INIS)

    Datta, Arpita; Sivaraman, N.; Vasudeva Rao, P.R.

    2012-01-01

    The separation efficiency of individual lanthanides depends on the stability constant of the metal-ligand complex. Therefore, stability constant data of lanthanide complexes is important in the development of high performance separation procedures. The dynamic ion exchange HPLC technique was employed at our laboratory to estimate the stability constant of lanthanides with various complexing agents. In these studies, the retention times as well as capacity factors of lanthanides and some actinides were measured as a function of CSA, complexing agent concentrations and mobile phase pH. From these studies, a correlation has been established between capacity factor of a metal ion, concentrations of ion-pairing reagent and complexing agent with the stability constant of lanthanide complex

  19. The Stabilization of Amorphous Zopiclone in an Amorphous Solid Dispersion.

    Science.gov (United States)

    Milne, Marnus; Liebenberg, Wilna; Aucamp, Marique

    2015-10-01

    Zopiclone is a poorly soluble psychotherapeutic agent. The aim of this study was to prepare and characterize an amorphous form of zopiclone as well as the characterization and performance of a stable amorphous solid dispersion. The amorphous form was prepared by the well-known method of quench-cooling of the melt. The solid dispersion was prepared by a solvent evaporation method of zopiclone, polyvinylpyrrolidone-25 (PVP-25), and methanol, followed by freeze-drying. The physico-chemical properties and stability of amorphous zopiclone and the solid dispersion was studied using differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), hot-stage microscopy (HSM), X-ray diffractometry (XRD), solubility, and dissolution studies. The zopiclone amorphous solid-state form was determined to be a fragile glass; it was concluded that the stability of the amorphous form is influenced by both temperature and water. Exposure of amorphous zopiclone to moisture results in rapid transformation of the amorphous form to the crystalline dihydrated form. In comparison, the amorphous solid dispersion proved to be more stable with increased aqueous solubility.

  20. Architecting Web Sites for High Performance

    Directory of Open Access Journals (Sweden)

    Arun Iyengar

    2002-01-01

    Full Text Available Web site applications are some of the most challenging high-performance applications currently being developed and deployed. The challenges emerge from the specific combination of high variability in workload characteristics and of high performance demands regarding the service level, scalability, availability, and costs. In recent years, a large body of research has addressed the Web site application domain, and a host of innovative software and hardware solutions have been proposed and deployed. This paper is an overview of recent solutions concerning the architectures and the software infrastructures used in building Web site applications. The presentation emphasizes three of the main functions in a complex Web site: the processing of client requests, the control of service levels, and the interaction with remote network caches.

  1. High performance cloud auditing and applications

    CERN Document Server

    Choi, Baek-Young; Song, Sejun

    2014-01-01

    This book mainly focuses on cloud security and high performance computing for cloud auditing. The book discusses emerging challenges and techniques developed for high performance semantic cloud auditing, and presents the state of the art in cloud auditing, computing and security techniques with focus on technical aspects and feasibility of auditing issues in federated cloud computing environments.   In summer 2011, the United States Air Force Research Laboratory (AFRL) CyberBAT Cloud Security and Auditing Team initiated the exploration of the cloud security challenges and future cloud auditing research directions that are covered in this book. This work was supported by the United States government funds from the Air Force Office of Scientific Research (AFOSR), the AFOSR Summer Faculty Fellowship Program (SFFP), the Air Force Research Laboratory (AFRL) Visiting Faculty Research Program (VFRP), the National Science Foundation (NSF) and the National Institute of Health (NIH). All chapters were partially suppor...

  2. Monitoring SLAC High Performance UNIX Computing Systems

    International Nuclear Information System (INIS)

    Lettsome, Annette K.

    2005-01-01

    Knowledge of the effectiveness and efficiency of computers is important when working with high performance systems. The monitoring of such systems is advantageous in order to foresee possible misfortunes or system failures. Ganglia is a software system designed for high performance computing systems to retrieve specific monitoring information. An alternative storage facility for Ganglia's collected data is needed since its default storage system, the round-robin database (RRD), struggles with data integrity. The creation of a script-driven MySQL database solves this dilemma. This paper describes the process took in the creation and implementation of the MySQL database for use by Ganglia. Comparisons between data storage by both databases are made using gnuplot and Ganglia's real-time graphical user interface

  3. High performance work practices in Albania

    Directory of Open Access Journals (Sweden)

    Peter Nientied

    2017-10-01

    Full Text Available In this article, HRM practices - articulated as HRM for high performance work practices – are studied in Albanian companies. From a pre-study, the indication was that HRM is still in an early stage of development. A questionnaire based survey and interviews were conducted to substantiate this premise. The empirical results show that indeed HRM is not well developed. The data also reveal only minor differences between foreign owned companies and Albanian companies and between small and larger companies. The results of the study should be understood in the context of the Albanian small economy, slowly picking up. It is concluded that developing HRM high performance work practices has considerable potential for Albanian companies, and that employers’ associations and universities should play a role as HRM champions. HRM also deserves much more academic attention.

  4. High Performance Computing Operations Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Cupps, Kimberly C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-19

    The High Performance Computing Operations Review (HPCOR) meeting—requested by the ASC and ASCR program headquarters at DOE—was held November 5 and 6, 2013, at the Marriott Hotel in San Francisco, CA. The purpose of the review was to discuss the processes and practices for HPC integration and its related software and facilities. Experiences and lessons learned from the most recent systems deployed were covered in order to benefit the deployment of new systems.

  5. vSphere high performance cookbook

    CERN Document Server

    Sarkar, Prasenjit

    2013-01-01

    vSphere High Performance Cookbook is written in a practical, helpful style with numerous recipes focusing on answering and providing solutions to common, and not-so common, performance issues and problems.The book is primarily written for technical professionals with system administration skills and some VMware experience who wish to learn about advanced optimization and the configuration features and functions for vSphere 5.1.

  6. High performance work practices, innovation and performance

    DEFF Research Database (Denmark)

    Jørgensen, Frances; Newton, Cameron; Johnston, Kim

    2013-01-01

    Research spanning nearly 20 years has provided considerable empirical evidence for relationships between High Performance Work Practices (HPWPs) and various measures of performance including increased productivity, improved customer service, and reduced turnover. What stands out from......, and Africa to examine these various questions relating to the HPWP-innovation-performance relationship. Each paper discusses a practice that has been identified in HPWP literature and potential variables that can facilitate or hinder the effects of these practices of innovation- and performance...

  7. Optics of high-performance electron microscopes*

    OpenAIRE

    Rose, H H

    2016-01-01

    During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by...

  8. Planning for high performance project teams

    International Nuclear Information System (INIS)

    Reed, W.; Keeney, J.; Westney, R.

    1997-01-01

    Both industry-wide research and corporate benchmarking studies confirm the significant savings in cost and time that result from early planning of a project. Amoco's Team Planning Workshop combines long-term strategic project planning and short-term tactical planning with team building to provide the basis for high performing project teams, better project planning, and effective implementation of the Amoco Common Process for managing projects

  9. Autogenous shrinkage, speciality of high performance concretes

    OpenAIRE

    Vogrič, Nina

    2014-01-01

    Autogenous shrinkage is a consequence of self dessication in pores of hardened cement paste and is, at high performance concrete significantly greater than that of the ordinary concretes, mainly due to low water to cement ratio. In the graduation thesis we examined the main mechanisms that cause autogenous shrinkage. It can be reduced by internal curinginternal water reservoirs. As internal water reservoirs we used pre-soaked expanded clay Liapor. On specimens, in which we replaced 12 % of ag...

  10. Computational Biology and High Performance Computing 2000

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Horst D.; Zorn, Manfred D.; Spengler, Sylvia J.; Shoichet, Brian K.; Stewart, Craig; Dubchak, Inna L.; Arkin, Adam P.

    2000-10-19

    The pace of extraordinary advances in molecular biology has accelerated in the past decade due in large part to discoveries coming from genome projects on human and model organisms. The advances in the genome project so far, happening well ahead of schedule and under budget, have exceeded any dreams by its protagonists, let alone formal expectations. Biologists expect the next phase of the genome project to be even more startling in terms of dramatic breakthroughs in our understanding of human biology, the biology of health and of disease. Only today can biologists begin to envision the necessary experimental, computational and theoretical steps necessary to exploit genome sequence information for its medical impact, its contribution to biotechnology and economic competitiveness, and its ultimate contribution to environmental quality. High performance computing has become one of the critical enabling technologies, which will help to translate this vision of future advances in biology into reality. Biologists are increasingly becoming aware of the potential of high performance computing. The goal of this tutorial is to introduce the exciting new developments in computational biology and genomics to the high performance computing community.

  11. ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS

    International Nuclear Information System (INIS)

    WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

    2002-01-01

    OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability

  12. Strategy Guideline. High Performance Residential Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Holton, J. [IBACOS, Inc., Pittsburgh, PA (United States)

    2012-02-01

    This report has been developed to provide a tool for the understanding and application of high performance lighting in the home. The strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner’s expectations for high quality lighting.

  13. An integrated high performance fastbus slave interface

    International Nuclear Information System (INIS)

    Christiansen, J.; Ljuslin, C.

    1992-01-01

    A high performance Fastbus slave interface ASIC is presented. The Fastbus slave integrated circuit (FASIC) is a programmable device, enabling its direct use in many different applications. The FASIC acts as an interface between Fastbus and a 'standard' processor/memory bus. It can work stand-alone or together with a microprocessor. A set of address mapping windows can map Fastbus addresses to convenient memory addresses and at the same time act as address decoding logic. Data rates of 100 MBytes/s to Fastbus can be obtained using an internal FIFO buffer in the FASIC. (orig.)

  14. Utilities for high performance dispersion model PHYSIC

    International Nuclear Information System (INIS)

    Yamazawa, Hiromi

    1992-09-01

    The description and usage of the utilities for the dispersion calculation model PHYSIC were summarized. The model was developed in the study of developing high performance SPEEDI with the purpose of introducing meteorological forecast function into the environmental emergency response system. The procedure of PHYSIC calculation consists of three steps; preparation of relevant files, creation and submission of JCL, and graphic output of results. A user can carry out the above procedure with the help of the Geographical Data Processing Utility, the Model Control Utility, and the Graphic Output Utility. (author)

  15. Transport in JET high performance plasmas

    International Nuclear Information System (INIS)

    2001-01-01

    Two type of high performance scenarios have been produced in JET during DTE1 campaign. One of them is the well known and extensively used in the past ELM-free hot ion H-mode scenario which has two distinct regions- plasma core and the edge transport barrier. The results obtained during DTE-1 campaign with D, DT and pure T plasmas confirms our previous conclusion that the core transport scales as a gyroBohm in the inner half of plasma volume, recovers its Bohm nature closer to the separatrix and behaves as ion neoclassical in the transport barrier. Measurements on the top of the barrier suggest that the width of the barrier is dependent upon isotope and moreover suggest that fast ions play a key role. The other high performance scenario is a relatively recently developed Optimised Shear Scenario with small or slightly negative magnetic shear in plasma core. Different mechanisms of Internal Transport Barrier (ITB) formation have been tested by predictive modelling and the results are compared with experimentally observed phenomena. The experimentally observed non-penetration of the heavy impurities through the strong ITB which contradicts to a prediction of the conventional neo-classical theory is discussed. (author)

  16. Building Trust in High-Performing Teams

    Directory of Open Access Journals (Sweden)

    Aki Soudunsaari

    2012-06-01

    Full Text Available Facilitation of growth is more about good, trustworthy contacts than capital. Trust is a driving force for business creation, and to create a global business you need to build a team that is capable of meeting the challenge. Trust is a key factor in team building and a needed enabler for cooperation. In general, trust building is a slow process, but it can be accelerated with open interaction and good communication skills. The fast-growing and ever-changing nature of global business sets demands for cooperation and team building, especially for startup companies. Trust building needs personal knowledge and regular face-to-face interaction, but it also requires empathy, respect, and genuine listening. Trust increases communication, and rich and open communication is essential for the building of high-performing teams. Other building materials are a shared vision, clear roles and responsibilities, willingness for cooperation, and supporting and encouraging leadership. This study focuses on trust in high-performing teams. It asks whether it is possible to manage trust and which tools and operation models should be used to speed up the building of trust. In this article, preliminary results from the authors’ research are presented to highlight the importance of sharing critical information and having a high level of communication through constant interaction.

  17. A Linux Workstation for High Performance Graphics

    Science.gov (United States)

    Geist, Robert; Westall, James

    2000-01-01

    The primary goal of this effort was to provide a low-cost method of obtaining high-performance 3-D graphics using an industry standard library (OpenGL) on PC class computers. Previously, users interested in doing substantial visualization or graphical manipulation were constrained to using specialized, custom hardware most often found in computers from Silicon Graphics (SGI). We provided an alternative to expensive SGI hardware by taking advantage of third-party, 3-D graphics accelerators that have now become available at very affordable prices. To make use of this hardware our goal was to provide a free, redistributable, and fully-compatible OpenGL work-alike library so that existing bodies of code could simply be recompiled. for PC class machines running a free version of Unix. This should allow substantial cost savings while greatly expanding the population of people with access to a serious graphics development and viewing environment. This should offer a means for NASA to provide a spectrum of graphics performance to its scientists, supplying high-end specialized SGI hardware for high-performance visualization while fulfilling the requirements of medium and lower performance applications with generic, off-the-shelf components and still maintaining compatibility between the two.

  18. A High Performance COTS Based Computer Architecture

    Science.gov (United States)

    Patte, Mathieu; Grimoldi, Raoul; Trautner, Roland

    2014-08-01

    Using Commercial Off The Shelf (COTS) electronic components for space applications is a long standing idea. Indeed the difference in processing performance and energy efficiency between radiation hardened components and COTS components is so important that COTS components are very attractive for use in mass and power constrained systems. However using COTS components in space is not straightforward as one must account with the effects of the space environment on the COTS components behavior. In the frame of the ESA funded activity called High Performance COTS Based Computer, Airbus Defense and Space and its subcontractor OHB CGS have developed and prototyped a versatile COTS based architecture for high performance processing. The rest of the paper is organized as follows: in a first section we will start by recapitulating the interests and constraints of using COTS components for space applications; then we will briefly describe existing fault mitigation architectures and present our solution for fault mitigation based on a component called the SmartIO; in the last part of the paper we will describe the prototyping activities executed during the HiP CBC project.

  19. Strategy Guideline: Partnering for High Performance Homes

    Energy Technology Data Exchange (ETDEWEB)

    Prahl, D.

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. In an environment where the builder is the only source of communication between trades and consultants and where relationships are, in general, adversarial as opposed to cooperative, the chances of any one building system to fail are greater. Furthermore, it is much harder for the builder to identify and capitalize on synergistic opportunities. Partnering can help bridge the cross-functional aspects of the systems approach and achieve performance-based criteria. Critical success factors for partnering include support from top management, mutual trust, effective and open communication, effective coordination around common goals, team building, appropriate use of an outside facilitator, a partnering charter progress toward common goals, an effective problem-solving process, long-term commitment, continuous improvement, and a positive experience for all involved.

  20. Hybrid ventilation systems and high performance buildings

    Energy Technology Data Exchange (ETDEWEB)

    Utzinger, D.M. [Wisconsin Univ., Milwaukee, WI (United States). School of Architecture and Urban Planning

    2009-07-01

    This paper described hybrid ventilation design strategies and their impact on 3 high performance buildings located in southern Wisconsin. The Hybrid ventilation systems combined occupant controlled natural ventilation with mechanical ventilation systems. Natural ventilation was shown to provide adequate ventilation when appropriately designed. Proper control integration of natural ventilation into hybrid systems was shown to reduce energy consumption in high performance buildings. This paper also described the lessons learned from the 3 buildings. The author served as energy consultant on all three projects and had the responsibility of designing and integrating the natural ventilation systems into the HVAC control strategy. A post occupancy evaluation of building energy performance has provided learning material for architecture students. The 3 buildings included the Schlitz Audubon Nature Center completed in 2003; the Urban Ecology Center completed in 2004; and the Aldo Leopold Legacy Center completed in 2007. This paper included the size, measured energy utilization intensity and percentage of energy supplied by renewable solar power and bio-fuels on site for each building. 6 refs., 2 tabs., 6 figs.

  1. The path toward HEP High Performance Computing

    CERN Document Server

    Apostolakis, John; Carminati, Federico; Gheata, Andrei; Wenzel, Sandro

    2014-01-01

    High Energy Physics code has been known for making poor use of high performance computing architectures. Efforts in optimising HEP code on vector and RISC architectures have yield limited results and recent studies have shown that, on modern architectures, it achieves a performance between 10% and 50% of the peak one. Although several successful attempts have been made to port selected codes on GPUs, no major HEP code suite has a 'High Performance' implementation. With LHC undergoing a major upgrade and a number of challenging experiments on the drawing board, HEP cannot any longer neglect the less-than-optimal performance of its code and it has to try making the best usage of the hardware. This activity is one of the foci of the SFT group at CERN, which hosts, among others, the Root and Geant4 project. The activity of the experiments is shared and coordinated via a Concurrency Forum, where the experience in optimising HEP code is presented and discussed. Another activity is the Geant-V project, centred on th...

  2. High performance separation of lanthanides and actinides

    International Nuclear Information System (INIS)

    Sivaraman, N.; Vasudeva Rao, P.R.

    2011-01-01

    The major advantage of High Performance Liquid Chromatography (HPLC) is its ability to provide rapid and high performance separations. It is evident from Van Deemter curve for particle size versus resolution that packing materials with particle sizes less than 2 μm provide better resolution for high speed separations and resolving complex mixtures compared to 5 μm based supports. In the recent past, chromatographic support material using monolith has been studied extensively at our laboratory. Monolith column consists of single piece of porous, rigid material containing mesopores and micropores, which provide fast analyte mass transfer. Monolith support provides significantly higher separation efficiency than particle-packed columns. A clear advantage of monolith is that it could be operated at higher flow rates but with lower back pressure. Higher operating flow rate results in higher column permeability, which drastically reduces analysis time and provides high separation efficiency. The above developed fast separation methods were applied to assay the lanthanides and actinides from the dissolver solutions of nuclear reactor fuels

  3. Amorphous Li2 O2 : Chemical Synthesis and Electrochemical Properties.

    Science.gov (United States)

    Zhang, Yelong; Cui, Qinghua; Zhang, Xinmin; McKee, William C; Xu, Ye; Ling, Shigang; Li, Hong; Zhong, Guiming; Yang, Yong; Peng, Zhangquan

    2016-08-26

    When aprotic Li-O2 batteries discharge, the product phase formed in the cathode often contains two different morphologies, that is, crystalline and amorphous Li2 O2 . The morphology of Li2 O2 impacts strongly on the electrochemical performance of Li-O2 cells in terms of energy efficiency and rate capability. Crystalline Li2 O2 is readily available and its properties have been studied in depth for Li-O2 batteries. However, little is known about the amorphous Li2 O2 because of its rarity in high purity. Herein, amorphous Li2 O2 has been synthesized by a rapid reaction of tetramethylammonium superoxide and LiClO4 in solution, and its amorphous nature has been confirmed by a range of techniques. Compared with its crystalline siblings, amorphous Li2 O2 demonstrates enhanced charge-transport properties and increased electro-oxidation kinetics, manifesting itself a desirable discharge phase for high-performance Li-O2 batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Selective alkane activation with single-site atoms on amorphous support

    Science.gov (United States)

    Hock, Adam S.; Schweitzer, Neil M.; Miller, Jeffrey T.; Hu, Bo

    2015-11-24

    The present invention relates generally to catalysts and methods for use in olefin production. More particularly, the present invention relates to novel amorphously supported single-center, Lewis acid metal ions and use of the same as catalysts.

  5. Superconducting Metallic Glass Transition-Edge-Sensors

    Science.gov (United States)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  6. Structure and Properties of Amorphous Transparent Conducting Oxides

    Science.gov (United States)

    Medvedeva, Julia

    Driven by technological appeal, the research area of amorphous oxide semiconductors has grown tremendously since the first demonstration of the unique properties of amorphous indium oxide more than a decade ago. Today, amorphous oxides, such as a-ITO, a-IZO, a-IGZO, or a-ZITO, exhibit the optical, electrical, thermal, and mechanical properties that are comparable or even superior to those possessed by their crystalline counterparts, pushing the latter out of the market. Large-area uniformity, low-cost low-temperature deposition, high carrier mobility, optical transparency, and mechanical flexibility make these materials appealing for next-generation thin-film electronics. Yet, the structural variations associated with crystalline-to-amorphous transition as well as their role in carrier generation and transport properties of these oxides are far from being understood. Although amorphous oxides lack grain boundaries, factors like (i) size and distribution of nanocrystalline inclusions; (ii) spatial distribution and clustering of incorporated cations in multicomponent oxides; (iii) formation of trap defects; and (iv) piezoelectric effects associated with internal strains, will contribute to electron scattering. In this work, ab-initio molecular dynamics (MD) and accurate density-functional approaches are employed to understand how the properties of amorphous ternary and quaternary oxides depend on quench rates, cation compositions, and oxygen stoichiometries. The MD results, combined with thorough experimental characterization, reveal that interplay between the local and long-range structural preferences of the constituent oxides gives rise to a complex composition-dependent structural behavior in the amorphous oxides. The proposed network models of metal-oxygen polyhedra help explain the observed intriguing electrical and optical properties in In-based oxides and suggest ways to broaden the phase space of amorphous oxide semiconductors with tunable properties. The

  7. Amorphous Gyroscopic Topological Metamaterials

    Science.gov (United States)

    Mitchell, Noah P.; Nash, Lisa M.; Hexner, Daniel; Turner, Ari M.; Irvine, William T. M.

    Mechanical topological metamaterials display striking mechanical responses, such as unidirectional surface modes that are impervious to disorder. This behavior arises from the topology of their vibrational spectra. All examples of topological metamaterials to date are finely-tuned structures such as crystalline lattices or jammed packings. Here, we present robust recipes for building amorphous topological metamaterials with arbitrary underlying structure and no long-range order. Using interacting gyroscopes as a model system, we demonstrate through experiment, simulation, and theoretical methods that the local geometry and interactions are sufficient to generate topological mobility gaps, allowing for spatially-resolved, real-space calculations of the Chern number. The robustness of our approach enables the design and self-assembly of non-crystalline materials with protected, unidirectional waveguides on the micro and macro scale.

  8. High-performance parallel input device

    Science.gov (United States)

    Daniel, R. W.; Fischer, Patrick J.; Hunter, B.

    1993-12-01

    Research into force reflecting remote manipulation has recently started to move away from common error systems towards explicit force control. In order to maximize the benefit provided by explicit force reflection the designer has to take into account the asymmetry of the bandwidths of the forward and reflecting loops. This paper reports on a high performance system designed and built at Oxford University and Harwell Laboratories and on the preliminary results achieved when performing simple force reflecting tasks. The input device is based on a modified Stewart Platform, which offers the potential of very high bandwidth force reflection, well above the normal 2 - 10 Hz range achieved with common error systems. The slave is a nuclear hardened Puma industrial robot, offering a low cost, reliable solution to remote manipulation tasks.

  9. Intel Xeon Phi coprocessor high performance programming

    CERN Document Server

    Jeffers, James

    2013-01-01

    Authors Jim Jeffers and James Reinders spent two years helping educate customers about the prototype and pre-production hardware before Intel introduced the first Intel Xeon Phi coprocessor. They have distilled their own experiences coupled with insights from many expert customers, Intel Field Engineers, Application Engineers and Technical Consulting Engineers, to create this authoritative first book on the essentials of programming for this new architecture and these new products. This book is useful even before you ever touch a system with an Intel Xeon Phi coprocessor. To ensure that your applications run at maximum efficiency, the authors emphasize key techniques for programming any modern parallel computing system whether based on Intel Xeon processors, Intel Xeon Phi coprocessors, or other high performance microprocessors. Applying these techniques will generally increase your program performance on any system, and better prepare you for Intel Xeon Phi coprocessors and the Intel MIC architecture. It off...

  10. Optics of high-performance electron microscopes*

    Science.gov (United States)

    Rose, H H

    2008-01-01

    During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by multipole fields and to a discussion of the most advanced design that take advantage of these techniques. The theory of electron mirrors is developed and it is shown how this can be used to correct aberrations and to design energy filters. Finally, different types of energy filters are described. PMID:27877933

  11. Optics of high-performance electron microscopes.

    Science.gov (United States)

    Rose, H H

    2008-01-01

    During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by multipole fields and to a discussion of the most advanced design that take advantage of these techniques. The theory of electron mirrors is developed and it is shown how this can be used to correct aberrations and to design energy filters. Finally, different types of energy filters are described.

  12. High Performance Database Management for Earth Sciences

    Science.gov (United States)

    Rishe, Naphtali; Barton, David; Urban, Frank; Chekmasov, Maxim; Martinez, Maria; Alvarez, Elms; Gutierrez, Martha; Pardo, Philippe

    1998-01-01

    The High Performance Database Research Center at Florida International University is completing the development of a highly parallel database system based on the semantic/object-oriented approach. This system provides exceptional usability and flexibility. It allows shorter application design and programming cycles and gives the user control via an intuitive information structure. It empowers the end-user to pose complex ad hoc decision support queries. Superior efficiency is provided through a high level of optimization, which is transparent to the user. Manifold reduction in storage size is allowed for many applications. This system allows for operability via internet browsers. The system will be used for the NASA Applications Center program to store remote sensing data, as well as for Earth Science applications.

  13. Robust High Performance Aquaporin based Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus; Zhao, Yichun; Qiu, C.

    2013-01-01

    Aquaporins are water channel proteins with high water permeability and solute rejection, which makes them promising for preparing high-performance biomimetic membranes. Despite the growing interest in aquaporin-based biomimetic membranes (ABMs), it is challenging to produce robust and defect...... on top of a support membrane. Control membranes, either without aquaporins or with the inactive AqpZ R189A mutant aquaporin served as controls. The separation performance of the membranes was evaluated by cross-flow forward osmosis (FO) and reverse osmosis (RO) tests. In RO the ABM achieved a water...... permeability of ~ 4 L/(m2 h bar) with a NaCl rejection > 97% at an applied hydraulic pressure of 5 bar. The water permeability was ~40% higher compared to a commercial brackish water RO membrane (BW30) and an order of magnitude higher compared to a seawater RO membrane (SW30HR). In FO, the ABMs had > 90...

  14. High Performance with Prescriptive Optimization and Debugging

    DEFF Research Database (Denmark)

    Jensen, Nicklas Bo

    parallelization and automatic vectorization is attractive as it transparently optimizes programs. The thesis contributes an improved dependence analysis for explicitly parallel programs. These improvements lead to more loops being vectorized, on average we achieve a speedup of 1.46 over the existing dependence...... analysis and vectorizer in GCC. Automatic optimizations often fail for theoretical and practical reasons. When they fail we argue that a hybrid approach can be effective. Using compiler feedback, we propose to use the programmer’s intuition and insight to achieve high performance. Compiler feedback...... enlightens the programmer why a given optimization was not applied, and suggest how to change the source code to make it more amenable to optimizations. We show how this can yield significant speedups and achieve 2.4 faster execution on a real industrial use case. To aid in parallel debugging we propose...

  15. High performance nano-composite technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Whung Whoe; Rhee, C. K.; Kim, S. J.; Park, S. D. [KAERI, Taejon (Korea, Republic of); Kim, E. K.; Jung, S. Y.; Ryu, H. J. [KRICT, Taejon (Korea, Republic of); Hwang, S. S.; Kim, J. K.; Hong, S. M. [KIST, Taejon (Korea, Republic of); Chea, Y. B. [KIGAM, Taejon (Korea, Republic of); Choi, C. H.; Kim, S. D. [ATS, Taejon (Korea, Republic of); Cho, B. G.; Lee, S. H. [HGREC, Taejon (Korea, Republic of)

    1999-06-15

    The trend of new material development are being to carried out not only high performance but also environmental attraction. Especially nano composite material which enhances the functional properties of components, extending the component life resulting to reduced the wastes and environmental contamination, has a great effect on various industrial area. The application of nano composite, depends on the polymer matrix and filler materials, has various application from semiconductor to medical field. In spite of nano composite merits, nano composite study are confined to a few special materials as a lab, scale because a few technical difficulties are still on hold. Therefore, the purpose of this study establishes the systematical planning to carried out the next generation projects on order to compete with other countries and overcome the protective policy of advanced countries with grasping over sea's development trends and our present status. (author).

  16. High Performance Single Nanowire Tunnel Diodes

    DEFF Research Database (Denmark)

    Wallentin, Jesper; Persson, Johan Mikael; Wagner, Jakob Birkedal

    Semiconductor nanowires (NWs) have emerged as a promising technology for future electronic and optoelectronic devices. Epitaxial growth of III-V materials on Si substrates have been demonstrated, allowing for low-cost production. As the lattice matching requirements are much less strict than...... for planar growth, many new materials combinations can be grown in a single NW. This opens up exciting opportunities for NW-based high-performance solar cells, where previously inaccessible materials combinations can now be chosen to match the solar spectrum. A key component of a multi-junction solar cell...... NWs were contacted in a NW-FET setup. Electrical measurements at room temperature display typical tunnel diode behavior, with a Peak-to-Valley Current Ratio (PVCR) as high as 8.2 and a peak current density as high as 329 A/cm2. Low temperature measurements show improved PVCR of up to 27.6....

  17. High performance nano-composite technology development

    International Nuclear Information System (INIS)

    Kim, Whung Whoe; Rhee, C. K.; Kim, S. J.; Park, S. D.; Kim, E. K.; Jung, S. Y.; Ryu, H. J.; Hwang, S. S.; Kim, J. K.; Hong, S. M.; Chea, Y. B.; Choi, C. H.; Kim, S. D.; Cho, B. G.; Lee, S. H.

    1999-06-01

    The trend of new material development are being to carried out not only high performance but also environmental attraction. Especially nano composite material which enhances the functional properties of components, extending the component life resulting to reduced the wastes and environmental contamination, has a great effect on various industrial area. The application of nano composite, depends on the polymer matrix and filler materials, has various application from semiconductor to medical field. In spite of nano composite merits, nano composite study are confined to a few special materials as a lab, scale because a few technical difficulties are still on hold. Therefore, the purpose of this study establishes the systematical planning to carried out the next generation projects on order to compete with other countries and overcome the protective policy of advanced countries with grasping over sea's development trends and our present status. (author).

  18. High Performance OLED Panel and Luminaire

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, Jeffrey [OLEDWorks LLC, Rochester, NY (United States)

    2017-02-20

    In this project, OLEDWorks developed and demonstrated the technology required to produce OLED lighting panels with high energy efficiency and excellent light quality. OLED panels developed in this program produce high quality warm white light with CRI greater than 85 and efficacy up to 80 lumens per watt (LPW). An OLED luminaire employing 24 of the high performance panels produces practical levels of illumination for general lighting, with a flux of over 2200 lumens at 60 LPW. This is a significant advance in the state of the art for OLED solid-state lighting (SSL), which is expected to be a complementary light source to the more advanced LED SSL technology that is rapidly replacing all other traditional forms of lighting.

  19. Wearable Accelerometers in High Performance Jet Aircraft.

    Science.gov (United States)

    Rice, G Merrill; VanBrunt, Thomas B; Snider, Dallas H; Hoyt, Robert E

    2016-02-01

    Wearable accelerometers have become ubiquitous in the fields of exercise physiology and ambulatory hospital settings. However, these devices have yet to be validated in extreme operational environments. The objective of this study was to correlate the gravitational forces (G forces) detected by wearable accelerometers with the G forces detected by high performance aircraft. We compared the in-flight G forces detected by the two commercially available portable accelerometers to the F/A-18 Carrier Aircraft Inertial Navigation System (CAINS-2) during 20 flights performed by the Navy's Flight Demonstration Squadron (Blue Angels). Postflight questionnaires were also used to assess the perception of distractibility during flight. Of the 20 flights analyzed, 10 complete in-flight comparisons were made, accounting for 25,700 s of correlation between the CAINS-2 and the two tested accelerometers. Both accelerometers had strong correlations with that of the F/A-18 Gz axis, averaging r = 0.92 and r = 0.93, respectively, over 10 flights. Comparison of both portable accelerometer's average vector magnitude to each other yielded an average correlation of r = 0.93. Both accelerometers were found to be minimally distracting. These results suggest the use of wearable accelerometers is a valid means of detecting G forces during high performance aircraft flight. Future studies using this surrogate method of detecting accelerative forces combined with physiological information may yield valuable in-flight normative data that heretofore has been technically difficult to obtain and hence holds the promise of opening the door for a new golden age of aeromedical research.

  20. High performance anode for advanced Li batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lake, Carla [Applied Sciences, Inc., Cedarville, OH (United States)

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  1. The path toward HEP High Performance Computing

    International Nuclear Information System (INIS)

    Apostolakis, John; Brun, René; Gheata, Andrei; Wenzel, Sandro; Carminati, Federico

    2014-01-01

    High Energy Physics code has been known for making poor use of high performance computing architectures. Efforts in optimising HEP code on vector and RISC architectures have yield limited results and recent studies have shown that, on modern architectures, it achieves a performance between 10% and 50% of the peak one. Although several successful attempts have been made to port selected codes on GPUs, no major HEP code suite has a 'High Performance' implementation. With LHC undergoing a major upgrade and a number of challenging experiments on the drawing board, HEP cannot any longer neglect the less-than-optimal performance of its code and it has to try making the best usage of the hardware. This activity is one of the foci of the SFT group at CERN, which hosts, among others, the Root and Geant4 project. The activity of the experiments is shared and coordinated via a Concurrency Forum, where the experience in optimising HEP code is presented and discussed. Another activity is the Geant-V project, centred on the development of a highperformance prototype for particle transport. Achieving a good concurrency level on the emerging parallel architectures without a complete redesign of the framework can only be done by parallelizing at event level, or with a much larger effort at track level. Apart the shareable data structures, this typically implies a multiplication factor in terms of memory consumption compared to the single threaded version, together with sub-optimal handling of event processing tails. Besides this, the low level instruction pipelining of modern processors cannot be used efficiently to speedup the program. We have implemented a framework that allows scheduling vectors of particles to an arbitrary number of computing resources in a fine grain parallel approach. The talk will review the current optimisation activities within the SFT group with a particular emphasis on the development perspectives towards a simulation framework able to profit

  2. High-performance planar nanoscale dielectric capacitors

    OpenAIRE

    Ciraci, S.; Özçelik, V. Ongun

    2016-01-01

    We propose a model for planar nanoscale dielectric capacitor consisting of a single layer, insulating hexagonal boron nitride (BN) stripe placed between two metallic graphene stripes, all forming commensurately a single atomic plane. First-principles density functional calculations on these nanoscale capacitors for different levels of charging and different widths of graphene - BN stripes mark high gravimetric capacitance values, which are comparable to those of supercapacitors made from othe...

  3. Fiscal 2000 report on result of R and D of industrial science and technology that creates new industry. Development of supermetal technology (development of nano-amorphous structured material); 2000 nendo super metal no gijutsu kaihatsu seika hokokusho. Nano amorphous kozo seigyo zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    R and D was conducted for the purpose of manufacturing innovative iron-based alloy materials that excel in high temperature strength, toughness and superplastic forming, with fiscal 2000 results compiled. In the technological study on high-speed grain accumulation and superplastic forming, the researchers were engrossed in developing an aluminum bulk material of nano-crystals. This year, an Al-Fe two-element based alloy using Fe element was evaluated in the composition, thermal processing conditions and physical properties, with a bulk material obtained having a grain size of several tens in nm at 2at% Fe level, a strength of 750-850 MPa and a tenacity (Kc value) of 45-65 MPa(center dot)m{sup 1/2}. In the research of technologies for utilizing and controlling high density energy, design of materials was progressed for strong-acid resistant dew point corrosion materials, leading to the discovery of an alloy composition Ni-10Cr-5Nb-16P-4B whose subcooled liquid zone was wider than the Ta-added alloy of the previous year. Use of He gas as injection gas enabled a quality amorphous powder to be obtained in kg units. In the development of bulk amorphous producing technologies, this powder was thermostatically rolled to make a dense bulk amorphous plate of 2.8 mm thick and about 100 mm long. (NEDO)

  4. High performance of low cost soft magnetic materials

    Indian Academy of Sciences (India)

    Administrator

    Nations around the world have shown consistent interest in supporting research and development of mag- .... NORMOS SITE programme (Brand 1987). Fe fractions in amorphous and crystalline phases for the .... Fe content in the amorphous phase was 39⋅6%. The probability of occurrence of each kind of Fe environment.

  5. Traveling cluster approximation for uncorrelated amorphous systems

    International Nuclear Information System (INIS)

    Kaplan, T.; Sen, A.K.; Gray, L.J.; Mills, R.

    1985-01-01

    In this paper, the authors apply the TCA concepts to spatially disordered, uncorrelated systems (e.g., fluids or amorphous metals without short-range order). This is the first approximation scheme for amorphous systems that takes cluster effects into account while preserving the Herglotz property for any amount of disorder. They have performed some computer calculations for the pair TCA, for the model case of delta-function potentials on a one-dimensional random chain. These results are compared with exact calculations (which, in principle, taken into account all cluster effects) and with the CPA, which is the single-site TCA. The density of states for the pair TCA clearly shows some improvement over the CPA, and yet, apparently, the pair approximation distorts some of the features of the exact results. They conclude that the effects of large clusters are much more important in an uncorrelated liquid metal than in a substitutional alloy. As a result, the pair TCA, which does quite a nice job for alloys, is not adequate for the liquid. Larger clusters must be treated exactly, and therefore an n-TCA with n > 2 must be used

  6. NCI's Transdisciplinary High Performance Scientific Data Platform

    Science.gov (United States)

    Evans, Ben; Antony, Joseph; Bastrakova, Irina; Car, Nicholas; Cox, Simon; Druken, Kelsey; Evans, Bradley; Fraser, Ryan; Ip, Alex; Kemp, Carina; King, Edward; Minchin, Stuart; Larraondo, Pablo; Pugh, Tim; Richards, Clare; Santana, Fabiana; Smillie, Jon; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley

    2016-04-01

    The Australian National Computational Infrastructure (NCI) manages Earth Systems data collections sourced from several domains and organisations onto a single High Performance Data (HPD) Node to further Australia's national priority research and innovation agenda. The NCI HPD Node has rapidly established its value, currently managing over 10 PBytes of datasets from collections that span a wide range of disciplines including climate, weather, environment, geoscience, geophysics, water resources and social sciences. Importantly, in order to facilitate broad user uptake, maximise reuse and enable transdisciplinary access through software and standardised interfaces, the datasets, associated information systems and processes have been incorporated into the design and operation of a unified platform that NCI has called, the National Environmental Research Data Interoperability Platform (NERDIP). The key goal of the NERDIP is to regularise data access so that it is easily discoverable, interoperable for different domains and enabled for high performance methods. It adopts and implements international standards and data conventions, and promotes scientific integrity within a high performance computing and data analysis environment. NCI has established a rich and flexible computing environment to access to this data, through the NCI supercomputer; a private cloud that supports both domain focused virtual laboratories and in-common interactive analysis interfaces; as well as remotely through scalable data services. Data collections of this importance must be managed with careful consideration of both their current use and the needs of the end-communities, as well as its future potential use, such as transitioning to more advanced software and improved methods. It is therefore critical that the data platform is both well-managed and trusted for stable production use (including transparency and reproducibility), agile enough to incorporate new technological advances and

  7. SISYPHUS: A high performance seismic inversion factory

    Science.gov (United States)

    Gokhberg, Alexey; Simutė, Saulė; Boehm, Christian; Fichtner, Andreas

    2016-04-01

    In the recent years the massively parallel high performance computers became the standard instruments for solving the forward and inverse problems in seismology. The respective software packages dedicated to forward and inverse waveform modelling specially designed for such computers (SPECFEM3D, SES3D) became mature and widely available. These packages achieve significant computational performance and provide researchers with an opportunity to solve problems of bigger size at higher resolution within a shorter time. However, a typical seismic inversion process contains various activities that are beyond the common solver functionality. They include management of information on seismic events and stations, 3D models, observed and synthetic seismograms, pre-processing of the observed signals, computation of misfits and adjoint sources, minimization of misfits, and process workflow management. These activities are time consuming, seldom sufficiently automated, and therefore represent a bottleneck that can substantially offset performance benefits provided by even the most powerful modern supercomputers. Furthermore, a typical system architecture of modern supercomputing platforms is oriented towards the maximum computational performance and provides limited standard facilities for automation of the supporting activities. We present a prototype solution that automates all aspects of the seismic inversion process and is tuned for the modern massively parallel high performance computing systems. We address several major aspects of the solution architecture, which include (1) design of an inversion state database for tracing all relevant aspects of the entire solution process, (2) design of an extensible workflow management framework, (3) integration with wave propagation solvers, (4) integration with optimization packages, (5) computation of misfits and adjoint sources, and (6) process monitoring. The inversion state database represents a hierarchical structure with

  8. Quantification of corrosion resistance of a new-class of criticality control materials: thermal-spray coatings of high-boron iron-based amorphous metals - Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Choi, J S; Shaw, C K; Rebak, R; Day, S D; Lian, T; Hailey, P; Payer, J H; Branagan, D J; Aprigliano, L F

    2007-03-28

    An iron-based amorphous metal, Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4} (SAM2X5), with very good corrosion resistance was developed. This material was produced as a melt-spun ribbon, as well as gas atomized powder and a thermal-spray coating. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation. The high boron content of this particular amorphous metal made it an effective neutron absorber, and suitable for criticality control applications. Earlier studies have shown that ingots and melt-spun ribbons of these materials have good passive film stability in these environments. Thermal spray coatings of these materials have now been produced, and have undergone a variety of corrosion testing, including both atmospheric and long-term immersion testing. The modes and rates of corrosion have been determined in the various environments, and are reported here.

  9. Avaliação das propriedades mecânicas de juntas cerâmicas usando fitas amorfas como metal de adição Evaluation of the mechanical properties of ceramic joint using amorphous ribbons as filler metals

    Directory of Open Access Journals (Sweden)

    Danielton Gomes dos Santos

    2009-09-01

    Full Text Available Este trabalho teve como objetivo determinar os melhores parâmetros para brasagem de juntas cerâmicas de Al2O3 pré-metalizadas com Ti por processo a plasma utilizando fitas amorfas de ligas Cu49Ag45Cx e como metal de adição. As ligas foram preparadas em forno a arco, e, posteriormente processadas por melt-spinning, variando conteúdo Ce de 4-6. %. A brasagem foi realizada em forno à vácuo e as seguintes variáveis analisadas: tempo de deposição do filme de Ti e temperatura e tempo de brasagem , que foram relacionados com a resistência à flexão em 3 pontos da junta brazada. A equação de regressão linear foi obtida, e verificou-se a interação entre estes fatores. As superfícies cerâmicas metalizadas apresentaram excelente uniformidade e as juntas brasadas muito boa adesão atingindo valores de resistência à flexão de até 176,8 MPa.This work had as objective to establish de best brazing parameter to joint Al2O3 pre-metalized with Ti by plasma process using amorphous ribbons of Cu49g45Ce x alloys as filler metals. The alloys were prepared in arc furnace and processed by melt-spinning process varying the Ce percentiles from 4 to 6. % . The brazing was accomplished in vacuum furnace and the following variables analyzed: deposition time of Ti film, brazing temperature and brazing times which were related to the brazed joint 3-point bending resistance. The interaction between those factors was obtained by linear regression equation. The metalized ceramic surfaces presented an good uniformity and the joint a very good adhesion reaching bending resistance up to 176,8 MPa.

  10. High performance computing in linear control

    International Nuclear Information System (INIS)

    Datta, B.N.

    1993-01-01

    Remarkable progress has been made in both theory and applications of all important areas of control. The theory is rich and very sophisticated. Some beautiful applications of control theory are presently being made in aerospace, biomedical engineering, industrial engineering, robotics, economics, power systems, etc. Unfortunately, the same assessment of progress does not hold in general for computations in control theory. Control Theory is lagging behind other areas of science and engineering in this respect. Nowadays there is a revolution going on in the world of high performance scientific computing. Many powerful computers with vector and parallel processing have been built and have been available in recent years. These supercomputers offer very high speed in computations. Highly efficient software, based on powerful algorithms, has been developed to use on these advanced computers, and has also contributed to increased performance. While workers in many areas of science and engineering have taken great advantage of these hardware and software developments, control scientists and engineers, unfortunately, have not been able to take much advantage of these developments

  11. Optimizing High Performance Self Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Raymond A Yonathan

    2017-01-01

    Full Text Available This paper’s objectives are to learn the effect of glass powder, silica fume, Polycarboxylate Ether, and gravel to optimizing composition of each factor in making High Performance SCC. Taguchi method is proposed in this paper as best solution to minimize specimen variable which is more than 80 variations. Taguchi data analysis method is applied to provide composition, optimizing, and the effect of contributing materials for nine variable of specimens. Concrete’s workability was analyzed using Slump flow test, V-funnel test, and L-box test. Compressive and porosity test were performed for the hardened state. With a dimension of 100×200 mm the cylindrical specimens were cast for compressive test with the age of 3, 7, 14, 21, 28 days. Porosity test was conducted at 28 days. It is revealed that silica fume contributes greatly to slump flow and porosity. Coarse aggregate shows the greatest contributing factor to L-box and compressive test. However, all factors show unclear result to V-funnel test.

  12. Materials for high performance light water reactors

    Science.gov (United States)

    Ehrlich, K.; Konys, J.; Heikinheimo, L.

    2004-05-01

    A state-of-the-art study was performed to investigate the operational conditions for in-core and out-of-core materials in a high performance light water reactor (HPLWR) and to evaluate the potential of existing structural materials for application in fuel elements, core structures and out-of-core components. In the conventional parts of a HPLWR-plant the approved materials of supercritical fossil power plants (SCFPP) can be used for given temperatures (⩽600 °C) and pressures (≈250 bar). These are either commercial ferritic/martensitic or austenitic stainless steels. Taking the conditions of existing light water reactors (LWR) into account an assessment of potential cladding materials was made, based on existing creep-rupture data, an extensive analysis of the corrosion in conventional steam power plants and available information on material behaviour under irradiation. As a major result it is shown that for an assumed maximum temperature of 650 °C not only Ni-alloys, but also austenitic stainless steels can be used as cladding materials.

  13. Development of a High Performance Spacer Grid

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kee Nam; Song, K. N.; Yoon, K. H. (and others)

    2007-03-15

    A spacer grid in a LWR fuel assembly is a key structural component to support fuel rods and to enhance the heat transfer from the fuel rod to the coolant. In this research, the main research items are the development of inherent and high performance spacer grid shapes, the establishment of mechanical/structural analysis and test technology, and the set-up of basic test facilities for the spacer grid. The main research areas and results are as follows. 1. 18 different spacer grid candidates have been invented and applied for domestic and US patents. Among the candidates 16 are chosen from the patent. 2. Two kinds of spacer grids are finally selected for the advanced LWR fuel after detailed performance tests on the candidates and commercial spacer grids from a mechanical/structural point of view. According to the test results the features of the selected spacer grids are better than those of the commercial spacer grids. 3. Four kinds of basic test facilities are set up and the relevant test technologies are established. 4. Mechanical/structural analysis models and technology for spacer grid performance are developed and the analysis results are compared with the test results to enhance the reliability of the models.

  14. Development of a High Performance Spacer Grid

    International Nuclear Information System (INIS)

    Song, Kee Nam; Song, K. N.; Yoon, K. H.

    2007-03-01

    A spacer grid in a LWR fuel assembly is a key structural component to support fuel rods and to enhance the heat transfer from the fuel rod to the coolant. In this research, the main research items are the development of inherent and high performance spacer grid shapes, the establishment of mechanical/structural analysis and test technology, and the set-up of basic test facilities for the spacer grid. The main research areas and results are as follows. 1. 18 different spacer grid candidates have been invented and applied for domestic and US patents. Among the candidates 16 are chosen from the patent. 2. Two kinds of spacer grids are finally selected for the advanced LWR fuel after detailed performance tests on the candidates and commercial spacer grids from a mechanical/structural point of view. According to the test results the features of the selected spacer grids are better than those of the commercial spacer grids. 3. Four kinds of basic test facilities are set up and the relevant test technologies are established. 4. Mechanical/structural analysis models and technology for spacer grid performance are developed and the analysis results are compared with the test results to enhance the reliability of the models

  15. Durability of high performance concrete in seawater

    International Nuclear Information System (INIS)

    Amjad Hussain Memon; Salihuddin Radin Sumadi; Rabitah Handan

    2000-01-01

    This paper presents a report on the effects of blended cements on the durability of high performance concrete (HPC) in seawater. In this research the effect of seawater was investigated. The specimens were initially subjected to water curing for seven days inside the laboratory at room temperature, followed by seawater curing exposed to tidal zone until testing. In this study three levels of cement replacement (0%, 30% and 70%) were used. The combined use of chemical and mineral admixtures has resulted in a new generation of concrete called HPC. The HPC has been identified as one of the most important advanced materials necessary in the effort to build a nation's infrastructure. HPC opens new opportunities in the utilization of the industrial by-products (mineral admixtures) in the construction industry. As a matter of fact permeability is considered as one of the fundamental properties governing the durability of concrete in the marine environment. Results of this investigation indicated that the oxygen permeability values for the blended cement concretes at the age of one year are reduced by a factor of about 2 as compared to OPC control mix concrete. Therefore both blended cement concretes are expected to withstand in the seawater exposed to tidal zone without serious deterioration. (Author)

  16. An integrated high performance Fastbus slave interface

    International Nuclear Information System (INIS)

    Christiansen, J.; Ljuslin, C.

    1993-01-01

    A high performance CMOS Fastbus slave interface ASIC (Application Specific Integrated Circuit) supporting all addressing and data transfer modes defined in the IEEE 960 - 1986 standard is presented. The FAstbus Slave Integrated Circuit (FASIC) is an interface between the asynchronous Fastbus and a clock synchronous processor/memory bus. It can work stand-alone or together with a 32 bit microprocessor. The FASIC is a programmable device enabling its direct use in many different applications. A set of programmable address mapping windows can map Fastbus addresses to convenient memory addresses and at the same time act as address decoding logic. Data rates of 100 MBytes/sec to Fastbus can be obtained using an internal FIFO in the FASIC to buffer data between the two buses during block transfers. Message passing from Fastbus to a microprocessor on the slave module is supported. A compact (70 mm x 170 mm) Fastbus slave piggy back sub-card interface including level conversion between ECL and TTL signal levels has been implemented using surface mount components and the 208 pin FASIC chip

  17. Initial rheological description of high performance concretes

    Directory of Open Access Journals (Sweden)

    Alessandra Lorenzetti de Castro

    2006-12-01

    Full Text Available Concrete is defined as a composite material and, in rheological terms, it can be understood as a concentrated suspension of solid particles (aggregates in a viscous liquid (cement paste. On a macroscopic scale, concrete flows as a liquid. It is known that the rheological behavior of the concrete is close to that of a Bingham fluid and two rheological parameters regarding its description are needed: yield stress and plastic viscosity. The aim of this paper is to present the initial rheological description of high performance concretes using the modified slump test. According to the results, an increase of yield stress was observed over time, while a slight variation in plastic viscosity was noticed. The incorporation of silica fume showed changes in the rheological properties of fresh concrete. The behavior of these materials also varied with the mixing procedure employed in their production. The addition of superplasticizer meant that there was a large reduction in the mixture's yield stress, while plastic viscosity remained practically constant.

  18. Automatic Energy Schemes for High Performance Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sundriyal, Vaibhav [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale. Drastic increases in the power consumption of supercomputers affect significantly their operating costs and failure rates. In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This work first studies two important collective communication operations, all-to-all and allgather and proposes energy saving strategies on the per-call basis. Next, it targets point-to-point communications to group them into phases and apply frequency scaling to them to save energy by exploiting the architectural and communication stalls. Finally, it proposes an automatic runtime system which combines both collective and point-to-point communications into phases, and applies throttling to them apart from DVFS to maximize energy savings. The experimental results are presented for NAS parallel benchmark problems as well as for the realistic parallel electronic structure calculations performed by the widely used quantum chemistry package GAMESS. Close to the maximum energy savings were obtained with a substantially low performance loss on the given platform.

  19. Emerging technologies for high performance infrared detectors

    Directory of Open Access Journals (Sweden)

    Tan Chee Leong

    2018-01-01

    Full Text Available Infrared photodetectors (IRPDs have become important devices in various applications such as night vision, military missile tracking, medical imaging, industry defect imaging, environmental sensing, and exoplanet exploration. Mature semiconductor technologies such as mercury cadmium telluride and III–V material-based photodetectors have been dominating the industry. However, in the last few decades, significant funding and research has been focused to improve the performance of IRPDs such as lowering the fabrication cost, simplifying the fabrication processes, increasing the production yield, and increasing the operating temperature by making use of advances in nanofabrication and nanotechnology. We will first review the nanomaterial with suitable electronic and mechanical properties, such as two-dimensional material, graphene, transition metal dichalcogenides, and metal oxides. We compare these with more traditional low-dimensional material such as quantum well, quantum dot, quantum dot in well, semiconductor superlattice, nanowires, nanotube, and colloid quantum dot. We will also review the nanostructures used for enhanced light-matter interaction to boost the IRPD sensitivity. These include nanostructured antireflection coatings, optical antennas, plasmonic, and metamaterials.

  20. Emerging technologies for high performance infrared detectors

    Science.gov (United States)

    Tan, Chee Leong; Mohseni, Hooman

    2018-01-01

    Infrared photodetectors (IRPDs) have become important devices in various applications such as night vision, military missile tracking, medical imaging, industry defect imaging, environmental sensing, and exoplanet exploration. Mature semiconductor technologies such as mercury cadmium telluride and III-V material-based photodetectors have been dominating the industry. However, in the last few decades, significant funding and research has been focused to improve the performance of IRPDs such as lowering the fabrication cost, simplifying the fabrication processes, increasing the production yield, and increasing the operating temperature by making use of advances in nanofabrication and nanotechnology. We will first review the nanomaterial with suitable electronic and mechanical properties, such as two-dimensional material, graphene, transition metal dichalcogenides, and metal oxides. We compare these with more traditional low-dimensional material such as quantum well, quantum dot, quantum dot in well, semiconductor superlattice, nanowires, nanotube, and colloid quantum dot. We will also review the nanostructures used for enhanced light-matter interaction to boost the IRPD sensitivity. These include nanostructured antireflection coatings, optical antennas, plasmonic, and metamaterials.

  1. Sorption properties of an amorphous hydroxo titanate towards Pb(2+), Ni(2+), and Cu(2+) ions in aqueous solution.

    Science.gov (United States)

    Volpe, Angela; Pagano, Michele; Pastore, Carlo; Cuocci, Corrado; Milella, Antonella

    2016-11-09

    Titanates may be selectively used as inorganic adsorbents for heavy metal ions owing to their stability and fast adsorption kinetics. Nevertheless, the synthesis of such materials usually requires extreme reaction conditions. In this work, a new titanium-based material was rapidly synthesized under mild laboratory conditions. The obtained amorphous hydroxo titanate was tested for heavy metal sorption through kinetic and equilibrium batch tests, which indicated that the new material had high adsorption rates and adsorption capacities towards Cu(2+), Ni(2+) and Pb(2) ions. Adsorption kinetics were pseudo-second order, and equilibrium data fitted the Langmuir isotherm model. The calculated maximum adsorption capacities of Cu(2+), Ni(2+) and Pb(2+) in deionized water were around 1 mmol g(-1), and they decreased for Cu(2+) and Ni(2+) in the presence of Na(+), Ca(2+) and Mg(2+) ions, whereas the alkali metal ions did not influence Pb(2+) uptake. The efficiency of adsorption and recovery of lead ions were evaluated through column dynamic tests, by feeding the column with groundwater and tap water spiked with Pb(2+). The high performance of the hydroxo titanate over several cycles of retention and elution suggested that the product is potentially useful for the solid phase extraction of lead at trace levels in natural water samples, with potential use in metal pre-concentration for analytical applications.

  2. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chuanlong; Yong, Xue; Tse, John S.; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kenney-Benson, Curtis; Shen, Guoyin

    2017-09-01

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ~ 1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.

  3. 24 CFR 902.71 - Incentives for high performers.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Incentives for high performers. 902... performers. (a) Incentives for high performer PHAs. A PHA that is designated a high performer will be... is designated high performer will be relieved of specific HUD requirements (for example, fewer...

  4. Structural morphology of amorphous conducting carbon film

    Indian Academy of Sciences (India)

    Unknown

    been found to be having a lot of technological applica- tions. The properties of these amorphous carbons sensi- tively depend on the relative concentration of sp3 and sp2 hybridized carbons. The resulting amorphous materials are variously referred to as tetrahedral amorphous carbon. (ta-C), amorphous carbon (a-C), ...

  5. Amorphous drugs and dosage forms

    DEFF Research Database (Denmark)

    Grohganz, Holger; Löbmann, K.; Priemel, P.

    2013-01-01

    The transformation to an amorphous form is one of the most promising approaches to address the low solubility of drug compounds, the latter being an increasing challenge in the development of new drug candidates. However, amorphous forms are high energy solids and tend to recry stallize. New...... formulation principles are needed to ensure the stability of amorphous drug forms. The formation of solid dispersions is still the most investigated approach, but additional approaches are desirable to overcome the shortcomings of solid dispersions. Spatial separation by either coating or the use of micro......-containers has shown potential to prevent or delay recrystallization. Another recent approach is the formation of co-amorphous mixtures between either two drugs or one drug and one low molecular weight excipient. Molecular interactions between the two molecules provide an energy barrier that has to be overcome...

  6. Design of high performance piezo composites actuators

    Science.gov (United States)

    Almajid, Abdulhakim A.

    Design of high performance piezo composites actuators are developed. Functionally Graded Microstructure (FGM) piezoelectric actuators are designed to reduce the stress concentration at the middle interface existed in the standard bimorph actuators while maintaining high actuation performance. The FGM piezoelectric laminates are composite materials with electroelastic properties varied through the laminate thickness. The elastic behavior of piezo-laminates actuators is developed using a 2D-elasticity model and a modified classical lamination theory (CLT). The stresses and out-of-plane displacements are obtained for standard and FGM piezoelectric bimorph plates under cylindrical bending generated by an electric field throughout the thickness of the laminate. The analytical model is developed for two different actuator geometries, a rectangular plate actuator and a disk shape actuator. The limitations of CLT are investigated against the 2D-elasticity model for the rectangular plate geometry. The analytical models based on CLT (rectangular and circular) and 2D-elasticity are compared with a model based on Finite Element Method (FEM). The experimental study consists of two FGM actuator systems, the PZT/PZT FGM system and the porous FGM system. The electroelastic properties of each layer in the FGM systems were measured and input in the analytical models to predict the FGM actuator performance. The performance of the FGM actuator is optimized by manipulating the thickness of each layer in the FGM system. The thickness of each layer in the FGM system is made to vary in a linear or non-linear manner to achieve the best performance of the FGM piezoelectric actuator. The analytical and FEM results are found to agree well with the experimental measurements for both rectangular and disk actuators. CLT solutions are found to coincide well with the elasticity solutions for high aspect ratios while the CLT solutions gave poor results compared to the 2D elasticity solutions for

  7. High-performance laboratories and cleanrooms; TOPICAL

    International Nuclear Information System (INIS)

    Tschudi, William; Sartor, Dale; Mills, Evan; Xu, Tengfang

    2002-01-01

    The California Energy Commission sponsored this roadmap to guide energy efficiency research and deployment for high performance cleanrooms and laboratories. Industries and institutions utilizing these building types (termed high-tech buildings) have played an important part in the vitality of the California economy. This roadmap's key objective to present a multi-year agenda to prioritize and coordinate research efforts. It also addresses delivery mechanisms to get the research products into the market. Because of the importance to the California economy, it is appropriate and important for California to take the lead in assessing the energy efficiency research needs, opportunities, and priorities for this market. In addition to the importance to California's economy, energy demand for this market segment is large and growing (estimated at 9400 GWH for 1996, Mills et al. 1996). With their 24hr. continuous operation, high tech facilities are a major contributor to the peak electrical demand. Laboratories and cleanrooms constitute the high tech building market, and although each building type has its unique features, they are similar in that they are extremely energy intensive, involve special environmental considerations, have very high ventilation requirements, and are subject to regulations-primarily safety driven-that tend to have adverse energy implications. High-tech buildings have largely been overlooked in past energy efficiency research. Many industries and institutions utilize laboratories and cleanrooms. As illustrated, there are many industries operating cleanrooms in California. These include semiconductor manufacturing, semiconductor suppliers, pharmaceutical, biotechnology, disk drive manufacturing, flat panel displays, automotive, aerospace, food, hospitals, medical devices, universities, and federal research facilities

  8. Ultra high performance concrete dematerialization study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    Concrete is the most widely used building material in the world and its use is expected to grow. It is well recognized that the production of portland cement results in the release of large amounts of carbon dioxide, a greenhouse gas (GHG). The main challenge facing the industry is to produce concrete in an environmentally sustainable manner. Reclaimed industrial by-proudcts such as fly ash, silica fume and slag can reduce the amount of portland cement needed to make concrete, thereby reducing the amount of GHGs released to the atmosphere. The use of these supplementary cementing materials (SCM) can also enhance the long-term strength and durability of concrete. The intention of the EcoSmart{sup TM} Concrete Project is to develop sustainable concrete through innovation in supply, design and construction. In particular, the project focuses on finding a way to minimize the GHG signature of concrete by maximizing the replacement of portland cement in the concrete mix with SCM while improving the cost, performance and constructability. This paper describes the use of Ductal{sup R} Ultra High Performance Concrete (UHPC) for ramps in a condominium. It examined the relationship between the selection of UHPC and the overall environmental performance, cost, constructability maintenance and operational efficiency as it relates to the EcoSmart Program. The advantages and challenges of using UHPC were outlined. In addition to its very high strength, UHPC has been shown to have very good potential for GHG emission reduction due to the reduced material requirements, reduced transport costs and increased SCM content. refs., tabs., figs.

  9. High-performance phase-field modeling

    KAUST Repository

    Vignal, Philippe

    2015-04-27

    Many processes in engineering and sciences involve the evolution of interfaces. Among the mathematical frameworks developed to model these types of problems, the phase-field method has emerged as a possible solution. Phase-fields nonetheless lead to complex nonlinear, high-order partial differential equations, whose solution poses mathematical and computational challenges. Guaranteeing some of the physical properties of the equations has lead to the development of efficient algorithms and discretizations capable of recovering said properties by construction [2, 5]. This work builds-up on these ideas, and proposes novel discretization strategies that guarantee numerical energy dissipation for both conserved and non-conserved phase-field models. The temporal discretization is based on a novel method which relies on Taylor series and ensures strong energy stability. It is second-order accurate, and can also be rendered linear to speed-up the solution process [4]. The spatial discretization relies on Isogeometric Analysis, a finite element method that possesses the k-refinement technology and enables the generation of high-order, high-continuity basis functions. These basis functions are well suited to handle the high-order operators present in phase-field models. Two-dimensional and three dimensional results of the Allen-Cahn, Cahn-Hilliard, Swift-Hohenberg and phase-field crystal equation will be presented, which corroborate the theoretical findings, and illustrate the robustness of the method. Results related to more challenging examples, namely the Navier-Stokes Cahn-Hilliard and a diusion-reaction Cahn-Hilliard system, will also be presented. The implementation was done in PetIGA and PetIGA-MF, high-performance Isogeometric Analysis frameworks [1, 3], designed to handle non-linear, time-dependent problems.

  10. Experience with high-performance PACS

    Science.gov (United States)

    Wilson, Dennis L.; Goldburgh, Mitchell M.; Head, Calvin

    1997-05-01

    Lockheed Martin (Loral) has installed PACS with associated teleradiology in several tens of hospitals. The PACS that have been installed have been the basis for a shift to filmless radiology in many of the hospitals. the basic structure for the PACS and the teleradiology that is being used is outlined. The way that the PACS are being used in the hospitals is instructive. The three most used areas for radiology in the hospital are the wards including the ICU wards, the emergency room, and the orthopedics clinic. The examinations are mostly CR images with 20 percent to 30 percent of the examinations being CT, MR, and ultrasound exams. The PACS are being used to realize improved productivity for radiology and for the clinicians. For radiology the same staff is being used for 30 to 50 percent more workload. For the clinicians 10 to 20 percent of their time is being saved in dealing with radiology images. The improved productivity stems from the high performance of the PACS that has been designed and installed. Images are available on any workstation in the hospital within less than two seconds, even during the busiest hour of the day. The examination management functions to restrict the attention of any one user to the examinations that are of interest. The examination management organizes the workflow through the radiology department and the hospital, improving the service of the radiology department by reducing the time until the information from a radiology examination is available. The remaining weak link in the PACS system is transcription. The examination can be acquired, read, an the report dictated in much less than ten minutes. The transcription of the dictated reports can take from a few hours to a few days. The addition of automatic transcription services will remove this weak link.

  11. Radiation damage in amorphous solids - a computer simulation

    International Nuclear Information System (INIS)

    Chaki, T.K.; Li, J.C.M.

    1984-01-01

    It is known for crystalline materials that injection of high energy atoms introduces point defects. The nature of defects is not known for amorphous solids. So a molecular dynamic simulation of radiation damage in an amorphous metal was carried out. An amorphous structure of 685 atoms with periodic boundary conditions in all 3 dimensions was equilibrated first. Then one atom on the surface was given a high initial velocity so it was injected inward. Radial temperature distribution around the line of injection was calculated as a function of time. Void distribution and its evolution with time in the direction of injection was calculated by counting the atomic centers in thin slabs perpendicular to the line of injection. The swelling of the whole solid was calculated also. Some results are compared with experiments

  12. Nanomechanical analysis of high performance materials

    CERN Document Server

    2014-01-01

    This book is intended for researchers who are interested in investigating the nanomechanical properties of materials using advanced instrumentation techniques. The chapters of the book are written in an easy-to-follow format, just like solved examples. The book comprehensively covers a broad range of materials such as polymers, ceramics, hybrids, biomaterials, metal oxides, nanoparticles, minerals, carbon nanotubes and welded joints. Each chapter describes the application of techniques on the selected material and also mentions the methodology adopted for the extraction of information from the raw data. This is a unique book in which both equipment manufacturers and equipment users have contributed chapters. Novices will learn the techniques directly from the inventors and senior researchers will gain in-depth information on the new technologies that are suitable for advanced analysis. On the one hand, fundamental concepts that are needed to understand the nanomechanical behavior of materials is included in t...

  13. Diamond amorphization in neutron irradiation

    International Nuclear Information System (INIS)

    Nikolaenko, V.A.; Gordeev, V.G.

    1996-01-01

    The paper presents the results on neutron irradiation of the diamond in a nuclear reactor. It is shown that the neutron irradiation stimulates the diamond transition to the amorphous state. At a temperature below 750 o K the time required for the diamond-graphite transition decreases with decreasing irradiation temperature. On the contrary, in irradiation at higher temperatures the time of diamond conversion into the amorphous state increases with decreasing but always remains shorter than in the absence of irradiation. (author)

  14. Nanostructured bilayer anodic TiO2/Al2O3 metal-insulator-metal capacitor.

    Science.gov (United States)

    Karthik, R; Kannadassan, D; Baghini, Maryam Shojaei; Mallick, P S

    2013-10-01

    This paper presents the fabrication of high performance bilayer TiO2/Al2O3 Metal-Insulator-Metal capacitor using anodization technique. A high capacitance density of 7 fF/microm2, low quadratic voltage coefficient of capacitance of 150 ppm/V2 and a low leakage current density of 9.1 nA/cm2 at 3 V are achieved which are suitable for Analog and Mixed signal applications. The influence of anodization voltage on structural and electrical properties of dielectric stack is studied in detail. At higher anodization voltages, we have observed the transformation of amorphous to crystalline state of TiO2/Al2O3 and improvement of electrical properties.

  15. High Performance Commercial Fenestration Framing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mike Manteghi; Sneh Kumar; Joshua Early; Bhaskar Adusumalli

    2010-01-31

    A major objective of the U.S. Department of Energy is to have a zero energy commercial building by the year 2025. Windows have a major influence on the energy performance of the building envelope as they control over 55% of building energy load, and represent one important area where technologies can be developed to save energy. Aluminum framing systems are used in over 80% of commercial fenestration products (i.e. windows, curtain walls, store fronts, etc.). Aluminum framing systems are often required in commercial buildings because of their inherent good structural properties and long service life, which is required from commercial and architectural frames. At the same time, they are lightweight and durable, requiring very little maintenance, and offer design flexibility. An additional benefit of aluminum framing systems is their relatively low cost and easy manufacturability. Aluminum, being an easily recyclable material, also offers sustainable features. However, from energy efficiency point of view, aluminum frames have lower thermal performance due to the very high thermal conductivity of aluminum. Fenestration systems constructed of aluminum alloys therefore have lower performance in terms of being effective barrier to energy transfer (heat loss or gain). Despite the lower energy performance, aluminum is the choice material for commercial framing systems and dominates the commercial/architectural fenestration market because of the reasons mentioned above. In addition, there is no other cost effective and energy efficient replacement material available to take place of aluminum in the commercial/architectural market. Hence it is imperative to improve the performance of aluminum framing system to improve the energy performance of commercial fenestration system and in turn reduce the energy consumption of commercial building and achieve zero energy building by 2025. The objective of this project was to develop high performance, energy efficient commercial

  16. High performance a-IGZO thin-film transistors with mf-PVD SiO2 as an etch-stop-layer

    NARCIS (Netherlands)

    Nag, M.; Steudel, S.; Bhoolokam, A.; Chasin, A.; Rockele, M.; Myny, K.; Maas, J.; Fritz, T.; Trube, J.; Groeseneken, G.; Heremans, P.

    2014-01-01

    In this work, we report on high-performance bottom-gate top-contact (BGTC) amorphous-Indium-Gallium-Zinc-Oxide (a-IGZO) thin-film transistor (TFT) with SiO2 as an etch-stop-layer (ESL) deposited by medium frequency physical vapor deposition (mf-PVD). The TFTs show field-effect mobility (μFE) of

  17. High Performance Computing in Science and Engineering '17 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael; HLRS 2017

    2018-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2017. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance.The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  18. High Performance Computing in Science and Engineering '15 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2016-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2015. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  19. High performance passive matrix electrochromic display

    International Nuclear Information System (INIS)

    Aliev, A.E.

    2003-01-01

    A matrix addressable electrochromic display (ECD) based on solid polymer electrolyte screen-printed on the surface of nano structured WO 3 +0.1TiO 2 electrodes, in which all pixels were insulted by negative photoresist material has been developed. Five types of nano structured films produced by a sol-gel method were investigated to enhance the electrochemical, optical, and mechanical properties of electrochromic tungsten oxide films. The film based on WO 3-x +0.1TiO 2-y sol-gel solution mixed with 32 mol.% oxalic acid was found to be stable and has excellent characteristics in coloring/bleaching kinetics. The ECD used nano structured electrochromic tungsten trioxide layer protected by SiO 2 -CeO 2 -Li 2 O thin film solid electrolyte, screen-printed solid polymer electrolyte mixed with white TiO 2 pigment (P25), and metallic counter electrode covered with carbon layer, has exhibited fast switching, excellent memory effect and substantially free from image diffusion and cross talk effects. (author)

  20. Intelligent Facades for High Performance Green Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dyson, Anna [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2017-03-01

    Progress Towards Net-Zero and Net-Positive-Energy Commercial Buildings and Urban Districts Through Intelligent Building Envelope Strategies Previous research and development of intelligent facades systems has been limited in their contribution towards national goals for achieving on-site net zero buildings, because this R&D has failed to couple the many qualitative requirements of building envelopes such as the provision of daylighting, access to exterior views, satisfying aesthetic and cultural characteristics, with the quantitative metrics of energy harvesting, storage and redistribution. To achieve energy self-sufficiency from on-site solar resources, building envelopes can and must address this gamut of concerns simultaneously. With this project, we have undertaken a high-performance building integrated combined-heat and power concentrating photovoltaic system with high temperature thermal capture, storage and transport towards multiple applications (BICPV/T). The critical contribution we are offering with the Integrated Concentrating Solar Façade (ICSF) is conceived to improve daylighting quality for improved health of occupants and mitigate solar heat gain while maximally capturing and transferring onsite solar energy. The ICSF accomplishes this multi-functionality by intercepting only the direct-normal component of solar energy (which is responsible for elevated cooling loads) thereby transforming a previously problematic source of energy into a high quality resource that can be applied to building demands such as heating, cooling, dehumidification, domestic hot water, and possible further augmentation of electrical generation through organic Rankine cycles. With the ICSF technology, our team is addressing the global challenge in transitioning commercial and residential building stock towards on-site clean energy self-sufficiency, by fully integrating innovative environmental control systems strategies within an intelligent and responsively dynamic building

  1. Hole conduction pathways in transparent amorphous tin oxides

    Science.gov (United States)

    Wahila, Matthew; Lebens-Higgins, Zachary; Quackenbush, Nicholas; Piper, Louis; Butler, Keith; Hendon, Christopher; Walsh, Aron; Watson, Graeme

    P-type transparent amorphous oxide semiconductors (TAOS) have yet to be sufficiently demonstrated or commercialized, severely limiting the possible device architecture of transparent and flexible oxide electronics. The lack of p-type amorphous oxide candidates mainly originates from the directional oxygen 2 p character of their topmost valence states. Previous attempts to create p-type oxides have involved hybridization of the O 2 p with metal orbitals, such as with CuAlO2 and its Cu 3 d - O 2 p hybridization. However, the highly directional nature of the utilized orbitals means that structural disorder inhibits hybridization and severely disrupts hole-conduction pathways. Crystalline stannous oxide (SnO) and other lone-pair active post-transition metal oxides can have reduced localization at the valence band edge due to complex hybridization between the O 2 p, metal p, and spherical metal s-orbitals. I will discuss our investigation of structural disorder in SnO. Using a combination of synchrotron spectroscopy, and atomistic calculations, our investigation elucidates the important interplay between atomistic and electronic structure in establishing continuous hole conduction pathways at the valence band edge of transparent amorphous oxides.

  2. Superconducting properties of amorphous Zr-Ge binary alloys

    International Nuclear Information System (INIS)

    Inoue, A.; Takahashi, Y.; Toyota, N.; Fukase, T.; Masumoto, T.

    1982-01-01

    A new type of refractory metal-metalloid amorphous alloys exhibiting superconductivity has been found in a binary Zr-Ge system by a modified melt-spinning technique. Specimens are in the form of continuous ribbons 1 to 2 mm wide and 0.02 to 0.03 mm thick. The germanium content in the amorphous alloys is limited to the range of 13 to 21 at%. These amorphous alloys are so ductile that no cracks are observed even after closely contacted bending test. Data are reported for various alloy compositions for the Vickers hardness and crystallization temperature, the tensile fracture strength, superconducting transition temperature Tsub(c), upper critical magnetic field, critical current density in the absence of an applied field, upper critical field gradient at Tsub(c) and the electrical resistivity at 4.2 K. The Ginzburg-Landau (GL) parameter and the GL coherence length were estimated to be 72 to 111 and about 7.9 nm, respectively, from these experimental values by using the Ginzburg-Landau-Abrikosov-Gorkov theory and hence it is concluded that the Zr-Ge amorphous alloys are extremely 'soft' type-II superconductor with high degree of dirtiness which possesses the Tsub(c) values higher than zirconium metal, in addition to high strength combined with good ductility. (author)

  3. NATO Advanced Study Institute on Hydrogen in Disordered and Amorphous Solids

    CERN Document Server

    Bowman, Robert

    1986-01-01

    This is the second volume in the NATO ASI series dealing with the topic of hydrogen in solids. The first (V. B76, Metal Hydrides) appeared five years ago and focussed primarily on crystalline phases of hydrided metallic systems. In the intervening period, the amorphous solid state has become an area of intense research activity, encompassing both metallic and non-metallic, e.g. semiconducting, systems. At the same time the problem of storage of hydrogen, which motivated the first ASI, continues to be important. In the case of metallic systems, there were early indications that metallic glasses and disordered alloys may be more corrosion resistant, less susceptible to embrittlement by hydrogen and have a higher hydrogen mobility than ordered metals or intermetallics. All of these properties are desirable for hydrogen storage. Subsequent research has shown that thermodynamic instability is a severe problem in many amorphous metal hydrides. The present ASI has provided an appropriate forum to focus on these issu...

  4. Amorphouslike diffraction pattern in solid metallic titanium

    DEFF Research Database (Denmark)

    Wang, Y.; Fang, Y.Z.; Kikegawa, T.

    2005-01-01

    Amorphouslike diffraction patterns of solid elemental titanium have been detected under high pressure and high temperature using in situ energy-dispersive x-ray diffraction and a multianvil press. The onset pressure and the temperature of formation of amorphous titanium is found to be close...... for preparing single-element bulk amorphous metals. The results reported may open a new way to preparing single-element bulk amorphous metals with a high thermal stability....

  5. Aligned Carbon Nanotubes for High-Performance Films and Composites

    Science.gov (United States)

    Zhang, Liwen

    Carbon nanotubes (CNTs) with extraordinary properties and thus many potential applications have been predicted to be the best reinforcements for the next-generation multifunctional composite materials. Difficulties exist in transferring the most use of the unprecedented properties of individual CNTs to macroscopic forms of CNT assemblies. Therefore, this thesis focuses on two main goals: 1) discussing the issues that influence the performance of bulk CNT products, and 2) fabricating high-performance dry CNT films and composite films with an understanding of the fundamental structure-property relationship in these materials. Dry CNT films were fabricated by a winding process using CNT arrays with heights of 230 mum, 300 im and 360 mum. The structures of the as-produced films, as well as their mechanical and electrical properties were examined in order to find out the effects of different CNT lengths. It was found that the shorter CNTs synthesized by shorter time in the CVD furnace exhibited less structural defects and amorphous carbon, resulting in more compact packing and better nanotube alignment when made into dry films, thus, having better mechanical and electrical performance. A novel microcombing approach was developed to mitigate the CNT waviness and alignment in the dry films, and ultrahigh mechanical properties and exceptional electrical performance were obtained. This method utilized a pair of sharp surgical blades with microsized features at the blade edges as micro-combs to, for the first time, disentangle and straighten the wavy CNTs in the dry-drawn CNT sheet at single-layer level. The as-combed CNT sheet exhibited high level of nanotube alignment and straightness, reduced structural defects, and enhanced nanotube packing density. The dry CNT films produced by microcombing had a very high Young's modulus of 172 GPa, excellent tensile strength of 3.2 GPa, and unprecedented electrical conductivity of 1.8x10 5 S/m, which were records for CNT films or

  6. High-performance commercial building systems

    Energy Technology Data Exchange (ETDEWEB)

    Selkowitz, Stephen

    2003-10-01

    This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to

  7. Development of high performance hybrid rocket fuels

    Science.gov (United States)

    Zaseck, Christopher R.

    In this document I discuss paraffin fuel combustion and investigate the effects of additives on paraffin entrainment and regression. In general, hybrid rockets offer an economical and safe alternative to standard liquid and solid rockets. However, slow polymeric fuel regression and low combustion efficiency have limited the commercial use of hybrid rockets. Paraffin is a fast burning fuel that has received significant attention in the 2000's and 2010's as a replacement for standard fuels. Paraffin regresses three to four times faster than polymeric fuels due to the entrainment of a surface melt layer. However, further regression rate enhancement over the base paraffin fuel is necessary for widespread hybrid rocket adoption. I use a small scale opposed flow burner to investigate the effect of additives on the combustion of paraffin. Standard additives such as aluminum combust above the flame zone where sufficient oxidizer levels are present. As a result no heat is generated below the flame itself. In small scale opposed burner experiments the effect of limited heat feedback is apparent. Aluminum in particular does not improve the regression of paraffin in the opposed burner. The lack of heat feedback from additive combustion limits the applicability of the opposed burner. In turn, the results obtained in the opposed burner with metal additive loaded hybrid fuels do not match results from hybrid rocket experiments. In addition, nano-scale aluminum increases melt layer viscosity and greatly slows the regression of paraffin in the opposed flow burner. However, the reactive additives improve the regression rate of paraffin in the opposed burner where standard metals do not. At 5 wt.% mechanically activated titanium and carbon (Ti-C) improves the regression rate of paraffin by 47% in the opposed burner. The mechanically activated Ti C likely reacts in or near the melt layer and provides heat feedback below the flame region that results in faster opposed burner regression

  8. High Performance Home Building Guide for Habitat for Humanity Affiliates

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey Marburger

    2010-10-01

    This guide covers basic principles of high performance Habitat construction, steps to achieving high performance Habitat construction, resources to help improve building practices, materials, etc., and affiliate profiles and recommendations.

  9. Electrochemical and Friction Characteristics of Metallic Glass Composites at the Microstructural Length-scales.

    Science.gov (United States)

    Ayyagari, Aditya; Hasannaeimi, Vahid; Arora, Harpreet; Mukherjee, Sundeep

    2018-01-17

    Metallic glass composites represent a unique alloy design strategy comprising of in situ crystalline dendrites in an amorphous matrix to achieve damage tolerance unseen in conventional structural materials. They are promising for a range of advanced applications including spacecraft gears, high-performance sporting goods and bio-implants, all of which demand high surface degradation resistance. Here, we evaluated the phase-specific electrochemical and friction characteristics of a Zr-based metallic glass composite, Zr 56.2 Ti 13.8 Nb 5.0 Cu 6.9 Ni 5.6 Be 12.5 , which comprised roughly of 40% by volume crystalline dendrites in an amorphous matrix. The amorphous matrix showed higher hardness and friction coefficient compared to the crystalline dendrites. But sliding reciprocating tests for the composite revealed inter-phase delamination rather than preferred wearing of one phase. Pitting during potentiodynamic polarization in NaCl solution was prevalent at the inter-phase boundary, confirming that galvanic coupling was the predominant corrosion mechanism. Scanning vibration electrode technique demonstrated that the amorphous matrix corroded much faster than the crystalline dendrites due to its unfavorable chemistry. Relative work function values measured using scanning kelvin probe showed the amorphous matrix to be more electropositive, which explain its preferred corrosion over the crystalline dendrites as well as its characteristic friction behavior. This study paves the way for careful partitioning of elements between the two phases in a metallic glass composite to tune its surface degradation behavior for a range of advanced applications.

  10. High Performance Computing in Science and Engineering '99 : Transactions of the High Performance Computing Center

    CERN Document Server

    Jäger, Willi

    2000-01-01

    The book contains reports about the most significant projects from science and engineering of the Federal High Performance Computing Center Stuttgart (HLRS). They were carefully selected in a peer-review process and are showcases of an innovative combination of state-of-the-art modeling, novel algorithms and the use of leading-edge parallel computer technology. The projects of HLRS are using supercomputer systems operated jointly by university and industry and therefore a special emphasis has been put on the industrial relevance of results and methods.

  11. High Performance Computing in Science and Engineering '98 : Transactions of the High Performance Computing Center

    CERN Document Server

    Jäger, Willi

    1999-01-01

    The book contains reports about the most significant projects from science and industry that are using the supercomputers of the Federal High Performance Computing Center Stuttgart (HLRS). These projects are from different scientific disciplines, with a focus on engineering, physics and chemistry. They were carefully selected in a peer-review process and are showcases for an innovative combination of state-of-the-art physical modeling, novel algorithms and the use of leading-edge parallel computer technology. As HLRS is in close cooperation with industrial companies, special emphasis has been put on the industrial relevance of results and methods.

  12. Results from multipoint alignment monitoring using the new generation of amorphous silicon position detectors

    International Nuclear Information System (INIS)

    Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C.; Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Sobron, M.; Vila, I.; Virto, A.L.

    2008-01-01

    We present the measured performance of a new generation of large sensitive area (28x28 mm 2 ) semitransparent amorphous silicon position detector sensors. More than 100 units have been characterized. They show a very high performance. To illustrate a multipoint application, we present results from the monitoring of five sensors placed in a 5.5-m-long light path

  13. Influence of particle size and preparation methods on the physical and chemical stability of amorphous simvastatin

    DEFF Research Database (Denmark)

    Zhang, Fang; Aaltonen, Jaakko; Tian, Fang

    2009-01-01

    This study investigated the factors influencing the stability of amorphous simvastatin. Quench-cooled amorphous simvastatin in two particle size ranges, 150-180 microm (QC-big) and physical and chemical...... using DSC in order to link the physical and chemical stability with molecular mobility. Chemical stability was studied with high-performance liquid chromatography (HPLC). Results obtained from the current study revealed that the solubility of amorphous forms prepared by both methods was enhanced...... molecular mobility and higher chemical degradation than CM. Therefore, the current study demonstrated that QC and CM have obvious differences in both physical and chemical properties. It was concluded that care should be taken when choosing preparation methods for making amorphous materials. Furthermore...

  14. Nanostructures having crystalline and amorphous phases

    Science.gov (United States)

    Mao, Samuel S; Chen, Xiaobo

    2015-04-28

    The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.

  15. Charge ordering in amorphous WOx films

    International Nuclear Information System (INIS)

    Kopelevich, Yakov; Silva, Robson R. da; Rougier, Aline; Luk'yanchuk, Igor A.

    2008-01-01

    We observed highly anisotropic viscous electronic conducting phase in amorphous WO 1.55 films that occurs below a current (I)- and frequency (f)-dependent temperature T*(I, f). At T< T*(I, f) the rotational symmetry of randomly disordered electronic background is broken leading to the appearance of mutually perpendicular metallic- and insulating-like states. A rich dynamic behavior of the electronic matter occurring at T< T*(I, f) provides evidence for an interplay between pinning effects and electron-electron interactions. The results suggest a dynamic crystallization of the disordered electronic matter, viz. formation of sliding Wigner crystal, as well as the occurrence of quantum liquid-like crystal or stripe phase at low drives

  16. Metallic Glasses as Potential Reinforcements in Al and Mg Matrices: A Review

    Directory of Open Access Journals (Sweden)

    S. Jayalakshmi

    2018-04-01

    Full Text Available Development of metal matrix composites (MMCs with metallic glass/amorphous alloy reinforcements is an emerging research field. As reinforcements, metallic glasses with their high strength (up to ~2 GPa and high elastic strain limit (~2% can provide superior mechanical properties. Being metallic in nature, the glassy alloys can ensure better interfacial properties when compared to conventional ceramic reinforcements. Given the metastable nature of metallic glasses, lightweight materials such as aluminum (Al and magnesium (Mg with relatively lower melting points are suitable matrix materials. Synthesis of these advanced composites is a challenge as selection of processing method and appropriate reinforcement type (which does not allow devitrification of the metallic glass during processing is important. Non-conventional techniques such as high frequency induction sintering, bidirectional microwave sintering, friction stir processing, accumulative roll-bonding, and spark plasma sintering are being explored to produce these novel materials. In this paper, an overview on the synthesis and properties of aluminum and magnesium based composites with glassy reinforcement produced by various unconventional methods is presented. Evaluation of properties of the produced composites indicate: (i retention of amorphous state of the reinforcement after processing; (ii significant improvement in hardness and strength; (iii improvement/retention of ductility; and (iv high wear resistance and low coefficient of friction. Further, a comparative understanding of the properties highlights that the selection of the processing method is important in producing high performance composites.

  17. Evaluation of Amorphous Ribbon Reinforced Resin Matrix Composites.

    Science.gov (United States)

    1980-04-30

    magnetic properties offered by the ribbons may result in some unique composite applications. UNiLASSMI lED SECURITY CLASIFICATION OF T--- PAGE(Wfa DOMa...presented in Table 2. Excellent transverse to longitudinal property ratios are demonstrated in these data. The cold rolled carbon steel / epoxy system...reinforcements. Amorphous metals have specific strengths significantly higher than that offered by cold rolled steel alloys. The cold rolled steels have an

  18. Low Cost High Performance Nanostructured Spectrally Selective Coating

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Sungho [Univ. of California, San Diego, CA (United States)

    2017-04-05

    Sunlight absorbing coating is a key enabling technology to achieve high-temperature high-efficiency concentrating solar power operation. A high-performance solar absorbing material must simultaneously meet all the following three stringent requirements: high thermal efficiency (usually measured by figure of merit), high-temperature durability, and oxidation resistance. The objective of this research is to employ a highly scalable process to fabricate and coat black oxide nanoparticles onto solar absorber surface to achieve ultra-high thermal efficiency. Black oxide nanoparticles have been synthesized using a facile process and coated onto absorber metal surface. The material composition, size distribution and morphology of the nanoparticle are guided by numeric modeling. Optical and thermal properties have been both modeled and measured. High temperature durability has been achieved by using nanocomposites and high temperature annealing. Mechanical durability on thermal cycling have also been investigated and optimized. This technology is promising for commercial applications in next-generation high-temperature concentration solar power (CSP) plants.

  19. Hybrid nanostructured materials for high-performance electrochemical capacitors

    KAUST Repository

    Yu, Guihua

    2013-03-01

    The exciting development of advanced nanostructured materials has driven the rapid growth of research in the field of electrochemical energy storage (EES) systems which are critical to a variety of applications ranging from portable consumer electronics, hybrid electric vehicles, to large industrial scale power and energy management. Owing to their capability to deliver high power performance and extremely long cycle life, electrochemical capacitors (ECs), one of the key EES systems, have attracted increasing attention in the recent years since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review article describes the most recent progress in the development of nanostructured electrode materials for EC technology, with a particular focus on hybrid nanostructured materials that combine carbon based materials with pseudocapacitive metal oxides or conducting polymers for achieving high-performance ECs. This review starts with an overview of EES technologies and the comparison between various EES systems, followed by a brief description of energy storage mechanisms for different types of EC materials. This review emphasizes the exciting development of both hybrid nanomaterials and novel support structures for effective electrochemical utilization and high mass loading of active electrode materials, both of which have brought the energy density of ECs closer to that of batteries while still maintaining their characteristic high power density. Last, future research directions and the remaining challenges toward the rational design and synthesis of hybrid nanostructured electrode materials for next-generation ECs are discussed. © 2012 Elsevier Ltd.

  20. Amorphous Alloy Membranes for High Temperature Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, K. [Southwest Research Inst. (SwRI), San Antonio, TX (United States)

    2013-09-30

    At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute® (SwRI®), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 °C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys

  1. Joint ESRF-Cecam workshop polymorphous in liquid and amorphous matter

    International Nuclear Information System (INIS)

    Price, D.L.; Hennet, L.; Krishnan, S.; Sinn, H.; Alp, E.E.; Saboungi, M.L.; Holland-Moritz, D.; Mossa, S.; Tarjus, G.; Trapananti, A.; Di Cicco, A.; Filipponi, A.; Tanaka, H.; Soper, A.K.; Strassle, Th.; Klotz, S.; Hamel, G.; Nelmes, R.J.; Loveday, J.S.; Rousse, G.; Canny, B.; Chervin, J.C.; Saitta, M.; Marek Koza, M.; Schober, H.; Geiger, A.; Brovchenko, I.; Oleinikova, A.; Strassle, T.; Reichert, H.; Jakse, N.; Lebacq, O.; Pasturel, A.; Salmon, P.S.; Martin, R.A.; Massobrio, C.; Poon, W.C.K.; Pham, K.N.; Voigtmann, Th.; Egelhaaf, S.U.; Pusey, P.N.; Petukhov, A.V.; Dolbnya, I.P.; Vroege, G.J.; Lekkerkerker, H.N.W.; Konig, H.; Keen, D.A.; Benedetti, L.R.; Sihachakr, D.; Dewaele, A.; Weck, G.; Crichton, W.; Mezouar, M.; Loubeyre, P.; Shimojo, F.; Ferlat, G.; San Miguel, A.; Xu, H.; Martinez-Garcia, D.; Zuniga, J.; Munoz-Sanjose, V.; Felipponi, A.; Panfilis, S. de; Di Cicco, A.; Guthrie, M.; Tulk, C.A.; Bemore, C.J.; Xu, J.; Yarger, J.L.; Mao, H.K.; Hemley, R.J.

    2004-01-01

    This workshop is dedicated to new trends in the simulation and experimental studies of liquid and amorphous matter. Particular emphasis is given to polymorphism in equilibrium and under-cooled metastable liquids, glasses and to amorphous network-forming systems. 5 mains sessions over the 3 days have been organized: 1) under-cooled liquid metals, 2) liquid, glassy and amorphous semiconductors, 3) water and related systems, 4) colloids, macro-molecules and biological cells, and 5) state-of-the-art in experimental and theoretical investigations. This document gathers the abstracts of the presentations

  2. Joint ESRF-Cecam workshop polymorphous in liquid and amorphous matter

    Energy Technology Data Exchange (ETDEWEB)

    Price, D.L.; Hennet, L.; Krishnan, S.; Sinn, H.; Alp, E.E.; Saboungi, M.L.; Holland-Moritz, D.; Mossa, S.; Tarjus, G.; Trapananti, A.; Di Cicco, A.; Filipponi, A.; Tanaka, H.; Soper, A.K.; Strassle, Th.; Klotz, S.; Hamel, G.; Nelmes, R.J.; Loveday, J.S.; Rousse, G.; Canny, B.; Chervin, J.C.; Saitta, M.; Marek Koza, M.; Schober, H.; Geiger, A.; Brovchenko, I.; Oleinikova, A.; Strassle, T.; Reichert, H.; Jakse, N.; Lebacq, O.; Pasturel, A.; Salmon, P.S.; Martin, R.A.; Massobrio, C.; Poon, W.C.K.; Pham, K.N.; Voigtmann, Th.; Egelhaaf, S.U.; Pusey, P.N.; Petukhov, A.V.; Dolbnya, I.P.; Vroege, G.J.; Lekkerkerker, H.N.W.; Konig, H.; Keen, D.A.; Benedetti, L.R.; Sihachakr, D.; Dewaele, A.; Weck, G.; Crichton, W.; Mezouar, M.; Loubeyre, P.; Shimojo, F.; Ferlat, G.; San Miguel, A.; Xu, H.; Martinez-Garcia, D.; Zuniga, J.; Munoz-Sanjose, V.; Felipponi, A.; Panfilis, S. de; Di Cicco, A.; Guthrie, M.; Tulk, C.A.; Bemore, C.J.; Xu, J.; Yarger, J.L.; Mao, H.K.; Hemley, R.J

    2004-07-01

    This workshop is dedicated to new trends in the simulation and experimental studies of liquid and amorphous matter. Particular emphasis is given to polymorphism in equilibrium and under-cooled metastable liquids, glasses and to amorphous network-forming systems. 5 mains sessions over the 3 days have been organized: 1) under-cooled liquid metals, 2) liquid, glassy and amorphous semiconductors, 3) water and related systems, 4) colloids, macro-molecules and biological cells, and 5) state-of-the-art in experimental and theoretical investigations. This document gathers the abstracts of the presentations.

  3. Electrical resistivity of amorphous Fesub(1-x) Bsub(x) alloys

    International Nuclear Information System (INIS)

    Paja, A.; Stobiecki, T.

    1984-07-01

    The concentration dependence of the electrical resistivity of amorphous Fesub(1-x) Bsub(x) alloys has been studied over a broad composition range. The measurements for RF sputtered films made in the liquid helium temperature have been analyzed in the framework of the diffraction model. The calculated results are in good agreement with the experimental data in the range of concentration 0.12< x <0.37 where samples are amorphous and have a metallic character. (author)

  4. Magnetoresistance of amorphous CuZr: weak localization in a three dimensional system

    International Nuclear Information System (INIS)

    Bieri, J.B.; Fert, A.; Creuzet, G.

    1984-01-01

    Observations of anomalous magnetoresistance in amorphous CuZr at low temperature are reported. The magnetoresistance can be precisely accounted for in theoretical models of localization for 3-dimensional metallic systems in the presence of strong spin-orbit interactions (with a significant additional contribution from the quenching of superconducting fluctuations at the lowest temperatures). Magnetoresistance measurements on various other systems show that such 3-dimensional localization effects are very generally observed in amorphous alloys. (author)

  5. Amorphous nanoparticles — Experiments and computer simulations

    International Nuclear Information System (INIS)

    Hoang, Vo Van; Ganguli, Dibyendu

    2012-01-01

    The data obtained by both experiments and computer simulations concerning the amorphous nanoparticles for decades including methods of synthesis, characterization, structural properties, atomic mechanism of a glass formation in nanoparticles, crystallization of the amorphous nanoparticles, physico-chemical properties (i.e. catalytic, optical, thermodynamic, magnetic, bioactivity and other properties) and various applications in science and technology have been reviewed. Amorphous nanoparticles coated with different surfactants are also reviewed as an extension in this direction. Much attention is paid to the pressure-induced polyamorphism of the amorphous nanoparticles or amorphization of the nanocrystalline counterparts. We also introduce here nanocomposites and nanofluids containing amorphous nanoparticles. Overall, amorphous nanoparticles exhibit a disordered structure different from that of corresponding bulks or from that of the nanocrystalline counterparts. Therefore, amorphous nanoparticles can have unique physico-chemical properties differed from those of the crystalline counterparts leading to their potential applications in science and technology.

  6. High Performance Computing in Science and Engineering '02 : Transactions of the High Performance Computing Center

    CERN Document Server

    Jäger, Willi

    2003-01-01

    This book presents the state-of-the-art in modeling and simulation on supercomputers. Leading German research groups present their results achieved on high-end systems of the High Performance Computing Center Stuttgart (HLRS) for the year 2002. Reports cover all fields of supercomputing simulation ranging from computational fluid dynamics to computer science. Special emphasis is given to industrially relevant applications. Moreover, by presenting results for both vector sytems and micro-processor based systems the book allows to compare performance levels and usability of a variety of supercomputer architectures. It therefore becomes an indispensable guidebook to assess the impact of the Japanese Earth Simulator project on supercomputing in the years to come.

  7. Model for amorphous aggregation processes

    Science.gov (United States)

    Stranks, Samuel D.; Ecroyd, Heath; van Sluyter, Steven; Waters, Elizabeth J.; Carver, John A.; von Smekal, Lorenz

    2009-11-01

    The amorphous aggregation of proteins is associated with many phenomena, ranging from the formation of protein wine haze to the development of cataract in the eye lens and the precipitation of recombinant proteins during their expression and purification. While much literature exists describing models for linear protein aggregation, such as amyloid fibril formation, there are few reports of models which address amorphous aggregation. Here, we propose a model to describe the amorphous aggregation of proteins which is also more widely applicable to other situations where a similar process occurs, such as in the formation of colloids and nanoclusters. As first applications of the model, we have tested it against experimental turbidimetry data of three proteins relevant to the wine industry and biochemistry, namely, thaumatin, a thaumatinlike protein, and α -lactalbumin. The model is very robust and describes amorphous experimental data to a high degree of accuracy. Details about the aggregation process, such as shape parameters of the aggregates and rate constants, can also be extracted.

  8. Atomistic Models of Amorphous Semiconductors

    NARCIS (Netherlands)

    Jarolimek, K.

    2011-01-01

    Crystalline silicon is probably the best studied material, widely used by the semiconductor industry. The subject of this thesis is an intriguing form of this element namely amorphous silicon. It can contain a varying amount of hydrogen and is denoted as a-Si:H. It completely lacks the neat long

  9. Fracture Phenomena in Amorphous Selenium

    DEFF Research Database (Denmark)

    Lindegaard-Andersen, Asger; Dahle, Birgit

    1966-01-01

    Fracture surfaces of amorphous selenium broken in flexure at room temperature have been studied. The fracture velocity was found to vary in different regions of the fracture surface. Peculiar features were observed in a transition zone between fast and slower fracture. In this zone cleavage steps...

  10. Internal stresses in wear and corrosion resistant amorphous metallic coatings of (W/0.6/Re/0.4/)76B24 and (Mo/0.6/Ru/0.4/)82B18

    Science.gov (United States)

    Thakoor, A. P.; Lamb, J. L.; Williams, R. M.; Khanna, S. K.

    1985-01-01

    Hard protective coatings in the W-Re-B and Mo-Ru-B alloy systems have been deposited by magnetron sputtering onto soda-lime glass and heat-treated AISI 52100 steel substrates. X-ray diffraction has confirmed the amorphous nature of the as-deposited coatings, and their crystallization temperatures were determined by differential thermal analysis to be 1000 and 790 C for W-Re-B and Mo-Ru-B coatings, respectively. Both coatings exhibit high microhardness; Mo-Ru-B, in addition, has excellent corrosion resistance by comparison with pure Mo at high anodic potentials. Attention is given to the influence of internal stresses on the protective properties of the coatings deposited under different conditions.

  11. High-performance ferroelectric memory based on phase-separated films of polymer blends

    KAUST Repository

    Khan, Yasser

    2013-10-29

    High-performance polymer memory is fabricated using blends of ferroelectric poly(vinylidene-fluoride-trifluoroethylene) (P(VDF-TrFE)) and highly insulating poly(p-phenylene oxide) (PPO). The blend films spontaneously phase separate into amorphous PPO nanospheres embedded in a semicrystalline P(VDF-TrFE) matrix. Using low molecular weight PPO with high miscibility in a common solvent, i.e., methyl ethyl ketone, blend films are spin cast with extremely low roughness (Rrms ≈ 4.92 nm) and achieve nanoscale phase seperation (PPO domain size < 200 nm). These blend devices display highly improved ferroelectric and dielectric performance with low dielectric losses (<0.2 up to 1 MHz), enhanced thermal stability (up to ≈353 K), excellent fatigue endurance (80% retention after 106 cycles at 1 KHz) and high dielectric breakdown fields (≈360 MV/m). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ferrofluids based on Co-Fe-Si-B amorphous nanoparticles

    Science.gov (United States)

    Wang, Tianqi; Bian, Xiufang; Yang, Chuncheng; Zhao, Shuchun; Yu, Mengchun

    2017-03-01

    Magnetic Co-Fe-Si-B amorphous nanoparticles were successfully synthesized by chemical reduction method. ICP, XRD, DSC, and TEM were used to investigate the composition, structure and morphology of Co-Fe-Si-B samples. The results show that the Co-Fe-Si-B samples are amorphous, which consist of nearly spherical nanoparticles with an average particle size about 23 nm. VSM results manifest that the saturation magnetization (Ms) of Co-Fe-Si-B samples ranges from 46.37 to 62.89 emu/g. Two kinds of ferrofluids (FFs) were prepared by dispersing Co-Fe-Si-B amorphous nanoparticles and CoFe2O4 nanoparticles in kerosene and silicone oil, respectively. The magnetic properties, stability and viscosity of the FFs were investigated. The FFs with Co-Fe-Si-B samples have a higher Ms and lower coercivity (Hc) than FFs with CoFe2O4 sample. Under magnetic field, the silicone oil-based FFs exhibit high stability. The viscosity of FFs under different applied magnetic fields was measured by a rotational viscometer, indicating that FFs with Co-Fe-Si-B particles present relative strong response to an external magnetic field. The metal-boride amorphous alloy nanoparticles have potential applications in the preparation of magnetic fluids with good stability and good magnetoviscous properties.

  13. DOE research in utilization of high-performance computers

    International Nuclear Information System (INIS)

    Buzbee, B.L.; Worlton, W.J.; Michael, G.; Rodrigue, G.

    1980-12-01

    Department of Energy (DOE) and other Government research laboratories depend on high-performance computer systems to accomplish their programatic goals. As the most powerful computer systems become available, they are acquired by these laboratories so that advances can be made in their disciplines. These advances are often the result of added sophistication to numerical models whose execution is made possible by high-performance computer systems. However, high-performance computer systems have become increasingly complex; consequently, it has become increasingly difficult to realize their potential performance. The result is a need for research on issues related to the utilization of these systems. This report gives a brief description of high-performance computers, and then addresses the use of and future needs for high-performance computers within DOE, the growing complexity of applications within DOE, and areas of high-performance computer systems warranting research. 1 figure

  14. DOE research in utilization of high-performance computers

    Energy Technology Data Exchange (ETDEWEB)

    Buzbee, B.L.; Worlton, W.J.; Michael, G.; Rodrigue, G.

    1980-12-01

    Department of Energy (DOE) and other Government research laboratories depend on high-performance computer systems to accomplish their programatic goals. As the most powerful computer systems become available, they are acquired by these laboratories so that advances can be made in their disciplines. These advances are often the result of added sophistication to numerical models whose execution is made possible by high-performance computer systems. However, high-performance computer systems have become increasingly complex; consequently, it has become increasingly difficult to realize their potential performance. The result is a need for research on issues related to the utilization of these systems. This report gives a brief description of high-performance computers, and then addresses the use of and future needs for high-performance computers within DOE, the growing complexity of applications within DOE, and areas of high-performance computer systems warranting research. 1 figure.

  15. High Performance Computing in Science and Engineering '08 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2009-01-01

    The discussions and plans on all scienti?c, advisory, and political levels to realize an even larger “European Supercomputer” in Germany, where the hardware costs alone will be hundreds of millions Euro – much more than in the past – are getting closer to realization. As part of the strategy, the three national supercomputing centres HLRS (Stuttgart), NIC/JSC (Julic ¨ h) and LRZ (Munich) have formed the Gauss Centre for Supercomputing (GCS) as a new virtual organization enabled by an agreement between the Federal Ministry of Education and Research (BMBF) and the state ministries for research of Baden-Wurttem ¨ berg, Bayern, and Nordrhein-Westfalen. Already today, the GCS provides the most powerful high-performance computing - frastructure in Europe. Through GCS, HLRS participates in the European project PRACE (Partnership for Advances Computing in Europe) and - tends its reach to all European member countries. These activities aligns well with the activities of HLRS in the European HPC infrastructur...

  16. High Performance Monopropellants for Future Planetary Ascent Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. proposes to design, develop, and demonstrate, a novel high performance monopropellant for application in future planetary ascent vehicles. Our...

  17. Correlating the properties of amorphous silicon with its flexibility volume

    Science.gov (United States)

    Fan, Zhao; Ding, Jun; Li, Qing-Jie; Ma, Evan

    2017-04-01

    For metallic glasses, "flexibility volume" has recently been introduced as a property-revealing indicator of the structural state the glass is in. This parameter incorporates the atomic volume and the vibrational mean-square displacement, to combine both static structure and dynamics information. Flexibility volume was shown to quantitatively correlate with the properties of metallic glasses [J. Ding et al., Nat. Commun. 7, 13733 (2016), 10.1038/ncomms13733]. However, it remains to be examined if this parameter is useful for other types of glasses with bonding characteristics, atomic packing structures, as well as properties that are distinctly different from metallic glasses. In this paper, we tackle this issue through systematic molecular-dynamics simulations of amorphous silicon (a -Si) models produced with different cooling rates, as a -Si is a prototypical covalently bonded network glass whose structure and properties cannot be characterized using structural parameters such as free volume used for metallic and polymeric glasses. Specifically, we demonstrate a quantitative prediction of the shear modulus of a -Si from the flexibility for atomic motion. This flexibility volume descriptor, when evaluated on the atomic scale, is shown to also correlate well with local packing, as well as with the propensity for thermal relaxations and shear transformations, providing a metric to map out and explain the structural and mechanical heterogeneity in the amorphous material. This case study of a model of covalently bonded network a -Si, together with our earlier demonstration for metallic glasses, points to the universality of flexibility volume as an indicator of the structure state to link with properties, applicable across amorphous materials with different chemical bonding and atomic packing structures.

  18. High Performance InGaAsSb TPV Cells

    Energy Technology Data Exchange (ETDEWEB)

    ZA Shellengarger; GC Taylor; RU Martinelli; JM Carpinelli

    2004-06-09

    Lattice-matched 0.52 eV InGaAsSb/GaSb thermophotovoltaic (TPV) cells are grown using a multi-wafer metal-organic-chemical-vapor-deposition (MOCVD) system. MOCVD growth series of P/N junction epitaxial structures consisting of as many as 30 wafers demonstrate good run-to-run reproducibility, good uniformity across the wafer and exhibit high performance with open circuit voltages of {approx}300mV and fill factors of 70% at 25 C. Growth parameters, including temperature, surface preparation and substrate orientation, that directly affect growth have been optimized for the active 0.52 eV InGaAsSb region and GaSb confinement layers. Focus is on increasing TPV diode performance through architectural improvements, specifically by reducing the minority carrier recombination velocity at the emitter and base front and back interfaces. Work in support of incorporating a back surface reflector (BSR) including the growth of N/P diode architectures and the addition of a lattice-matched InAsSb etch stop layer for substrate removal and wafer bonding, is reported. The lattice matched InAsSb stop etch exhibits resiliency to the substrate removal and wafer bonding processes. Substantial improvement in carrier lifetime on test structures with P-type AlGaAsSb layers indicated incorporation of these layers into the TPV cell structure should provide significant improvement in open-circuit voltage. Addition of AlGaAsSb confinement layers to the standard P/N cell structure gave some of the best InGaAsSb TPV cell results to date.

  19. High performance transistors via aligned polyfluorene-sorted carbon nanotubes

    International Nuclear Information System (INIS)

    Brady, Gerald J.; Joo, Yongho; Singha Roy, Susmit; Gopalan, Padma; Arnold, Michael S.

    2014-01-01

    We evaluate the performance of exceptionally electronic-type sorted, semiconducting, aligned single-walled carbon nanotubes (s-SWCNTs) in field effect transistors (FETs). High on-conductance and high on/off conductance modulation are simultaneously achieved at channel lengths which are both shorter and longer than individual s-SWCNTs. The s-SWCNTs are isolated from heterogeneous mixtures using a polyfluorene-derivative as a selective agent and aligned on substrates via dose-controlled, floating evaporative self-assembly at densities of ∼50 s-SWCNTs μm −1 . At a channel length of 9 μm the s-SWCNTs percolate to span the FET channel, and the on/off ratio and charge transport mobility are 2.2 × 10 7 and 46 cm 2  V −1  s −1 , respectively. At a channel length of 400 nm, a large fraction of the s-SWCNTs directly span the channel, and the on-conductance per width is 61 μS μm −1 and the on/off ratio is 4 × 10 5 . These results are considerably better than previous solution-processed FETs, which have suffered from poor on/off ratio due to spurious metallic nanotubes that bridge the channel. 4071 individual and small bundles of s-SWCNTs are tested in 400 nm channel length FETs, and all show semiconducting behavior, demonstrating the high fidelity of polyfluorenes as selective agents and the promise of assembling s-SWCNTs from solution to create high performance semiconductor electronic devices

  20. High performance transistors via aligned polyfluorene-sorted carbon nanotubes

    Science.gov (United States)

    Brady, Gerald J.; Joo, Yongho; Singha Roy, Susmit; Gopalan, Padma; Arnold, Michael S.

    2014-02-01

    We evaluate the performance of exceptionally electronic-type sorted, semiconducting, aligned single-walled carbon nanotubes (s-SWCNTs) in field effect transistors (FETs). High on-conductance and high on/off conductance modulation are simultaneously achieved at channel lengths which are both shorter and longer than individual s-SWCNTs. The s-SWCNTs are isolated from heterogeneous mixtures using a polyfluorene-derivative as a selective agent and aligned on substrates via dose-controlled, floating evaporative self-assembly at densities of ˜50 s-SWCNTs μm-1. At a channel length of 9 μm the s-SWCNTs percolate to span the FET channel, and the on/off ratio and charge transport mobility are 2.2 × 107 and 46 cm2 V-1 s-1, respectively. At a channel length of 400 nm, a large fraction of the s-SWCNTs directly span the channel, and the on-conductance per width is 61 μS μm-1 and the on/off ratio is 4 × 105. These results are considerably better than previous solution-processed FETs, which have suffered from poor on/off ratio due to spurious metallic nanotubes that bridge the channel. 4071 individual and small bundles of s-SWCNTs are tested in 400 nm channel length FETs, and all show semiconducting behavior, demonstrating the high fidelity of polyfluorenes as selective agents and the promise of assembling s-SWCNTs from solution to create high performance semiconductor electronic devices.

  1. Amorphous molybdenum sulfides as hydrogen evolution catalysts.

    Science.gov (United States)

    Morales-Guio, Carlos G; Hu, Xile

    2014-08-19

    Providing energy for a population projected to reach 9 billion people within the middle of this century is one of the most pressing societal issues. Burning fossil fuels at a rate and scale that satisfy our near-term demand will irreversibly damage the living environment. Among the various sources of alternative and CO2-emission-free energies, the sun is the only source that is capable of providing enough energy for the whole world. Sunlight energy, however, is intermittent and requires an efficient storage mechanism. Sunlight-driven water splitting to make hydrogen is widely considered as one of the most attractive methods for solar energy storage. Water splitting needs a hydrogen evolution catalyst to accelerate the rate of hydrogen production and to lower the energy loss in this process. Precious metals such as Pt are superior catalysts, but they are too expensive and scarce for large-scale applications. In this Account, we summarize our recent research on the preparation, characterization, and application of amorphous molybdenum sulfide catalysts for the hydrogen evolution reaction. The catalysts can be synthesized by electrochemical deposition under ambient conditions from readily available and inexpensive precursors. The catalytic activity is among the highest for nonprecious catalysts. For example, at a loading of 0.2 mg/cm(2), the optimal catalyst delivers a current density of 10 mA/cm(2) at an overpotential of 160 mV. The growth mechanism of the electrochemically deposited film catalysts was revealed by an electrochemical quartz microcrystal balance study. While different electrochemical deposition methods produce films with different initial compositions, the active catalysts are the same and are identified as a "MoS(2+x)" species. The activity of the film catalysts can be further promoted by divalent Fe, Co, and Ni ions, and the origins of the promotional effects have been probed. Highly active amorphous molybdenum sulfide particles can also be prepared

  2. Transient photoconductivity in amorphous semiconductors

    International Nuclear Information System (INIS)

    Mpawenayo, P.

    1997-07-01

    Localized states in amorphous semiconductors are divided in disorder induced shallow trap levels and dangling bonds deep states. Dangling bonds are assumed here to be either neutral or charged and their energy distribution is a single gaussian. Here, it is shown analytically that transient photocurrent in amorphous semiconductors is fully controlled by charge carriers transitions between localized states for one part and tunneling hopping carriers on the other. Localized dangling bonds deep states act as non radiative recombination centres, while hopping tunnelling is assisted by the Coulomb interaction between defects sites. The half-width of defects distribution is the disorder parameter that determines the carrier hopping time between defects sites. The macroscopic time that explains the long decay response times observed will all types of amorphous semiconductors is duly thought to be temperature dependent. Basic equations developed by Longeaud and Kleider are solved for the general case of a semiconductor after photo-generation. It turns out that the transient photoconductivity decay has two components; one with short response times from carriers trap-release transitions between shallow levels and extended states and a hopping component made of inter-dependent exponentials whose time constants span in larger ranges depending on disorder. The photoconductivity hopping component appears as an additional term to be added to photocurrents derived from existing models. The results of the present study explain and complete the power law decay derived in the multiple trapping models developed 20 years ago only in the approximation of the short response time regime. The long response time regime is described by the hopping macroscopic time. The present model is verified for all samples of amorphous semiconductors known so far. Finally, it is proposed to improved the modulated photoconductivity calculation techniques by including the long-lasting hopping dark documents

  3. Uranium incorporation into amorphous silica.

    Science.gov (United States)

    Massey, Michael S; Lezama-Pacheco, Juan S; Nelson, Joey M; Fendorf, Scott; Maher, Kate

    2014-01-01

    High concentrations of uranium are commonly observed in naturally occurring amorphous silica (including opal) deposits, suggesting that incorporation of U into amorphous silica may represent a natural attenuation mechanism and promising strategy for U remediation. However, the stability of uranium in opaline silicates, determined in part by the binding mechanism for U, is an important factor in its long-term fate. U may bind directly to the opaline silicate matrix, or to materials such as iron (hydr)oxides that are subsequently occluded within the opal. Here, we examine the coordination environment of U within opaline silica to elucidate incorporation mechanisms. Precipitates (with and without ferrihydrite inclusions) were synthesized from U-bearing sodium metasilicate solutions, buffered at pH ∼ 5.6. Natural and synthetic solids were analyzed with X-ray absorption spectroscopy and a suite of other techniques. In synthetic amorphous silica, U was coordinated by silicate in a double corner-sharing coordination geometry (Si at ∼ 3.8-3.9 Å) and a small amount of uranyl and silicate in a bidentate, mononuclear (edge-sharing) coordination (Si at ∼ 3.1-3.2 Å, U at ∼ 3.8-3.9 Å). In iron-bearing synthetic solids, U was adsorbed to iron (hydr)oxide, but the coordination environment also contained silicate in both edge-sharing and corner-sharing coordination. Uranium local coordination in synthetic solids is similar to that of natural U-bearing opals that retain U for millions of years. The stability and extent of U incorporation into opaline and amorphous silica represents a long-term repository for U that may provide an alternative strategy for remediation of U contamination.

  4. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials

    Science.gov (United States)

    Li, H. B.; Yu, M. H.; Wang, F. X.; Liu, P.; Liang, Y.; Xiao, J.; Wang, C. X.; Tong, Y. X.; Yang, G. W.

    2013-01-01

    Among numerous active electrode materials, nickel hydroxide is a promising electrode in electrochemical capacitors. Nickel hydroxide research has thus far focused on the crystalline rather than the amorphous phase, despite the impressive electrochemical properties of the latter, which includes an improved electrochemical efficiency due to disorder. Here we demonstrate high-performance electrochemical supercapacitors prepared from amorphous nickel hydroxide nanospheres synthesized via simple, green electrochemistry. The amorphous nickel hydroxide electrode exhibits high capacitance (2,188 F g−1), and the asymmetric pseudocapacitors of the amorphous nickel hydroxide exhibit high capacitance (153 F g−1), high energy density (35.7 W h kg−1 at a power density of 490 W kg−1) and super-long cycle life (97% and 81% charge retentions after 5,000 and 10,000 cycles, respectively). The integrated electrochemical performance of the amorphous nickel hydroxide is commensurate with crystalline materials in supercapacitors. These findings promote the application of amorphous nanostructures as advanced electrochemical pseudocapacitor materials. PMID:23695688

  5. Control switching in high performance and fault tolerant control

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2010-01-01

    The problem of reliability in high performance control and in fault tolerant control is considered in this paper. A feedback controller architecture for high performance and fault tolerance is considered. The architecture is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization. By usi...

  6. Turning High-Poverty Schools into High-Performing Schools

    Science.gov (United States)

    Parrett, William H.; Budge, Kathleen

    2012-01-01

    If some schools can overcome the powerful and pervasive effects of poverty to become high performing, shouldn't any school be able to do the same? Shouldn't we be compelled to learn from those schools? Although schools alone will never systemically eliminate poverty, high-poverty, high-performing (HP/HP) schools take control of what they can to…

  7. Conference examines the future of high performance computing

    OpenAIRE

    Trulove, Susan

    2005-01-01

    The future of high-performance computing as seen by the leading information technology manufacturers and independent hardware vendors is the theme of the Virginia Tech High Performance Computing Conference on Wednesday and Thursday, May 25 and 26, at the Donaldson Brown Hotel & Conference Center on campus.

  8. Development of new high-performance stainless steels

    International Nuclear Information System (INIS)

    Park, Yong Soo

    2002-01-01

    This paper focused on high-performance stainless steels and their development status. Effect of nitrogen addition on super-stainless steel was discussed. Research activities at Yonsei University, on austenitic and martensitic high-performance stainless, steels, and the next-generation duplex stainless steels were introduced

  9. Amorphous clusters in Co implanted ZnO induced by boron pre-implantation

    Energy Technology Data Exchange (ETDEWEB)

    Potzger, K.; Shalimov, A.; Zhou, S.; Schmidt, H.; Mucklich, A.; Helm, M.; Fassbender, J.; Liberati, M.; Arenholz, E.

    2009-02-09

    We demonstrate the formation of superparamagnetic/ferromagnetic regions within ZnO(0001) single crystals sequently implanted with B and Co. While the pre-implantation with B plays a minor role for the electrical transport properties, its presence leads to the formation of amorphous phases. Moreover, B acts strongly reducing on the implanted Co. Thus, the origin of the ferromagnetic ordering in local clusters with large Co concentration is itinerant d-electrons as in the case of metallic Co. The metallic amorphous phases are non-detectable by common X-ray diffraction.

  10. Positron lifetime measurements on electron irradiated amorphous alloys

    International Nuclear Information System (INIS)

    Moser, P.; Hautojaervi, P.; Chamberod, A.; Yli-Kauppila, J.; Van Zurk, R.

    1981-08-01

    Great advance in understanding the nature of point defects in crystalline metals has been achieved by employing positron annihilation technique. Positrons detect vacancy-type defects and the lifetime value of trapped positrons gives information on the size of submicroscopic vacancy aglomerates and microvoids. In this paper it is shown that low-temperature electron irradiations can result in a considerable increase in the positron lifetimes in various amorphous alloys because of the formation of vacancy-like defects which, in addition of the pre-existing holes, are able to trap positrons. Studied amorphous alloys were Fe 80 B 20 , Pd 80 Si 20 , Cu 50 Ti 50 , and Fe 40 Ni 40 P 14 B 6 . Electron irradiations were performed with 3 MeV electrons at 20 K to doses around 10 19 e - /cm 2 . After annealing positron lifetime spectra were measured at 77 K

  11. Ground Glass Pozzolan in Conventional, High, and Ultra-High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Tagnit-Hamou Arezki

    2018-01-01

    Full Text Available Ground-glass pozzolan (G obtained by grinding the mixed-waste glass to same fineness of cement can act as a supplementary-cementitious material (SCM, given that it is an amorphous and a pozzolanic material. The G showed promising performances in different concrete types such as conventional concrete (CC, high-performance concrete (HPC, and ultra-high performance concrete (UHPC. The current paper reports on the characteristics and performance of G in these concrete types. The use of G provides several advantages (technological, economical, and environmental. It reduces the production cost of concrete and decrease the carbon footprint of a traditional concrete structures. The rheology of fresh concrete can be improved due to the replacement of cement by non-absorptive glass particles. Strength and rigidity improvements in the concrete containing G are due to the fact that glass particles act as inclusions having a very high strength and elastic modulus that have a strengthening effect on the overall hardened matrix.

  12. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen

    International Nuclear Information System (INIS)

    Sallis, S.; Williams, D. S.; Butler, K. T.; Walsh, A.; Quackenbush, N. F.; Junda, M.; Podraza, N. J.; Fischer, D. A.; Woicik, J. C.; White, B. E.; Piper, L. F. J.

    2014-01-01

    The origin of the deep subgap states in amorphous indium gallium zinc oxide (a-IGZO), whether intrinsic to the amorphous structure or not, has serious implications for the development of p-type transparent amorphous oxide semiconductors. We report that the deep subgap feature in a-IGZO originates from local variations in the oxygen coordination and not from oxygen vacancies. This is shown by the positive correlation between oxygen composition and subgap intensity as observed with X-ray photoelectron spectroscopy. We also demonstrate that the subgap feature is not intrinsic to the amorphous phase because the deep subgap feature can be removed by low-temperature annealing in a reducing environment. Atomistic calculations of a-IGZO reveal that the subgap state originates from certain oxygen environments associated with the disorder. Specifically, the subgap states originate from oxygen environments with a lower coordination number and/or a larger metal-oxygen separation.

  13. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  14. Bonding Unidirectional Carbon Nanotube with Carbon for High Performance

    Science.gov (United States)

    2015-06-24

    were needed for X-ray diffraction (XRD), Thermogravimetric analysis ( TGA ) and electrical property analysis to increase accuracy of the measurements...fabricated for X-ray, TGA and electrical property measurements. However, due to the low density of thick sheets and the interaction depth limitation, the...absorb excess resin solution. The background for the amorphous epoxy and quartz was measured and subtracted from the final spectra for each sample

  15. Toward a new metric for ranking high performance computing systems.

    Energy Technology Data Exchange (ETDEWEB)

    Heroux, Michael Allen; Dongarra, Jack.

    2013-06-01

    The High Performance Linpack (HPL), or Top 500, benchmark [1] is the most widely recognized and discussed metric for ranking high performance computing systems. However, HPL is increasingly unreliable as a true measure of system performance for a growing collection of important science and engineering applications. In this paper we describe a new high performance conjugate gradient (HPCG) benchmark. HPCG is composed of computations and data access patterns more commonly found in applications. Using HPCG we strive for a better correlation to real scientific application performance and expect to drive computer system design and implementation in directions that will better impact performance improvement.

  16. Enhanced visible-light H2 evolution of g-C3N4 photocatalysts via the synergetic effect of amorphous NiS and cheap metal-free carbon black nanoparticles as co-catalysts

    Science.gov (United States)

    Wen, Jiuqing; Li, Xin; Li, Haiqiong; Ma, Song; He, Kelin; Xu, Yuehua; Fang, Yueping; Liu, Wei; Gao, Qiongzhi

    2015-12-01

    In this report, g-C3N4-based photocatalysts with dual co-catalysts of amorphous NiS and carbon black were firstly synthesized through a facile two-step process. The g-C3N4/carbon black/NiS composite photocatalyst were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-vis), N2 adsorption, photoluminescence (PL) spectra and transient photocurrent responses. The photocatalytic activities for photocatalytic hydrogen evolution under visible light irradiation (λ ≥ 420 nm) were measured using an aqueous solution containing triethanolamine as an electron donor. Moreover, the results showed that the ternary g-C3N4 photocatalyst loaded by 0.5 wt% carbon black and 1.5 wt% NiS could achieve the highest H2-production rate of 992 μmol g-1 h-1 under visible-light irradiation (>420 nm), which is about 2.51 times higher than that of the corresponding binary g-C3N4/1.5% NiS photocatalyst. It is believed that the enhanced photocatalytic H2-evolution activities could be attributed to the excellent synergetic effect between the carbon black and NiS as co-catalysts on the surface of g-C3N4, leading to the improved visible light absorption, promoted charge separation and enhanced the following H2-evolution kinetics. This work would not only demonstrate the promising potentials of carbon black as co-catalyst for applications in visible-light H2 generation, but also offer a new insight into the construction of highly efficient and stable g-C3N4-based hybrid semiconductor nanocomposites with dual co-catalysts for diverse photocatalytic applications.

  17. First-principles study of crystalline and amorphous AlMgB{sub 14}-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Ivashchenko, V. I.; Shevchenko, V. I., E-mail: shev@materials.kiev.ua [Institute of Problems of Material Science, National Academy of Science of Ukraine, Krzhyzhanosky Str. 3, 03142 Kyiv (Ukraine); Turchi, P. E. A. [Lawrence Livermore National Laboratory (L-352), P.O. Box 808, Livermore, California 94551 (United States); Veprek, S. [Department of Chemistry, Technical University Munich, Lichtenbergstrasse 4, D-85747 Garching (Germany); Leszczynski, Jerzy [Department of Chemistry and Biochemistry, Interdisciplinary Center for Nanotoxicity, Jackson State University, Jackson, Mississippi 39217 (United States); Gorb, Leonid [Department of Chemistry and Biochemistry, Interdisciplinary Center for Nanotoxicity, Jackson State University, Jackson, Mississippi 39217 (United States); Badger Technical Services, LLC, Vicksburg, Mississippi 39180 (United States); Hill, Frances [U.S. Army ERDC, Vicksburg, Mississippi 39180 (United States)

    2016-05-28

    We report first-principles investigations of crystalline and amorphous boron and M1{sub x}M2{sub y}X{sub z}B{sub 14−z} (M1, M2 = Al, Mg, Li, Na, Y; X = Ti, C, Si) phases (so-called “BAM” materials). Phase stability is analyzed in terms of formation energy and dynamical stability. The atomic configurations as well as the electronic and phonon density states of these phases are compared. Amorphous boron consists of distorted icosahedra, icosahedron fragments, and dioctahedra, connected by an amorphous network. The presence of metal atoms in amorphous BAM materials precludes the formation of icosahedra. For all the amorphous structures considered here, the Fermi level is located in the mobility gap independent of the number of valence electrons. The intra-icosahedral vibrations are localized in the range of 800 cm{sup −1}, whereas the inter-icosahedral vibrations appear at higher wavenumbers. The amorphization leads to an enhancement of the vibrations in the range of 1100–1250 cm{sup −1}. The mechanical properties of BAM materials are investigated at equilibrium and under shear and tensile strain. The anisotropy of the ideal shear and tensile strengths is explained in terms of a layered structure of the B{sub 12} units. The strength of amorphous BAM materials is lower than that of the crystalline counterparts because of the partial fragmentation of the boron icosahedra in amorphous structures. The strength enhancement found experimentally for amorphous boron-based films is very likely related to an increase in film density, and the presence of oxygen impurities. For crystalline BAM materials, the icosahedra are preserved during elongation upon tension as well as upon shear in the (010)[100] slip system.

  18. First-principles study of crystalline and amorphous AlMgB14-based materials

    International Nuclear Information System (INIS)

    Ivashchenko, V. I.; Shevchenko, V. I.; Turchi, P. E. A.; Veprek, S.; Leszczynski, Jerzy; Gorb, Leonid; Hill, Frances

    2016-01-01

    We report first-principles investigations of crystalline and amorphous boron and M1 x M2 y X z B 14−z (M1, M2 = Al, Mg, Li, Na, Y; X = Ti, C, Si) phases (so-called “BAM” materials). Phase stability is analyzed in terms of formation energy and dynamical stability. The atomic configurations as well as the electronic and phonon density states of these phases are compared. Amorphous boron consists of distorted icosahedra, icosahedron fragments, and dioctahedra, connected by an amorphous network. The presence of metal atoms in amorphous BAM materials precludes the formation of icosahedra. For all the amorphous structures considered here, the Fermi level is located in the mobility gap independent of the number of valence electrons. The intra-icosahedral vibrations are localized in the range of 800 cm −1 , whereas the inter-icosahedral vibrations appear at higher wavenumbers. The amorphization leads to an enhancement of the vibrations in the range of 1100–1250 cm −1 . The mechanical properties of BAM materials are investigated at equilibrium and under shear and tensile strain. The anisotropy of the ideal shear and tensile strengths is explained in terms of a layered structure of the B 12 units. The strength of amorphous BAM materials is lower than that of the crystalline counterparts because of the partial fragmentation of the boron icosahedra in amorphous structures. The strength enhancement found experimentally for amorphous boron-based films is very likely related to an increase in film density, and the presence of oxygen impurities. For crystalline BAM materials, the icosahedra are preserved during elongation upon tension as well as upon shear in the (010)[100] slip system.

  19. Mechanisms of Microwave Loss Tangent in High Performance Dielectric Materials

    Science.gov (United States)

    Liu, Lingtao

    The mechanism of loss in high performance microwave dielectrics with complex perovskite structure, including Ba(Zn1/3Ta2/3)O 3, Ba(Cd1/3Ta2/3)O3, ZrTiO4-ZnNb 2O6, Ba(Zn1/3Nb2/3)O3, and BaTi4O9-BaZn2Ti4O11, has been investigated. We studied materials synthesized in our own lab and from commercial vendors. Then the measured loss tangent was correlated to the optical, structural, and electrical properties of the material. To accurately and quantitatively determine the microwave loss and Electron Paramagnetic Resonance (EPR) spectra as a function of temperature and magnetic field, we developed parallel plate resonator (PPR) and dielectric resonator (DR) techniques. Our studies found a marked increase in the loss at low temperatures is found in materials containing transition metal with unpaired d-electrons as a result of resonant spin excitations in isolated atoms (light doping) or exchange coupled clusters (moderate to high doping); a mechanism that differs from the usual suspects. The loss tangent can be drastically reduced by applying static magnetic fields. Our measurements also show that this mechanism significantly contributes to room temperature loss, but does not dominate. In order to study the electronic structure of these materials, we grew single crystal thin film dielectrics for spectroscopic studies, including angular resolved photoemission spectroscopy (ARPES) experiment. We have synthesized stoichiometric Ba(Cd1/3Ta2/3)O3 [BCT] (100) dielectric thin films on MgO (100) substrates using Pulsed Laser Deposition. Over 99% of the BCT film was found to be epitaxial when grown with an elevated substrate temperature of 635 °C, an enhanced oxygen pressures of 53 Pa and a Cd-enriched BCT target with a 1 mol BCT: 1.5 mol CdO composition. Analysis of ultra violet optical absorption results indicate that BCT has a bandgap of 4.9 eV.

  20. The physics and applications of amorphous semiconductors

    CERN Document Server

    Madan, Arun

    1988-01-01

    This comprehensive, detailed treatise on the physics and applications of the new emerging technology of amorphous semiconductors focuses on specific device research problems such as the optimization of device performance. The first part of the book presents hydrogenated amorphous silicon type alloys, whose applications include inexpensive solar cells, thin film transistors, image scanners, electrophotography, optical recording and gas sensors. The second part of the book discusses amorphous chalcogenides, whose applications include electrophotography, switching, and memory elements. This boo

  1. Polyamorphous transition in amorphous fullerites C70

    International Nuclear Information System (INIS)

    Borisova, P. A.; Agafonov, S. S.; Glazkov, V. P.; D’yakonova, N. P.; Somenkov, V. A.

    2011-01-01

    Samples of amorphous fullerites C 70 have been obtained by mechanical activation (grinding in a ball mill). The structure of the samples has been investigated by neutron and X-ray diffraction. The high-temperature (up to 1200°C) annealing of amorphous fullerites revealed a polyamorphous transition from molecular to atomic glass, which is accompanied by the disappearance of fullerene halos at small scattering angles. Possible structural versions of the high-temperature amorphous phase are discussed.

  2. Screening of epoxy systems for high performance filament winding applications

    Science.gov (United States)

    Chiao, T. T.; Jessop, E. S.; Penn, L.

    1975-01-01

    Several promising epoxy systems for high performance filament winding applications are described. Viscosities, gel times, and cast resin tensile behavior are given, as well as heat deflection under load and water absorption measurements.

  3. Radiation Hard High Performance Optoelectronic Devices, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — High-performance, radiation-hard, widely-tunable integrated laser/modulator chip and large-area avalanche photodetectors (APDs) are key components of optical...

  4. Development of High-Performance Ammonia Borane Based Rocket Propellants

    Data.gov (United States)

    National Aeronautics and Space Administration — Ammonia borane based fuels for use in hybrid rocket systems have the potential to be high performing while at the same time mitigating many of the issues associated...

  5. High Performance TRAC Boom for Solar Sails, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA's need for compact, low-cost deployable solar sail booms for CubeSats, Roccor proposes to develop a high performance composite TRAC (TRAC HP)...

  6. Energy Design Guidelines for High Performance Schools: Tropical Island Climates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-11-01

    Design guidelines outline high performance principles for the new or retrofit design of K-12 schools in tropical island climates. By incorporating energy improvements into construction or renovation plans, schools can reduce energy consumption and costs.

  7. High-performance inhoudsstoffen vinden hun weg naar de markt

    NARCIS (Netherlands)

    Meer, van der I.M.; Vollebregt, M.

    2015-01-01

    High-performance inhoudsstoffen uit biomassa ontstijgen de onderzoekslaboratoria en duiken op in proefprojecten met bedrijven en concrete toepassingen in eindproducten. Het tempo waarmee dit gebeurt en de onderliggende markt drivers verschillen per productgebied, zo blijkt uit een rondje langs

  8. Innovative Deep Throttling, High Performance Injector Concept Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Science and Technology Applications, LLC's (STA) vision for a versatile space propulsion system is a highly throttleable, high performance, and cost effective Liquid...

  9. Export Control of High Performance Computing: Analysis and Alternative Strategies

    National Research Council Canada - National Science Library

    Holland, Charles

    2001-01-01

    High performance computing has historically played an important role in the ability of the United States to develop and deploy a wide range of national security capabilities, such as stealth aircraft...

  10. High Performance Methane Thrust Chamber (HPMTC), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a High-Performance Methane Thrust Chamber (HPMRE) to meet the demands of advanced chemical propulsion systems for deep-space mission...

  11. Analysis of Simvastatin using a Simple and Fast High Performance ...

    African Journals Online (AJOL)

    phase high performance liquid chromatography (RP-HPLC) analytical method for the lipid lowering drug, simvastatin, and to apply the developed method to study the solubility of the drug in various oils and surfactants. Methods: Isocratic ...

  12. Advanced Risk Analysis for High-Performing Organizations

    National Research Council Canada - National Science Library

    Alberts, Christopher; Dorofee, Audrey

    2006-01-01

    ...) are not readily identified using traditional risk analysis techniques. High-performing organizations have the basic skills needed to identify and manage these new types of risk, but lack sufficient techniques...

  13. Mechanical Properties of High Performance Cementitious Grout Masterflow 9200

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    The present report describes tests carried out on the high performance grout Masterflow 9200, developed by BASF Construction Chemicals A/S and designed for use in grouted connections of windmill foundations....

  14. Application of ultra-high performance concrete to bridge girders.

    Science.gov (United States)

    2009-02-01

    "Ultra-High Performance Concrete (UHPC) is a new class of concrete that has superior performance characteristics : compared to conventional concrete. The enhanced strength and durability properties of UHPC are mainly due to optimized : particle grada...

  15. High Performance Low Mass Nanowire Enabled Heatpipe, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Illuminex Corporation proposes a NASA Phase I SBIR project to develop high performance, lightweight, low-profile heat pipes with enhanced thermal transfer properties...

  16. High Performance Low Mass Nanowire Enabled Heatpipe, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Heat pipes are widely used for passive, two-phase electronics cooling. As advanced high power, high performance electronics in space based and terrestrial...

  17. Energy Design Guidelines for High Performance Schools: Tropical Island Climates

    Energy Technology Data Exchange (ETDEWEB)

    2004-11-01

    The Energy Design Guidelines for High Performance Schools--Tropical Island Climates provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school in tropical island climates. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs.

  18. Amorphous silicon based radiation detectors

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Cho, G.; Drewery, J.; Jing, T.; Kaplan, S.N.; Qureshi, S.; Wildermuth, D.; Fujieda, I.; Street, R.A.

    1991-07-01

    We describe the characteristics of thin(1 μm) and thick (>30μm) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and γ rays. For x-ray, γ ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. 13 refs., 7 figs

  19. Polyamorphism in metalic glass.

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, H. W.; Liu, H. Z.; Cheng, Y. Q.; Wen, J.; Lee, P.L.; Luo, W.K.; Shastri, S.D.; Ma, E.; X-Ray Science Division; Johns Hopkins Univ.; Chinese Academy of Sciences

    2007-03-01

    A metal, or an alloy, can often exist in more than one crystal structure. The face-centered-cubic and body-centered-cubic forms of iron (or steel) are a familiar example of such polymorphism. When metallic materials are made in the amorphous form, is a parallel 'polyamorphism' possible? So far, polyamorphic phase transitions in the glassy state have been observed only in glasses involving directional and open (such as tetrahedral) coordination environments. Here, we report an in situ X-ray diffraction observation of a pressure-induced transition between two distinct amorphous polymorphs in a Ce{sub 55}Al{sub 45} metallic glass. The large density difference observed between the two polyamorphs is attributed to their different electronic and atomic structures, in particular the bond shortening revealed by ab initio modeling of the effects of f-electron delocalization. This discovery offers a new perspective of the amorphous state of metals, and has implications for understanding the structure, evolution and properties of metallic glasses and related liquids. Our work also opens a new avenue towards technologically useful amorphous alloys that are compositionally identical but with different thermodynamic, functional and rheological properties due to different bonding and structural characteristics.

  20. Hierarchical Nanocomposite by the Integration of Reduced Graphene Oxide and Amorphous Carbon with Ultrafine MgO Nanocrystallites for Enhanced CO2Capture.

    Science.gov (United States)

    Li, Ping; Zeng, Hua Chun

    2017-11-07

    Exploring efficient and low-cost solid sorbents is essential for carbon capture and storage. Herein, a novel class of high-performance CO 2 adsorbent (rGO@MgO/C) is engineered based on the controllable integration of reduced graphene oxide (rGO), amorphous carbon, and MgO nanocrystallites. The optimized rGO@MgO/C nanocomposite exhibits remarkable CO 2 capture capacity (up to 31.5 wt % at 27 °C, 1 bar CO 2 , and 22.5 wt % under the simulated flue gas), fast sorption rate, and strong process durability. The enhanced capture capability of CO 2 is the best among all of the MgO-based sorbents reported so far. The high performance of rGO@MgO/C nanocomposite can be ascribed to the hierarchical architecture and special physicochemical features, including the sheet-on-sheet sandwich-like structure, ultrathin nanosheets with abundant nanopores, large surface area, and highly dispersed ultrafine MgO nanocrystallites (ca. 3 nm in size), together with the rGO sheets and in situ generated amorphous carbon that serve as a dual carbon support and protectant system with which to prevent MgO nanocrystallites from agglomeration. In addition, the CO 2 -uptake capacity at intermediate temperature (e.g., 350 °C) can be further improved threefold through alkali metal salt promotion treatment. This work provides a facile and effective strategy with which to engineer advanced graphene-based functional nanocomposites with rationally designed compositions and architectures for potential applications in the field of gas storage and separation.

  1. Studies of hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, S G; Carlos, W E

    1984-07-01

    This report discusses the results of probing the defect structure and bonding of hydrogenated amorphous silicon films using both nuclear magnetic resonance (NMR) and electron spin resonance (ESR). The doping efficiency of boron in a-Si:H was found to be less than 1%, with 90% of the boron in a threefold coordinated state. On the other hand, phosphorus NMR chemical shift measurements yielded a ration of threefold to fourfold P sites of roughly 4 to 1. Various resonance lines were observed in heavily boron- and phosphorus-doped films and a-SiC:H alloys. These lines were attributed to band tail states on twofold coordinated silicon. In a-SiC:H films, a strong resonance was attributed to dangling bonds on carbon atoms. ESR measurements on low-pressure chemical-vapor-deposited (LPCVD) a-Si:H were performed on samples. The defect density in the bulk of the films was 10/sup 17//cc with a factor of 3 increase at the surface of the sample. The ESR spectrum of LPCVD-prepared films was not affected by prolonged exposure to strong light. Microcrystalline silicon samples were also examined. The phosphorus-doped films showed a strong signal from the crystalline material and no resonance from the amorphous matrix. This shows that phosphorus is incorporated in the crystals and is active as a dopant. No signal was recorded from the boron-doped films.

  2. Can We Build a Truly High Performance Computer Which is Flexible and Transparent?

    KAUST Repository

    Rojas, Jhonathan Prieto

    2013-09-10

    State-of-the art computers need high performance transistors, which consume ultra-low power resulting in longer battery lifetime. Billions of transistors are integrated neatly using matured silicon fabrication process to maintain the performance per cost advantage. In that context, low-cost mono-crystalline bulk silicon (100) based high performance transistors are considered as the heart of today\\'s computers. One limitation is silicon\\'s rigidity and brittleness. Here we show a generic batch process to convert high performance silicon electronics into flexible and semi-transparent one while retaining its performance, process compatibility, integration density and cost. We demonstrate high-k/metal gate stack based p-type metal oxide semiconductor field effect transistors on 4 inch silicon fabric released from bulk silicon (100) wafers with sub-threshold swing of 80 mV dec(-1) and on/off ratio of near 10(4) within 10% device uniformity with a minimum bending radius of 5 mm and an average transmittance of similar to 7% in the visible spectrum.

  3. Magneto-caloric effect of a Gd50Co50 amorphous alloy near the freezing point of water

    Directory of Open Access Journals (Sweden)

    L. Xia

    2015-09-01

    Full Text Available In the present work, we report the magneto-caloric effect (MCE of a binary Gd50Co50 amorphous alloy near the freezing temperature of water. The Curie temperature of Gd50Co50 amorphous ribbons is about 267.5 K, which is very close to room temperature. The peak value of the magnetic entropy change (-ΔSmpeak and the resulting adiabatic temperature rise (ΔTad. of the Gd50Co50 amorphous ribbons is much higher than that of any other amorphous alloys previously reported with a Tc near room temperature. On the other hand, although the -ΔSmpeak of Gd50Co50 amorphous ribbons is not as high as those of crystalline alloys near room temperature, its refrigeration capacity (RC is still much larger than the RC values of these crystalline alloys. The binary Gd50Co50 amorphous alloy provides a basic alloy for developing high performance multi-component amorphous alloys near room temperature.

  4. Surface characterization of amorphous and crystallized Fe 80B 20

    Science.gov (United States)

    Huntley, D. R.; Overbury, S. H.; Zehner, D. M.; Budai, J. D.; Brower, W. E.

    1986-11-01

    Recent studies of catalysis by amorphous metals have prompted an interest in their surface properties. We have utilized Auger electron spectroscopy, X-ray photoelectron spectroscopy and low energy alkali ion scattering to study the surface composition, electronic properties and topography of amorphous and crystallized Fe 80B 20 ribbons. The majorresults are that the surface stoichiometry is approximately that of the bulk, unaltered by segregation. Bulk crystallization results in the diffusion of impurities to the surface, but does not change the Fe/B ratio. A small shift in the B1s core level binding energy was observed on crystalline, annealed surfaces relative to amorphous or sputtered surfaces, but no shifts were observed in the iron core level energies. A weak feature due to the B2p levels was observed in the valence band spectra from sputtered surfaces. The surfaces exhibit atomic scale roughness which is not altered by bulk crystallization. Finally, there were no observable differences in the structure, composition or electronic properties between the two sides of the ribbons.

  5. Controlled generation of silver nanocolloid in amorphous silica materials

    International Nuclear Information System (INIS)

    Gil, C.; Garcia-Heras, M.; Carmona, N.; Villages, M. A.

    2004-01-01

    Amorphous silica-based materials bulk and superficially doped with silver nano colloids were prepared. Bulk doped glasses were obtained by conventional melting and doped monolithic slabs by sol-gel. Superficially doped glasses were obtained by ion-exchange and doped coatings by sol-gel. The samples were characterised by TEM and UV-VIS spectrometry. Depending on the composition, the silver incorporation process, and the thermal treatments, several colourings were obtained. By controlling these parameters, metallic silver nano colloids can be generated in the matrices studied. Colloids aggregation and growing up depends on the matrix nature and on the experimental process carried out. (Author) 10 refs

  6. Biodiesel fuel production with solid amorphous-zirconia catalysis in fixed bed reactor

    International Nuclear Information System (INIS)

    Furuta, Satoshi; Matsuhashi, Hiromi; Arata, Kazushi

    2006-01-01

    Amorphous zirconia catalysts, titanium-, aluminum-, and potassium-doped zirconias, were prepared and evaluated in the transesterification of soybean oil with methanol at 250 deg. C, and the esterification of n-octanoic acid with methanol at 175-200 deg. C. Titanium- and aluminum-doped zirconias are promising solid catalysts for the production of biodiesel fuels from soybean oil because of their high performance, with over 95% conversion in both of the esterifications

  7. Tribological properties of amorphous alloys and the role of surfaces in abrasive wear of materials

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The research approach undertaken by the authors relative to the subject, and examples of results from the authors are reviewed. The studies include programs in adhesion, friction, and various wear mechanisms (adhesive and abrasive wear). The materials which have been studied include such ceramic and metallic materials as silicon carbide, ferrites, diamond, and amorphous alloys.

  8. A new amorphous ribbon fluxgate sensor based on torsional-creep-induced anisotropy

    DEFF Research Database (Denmark)

    Nielsen, Otto V.; Gutierrez, J.; Hernando, B.

    1990-01-01

    The fluxgate sensor presented consists of a hairpin-shaped nonmagnetostrictive amorphous metal ribbon which carries the excitation AC current. Even harmonics are induced in a surrounding coil, which can be used both as a pickup coil and as a field compensation coil. The principle of operation is ...

  9. Long-time stability of structure in Fe-B amorphous ribbons

    NARCIS (Netherlands)

    Csach, K; Miskuf, J; Bengus, VZ; Tabachnikova, ED; Ocelik, Vaclav

    2002-01-01

    The mechanical properties of amorphous metallic alloys ribbons with a nominal composition Fe1-xBx (x =14, 16, 17 and 20 at.%) leave been investigated. The samples were failured after manufacturing and 10 years keeping at room temperature. The fracture stress decreases after keeping on 600 MPa for

  10. Structural morphology of amorphous conducting carbon film

    Indian Academy of Sciences (India)

    Unknown

    in nanotubes and sp3 rich amorphous carbons for their application in field emission, device application, etc in- vestigations on sp2 rich amorphous carbon forms are very few. Though DLC films have potential application in field emission (FE) due to their low threshold voltage, the carbon centres, which are believed to play ...

  11. Towards upconversion for amorphous silicon solar cells

    NARCIS (Netherlands)

    de Wild, J.; Meijerink, A.; Rath, J.K.; van Sark, W.G.J.H.M.; Schropp, R.E.I.

    2010-01-01

    Upconversion of subbandgap light of thin film single junction amorphous silicon solar cells may enhance their performance in the near infrared (NIR). In this paper we report on the application of the NIR–vis upconverter β-NaYF4:Yb3+(18%) Er3+(2%) at the back of an amorphous silicon solar cell in

  12. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    TECS

    flexible triple junction, amorphous silicon solar cells. At the Malaysia Energy Centre (MEC), we fabricated triple junction amorphous silicon solar cells (up to 12⋅7% efficiency (Wang et al 2002)) and laser-interconnected modules on steel, glass and polyimide substrates. A major issue encountered is the adhesion of thin film ...

  13. Colors and the evolution of amorphous galaxies

    International Nuclear Information System (INIS)

    Gallagher, J.S. III; Hunter, D.A.

    1987-01-01

    UBVRI and H-alpha photometric observations are presented for 16 amorphous galaxies and a comparison sample of Magellanic irregular (Im) and Sc spiral galaxies. These data are analyzed in terms of star-formation rates and histories in amorphous galaxies. Amorphous galaxies have mean global colors and star-formation rates per unit area that are similar to those in giant Im systems, despite differences in spatial distributions of star-forming centers in these two galactic structural classes. Amorphous galaxies differ from giant Im systems in having somewhat wider scatter in relationships between B - V and U - B colors, and between U - B and L(H-alpha)/L(B). This scatter is interpreted as resulting from rapid variations in star-formation rates during the recent past, which could be a natural consequence of the concentration of star-forming activity into centrally located, supergiant young stellar complexes in many amorphous galaxies. While the unusual spatial distribution and intensity of star formation in some amorphous galaxies is due to interactions with other galaxies, several amorphous galaxies are relatively isolated and thus the processes must be internal. The ultimate evolutionary fate of rapidly evolving amorphous galaxies remains unknown. 77 references

  14. Amorphization of ice under mechanical stresses

    Science.gov (United States)

    Bordonskii, G. S.; Krylov, S. D.

    2017-11-01

    The dielectric parameters of freshly produced freshwater ice in the microwave range are investigated. It is established that this kind of ice contains a noticeable amount of amorphous ice. Its production is associated with plastic deformation under mechanical stresses. An assessment of the dielectric-permeability change caused by amorphous ice in the state of a slowly flowing medium is given.

  15. Electron beam recrystallization of amorphous semiconductor materials

    Science.gov (United States)

    Evans, J. C., Jr.

    1968-01-01

    Nucleation and growth of crystalline films of silicon, germanium, and cadmium sulfide on substrates of plastic and glass were investigated. Amorphous films of germanium, silicon, and cadmium sulfide on amorphous substrates of glass and plastic were converted to the crystalline condition by electron bombardment.

  16. Photoexcitation-induced processes in amorphous semiconductors

    International Nuclear Information System (INIS)

    Singh, Jai

    2005-01-01

    Theories for the mechanism of photo-induced processes of photodarkening (PD), volume expansion (VE) in amorphous chalcogenides are presented. Rates of spontaneous emission of photons by radiative recombination of excitons in amorphous semiconductors are also calculated and applied to study the excitonic photoluminescence in a-Si:H. Results are compared with previous theories

  17. Low-temperature specific heat of the 'nearly ferromagnetic' amorphous alloy Ysub(0.22)Nisub(0.78)

    International Nuclear Information System (INIS)

    Garoche, P.; Veyssie, J.J.; Lienard, A.; Rebouillat, J.P.

    1979-01-01

    Results of specific heat measurements, between 0.3K and 10 K in magnetic fields up to 75 kOe, on the 'nearly ferromagnetic' amorphous alloy Ysub(0.22)Nisub(0.78) are reported. The results, especially the magnetic field dependence, exclude any appreciable contribution from uniform paramagnons. In contrast a quantitative analysis is obtained in terms of superparamagnetic clusters, demonstrating that the onset of ferromagnetism, as a function of concentration, is inhomogeneous in this amorphous metallic system. (author)

  18. A unified description of crystalline-to-amorphous transitions

    Energy Technology Data Exchange (ETDEWEB)

    Lam, N.Q.; Okamoto, P.R. [Argonne National Lab., IL (United States); Devanathan, R. [Argonne National Lab., IL (United States)]|[Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Meshii, M. [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering

    1993-07-01

    Amorphous metallic alloys can now be synthesized by a variety of solid-state processes demonstrating the need for a more general approach to crystalline-to-amorphous (c-a) transitions. By focusing on static atomic displacements as a measure of chemical and topological disorder, we show that a unified description of c-a transformations can be based on a generalization of the phenomenological melting criterion proposed by Lindemann. The generalized version assumes that melting of a defective crystal occurs whenever the sum of thermal and static mean-square displacements exceeds a critical value identical to that for melting of the defect-free crystal. This implies that chemical or topological disorder measured by static displacements is thermodynamically equivalent to heating, and therefore that the melting temperature of the defective crystal will decrease with increasing amount of disorder. This in turn implies the existence of a critical state of disorder where the melting temperature becomes equal to a glass-transition temperature below which the metastable crystal melts to a glass. The generalized Lindemann melting criterion leads naturally to an interpretation of c-a transformations as defect-induced, low-temperature melting of critically disordered crystals. Confirmation of this criterion is provided by molecular-dynamics simulations of heat-induced melting and of defect-induced amorphization of intermetallic compounds caused either by the production of Frenkel pairs or anti-site defects. The thermodynamic equivalence between static atomic disorder and heating is reflected in the identical softening effects which they have on elastic properties and also in the diffraction analysis of diffuse scattering from disordered crystals, where the effect of static displacements appears as an artificially-enlarged thermal Debye-Waller factor. Predictions of this new, unified approach to melting and amorphization are compared with available experimental information.

  19. Glassy metals

    CERN Document Server

    Russew, Krassimir

    2016-01-01

    The topics discussed in this book focus on fundamental problems concerning the structural relaxation of amorphous metallic alloys, above all the possibility of studying it on the basis of viscous flow behavior and its relation to rheological anomalies, such as bend stress relaxation, thermal expansion, specific heat, density changes, and crystallization. Most relaxation studies deal with the relaxation changes of a single definite material property, and not with a wider spectrum of physical properties integrated into a common framework. This book shows that it is possible to describe these property changes on the basis of a more comprehensive theoretical understanding of their mechanism.

  20. Solid-state diffusion in amorphous zirconolite

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.; Dove, M. T.; Trachenko, K. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Zarkadoula, E. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6138 (United States); Todorov, I. T. [STFC Daresbury Laboratory, Warrington WA4 1EP (United Kingdom); Geisler, T. [Steinmann-Institut für Geologie, Mineralogie und Paläontologie, University of Bonn, D-53115 Bonn (Germany); Brazhkin, V. V. [Institute for High Pressure Physics, RAS, 142190 Moscow (Russian Federation)

    2014-11-14

    We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also find that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.