WorldWideScience

Sample records for amorphous layer formation

  1. Formation of amorphous layers by irradiation

    International Nuclear Information System (INIS)

    Bourgoin, J.C.

    1979-01-01

    When an ordered solid is irradiated with heavy energy particles, disorder is produced. When the irradiation dose exceeds a so-called critical dose, the irradiated area of the solid becomes uniformly disordered. Mention is first made of the nature, concentration and distribution of the defects created by a heavy energy particle. The description is then given -solely with respect to semiconductors- of the effect of the various parameters on the critical dose energy and nature of the ion, nature and temperature of the solid, irradiation flux. The physical properties (electronic and thermodynamic types) and the uniformly disordered areas are briefly discussed and these properties are compared with those of amorphous semiconductor layers fabricated by evaporation. It is concluded that the evaporated and irradiated layers are similar in nature. It is suggested that the transformation of an irradiated crystalline area into an amorphous one occurs when the Gibbs energy of the crystal become greater than the Gibbs energy of the amorphous one [fr

  2. Lithium implantation at low temperature in silicon for sharp buried amorphous layer formation and defect engineering

    International Nuclear Information System (INIS)

    Oliviero, E.; David, M. L.; Beaufort, M. F.; Barbot, J. F.; Fichtner, P. F. P.

    2013-01-01

    The crystalline-to-amorphous transformation induced by lithium ion implantation at low temperature has been investigated. The resulting damage structure and its thermal evolution have been studied by a combination of Rutherford backscattering spectroscopy channelling (RBS/C) and cross sectional transmission electron microscopy (XTEM). Lithium low-fluence implantation at liquid nitrogen temperature is shown to produce a three layers structure: an amorphous layer surrounded by two highly damaged layers. A thermal treatment at 400 °C leads to the formation of a sharp amorphous/crystalline interfacial transition and defect annihilation of the front heavily damaged layer. After 600 °C annealing, complete recrystallization takes place and no extended defects are left. Anomalous recrystallization rate is observed with different motion velocities of the a/c interfaces and is ascribed to lithium acting as a surfactant. Moreover, the sharp buried amorphous layer is shown to be an efficient sink for interstitials impeding interstitial supersaturation and {311} defect formation in case of subsequent neon implantation. This study shows that lithium implantation at liquid nitrogen temperature can be suitable to form a sharp buried amorphous layer with a well-defined crystalline front layer, thus having potential applications for defects engineering in the improvement of post-implantation layers quality and for shallow junction formation.

  3. Formation of a highly doped ultra-thin amorphous carbon layer by ion bombardment of graphene

    Science.gov (United States)

    Piotr Michałowski, Paweł; Pasternak, Iwona; Ciepielewski, Paweł; Guinea, Francisco; Strupiński, Włodek

    2018-07-01

    Ion bombardment of graphene leads to the formation of defects which may be used to tune properties of the graphene based devices. In this work, however, we present that the presence of the graphene layer on a surface of a sample has a significant impact on the ion bombardment process: broken sp2 bonds react with the incoming ions and trap them close to the surface of the sample, preventing a standard ion implantation. For an ion bombardment with a low impact energy and significant dose (in the range of 1014 atoms cm‑2) an amorphization of the graphene layer is observed but at the same time, most of the incoming ions do not penetrate the sample but stop at the surface, thus forming a highly doped ultra-thin amorphous carbon layer. The effect may be used to create thin layers containing desired atoms if no other technique is available. This approach is particularly useful for secondary ion mass spectrometry where a high concentration of Cs at the surface of a sample significantly enhances the negative ionization probability, allowing it to reach better detection limits.

  4. Low-temperature interface reactions in layered Au/Sb films: In situ investigation of the formation of an amorphous phase

    Science.gov (United States)

    Boyen, H.-G.; Cossy-Favre, A.; Oelhafen, P.; Siber, A.; Ziemann, P.; Lauinger, C.; Moser, T.; Häussler, P.; Baumann, F.

    1995-01-01

    Photoelectron-spectroscopy methods combined with electrical-resistance measurements were employed to study the effects of intermixing at Au/Sb interfaces at low temperatures. For the purpose of characterizing the growth processes of the intermixed phase on a ML scale, Au/Sb bilayers (layer thicknesses DAu=0.5-75 ML and DSb=150 ML) were evaporated at 77 K and the different in situ techniques allowed a comparison to vapor-quenched amorphous AuxSb100-x alloys. For Au thicknesses between 0.5 and 0.9 ML, a change from a semiconducting to a metallic behavior of the samples has been detected, as indicated by the development of a steplike photoelectron intensity at the Fermi level. Evidence has been found that for Au coverages quenched amorphous alloys. Variation of the deposition temperature Ts revealed that an amorphous interface layer is only formed for Ts<= 220 K. This is consistent with the fact that for multilayers with large modulation lengths containing unreacted polycrystalline Au and Sb layers, long-range interdiffusion is found to set in at temperatures above 230 K. This interdiffusion, however, results in the formation of polycrystalline Au-Sb alloys.

  5. Smooth Interfacial Scavenging for Resistive Switching Oxide via the Formation of Highly Uniform Layers of Amorphous TaOx.

    Science.gov (United States)

    Tsurumaki-Fukuchi, Atsushi; Nakagawa, Ryosuke; Arita, Masashi; Takahashi, Yasuo

    2018-02-14

    We demonstrate that the inclusion of a Ta interfacial layer is a remarkably effective strategy for forming interfacial oxygen defects at metal/oxide junctions. The insertion of an interfacial layer of a reactive metal, that is, a "scavenging" layer, has been recently proposed as a way to create a high concentration of oxygen defects at an interface in redox-based resistive switching devices, and growing interest has been given to the underlying mechanism. Through structural and chemical analyses of Pt/metal/SrTiO 3 /Pt structures, we reveal that the rate and amount of oxygen scavenging are not directly determined by the formation free energies in the oxidation reactions of the scavenging metal and unveil the important roles of oxygen diffusibility. Active oxygen scavenging and highly uniform oxidation via scavenging are revealed for a Ta interfacial layer with high oxygen diffusibility. In addition, the Ta scavenging layer is shown to exhibit a highly uniform structure and to form a very flat interface with SrTiO 3 , which are advantageous for the fabrication of a steep metal/oxide contact.

  6. Superlattice doped layers for amorphous silicon photovoltaic cells

    Science.gov (United States)

    Arya, Rajeewa R.

    1988-01-12

    Superlattice doped layers for amorphous silicon photovoltaic cells comprise a plurality of first and second lattices of amorphous silicon alternatingly formed on one another. Each of the first lattices has a first optical bandgap and each of the second lattices has a second optical bandgap different from the first optical bandgap. A method of fabricating the superlattice doped layers also is disclosed.

  7. Formation of iron disilicide on amorphous silicon

    Science.gov (United States)

    Erlesand, U.; Östling, M.; Bodén, K.

    1991-11-01

    Thin films of iron disilicide, β-FeSi 2 were formed on both amorphous silicon and on crystalline silicon. The β-phase is reported to be semiconducting with a direct band-gap of about 0.85-0.89 eV. This phase is known to form via a nucleation-controlled growth process on crystalline silicon and as a consequence a rather rough silicon/silicide interface is usually formed. In order to improve the interface a bilayer structure of amorphous silicon and iron was sequentially deposited on Czochralski silicon in an e-gun evaporation system. Secondary ion mass spectrometry profiling (SIMS) and scanning electron micrographs revealed an improvement of the interface sharpness. Rutherford backscattering spectrometry (RBS) and X-ray diffractiometry showed β-FeSi 2 formation already at 525°C. It was also observed that the silicide growth was diffusion-controlled, similar to what has been reported for example in the formation of NiSi 2 for the reaction of nickel on amorphous silicon. The kinetics of the FeSi 2 formation in the temperature range 525-625°C was studied by RBS and the activation energy was found to be 1.5 ± 0.1 eV.

  8. Formation of double layers

    International Nuclear Information System (INIS)

    Leung, P.; Wong, A.Y.; Quon, B.H.

    1981-01-01

    Experiments on both stationary and propagating double layers and a related analytical model are described. Stationary double layers were produced in a multiple plasma device, in which an electron drift current was present. An investigation of the plasma parameters for the stable double layer condition is described. The particle distribution in the stable double layer establishes a potential profile, which creates electron and ion beams that excite plasma instabilities. The measured characteristics of the instabilities are consistent with the existence of the double layer. Propagating double layers are formed when the initial electron drift current is large. Ths slopes of the transition region increase as they propagate. A physical model for the formation of a double layer in the experimental device is described. This model explains the formation of the low potential region on the basis of the space charge. This space charge is created by the electron drift current. The model also accounts for the role of ions in double layer formation and explains the formation of moving double layers. (Auth.)

  9. Amorphous surface layers in Ti-implanted Fe

    International Nuclear Information System (INIS)

    Knapp, J.A.; Follstaedt, D.M.; Picraux, S.T.

    1979-01-01

    Implanting Ti into high-purity Fe results in an amorphous surface layer which is composed of not only Fe and Ti, but also C. Implantations were carried out at room temperature over the energy range 90 to 190 keV and fluence range 1 to 2 x 10 16 at/cm 2 . The Ti-implanted Fe system has been characterized using transmission electron microscopy (TEM), ion backscattering and channeling analysis, and (d,p) nuclear reaction analysis. The amorphous layer was observed to form at the surface and grow inward with increasing Ti fluence. For an implant of 1 x 10 17 Ti/cm 2 at 180 keV the layer thickness was 150 A, while the measured range of the implanted Ti was approx. 550 A. This difference is due to the incorporation of C into the amorphous alloy by C being deposited on the surface during implantation and subsequently diffusing into the solid. Our results indicate that C is an essential constituent of the amorphous phase for Ti concentrations less than or equal to 10 at. %. For the 1 x 10 17 Ti/cm 2 implant, the concentration of C in the amorphous phase was approx. 25 at. %, while that of Ti was only approx. 3 at. %. A higher fluence implant of 2 x 10 17 Ti/cm 2 produced an amorphous layer with a lower C concentration of approx. 10 at. % and a Ti concentration of approx. 20 at. %

  10. Sputtering of amorphous carbon layers studied by laser induced fluorescence

    International Nuclear Information System (INIS)

    Pasch, E.

    1992-07-01

    In order to minimize the radiation losses, it is desirable to keep the plasmas in nuclear fusion devices free of high-Z-impurities. Therefore, the walls of TEXTOR and other tokamaks are covered with thin layers of amorphous carbon layers (a-C:H) or amorphous carbon/boron layers (a-C/B:H). The sputtering behaviour of these layers has been studied under bombardment by Ar + ions with energies of 1.5 keV and current densities of a few mA/cm 2 . Investigations of these coatings were carried out with the object to measure the velocity distribution of the sputtered atoms and the sputtered yields by laser induced fluorescence in the vacuum ultraviolet. (orig.)

  11. Kinetics and formation mechanism of amorphous Fe52Nb48 alloy powder fabricated by mechanical alloying

    International Nuclear Information System (INIS)

    El-Eskandarany, S.

    1999-01-01

    A single phase amorphous Fe 52 Nb 48 alloy has been synthesized through a solid state interdiffusion of pure polycrystalline Fe and Nb powders at room temperature, using a high-energy ball-milling technique. The mechanisms of metallic glass formation and competing crystallization processes in the mechanically deformed composite powders have been investigated by means of X-ray diffraction, Moessbauer spectroscopy, differential thermal analysis, scanning electron microscopy and transmission electron microscopy. The numerous intimate layered composite particles of the diffusion couples that formed during the first and intermediate stages of milling time (0-56 ks), are intermixed to form amorphous phase(s) upon heating to about 625 K by so-called thermally assisted solid state amorphization, TASSA. The amorphization heat of formation for binary system via the TASSA, ΔH a , was measured directly as a function of the milling time. Comparable with the TASSA, homogeneous amorphous alloys were fabricated directly without heating the composite multilayered particles upon milling these particles for longer milling time (86 ks-144 ks). The amorphization reaction here is attributed to the mechanical driven solid state amorphization. This single amorphous phase transforms into an order phase (μ phase) upon heating at 1088 K (crystallization temperature, T x ) with enthalpy change of crystallization, ΔH x , of -8.3 kJmol -1 . (orig.)

  12. Amorphous surface layer versus transient amorphous precursor phase in bone - A case study investigated by solid-state NMR spectroscopy.

    Science.gov (United States)

    Von Euw, Stanislas; Ajili, Widad; Chan-Chang, Tsou-Hsi-Camille; Delices, Annette; Laurent, Guillaume; Babonneau, Florence; Nassif, Nadine; Azaïs, Thierry

    2017-09-01

    The presence of an amorphous surface layer that coats a crystalline core has been proposed for many biominerals, including bone mineral. In parallel, transient amorphous precursor phases have been proposed in various biomineralization processes, including bone biomineralization. Here we propose a methodology to investigate the origin of these amorphous environments taking the bone tissue as a key example. This study relies on the investigation of a bone tissue sample and its comparison with synthetic calcium phosphate samples, including a stoichiometric apatite, an amorphous calcium phosphate sample, and two different biomimetic apatites. To reveal if the amorphous environments in bone originate from an amorphous surface layer or a transient amorphous precursor phase, a combined solid-state nuclear magnetic resonance (NMR) experiment has been used. The latter consists of a double cross polarization 1 H→ 31 P→ 1 H pulse sequence followed by a 1 H magnetization exchange pulse sequence. The presence of an amorphous surface layer has been investigated through the study of the biomimetic apatites; while the presence of a transient amorphous precursor phase in the form of amorphous calcium phosphate particles has been mimicked with the help of a physical mixture of stoichiometric apatite and amorphous calcium phosphate. The NMR results show that the amorphous and the crystalline environments detected in our bone tissue sample belong to the same particle. The presence of an amorphous surface layer that coats the apatitic core of bone apatite particles has been unambiguously confirmed, and it is certain that this amorphous surface layer has strong implication on bone tissue biogenesis and regeneration. Questions still persist on the structural organization of bone and biomimetic apatites. The existing model proposes a core/shell structure, with an amorphous surface layer coating a crystalline bulk. The accuracy of this model is still debated because amorphous calcium

  13. Redistribution of erbium during the crystallization of buried amorphous silicon layers

    International Nuclear Information System (INIS)

    Aleksandrov, O.V.; Nikolaev, Yu.A.; Sobolev, N.A.; Sakharov, V.I.; Serenkov, I.T.; Kudryavtsev, Yu.A.

    1999-01-01

    The redistribution of Er during its implantation in silicon at doses close to the amorphization threshold and its subsequent solid-phase epitaxial (SPE) crystallization is investigated. The formation of a buried amorphous (a) layer is discovered at Er doses equal to 5x10 13 and 1x10 14 cm -2 using Rutherford backscattering. The segregation of Er in this case takes place inwardly from the two directions corresponding to the upper and lower boundaries of the buried αlayer and leads to the formation of a concentration peak at the meeting place of the two crystallization fronts. A method for calculating the coordinate dependence of the segregation coefficient k from the distribution profiles of the erbium impurity before and after annealing is proposed. The k(x) curve exhibits a drop, whose width increases with decreasing Er implantation dose. Its appearance is attributed to the nonequilibrium nature of the segregation process at the beginning of SPE crystallization

  14. Rapid Thermal annealing of silicon layers amorphized by ion implantation

    International Nuclear Information System (INIS)

    Hasenack, C.M.

    1986-01-01

    The recrystallization behavior and the supression mechanisms of the residual defects of silicon layers amorphized by ion implantation, were investigated. The samples were annealed with the aid of a rapid thermal annealing (RTA) system at temperature range from 850 to 1200 0 C, and annealing time up to 120 s. Random and aligned Rutherford backscattering spectroscopy were used to analyse the samples. Similarities in the recrystallization behavior for layers implanted with ions of the same chemical groups such as As or Sb; Ge, Sn or Pb, In or Ga, are observed. The results show that the effective supression of resisual defects of the recrystallired layers is vinculated to the redistribution of impurities via thermal diffusion. (author) [pt

  15. Hydrothermal crystallization of amorphous titania films deposited using low temperature atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, D.R.G. [Institute of Materials Engineering, ANSTO, PMB 1, Menai, NSW 2234 (Australia)], E-mail: drm@ansto.gov.au; Triani, G.; Zhang, Z. [Institute of Materials Engineering, ANSTO, PMB 1, Menai, NSW 2234 (Australia)

    2008-10-01

    A two stage process (atomic layer deposition, followed by hydrothermal treatment) for producing crystalline titania thin films at temperatures compatible with polymeric substrates (< 130 deg. C) has been assessed. Titania thin films were deposited at 80 deg. C using atomic layer deposition. They were extremely flat, uniform and almost entirely amorphous. They also contained relatively high levels of residual Cl from the precursor. After hydrothermal treatment at 120 deg. C for 1 day, > 50% of the film had crystallized. Crystallization was complete after 10 days of hydrothermal treatment. Crystallization of the film resulted in the formation of coarse grained anatase. Residual Cl was completely expelled from the film upon crystallization. As a result of the amorphous to crystalline transformation voids formed at the crystallization front. Inward and lateral crystal growth resulted in voids being localized to the film/substrate interface and crystallite perimeters resulting in pinholing. Both these phenomena resulted in films with poor adhesion and film integrity was severely compromised.

  16. Direct measurements of the velocity and thickness of ''explosively'' propagating buried molten layers in amorphous silicon

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Jellison, G.E. Jr.; Pennycook, S.J.; Withrow, S.P.; Mashburn, D.N.

    1986-01-01

    Simultaneous infrared (1152 nm) and visible (633 nm) reflectivity measurements with nanosecond resolution were used to study the initial formation and subsequent motion of pulsed KrF laser-induced ''explosively'' propagating buried molten layers in ion implantation-amorphized silicon. The buried layer velocity decreases with depth below the surface, but increases with KrF laser energy density; a maximum velocity of about 14 m/s was observed, implying an undercooling-velocity relationship of approx. 14 K/(m/s). Z-contrast scanning transmission electron microscopy was used to form a direct chemical image of implanted Cu ions transported by the buried layer and showed that the final buried layer thickness was <15 nm

  17. The kinetics of solid phase epitaxy in As-doped buried amorphous silicon layers

    International Nuclear Information System (INIS)

    McCallum, J.C.

    1999-01-01

    Ion implantation is the principal method used to introduce dopants into silicon for fabrication of semiconductor devices. During ion implantation, damage accumulates in the crystalline silicon lattice and amorphisation may occur over the depth range of the ions if the implant dose is sufficiently high. As device dimensions shrink, the need to produce shallower and shallower highly-doped layers increases and the probability of amorphisation also increases. To achieve dopant-activation, the amorphous or damaged material must be returned to the crystalline state by thermal annealing. Amorphous silicon layers can be crystallised by the solid-state process of solid phase epitaxy (SPE) in which the amorphous layer transforms to crystalline silicon (c-Si) layer by layer using the underlying c-Si as a seed. The atomic mechanism that is responsible for the crystallisation is thought to involve highly-localised bond-breaking and rearrangement processes at the amorphous/crystalline (a/c) interface but the defect responsible for these bond rearrangements has not yet been identified. Since the bond breaking process necessarily generates dangling bonds, it has been suggested that the crystallisation process may solely involve the formation and migration of dangling bonds at the interface. One of the key factors which may shed further light on the nature of the SPE defect is the observed dopant-dependence of the rate of crystallisation. It has been found that moderate concentrations of dopants enhance the SPE crystallisation rate while the presence of equal concentrations of an n-type and a p-type dopant (impurity compensation) returns the SPE rate to the intrinsic value. This provides crucial evidence that the SPE mechanism is sensitive to the position of the Fermi level in the bandgap of the crystalline and/or the amorphous silicon phases and may lead to identification of an energy level within the bandgap that can be associated with the defect. This paper gives details of SPE

  18. Inverted amorphous silicon solar cell utilizing cermet layers

    Science.gov (United States)

    Hanak, Joseph J.

    1979-01-01

    An amorphous silicon solar cell incorporating a transparent high work function metal cermet incident to solar radiation and a thick film cermet contacting the amorphous silicon opposite to said incident surface.

  19. Structural characterization of amorphous Fe-Si and its recrystallized layers

    International Nuclear Information System (INIS)

    Naito, Muneyuki; Ishimaru, Manabu; Hirotsu, Yoshihiko; Valdez, James A.; Sickafus, Kurt E.

    2006-01-01

    We have synthesized amorphous Fe-Si thin layers and investigated their microstructure using transmission electron microscopy (TEM). Si single crystals with (1 1 1) orientation were irradiated with 120 keV Fe + ions to a fluence of 4.0 x 10 17 cm -2 at cryogenic temperature (120 K), followed by thermal annealing at 1073 K for 2 h. A continuous amorphous layer with a bilayered structure was formed on the topmost layer of the Si substrate in the as-implanted specimen: the upper layer was an amorphous Fe-Si, while the lower one was an amorphous Si. After annealing, the amorphous bilayer crystallized into a continuous β-FeSi 2 thin layer

  20. Amorphous silicon pixel layers with cesium iodide converters for medical radiography

    International Nuclear Information System (INIS)

    Jing, T.; Cho, G.; Goodman, C.A.

    1993-11-01

    We describe the properties of evaporated layers of Cesium Iodide (Thallium activated) deposited on substrates that enable easy coupling to amorphous silicon pixel arrays. The CsI(Tl) layers range in thickness from 65 to 220μm. We used the two-boat evaporator system to deposit CsI(Tl) layers. This system ensures the formation of the scintillator film with homogenous thallium concentration which is essential for optimizing the scintillation light emission efficiency. The Tl concentration was kept to 0.1--0.2 mole percent for the highest light output. Temperature annealing can affect the microstructure as well as light output of the CsI(Tl) film. 200--300C temperature annealing can increase the light output by a factor of two. The amorphous silicon pixel arrays are p-i-n diodes approximately lμm thick with transparent electrodes to enable them to detect the scintillation light produced by X-rays incident on the CsI(Tl). Digital radiography requires a good spatial resolution. This is accomplished by making the detector pixel size less then 50μm. The light emission from the CsI(Tl) is collimated by techniques involving the deposition process on pattered substrates. We have measured MTF of greater than 12 line pairs per mm at the 10% level

  1. The use of ionic salt dyes as amorphous, thermally stable emitting layers in organic light-emitting diodes

    Science.gov (United States)

    Chondroudis, Konstantinos; Mitzi, David B.

    2000-01-01

    The conversion of two neutral dye molecules (D) to ionic salts (H2N-D-NH2ṡ2HX) and their utilization as emitting layers in organic light-emitting diodes (OLEDs) is described. The dye salts, AEQTṡ2HCl and APTṡ2HCl, can be deposited as amorphous films using conventional evaporation techniques. X-ray diffraction and scanning electron microscopy analysis, coupled with thermal annealing studies, demonstrate the resistance of the films to crystallization. This stability is attributed to strong ionic forces between the relatively rigid molecules. OLEDs incorporating such salts for emitting layers exhibit better thermal stability compared with devices made from the corresponding neutral dyes (H2N-D-NH2). These results suggest that ionic salts may more generally enable the formation of thermally stable, amorphous emitting, and charge transporting layers.

  2. Detection of charged particles in amorphous silicon layers

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Morel, J.; Kaplan, S.N.; Street, R.A.

    1986-02-01

    The successful development of radiation detectors made from amorphous silicon could offer the possibility for relatively easy construction of large area position-sensitive detectors. We have conducted a series of measurements with prototype detectors, on signals derived from alpha particles. The measurement results are compared with simple model calculations, and projections are made of potential applications in high-energy and nuclear physics

  3. Electrochemical synthesis, structure and phase composition of nano structured amorphous thin layers of NiW and Ni-Mo

    International Nuclear Information System (INIS)

    Vitina, I.; Lubane, M.; Belmane, V.; Rubene, V.; Krumina, A.

    2006-01-01

    Full text: Nano structured Ni-W thin layers containing W 6-37 wt.% were electrodeposited on a copper substratum. The W content in the layer changes, and it is determined by the electrolyte pH in the range 8.0-9.6 and the cathode current density in the range 1.0-10.0 A/dm 2 . The atomic composition and thermal stability of structure of the electrodeposited thin layers depend for the most part on the conditions of the electrodeposition and less on the W content in the layer. Cracking of the Ni-W layers electrodeposited at the electrolyte pH 8.5 and containing 34-37 wt.% W and 8.5 wt.% W was observed. The cracking increases at heating at 400 deg C for 50 h. On the contrary, no cracking of the Ni-W layer electrodeposited at the electrolyte pH 9.0 and containing 25 wt.% W was observed. The atomic composition of the layer remains practically unchanged at heating at 400 deg C for 50 h. The layer binds oxygen up to 7 wt.%. According to X-ray diffraction, in spite of the W content 35-37 wt.% in the layer, nano structured layers rather than amorphous layers were obtained which at heating at 400 deg C depending on the W content crystallises as Ni or intermetallic compounds Ni x W y if the W content is approx. 25 wt.%. Amorphous Ni-Mo alloys containing 35-52 wt.% Mo was electrodeposited on copper substratum at the cathode current densities of 0.5-1.5 A/dm2 and the electrolyte pH 6.8-8.6. Formation of thin layer (∼1-2μm) of X-ray amorphous Ni-Mo alloy, the Mo content, the characteristics of structure depend on the electrodeposition process, the electrolyte pH, and the cathode current density. The Ni-Mo layer deposited at the electrolyte pH above 8.6 and below average 6.8 had a nanocrystalline structure rather than characteristics of amorphous structure. Ni- W and Ni-Mo alloys were electrodeposited from citrate electrolyte not containing ammonium ions

  4. Fabrication and characterization of contact layers in amorphous silicon solar cells

    International Nuclear Information System (INIS)

    Kolter, M.

    1993-04-01

    The production and characterisation of amorphous and microcrystalline n-doped layers (a-Si:H(n) and c-Si:H(n)) for thin film solar cells is described together contact investigations. The layers were produced in a plasma CVD. The electric conductivity was measured

  5. Fabrication of luminescent porous silicon with stain etches and evidence that luminescence originates in amorphous layers

    Science.gov (United States)

    Fathauer, R. W.; George, T.; Ksendzov, A.; Lin, T. L.; Pike, W. T.; Vasquez, R. P.; Wu, Z.-C.

    1992-01-01

    Simple immersion of Si in stain etches of HF:HNO3:H2O or NaNO2 in aqueous HF was used to produce films exhibiting luminescence in the visible similar to that of anodically-etched porous Si. All of the luminescent samples consist of amorphous porous Si in at least the near surface region. No evidence was found for small crystalline regions within these amorphous layers.

  6. Detection of charged particles in amorphous silicon layers

    International Nuclear Information System (INIS)

    Kaplan, S.N.; Morel, J.R.; Mulera, T.A.; Perez-Mendez, V.; Schnurmacher, G.; Street, R.A.

    1985-10-01

    The successful development of radiation detectors made from amorphous silicon could offer the possibility for relatively easy construction of large area position-sensitive detectors. We have conducted a series of measurements with prototype detectors, on signals derived from alpha particles. The measurement results are compared with simple model calculations, and projections are made of potential applications in high-energy and nuclear physics. 4 refs., 7 figs

  7. Charged particle detectors made from thin layers of amorphous silicon

    International Nuclear Information System (INIS)

    Morel, J.R.

    1986-05-01

    A series of experiments was conducted to determine the feasibility of using hydrogenated amorphous silicon (α-Si:H) as solid state thin film charged particle detectors. 241 Am alphas were successfully detected with α-Si:H devices. The measurements and results of these experiments are presented. The problems encountered and changes in the fabrication of the detectors that may improve the performance are discussed

  8. Non-localized deformation in Cu−Zr multi-layer amorphous films under tension

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, C. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, H. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Cao, Q.P.; Wang, X.D. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, D.X. [State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027 (China); Hu, J.W. [Hangzhou Workers Amateur University, Hangzhou 310027 (China); Liaw, P.K. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Jiang, J.Z., E-mail: jiangjz@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-09-05

    In metallic glasses (MGs), plastic deformation at room temperature is dominated by highly localized shear bands. Here we report the non-localized deformation under tension in Cu−Zr multi-layer MGs with a pure amorphous structure using large-scale atomistic simulations. It is demonstrated that amorphous samples with high layer numbers, composed of Cu{sub 64}Zr{sub 36} and Cu{sub 40}Zr{sub 60}, or Cu{sub 64}Zr{sub 36} and Cu{sub 50}Zr{sub 50}, present obviously non-localized deformation behavior. We reveal that the deformation behavior of the multi-layer-structured MG films is related but not determined by the deformation behavior of the composed individual layers. The criterion for the deformation mode change for MGs with a pure amorphous structure, in generally, was suggested, i.e., the competition between the elastic-energy density stored and the energy density needed for forming one mature shear band in MGs. Our results provide a promising strategy for designing tensile ductile MGs with a pure amorphous structure at room temperature. - Highlights: • Tensile deformation behaviors in multi-layer MG films. • Films with high layer numbers confirmed with a non-localized deformation behavior. • The deformation mode is reasonably controlled by whether U{sub p} larger than U{sub SB.}.

  9. Tunneling measurements in amorphous layers of superconducting transition metals: molybdenum, vanadium, and niobium

    International Nuclear Information System (INIS)

    Roll, U.

    1981-01-01

    Tunneling experiments with amorphous Molybdenum and Vanadium layers are presented, showing no significant increase of the reduced energy gap 2δ(O)/kTsub(c)(δ) compared with the BCS-value, in contrast to all previous measurement on amorphous superconducting materials of simple s-p-metals, showing on enhanced electron-phonon-interaction. This fact may lead to the conclusion that the strong electron-phonon coupling is caused by the amorphous structure of the superconductor. The present results, however, indicate that the strong electron-phonon interaction cannot be explained only ba the amorphous structure of the superconductor. In the measurements of the second derivative d 2 U/dI 2 no phonon-induced structures have been observed for amorphous molybdenum, vanadium and niobium films. Apparently the phonon density of states F(#betta#) of amorphous transition metals has no structure, thus the longitudinal and transverse phonons cannot be identified in the measured (d 2 U/dI 2 )-curves. This particular behaviour of the amorphous transition metals in contrast to the simple s-p-metals may be interpreted by the strongly localized d-electrons. (orig./GG) [de

  10. Protective layer formation on magnesium in cell culture medium

    Energy Technology Data Exchange (ETDEWEB)

    Wagener, V.; Virtanen, S., E-mail: virtanen@ww.uni-erlangen.de

    2016-06-01

    In the past, different studies showed that hydroxyapatite (HA) or similar calcium phosphates can be precipitated on Mg during immersion in simulated body fluids. However, at the same time, in most cases a dark grey or black layer is built under the white HA crystals. This layer seems to consist as well of calcium phosphates. Until now, neither the morphology nor its influence on Mg corrosion have been investigated in detail. In this work commercially pure magnesium (cp) was immersed in cell culture medium for one, three and five days at room temperature and in the incubator (37 °C, 5% CO{sub 2}). In addition, the influence of proteins on the formation of a corrosion layer was investigated by adding 20% of fetal calf serum (FCS) to the cell culture medium in the incubator. In order to analyze the formed layers, SEM images of cross sections, X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDX) and Fourier Transformed Infrared Spectroscopy (FTIR) measurements were carried out. Characterization of the corrosion behavior was achieved by electrochemical impedance spectroscopy (EIS) and by potentio-dynamic polarization in Dulbecco's Modified Eagle's Medium (DMEM) at 37 °C. Surface analysis showed that all formed layers consist mainly of amorphous calcium phosphate compounds. For the immersion at room temperature the Ca/P ratio indicates the formation of HA, while in the incubator probably pre-stages to HA are formed. The different immersion conditions lead to a variation in layer thicknesses. However, electrochemical characterization shows that the layer thickness does not influence the corrosion resistance of magnesium. The main influencing factor for the corrosion behavior is the layer morphology. Thus, immersion at room temperature leads to the highest corrosion protection due to the formation of a compact outer layer. Layers formed in the incubator show much worse performances due to completely porous

  11. Protective layer formation on magnesium in cell culture medium

    International Nuclear Information System (INIS)

    Wagener, V.; Virtanen, S.

    2016-01-01

    In the past, different studies showed that hydroxyapatite (HA) or similar calcium phosphates can be precipitated on Mg during immersion in simulated body fluids. However, at the same time, in most cases a dark grey or black layer is built under the white HA crystals. This layer seems to consist as well of calcium phosphates. Until now, neither the morphology nor its influence on Mg corrosion have been investigated in detail. In this work commercially pure magnesium (cp) was immersed in cell culture medium for one, three and five days at room temperature and in the incubator (37 °C, 5% CO_2). In addition, the influence of proteins on the formation of a corrosion layer was investigated by adding 20% of fetal calf serum (FCS) to the cell culture medium in the incubator. In order to analyze the formed layers, SEM images of cross sections, X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDX) and Fourier Transformed Infrared Spectroscopy (FTIR) measurements were carried out. Characterization of the corrosion behavior was achieved by electrochemical impedance spectroscopy (EIS) and by potentio-dynamic polarization in Dulbecco's Modified Eagle's Medium (DMEM) at 37 °C. Surface analysis showed that all formed layers consist mainly of amorphous calcium phosphate compounds. For the immersion at room temperature the Ca/P ratio indicates the formation of HA, while in the incubator probably pre-stages to HA are formed. The different immersion conditions lead to a variation in layer thicknesses. However, electrochemical characterization shows that the layer thickness does not influence the corrosion resistance of magnesium. The main influencing factor for the corrosion behavior is the layer morphology. Thus, immersion at room temperature leads to the highest corrosion protection due to the formation of a compact outer layer. Layers formed in the incubator show much worse performances due to completely porous structures. The

  12. Formation and structure of V-Zr amorphous alloy thin films

    KAUST Repository

    King, Daniel J M; Middleburgh, Simon C.; Liu, A. C Y; Tahini, Hassan Ali; Lumpkin, Gregory R.; Cortie, Michael B.

    2015-01-01

    . Atomic-scale modelling was used to investigate the enthalpies of formation of the various competing structures. The calculations confirmed that an amorphous solid solution would be significantly more stable than a random body-centred solid solution

  13. Amorphous-tetrahedral diamondlike carbon layered structures resulting from film growth energetics

    Science.gov (United States)

    Siegal, M. P.; Barbour, J. C.; Provencio, P. N.; Tallant, D. R.; Friedmann, T. A.

    1998-08-01

    High-resolution transmission electron microscopy (HRTEM) shows that amorphous-tetrahedral diamondlike carbon (a-tC) films grown by pulsed-laser deposition on Si(100) consist of three-to-four layers, depending on the growth energetics. We estimate the density of each layer using both HRTEM image contrast and Rutherford backscattering spectrometry. The first carbon layer and final surface layer have relatively low density. The bulk of the film between these two layers has higher density. For films grown under the most energetic conditions, there exists a superdense a-tC layer between the interface and bulk layers. The density of all four layers, and the thickness of the surface and interfacial layers, correlate well with the energetics of the depositing carbon species.

  14. PETROLOGIC CONSTRAINTS ON AMORPHOUS AND CRYSTALLINE MAGNESIUM SILICATES: DUST FORMATION AND EVOLUTION IN SELECTED HERBIG Ae/Be SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Rietmeijer, Frans J. M. [Department of Earth and Planetary Sciences, MSC 03 2040, 1-University of New Mexico, Albuquerque, NM 87131-001 (United States); Nuth, Joseph A., E-mail: fransjmr@unm.edu [Astrochemistry Laboratory, Solar System Exploration Division, Code 691, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-07-01

    The Infrared Space Observatory, Spitzer Space Telescope, and Herschel Space Observatory surveys provided a wealth of data on the Mg-silicate minerals (forsterite, enstatite), silica, and ''amorphous silicates with olivine and pyroxene stoichiometry'' around Herbig Ae/Be stars. These incredible findings do not resonate with the mainstream Earth Sciences because of (1) disconnecting ''astronomical nomenclature'' and the long existing mineralogical and petrologic terminology of minerals and amorphous materials, and (2) the fact that Earth scientists (formerly geologists) are bound by the ''Principle of Actualism'' that was put forward by James Hutton (1726-1797). This principle takes a process-oriented approach to understanding mineral and rock formation and evolution. This paper will (1) review and summarize the results of laboratory-based vapor phase condensation and thermal annealing experiments, (2) present the pathways of magnesiosilica condensates to Mg-silicate mineral (forsterite, enstatite) formation and processing, and (3) present mineralogical and petrologic implications of the properties and compositions of the infrared-observed crystalline and amorphous dust for the state of circumstellar disk evolution. That is, the IR-observation of smectite layer silicates in HD142527 suggests the break-up of asteroid-like parent bodies that had experienced aqueous alteration. We discuss the persistence of amorphous dust around some young stars and an ultrafast amorphous to crystalline dust transition in HD 163296 that leads to forsterite grains with numerous silica inclusions. These dust evolution processes to form forsterite, enstatite {+-} tridymite could occur due to amorphous magnesiosilica dust precursors with a serpentine- or smectite-dehydroxylate composition.

  15. PETROLOGIC CONSTRAINTS ON AMORPHOUS AND CRYSTALLINE MAGNESIUM SILICATES: DUST FORMATION AND EVOLUTION IN SELECTED HERBIG Ae/Be SYSTEMS

    International Nuclear Information System (INIS)

    Rietmeijer, Frans J. M.; Nuth, Joseph A.

    2013-01-01

    The Infrared Space Observatory, Spitzer Space Telescope, and Herschel Space Observatory surveys provided a wealth of data on the Mg-silicate minerals (forsterite, enstatite), silica, and ''amorphous silicates with olivine and pyroxene stoichiometry'' around Herbig Ae/Be stars. These incredible findings do not resonate with the mainstream Earth Sciences because of (1) disconnecting ''astronomical nomenclature'' and the long existing mineralogical and petrologic terminology of minerals and amorphous materials, and (2) the fact that Earth scientists (formerly geologists) are bound by the ''Principle of Actualism'' that was put forward by James Hutton (1726-1797). This principle takes a process-oriented approach to understanding mineral and rock formation and evolution. This paper will (1) review and summarize the results of laboratory-based vapor phase condensation and thermal annealing experiments, (2) present the pathways of magnesiosilica condensates to Mg-silicate mineral (forsterite, enstatite) formation and processing, and (3) present mineralogical and petrologic implications of the properties and compositions of the infrared-observed crystalline and amorphous dust for the state of circumstellar disk evolution. That is, the IR-observation of smectite layer silicates in HD142527 suggests the break-up of asteroid-like parent bodies that had experienced aqueous alteration. We discuss the persistence of amorphous dust around some young stars and an ultrafast amorphous to crystalline dust transition in HD 163296 that leads to forsterite grains with numerous silica inclusions. These dust evolution processes to form forsterite, enstatite ± tridymite could occur due to amorphous magnesiosilica dust precursors with a serpentine- or smectite-dehydroxylate composition.

  16. High-frequency permeability in double-layered structure of amorphous Co-Ta-Zr films

    International Nuclear Information System (INIS)

    Ochiai, Y.; Hayakawa, M.; Hayashi, K.; Aso, K.

    1988-01-01

    The high-frequency permeability of amorphous Co-Ta-Zr films was studied and the frequency dependence was described in terms of the eddy-current-loss formula. For the double-layered structure intervened with SiO 2 film, the degradation of the permeability became apparent with the decrease of SiO 2 thickness

  17. Passivation mechanism in silicon heterojunction solar cells with intrinsic hydrogenated amorphous silicon oxide layers

    Science.gov (United States)

    Deligiannis, Dimitrios; van Vliet, Jeroen; Vasudevan, Ravi; van Swaaij, René A. C. M. M.; Zeman, Miro

    2017-02-01

    In this work, we use intrinsic hydrogenated amorphous silicon oxide layers (a-SiOx:H) with varying oxygen content (cO) but similar hydrogen content to passivate the crystalline silicon wafers. Using our deposition conditions, we obtain an effective lifetime (τeff) above 5 ms for cO ≤ 6 at. % for passivation layers with a thickness of 36 ± 2 nm. We subsequently reduce the thickness of the layers using an accurate wet etching method to ˜7 nm and deposit p- and n-type doped layers fabricating a device structure. After the deposition of the doped layers, τeff appears to be predominantly determined by the doped layers themselves and is less dependent on the cO of the a-SiOx:H layers. The results suggest that τeff is determined by the field-effect rather than by chemical passivation.

  18. The chemical composition and band gap of amorphous Si:C:N:H layers

    Energy Technology Data Exchange (ETDEWEB)

    Swatowska, Barbara, E-mail: swatow@agh.edu.pl [AGH University of Science and Technology, Department of Electronics, Mickiewicza Av. 30, 30-059 Krakow (Poland); Kluska, Stanislawa; Jurzecka-Szymacha, Maria [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza Av. 30, 30-059 Krakow (Poland); Stapinski, Tomasz [AGH University of Science and Technology, Department of Electronics, Mickiewicza Av. 30, 30-059 Krakow (Poland); Tkacz-Smiech, Katarzyna [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza Av. 30, 30-059 Krakow (Poland)

    2016-05-15

    Highlights: • Six type of amorphous hydrogenated films were obtained and analysed. • Investigated chemical bondings strongly influenced energy gap values. • Analysed layers could be applied as semiconductors and also as dielectrics. - Abstract: In this work we presented the correlation between the chemical composition of amorphous Si:C:N:H layers of various content of silicon, carbon and nitrogen, and their band gap. The series of amorphous Si:C:N:H layers were obtained by plasma assisted chemical vapour deposition method in which plasma was generated by RF (13.56 MHz, 300 W) and MW (2.45 GHz, 2 kW) onto monocrystalline silicon Si(001) and borosilicate glass. Structural studies were based on FTIR transmission spectrum registered within wavenumbers 400–4000 cm{sup −1}. The presence of Si−C, Si−N, C−N, C=N, C=C, C≡N, Si−H and C−H bonds was shown. The values band gap of the layers have been determined from spectrophotometric and ellipsometric measurements. The respective values are contained in the range between 1.64 eV – characteristic for typical semiconductor and 4.21 eV – for good dielectric, depending on the chemical composition and atomic structure of the layers.

  19. Radiation-induced formation of cavities in amorphous germanium

    International Nuclear Information System (INIS)

    Wang, L.M.; Birtcher, R.C.

    1989-01-01

    Prethinned polycrystalline Ge TEM samples were irradiated with 1.5 MeV Kr + ions at room temperature while structural and morphological changes were observed in situ in the Argonne High Voltage Electron Microscope-Tandem Facility. After a Kr + dose of 1.2x10 14 ions/cm 2 , the irradiated Ge was completely amorphized. A high density of small void-like cavities was observed after a Kr + dose of 7x10 14 ions/cm 2 . With increasing Kr + ion dose, these cavities grew into large holes transforming the irradiated Ge into a sponge-like porous material after 8.5x10 15 ions/cm 2 . The radiation-induced nucleation of void-like cavities in amorphous material is astonishing, and the final structure of the irradiated Ge with enormous surface area may have potential applications

  20. Protective layer formation on magnesium in cell culture medium.

    Science.gov (United States)

    Wagener, V; Virtanen, S

    2016-06-01

    In the past, different studies showed that hydroxyapatite (HA) or similar calcium phosphates can be precipitated on Mg during immersion in simulated body fluids. However, at the same time, in most cases a dark grey or black layer is built under the white HA crystals. This layer seems to consist as well of calcium phosphates. Until now, neither the morphology nor its influence on Mg corrosion have been investigated in detail. In this work commercially pure magnesium (cp) was immersed in cell culture medium for one, three and five days at room temperature and in the incubator (37 °C, 5% CO2). In addition, the influence of proteins on the formation of a corrosion layer was investigated by adding 20% of fetal calf serum (FCS) to the cell culture medium in the incubator. In order to analyze the formed layers, SEM images of cross sections, X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDX) and Fourier Transformed Infrared Spectroscopy (FTIR) measurements were carried out. Characterization of the corrosion behavior was achieved by electrochemical impedance spectroscopy (EIS) and by potentio-dynamic polarization in Dulbecco's Modified Eagle's Medium (DMEM) at 37°C. Surface analysis showed that all formed layers consist mainly of amorphous calcium phosphate compounds. For the immersion at room temperature the Ca/P ratio indicates the formation of HA, while in the incubator probably pre-stages to HA are formed. The different immersion conditions lead to a variation in layer thicknesses. However, electrochemical characterization shows that the layer thickness does not influence the corrosion resistance of magnesium. The main influencing factor for the corrosion behavior is the layer morphology. Thus, immersion at room temperature leads to the highest corrosion protection due to the formation of a compact outer layer. Layers formed in the incubator show much worse performances due to completely porous structures. The

  1. Formation of amorphous metal alloys by chemical vapor deposition

    Science.gov (United States)

    Mullendore, A.W.

    1988-03-18

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures of organometallic compounds and metalloid hydrides,e.g., transition metal carbonyl, such as nickel carbonyl and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit. 1 fig.

  2. Periodic molybdenum disc array for light trapping in amorphous silicon layer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiwei; Deng, Changkai [International Center of Quantum and Molecular Structures, Materials Genome Institute, and Department of Physics, Shanghai University, 99 Shangda Road, Shanghai, 200444 China (China); Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210 China (China); Yang, Kang; Chen, Haiyan, E-mail: chenhy@sari.ac.cn; Li, Dongdong; Chen, Xiaoyuan [Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210 China (China); Ren, Wei, E-mail: renwei@shu.edu.cn [International Center of Quantum and Molecular Structures, Materials Genome Institute, and Department of Physics, Shanghai University, 99 Shangda Road, Shanghai, 200444 China (China)

    2016-05-15

    We demonstrate the light trapping effect in amorphous silicon (a-Si:H) layer by inserting a layer of periodic molybdenum disc array (MDA) between the a-Si:H layer and the quartz substrate, which forms a three-layer structure of Si/MDA/SiO{sub 2}. The MDA layer was fabricated by a new cost-effective method based on nano-imprint technology. Further light absorption enhancement was realized through altering the topography of MDA by annealing it at 700°C. The mechanism of light absorption enhancement in a-Si:H interfaced with MDA was analyzed, and the electric field distribution and light absorption curve of the different layers in the Si/MDA structure under light illumination of different wavelengths were simulated by employing numerical finite difference time domain (FDTD) solutions.

  3. Recrystallization of implanted amorphous silicon layers. I. Electrical properties of silicon implanted with BF+2 or Si++B+

    International Nuclear Information System (INIS)

    Tsai, M.Y.; Streetman, B.G.

    1979-01-01

    Electrical properties of recrystallized amorphous silicon layers, formed by BF + 2 implants or Si + +B + implants, have been studied by differential resistivity and Hall-effect measurements. Electrical carrier distribution profiles show that boron atoms inside the amorphized Si layers can be fully activated during recrystallization at 550 0 C. The mobility is also recovered. However, the tail of the B distribution, located inside a damaged region near the original amorphous-crystalline interface, remains inactive. This inactive tail has been observed for all samples implanted with BF + 2 . Only in a thicker amorphous layer, formed for example by Si + predamage implants, can the entire B profile be activated. The etch rate of amorphous silicon in HF and the effect of fluorine on the recrystallization rate are also reported

  4. Development of laser-fired contacts for amorphous silicon layers obtained by Hot-Wire CVD

    International Nuclear Information System (INIS)

    Munoz, D.; Voz, C.; Blanque, S.; Ibarz, D.; Bertomeu, J.; Alcubilla, R.

    2009-01-01

    In this work we study aluminium laser-fired contacts for intrinsic amorphous silicon layers deposited by Hot-Wire CVD. This structure could be used as an alternative low temperature back contact for rear passivated heterojunction solar cells. An infrared Nd:YAG laser (1064 nm) has been used to locally fire the aluminium through the thin amorphous silicon layers. Under optimized laser firing parameters, very low specific contact resistances (ρ c ∼ 10 mΩ cm 2 ) have been obtained on 2.8 Ω cm p-type c-Si wafers. This investigation focuses on maintaining the passivation quality of the interface without an excessive increase in the series resistance of the device.

  5. Magnetic properties of amorphous Tb-Fe thin films with an artificially layered structure

    International Nuclear Information System (INIS)

    Sato, N.

    1986-01-01

    An alternating terbium-iron (Tb-Fe) multilayer structure artificially made in amorphous Tb-Fe thin films gives rise to excellent magnetic properties of large perpendicular uniaxial anisotropy, large saturation magnetization, and large coercivity over a wide range of Tb composition in the films. The films are superior to amorphous Tb-Fe alloy thin films, especially when they are piled up with a monatomic layer of Tb and several atomic layers of Fe in an alternating fashion. Small-angle x-ray diffraction analysis confirmed the layering of monatomic layers of Tb and Fe, where the periodicity of the layers was found to be about 5.9 A. Direct evidence for an artificially layered structure was obtained by transmission electron microscopic and Auger electron spectroscopic observations. Together with magnetic measurements of hysteresis loops and torque curves, it has been concluded that the most important origin of the large magnetic uniaxial anisotropy can be attributed to the Tb-Fe pairs aligned perpendicular to the films

  6. Production of amorphous metal layers using ion implantation and investigation of the related modification of some surface properties

    International Nuclear Information System (INIS)

    Hoang Dac Luc; Vu Hoang Lam.

    1993-01-01

    Amorphous layers were produced by implanting B + ions into Al at 50 keV. The modification of the electrochemical corrosion resistance and the mechanical strength of implanted specimen was investigated. (author). 2 refs, 1 tab, 2 figs

  7. Comparison of stress in single and multiple layer depositions of plasma-deposited amorphous silicon dioxide

    International Nuclear Information System (INIS)

    Au, V; Charles, C; Boswell, R W

    2006-01-01

    The stress in a single-layer continuous deposition of amorphous silicon dioxide (SiO 2 ) film is compared with the stress within multiple-layer intermittent or 'stop-start' depositions. The films were deposited by helicon activated reactive evaporation (plasma assisted deposition with electron beam evaporation source) to a 1 μm total film thickness. The relationships for stress as a function of film thickness for single, two, four and eight layer depositions have been obtained by employing the substrate curvature technique on a post-deposition etch-back of the SiO 2 film. At film thicknesses of less than 300 nm, the stress-thickness relationships clearly show an increase in stress in the multiple-layer samples compared with the relationship for the single-layer film. By comparison, there is little variation in the film stress between the samples when it is measured at 1 μm film thickness. Localized variations in stress were not observed in the regions where the 'stop-start' depositions occurred. The experimental results are interpreted as a possible indication of the presence of unstable, strained Si-O-Si bonds in the amorphous SiO 2 film. It is proposed that the subsequent introduction of a 'stop-start' deposition process places additional strain on these bonds to affect the film structure. The experimental stress-thickness relationships were reproduced independently by assuming a linear relationship between the measured bow and film thickness. The constants of the linear model are interpreted as an indication of the density of the amorphous film structure

  8. Characteristics of magnetic tunnel junctions comprising ferromagnetic amorphous NiFeSiB layers

    International Nuclear Information System (INIS)

    Chun, B.S.; Kim, Y.K.; Hwang, J.Y.; Yim, H.I.; Rhee, J.R.; Kim, T.W.

    2007-01-01

    Magnetic tunnel junctions (MTJs), which consisted of amorphous ferromagnetic Ni 16 Fe 62 Si 8 B 14 free layers, were investigated. NiFeSiB has a lower saturation magnetization (M s : 800 emu/cm 3 ) than Co 90 Fe 10 and a higher anisotropy constant (K u : 2700 erg/cm 3 ) than Ni 80 Fe 20 . By increasing the free layer thickness, the tunnel magnetoresistance (TMR) ratio of up to 41% was achieved and it exhibited a much lower switching field (H sw ) than the conventionally used CoFe free layer MTJ. Furthermore, by inserting a thin CoFe layer (1 nm) at the tunnel barrier/NiFeSiB interface, the TMR ratio and switching squareness were enhanced

  9. Distribution of electrode elements near contacts and junction layers in amorphous silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Imura, T; Hiraki, A; Okamoto, H

    1982-01-01

    Auger electron spectroscopy with the ion sputter-etching technique and secondary ion mass spectroscopy have been utilized to investigate the depth distribution of Sn and In electrode elements in amorphous silicon layers of the photovoltaic device. The comparison of the depth profiles with the cell performances has indicated that the presence of the reduced state of In in both the p and i-layers affects the solar cell performance, but that of Sn does not. It was also shown that layered structure of In-Sn oxide (ITO)/SnO2 effectively prevents the diffusion of In and achieves high cell performances, having the thickness of the SnO2 layer about 200 A. 8 references.

  10. Formation of amorphous Ti-50at.%Pt by solid state reactions during mechanical alloying

    CSIR Research Space (South Africa)

    Mahlatji, ML

    2013-10-01

    Full Text Available Mechanical alloying of an equiatomic mixture of crystalline elemental powders of Ti and Pt in a high-energy ball mill results in formation of an amorphous alloy by solid-state reactions. Mechanical alloying was carried out in an argon atmosphere...

  11. Magnetotransport in spin-valve systems with amorphous magnetic and superconducting partial layers

    International Nuclear Information System (INIS)

    Steiner, Roland Johannes

    2006-01-01

    The first part of this work deals with the fabrication and characterisation of spin valves with an amorphous FeB layer acting as a weak ferromagnet embedded into the structure. In the second part of this work ferromagnet/superconductor hybrid structures are fabricated and the relevant magnetic field dependent transport phenomena are analyzed. The interlayer of a conventional spin valve was replaced by a superconducting niobium layer. Small applied fields close to the coercivity field of the involved ferromagnets - and thus far below the critical magnetic field of the superconductor - affected the critical temperature of the niobium layer. Measurements of the field dependent resistance and the critical temperature of a FM/SC/FMsystem showed a local maximum in the T c (H)- and the R(H)-curve. (orig.)

  12. Formation and structure of V-Zr amorphous alloy thin films

    KAUST Repository

    King, Daniel J M

    2015-01-01

    Although the equilibrium phase diagram predicts that alloys in the central part of the V-Zr system should consist of V2Zr Laves phase with partial segregation of one element, it is known that under non-equilibrium conditions these materials can form amorphous structures. Here we examine the structures and stabilities of thin film V-Zr alloys deposited at room temperature by magnetron sputtering. The films were characterized by X-ray diffraction, transmission electron microscopy and computational methods. Atomic-scale modelling was used to investigate the enthalpies of formation of the various competing structures. The calculations confirmed that an amorphous solid solution would be significantly more stable than a random body-centred solid solution of the elements, in agreement with the experimental results. In addition, the modelling effort provided insight into the probable atomic configurations of the amorphous structures allowing predictions of the average distance to the first and second nearest neighbours in the system.

  13. The application of thick hydrogenated amorphous silicon layers to charged particle and x-ray detection

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Cho, G.; Fujieda, I.; Kaplan, S.N.; Qureshi, S.; Street, R.A.

    1989-04-01

    We outline the characteristics of thick hydrogenated amorphous silicon layers which are optimized for the detection of charged particles, x-rays and γ-rays. Signal amplitude as a function of the linear energy transfer of various particles are given. Noise sources generated by the detector material and by the thin film electronics - a-Si:H or polysilicon proposed for pixel position sensitive detectors readout are described, and their relative amplitudes are calculated. Temperature and neutron radiation effects on leakage currents and the corresponding noise changes are presented. 17 refs., 12 figs., 2 tabs

  14. In situ atomic layer nitridation on the top and down regions of the amorphous and crystalline high-K gate dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Meng-Chen [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Lee, Min-Hung [Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei 11677, Taiwan (China); Kuo, Chin-Lung; Lin, Hsin-Chih [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Chen, Miin-Jang, E-mail: mjchen@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2016-11-30

    Highlights: • The structural and electrical characteristics of the ZrO{sub 2} high-K dielectrics, treated with the in situ atomic layer doping of nitrogen into the top and down regions (top and down nitridation, TN and DN, respectively), were investigated. • The amorphous DN sample has a lower leakage current density (J{sub g}) than the amorphous TN sample, attributed to the formation of SiO{sub x}N{sub y} in the interfacial layer (IL). • The crystalline TN sample exhibited a lower CET and a similar J{sub g} as compared with the crystalline DN sample, which can be ascribed to the suppression of IL regrowth. • The crystalline ZrO{sub 2} with in situ atomic layer doping of nitrogen into the top region exhibited superior scaling limit, electrical characteristics, and reliability. - Abstract: Amorphous and crystalline ZrO{sub 2} gate dielectrics treated with in situ atomic layer nitridation on the top and down regions (top and down nitridation, abbreviated as TN and DN) were investigated. In a comparison between the as-deposited amorphous DN and TN samples, the DN sample has a lower leakage current density (J{sub g}) of ∼7 × 10{sup −4} A/cm{sup 2} with a similar capacitance equivalent thickness (CET) of ∼1.53 nm, attributed to the formation of SiO{sub x}N{sub y} in the interfacial layer (IL). The post-metallization annealing (PMA) leads to the transformation of ZrO{sub 2} from the amorphous to the crystalline tetragonal/cubic phase, resulting in an increment of the dielectric constant. The PMA-treated TN sample exhibits a lower CET of 1.22 nm along with a similar J{sub g} of ∼1.4 × 10{sup −5} A/cm{sup 2} as compared with the PMA-treated DN sample, which can be ascribed to the suppression of IL regrowth. The result reveals that the nitrogen engineering in the top and down regions has a significant impact on the electrical characteristics of amorphous and crystalline ZrO{sub 2} gate dielectrics, and the nitrogen incorporation at the top of crystalline

  15. Evidence of amorphous interdiffusion layer in heavy ion irradiated U–8wt%Mo/Al interfaces

    International Nuclear Information System (INIS)

    Chiang, H-Y.; Zweifel, T.; Palancher, H.; Bonnin, A.; Beck, L.; Weiser, P.; Döblinger, M.; Sabathier, C.; Jungwirth, R.; Petry, W.

    2013-01-01

    U–Mo/Al based nuclear fuels are worldwide considered as the most promising high density fuel for the conversion of high flux research and test reactors from highly enriched uranium to lower enrichment. However in-pile growth of an amorphous interdiffusion layer at the U–Mo/Al interfaces strongly limits the performances of this fuel. Several in-pile tests have been performed to optimize the composition. In this paper, a breakthrough in simulating the U–8wt%Mo/Al behavior under out-of-pile irradiation is reported. It is shown that an amorphous U–8wt%Mo/Al interdiffusion layer (IDL) is obtained by heavy ion irradiation ( 127 I) in a U–Mo/Al diffusion couple under controlled temperature conditions. The properties of this IDL coincide with the results obtained from in-pile tests. This methodological work clearly indicates that heavy ion irradiations could be routinely applied for optimizing composition of U–Mo/Al nuclear fuels. In other words these out-of-pile tests using ion beams could become a representative, efficient and economic step before in-pile irradiation

  16. Evidence of amorphous interdiffusion layer in heavy ion irradiated U–8wt%Mo/Al interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, H-Y. [Forschungsneutronenquelle Heinz Maier-Leibniz (FRM II), Technische Universität München Lichtenbergstr. 1, D-85747 Garching (Germany); Zweifel, T. [Forschungsneutronenquelle Heinz Maier-Leibniz (FRM II), Technische Universität München Lichtenbergstr. 1, D-85747 Garching (Germany); CEA, DEN, DEC, F-13108 St. Paul Lez Durance Cedex (France); Palancher, H., E-mail: herve.palancher@cea.fr [CEA, DEN, DEC, F-13108 St. Paul Lez Durance Cedex (France); Bonnin, A. [ESRF, 6 rue Jules Horowitz, 38042 Grenoble (France); Beck, L. [Tandembeschleuniger des Maier-Leibnitz-Labors (MLL), Am Coulombwall 6, D-85747 Garching (Germany); Weiser, P. [Walther Schottky Institut, Technische Universität München, Am Coulombwall 4, D-85747 Garching (Germany); Döblinger, M. [Department Chemie, Ludwig-Maximilians-Universität München (LMU), Butenandstr. 11, D-81377 München (Germany); Sabathier, C. [CEA, DEN, DEC, F-13108 St. Paul Lez Durance Cedex (France); Jungwirth, R.; Petry, W. [Forschungsneutronenquelle Heinz Maier-Leibniz (FRM II), Technische Universität München Lichtenbergstr. 1, D-85747 Garching (Germany)

    2013-09-15

    U–Mo/Al based nuclear fuels are worldwide considered as the most promising high density fuel for the conversion of high flux research and test reactors from highly enriched uranium to lower enrichment. However in-pile growth of an amorphous interdiffusion layer at the U–Mo/Al interfaces strongly limits the performances of this fuel. Several in-pile tests have been performed to optimize the composition. In this paper, a breakthrough in simulating the U–8wt%Mo/Al behavior under out-of-pile irradiation is reported. It is shown that an amorphous U–8wt%Mo/Al interdiffusion layer (IDL) is obtained by heavy ion irradiation ({sup 127}I) in a U–Mo/Al diffusion couple under controlled temperature conditions. The properties of this IDL coincide with the results obtained from in-pile tests. This methodological work clearly indicates that heavy ion irradiations could be routinely applied for optimizing composition of U–Mo/Al nuclear fuels. In other words these out-of-pile tests using ion beams could become a representative, efficient and economic step before in-pile irradiation.

  17. Broadband wavelength conversion in hydrogenated amorphous silicon waveguide with silicon nitride layer

    Science.gov (United States)

    Wang, Jiang; Li, Yongfang; Wang, Zhaolu; Han, Jing; Huang, Nan; Liu, Hongjun

    2018-01-01

    Broadband wavelength conversion based on degenerate four-wave mixing is theoretically investigated in a hydrogenated amorphous silicon (a-Si:H) waveguide with silicon nitride inter-cladding layer (a-Si:HN). We have found that enhancement of the non-linear effect of a-Si:H waveguide nitride intermediate layer facilitates broadband wavelength conversion. Conversion bandwidth of 490 nm and conversion efficiency of 11.4 dB were achieved in a numerical simulation of a 4 mm-long a-Si:HN waveguide under 1.55 μm continuous wave pumping. This broadband continuous-wave wavelength converter has potential applications in photonic networks, a type of readily manufactured low-cost highly integrated optical circuits.

  18. Solid-State Electrochromic Device Consisting of Amorphous WO3 and Various Thin Oxide Layers

    Science.gov (United States)

    Shizukuishi, Makoto; Shimizu, Isamu; Inoue, Eiichi

    1980-11-01

    A mixed oxide containing Cr2O3 was introduced into an amorphous WO3 solid-state electrochromic device (ECD) in order to improve its colour memory effect. The electrochromic characteristics were greatly affected by the chemical constituents of a dielectric layer on the a-WO3 layer. Particularly, long memory effect and low power dissipation were attained in a solid-state ECD consisting of a-WO3 and Cr2O3\\cdotV2O5(50 wt.%). Some electrochromic characteristics of the a-WO3/Cr2O3\\cdotV2O5 ECD and the role of V2O5 were investigated.

  19. Ion implantation into amorphous Si layers to form carrier-selective contacts for Si solar cells

    International Nuclear Information System (INIS)

    Feldmann, Frank; Mueller, Ralph; Reichel, Christian; Hermle, Martin

    2014-01-01

    This paper reports our findings on the boron and phosphorus doping of very thin amorphous silicon layers by low energy ion implantation. These doped layers are implemented into a so-called tunnel oxide passivated contact structure for Si solar cells. They act as carrier-selective contacts and, thereby, lead to a significant reduction of the cell's recombination current. In this paper we address the influence of ion energy and ion dose in conjunction with the obligatory high-temperature anneal needed for the realization of the passivation quality of the carrier-selective contacts. The good results on the phosphorus-doped (implied V oc = 725 mV) and boron-doped passivated contacts (iV oc = 694 mV) open a promising route to a simplified interdigitated back contact (IBC) solar cell featuring passivated contacts. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Amorphization threshold in Si-implanted strained SiGe alloy layers

    International Nuclear Information System (INIS)

    Simpson, T.W.; Love, D.; Endisch, E.; Goldberg, R.D.; Mitchell, I.V.; Haynes, T.E.; Baribeau, J.M.

    1994-12-01

    The authors have examined the damage produced by Si-ion implantation into strained Si 1-x Ge x epilayers. Damage accumulation in the implanted layers was monitored in situ by time-resolved reflectivity and measured by ion channeling techniques to determine the amorphization threshold in strained Si 1-x Ge x (x = 0.16 and 0.29) over the temperature range 30--110 C. The results are compared with previously reported measurements on unstrained Si 1-x Ge x , and with the simple model used to describe those results. They report here data which lend support to this model and which indicate that pre-existing strain does not enhance damage accumulation in the alloy layer

  1. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Allec, N; Abbaszadeh, S; Karim, K S, E-mail: nallec@uwaterloo.ca [Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1 (Canada)

    2011-09-21

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml{sup -1} in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  2. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors

    Science.gov (United States)

    Allec, N.; Abbaszadeh, S.; Karim, K. S.

    2011-09-01

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml-1 in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  3. Characterization of amorphous yttria layers deposited by aqueous solutions of Y-chelate alkoxides complex

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Soon, E-mail: kyscjb@i-sunam.com; Lee, Yu-Ri; Kim, Byeong-Joo; Lee, Jae-Hun; Moon, Seung-Hyun; Lee, Hunju

    2015-01-15

    Highlights: • Economical method for crack-free amorphous yttria layer deposition by dip coating. • Simpler process for planar yttria film as a diffusion barrier and nucleation layer. • Easy control over the film properties with better characteristics. • Easy control over the thickness of the deposited films. • A feasible process that can be easily adopted by HTSCC industries. - Abstract: Crack-free amorphous yttria layers were deposited by dip coating in solutions of different Y-chelate alkoxides complex. Three Y-chelate solutions of different concentrations were prepared using yttrium acetate tetrahydrate, yttrium stearic acid as Y source materials. PEG, diethanolamine were used as chelating agents, while ethanol, methanol and tetradecane were used as solvent. Three different combinations of chelating and solvents were used to prepare solutions for Y{sub 2}O{sub 3} dip coating on SUS, electropolished and non-electropolished Hastelloy C-276 substrates. The thickness of the films was varied by changing the number of dipping cycles. At an optimized condition, the substrate surface roughness (rms) value was reduced from ∼50 nm to ∼1 nm over a 10 × 10 μm{sup 2} area. After Y{sub 2}O{sub 3} deposition, MgO was deposited using ion-beam assisted deposition (IBAD), then LaMnO{sub 3} (LMO) was deposited using sputtering and GdBCO was deposited using reactive co-evaporation by deposition and reaction (RCE-DR). Detailed X-ray study indicates that LMO/MgO/Y{sub 2}O{sub 3} and GdBCO/LMO/MgO/Y{sub 2}O{sub 3} stack films have good out-of-plane and in-plane textures with strong c-axis alignment. The critical current (Ic) of GdBCO/LMO/MgO/Y{sub 2}O{sub 3} multilayer structure varied from 190 to 420 A/cm with different solutions, when measured at 77 K. These results demonstrated that amorphous yttria can be easily deposited by dip coating using Y-chelates complex as a diffusion barrier and nucleation layer.

  4. Formation of apatite on hydrogenated amorphous silicon (a-Si:H) film deposited by plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Liu Xuanyong; Chu, Paul K.; Ding Chuanxian

    2007-01-01

    Hydrogenated amorphous silicon films were fabricated on p-type, 100 mm diameter silicon wafers by plasma-enhanced chemical vapor deposition (PECVD) using silane and hydrogen. The structure and composition of the hydrogenated amorphous silicon films were investigated using micro-Raman spectroscopy and cross-sectional transmission electron microscopy (XTEM). The hydrogenated amorphous silicon films were subsequently soaked in simulated body fluids to evaluate apatite formation. Carbonate-containing hydroxyapatite (bone-like apatite) was formed on the surface suggesting good bone conductivity. The amorphous structure and presence of surface Si-H bonds are believed to induce apatite formation on the surface of the hydrogenated amorphous silicon film. A good understanding of the surface bioactivity of silicon-based materials and means to produce a bioactive surface is important to the development of silicon-based biosensors and micro-devices that are implanted inside humans

  5. Formation of apatite on hydrogenated amorphous silicon (a-Si:H) film deposited by plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xuanyong [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China) and Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: xyliu@mail.sic.ac.cn; Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: paul.chu@cityu.edu.hk; Ding Chuanxian [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2007-01-15

    Hydrogenated amorphous silicon films were fabricated on p-type, 100 mm diameter <1 0 0> silicon wafers by plasma-enhanced chemical vapor deposition (PECVD) using silane and hydrogen. The structure and composition of the hydrogenated amorphous silicon films were investigated using micro-Raman spectroscopy and cross-sectional transmission electron microscopy (XTEM). The hydrogenated amorphous silicon films were subsequently soaked in simulated body fluids to evaluate apatite formation. Carbonate-containing hydroxyapatite (bone-like apatite) was formed on the surface suggesting good bone conductivity. The amorphous structure and presence of surface Si-H bonds are believed to induce apatite formation on the surface of the hydrogenated amorphous silicon film. A good understanding of the surface bioactivity of silicon-based materials and means to produce a bioactive surface is important to the development of silicon-based biosensors and micro-devices that are implanted inside humans.

  6. Fabrication of Hydrogenated Amorphous Germanium Thin Layer Film and ItsCharacterization

    International Nuclear Information System (INIS)

    Agus-Santoso; Lely-Susita RM; Tjipto-Sujitno

    2000-01-01

    Fabrication of hydrogenated amorphous Germanium thin film by vacuumevaporation method and then deposition with hydrogen atom by glow dischargeplasma radio frequency has been done. This germanium amorphous (a-Ge) thinfilm involves a lot of dangling bonds in the network due to the irregularityof the atomic structures and it will decrease is conductivity. To improve theband properties of (a-Ge) thin film layer a hydrogenated plasma isintroduced. Process of introducing of the hydrogen into the a-Ge film is meanto reduce the dangling bonds so that the best electric conductivity of a Ge:Hthin film will obtained. To identify the hydrogen atom in the sample acharacterization using infrared spectrometer has been done, as well as themeasurement of conductivity of the samples. From the characterization usinginfrared spectroscopy the existence of hydrogen atom was found at absorptionpeak with wave number 1637.5 cm -1 , while the optimum conductivity of thesample 1634.86 Ω -1 cm -1 was achieved at 343 o K. (author)

  7. Properties of p-type amorphous silicon carbide window layers prepared using boron trifluoride

    Energy Technology Data Exchange (ETDEWEB)

    Gandia, J J [Inst. de Energias Renovables, CIEMAT, Madrid (Spain); Gutierrez, M T [Inst. de Energias Renovables, CIEMAT, Madrid (Spain); Carabe, J [Inst. de Energias Renovables, CIEMAT, Madrid (Spain)

    1993-03-01

    One set (A) of undoped and three sets (B, C and D) of doped hydrogenated amorphous silicon carbide samples have been made in the framework of a research plan for obtaining high quality p-type window layers by radiofrequency glow discharge of silane-based gas mixtures. The samples of sets A and B were made using different RF-power-density to mass-flow ratios for various methane percentages in the gas mixture. The best carbon incorporation in the amorphous silicon lattice was obtained at the highest RF-power density. The properties of sets C and D, prepared using different RF-power densities and silane and methane proportions have been analysed as functions of the concentration of boron trifluoride with respect to silane. In both cases, the optical gap E[sub G], after a slight initial decrease, remains at a value of approximately 2.1 eV without quenching in the doping ranges covered. The best conductivity obtained is 2x10[sup -7] ([Omega] cm)[sup -1]. IR spectra allow to associate these features with the structural quality of the films. (orig.)

  8. Amorphous Oxide Thin Film Transistors with Nitrogen-Doped Hetero-Structure Channel Layers

    Directory of Open Access Journals (Sweden)

    Haiting Xie

    2017-10-01

    Full Text Available The nitrogen-doped amorphous oxide semiconductor (AOS thinfilm transistors (TFTs with double-stacked channel layers (DSCL were prepared and characterized. The DSCL structure was composed of nitrogen-doped amorphous InGaZnO and InZnO films (a-IGZO:N/a-IZO:N or a-IZO:N/a-IGZO:N and gave the corresponding TFT devices large field-effect mobility due to the presence of double conduction channels. The a-IZO:N/a-IGZO:N TFTs, in particular, showed even better electrical performance (µFE = 15.0 cm2・V−1・s−1, SS = 0.5 V/dec, VTH = 1.5 V, ION/IOFF = 1.1 × 108 and stability (VTH shift of 1.5, −0.5 and −2.5 V for positive bias-stress, negative bias-stress, and thermal stress tests, respectively than the a-IGZO:N/a-IZO:N TFTs. Based on the X-ray photoemission spectroscopy measurements and energy band analysis, we assumed that the optimized interface trap states, the less ambient gas adsorption, and the better suppression of oxygen vacancies in the a-IZO:N/a-IGZO:N hetero-structures might explain the better behavior of the corresponding TFTs.

  9. Characterization of amorphous yttria layers deposited by aqueous solutions of Y-chelate alkoxides complex

    Science.gov (United States)

    Kim, Young-Soon; Lee, Yu-Ri; Kim, Byeong-Joo; Lee, Jae-Hun; Moon, Seung-Hyun; Lee, Hunju

    2015-01-01

    Crack-free amorphous yttria layers were deposited by dip coating in solutions of different Y-chelate alkoxides complex. Three Y-chelate solutions of different concentrations were prepared using yttrium acetate tetrahydrate, yttrium stearic acid as Y source materials. PEG, diethanolamine were used as chelating agents, while ethanol, methanol and tetradecane were used as solvent. Three different combinations of chelating and solvents were used to prepare solutions for Y2O3 dip coating on SUS, electropolished and non-electropolished Hastelloy C-276 substrates. The thickness of the films was varied by changing the number of dipping cycles. At an optimized condition, the substrate surface roughness (rms) value was reduced from ∼50 nm to ∼1 nm over a 10 × 10 μm2 area. After Y2O3 deposition, MgO was deposited using ion-beam assisted deposition (IBAD), then LaMnO3 (LMO) was deposited using sputtering and GdBCO was deposited using reactive co-evaporation by deposition and reaction (RCE-DR). Detailed X-ray study indicates that LMO/MgO/Y2O3 and GdBCO/LMO/MgO/Y2O3 stack films have good out-of-plane and in-plane textures with strong c-axis alignment. The critical current (Ic) of GdBCO/LMO/MgO/Y2O3 multilayer structure varied from 190 to 420 A/cm with different solutions, when measured at 77 K. These results demonstrated that amorphous yttria can be easily deposited by dip coating using Y-chelates complex as a diffusion barrier and nucleation layer.

  10. Amorphous indium-gallium-zinc-oxide as electron transport layer in organic photodetectors

    International Nuclear Information System (INIS)

    Arora, H.; Malinowski, P. E.; Chasin, A.; Cheyns, D.; Steudel, S.; Schols, S.; Heremans, P.

    2015-01-01

    Amorphous indium-gallium-zinc-oxide (a-IGZO) is demonstrated as an electron transport layer (ETL) in a high-performance organic photodetector (OPD). Dark current in the range of 10 nA/cm 2 at a bias voltage of −2 V and a high photoresponse in the visible spectrum were obtained in inverted OPDs with poly(3-hexylthiophene) and phenyl-C 61 -butyric acid methyl ester active layer. The best results were obtained for the optimum a-IGZO thickness of 7.5 nm with specific detectivity of 3 × 10 12 Jones at the wavelength of 550 nm. The performance of the best OPD devices using a-IGZO was shown to be comparable to state-of-the-art devices based on TiO x as ETL, with higher rectification achieved in reverse bias. Yield and reproducibility were also enhanced with a-IGZO, facilitating fabrication of large area OPDs. Furthermore, easier integration with IGZO-based readout backplanes can be envisioned, where the channel material can be used as photodiode buffer layer after additional treatment

  11. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells.

    Science.gov (United States)

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J; Chang, Robert P H; Facchetti, Antonio; Marks, Tobin J

    2015-06-30

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor-inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.

  12. Amorphous indium-gallium-zinc-oxide as electron transport layer in organic photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Arora, H. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Phelma–Grenoble INP, 3 Parvis Louis Néel, 38016 Grenoble Cedex 01 (France); Malinowski, P. E., E-mail: pawel.malinowski@imec.be; Chasin, A.; Cheyns, D.; Steudel, S.; Schols, S. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Heremans, P. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); ESAT, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Leuven (Belgium)

    2015-04-06

    Amorphous indium-gallium-zinc-oxide (a-IGZO) is demonstrated as an electron transport layer (ETL) in a high-performance organic photodetector (OPD). Dark current in the range of 10 nA/cm{sup 2} at a bias voltage of −2 V and a high photoresponse in the visible spectrum were obtained in inverted OPDs with poly(3-hexylthiophene) and phenyl-C{sub 61}-butyric acid methyl ester active layer. The best results were obtained for the optimum a-IGZO thickness of 7.5 nm with specific detectivity of 3 × 10{sup 12} Jones at the wavelength of 550 nm. The performance of the best OPD devices using a-IGZO was shown to be comparable to state-of-the-art devices based on TiO{sub x} as ETL, with higher rectification achieved in reverse bias. Yield and reproducibility were also enhanced with a-IGZO, facilitating fabrication of large area OPDs. Furthermore, easier integration with IGZO-based readout backplanes can be envisioned, where the channel material can be used as photodiode buffer layer after additional treatment.

  13. Formation of Micro and Mesoporous Amorphous Silica-Based Materials from Single Source Precursors

    Directory of Open Access Journals (Sweden)

    Mohd Nazri Mohd Sokri

    2016-03-01

    Full Text Available Polysilazanes functionalized with alkoxy groups were designed and synthesized as single source precursors for fabrication of micro and mesoporous amorphous silica-based materials. The pyrolytic behaviors during the polymer to ceramic conversion were studied by the simultaneous thermogravimetry-mass spectrometry (TG-MS analysis. The porosity of the resulting ceramics was characterized by the N2 adsorption/desorption isotherm measurements. The Fourier transform infrared spectroscopy (FT-IR and Raman spectroscopic analyses as well as elemental composition analysis were performed on the polymer-derived amorphous silica-based materials, and the role of the alkoxy group as a sacrificial template for the micro and mesopore formations was discussed from a viewpoint to establish novel micro and mesoporous structure controlling technologies through the polymer-derived ceramics (PDCs route.

  14. Ion implantation and amorphous metals

    International Nuclear Information System (INIS)

    Hohmuth, K.; Rauschenbach, B.

    1981-01-01

    This review deals with ion implantation of metals in the high concentration range for preparing amorphous layers (>= 10 at%, implantation doses > 10 16 ions/cm 2 ). Different models are described concerning formation of amorphous phases of metals by ion implantation and experimental results are given. The study of amorphous phases has been carried out by the aid of Rutherford backscattering combined with the channeling technique and using transmission electron microscopy. The structure of amorphous metals prepared by ion implantation has been discussed. It was concluded that amorphous metal-metalloid compounds can be described by a dense-random-packing structure with a great portion of metal atoms. Ion implantation has been compared with other techniques for preparing amorphous metals and the adventages have been outlined

  15. Enhanced stability of thin film transistors with double-stacked amorphous IWO/IWO:N channel layer

    Science.gov (United States)

    Lin, Dong; Pi, Shubin; Yang, Jianwen; Tiwari, Nidhi; Ren, Jinhua; Zhang, Qun; Liu, Po-Tsun; Shieh, Han-Ping

    2018-06-01

    In this work, bottom-gate top-contact thin film transistors with double-stacked amorphous IWO/IWO:N channel layer were fabricated. Herein, amorphous IWO and N-doped IWO were deposited as front and back channel layers, respectively, by radio-frequency magnetron sputtering. The electrical characteristics of the bi-layer-channel thin film transistors (TFTs) were examined and compared with those of single-layer-channel (i.e., amorphous IWO or IWO:N) TFTs. It was demonstrated to exhibit a high mobility of 27.2 cm2 V‑1 s‑1 and an on/off current ratio of 107. Compared to the single peers, bi-layer a-IWO/IWO:N TFTs showed smaller hysteresis and higher stability under negative bias stress and negative bias temperature stress. The enhanced performance could be attributed to its unique double-stacked channel configuration, which successfully combined the merits of the TFTs with IWO and IWO:N channels. The underlying IWO thin film provided percolation paths for electron transport, meanwhile, the top IWO:N layer reduced the bulk trap densities. In addition, the IWO channel/gate insulator interface had reduced defects, and IWO:N back channel surface was insensitive to the ambient atmosphere. Overall, the proposed bi-layer a-IWO/IWO:N TFTs show potential for practical applications due to its possibly long-term serviceability.

  16. Convective heat transfer enhancement using Carbon nanofibers (CNFs): influence of amorphous carbon layer on heat transfer performance

    NARCIS (Netherlands)

    Taha, T.J.; Lefferts, Leonardus; van der Meer, Theodorus H.

    2013-01-01

    In this work, an experimental heat transfer investigation was carried out to investigate the combined influence of both amorphous carbon (a-C) layer thickness and carbon nanofibers (CNFs) on the convective heat transfer behavior. Synthesis of these carbon nano structures was achieved using catalytic

  17. Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells

    KAUST Repository

    Barbe, Jeremy; Tietze, Max Lutz; Neophytou, Marios; Banavoth, Murali; Alarousu, Erkki; El Labban, Abdulrahman; Abulikemu, Mutalifu; Yue, Wan; Mohammed, Omar F.; McCulloch, Iain; Amassian, Aram; Del Gobbo, Silvano

    2017-01-01

    Chemical bath deposition (CBD) of tin oxide (SnO) thin films as an electron-transport layer (ETL) in a planar-heterojunction n-i-p organohalide lead perovskite and organic bulk-heterojunction (BHJ) solar cells is reported. The amorphous SnO (a

  18. The dependence of the modulation transfer function on the blocking layer thickness in amorphous selenium x-ray detectors

    International Nuclear Information System (INIS)

    Hunter, David M.; Belev, Gueorgi; DeCrescenzo, Giovanni; Kasap, Safa O.; Mainprize, James G.; Rowlands, J. A.; Smith, Charles; Tuemer, Tuemay; Verpakhovski, Vladimir; Yin Shi; Yaffe, Martin J.

    2007-01-01

    Blocking layers are used to reduce leakage current in amorphous selenium detectors. The effect of the thickness of the blocking layer on the presampling modulation transfer function (MTF) and on dark current was experimentally determined in prototype single-line CCD-based amorphous selenium (a-Se) x-ray detectors. The sampling pitch of the detectors evaluated was 25 μm and the blocking layer thicknesses varied from 1 to 51 μm. The blocking layers resided on the signal collection electrodes which, in this configuration, were used to collect electrons. The combined thickness of the blocking layer and a-Se bulk in each detector was ∼200 μm. As expected, the dark current increased monotonically as the thickness of the blocking layer was decreased. It was found that if the blocking layer thickness was small compared to the sampling pitch, it caused a negligible reduction in MTF. However, the MTF was observed to decrease dramatically at spatial frequencies near the Nyquist frequency as the blocking layer thickness approached or exceeded the electrode sampling pitch. This observed reduction in MTF is shown to be consistent with predictions of an electrostatic model wherein the image charge from the a-Se is trapped at a characteristic depth within the blocking layer, generally near the interface between the blocking layer and the a-Se bulk

  19. Electrical properties of the regrown implantation-induced amorphous layer on (1 1-bar 0 0)- and (1 1 2-bar 0)-oriented 6H-SiC

    International Nuclear Information System (INIS)

    Nakamura, Tomonori; Tanabe, Hitoshi; Hitomi, Takeshi; Satoh, Masataka

    2003-01-01

    In the (1 1-bar 0 0) and (1 1 2-bar 0)-oriented 6H-SiC, the electrical properties and activation process of the implanted phosphorus in the layer regrown from the implantation-induced amorphous layer are investigated by means of Hall effect measurement and Rutherford backscattering spectrometry. The samples are implanted by 60 keV phosphorus ions at room temperature with doses of 3 x 10 15 and 1 x 10 15 cm -2 to form implantation-induced amorphous layer and the partially disordered implant-layer, respectively. The implanted phosphorus in the implantation-induced amorphous layer can be electrically activated by annealing at 1000 deg. C. The electrical activity for the case of the implantation-induced amorphous layer (ratio of sheet carrier concentration to ion dose) is 2-3 times larger than that for the case of the partially disordered implant-layer for the annealing temperature of 1500 deg. C

  20. Amorphization of metals by ion implantation and ion beam mixing

    International Nuclear Information System (INIS)

    Rauschenbach, B.; Heera, V.

    1988-01-01

    Amorphous metallic systems can be formed either by high-fluence ion implantation of glassforming species or by irradiation of layered metal systems with inert gas ions. Both techniques and experimental examples are presented. Empirical rules are discussed which predict whether a given system can be transformed into an amorphous phase. Influence of temperature, implantation dose and pre-existing crystalline metal composition on amorphization is considered. Examples are given of the implantation induced amorphous structure, recrystallization and formation of quasicrystalline structures. (author)

  1. Bias voltage dependence of magnetic tunnel junctions comprising amorphous ferromagnetic CoFeSiB layer with double barriers

    International Nuclear Information System (INIS)

    Yim, H.I.; Lee, S.Y.; Hwang, J.Y.; Rhee, J.R.; Chun, B.S.; Wang, K.L.; Kim, Y.K.; Kim, T.W.; Lee, S.S.; Hwang, D.G.

    2008-01-01

    Double-barrier magnetic tunnel junctions (DMTJs) with and without an amorphous ferromagnetic material such as CoFeSiB 10, CoFe 5/CoFeSiB 5, and CoFe 10 (nm) were prepared and compared to investigate the bias voltage dependence of the tunneling magnetoresistance (TMR) ratio. Typical DMTJ structures were Ta 45/Ru 9.5/IrMn 10/CoFe 7/AlO x /free layer 10/AlO x /CoFe 7/IrMn 10/Ru 60 (in nanometers). The interlayer coupling field and the normalized TMR ratios at the applied voltages of +0.4 and -0.4 V of the amorphous CoFeSiB free-layer DMTJ offer lower and higher values than that of the polycrystalline CoFe free-layer DMTJ, respectively. An amorphous ferromagnetic CoFeSiB layer improves the interface roughness of the free layer/tunnel barrier and, as a result, the interlayer coupling field and bias voltage dependence of the TMR ratio are suppressed at a given voltage. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. RF power dependent formation of amorphous MoO3-x nanorods by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Navas, I.; Vinodkumar, R.; Detty, A.P.; Mahadevan Pillai, V.P.

    2009-01-01

    Full text: The fabrication of nanorods has received increasing attention for their unique physical and chemical properties and a wide range of potential applications such as photonics and nanoelectronics Molybdenum oxide nanorods with high activity can be used in a wide variety of applications such as cathodes in rechargeable batteries, field emission devices, solid lubricants, superconductors thermoelectric materials, and electrochromic devices. In this paper, amorphous MoO 3-x nanorods can find excellent applications in electrochromic and gas sensing have been successfully prepared by varying the R F power in R F Magnetron Sputtering system without heating the substrate; other parameters which are optimised in our earlier studies. We have found that the optimum RF power for nanorod formation is 200W. At a moderate RF power (200W), sputtering redeposition takes places constructively which leads to formation of fine nanorods. Large RF power creates high energetic ion bombardment on the grains surfaces which can lead to re-nucleation, so the grains become smaller and columnar growth is interrupted. Beyond the RF power 200W, the etching effect of the plasma became more severe and damaged the surface of the nanorods. All the molybdenum oxide films prepared are amorphous; the XRD patterns exhibit no characteristic peak corresponds to MoO 3 . The amorphous nature is preferred for good electrochromic colouration The spectroscopic properties of the nanorods have been investigated systematically using atomic force microscopy, x-ray diffraction, micro-Raman, UV-visible and photoluminescence (PL) spectroscopy. The films exhibit two emission bands; a near band edge UV emission and a defect related deep level visible emission

  3. The Role Seemingly of Amorphous Silica Gel Layers in Chiral Separations by Planar Chromatography

    Directory of Open Access Journals (Sweden)

    Teresa Kowalska

    2007-12-01

    Full Text Available In planar chromatography, silica gel appears as the most frequently used adsorbent. Its preference as planar chromatographic stationary phase is due to its high specific surface area (ca. 700 m2 g-1 and relatively simple active sites (silanol groups, Si-OH. The high specific surface area of silica gel and a high density of coverage of its surface with the silanol active sites contribute jointly to an excellent separation performance of this adsorbent. In our experiments on chiral separation of the enantiomer pairs by planar chromatography, contradictory behavior of the silica gel layers versus the chiral compounds was observed. The migration tracks of chiral compounds in the ascending planar chromatographic mode were not vertical but bent on either side being a function of analyte chirality. This deviation of the analyte’s migration track was noticed, when using the densitometric scanner to quantify the respective chromatograms. In order to confirm the hypothesis as to the microcrystalline nature of silica gel used in liquid chromatography, it was further investigated through circular dichroism (CD and the data thereof confirmed that the ‘chromatographic’ silica gels are not amorphous but microcrystalline, contributing to the (partial horizontal enantioseparation of the antimer pairs. This paper summarizes the results of our investigation on the microcrystalline nature of silica gels used in planar chromatography and their impact on enantioseparation of the selected pairs of antimers.

  4. The role seemingly of amorphous silica gel layers in chiral separations by planar chromatography

    International Nuclear Information System (INIS)

    Sajewicz, M.; Kowalska, T.

    2007-01-01

    In planar chromatography, silica gel appears as the most frequently used adsorbent. Its preference as planar chromatographic stationary phase is due to its high specific surface area (ca. 700 m2 gl) and relatively simple active sites (silanol groups =Si-OH). The high specific surface area of silica gel and a high density of coverage of its surface with the silanol active sites contribute jointly to an excellent separation performance of this adsorbent. In our experiments on chiral separation of the enantiomer pairs by planar chromatography, contradictory behavior of the silica gel layers versus the chiral compounds was observed. The migration tracks of chiral compounds in the ascending planar chromatographic mode were not vertical but bent on either side being a function of analyte chirality. This deviation of the analytes migration track was noticed, when using the densitometric scanner to quantify the respective chromatograms. In order to confirm the hypothesis as to the microcrystalline nature of silica gel used in liquid chromatography, it was further investigated through circular dichroism (CD) and the data thereof confirmed that the chromatographic silica gels are not amorphous but microcrystalline, contributing to the (partial) horizontal enantioseparation of the antimer pairs. This paper summarizes the results of our investigation on the microcrystalline nature of silica gels used in planar chromatography and their impact on enantioseparation of the selected pairs of antimers. (author)

  5. Influence of amorphous layers on the thermal conductivity of phononic crystals

    Science.gov (United States)

    Verdier, Maxime; Lacroix, David; Didenko, Stanislav; Robillard, Jean-François; Lampin, Evelyne; Bah, Thierno-Moussa; Termentzidis, Konstantinos

    2018-03-01

    The impact of amorphous phases around the holes and at the upper and lower free surfaces on thermal transport in silicon phononic membranes is studied. By means of molecular dynamics and Monte Carlo simulations, we explore the impact of the amorphous phase (oxidation and amorphous silicon), surfaces roughness, and a series of geometric parameters on thermal transport. We show that the crystalline phase drives the phenomena; the two main parameters are (i) the crystalline fraction between two holes and (ii) the crystalline thickness of the membranes. We reveal the hierarchical impact of nanostructurations on the thermal conductivity, namely, from the most resistive to the less resistive: the creation of holes, the amorphous phase around them, and the amorphization of the membranes edges. The surfaces or interfaces perpendicular to the heat flow hinder the thermal conductivity to a much greater extent than those parallel to the heat flow.

  6. Amorphous Calcium Phosphate Formation and Aggregation Process Revealed by Light Scattering Techniques

    Directory of Open Access Journals (Sweden)

    Vida Čadež

    2018-06-01

    Full Text Available Amorphous calcium phosphate (ACP attracts attention as a precursor of crystalline calcium phosphates (CaPs formation in vitro and in vivo as well as due to its excellent biological properties. Its formation can be considered to be an aggregation process. Although aggregation of ACP is of interest for both gaining a fundamental understanding of biominerals formation and in the synthesis of novel materials, it has still not been investigated in detail. In this work, the ACP aggregation was followed by two widely applied techniques suitable for following nanoparticles aggregation in general: dynamic light scattering (DLS and laser diffraction (LD. In addition, the ACP formation was followed by potentiometric measurements and formed precipitates were characterized by Fourier transform infrared spectroscopy (FTIR, powder X-ray diffraction (PXRD, transmission electron microscopy (TEM, and atomic force microscopy (AFM. The results showed that aggregation of ACP particles is a process which from the earliest stages simultaneously takes place at wide length scales, from nanometers to micrometers, leading to a highly polydisperse precipitation system, with polydispersity and vol. % of larger aggregates increasing with concentration. Obtained results provide insight into developing a way of regulating ACP and consequently CaP formation by controlling aggregation on the scale of interest.

  7. Glassy formation ability, magnetic properties and magnetocaloric effect in Al27Cu18Er55 amorphous ribbon

    Science.gov (United States)

    Li, Lingwei; Xu, Chi; Yuan, Ye; Zhou, Shengqiang

    2018-05-01

    In this work, we have fabricated the Al27Cu18Er55 amorphous ribbon with good glassy formation ability by melt-spinning technology. A broad paramagnetic (PM) to ferromagnetic (FM) transition (second ordered) together with a large reversible magnetocaloric effect (MCE) in Al27Cu18Er55 amorphous ribbon was observed around the Curie temperature TC ∼ 11 K. Under the magnetic field change (ΔH of 0-7 T, the values of MCE parameter of the maximum magnetic entropy change (-ΔSMmax) and refrigerant capacity (RC) for Al27Cu18Er55 amorphous ribbon reach 21.4 J/kg K and 599 J/kg, respectively. The outstanding glass forming ability as well as the excellent magneto-caloric properties indicate that Al27Cu18Er55 amorphous could be a good candidate for low temperature magnetic refrigeration.

  8. Glass solution formation in water - In situ amorphization of naproxen and ibuprofen with Eudragit® E PO

    DEFF Research Database (Denmark)

    Doreth, Maria; Löbmann, Korbinian; Grohganz, Holger

    2016-01-01

    is applicable to other drugs. Compacts of drug and Eudragit® E were compressed at a 2:1, 1:1 and 1:2 drug-to-polymer ratio (w/w) and immersed in water for 1 h. Physicochemical characteristics, potential interactions and dissolution behavior were analyzed and compared to non-immersed compacts. Both drugs formed...... a glass solution with Eudragit® E when immersed into water. In XRPD, reflections of the respective drugs decreased or disappeared completely. All samples showed a single glass transition temperature in the DSC, suggesting the formation of single phase amorphous systems. Ionic interactions between drug...... and polymer were identified by infrared spectroscopy. In the dissolution study (pH 4.1), especially the 1:1 (w/w) in situ amorphized samples showed an improved dissolution behavior compared to their non-immersed counterparts. It can be concluded that in situ amorphization is a promising method to amorphize...

  9. Formation mechanism for the nanoscale amorphous interface in pulse-welded Al/Fe bimetallic systems

    International Nuclear Information System (INIS)

    Li, Jingjing; Yu, Qian; Zhang, Zijiao; Xu, Wei; Sun, Xin

    2016-01-01

    Pulse or impact welding traditionally has been referred to as “solid-state” welding. By integrating advanced interface characterizations and diffusion calculations, we report that the nanoscale amorphous interface in the pulse-welded Al/Fe bimetallic system is formed by rapid heating and melting of a thin Al layer at the interface, diffusion of iron atoms in the liquid aluminum, and subsequent rapid quenching with diffused iron atoms in solution. This finding challenges the commonly held belief regarding the solid-state nature of the impact-based welding process for dissimilar metals. Elongated ultra-fine grains with high dislocation density and ultra-fine equiaxed grains also are observed in the weld interface vicinity on the steel and aluminum sides, respectively, which further confirms that melting and the subsequent recrystallization occurred on the aluminum side of the interface.

  10. Formation mechanism for the nanoscale amorphous interface in pulse-welded Al/Fe bimetallic systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jingjing [Department of Mechanical Engineering, The University of Hawaii at Manoa, Honolulu, Hawaii 96822 (United States); Yu, Qian; Zhang, Zijiao [Department of Materials Science and Engineering, Center for Electron Microscope, Zhejiang University, Hangzhou 310027 (China); Xu, Wei; Sun, Xin, E-mail: xin.sun@pnnl.gov [Pacific Northwest National Laboratory, Richland, Washington 99354 (United States)

    2016-05-16

    Pulse or impact welding traditionally has been referred to as “solid-state” welding. By integrating advanced interface characterizations and diffusion calculations, we report that the nanoscale amorphous interface in the pulse-welded Al/Fe bimetallic system is formed by rapid heating and melting of a thin Al layer at the interface, diffusion of iron atoms in the liquid aluminum, and subsequent rapid quenching with diffused iron atoms in solution. This finding challenges the commonly held belief regarding the solid-state nature of the impact-based welding process for dissimilar metals. Elongated ultra-fine grains with high dislocation density and ultra-fine equiaxed grains also are observed in the weld interface vicinity on the steel and aluminum sides, respectively, which further confirms that melting and the subsequent recrystallization occurred on the aluminum side of the interface.

  11. Instability limits for spontaneous double layer formation

    International Nuclear Information System (INIS)

    Carr, J. Jr.; Galante, M. E.; McCarren, D.; Scime, E. E.; Sears, S.; VanDervort, R. W.; Magee, R. M.; Reynolds, E.

    2013-01-01

    We present time-resolved measurements that demonstrate that large amplitude electrostatic instabilities appear in pulsed, expanding helicon plasmas at the same time as particularly strong double layers appear in the expansion region. A significant cross-correlation between the electrostatic fluctuations and fluctuations in the number of ions accelerated by the double layer electric field is observed. No correlation is observed between the electrostatic fluctuations and ions that have not passed through the double layer. These measurements confirm that the simultaneous appearance of the electrostatic fluctuations and the double layer is not simple coincidence. In fact, the accelerated ion population is responsible for the growth of the instability. The double layer strength, and therefore, the velocity of the accelerated ions, is limited by the appearance of the electrostatic instability

  12. A study of the formation of amorphous calcium phosphate and hydroxyapatite on melt quenched Bioglass using surface sensitive shallow angle X-ray diffraction.

    Science.gov (United States)

    Martin, R A; Twyman, H; Qiu, D; Knowles, J C; Newport, R J

    2009-04-01

    Melt quenched silicate glasses containing calcium, phosphorous and alkali metals have the ability to promote bone regeneration and to fuse to living bone. These glasses, including 45S5 Bioglass((R)) [(CaO)(26.9)(Na(2)O)(24.4)(SiO(2))(46.1)(P(2)O(5))(2.6)], are routinely used as clinical implants. Consequently there have been numerous studies on the structure of these glasses using conventional diffraction techniques. These studies have provided important information on the atomic structure of Bioglass((R)) but are of course intrinsically limited in the sense that they probe the bulk material and cannot be as sensitive to thin layers of near-surface dissolution/growth. The present study therefore uses surface sensitive shallow angle X-ray diffraction to study the formation of amorphous calcium phosphate and hydroxyapatite on Bioglass((R)) samples, pre-reacted in simulated body fluid (SBF). Unreacted Bioglass((R)) is dominated by a broad amorphous feature around 2.2 A(-1) which is characteristic of sodium calcium silicate glass. After reacting Bioglass((R)) in SBF a second broad amorphous feature evolves ~1.6 A(-1) which is attributed to amorphous calcium phosphate. This feature is evident for samples after only 4 h reacting in SBF and by 8 h the amorphous feature becomes comparable in magnitude to the background signal of the bulk Bioglass((R)). Bragg peaks characteristic of hydroxyapatite form after 1-3 days of reacting in SBF.

  13. The effect of oxygen on segregation-induced redistribution of rare-earth elements in silicon layers amorphized by ion implantation

    International Nuclear Information System (INIS)

    Aleksandrov, O. V.

    2006-01-01

    A model of segregation-induced redistribution of impurities of rare-earth elements during solid-phase epitaxial crystallization of silicon layers amorphized by ion implantation is developed. This model is based on the assumption that a transition layer with a high mobility of atoms is formed at the interphase boundary on the side of a-Si; the thickness of this layer is governed by the diffusion length of vacancies in a-Si. The Er concentration profiles in Si implanted with both erbium and oxygen ions are analyzed in the context of the model. It shown that, in the case of high doses of implantation of rare-earth ions, it is necessary to take into account the formation of R m clusters (m = 4), where R denotes the atom of a rare-earth element, whereas, if oxygen ions are also implanted, formation of the complexes RO n (n = 3-6) should be taken into account; these complexes affect the transition-layer thickness and segregation coefficient

  14. Computer simulation of radiation-induced nanostructure formation in amorphous materials

    International Nuclear Information System (INIS)

    Li, K.-D.; Perez-Bergquist, Alejandro; Wang, Lumin

    2009-01-01

    In this study, 3D simulations based on a theoretical model were developed to investigate radiation-induced nanostructure formation in amorphous materials. Model variables include vacancy production and recombination rates, ion sputtering effects, and redeposition of sputtered atoms. In addition, a phase field model was developed to predict vacancy diffusion as a function of free energies of mixing and interfacial energies. The distribution profile of the vacancy production rate along the depth of an irradiated matrix was considered as a near Gaussian approximation according to Monte-Carlo TRIM code calculations. Dynamic processes responsible for nanostructure evolution were simulated by updating the vacancy concentration profile over time. Simulated morphologies include cellular nanoholes, nanowalls, nanovoids, and nanofibers, with the resultant morphology dependant upon the incident ion species and ion fluence. These simulated morphologies are consistent with experimental observations achieved under comparable experimental conditions. Our model provides a distinct numerical approach to accurately predicting morphological results for ion-irradiation-induced nanostructures.

  15. Modeling of amorphous pocket formation in silicon by numerical solution of the heat transport equation

    International Nuclear Information System (INIS)

    Kovac, D.; Otto, G.; Hobler, G.

    2005-01-01

    In this paper we present a model of amorphous pocket formation that is based on binary collision simulations to generate the distribution of deposited energy, and on numerical solution of the heat transport equation to describe the quenching process. The heat transport equation is modified to consider the heat of melting when the melting temperature is crossed at any point in space. It is discretized with finite differences on grid points that coincide with the crystallographic lattice sites, which allows easy determination of molten atoms. Atoms are considered molten if the average of their energy and the energy of their neighbors meets the melting criterion. The results obtained with this model are in good overall agreement with published experimental data on P, As, Te and Tl implantations in Si and with data on the polyatomic effect at cryogenic temperature

  16. Thermal conductivity of amorphous Al2O3/TiO2 nanolaminates deposited by atomic layer deposition.

    Science.gov (United States)

    Ali, Saima; Juntunen, Taneli; Sintonen, Sakari; Ylivaara, Oili M E; Puurunen, Riikka L; Lipsanen, Harri; Tittonen, Ilkka; Hannula, Simo-Pekka

    2016-11-04

    The thermophysical properties of Al2O3/TiO2 nanolaminates deposited by atomic layer deposition (ALD) are studied as a function of bilayer thickness and relative TiO2 content (0%-100%) while the total nominal thickness of the nanolaminates was kept at 100 nm. Cross-plane thermal conductivity of the nanolaminates is measured at room temperature using the nanosecond transient thermoreflectance method. Based on the measurements, the nanolaminates have reduced thermal conductivity as compared to the pure amorphous thin films, suggesting that interfaces have a non-negligible effect on thermal transport in amorphous nanolaminates. For a fixed number of interfaces, we find that approximately equal material content of Al2O3 and TiO2 produces the lowest value of thermal conductivity. The thermal conductivity reduces with increasing interface density up to 0.4 nm(-1), above which the thermal conductivity is found to be constant. The value of thermal interface resistance approximated by the use of diffuse mismatch model was found to be 0.45 m(2) K GW(-1), and a comparative study employing this value supports the interpretation of non-negligible interface resistance affecting the overall thermal conductivity also in the amorphous limit. Finally, no clear trend in thermal conductivity values was found for nanolaminates grown at different deposition temperatures, suggesting that the temperature in the ALD process has a non-trivial while modest effect on the overall thermal conductivity in amorphous nanolaminates.

  17. Toward an understanding of surface layer formation, growth, and transformation at the glass-fluid interface

    Science.gov (United States)

    Hopf, J.; Eskelsen, J. R.; Chiu, M.; Ievlev, A. V.; Ovchinnikova, O. S.; Leonard, D.; Pierce, E. M.

    2018-05-01

    Silicate glass is a metastable and durable solid that has application to a number of energy and environmental challenges (e.g., microelectronics, fiber optics, and nuclear waste storage). If allowed to react with water over time silicate glass develops an altered layer at the solid-fluid interface. In this study, we used borosilicate glass (LAWB45) as a model material to develop a robust understanding of altered layer formation (i.e., amorphous hydrated surface layer and crystalline reaction products). Experiments were conducted at high surface area-to-volume ratio (∼200,000 m-1) and 90 °C in the pressurized unsaturated flow (PUF) apparatus for 1.5-years to facilitate the formation of thick altered layers and allow for the effluent solution chemistry to be monitored continuously. A variety of microscopy techniques were used to characterize reacted grains and suggest the average altered layer thickness is 13.2 ± 8.3 μm with the hydrated and clay layer representing 74.8% and 25.2% of the total altered layer, respectively. The estimate of hydrated layer thickness is within the experimental error of the value estimated from the B release rate data (∼10 ± 1 μm/yr) over the 1.5-year duration. PeakForce® quantitative nanomechanical mapping results suggest the hydrated layer has a modulus that ranges between ∼20 and 40 GPa, which is in the range of porous silica that contains from ∼20 to ∼50% porosity, yet significantly lower than dense silica (∼70-80 GPa). Scanning transmission electron microscopy (STEM) images confirm the presence of pores and an analysis of a higher resolution image provides a qualitative estimate of ≥22% porosity in the hydrated layer with variations in void volume with increasing distance from the unaltered glass. Chemical composition analyses, based on a combination of time-of-flight secondary-ion mass spectrometry (ToF-SIMS), scanning electron microscopy with X-ray energy dispersive spectroscopy (EDS), and STEM-EDS, clearly show

  18. Homogeneous double-layer amorphous Si-doped indium oxide thin-film transistors for control of turn-on voltage

    International Nuclear Information System (INIS)

    Kizu, Takio; Tsukagoshi, Kazuhito; Aikawa, Shinya; Nabatame, Toshihide; Fujiwara, Akihiko; Ito, Kazuhiro; Takahashi, Makoto

    2016-01-01

    We fabricated homogeneous double-layer amorphous Si-doped indium oxide (ISO) thin-film transistors (TFTs) with an insulating ISO cap layer on top of a semiconducting ISO bottom channel layer. The homogeneously stacked ISO TFT exhibited high mobility (19.6 cm"2/V s) and normally-off characteristics after annealing in air. It exhibited normally-off characteristics because the ISO insulator suppressed oxygen desorption, which suppressed the formation of oxygen vacancies (V_O) in the semiconducting ISO. Furthermore, we investigated the recovery of the double-layer ISO TFT, after a large negative shift in turn-on voltage caused by hydrogen annealing, by treating it with annealing in ozone. The recovery in turn-on voltage indicates that the dense V_O in the semiconducting ISO can be partially filled through the insulator ISO. Controlling molecule penetration in the homogeneous double layer is useful for adjusting the properties of TFTs in advanced oxide electronics.

  19. Growth of AlN/Pt heterostructures on amorphous substrates at low temperatures via atomic layer epitaxy

    International Nuclear Information System (INIS)

    Nepal, N.; Goswami, R.; Qadri, S.B.; Mahadik, N.A.; Kub, F.J.; Eddy, C.R.

    2014-01-01

    Recent results on atomic layer epitaxy (ALE) growth and characterization of (0 0 0 1)AlN on highly oriented (1 1 1)Pt layers on amorphous HfO 2 /Si(1 0 0) are reported. HfO 2 was deposited by atomic layer deposition on Si(1 0 0) followed by ALE growth of Pt(15 nm) and, subsequently, AlN(60 nm) at 500 °C. Based on the X-ray diffraction and transmission electron microscopy measurements, the Pt and AlN layers are highly oriented along the (1 1 1) and (0 0 0 2) directions, respectively. Demonstrations of AlN/Pt heterostructures open up the possibility of new state-of-the-art microelectromechanical systems devices

  20. Suppression of photo-bias induced instability for amorphous indium tungsten oxide thin film transistors with bi-layer structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Po-Tsun, E-mail: ptliu@mail.nctu.edu.tw; Chang, Chih-Hsiang; Chang, Chih-Jui [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China)

    2016-06-27

    This study investigates the instability induced by bias temperature illumination stress (NBTIS) for an amorphous indium-tungsten-oxide thin film transistor (a-IWO TFT) with SiO{sub 2} backchannel passivation layer (BPL). It is found that this electrical degradation phenomenon can be attributed to the generation of defect states during the BPL process, which deteriorates the photo-bias stability of a-IWO TFTs. A method proposed by adding an oxygen-rich a-IWO thin film upon the a-IWO active channel layer could effectively suppress the plasma damage to channel layer during BPL deposition process. The bi-layer a-IWO TFT structure with an oxygen-rich back channel exhibits superior electrical reliability of device under NBTIS.

  1. Formation and properties of porous silicon layers

    International Nuclear Information System (INIS)

    Vitanov, P.; Kamenova, M.; Dimova-Malinovska, D.

    1993-01-01

    Preparation, properties and application of porous silicon films are investigated. Porous silicon structures were formed by an electrochemical etching process resulting in selective dissolution of the silicon substrate. The silicon wafers used with a resistivity of 5-10Ω.cm were doped with B to concentrations 6x10 18 -1x10 19 Ω.cm -3 in the temperature region 950 o C-1050 o C. The density of each porous films was determined from the weight loss during the anodization and it depends on the surface resistivity of the Si wafer. The density decreases with decreasing of the surface resistivity. The surface of the porous silicon layers was studied by X-ray photoelectron spectroscopy which indicates the presence of SiF 4 . The kinetic dependence of the anode potential and the porous layer thickness on the time of anodization in a galvanostatic regime for the electrolytes with various HF concentration were studied. In order to compare the properties of the resulting porous layers and to establish the dependence of the porosity on the electrolyte, three types of electrolytes were used: concentrated HF, diluted HF:H 2 O=1:1 and ethanol-hydrofluoric solutions HF:C 2 H 5 OH:H 2 O=2:1:1. High quality uniform and reproducible layers were formed using aqueous-ethanol-hydrofluoric electrolyte. Both Kikuchi's line and ring patterns were observed by TEM. The porous silicon layer was single crystal with the same orientation as the substrate. The surface shows a polycrystalline structure only. The porous silicon layers exhibit visible photoluminescence (PL) at room temperature under 480 nm Ar + laser line excitation. The peak of PL was observed at about 730 nm with FWHM about 90 nm. Photodiodes was made with a W-porous silicon junction. The current voltage and capacity voltage characteristics were similar to those of an isotype heterojunction diode. (orig.)

  2. Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys

    International Nuclear Information System (INIS)

    Kalay, Yunus Eren

    2008-01-01

    Remarkable advances have been made since rapid solidification was first introduced to the field of materials science and technology. New types of materials such as amorphous alloys and nanostructure materials have been developed as a result of rapid solidification techniques. While these advances are, in many respects, ground breaking, much remains to be discerned concerning the fundamental relationships that exist between a liquid and a rapidly solidified solid. The scope of the current dissertation involves an extensive set of experimental, analytical, and computational studies designed to increase the overall understanding of morphological selection, phase competition, and structural hierarchy that occurs under far-from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are the two different rapid solidification techniques applied in this study. The research is mainly focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet favorable, systems for exploration when alloyed with aluminum under far-from equilibrium conditions. One of the main differences comes from the positions of their respective T 0 curves, which makes Al-Si a good candidate for solubility extension while the plunging T 0 line in Al-Sm promotes glass formation. The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 to 50 wt% Si are examined using scanning and transmission electron microscopy. The non-equilibrium partitioning and morphological selection observed by examining powders at different size classes are described via a microstructure map. The interface velocities and the amount of undercooling present in the powders are estimated from measured eutectic spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which permit a direct comparison of theoretical predictions. For an average particle size of 10 (micro)m with a Peclet number of ∼0.2, JH and TMK deviate from each other. This

  3. Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kalay, Yunus Eren [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Remarkable advances have been made since rapid solidification was first introduced to the field of materials science and technology. New types of materials such as amorphous alloys and nanostructure materials have been developed as a result of rapid solidification techniques. While these advances are, in many respects, ground breaking, much remains to be discerned concerning the fundamental relationships that exist between a liquid and a rapidly solidified solid. The scope of the current dissertation involves an extensive set of experimental, analytical, and computational studies designed to increase the overall understanding of morphological selection, phase competition, and structural hierarchy that occurs under far-from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are the two different rapid solidification techniques applied in this study. The research is mainly focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet favorable, systems for exploration when alloyed with aluminum under far-from equilibrium conditions. One of the main differences comes from the positions of their respective T0 curves, which makes Al-Si a good candidate for solubility extension while the plunging T0 line in Al-Sm promotes glass formation. The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 to 50 wt% Si are examined using scanning and transmission electron microscopy. The non-equilibrium partitioning and morphological selection observed by examining powders at different size classes are described via a microstructure map. The interface velocities and the amount of undercooling present in the powders are estimated from measured eutectic spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which permit a direct comparison of theoretical predictions. For an average particle size of 10 {micro}m with a Peclet number of ~0.2, JH and TMK deviate from

  4. Optimization of Recombination Layer in the Tunnel Junction of Amorphous Silicon Thin-Film Tandem Solar Cells

    Directory of Open Access Journals (Sweden)

    Yang-Shin Lin

    2011-01-01

    Full Text Available The amorphous silicon/amorphous silicon (a-Si/a-Si tandem solar cells have attracted much attention in recent years, due to the high efficiency and low manufacturing cost compared to the single-junction a-Si solar cells. In this paper, the tandem cells are fabricated by high-frequency plasma-enhanced chemical vapor deposition (HF-PECVD at 27.1 MHz. The effects of the recombination layer and the i-layer thickness matching on the cell performance have been investigated. The results show that the tandem cell with a p+ recombination layer and i2/i1 thickness ratio of 6 exhibits a maximum efficiency of 9.0% with the open-circuit voltage (Voc of 1.59 V, short-circuit current density (Jsc of 7.96 mA/cm2, and a fill factor (FF of 0.70. After light-soaking test, our a-Si/a-Si tandem cell with p+ recombination layer shows the excellent stability and the stabilized efficiency of 8.7%.

  5. Fabrication of amorphous IGZO thin film transistor using self-aligned imprint lithography with a sacrificial layer

    Science.gov (United States)

    Kim, Sung Jin; Kim, Hyung Tae; Choi, Jong Hoon; Chung, Ho Kyoon; Cho, Sung Min

    2018-04-01

    An amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistor (TFT) was fabricated by a self-aligned imprint lithography (SAIL) method with a sacrificial photoresist layer. The SAIL is a top-down method to fabricate a TFT using a three-dimensional multilayer etch mask having all pattern information for the TFT. The sacrificial layer was applied in the SAIL process for the purpose of removing the resin residues that were inevitably left when the etch mask was thinned by plasma etching. This work demonstrated that the a-IGZO TFT could be fabricated by the SAIL process with the sacrificial layer. Specifically, the simple fabrication process utilized in this study can be utilized for the TFT with a plasma-sensitive semiconductor such as the a-IGZO and further extended for the roll-to-roll TFT fabrication.

  6. Effect of etching stop layer on characteristics of amorphous IGZO thin film transistor fabricated at low temperature

    Directory of Open Access Journals (Sweden)

    Xifeng Li

    2013-03-01

    Full Text Available Transparent bottom-gate amorphous Indium-Gallium-Zinc Oxide (a-IGZO thin-film transistors (TFTs had been successfully fabricated at relative low temperature. The influence of reaction gas ratio of N2O and SiH4 during the growth of etching stop layer (SiOx on the characteristics of a-IGZO TFTs was investigated. The transfer characteristics of the TFTs were changed markedly because active layer of a-IGZO films was modified by plasma in the growth process of SiOx. By optimizing the deposition parameters of etching stop layer process, a-IGZO TFTs were manufactured and exhibited good performance with a field-effect mobility of 8.5 cm2V-1s-1, a threshold voltage of 1.3 V, and good stability under gate bias stress of 20 V for 10000 s.

  7. Characterization of oxide layers on amorphous Mg-based alloys by Auger electron spectroscopy with sputter depth profiling

    Energy Technology Data Exchange (ETDEWEB)

    Baunack, S.; Wolff, U. [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung Dresden, Postfach 270016, 01171, Dresden (Germany); Subba Rao, R.V. [Indira Ghandi Centre for Atomic Research, 603 102, Kalpakkam, Tamil Nadu (India)

    2003-04-01

    Amorphous ribbons of Mg-Y-TM-[Ag](TM: Cu, Ni), prepared by melt spinning, were subjected to electrochemical investigations. Oxide layers formed anodically under potentiostatic control in different electrolytes were investigated by AES and sputter depth profiling. Problems and specific features of characterization of the composition of oxide layers and amorphous ternary or quaternary Mg-based alloys have been investigated. In the alloys the Mg(KL{sub 23}L{sub 23}) peak exhibits a different shape compared to that in the pure element. Analysis of the peak of elastically scattered electrons proved the absence of plasmon loss features, characteristic of pure Mg, in the alloy. A different loss feature emerges in Mg(KL{sub 23}L{sub 23}) and Cu(L{sub 23}VV). The system Mg-Y-TM-[Ag] suffers preferential sputtering. Depletion of Mg and enrichment of TM and Y are found. This is attributed mainly to the preferential sputtering of Mg. Thickness and composition of the formed oxide layer depend on the electrochemical treatment. After removing the oxide by sputtering the concentration of the underlying alloy was found to be affected by the treatment. (orig.)

  8. A humidity sensitive two-dimensional tunable amorphous photonic structure in the outer layer of bivalve ligament from Sunset Siliqua

    International Nuclear Information System (INIS)

    Zhang, Weigang; Zhang, Gangsheng

    2015-01-01

    A humidity sensitive two-dimensional tunable amorphous photonic structure (2D TAPS) in the outer layer of bivalve ligament from Sunset Siliqua (OLLS) was reported in this paper. The structural color and microstructure of OLLS were investigated by reflection spectra and scanning electron microscopy, respectively. The results indicate that the reflection peak wavelength of the wet OLLS blue-shifts from 454 nm to 392 nm with the increasing of air drying time from 0 to 40 min, while the reflectivity decreases gradually and vanishes at last, relevant color changes from blue to black background color. The structural color in the OLLS is produced by a two-dimensional amorphous photonic structure consisting of aligned protein fibers, in which the diameter of protein fiber and the inter-fiber spacing are 101 ± 12 nm. Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure, and the regulation achieved through dynamically tuning the interaction between inter-fiber spacing and average refractive index. - Highlights: • A humidity sensitive two-dimensional tunable amorphous photonic structure • Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure. • This photonic structure may yield very useful template for artificial structures

  9. A humidity sensitive two-dimensional tunable amorphous photonic structure in the outer layer of bivalve ligament from Sunset Siliqua

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weigang, E-mail: abczwg15@163.com [College of Materials and Chemical Engineering, Chuzhou University, Chuzhou 239000 (China); Zhang, Gangsheng [College of Material Science and Technology, Guangxi University, Nanning 530004 (China)

    2015-07-01

    A humidity sensitive two-dimensional tunable amorphous photonic structure (2D TAPS) in the outer layer of bivalve ligament from Sunset Siliqua (OLLS) was reported in this paper. The structural color and microstructure of OLLS were investigated by reflection spectra and scanning electron microscopy, respectively. The results indicate that the reflection peak wavelength of the wet OLLS blue-shifts from 454 nm to 392 nm with the increasing of air drying time from 0 to 40 min, while the reflectivity decreases gradually and vanishes at last, relevant color changes from blue to black background color. The structural color in the OLLS is produced by a two-dimensional amorphous photonic structure consisting of aligned protein fibers, in which the diameter of protein fiber and the inter-fiber spacing are 101 ± 12 nm. Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure, and the regulation achieved through dynamically tuning the interaction between inter-fiber spacing and average refractive index. - Highlights: • A humidity sensitive two-dimensional tunable amorphous photonic structure • Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure. • This photonic structure may yield very useful template for artificial structures.

  10. Generation of amorphous surface layers in LiNbO3 by ion-beam irradiation: thresholding and boundary propagation

    International Nuclear Information System (INIS)

    Olivares, J.; Garcia, G.; Agullo-Lopez, F.; Agullo-Rueda, F.; Kling, A.; Soares, J.C.

    2005-01-01

    The refractive-index profiles induced by high-energy (5 MeV, 7.5 MeV) silicon irradiation in LiNbO 3 have been systematically determined as a function of ion fluence in the range 10 13 -10 15 cm -2 . At variance with irradiations at lower energies, an optically isotropic ('amorphous') homogeneous surface layer is generated whose thickness increases with fluence. These results have been associated with an electronic excitation mechanism. They are discussed in relation to the well-documented phenomenon of latent (amorphous) track generation under ion irradiation, requiring a threshold value S e,th for the electronic stopping power S e . Our optical data have yielded a value of ∼5 keV/nm for such a threshold, within the range reported by independent single-track measurements. The propagation of the amorphous boundary into the crystal during irradiation indicates that the threshold value decreases on increasing the fluence. Complementary Rutherford backscattering-channeling and micro-Raman (on samples irradiated at 30 MeV) experiments have been performed to monitor the induced structural changes. (orig.)

  11. Enhanced formation of Ge nanocrystals in Ge : SiO2 layers by swift heavy ions

    International Nuclear Information System (INIS)

    Antonova, I V; Volodin, V A; Marin, D M; Skuratov, V A; Smagulova, S A; Janse van Vuuren, A; Neethling, J; Jedrzejewski, J; Balberg, I

    2012-01-01

    In this paper we report the ability of swift heavy Xe ions with an energy of 480 MeV and a fluence of 10 12 cm -2 to enhance the formation of Ge nanocrystals within SiO 2 layers with variable Ge contents. These Ge-SiO 2 films were fabricated by the co-sputtering of Ge and quartz sources which followed various annealing procedures. In particular, we found that the irradiation of the Ge : SiO 2 films with subsequent annealing at 500 °C leads to the formation of a high concentration of nanocrystals (NCs) with a size of 2-5 nm, whereas without irradiation only amorphous inclusions were observed. This effect, as evidenced by Raman spectra, is enhanced by pre-irradiation at 550 °C and post-irradiation annealing at 600 °C, which also leads to the observation of room temperature visible photoluminescence. (paper)

  12. Amorphous Ultrathin SnO2 Films by Atomic Layer Deposition on Graphene Network as Highly Stable Anodes for Lithium-Ion Batteries.

    Science.gov (United States)

    Xie, Ming; Sun, Xiang; George, Steven M; Zhou, Changgong; Lian, Jie; Zhou, Yun

    2015-12-23

    Amorphous SnO2 (a-SnO2) thin films were conformally coated onto the surface of reduced graphene oxide (G) using atomic layer deposition (ALD). The electrochemical characteristics of the a-SnO2/G nanocomposites were then determined using cyclic voltammetry and galvanostatic charge/discharge curves. Because the SnO2 ALD films were ultrathin and amorphous, the impact of the large volume expansion of SnO2 upon cycling was greatly reduced. With as few as five formation cycles best reported in the literature, a-SnO2/G nanocomposites reached stable capacities of 800 mAh g(-1) at 100 mA g(-1) and 450 mAh g(-1) at 1000 mA g(-1). The capacity from a-SnO2 is higher than the bulk theoretical values. The extra capacity is attributed to additional interfacial charge storage resulting from the high surface area of the a-SnO2/G nanocomposites. These results demonstrate that metal oxide ALD on high surface area conducting carbon substrates can be used to fabricate high power and high capacity electrode materials for lithium-ion batteries.

  13. Ge nitride formation in N-doped amorphous Ge2Sb2Te5

    International Nuclear Information System (INIS)

    Jung, M.-C.; Lee, Y. M.; Kim, H.-D.; Kim, M. G.; Shin, H. J.; Kim, K. H.; Song, S. A.; Jeong, H. S.; Ko, C. H.; Han, M.

    2007-01-01

    The chemical state of N in N-doped amorphous Ge 2 Sb 2 Te 5 (a-GST) samples with 0-14.3 N at. % doping concentrations was investigated by high-resolution x-ray photoelectron spectroscopy (HRXPS) and Ge K-edge x-ray absorption spectroscopy (XAS). HRXPS showed negligible change in the Te 4d and Sb 4d core-level spectra. In the Ge 3d core-level spectra, a Ge nitride (GeN x ) peak developed at the binding energy of 30.2 eV and increased in intensity as the N-doping concentration increased. Generation of GeN x was confirmed by the Ge K-edge absorption spectra. These results indicate that the N atoms bonded with the Ge atoms to form GeN x , rather than bonding with the Te or Sb atoms. It has been suggested that the formation of Ge nitride results in increased resistance and phase-change temperature

  14. A buffer-layer/a-SiO{sub x}:H(p) window-layer optimization for thin film amorphous silicon based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jinjoo; Dao, Vinh Ai [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Shin, Chonghoon [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Park, Hyeongsik [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Minbum; Jung, Junhee [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Doyoung [School of Electricity and Electronics, Ulsan College West Campus, Ulsan 680-749 (Korea, Republic of); Yi, Junsin, E-mail: yi@yurim.skku.ac.kr [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2013-11-01

    Amorphous silicon based (a-Si:H-based) solar cells with a buffer-layer/boron doped hydrogenated amorphous silicon oxide (a-SiO{sub x}:H(p)) window-layer were fabricated and investigated. In the first part, in order to reduce the Schottky barrier height at the fluorine doped tin oxide (FTO)/a-SiO{sub x}:H(p) window-layer heterointerface, we have used buffer-layer/a-SiO{sub x}:H(p) for the window-layer, in which boron doped hydrogenated amorphous silicon (a-Si:H(p)) or boron doped microcrystalline silicon (μc-Si:H(p)) is introduced as a buffer layer between the a-SiO{sub x}:H(p) and FTO of the a-Si:H-based solar cells. The a-Si:H-based solar cell using a μc-Si:H(p) buffer-layer shows the highest efficiency compared to the optimized bufferless, and a-Si:H(p) buffer-layer in the a-Si:H-based solar cells. This highest performance was attributed not only to the lower absorption of the μc-Si:H(p) buffer-layer but also to the lower Schottky barrier height at the FTO/window-layer interface. Then, we present the dependence of the built-in potential (V{sub bi}) and blue response of the devices on the inversion of activation energy (ξ) of the a-SiO{sub x}:H(p), in the μc-Si:H(p)/a-SiO{sub x}:H(p) window-layer. The enhancement of both V{sub bi} and blue response is observed, by increasing the value of ξ. The improvement of V{sub bi} and blue response can be ascribed to the enlargement of the optical gap of a-SiO{sub x}:H(p) films in the μc-Si:H(p)/a-SiO{sub x}:H(p) window-layer. Finally, the conversion efficiency was increased by 22.0%, by employing μc-Si:H(p) as a buffer-layer and raising the ξ of the a-SiO{sub x}:H(p), compared to the optimized bufferless case, with a 10 nm-thick a-SiO{sub x}:H(p) window-layer. - Highlights: • Low Schottky barrier height benefits fill factor, and open-circuit voltage (V{sub oc}). • High band gap is beneficial for short-circuit current density (J{sub sc}). • Boron doped microcrystalline silicon is a suitable buffer-layer for

  15. Exclusive Hydrogen Generation by Electrocatalysts Coated with an Amorphous Chromium-Based Layer Achieving Efficient Overall Water Splitting

    KAUST Repository

    Qureshi, Muhammad

    2017-08-08

    Successful conversion of renewable energy to useful chemicals requires efficient devices that can electrocatalyze or photocatalyze redox reactions, e.g., overall water splitting. Excellent electrocatalysts for the hydrogen evolution reaction (HER), such as Pt, can also cause other side-reactions, including the water-forming back-reaction from H2 and O2 products. A Cr-based amorphous layer coated on catalysts can work as a successful surface modifier that avoids the back-reaction, but its capabilities and limitations toward other species have not been studied. Herein, we investigated the Cr-based layer on Pt from perspectives of both electrocatalysis and photocatalysis using redox-active molecules/ions (O2, ferricyanide, IO3–, S2O82–, H2O2, and CO gas). Our systematic study revealed that utilization of the Cr-based layer realized an exclusive cathodic reaction only to HER, even in the presence of the aforementioned reactive species, suggesting that Cr-based layers work as membranes, as well as corrosion and poison inhibition layers. However, the Cr-based layer experienced self-oxidation and dissolved into the aqueous phase when a strong oxidizing agent or low pH was present. Presented herein are fundamental and critical aspects of the Cr-based modifier, which is essential for the successful and practical development of solar fuel production systems.

  16. Exclusive Hydrogen Generation by Electrocatalysts Coated with an Amorphous Chromium-Based Layer Achieving Efficient Overall Water Splitting

    KAUST Repository

    Qureshi, Muhammad; Shinagawa, Tatsuya; Tsiapis, Nikolaos; Takanabe, Kazuhiro

    2017-01-01

    Successful conversion of renewable energy to useful chemicals requires efficient devices that can electrocatalyze or photocatalyze redox reactions, e.g., overall water splitting. Excellent electrocatalysts for the hydrogen evolution reaction (HER), such as Pt, can also cause other side-reactions, including the water-forming back-reaction from H2 and O2 products. A Cr-based amorphous layer coated on catalysts can work as a successful surface modifier that avoids the back-reaction, but its capabilities and limitations toward other species have not been studied. Herein, we investigated the Cr-based layer on Pt from perspectives of both electrocatalysis and photocatalysis using redox-active molecules/ions (O2, ferricyanide, IO3–, S2O82–, H2O2, and CO gas). Our systematic study revealed that utilization of the Cr-based layer realized an exclusive cathodic reaction only to HER, even in the presence of the aforementioned reactive species, suggesting that Cr-based layers work as membranes, as well as corrosion and poison inhibition layers. However, the Cr-based layer experienced self-oxidation and dissolved into the aqueous phase when a strong oxidizing agent or low pH was present. Presented herein are fundamental and critical aspects of the Cr-based modifier, which is essential for the successful and practical development of solar fuel production systems.

  17. Formation of boride layers on steel substrates

    International Nuclear Information System (INIS)

    Stergioudis, G.

    2006-01-01

    Boronizing coatings were prepared by means of pack cementation technique. It was found that using the appropriate substrate and controlling parameters of the boribing process such as boron activity of the mixture, temperature and time of treatment, it is possible to obtain a structure predominantly consisting of the Fe 2 B phase. In the present study low alloy ferritic steels were chosen as substrates. Changing the boron carbide concentration in the mixture and the temperature and time of boronizing process the conditions of the boronizing were altered. As a result the formation of the Fe 2 B phase is enhanced. Characterization of the as-borided steels is discussed based on X-ray diffraction and Curie temperature measurements. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Formation, Physicochemical Characterization, and Thermodynamic Stability of the Amorphous State of Drugs and Excipients.

    Science.gov (United States)

    Martino, Piera Di; Magnoni, Federico; Peregrina, Dolores Vargas; Gigliobianco, Maria Rosa; Censi, Roberta; Malaj, Ledjan

    2016-01-01

    Drugs and excipients used for pharmaceutical applications generally exist in the solid (crystalline or amorphous) state, more rarely as liquid materials. In some cases, according to the physicochemical nature of the molecule, or as a consequence of specific technological processes, a compound may exist exclusively in the amorphous state. In other cases, as a consequence of specific treatments (freezing and spray drying, melting and co-melting, grinding and compression), the crystalline form may convert into a completely or partially amorphous form. An amorphous material shows physical and thermodynamic properties different from the corresponding crystalline form, with profound repercussions on its technological performance and biopharmaceutical properties. Several physicochemical techniques such as X-ray powder diffraction, thermal methods of analysis, spectroscopic techniques, gravimetric techniques, and inverse gas chromatography can be applied to characterize the amorphous form of a compound (drug or excipient), and to evaluate its thermodynamic stability. This review offers a survey of the technologies used to convert a crystalline solid into an amorphous form, and describes the most important techniques for characterizing the amorphous state of compounds of pharmaceutical interest.

  19. Formation of nanocrystalline and amorphous phase of Al-Pb-Si-Sn-Cu powder during mechanical alloying

    International Nuclear Information System (INIS)

    Ran Guang; Zhou Jingen; Xi Shengqi; Li Pengliang

    2006-01-01

    Al-15%Pb-4%Si-1%Sn-1.5%Cu alloys (mass fraction, %) were prepared by mechanical alloying (MA). Phase transformation and microstructure characteristics of the alloy powders were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the nanocrystalline supersaturated solid solutions and amorphous phase in the powders are obtained during MA. The effect of ball milling is more evident to lead than to aluminum. During MA, the mixture powders are firstly fined, alloyed, nanocrystallized and then the nanocrystalline partly transforms to amorphous phase. A thermodynamic model is developed based on semi-experimental theory of Miedema to calculate the driving force for phase evolution. The thermodynamic analysis shows that there is no chemical driving force to form a crystalline solid solution from the elemental components. But for the amorphous phase, the Gibbs free energy is higher than 0 for the alloy with lead content in the ranges of 0-86.8 at.% and 98.4-100 at.% and lower than 0 in range of 86.8-98.4 at.%. For the Al-2.25 at.%Pb (Al-15%Pb, mass fraction, %), the driving force for formation of amorphization and nanocrystalline supersaturated solid solutions are provided not by the negative heat of mixing but by mechanical work

  20. Amorphous silicon oxide layers for surface passivation and contacting of heterostructure solar cells of amorphous and crystalline silicon; Amorphe Siliziumoxidschichten zur Oberflaechenpassivierung und Kontaktierung von Heterostruktur-Solarzellen aus amorphen und kristallinem Silizium

    Energy Technology Data Exchange (ETDEWEB)

    Einsele, Florian

    2010-02-05

    Atomic hydrogen plays a dominant role in the passivation of crystalline silicon surfaces by layers of amorphous silicon. In order to research into this role, this thesis presents the method of hydrogen effusion from thin amorphous films of silicon (a-Si:H) and silicon oxide (a-SiO{sub x}:H). The oxygen concentration of the sub-stoichiometric a-SiO{sub x}:H films ranges up to 10 at.-%. The effusion experiment yields information about the content and thermal stability of hydrogen and about the microstructure of the films. A mathematical description of the diffusion process of atomic hydrogen yields an analytical expression of the effusion rate R{sub E} depending on the linearly increasing temperature in the experiment. Fitting of the calculated effusion rates R{sub E} to measured effusion spectra yields the diffusion coefficient of atomic hydrogen in a-SiO{sub x}:H. With increasing oxygen concentration, the diffusion coefficient of hydrogen in the a-SiO{sub x}:H films decreases. This is attributed to an increasing Si-H bond energy due to back bonded oxygen, resulting in a higher stability of hydrogen in the films. This result is confirmed by an increasing thermal stability of the p-type c-Si passivation with a-SiO{sub x}:H of increasing oxygen concentrations up to 5 at.-%. The passivation reaches very low recombination velocities of S < 10 cm/s at the interface. However, for higher oxygen concentrations up to 10 at.-%, the passivation quality decreases significantly. Here, infrared spectroscopy of Si-H vibrational modes and hydrogen effusion show an increase of hydrogen-rich interconnected voids in the films. This microstructure results in a high amount of molecular hydrogen (H{sub 2}) in the layers, which is not suitable for the saturation of c-Si interface defects. Annealing of the films at temperatures around 400 C leads to a release of H{sub 2} from the voids, as a result of which Si-Si bonds in the material reconstruct. Subsequently, hydrogen migration in the

  1. Mesoderm layer formation in Xenopus and Drosophila gastrulation

    International Nuclear Information System (INIS)

    Winklbauer, Rudolf; Müller, H-Arno J

    2011-01-01

    During gastrulation, the mesoderm spreads out between ectoderm and endoderm to form a mesenchymal cell layer. Surprisingly the underlying principles of mesoderm layer formation are very similar in evolutionarily distant species like the fruit fly, Drosophila melanogaster, and the frog, Xenopus laevis, in which the molecular and the cellular basis of mesoderm layer formation have been extensively studied. Complementary expression of growth factors in the ectoderm and their receptors in the mesoderm act to orient cellular protrusive activities and direct cell movement, leading to radial cell intercalation and the spreading of the mesoderm layer. This mechanism is contrasted with generic physical mechanisms of tissue spreading that consider the adhesive and physical properties of the cells and tissues. Both mechanisms need to be integrated to orchestrate mesenchymal morphogenesis

  2. Temperature dependence of copper diffusion in different thickness amorphous tungsten/tungsten nitride layer

    Science.gov (United States)

    Asgary, Somayeh; Hantehzadeh, Mohammad Reza; Ghoranneviss, Mahmood

    2017-11-01

    The amorphous W/WN films with various thickness (10, 30 and 40 nm) and excellent thermal stability were successfully prepared on SiO2/Si substrate with evaporation and reactive evaporation method. The W/WN bilayer has technological importance because of its low resistivity, high melting point, and good diffusion barrier properties between Cu and Si. The thermal stability was evaluated by X-ray diffractometer (XRD) and Scanning Electron Microscope (SEM). In annealing process, the amorphous W/WN barrier crystallized and this phenomenon is supposed to be the start of Cu atoms diffusion through W/WN barrier into Si. With occurrence of the high-resistive Cu3Si phase, the W/WN loses its function as a diffusion barrier. The primary mode of Cu diffusion is the diffusion through grain boundaries that form during heat treatments. The amorphous structure with optimum thickness is the key factor to achieve a superior diffusion barrier characteristic. The results show that the failure temperature increased by increasing the W/WN film thickness from 10 to 30 nm but it did not change by increasing the W/WN film thickness from 30 to 40 nm. It is found that the 10 and 40 nm W/WN films are good diffusion barriers at least up to 800°C while the 30 nm W/WN film shows superior properties as a diffusion barrier, but loses its function as a diffusion barrier at about 900°C (that is 100°C higher than for 10 and 40 nm W/WN films).

  3. Rapid formation of nanocrystalline HfO2 powders from amorphous hafnium hydroxide under ultrasonically assisted hydrothermal treatment

    International Nuclear Information System (INIS)

    Meskin, Pavel E.; Sharikov, Felix Yu.; Ivanov, Vladimir K.; Churagulov, Bulat R.; Tretyakov, Yury D.

    2007-01-01

    Peculiarities of hafnium hydroxide hydrothermal decomposition were studied by in situ heat flux calorimetry for the first time. It was shown that this process occurs in one exothermal stage (ΔH = -17.95 kJ mol -1 ) at 180-250 deg. C resulting in complete crystallization of amorphous phase with formation of pure monoclinic HfO 2 . It was found that the rate of m-HfO 2 formation can be significantly increased by combining hydrothermal treatment with simultaneous ultrasonic activation

  4. Model of the recrystallization mechanism of amorphous silicon layers created by ion implantation

    International Nuclear Information System (INIS)

    Drosd, R.M.

    1979-11-01

    The recrystallization behavior during annealing of thin films of amorphous (α) silicon, in contact with a single crystal silicon substrate (referred to as C), has been studied in the transmission electron microscope (TEM). The amorphous film is created during high dose phosphorus ion implantation at 100 keV. It was found that the crystal substrate orientation and the implantation temperature have dramatic effects on the recrystallizaton rate, and the defect microstructure produced during annealing. Specifically, (100) wafers implanted at 77 0 K contain only a low density of dislocation loops, but when the same wafer is implanted at room temperature the dislocation density is increased drastically. (111) wafers, when implanted at 77 0 K show a high density of microtwins, but as the implantation temperature is increased a gradual increase in the density of dislocation loops is observed along with a reduction of the microtwins. At an implantation temperature of about 100 0 C both orientations give an identical defect microstructure when annealed, which is a dense tangle of dislocations

  5. Direct observation of nanometer-scale amorphous layers and oxide crystallites at grain boundaries in polycrystalline Sr1−xKxFe2As2 superconductors

    KAUST Repository

    Wang, Lei

    2011-06-01

    We report here an atomic resolution study of the structure and composition of the grain boundaries in polycrystallineSr0.6K0.4Fe2As2superconductor. A large fraction of grain boundaries contain amorphous layers larger than the coherence length, while some others contain nanometer-scale crystallites sandwiched in between amorphous layers. We also find that there is significant oxygen enrichment at the grain boundaries. Such results explain the relatively low transport critical current density (Jc) of polycrystalline samples with respect to that of bicrystal films.

  6. Influence of source and drain contacts on the properties of indium-gallium-zinc-oxide thin-film transistors based on amorphous carbon nanofilm as barrier layer.

    Science.gov (United States)

    Luo, Dongxiang; Xu, Hua; Zhao, Mingjie; Li, Min; Xu, Miao; Zou, Jianhua; Tao, Hong; Wang, Lei; Peng, Junbiao

    2015-02-18

    Amorphous indium-gallium-zinc-oxide thin film transistors (α-IGZO TFTs) with damage-free back channel wet-etch (BCE) process were achieved by introducing a carbon nanofilm as a barrier layer. We investigate the effects of different source-and-drain (S/D) materials on TFT performance. We find the TFT with Ti/C S/D electrodes exhibits a superior performance with higher output current, lower threshold voltage, and higher effective electron mobility compared to that of Mo/C S/D electrodes. Transmittance electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) are employed to analysis the interfacial interaction between S/D metal/C/α-IGZO layers. The results indicate that the better performance of TFTs with Ti/C electrodes should be attributed to the formations of Ti-C and Ti-O at the Ti/C-contact regions, which lead to a lower contact resistance, whereas Mo film is relatively stable and does not react easily with C nanofilm, resulting in a nonohmic contact behavior between Mo/C and α-IGZO layer. However, both kinds of α-IGZO TFTs show good stability under thermal bias stress, indicating that the inserted C nanofilms could avoid the impact on the α-IGZO channel regions during S/D electrodes formation. Finally, we successfully fabricated a high-definition active-matrix organic lighting emitting diode prototype driven by α-IGZO TFTs with Ti/C electrodes in a pilot line.

  7. Molecular dynamics study of amorphous pocket formation in Si at low energies and its application to improve binary collision models

    International Nuclear Information System (INIS)

    Santos, Ivan; Marques, Luis A.; Pelaz, Lourdes; Lopez, Pedro

    2007-01-01

    In this paper, we present classical molecular dynamics results about the formation of amorphous pockets in silicon for energy transfers below the displacement threshold. While in binary collision simulations ions with different masses generate the same number of Frenkel pairs for the same deposited nuclear energy, in molecular dynamics simulations the amount of damage and its complexity increase with ion mass. We demonstrate that low-energy transfers to target atoms are able to generate complex damage structures. We have determined the conditions that have to be fulfilled to produce amorphous pockets, showing that the order-disorder transition depends on the particular competition between melting and heat diffusion processes. We have incorporated these molecular dynamics results in an improved binary collision model that is able to provide a good description of damage with a very low computational cost

  8. Formation of soft magnetic high entropy amorphous alloys composites containing in situ solid solution phase

    Science.gov (United States)

    Wei, Ran; Sun, Huan; Chen, Chen; Tao, Juan; Li, Fushan

    2018-03-01

    Fe-Co-Ni-Si-B high entropy amorphous alloys composites (HEAACs), which containing high entropy solid solution phase in amorphous matrix, show good soft magnetic properties and bending ductility even in optimal annealed state, were successfully developed by melt spinning method. The crystallization phase of the HEAACs is solid solution phase with body centered cubic (BCC) structure instead of brittle intermetallic phase. In addition, the BCC phase can transformed into face centered cubic (FCC) phase with temperature rise. Accordingly, Fe-Co-Ni-Si-B high entropy alloys (HEAs) with FCC structure and a small amount of BCC phase was prepared by copper mold casting method. The HEAs exhibit high yield strength (about 1200 MPa) and good plastic strain (about 18%). Meanwhile, soft magnetic characteristics of the HEAs are largely reserved from HEAACs. This work provides a new strategy to overcome the annealing induced brittleness of amorphous alloys and design new advanced materials with excellent comprehensive properties.

  9. 4.0-nm-thick amorphous Nb–Ni film as a conducting diffusion barrier layer for integrating ferroelectric capacitor on Si

    International Nuclear Information System (INIS)

    Dai, X.H.; Guo, J.X.; Zhang, L.; Jia, D.M.; Qi, C.G.; Zhou, Y.; Li, X.H.; Shi, J.B.; Fu, Y.J.; Wang, Y.L.; Lou, J.Z.; Ma, L.X.; Zhao, H.D.; Liu, B.T.

    2015-01-01

    Highlights: • 4-nm-thick amorphous Nb–Ni film is first used as the conducting barrier layer. • No obvious interdiffusion/reaction can be found from the LSCO/PZT/LSCO/Nb–Ni/Si. • The LSCO/PZT/LSCO capacitor, measured at 5 V, possesses very good properties. • Ultrathin amorphous Nb–Ni film is ideal to fabricate silicon-based FRAM. - Abstract: We have successfully integrated La 0.5 Sr 0.5 CoO 3 /PbZr 0.4 Ti 0.6 O 3 /La 0.5 Sr 0.5 CoO 3 (LSCO/PZT/LSCO) capacitors on silicon substrate using a ∼4.0-nm-thick amorphous Nb–Ni film as the conducting diffusion barrier layer. Transmission electron microscopy technique confirms that the Nb–Ni film is still amorphous after fabrication of the capacitors, and the interfaces related to Nb–Ni are clean and sharp without any findable interdiffusion/reaction. The LSCO/PZT/LSCO capacitor, measured at 5 V, possesses very good properties, such as large remanent polarization of ∼22.1 μC/cm 2 , small coercive voltage of ∼1.27 V, good fatigue-resistance, and small pulse width dependence, implying that ultrathin amorphous Nb–Ni film is ideal as the conducting diffusion barrier layer to fabricate high-density silicon-based ferroelectric random access memories

  10. Wet chemical synthesis and magnetic properties of single crystal Co nanochains with surface amorphous passivation Co layers

    Directory of Open Access Journals (Sweden)

    Zhou Shao-Min

    2011-01-01

    Full Text Available Abstract In this study, for the first time, high-yield chain-like one-dimensional (1D Co nanostructures without any impurity have been produced by means of a solution dispersion approach under permanent-magnet. Size, morphology, component, and structure of the as-made samples have been confirmed by several techniques, and nanochains (NCs with diameter of approximately 60 nm consisting of single-crystalline Co and amorphous Co-capped layer (about 3 nm have been materialized. The as-synthesized Co samples do not include any other adulterants. The high-quality NC growth mechanism is proposed to be driven by magnetostatic interaction because NC can be reorganized under a weak magnetic field. Room-temperature-enhanced coercivity of NCs was observed, which is considered to have potential applications in spin filtering, high density magnetic recording, and nanosensors. PACS: 61.46.Df; 75.50; 81.07.Vb; 81.07.

  11. Compositional changes in the channel layer of an amorphous In–Ga–Zn-O thin film transistor after thermal annealing

    International Nuclear Information System (INIS)

    Kang, Jiyeon; Lee, Su Jeong; Myoung, Jae-Min; Kim, Chul-Hong; Chae, Gee Sung; Jun, Myungchul; Hwang, Yong Kee; Lee, Woong

    2012-01-01

    In order to investigate the possible reason for the improved device performances of amorphous In–Ga–Zn-O (a-IGZO) thin film transistors after thermal annealing, changes in the elemental concentrations in the a-IGZO channel regions and related device performances due to thermal annealing were observed. It was found that thermal annealing introduces a substantial level of oxygen deficiencies in the channel layer accompanying significantly enhanced device performances. The improved device performances are attributed to the oxygen deficiency which is believed to be averaged over the entire structure to function as shallow donors increasing the carrier concentrations. Such a deduction was supported by the changes in the absorption spectra of the a-IGZO films with various thermal histories. (paper)

  12. Controllable fabrication of amorphous Si layer by energetic cluster ion bombardment

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Vorlíček, Vladimír; Dejneka, Alexandr; Chvostová, Dagmar; Jäger, Aleš; Vacík, Jiří; Jastrabík, Lubomír; Naramoto, H.; Narumi, K.

    2013-01-01

    Roč. 98, SI (2013), s. 49-55 ISSN 0042-207X R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : energetic cluster s * silicon * surface modification * amorphization * nanostructure * Raman scattering * ion channeling Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 1.426, year: 2013 http://ac.els-cdn.com/S0042207X13001759/1-s2.0-S0042207X13001759-main.pdf?_tid=04e9c946-21dd-11e3-b076-00000aacb361&acdnat=1379672070_859355b2850a09ac74bc8ff413e35dda

  13. High-stability transparent amorphous oxide TFT with a silicon-doped back-channel layer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyoung-Rae; Park, Jea-Gun [Hanyang University, Seoul (Korea, Republic of)

    2014-10-15

    We significantly reduced various electrical instabilities of amorphous indium gallium zinc oxide thin-film transistors (TFTs) by using the co-deposition of silicon on an a-IGZO back channel. This process showed improved stability of the threshold voltage (V{sub th}) under high temperature and humidity and negative gate-bias illumination stress (NBIS) without any reduction of IDS. The enhanced stability was achieved with silicon, which has higher metal-oxide bonding strengths than gallium does. Additionally, SiO{sub x} distributed on the a-IGZO surface reduced the adsorption and the desorption of H{sub 2}O and O{sub 2}. This process is applicable to the TFT manufacturing process with a variable sputtering target.

  14. On the processing-structure-property relationship of ITO layers deposited on crystalline and amorphous Si

    International Nuclear Information System (INIS)

    Diplas, S.; Ulyashin, A.; Maknys, K.; Gunnaes, A.E.; Jorgensen, S.; Wright, D.; Watts, J.F.; Olsen, A.; Finstad, T.G.

    2007-01-01

    Indium-tin-oxide (ITO) antireflection coatings were deposited on crystalline Si (c-Si), amorphous hydrogenated Si (a-Si:H) and glass substrates at room temperature (RT), 160 deg. C and 230 deg. C by magnetron sputtering. The films were characterised using atomic force microscopy, transmission electron microscopy, angle resolved X-ray photoelectron spectroscopy, combined with resistance and transmittance measurements. The conductivity and refractive index as well as the morphology of the ITO films showed a significant dependence on the processing conditions. The films deposited on the two different Si substrates at higher temperatures have rougher surfaces compared to the RT ones due to the development of crystallinity and growth of columnar grains

  15. Amorphous phase formation in intermetallic Mg2Ni alloy synthesized by ethanol wet milling

    International Nuclear Information System (INIS)

    Wang, H.-W.; Chyou, S.-D.; Wang, S.-H.; Yang, M.-W.; Hsu, C.-Y.; Tien, H.-C.; Huang, N.-N.

    2009-01-01

    The hydriding/dehydriding properties of an intermetallic Mg 2 Ni alloy synthesized by wet ball milling in ethanol have been investigated. The appearance of the particle surface after different milling methods is one obvious difference. The alloyed powders prepared by either dry milling or wet milling under ethanol were characterized for phase content by X-ray diffractometer (XRD). The results show that two broad diffuse peaks, which are an ionic-organic-Mg amorphous material, appear in addition to the nickel element peaks. This unexpected amorphous phase has the special hydrogen absorbing/desorbing features.

  16. Study on the fabrication of silicon nanoparticles in an amorphous silicon light absorbing layer for solar cell applications

    International Nuclear Information System (INIS)

    Park, Joo Hyung; Song, Jin Soo; Lee, Jae Hee; Lee, Jeong Chul

    2012-01-01

    Hydrogenated amorphous-silicon (a-Si:H) thin-film solar cells have advantages of relatively simple technology, less material consumption, higher absorption ratio compared to crystalline silicon, and low cost due to the use of cheaper substrates rather than silicon wafers. However, together with those advantages, amorphous-silicon thin-film solar cells face several issues such as a relatively lower efficiency, a relatively wider bandgap, and the Staebler-Wronski effect (SWE) compared to other competing materials (i.e., crystalline silicon, CdTe, Cu(In x Ga (1-x) )Se 2 (CIGS), etc.). As a remedy for those drawbacks and a way to enhance the cell conversion efficiency at the same time, the employment of crystalline silicon nanoparticles (Si-NPs) in the a-Si matrix is proposed to organize the quantum-dot (QD) structure as the light-absorbing layer. This structure of the light absorbing layer consists of single-crystal Si-NPs in an a-Si:H thin-film matrix. The single-crystal Si-NPs are synthesized by using SiH 4 gas decomposition with CO 2 laser pyrolysis, and the sizes of Si-NPs are calibrated to control their bandgaps. The synthesized size-controlled Si-NPs are directly transferred to another chamber to form a QD structure by using co-deposition of the Si-NPs and the a-Si:H matrix. Transmission electron microscopy (TEM) analyses are employed to verify the sizes and the crystalline properties of the Si-NPs alone and of the Si-NPs in the a-Si:H matrix. The TEM results show successful co-deposition of size-controlled Si-NPs in the a-Si:H matrix, which is meaningful because it suggests the possibility of further enhancement of the a-Si:H solar-cell structure and of tandem structure applications by using a single element.

  17. Effect of active layer deposition temperature on the performance of sputtered amorphous In—Ga—Zn—O thin film transistors

    International Nuclear Information System (INIS)

    Wu Jie; Shi Junfei; Dong Chengyuan; Chen Yuting; Zhou Daxiang; Hu Zhe; Zhan Runze; Zou Zhongfei

    2014-01-01

    The effect of active layer deposition temperature on the electrical performance of amorphous InGaZnO (a-IGZO) thin film transistors (TFTs) is investigated. With increasing annealing temperature, TFT performance is firstly improved and then degraded generally. Here TFTs with best performance defined as ''optimized-annealed'' are selected to study the effect of active layer deposition temperature. The field effect mobility reaches maximum at deposition temperature of 150 °C while the room-temperature fabricated device shows the best subthreshold swing and off-current. From Hall measurement results, the carrier concentration is much higher for intentional heated a-IGZO films, which may account for the high off-current in the corresponding TFT devices. XPS characterization results also reveal that deposition temperature affects the atomic ratio and O1s spectra apparently. Importantly, the variation of field effect mobility of a-IGZO TFTs with deposition temperature does not coincide with the tendencies in Hall mobility of a-IGZO thin films. Based on the further analysis of the experimental results on a-IGZO thin films and the corresponding TFT devices, the trap states at front channel interface rather than IGZO bulk layer properties may be mainly responsible for the variations of field effect mobility and subthreshold swing with IGZO deposition temperature. (semiconductor devices)

  18. Vortex Formation During Unsteady Boundary-Layer Separation

    Science.gov (United States)

    Das, Debopam; Arakeri, Jaywant H.

    1998-11-01

    Unsteady laminar boundary-layer separation is invariably accompanied by the formation of vortices. The aim of the present work is to study the vortex formation mechanism(s). An adverse pressure gradient causing a separation can be decomposed into a spatial component ( spatial variation of the velocity external to the boundary layer ) and a temporal component ( temporal variation of the external velocity ). Experiments were conducted in a piston driven 2-D water channel, where the spatial component could be be contolled by geometry and the temporal component by the piston motion. We present results for three divergent channel geometries. The piston motion consists of three phases: constant acceleration from start, contant velocity, and constant deceleration to stop. Depending on the geometry and piston motion we observe different types of unsteady separation and vortex formation.

  19. Schottky barrier formation at amorphous-crystalline interfaces of GeSb phase change materials

    NARCIS (Netherlands)

    Kroezen, H. J.; Eising, G.; ten Brink, Gert; Palasantzas, G.; Kooi, B. J.; Pauza, A.

    2012-01-01

    The electrical properties of amorphous-crystalline interfaces in phase change materials, which are important for rewritable optical data storage and for random access memory devices, have been investigated by surface scanning potential microscopy. Analysis of GeSb systems indicates that the surface

  20. Highly (002) textured large grain bcc Cr{sub 80}Mn{sub 20} seed layer on Cr{sub 50}Ti{sub 50} amorphous layer for FePt-C granular film

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Jae, E-mail: jsjigst@ecei.tohoku.ac.jp; Saito, Shin [Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Hinata, Shintaro [Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Japan Society for the Promotion of Science Research Fellow (PD), 5-3-1, Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Takahashi, Migaku [New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2015-05-07

    Effect of bcc Cr{sub 80}Mn{sub 20} seed layer and Cr{sub 50}Ti{sub 50} amorphous texture inducing layer on the heteroepitaxy system in FePt-C granular film was studied by introducing a new concept of the layered structure. The concept suggested that the large grain seed layer in which the crystallographic texture was initially formed on an amorphous layer in the layered structure can reduce the angular distribution of (002) c-axis crystal orientation in the FePt-C granular film owing to heteroepitaxial growth. Structure analysis by X-ray diffraction revealed that (1) when the substrate heating temperature was elevated from 300 °C to 500 °C, grain size in the seed layer increased from 9.8 nm to 11.6 nm, and then decreased with further increasing the substrate temperature. The reduction of the grain size over 500 °C corresponds to the crystallization of the amorphous texture inducing layer, (2) when the grain size increased from 9.8 nm to 11.6 nm, the angular distribution of the (002) orientation in the seed layer dramatically decreased from 13.7° to 4.1°. It was shown that the large grain seed layer increased the perpendicular hysteresis in FePt-C granular film.

  1. Direct observation of nanometer-scale amorphous layers and oxide crystallites at grain boundaries in polycrystalline Sr1−xKxFe2As2 superconductors

    KAUST Repository

    Wang, Lei; Ma, Yanwei; Wang, Qingxiao; Li, Kun; Zhang, Xixiang; Qi, Yanpeng; Gao, Zhaoshun; Zhang, Xianping; Wang, Dongliang; Yao, Chao; Wang, Chunlei

    2011-01-01

    We report here an atomic resolution study of the structure and composition of the grain boundaries in polycrystallineSr0.6K0.4Fe2As2superconductor. A large fraction of grain boundaries contain amorphous layers larger than the coherence length, while

  2. Circuit effects on pierce instabilities, and double-layer formation

    International Nuclear Information System (INIS)

    Raadu, M.A.; Silevitch, M.B.

    1982-11-01

    The role of the Pierce instability in the formation of double layers is considered and compared with that of the Buneman instability. Pierce instabilities have been identified in a double-layer experiment, where they lead to ion trapping. Here the effects of external circuit elements are considered. In the case of immobile ions the onset criteria are unaffected, but in the unstable range the growth rate is reduced by the external impedance. Required experimental values of the circuit elements are estimated. The possible relevance to computer simulations is noted. (Authors)

  3. Peculiar features in formation of diffusion layer properties during nitridation

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Konoval'tsev, V.I.; Nikitin, V.V.

    1983-01-01

    Peculiarities of the formation of multiphase nitridated layer at samples of commercial iron, 20, 40Kh and 38KhMYu6A steels are studied with the help of high-temperature methods of investigation (X-ray diffraction analysis, hardening and thickness measuring). It is found out that during the saturation the solid solution oversaturated with nitrogen is formed; some increase in hardness in the process is a result of solid solution hardening and the increase of thickness of nitride zone; however the main growth of the layer hardness is achieved during the cooling as a result of α phase precipitating hardening

  4. Improvement of Electrical Characteristics and Stability of Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using Nitrocellulose Passivation Layer.

    Science.gov (United States)

    Shin, Kwan Yup; Tak, Young Jun; Kim, Won-Gi; Hong, Seonghwan; Kim, Hyun Jae

    2017-04-19

    In this research, nitrocellulose is proposed as a new material for the passivation layers of amorphous indium gallium zinc oxide thin film transistors (a-IGZO TFTs). The a-IGZO TFTs with nitrocellulose passivation layers (NC-PVLs) demonstrate improved electrical characteristics and stability. The a-IGZO TFTs with NC-PVLs exhibit improvements in field-effect mobility (μ FE ) from 11.72 ± 1.14 to 20.68 ± 1.94 cm 2 /(V s), threshold voltage (V th ) from 1.85 ± 1.19 to 0.56 ± 0.35 V, and on/off current ratio (I on/off ) from (5.31 ± 2.19) × 10 7 to (4.79 ± 1.54) × 10 8 compared to a-IGZO TFTs without PVLs, respectively. The V th shifts of a-IGZO TFTs without PVLs, with poly(methyl methacrylate) (PMMA) PVLs, and with NC-PVLs under positive bias stress (PBS) test for 10,000 s represented 5.08, 3.94, and 2.35 V, respectively. These improvements were induced by nitrogen diffusion from NC-PVLs to a-IGZO TFTs. The lone-pair electrons of diffused nitrogen attract weakly bonded oxygen serving as defect sites in a-IGZO TFTs. Consequently, the electrical characteristics are improved by an increase of carrier concentration in a-IGZO TFTs, and a decrease of defects in the back channel layer. Also, NC-PVLs have an excellent property as a barrier against ambient gases. Therefore, the NC-PVL is a promising passivation layer for next-generation display devices that simultaneously can improve electrical characteristics and stability against ambient gases.

  5. Amorphous-like interfacial layer between a high-Tc superconducting Tl-1223 film and a Ag substrate examined by high-voltage high-resolution transmission electron microscopy

    International Nuclear Information System (INIS)

    Kim, Bongjun; Kim, Hyuntak; Nagai, Takuro; Matsui, Yoshio; Horiuchi, Shigeo; Jeong, Daeyeong; Deinhofer, Christian; Gritzner, Gerhard; Kim, Youngmin; Kim, Younjoong

    2006-01-01

    The thin amorphous-like layer, formed at the interface between a high-T c superconducting (Tl 0.5 , Pb 0.5 )(Sr 0.8 , Ba 0.2 )Ca 2 Cu 3 O y (Tl-1223) film and a Ag substrate during heating at 910 .deg. C, has been examined by using high-voltage high-resolution transmission electron microscopy. The interfacial layer is less than 10 nm in thickness. It contacts the (001) plane of Tl-1223 and the (113) or (133) planes of Ag in most cases. Its composition is similar to that of Tl-1223, except for the inclusion of a substantial amount of Ag. Its formation proceeds by diffusion of Ag into Tl-1223, during which a structure change first occurs at the layer of CuO 2 + Ca planes. The Tl(Pb)O + the Sr(Ba)O layers are then destroyed to cause the total structure to become amorphous-like. Furthermore, we have found that it is formed under an irradiation of highly energetic electrons.

  6. Amorphous-like interfacial layer between a high-T{sub c} superconducting Tl-1223 film and a Ag substrate examined by high-voltage high-resolution transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bongjun; Kim, Hyuntak [Electronics and Tele-Communications Research Institute, Daejeon (Korea, Republic of); Nagai, Takuro; Matsui, Yoshio [National Institute for Materials Science, Tsukuba, Ibaraki (Japan); Horiuchi, Shigeo; Jeong, Daeyeong [Electrotechnology Research Institute, Changwon (Korea, Republic of); Deinhofer, Christian; Gritzner, Gerhard [Johannes Kepler University, Linz (Austria); Kim, Youngmin; Kim, Younjoong [Electron Microscopy Team, Korea Basic Science Institute, Daejeon (Korea, Republic of)

    2006-05-15

    The thin amorphous-like layer, formed at the interface between a high-T{sub c} superconducting (Tl{sub 0.5}, Pb{sub 0.5})(Sr{sub 0.8}, Ba{sub 0.2})Ca{sub 2}Cu{sub 3}O{sub y} (Tl-1223) film and a Ag substrate during heating at 910 .deg. C, has been examined by using high-voltage high-resolution transmission electron microscopy. The interfacial layer is less than 10 nm in thickness. It contacts the (001) plane of Tl-1223 and the (113) or (133) planes of Ag in most cases. Its composition is similar to that of Tl-1223, except for the inclusion of a substantial amount of Ag. Its formation proceeds by diffusion of Ag into Tl-1223, during which a structure change first occurs at the layer of CuO{sub 2} + Ca planes. The Tl(Pb)O + the Sr(Ba)O layers are then destroyed to cause the total structure to become amorphous-like. Furthermore, we have found that it is formed under an irradiation of highly energetic electrons.

  7. Efficient inverted bulk-heterojunction solar cells from low-temperature processing of amorphous ZnO buffer layers

    KAUST Repository

    Jagadamma, Lethy Krishnan; Abdelsamie, Maged; El Labban, Abdulrahman; Aresu, Emanuele; Ngongang Ndjawa, Guy Olivier; Anjum, Dalaver H.; Cha, Dong Kyu; Beaujuge, Pierre; Amassian, Aram

    2014-01-01

    In this report, we demonstrate that solution-processed amorphous zinc oxide (a-ZnO) interlayers prepared at low temperatures (∼100 °C) can yield inverted bulk-heterojunction (BHJ) solar cells that are as efficient as nanoparticle-based ZnO requiring comparably more complex synthesis or polycrystalline ZnO films prepared at substantially higher temperatures (150-400 °C). Low-temperature, facile solution-processing approaches are required in the fabrication of BHJ solar cells on flexible plastic substrates, such as PET. Here, we achieve efficient inverted solar cells with a-ZnO buffer layers by carefully examining the correlations between the thin film morphology and the figures of merit of optimized BHJ devices with various polymer donors and PCBM as the fullerene acceptor. We find that the most effective a-ZnO morphology consists of a compact, thin layer with continuous substrate coverage. In parallel, we emphasize the detrimental effect of forming rippled surface morphologies of a-ZnO, an observation which contrasts with results obtained in polycrystalline ZnO thin films, where rippled morphologies have been reported to improve efficiency. After optimizing the a-ZnO morphology at low processing temperature for inverted P3HT:PCBM devices, achieving a power conversion efficiency (PCE) of ca. 4.1%, we demonstrate inverted solar cells with low bandgap polymer donors on glass/flexible PET substrates: PTB7:PC71BM (PCE: 6.5% (glass)/5.6% (PET)) and PBDTTPD:PC71BM (PCE: 6.7% (glass)/5.9% (PET)). Finally, we show that a-ZnO based inverted P3HT:PCBM BHJ solar cells maintain ca. 90-95% of their initial PCE even after a full year without encapsulation in a nitrogen dry box, thus demonstrating excellent shelf stability. The insight we have gained into the importance of surface morphology in amorphous zinc oxide buffer layers should help in the development of other low-temperature solution-processed metal oxide interlayers for efficient flexible solar cells. This journal is

  8. Interfacial mixing in double-barrier magnetic tunnel junctions with amorphous NiFeSiB layers

    International Nuclear Information System (INIS)

    Chun, B.S.; Ko, S.P.; Hwang, J.Y.; Rhee, J.R.; Kim, T.W.; Kim, Y.K.

    2007-01-01

    Double-barrier magnetic tunnel junctions (DMTJs) comprising Ta 45/Ru 9.5/IrMn 10/CoFe 7/AlO x /free layer (CoFe 4/NiFeSiB 2/CoFe 4, CoFe 10, or NiFeSiB 10)/AlO x /CoFe 7/IrMn 10/Ru 60 (nm) have been examined with an emphasis given on understanding the interfacial mixing effects. The DMTJ, consisted of NiFeSiB, shows low switching field and low bias voltage dependence because the amorphous NiFeSiB has lower M S (=800 emu/cm 3 ) and offers smoother interfaces than polycrystalline CoFe. An interesting feature observed in the CoFe/NiFeSiB/CoFe sandwich free layered DMTJ is the presence of a wavy MR transfer curve at high-resistance region. Because the polycrystalline CoFe usually grows into a columnar structure, diamagnetic CoSi, paramagnetic FeSi, and/or diamagnetic CoB might have been formed during the sputter-deposition process. By employing electron energy loss spectrometry (EELS) and Auger electron spectroscopy (AES), we were able to confirm that Si and B atoms were arranged evenly in the top and bottom portions of AlO x /CoFe interfaces. This means that the interfacial mixing resulted in a distorted magnetization reversal process

  9. Formation of nanocrystalline phases during decomposition of amorphous Ni-P alloys by continuous linear heating

    Energy Technology Data Exchange (ETDEWEB)

    Revesz, A.; Lendvai, J. [Eoetvoes Lorand Tudomanyegyeten, Budapest (Hungary). Dept. for General Physics; Cziraki, A. [Eoetvoes Univ. (Hungary). Dept. of Solid State Physics; Liebermann, H.H. [Honeywell Amorphous Metals, Morristown, NJ (United States); Bakonyi, I. [Hungarian Academy of Sciences (Hungary). Research Inst. for Solid State Physics and Optics

    2001-05-01

    Differential scanning calorimetry (DSC), powder diffraction and high-resolution X-ray diffraction (XRD), and transmission electron microscopy (TEM) investigations have been performed on melt-quenched amorphous Ni-P alloys with compositions of 18 to 22 at.% P. The calorimetric results revealed different crystallization routes during linear heating below, at and above the eutectic point (19 at.% P) but with the same general transformation scheme as reported previously for electrodeposited and electroless Ni-P amorphous alloys. The composition dependence of the activation energy of the crystallization and the heats evolved during the structural transformations were determined from DSC measurements. The average grain size was derived from XRD line broadening and important information on the crystallization products and their microstructure could be revealed also from the TEM studies. All these findings will have special significance when analysing the results of isothermal annealing experiments to be described in a forthcoming paper. (orig.)

  10. A transient thermodynamic model for track formation in amorphous semi-conductors: a possible mechanism

    International Nuclear Information System (INIS)

    Dufour, C.; Toulemonde, M.; Paumier, E.; Lesellier de Chezelles, B.; Delignon, V.

    1991-01-01

    Latent tracks have been observed in amorphous semi-conductors after heavy ion irradiation in the electronic stopping power regime. A transient thermodynamic model is developed including energy diffusion on the electron gas and on the atomic lattice and energy exchange between these two systems. A set of two non linear differential equations is solved numerically in cylindrical geometry in order to predict the radii of the latent tracks observed in amorphous germanium and silicon. A good agreement is obtained for the two materials using the same set of input parameters for the energy diffusion on the electronic system and the same coupling constant for the energy exchange between electron and lattice atoms despite the large differences in the macroscopic lattice thermodynamical parameters of the two materials

  11. The kinetics of solid phase epitaxy in As-doped buried amorphous silicon layers

    International Nuclear Information System (INIS)

    McCallum, J.C.

    1998-01-01

    The kinetics of dopant-enhanced solid phase epitaxy (SPE) have been measured in buried a-Si layers doped with arsenic. SPE rates were measured over the temperature range 480 - 660 deg C for buried a-Si layers containing ten different As concentrations. In the absence of H-retardation effects, the dopant-enhanced SPE rate is observed to depend linearly on the As concentration over the entire range of concentrations, 1-16 x 10 19 cm -3 covered in the study. The Fermi level energy was calculated as a function of doping and find an equation that can provide good fits to the data. The implications of these results for models of the SPE process is discussed

  12. New Theories on Boundary Layer Transition and Turbulence Formation

    Directory of Open Access Journals (Sweden)

    Chaoqun Liu

    2012-01-01

    Full Text Available This paper is a short review of our recent DNS work on physics of late boundary layer transition and turbulence. Based on our DNS observation, we propose a new theory on boundary layer transition, which has five steps, that is, receptivity, linear instability, large vortex structure formation, small length scale generation, loss of symmetry and randomization to turbulence. For turbulence generation and sustenance, the classical theory, described with Richardson's energy cascade and Kolmogorov length scale, is not observed by our DNS. We proposed a new theory on turbulence generation that all small length scales are generated by “shear layer instability” through multiple level ejections and sweeps and consequent multiple level positive and negative spikes, but not by “vortex breakdown.” We believe “shear layer instability” is the “mother of turbulence.” The energy transferring from large vortices to small vortices is carried out by multiple level sweeps, but does not follow Kolmogorov's theory that large vortices pass energy to small ones through vortex stretch and breakdown. The loss of symmetry starts from the second level ring cycle in the middle of the flow field and spreads to the bottom of the boundary layer and then the whole flow field.

  13. Confinement of vibrational modes within crystalline lattices using thin amorphous layers

    International Nuclear Information System (INIS)

    Bagolini, Luigi; Mattoni, Alessandro; Lusk, Mark T

    2017-01-01

    It is possible to confine vibrational modes to a crystal by encapsulating it within thin disordered layers with the same average properties as the crystal. This is not due to an impedance mismatch between materials but, rather, to higher order moments in the distribution of density and stiffness in the disordered phase—i.e. it is a result of material substructure. The concept is elucidated in an idealized one-dimensional setting and then demonstrated for a realistic nanocrystalline geometry. This offers the prospect of specifically engineering higher order property distributions as an alternate means of managing phonons. (paper)

  14. Passivation of Flexible YBCO Superconducting Current Lead With Amorphous SiO2 Layer

    Science.gov (United States)

    Johannes, Daniel; Webber, Robert

    2013-01-01

    Adiabatic demagnetization refrigerators (ADR) are operated in space to cool detectors of cosmic radiation to a few 10s of mK. A key element of the ADR is a superconducting magnet operating at about 0.3 K that is continually energized and de-energized in synchronism with a thermal switch, such that a piece of paramagnetic salt is alternately warm in a high magnetic field and cold in zero magnetic field. This causes the salt pill or refrigerant to cool, and it is able to suck heat from an object, e.g., the sensor, to be cooled. Current has to be fed into and out of the magnets from a dissipative power supply at the ambient temperature of the spacecraft. The current leads that link the magnets to the power supply inevitably conduct a significant amount of heat into the colder regions of the supporting cryostat, resulting in the need for larger, heavier, and more powerful supporting refrigerators. The aim of this project was to design and construct high-temperature superconductor (HTS) leads from YBCO (yttrium barium copper oxide) composite conductors to reduce the heat load significantly in the temperature regime below the critical temperature of YBCO. The magnet lead does not have to support current in the event that the YBCO ceases to be superconducting. Cus - tomarily, a normal metal conductor in parallel with the YBCO is a necessary part of the lead structure to allow for this upset condition; however, for this application, the normal metal can be dispensed with. Amorphous silicon dioxide is deposited directly onto the surface of YBCO, which resides on a flexible substrate. The silicon dioxide protects the YBCO from chemically reacting with atmospheric water and carbon dioxide, thus preserving the superconducting properties of the YBCO. The customary protective coating for flexible YBCO conductors is silver or a silver/gold alloy, which conducts heat many orders of magnitude better than SiO2 and so limits the use of such a composite conductor for passing current

  15. Formation and crystallization kinetics of Nd-Fe-B-based bulk amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Ge, Hongliang; Zhang, Pengyue; Li, Dongyun; Wang, Zisheng [China Jiliang University, Magnetism Key Laboratory of Zhejiang Province, Hangzhou (China)

    2014-06-15

    In order to improve the glass-forming ability (GFA) of Nd-Fe-B ternary alloys to obtain fully amorphous bulk Nd-Fe-B-based alloy, the effects of Mo and Y doping on GFA of the alloys were investigated. It was found that the substitution of Mo for Fe and Y for Nd enhanced the GFA of the Nd-Y-Fe-Mo-B alloys. It was also revealed that the GFA of the samples was optimized by 4 at.% Mo doping and increased with theYcontent. The fully amorphous structures were all formed in the Nd{sub 6-x}Y{sub x}Fe{sub 68}Mo{sub 4}B{sub 22} (x =1-5) alloy rods with 1.5 mm-diameter. After subsequent crystallization, the devitrified Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} alloy rod exhibited a uniform distribution of grains with a coercivity of 364.1 kA/m. The crystallization behavior of Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} BMG was investigated in isothermal situation. The Avrami exponent n determined by JAM plot is lower than 2.5, implying that the crystallization is mainly governed by a growth of particles with decreasing nucleation rate. (orig.)

  16. 4.0-nm-thick amorphous Nb–Ni film as a conducting diffusion barrier layer for integrating ferroelectric capacitor on Si

    Energy Technology Data Exchange (ETDEWEB)

    Dai, X.H. [Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science & Technology, Hebei University, Hebei 071002 (China); College of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401 (China); Guo, J.X.; Zhang, L.; Jia, D.M.; Qi, C.G.; Zhou, Y.; Li, X.H.; Shi, J.B.; Fu, Y.J.; Wang, Y.L.; Lou, J.Z. [Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science & Technology, Hebei University, Hebei 071002 (China); Ma, L.X. [Department of Physics, Blinn College, Bryan, TX 77805 (United States); Zhao, H.D. [College of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401 (China); Liu, B.T., E-mail: btliu@hbu.cn [Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science & Technology, Hebei University, Hebei 071002 (China)

    2015-10-05

    Highlights: • 4-nm-thick amorphous Nb–Ni film is first used as the conducting barrier layer. • No obvious interdiffusion/reaction can be found from the LSCO/PZT/LSCO/Nb–Ni/Si. • The LSCO/PZT/LSCO capacitor, measured at 5 V, possesses very good properties. • Ultrathin amorphous Nb–Ni film is ideal to fabricate silicon-based FRAM. - Abstract: We have successfully integrated La{sub 0.5}Sr{sub 0.5}CoO{sub 3}/PbZr{sub 0.4}Ti{sub 0.6}O{sub 3}/La{sub 0.5}Sr{sub 0.5}CoO{sub 3} (LSCO/PZT/LSCO) capacitors on silicon substrate using a ∼4.0-nm-thick amorphous Nb–Ni film as the conducting diffusion barrier layer. Transmission electron microscopy technique confirms that the Nb–Ni film is still amorphous after fabrication of the capacitors, and the interfaces related to Nb–Ni are clean and sharp without any findable interdiffusion/reaction. The LSCO/PZT/LSCO capacitor, measured at 5 V, possesses very good properties, such as large remanent polarization of ∼22.1 μC/cm{sup 2}, small coercive voltage of ∼1.27 V, good fatigue-resistance, and small pulse width dependence, implying that ultrathin amorphous Nb–Ni film is ideal as the conducting diffusion barrier layer to fabricate high-density silicon-based ferroelectric random access memories.

  17. Insulator layer formation in MgB2 SIS junctions

    International Nuclear Information System (INIS)

    Shimakage, H.; Tsujimoto, K.; Wang, Z.; Tonouchi, M.

    2005-01-01

    The dependence of current-voltage characteristics on thin film deposition conditions was investigated using MgB 2 /AlN/NbN SIS junctions. By increasing the substrate temperature in AlN insulator deposition, the current density decreased and the normal resistance increased. The results indicated that an additional insulator layer between the MgB 2 and AlN formed, either before or during the AlN deposition. The thickness of the additional insulator layer was increased with an increase in the AlN deposition temperature. From the dependence of current density on the thickness of AlN in low temperature depositions, the thickness of the additional insulator layer was estimated to be 1-1.5 nm when the AlN insulator was deposited from 0.14 to 0.7 nm. Moreover, with the current density of MgB 2 /AlN/MgB 2 SIS junctions, further insulator layer formation was confirmed

  18. Mechanisms of aluminium-induced crystallization and layer exchange upon low-temperature annealing of amorphous Si/polycrystalline Al bilayers.

    Science.gov (United States)

    Wang, J Y; Wang, Z M; Jeurgens, L P H; Mittemeijer, E J

    2009-06-01

    Aluminium-induced crystallization (ALIC) of amorphous Si and subsequent layer exchange (ALILE) occur in amorphous-Si/polycrystalline-Al bilayers (a-Si/c-Al) upon annealing at temperatures as low as 165 degrees C and were studied by X-ray diffraction and Auger electron spectroscopic depth profiling. It follows that: (i) nucleation of Si crystallization is initiated at Al grain boundaries and not at the a-Si/c-Al interface; (ii) low-temperature annealing results in a large Si grain size in the continuous c-Si layer produced by ALILE. Thermodynamic model calculations show that: (i) Si can "wet" the Al grain boundaries due to the favourable a-Si/c-Al interface energy (as compared to the Al grain-boundary energy); (ii) the wetting-induced a-Si layer at the Al grain boundary can maintain its amorphous state only up to a critical thickness, beyond which nucleation of Si crystallization takes place; and (iii) a tiny driving force controls the kinetics of the layer exchange.

  19. Formation of calcium phosphate layer on ceramics with different reactivities

    International Nuclear Information System (INIS)

    Ribeiro, C.; Rigo, E.C.S.; Sepulveda, P.; Bressiani, J.C.; Bressiani, A.H.A.

    2004-01-01

    Biphasic ceramic samples of different biological reactivity are prepared by using hydroxyapatite (HAp) and tricalcium phosphate (TCP) in various ratios. Different parameters for sintering in an air atmosphere furnace were defined after dilatometric studies. An increased densification with decreased TCP content was observed. The sintered bodies were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The dissolution kinetics and in vitro reactivity were investigated using simulated body fluid (SBF) at 37 deg. C for a maximum period of 3 weeks. The surfaces of the ceramics were analyzed by Fourier transform infrared spectroscopy (FTIR) and SEM in order to observe the formation of a calcium phosphate layer, which indicates the samples bioactivity. Dissolution in SBF demonstrated that layers with different kinetics on the samples surface were formed during the immersion period. The biphasic ceramics show bioactive behavior, even if the resorbable TCP is incorporated

  20. Experimental Investigation of White Layer formation in Hard Turning

    Science.gov (United States)

    Umbrello, D.; Rotella, G.; Crea, F.

    2011-05-01

    Hard turning with super hard cutting tools, like PCBN or Ceramics inserts, represents an interesting advance in the manufacturing industry, regarding the finishing of hardened steels. This innovative machining technique is considered an attractive alternative to traditional finish grinding operations because of the high flexibility, the ability to achieve higher metal removal rates, the possibility to operate without the use of coolants, and the capability to achieve comparable workpiece quality. However, the surface integrity effects of hard machining need to be taken into account due to their influence on the life of machined components. In particular, the formation of a usually undesirable white layer at the surface needs further investigation. Three different mechanisms have been proposed as main responsible of the white layer genesis: (i) microstructural phase transformation due to a rapid heating and quenching, (ii) severe plastic deformation resulting in a homogenous structure and/or a very fine grain size microstructure; (iii) surface reaction with the environment. In this research, an experimental campaign was carried out and several experimental techniques were used in order to analyzed the machined surface and to understand which of the above mentioned theories is the main cause of the white layer formation when AISI 52100 hardened steel is machined by PCBN inserts. In particular, the topography characterization has obtained by means of optical and scanning electron microscope (SEM) while microstructural phase composition and chemical characterization have been respectively detected using X-ray Diffraction (XRD) and Energy-dispersive X-ray spectroscopy (EDS) techniques. The results prove that the white layer is the result of microstructural alteration, i.e. the generation of a martensitic structure.

  1. Reversibility of temperature driven discrete layer-by-layer formation of dioctyl-benzothieno-benzothiophene films.

    Science.gov (United States)

    Dohr, M; Ehmann, H M A; Jones, A O F; Salzmann, I; Shen, Q; Teichert, C; Ruzié, C; Schweicher, G; Geerts, Y H; Resel, R; Sferrazza, M; Werzer, O

    2017-03-22

    Film forming properties of semiconducting organic molecules comprising alkyl-chains combined with an aromatic unit have a decisive impact on possible applications in organic electronics. In particular, knowledge on the film formation process in terms of wetting or dewetting, and the precise control of these processes, is of high importance. In the present work, the subtle effect of temperature on the morphology and structure of dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) films deposited on silica surfaces by spin coating is investigated in situ via X-ray diffraction techniques and atomic force microscopy. Depending on temperature, bulk C8-BTBT exhibits a crystalline, a smectic A and an isotropic phase. Heating of thin C8-BTBT layers at temperatures below the smectic phase transition temperature leads to a strong dewetting of the films. Upon approaching the smectic phase transition, the molecules start to rewet the surface in the form of discrete monolayers with a defined number of monolayers being present at a given temperature. The wetting process and layer formation is well defined and thermally stable at a given temperature. On cooling the reverse effect is observed and dewetting occurs. This demonstrates the full reversibility of the film formation behavior and reveals that the layering process is defined by an equilibrium thermodynamic state, rather than by kinetic effects.

  2. Effect of starting point formation on the crystallization of amorphous silicon films by flash lamp annealing

    Science.gov (United States)

    Sato, Daiki; Ohdaira, Keisuke

    2018-04-01

    We succeed in the crystallization of hydrogenated amorphous silicon (a-Si:H) films by flash lamp annealing (FLA) at a low fluence by intentionally creating starting points for the trigger of explosive crystallization (EC). We confirm that a partly thick a-Si part can induce the crystallization of a-Si films. A periodic wavy structure is observed on the surface of polycrystalline silicon (poly-Si) on and near the thick parts, which is a clear indication of the emergence of EC. Creating partly thick a-Si parts can thus be effective for the control of the starting point of crystallization by FLA and can realize the crystallization of a-Si with high reproducibility. We also compare the effects of creating thick parts at the center and along the edge of the substrates, and a thick part along the edge of the substrates leads to the initiation of crystallization at a lower fluence.

  3. Theory of amorphous ices.

    Science.gov (United States)

    Limmer, David T; Chandler, David

    2014-07-01

    We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens.

  4. Domain Wall Formation in Ferromagnetic Layers: An Ab Initio Study

    Science.gov (United States)

    Herper, Heike C.

    Domain walls are an inherent feature of ferromagnetic (FM) films consisting of layers with different magnetic orientations. Since FM films are used in electrical devices the question of the influence of domain walls on, e.g., the magnetoresistance has attracted much interest. Besides discussing the resistance contribution of domain walls, it is appropriate to study different types of domain walls and their energy of formation. The behaviour of domain walls is usually discussed within model calculations. In the present paper it is done within an ab initio Green's function technique for layered systems, i.e., the fully relativistic, spin-polarized screened Korringa-Kohn Rostoker method. Results are presented for fcc Co layers covered by two semi-infinite fcc Pt(001) bulk systems or by bulk fcc Co(001), respectively. The resistance, which is caused by the different types of domain walls is discussed within a Kubo-Greenwood approach considering Co(001)/Co24/Co(001) as an example.

  5. Spectroscopic ellipsometry characterization of amorphous and crystalline TiO{sub 2} thin films grown by atomic layer deposition at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Saha, D., E-mail: babaisps@rrcat.gov.in [Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Ajimsha, R.S. [Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Rajiv, K.; Mukherjee, C. [Mechanical and Optical Support Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Gupta, M. [UGC-DAE Consortium, Indore Centre, Khandwa Road, Indore 452017 (India); Misra, P.; Kukreja, L.M. [Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2014-10-01

    Highlights: • Refractive index was found to be increased from amorphous to the nanocrystalline films. • Refractive index was found to be inversely proportional with growth per cycle. • Large-grained anatase films showed lower refractive indices than the amorphous films. • Roughness was taken into consideration due to the columnar growths of crystalline films. - Abstract: TiO{sub 2} thin films of widely different structural and morphological characteristics were grown on Si (1 0 0) substrates using Atomic Layer Deposition (ALD) by varying the substrate temperature (T{sub s}) in a wide range (50 °C ≤ T{sub s} ≤ 400 °C). Spectroscopic ellipsometry (SE) measurements were carried out to investigate the effect of growth temperature on the optical properties of the films. Measured SE data were analyzed by considering double layer optical model for the sample together with the single oscillator Tauc-Lorentz dispersion relation. Surface roughness was taken into consideration due to the columnar growths of grains in crystalline films. The refractive index was found to be increased from amorphous (T{sub s} ≤ 150 °C) to the nanocrystalline films (250{sup 0} < T{sub s} ≤ 400 °C). The pronounced surface roughening for the large-grained anatase film obtained at the amorphous to crystalline phase transformation temperature of 200 °C, impeded SE measurement. The dispersions of refractive indices below the interband absorption edge were found to be strongly correlated with the single oscillator Wemple–DiDomenico (WD) model. The increase in dispersion energy parameter in WD model from disordered amorphous to the more ordered nanocrystalline films was found to be associated with the increase in the film density and coordination number.

  6. Dendritic azo compounds as a new type amorphous molecular material with quick photoinduced surface-relief-grating formation ability

    Science.gov (United States)

    He, Yaning; Gu, Xinyu; Guo, Miaocai; Wang, Xiaogong

    2008-09-01

    A series of dendritic azobenzene-containing compounds have been synthesized as a new type amorphous molecular material, which can show quick surface-relief-grating (SRG) formation ability upon light irradiation. For the synthesis, the dendritic precursor tris(2-(ethyl(phenyl)amino)ethyl)benzene-1,3,5-tricarboxylate and tris(3,5-bis(2-(ethyl(phenyl)amino)ethoxy)benzyl)benzene-1,3,5-tricarboxylate were prepared by esterification reactions between 1,3,5-benzenetricarbonyl chloride and N-ethyl- N-hydroxyethyl-aniline and 3,5-bis[2-( N-ethylanilino)ethoxy] benzylalcohol. The precursors were, respectively reacted with the diazonium salts of 4-nitroaniline, 4-aminobenzoic acid, and 4-aminobenzonitrile to introduce different types of donor-acceptor azo chromophores at the peripheral positions. The structure and properties of the dendritic azo compounds were characterized by the spectroscopic methods and thermal analysis. The surface-relief-grating (SRG) formation behavior of the dendritic azo compounds was studied by exposing the spin-coated thin films to an interference pattern of laser beams (532 nm) at modest intensity (100 mW/cm 2). The results show that the azo compounds can form stable amorphous glasses in a broad temperature range. The glass transition temperatures ( Tgs) depend on the backbone structures and the type of the peripheral azo chromophors. The type of the electron withdrawing groups in the p-positions of the terminal azobenzene units shows a significant influence on the SRG inscription rate. For the compounds containing the same type azo chromophores, the SRG inscription rate is also affected by the backbone structure.

  7. Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells

    KAUST Repository

    Barbe, Jeremy

    2017-02-08

    Chemical bath deposition (CBD) of tin oxide (SnO) thin films as an electron-transport layer (ETL) in a planar-heterojunction n-i-p organohalide lead perovskite and organic bulk-heterojunction (BHJ) solar cells is reported. The amorphous SnO (a-SnO) films are grown from a nontoxic aqueous bath of tin chloride at a very low temperature (55 °C) and do not require postannealing treatment to work very effectively as an ETL in a planar-heterojunction n-i-p organohalide lead perovskite or organic BHJ solar cells, in lieu of the commonly used ETL materials titanium oxide (TiO) and zinc oxide (ZnO), respectively. Ultraviolet photoelectron spectroscopy measurements on the glass/indium-tin oxide (ITO)/SnO/methylammonium lead iodide (MAPbI)/2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene device stack indicate that extraction of photogenerated electrons is facilitated by a perfect alignment of the conduction bands at the SnO/MAPbI interface, while the deep valence band of SnO ensures strong hole-blocking properties. Despite exhibiting very low electron mobility, the excellent interfacial energetics combined with high transparency (E > 4 eV) and uniform substrate coverage make the a-SnO ETL prepared by CBD an excellent candidate for the potentially low-cost and large-scale fabrication of organohalide lead perovskite and organic photovoltaics.

  8. FEM numerical analysis of excimer laser induced modification in alternating multi-layers of amorphous and nano-crystalline silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J.C., E-mail: jconde@uvigo.es [Dpto. Fisica Aplicada, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain); Martin, E. [Dpto. Mecanica, Maquinas, Motores Termicos y Fluidos, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain); Stefanov, S. [Dpto. Fisica Aplicada, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain); Alpuim, P. [Departamento de Fisica, Universidade do Minho, 4800-058 Guimaraes (Portugal); Chiussi, S. [Dpto. Fisica Aplicada, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer nc-Si:H is a material with growing importance for a large-area of nano-electronic, photovoltaic or biomedical devices. Black-Right-Pointing-Pointer UV-ELA technique causes a rapid heating that provokes the H{sub 2} desorption from the Si surface and bulk material. Black-Right-Pointing-Pointer Next, diffusion of P doped nc-Si films and eventually, for high energy densities would be possible to reach the melting point. Black-Right-Pointing-Pointer These multilayer structures consisting of thin alternating a-Si:H(10 nm) and n-doped nc-Si:H(60 nm) films deposited on SiO{sub 2}. Black-Right-Pointing-Pointer To optimize parameters involved in this processing, FEM numerical analysis of multilayer structures have been performed. Black-Right-Pointing-Pointer The numerical results are compared with exhaustive characterization of the experimental results. - Abstract: UV excimer laser annealing (UV-ELA) is an alternative annealing process that, during the last few years, has gained enormous importance for the CMOS nano-electronic technologies, with the ability to provide films and alloys with electrical and optical properties to fit the desired device performance. The UV-ELA of amorphous (a-) and/or doped nano-crystalline (nc-) silicon films is based on the rapid (nanoseconds) formation of temperature profiles caused by laser radiation that is absorbed in the material and lead to crystallisation, diffusion in solid or even in liquid phase. To achieve the desired temperature profiles and to optimize the parameters involved in the processing of hydrogenated nanocrystalline silicon (nc-Si:H) films with the UV-ELA, a numerical analysis by finite element method (FEM) of a multilayer structure has been performed. The multilayer structures, consisting of thin alternating a-Si:H(10 nm) and n-doped nc-Si:H(60 nm) layers, deposited on a glass substrate, has also been experimentally analyzed. Temperature profiles caused by 193 nm radiation with 25

  9. FEM numerical analysis of excimer laser induced modification in alternating multi-layers of amorphous and nano-crystalline silicon films

    International Nuclear Information System (INIS)

    Conde, J.C.; Martín, E.; Stefanov, S.; Alpuim, P.; Chiussi, S.

    2012-01-01

    Highlights: ► nc-Si:H is a material with growing importance for a large-area of nano-electronic, photovoltaic or biomedical devices. ► UV-ELA technique causes a rapid heating that provokes the H 2 desorption from the Si surface and bulk material. ► Next, diffusion of P doped nc-Si films and eventually, for high energy densities would be possible to reach the melting point. ► These multilayer structures consisting of thin alternating a-Si:H(10 nm) and n-doped nc-Si:H(60 nm) films deposited on SiO 2 . ► To optimize parameters involved in this processing, FEM numerical analysis of multilayer structures have been performed. ► The numerical results are compared with exhaustive characterization of the experimental results. - Abstract: UV excimer laser annealing (UV-ELA) is an alternative annealing process that, during the last few years, has gained enormous importance for the CMOS nano-electronic technologies, with the ability to provide films and alloys with electrical and optical properties to fit the desired device performance. The UV-ELA of amorphous (a-) and/or doped nano-crystalline (nc-) silicon films is based on the rapid (nanoseconds) formation of temperature profiles caused by laser radiation that is absorbed in the material and lead to crystallisation, diffusion in solid or even in liquid phase. To achieve the desired temperature profiles and to optimize the parameters involved in the processing of hydrogenated nanocrystalline silicon (nc-Si:H) films with the UV-ELA, a numerical analysis by finite element method (FEM) of a multilayer structure has been performed. The multilayer structures, consisting of thin alternating a-Si:H(10 nm) and n-doped nc-Si:H(60 nm) layers, deposited on a glass substrate, has also been experimentally analyzed. Temperature profiles caused by 193 nm radiation with 25 ns pulse length and energy densities ranging from 50 mJ/cm 2 to 400 mJ/cm 2 have been calculated. Numerical results allowed us to estimate the dehydrogenation

  10. Formation of hydrogenated amorphous carbon films of controlled hardness from a methane plasma

    International Nuclear Information System (INIS)

    Vandentop, G.J.; Kawasaki, M.; Nix, R.M.; Brown, I.G.; Salmeron, M.; Somorjai, G.A.; Department of Chemistry, University of California at Berkeley, Berkeley, California 94720)

    1990-01-01

    Studies of amorphous hydrogenated carbon (a-C:H) film deposition revealed that methyl radicals are the precursor species responsible for the bulk mass deposition of the films, while the ions act to improve the mechanical properties. The films were deposited on Si(100) substrates both on the powered (negatively self-biased) and on the grounded electrodes from a methane rf plasma (13.56 MHz) at 68 to 70 mTorr and 300 to 370 K. The films produced on the powered electrode exhibited superior mechanical properties, such as high hardness. A mass spectrometer was used to identify neutral species and positive ions incident on the electrodes from the plasma, and also to measure ion energies. Methyl radicals were incident on the electrode surface with an estimated flux of 10 16 cm -2 s -1 , for a rf power of 50 W. Methyl radicals appear to be the dominant intermediates in the growth of the soft carbon polymer, and there is a remarkable decrease in deposition rate due to the introduction of NO, a radical scavenger. A novel pulsed biasing technique was used so that the role of ions in the plasma could be studied separately. It was found that the hardness of the films depends on the power supplied by the ions to the growing film surface (the time averaged difference between the plasma potential and the electrode potential), but not on the energy of individual ions. The pulsed biasing technique offers an efficient method to adjust the film hardness by independent control of the neutral radical and ion fluxes to the surface

  11. Spectroscopic ellipsometry characterization of amorphous and crystalline TiO2 thin films grown by atomic layer deposition at different temperatures

    Science.gov (United States)

    Saha, D.; Ajimsha, R. S.; Rajiv, K.; Mukherjee, C.; Gupta, M.; Misra, P.; Kukreja, L. M.

    2014-10-01

    TiO2 thin films of widely different structural and morphological characteristics were grown on Si (1 0 0) substrates using Atomic Layer Deposition (ALD) by varying the substrate temperature (Ts) in a wide range (50 °C ≤ Ts ≤ 400 °C). Spectroscopic ellipsometry (SE) measurements were carried out to investigate the effect of growth temperature on the optical properties of the films. Measured SE data were analyzed by considering double layer optical model for the sample together with the single oscillator Tauc-Lorentz dispersion relation. Surface roughness was taken into consideration due to the columnar growths of grains in crystalline films. The refractive index was found to be increased from amorphous (Ts ≤ 150 °C) to the nanocrystalline films (2500 < Ts ≤ 400 °C). The pronounced surface roughening for the large-grained anatase film obtained at the amorphous to crystalline phase transformation temperature of 200 °C, impeded SE measurement. The dispersions of refractive indices below the interband absorption edge were found to be strongly correlated with the single oscillator Wemple-DiDomenico (WD) model. The increase in dispersion energy parameter in WD model from disordered amorphous to the more ordered nanocrystalline films was found to be associated with the increase in the film density and coordination number.

  12. On Positronium Formation in Crystalline and Amorphous Ice at Low Positron Energy

    DEFF Research Database (Denmark)

    Mogensen, O. E.

    1986-01-01

    The positronium (Ps) yield for ice, measured by Eldrup et al. using a low-energy positron beam, is discussed in terms of the spur model of Ps formation. The pronounced maxima in the Ps yield for crystalline ice at positron energies below 65 eV are well explained by effects due to energy conservat......The positronium (Ps) yield for ice, measured by Eldrup et al. using a low-energy positron beam, is discussed in terms of the spur model of Ps formation. The pronounced maxima in the Ps yield for crystalline ice at positron energies below 65 eV are well explained by effects due to energy...

  13. Effects of the Buffer Layers on the Adhesion and Antimicrobial Properties of the Amorphous ZrAlNiCuSi Films

    Science.gov (United States)

    Chiang, Pai-Tsung; Chen, Guo-Ju; Jian, Sheng-Rui; Shih, Yung-Hui

    2011-06-01

    To extend the practical applications of the bulk metallic glasses (BMGs), the preparation of the metallic glass coatings on various substrates becomes an important research issue. Among the interfacial properties of the coatings, the adhesion between films and substrates is the most crucial. In this study, amorphous Zr61Al7.5Ni10Cu17.5Si4 (ZrAlNiCuSi) thin films were deposited on SUS304 stainless steel at various sputtering powers by DC sputtering. According to the scratch tests, the introduction of the Cr and Ti buffer layers effectively improves the adhesion between the amorphous thin films and substrate without changing the surface properties, such as roughness and morphology. The antimicrobial results show that the biological activities of these microbes, except Acinetobacter baumannii, are effectively suppressed during the test period.

  14. Crystallization behavior of nanocomposites based on poly(L-lactide) and layered double hydroxides - Unbiased determination of the rigid amorphous phases due to the crystals and the nanofiller

    Science.gov (United States)

    Schoenhals, Andreas; Leng, Jing; Wurm, Andreas; Schick, Christoph

    Semicrystalline polymers have to be described by a three phase model consisting of a mobile amorphous (MAF), a crystalline (CF), and a rigid amorphous fraction (RAF). For nanocomposites based on a semicrystalline polymer the RAF is due to both the crystallites (RAFcrystal) and the filler (RAFfiller) . In most cases a separation of both contributions is not possible without further assumptions. Here polymer nanocomposite based on poly(L-lactide) and layered double hydroxide nanofiller were prepared. Due to the low crystallization rate of PLA its crystallization can be suppressed by a high enough cooling rate, and the RAF is due only to the nanofiller. The MAF, CF, and RAF were estimated by Temperature Modulated DSC. For the first time CF, MAF, RAFcrystal, and RAFfiller could be estimated without any assumption. Two different systems with a different degree of exfoliation were prepared and discussed in detail.

  15. Formation Energies of Native Point Defects in Strained-Layer Superlattices (Postprint)

    Science.gov (United States)

    2017-06-05

    potential; bulk materials; total energy calculations; entropy; strained- layer superlattice (SLS) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...AFRL-RX-WP-JA-2017-0217 FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED- LAYER SUPERLATTICES (POSTPRINT) Zhi-Gang Yu...2016 Interim 11 September 2013 – 5 November 2016 4. TITLE AND SUBTITLE FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED- LAYER SUPERLATTICES

  16. Effective self-purification of polynary metal electroplating wastewaters through formation of layered double hydroxides.

    Science.gov (United States)

    Zhou, Ji Zhi; Wu, Yue Ying; Liu, Chong; Orpe, Ajay; Liu, Qiang; Xu, Zhi Ping; Qian, Guang Ren; Qiao, Shi Zhang

    2010-12-01

    Heavy metal ions (Ni(2+), Zn(2+), and Cr(3+)) can be effectively removed from real polynary metal ions-bearing electroplating wastewaters by a carbonation process, with ∼99% of metal ions removed in most cases. The synchronous formation of layered double hydroxide (LDH) precipitates containing these metal ions was responsible for the self-purification of wastewaters. The constituents of formed polynary metals-LDHs mainly depended on the Ni(2+):Zn(2+):Cr(3+) molar ratio in wastewaters. LDH was formed at pH of 6.0-8.0 when the Ni(2+)/Zn(2+) molar ratio ≥ 1 where molar fraction of trivalent metal in the wastewaters was 0.2-0.4, otherwise ZnO, hydrozincite, or amorphous precipitate was observed. In the case of LDH formation, the residual concentration of Ni(2+), Zn(2+), and Cr(3+) in the treated wastewaters was very low, about 2-3, ∼2, and ∼1 mg/L, respectively, at 20-80 °C and pH of 6.0-8.0, indicating the effective incorporation of heavy metal ions into the LDH matrix. Furthermore, the obtained LDH materials were used to adsorb azoic dye GR, with the maximum adsorption amount of 129-134 mg/g. We also found that the obtained LDHs catalyzed more than 65% toluene to decompose at 350 °C under ambient pressure. Thus the current research has not only shown effective recovery of heavy metal ions from the electroplating wastewaters in an environmentally friendly process but also demonstrated the potential utilization of recovered materials.

  17. Advantages of using amorphous indium zinc oxide films for window layer in Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Warasawa, Moe [Department of Electrical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan); Kaijo, Akira [Idemitsu Kosan Co., Ltd., 1280 Kami-izumi, Sodegaura, 229-0293 (Japan); Sugiyama, Mutsumi, E-mail: mutsumi@rs.noda.tus.ac.jp [Department of Electrical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan)

    2012-01-01

    The advantages of using indium zinc oxide (IZO) films instead of conventional Ga-doped zinc oxide (ZnO:Ga) films for Cu(In,Ga)Se{sub 2} (CIGS) solar cells are described. The electrical properties of IZO are independent of film thickness. IZO films have higher mobility (30-40 cm{sup 2}/Vs) and lower resistivity (4-5 Multiplication-Sign 10{sup -4} {Omega} cm) compared to ZnO:Ga films deposited without intentional heating, because the number of grain boundaries in amorphous IZO films is small. The properties of a CIGS solar cell using IZO at the window layer were better than those obtained using a conventional ZnO:Ga at the window layer; moreover, the properties tended to be independent of thickness. These results indicate that use of IZO as a transparent conducting oxide layer is expected to increase the efficiency of CIGS solar cells.

  18. Magnetotransport in spin-valve systems with amorphous magnetic and superconducting partial layers; Magnetotransport in Spinventil-Systemen mit amorphen magnetischen und supraleitenden Teilschichten

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Roland Johannes

    2006-04-27

    The first part of this work deals with the fabrication and characterisation of spin valves with an amorphous FeB layer acting as a weak ferromagnet embedded into the structure. In the second part of this work ferromagnet/superconductor hybrid structures are fabricated and the relevant magnetic field dependent transport phenomena are analyzed. The interlayer of a conventional spin valve was replaced by a superconducting niobium layer. Small applied fields close to the coercivity field of the involved ferromagnets - and thus far below the critical magnetic field of the superconductor - affected the critical temperature of the niobium layer. Measurements of the field dependent resistance and the critical temperature of a FM/SC/FMsystem showed a local maximum in the T{sub c}(H)- and the R(H)-curve. (orig.)

  19. SiC formation for a solar cell passivation layer using an RF magnetron co-sputtering system

    Science.gov (United States)

    2012-01-01

    In this paper, we describe a method of amorphous silicon carbide film formation for a solar cell passivation layer. The film was deposited on p-type silicon (100) and glass substrates by an RF magnetron co-sputtering system using a Si target and a C target at a room-temperature condition. Several different SiC [Si1-xCx] film compositions were achieved by controlling the Si target power with a fixed C target power at 150 W. Then, structural, optical, and electrical properties of the Si1-xCx films were studied. The structural properties were investigated by transmission electron microscopy and secondary ion mass spectrometry. The optical properties were achieved by UV-visible spectroscopy and ellipsometry. The performance of Si1-xCx passivation was explored by carrier lifetime measurement. PMID:22221730

  20. Argon-ion-induced formation of nanoporous GaSb layer: Microstructure, infrared luminescence, and vibrational properties

    Energy Technology Data Exchange (ETDEWEB)

    Datta, D. P.; Som, T., E-mail: tsom@iopb.res.in [SUNAG Laboratory, Institute of Physics, Bhubaneswar, Odisha 751 005 (India); Kanjilal, A. [Department of Physics, Shiv Nadar University, Uttar Pradesh 201 314 (India); Satpati, B. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Dhara, S. [Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Das, T. D. [Department of Electronic Science, University of Calcutta, APC Road, Kolkata 700 009 (India); Kanjilal, D. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India)

    2014-07-21

    Room temperature implantation of 60 keV Ar{sup +}-ions in GaSb to the fluences of 7 × 10{sup 16} to 3 × 10{sup 18} ions cm{sup −2} is carried out at two incidence angles, viz 0° and 60°, leading to formation of a nanoporous layer. As the ion fluence increases, patches grow on the porous layer under normal ion implantation, whereas the porous layer gradually becomes embedded under a rough top surface for oblique incidence of ions. Grazing incidence x-ray diffraction and cross-sectional transmission electron microscopy studies reveal the existence of nanocrystallites embedded in the ion-beam amorphized GaSb matrix up to the highest fluence used in our experiment. Oxidation of the nanoporous layers becomes obvious from x-ray photoelectron spectroscopy and Raman mapping. The correlation of ion-beam induced structural modification with photoluminescence signals in the infrared region has further been studied, showing defect induced emission of additional peaks near the band edge of GaSb.

  1. Fabrication of amorphous silicon nanoribbons by atomic force microscope tip-induced local oxidation for thin film device applications

    International Nuclear Information System (INIS)

    Pichon, L; Rogel, R; Demami, F

    2010-01-01

    We demonstrate the feasibility of induced local oxidation of amorphous silicon by atomic force microscopy. The resulting local oxide is used as a mask for the elaboration of a thin film silicon resistor. A thin amorphous silicon layer deposited on a glass substrate is locally oxidized following narrow continuous lines. The corresponding oxide line is then used as a mask during plasma etching of the amorphous layer leading to the formation of a nanoribbon. Such an amorphous silicon nanoribbon is used for the fabrication of the resistor

  2. Temperature stable LiNbO3 surface acoustic wave device with diode sputtered amorphous TeO2 over-layer

    International Nuclear Information System (INIS)

    Dewan, Namrata; Tomar, Monika; Gupta, Vinay; Sreenivas, K.

    2005-01-01

    Amorphous TeO 2 thin film, sputtered in the O 2 +Ar(25%+75%) gas environment using a metallic tellurium target, has been identified as an attractive negative temperature coefficient of delay (TCD) material that can yield a temperature stable device when combined with a surface acoustic wave (SAW) device based on positive TCD material such as LiNbO 3 . The influence of amorphous TeO 2 over-layer on the SAW propagation characteristics (velocity and temperature coefficient of delay) of the SAW filters (36 and 70 MHz) based on 128 deg. rotated Y-cut X-propagating lithium niobate (128 deg. Y-X LiNbO 3 ) single crystal has been studied. It is found that 0.042 λ thick TeO 2 over-layer on a prefabricated SAW device operating at 36 MHz centre frequency, reduces the TCD of the device from 76 ppm deg. C -1 to almost zero (∼1.4 ppm deg. C -1 ) without deteriorating its efficiency and could be considered as a suitable alternative for temperature stable devices in comparison to conventional SiO 2 over-layer

  3. Amorphous TiO2 Shells: A Vital Elastic Buffering Layer on Silicon Nanoparticles for High-Performance and Safe Lithium Storage.

    Science.gov (United States)

    Yang, Jianping; Wang, Yunxiao; Li, Wei; Wang, Lianjun; Fan, Yuchi; Jiang, Wan; Luo, Wei; Wang, Yang; Kong, Biao; Selomulya, Cordelia; Liu, Hua Kun; Dou, Shi Xue; Zhao, Dongyuan

    2017-12-01

    Smart surface coatings of silicon (Si) nanoparticles are shown to be good examples for dramatically improving the cyclability of lithium-ion batteries. Most coating materials, however, face significant challenges, including a low initial Coulombic efficiency, tedious processing, and safety assessment. In this study, a facile sol-gel strategy is demonstrated to synthesize commercial Si nanoparticles encapsulated by amorphous titanium oxide (TiO 2 ), with core-shell structures, which show greatly superior electrochemical performance and high-safety lithium storage. The amorphous TiO 2 shell (≈3 nm) shows elastic behavior during lithium discharging and charging processes, maintaining high structural integrity. Interestingly, it is found that the amorphous TiO 2 shells offer superior buffering properties compared to crystalline TiO 2 layers for unprecedented cycling stability. Moreover, accelerating rate calorimetry testing reveals that the TiO 2 -encapsulated Si nanoparticles are safer than conventional carbon-coated Si-based anodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Facile synthesis of highly efficient amorphous Mn-MIL-100 catalysts: The formation mechanism and the structure changes during the application for CO oxidation.

    Science.gov (United States)

    Zhang, Xiaodong; Li, Hongxin; Lv, Xutian; Xu, Jingcheng; Wang, Yuxin; He, Chi; Liu, Ning; Yang, Yiqiong; Wang, Yin

    2018-04-13

    A comprehensive study was carried out on amorphous metal-organic frameworks Mn-MIL-100 as efficient catalysts towards CO oxidation. This study focuses on explaining the crystalline-amorphous-crystalline transformations during thermolysis process of Mn-MIL-100 and studying the structure changes during the reaction process for CO oxidation. A possible formation mechanism of amorphous Mn-MIL-100 was proposed. Amorphous Mn-MIL-100 obtained by calcination at 250°C (a-Mn-250) showed a smaller specific surface area (4 m2/g), but displayed a high catalytic activity. Furthermore, the structure of amorphous Mn-MIL-100 was labile during the reaction process. When used a-Mn-250 were treated with reaction atmosphere at high temperature (named used a-Mn-250-S), the amorphous catalysts transformed to Mn2O3. Meanwhile, BET surface area (164 m2/g) and the catalytic performance both sharply increased. In addition, used a-Mn-250-S catalyst transformed from Mn2O3 to Mn3O4, resulting in the slightly decrease of catalytic activity under the presence of 1 vol% water vapor in the stream. A schematic of the structure changes during the reaction process was proposed. The achievement of our synthesis relies on the increase of BET surface area using CO as retreatment atmosphere, and the enhanced catalytic activity was attributed to the unique structure, a high quantity of surface active oxygen species, oxygen vacancies and good low temperature reduction behavior. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Surface profile gradient in amorphous Ta{sub 2}O{sub 5} semi conductive layers regulates nanoscale electric current stability

    Energy Technology Data Exchange (ETDEWEB)

    Cefalas, A.C., E-mail: ccefalas@eie.gr [National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, Athens 11635 (Greece); Kollia, Z.; Spyropoulos-Antonakakis, N.; Gavriil, V. [National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, Athens 11635 (Greece); Christofilos, D.; Kourouklis, G. [Physics Division, School of Technology, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Semashko, V.V.; Pavlov, V. [Kazan Federal University, Institute of Physics, 18 Kremljovskaja str., Kazan 420008 (Russian Federation); Sarantopoulou, E. [National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, Athens 11635 (Greece); Kazan Federal University, Institute of Physics, 18 Kremljovskaja str., Kazan 420008 (Russian Federation)

    2017-02-28

    Highlights: • The work links the surface morphology of amorphous semiconductors with both their electric-thermal properties and current stability at the nanoscale (<1 μm). • Measured high correlation value between surface morphological spatial gradient and conductive electron energy spatial gradient or thermal gradient. • Unidirectional current stability is associated with asymmetric nanodomains along nanosize conductive paths. • Bidirectional current stability is inherent with either long conductive paths or nanosize conductive paths along symmetric nanodomains. • Conclusion: Surface design improves current stability across nanoelectonic junctions. - Abstract: A link between the morphological characteristics and the electric properties of amorphous layers is established by means of atomic, conductive, electrostatic force and thermal scanning microscopy. Using amorphous Ta{sub 2}O{sub 5} (a-Ta{sub 2}O{sub 5}) semiconductive layer, it is found that surface profile gradients (morphological gradient), are highly correlated to both the electron energy gradient of trapped electrons in interactive Coulombic sites and the thermal gradient along conductive paths and thus thermal and electric properties are correlated with surface morphology at the nanoscale. Furthermore, morphological and electron energy gradients along opposite conductive paths of electrons intrinsically impose a current stability anisotropy. For either long conductive paths (L > 1 μm) or along symmetric nanodomains, current stability for both positive and negative currents i is demonstrated. On the contrary, for short conductive paths along non-symmetric nanodomains, the set of independent variables (L, i) is spanned by two current stability/intability loci. One locus specifies a stable state for negative currents, while the other locus also describes a stable state for positive currents.

  6. On the use of a charged tunnel layer as a hole collector to improve the efficiency of amorphous silicon thin-film solar cells

    International Nuclear Information System (INIS)

    Ke, Cangming; Sahraei, Nasim; Aberle, Armin G.; Stangl, Rolf; Peters, Ian Marius

    2015-01-01

    A new concept, using a negatively charged tunnel layer as a hole collector, is proposed and theoretically investigated for application in amorphous silicon thin-film solar cells. The concept features a glass/transparent conductive oxide/ultra-thin negatively charged tunnel layer/intrinsic a-Si:H/n-doped a-Si:H/metal structure. The key feature of this so called t + -i-n structure is the introduction of a negatively charged tunnel layer (attracting holes from the intrinsic absorber layer), which substitutes the highly recombination active p-doped a-Si:H layer in a conventional p-i-n configuration. Atomic layer deposited aluminum oxide (ALD AlO x ) is suggested as a potential candidate for such a tunnel layer. Using typical ALD AlO x parameters, a 27% relative efficiency increase (i.e., from 9.7% to 12.3%) is predicted theoretically for a single-junction a-Si:H solar cell on a textured superstrate. This prediction is based on parameters that reproduce the experimentally obtained external quantum efficiency and current-voltage characteristics of a conventional processed p-i-n a-Si:H solar cell, reaching 9.7% efficiency and serving as a reference. Subsequently, the p-doped a-Si:H layer is replaced by the tunnel layer (studied by means of numerical device simulation). Using a t + -i-n configuration instead of a conventional p-i-n configuration will not only increase the short-circuit current density (from 14.4 to 14.9 mA/cm 2 , according to our simulations), it also enhances the open-circuit voltage and the fill factor (from 917 mV to 1.0 V and from 74% to 83%, respectively). For this concept to work efficiently, a high work function front electrode material or a high interface charge is needed

  7. SF{sub 6} decomposition and layer formation due to excimer laser photoablation of SiO{sub 2} surface at gas-solid system

    Energy Technology Data Exchange (ETDEWEB)

    Sajad, Batool [Physics Department, Amirkabir University, PO Box 15875-4413, Tehran (Iran, Islamic Republic of); Parvin, Parviz [Physics Department, Amirkabir University, PO Box 15875-4413, Tehran (Iran, Islamic Republic of); Bassam, Mohamad Amin [Excimer Laser Lab, Emam Hussain University, PO Box 16575-4347, Tehrann (Iran, Islamic Republic of)

    2004-12-21

    In this work, the effect of an excimer laser has been studied for presenting a method for SF{sub 6} decomposition and simultaneous formation of a SiF{sub 2} layer on amorphous SiO{sub 2}. Though the excimer laser did not establish a gas phase photodissociation, we have shown that UV photoablation leads strongly to molecular decomposition in the SF{sub 6}-SiO{sub 2} system. Moreover, the dependence of the decomposition process on the exposure parameters such as the wavelength and intensity as well as the gas pressure and the focal point distance from the gas-solid interface has been investigated.

  8. Direct Inkjet Printing of Silver Source/Drain Electrodes on an Amorphous InGaZnO Layer for Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Honglong Ning

    2017-01-01

    Full Text Available Printing technologies for thin-film transistors (TFTs have recently attracted much interest owing to their eco-friendliness, direct patterning, low cost, and roll-to-roll manufacturing processes. Lower production costs could result if electrodes fabricated by vacuum processes could be replaced by inkjet printing. However, poor interfacial contacts and/or serious diffusion between the active layer and the silver electrodes are still problematic for achieving amorphous indium–gallium–zinc–oxide (a-IGZO TFTs with good electrical performance. In this paper, silver (Ag source/drain electrodes were directly inkjet-printed on an amorphous a-IGZO layer to fabricate TFTs that exhibited a mobility of 0.29 cm2·V−1·s−1 and an on/off current ratio of over 105. To the best of our knowledge, this is a major improvement for bottom-gate top-contact a-IGZO TFTs with directly printed silver electrodes on a substrate with no pretreatment. This study presents a promising alternative method of fabricating electrodes of a-IGZO TFTs with desirable device performance.

  9. Direct Inkjet Printing of Silver Source/Drain Electrodes on an Amorphous InGaZnO Layer for Thin-Film Transistors.

    Science.gov (United States)

    Ning, Honglong; Chen, Jianqiu; Fang, Zhiqiang; Tao, Ruiqiang; Cai, Wei; Yao, Rihui; Hu, Shiben; Zhu, Zhennan; Zhou, Yicong; Yang, Caigui; Peng, Junbiao

    2017-01-10

    Printing technologies for thin-film transistors (TFTs) have recently attracted much interest owing to their eco-friendliness, direct patterning, low cost, and roll-to-roll manufacturing processes. Lower production costs could result if electrodes fabricated by vacuum processes could be replaced by inkjet printing. However, poor interfacial contacts and/or serious diffusion between the active layer and the silver electrodes are still problematic for achieving amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs with good electrical performance. In this paper, silver (Ag) source/drain electrodes were directly inkjet-printed on an amorphous a-IGZO layer to fabricate TFTs that exhibited a mobility of 0.29 cm²·V -1 ·s -1 and an on/off current ratio of over 10⁵. To the best of our knowledge, this is a major improvement for bottom-gate top-contact a-IGZO TFTs with directly printed silver electrodes on a substrate with no pretreatment. This study presents a promising alternative method of fabricating electrodes of a-IGZO TFTs with desirable device performance.

  10. Paraffin wax passivation layer improvements in electrical characteristics of bottom gate amorphous indium–gallium–zinc oxide thin-film transistors

    International Nuclear Information System (INIS)

    Chang, Geng-Wei; Chang, Ting-Chang; Syu, Yong-En; Tsai, Tsung-Ming; Chang, Kuan-Chang; Tu, Chun-Hao; Jian, Fu-Yen; Hung, Ya-Chi; Tai, Ya-Hsiang

    2011-01-01

    In this research, paraffin wax is employed as the passivation layer of the bottom gate amorphous indium–gallium–zinc oxide thin-film transistors (a-IGZO TFTs), and it is formed by sol–gel process in the atmosphere. The high yield and low cost passivation layer of sol–gel process technology has attracted much attention for current flat-panel-display manufacturing. Comparing with passivation-free a-IGZO TFTs, passivated devices exhibit a superior stability against positive gate bias stress in different ambient gas, demonstrating that paraffin wax shows gas-resisting characteristics for a-IGZO TFTs application. Furthermore, light-induced stretch-out phenomenon for paraffin wax passivated device is suppressed. This superior stability of the passivated device was attributed to the reduced total density of states (DOS) including the interfacial and semiconductor bulk trap densities.

  11. Amorphous Si layers co-doped with B and Mn: Thin film growth and steering of magnetic properties

    International Nuclear Information System (INIS)

    Drera, G.; Mozzati, M.C.; Colombi, P.; Salvinelli, G.; Pagliara, S.; Visentin, D.; Sangaletti, L.

    2015-01-01

    Amorphous silicon thin films co-doped with manganese (5% at.) and boron (1.8% at.) have been prepared by RF sputtering on Al 2 O 3 substrates held at room temperature (RT). The films, with an average thickness of about 0.9 μm, were carefully characterized by micro-Raman and X-ray photoemission spectroscopies. A ferromagnetic (FM) behavior up to RT was observed. In order to discuss and possibly rule out extrinsic effects usually related to segregations of ferromagnetic impurities in the samples, magnetization measurements were carried out on the Al 2 O 3 substrates, as well as on Si:B and Si:Mn films grown with the same RF sputtering system. Only the Si:B:Mn films displayed a FM behavior up to RT. Since amorphous films doped with Mn alone did not display any signature of FM ordering, boron co-doping results to be crucial for the onset of the FM behavior. The conductivity of the samples is not affected by boron doping that, therefore, does not appear to significantly contribute to a possible carrier-mediated FM interaction between Mn ions by supplying extra charges to the system. On this basis, the capability of B to hinder the quenching of the Mn 3d magnetic moments has also to be regarded as a possible role of this co-dopant in the observed magnetization. - Highlights: • We successfully deposited amorphous silicon thin films co-doped with Mn and B. • Structural, electronic, and magnetic properties have been carefully characterized. • A ferromagnetic behavior up to room temperature was detected. • The extrinsic origin of magnetism is excluded. • Boron can play a relevant role to avoid quenching of magnetic moment in Mn ions

  12. Amorphous Si layers co-doped with B and Mn: Thin film growth and steering of magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Drera, G. [I-LAMP, Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia (Italy); Mozzati, M.C. [CNISM, Dipartimento di Fisica, Università di Pavia, Via Bassi 6, 27100 Pavia (Italy); Colombi, P. [CSMT Gestione s.c.a.r.l, Via Branze 45, 25123 Brescia (Italy); Salvinelli, G.; Pagliara, S.; Visentin, D. [I-LAMP, Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia (Italy); Sangaletti, L., E-mail: sangalet@dmf.unicatt.it [I-LAMP, Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia (Italy)

    2015-09-01

    Amorphous silicon thin films co-doped with manganese (5% at.) and boron (1.8% at.) have been prepared by RF sputtering on Al{sub 2}O{sub 3} substrates held at room temperature (RT). The films, with an average thickness of about 0.9 μm, were carefully characterized by micro-Raman and X-ray photoemission spectroscopies. A ferromagnetic (FM) behavior up to RT was observed. In order to discuss and possibly rule out extrinsic effects usually related to segregations of ferromagnetic impurities in the samples, magnetization measurements were carried out on the Al{sub 2}O{sub 3} substrates, as well as on Si:B and Si:Mn films grown with the same RF sputtering system. Only the Si:B:Mn films displayed a FM behavior up to RT. Since amorphous films doped with Mn alone did not display any signature of FM ordering, boron co-doping results to be crucial for the onset of the FM behavior. The conductivity of the samples is not affected by boron doping that, therefore, does not appear to significantly contribute to a possible carrier-mediated FM interaction between Mn ions by supplying extra charges to the system. On this basis, the capability of B to hinder the quenching of the Mn 3d magnetic moments has also to be regarded as a possible role of this co-dopant in the observed magnetization. - Highlights: • We successfully deposited amorphous silicon thin films co-doped with Mn and B. • Structural, electronic, and magnetic properties have been carefully characterized. • A ferromagnetic behavior up to room temperature was detected. • The extrinsic origin of magnetism is excluded. • Boron can play a relevant role to avoid quenching of magnetic moment in Mn ions.

  13. Formation, reactivity and aging of amorphous ferric oxides in the presence of model and membrane bioreactor derived organics.

    Science.gov (United States)

    Bligh, Mark W; Maheshwari, Pradeep; David Waite, T

    2017-11-01

    Iron salts are routinely dosed in wastewater treatment as a means of achieving effluent phosphorous concentration goals. The iron oxides that result from addition of iron salts partake in various reactions, including reductive dissolution and phosphate adsorption. The reactivity of these oxides is controlled by the conditions of formation and the processes, such as aggregation, that lead to a reduction in accessible surface sites following formation. The presence of organic compounds is expected to significantly impact these processes in a number of ways. In this study, amorphous ferric oxide (AFO) reactivity and aging was investigated following the addition of ferric iron (Fe(III)) to three solution systems: two synthetic buffered systems, either containing no organic or containing alginate, and a supernatant system containing soluble microbial products (SMPs) sourced from a membrane bioreactor (MBR). Reactivity of the Fe(III) phases in these systems at various times (1-60 min) following Fe(III) addition was quantified by determining the rate constants for ascorbate-mediated reductive dissolution over short (5 min) and long (60 min) dissolution periods and for a range (0.5-10 mM) of ascorbate concentrations. AFO particle size was monitored using dynamic light scattering during the aging and dissolution periods. In the presence of alginate, AFO particles appeared to be stabilized against aggregation. However, aging in the alginate system was remarkably similar to the inorganic system where aging is associated with aggregation. An aging mechanism involving restructuring within the alginate-AFO assemblage was proposed. In the presence of SMPs, a greater diversity of Fe(III) phases was evident with both a small labile pool of organically complexed Fe(III) and a polydisperse population of stabilized AFO particles present. The prevalence of low molecular weight organic molecules facilitated stabilization of the Fe(III) oxyhydroxides formed but subsequent aging

  14. Monitoring Cu nodule formation using Ni marker layers

    Energy Technology Data Exchange (ETDEWEB)

    Lafouresse, M.C., E-mail: mlafouresse@gmail.co [Department of Civil and Earth Resources Engineering, Kyoto University, Katsura, Kyoto 615-8540 (Japan); Fukunaka, Y. [Institute for Nanoscience and Nanotechnology, Waseda University, Shinjuku Ku, Tokyo 169-8555 (Japan); ISS Science Project Office, JAXA, Tsukuba-shi, Ibaraki 305-8505 (Japan); Matsuoka, T. [Department of Civil and Earth Resources Engineering, Kyoto University, Katsura, Kyoto 615-8540 (Japan); Schwarzacher, W. [H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom)

    2011-04-30

    Highlights: {yields} Ni marker layers to monitor electrodeposited Cu nodule morphological evolution. {yields} The edges of the nodules trace out a straight line. {yields} Difference in growth between spheres and hemispheres. {yields} Nodule on nodule growth at high overpotential. {yields} No dramatic effect of the diffusion layer thickness on the film morphology. - Abstract: We have used Ni marker layers to study the evolution of the characteristic spheroidal nodule morphology in electrodeposited Cu films. Ultrathin Ni layers were electrodeposited in-between Cu layers, and cross sections prepared by electrochemical polishing. During growth of a typical spheroidal feature, the edge (i.e. where there is a discontinuity in the surface slope) traces out a straight line in the cross-sectional image. At high overpotential, the cross-sections show nodule-on-nodule growth, giving rise to the well known cauliflower morphology. Rotating disk electrode studies reveal that, surprisingly, the absolute diffusion layer thickness does not appear to play a major role in the development of spheres.

  15. Monitoring Cu nodule formation using Ni marker layers

    International Nuclear Information System (INIS)

    Lafouresse, M.C.; Fukunaka, Y.; Matsuoka, T.; Schwarzacher, W.

    2011-01-01

    Highlights: → Ni marker layers to monitor electrodeposited Cu nodule morphological evolution. → The edges of the nodules trace out a straight line. → Difference in growth between spheres and hemispheres. → Nodule on nodule growth at high overpotential. → No dramatic effect of the diffusion layer thickness on the film morphology. - Abstract: We have used Ni marker layers to study the evolution of the characteristic spheroidal nodule morphology in electrodeposited Cu films. Ultrathin Ni layers were electrodeposited in-between Cu layers, and cross sections prepared by electrochemical polishing. During growth of a typical spheroidal feature, the edge (i.e. where there is a discontinuity in the surface slope) traces out a straight line in the cross-sectional image. At high overpotential, the cross-sections show nodule-on-nodule growth, giving rise to the well known cauliflower morphology. Rotating disk electrode studies reveal that, surprisingly, the absolute diffusion layer thickness does not appear to play a major role in the development of spheres.

  16. Structural Analyses of Phase Stability in Amorphous and Partially Crystallized Ge-Rich GeTe Films Prepared by Atomic Layer Deposition.

    Science.gov (United States)

    Gwon, Taehong; Mohamed, Ahmed Yousef; Yoo, Chanyoung; Park, Eui-Sang; Kim, Sanggyun; Yoo, Sijung; Lee, Han-Koo; Cho, Deok-Yong; Hwang, Cheol Seong

    2017-11-29

    The local bonding structures of Ge x Te 1-x (x = 0.5, 0.6, and 0.7) films prepared through atomic layer deposition (ALD) with Ge(N(Si(CH 3 ) 3 ) 2 ) 2 and ((CH 3 ) 3 Si) 2 Te precursors were investigated using Ge K-edge X-ray absorption spectroscopy (XAS). The results of the X-ray absorption fine structure analyses show that for all of the compositions, the as-grown films were amorphous with a tetrahedral Ge coordination of a mixture of Ge-Te and Ge-Ge bonds but without any signature of Ge-GeTe decomposition. The compositional evolution in the valence band electronic structures probed through X-ray photoelectron spectroscopy suggests a substantial chemical influence of additional Ge on the nonstoichiometric GeTe. This implies that the ALD process can stabilize Ge-abundant bonding networks like -Te-Ge-Ge-Te- in amorphous GeTe. Meanwhile, the XAS results on the Ge-rich films that had undergone post-deposition annealing at 350 °C show that the parts of the crystalline Ge-rich GeTe became separated into Ge crystallites and rhombohedral GeTe in accordance with the bulk phase diagram, whereas the disordered GeTe domains still remained, consistent with the observations of transmission electron microscopy and Raman spectroscopy. Therefore, amorphousness in GeTe may be essential for the nonsegregated Ge-rich phases and the low growth temperature of the ALD enables the achievement of the structurally metastable phases.

  17. Low-temperature fabrication of an HfO2 passivation layer for amorphous indium-gallium-zinc oxide thin film transistors using a solution process.

    Science.gov (United States)

    Hong, Seonghwan; Park, Sung Pyo; Kim, Yeong-Gyu; Kang, Byung Ha; Na, Jae Won; Kim, Hyun Jae

    2017-11-24

    We report low-temperature solution processing of hafnium oxide (HfO 2 ) passivation layers for amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). At 150 °C, the hafnium chloride (HfCl 4 ) precursor readily hydrolyzed in deionized (DI) water and transformed into an HfO 2 film. The fabricated HfO 2 passivation layer prevented any interaction between the back surface of an a-IGZO TFT and ambient gas. Moreover, diffused Hf 4+ in the back-channel layer of the a-IGZO TFT reduced the oxygen vacancy, which is the origin of the electrical instability in a-IGZO TFTs. Consequently, the a-IGZO TFT with the HfO 2 passivation layer exhibited improved stability, showing a decrease in the threshold voltage shift from 4.83 to 1.68 V under a positive bias stress test conducted over 10,000 s.

  18. Damage-free back channel wet-etch process in amorphous indium-zinc-oxide thin-film transistors using a carbon-nanofilm barrier layer.

    Science.gov (United States)

    Luo, Dongxiang; Zhao, Mingjie; Xu, Miao; Li, Min; Chen, Zikai; Wang, Lang; Zou, Jianhua; Tao, Hong; Wang, Lei; Peng, Junbiao

    2014-07-23

    Amorphous indium-zinc-oxide thin film transistors (IZO-TFTs) with damage-free back channel wet-etch (BCE) process were investigated. A carbon (C) nanofilm was inserted into the interface between IZO layer and source/drain (S/D) electrodes as a barrier layer. Transmittance electron microscope images revealed that the 3 nm-thick C nanofilm exhibited a good corrosion resistance to a commonly used H3PO4-based etchant and could be easily eliminated. The TFT device with a 3 nm-thick C barrier layer showed a saturated field effect mobility of 14.4 cm(2) V(-1) s(-1), a subthreshold swing of 0.21 V/decade, an on-to-off current ratio of 8.3 × 10(10), and a threshold voltage of 2.0 V. The favorable electrical performance of this kind of IZO-TFTs was due to the protection of the inserted C to IZO layer in the back-channel-etch process. Moreover, the low contact resistance of the devices was proved to be due to the graphitization of the C nanofilms after annealing. In addition, the hysteresis and thermal stress testing confirmed that the usage of C barrier nanofilms is an effective method to fabricate the damage-free BCE-type devices with high reliability.

  19. THE FORMATION AND CHARACTERIZATION OF SUSTAINABLE LAYERED FILMS INCORPORATING MICROFIBRILLATED CELLULOSE (MFC)

    OpenAIRE

    Galina Rodionova,; Solenne Roudot; , Øyvind Eriksen,; Ferdinand Männle,; Øyvind Gregersen

    2012-01-01

    Microfibrillated cellulose (MFC), TEMPO-pretreated MFC, and hybrid polymer/MFC mix were used for the production of layered films with interesting properties for application in food packaging. The series of samples were prepared from MFC (base layers) using a dispersion-casting method. The same procedure as well as a bar coating technique was applied to form top layers of different basis weights. The barrier properties and formation of the layered films were investigated in relationship to the...

  20. Visualization and characterization of interfacial polymerization layer formation

    NARCIS (Netherlands)

    Zhang, Yali; Benes, Nieck Edwin; Lammertink, Rob G.H.

    2015-01-01

    We present a microfluidic platform to visualize the formation of free-standing films by interfacial polymerization. A microfluidic device is fabricated, with an array of micropillars to stabilize an aqueous–organic interface that allows a direct observation of the films formation process via optical

  1. van der Waals epitaxy of SnS film on single crystal graphene buffer layer on amorphous SiO2/Si

    Science.gov (United States)

    Xiang, Yu; Yang, Yunbo; Guo, Fawen; Sun, Xin; Lu, Zonghuan; Mohanty, Dibyajyoti; Bhat, Ishwara; Washington, Morris; Lu, Toh-Ming; Wang, Gwo-Ching

    2018-03-01

    Conventional hetero-epitaxial films are typically grown on lattice and symmetry matched single crystal substrates. We demonstrated the epitaxial growth of orthorhombic SnS film (∼500 nm thick) on single crystal, monolayer graphene that was transferred on the amorphous SiO2/Si substrate. Using X-ray pole figure analysis we examined the structure, quality and epitaxy relationship of the SnS film grown on the single crystal graphene and compared it with the SnS film grown on commercial polycrystalline graphene. We showed that the SnS films grown on both single crystal and polycrystalline graphene have two sets of orientation domains. However, the crystallinity and grain size of the SnS film improve when grown on the single crystal graphene. Reflection high-energy electron diffraction measurements show that the near surface texture has more phases as compared with that of the entire film. The surface texture of a film will influence the growth and quality of film grown on top of it as well as the interface formed. Our result offers an alternative approach to grow a hetero-epitaxial film on an amorphous substrate through a single crystal graphene buffer layer. This strategy of growing high quality epitaxial thin film has potential applications in optoelectronics.

  2. Conversion of nuclear waste to molten glass: Formation of porous amorphous alumina in a high-Al melter feed

    Science.gov (United States)

    Xu, Kai; Hrma, Pavel; Washton, Nancy; Schweiger, Michael J.; Kruger, Albert A.

    2017-01-01

    The transition of Al phases in a simulated high-Al high-level nuclear waste melter feed heated at 5 K min-1 to 700 °C was investigated with transmission electron microscopy, 27Al nuclear magnetic resonance spectroscopy, the Brunauer-Emmett-Teller method, and X-ray diffraction. At temperatures between 300 and 500 °C, porous amorphous alumina formed from the dehydration of gibbsite, resulting in increased specific surface area of the feed (∼8 m2 g-1). The high-surface-area amorphous alumina formed in this manner could potentially stop salt migration in the cold cap during nuclear waste vitrification.

  3. Electrophoretic formation of semiconductor layers with adjustable band gap

    Science.gov (United States)

    Shindrov, Alexander; Yuvchenko, Sergey; Vikulova, Maria; Tretyachenko, Elena; Zimnyakov, Dmitry; Gorokhovsky, Alexander

    2017-11-01

    The ceramic layers of the potassium polytitanates modified by transition metal salts were electrophoretically deposited onto the surface of glassy substrate coated with indium-tin oxide. The deposition allows obtaining a dense ceramic layer formed by composite agglomerates consisting of nanoscale particles with average size of 130-190 nm. The optical absorption spectra of the coatings modified in the mixtures of aqueous solutions of different transition metal salts were investigated. It was recognized that a bandgap value of these composites can be adjusted in a range from 1.4 to 2.3 eV depending the chemical composition of layered double hydroxide obtained during modification. This might be very promising for optoelectronic applications of such coatings due to an explicit control of optical properties.

  4. Dimethylaluminum hydride for atomic layer deposition of Al2O3 passivation for amorphous InGaZnO thin-film transistors

    Science.gov (United States)

    Corsino, Dianne C.; Bermundo, Juan Paolo S.; Fujii, Mami N.; Takahashi, Kiyoshi; Ishikawa, Yasuaki; Uraoka, Yukiharu

    2018-06-01

    Atomic layer deposition (ALD) of Al2O3 using dimethylaluminum hydride (DMAH) was demonstrated as an effective passivation for amorphous InGaZnO thin-film transistors (TFTs). Compared with the most commonly used precursor, trimethylaluminum, TFTs fabricated with DMAH showed improved stability, resulting from the lower amount of oxygen vacancies, and hence fewer trap sites, as shown by X-ray photoelectron spectroscopy (XPS) depth profiling analysis. We found that prolonged plasma exposure during ALD can eliminate the hump phenomenon, which is only present for DMAH. The higher Al2O3 deposition rate when using DMAH is in line with the requirements of emerging techniques, such as spatial ALD, for improving fabrication throughput.

  5. Effect of γ-(Fe,Ni) crystal-size stabilization in Fe-Ni-B amorphous ribbon

    Science.gov (United States)

    Gorshenkov, M. V.; Glezer, A. M.; Korchuganova, O. A.; Aleev, A. A.; Shurygina, N. A.

    2017-02-01

    The effect of stabilizing crystal size in a melt-quenched amorphous Fe50Ni33B17 ribbon is described upon crystallization in a temperature range of 360-400°C. The shape, size, volume fraction, and volume density have been investigated by transmission electron microscopy and X-ray diffraction methods. The formation of an amorphous layer of the Fe50Ni29B21 compound was found by means of atomic-probe tomography at the boundary of the crystallite-amorphous phase. The stabilization of crystal sizes during annealing is due to the formation of a barrier amorphous layer that has a crystallization temperature that exceeds the crystallization temperature of the matrix amorphous alloy.

  6. Mechanical intermixing of components in (CoMoNi)-based systems and the formation of (CoMoNi)/WC nanocomposite layers on Ti sheets under ball collisions

    Science.gov (United States)

    Romankov, S.; Park, Y. C.; Shchetinin, I. V.

    2017-11-01

    Cobalt (Co), molybdenum (Mo), and nickel (Ni) components were simultaneously introduced onto titanium (Ti) surfaces from a composed target using ball collisions. Tungsten carbide (WC) balls were selected for processing as the source of a cemented carbide reinforcement phase. During processing, ball collisions continuously introduced components from the target and the grinding media onto the Ti surface and induced mechanical intermixing of the elements, resulting in formation of a complex nanocomposite structure onto the Ti surface. The as-fabricated microstructure consisted of uniformly dispersed WC particles embedded within an integrated metallic matrix composed of an amorphous phase with nanocrystalline grains. The phase composition of the alloyed layers, atomic reactions, and the matrix grain sizes depended on the combination of components introduced onto the Ti surface during milling. The as-fabricated layer exhibited a very high hardness compared to industrial metallic alloys and tool steel materials. This approach could be used for the manufacture of both cemented carbides and amorphous matrix composite layers.

  7. Amorphous drugs and dosage forms

    DEFF Research Database (Denmark)

    Grohganz, Holger; Löbmann, K.; Priemel, P.

    2013-01-01

    The transformation to an amorphous form is one of the most promising approaches to address the low solubility of drug compounds, the latter being an increasing challenge in the development of new drug candidates. However, amorphous forms are high energy solids and tend to recry stallize. New...... formulation principles are needed to ensure the stability of amorphous drug forms. The formation of solid dispersions is still the most investigated approach, but additional approaches are desirable to overcome the shortcomings of solid dispersions. Spatial separation by either coating or the use of micro-containers...... before single molecules are available for the formation of crystal nuclei, thus stabilizing the amorphous form....

  8. Conversion of nuclear waste to molten glass: Formation of porous amorphous alumina in a high-Al melter feed

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kai, E-mail: kaixu@whut.edu.cn [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Hrma, Pavel, E-mail: pavel.hrma@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Washton, Nancy; Schweiger, Michael J. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland, WA 99352 (United States)

    2017-01-15

    The transition of Al phases in a simulated high-Al high-level nuclear waste melter feed heated at 5 K min{sup −1} to 700 °C was investigated with transmission electron microscopy, {sup 27}Al nuclear magnetic resonance spectroscopy, the Brunauer-Emmett-Teller method, and X-ray diffraction. At temperatures between 300 and 500 °C, porous amorphous alumina formed from the dehydration of gibbsite, resulting in increased specific surface area of the feed (∼8 m{sup 2} g{sup −1}). The high-surface-area amorphous alumina formed in this manner could potentially stop salt migration in the cold cap during nuclear waste vitrification. - Highlights: • Porous amorphous alumina formed in a simulated high-Al HLW melter feed during heating. • The feed had a high specific surface area at 300 °C ≤ T ≤ 500 °C. • Porous amorphous alumina induced increased specific surface area.

  9. Low-temperature formation of source–drain contacts in self-aligned amorphous oxide thin-film transistors

    NARCIS (Netherlands)

    Nag, M.; Muller, R.N.; Steudel, S.; Smout, S.; Bhoolokam, A.; Myny, K.; Schols, S.; Genoe, J.; Cobb, B.; Kumar, Abhishek; Gelinck, G.H.; Fukui, Y.; Groeseneken, G.; Heremans, P.

    2015-01-01

    We demonstrated self-aligned amorphous-Indium-Gallium-Zinc-Oxide (a-IGZO) thin-film transistors (TFTs) where the source–drain (S/D) regions were made conductive via chemical reduction of the a-IGZO via metallic calcium (Ca). Due to the higher chemical reactivity of Ca, the process can be operated at

  10. Growth of amorphous Zn–Sn–O thin films by RF sputtering for buffer layers of CuInSe2 and SnS solar cells

    International Nuclear Information System (INIS)

    Chang, Shao-Wei; Ishikawa, Kaoru; Sugiyama, Mutsumi

    2015-01-01

    We propose using amorphous Zn–Sn–O (α-ZTO) deposited by RF sputtering as an alternative n-type buffer layer for Cu(In,Ga)Se 2 and SnS solar cells. The order of the carrier density, n, is increased from the order of 10 15 to 10 17 cm −1 as the Sn/(Sn + Zn) atomic ratio increases from 0.29 to 0.40. On the other hand, the order of n decreased from 10 17 to 10 11 cm −1 as the oxygen partial pressure increased from 0 to 10%. Further, for the α-ZTO film with the Sn/(Sn + Zn) atomic ratio at 0.38 and the oxygen partial pressure at 0%, valence band discontinuities of α-ZTO/CuInSe 2 and α-ZTO/SnS were determined using photoelectron yield spectroscopy measurements. The band discontinuities of each of these interfaces form a spike structure in the conduction band offset, which enables a high-performance solar cell to be obtained. - Highlights: • We propose using amorphous Zn–Sn–O as a n-type layer for Cu(In,Ga)Se 2 and SnS solar cells. • The carrier density was controlled by total and/or oxygen partial pressure during sputtering. • Valence band discontinuities of Zn–Sn–O/CuInSe 2 and Zn–Sn–O/SnS were determined. • The conduction band discontinuities of each of these interfaces form a spike structure

  11. Study of an Amorphous Silicon Oxide Buffer Layer for p-Type Microcrystalline Silicon Oxide/n-Type Crystalline Silicon Heterojunction Solar Cells and Their Temperature Dependence

    Directory of Open Access Journals (Sweden)

    Taweewat Krajangsang

    2014-01-01

    Full Text Available Intrinsic hydrogenated amorphous silicon oxide (i-a-SiO:H films were used as front and rear buffer layers in crystalline silicon heterojunction (c-Si-HJ solar cells. The surface passivity and effective lifetime of these i-a-SiO:H films on an n-type silicon wafer were improved by increasing the CO2/SiH4 ratios in the films. Using i-a-SiO:H as the front and rear buffer layers in c-Si-HJ solar cells was investigated. The front i-a-SiO:H buffer layer thickness and the CO2/SiH4 ratio influenced the open-circuit voltage (Voc, fill factor (FF, and temperature coefficient (TC of the c-Si-HJ solar cells. The highest total area efficiency obtained was 18.5% (Voc=700 mV, Jsc=33.5 mA/cm2, and FF=0.79. The TC normalized for this c-Si-HJ solar cell efficiency was −0.301%/°C.

  12. Crystallization of an amorphous Fe72Ni9Si8B11 alloy upon laser heating and isothermal annealing

    International Nuclear Information System (INIS)

    Girzhon, V.V.; Smolyakov, A.V.; Yastrebova, T.S.

    2003-01-01

    With the use of methods of x-ray diffraction, resistometric and metallographic analyses specific features of crystallization and phase formation in amorphous alloy Fe 72 Ni 9 Si 8 B 11 are studied under various heating conditions. It is shown that laser heating results in alloy crystallization by an explosive mechanism when attaining a certain density of irradiation power. It is stated that ribbon surface laser heating with simultaneous water cooling of an opposite surface allows manufacturing two-layer amorphous-crystalline structures of the amorphous matrix + α-(Fe, Si) - amorphous matrix type [ru

  13. Effect of Annealed Oxides on the Formation of Inhibition Layer During Hot-Dip Galvanizing of 590Mpa Trip Steel

    International Nuclear Information System (INIS)

    Kim, Seong Hwan; Huh, Joo Youl; Lee, Suk Kyu; Park, Rho Bum; Kim, Jong Sang

    2011-01-01

    The selective surface oxidation of a transformation-induced-plasticity (TRIP) steel containing 1.6 wt.% Mn and 1.5 wt.% Si during annealing at 800 .deg. C was investigated for its influence on the formation of an inhibition layer during hot-dip galvanizing. The selective oxidation of the alloying elements and the oxide morphology were significantly influenced by the annealing atmosphere. The pure N 2 atmosphere with a dew point -40 .deg. C promoted the selective oxidation of Mn as a crystalline Mn 2 SiO 4 phase, whereas the N 2 + 10% H 2 atmosphere with the same dew point -40 .deg. C promoted the selective oxidation of Si as an amorphous Si-rich oxide phase. During hot-dip galvanizing, the Mn 2 SiO 4 phase was reduced more readily by Al in the Zn bath than the Si-rich oxide phase. Consequently, the pure N 2 atmosphere resulted in a higher formation rate of Fe 2 Al 5 particles at the Zn/steel interface and better galvanizability than the N 2 + 10% H 2 atmosphere

  14. Effect of Annealed Oxides on the Formation of Inhibition Layer During Hot-Dip Galvanizing of 590Mpa Trip Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Hwan; Huh, Joo Youl [Korea University, Seoul (Korea, Republic of); Lee, Suk Kyu; Park, Rho Bum; Kim, Jong Sang [POSCO Technical Research Laboratories, Gwangyang (Korea, Republic of)

    2011-02-15

    The selective surface oxidation of a transformation-induced-plasticity (TRIP) steel containing 1.6 wt.% Mn and 1.5 wt.% Si during annealing at 800 .deg. C was investigated for its influence on the formation of an inhibition layer during hot-dip galvanizing. The selective oxidation of the alloying elements and the oxide morphology were significantly influenced by the annealing atmosphere. The pure N{sub 2} atmosphere with a dew point -40 .deg. C promoted the selective oxidation of Mn as a crystalline Mn{sub 2}SiO{sub 4} phase, whereas the N{sub 2} + 10% H{sub 2} atmosphere with the same dew point -40 .deg. C promoted the selective oxidation of Si as an amorphous Si-rich oxide phase. During hot-dip galvanizing, the Mn{sub 2}SiO{sub 4} phase was reduced more readily by Al in the Zn bath than the Si-rich oxide phase. Consequently, the pure N{sub 2} atmosphere resulted in a higher formation rate of Fe{sub 2}Al{sub 5} particles at the Zn/steel interface and better galvanizability than the N{sub 2} + 10% H{sub 2} atmosphere.

  15. On the use of a charged tunnel layer as a hole collector to improve the efficiency of amorphous silicon thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Cangming; Sahraei, Nasim; Aberle, Armin G. [Solar Energy Research Institute of Singapore, National University of Singapore, Singapore 117574 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Stangl, Rolf [Solar Energy Research Institute of Singapore, National University of Singapore, Singapore 117574 (Singapore); Peters, Ian Marius

    2015-06-28

    A new concept, using a negatively charged tunnel layer as a hole collector, is proposed and theoretically investigated for application in amorphous silicon thin-film solar cells. The concept features a glass/transparent conductive oxide/ultra-thin negatively charged tunnel layer/intrinsic a-Si:H/n-doped a-Si:H/metal structure. The key feature of this so called t{sup +}-i-n structure is the introduction of a negatively charged tunnel layer (attracting holes from the intrinsic absorber layer), which substitutes the highly recombination active p-doped a-Si:H layer in a conventional p-i-n configuration. Atomic layer deposited aluminum oxide (ALD AlO{sub x}) is suggested as a potential candidate for such a tunnel layer. Using typical ALD AlO{sub x} parameters, a 27% relative efficiency increase (i.e., from 9.7% to 12.3%) is predicted theoretically for a single-junction a-Si:H solar cell on a textured superstrate. This prediction is based on parameters that reproduce the experimentally obtained external quantum efficiency and current-voltage characteristics of a conventional processed p-i-n a-Si:H solar cell, reaching 9.7% efficiency and serving as a reference. Subsequently, the p-doped a-Si:H layer is replaced by the tunnel layer (studied by means of numerical device simulation). Using a t{sup +}-i-n configuration instead of a conventional p-i-n configuration will not only increase the short-circuit current density (from 14.4 to 14.9 mA/cm{sup 2}, according to our simulations), it also enhances the open-circuit voltage and the fill factor (from 917 mV to 1.0 V and from 74% to 83%, respectively). For this concept to work efficiently, a high work function front electrode material or a high interface charge is needed.

  16. Nanoparticle layer deposition for highly controlled multilayer formation based on high-coverage monolayers of nanoparticles

    International Nuclear Information System (INIS)

    Liu, Yue; Williams, Mackenzie G.; Miller, Timothy J.; Teplyakov, Andrew V.

    2016-01-01

    This paper establishes a strategy for chemical deposition of functionalized nanoparticles onto solid substrates in a layer-by-layer process based on self-limiting surface chemical reactions leading to complete monolayer formation within the multilayer system without any additional intermediate layers — nanoparticle layer deposition (NPLD). This approach is fundamentally different from previously established traditional layer-by-layer deposition techniques and is conceptually more similar to well-known atomic and molecular layer deposition processes. The NPLD approach uses efficient chemical functionalization of the solid substrate material and complementary functionalization of nanoparticles to produce a nearly 100% coverage of these nanoparticles with the use of “click chemistry”. Following this initial deposition, a second complete monolayer of nanoparticles is deposited using a copper-catalyzed “click reaction” with the azide-terminated silica nanoparticles of a different size. This layer-by-layer growth is demonstrated to produce stable covalently-bound multilayers of nearly perfect structure over macroscopic solid substrates. The formation of stable covalent bonds is confirmed spectroscopically and the stability of the multilayers produced is tested by sonication in a variety of common solvents. The 1-, 2- and 3-layer structures are interrogated by electron microscopy and atomic force microscopy and the thickness of the multilayers formed is fully consistent with that expected for highly efficient monolayer formation with each cycle of growth. This approach can be extended to include a variety of materials deposited in a predesigned sequence on different substrates with a highly conformal filling. - Highlights: • We investigate the formation of high-coverage monolayers of nanoparticles. • We use “click chemistry” to form these monolayers. • We form multiple layers based on the same strategy. • We confirm the formation of covalent bonds

  17. Molecular simulation of freestanding amorphous nickel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, T.Q. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France); Hoang, V.V., E-mail: vvhoang2002@yahoo.com [Department of Physics, Institute of Technology, National University of Ho Chi Minh City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City (Viet Nam); Lauriat, G. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France)

    2013-10-31

    Size effects on glass formation in freestanding Ni thin films have been studied via molecular dynamics simulation with the n-body Gupta interatomic potential. Atomic mechanism of glass formation in the films is determined via analysis of the spatio-temporal arrangements of solid-like atoms occurred upon cooling from the melt. Solid-like atoms are detected via the Lindemann ratio. We find that solid-like atoms initiate and grow mainly in the interior of the film and grow outward. Their number increases with decreasing temperature and at a glass transition temperature they dominate in the system to form a relatively rigid glassy state of a thin film shape. We find the existence of a mobile surface layer in both liquid and glassy states which can play an important role in various surface properties of amorphous Ni thin films. We find that glass formation is size independent for models containing 4000 to 108,000 atoms. Moreover, structure of amorphous Ni thin films has been studied in details via coordination number, Honeycutt–Andersen analysis, and density profile which reveal that amorphous thin films exhibit two different parts: interior and surface layer. The former exhibits almost the same structure like that found for the bulk while the latter behaves a more porous structure containing a large amount of undercoordinated sites which are the origin of various surface behaviors of the amorphous Ni or Ni-based thin films found in practice. - Highlights: • Glass formation is analyzed via spatio-temporal arrangements of solid-like atoms. • Amorphous Ni thin film exhibits two different parts: surface and interior. • Mobile surface layer enhances various surface properties of the amorphous Ni thin films. • Undercoordinated sites play an important role in various surface activities.

  18. Dual active layer a-IGZO TFT via homogeneous conductive layer formation by photochemical H-doping.

    Science.gov (United States)

    Jeong, Seung-Ki; Kim, Myeong-Ho; Lee, Sang-Yeon; Seo, Hyungtak; Choi, Duck-Kyun

    2014-01-01

    In this study, InGaZnO (IGZO) thin film transistors (TFTs) with a dual active layer (DAL) structure are fabricated by inserting a homogeneous embedded conductive layer (HECL) in an amorphous IGZO (a-IGZO) channel with the aim of enhancing the electrical characteristics of conventional bottom-gate-structure TFTs. A highly conductive HECL (carrier concentration at 1.6 × 10(13) cm(-2), resistivity at 4.6 × 10(-3) Ω∙cm, and Hall mobility at 14.6 cm(2)/Vs at room temperature) is fabricated using photochemical H-doping by irradiating UV light on an a-IGZO film. The electrical properties of the fabricated DAL TFTs are evaluated by varying the HECL length. The results reveal that carrier mobility increased proportionally with the HECL length. Further, a DAL TFT with a 60-μm-long HECL embedded in an 80-μm-long channel exhibits comprehensive and outstanding improvements in its electrical properties: a saturation mobility of 60.2 cm(2)/Vs, threshold voltage of 2.7 V, and subthreshold slope of 0.25 V/decade against the initial values of 19.9 cm(2)/Vs, 4.7 V, and 0.45 V/decade, respectively, for a TFT without HECL. This result confirms that the photochemically H-doped HECL significantly improves the electrical properties of DAL IGZO TFTs.

  19. Formation of an ascorbate-apatite composite layer on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Atsuo [National Institute of Advanced Industrial Science and Technology (AIST), Institute for Human Science and Biomedical Engineering, Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566 (Japan); Sogo, Yu [National Institute of Advanced Industrial Science and Technology (AIST), Institute for Human Science and Biomedical Engineering, Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566 (Japan); Ebihara, Yuko [School of Science and Technology, Waseda University, 3-4-1 Okubo, Sinjuku-ku, Tokyo 169-8050 (Japan); Onoguchi, Masahiro [School of Science and Technology, Waseda University, 3-4-1 Okubo, Sinjuku-ku, Tokyo 169-8050 (Japan); Oyane, Ayako [National Institute of Advanced Industrial Science and Technology (AIST), Nanotechnology Research Institute, Central 4, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562 (Japan); Ichinose, Noboru [School of Science and Technology, Waseda University, 3-4-1 Okubo, Sinjuku-ku, Tokyo 169-8050 (Japan)

    2007-09-15

    An ascorbate-apatite composite layer was successfully formed on NaOH- and heat-treated titanium by coprecipitating L-ascorbic acid phosphate and low-crystalline apatite in a supersaturated calcium phosphate solution at 37 {sup 0}C for 48 h. The supersaturated calcium phosphate solutions used have chemical compositions attainable by mixing infusion fluids officially approved for clinical use. The amount of immobilized L-ascorbic acid phosphate ranged from 1.0 to 2.3 {mu}g mm{sup -2}, which is most likely to be sufficient for the in vitro osteogenic differentiation of mesenchymal stem cells on titanium. Since ascorbate is important for the collagen synthesis and subsequent osteogenesis of mesenchymal stem cells, titanium coated with the ascorbate-apatite composite layer would be useful as a scaffold in bone tissue engineering and as a bone substitute.

  20. Formation of an ascorbate-apatite composite layer on titanium

    International Nuclear Information System (INIS)

    Ito, Atsuo; Sogo, Yu; Ebihara, Yuko; Onoguchi, Masahiro; Oyane, Ayako; Ichinose, Noboru

    2007-01-01

    An ascorbate-apatite composite layer was successfully formed on NaOH- and heat-treated titanium by coprecipitating L-ascorbic acid phosphate and low-crystalline apatite in a supersaturated calcium phosphate solution at 37 0 C for 48 h. The supersaturated calcium phosphate solutions used have chemical compositions attainable by mixing infusion fluids officially approved for clinical use. The amount of immobilized L-ascorbic acid phosphate ranged from 1.0 to 2.3 μg mm -2 , which is most likely to be sufficient for the in vitro osteogenic differentiation of mesenchymal stem cells on titanium. Since ascorbate is important for the collagen synthesis and subsequent osteogenesis of mesenchymal stem cells, titanium coated with the ascorbate-apatite composite layer would be useful as a scaffold in bone tissue engineering and as a bone substitute

  1. On the mechanism of Venusian atmosphere cloud layer formation

    International Nuclear Information System (INIS)

    Zhulanov, Yu.V.; Mukhin, L.M.; Nenarokov, D.F.

    1987-01-01

    Results of investigations into the aerosol component of Venusian atmosphere using a photoelectric counter in the 63-47 km range of heights at the Vega-1 and Vega-2 interplanetary stations are presented. The experiment was carried out in June, 11, 15, 1985 on the night-time side of the planet. Both devices were switched in at the height of 63 km, and data on the quantity of detected particles >=0.5 μm in diameter were transmitted every 0.43 s (that corresponds to 8-20 m spatial resolution). Study of particle concentration profiles obtained at the interval of 4 days (one period of rotation of Venusian atmosphere) permits to make the following conclusions on the structure of Venusian atmosphere cloud layer on the night side: 1) the cloud layer includes two distinct cloud strata: the upper- 56-60 km height range and the lower- 49.5-46.5 km height range separated by the zone of low particle concentrations ( -3 ); 2) the mentioned structure of the cloud layer is rather stable; concentration profiles obtained at the interval of 4 days well agree with each other; 3) concentration profiles, particularly, in the lower cloud-stratum are subjected to heavy fluctuations, that indicates essential spatial field heterogeneity of particle concentrations

  2. Micro/nanostructures formation by femtosecond laser surface processing on amorphous and polycrystalline Ni{sub 60}Nb{sub 40}

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Edwin, E-mail: edwin.peng@huskers.unl.edu [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Tsubaki, Alfred; Zuhlke, Craig A. [Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Wang, Meiyu [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Bell, Ryan [Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Lucis, Michael J. [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Anderson, Troy P.; Alexander, Dennis R. [Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Gogos, George; Shield, Jeffrey E. [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States)

    2017-02-28

    Highlights: • Femtosecond laser processing of glass-forming Ni{sub 60}Nb{sub 40} produce surface structures. • Cross sectioning, imaging, & TEM sample preparation with dual-beam SEM. • Low laser fluence surface structures’ form by ablation. • High laserfluence surface structures form by ablation and fluid flow. - Abstract: Femtosecond laser surface processing is a technology that can be used to functionalize many surfaces, imparting specialized properties such as increased broadband optical absorption or superhydrophilicity/superhydrophobicity. In this study, two unique classes of surface structures, below surface growth (BSG) and above surface growth (ASG) mounds, were formed by femtosecond laser surface processing on amorphous and polycrystalline Ni{sub 60}Nb{sub 40} with two different grain sizes. Cross sectional imaging of these mounds revealed thermal evidence of the unique formation processes for each class of surface structure. BSG mounds formed on all three substrates using the same laser parameters had similar surface morphology. The microstructures in the mounds were unaltered compared with the substrate before laser processing, suggesting their formation was dominated by preferential valley ablation. ASG mounds had similar morphology when formed on the polycrystalline Ni{sub 60}Nb{sub 40} substrates with 100 nm and 2 μm grain size. However, the ASG mounds had significantly wider diameter and higher peak-to-valley heights when the substrate was amorphous Ni{sub 60}Nb{sub 40}. Hydrodynamic melting was primarily responsible for ASG mound formation. On amorphous Ni{sub 60}Nb{sub 40} substrates, the ASG mounds are most likely larger due to lower thermal diffusivity. There was clear difference in growth mechanism of femtosecond laser processed BSG and ASG mounds, and grain size does not appear to be a factor.

  3. Formation mechanism of the protective layer in a blast furnace hearth

    Science.gov (United States)

    Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Xu, Meng; Liu, Feng

    2015-10-01

    A variety of techniques, such as chemical analysis, scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, were applied to characterize the adhesion protective layer formed below the blast furnace taphole level when a certain amount of titanium- bearing burden was used. Samples of the protective layer were extracted to identify the chemical composition, phase assemblage, and distribution. Furthermore, the formation mechanism of the protective layer was determined after clarifying the source of each component. Finally, a technical strategy was proposed for achieving a stable protective layer in the hearth. The results show that the protective layer mainly exists in a bilayer form in the sidewall, namely, a titanium-bearing layer and a graphite layer. Both the layers contain the slag phase whose major crystalline phase is magnesium melilite (Ca2MgSi2O7) and the main source of the slag phase is coke ash. It is clearly determined that solid particles such as graphite, Ti(C,N) and MgAl2O4 play an important role in the formation of the protective layer, and the key factor for promoting the formation of a stable protective layer is reasonable control of the evolution behavior of coke.

  4. Further insight into the mechanism of hydrocarbon layer formation below the divertor of ASDEX Upgrade

    International Nuclear Information System (INIS)

    Mayer, M; Rohde, V

    2006-01-01

    The surface loss probability of hydrocarbon radicals was measured below the roof baffle of the ASDEX Upgrade divertor using the cavity technique. Hydrocarbon layers are mainly formed by sticking of hydrocarbon radicals with high surface loss probabilities of about 0.2 and close to unity. In addition to sticking, re-erosion by atomic hydrogen plays an important role in layer formation. The temperature dependence of layer formation was measured with heated and cooled long term samples from 77 to 475 K. The layer growth rate is larger by a factor of about 40 at 77 K compared with room temperature, while it is lower by a factor of about 70 at 475 K than at room temperature due to enhanced re-erosion. Implications of the results for predictions of tritium retention in future fusion devices and hydrocarbon layer formation on mirror surfaces are discussed

  5. Formation of carbon nanotubes on an amorphous Ni{sub 25}Ta{sub 58}N{sub 17} alloy film by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, D. G.; Dubkov, S. V., E-mail: sv.dubkov@gmail.com [National Research University of Electronic Technology MIET (Russian Federation); Pavlov, A. A. [Russian Academy of Sciences, Institute of Nanotechnologies of Microelectronics (Russian Federation); Skorik, S. N. [Technological Center Research and Production Complex (Russian Federation); Trifonov, A. Yu. [Lukin Scientific Research Institute of Physical Problems (Russian Federation); Kirilenko, E. P.; Shulyat’ev, A. S. [National Research University of Electronic Technology MIET (Russian Federation); Shaman, Yu. P. [Technological Center Research and Production Complex (Russian Federation); Rygalin, B. N. [National Research University of Electronic Technology MIET (Russian Federation)

    2016-12-15

    It is shown that it is possible to grow carbon nanotubes on the surface of an amorphous Ni–Ta–N metal alloy film with a low Ni content (~25 at %) by chemical deposition from acetylene at temperature 400–800°C. It is established that the addition of nitrogen into the Ni–Ta alloy composition is favorable for the formation of tantalum nitride and the expulsion of Ni clusters, which act as a catalyst of the growth of carbon nanotubes, onto the surface. From Raman spectroscopy studies, it is found that, as the temperature of synthesis is raised, the quality of nanotubes is improved.

  6. MHD flow layer formation at boundaries of magnetic islands in tokamak plasmas

    International Nuclear Information System (INIS)

    Jiaqi Dong; Yongxing Long; Zongze Mou; Jinhua Zhang

    2005-01-01

    Non-linear development of double tearing modes induced by electron viscosity is numerically simulated. MHD flow layers are demonstrated to merge in the development of the modes. The sheared flows are shown to lie just at the boundaries of the magnetic islands, and to have sufficient levels required for internal transport barrier (ITB) formation. Possible correlation between the layer formation and triggering of experimentally observed ITBs, preferentially formed in proximities of rational flux surfaces of low safety factors, is discussed. (author)

  7. Coplanar amorphous-indium-gallium-zinc-oxide thin film transistor with He plasma treated heavily doped layer

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ho-young [Advanced Display Research Center, Department of Information Display, Kyung Hee University, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); LG Display R and D Center, 245 Lg-ro, Wollong-myeon, Paju-si, Gyeonggi-do 413-811 (Korea, Republic of); Lee, Bok-young; Lee, Young-jang; Lee, Jung-il; Yang, Myoung-su; Kang, In-byeong [LG Display R and D Center, 245 Lg-ro, Wollong-myeon, Paju-si, Gyeonggi-do 413-811 (Korea, Republic of); Mativenga, Mallory; Jang, Jin, E-mail: jjang@khu.ac.kr [Advanced Display Research Center, Department of Information Display, Kyung Hee University, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of)

    2014-01-13

    We report thermally stable coplanar amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) with heavily doped n{sup +} a-IGZO source/drain regions. Doping is through He plasma treatment in which the resistivity of the a-IGZO decreases from 2.98 Ω cm to 2.79 × 10{sup −3} Ω cm after treatment, and then it increases to 7.92 × 10{sup −2} Ω cm after annealing at 300 °C. From the analysis of X-ray photoelectron spectroscopy, the concentration of oxygen vacancies in He plasma treated n{sup +}a-IGZO does not change much after thermal annealing at 300 °C, indicating thermally stable n{sup +} a-IGZO, even for TFTs with channel length L = 4 μm. Field-effect mobility of the coplanar a-IGZO TFTs with He plasma treatment changes from 10.7 to 9.2 cm{sup 2}/V s after annealing at 300 °C, but the performance of the a-IGZO TFT with Ar or H{sub 2} plasma treatment degrades significantly after 300 °C annealing.

  8. Coplanar amorphous-indium-gallium-zinc-oxide thin film transistor with He plasma treated heavily doped layer

    International Nuclear Information System (INIS)

    Jeong, Ho-young; Lee, Bok-young; Lee, Young-jang; Lee, Jung-il; Yang, Myoung-su; Kang, In-byeong; Mativenga, Mallory; Jang, Jin

    2014-01-01

    We report thermally stable coplanar amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) with heavily doped n + a-IGZO source/drain regions. Doping is through He plasma treatment in which the resistivity of the a-IGZO decreases from 2.98 Ω cm to 2.79 × 10 −3 Ω cm after treatment, and then it increases to 7.92 × 10 −2 Ω cm after annealing at 300 °C. From the analysis of X-ray photoelectron spectroscopy, the concentration of oxygen vacancies in He plasma treated n + a-IGZO does not change much after thermal annealing at 300 °C, indicating thermally stable n + a-IGZO, even for TFTs with channel length L = 4 μm. Field-effect mobility of the coplanar a-IGZO TFTs with He plasma treatment changes from 10.7 to 9.2 cm 2 /V s after annealing at 300 °C, but the performance of the a-IGZO TFT with Ar or H 2 plasma treatment degrades significantly after 300 °C annealing

  9. Drift mobility of thermalized and highly energetic holes in thin layers of amorphous dielectric SiC

    International Nuclear Information System (INIS)

    Sielski, Jan; Jeszka, Jeremiasz K.

    2012-01-01

    The development of new technology in the electronics industry requires new dielectric materials. It is also important to understand the charge-carrier transport mechanism in these materials. We examined the hole drift mobility in amorphous SiC dielectric thin films using the time-of-flight (TOF) method. Charge carriers were generated using an electron gun. The generated holes gave a dispersive TOF signal and the mobility was low. For electric field strengths above 4 x 10 5 V cm -1 the drift mobility shows a very strong dependence on the electric field and a weak temperature dependence (transport of ''high-energy'' charge carriers). At lower electric fields and for thermalized charge carriers the mobility is practically field independent and thermally activated. The observed phenomenon was attributed to the changes in the effective energy of the generated carriers moving in the high electric fields and consequently in the density of localized states taking part in the transport. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Particle concentration and flux dynamics in the atmospheric boundary layer as the indicator of formation mechanism

    DEFF Research Database (Denmark)

    Lauros, J.; Sogachev, Andrey; Smolander, S.

    2011-01-01

    the atmospheric boundary layer during nucleation event days shows a highly dynamical picture, where particle formation is coupled with chemistry and turbulent transport. We have demonstrated the suitability of our turbulent mixing scheme in reproducing the most important characteristics of particle dynamics...... within the boundary layer. Deposition and particle flux simulations show that deposition affects noticeably only the smallest particles...

  11. Studies of phase formation in CoSi2 buried layers fabricated using ion implantation

    International Nuclear Information System (INIS)

    Galaev, A.A.; Parkhomenko, Yu.N.; Podgornyi, D.A.; Shcherbachev, K.D.

    1998-01-01

    The processes of the formation of cobalt disilicide buried layers in silicon are studied under different conditions of implantation with Co. In particular, the effects of the implantation dose and the postimplantation annealing temperature on the state of the Co-implanted layer are considered. Two types of heteroepitaxial Si/CoSi 2 /Si structures are obtained with the conducting layers of thicknesses 70 and 90 nm buried at the depths 80 and 10 nm, respectively

  12. Formation of Degenerate Band Gaps in Layered Systems

    Directory of Open Access Journals (Sweden)

    Alexey P. Vinogradov

    2012-06-01

    Full Text Available In the review, peculiarities of spectra of one-dimensional photonic crystals made of anisotropic and/or magnetooptic materials are considered. The attention is focused on band gaps of a special type—the so called degenerate band gaps which are degenerate with respect to polarization. Mechanisms of formation and properties of these band gaps are analyzed. Peculiarities of spectra of photonic crystals that arise due to the linkage between band gaps are discussed. Particularly, it is shown that formation of a frozen mode is caused by linkage between Brillouin and degenerate band gaps. Also, existence of the optical Borrmann effect at the boundaries of degenerate band gaps and optical Tamm states at the frequencies of degenerate band gaps are analyzed.

  13. Formation of carbon containing layers on tungsten test limiters

    International Nuclear Information System (INIS)

    Rubel, M.; Philipps, V.; Huber, A.; Tanabe, T.

    1999-01-01

    Tungsten test limiters of mushroom shape and a plasma facing area of approximately 100 cm 2 were exposed at the TEXTOR-94 tokamak to a number of deuterium fuelled discharges performed under various operation conditions. Two types of limiters were tested: a sole tungsten limiter and a twin limiter consisting of two halves, one made of tungsten and another of graphite. The exposed surfaces were examined with ion beam analysis methods and laser profilometry. The formation of some deposition zones was observed near the edges of the limiters. The deuterium-to-carbon concentration ratio was in the range from 0.04 to 0.11 and around 0.2 for the sole tungsten and the twin limiter, respectively. Significant amounts of the co-deposited tungsten and silicon atoms were found on the graphite part of the twin limiter indicating the formation of mixed W-C-Si compounds. (orig.)

  14. On contribution of horizontal and intra-layer convection to the formation of the Baltic Sea cold intermediate layer

    Directory of Open Access Journals (Sweden)

    I. Chubarenko

    2010-02-01

    Full Text Available Seasonal cascades down the coastal slopes and intra-layer convection are considered as the two additional mechanisms contributing to the Baltic Sea cold intermediate layer (CIL formation along with conventional seasonal vertical mixing. Field measurements are presented, reporting for the first time the possibility of denser water formation and cascading from the Baltic Sea underwater slopes, which take place under fall and winter cooling conditions and deliver waters into intermediate layer of salinity stratified deep-sea area. The presence in spring within the CIL of water with temperature below that of maximum density (Tmd and that at the local surface in winter time allows tracing its formation: it is argued that the source of the coldest waters of the Baltic CIL is early spring (March–April cascading, arising due to heating of water before reaching the Tmd. Fast increase of the open water heat content during further spring heating indicates that horizontal exchange rather than direct solar heating is responsible for that. When the surface is covered with water, heated above the Tmd, the conditions within the CIL become favorable for intralayer convection due to the presence of waters of Tmd in intermediate layer, which can explain its well-known features – the observed increase of its salinity and deepening with time.

  15. Effect of nickel oxide seed layers on annealed-amorphous titanium oxide thin films prepared using plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Wu, Cheng-Yang; Hong, Shao-Chyang; Hwang, Fu-Tsai; Lai, Li-Wen; Lin, Tan-Wei; Liu, Day-Shan

    2011-01-01

    The effect of a nickel oxide (NiO x ) seed layer on the crystallization and photocatalytic activity of the sequentially plasma-enhanced chemical vapor deposited amorphous titanium oxide (TiO x ) thin film processed by a post-annealing process was investigated. The evolution of the crystalline structures, chemical bond configurations, and surface/cross-sectional morphologies of the annealed TiO x films, with and without a NiO x seed layer, was examined using X-ray diffractometer, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscope measurements. Thermo- and photo-induced hydrophilicity was determined by measuring the contact angle of water droplet. Photocatalytic activity after UV light irradiation was evaluated from the decolorization of a methylene blue solution. The crystallization temperature of the TiO x film, deposited on a NiO x seed layer, was found to be lower than that of a pure TiO x film, further improving the thermo- and photo-induced surface super-hydrophilicity. The TiO x film deposited onto the NiO x seed layer, resulting in significant cluster boundaries, showed a rough surface morphology and proved to alleviate the anatase crystal growth by increasing the post-annealing temperature, which yielded a more active surface area and prohibited the recombination of photogenerated electrons and holes. The photocatalytic activity of the NiO x /TiO x system with such a textured surface therefore was enhanced and optimized through an adequate post-annealing process.

  16. Effect of nickel oxide seed layers on annealed-amorphous titanium oxide thin films prepared using plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng-Yang; Hong, Shao-Chyang [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Hwang, Fu-Tsai [Department of Electro-Optical Engineering, National United University, Miao-Li, 36003, Taiwan (China); Lai, Li-Wen [ITRI South, Industrial Technology Research Institute, Liujia, Tainan, 73445, Taiwan (China); Lin, Tan-Wei [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Liu, Day-Shan, E-mail: dsliu@sunws.nfu.edu.tw [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China)

    2011-10-31

    The effect of a nickel oxide (NiO{sub x}) seed layer on the crystallization and photocatalytic activity of the sequentially plasma-enhanced chemical vapor deposited amorphous titanium oxide (TiO{sub x}) thin film processed by a post-annealing process was investigated. The evolution of the crystalline structures, chemical bond configurations, and surface/cross-sectional morphologies of the annealed TiO{sub x} films, with and without a NiO{sub x} seed layer, was examined using X-ray diffractometer, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscope measurements. Thermo- and photo-induced hydrophilicity was determined by measuring the contact angle of water droplet. Photocatalytic activity after UV light irradiation was evaluated from the decolorization of a methylene blue solution. The crystallization temperature of the TiO{sub x} film, deposited on a NiO{sub x} seed layer, was found to be lower than that of a pure TiO{sub x} film, further improving the thermo- and photo-induced surface super-hydrophilicity. The TiO{sub x} film deposited onto the NiO{sub x} seed layer, resulting in significant cluster boundaries, showed a rough surface morphology and proved to alleviate the anatase crystal growth by increasing the post-annealing temperature, which yielded a more active surface area and prohibited the recombination of photogenerated electrons and holes. The photocatalytic activity of the NiO{sub x}/TiO{sub x} system with such a textured surface therefore was enhanced and optimized through an adequate post-annealing process.

  17. Temperature-dependent interface characteristic of silicon wafer bonding based on an amorphous germanium layer deposited by DC-magnetron sputtering

    Science.gov (United States)

    Ke, Shaoying; Lin, Shaoming; Ye, Yujie; Mao, Danfeng; Huang, Wei; Xu, Jianfang; Li, Cheng; Chen, Songyan

    2018-03-01

    We report a near-bubble-free low-temperature silicon (Si) wafer bonding with a thin amorphous Ge (a-Ge) intermediate layer. The DC-magnetron-sputtered a-Ge film on Si is demonstrated to be extremely flat (RMS = 0.28 nm) and hydrophilic (contact angle = 3°). The effect of the post-annealing temperature on the surface morphology and crystallinity of a-Ge film at the bonded interface is systematically identified. The relationship among the bubble density, annealing temperature, and crystallinity of a-Ge film is also clearly clarified. The crystallization of a-Ge film firstly appears at the bubble region. More interesting feature is that the crystallization starts from the center of the bubbles and sprawls to the bubble edge gradually. The H2 by-product is finally absorbed by intermediate Ge layer with crystalline phase after post annealing. Moreover, the whole a-Ge film out of the bubble totally crystallizes when the annealing time increases. This Ge integration at the bubble region leads to the decrease of the bubble density, which in turn increases the bonding strength.

  18. Abscission Layer Formation as a Resistance Response of Peruvian Apple Cactus Against Glomerella cingulata.

    Science.gov (United States)

    Kim, Young Ho; Kim, Kwang-Hyung

    2002-09-01

    ABSTRACT Stem disks from 2-year-old cacti Cereus tetragonus (susceptible) and C. peruvianus (resistant) were inoculated in the center (pith) with Glomerella cingulata isolated from Colletotrichum stem rot in three-angled cacti. The susceptible cactus became extensively colonized, whereas colonization was limited to a small area in the resistant cactus. The resistant cactus formed prominent abscission layers (ALs) in parenchyma internal to the inoculation site. Ethanol extracts of the fungal culture also stimulated AL formation in the resistant cactus. Initial cell division followed at 2 to 4 days after treatment, and layering of multiple cells at 7 days after treatment. After 10 days, the outer layers were sometimes sloughed from the inner layers. No AL formation was induced in susceptible C. tetragonus treated with ethanol extract or in untreated control cacti. Light and electron microscopy revealed that initial cell division occurred by cell wall formation, and that an additional cell wall was layered in pre-existing parenchyma cells without ordinary cell division. Later, separation layers formed in ALs where inner cell walls appeared to be thickened secondarily, and the cell walls and middle lamella within the layer dissolved. These results suggest that AL formation in the resistant cactus is induced by fungal metabolites, and that it serves as a histological barrier against anthracnose pathogens.

  19. The effect of inducing uniform Cu growth on formation of electroless Cu seed layer

    International Nuclear Information System (INIS)

    Lim, Taeho; Kim, Myung Jun; Park, Kyung Ju; Kim, Kwang Hwan; Choe, Seunghoe; Lee, Young-Soo; Kim, Jae Jeong

    2014-01-01

    The uniformity of Cu growth on Pd nanocatalysts was controlled by using organic additives in the formation of electroless Cu seed layers. Polyethylene glycol (PEG, Mw. 8000) not only reduced the deposition rate but also improved the uniformity of Cu growth on each Pd nanocatalyst during the seed layer formation. The stronger suppression effect of PEG on Cu than on Pd reduced the difference in the deposition rate between the two surfaces, resulting in the uniform deposition. Meanwhile, bis(3-sulfopropyl) disulfide degraded the uniformity by strong and nonselective suppression. The sheet resistance measurement and atomic force microscopy imaging revealed that the uniform Cu growth by PEG was more advantageous for the formation of a thin and smooth Cu seed layer than the non-uniform growth. The uniform Cu growth also had a positive influence on the subsequent Cu electrodeposition: the 60-nm-thick electrodeposited Cu film on the Cu seed layer showed low resistivity (2.70 μΩ·cm), low surface roughness (6.98 nm), and good adhesion strength. - Highlights: • Uniform Cu growth on Pd was achieved in formation of electroless Cu seed layer. • PEG addition to electroless bath improved the uniformity of Cu growth on Pd. • A thin, smooth and continuous Cu seed layer was obtained with PEG. • Adhesion strength of the Cu seed layer was also improved with PEG. • The uniformity improvement positively affected subsequent Cu electrodeposition

  20. Parametric Study of Amorphous High-Entropy Alloys formation from two New Perspectives: Atomic Radius Modification and Crystalline Structure of Alloying Elements

    Science.gov (United States)

    Hu, Q.; Guo, S.; Wang, J. M.; Yan, Y. H.; Chen, S. S.; Lu, D. P.; Liu, K. M.; Zou, J. Z.; Zeng, X. R.

    2017-01-01

    Chemical and topological parameters have been widely used for predicting the phase selection in high-entropy alloys (HEAs). Nevertheless, previous studies could be faulted due to the small number of available data points, the negligence of kinetic effects, and the insensitivity to small compositional changes. Here in this work, 92 TiZrHfM, TiZrHfMM, TiZrHfMMM (M = Fe, Cr, V, Nb, Al, Ag, Cu, Ni) HEAs were prepared by melt spinning, to build a reliable and sufficiently large material database to inspect the robustness of previously established parameters. Modification of atomic radii by considering the change of local electronic environment in alloys, was critically found out to be superior in distinguishing the formation of amorphous and crystalline alloys, when compared to using atomic radii of pure elements in topological parameters. Moreover, crystal structures of alloying element were found to play an important role in the amorphous phase formation, which was then attributed to how alloying hexagonal-close-packed elements and face-centered-cubic or body-centered-cubic elements can affect the mixing enthalpy. Findings from this work not only provide parametric studies for HEAs with new and important perspectives, but also reveal possibly a hidden connection among some important concepts in various fields.

  1. Water Transfer Characteristics during Methane Hydrate Formation Processes in Layered Media

    Directory of Open Access Journals (Sweden)

    Yousheng Deng

    2011-08-01

    Full Text Available Gas hydrate formation processes in porous media are always accompanied by water transfer. To study the transfer characteristics comprehensively, two kinds of layered media consisting of coarse sand and loess were used to form methane hydrate in them. An apparatus with three PF-meter sensors detecting water content and temperature changes in media during the formation processes was applied to study the water transfer characteristics. It was experimentally observed that the hydrate formation configurations in different layered media were similar; however, the water transfer characteristics and water conversion ratios were different.

  2. Modeling the influence of interaction layer formation on thermal conductivity of U–Mo dispersion fuel

    International Nuclear Information System (INIS)

    Burkes, Douglas E.; Casella, Andrew M.; Huber, Tanja K.

    2015-01-01

    Highlights: • Hsu equation provides best thermal conductivity estimate of U–Mo dispersion fuel. • Simple model considering interaction layer formation was coupled with Hsu equation. • Interaction layer thermal conductivity is not the most important attribute. • Effective thermal conductivity is mostly influenced by interaction layer formation. • Fuel particle distribution also influences the effective thermal conductivity. - Abstract: The Global Threat Reduction Initiative Program continues to develop existing and new test reactor fuels to achieve the maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Currently, the program is focused on assisting with the development and qualification of a fuel design that consists of a uranium–molybdenum (U–Mo) alloy dispersed in an aluminum matrix. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layer formation between the dispersed phase and matrix, porosity that forms during fabrication of the fuel plates or rods, and upon the concentration of the dispersed phase within the matrix. This paper develops and validates a simple model to study the influence of interaction layer formation, dispersed particle size, and volume fraction of dispersed phase in the matrix on the effective conductivity of the composite. The model shows excellent agreement with results previously presented in the literature. In particular, the thermal conductivity of the interaction layer does not appear to be as important in determining the effective conductivity of the composite, while formation of the interaction layer and subsequent consumption of the matrix reveals a rather significant effect. The effective thermal conductivity of the composite can be influenced by the dispersed particle distribution by minimizing interaction

  3. New-particle formation events in a continental boundary layer: first results from the SATURN experiment

    Directory of Open Access Journals (Sweden)

    F. Stratmann

    2003-01-01

    Full Text Available During the SATURN experiment, which took place from 27 May to 14 June 2002, new particle formation in the continental boundary layer was investigated. Simultaneous ground-based and tethered-balloon-borne measurements were performed, including meteorological parameters, particle number concentrations and size distributions, gaseous precursor concentrations and SODAR and LIDAR observations. Newly formed particles were observed inside the residual layer, before the break-up process of the nocturnal inversion, and inside the mixing layer throughout the break-up of the nocturnal inversion and during the evolution of the planetary boundary layer.

  4. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure

    KAUST Repository

    Tiraferri, Alberto

    2011-02-01

    Osmotically driven membrane processes have the potential to treat impaired water sources, desalinate sea/brackish waters, and sustainably produce energy. The development of a membrane tailored for these processes is essential to advance the technology to the point that it is commercially viable. Here, a systematic investigation of the influence of thin-film composite membrane support layer structure on forward osmosis performance is conducted. The membranes consist of a selective polyamide active layer formed by interfacial polymerization on top of a polysulfone support layer fabricated by phase separation. By systematically varying the conditions used during the casting of the polysulfone layer, an array of support layers with differing structures was produced. The role that solvent quality, dope polymer concentration, fabric layer wetting, and casting blade gate height play in the support layer structure formation was investigated. Using a 1M NaCl draw solution and a deionized water feed, water fluxes ranging from 4 to 25Lm-2h-1 with consistently high salt rejection (>95.5%) were produced. The relationship between membrane structure and performance was analyzed. This study confirms the hypothesis that the optimal forward osmosis membrane consists of a mixed-structure support layer, where a thin sponge-like layer sits on top of highly porous macrovoids. Both the active layer transport properties and the support layer structural characteristics need to be optimized in order to fabricate a high performance forward osmosis membrane. © 2010 Elsevier B.V.

  5. Achieving high field-effect mobility in amorphous indium-gallium-zinc oxide by capping a strong reduction layer.

    Science.gov (United States)

    Zan, Hsiao-Wen; Yeh, Chun-Cheng; Meng, Hsin-Fei; Tsai, Chuang-Chuang; Chen, Liang-Hao

    2012-07-10

    An effective approach to reduce defects and increase electron mobility in a-IGZO thin-film transistors (a-IGZO TFTs) is introduced. A strong reduction layer, calcium, is capped onto the back interface of a-IGZO TFT. After calcium capping, the effective electron mobility of a-IGZO TFT increases from 12 cm(2) V(-1) s(-1) to 160 cm(2) V(-1) s(-1). This high mobility is a new record, which implies that the proposed defect reduction effect is key to improve electron transport in oxide semiconductor materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Formation of the prebiotic molecule NH2CHO on astronomical amorphous solid water surfaces: accurate tunneling rate calculations.

    Science.gov (United States)

    Song, Lei; Kästner, Johannes

    2016-10-26

    Investigating how formamide forms in the interstellar medium is a hot topic in astrochemistry, which can contribute to our understanding of the origin of life on Earth. We have constructed a QM/MM model to simulate the hydrogenation of isocyanic acid on amorphous solid water surfaces to form formamide. The binding energy of HNCO on the ASW surface varies significantly between different binding sites, we found values between ∼0 and 100 kJ mol -1 . The barrier for the hydrogenation reaction is almost independent of the binding energy, though. We calculated tunneling rate constants of H + HNCO → NH 2 CO at temperatures down to 103 K combining QM/MM with instanton theory. Tunneling dominates the reaction at such low temperatures. The tunneling reaction is hardly accelerated by the amorphous solid water surface compared to the gas phase for this system, even though the activation energy of the surface reaction is lower than the one of the gas-phase reaction. Both the height and width of the barrier affect the tunneling rate in practice. Strong kinetic isotope effects were observed by comparing to rate constants of D + HNCO → NHDCO. At 103 K we found a KIE of 231 on the surface and 146 in the gas phase. Furthermore, we investigated the gas-phase reaction NH 2 + H 2 CO → NH 2 CHO + H and found it unlikely to occur at cryogenic temperatures. The data of our tunneling rate constants are expected to significantly influence astrochemical models.

  7. Amorphous nanophotonics

    CERN Document Server

    Scharf, Toralf

    2013-01-01

    This book represents the first comprehensive overview over amorphous nano-optical and nano-photonic systems. Nanophotonics is a burgeoning branch of optics that enables many applications by steering the mould of light on length scales smaller than the wavelength with devoted nanostructures. Amorphous nanophotonics exploits self-organization mechanisms based on bottom-up approaches to fabricate nanooptical systems. The resulting structures presented in the book are characterized by a deterministic unit cell with tailored geometries; but their spatial arrangement is not controlled. Instead of periodic, the structures appear either amorphous or random. The aim of this book is to discuss all aspects related to observable effects in amorphous nanophotonic material and aspects related to their design, fabrication, characterization and integration into applications. The book has an interdisciplinary nature with contributions from scientists in physics, chemistry and materials sciences and sheds light on the topic fr...

  8. Properties of Erbium Doped Hydrogenated Amorphous Carbon Layers Fabricated by Sputtering and Plasma Assisted Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    V. Prajzler

    2008-01-01

    Full Text Available We report about properties of carbon layers doped with Er3+ ions fabricated by Plasma Assisted Chemical Vapor Deposition (PACVD and by sputtering on silicon or glass substrates. The structure of the samples was characterized by X-ray diffraction and their composition was determined by Rutherford Backscattering Spectroscopy and Elastic Recoil Detection Analysis. The Absorbance spectrum was taken in the spectral range from 400 nm to 600 nm. Photoluminescence spectra were obtained using two types of Ar laser (λex=514.5 nm, lex=488 nm and also using a semiconductor laser (λex=980 nm. Samples fabricated by magnetron sputtering exhibited typical emission at 1530 nm when pumped at 514.5 nm. 

  9. Discrete element simulation of charging and mixed layer formation in the ironmaking blast furnace

    Science.gov (United States)

    Mitra, Tamoghna; Saxén, Henrik

    2016-11-01

    The burden distribution in the ironmaking blast furnace plays an important role for the operation as it affects the gas flow distribution, heat and mass transfer, and chemical reactions in the shaft. This work studies certain aspects of burden distribution by small-scale experiments and numerical simulation by the discrete element method (DEM). Particular attention is focused on the complex layer-formation process and the problems associated with estimating the burden layer distribution by burden profile measurements. The formation of mixed layers is studied, and a computational method for estimating the extent of the mixed layer, as well as its voidage, is proposed and applied on the results of the DEM simulations. In studying a charging program and its resulting burden distribution, the mixed layers of coke and pellets were found to show lower voidage than the individual burden layers. The dynamic evolution of the mixed layer during the charging process is also analyzed. The results of the study can be used to gain deeper insight into the complex charging process of the blast furnace, which is useful in the design of new charging programs and for mathematical models that do not consider the full behavior of the particles in the burden layers.

  10. TEM study of amorphous alloys produced by ion implantation

    International Nuclear Information System (INIS)

    Johnson, E.; Grant, W.A.; Wohlenberg, P.; Hansen, P.; Chadderton, L.T.

    1978-01-01

    Ion implantation is a technique for introducing foreign elements into surface layers of solids. Ions, as a suitably accelerated beam, penetrate the surface, slow down by collisions with target atoms to produce a doped layer. This non-equilibrium technique can provide a wide range of alloys without the restrictions imposed by equilibrium phase diagrams. This paper reports on the production of some amorphous transition metal-metalloid alloys by implantation. Thinned foils of Ni, Fe and stainless steel were implanted at room temperature with Dy + and P + ions at doses between 10 13 - 10 17 ions/cm 2 at energies of 20 and 40 keV respectively. Transmission electron microscopy and selected area diffraction analysis were used to investigate the implanted specimens. Radial diffracted intensity measurements confirmed the presence of an amorphous implanted layer. The peak positions of the maxima are in good agreement with data for similar alloys produced by conventional techniques. Only certain ion/target combinations produce these amorphous layers. Implantations at doses lower than those needed for amorphization often result in formation of new crystalline phases such as an h.c.p. phase in nickel and a b.c.c. phase in stainless steel. (Auth.)

  11. Numerical analysis of temperature profile and thermal-stress during excimer laser induced heteroepitaxial growth of patterned amorphous silicon and germanium bi-layers deposited on Si(100)

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J.C., E-mail: jconde@uvigo.e [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Martin, E. [Dpto. de Mecanica, Maquinas y Motores Termicos y Fluidos, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Gontad, F.; Chiussi, S. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Fornarini, L. [Enea-Frascati, Via Enrico Fermi 45, I-00044 Frascati (Roma) (Italy); Leon, B. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain)

    2010-02-26

    A Finite Element Method (FEM) study of the coupled thermal-stress during the heteroepitaxial growth induced by excimer laser radiation of patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bi-layers deposited on a Si(100) wafer is presented. The ArF (193 nm) excimer laser provides high energy densities during very short laser pulse (20 ns) provoking, at the same time, melting and solidification phenomena in the range of several tenths of nanoseconds. These phenomena play an important role during the growth of heteroepitaxial SiGe structures characterized by high Ge concentration buried under a Si rich surface. In addition, the thermal-stresses that appear before the melting and after the solidification processes can also affect to the epitaxial growth of high quality SiGe alloys in these patterned structures and, in consequence, it is necessary to predict their effects. The aim of this work is to estimate the energy threshold and the corresponding thermal-stresses in the interfaces and the borders of these patterned structures.

  12. Drain Current Stress-Induced Instability in Amorphous InGaZnO Thin-Film Transistors with Different Active Layer Thicknesses

    Directory of Open Access Journals (Sweden)

    Dapeng Wang

    2018-04-01

    Full Text Available In this study, the initial electrical properties, positive gate bias stress (PBS, and drain current stress (DCS-induced instabilities of amorphous indium gallium zinc oxide (a-IGZO thin-film transistors (TFTs with various active layer thicknesses (TIGZO are investigated. As the TIGZO increased, the turn-on voltage (Von decreased, while the subthreshold swing slightly increased. Furthermore, the mobility of over 13 cm2·V−1·s−1 and the negligible hysteresis of ~0.5 V are obtained in all of the a-IGZO TFTs, regardless of the TIGZO. The PBS results exhibit that the Von shift is aggravated as the TIGZO decreases. In addition, the DCS-induced instability in the a-IGZO TFTs with various TIGZO values is revealed using current–voltage and capacitance–voltage (C–V measurements. An anomalous hump phenomenon is only observed in the off state of the gate-to-source (Cgs curve for all of the a-IGZO TFTs. This is due to the impact ionization that occurs near the drain side of the channel and the generated holes that flow towards the source side along the back-channel interface under the lateral electric field, which cause a lowered potential barrier near the source side. As the TIGZO value increased, the hump in the off state of the Cgs curve was gradually weakened.

  13. Drain Current Stress-Induced Instability in Amorphous InGaZnO Thin-Film Transistors with Different Active Layer Thicknesses.

    Science.gov (United States)

    Wang, Dapeng; Zhao, Wenjing; Li, Hua; Furuta, Mamoru

    2018-04-05

    In this study, the initial electrical properties, positive gate bias stress (PBS), and drain current stress (DCS)-induced instabilities of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) with various active layer thicknesses ( T IGZO ) are investigated. As the T IGZO increased, the turn-on voltage ( V on ) decreased, while the subthreshold swing slightly increased. Furthermore, the mobility of over 13 cm²·V −1 ·s −1 and the negligible hysteresis of ~0.5 V are obtained in all of the a-IGZO TFTs, regardless of the T IGZO . The PBS results exhibit that the V on shift is aggravated as the T IGZO decreases. In addition, the DCS-induced instability in the a-IGZO TFTs with various T IGZO values is revealed using current–voltage and capacitance–voltage ( C – V ) measurements. An anomalous hump phenomenon is only observed in the off state of the gate-to-source ( C gs ) curve for all of the a-IGZO TFTs. This is due to the impact ionization that occurs near the drain side of the channel and the generated holes that flow towards the source side along the back-channel interface under the lateral electric field, which cause a lowered potential barrier near the source side. As the T IGZO value increased, the hump in the off state of the C gs curve was gradually weakened.

  14. Numerical analysis of temperature profile and thermal-stress during excimer laser induced heteroepitaxial growth of patterned amorphous silicon and germanium bi-layers deposited on Si(100)

    International Nuclear Information System (INIS)

    Conde, J.C.; Martin, E.; Gontad, F.; Chiussi, S.; Fornarini, L.; Leon, B.

    2010-01-01

    A Finite Element Method (FEM) study of the coupled thermal-stress during the heteroepitaxial growth induced by excimer laser radiation of patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bi-layers deposited on a Si(100) wafer is presented. The ArF (193 nm) excimer laser provides high energy densities during very short laser pulse (20 ns) provoking, at the same time, melting and solidification phenomena in the range of several tenths of nanoseconds. These phenomena play an important role during the growth of heteroepitaxial SiGe structures characterized by high Ge concentration buried under a Si rich surface. In addition, the thermal-stresses that appear before the melting and after the solidification processes can also affect to the epitaxial growth of high quality SiGe alloys in these patterned structures and, in consequence, it is necessary to predict their effects. The aim of this work is to estimate the energy threshold and the corresponding thermal-stresses in the interfaces and the borders of these patterned structures.

  15. Surface tailoring of newly developed amorphous Znsbnd Sisbnd O thin films as electron injection/transport layer by plasma treatment: Application to inverted OLEDs and hybrid solar cells

    Science.gov (United States)

    Yang, Hongsheng; Kim, Junghwan; Yamamoto, Koji; Xing, Xing; Hosono, Hideo

    2018-03-01

    We report a unique amorphous oxide semiconductor Znsbnd Sisbnd O (a-ZSO) which has a small work function of 3.4 eV for as-deposited films. The surface modification of a-ZSO thin films by plasma treatments is examined to apply it to the electron injection/transport layer of organic devices. It turns out that the energy alignment and exciton dissociation efficiency at a-ZSO/organic semiconductor interface significantly changes by choosing different gas (oxygen or argon) for plasma treatments (after a-ZSO was exposed to atmospheric environment for 5 days). In situ ultraviolet photoelectron spectroscopy (UPS) measurement reveals that the work function of a-ZSO is increased to 4.0 eV after an O2-plasma treatment, while the work function of 3.5 eV is recovered after an Ar-plasma treatment which indicates this treatment is effective for surface cleaning. To study the effects of surface treatments to device performance, OLEDs and hybrid polymer solar cells with O2-plasma or Ar-plasma treated a-ZSO are compared. Effects of these surface treatments on performance of inverted OLEDs and hybrid polymer solar cells are examined. Ar-plasma treated a-ZSO works well as the electron injection layer in inverted OLEDs (Alq3/a-ZSO) because the injection barrier is small (∼ 0.1 eV). On the other hands, O2-plasma treated a-ZSO is more suitable for application to hybrid solar cells which is benefiting from higher exciton dissociation efficiency at polymer (P3HT)/ZSO interface.

  16. Topology of magnetic flux ropes and formation of fossil flux transfer events and boundary layer plasmas

    Science.gov (United States)

    Lee, L. C.; Ma, Z. W.; Fu, Z. F.; Otto, A.

    1993-01-01

    A mechanism for the formation of fossil flux transfer events and the low-level boundary layer within the framework of multiple X-line reconnection is proposed. Attention is given to conditions for which the bulk of magnetic flux in a flux rope of finite extent has a simple magnetic topology, where the four possible connections of magnetic field lines are: IMF to MSP, MSP to IMF, IMF to IMF, and MSP to MSP. For a sufficient relative shift of the X lines, magnetic flux may enter a flux rope from the magnetosphere and exit into the magnetosphere. This process leads to the formation of magnetic flux ropes which contain a considerable amount of magnetosheath plasma on closed magnetospheric field lines. This process is discussed as a possible explanation for the formation of fossil flux transfer events in the magnetosphere and the formation of the low-latitude boundary layer.

  17. Amorphization of silicon by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Jia, Jimmy; Li Ming; Thompson, Carl V.

    2004-01-01

    We have used femtosecond laser pulses to drill submicron holes in single crystal silicon films in silicon-on-insulator structures. Cross-sectional transmission electron microscopy and energy dispersive x-ray analysis of material adjacent to the ablated holes indicates the formation of a layer of amorphous Si. This demonstrates that even when material is ablated using femtosecond pulses near the single pulse ablation threshold, sufficient heating of the surrounding material occurs to create a molten zone which solidifies so rapidly that crystallization is bypassed

  18. Formation of anodic layers on InAs (111)III. Study of the chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Valisheva, N. A., E-mail: valisheva@thermo.isp.nsc.ru; Tereshchenko, O. E. [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Prosvirin, I. P.; Kalinkin, A. V. [Russian Academy of Sciences, Boreskov Institute of Catalysis, Siberian Branch (Russian Federation); Goljashov, V. A. [Novosibirsk State University (Russian Federation); Levtzova, T. A. [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Bukhtiyarov, V. I. [Russian Academy of Sciences, Boreskov Institute of Catalysis, Siberian Branch (Russian Federation)

    2012-04-15

    The chemical composition of {approx}20-nm-thick anodic layers grown on InAs (111)III in alkaline and acid electrolytes containing or not containing NH{sub 4}F is studied by X-ray photoelectron spectroscopy. It is shown that the composition of fluorinated layers is controlled by the relation between the concentrations of fluorine and hydroxide ions in the electrolyte and by diffusion processes in the growing layer. Fluorine accumulates at the (anodic layer)/InAs interface. Oxidation of InAs in an acid electrolyte with a low oxygen content and a high NH{sub 4}F content brings about the formation of anodic layers with a high content of fluorine and elemental arsenic and the formation of an oxygen-free InF{sub x}/InAs interface. Fluorinated layers grown in an alkaline electrolyte with a high content of O{sup 2-} and/or OH{sup -} groups contain approximately three times less fluorine and consist of indium and arsenic oxyfluorides. No distinction between the compositions of the layers grown in both types of fluorine-free electrolytes is established.

  19. Stochastic layers of magnetic field lines and formation of ITB in a toroidal plasma

    International Nuclear Information System (INIS)

    Volkov, E.D.; Bererzhnyi, V.L.; Bondarenko, V.N.

    2003-01-01

    The results of local measurements of RF discharge plasma parameters in the process of ITB formation in the vicinity of rational magnetic surfaces in the Uragan-3M torsatron are presented. The next phenomena were observed in the process of ITB formation: the widening of the radial density distribution, the formation of pedestals on radial density and electron temperature distributions, the formation of regions with high shear of poloidal plasma rotation velocity and radial electric field in the vicinity of stochastic layers of magnetic field lines, the decrease of density fluctuations and their radial correlation length, the decorrelation of density fluctuations, the increase of the bootstrap current. After the ITB formation, the transition to the improved plasma confinement regime takes place. The transition moves to the beginning of the discharge with the increase of heating power. The possible mechanism of ITB formation near rational surfaces is discussed. (orig.)

  20. Stability, Reactivity, and Constituent Interaction in TiSe2-Based Metastable Misfit Layer Compounds Synthesized from Designed Amorphous Precursors

    Science.gov (United States)

    Merrill, Devin R.

    A series of intergrowth compounds with the basic formula [(MSe) 1+delta]m(TiSe2)n are reported. The compounds are prepared from modulated elemental reactants and display interesting structural and electronic behavior. Section 1 of this dissertation outlines initial attempts to characterize constituent interaction. The first member of the SnSe based subclass is reported and displays the highest Seebeck coefficient of any m = n = 1 compound reported to date, and a surprising amount of order is observed, compared to previously reported compounds. With properly established deposition parameters, the synthesis was extended to included the m = 2-4 compounds. These compounds display interesting electronic behavior that suggests the band structure shifts considerably as the SnSe block is expanded, affecting the interaction between the constituent layers. The first compound based on BiSe is then reported, suggesting that the Bi structure donates more conduction electrons to the band structure. Targeted substitution through kinetic control is the focus of Section 2, and a family of (PbxSn1-xSe)1+deltaTiSe 2 is reported over the entire range of x, even though a miscibility gap exists in the bulk PbxSn1-xSe system. The resulting alloyed intergrowth compounds also display equal or higher mobility than the end members, suggesting modulation doping could be used to affect transport properties. As a proof of principle, the analogous system based on a Bi xSn1-xSe constituent was prepared to attempt to systematically affect carrier concentration. It was found that while carrier concentration can be controlled, the evolving structure affects the doping efficiency of the Bi atoms and mobility in the structure. Section 3 outlines attempts to form higher order TiSe2-based heterostructures and the important chemical considerations observed during the preparation of these materials. The 3 component systems in the Pb-Sn-Ti-Se system can be formed at low temperature, with SnSe2 rather than

  1. In-situ kinetics of modifications induced by swift heavy ions in Al2O3: Colour centre formation, structural modification and amorphization

    International Nuclear Information System (INIS)

    Grygiel, C.; Moisy, F.; Sall, M.; Lebius, H.; Balanzat, E.; Madi, T.; Been, T.; Marie, D.; Monnet, I.

    2017-01-01

    This paper details in-situ studies of modifications induced by swift heavy ion irradiation in α-Al2O3. This complex behaviour is intermediary between the behaviour of amorphizable and non-amorphizable materials, respectively. A unique combination of irradiation experiments was performed at the IRRSUD beam line of the GANIL facility, with three different characterisation techniques: in-situ UV–Vis absorption, in-situ grazing incidence X-Ray diffraction and ex-situ transmission electron microscopy. This allows a complete study of point defects, and by depth profile of structural and microstructural modifications created on the trajectory of the incident ion. The α-Al2O3 crystals have been irradiated by 92 MeV Xenon and 74 MeV Krypton ions, the irradiation conditions have been chosen rather similar with an energy range where the ratio between electronic and nuclear stopping power changes dramatically as function of depth penetration. The main contribution of electronic excitation, above the threshold for track formation, is present beneath the surface to finally get almost only elastic collisions at the end of the projected range. Amorphization kinetics by the overlapping of multiple ion tracks is observed. In the crystalline matrix, long range strains, unit-cell swelling, local microstrain, domain size decrease, disordering of oxygen sublattice as well as colour centre formation are found. This study highlights the relationship between ion energy losses into a material and its response. While amorphization requires electronic stopping values above a certain threshold, point defects are predominantly induced by elastic collisions, while some structural modifications of the crystalline matrix, such as unit-cell swelling, are due to contribution of both electronic and nuclear processes.

  2. Amorphous silicon radiation detectors

    Science.gov (United States)

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  3. Formation mechanism of the graphite-rich protective layer in blast furnace hearths

    Science.gov (United States)

    Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Liu, Feng; Liang, Li-sheng

    2016-01-01

    A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estimate the formation mechanism of the protective layer. The results illustrate that a significant amount of graphite phase was trapped within the hearth protective layer. Furthermore, on the basis of the thermodynamic and kinetic calculations of the graphite precipitation process, a precipitation potential index related to the formation of the graphite-rich protective layer was proposed to characterize the formation ability of this layer. We determined that, under normal operating conditions, the precipitation of graphite phase from hot metal was thermodynamically possible. Among elements that exist in hot metal, C, Si, and P favor graphite precipitation, whereas Mn and Cr inhibit this process. Moreover, at the same hot-face temperature, an increase of carbon concentration in hot metal can shorten the precipitation time. Finally, the results suggest that measures such as reducing the hot-face temperature and increasing the degree of carbon saturation in hot metal are critically important to improve the precipitation potential index.

  4. Mechanism for the formation of sporadic-E layers in the high-latitude ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vlasov, M.N.; Mishin, E.V.; Telegin, V.A.

    1980-09-01

    A model of the collective interaction of precipitating electrons and the ionospheric plasma is used to explain the formation of short-duration sporadic-E layers in the high-latitude ionosphere. The changes produced in electron density by this collective interaction mechanism are considered.

  5. Does electrical double layer formation lead to salt exclusion or to uptake?

    NARCIS (Netherlands)

    Lyklema, J.

    2005-01-01

    When electric double layers are formed, cases have been reported where this formation nvolves expulsion of electrolyte into the solution and cases in which electrolyte is absorbed from the solution. Both situations are experimentally and theoretically documented, but they cannot be simultaneously

  6. Effect of Radio-Frequency and Low-Frequency Bias Voltage on the Formation of Amorphous Carbon Films Deposited by Plasma Enhanced Chemical Vapor Deposition

    International Nuclear Information System (INIS)

    Manis-Levy, Hadar; Mintz, Moshe H.; Livneh, Tsachi; Zukerman Ido; Raveh, Avi

    2014-01-01

    The effect of radio-frequency (RF) or low-frequency (LF) bias voltage on the formation of amorphous hydrogenated carbon (a-C:H) films was studied on silicon substrates with a low methane (CH 4 ) concentration (2–10 vol.%) in CH 4 +Ar mixtures. The bias substrate was applied either by RF (13.56 MHz) or by LF (150 kHz) power supply. The highest hardness values (∼18–22 GPa) with lower hydrogen content in the films (∼20 at.%) deposited at 10 vol.% CH 4 , was achieved by using the RF bias. However, the films deposited using the LF bias, under similar RF plasma generation power and CH 4 concentration (50 W and 10 vol.%, respectively), displayed lower hardness (∼6–12 GPa) with high hydrogen content (∼40 at.%). The structures analyzed by Fourier Transform Infrared (FTIR) and Raman scattering measurements provide an indication of trans-polyacetylene structure formation. However, its excessive formation in the films deposited by the LF bias method is consistent with its higher bonded hydrogen concentration and low level of hardness, as compared to the film prepared by the RF bias method. It was found that the effect of RF bias on the film structure and properties is stronger than the effect of the low-frequency (LF) bias under identical radio-frequency (RF) powered electrode and identical PECVD (plasma enhanced chemical vapor deposition) system configuration. (plasma technology)

  7. Evidence of the layer structure formation of chitosan microtubes by the Liesegang ring mechanism

    Science.gov (United States)

    Babicheva, T. S.; Gegel, N. O.; Shipovskaya, A. B.

    2018-04-01

    In the work, an experiment was performed to simulate the process of chitosan microtube formation through the interphase polysalt -> polybase chemical reaction, on the one hand, and the formation of spatially separated structures under the conditions of reactive diffusion of one of the components, on the other hand. The formation of alternating dark and light bands or concentric rings of the chitosan polybase as a result of the polymer-analogous transformation is visualized by optical microscopy. The results obtained confirm our assumption that the layered structure of our chitosan microtubes is formed according to the Liesegang reaction mechanism.

  8. Hydrogen blister formation on cold-worked tungsten with layered structure

    International Nuclear Information System (INIS)

    Nishijima, Dai; Sugimoto, Takanori; Takamura, Shuichi; Ye, Minyou; Ohno, Noriyasu

    2005-01-01

    Low-energy ( 10 21 m -2 s -1 ) hydrogen plasma exposures were performed on cold-worked powder metallurgy tungsten (PM-W), recrystallized cold-worked PM-W and hot-worked PM-W. Large blisters with a diameter of approximately 100-200 μm were observed only on the surface of cold-worked PM-W. The blister formation mechanism has not been clarified thus far. PM-W has a consisting of 1-μm-thick layers, which is formed by press-roll processing. A detailed observation of the cross section of those blisters shows for the first time that the blisters are formed by cleaving the upper layer along the stratified layer. These experimental results indicate that the manufacturing process of tungsten material is one of the key factors for blister formation on the tungsten surface. (author)

  9. Radiation damage and redeposited-layer formation on plasma facing materials in the TRIAM-1M

    International Nuclear Information System (INIS)

    Hirai, Takeshi; Tokunaga, Kazutoshi; Fujiwara, Tadashi; Yoshida, Naoaki; Itoh, Satoshi

    1997-01-01

    As an aim to obtain some informations of material damage at long time discharge and redeposited-layer formed by scrape off layer (SOL), two collector probe experiments were conducted by using Tokamak of Research Institute for Applied Mechanics (TRIAM-IM). As a result, radiation damage due to charge exchange neutral particles of more than 2 MeV high energy component flying from plasma was observed. And in either experiment, redeposited-layer formation due to deposite of impurity atoms in the plasma could be observed. In the first experiment, a redeposited-layer with fine crystalline particles was observed, which was formed to contain multi-component system of Fe, Cr and Ni and light elements O and C. And, in the second experiment, a redeposited-layer grain-grown in which main component was Mo was observed. Surface modification of plasma facing material such as above-mentioned damage induction, redeposited-layer formation, and so on, was thought to much affect deterioration of materials and recycling of hydrogen. (G.K.)

  10. Amorphous nanoparticles — Experiments and computer simulations

    International Nuclear Information System (INIS)

    Hoang, Vo Van; Ganguli, Dibyendu

    2012-01-01

    The data obtained by both experiments and computer simulations concerning the amorphous nanoparticles for decades including methods of synthesis, characterization, structural properties, atomic mechanism of a glass formation in nanoparticles, crystallization of the amorphous nanoparticles, physico-chemical properties (i.e. catalytic, optical, thermodynamic, magnetic, bioactivity and other properties) and various applications in science and technology have been reviewed. Amorphous nanoparticles coated with different surfactants are also reviewed as an extension in this direction. Much attention is paid to the pressure-induced polyamorphism of the amorphous nanoparticles or amorphization of the nanocrystalline counterparts. We also introduce here nanocomposites and nanofluids containing amorphous nanoparticles. Overall, amorphous nanoparticles exhibit a disordered structure different from that of corresponding bulks or from that of the nanocrystalline counterparts. Therefore, amorphous nanoparticles can have unique physico-chemical properties differed from those of the crystalline counterparts leading to their potential applications in science and technology.

  11. The formation of multiple layers of ice particles in the polar summer mesopause region

    Directory of Open Access Journals (Sweden)

    H. Li

    2016-01-01

    Full Text Available This paper presents a two-dimensional theoretical model to study the formation process of multiple layers of small ice particles in the polar summer mesosphere as measured by rockets and associated with polar mesosphere summer echoes (PMSE. The proposed mechanism primarily takes into account the transport processes induced by gravity waves through collision coupling between the neutral atmosphere and the ice particles. Numerical solutions of the model indicate that the dynamic influence of wind variation induced by gravity waves can make a significant contribution to the vertical and horizontal transport of ice particles and ultimately transform them into thin multiple layers. Additionally, the pattern of the multiple layers at least partially depends on the vertical wavelength of the gravity wave, the ice particle size and the wind velocity. The results presented in this paper will be helpful to better understand the occurrence of multiple layers of PMSE as well as its variation process.

  12. Formation and Characterization of Stacked Nanoscale Layers of Polymers and Silanes on Silicon Surfaces

    Science.gov (United States)

    Ochoa, Rosie; Davis, Brian; Conley, Hiram; Hurd, Katie; Linford, Matthew R.; Davis, Robert C.

    2008-10-01

    Chemical surface patterning at the nanoscale is a critical component of chemically directed assembly of nanoscale devices or sensitive biological molecules onto surfaces. Complete and consistent formation of nanoscale layers of silanes and polymers is a necessary first step for chemical patterning. We explored methods of silanizing silicon substrates for the purpose of functionalizing the surfaces. The chemical functionalization, stability, flatness, and repeatability of the process was characterized by use of ellipsometry, water contact angle, and Atomic Force Microscopy (AFM). We found that forming the highest quality functionalized surfaces was accomplished through use of chemical vapor deposition (CVD). Specifically, surfaces were plasma cleaned and hydrolyzed before the silane was applied. A polymer layer less then 2 nm in thickness was electrostatically bound to the silane layer. The chemical functionalization, stability, flatness, and repeatability of the process was also characterized for the polymer layer using ellipsometry, water contact angle, and AFM.

  13. Formation, aggregation and reactivity of amorphous ferric oxyhydroxides on dissociation of Fe(III)-organic complexes in dilute aqueous suspensions

    Science.gov (United States)

    Bligh, Mark W.; Waite, T. David

    2010-10-01

    While chemical reactions that take place at the surface of amorphous ferric oxides (AFO) are known to be important in aquatic systems, incorporation of these reactions into kinetic models is hindered by a lack of ability to reliably quantify the reactivity of the surface and the changes in reactivity that occur over time. Long term decreases in the reactivity of iron oxides may be considered to result from changes in the molecular structure of the solid, however, over shorter time scales where substantial aggregation may occur, the mechanisms of reactivity loss are less clear. Precipitation of AFO may be described as a combination of homogeneous and heterogeneous reactions, however, despite its potentially significant role, the latter reaction is usually neglected in kinetic models of aquatic processes. Here, we investigate the role of AFO in scavenging dissolved inorganic ferric (Fe(III)) species (Fe') via the heterogeneous precipitation reaction during the net dissociation of organically complexed Fe(III) in seawater. Using sulfosalicylic acid (SSA) as a model ligand, AFO was shown to play a significant role in inducing the net dissociation of the Fe-SSA complexes with equations describing both the heterogeneous precipitation reaction and the aging of AFO being required to adequately describe the experimental data. An aggregation based mechanism provided a good description of AFO aging over the short time scale of the experiments. The behaviour of AFO described here has implications for the bioavailability of iron in natural systems as a result of reactions involving AFO which are recognised to occur over time scales of minutes, including adsorption of Fe' and AFO dissolution, precipitation and ageing.

  14. Amorphous superconductors

    International Nuclear Information System (INIS)

    Missell, F.P.

    1985-01-01

    We describe briefly the strong coupling superconductivity observed in amorphous alloys based upon simple metals. For transition metal alloys we discuss the behavior of the superconducting transition temperature T c , the upper critical field H (sub)c2 and the critical current J c . A survey of current problems is presented. (author) [pt

  15. Formation of CuxS Layers on Polypropylene Sulfurized by Molten Sulfur

    Directory of Open Access Journals (Sweden)

    Rasa ALABURDAITĖ

    2011-11-01

    Full Text Available The processes of formation of electrically conductive layers of copper sulfides CuxS by the sorption-diffusion method on polypropylene (PP using molten sulfur as sulfurizing agent was investigated. The amount of sorbed sulfur increased with the increase of the duration of treatment. Copper sulfide layers were formed on the surface of polypropylene after the treatment of sulfurized polymer with Cu(II/I salt solution. The amount of copper sulfide in layer increased with the increase of treatment duration in copper salt solution. XRD spectra of PP films treated for 3 min with molten sulfur and then with Cu(II/I salt solution for the different time showed that the copper sulfide phases, mostly digenite, Cu2-xS and a-chalcocite, Cu2S were formed in the layers. Electromotive force measurement results confirmed the composition of formed CuxS layers on PP. The phase composition of layers also changed after the annealing. The value of electrical resistance of copper sulfide layers on PP varied from 20 W/cm2 to 80 W/cm2 and after annealing at 80 °C - in the interval of 10 W/cm2 - 60 W/cm2.http://dx.doi.org/10.5755/j01.ms.17.4.776

  16. Electron spectroscopy of the interface carbon layer formation on the cleavage surfaces of the layered semiconductor In4Se3 crystals

    International Nuclear Information System (INIS)

    Galiy, P.V.; Musyanovych, A.V.; Nenchuk, T.M.

    2005-01-01

    The results of the quantitative X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) of the interface carbon layer formation on the cleavage surfaces of the layered semiconductor In 4 Se 3 crystals are presented. The carbon coating formation occurs as the result of interaction of the air and residual gases atmosphere in ultra high vacuum (UHV) Auger spectrometer chamber with atomic clean interlayer cleavage surfaces of the crystals. The kinetics and peculiarities of interfacial carbon layer formation on the cleavage surfaces of the crystals, elemental and phase composition of the interface have been studied by quantitative XPS, AES and mass-spectroscopy

  17. XPS and STEM study of the interface formation between ultra-thin Ru and Ir OER catalyst layers and perylene red support whiskers

    Directory of Open Access Journals (Sweden)

    Atanasoska Ljiljana L.

    2013-01-01

    Full Text Available The interface formation between nano-structured perylene red (PR whiskers and oxygen evolution reaction (OER catalysts ruthenium and iridium has been studied systematically by XPS and STEM. The OER catalyst over-layers with thicknesses ranging from ~0.1 to ~50 nm were vapor deposited onto PR ex-situ. STEM images demonstrate that, with increasing thickness, Ru and Ir transform from amorphous clusters to crystalline nanoparticles, which agglomerate with increased over-layer thickness. XPS data show a strong interaction between Ru and PR. Ir also interacts with PR although not to the extent seen for Ru. At low coverages, the entire Ru deposit is in the reacted state while a small portion of the deposited Ir remains metallic. Ru and Ir bonding occur at the PR carbonyl sites as evidenced by the attenuation of carbonyl photoemission and the emergence of new peak assigned to C-O single bond. The curve fitting analysis and the derived stoichiometry indicates the formation of metallo-organic bonds. The co-existence of oxide bonds is also apparent.

  18. Formation of Lamellar Structured Oxide Dispersion Strengthening Layers in Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang-Il; Park, Jung-Hwan; Park, Dong-Jun; Kim, Hyun-Gil; Yang, Jae-Ho; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lim, Yoon-Soo [Hanbat National University, Daejeon (Korea, Republic of)

    2016-10-15

    Korea Atomic Energy Research Institute (KAERI) is one of the leading organizations for developing ATF claddings. One concept is to form an oxidation-resistant layer on Zr cladding surface. The other is to increase high-temperature mechanical strength of Zr tube. The oxide dispersion strengthened (ODS) zirconium was proposed to increase the strength of the Zr-based alloy up to high temperatures. According to our previous investigations, the tensile strength of Zircaloy-4 was increased by up to 20% with the formation of a thin dispersed oxide layer with a thickness less than 10% of that of the Zircaloy-4 substrate. However, the tensile elongation of the samples decreased drastically. The brittle fracture was a major concern in development of the ODS Zircaloy-4. In this study, a lamellar structure of ODS layer was formed to increase ductility of the ODS Zircaloy-4. The mechanical properties were varied depending on the structure of ODS layer. For example, the partial formation of ODS layer with the thickness of 10% to the substrate thickness induced the increase in tensile strength up to about 20% than fresh Zircaloy-4.

  19. Callus formation impedes adventitious rhizogenesis in air layers of broadleaved tree species

    Directory of Open Access Journals (Sweden)

    Sanjay Singh

    2014-07-01

    Full Text Available Callusing and root induction in air layering was evaluated aiming at evolution of procedure for mass clonal propagation of mature ortets of five tropical broadleaf species differing in their potential for adventitious root formation in shoot cuttings as: Anogiessus latifolia < Boswellia serrata < Dalbergia latifolia < Gmelina arborea < Dalbergia sissoo. Two experiments were conducted in rainy season during consecutive years; without application of growth regulators in the first year and with growth regulators (T1 - water, T2- 100 ppm indole-3-acetic acid, T3-100 ppm thiamine-HCl and T4 -combination of T2 + T3 in the next year. Air layered branches were detached from the trees to record percentage of alive airlayers, callusing and rooting (% as well as root number and root length. Response to air layering was found to be highly variable in five tree species but appeared to be feasible procedure for clonal propagation of mature ortets of B. serrata and D. sissoo with 100% (in auxin + thiamine treatment and 83.3% (in auxin treatment success, respectively. Maximum callusing (% was found in D. latifolia while no callusing was observed in D. sissoo, which is most easy-to-root among all five species. Callus formation impedes adventitious rhizogenesis in air layers as significant negative correlation of callusing (% and adventitious root formation was recorded in air layers of five tropical broadleaved tree species. Application of exogenous auxin alone or in combination with thiamine circumvents callusing to ensure direct development of roots for successful air layering.

  20. Experimental formation of a fractional vortex in a superconducting bi-layer

    Science.gov (United States)

    Tanaka, Y.; Yamamori, H.; Yanagisawa, T.; Nishio, T.; Arisawa, S.

    2018-05-01

    We report the experimental formation of a fractional vortex generated by using a thin superconducting bi-layer in the form of a niobium bi-layer, observed as a magnetic flux distribution image taken by a scanning superconducting quantum interference device (SQUID) microscope. Thus, we demonstrated that multi-component superconductivity can be realized by an s-wave conventional superconductor, because, in these superconductors, the magnetic flux is no longer quantized as it is destroyed by the existence of an inter-component phase soliton (i-soliton).

  1. Specific Features of Chip Making and Work-piece Surface Layer Formation in Machining Thermal Coatings

    Directory of Open Access Journals (Sweden)

    V. M. Yaroslavtsev

    2016-01-01

    Full Text Available A wide range of unique engineering structural and performance properties inherent in metallic composites characterizes wear- and erosion-resistant high-temperature coatings made by thermal spraying methods. This allows their use both in manufacturing processes to enhance the wear strength of products, which have to operate under the cyclic loading, high contact pressures, corrosion and high temperatures and in product renewal.Thermal coatings contribute to the qualitative improvement of the technical level of production and product restoration using the ceramic composite materials. However, the possibility to have a significantly increased product performance, reduce their factory labour hours and materials/output ratio in manufacturing and restoration is largely dependent on the degree of the surface layer quality of products at their finishing stage, which is usually provided by different kinds of machining.When machining the plasma-sprayed thermal coatings, a removing process of the cut-off layer material is determined by its distinctive features such as a layered structure, high internal stresses, low ductility material, high tendency to the surface layer strengthening and rehardening, porosity, high abrasive properties, etc. When coatings are machined these coating properties result in specific characteristics of chip formation and conditions for formation of the billet surface layer.The chip formation of plasma-sprayed coatings was studied at micro-velocities using an experimental tool-setting microscope-based setup, created in BMSTU. The setup allowed simultaneous recording both the individual stages (phases of the chip formation process and the operating force factors.It is found that formation of individual chip elements comes with the multiple micro-cracks that cause chipping-off the small particles of material. The emerging main crack in the cut-off layer of material leads to separation of the largest chip element. Then all the stages

  2. Development of an in-situ diagnostic for the measurement of the hydrogen content of amorphous hydrocarbon layers in fusion devices; Entwicklung einer In-situ-Messmethode zur Bestimmung des Wasserstoffgehalts amorpher Kohlenwasserstoffschichten in Fusionsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Irrek, F.

    2008-07-15

    A diagnostic method, the laser-induced thermal desorption spectroscopy (LDS), is developed to measure in situ the hydrogen inventory in the surface of plasma-facing components in fusion experiments. Its capabilities will be demonstrated in TEXTOR. In LDS, during the plasma discharge a laser beam is used to heat a spot on a surface close to the plasma to a temperature of 1400 to 2100 K to a depth of 100 {mu}m. Trapped hydrogen will be released into the plasma where it emits line radiation. The emitted H{sub a}-light is quantitatively measured. The amount of released hydrogen is calculated from the intensity of this emission using conversion factors (S/XB){sub eff}. The laser light (Nd:YAG, 1064 nm) is conducted via light fibres. At TEXTOR, a 5 mm{sup 2} sized homogeneous laser spot is created with a pulse duration of 1.5 ms, and an Energy of 5 J, typically. Below the laser spot a volume of at most 1 mm{sup 3} is desorbed. The generated temperature is calculated numerically and indirectly deduced from surface changings. Depending on the conditions during the layer formation the hydrogen content of the hydrocarbon layer will vary and different fractions of the released molecules (H{sub 2}, CH{sub 4}, C{sub 2}H{sub 4}) are created during the laser heating. The release of atomic hydrogen by laser desorption was not found. The emitted light is measured by means of narrow-band interference filters and a CCD-camera. The fraction of the light emission which lies outside the observation volume is estimated using simulations of the emission by the neutral gas transport Monte Carlo code EIRENE for each molecular fraction. Conversion factors (S/XB){sub eff} were measured in various reference plasmas (T{sub e}=22-30 eV, n{sub e}=1-11 x 10{sup 18} m{sup -3} and T{sub e}=50-74 eV, n{sub e}=1-5 x 10{sup 18} m{sup -3}) by desorbing prepared graphite samples which release a known amount of hydrogen with a known molecular distribution. LDS measurements were carried out in TEXTOR at

  3. Pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} on amorphous dielectric layers towards monolithic 3D photonic integration

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haofeng; Brouillet, Jeremy; Wang, Xiaoxin; Liu, Jifeng, E-mail: Jifeng.Liu@dartmouth.edu [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States)

    2014-11-17

    We demonstrate pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} crystallized on amorphous layers at <450 °C towards 3D Si photonic integration. We developed two approaches to seed the lateral single crystal growth: (1) utilize the Gibbs-Thomson eutectic temperature depression at the tip of an amorphous GeSn nanotaper for selective nucleation; (2) laser-induced nucleation at one end of a GeSn strip. Either way, the crystallized Ge{sub 0.89}Sn{sub 0.11} is dominated by a single grain >18 μm long that forms optoelectronically benign twin boundaries with others grains. These pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} patterns are suitable for monolithic 3D integration of active photonic devices on Si.

  4. On the potential of positron lifetime spectroscopy for the study of early stages of zeolites formation from their amorphous precursors

    International Nuclear Information System (INIS)

    Bosnar, S.; Kosanovic, C.; Subotic, B.; Bosnar, D.; Kajcsos, Zs.; Liszkay, L.; Lohonyai, L.; Molnar, B.; Lazar, K.

    2007-01-01

    The applicability of positron lifetime (LT) spectroscopy to the study of progress of formation of Secondary Building Units (SBU) in gels yielding in FAU and LTA type zeolites was investigated. Samples were prepared from aluminosilicate gels with various degrees of local structural order. LT measurements were performed at room temperature in air and in vacuum. Coexistence of annihilation modi with long lifetime components was shown; a correlation with precursors of nucleation and type of exchanged ions was also indicated

  5. Influence of carbon on the formation of the surface layer in the process of electroerosion alloying of steel with tungsten

    Science.gov (United States)

    Vasil'eva, E. V.; Bochkov, V. E.; Mikheev, É. A.; Lyakishev, V. A.; Afanas'eva, T. N.

    1983-10-01

    With an increase in carbon content in the steel being treated, the thickness of the alloyed layer increases and its microhardness also increases. The carbon exerts a deoxidizing action on the layer being formed and promotes a reduction in the threshold of deerosion and also additional strengthening of the layer as the result of the formation of binary η-carbides.

  6. Progress in the production of intense ion beams and the formation of proton layers

    International Nuclear Information System (INIS)

    Kapetanakos, C.A.; Golden, J.; Marsh, S.J.; Mahaffey, R.A.

    1977-01-01

    The results on ion sources and the application of ion beams to the formation of proton layers and rings are presented. Ion beams have been produced on three different generators. Some results from the experiments performed on the Gamble 2 generator are presented. The Gamble 2 generator with coaxial anode-cathode configuration, hollow beam cross-section produces power levels of 0.6-1.2 MV with peak ion current of 200 kA. The number of protons in the beam 4x10 16 . Peak ion currents is excess 200 kA, energy 1 MeV, ion current density 1 kA/cm 2 . Magnetic field configuration to provide formation of strong proton layers is shown

  7. Current limitation and formation of plasma double layers in a non-uniform magnetic field

    International Nuclear Information System (INIS)

    Plamondon, R.; Teichmann, J.; Torven, S.

    1986-07-01

    Formation of strong double layers has been observed experimentally in a magnetised plasma column maintained by a plasma source. The magnetic field is approximately axially homogenous except in a region at the anode where the electric current flows into a magnetic mirror. The double layer has a stationary position only in the region of non-uniform magnetic field or at the aperture separating the source and the plasma column. It is characterized by a negative differential resistance in the current-voltage characteristic of the device. The parameter space,where the double layer exists, has been studied as well as the corresponding potential profiles and fluctuation spectra. The electric current and the axial electric field are oppositely directed between the plasma source and a potential minimum which is formed in the region of inhomogeneous magnetic field. Electron reflection by the resulting potential barrier is found to be an important current limitation mechanism. (authors)

  8. Formation of periodic and localized patterns in an oscillating granular layer.

    Energy Technology Data Exchange (ETDEWEB)

    Aranson, I.; Tsimring, L. S.; Materials Science Division; Bar Ilan Univ.; Univ. of California at San Diego

    1998-02-01

    A simple phenomenological model for pattern formation in a vertically vibrated layer of granular particles is proposed. This model exhibits a variety of stable cellular patterns including standing rolls and squares as well as localized excitations (oscillons and worms), similar to recent experimental observations (Umbanhowar et al., 1996). The model is an order parameter equation for the parametrically excited waves coupled to the mass conservation law. The structure and dynamics of the solutions resemble closely the properties of patterns observed in the experiments.

  9. Laser-Induced Breakdown Spectroscopy (LIBS for Monitoring the Formation of Hydroxyapatite Porous Layers

    Directory of Open Access Journals (Sweden)

    Daniel Sola

    2017-12-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS is applied to characterize the formation of porous hydroxyapatite layers on the surface of 0.8CaSiO3-0.2Ca3(PO42 biocompatible eutectic glass immersed in simulated body fluid (SBF. Compositional and structural characterization analyses were also conducted by field emission scanning electron microscopy (FESEM, energy dispersive X-ray spectroscopy (EDX, and micro-Raman spectroscopy.

  10. Laser-Induced Breakdown Spectroscopy (LIBS) for Monitoring the Formation of Hydroxyapatite Porous Layers

    OpenAIRE

    Sola, Daniel; Paulés, Daniel; Grima, Lorena; Anzano, Jesús

    2017-01-01

    Laser-induced breakdown spectroscopy (LIBS) is applied to characterize the formation of porous hydroxyapatite layers on the surface of 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass immersed in simulated body fluid (SBF). Compositional and structural characterization analyses were also conducted by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and micro-Raman spectroscopy.

  11. Formation of nickel germanides from Ni layers with thickness below 10 nm

    Energy Technology Data Exchange (ETDEWEB)

    Jablonka, Lukas; Kubart, Tomas; Primetzhofer, Daniel; Abedin, Ahmad; Hellström, Per-Erik; Östling, Mikael; Jordan-Sweet, Jean; Lavoie, Christian; Zhang, Shi-Li; Zhang, Zhen

    2017-03-01

    The authors have studied the reaction between a Ge (100) substrate and thin layers of Ni ranging from 2 to 10 nm in thickness. The formation of metal-rich Ni5Ge3Ni5Ge3 was found to precede that of the monogermanide NiGe by means of real-time in situ x-ray diffraction during ramp-annealing and ex situ x-ray pole figure analyses for phase identification. The observed sequential growth of Ni5Ge3Ni5Ge3 and NiGe with such thin Ni layers is different from the previously reported simultaneous growth with thicker Ni layers. The phase transformation from Ni5Ge3Ni5Ge3 to NiGe was found to be nucleation-controlled for Ni thicknesses <5 nm<5 nm, which is well supported by thermodynamic considerations. Specifically, the temperature for the NiGe formation increased with decreasing Ni (rather Ni5Ge3Ni5Ge3) thickness below 5 nm. In combination with sheet resistance measurement and microscopic surface inspection of samples annealed with a standard rapid thermal processing, the temperature range for achieving morphologically stable NiGe layers was identified for this standard annealing process. As expected, it was found to be strongly dependent on the initial Ni thickness

  12. Experimental characterization of a direct conversion amorphous selenium detector with thicker conversion layer for dual-energy contrast-enhanced breast imaging.

    Science.gov (United States)

    Scaduto, David A; Tousignant, Olivier; Zhao, Wei

    2017-08-01

    Dual-energy contrast-enhanced imaging is being investigated as a tool to identify and localize angiogenesis in the breast, a possible indicator of malignant tumors. This imaging technique requires that x-ray images are acquired at energies above the k-shell binding energy of an appropriate radiocontrast agent. Iodinated contrast agents are commonly used for vascular imaging, and require x-ray energies greater than 33 keV. Conventional direct conversion amorphous selenium (a-Se) flat-panel imagers for digital mammography show suboptimal absorption efficiencies at these higher energies. We use spatial-frequency domain image quality metrics to evaluate the performance of a prototype direct conversion flat-panel imager with a thicker a-Se layer, specifically fabricated for dual-energy contrast-enhanced breast imaging. Imaging performance was evaluated in a prototype digital breast tomosynthesis (DBT) system. The spatial resolution, noise characteristics, detective quantum efficiency, and temporal performance of the detector were evaluated for dual-energy imaging for both conventional full-field digital mammography (FFDM) and DBT. The zero-frequency detective quantum efficiency of the prototype detector is improved by approximately 20% over the conventional detector for higher energy beams required for imaging with iodinated contrast agents. The effect of oblique entry of x-rays on spatial resolution does increase with increasing photoconductor thickness, specifically for the most oblique views of a DBT scan. Degradation of spatial resolution due to focal spot motion was also observed. Temporal performance was found to be comparable to conventional mammographic detectors. Increasing the a-Se thickness in direct conversion flat-panel imagers results in better performance for dual-energy contrast-enhanced breast imaging. The reduction in spatial resolution due to oblique entry of x-rays is appreciable in the most extreme clinically relevant cases, but may not profoundly

  13. Effect of ablation geometry on the formation of stagnation layer in laterally colliding plasmas

    International Nuclear Information System (INIS)

    Mondal, Alamgir; Singh, Rajesh K.; Kumar, Ajai

    2015-01-01

    Interaction between two parallel propagating plasma plumes have been investigated in two different ablation schemes e.g. laser-blow-off (LBO) of thin film and conventional laser ablation (LPP). Fast imagine technique is used to study the dynamical and geometrical aspect of seed plasmas and induced stagnation layer in between the two expanding seed plasmas. Interaction between the energetic particles, coming from the seed plasmas are responsible for formation of stagnation layer. It has been found that geometrical shape, size, kinetic energy and divergence of plasma plumes are highly dependent on the ablation geometry. These variations in seed plasmas initiate the significant differences in the stagnation layer formed by LBO and LPP geometry. In this presentation, characteristic feature of stagnation layer which includes density, initiation time, emissive life time and geometry in both LBO and LPP geometry are briefly discussed. A comparative study of present results suggests that the plume composition and directionality of seed plasma play crucial role in mechanistic aspect of stagnation layer. (author)

  14. Ultrathin Co3O4 Layers Realizing Optimized CO2 Electroreduction to Formate.

    Science.gov (United States)

    Gao, Shan; Jiao, Xingchen; Sun, Zhongti; Zhang, Wenhua; Sun, Yongfu; Wang, Chengming; Hu, Qitao; Zu, Xiaolong; Yang, Fan; Yang, Shuyang; Liang, Liang; Wu, Ju; Xie, Yi

    2016-01-11

    Electroreduction of CO2 into hydrocarbons could contribute to alleviating energy crisis and global warming. However, conventional electrocatalysts usually suffer from low energetic efficiency and poor durability. Herein, atomic layers for transition-metal oxides are proposed to address these problems through offering an ultralarge fraction of active sites, high electronic conductivity, and superior structural stability. As a prototype, 1.72 and 3.51 nm thick Co3O4 layers were synthesized through a fast-heating strategy. The atomic thickness endowed Co3O4 with abundant active sites, ensuring a large CO2 adsorption amount. The increased and more dispersed charge density near Fermi level allowed for enhanced electronic conductivity. The 1.72 nm thick Co3O4 layers showed over 1.5 and 20 times higher electrocatalytic activity than 3.51 nm thick Co3O4 layers and bulk counterpart, respectively. Also, 1.72 nm thick Co3O4 layers showed formate Faradaic efficiency of over 60% in 20 h. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. An experimental study of low Re cavity vortex formation embedded in a laminar boundary layer

    Science.gov (United States)

    Gautam, Sashank; Lang, Amy; Wilroy, Jacob

    2016-11-01

    Laminar boundary layer flow across a grooved surface leads to the formation of vortices inside rectangular cavities. The nature and stability of the vortex inside any single cavity is determined by the Re and cavity geometry. According to the hypothesis, under low Re and stable vortex conditions a single cavity vortex leads to a roller-bearing effect which results in a decrease in drag as quantified by velocity profiles measured within the boundary layer. At higher Re once the vortex becomes unstable, drag should increase due to the mixing of low-momentum fluid within the cavity and the outer boundary layer flow. The primary objective of this experiment is to document the phenomenon using DPIV in a tow tank facility. This study focuses on the transition of the cavity flow from a steady to an unsteady state as the Re is increased above a critical value. The change in boundary layer momentum and cavity vortex characteristics are documented as a function of Re and boundary layer thickness. Funding from NSF CBET fluid dynamics Grant 1335848 is gratefully acknowledged.

  16. Growth and microstructure formation of isothermally-solidified Zircaloy-4 joints brazed by a Zr-Ti-Cu-Ni amorphous alloy ribbon

    Science.gov (United States)

    Kim, K. H.; Lim, C. H.; Lee, J. G.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    The microstructure and growth characteristics of Zircaloy-4 joints brazed by a Zr48Ti16Cu17Ni19 (at.%) amorphous filler metal have been investigated with regard to the controlled isothermal solidification and intermetallic formation. Two typical joints were produced depending on the isothermal brazing temperature: (1) a dendritic growth structure including bulky segregation in the central zone (at 850 °C), and (2) a homogeneous dendritic structure throughout the joint without segregation (at 890 °C). The primary α-Zr phase was solidified isothermally, nucleating to grow into a joint with a cellular or dendritic structure. Also, the continuous Zr2Ni and particulate Zr2Cu phases were formed in the segregated center zone and at the intercellular region, respectively, owing to the different solubility and atomic mobility of the solute elements (Ti, Cu, and Ni) in the α-Zr matrix. A disappearance of the central Zr2Ni phase was also rate-controlled by the outward diffusion of the Cu and Ni elements. When the detrimental Zr2Ni intermetallic phase was eliminated by a complete isothermal solidification at 890 °C, the strengths of the joints were high enough to cause yielding and fracture in the base metal, exceeding those of the bulk Zircaloy-4, at room temperature as well as at elevated temperatures (up to 400 °C).

  17. Growth and microstructure formation of isothermally-solidified Zircaloy-4 joints brazed by a Zr–Ti–Cu–Ni amorphous alloy ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.H. [University of Science and Technology, Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Lim, C.H. [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Lee, J.G., E-mail: jglee88@kaeri.re.kr [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Lee, M.K.; Rhee, C.K. [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of)

    2013-10-15

    The microstructure and growth characteristics of Zircaloy-4 joints brazed by a Zr{sub 48}Ti{sub 16}Cu{sub 17}Ni{sub 19} (at.%) amorphous filler metal have been investigated with regard to the controlled isothermal solidification and intermetallic formation. Two typical joints were produced depending on the isothermal brazing temperature: (1) a dendritic growth structure including bulky segregation in the central zone (at 850 °C), and (2) a homogeneous dendritic structure throughout the joint without segregation (at 890 °C). The primary α-Zr phase was solidified isothermally, nucleating to grow into a joint with a cellular or dendritic structure. Also, the continuous Zr{sub 2}Ni and particulate Zr{sub 2}Cu phases were formed in the segregated center zone and at the intercellular region, respectively, owing to the different solubility and atomic mobility of the solute elements (Ti, Cu, and Ni) in the α-Zr matrix. A disappearance of the central Zr{sub 2}Ni phase was also rate-controlled by the outward diffusion of the Cu and Ni elements. When the detrimental Zr{sub 2}Ni intermetallic phase was eliminated by a complete isothermal solidification at 890 °C, the strengths of the joints were high enough to cause yielding and fracture in the base metal, exceeding those of the bulk Zircaloy-4, at room temperature as well as at elevated temperatures (up to 400 °C)

  18. First-principles study of crystalline and amorphous AlMgB14-based materials

    International Nuclear Information System (INIS)

    Ivashchenko, V. I.; Shevchenko, V. I.; Turchi, P. E. A.; Veprek, S.; Leszczynski, Jerzy; Gorb, Leonid; Hill, Frances

    2016-01-01

    We report first-principles investigations of crystalline and amorphous boron and M1 x M2 y X z B 14−z (M1, M2 = Al, Mg, Li, Na, Y; X = Ti, C, Si) phases (so-called “BAM” materials). Phase stability is analyzed in terms of formation energy and dynamical stability. The atomic configurations as well as the electronic and phonon density states of these phases are compared. Amorphous boron consists of distorted icosahedra, icosahedron fragments, and dioctahedra, connected by an amorphous network. The presence of metal atoms in amorphous BAM materials precludes the formation of icosahedra. For all the amorphous structures considered here, the Fermi level is located in the mobility gap independent of the number of valence electrons. The intra-icosahedral vibrations are localized in the range of 800 cm −1 , whereas the inter-icosahedral vibrations appear at higher wavenumbers. The amorphization leads to an enhancement of the vibrations in the range of 1100–1250 cm −1 . The mechanical properties of BAM materials are investigated at equilibrium and under shear and tensile strain. The anisotropy of the ideal shear and tensile strengths is explained in terms of a layered structure of the B 12 units. The strength of amorphous BAM materials is lower than that of the crystalline counterparts because of the partial fragmentation of the boron icosahedra in amorphous structures. The strength enhancement found experimentally for amorphous boron-based films is very likely related to an increase in film density, and the presence of oxygen impurities. For crystalline BAM materials, the icosahedra are preserved during elongation upon tension as well as upon shear in the (010)[100] slip system.

  19. First-principles study of crystalline and amorphous AlMgB{sub 14}-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Ivashchenko, V. I.; Shevchenko, V. I., E-mail: shev@materials.kiev.ua [Institute of Problems of Material Science, National Academy of Science of Ukraine, Krzhyzhanosky Str. 3, 03142 Kyiv (Ukraine); Turchi, P. E. A. [Lawrence Livermore National Laboratory (L-352), P.O. Box 808, Livermore, California 94551 (United States); Veprek, S. [Department of Chemistry, Technical University Munich, Lichtenbergstrasse 4, D-85747 Garching (Germany); Leszczynski, Jerzy [Department of Chemistry and Biochemistry, Interdisciplinary Center for Nanotoxicity, Jackson State University, Jackson, Mississippi 39217 (United States); Gorb, Leonid [Department of Chemistry and Biochemistry, Interdisciplinary Center for Nanotoxicity, Jackson State University, Jackson, Mississippi 39217 (United States); Badger Technical Services, LLC, Vicksburg, Mississippi 39180 (United States); Hill, Frances [U.S. Army ERDC, Vicksburg, Mississippi 39180 (United States)

    2016-05-28

    We report first-principles investigations of crystalline and amorphous boron and M1{sub x}M2{sub y}X{sub z}B{sub 14−z} (M1, M2 = Al, Mg, Li, Na, Y; X = Ti, C, Si) phases (so-called “BAM” materials). Phase stability is analyzed in terms of formation energy and dynamical stability. The atomic configurations as well as the electronic and phonon density states of these phases are compared. Amorphous boron consists of distorted icosahedra, icosahedron fragments, and dioctahedra, connected by an amorphous network. The presence of metal atoms in amorphous BAM materials precludes the formation of icosahedra. For all the amorphous structures considered here, the Fermi level is located in the mobility gap independent of the number of valence electrons. The intra-icosahedral vibrations are localized in the range of 800 cm{sup −1}, whereas the inter-icosahedral vibrations appear at higher wavenumbers. The amorphization leads to an enhancement of the vibrations in the range of 1100–1250 cm{sup −1}. The mechanical properties of BAM materials are investigated at equilibrium and under shear and tensile strain. The anisotropy of the ideal shear and tensile strengths is explained in terms of a layered structure of the B{sub 12} units. The strength of amorphous BAM materials is lower than that of the crystalline counterparts because of the partial fragmentation of the boron icosahedra in amorphous structures. The strength enhancement found experimentally for amorphous boron-based films is very likely related to an increase in film density, and the presence of oxygen impurities. For crystalline BAM materials, the icosahedra are preserved during elongation upon tension as well as upon shear in the (010)[100] slip system.

  20. Rain-on-snow and ice layer formation detection using passive microwave radiometry: An arctic perspective

    Science.gov (United States)

    Langlois, A.; Royer, A.; Montpetit, B.; Johnson, C. A.; Brucker, L.; Dolant, C.; Richards, A.; Roy, A.

    2015-12-01

    With the current changes observed in the Arctic, an increase in occurrence of rain-on-snow (ROS) events has been reported in the Arctic (land) over the past few decades. Several studies have established that strong linkages between surface temperatures and passive microwaves do exist, but the contribution of snow properties under winter extreme events such as rain-on-snow events (ROS) and associated ice layer formation need to be better understood that both have a significant impact on ecosystem processes. In particular, ice layer formation is known to affect the survival of ungulates by blocking their access to food. Given the current pronounced warming in northern regions, more frequent ROS can be expected. However, one of the main challenges in the study of ROS in northern regions is the lack of meteorological information and in-situ measurements. The retrieval of ROS occurrence in the Arctic using satellite remote sensing tools thus represents the most viable approach. Here, we present here results from 1) ROS occurrence formation in the Peary caribou habitat using an empirically developed ROS algorithm by our group based on the gradient ratio, 2) ice layer formation across the same area using a semi-empirical detection approach based on the polarization ratio spanning between 1978 and 2013. A detection threshold was adjusted given the platform used (SMMR, SSM/I and AMSR-E), and initial results suggest high-occurrence years as: 1981-1982, 1992-1993; 1994-1995; 1999-2000; 2001-2002; 2002-2003; 2003-2004; 2006-2007; 2007-2008. A trend in occurrence for Banks Island and NW Victoria Island and linkages to caribou population is presented.

  1. Development of Tandem Amorphous/Microcrystalline Silicon Thin-Film Large-Area See-Through Color Solar Panels with Reflective Layer and 4-Step Laser Scribing for Building-Integrated Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    Chin-Yi Tsai

    2014-01-01

    Full Text Available In this work, tandem amorphous/microcrystalline silicon thin-film large-area see-through color solar modules were successfully designed and developed for building-integrated photovoltaic applications. Novel and key technologies of reflective layers and 4-step laser scribing were researched, developed, and introduced into the production line to produce solar panels with various colors, such as purple, dark blue, light blue, silver, golden, orange, red wine, and coffee. The highest module power is 105 W and the highest visible light transmittance is near 20%.

  2. Aging promotes todorokite formation from layered manganese oxide at near-surface conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Haojie [Chinese Academy of Sciences, Xiamen (China). Key Lab. of Urban Environment and Health; Huazhong Agricultural Univ., Ministry of Agriculture, Wuhan (China). Key Lab. of Subtropical Agricultural Resources and Environment; Liu, Fan; Feng, Xionghan; Tan, Wenfeng [Huazhong Agricultural Univ., Ministry of Agriculture, Wuhan (China). Key Lab. of Subtropical Agricultural Resources and Environment; Wang, Ming Kuang [National Taiwan Univ., Taipei (China). Dept. of Agricultural Chemistry

    2010-12-15

    Todorokite is one common manganese oxide in soils and sediments and is commonly formed from layered Na-buserite. Aging processes can alter the physicochemical properties of freshly formed Na-buserite in natural environments. However, it is not clear whether and how aging affects the formation of todorokites. In the present paper, Na-buserite with aging treatment was employed to prepare todorokite at atmospheric pressure to investigate the effects of aging treatment of Na-buserite on the formation of todorokite. Four aged Na-buserite samples, which are produced through oxidation of Mn{sup 2+} in concentrated NaOH medium by O{sub 2} with aging for 3, 6, 9, and 12 months, were employed to investigate the effects of aging processes on the transformation from Na-buserite to todorokite by Mg{sup 2+}-templating reaction at atmospheric pressure. The manganese oxides were examined using X-ray diffraction (XRD), elemental analysis, determinations of the average manganese oxidation number, infrared spectroscopy (IR), and transmission electron microscopy (TEM). The XRD, IR, and elemental analyses indicate that aging treatment can alter the substructure of the freshly synthesized Na-buserite. During the aging process, some of the Mn(III) may migrate into the interlayer region or disproportionate to form Mn{sup 2+} and Mn{sup 4+} from the layer of Na-buserite and the concomitant formation of layer vacancies. The interlayer Mn{sup 3+} or Mn{sup 2+} occupied above or below the layer vacancy sites and become corner-sharing octahedral. XRD analyses and TEM clearly show that the transformation from Na-buserite to todorokite was promoted by aging treatments. The alterations of substructure of aged Na-buserites can promote the rearrangement of manganese to construct a tunnel structure during the transformation from layered manganese oxides to tunnel-structure todorokite at atmospheric pressure. The transformation from Na-buserite to todorokite was promoted by aging treatments at

  3. Alternative hot spot formation techniques using liquid deuterium-tritium layer inertial confinement fusion capsules

    International Nuclear Information System (INIS)

    Olson, R. E.; Leeper, R. J.

    2013-01-01

    The baseline DT ice layer inertial confinement fusion (ICF) ignition capsule design requires a hot spot convergence ratio of ∼34 with a hot spot that is formed from DT mass originally residing in a very thin layer at the inner DT ice surface. In the present paper, we propose alternative ICF capsule designs in which the hot spot is formed mostly or entirely from mass originating within a spherical volume of DT vapor. Simulations of the implosion and hot spot formation in two DT liquid layer ICF capsule concepts—the DT wetted hydrocarbon (CH) foam concept and the “fast formed liquid” (FFL) concept—are described and compared to simulations of standard DT ice layer capsules. 1D simulations are used to compare the drive requirements, the optimal shock timing, the radial dependence of hot spot specific energy gain, and the hot spot convergence ratio in low vapor pressure (DT ice) and high vapor pressure (DT liquid) capsules. 2D simulations are used to compare the relative sensitivities to low-mode x-ray flux asymmetries in the DT ice and DT liquid capsules. It is found that the overall thermonuclear yields predicted for DT liquid layer capsules are less than yields predicted for DT ice layer capsules in simulations using comparable capsule size and absorbed energy. However, the wetted foam and FFL designs allow for flexibility in hot spot convergence ratio through the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density, with a potentially improved robustness to low-mode x-ray flux asymmetry

  4. Comparison of Polythionates as Precursors for the Formation of Thallium Sulfide Layers

    Directory of Open Access Journals (Sweden)

    Vitalijus JANICKIS

    2011-11-01

    Full Text Available The processes of obtaining layers of thallium, sulfides, TlxSy, by the sorption-diffusion method on polyamide 6 using solutions of lower polythionates - sodium trithionate and tetrathionate, Na2S3O6, Na2S4O6, potassium pentathionate, K2S5O6, and of dodecathionic acid, H2S12O6, as precursors of sulfur are compared. The concentration of sorbed sulfur increases with increasing the duration of treatment, the concentration and temperature of precursor solution. It rather significantly also depends on the nature - sulfurity of polythionate, i. e. on the number of sulfur atoms in the polythionate anion: effectiveness of sulfurization using solutions of dodecathionic acid is significantly higher than that of lower polythionates. Thallium sulfide layers are formed on the surface of polyamide after the treatment of sulfurized polymer with Tl(I salt solution. The concentration of thallium in the layer increases with the increase of initial sulfurization duration and in case of H2S12O6 solution used - on the temperature of this process. The results of X-ray diffraction analysis confirmed the formation of thallium sulfide layers in the surface of polyamide 6. The phase composition of layer changes depending on the conditions of initial treatment in a H2S12O6 solution. Five thallium sulfide phases, two forms of TlS, Tl2S2, Tl4S3 and Tl2S5 were identified in the composition of the layers treated for different time with a solution of dodecathionic acid at the temperature of 20 °C and 30 °C and then with Tl(I salt solution by X-ray diffraction but the maxima of TlS and Tl2S5 phases predominate in the diffractograms.http://dx.doi.org/10.5755/j01.ms.17.4.774

  5. Formation of quasicrystals and amorphous-to-quasicrystalline phase transformation kinetics in Zr65Al7.5Ni10Cu7.5Ag10 metallic glass under pressure

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Zhuang, Yanxin; Rasmussen, Helge Kildahl

    2001-01-01

    The effect of pressure on the formation of quasicrystals and the amorphous-to-quasicrystalline phase transformation kinetics in the supercooled liquid region for a Zr65Al7.5Ni10Cu7.5Ag10 metallic glass have been investigated by in situ high-pressure and high-temperature nonisothermal and isothermal...... of quasicrystals decrease, Atomic mobility is important for the formation of quasicrystals from the metallic glass whereas the relationship of the crystallization temperature vs pressure for the transition from the quasicrystalline state to intermetallic compounds may mainly depend on the thermodynamic potential...... energy barrier. To study the amorphous-to-quasicrystalline phase transformation kinetics in the metallic glass, relative volume fractions of the transferred quasicrystalline phase as a function of annealing time, obtained at 663, 673, 683, and 693 K, have been analyzed in details using 14 nucleation...

  6. Experimental Analysis of Hydraulic Fracture Growth and Acoustic Emission Response in a Layered Formation

    Science.gov (United States)

    Ning, Li; Shicheng, Zhang; Yushi, Zou; Xinfang, Ma; Shan, Wu; Yinuo, Zhang

    2018-04-01

    Microseismic/acoustic emission (AE) monitoring is an essential technology for understanding hydraulic fracture (HF) geometry and stimulated reservoir volume (SRV) during hydraulic fracturing in unconventional reservoirs. To investigate HF growth mechanisms and features of induced microseismic/AE events in a layered formation, laboratory fracturing experiments were performed on shale specimens (30 cm × 30 cm × 30 cm) with multiple bedding planes (BPs) under triaxial stresses. AE monitoring was used to reveal the spatial distribution and hypocenter mechanisms of AE events induced by rock failure. Computerized tomography scanning was used to observe the internal fracture geometry. Experimental results showed that the various HF geometries could be obviously distinguished based on injection pressure curves and AE responses. Fracture complexity was notably increased when vertically growing HFs connected with and opened more BPs. The formation of a complex fracture network was generally indicated by frequent fluctuations in injection pressure curves, intense AE activity, and three-dimensionally distributed AE events. Investigations of the hypocenter mechanisms revealed that shear failure/event dominated in shale specimens. Shear and tensile events were induced in hydraulically connected regions, and shear events also occurred around BPs that were not hydraulically connected. This led to an overestimation of HF height and SRV in layered formations based on the AE location results. The results also showed that variable injection rate and using plugging agent were conducive in promoting HF to penetrate through the weak and high-permeability BPs, thereby increasing the fracture height.

  7. Formation of high aspect ratio polyamide-6 nanofibers via electrically induced double layer during electrospinning

    International Nuclear Information System (INIS)

    Nirmala, R.; Nam, Ki Taek; Park, Soo-Jin; Shin, Yu-Shik; Navamathavan, R.; Kim, Hak Yong

    2010-01-01

    In the present study, the formation of high aspect ratio nanofibers in polyamide-6 was investigated as a function of applied voltage ranging from 15 to 25 kV using electrospinning technique. All other experimental parameters were kept constant. The electrospun polyamide-6 nanofibers were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF). FE-SEM images of polyamide-6 nanofibers showed that the diameter of the electrospun fiber was decreased with increasing applied voltage. At the critical applied voltage, the polymer solution was completely ionized to form the dense high aspect ratio nanofibers in between the main nanofibers. The diameter of the polyamide-6 nanofibers was observed to be in the range of 75-110 nm, whereas the high aspect ratio structures consisted of regularly distributed very fine nanofibers with diameters of about 9-28 nm. Trends in fiber diameter and diameter distribution were discussed for the high aspect ratio nanofibers. TEM results revealed that the formation of double layers in polyamide-6 nanofibers and then split-up into ultrafine fibers. The electrically induced double layer in combination with the polyelectrolytic nature of solution is proposed as the suitable mechanisms for the formation of high aspect ratio nanofibers in polyamide-6.

  8. Formation of hydrated layers in PMMA thin films in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Akers, Peter W. [School of Chemical Sciences, University of Auckland, Auckland (New Zealand); Nelson, Andrew R.J. [The Bragg Institute, Australian Nuclear Science and Technology Organisation, Menai, NSW (Australia); Williams, David E. [School of Chemical Sciences, University of Auckland, Auckland (New Zealand); MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington (New Zealand); McGillivray, Duncan J., E-mail: d.mcgillivray@auckland.ac.nz [School of Chemical Sciences, University of Auckland, Auckland (New Zealand); MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington (New Zealand)

    2015-10-30

    Graphical abstract: - Highlights: • Homogeneous thin PMMA films prepared on Si/SiOx substrates and measured in air and water. • Reproducible formation of highly hydrated layer containing 50% water at the PMMA/SiOx interface. • When heated the films swell at 50 °C without loss of material. • Upon re-cooling to 25 °C the surface roughens and material is lost. - Abstract: Neutron reflectometry (NR) measurements have been made on thin (70–150 Å) poly(methylmethacrylate) (PMMA) films on Si/SiOx substrates in aqueous conditions, and compared with parameters measured using ellipsometry and X-Ray reflectometry (XRR) on dry films. All techniques show that the thin films prepared using spin-coating techniques were uniform and had low roughness at both the silicon and subphase interfaces, and similar surface energetics to thicker PMMA films. In aqueous solution, NR measurements at 25 °C showed that PMMA forms a partially hydrated layer at the SiOx interface 10 Å under the film, while the bulk film remains intact and contains around 4% water. Both the PMMA film layer and the sublayer showed minimal swelling over a period of 24 h. At 50 °C, PMMA films in aqueous solution roughen and swell, without loss of PMMA material at the surface. After cooling back to 25 °C, swelling and roughening increases further, with loss of material from the PMMA layer.

  9. Formation of mixed organic layers by stepwise electrochemical reduction of diazonium compounds.

    Science.gov (United States)

    Santos, Luis; Ghilane, Jalal; Lacroix, Jean Christophe

    2012-03-28

    This work describes the formation of a mixed organic layer covalently attached to a carbon electrode. The strategy adopted is based on two successive electrochemical reductions of diazonium salts. First, bithiophene phenyl (BTB) diazonium salt is reduced using host/guest complexation in a water/cyclodextrin (β-CD) solution. The resulting layer consists of grafted BTB oligomers and cyclodextrin that can be removed from the surface. The electrochemical response of several outer-sphere redox probes on such BTB/CD electrodes is close to that of a diode, thanks to the easily p-dopable oligo(BTB) moieties. When CD is removed from the surface, pinholes are created and this diode like behavior is lost. Following this, nitrophenyl (NP) diazonium is reduced to graft a second component. Electrochemical study shows that upon grafting NP insulating moieties, the diode-like behavior of the layer is restored which demonstrates that NP is grafted predominately in the empty spaces generated by β-CD desorption. As a result, a mixed BTB/NP organic layer covalently attached to a carbon electrode is obtained using a stepwise electrochemical reduction of two diazonium compounds.

  10. Selenopentathionic and Telluropentathionic Acids as Precursors for Formation of Semiconducting Layers on the Surface of Polyamide

    Directory of Open Access Journals (Sweden)

    Skirma Zalenkiene

    2007-01-01

    Full Text Available The layers of copper chalcogenides, which were formed on the surface of semihydrophilic polymer—polyamide 6 (PA using monoselenopentathionic H2SeS4O6 and monotelluropentathionic H2TeS4O6 acids as precursors of chalcogens, were characterized. Fourier transform infrared (FT-IR and UV spectroscopy were used to monitor the effect of chalcogens on the changes in structure of PA corresponding to the concentration of the precursor's solution and an exposure time. The IR spectra of modified PA were completely different from that of the initial PA. Further interaction of chalcogenized PA with copper (II/I salt solution leads to the formation of CuxS, CuxSe, CuxTe, and mixed –CuxS–CuySe and CuxS–CuyTe layers which have different electric transport properties. The surface properties of PA after treatment are studied using AFM and XRD. The electrical resistances of layers with various composition formed over a wide concentration range 0.01–0.5 mol⋅dm−3 of precursor's solution were measured. Variation in the conductivity of layers of Cu–Se–S and Cu–Te–S on the surface of PA shows an evident increase with the increasing of the mass fraction of selenium or tellurium.

  11. Modelling of fast jet formation under explosion collision of two-layer alumina/copper tubes

    Directory of Open Access Journals (Sweden)

    I Balagansky

    2017-09-01

    Full Text Available Under explosion collapse of two-layer tubes with an outer layer of high-modulus ceramics and an inner layer of copper, formation of a fast and dense copper jet is plausible. We have performed a numerical simulation of the explosion collapse of a two-layer alumina/copper tube using ANSYS AUTODYN software. The simulation was performed in a 2D-axis symmetry posting on an Eulerian mesh of 3900x1200 cells. The simulation results indicate two separate stages of the tube collapse process: the nonstationary and the stationary stage. At the initial stage, a non-stationary fragmented jet is moving with the velocity of leading elements up to 30 km/s. The collapse velocity of the tube to the symmetry axis is about 2 km/s, and the pressure in the contact zone exceeds 700 GPa. During the stationary stage, a dense jet is forming with the velocity of 20 km/s. Temperature of the dense jet is about 2000 K, jet failure occurs when the value of effective plastic deformation reaches 30.

  12. Formation of hydrated layers in PMMA thin films in aqueous solution

    International Nuclear Information System (INIS)

    Akers, Peter W.; Nelson, Andrew R.J.; Williams, David E.; McGillivray, Duncan J.

    2015-01-01

    Graphical abstract: - Highlights: • Homogeneous thin PMMA films prepared on Si/SiOx substrates and measured in air and water. • Reproducible formation of highly hydrated layer containing 50% water at the PMMA/SiOx interface. • When heated the films swell at 50 °C without loss of material. • Upon re-cooling to 25 °C the surface roughens and material is lost. - Abstract: Neutron reflectometry (NR) measurements have been made on thin (70–150 Å) poly(methylmethacrylate) (PMMA) films on Si/SiOx substrates in aqueous conditions, and compared with parameters measured using ellipsometry and X-Ray reflectometry (XRR) on dry films. All techniques show that the thin films prepared using spin-coating techniques were uniform and had low roughness at both the silicon and subphase interfaces, and similar surface energetics to thicker PMMA films. In aqueous solution, NR measurements at 25 °C showed that PMMA forms a partially hydrated layer at the SiOx interface 10 Å under the film, while the bulk film remains intact and contains around 4% water. Both the PMMA film layer and the sublayer showed minimal swelling over a period of 24 h. At 50 °C, PMMA films in aqueous solution roughen and swell, without loss of PMMA material at the surface. After cooling back to 25 °C, swelling and roughening increases further, with loss of material from the PMMA layer.

  13. Irreversible fouling of membrane bioreactors due to formation of a non-biofilm gel layer

    DEFF Research Database (Denmark)

    Poorasgari, Eskandar; Larsen, Poul; Zheng, Xing

    2014-01-01

    Extra-cellular polymeric substances (EPS), known to contribute to fouling in membrane bio-reactors (MBRs), are generally divided into bound and free EPS. The free EPS are able to form a gel layer on the membrane active surface. The mechanisms involved in formation of such layer and its effects...... on performance of the MBR membranes were studied. The free EPS, extracted by centrifugation and microfiltration, contained a significant amount of humic-like substances. Under static contact to the membrane, adsorption of humic-like substances to the membrane occurred and could be explained by conventional...... adsorption kinetics. Due to static adsorption, surface roughness of the membrane declined significantly, indicating that adsorbed matters to the membranefilled the cavities of the membrane surface. Filtration of the free EPS caused 50% waterflux decline. The fouling resistance linearly increased...

  14. Surface crack formation on rails at grinding induced martensite white etching layers

    DEFF Research Database (Denmark)

    Rasmussen, Carsten Jørn; Fæster, Søren; Dhar, Somrita

    2017-01-01

    The connection between profile grinding of rails, martensite surface layers and crack initiation has been investigated using visual inspection, optical microscopy and 3D X-ray computerized tomography. Newly grinded rails were extracted and found to be covered by a continuous surface layer...... of martensite with varying thickness formed by the grinding process. Worn R350HT and R200 rails were extracted from the Danish rail network as they had transverse bands resembling grinding marks on the running surface. The transverse bands were shown to consist of martensite which had extensive crack formation...... at the martensite/pearlite interface. The cracks in R350HT propagated down into the rail while those in the soft R200 returned to the surface causing only very small shallow spallation. The transverse bands had the same shape, size, orientation, location and periodicity which would be expected from grinding marks...

  15. BOREAS Forest Cover Data Layers of the NSA in Raster Format

    Science.gov (United States)

    Hall, Forrest G. (Editor); Knapp, David; Tuinhoff, Manning

    2000-01-01

    This data set was processed by BORIS staff from the original vector data of species, crown closure, cutting class, and site classification/subtype into raster files. The original polygon data were received from Linnet Graphics, the distributor of data for MNR. In the case of the species layer, the percentages of species composition were removed. This reduced the amount of information contained in the species layer of the gridded product, but it was necessary in order to make the gridded product easier to use. The original maps were produced from 1:15,840-scale aerial photography collected in 1988 over an area of the BOREAS NSA MSA. The data are stored in binary, image format files and they are available from Oak Ridge National Laboratory. The data files are available on a CD-ROM (see document number 20010000884).

  16. Irradiation induced crystalline to amorphous transition

    International Nuclear Information System (INIS)

    Bourgoin, J.

    1980-01-01

    Irradiation of a crystalline solid with energetic heavy particles results in cascades of defects which, with increasing dose, overlap and form a continuous disordered layer. In semiconductors the physical properties of such disordered layers are found to be similar to those of amorphous layers produced by evaporation. It is shown in the case of silicon, that the transition from a disordered crystalline (X) layer to an amorphous (α) layer occurs when the Gibbs energy of the X phase and of the defects it contains becomes larger than the Gibbs energy of the α phase. (author)

  17. Deposits of the Peruvian Pisco Formation compared to layered deposits on Mars

    Science.gov (United States)

    Sowe, M.; Bishop, J. L.; Gross, C.; Walter, S.

    2013-09-01

    Deposits of the Peruvian Pisco Formation are morphologically similar to the mounds of Juventae Chasma at the equatorial region on Mars (Fig. 1). By analyzing these deposits, we hope to gain information about the environmental conditions that prevailed during sediment deposition and erosion, hence conditions that might be applicable to the Martian layered and hydrated deposits. Mariner 9 data of the Martian mid-latitudes have already shown evidence of the wind-sculptured landforms that display the powerful prevailing eolian regime [1]. In addition, [2] reported on similarities between Martian erosional landforms and those of the rainless coastal desert of central Peru from the Paracas peninsula to the Rio Ica. As indicated by similar erosional patterns, hyper-arid conditions and unidirectional winds must have dominated at least after deposition of the sediments, which are intermixed volcaniclastic materials and evaporate minerals at both locations. Likewise, variations in composition are displayed by alternating layers of different competence. The Pisco formation bears yardangs on siltstones, sandstones and clays with volcaniclastic admixtures [3] whereas the presence of sulphate minerals and the omnipresent mafic mineralogy has been reported for the layered mounds of Juventae Chasma equally [4]. Likewise, a volcanic airfall deposition and lacustrine formation have been proposed for the sulphate-rich deposits of Juventae Chasma [5,6]. In order to find out about potential spectral similarities, we performed a detailed spectral analysis of the surface by using LANDSAT and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) VNIR/ SWIR data (visible to near-infrared and shortwave infrared region).

  18. Kinetics of the electric double layer formation modelled by the finite difference method

    Science.gov (United States)

    Valent, Ivan

    2017-11-01

    Dynamics of the elctric double layer formation in 100 mM NaCl solution for sudden potentail steps of 10 and 20 mV was simulated using the Poisson-Nernst-Planck theory and VLUGR2 solver for partial differential equations. The used approach was verified by comparing the obtained steady-state solution with the available exact solution. The simulations allowed for detailed analysis of the relaxation processes of the individual ions and the electric potential. Some computational aspects of the problem were discussed.

  19. Radiation amorphization of materials

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Chernyaeva, T.P.

    1993-01-01

    The results of experimental and theoretical research on radiation amorphization are presented in this analytical review. Mechanism and driving forces of radiation amorphization are described, kinetic and thermodynamic conditions of amorphization are formulated. Compositional criteria of radiation amorphization are presented, that allow to predict irradiation behaviour of materials, their tendency to radiation amorphization. Mechanism of transition from crystalline state to amorphous state are considered depending on dose, temperature, structure of primary radiation damage and flux level. (author). 134 refs., 4 tab., 25 fig

  20. On formation of silicon nanocrystals under annealing SiO2 layers implanted with Si ions

    International Nuclear Information System (INIS)

    Kachurin, G.A.; Yanovskaya, S.G.; Volodin, V.A.; Kesler, V.G.; Lejer, A.F.; Ruault, M.-O.

    2002-01-01

    Raman scattering, X-ray photoelectron spectroscopy, and photoluminescence have been used to study the formation of silicon nanocrystals in SiO 2 implanted with Si ions. Si clusters have been formed at once in the postimplanted layers, providing the excessive Si concentration more ∼ 3 at. %. Si segregation with Si-Si 4 bonds formation is enhanced as following annealing temperature increase, however, the Raman scattering by Si clusters diminishes. The effect is explained by a transformation of the chain-like Si clusters into compact phase nondimensional structures. Segregation of Si nanoprecipitates had ended about 1000 deg C, but the strong photoluminescence typical for Si nanocrystals manifested itself only after 1100 deg C [ru

  1. Sheared flow layer formation in tokamak plasmas with reversed magnetic shear

    International Nuclear Information System (INIS)

    Dong, J.Q.; Long, Y.X.; Mou, Z.Z.; Zhang, J.H.; Li, J.Q.

    2005-01-01

    Sheared flow layer (SFL) formation due to magnetic energy release through tearing-reconnections in tokamak plasmas is investigated. The characteristics of the SFLs created in the development of double tearing mode, mediated by electron viscosity in configurations with non-monotonic safety factor q profiles and, therefore, two rational flux surfaces of same q value, are analyzed in detail as an example. Quasi-linear simulations demonstrate that the sheared flows induced by the mode have desirable characteristics (lying at the boundaries of the magnetic islands), and sufficient levels required for internal transport barrier (ITB) formation. A possible correlation of the SFLs with experimental observations, that double transport barrier structures are preferentially formed in proximity of the two rational surfaces, is also proffered. (author)

  2. Colors and the evolution of amorphous galaxies

    International Nuclear Information System (INIS)

    Gallagher, J.S. III; Hunter, D.A.

    1987-01-01

    UBVRI and H-alpha photometric observations are presented for 16 amorphous galaxies and a comparison sample of Magellanic irregular (Im) and Sc spiral galaxies. These data are analyzed in terms of star-formation rates and histories in amorphous galaxies. Amorphous galaxies have mean global colors and star-formation rates per unit area that are similar to those in giant Im systems, despite differences in spatial distributions of star-forming centers in these two galactic structural classes. Amorphous galaxies differ from giant Im systems in having somewhat wider scatter in relationships between B - V and U - B colors, and between U - B and L(H-alpha)/L(B). This scatter is interpreted as resulting from rapid variations in star-formation rates during the recent past, which could be a natural consequence of the concentration of star-forming activity into centrally located, supergiant young stellar complexes in many amorphous galaxies. While the unusual spatial distribution and intensity of star formation in some amorphous galaxies is due to interactions with other galaxies, several amorphous galaxies are relatively isolated and thus the processes must be internal. The ultimate evolutionary fate of rapidly evolving amorphous galaxies remains unknown. 77 references

  3. Formation of the outer layer of the Dictyostelium spore coat depends on the inner-layer protein SP85/PsB.

    Science.gov (United States)

    Metcalf, Talibah; Kelley, Karen; Erdos, Gregory W; Kaplan, Lee; West, Christopher M

    2003-02-01

    The Dictyostelium spore is surrounded by a 220 microm thick trilaminar coat that consists of inner and outer electron-dense layers surrounding a central region of cellulose microfibrils. In previous studies, a mutant strain (TL56) lacking three proteins associated with the outer layer exhibited increased permeability to macromolecular tracers, suggesting that this layer contributes to the coat permeability barrier. Electron microscopy now shows that the outer layer is incomplete in the coats of this mutant and consists of a residual regular array of punctate electron densities. The outer layer is also incomplete in a mutant lacking a cellulose-binding protein associated with the inner layer, and these coats are deficient in an outer-layer protein and another coat protein. To examine the mechanism by which this inner-layer protein, SP85, contributes to outer-layer formation, various domain fragments were overexpressed in forming spores. Most of these exert dominant negative effects similar to the deletion of outer-layer proteins, but one construct, consisting of a fusion of the N-terminal and Cys-rich C1 domain, induces a dense mat of novel filaments at the surface of the outer layer. Biochemical studies show that the C1 domain binds cellulose, and a combination of site-directed mutations that inhibits its cellulose-binding activity suppresses outer-layer filament induction. The results suggest that, in addition to a previously described early role in regulating cellulose synthesis, SP85 subsequently contributes a cross-bridging function between cellulose and other coat proteins to organize previously unrecognized structural elements in the outer layer of the coat.

  4. Amyloid fibril formation in vitro from halophilic metal binding protein: Its high solubility and reversibility minimized formation of amorphous protein aggregations

    Science.gov (United States)

    Tokunaga, Yuhei; Matsumoto, Mitsuharu; Tokunaga, Masao; Arakawa, Tsutomu; Sugimoto, Yasushi

    2013-01-01

    Halophilic proteins are characterized by high net negative charges and relatively small fraction of hydrophobic amino acids, rendering them aggregation resistant. These properties are also shared by histidine-rich metal binding protein (HP) from moderate halophile, Chromohalobacter salexigens, used in this study. Here, we examined how halophilic proteins form amyloid fibrils in vitro. His-tagged HP, incubated at pH 2.0 and 58°C, readily formed amyloid fibrils, as observed by thioflavin fluorescence, CD spectra, and transmission or atomic force microscopies. Under these low-pH harsh conditions, however, His-HP was promptly hydrolyzed to smaller peptides most likely responsible for rapid formation of amyloid fibril. Three major acid-hydrolyzed peptides were isolated from fibrils and turned out to readily form fibrils. The synthetic peptides predicted to form fibrils in these peptide sequences by Waltz software also formed fibrils. Amyloid fibril was also readily formed from full-length His-HP when incubated with 10–20% 2,2,2-trifluoroethanol at pH 7.8 and 25°C without peptide bond cleavage. PMID:24038709

  5. Hydraulic Fracture Growth in a Layered Formation based on Fracturing Experiments and Discrete Element Modeling

    Science.gov (United States)

    Yushi, Zou; Xinfang, Ma; Tong, Zhou; Ning, Li; Ming, Chen; Sihai, Li; Yinuo, Zhang; Han, Li

    2017-09-01

    Hydraulic fracture (HF) height containment tends to occur in layered formations, and it significantly influences the entire HF geometry or the stimulated reservoir volume. This study aims to explore the influence of preexisting bedding planes (BPs) on the HF height growth in layered formations. Laboratory fracturing experiments were performed to confirm the occurrence of HF height containment in natural shale that contains multiple weak and high-permeability BPs under triaxial stresses. Numerical simulations were then conducted to further illustrate the manner in which vertical stress, BP permeability, BP density(or spacing), pump rate, and fluid viscosity control HF height growth using a 3D discrete element method-based fracturing model. In this model, the rock matrix was considered transversely isotropic and multiple BPs can be explicitly represented. Experimental and numerical results show that the vertically growing HF tends to be limited by multi-high-permeability BPs, even under higher vertical stress. When the vertically growing HF intersects with the multi-high-permeability BPs, the injection pressure will be sharply reduced. If a low pumping rate or a low-viscosity fluid is used, the excess fracturing fluid leak-off into the BPs obviously decreases the rate of pressure build up, which will then limit the growth of HF. Otherwise, a higher pumping rate and/or a higher viscosity will reduce the leak-off time and fluid volume, but increase the injection pressure to drive the HF to grow and to penetrate through the BPs.

  6. Compact Layers of Hybrid Halide Perovskites Fabricated via the Aerosol Deposition Process-Uncoupling Material Synthesis and Layer Formation.

    Science.gov (United States)

    Panzer, Fabian; Hanft, Dominik; Gujar, Tanaji P; Kahle, Frank-Julian; Thelakkat, Mukundan; Köhler, Anna; Moos, Ralf

    2016-04-08

    We present the successful fabrication of CH₃NH₃PbI₃ perovskite layers by the aerosol deposition method (ADM). The layers show high structural purity and compactness, thus making them suitable for application in perovskite-based optoelectronic devices. By using the aerosol deposition method we are able to decouple material synthesis from layer processing. Our results therefore allow for enhanced and easy control over the fabrication of perovskite-based devices, further paving the way for their commercialization.

  7. Amorphization of ceramics by ion beams

    International Nuclear Information System (INIS)

    McHargue, C.J.; Farlow, G.C.; White, C.W.; Williams, J.M.; Appleton, B.R.; Naramoto, H.

    1984-01-01

    The influence of the implantation parameters fluence, substrate temperature, and chemical species on the formation of amorphous phases in Al 2 O 3 and α-SiC was studied. At 300 0 K, fluences in excess of 10 17 ions.cm -2 were generally required to amorphize Al 2 O 3 ; however, implantation of zirconium formed the amorphous phase at a fluence of 4 x 10 16 Zr.cm -2 . At 77 0 K, the threshold fluence was lowered to about 2 x 10 15 Cr.cm -2 . Single crystals of α-SiC were amorphized at 300 0 K by a fluence of 2 x 10 14 Cr.cm -2 or 1 x 10 15 N.cm -2 . Implantation at 1023 0 K did not produce the amorphous phase in SiC. The micro-indentation hardness of the amorphous material was about 60% of that of the crystalline counterpart

  8. Hydrogen in disordered and amorphous solids

    International Nuclear Information System (INIS)

    Bambakidis, G; Bowman, R.C.

    1986-01-01

    This book presents information on the following topoics: elements of the theory of amorphous semiconductors; electronic structure of alpha-SiH; fluctuation induced gap states in amorphous hydrogenated silicon; hydrogen on semiconductor surfaces; the influence of hydrogen on the defects and instabilities in hydrogenated amorphous silicon; deuteron magnetic resonance in some amorphous semiconductors; formation of amorphous metals by solid state reactions of hydrogen with an intermetallic compound; NMR studies of the hydrides of disordered and amorphous alloys; neutron vibrational spectroscopy of disordered metal-hydrogen system; dynamical disorder of hydrogen in LaNi /SUB 5-y/ M /SUB y/ hydrides studied by quasi-elastic neutron scattering; recent studies of intermetallic hydrides; tritium in Pd and Pd /SUB 0.80/ Sg /SUB 0.20/ ; and determination of hydrogen concentration in thin films of absorbing materials

  9. Localization of excitons by molecular layer formation in a polymer film

    International Nuclear Information System (INIS)

    Chattopadhyay, S.; Datta, A.

    2005-01-01

    Spin coated films of atactic polystyrene of two different molecular weights have been studied with uv spectroscopy and x-ray reflectivity, the film thickness (d) varying from ∼2R g to ∼12R g where R g is the unperturbed radius of gyration of the polymer. uv extinction due to the pure electronic singlet 1 A 1g → 1 E 1u is seen to increase with d -1 for 4R g ≤d≤12R g (region 1). This suggests excitonic interaction along d. The variation of total exciton energy (E) of the A 1g →E 1u singlet with d in region 1 can be well explained by formation of linear J-aggregates of polystyrene molecules, in a lattice with spacing 'a' (in A) R g g , along d. Atomic force microscopic images of the films show the presence of 'spheres' distributed randomly on film surfaces with in-plane dimensions matching a. From the variation of E with d -2 the effective mass (m eff ) of the exciton is also determined. For R g g (region 2) the extinction and E become essentially independent of d, indicating exciton localization along d, and the value of m eff becomes very large. This enhancement in the effective mass maybe used to quantify localization. The variations of electron density (ρ) with d, i.e., the electron density profiles (EDPs) of the films extracted from x-ray reflectivity studies, indicate formation of layers with period 'b' (in A), R g g parallel to substrate surface in region 2 and a constant ρ film in region 1. On raising the temperature of a typical film to 60 deg. C, the layering was seen to almost vanish, as obtained from both the EDP and the Patterson function of the reflectivity profile. The close correspondence between 'a' and 'b' indicates that the molecules forming the J-aggregates form the layers, too. The average difference in ρ between successive extrema in the EDPs in region 2, denoted by δ, can be used as the order parameter for the layering transition. For PS-5, δ>0 at d≅4R g , where the exciton is still delocalized. Layering reduces the Hamaker

  10. Oxygen-implanted induced formation of oxide layer enhances blood compatibility on titanium for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Wei-Chiang [School of Oral Hygiene, Taipei Medical University, Taipei 110, Taiwan (China); Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan (China); Chang, Fang-Mo [School of Dentistry, Taipei Medical University, Taipei 110, Taiwan (China); Yang, Tzu-Sen [Master Program in Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan (China); Ou, Keng-Liang [School of Dentistry, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China); Department of Dentistry, Taipei Medical University-Shuang-Ho Hospital, Taipei 235, Taiwan (China); Lin, Che-Tong [School of Dentistry, Taipei Medical University, Taipei 110, Taiwan (China); Peng, Pei-Wen, E-mail: apon@tmu.edu.tw [School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan (China)

    2016-11-01

    Titanium dioxide (TiO{sub 2}) layers were prepared on a Ti substrate by using oxygen plasma immersion ion implantation (oxygen PIII). The surface chemical states, structure, and morphology of the layers were studied using X-ray photoelectron spectroscopy, X-ray diffraction, Raman microscopy, atomic force microscopy and scanning electron microscope. The mechanical properties, such as the Young's modulus and hardness, of the layers were investigated using nanoindentation testing. The Ti{sup 4+} chemical state was determined to be present on oxygen-PIII-treated surfaces, which consisted of nanocrystalline TiO{sub 2} with a rutile structure. Compared with Ti substrates, the oxygen-PIII-treated surfaces exhibited decreased Young's moduli and hardness. Parameters indicating the blood compatibility of the oxygen-PIII-treated surfaces, including the clotting time and platelet adhesion and activation, were studied in vitro. Clotting time assays indicated that the clotting time of oxygen-PIII-treated surfaces was longer than that of the Ti substrate, which was associated with decreased fibrinogen adsorption. In conclusion, the surface characteristics and the blood compatibility of Ti implants can be modified and improved using oxygen PIII. - Highlights: • The Ti{sup 4+} chemical state was determined to be present on oxygen-PIII-treated surfaces. • The nanocrystalline TiO{sub 2} with a rutile structure was formed on titanium surfaces. • A nanoporous TiO{sub 2} layer in the rutile phase prepared using oxygen PIII treatment can be used to prolong blood clot formation.

  11. Interfacial micromorphological differences in hybrid layer formation between water- and solvent-based dentin bonding systems.

    Science.gov (United States)

    Gregoire, Geneviève L; Akon, Bernadette A; Millas, Arlette

    2002-06-01

    Many dentin bonding systems of different compositions, and in particular containing different solvents, have been introduced to the market. Their effect on the quality of the interface requires clarification by means of comparative trials. This study investigated micromorphological differences in hybrid layer formation with a variety of commercially available water- or solvent-based dentin bonding products and their recommended compomers. Five bonding systems were used on groups of 10 teeth each as follows: group I, acetone-based system used with 36% phosphoric acid; group II, a different acetone-based system containing nano-sized particles for filler loading and used with a non-rinsing conditioner containing maleic acid; group III, the acetone-based system of group II used with 36% phosphoric acid (the only difference in the treatment for groups II and III was the acid etching system); group IV, a mixed-solvent-based system (water/ethanol) used with 37% phosphoric acid; and group V, a water-based system used with 37% phosphoric acid. Each bonding system was covered with the recommended compomer. Class I occlusal preparations were made in extracted teeth and restored with one of the above systems. Five specimens of each group were studied with optical microscopy after staining. Scanning electron microscopy was used to examine the interface of the bonding system/dentin of the other 5 teeth in each group. The optical microscopy measurements were made with a 10 x 10 reticle. A micron mark with scale was used for the scanning electron microscope. All measurements were made in microm. The following criteria were used to define a good interface: absence of voids between the different parts of the interface, uniformity of the hybrid layer, good opening of the tubuli orifices, and tag adherence to the tubuli walls. Morphological differences were found at the interface depending on dentin treatment and adhesive composition. The acetone-containing systems were associated

  12. New positive feedback mechanism between boundary layer meteorology and secondary aerosol formation during severe haze events.

    Science.gov (United States)

    Liu, Quan; Jia, Xingcan; Quan, Jiannong; Li, Jiayun; Li, Xia; Wu, Yongxue; Chen, Dan; Wang, Zifa; Liu, Yangang

    2018-04-17

    Severe haze events during which particulate matter (PM) increases quickly from tens to hundreds of microgram per cubic meter in 1-2 days frequently occur in China. Although it has been known that PM is influenced by complex interplays among emissions, meteorology, and physical and chemical processes, specific mechanisms remain elusive. Here, a new positive feedback mechanism between planetary boundary layer (PBL), relative humidity (RH), and secondary PM (SPM) formation is proposed based on a comprehensive field experiment and model simulation. The decreased PBL associated with increased PM increases RH by weakening the vertical transport of water vapor; the increased RH in turn enhances the SPM formation through heterogeneous aqueous reactions, which further enhances PM, weakens solar radiation, and decreases PBL height. This positive feedback, together with the PM-Radiation-PBL feedback, constitutes a key mechanism that links PM, radiation, PBL properties (e.g. PBL height and RH), and SPM formation, This mechanism is self-amplifying, leading to faster PM production, accumulation, and more severe haze pollution.

  13. Tool Wear and Formation Mechanism of White Layer When Hard Milling H13 Steel under Different Cooling/Lubrication Conditions

    Directory of Open Access Journals (Sweden)

    Song Zhang

    2014-04-01

    Full Text Available The present work aims at revealing the formation mechanism of white layer and understanding the effects of tool wear and cooling/lubrication condition on white layer when hard milling H13 steel with coated cutting tools. Hard milling experiments were carried out, and tool wear and its effect on formation of white layer were investigated. Compared to dry cutting condition, CMQL (cryogenic minimum quantity lubrication technique can obviously reduce tool wear and prolong tool life owing to its good cooling and lubrication properties. The optical images of the subsurface materials indicate that the formation of white layer is related to tool wear; moreover, the thickness of white layer increases with the increase of tool wear. SEM (scanning electron microscope images and XRD (X-ray diffraction analysis confirm that the formation of white layer is mainly due to the mechanical effect rather than the thermal effect. It also proves that white layer is partly decreased or can be totally eliminated by optimizing process parameters under CMQL cutting condition. CMQL technique has the potential to be used for achieving prolonged tool life and enhanced surface integrity.

  14. Ion-beam induced structure modifications in amorphous germanium

    International Nuclear Information System (INIS)

    Steinbach, Tobias

    2012-01-01

    Object of the present thesis was the systematic study of ion-beam induced structure modifications in amorphous germanium (a-Ge) layers due to low- (LEI) and high-energetic (SHI) ion irradiation. The LEI irradiation of crystalline Ge (c-Ge) effects because the dominating nuclear scattering of the ions on the solid-state atoms the formation of a homogeneous a-Ge Layer. Directly on the surface for fluences of two orders of magnitude above the amorphization fluence the formation of stable cavities independently on the irradiation conditions was observed. For the first time for the ion-beam induced cavity formation respectively for the steady expansion of the porous layer forming with growing fluence a linear dependence on the energy ε n deposed in nuclear processes was detected. Furthermore the formation of buried cavities was observed, which shows a dependence on the type of ions. While in the c-Ge samples in the range of the high electronic energy deposition no radiation defects, cavities, or plastic deformations were observed, the high electronic energy transfer in the 3.1 μm thick pre-amorphized a-Ge surface layers leads to the formation of randomly distributed cavities. Basing on the linear connection between cavity-induced vertical volume expansion and the fluence determined for different energy transfers for the first time a material-specific threshold value of ε e HRF =(10.5±1.0) kev nm -1 was determined, above which the ion-beam induced cavity formation in a-Ge sets on. The anisotropic plastic deformation of th a-Ge layer superposed at inclined SHI irradiation on the cavity formation was very well described by an equation derived from the viscoelastic Maxwell model, but modified under regardment of the experimental results. The positive deformation yields determined thereby exhibit above a threshold value for the ion-beam induced plastic deformation ε e S a =(12±2) keV nm -1 for the first time extracted for a Ge the characteristic linear behaviour of the

  15. Limiting of photo induced changes in amorphous chalcogenide/alumino-silicate nanomultilayers

    International Nuclear Information System (INIS)

    Charnovych, S.; Nemec, P.; Nazabal, V.; Csik, A.; Allix, M.; Matzen, G.; Kokenyesi, S.

    2011-01-01

    Highlights: → Amorphous chalcogenides were investigated in this work. → Photo-induced effects were investigated in the created thin films. → Limiting of photo induced changes in amorphous chalcogenide/alumino-silicate nanomultilayers have been studied. - Abstract: Photo induced changes in amorphous As 20 Se 80 /alumino-silicate nanomultilayers (NML) produced by pulsed laser deposition (PLD) method have been studied in this work. The aim was to investigate the photo induced optical and surface relief changes due to the band gap illumination under the size- and hard cover limited conditions. It was observed that the hard cover layer on the surface of the uniform film or alumino-silicate sub-layers in the NML structure influences the photo darkening and restricts surface relief formations in As 20 Se 80 film or in the related NML compared with this effect in a pure chalcogenide layer. The influence of hard layers is supposed to be connected with limiting the free volume formation at the initial stage of the transformation process, which in turn limits the atomic movement and so the surface relief formation.

  16. Amorphous metal composites

    International Nuclear Information System (INIS)

    Byrne, M.A.; Lupinski, J.H.

    1984-01-01

    This patent discloses an improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite

  17. Compact Layers of Hybrid Halide Perovskites Fabricated via the Aerosol Deposition Process—Uncoupling Material Synthesis and Layer Formation

    Directory of Open Access Journals (Sweden)

    Fabian Panzer

    2016-04-01

    Full Text Available We present the successful fabrication of CH3NH3PbI3 perovskite layers by the aerosol deposition method (ADM. The layers show high structural purity and compactness, thus making them suitable for application in perovskite-based optoelectronic devices. By using the aerosol deposition method we are able to decouple material synthesis from layer processing. Our results therefore allow for enhanced and easy control over the fabrication of perovskite-based devices, further paving the way for their commercialization.

  18. Achievement report for fiscal 1981 on Sunshine Program research and development of photovoltaic power systems. Research and development of amorphous solar cells (Research and development of high-quality amorphous silicon film formation technologies using plasma separation); 1981 nendo taiyoko hatsuden system no kenkyu kaihatsu seika hokokusho. Amorphous taiyo denchi no kenkyu kaihatsu (plasma bunri ni yoru kohinshitsu amorphous silicon maku seimaku gijutsu no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    When discharge plasma is applied for film formation, ions affect the quality of the resultant film. In the case of plasma CVD (chemical vapor deposition) method, there exists correspondence between the radicals ratio SiH/H and solar cell conversion efficiency, and plasma measurement may be used for the control of film formation conditions. The state of distribution of radicals in discharge plasma is dependent on the type of radicals, and there is an optimum substrate position. Photoelectric characteristics are improved when a grid electrode is used for plasma separation. The surface of a transparent conductive film (ITO: indium-tin oxide) to be the substrate for film formation needs to be flat, and part of its Si is oxidized into SiO{sub 2} by generated oxygen. An ITO film coated by chemically stable SnO{sub 2} is useful. When the ion plating method is employed, film formation conditions are first selected, and then, in a heat treatment to follow, resistance films of various surface conditions are obtained. Carbon-added a-Si film formation conditions and the relationship between film qualities and solar cell characteristics are elucidated. In a solar cell of the p-i-n structure with an a-Si:C:H film acting as the p-layer, a conversion efficiency of 7.6% is achieved. (NEDO)

  19. Formation of double layers: shocklike solutions of an mKdV-equation

    International Nuclear Information System (INIS)

    Raadu, M.A.; Chanteur, G.

    1985-10-01

    Small amplitude double layers (DLs) in a plasma with a suitable electron distribution may be identified with shocklike solutions of a modified Korteweg-deVries (mKdV) equation. A thought experiment for the formation of such DLs is specified to clarify the physical constraints and to demonstrate the emergence of a DL from an initial disturbance. A scattering formulation of the mKdV initial value problem may be diagonalised to give a pair of Schroedinger equations with a scattering potential satisfying the ordinary KdV equation. The initial value problem can then be treated using Khruslov's generalisation of the inverse scattering method which allows a difference in the asymptotic values of the potential. A necessary and sufficient condition for the emergence of a shocklike soliton (wave) train and of a finite number of isolated solitons may also be determined from the scattering properties of the initial potential. With 26 refs and 5 figures. (Author)

  20. Formation of porous surface layers in reaction bonded silicon nitride during processing

    Science.gov (United States)

    Shaw, N. J.; Glasgow, T. K.

    1979-01-01

    Microstructural examination of reaction bonded silicon nitride (RBSN) has shown that there is often a region adjacent to the as-nitrided surfaces that is even more porous than the interior of this already quite porous material. Because this layer of large porosity is considered detrimental to both the strength and oxidation resistance of RBSN, a study was undertaken to determine if its formation could be prevented during processing. All test bars studied were made from a single batch of Si powder which was milled for 4 hours in heptane in a vibratory mill using high density alumina cylinders as the grinding media. After air drying the powder, bars were compacted in a single acting die and hydropressed.

  1. In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells.

    Science.gov (United States)

    Tang, Jiahuan; Chen, Shanshan; Yuan, Yong; Cai, Xixi; Zhou, Shungui

    2015-09-15

    Graphene can be used to improve the performance of the anode in a microbial fuel cell (MFC) due to its good biocompatibility, high electrical conductivity and large surface area. However, the chemical production and modification of the graphene on the anode are environmentally hazardous because of the use of various harmful chemicals. This study reports a novel method based on the electrochemical exfoliation of a graphite plate (GP) for the in situ formation of graphene layers on the surface of a graphite electrode. When the resultant graphene-layer-based graphite plate electrode (GL/GP) was used as an anode in an MFC, a maximum power density of 0.67 ± 0.034 W/m(2) was achieved. This value corresponds to 1.72-, 1.56- and 1.26-times the maximum power densities of the original GP, exfoliated-graphene-modified GP (EG/GP) and chemically-reduced-graphene-modified GP (rGO/GP) anodes, respectively. Electrochemical measurements revealed that the high performance of the GL/GP anode was attributable to its macroporous structure, improved electron transfer and high electrochemical capacitance. The results demonstrated that the proposed method is a facile and environmentally friendly synthesis technique for the fabrication of high-performance graphene-based electrodes for use in microbial energy harvesting. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Phase transitions during formation of Ag nanoparticles on In{sub 2}S{sub 3} precursor layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang, E-mail: yang.liu@helmholtz-berlin.de; Fu, Yanpeng; Dittrich, Thomas; Sáez-Araoz, Rodrigo; Schmid, Martina; Hinrichs, Volker; Lux-Steiner, Martha Ch.; Fischer, Christian-Herbert

    2015-09-01

    Phase transitions have been investigated for silver deposition onto In{sub 2}S{sub 3} precursor layers by spray chemical vapor deposition from a trimethylphosphine (hexafluoroacetylacetonato) silver (Ag(hfacac)(PMe{sub 3})) solution. The formation of Ag nanoparticles (Ag NPs) on top of the semiconductor layer set on concomitant with the formation of AgIn{sub 5}S{sub 8}. The increase of the diameter of Ag NPs was accompanied by the evolution of orthorhombic AgInS{sub 2}. The formation of Ag{sub 2}S at the interface between Ag NPs and the semiconductor layer was observed. Surface photovoltage spectroscopy indicated charge separation and electronic transitions in the ranges of corresponding band gaps. The phase transition approach is aimed to be applied for the formation of plasmonic nanostructures on top of extremely thin semiconducting layers. - Highlights: • Silver nanoparticles were deposited onto In{sub 2}S{sub 3} precursor layer by spray pyrolysis. • The silver nanoparticle size and density could be controlled by deposition time. • Phase transitions during deposition and material properties were investigated. • The layers still show semiconducting properties after phase transitions. • Plasmonic absorption enhancement has been demonstrated.

  3. Model for amorphous aggregation processes

    Science.gov (United States)

    Stranks, Samuel D.; Ecroyd, Heath; van Sluyter, Steven; Waters, Elizabeth J.; Carver, John A.; von Smekal, Lorenz

    2009-11-01

    The amorphous aggregation of proteins is associated with many phenomena, ranging from the formation of protein wine haze to the development of cataract in the eye lens and the precipitation of recombinant proteins during their expression and purification. While much literature exists describing models for linear protein aggregation, such as amyloid fibril formation, there are few reports of models which address amorphous aggregation. Here, we propose a model to describe the amorphous aggregation of proteins which is also more widely applicable to other situations where a similar process occurs, such as in the formation of colloids and nanoclusters. As first applications of the model, we have tested it against experimental turbidimetry data of three proteins relevant to the wine industry and biochemistry, namely, thaumatin, a thaumatinlike protein, and α -lactalbumin. The model is very robust and describes amorphous experimental data to a high degree of accuracy. Details about the aggregation process, such as shape parameters of the aggregates and rate constants, can also be extracted.

  4. Study on the formation of heterogeneous structures in leached layers during the corrosion process of glass

    Directory of Open Access Journals (Sweden)

    Willemien Anaf

    2010-11-01

    Full Text Available Le verre, corrodé dans des conditions naturelles, montre souvent des hétérogénéités dans la couche lixiviée, comme une structure lamellaire ou des inclusions de MnO2 ou Ca3(PO42. La formation de ces hétérogénéités n’est pas encore bien comprise. Des structures de ce type ont été produites artificiellement en laboratoire en immergeant des échantillons de verre dans des solutions riches en métaux. Les résultats expérimentaux ont été comparés avec des théories décrivant la corrosion du verre.Glass that corrodes under natural conditions often shows heterogeneities in the leached layer, such as a lamellar structure or inclusions of MnO2 or Ca3(PO42. The formation of these heterogeneities is still not well understood. By means of experiments under laboratory conditions, our aim was to artificially generate specific structures. Therefore, glass samples were immersed in metal-rich solutions. The experimental results were compared with theories describing glass corrosion from a molecular point of view.

  5. Thermal oxidation of Zr–Cu–Al–Ni amorphous metal thin films

    International Nuclear Information System (INIS)

    Oleksak, R.P.; Hostetler, E.B.; Flynn, B.T.; McGlone, J.M.; Landau, N.P.; Wager, J.F.; Stickle, W.F.; Herman, G.S.

    2015-01-01

    The initial stages of thermal oxidation for Zr–Cu–Al–Ni amorphous metal thin films were investigated using X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. The as-deposited films had oxygen incorporated during sputter deposition, which helped to stabilize the amorphous phase. After annealing in air at 300 °C for short times (5 min) this oxygen was found to segregate to the surface or buried interface. Annealing at 300 °C for longer times leads to significant composition variation in both vertical and lateral directions, and formation of a surface oxide layer that consists primarily of Zr and Al oxides. Surface oxide formation was initially limited by back-diffusion of Cu and Ni ( 30 min). The oxidation properties are largely consistent with previous observations of Zr–Cu–Al–Ni metallic glasses, however some discrepancies were observed which could be explained by the unique sample geometry of the amorphous metal thin films. - Highlights: • Thermal oxidation of amorphous Zr–Cu–Al–Ni thin films was investigated. • Significant short-range inhomogeneities were observed in the amorphous films. • An accumulation of Cu and Ni occurs at the oxide/metal interface. • Diffusion of Zr was found to limit oxide film growth.

  6. The formation of sporadic E layers by a vortical perturbation excited in a horizontal wind shear flow

    Directory of Open Access Journals (Sweden)

    G. G. Didebulidze

    2008-06-01

    Full Text Available The formation of the mid-latitude sporadic E layers (Es layers by an atmospheric vortical perturbation excited in a horizontal shear flow (horizontal wind with a horizontal linear shear is investigated. A three-dimensional atmospheric vortical perturbation (atmospheric shear waves, whose velocity vector is in the horizontal plane and has a vertical wavenumber kz≠0, can provide a vertical shear of the horizontal wind. The shear waves influence the vertical transport of heavy metallic ions and their convergence into thin and dense horizontal layers. The proposed mechanism takes into account the dynamical influence of the shear wave velocity in the horizontal wind on the vertical drift velocity of the ions. It also can explain the multi-layer structure of Es layers. The pattern of the multi-layer structure depends on the value of the shear-wave vertical wavelength, the ion-neutral collision frequency and the direction of the background horizontal wind. The modelling of formation of sporadic E layers with a single and a double peak is presented. Also, the importance of shear wave coupling with short-period atmospheric gravity waves (AGWs on the variations of sporadic E layer ion density is examined and discussed.

  7. The deep chlorophyll layer in Lake Ontario: Extent, mechanisms of formation, and abiotic predictors

    Science.gov (United States)

    Scofield, Anne E.; Watkins, James M.; Weidel, Brian C.; Luckey, Frederick J.; Rudstam, Lars G.

    2017-01-01

    Epilimnetic production has declined in Lake Ontario, but increased production in metalimnetic deep chlorophyll layers (DCLs) may compensate for these losses. We investigated the spatial and temporal extent of DCLs, the mechanisms driving DCL formation, and the use of physical variables for predicting the depth and concentration of the deep chlorophyll maximum (DCM) during April–September 2013. A DCL with DCM concentrations 2 to 3 times greater than those in the epilimnion was present when the euphotic depth extended below the epilimnion, which occurred primarily from late June through mid-August. In situ growth was important for DCL formation in June and July, but settling and photoadaptation likely also contributed to the later-season DCL. Supporting evidence includes: phytoplankton biovolume was 2.4 × greater in the DCL than in the epilimnion during July, the DCL phytoplankton community of July was different from that of May and the July epilimnion (p = 0.004), and there were concurrences of DCM with maxima in fine particle concentration and dissolved oxygen saturation. Higher nutrient levels in the metalimnion may also be a necessary condition for DCL formation because July metalimnetic concentrations were 1.5 × (nitrate) and 3.5 × (silica) greater than in the epilimnion. Thermal structure variables including epilimnion depth, thermocline depth, and thermocline steepness were useful for predicting DCM depth; the inclusion of euphotic depth only marginally improved these predictions. However, euphotic depth was critical for predicting DCM concentrations. The DCL is a productive and predictable feature of the Lake Ontario ecosystem during the stratified period.

  8. Boundary layer new particle formation over East Antarctic sea ice – possible Hg-driven nucleation?

    Directory of Open Access Journals (Sweden)

    R. S. Humphries

    2015-12-01

    Full Text Available Aerosol observations above the Southern Ocean and Antarctic sea ice are scarce. Measurements of aerosols and atmospheric composition were made in East Antarctic pack ice on board the Australian icebreaker Aurora Australis during the spring of 2012. One particle formation event was observed during the 32 days of observations. This event occurred on the only day to exhibit extended periods of global irradiance in excess of 600 W m−2. Within the single air mass influencing the measurements, number concentrations of particles larger than 3 nm (CN3 reached almost 7700 cm−3 within a few hours of clouds clearing, and grew at rates of 5.6 nm h−1. Formation rates of 3 nm particles were in the range of those measured at other Antarctic locations at 0.2–1.1 ± 0.1 cm−3 s−1. Our investigations into the nucleation chemistry found that there were insufficient precursor concentrations for known halogen or organic chemistry to explain the nucleation event. Modelling studies utilising known sulfuric acid nucleation schemes could not simultaneously reproduce both particle formation or growth rates. Surprising correlations with total gaseous mercury (TGM were found that, together with other data, suggest a mercury-driven photochemical nucleation mechanism may be responsible for aerosol nucleation. Given the very low vapour pressures of the mercury species involved, this nucleation chemistry is likely only possible where pre-existing aerosol concentrations are low and both TGM concentrations and solar radiation levels are relatively high (∼ 1.5 ng m−3 and ≥ 600 W m−2, respectively, such as those observed in the Antarctic sea ice boundary layer in this study or in the global free troposphere, particularly in the Northern Hemisphere.

  9. Deep subgap feature in amorphous indium gallium zinc oxide: Evidence against reduced indium

    International Nuclear Information System (INIS)

    Sallis, Shawn; Williams, Deborah S.; Quackenbush, Nicholas F.; Senger, Mikell; Woicik, Joseph C.; White, Bruce E.; Piper, Louis F.J.

    2015-01-01

    Amorphous indium gallium zinc oxide (a-IGZO) is the archetypal transparent amorphous oxide semiconductor. Despite the gains made with a-IGZO over amorphous silicon in the last decade, the presence of deep subgap states in a-IGZO active layers facilitate instabilities in thin film transistor properties under negative bias illumination stress. Several candidates could contribute to the formation of states within the band gap. Here, we present evidence against In + lone pair active electrons as the origin of the deep subgap features. No In + species are observed, only In 0 nano-crystallites under certain oxygen deficient growth conditions. Our results further support under coordinated oxygen as the source of the deep subgap states. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Deep subgap feature in amorphous indium gallium zinc oxide: Evidence against reduced indium

    Energy Technology Data Exchange (ETDEWEB)

    Sallis, Shawn; Williams, Deborah S. [Materials Science and Engineering, Binghamton University, Binghamton, New York, 13902 (United States); Quackenbush, Nicholas F.; Senger, Mikell [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York, 13902 (United States); Woicik, Joseph C. [Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899 (United States); White, Bruce E.; Piper, Louis F.J. [Materials Science and Engineering, Binghamton University, Binghamton, New York, 13902 (United States); Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York, 13902 (United States)

    2015-07-15

    Amorphous indium gallium zinc oxide (a-IGZO) is the archetypal transparent amorphous oxide semiconductor. Despite the gains made with a-IGZO over amorphous silicon in the last decade, the presence of deep subgap states in a-IGZO active layers facilitate instabilities in thin film transistor properties under negative bias illumination stress. Several candidates could contribute to the formation of states within the band gap. Here, we present evidence against In{sup +} lone pair active electrons as the origin of the deep subgap features. No In{sup +} species are observed, only In{sup 0} nano-crystallites under certain oxygen deficient growth conditions. Our results further support under coordinated oxygen as the source of the deep subgap states. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. An in situ XPS study of growth of ITO on amorphous hydrogenated Si: Initial stages of heterojunction formation upon processing of ITO/a-Si:H based solar cell structures

    Energy Technology Data Exchange (ETDEWEB)

    Diplas, Spyros; Thoegersen, Annett; Ulyashin, Alexander [SINTEF Materials and Chemistry, Oslo (Norway); Romanyuk, Andriy [University of Basel, Basel (Switzerland)

    2015-01-01

    In this work we studied the interface growth upon deposition of indium-tin oxide (ITO) on amorphous hydrogenated Si (a-Si:H)/crystalline Si (c-Si) structures. The analysis methods used were X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) in combination with in situ film growth with magnetron sputtering. The analysis was complemented with transmission electron microscopy (TEM) of the deposited films. The sputtering equipment was attached to the XPS spectrometer and hence early stage film growth was observed without breaking the vacuum. It was shown that during early deposition stages ITO is reduced by a-Si:H. The reduction is accompanied with formation of metallic In and Sn at the interface. Formation of Sn is more enhanced on a-Si substrates whilst formation of In is more dominant on c-Si substrates. The reduction effect is less intense for amorphous hydrogenated Si as compared to crystalline Si and this is attributed to stronger presence of dangling bonds in the latter than the former. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Effect of layer number and layer stacking registry on the formation and quantification of defects in graphene

    Czech Academy of Sciences Publication Activity Database

    da Costa, Sara; Ek Weis, Johan; Frank, Otakar; Kalbáč, Martin

    2016-01-01

    Roč. 98, MAR 2016 (2016), s. 592-598 ISSN 0008-6223 R&D Projects: GA MŠk LH13022 Institutional support: RVO:61388955 Keywords : Multi-layered graphene * Applied research * Plasma applications Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.337, year: 2016

  13. The increase of apatite layer formation by the poly(3-hydroxybutyrate) surface modification of hydroxyapatite and β-tricalcium phosphate.

    Science.gov (United States)

    Szubert, M; Adamska, K; Szybowicz, M; Jesionowski, T; Buchwald, T; Voelkel, A

    2014-01-01

    The aim of this study was the surface modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) grafting and characterization of modificates. The bioactivity examination was carried out by the determination to grow an apatite layer on modified materials during incubation in simulated body fluid at 37°C. The additional issue taken up in this paper was to investigate the influence of fluid replacement. The process of the surface modification of biomaterials was evaluated by means of infrared and Raman spectroscopy. Formation of the apatite layer was assessed by means of scanning electron microscopy and confirmed by energy dispersive, Raman and Fourier transformed infrared spectroscopy. During exposure in simulated body fluid, the variation of the zeta potential, pH measurement and relative weight was monitored. Examination of scanning electron microscopy micrographs suggests that modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) significantly increases apatite layer formation. Raman spectroscopy evaluation revealed that the formation of the apatite layer was more significant in the case of hydroxyapatite modificate, when compared to the β-tricalcium phosphate modificate. Both modificates were characterized by stable pH, close to the natural pH of human body fluids. Furthermore, we have shown that a weekly changed, simulated body fluid solution increases apatite layer formation. © 2013.

  14. Formation of an Anti-Core–Shell Structure in Layered Oxide Cathodes for Li-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanlei [Materials; amp, Department; NorthEast; Omenya, Fredrick [NorthEast; Whittingham, M. Stanley [NorthEast; Wang, Chongmin [Environmental; Zhou, Guangwen [Materials; amp, Department; NorthEast

    2017-10-20

    The layered → rock-salt phase transformation in the layered dioxide cathodes for Li-ion batteries is believed to result in a “core-shell” structure of the primary particles, in which the core region maintains as the layered phase while the surface region undergoes the phase transformation to the rock-salt phase. Using transmission electron microscopy, here we demonstrate the formation of an “anti-core-shell” structure in cycled primary particles with a formula of LiNi0.80Co0.15Al0.05O2, in which the surface and subsurface regions remain as the layered structure while the rock-salt phase forms as domains in the bulk with a thin layer of the spinel phase between the rock-salt core and the skin of the layered phase. Formation of this anti-core-shell structure is attributed to the oxygen loss at the surface that drives the migration of oxygen from the bulk to the surface, thereby resulting in localized areas of significantly reduced oxygen levels in the bulk of the particle, which subsequently undergoes the phase transformation to the rock-salt domains. The formation of the anti-core-shell rock-salt domains is responsible for the reduced capacity, discharge voltage and ionic conductivity in cycled cathode.

  15. Noise and degradation of amorphous silicon devices

    NARCIS (Netherlands)

    Bakker, J.P.R.

    2003-01-01

    Electrical noise measurements are reported on two devices of the disordered semiconductor hydrogenated amorphous silicon (a-Si:H). The material is applied in sandwich structures and in thin-film transistors (TFTs). In a sandwich configuration of an intrinsic layer and two thin doped layers, the

  16. Formation of accessory mineral bed layers during erosion of bentonite buffer material

    International Nuclear Information System (INIS)

    Schatz, Timothy; Kanerva, Noora

    2012-01-01

    (kaolin, quartz sand, chromatographic silica). The resulting mixtures were compacted into dense sample tablets with effective montmorillonite dry densities between 1.4 to 1.6 g/cm 3 . The fracture erosion tests were performed using a Grimsel groundwater simulant (relative to Na + and Ca 2+ concentration only) contact solution at an average flow rate of 0.09 ml/min through the system. In colloid filtration theories, the filter bed is modelled as an assemblage of single or unit collectors having a known geometry. According to Richards [2010], the particle size distribution of the accessory minerals in MX-80 bentonite consists of particles with sizes less than 30 μm. Of the additive materials used in this study, the kaolin material consists of particles with sizes less than 20 μm showing a peak size of 6 μm, the chromatographic silica consists of particles with sizes narrowly distributed between 10 to 14 μm, and the sand consists of particles with sizes between 160 to 550 μm at a peak size of 280 μm. The tests were designed to lead to the development of erosive conditions (i.e., sodium montmorillonite against a dilute solution) and, in every case, the formation of an accessory mineral bed layer near the extrusion/erosion interface was observed. Moreover, these layers grew progressively in thickness over the course of the tests. These results provide evidence that, following erosive loss of colloidal montmorillonite through contact with dilute groundwater at a transmissive fracture interface, accessory phases (within bentonite) remain behind and form bed layers

  17. Few-layer bismuth selenides exfoliated by hemin inhibit amyloid-β1–42 fibril formation

    Science.gov (United States)

    Peng, Jian; Xiong, Yunjing; Lin, Zhiqin; Sun, Liping; Weng, Jian

    2015-01-01

    Inhibiting amyloid-β (Aβ) fibril formation is the primary therapeutic strategy for Alzheimer’s disease. Several small molecules and nanomaterials have been used to inhibit Aβ fibril formation. However, insufficient inhibition efficiency or poor metabolization limits their further applications. Here, we used hemin to exfoliate few-layer Bi2Se3 in aqueous solution. Then we separated few-layer Bi2Se3 with different sizes and thicknesses by fractional centrifugation, and used them to attempt to inhibit Aβ1-42 aggregation. The results show that smaller and thinner few-layer Bi2Se3 had the highest inhibition efficiency. We further investigated the interaction between few-layer Bi2Se3 and Aβ1-42 monomers. The results indicate that the inhibition effect may be due to the high adsorption capacity of few-layer Bi2Se3 for Aβ1−42 monomers. Few-layer Bi2Se3 also decreased Aβ-mediated peroxidase-like activity and cytotoxicity according to in vitro neurotoxicity studies under physiological conditions. Therefore, our work shows the potential for applications of few-layer Bi2Se3 in the biomedical field. PMID:26018135

  18. Formation and properties of the buried isolating silicon-dioxide layer in double-layer “porous silicon-on-insulator” structures

    Energy Technology Data Exchange (ETDEWEB)

    Bolotov, V. V.; Knyazev, E. V.; Ponomareva, I. V.; Kan, V. E., E-mail: kan@obisp.oscsbras.ru; Davletkildeev, N. A.; Ivlev, K. E.; Roslikov, V. E. [Russian Academy of Sciences, Omsk Scientific Center, Siberian Branch (Russian Federation)

    2017-01-15

    The oxidation of mesoporous silicon in a double-layer “macroporous silicon–mesoporous silicon” structure is studied. The morphology and dielectric properties of the buried insulating layer are investigated using electron microscopy, ellipsometry, and electrical measurements. Specific defects (so-called spikes) are revealed between the oxidized macropore walls in macroporous silicon and the oxidation crossing fronts in mesoporous silicon. It is found that, at an initial porosity of mesoporous silicon of 60%, three-stage thermal oxidation leads to the formation of buried silicon-dioxide layers with an electric-field breakdown strength of E{sub br} ~ 10{sup 4}–10{sup 5} V/cm. Multilayered “porous silicon-on-insulator” structures are shown to be promising for integrated chemical micro- and nanosensors.

  19. Formation of Pentacene wetting layer on the SiO2 surface and charge trap in the wetting layer

    International Nuclear Information System (INIS)

    Kim, Chaeho; Jeon, D.

    2008-01-01

    We studied the early-stage growth of vacuum-evaporated pentacene film on a native SiO 2 surface using atomic force microscopy and in-situ spectroscopic ellipsometry. Pentacene deposition prompted an immediate change in the ellipsometry spectra, but atomic force microscopy images of the early stage films did not show a pentacene-related morphology other than the decrease in the surface roughness. This suggested that a thin pentacene wetting layer was formed by pentacene molecules lying on the surface before the crystalline islands nucleated. Growth simulation based on the in situ spectroscopic ellipsometry spectra supported this conclusion. Scanning capacitance microscopy measurement indicated the existence of trapped charges in the SiO 2 and pentacene wetting layer

  20. The increase of apatite layer formation by the poly(3-hydroxybutyrate) surface modification of hydroxyapatite and β-tricalcium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Szubert, M., E-mail: mm.szubert@gmail.com [Faculty of Chemical Technology, Poznan University of Technology, Poznan (Poland); Adamska, K. [Faculty of Chemical Technology, Poznan University of Technology, Poznan (Poland); Szybowicz, M. [Faculty of Technical Physics, Poznan University of Technology, Poznan (Poland); Jesionowski, T. [Faculty of Chemical Technology, Poznan University of Technology, Poznan (Poland); Buchwald, T. [Faculty of Technical Physics, Poznan University of Technology, Poznan (Poland); Voelkel, A. [Faculty of Chemical Technology, Poznan University of Technology, Poznan (Poland)

    2014-01-01

    The aim of this study was the surface modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) grafting and characterization of modificates. The bioactivity examination was carried out by the determination to grow an apatite layer on modified materials during incubation in simulated body fluid at 37 °C. The additional issue taken up in this paper was to investigate the influence of fluid replacement. The process of the surface modification of biomaterials was evaluated by means of infrared and Raman spectroscopy. Formation of the apatite layer was assessed by means of scanning electron microscopy and confirmed by energy dispersive, Raman and Fourier transformed infrared spectroscopy. During exposure in simulated body fluid, the variation of the zeta potential, pH measurement and relative weight was monitored. Examination of scanning electron microscopy micrographs suggests that modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) significantly increases apatite layer formation. Raman spectroscopy evaluation revealed that the formation of the apatite layer was more significant in the case of hydroxyapatite modificate, when compared to the β-tricalcium phosphate modificate. Both modificates were characterized by stable pH, close to the natural pH of human body fluids. Furthermore, we have shown that a weekly changed, simulated body fluid solution increases apatite layer formation. - Highlights: • Surface modification of HA and β-TCP was performed by PHB grafting. • The growth of apatite layer on materials was examined in simulated body fluid (SBF). • The bioactivity of obtained materials was proved. • The replacement of SBF solution plays an important role in the process of apatite formation.

  1. The increase of apatite layer formation by the poly(3-hydroxybutyrate) surface modification of hydroxyapatite and β-tricalcium phosphate

    International Nuclear Information System (INIS)

    Szubert, M.; Adamska, K.; Szybowicz, M.; Jesionowski, T.; Buchwald, T.; Voelkel, A.

    2014-01-01

    The aim of this study was the surface modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) grafting and characterization of modificates. The bioactivity examination was carried out by the determination to grow an apatite layer on modified materials during incubation in simulated body fluid at 37 °C. The additional issue taken up in this paper was to investigate the influence of fluid replacement. The process of the surface modification of biomaterials was evaluated by means of infrared and Raman spectroscopy. Formation of the apatite layer was assessed by means of scanning electron microscopy and confirmed by energy dispersive, Raman and Fourier transformed infrared spectroscopy. During exposure in simulated body fluid, the variation of the zeta potential, pH measurement and relative weight was monitored. Examination of scanning electron microscopy micrographs suggests that modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) significantly increases apatite layer formation. Raman spectroscopy evaluation revealed that the formation of the apatite layer was more significant in the case of hydroxyapatite modificate, when compared to the β-tricalcium phosphate modificate. Both modificates were characterized by stable pH, close to the natural pH of human body fluids. Furthermore, we have shown that a weekly changed, simulated body fluid solution increases apatite layer formation. - Highlights: • Surface modification of HA and β-TCP was performed by PHB grafting. • The growth of apatite layer on materials was examined in simulated body fluid (SBF). • The bioactivity of obtained materials was proved. • The replacement of SBF solution plays an important role in the process of apatite formation

  2. Highly effective strain-induced band-engineering of (111) oriented, direct-gap GeSn crystallized on amorphous SiO{sub 2} layers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haofeng; Wang, Xiaoxin; Liu, Jifeng, E-mail: Jifeng.Liu@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755 (United States)

    2016-03-07

    We demonstrate highly effective strain-induced band-engineering of (111) oriented direct-gap Ge{sub 1−x}Sn{sub x} thin films (0.074 < x < 0.085) crystallized on amorphous SiO{sub 2} towards 3D photonic integration. Due to a much smaller Poisson's ratio for (111) vs. (100) orientation, 0.44% thermally induced biaxial tensile strain reduces the direct-gap by 0.125 eV towards enhanced direct-gap semiconductor properties, twice as effective as the tensile strain in Ge(100) films. Correspondingly, the optical response is extended to λ = 2.8 μm. A dilatational deformation potential of a = −12.8 ± 0.8 eV is derived. These GeSn films also demonstrate high thermal stability, offering both excellent direct-gap optoelectronic properties and fabrication/operation robustness for integrated photonics.

  3. The influence of tidal winds in the formation of blanketing sporadic e-layer over equatorial Brazilian region

    Science.gov (United States)

    Resende, Laysa Cristina Araujo; Batista, Inez Staciarini; Denardini, Clezio Marcos; Batista, Paulo Prado; Carrasco, Alexander José; Andrioli, Vânia Fátima; Moro, Juliano

    2018-06-01

    This work analysis the blanketing sporadic layers (Esb) behavior over São Luís, Brazil (2° 31‧ S, 44° 16‧ W, dip: -4.80) which is classified as a transition region between equatorial and low-latitude. Hence, some peculiarities can appear as Esb occurrence instead of the common Esq, which is a non-blanketing irregularity layer. The analysis presented here was obtained using a modified version of a theoretical model for the E region (MIRE), which computes the densities of the metallic ions (Fe+ and Mg+) and the densities of the main molecular ions (NO+, O2+, N2+) by solving the continuity and momentum equations for each one of them. In that model, the Es layer physics driven by both diurnal and semidiurnal tidal winds are taken into account and it was extended in height coverage by adding a novel neutral wind model derived from the all-sky meteor radar measurements. Thus, we provide more trustworthy results related to the Es layer formation in the equatorial region. We verified the contribution of each tidal wind component to the Esb layer formation in this equatorial region. Additionally, we compared the Es layer electron density computed by MIRE with the data obtained by using the blanketing frequency parameter (fbEs) deduced from ionograms. The results show that the diurnal component of the tidal wind is more important in the Esb layer formation whereas the semidiurnal component has a little contribution in our simulations. Finally, it was verified that the modified MIRE presented here can be used to study the Esb layers occurrence over the equatorial region in the Brazilian sector.

  4. Forward modelling of multi-component induction logging tools in layered anisotropic dipping formations

    International Nuclear Information System (INIS)

    Gao, Jie; Xu, Chenhao; Xiao, Jiaqi

    2013-01-01

    Multi-component induction logging provides great assistance in the exploration of thinly laminated reservoirs. The 1D parametric inversion following an adaptive borehole correction is the key step in the data processing of multi-component induction logging responses. To make the inversion process reasonably fast, an efficient forward modelling method is necessary. In this paper, a modelling method has been developed to simulate the multi-component induction tools in deviated wells drilled in layered anisotropic formations. With the introduction of generalized reflection coefficients, the analytic expressions of magnetic field in the form of a Sommerfeld integral were derived. The fast numerical computation of the integral has been completed by using the fast Fourier–Hankel transform and fast Hankel transform methods. The latter is so time efficient that it is competent enough for real-time multi-parameter inversion. In this paper, some simulated results have been presented and they are in excellent agreement with the finite difference method code's solution. (paper)

  5. Analysis of heat transfer and frost layer formation on a cryogenic tank wall exposed to the humid atmospheric air

    International Nuclear Information System (INIS)

    Kim, Kyoung-Hoon; Ko, Hyung-Jong; Kim, Kyoungjin; Kim, Yong-Wook; Cho, Kie-Joo

    2009-01-01

    In this paper heat transfer characteristics and frost layer formation are investigated numerically on the surface of a cryogenic oxidizer tank for a liquid propulsion rocket, where a frost layer could be a significant factor in maintaining oxidizer temperature within a required range. Frost formation is modeled by considering mass diffusion of water vapor in the air into the frost layer and various heat transfer modes such as natural and forced convection, latent heat, solar radiation of short wavelength, and ambient radiation of long wavelength. Computational results are first compared with the available measurements and show favorable agreement on thickness and effective thermal conductivity of the frost layer. In the case of the cryogenic tank, a series of parametric studies is presented in order to examine the effects of important parameters such as temperature and wind speed of ambient air, air humidity, and tank wall temperature on the frost layer formation and the amount of heat transfer into the tank. It is found that the heat transfer by solar radiation is significant and also that heat transfer strongly depends on air humidity, ambient air temperature, and wind speed but not tank wall temperature.

  6. Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation.

    Science.gov (United States)

    Lv, Hongbin; Chen, Zhen; Yang, Xiaoping; Cen, Lian; Zhang, Xu; Gao, Ping

    2014-11-01

    Bacteria adhesion and subsequent biofilm formation are primary causes of implant associated infection. The biofilm makes the bacteria highly resistant to the host defense and antimicrobial treatment. Antibacterial coatings on the surface of titanium implant can prevent biofilm formation effectively, but it is still a challenge to accomplish relatively long lasting antibacterial effects before wound healing or formation of biological seal. The purpose of our work was to construct antibacterial multilayer coatings loaded with minocycline on surface of Ti substrates using chitosan and alginate based on layer-by-layer (LbL) self-assembly technique. In this study, the surfaces of Ti substrates were first hydroxylated and then treated with 3-aminopropyltriethoxysilane (ATPES) to obtain amino-functionalized Ti substrates. Next, the precursor layer of chitosan was covalently conjugated to amino-functionalized Ti substrates. The following alternately coating alginate loaded with minocycline and chitosan onto the precursor layer of chitosan was carried out via LbL self-assembly technique to construct the multilayer coatings on Ti substrates. The multilayer coatings loaded more minocycline and improved sustainability of minocycline release to kill planktonic and adherent bacteria. Moreover, surface charge and hydrophilicity of the coatings and antibacterial ability of chitosan itself also played roles in the antibacterial performance, which can keep the antibacterial ability of the multilayer coatings after minocycline release ceases. In conclusion, LbL self-assembly method provides a promising strategy to fabricate long-term antibacterial surfaces, which is especially effective in preventing implant associated infections in the early stage. Loading minocycline on the surface of implants based on LbL self-assembly strategy can endow implants with sustained antibacterial property. This can inhabit the immediate colonization of bacteria onto the surface of implants in the

  7. Photonic crystals, amorphous materials, and quasicrystals.

    Science.gov (United States)

    Edagawa, Keiichi

    2014-06-01

    Photonic crystals consist of artificial periodic structures of dielectrics, which have attracted much attention because of their wide range of potential applications in the field of optics. We may also fabricate artificial amorphous or quasicrystalline structures of dielectrics, i.e. photonic amorphous materials or photonic quasicrystals. So far, both theoretical and experimental studies have been conducted to reveal the characteristic features of their optical properties, as compared with those of conventional photonic crystals. In this article, we review these studies and discuss various aspects of photonic amorphous materials and photonic quasicrystals, including photonic band gap formation, light propagation properties, and characteristic photonic states.

  8. Melt front propagation in dielectrics upon femtosecond laser irradiation: Formation dynamics of a heat-affected layer

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lechuga, Mario, E-mail: mario@io.cfmac.csic.es, E-mail: j.siegel@io.cfmac.csic.es; Solis, Javier; Siegel, Jan, E-mail: mario@io.cfmac.csic.es, E-mail: j.siegel@io.cfmac.csic.es [Laser Processing Group, Instituto de Optica, CSIC, Serrano 121, 28006 Madrid (Spain)

    2016-04-25

    Several studies in dielectrics have reported the presence of a thin heat-affected layer underneath the ablation crater produced by femtosecond laser irradiation. In this work, we present a time-resolved microscopy technique that is capable of monitoring the formation dynamics of this layer and apply it to the study of a phosphate glass exposed to single pulses below the ablation threshold. A few nanoseconds after laser excitation, a melt front interface can be detected, which propagates into the bulk, gradually slowing down its speed. By means of image analysis combined with optical modeling, we are able to determine the temporal evolution of the layer thickness and its refractive index. Initially, a strong transient decrease in the refractive index is observed, which partially recovers afterwards. The layer resolidifies after approximately 1 μs after excitation, featuring a maximum thickness of several hundreds of nanometers.

  9. Melt front propagation in dielectrics upon femtosecond laser irradiation: Formation dynamics of a heat-affected layer

    International Nuclear Information System (INIS)

    Garcia-Lechuga, Mario; Solis, Javier; Siegel, Jan

    2016-01-01

    Several studies in dielectrics have reported the presence of a thin heat-affected layer underneath the ablation crater produced by femtosecond laser irradiation. In this work, we present a time-resolved microscopy technique that is capable of monitoring the formation dynamics of this layer and apply it to the study of a phosphate glass exposed to single pulses below the ablation threshold. A few nanoseconds after laser excitation, a melt front interface can be detected, which propagates into the bulk, gradually slowing down its speed. By means of image analysis combined with optical modeling, we are able to determine the temporal evolution of the layer thickness and its refractive index. Initially, a strong transient decrease in the refractive index is observed, which partially recovers afterwards. The layer resolidifies after approximately 1 μs after excitation, featuring a maximum thickness of several hundreds of nanometers.

  10. Analysis of defect structures in recrystallized amorphous layers of self-ion irradiated silicon by channeling and transmission electron microscopy measurements

    International Nuclear Information System (INIS)

    Pronko, P.P.; Rechtin, M.D.; Foti, G.; Csepregi, L.; Kennedy, E.F.; Mayer, J.W.

    1976-01-01

    The dominant defect structures in these reordered layers have been identified as twins whose dimensions change in size going from the surface to the interface. A high density of clustered defects is observed near the interface and is manifested by the presence of a heavy strain contrast in the electron micrograph image. Some fine polycrystallinity is also observed in the region of the interface between the regrown layer and the substrate. The 2 MeV 4 He channeling results indicate that, in this kind of defect arrangement, the standard analysis for reducing the channeling data cannot be applied. A more direct way to examine the depth dependence of the defect distribution by channeling is to follow the change in the minimum yield as a function of layer removal. The results obtained in this way show that the number of scattering centers (N/sub D//N/sub O/) is approximately constant in the first 3000 A and increases very fast near the interface. No tail in the scattering distribution is observed to penetrate the substrate when using the stripping procedure. This agrees generally with the TEM results

  11. X-Ray Amorphous Phases in Antarctica Dry Valley Soils: Insight into Aqueous Alteration Processes on Mars?

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.; Rampe, E. B.; Golden, D. C.; Quinn, J. E.

    2015-01-01

    The Chemistry and Mineralogy (CheMin) instrument onboard the Mars Curiosity rover has detected abundant amounts (approx. 25-30 weight percentage) of X-ray amorphous materials in a windblown deposit (Rocknest) and in a sedimentary mudstone (Cumberland and John Klein) in Gale crater, Mars. On Earth, X-ray amorphous components are common in soils and sediments, but usually not as abundant as detected in Gale crater. One hypothesis for the abundant X-ray amorphous materials on Mars is limited interaction of liquid water with surface materials, kinetically inhibiting maturation to more crystalline phases. The objective of this study was to characterize the chemistry and mineralogy of soils formed in the Antarctica Dry Valleys, one of the driest locations on Earth. Two soils were characterized from different elevations, including a low elevation, coastal, subxerous soil in Taylor Valley and a high elevation, ultraxerous soil in University Valley. A variety of techniques were used to characterize materials from each soil horizon, including Rietveld analysis of X-ray diffraction data. For Taylor Valley soil, the X-ray amorphous component ranged from about 4 weight percentage in the upper horizon to as high as 15 weight percentage in the lowest horizon just above the permafrost layer. Transmission electron microscopy indicated that the presence of short-range ordered (SRO) smectite was the most likely candidate for the X-ray amorphous materials in the Taylor Valley soils. The SRO smectite is likely an aqueous alteration product of mica inherited from granitic materials during glaciation of Taylor Valley. The drier University Valley soils had lower X-ray amorphous contents of about 5 weight percentage in the lowest horizon. The X-ray amorphous materials in University Valley are attributed to nanoparticles of TiO2 and possibly amorphous SiO2. The high abundance of X-ray amorphous materials in Taylor Valley is surprising for one of the driest places on Earth. These materials

  12. Corrosion inhibition performance of imidazolium ionic liquids and their influence on surface ferrous carbonate layer formation

    Science.gov (United States)

    Yang, Dongrui

    Corrosion inhibitors as effective anti-corrosion applications were widely studied and drawn much attention in both academe and industrial area. In this work, a systematic work, including inhibitors selection, anti-corrosion property and characterization, influence on scale formation, testing system design and so on, were reported. The corrosion inhibition performance of four imidazolium ionic liquids in carbon dioxide saturated NaCl solution was investigated by using electrochemical and surface analysis technologies. The four compounds are 1-ethyl-3-methylimidazolium chloride (a), 1-butyl-3-methylimidazolium chloride (b), 1-hexyl-3-methylimidazolium chloride (c), 1-decyl-3-methylimidazolium chloride (d). Under the testing conditions, compound d showed the highest inhibition efficiency and selected as the main object of further study. As a selected representative formula, 1-decyl-3-methylimidazolium chloride was studied in detail about its corrosion inhibition performance on mild steel in carbon dioxide saturated NaCl brine at pH 3.8 and 6.8. Electrochemical and surface analysis techniques were used to characterize the specimen corrosion process during the immersion in the blank and inhibiting solutions. The precorrosion of specimen surface showed significant and different influences on the anti-corrosion property of DMICL at pH 3.8 and 6.8. The corrosion inhibition efficiency (IE) was calculated based on parameters obtained from electrochemical techniques; the achieved IE was higher than 98% at the 25th hour for the steel with a well-polished surface at pH 3.8. The fitting parameters obtained from electrochemical data helped to account for the interfacial changes. As proved in previous research, 1-decyl-3-methylimidazolium chloride could be used as good corrosion inhibitors under certain conditions. However, under other conditions, such chemicals, as well as other species in oil transporting system, could be a factor influencing the evolution of protective surface

  13. Effect of manufacturing method on the magnetic properties and formation of structural defects in Fe61Co10Y8Zr1B20 amorphous alloy

    International Nuclear Information System (INIS)

    Nabialek, M.G.; Pietrusiewicz, P.; Dospial, M.J.; Szota, M.; Błoch, K.; Gruszka, K.; Oźga, K.; Garus, S.

    2014-01-01

    Highlights: • Influence of manufacturing method on structural defects was studied. • Samples were obtained by the use of injection-casting and melt-spinning techniques. • The defects have been indirectly analyzed by approach to ferromagnetic saturation. • Prolonged solidification time allows recombination of atoms arrangement in a volume. • That reduce internal stress and leads to increase in the packing density of atoms. - Abstract: Soft magnetic properties of amorphous alloys are determined by their structure, which strongly depends on their manufacturing method. Alloys obtained in the form of conventional amorphous alloys (tapes) are cooled with a much higher rate than the material obtained in the form of tiles by the injection casting method. The cooling rate and production method determines the type and number of structural defects created in the volume of produced samples. The paper presents an indirect method for the analysis of structural defects and their effect on the magnetic properties of studied alloys. Basing on initial magnetization curve analysis in the area of so-called approach to ferromagnetic saturation was found that point defects were forming in the samples in the form of tapes. The magnetization process of tiles were influenced by the presence of conglomerates of point defects called quasidislocation dipoles

  14. Selective formation of porous layer on n-type InP by anodic etching combined with scratching

    International Nuclear Information System (INIS)

    Seo, Masahiro; Yamaya, Tadafumi

    2005-01-01

    The selective formation of porous layer on n-type InP (001) surface was investigated by using scratching with a diamond scriber followed by anodic etching in deaerated 0.5M HCl. Since the InP specimen was highly doped, the anodic etching proceeded in the dark. The potentiodynamic polarization showed the anodic current shoulder in the potential region between 0.8 and 1.3V (SHE) for the scratched area in addition to the anodic current peak at 1.7V (SHE) for the intact area. The selective formation of porous layer on the scratched are was brought by the anodic etching at a constant potential between 1.0 and 1.2V (SHE) for a certain time. The nucleation and growth of etch pits on intact area, however, took place when the time passed the critical value. The cross section of porous layer on the scratched area perpendicular to the [1-bar 10] or [110] scratching direction had a V-shape, while the cross section of porous layer on the scratched area parallel to the [1-bar 10] or [110] scratching direction had a band structure with stripes oriented to the [1-bar 11] or [11-bar 1] direction. Moreover, nano-scratching at a constant normal force in the micro-Newton range followed by anodic etching showed the possibility for selective formation of porous wire with a nano-meter width

  15. Selective formation of porous layer on n-type InP by anodic etching combined with scratching

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Masahiro [Graduate School of Engineering, Hokkaido University, Kita-13 Jo, Nishi-8 Chome, Kita-ku, Sapporo 060-8628 (Japan)]. E-mail: seo@elechem1-mc.eng.hokudai.ac.jp; Yamaya, Tadafumi [Graduate School of Engineering, Hokkaido University, Kita-13 Jo, Nishi-8 Chome, Kita-ku, Sapporo 060-8628 (Japan)

    2005-11-10

    The selective formation of porous layer on n-type InP (001) surface was investigated by using scratching with a diamond scriber followed by anodic etching in deaerated 0.5M HCl. Since the InP specimen was highly doped, the anodic etching proceeded in the dark. The potentiodynamic polarization showed the anodic current shoulder in the potential region between 0.8 and 1.3V (SHE) for the scratched area in addition to the anodic current peak at 1.7V (SHE) for the intact area. The selective formation of porous layer on the scratched are was brought by the anodic etching at a constant potential between 1.0 and 1.2V (SHE) for a certain time. The nucleation and growth of etch pits on intact area, however, took place when the time passed the critical value. The cross section of porous layer on the scratched area perpendicular to the [1-bar 10] or [110] scratching direction had a V-shape, while the cross section of porous layer on the scratched area parallel to the [1-bar 10] or [110] scratching direction had a band structure with stripes oriented to the [1-bar 11] or [11-bar 1] direction. Moreover, nano-scratching at a constant normal force in the micro-Newton range followed by anodic etching showed the possibility for selective formation of porous wire with a nano-meter width.

  16. Low temperature annealed amorphous indium gallium zinc oxide (a-IGZO) as a pH sensitive layer for applications in field effect based sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Narendra [Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur-208016 (India); Samtel Centre for Display Technologies, Indian Institute of Technology Kanpur, Kanpur-208016 (India); Kumar, Jitendra [Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur-208016 (India); Panda, Siddhartha, E-mail: spanda@iitk.ac.in [Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur-208016 (India); Samtel Centre for Display Technologies, Indian Institute of Technology Kanpur, Kanpur-208016 (India); Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur-208016 (India)

    2015-06-15

    The use of a-IGZO instead of the conventional high-k dielectrics as a pH sensitive layer could lead to the simplification of fabrication steps of field effect based devices. In this work, the pH sensitivities of a-IGZO films directly deposited over a SiO{sub 2}/Si surface were studied utilizing electrolyte-insulator-semiconductor (EIS) structures. Annealing of the films was found to affect the sensitivity of the devices and the device with the film annealed at 400 {sup o}C in N{sub 2} ambience showed the better sensitivity, which reduced with further increase in the annealing temperature to 500 {sup o}C. The increased pH sensitivity with the film annealed at 400 {sup o}C in N{sub 2} gas was attributed to the enhanced lattice oxygen ions (based on the XPS data) and improved C-V characteristics, while the decrease in sensitivity at an increased annealing temperature of 500 {sup o}C was attributed to defects in the films as well as the induced traps at the IGZO/SiO{sub 2} interface based on the stretched accumulation and the peak in the inversion region of C-V curves. This study could help to develop a sensor where the material (a-IGZO here) used as the active layer in a thin film transistors (TFTs) possibly could also be used as the pH sensitive layer without affecting the TFT characteristics, and thus obviating the need of high-K dielectrics for sensitivity enhancement.

  17. Low temperature annealed amorphous indium gallium zinc oxide (a-IGZO as a pH sensitive layer for applications in field effect based sensors

    Directory of Open Access Journals (Sweden)

    Narendra Kumar

    2015-06-01

    Full Text Available The use of a-IGZO instead of the conventional high-k dielectrics as a pH sensitive layer could lead to the simplification of fabrication steps of field effect based devices. In this work, the pH sensitivities of a-IGZO films directly deposited over a SiO2/Si surface were studied utilizing electrolyte-insulator-semiconductor (EIS structures. Annealing of the films was found to affect the sensitivity of the devices and the device with the film annealed at 400 oC in N2 ambience showed the better sensitivity, which reduced with further increase in the annealing temperature to 500 oC. The increased pH sensitivity with the film annealed at 400 oC in N2 gas was attributed to the enhanced lattice oxygen ions (based on the XPS data and improved C-V characteristics, while the decrease in sensitivity at an increased annealing temperature of 500 oC was attributed to defects in the films as well as the induced traps at the IGZO/SiO2 interface based on the stretched accumulation and the peak in the inversion region of C-V curves. This study could help to develop a sensor where the material (a-IGZO here used as the active layer in a thin film transistors (TFTs possibly could also be used as the pH sensitive layer without affecting the TFT characteristics, and thus obviating the need of high-K dielectrics for sensitivity enhancement.

  18. Glass formation and unusual hygroscopic growth of iodic acid solution droplets with relevance for iodine mediated particle formation in the marine boundary layer

    Directory of Open Access Journals (Sweden)

    B. J. Murray

    2012-09-01

    Full Text Available Iodine oxide particles are known to nucleate in the marine boundary layer where gas phase molecular iodine and organoiodine species are produced by macroalgae. These ultra-fine particles may then grow through the condensation of other materials to sizes where they may serve as cloud condensation nuclei. There has been some debate over the chemical identity of the initially nucleated particles. In laboratory simulations, hygroscopic measurements have been used to infer that they are composed of insoluble I2O4, while elemental analysis of laboratory generated particles suggests soluble I2O5 or its hydrated form iodic acid, HIO3 (I2O5·H2O. In this paper we explore the response of super-micron sized aqueous iodic acid solution droplets to varying humidity using both Raman microscopy and single particle electrodynamic traps. These measurements reveal that the propensity of an iodic acid solution droplet to crystallise is negligible on drying to ~0% relative humidity (RH. On applying mechanical pressure to these droplets they shatter in a manner consistent with an ultra-viscous liquid or a brittle glass. Water retention in amorphous material at low RH is important for understanding the hygroscopic growth of aerosol particles and uptake of other condensable material. Subsequent water uptake between 10 and 20% RH causes their viscosity to reduce sufficiently that the cracked droplets flow and merge. The persistence of iodic acid solution in an amorphous state, rather than a crystalline state, suggests they will more readily accommodate other condensable material and are therefore more likely to grow to sizes where they may serve as cloud condensation nuclei. On increasing the humidity to ~90% the mass of the droplets only increases by ~20% with a corresponding increase in radius of only 6%, which is remarkably small for a highly soluble material. We suggest that the

  19. Formation of porous silicon oxide from substrate-bound silicon rich silicon oxide layers by continuous-wave laser irradiation

    Science.gov (United States)

    Wang, Nan; Fricke-Begemann, Th.; Peretzki, P.; Ihlemann, J.; Seibt, M.

    2018-03-01

    Silicon nanocrystals embedded in silicon oxide that show room temperature photoluminescence (PL) have great potential in silicon light emission applications. Nanocrystalline silicon particle formation by laser irradiation has the unique advantage of spatially controlled heating, which is compatible with modern silicon micro-fabrication technology. In this paper, we employ continuous wave laser irradiation to decompose substrate-bound silicon-rich silicon oxide films into crystalline silicon particles and silicon dioxide. The resulting microstructure is studied using transmission electron microscopy techniques with considerable emphasis on the formation and properties of laser damaged regions which typically quench room temperature PL from the nanoparticles. It is shown that such regions consist of an amorphous matrix with a composition similar to silicon dioxide which contains some nanometric silicon particles in addition to pores. A mechanism referred to as "selective silicon ablation" is proposed which consistently explains the experimental observations. Implications for the damage-free laser decomposition of silicon-rich silicon oxides and also for controlled production of porous silicon dioxide films are discussed.

  20. Emerging trends in the stabilization of amorphous drugs.

    Science.gov (United States)

    Laitinen, Riikka; Löbmann, Korbinian; Strachan, Clare J; Grohganz, Holger; Rades, Thomas

    2013-08-30

    The number of active pharmaceutical substances having high therapeutic potential but low water solubility is constantly increasing, making it difficult to formulate these compounds as oral dosage forms. The solubility and dissolution rate, and thus potentially the bioavailability, of these poorly water-soluble drugs can be increased by the formation of stabilized amorphous forms. Currently, formulation as solid polymer dispersions is the preferred method to enhance drug dissolution and to stabilize the amorphous form of a drug. The purpose of this review is to highlight emerging alternative methods to amorphous polymer dispersions for stabilizing the amorphous form of drugs. First, an overview of the properties and stabilization mechanisms of amorphous forms is provided. Subsequently, formulation approaches such as the preparation of co-amorphous small-molecule mixtures and the use of mesoporous silicon and silica-based carriers are presented as potential means to increase the stability of amorphous pharmaceuticals. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Effect of negative ions on the formation of weak ion acoustic double layers

    International Nuclear Information System (INIS)

    Kalita, M.K.; Bujarbarua, S.

    1985-01-01

    Using kinetic theory, small amplitude double layers associated with ion acoustic waves in a plasma containing negative species of ions were investigated. Analytic solution for the double layer potential was carried out. The limiting values of the negative ion density for the existence of this type of DL were calculated and the application of this result to space plasmas is discussed. (author)

  2. Native amorphous nanoheterogeneity in gallium germanosilicates as a tool for driving Ga2O3 nanocrystal formation in glass for optical devices.

    Science.gov (United States)

    Sigaev, Vladimir N; Golubev, Nikita V; Ignat'eva, Elena S; Champagnon, Bernard; Vouagner, Dominique; Nardou, Eric; Lorenzi, Roberto; Paleari, Alberto

    2013-01-07

    Nanoparticles in amorphous oxides are a powerful tool for embedding a wide range of functions in optical glasses, which are still the best solutions in several applications in the ever growing field of photonics. However, the control of the nanoparticle size inside the host material is often a challenging task, even more challenging when detrimental effects on light transmittance have to be avoided. Here we show how the process of phase separation and subsequent nanocrystallization of a Ga-oxide phase can be controlled in germanosilicates - prototypal systems in optical telecommunications - starting from a Ga-modified glass composition designed to favour uniform liquid-liquid phase separation in the melt. Small angle neutron scattering data demonstrate that nanosized structuring occurs in the amorphous as-quenched glass and gives rise to initially smaller nanoparticles, by heating, as in a secondary phase separation. By further heating, the nanophase evolves with an increase of nanoparticle gyration radius, from a few nm to a saturation value of about 10 nm, through an initial growing process followed by an Ostwald ripening mechanism. Nanoparticles finally crystallize, as indicated by transmission electron microscopy and X-ray diffraction, as γ-Ga(2)O(3)- a metastable gallium oxide polymorph. Infrared reflectance and photoluminescence, together with the optical absorption of Ni ions used as a probe, give an indication of the underlying interrelated processes of the structural change in the glass and in the segregated phase. As a result, our data give for the first time a rationale for designing Ga-modified germanosilicates at the nanoscale, with the perspective of a detailed nanostructuring control.

  3. Spontaneous nano-gap formation in Ag film using NaCl sacrificial layer for Raman enhancement

    Science.gov (United States)

    Min, Kyungchan; Jeon, Wook Jin; Kim, Youngho; Choi, Jae-Young; Yu, Hak Ki

    2018-03-01

    We report the method of fabrication of nano-gaps (known as hot spots) in Ag thin film using a sodium chloride (NaCl) sacrificial layer for Raman enhancement. The Ag thin film (20-50 nm) on the NaCl sacrificial layer undergoes an interfacial reaction due to the AgCl formed at the interface during water molecule intercalation. The intercalated water molecules can dissolve the NaCl molecules at interfaces and form the ionic state of Na+ and Cl-, promoting the AgCl formation. The Ag atoms can migrate by the driving force of this interfacial reaction, resulting in the formation of nano-size gaps in the film. The surface-enhanced Raman scattering activity of Ag films with nano-size gaps has been investigated using Raman reporter molecules, Rhodamine 6G (R6G).

  4. Thermally oxidized formation of new Ge dots over as-grown Ge dots in the Si capping layer

    International Nuclear Information System (INIS)

    Nie Tianxiao; Lin Jinhui; Shao Yuanmin; Wu Yueqin; Yang Xinju; Fan Yongliang; Jiang Zuimin; Chen Zhigang; Zou Jin

    2011-01-01

    A Si-capped Ge quantum dot sample was self-assembly grown via Stranski-Krastanov mode in a molecular beam epitaxy system with the Si capping layer deposited at 300 deg. C. After annealing the sample in an oxygen atmosphere at 1000 deg. C, a structure, namely two layers of quantum dots, was formed with the newly formed Ge-rich quantum dots embedded in the oxidized matrix with the position accurately located upon the as-grown quantum dots. It has been found that the formation of such nanostructures strongly depends upon the growth temperature and oxygen atmosphere. A growth mechanism was proposed to explain the formation of the nanostructure based on the Ge diffusion from the as-grown quantum dots, Ge segregation from the growing oxide, and subsequent migration/agglomeration.

  5. Swift heavy ion-beam induced amorphization and recrystallization of yttrium iron garnet

    International Nuclear Information System (INIS)

    Costantini, Jean-Marc; Miro, Sandrine; Beuneu, François; Toulemonde, Marcel

    2015-01-01

    Pure and (Ca and Si)-substituted yttrium iron garnet (Y 3 Fe 5 O 12 or YIG) epitaxial layers and amorphous films on gadolinium gallium garnet (Gd 3 Ga 5 O 12 , or GGG) single crystal substrates were irradiated by 50 MeV 32 Si and 50 MeV (or 60 MeV) 63 Cu ions for electronic stopping powers larger than the threshold value (∼4 MeV μm −1 ) for amorphous track formation in YIG crystals. Conductivity data of crystalline samples in a broad ion fluence range (10 11 –10 16 cm −2 ) are modeled with a set of rate equations corresponding to the amorphization and recrystallization induced in ion tracks by electronic excitations. The data for amorphous layers confirm that a recrystallization process takes place above ∼10 14 cm −2 . Cross sections for both processes deduced from this analysis are discussed in comparison to previous determinations with reference to the inelastic thermal-spike model of track formation. Micro-Raman spectroscopy was also used to follow the related structural modifications. Raman spectra show the progressive vanishing and randomization of crystal phonon modes in relation to the ion-induced damage. For crystalline samples irradiated at high fluences (⩾10 14 cm −2 ), only two prominent broad bands remain like for amorphous films, thereby reflecting the phonon density of states of the disordered solid, regardless of samples and irradiation conditions. The main band peaked at ∼660 cm −1 is assigned to vibration modes of randomized bonds in tetrahedral (FeO 4 ) units. (paper)

  6. Formation and effect of orientation domains in layered oxide cathodes of lithium-ion batteries

    International Nuclear Information System (INIS)

    Jarvis, Karalee A.; Wang, Chih-Chieh; Knight, James C.; Rabenberg, Lew; Manthiram, Arumugam; Ferreira, Paulo J.

    2016-01-01

    We show that in layered oxides that are employed as cathodes in lithium-ion batteries, the cation layers can order on different {111} NaCl planes within a single particle, which makes the lithium layer discontinuous across a particle. The findings challenge previous assertions that lithium undergoes 2-D diffusion in layered oxides and the data provide new insights into the decrease in rate capabilities for some layered oxides. Therefore, it is critically important to understand how these discontinuities form and how the loss of 2-D diffusion impacts the overall performance of the layered oxide cathode materials. Employing X-ray diffraction (XRD) and aberration-corrected scanning transmission electron microscopy (STEM), we find that as the material transitions from a disordered to an ordered state, it forms four orientation variants corresponding to the four {111} NaCl planes. This transition is not intrinsic to all layered oxides and appears to be more strongly affected by nickel. Furthermore, with energy dispersive spectroscopy (EDS), we show that there is an increase in the nickel concentration at the interface between each orientation variant. This reduces the rate of lithium diffusion, negatively affects the rate capability, and could be contributing to the overall capacity fade.

  7. A unified description of adsorption on real surfaces from the Henry Range to the formation of the liquid layer

    Energy Technology Data Exchange (ETDEWEB)

    Cerofolini, G F

    1977-01-01

    A unified description of adsorption on real surfaces from the Henry Range to the formation of the liquid layer was developed on the basis of the BET theory and the assumption that sites on real surfaces are not energetically homogeneous. The model describes the successive Henry, Dubinin-Radushkevich, Freundlich, and multilayer BET behavior of the adsorbed phase as the pressure increases. An analysis of isotherms over the whole coverage range showed that the heterogeneous surface character decreases with increasing number of adsorbed layers; that adsorption into the first and higher layers may be competitive, which produces a new isotherm resembling a mixed type II and III isotherm as proposed by Cerofolini and coworkers.

  8. Heterogeneous distribution of plankton within the mixed layer and its implications for bloom formation in tropical seas

    KAUST Repository

    Calbet, Albert; Agersted, Mette Dalgaard; Kaartvedt, Stein; Mø hl, Malene; Mø ller, Eva Friis; Enghoff-Poulsen, Sø ren; Paulsen, Maria Lund; Solberg, Ingrid; Tang, Kam W.; Tonnesson, Kajsa; Raitsos, Dionysios E.; Nielsen, Torkel Gissel

    2015-01-01

    Intensive sampling at the coastal waters of the central Red Sea during a period of thermal stratification, prior to the main seasonal bloom during winter, showed that vertical patches of prokaryotes and microplankton developed and persisted for several days within the apparently density uniform upper layer. These vertical structures were most likely the result of in situ growth and mortality (e.g., grazing) rather than physical or behavioural aggregation. Simulating a mixing event by adding nutrient-rich deep water abruptly triggered dense phytoplankton blooms in the nutrient-poor environment of the upper layer. These findings suggest that vertical structures within the mixed layer provide critical seeding stocks that can rapidly exploit nutrient influx during mixing, leading to winter bloom formation.

  9. Heterogeneous distribution of plankton within the mixed layer and its implications for bloom formation in tropical seas

    DEFF Research Database (Denmark)

    Calbet, Albert; Agersted, Mette Dalgaard; Kaartvedt, Stein

    2015-01-01

    Intensive sampling at the coastal waters of the central Red Sea during a period of thermal stratification, prior to the main seasonal bloom during winter, showed that vertical patches of prokaryotes and microplankton developed and persisted for several days within the apparently density uniform...... upper layer. These vertical structures were most likely the result of in situ growth and mortality (e.g., grazing) rather than physical or behavioural aggregation. Simulating a mixing event by adding nutrient-rich deep water abruptly triggered dense phytoplankton blooms in the nutrient-poor environment...... of the upper layer. These findings suggest that vertical structures within the mixed layer provide critical seeding stocks that can rapidly exploit nutrient influx during mixing, leading to winter bloom formation...

  10. Heterogeneous distribution of plankton within the mixed layer and its implications for bloom formation in tropical seas

    KAUST Repository

    Calbet, Albert

    2015-06-11

    Intensive sampling at the coastal waters of the central Red Sea during a period of thermal stratification, prior to the main seasonal bloom during winter, showed that vertical patches of prokaryotes and microplankton developed and persisted for several days within the apparently density uniform upper layer. These vertical structures were most likely the result of in situ growth and mortality (e.g., grazing) rather than physical or behavioural aggregation. Simulating a mixing event by adding nutrient-rich deep water abruptly triggered dense phytoplankton blooms in the nutrient-poor environment of the upper layer. These findings suggest that vertical structures within the mixed layer provide critical seeding stocks that can rapidly exploit nutrient influx during mixing, leading to winter bloom formation.

  11. Formation and entrainment of fluid mud layers in troughs of subtidal dunes in an estuarine turbidity zone

    DEFF Research Database (Denmark)

    Becker, Marius; Schrottke, Kerstin; Bartholomä, Alexander

    2013-01-01

    25 g/L below the lutocline to 70 g/L at the river bed, whereas the gelling concentration was below 70 g/L. Sites of fluid mud formation coincided with the location of the estuarine turbidity zone during slack water. On average, near-bed density gradients were initially observed in dune troughs 1.2 h...... before slack water, and all fluid mud layers were entrained 2.3 h after slack water. No shear instabilities occurred until 1.8 h after slack water. While the flow was oriented in the dune direction, rapid entrainment was related to the development of the turbulent flow field behind dunes and is explained...... to be induced by advection of strong turbulence during accelerating currents. Fluid mud layers in dune troughs were entrained at an earlier point in time after slack water, compared to adjacent layers formed on a comparatively flat bed, where dune crests did not protrude from the lutocline....

  12. Al-Si alloy point contact formation and rear surface passivation for silicon solar cells using double layer porous silicon

    International Nuclear Information System (INIS)

    Moumni, Besma; Ben Jaballah, Abdelkader; Bessais, Brahim

    2012-01-01

    Lowering the rear surface recombination velocities by a dielectric layer has fascinating advantages compared with the standard fully covered Al back-contact silicon solar cells. In this work the passivation effect by double layer porous silicon (PS) (wide band gap) and the formation of Al-Si alloy in narrow p-type Si point contact areas for rear passivated solar cells are analysed. As revealed by Fourier transform infrared spectroscopy, we found that a thin passivating aluminum oxide (Al 2 O 3 ) layer is formed. Scanning electron microscopy analysis performed in cross sections shows that with bilayer PS, liquid Al penetrates into the openings, alloying with the Si substrate at depth and decreasing the contact resistivity. At the solar cell level, the reduction in the contact area and resistivity leads to a minimization of the fill factor losses.

  13. Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High Concentration Electrolyte Layer

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Yan, Pengfei; Mei, Donghai; Engelhard, Mark H.; Cartmell, Samuel S.; Polzin, Bryant; Wang, Chong M.; Zhang, Jiguang; Xu, Wu

    2016-02-08

    Lithium (Li) metal has been extensively investigated as an anode for rechargeable battery applications due to its ultrahigh specific capacity and the lowest redox potential. However, significant challenges including dendrite growth and low Coulombic efficiency are still hindering the practical applications of rechargeable Li metal batteries. Here, we demonstrate that long-term cycling of Li metal batteries can be realized by the formation of a transient high concentration electrolyte layer near the surface of Li metal anode during high rate discharge process. The highly concentrated Li+ ions in this transient layer will immediately solvate with the available solvent molecules and facilitate the formation of a stable and flexible SEI layer composed of a poly(ethylene carbonate) framework integrated with other organic/inorganic lithium salts. This SEI layer largely suppresses the corrosion of Li metal anode by free organic solvents and enables the long-term operation of Li metal batteries. The fundamental findings in this work provide a new direction for the development and operation of Li metal batteries that could be operated at high current densities for a wide range of applications.

  14. Effects of soot formation on shape of a nonpremixed laminar flame established in a shear boundary layer in microgravity

    International Nuclear Information System (INIS)

    Wang, H Y; Merino, J L Florenciano; Dagaut, P

    2011-01-01

    A numerical study was performed to give a quantitative description of a heavily sooting, nonpremixed laminar flame established in a shear boundary layer in microgravity. Controlling mechanisms of three dimensional flow, combustion, soot and radiation are coupled. Soot volume fraction were predicted by using three approaches, referred respectively to as the fuel, acetylene and PAH inception models. It is found that the PAH inception model, which is based on the formation of two and three-ringed aromatic species, reproduces correctly the experimental data from a laminar ethylene diffusion flame. The PAH inception model serves later to better understand flame quenching, flame stand-off distance and soot formation as a function of the dimensionless volume coefficient, defined as C q = V F /V ox where V F is the fuel injection velocity, and V ox air stream velocity. The present experiments showed that a blue unstable flame, negligible radiative feedback, may change to a yellow stable flame, significant radiative loss with an increase of C q ; this experimental trend was numerically reproduced. The flame quenching occurs at the trailing edge due to radiative heat loss which is significantly amplified by increasing V F or decreasing V ox , favouring soot formation. Along a semi-infinite fuel zone, the ratio, d f /d b , where d f is the flame standoff distance, and d b the boundary layer thickness, converges towards a constant value of 1.2, while soot resides always within the boundary layer far away from the flame sheet.

  15. Tephrostratigraphy and potassium-argon age determinations of seven volcanic ash layers in the Muddy Creek formation of southern Nevada

    International Nuclear Information System (INIS)

    Metcalf, L.A.

    1982-04-01

    Seven silicic tephra layers occur in alluvial deposits of the Muddy Creek and equivalent formations at three localities in southern Nevada. Chemical and petrographic characterization indicate the tephra were derived from seven different volcanic eruptions and do not represent any previously known tephra layers. K-Ar age determinations on minerals or glass from each layer yielded 6 to 12 m.y. ages. Discordant ages were obtained on multiple mineral phases due to incorporation of detrital contaminants. The tephra are sufficiently distinctive to constitute stratigraphic marker horizons in the Muddy Creek and equivalent formations. Derivation from the southwestern Nevada volcanic field, active 16 to 6 m.y., is highly likely for some of the tephra. The K-Ar results suggest substantial parts of the Muddy Creek Formation and equivalent basin-fill are 6 to 12 m.y., indicating basin-range faulting began prior to 12 m.y. Little tectonic deformation or physiographic change has occurrred in the past 6 m.y

  16. Formation of Ti-N graded bioceramic layer by DC hollow-cathode plasma nitriding

    Institute of Scientific and Technical Information of China (English)

    ZHENG Chuan-lin

    2004-01-01

    Ti-N graded ceramic layer was formed on titanium by using DC hollow-cathode plasma nitriding technique. The structure of Ti-N layer was analyzed using X-ray diffractometry(XRD) with Cu Kα radiation, and the microhardness( HV0.1) was measured from the surface to inner along the cross section of Ti-N layer. The results indicate that the Ti-N graded layer is composed of ε-Ti2 N, δ-TiN and α-Ti(N) phases. Mechanism discussion shows that hollow-cathode discharge can intensify gas ionization, increase current density and enhance the nitriding potential, which directly increases the thickness of the diffusion coatings compared with traditional nitriding methods.

  17. Passivation layer breakdown during laser-fired contact formation for photovoltaic devices

    International Nuclear Information System (INIS)

    Raghavan, A.; DebRoy, T.; Palmer, T. A.

    2014-01-01

    Low resistance laser-fired ohmic contacts (LFCs) can be formed on the backside of Si-based solar cells using microsecond pulses. However, the impact of these longer pulse durations on the dielectric passivation layer is not clear. Retention of the passivation layer during processing is critical to ensure low recombination rates of electron-hole pairs at the rear surface of the device. In this work, advanced characterization tools are used to demonstrate that although the SiO 2 passivation layer melts directly below the laser, it is well preserved outside the immediate LFC region over a wide range of processing parameters. As a result, low recombination rates at the passivation layer/wafer interface can be expected despite higher energy densities associated with these pulse durations.

  18. The formation and evolution of layered structures in porous media: effects of porosity and mechanical dispersion

    NARCIS (Netherlands)

    Schoofs, Stan; Trompert, Ron A.; Hansen, Ulrich

    1999-01-01

    Horizontally layered structures can develop in porous or partially molten environments, such as hydrothermal systems, magmatic intrusions and the early Earth's mantle. The porosity f of these natural environments is typically small. Since dissolved chemical elements unlike heat cannot diffuse

  19. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure

    KAUST Repository

    Tiraferri, Alberto; Yip, Ngai Yin; Phillip, William A.; Schiffman, Jessica D.; Elimelech, Menachem

    2011-01-01

    the technology to the point that it is commercially viable. Here, a systematic investigation of the influence of thin-film composite membrane support layer structure on forward osmosis performance is conducted. The membranes consist of a selective polyamide

  20. Amorphous Ti-Zr

    International Nuclear Information System (INIS)

    Rabinkin, A.; Liebermann, H.; Pounds, S.; Taylor, T.

    1991-01-01

    This paper is the first report on processing, properties and potential application of amorphous titanium/zirconium-base alloys produced in the form of a good quality continuous and ductile ribbon having up to 12.5 mm width. To date, the majority of titanium brazing is accomplished using cooper and aluminum-base brazing filler metals. The brazements produced with these filler metals have rather low (∼300 degrees C) service temperature, thus impeding progress in aircraft and other technologies and industries. The attempt to develop a generation of high temperature brazing filler metals was made in the late sixties-early seventies studies in detail were a large number of Ti-, Zr-Ti-Zr, Ti-V and Zr-V-Ti based alloys. The majority of these alloys has copper and nickel as melting temperature depressants. The presence of nickel and copper converts them into eutectic alloys having [Ti(Zr)] [Cu(Ni)], intermetallic phases as major structural constituents. This, in turn, results in high alloy brittleness and poor, if any, processability by means of conventional, i.e. melting-ingot casting-deformation technology. In spite of good wettability and high joint strength achieved in dozens of promising alloys, only Ti-15Cu-15Ni is now widely used as a brazing filler metal for high service temperature. Up until now this material could not be produced as a homogeneous foil and is instead applied as a clad strip consisting of three separate metallic layers

  1. Amorphous silicon based radiation detectors

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Cho, G.; Drewery, J.; Jing, T.; Kaplan, S.N.; Qureshi, S.; Wildermuth, D.; Fujieda, I.; Street, R.A.

    1991-07-01

    We describe the characteristics of thin(1 μm) and thick (>30μm) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and γ rays. For x-ray, γ ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. 13 refs., 7 figs

  2. Amorphous inclusions during Ge and GeSn epitaxial growth via chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gencarelli, F., E-mail: federica.gencarelli@imec.be [imec, Kapeldreef 75, 3001 Leuven (Belgium); Dept. of Metallurgy and Materials Engineering, KU Leuven, B-3001 Leuven (Belgium); Shimura, Y. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Kumar, A. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Vincent, B.; Moussa, A.; Vanhaeren, D.; Richard, O.; Bender, H. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, W. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Caymax, M.; Loo, R. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Heyns, M. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Dept. of Metallurgy and Materials Engineering, KU Leuven, B-3001 Leuven (Belgium)

    2015-09-01

    In this work, we discuss the characteristics of particular island-type features with an amorphous core that are developed during the low temperature epitaxial growth of Ge and GeSn layers by means of chemical vapor deposition with Ge{sub 2}H{sub 6}. Although further investigations are needed to unambiguously identify the origin of these features, we suggest that they are originated by the formation of clusters of H and/or contaminants atoms during growth. These would initially cause the formation of pits with crystalline rough facets over them, resulting in ring-shaped islands. Then, when an excess surface energy is overcome, an amorphous phase would nucleate inside the pits and fill them. Reducing the pressure and/or increasing the growth temperature can be effective ways to prevent the formation of these features, likely due to a reduction of the surface passivation from H and/or contaminant atoms. - Highlights: • Island features with amorphous cores develop during low T Ge(Sn) CVD with Ge{sub 2}H{sub 6.} • These features are thoroughly characterized in order to understand their origin. • A model is proposed to describe the possible evolution of these features. • Lower pressures and/or higher temperatures avoid the formation of these features.

  3. Structural transformation of implanted diamond layers during high temperature annealing

    International Nuclear Information System (INIS)

    Rubanov, S.; Fairchild, B.A.; Suvorova, A.; Olivero, P.; Prawer, S.

    2015-01-01

    In the recent years graphitization of ion-beam induced amorphous layers became the basic tool for device fabrication in diamond. The etchable graphitic layers can be removed to form free-standing membranes into which the desired structures can be sculpted using FIB milling. The optical properties of the devices fabricated using this method are assumed on the model of sharp diamond–air interface. The real quality of this interface could depend on degree of graphitization of the amorphous damage layers after annealing. In the present work the graphitization process was studied using conventional and analytical TEM. It was found that annealing at 550 °C results in a partial graphitization of the implanted volume with formation of the nano-crystalline graphitic phase sandwiched between layers of tetrahedral amorphous carbon. Annealing at 1400 °C resulted in complete graphitization of the amorphous layers. The average size of graphite nano-crystals did not exceed 5 nm with predominant orientation of c-planes normal to the sample surface.

  4. Structural morphology of amorphous conducting carbon film

    Indian Academy of Sciences (India)

    Unknown

    moves from low preparation temperature to high preparation temperature. The amorphous .... nm and the interac- tion between the pi-electron clouds of the two layers re- .... sp2 configuration forms to minimize stress and making. C900 films ...

  5. Formation of macroscopic surface layers on Fe(0) electrocoagulation electrodes during an extended field trial of arsenic treatment.

    Science.gov (United States)

    van Genuchten, Case M; Bandaru, Siva R S; Surorova, Elena; Amrose, Susan E; Gadgil, Ashok J; Peña, Jasquelin

    2016-06-01

    Extended field trials to remove arsenic (As) via Fe(0) electrocoagulation (EC) have demonstrated consistent As removal from groundwater to concentrations below 10 μg L(-1). However, the coulombic performance of long-term EC field operation is lower than that of laboratory-based systems. Although EC electrodes used over prolonged periods show distinct passivation layers, which have been linked to decreased treatment efficiency, the spatial distribution and mineralogy of such surface layers have not been investigated. In this work, we combine wet chemical measurements with sub-micron-scale chemical maps and selected area electron diffraction (SAED) to determine the chemical composition and mineral phase of surface layers formed during long-term Fe(0) EC treatment. We analyzed Fe(0) EC electrodes used for 3.5 months of daily treatment of As-contaminated groundwater in rural West Bengal, India. We found that the several mm thick layer that formed on cathodes and anodes consisted of primarily magnetite, with minor fractions of goethite. Spatially-resolved SAED patterns also revealed small quantities of CaCO3, Mn oxides, and SiO2, the source of which was the groundwater electrolyte. We propose that the formation of the surface layer contributes to decreased treatment performance by preventing the migration of EC-generated Fe(II) to the bulk electrolyte, where As removal occurs. The trapped Fe(II) subsequently increases the surface layer size at the expense of treatment efficiency. Based on these findings, we discuss several simple and affordable methods to prevent the efficiency loss due to the surface layer, including alternating polarity cycles and cleaning the Fe(0) surface mechanically or via electrolyte scouring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Stabilization of amorphous calcium carbonate by controlling its particle size

    NARCIS (Netherlands)

    Nudelman, F.; Sonmezler, E.; Bomans, P.H.H.; With, de G.; Sommerdijk, N.A.J.M.

    2010-01-01

    Amorphous calcium carbonate (ACC) nanoparticles of different size are prepared using a flow system. Post-synthesis stabilization with a layer of poly[(a,ß)-DL-aspartic acid] leads to stabilization of the ACC, but only for particles

  7. Amorphous iron (II) carbonate

    DEFF Research Database (Denmark)

    Sel, Ozlem; Radha, A.V.; Dideriksen, Knud

    2012-01-01

    Abstract The synthesis, characterization and crystallization energetics of amorphous iron (II) carbonate (AFC) are reported. AFC may form as a precursor for siderite (FeCO3). The enthalpy of crystallization (DHcrys) of AFC is similar to that of amorphous magnesium carbonate (AMC) and more...

  8. Nitride alloy layer formation of duplex stainless steel using nitriding process

    Science.gov (United States)

    Maleque, M. A.; Lailatul, P. H.; Fathaen, A. A.; Norinsan, K.; Haider, J.

    2018-01-01

    Duplex stainless steel (DSS) shows a good corrosion resistance as well as the mechanical properties. However, DSS performance decrease as it works under aggressive environment and at high temperature. At the mentioned environment, the DSS become susceptible to wear failure. Surface modification is the favourable technique to widen the application of duplex stainless steel and improve the wear resistance and its hardness properties. Therefore, the main aim of this work is to nitride alloy layer on the surface of duplex stainless steel by the nitriding process temperature of 400°C and 450°C at different time and ammonia composition using a horizontal tube furnace. The scanning electron microscopy and x-ray diffraction analyzer are used to analyse the morphology, composition and the nitrided alloy layer for treated DSS. The micro hardnesss Vickers tester was used to measure hardness on cross-sectional area of nitrided DSS. After nitriding, it was observed that the hardness performance increased until 1100 Hv0.5kgf compared to substrate material of 250 Hv0.5kgf. The thickness layer of nitride alloy also increased from 5μm until 100μm due to diffusion of nitrogen on the surface of DSS. The x-ray diffraction results showed that the nitride layer consists of iron nitride, expanded austenite and chromium nitride. It can be concluded that nitride alloy layer can be produced via nitriding process using tube furnace with significant improvement of microstructural and hardness properties.

  9. Adaptive panoramic tomography with a circular rotational movement for the formation of multifocal image layers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. S.; Cho, H. S.; Park, Y. O.; Je, U. K.; Hong, D. K.; Choi, S. I.; Koo, Y. S. [Yonsei University, Wonju (Korea, Republic of)

    2012-02-15

    Panoramic radiography with which only structures within a certain image layer are in focus and others out of focus on the panoramic image has become a popular imaging technique especially in dentistry. However, the major drawback to the technique is a mismatch between the structures to be focused and the predefined image layer mainly due to the various shapes and sizes of dental arches and/or to malpositioning of the patient. These result in image quality typically inferior to that obtained using intraoral radiographic techniques. In this paper, to overcome these difficulties, we suggest a new panoramic reconstruction algorithm, the so-called adaptive panoramic tomography (APT), capable of reconstructing multifocal image layers with no additional exposure. In order to verify the effectiveness of the proposed algorithm, we performed systematic simulation studies with a circular rotational movement and investigated the image performance.

  10. Rule of formation of aluminum electroplating layer on Q235 steel.

    Science.gov (United States)

    Ding, Zhimin; Feng, Qiuyuan; Shen, Changbin; Gao, Hong

    2011-06-01

    Aluminum electroplating layer on Q235 steel in AlCl3-NaCl-KCl molten salt was obtained, and the rule of its nucleation and growth were investigated. The results showed that aluminum electroplating layer formed through nucleating and growing of aluminum particles, and thickened by delaminating growth pattern. At low current density, the morphology of aluminum particles took on flake-like, while at high current density they changed to spherical. The thickness of plating layer increases with increasing current density and electroplating time. The relationship between the plating thickness (δ) and electroplating time (t) or current density (i) can be expressed as δ = 0.28f(137), and δ = 1.1i(1-39). Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  11. Protein Adsorption and Layer Formation at the Stainless Steel-Solution Interface Mediates Shear-Induced Particle Formation for an IgG1 Monoclonal Antibody.

    Science.gov (United States)

    Kalonia, Cavan K; Heinrich, Frank; Curtis, Joseph E; Raman, Sid; Miller, Maria A; Hudson, Steven D

    2018-03-05

    Passage of specific protein solutions through certain pumps, tubing, and/or filling nozzles can result in the production of unwanted subvisible protein particles (SVPs). In this work, surface-mediated SVP formation was investigated. Specifically, the effects of different solid interface materials, interfacial shear rates, and protein concentrations on SVP formation were measured for the National Institute of Standards and Technology monoclonal antibody (NISTmAb), a reference IgG1 monoclonal antibody (mAb). A stainless steel rotary piston pump was used to identify formulation and process parameters that affect aggregation, and a flow cell (alumina or stainless steel interface) was used to further investigate the effect of different interface materials and/or interfacial shear rates. SVP particles produced were monitored using flow microscopy or flow cytometry. Neutron reflectometry and a quartz crystal microbalance with dissipation monitoring were used to characterize adsorption and properties of NISTmAb at the stainless steel interface. Pump/shear cell experiments showed that the NISTmAb concentration and interface material had a significant effect on SVP formation, while the effects of interfacial shear rate and passage number were less important. At the higher NISTmAb concentrations, the adsorbed protein became structurally altered at the stainless steel interface. The primary adsorbed layer remained largely undisturbed during flow, suggesting that SVP formation at high NISTmAb concentration was caused by the disruption of patches and/or secondary interactions.

  12. Surface crystallization and magnetic properties of amorphous Fe80B20 alloy

    International Nuclear Information System (INIS)

    Vavassori, P.; Ronconi, F.; Puppin, E.

    1997-01-01

    We have studied the effects of surface crystallization on the magnetic properties of Fe 80 B 20 amorphous alloys. The surface magnetic properties have been studied with magneto-optic Kerr measurements, while those of bulk with a vibrating sample magnetometer. This study reveals that surface crystallization is similar to the bulk process but occurs at a lower temperature. At variance with previous results on other iron-based amorphous alloys the surface crystalline layer does not induce bulk magnetic hardening. Furthermore, both the remanence to saturation ratio and the bulk magnetic anisotropy do not show appreciable variations after the formation of the surface crystalline layer. The Curie temperature of the surface layer is lower with respect to the bulk of the sample. These effects can be explained by a lower boron concentration in the surface region of the as-cast amorphous alloy. Measurements of the chemical composition confirm a reduction of boron concentration in the surface region. copyright 1997 American Institute of Physics

  13. Achievement report for fiscal 1984 on Sunshine Program-entrusted research and development. Research and development of amorphous solar cells (Research on amorphous silicon interface); 1984 nendo amorphous taiyo denchi no kenkyu kaihatsu seika hokokusho. Amorphous silicon no kaimen no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-03-01

    As for the formation of amorphous semiconductors by photo-CVD (chemical vapor deposition) processes, details are examined of a-Si formed by the excimer laser-excited photo-CVD process, a-SiC formed by the directly excited photo-CVD process, a-SiGe formed by the mercury sensitized reaction photo-CVD process, and {mu}c-Si formed by the mercury-sensitized reaction photo-CVD process. It is then found that all of the said materials are superior to a product of the plasma CVD process in terms of film quality. As for the fabrication of amorphous Si solar cells by a photo-CVD process, a 3-separate-chamber unit is built, in which all the p-, I-, and n-layer are formed by photo-CVD. It is then found that the introduction of a buffer layer into the p/I interface is a powerful tool to enhance efficiency and that the use of the buffer zone brings about an increase of 9% or more in conversion efficiency. In the case of an amorphous solar cell using monosilane, buffer layer introduction results in a conversion efficiency of 9.05%. (NEDO)

  14. Structural, optical and compositional stability of MoS2 multi-layer flakes under high dose electron beam irradiation

    Science.gov (United States)

    Rotunno, E.; Fabbri, F.; Cinquanta, E.; Kaplan, D.; Longo, M.; Lazzarini, L.; Molle, A.; Swaminathan, V.; Salviati, G.

    2016-06-01

    MoS2 multi-layer flakes, exfoliated from geological molybdenite, have been exposed to high dose electron irradiation showing clear evidence of crystal lattice and stoichiometry modifications. A massive surface sulfur depletion is induced together with the consequent formation of molybdenum nanoislands. It is found that a nanometric amorphous carbon layer, unwillingly deposited during the transmission electron microscope experiments, prevents the formation of the nanoislands. In the absence of the carbon layer, the formation of molybdenum grains proceeds both on the top and bottom surfaces of the flake. If carbon is present on both the surfaces then the formation of Mo grains is completely prevented.

  15. Accelerating action of stresses on crystallization kinetics in silicon ion-implanted layers during pulsed heating

    International Nuclear Information System (INIS)

    Aleksandrov, L.N.

    1985-01-01

    Numerical simulation of the effect of stressed in ion-implanted layers on kinetics of amorphous phase transformations is performed. The suggested model of accounting stresses including concentration ones is based on the locality of action of interstitial addition atoms and on general structural inhomogeneity of amorphous semiconductor leading to the formation of areas of the facilitated phase transition. Accounting of effect of energy variation of silicon atoms interaction on probability of displacement events and atoms building in lattice points or atomic bonds disintegration allows one to trace the accelerating action of introduced by ion implantation stresses on the kinetics of layer crystallization during pulsed heating

  16. Formation of protein/surfactant adsorption layer at the air/water interface as studied by dilational surface rheology.

    Science.gov (United States)

    Mikhailovskaya, A A; Noskov, B A; Lin, S-Y; Loglio, G; Miller, R

    2011-08-25

    The dynamic dilatational surface elasticity of mixed solutions of globular proteins (β-lactoglobulin (BLG) and bovine serum albumin (BSA)) with cationic (dodecyltrimethylammonium bromide (DTAB)) and anionic (sodium dodecyl sulfate (SDS)) surfactants was measured as a function of the surfactant concentration and surface age. If the cationic surfactant concentration exceeds a certain critical value, the kinetic dependencies of the dynamic surface elasticity of BLG/DTAB and BSA/DTAB solutions become nonmonotonous and resemble those of mixed solutions of proteins with guanidine hydrochloride. This result indicates not only the destruction of the protein tertiary structure in the surface layer of mixed solution but also a strong perturbation of the secondary structure. The corresponding kinetic dependencies for protein solutions with added anionic surfactants are always monotonous, thereby revealing a different mechanism of the adsorption layer formation. One can assume that the secondary structure is destroyed to a lesser extent in the latter case and hinders the formation of loops and tails at the interface. The increase of the solution's ionic strength by the addition of sodium chloride results in stronger changes of the protein conformations in the surface layer and the appearance of a local maximum in the kinetic dependencies of the dynamic surface elasticity in a relatively narrow range of SDS concentration. © 2011 American Chemical Society

  17. Theory of the formation of the electric double layer at the ion exchange membrane-solution interface.

    Science.gov (United States)

    Moya, A A

    2015-02-21

    This work aims to extend the study of the formation of the electric double layer at the interface defined by a solution and an ion-exchange membrane on the basis of the Nernst-Planck and Poisson equations, including different values of the counter-ion diffusion coefficient and the dielectric constant in the solution and membrane phases. The network simulation method is used to obtain the time evolution of the electric potential, the displacement electric vector, the electric charge density and the ionic concentrations at the interface between a binary electrolyte solution and a cation-exchange membrane with total co-ion exclusion. The numerical results for the temporal evolution of the interfacial electric potential and the surface electric charge are compared with analytical solutions derived in the limit of the shortest times by considering the Poisson equation for a simple cationic diffusion process. The steady-state results are justified from the Gouy-Chapman theory for the diffuse double layer in the limits of similar and high bathing ionic concentrations with respect to the fixed-charge concentration inside the membrane. Interesting new physical insights arise from the interpretation of the process of the formation of the electric double layer at the ion exchange membrane-solution interface on the basis of a membrane model with total co-ion exclusion.

  18. Influence of layering on the formation and growth of solution pipes

    Directory of Open Access Journals (Sweden)

    Karine ePetrus

    2016-01-01

    Full Text Available In karst systems, hydraulic conduits called solution pipes (or wormholes are formed as a result of the dissolution of limestone rocks by the water surcharged with CO2. The solution pipes are the end result of a positive feedback between spatial variations in porosity in the rock matrix and the local dissolution rate. Here, we investigate numerically the effect of rock stratification on the solution pipe growth, using a simple model system with a number of horizontal layers, which are less porous than the rest of the matrix. Stratification is shown to affect the resulting piping patterns in a variety of ways. First of all, it enhances the competition between the pipes, impeding the growth of the shorter ones and enhancing the flow in the longer ones, which therefore grow longer. This is reflected in the change of the pipe length distribution, which becomes steeper as the porosity contrast between the layers is increased. Additionally, stratification affects the shapes of individual solution pipes, with characteristic widening of the profiles in between the layers and narrowing within the layers. These results are in qualitative agreement with the piping morphologies observed in nature.

  19. Formation of Layered Double Hydroxides on Alumina Surface in Aqueous Solutions Containing Divalent Metal Cations

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Mašátová, P.; Novotná, P.; Jirátová, Květa

    2009-01-01

    Roč. 57, č. 4 (2009), s. 425-432 ISSN 0009-8604 R&D Projects: GA ČR GA104/07/1400 Institutional research plan: CEZ:AV0Z40720504 Keywords : deposition * layered double hydroxides * supported mixed oxides Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.431, year: 2009

  20. A mechanical model for surface layer formation on self-lubricating ceramic composites

    NARCIS (Netherlands)

    Song, Jiupeng; Valefi, Mahdiar; de Rooij, Matthias B.; Schipper, Dirk J.

    2010-01-01

    To predict the thickness of a self-lubricating layer on the contact surface of ceramic composite material containing a soft phase during dry sliding test, a mechanical model was built to calculate the material transfer of the soft second phase in the composite to the surface. The tribological test,

  1. Formation of a nanocrystalline layer on the surface of stone wool fibers

    DEFF Research Database (Denmark)

    Yue, Yuanzheng; Korsgaard, Martin; Kirkegaard, Lise Frank

    2009-01-01

    In the present paper, we report a simple approach for creating a nanocrystalline layer on the surface of stone wool fibers (SWFs) with a basalt-like composition. The approach is based on a preoxidation process of the SWFs in atmospheric air at a temperature around the glass transition temperature...

  2. Heavy ions amorphous semiconductors irradiation study

    International Nuclear Information System (INIS)

    Benmalek, M.

    1978-01-01

    The behavior of amorphous semiconductors (germanium and germanium and arsenic tellurides) under ion bombardment at energies up to 2 MeV was studied. The irradiation induced modifications were followed using electrical parameter changes (resistivity and activation energy) and by means of the transmission electron microscopy observations. The electrical conductivity enhancement of the irradiated samples was interpreted using the late conduction theories in amorphous compounds. In amorphous germanium, Electron Microscopy showed the formations of 'globules', these defects are similar to voids observed in irradiated metals. The displacement cascade theory was used for the interpretation of the irradiation induced defects formation and a coalescence mechanism of growth was pointed out for the vacancy agglomeration [fr

  3. Photoemission studies of amorphous silicon induced by P + ion implantation

    Science.gov (United States)

    Petö, G.; Kanski, J.

    1995-12-01

    An amorphous Si layer was formed on a Si (1 0 0) surface by P + implantation at 80 keV. This layer was investigated by means of photoelectron spectroscopy. The resulting spectra are different from earlier spectra on amorphous Si prepared by e-gun evaporation or cathode sputtering. The differences consist of a decreased intensity in the spectral region corresponding to p-states, and appearace of new states at higher binding energy. Qualitativity similar results have been reported for Sb implanted amorphous Ge and the modification seems to be due to the changed short range order.

  4. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  5. Formation of layered microstructure in the Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O superconductors

    International Nuclear Information System (INIS)

    Jin, S.; Kammlott, G.W.; Tiefel, T.H.; Chen, S.K.

    1992-01-01

    The layered grain microstructure is essential for overcoming the weak link problem and ensuring high transport critical currents in the cuprate superconductors. In this paper we discuss the processing and the mechanisms for layer information in Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O. In melt-processed Y-Ba-Cu-O, sympathetic nucleation on previously nucleated YBa 2 Cu 3 O 7-δ plates during solidification appears to be dominant mechanism for the formation of parallel plate-shaped grains. In the Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O ribbons, the interface reaction between the superconductor layer and the silvers substrate seems to be the main mechanism for the c-axis texturing of the layered grains. The drastically different critical current behavior in the c-axis textured Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O ribbons is discussed in terms of possible differences in the nature of the twist and tilt grain boundaries. (orig.)

  6. Role of SiNx Barrier Layer on the Performances of Polyimide Ga2O3-doped ZnO p-i-n Hydrogenated Amorphous Silicon Thin Film Solar Cells

    Science.gov (United States)

    Wang, Fang-Hsing; Kuo, Hsin-Hui; Yang, Cheng-Fu; Liu, Min-Chu

    2014-01-01

    In this study, silicon nitride (SiNx) thin films were deposited on polyimide (PI) substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD) system. The gallium-doped zinc oxide (GZO) thin films were deposited on PI and SiNx/PI substrates at room temperature (RT), 100 and 200 °C by radio frequency (RF) magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10−3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH4 = 20 sccm and NH3 = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si) thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells’ properties were also investigated. We had found that substrates to get the optimally solar cells’ efficiency were 200 °C-deposited GZO-SiNx/PI. PMID:28788494

  7. Role of SiNx Barrier Layer on the Performances of Polyimide Ga2O3-doped ZnO p-i-n Hydrogenated Amorphous Silicon Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Fang-Hsing Wang

    2014-02-01

    Full Text Available In this study, silicon nitride (SiNx thin films were deposited on polyimide (PI substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD system. The gallium-doped zinc oxide (GZO thin films were deposited on PI and SiNx/PI substrates at room temperature (RT, 100 and 200 °C by radio frequency (RF magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10−3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH4 = 20 sccm and NH3 = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~1000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells’ properties were also investigated. We had found that substrates to get the optimally solar cells’ efficiency were 200 °C-deposited GZO-SiNx/PI.

  8. Imaging of Crystalline and Amorphous Surface Regions Using Time-of-Flight Secondary-Ion Mass Spectrometry (ToF-SIMS): Application to Pharmaceutical Materials.

    Science.gov (United States)

    Iuraş, Andreea; Scurr, David J; Boissier, Catherine; Nicholas, Mark L; Roberts, Clive J; Alexander, Morgan R

    2016-04-05

    The structure of a material, in particular the extremes of crystalline and amorphous forms, significantly impacts material performance in numerous sectors such as semiconductors, energy storage, and pharmaceutical products, which are investigated in this paper. To characterize the spatial distribution for crystalline-amorphous forms at the uppermost molecular surface layer, we performed time-of-flight secondary-ion mass spectroscopy (ToF-SIMS) measurements for quench-cooled amorphous and recrystallized samples of the drugs indomethacin, felodipine, and acetaminophen. Polarized light microscopy was used to localize crystallinity induced in the samples under controlled conditions. Principal component analysis was used to identify the subtle changes in the ToF-SIMS spectra indicative of the amorphous and crystalline forms for each drug. The indicators of amorphous and crystalline surfaces were common in type across the three drugs, and could be explained in general terms of crystal packing and intermolecular bonding, leading to intramolecular bond scission in the formation of secondary ions. Less intramolecular scission occurred in the amorphous form, resulting in a greater intensity of molecular and dimer secondary ions. To test the generality of amorphous-crystalline differentiation using ToF-SIMS, a different recrystallization method was investigated where acetaminophen single crystals were recrystallized from supersaturated solutions. The findings indicated that the ability to assign the crystalline/amorphous state of the sample using ToF-SIMS was insensitive to the recrystallization method. This demonstrates that ToF-SIMS is capable of detecting and mapping ordered crystalline and disordered amorphous molecular materials forms at micron spatial resolution in the uppermost surface of a material.

  9. Hydrogen in amorphous silicon

    International Nuclear Information System (INIS)

    Peercy, P.S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH 1 ) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon

  10. Irreversible fouling of membrane bioreactors due to formation of a non-biofilm gel-like layer

    DEFF Research Database (Denmark)

    Poorasgari, Eskandar; Larsen, Poul; Zheng, Xing

    2013-01-01

    Extra-cellular polymeric substances (EPS), known to contribute to fouling in membrane bio-reactors (MBR)s, are generally divided into bound and free EPS. The free EPS are able to form a gel-like layer on the membrane active surface. The mechanisms involved in formation of such layer and its effects...... on performance of the MBR membranes were studied. The free EPS, extracted by centrifugation and microfiltration, contained a significant amount of humic-like substances. Under static contact to the membrane, adsorption of humic-like substances to the membrane occurred and could be explained by conventional...... adsorption kinetics. Due to static adsorption, surface roughness of the membrane declined significantly indicating that adsorbed matters to the membrane filled the cavities of the membrane surface. Filtration of the free EPS caused 50% water flux decline. The fouling resistance linearly increased...

  11. Locomotion of Amorphous Surface Robots

    Science.gov (United States)

    Bradley, Arthur T. (Inventor)

    2018-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  12. Effects of Fermented Sumach on the Formation of Slime Layer of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Sahra Kırmusaoğlu

    2012-03-01

    Full Text Available Objective: Staphylococcus aureus (S. aureus is one of the most commonly isolated bacterial pathogens in hospitals, and the most frequent cause of nosocomial infections. Nosocomial staphylococcal foreign-body infections related to biofilm formation are a serious threat, demanding new therapeutic and preventive strategies. Implantation of intravenous catheters and surgical implantation of prosthetic implants carry a risk of infection. In order to prevent all these effects of biofilms, a study was designed to observe the possible antibacterial effect of sumach (Rhus coriaria on the biofilm formation of S. aureus. Material and Methods: The influence of varying concentrations of sumach on the formation of biofilms by 13 strains of Staphylococcus aureus was tested by a microelisa assay. Results: The significant differences between varying concentrations of sumach (0.1, 0.2, 0.5 and 1.0 µl/ml were observed in four methicillin resistant Staphylococcus aureus (MRSA and nine methicillin sensitive Staphylococcus aureus (MSSA (p<0.05. In bacteria, a dose-related decrease in the formation of slime, which is a major virulence factor of staphylococcal infections, was observed. Conclusion: In our study, using 0.1, 0.2, 0.5 and 1.0 µl/ml of sumach, thirteen strains lost, 17%, 22%, 28% and 48% respectively of their capacity to produce biofilms. Sumach, which is a herbal product, can decrease the formation of biofilm, which is a major virulence factor in staphylococcal infections.

  13. INVESTIGATING THE fFORMATION OF INTERMETALLIC COMPOUNDS AND THE VARIATION OF BOND STRENGTH BETWEEN Al-Cu LAYERS AFTER ANNEALING IN PRESENCE OF NICKEL BETWEEN LAYERS

    Directory of Open Access Journals (Sweden)

    A. Shabani

    2016-06-01

    Full Text Available In the present study, the effect of post-rolling annealing heat treatment on the formation of intermetallic compounds between Al-Cu strips, in the presence of nickel coating on the Cu strips, was investigated. In addition, the effect of post-rolling annealing and intermetallic compounds on the bond strength of Al-Cu strips was evaluated. In order to prepare samples, Cu strips were coated with nickel by electroplating process. After surface preparing, Cu strips were placed between two Al strips and roll bonded. This method is used for producing Al-Ni-Cu composites. Then the samples were annealed at 773K for 2 h. The formation of intermetallic compounds was studied using energy dispersive spectroscopy (EDS and X-ray diffraction (XRD. Also, in order to investigate bond strength of Al-Cu after post-rolling annealing heat treatment, samples were produced using nickel powder and nickel coating. Then bond strength of strips was investigated using peeling test. The results revealed that by post-rolling annealing of layers, the bond strength between Al-Cu strips decreases dramatically.

  14. Amorphization reaction in thin films of elemental Cu and Y

    Science.gov (United States)

    Johnson, R. W.; Ahn, C. C.; Ratner, E. R.

    1989-10-01

    Compositionally modulated thin films of Cu and Y were prepared in an ultrahigh-vacuum dc ion-beam deposition chamber. The amorphization reaction was monitored by in situ x-ray-diffraction measurements. Growth of amorphous Cu1-xYx is observed at room temperature with the initial formation of a Cu-rich amorphous phase. Further annealing in the presence of unreacted Y leads to Y enrichment of the amorphous phase. Growth of crystalline CuY is observed for T=469 K. Transmission-electron-microscopy measurements provide real-space imaging of the amorphous interlayer and growth morphology. Models are developed, incorporating metastable interfacial and bulk free-energy diagrams, for the early stage of the amorphization reaction.

  15. Recent advances in co-amorphous drug formulations

    DEFF Research Database (Denmark)

    Dengale, Swapnil Jayant; Grohganz, Holger; Rades, Thomas

    2016-01-01

    with other amorphous stabilization techniques. Because of this, several research groups started to investigate the co-amorphous formulation approach, resulting in an increasing amount of scientific publications over the last few years. This study provides an overview of the co-amorphous field and its recent......Co-amorphous drug delivery systems have recently gained considerable interest in the pharmaceutical field because of their potential to improve oral bioavailability of poorly water-soluble drugs through drug dissolution enhancement as a result of the amorphous nature of the material. A co...... findings. In particular, we investigate co-amorphous formulations from the viewpoint of solid dispersions, describe their formation and mechanism of stabilization, study their impact on dissolution and in vivo performance and briefly outline the future potentials....

  16. Formation and preservation of greigite (Fe3S4) in a thick sediment layer from the central South Yellow Sea

    Science.gov (United States)

    Liu, Jianxing; Mei, Xi; Shi, Xuefa; Liu, Qingsong; Liu, Yanguang; Ge, Shulan

    2018-04-01

    Sediments from continental shelves are sensitive to changes in both oceanic and terrestrial conditions, and, therefore, magnetic minerals in such sediments are affected strongly by depositional and diagenetic processes. Here, we investigated systematically an N-S transect of three sediment cores from the central South Yellow Sea (SYS) muddy area. Magnetic data indicate the presence of a horizontally distributed thick greigite-bearing layer. From an age model based on published magnetostratigraphy, accelerator mass spectrometry 14C dating ages, sedimentary characteristics and foraminiferal analysis, this layer was deposited within marine isotope stages (MIS) 17-13, following an enhanced sulphidic period over MIS 21-19 when the YS Warm Current and the associated YS Cold Water Mass were strong and where underlying sediments have higher total organic carbon, total sulphur and trace element molybdenum contents. Trace element cadmium enrichment in the greigite-bearing layers is documented for the first time, which indicates that weakly sulphidic (i.e. with trace levels of free H2S) conditions existed before greigite formed in a sulphidic environment during early diagenesis. It also indicates that subsequent conditions free of oxygen and H2S after greigite formation are more favourable for its preservation. We propose that organic matter supply was controlled over an extended period by moderate primary productivity. The combined effects of palaeoclimate and local tectonic subsidence were crucial for the formation and preservation of the identified greigite. In brief, our study improves understanding of the formation and preservation mechanisms of greigite in continental shelf sediments and reveals mid-Pleistocene palaeoenvironmental changes in the SYS.

  17. Immiscibility of Fluid Phases at Magmatic-hydrothermal Transition: Formation of Various PGE-sulfide Mineralization for Layered Basic Intrusions

    Science.gov (United States)

    Zhitova, L.; Borisenko, A.; Morgunov, K.; Zhukova, I.

    2007-12-01

    Fluid inclusions in quartz of the Merensky Reef (Bushveld Complex, South Africa) and the Chineisky Pluton (Transbaikal Region, Russia) were studied using cryometry, microthermometry, Raman-spectroscopy, LA ICP- MS, scanning electronic microscopy, gas-chromatography and isotopic methods. This allowed us to document some examples of fluid phase separation resulting in formation of different types of PGE-sulfide mineralization for layered basic intrusions. The results obtained show at least three generations of fluid separated from boiling residual alumosilicate intercumulus liquid of the Merensky Reef. The earliest fluid phase composed of homogenous high-dense methane and nitrogen gas mixture was identified in primary gas and co-existing anomalous fluid inclusions from symplectitic quartz. The next generation, heterophase fluid, composed of brines containing a free low-dense (mostly of carbon dioxide) gas phase, was observed in primary multiphase and coexisting gas-rich inclusions of miarolitic quartz crystals. The latest generation was also a heterophase fluid (low salinity water-salt solution and free low-dense methane gas phase) found in primary water-salt and syngenetic gas inclusions from peripheral zones of miarolitic quartz crystals. For the Chineisky Pluton reduced endocontact magmatogene fluids changed to oxidized low salinity hydrothermal fluids in exocontact zone. This resulted in formation of sulfide-PGE enrichment marginal zones of intrusion. The results obtained give us a possibility to suggest that: 1) Fluid phase separation is a typical feature of magmatogene fluids for layered basic intrusions. 2) Reduced fluids can extract and transport substantial PGE and sulfide concentrations. 3) Oxidation of reduced fluids is one of the most important geochemical barriers causing abundant PGE minerals and sulfides precipitation. This in turn results in both formation of PGE reefs or enriched contact zones of layered basic intrusions. This work was supported by

  18. Colonization and biofilm formation by Staphylococcus aureus on endothelial cell layers under flow

    DEFF Research Database (Denmark)

    Grønnemose, Rasmus Birkholm; Antoinette Asferg, Cecilie; Kolmos, Hans Jørn

    Staphylococcus aureus is a major human pathogen and known for causing vascular infections such as sepsis and infective endocarditis. It has previously been proposed that S. aureus succeed in colonization of the endothelial wall by specific surface attachment likely followed by biofilm formation....... Furthermore, S. aureus is known to invade human cells, which has been proposed to promote persistence through immune and antibiotic evasion. In the current study, we sought to investigate endothelial colonization, invasion, and biofilm formation by S. aureus using a newly developed in vitro flow chamber model....... We show that under physiological shear rates, S. aureus utilizes cellular invasion to enable the following surface colonization and biofilm formation. These observations might help explain the success of S. aureus as a bloodstream pathogen and guide further studies in S. aureus pathogenesis...

  19. Formation of presheath and current-free double layer in a two-electron-temperature plasma

    International Nuclear Information System (INIS)

    Sato, Kunihiro; Miyawaki, Fujio

    1992-02-01

    Development of the steady-state potential in a two-temperature-electron plasma in contact with the wall is investigated analytically. It is shown that if the hot- to cold electron temperature ratio is greater than ten, the potential drop in the presheath, which is allowed to have either a small value characterized by the cold electrons or a large value by the hot electrons, discontinuously changes at a critical value for the hot- to total electron density ratio. It is also found that the monotonically decreasing potential structure which consists of the first presheath, a current-free double layer, the second presheath, and the sheath can be steadily formed in a lower range of the hot- to total electron density ratio around the critical value. The current-free double layer is set up due to existence of the two electron species and cold ions generated by ionization so as to connect two presheath potentials at different levels. (author)

  20. Amorphization within the tablet

    DEFF Research Database (Denmark)

    Doreth, Maria; Hussein, Murtadha Abdul; Priemel, Petra A.

    2017-01-01

    , the feasibility of microwave irradiation to prepare amorphous solid dispersions (glass solutions) in situ was investigated. Indomethacin (IND) and polyvinylpyrrolidone K12 (PVP) were tableted at a 1:2 (w/w) ratio. In order to study the influence of moisture content and energy input on the degree of amorphization......, tablet formulations were stored at different relative humidity (32, 43 and 54% RH) and subsequently microwaved using nine different power-time combinations up to a maximum energy input of 90 kJ. XRPD results showed that up to 80% (w/w) of IND could be amorphized within the tablet. mDSC measurements...

  1. Physics of amorphous metals

    CERN Document Server

    Kovalenko, Nikolai P; Krey, Uwe

    2008-01-01

    The discovery of bulk metallic glasses has led to a large increase in the industrial importance of amorphous metals, and this is expected to continue. This book is the first to describe the theoretical physics of amorphous metals, including the important theoretical development of the last 20 years.The renowned authors stress the universal aspects in their description of the phonon or magnon low-energy excitations in the amorphous metals, e.g. concerning the remarkable consequences of the properties of these excitations for the thermodynamics at low and intermediate temperatures. Tunneling

  2. Syllabic discrimination in premature human infants prior to complete formation of cortical layers

    OpenAIRE

    Mahmoudzadeh, Mahdi; Dehaene-Lambertz, Ghislaine; Fournier, Marc; Kongolo, Guy; Goudjil, Sabrina; Dubois, Jessica; Grebe, Reinhard; Wallois, Fabrice

    2013-01-01

    The ontogeny of linguistic functions in the human brain remains elusive. Although some auditory capacities are described before term, whether and how such immature cortical circuits might process speech are unknown. Here we used functional optical imaging to evaluate the cerebral responses to syllables at the earliest age at which cortical responses to external stimuli can be recorded in humans (28- to 32-wk gestational age). At this age, the cortical organization in layers is not completed. ...

  3. Transition layers formation on the boundaries carbon fiber-copper dependence on the active additions

    International Nuclear Information System (INIS)

    Wlosinski, W.; Pietrzak, K.

    1993-01-01

    The basic problem connected with fabrication of carbon fiber-copper composites is to overcome the problem of low wettability of carbon fiber by copper. One of the possible solutions of that problem is to use the copper doped with active metals. The investigation results of transition layer forming on the phase boundary in the system have been discussed in respect of the kind and content of active elements added to the copper. 5 refs, 5 figs, 5 tabs

  4. Formation of convective cells in the scrape-off layer of the Castor tokamak

    International Nuclear Information System (INIS)

    Stoeckel, J.; Hron, M.; Adamek, J.; Brotankova, J.; Dejarnac, R.; Duran, I.; Panek, R.; Stejskal, P.; Zacek, F.; Devynck, P.; Gunn, J.; Martines, E.; Bonhomme, G.; Van Oost, G.; Hansen, T.; Gorler, T.; Svoboda, V.

    2004-01-01

    We describe experiments with a biased electrode inserted into the scrape-off layer (SOL) of the CASTOR tokamak. The resulting radial and poloidal electric field and plasma density modification are measured by means of Langmuir probe arrays with high temporal and spatial resolutions. Poloidally and radially localized stationary structures of the electric field (convective cells) are identified and a related significant modification of the particle transport in the SOL is observed. (authors)

  5. Direct insight into grains formation in Si layers grown on 3C-SiC by chemical vapor deposition

    International Nuclear Information System (INIS)

    Khazaka, Rami; Portail, Marc; Vennéguès, Philippe; Alquier, Daniel; Michaud, Jean François

    2015-01-01

    Graphical abstract: In this contribution, we demonstrated the influence of the 3C-SiC layer on the subsequent growth of Si epilayers. We were able to give a direct evidence that the rotation in the Si epilayer of 90° around the growth direction occurs exactly on the termination of an antiphase boundary in the 3C-SiC layer as shown in the figure above. Thus, increasing the layer thickness of the 3C-SiC leads to a direct improvement of the crystalline quality of the subsequent Si epilayer. (a) Cross-section bright-field TEM image of the Si/3C-SiC layer stack along two 3C-SiC zone axes [1 −1 0] and [1 1 0] (equivalent to [1 −1 1] and [1 1 2] in Si, respectively), (b) dark field image selecting a (2 0 −2) electron diffraction spot indicated by the black circle in the SAED shown as inset, (c) dark field image selecting a (−1 1 −1) electron diffraction spot indicated by the black circle in the SAED shown as inset. The dotted white line in the images show the position of the defect in the 3C-SiC layer. - Abstract: This work presents a structural study of silicon (Si) thin films grown on cubic silicon carbide (3C-SiC) by chemical vapor deposition. The presence of grains rotated by 90° around the growth direction in the Si layer is directly related to the presence of antiphase domains on the 3C-SiC surface. We were able to provide a direct evidence that the 90° rotation of Si grains around the growth direction occurs exactly on the termination of antiphase boundaries (APBs) in 3C-SiC layer. Increasing the 3C-SiC thickness reduces the APBs density on 3C-SiC surface leading to a clear improvement of the uppermost Si film crystal quality. Furthermore, we observed by high resolution plan-view TEM images the presence of hexagonal Si domains limited to few nm in size. These hexagonal Si domains are inclusions in small Si grains enclosed in larger ones rotated by 90°. Finally, we propose a model of grains formation in the Si layer taking into consideration the effect

  6. Growth and microstructure of iron nitride layers and pore formation in {epsilon}-Fe{sub 3}N

    Energy Technology Data Exchange (ETDEWEB)

    Middendorf, C.; Mader, W. [Univ. Bonn, Inst. fuer Anorganische Chemie, Bonn (Germany)

    2003-03-01

    Layers of {epsilon}-Fe{sub 3}N and {gamma}'-Fe{sub 4}N on ferrite were produced by nitriding iron single crystals or rolled sheets of iron in flowing ammonia at 520 C. The nitride layers were characterised using X-ray diffraction, light microscopy as well as scanning and transmission electron microscopy. The compound layer consists of {epsilon}-Fe{sub 3}N at the surface and of {gamma}'-Fe{sub 4}N facing the ferrite. After 4 h of nitriding, pores develop in the near surface region of {epsilon}-Fe{sub 3}N showing more or less open porosity. Growth of the entire compound layer as well as of the massive and the porous {epsilon}-Fe{sub 3}N sublayer is diffusion-controlled and follows a parabolic growth rate. The {gamma}'-Fe{sub 4}N layer is formed as a transition phase within a narrow interval of nitrogen activity, and it shows little growth in thickness. The transformation of {gamma}'-Fe{sub 4}N to {epsilon}-Fe{sub 3}N is topotactic, where the orientation of the closed-packed iron layers of the crystal structures is preserved. Determination of lattice plane spacings was possible by X-ray diffraction, and this was correlated to the nitrogen content of {epsilon}-Fe{sub 3}N. While the porous layer exhibits an enhanced nitrogen content corresponding to the chemical composition Fe{sub 3}N{sub 1.1}, the massive e Fe{sub 3}N layer corresponds to Fe{sub 3}N{sub 1.0}. The pore formation in {epsilon}-Fe{sub 3}N{sub 1.1} is concluded to be the result of excess nitrogen atoms on non-structural sites, which have a high mobility. Therefore, recombination of excess nitrogen to molecular N{sub 2} at lattice defects is preferred in {epsilon}-Fe{sub 3}N with high nitrogen content compared to stoichiometric {epsilon}-Fe{sub 3}N{sub 1.0} with nitrogen on only structural sites. (orig.)

  7. Squeezout phenomena and boundary layer formation of a model ionic liquid under confinement and charging

    Science.gov (United States)

    Capozza, R.; Vanossi, A.; Benassi, A.; Tosatti, E.

    2015-02-01

    Electrical charging of parallel plates confining a model ionic liquid down to nanoscale distances yields a variety of charge-induced changes in the structural features of the confined film. That includes even-odd switching of the structural layering and charging-induced solidification and melting, with important changes of local ordering between and within layers, and of squeezout behavior. By means of molecular dynamics simulations, we explore this variety of phenomena in the simplest charged Lennard-Jones coarse-grained model including or excluding the effect a neutral tail giving an anisotropic shape to one of the model ions. Using these models and open conditions permitting the flow of ions in and out of the interplate gap, we simulate the liquid squeezout to obtain the distance dependent structure and forces between the plates during their adiabatic approach under load. Simulations at fixed applied force illustrate an effective electrical pumping of the ionic liquid, from a thick nearly solid film that withstands the interplate pressure for high plate charge to complete squeezout following melting near zero charge. Effective enthalpy curves obtained by integration of interplate forces versus distance show the local minima that correspond to layering and predict the switching between one minimum and another under squeezing and charging.

  8. Diagnostic study of multiple double layer formation in expanding RF plasma

    Science.gov (United States)

    Chakraborty, Shamik; Paul, Manash Kumar; Roy, Jitendra Nath; Nath, Aparna

    2018-03-01

    Intensely luminous double layers develop and then expand in size in a visibly glowing RF discharge produced using a plasma source consisting of a semi-transparent cylindrical mesh with a central electrode, in a linear plasma chamber. Although RF discharge is known to be independent of device geometry in the absence of magnetic field, the initiation of RF discharge using such a plasma source results in electron drift and further expansion of the plasma in the vessel. The dynamics of complex plasma structures are studied through electric probe diagnostics in the expanding RF plasma. The measurements made to study the parametric dependence of evolution of double layer structures are analyzed and presented here. The plasma parameter measurements suggest that the complex potential structures initially form with low potential difference between the layers and then gradually expand producing burst oscillations. The present study provides interesting information about the stability of plasma sheath and charge particle dynamics in it that are important to understand the underlying basic sheath physics along with applications in plasma acceleration and propulsion.

  9. A radar study of emigratory flight and layer formation by insects at dawn over southern Britain.

    Science.gov (United States)

    Reynolds, D R; Smith, A D; Chapman, J W

    2008-02-01

    Radar observations have consistently shown that high-altitude migratory flight in insects generally occurs after mass take-off at dusk or after take-off over a more extended period during the day (in association with the growth of atmospheric convection). In this paper, we focus on a less-studied third category of emigration - the 'dawn take-off' - as recorded by insect-monitoring radars during the summer months in southern England. In particular, we describe occasions when dawn emigrants formed notable layer concentrations centred at altitudes ranging from ca. 240 m to 700 m above ground, very probably due to the insects responding to local temperature maxima in the atmosphere, such as the tops of inversions. After persisting for several hours through the early morning, the layers eventually merged into the insect activity building up later in the morning (from 06.00-08.00 h onwards) in conjunction with the development of daytime convection. The species forming the dawn layers have not been positively identified, but their masses lay predominantly in the 16-32 mg range, and they evidently formed a fauna quite distinct from that in flight during the previous night. The displacement and common orientation (mutual alignment) characteristics of the migrants are described.

  10. Formation of nanocrystalline surface layers in various metallic materials by near surface severe plastic deformation

    Directory of Open Access Journals (Sweden)

    Masahide Sato, Nobuhiro Tsuji, Yoritoshi Minamino and Yuichiro Koizumi

    2004-01-01

    Full Text Available The surface of the various kinds of metallic materials sheets were severely deformed by wire-brushing at ambient temperature to achieve nanocrystalline surface layer. The surface layers of the metallic materials developed by the near surface severe plastic deformation (NS-SPD were characterized by means of TEM. Nearly equiaxed nanocrystals with grain sizes ranging from 30 to 200 nm were observed in the near surface regions of all the severely scratched metallic materials, which are Ti-added ultra-low carbon interstitial free steel, austenitic stainless steel (SUS304, 99.99 wt.%Al, commercial purity aluminum (A1050 and A1100, Al–Mg alloy (A5083, Al-4 wt.%Cu alloy, OFHC-Cu (C1020, Cu–Zn alloy (C2600 and Pb-1.5%Sn alloy. In case of the 1050-H24 aluminum, the depth of the surface nanocrystalline layer was about 15 μm. It was clarified that wire-brushing is an effective way of NS-SPD, and surface nanocrystallization can be easily achieved in most of metallic materials.

  11. Formation and electrical characteristics of silicon dioxide layers by use of nitric acid oxidation method

    International Nuclear Information System (INIS)

    Imal, S.; Takahashi, M.; Matsuba, K.; Asuha; Ishikawa, Y.; Kobayashi, Hikaru

    2005-01-01

    SiO 2 /Si structure can be formed at low temperatures by use of nitric acid (HNO 3 ) oxidation of Si (NAOS) method. When Si wafers are immersed in ∼ 40 wt% HNO 3 solutions at 108 deg C, ∼ 1 nm SiO 2 layers are formed. The subsequent immersion in 68 wt% HNO 3 (i.e., azeotropic mixture of HNO 3 with water) at 121 deg C increases the SiO 2 thickness. The 3,5 nm-thick SiO 2 layers produced by this two-step NAOS method possess a considerably low leakage current density (e.g. 1 x 10 2 A/cmi 2 at the forward gate bias, V G , of 1.5 V), in spite of the low temperature oxidation, and further decreased (e.g., 8 x 10 4 A/cm 2 at V G = 1.5 V) by post-metallization annealing at 250 deg C in hydrogen atmosphere. In order to increase the SiO 2 thickness, a bias voltage is applied during the NAOS method. When 10 V is applied to Si with respect to a Pt counter electrode both immersed in 1 M HNO 3 solutions at 25 deg C, SiO 2 layers with 8 nm thickness can be formed for 1 h(Authors)

  12. Ion beam induced stress formation and relaxation in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, T., E-mail: Tobias.Steinbach@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany); Reupert, A.; Schmidt, E.; Wesch, W. [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)

    2013-07-15

    Ion irradiation of crystalline solids leads not only to defect formation and amorphization but also to mechanical stress. In the past, many investigations in various materials were performed focusing on the ion beam induced damage formation but only several experiments were done to investigate the ion beam induced stress evolution. Especially in microelectronic devices, mechanical stress leads to several unwanted effects like cracking and peeling of surface layers as well as changing physical properties and anomalous diffusion of dopants. To study the stress formation and relaxation process in semiconductors, crystalline and amorphous germanium samples were irradiated with 3 MeV iodine ions at different ion fluence rates. The irradiation induced stress evolution was measured in situ with a laser reflection technique as a function of ion fluence, whereas the damage formation was investigated by means of Rutherford backscattering spectrometry. The investigations show that mechanical stress builds up at low ion fluences as a direct consequence of ion beam induced point defect formation. However, further ion irradiation causes a stress relaxation which is attributed to the accumulation of point defects and therefore the creation of amorphous regions. A constant stress state is reached at high ion fluences if a homogeneous amorphous surface layer was formed and no further ion beam induced phase transition took place. Based on the results, we can conclude that the ion beam induced stress evolution seems to be mainly dominated by the creation and accumulation of irradiation induced structural modification.

  13. The Structure of Liquid and Amorphous Hafnia

    Directory of Open Access Journals (Sweden)

    Leighanne C. Gallington

    2017-11-01

    Full Text Available Understanding the atomic structure of amorphous solids is important in predicting and tuning their macroscopic behavior. Here, we use a combination of high-energy X-ray diffraction, neutron diffraction, and molecular dynamics simulations to benchmark the atomic interactions in the high temperature stable liquid and low-density amorphous solid states of hafnia. The diffraction results reveal an average Hf–O coordination number of ~7 exists in both the liquid and amorphous nanoparticle forms studied. The measured pair distribution functions are compared to those generated from several simulation models in the literature. We have also performed ab initio and classical molecular dynamics simulations that show density has a strong effect on the polyhedral connectivity. The liquid shows a broad distribution of Hf–Hf interactions, while the formation of low-density amorphous nanoclusters can reproduce the sharp split peak in the Hf–Hf partial pair distribution function observed in experiment. The agglomeration of amorphous nanoparticles condensed from the gas phase is associated with the formation of both edge-sharing and corner-sharing HfO6,7 polyhedra resembling that observed in the monoclinic phase.

  14. Positrons in amorphous alloys

    International Nuclear Information System (INIS)

    Moser, Pierre.

    1981-07-01

    Positron annihilation techniques give interesting informations about ''empty spaces'' in amorphous alloys. The results of an extensive research work on the properties of either pre-existing or irradiation induced ''empty spaces'' in four amorphous alloys are presented. The pre-existing empty spaces appear to be small vacancy-like defects. The irradiation induced defects are ''close pairs'' with widely distributed configurations. There is a strong interaction between vacancy like and interstitial like components. A model is proposed, which explains the radiation resistance mechanism of the amorphous alloys. An extensive joint research work to study four amorphous alloys, Fe 80 B 20 ,Fe 40 Ni 40 P 14 B 6 , Cu 50 Ti 50 , Pd 80 Si 20 , is summarized

  15. Ion-beam induced structure modifications in amorphous germanium; Ionenstrahlinduzierte Strukturmodifikationen in amorphem Germanium

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, Tobias

    2012-05-03

    Object of the present thesis was the systematic study of ion-beam induced structure modifications in amorphous germanium (a-Ge) layers due to low- (LEI) and high-energetic (SHI) ion irradiation. The LEI irradiation of crystalline Ge (c-Ge) effects because the dominating nuclear scattering of the ions on the solid-state atoms the formation of a homogeneous a-Ge Layer. Directly on the surface for fluences of two orders of magnitude above the amorphization fluence the formation of stable cavities independently on the irradiation conditions was observed. For the first time for the ion-beam induced cavity formation respectively for the steady expansion of the porous layer forming with growing fluence a linear dependence on the energy {epsilon}{sub n} deposed in nuclear processes was detected. Furthermore the formation of buried cavities was observed, which shows a dependence on the type of ions. While in the c-Ge samples in the range of the high electronic energy deposition no radiation defects, cavities, or plastic deformations were observed, the high electronic energy transfer in the 3.1 {mu}m thick pre-amorphized a-Ge surface layers leads to the formation of randomly distributed cavities. Basing on the linear connection between cavity-induced vertical volume expansion and the fluence determined for different energy transfers for the first time a material-specific threshold value of {epsilon}{sub e}{sup HRF}=(10.5{+-}1.0) kev nm{sup -1} was determined, above which the ion-beam induced cavity formation in a-Ge sets on. The anisotropic plastic deformation of th a-Ge layer superposed at inclined SHI irradiation on the cavity formation was very well described by an equation derived from the viscoelastic Maxwell model, but modified under regardment of the experimental results. The positive deformation yields determined thereby exhibit above a threshold value for the ion-beam induced plastic deformation {epsilon}{sub e}{sup S{sub a}}=(12{+-}2) keV nm{sup -1} for the first

  16. Study the formation of porous surface layer for a new biomedical titanium alloy

    Science.gov (United States)

    Talib Mohammed, Mohsin; Diwan, Abass Ali; Ali, Osamah Ihsan

    2018-03-01

    In the present work, chemical treatment using hydrogen peroxide (H2O2) oxidation and subsequent thermal treatment was applied to create a uniform porous layer over the surface of a new metastable β-Ti alloy. The results revealed that this oxidation treatment can create a stable ultrafine porous film over the oxidized surface. This promoted the electrochemical characteristics of H2O2-treated Ti-Zr-Nb (TZN) alloy system, presenting nobler corrosion behavior in simulated body fluid (SBF) comparing with untreated sample.

  17. Superplasticity of amorphous alloy

    International Nuclear Information System (INIS)

    Levin, Yu.B.; Likhachev, V.L.; Sen'kov, O.N.

    1988-01-01

    Results of mechanical tests of Co 57 Ni 10 Fe 5 Si 11 B 17 amorphous alloy are presented and the effect of crystallization, occurring during deformation process, on plastic low characteristics is investiagted. Superplasticity of amorphous tape is investigated. It is shown, that this effect occurs only when during deformation the crystallization takes place. Process model, based on the usage disclination concepts about glass nature, is suggested

  18. High-permeance crosslinked PTMSP thin-film composite membranes as supports for CO2 selective layer formation

    Directory of Open Access Journals (Sweden)

    Stepan D. Bazhenov

    2016-10-01

    Full Text Available In the development of the composite gas separation membranes for post-combustion CO2 capture, little attention is focused on the optimization of the membrane supports, which satisfy the conditions of this technology. The primary requirements to the membrane supports are concerned with their high CO2 permeance. In this work, the membrane supports with desired characteristics were developed as high-permeance gas separation thin film composite (TFC membranes with the thin defect-free layer from the crosslinked highly permeable polymer, poly[1-(trimethylsilyl-1-propyne] (PTMSP. This layer is insoluble in chloroform and can be used as a gutter layer for the further deposition of the СО2-selective materials from the organic solvents. Crosslinking of PTMSP was performed using polyethyleneimine (PEI and poly (ethyleneglycol diglycidyl ether (PEGDGE as crosslinking agents. Optimal concentrations of PEI in PTMSP and PEGDGE in methanol were selected in order to diminish the undesirable effect on the final membrane gas transport characteristics. The conditions of the kiss-coating technique for the deposition of the thin defect-free PTMSP-based layer, namely, composition of the casting solution and the speed of movement of the porous commercial microfiltration-grade support, were optimized. The procedure of post-treatment with alcohols and alcohol solutions was shown to be crucial for the improvement of gas permeance of the membranes with the crosslinked PTMSP layer having thickness ranging within 1–2.5 μm. The claimed membranes showed the following characteristics: CO2 permeance is equal to 50–54 m3(STP/(m2 h bar (18,500–20,000 GPU, ideal CO2/N2 selectivity is 3.6–3.7, and their selective layers are insoluble in chloroform. Thus, the developed high-permeance TFC membranes are considered as a promising supports for further modification by enhanced CO2 selective layer formation. Keywords: Thin-film composite membrane

  19. Effects of Fermented Sumach on the Formation of Slime Layer of Staphylococcus aureus

    OpenAIRE

    Kırmusaoğlu, Sahra; Yurdugül, Seyhun; Koçoğlu, Esra

    2012-01-01

    Objective: Staphylococcus aureus (S. aureus) is one of the most commonly isolated bacterial pathogens in hospitals, and the most frequent cause of nosocomial infections. Nosocomial staphylococcal foreign-body infections related to biofilm formation are a serious threat, demanding new therapeutic and preventive strategies. Implantation of intravenous catheters and surgical implantation of prosthetic implants carry a risk of infection. In order to prevent all these effects of biofilms, a study ...

  20. Observations of barrier layer formation in the Bay of Bengal during summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Vinayachandran, P.N.; Murty, V.S.N.; RameshBabu, V.

    monsoon, J. Geophys. Res., 107(C12), 8018, doi:10.1029/2001JC000831, 2002. 1. Introduction [2] Several monsoon lows and depressions, that contrib- ute substantially to the summer monsoon rainfall of the Indian subcontinent, form over the Bay of Bengal... August–September, 1990,Murtyetal.[1996]foundthatthemixedlayerbasedon a temperature criterion is deeper than that using density. The regionwithrelativelyfreshwaterwithhighSSTappearstobe an excellent breeding ground for the formation of monsoon depressions...

  1. Durability of simulated waste glass: effects of pressure and formation of surface layers

    International Nuclear Information System (INIS)

    Wicks, G.G.; Mosley, W.C.; Whitkop, P.G.; Saturday, K.A.

    1981-01-01

    The leaching behavior of simulated Savannah River Plant (SRP) waste glass was studied at elevated pressures and anticipated storage temperatures. An integrated approach, which combined leachate solution analyses with both bulk and surface studies, was used to study the corrosion process. Compositions of leachates were evaluated by colorimetry and atomic absorption. Used in the bulk and surface analyses were optical microscopy, scanning electron microscopy, x-ray energy spectroscopy, wide-angle x-ray, diffraction, electron microprobe analysis, infrared reflectance spectroscopy, electron spectroscopy for chemical analysis, and Auger electron spectroscopy. Results from this study show that there is no significant adverse effect of pressure, up to 1500 psi and 90 0 C, on the chemical durability of simulated SPR waste glass leached for one month in deionized water. In addition, the leached glass surface layer was characterized by an adsorbed film rich in minor constituents from the glass. This film remained on the glass surface even after leaching in relatively alkaline solutions at elevated pressures at 90 0 C for one month. The sample surface area to volume of leachant ratios (SA/V) was 10:1 cm -1 and 1:10 cm -1 . The corrosion mechanisms and surface and subsurface layers produced will be discussed along with the potential importance of these results to repository storage

  2. In situ monitoring of structure formation in the active layer of polymer solar cells during roll-to-roll coating

    Directory of Open Access Journals (Sweden)

    Lea H. Rossander

    2014-08-01

    Full Text Available The active layer crystallization during roll-to-roll coating of organic solar cells is studied in situ. We developed an X-ray setup where the coater unit is an integrated part of the small angle X-ray scattering instrument, making it possible to control the coating process while recording scattering measurements in situ, enabling us to follow the crystal formation during drying. By varying the distance between the coating head and the point where the X-ray beam hits the film, we obtained measurements of 4 different stages of drying. For each of those stages, the scattering from as long a foil as possible is summed together, with the distance from coating head to scattering point kept constant. The results are average crystallographic properties for the active layer coated on a 30 m long foil. With this insight into the dynamics of crystallization in a roll-coated polymer film, we find that the formation of textured and untextured crystallites seems uncorrelated, and happens at widely different rates. Untextured P3HT crystallites form later in the drying process than expected which may explain previous studies speculating that untextured crystallization depends on concentration. Textured crystallites, however, begin forming much earlier and steadily increases as the film dries, showing a development similar to other in situ studies of these materials.

  3. Multilayered Films Produced by Layer-by-Layer Assembly of Chitosan and Alginate as a Potential Platform for the Formation of Human Adipose-Derived Stem Cell aggregates

    Directory of Open Access Journals (Sweden)

    Javad Hatami

    2017-09-01

    Full Text Available The construction of multilayered films with tunable properties could offer new routes to produce biomaterials as a platform for 3D cell cultivation. In this study, multilayered films produced with five bilayers of chitosan and alginate (CHT/ALG were built using water-soluble modified mesyl and tosyl–CHT via layer-by-layer (LbL self-assembly. NMR results demonstrated the presences of mesyl (2.83 ppm and tosyl groups (2.39, 7.37 and 7.70 ppm in the chemical structure of modified chitosans. The buildup of multilayered films was monitored by quartz-crystal-microbalance (QCM-D and film thickness was estimated using the Voigt-based viscoelastic model. QCM-D results demonstrated that CHT/ALG films constructed using mesyl or tosyl modifications (mCHT/ALG were significantly thinner in comparison to the CHT/ALG films constructed with unmodified chitosan (p < 0.05. Adhesion analysis demonstrated that human adipose stem cells (hASCs did not adhere to the mCHT/ALG multilayered films and formed aggregates with sizes between ca. 100–200 µm. In vitro studies on cell metabolic activity and live/dead staining suggested that mCHT/ALG multilayered films are nontoxic toward hACSs. Multilayered films produced via LbL assembly of ALG and off-the-shelf, water-soluble modified chitosans could be used as a scaffold for the 3D aggregates formation of hASCs in vitro.

  4. Self-lubricating layer consist of polytetrafluoroethylene micropowders and fluorocarbon acrylate resin formation on surface of geotextile

    Science.gov (United States)

    Long, Xiaoyun; He, Lifen; Zhang, Yan; Ge, Mingqiao

    2018-04-01

    In this study, the self-lubricating layer consist of polytetrafluoroethylene (PTFE) micropowders and two types fluorocarbon acrylate resin were formed on the surface of geotextile, to improves the evenness and decreases the frictional angle value of geotextile surface. The surface and cross section morphology of geotextile were examined by scanning electron microscopy (SEM). It was determined that composite resin emulsion was evenly coated on the surface of geotextile, to form a even and complete self-lubricating layer, and it was strongly combined with the geotextile due to formation of the transition layer. The tensile fracture stress and strain values of samples were evaluated by mechanical properties measurement, the tensile fracture stress of the untreated and treated sample was approximately 5329 kN/m and 5452 kN/m while the elongation at the yield of them was approximately 85% to 83.9%, respectively. In addition, the frictional angle values of municipal solid waste (MSW)/geotextile interface was measured by the tilt table test, the values of untreated sample was 28.1° and 24.2° under the dry and moist condition, the values of treated sample was 16.2° and 9.8°, respectively.

  5. Calcium dependent formation of tubular assemblies by recombinant S-layer proteins in vivo and in vitro

    Science.gov (United States)

    Korkmaz, Nuriye; Ostermann, Kai; Rödel, Gerhard

    2011-03-01

    Surface layer proteins have the appealing property to self-assemble in nanosized arrays in solution and on solid substrates. In this work, we characterize the formation of assembly structures of the recombinant surface layer protein SbsC of Geobacillus stearothermophilus ATTC 12980, which was tagged with enhanced green fluorescent protein and expressed in the yeast Saccharomyces cerevisiae. The tubular structures formed by the protein in vivo are retained upon bursting the cells by osmotic shock; however, their average length is decreased. During dialysis, monomers obtained by treatment with chaotropic chemicals recrystallize again to form tube-like structures. This process is strictly dependent on calcium (Ca2 + ) ions, with an optimal concentration of 10 mM. Further increase of the Ca2 + concentration results in multiple non-productive nucleation points. We further show that the lengths of the S-layer assemblies increase with time and can be controlled by pH. After 48 h, the average length at pH 9.0 is 4.13 µm compared to 2.69 µm at pH 5.5. Successful chemical deposition of platinum indicates the potential of recrystallized mSbsC-eGFP structures for nanobiotechnological applications.

  6. Super-resolution by elliptical bubble formation with PtOx and AgInSbTe layers

    International Nuclear Information System (INIS)

    Kim, Jooho; Hwang, Inoh; Yoon, Duseop; Park, Insik; Shin, Dongho; Kikukawa, Takashi; Shima, Takayuki; Tominaga, Junji

    2003-01-01

    The recording and retrieval of signals below 100 nm mark length were attempted with elliptical bubble-type super-resolution technology with platinum oxide (PtO x ) and ductile AgInSbTe layers, using the same optical system as that of a digital versatile disk (a 635 nm wavelength red laser system). The carrier-to-noise ratio (CNR) of over 47 dB for 100 nm mark length signals (over 43 dB for 80 nm mark length signals) was obtained, which can be considered as a commercially acceptable level of CNR. The recording mechanism of the sample disk was shown through the transmission electron microscopy cross-section image observation to be by rigid elliptical bubble formation at the PtO x layer located between the AgInSbTe layers. The results of this report represent the potential for a much higher-density storage using the red laser system and a subterabyte optical storage using the blue laser system

  7. Mechanism of formation of corrosion layers on nickel and nickel-based alloys in melts containing oxyanions--a review

    International Nuclear Information System (INIS)

    Tzvetkoff, Tzvety; Gencheva, Petia

    2003-01-01

    A review of the corrosion of Ni and Ni-based alloys in melts containing oxyanions (nitrate, sulphate, hydroxide and carbonate) is presented, emphasising the mechanism of growth, the composition and structure of the passivating oxide films formed on the material in such conditions. First, the thermodynamical background involving solubility and point defect chemistry calculations for oxides formed on Ni, Cr and Ni-Cr alloys in molten salt media is briefly commented. The main passivation product on the Ni surface has been reported to be cubic NiO. In the transition stage, further oxidation of the compact NiO layer has been shown to take place in which Ni(III) ions and nickel cation vacancies are formed. Transport of nickel cation vacancies has been proposed to neutralise the charges of the excess oxide ions formed in the further oxidation reaction. Ex situ analysis studies reported in the literature indicated the possible formation of Ni 2 O 3 phase in the anodic layer. During the third stage of oxidation, a survey of the published data indicated that oxygen evolution from oxyanion melts is the predominant reaction taking place on the Ni/NiO electrode. This has been supposed to lead to a further accumulation of oxygen ions in the oxide lattice presumably as oxygen interstitials, and a NiO 2 phase formation has been also suggested. Literature data on the composition of the oxide film on industrial Ni-based alloys and superalloys in melts containing oxyanions are also presented and discussed. Special attention is paid to the effect of the composition of the alloy, the molten salt mixture and the gas atmosphere on the stability and protective ability of corrosion layers

  8. Formation of electrostatic double-layers and electron-holes in a low pressure mercury plasma column

    International Nuclear Information System (INIS)

    Petraconi, G; Maciel, Homero S

    2003-01-01

    Experimental studies of the formation of electrostatic double layers (DLs) and electron-holes (e-holes) are reported. The measurements were performed in the positive column of a mercury arc discharge operating in the low-pressure range of (2.0-14.0) x 10 -2 Pa with current density in the range of (3.0-8.0) x 10 3 A m -2 . Stable and unstable modes of the discharge were identified as the current was gradually increased, keeping constant the vapour pressure. The discharge remains stable until a critical current from which a slight increase of the current leads to an unstable regime characterized by high discharge impedance and strong oscillations. This mode ceased after a DL was formed in the plasma column. To induce the DL formation and to transport it smoothly along the discharge column, a low intensity B-field (7-10) x 10 -3 T produced by a movable single coil was used. The B-field locally increases the electron current density and makes the DL form at the centre of the magnetic constriction where it remained at rest. Electrostatic potential structures compatible with ordinary DLs and multiple-layers could be formed in the plasma column by dealing with the combined effects of the operational parameters of the discharge. It is noticeable that a pure e-hole, which is a symmetric triple-layer having a bell shape potential profile, could easily be formed by means of this experimental technique. A partial kinetic description, based on the space charge structure derived from an experimental e-hole, is presented in order to infer the charged particle populations that could contribute to the space charge of the e-hole. Evidence is shown that strong e-hole formation might be driven by an ion beam, therefore it could not be formed in isolation since its formation requires a nearby ion accelerating potential structure. Probe measurements of the plasma properties, at various radial positions of the stable positive column, are also presented. In the stable mode, prior to

  9. Formation of an interface layer in thermionic oxide cathodes for CRT applications

    International Nuclear Information System (INIS)

    Hashim, A A; Barratt, D S; Ray, A K; Hassan, A K

    2004-01-01

    Scanning electron microscopic techniques were employed to study the surface morphological changes of oxide cathodes and nickel caps as a result of cathode activation extending over periods of 1-12 h. Elemental analysis of barium, strontium, tungsten, magnesium and aluminium was performed using energy dispersion x-ray spectroscopy. An abrupt change was observed after activation longer than 3 h. Conduction through well activated cathode assemblies was found to be due to intergranular electron tunnelling at low temperatures (T ≤ 500 K), while trapping and detrapping at grain boundaries becomes the dominant mechanism at high temperatures (T ≥ 500 K). The contribution of the interfacial layer to conductivity was found to be significant for cathodes activated for smaller periods

  10. Formation of Silver Nanoplates Layer on Amino Group Grafted Silica Coatings

    Directory of Open Access Journals (Sweden)

    Jurgis PILIPAVICIUS

    2016-05-01

    Full Text Available In this study the self-arrangement of Ag nanoplates on (3-Aminopropyltriethoxysilane (APTES silanized silica coatings was investigated. Silica coatings were made by sol-gel method and silanized in two different ways. The first one includes silanization in acidic 2-propanol solution, the other one – in dry toluene. Coatings were silanized by using different amounts of APTES in case of silanization in 2-propanol. Silver nanoplates layer of functionalized silica coatings was obtained via self-assembly. Coatings were investigated by atomic force microscopy (AFM, water contact angle measurements (CA, FT-IR analysis, and scanning electron microscopy (SEM. Research showed that dense Ag nanoplates arrangement occurs when there is a high amount of amino groups on the surface.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.8405

  11. Femtosecond laser patterning, synthesis, defect formation, and structural modification of atomic layered materials

    International Nuclear Information System (INIS)

    Yoo, Jae-Hyuck; Kim, Eunpa; Hwang, David J.

    2016-01-01

    This article summarizes recent research on laser-based processing of twodimensional (2D) atomic layered materials, including graphene and transition metal dichalcogenides (TMDCs). Ultrafast lasers offer unique processing routes that take advantage of distinct interaction mechanisms with 2D materials to enable extremely localized energy deposition. Experiments have shown that ablative direct patterning of graphene by ultrafast lasers can achieve resolutions of tens of nanometers, as well as single-step pattern transfer. Ultrafast lasers also induce non-thermal excitation mechanisms that are useful for the thinning of TMDCs to tune the 2D material bandgap. Laser-assisted site-specific doping was recently demonstrated where ultrafast laser radiation under ambient air environment could be used for the direct writing of high-quality graphene patterns on insulating substrates. This article concludes with an outlook towards developing further advanced laser processing with scalability, in situ monitoring strategies and potential applications.

  12. Dry air effects on the copper oxides sensitive layers formation for ethanol vapor detection

    International Nuclear Information System (INIS)

    Labidi, A.; Bejaoui, A.; Ouali, H.; Akkari, F. Chaffar; Hajjaji, A.; Gaidi, M.; Kanzari, M.; Bessais, B.; Maaref, M.

    2011-01-01

    The copper oxide films have been deposited by thermal evaporation and annealed under ambient air and dry air respectively, at different temperatures. The structural characteristics of the films were investigated by X-ray diffraction. They showed the presences of two hydroxy-carbonate minerals of copper for annealing temperatures below 250 deg. C. Above this temperature the conductivity measurements during the annealing process, show a transition phase from metallic copper to copper oxides. The copper oxides sensitivity toward ethanol were performed using conductivity measurements at the working temperature of 200 deg. C. A decrease of conductivity was observed under ethanol vapor, showing the p-type semi-conducting characters of obtained copper oxide films. It was found that the sensing properties of copper oxide toward ethanol depend mainly on the annealing conditions. The best responses were obtained with copper layers annealed under dry air.

  13. Dry air effects on the copper oxides sensitive layers formation for ethanol vapor detection

    Energy Technology Data Exchange (ETDEWEB)

    Labidi, A., E-mail: Ahmed_laabidi@yahoo.fr [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia); Bejaoui, A.; Ouali, H. [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia); Akkari, F. Chaffar [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT, Universite de Tunis el Manar, BP 37, Le belvedere 1002, Tunis (Tunisia); Hajjaji, A.; Gaidi, M. [Laboratoire de Photovoltaique, Centre de Recherches et de technologies de l' energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT, Universite de Tunis el Manar, BP 37, Le belvedere 1002, Tunis (Tunisia); Bessais, B. [Laboratoire de Photovoltaique, Centre de Recherches et de technologies de l' energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Maaref, M. [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia)

    2011-09-15

    The copper oxide films have been deposited by thermal evaporation and annealed under ambient air and dry air respectively, at different temperatures. The structural characteristics of the films were investigated by X-ray diffraction. They showed the presences of two hydroxy-carbonate minerals of copper for annealing temperatures below 250 deg. C. Above this temperature the conductivity measurements during the annealing process, show a transition phase from metallic copper to copper oxides. The copper oxides sensitivity toward ethanol were performed using conductivity measurements at the working temperature of 200 deg. C. A decrease of conductivity was observed under ethanol vapor, showing the p-type semi-conducting characters of obtained copper oxide films. It was found that the sensing properties of copper oxide toward ethanol depend mainly on the annealing conditions. The best responses were obtained with copper layers annealed under dry air.

  14. Experience-driven formation of parts-based representations in a model of layered visual memory

    Directory of Open Access Journals (Sweden)

    Jenia Jitsev

    2009-09-01

    Full Text Available Growing neuropsychological and neurophysiological evidence suggests that the visual cortex uses parts-based representations to encode, store and retrieve relevant objects. In such a scheme, objects are represented as a set of spatially distributed local features, or parts, arranged in stereotypical fashion. To encode the local appearance and to represent the relations between the constituent parts, there has to be an appropriate memory structure formed by previous experience with visual objects. Here, we propose a model how a hierarchical memory structure supporting efficient storage and rapid recall of parts-based representations can be established by an experience-driven process of self-organization. The process is based on the collaboration of slow bidirectional synaptic plasticity and homeostatic unit activity regulation, both running at the top of fast activity dynamics with winner-take-all character modulated by an oscillatory rhythm. These neural mechanisms lay down the basis for cooperation and competition between the distributed units and their synaptic connections. Choosing human face recognition as a test task, we show that, under the condition of open-ended, unsupervised incremental learning, the system is able to form memory traces for individual faces in a parts-based fashion. On a lower memory layer the synaptic structure is developed to represent local facial features and their interrelations, while the identities of different persons are captured explicitly on a higher layer. An additional property of the resulting representations is the sparseness of both the activity during the recall and the synaptic patterns comprising the memory traces.

  15. Soil surface organic layers in Arctic Alaska: spatial distribution, rates of formation, and microclimatic effects

    Science.gov (United States)

    Baughman, Carson; Mann, Daniel H.; Verbyla, David L.; Kunz, Michael L.

    2015-01-01

    Organic layers of living and dead vegetation cover the ground surface in many permafrost landscapes and play important roles in ecosystem processes. These soil surface organic layers (SSOLs) store large amounts of carbon and buffer the underlying permafrost and its contained carbon from changes in aboveground climate. Understanding the dynamics of SSOLs is a prerequisite for predicting how permafrost and carbon stocks will respond to warming climate. Here we ask three questions about SSOLs in a representative area of the Arctic Foothills region of northern Alaska: (1) What environmental factors control the thickness of SSOLs and the carbon they store? (2) How long do SSOLs take to develop on newly stabilized point bars? (3) How do SSOLs affect temperature in the underlying ground? Results show that SSOL thickness and distribution correlate with elevation, drainage area, vegetation productivity, and incoming solar radiation. A multiple regression model based on these correlations can simulate spatial distribution of SSOLs and estimate the organic carbon stored there. SSOLs develop within a few decades after a new, sandy, geomorphic surface stabilizes but require 500–700 years to reach steady state thickness. Mature SSOLs lower the growing season temperature and mean annual temperature of the underlying mineral soil by 8 and 3°C, respectively. We suggest that the proximate effects of warming climate on permafrost landscapes now covered by SSOLs will occur indirectly via climate's effects on the frequency, extent, and severity of disturbances like fires and landslides that disrupt the SSOLs and interfere with their protection of the underlying permafrost.

  16. Electrochemistry of metal complexes applications from electroplating to oxide layer formation

    CERN Document Server

    Survila, Arvydas

    2015-01-01

    This book aims to sequentially cover all the major stages of electrochemical processes (mass transport, adsorption, charge transfer), with a special emphasis on their deep interrelation. Starting with general considerations on equilibria in solutions and at interfaces as well as on mass transport, the text acquaints readers with the theory and common experimental practice for studying electrochemical reactions of metals complexes. The core part of the book deals with all important aspects of electroplating, including a systematic discussion of co-deposition of metals and formation of alloys.

  17. Enhanced corrosion resistance of magnesium alloy by a silane-based solution treatment after an in-situ formation of the Mg(OH)2 layer

    Science.gov (United States)

    Gong, Fubao; Shen, Jun; Gao, Runhua; Xie, Xiong; Luo, Xiong

    2016-03-01

    A novel organic-inorganic Mg(OH)2/silane surface layer has been developed for corrosion protection of AZ31 magnesium alloy. The results of electrochemical impedance spectroscopy (EIS), the immersion tests, Fourier-transform infrared spectroscopy (FTIR) and sellotape tests showed that the Mg(OH)2/silane-based composite surface layer possessed excellent corrosion resistance and very good adhesion due to the formation of Si-O-Mg bond between Mg(OH)2 layer and silane layer. Electrochemical impedance spectroscopy tests results indicated that for the long-term corrosion protection of AZ31 the increase of the curing temperature improved the impedance of the composited layer when the curing temperature was lower than 130 °С. However, the impedance of the composited layer deceased when the curing temperature was more than 130 °С due to the carbonization of the silane layer.

  18. The crystalline-to-amorphous transition in ion-bombarded silicon

    International Nuclear Information System (INIS)

    Mueller, G.; Kalbitzer, S.

    1980-01-01

    Hydrogen-free, but defect-rich a-Si can be obtained by ion bombardment of c-Si. The formation of such material has been studied in detail using carrier-removal measurements in the characterization of the bombardment damage. In order to develop an overall view of the disordering process these data are discussed together with results obtained on similar films by Rutherford back-scattering, electron spin resonance, electron microscopy and optical measurements. It is concluded that amorphous material generally evolves from an intermediate crystalline phase supersaturated with point defects. The transition occurs locally at the sites of energetic ion impacts into critically predamaged crystalline material. As a consequence, an amorphous layer is built up from small clusters with dimensions typically of the order of 50 A. From the net expansion of the bombarded layers it is concluded that regions of lower atomic density are locally present, very likely a consequence of a structural mismatch between individual amorphous clusters. In this way a heterogeneous defect structure may build up in these films which determines their electronic properties. (author)

  19. Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, T. T., E-mail: li48@llnl.gov; Bayu Aji, L. B.; Heo, T. W.; Kucheyev, S. O.; Campbell, G. H. [Materials Science Division, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94551 (United States); Santala, M. K. [Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, 204 Rogers Hall, Corvallis, Oregon 97331 (United States)

    2016-05-30

    Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar{sup +} ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. The propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.

  20. Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films

    International Nuclear Information System (INIS)

    Li, T. T.; Bayu Aji, L. B.; Heo, T. W.; Kucheyev, S. O.; Campbell, G. H.; Santala, M. K.

    2016-01-01

    Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar"+ ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. The propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.

  1. Dependence of magnetic properties on ferromagnetic layer thickness in trilayer Co/Ge/Co films with granular semiconducting spacer

    International Nuclear Information System (INIS)

    Patrin, G.S.; Lee, C.-G.; Turpanov, I.A.; Zharkov, S.M.; Velikanov, D.A.; Maltsev, V.K.; Li, L.A.; Lantsev, V.V.

    2006-01-01

    We have investigated the magnetic properties of trilayer films of Co-Ge-Co. At a fixed thickness of germanium of 3.5 nm, the formation and distribution of metastable amorphous and cubic phases depends on the thickness of the ferromagnetic layer. The portion of the stable hexagonal phase is affected, too. Possible mechanisms for forming the observed magnetic structure are discussed

  2. Study on the formation of heterogeneous structures in leached layers during the corrosion process of glass

    OpenAIRE

    Willemien Anaf

    2010-01-01

    Le verre, corrodé dans des conditions naturelles, montre souvent des hétérogénéités dans la couche lixiviée, comme une structure lamellaire ou des inclusions de MnO2 ou Ca3(PO4)2. La formation de ces hétérogénéités n’est pas encore bien comprise. Des structures de ce type ont été produites artificiellement en laboratoire en immergeant des échantillons de verre dans des solutions riches en métaux. Les résultats expérimentaux ont été comparés avec des théories décrivant la corrosion du verre.Gl...

  3. On possible mechanisms of rim-layer formation in the high-burnup UO2 fuel

    International Nuclear Information System (INIS)

    Zborovskii, V.; Likhanskii, V.

    2006-01-01

    Two models determining threshold conditions for onset of UO 2 fuel restructuring are developed. In the first model the conditions for fuel restructuring are related with development of the Kinoshita instability. The second model is based upon attainment of critical values by radius of over pressurised bubbles. Possibility of large bubbles formation on dislocation lines is considered with account of Xe atoms drift in the field of mechanical strain of dislocation and irradiation-induced Xe drift in vacancy concentration gradient. Computer simulations of behaviour of point defects and Xe atoms near dislocation core are carried out, results are compared with experimental data. The computer program is developed which consistently calculates point defects and Xe atoms distributions inside fuel grain with account of their behaviour near dislocation core

  4. Atomic layer deposition of Pd and Pt nanoparticles for catalysis: on the mechanisms of nanoparticle formation

    International Nuclear Information System (INIS)

    Mackus, Adriaan J M; Weber, Matthieu J; Thissen, Nick F W; Garcia-Alonso, Diana; Vervuurt, René H J; Assali, Simone; Bol, Ageeth A; Verheijen, Marcel A; Kessels, Wilhelmus M M

    2016-01-01

    The deposition of Pd and Pt nanoparticles by atomic layer deposition (ALD) has been studied extensively in recent years for the synthesis of nanoparticles for catalysis. For these applications, it is essential to synthesize nanoparticles with well-defined sizes and a high density on large-surface-area supports. Although the potential of ALD for synthesizing active nanocatalysts for various chemical reactions has been demonstrated, insight into how to control the nanoparticle properties (i.e. size, composition) by choosing suitable processing conditions is lacking. Furthermore, there is little understanding of the reaction mechanisms during the nucleation stage of metal ALD. In this work, nanoparticles synthesized with four different ALD processes (two for Pd and two for Pt) were extensively studied by transmission electron spectroscopy. Using these datasets as a starting point, the growth characteristics and reaction mechanisms of Pd and Pt ALD relevant for the synthesis of nanoparticles are discussed. The results reveal that ALD allows for the preparation of particles with control of the particle size, although it is also shown that the particle size distribution is strongly dependent on the processing conditions. Moreover, this paper discusses the opportunities and limitations of the use of ALD in the synthesis of nanocatalysts. (paper)

  5. Formation of apatite layers on modified canasite glass-ceramics in simulated body fluid.

    Science.gov (United States)

    Miller, C A; Kokubo, T; Reaney, I M; Hatton, P V; James, P F

    2002-03-05

    Canasite glass-ceramics were modified by either increasing the concentration of calcium in the glass, or by the addition of P2O5. Samples of these novel materials were placed in simulated body fluid (SBF), along with a control material (commercial canasite), for periods ranging from 12 h to 28 days. After immersion, surface analysis was performed using thin film X-ray diffraction, Fourier transform infrared reflection spectroscopy, and scanning electron microscopy equipped with energy dispersive X-ray detectors. The concentrations of sodium, potassium, calcium, silicon, and phosphorus in the SBF solution were measured using inductively coupled plasma emission spectroscopy. No apatite was detected on the surface of commercial canasite, even after 28 days of immersion in SBF. A crystalline apatite layer was formed on the surface of a P2O5-containing canasite after 5 days, and after 3 days for calcium-enriched canasite. Ion release data suggested that the mechanism for apatite deposition was different for P2O5 and non-P2O5-containing glass-ceramics. Copyright 2001 John Wiley & Sons, Inc.

  6. Anomalous or regular capacitance? The influence of pore size dispersity on double-layer formation

    Science.gov (United States)

    Jäckel, N.; Rodner, M.; Schreiber, A.; Jeongwook, J.; Zeiger, M.; Aslan, M.; Weingarth, D.; Presser, V.

    2016-09-01

    The energy storage mechanism of electric double-layer capacitors is governed by ion electrosorption at the electrode surface. This process requires high surface area electrodes, typically highly porous carbons. In common organic electrolytes, bare ion sizes are below one nanometer but they are larger when we consider their solvation shell. In contrast, ionic liquid electrolytes are free of solvent molecules, but cation-anion coordination requires special consideration. By matching pore size and ion size, two seemingly conflicting views have emerged: either an increase in specific capacitance with smaller pore size or a constant capacitance contribution of all micro- and mesopores. In our work, we revisit this issue by using a comprehensive set of electrochemical data and a pore size incremental analysis to identify the influence of certain ranges in the pore size distribution to the ion electrosorption capacity. We see a difference in solvation of ions in organic electrolytes depending on the applied voltage and a cation-anion interaction of ionic liquids in nanometer sized pores.

  7. Biexciton formation and exciton coherent coupling in layered GaSe

    Science.gov (United States)

    Dey, P.; Paul, J.; Moody, G.; Stevens, C. E.; Glikin, N.; Kovalyuk, Z. D.; Kudrynskyi, Z. R.; Romero, A. H.; Cantarero, A.; Hilton, D. J.; Karaiskaj, D.

    2015-06-01

    Nonlinear two-dimensional Fourier transform (2DFT) and linear absorption spectroscopy are used to study the electronic structure and optical properties of excitons in the layered semiconductor GaSe. At the 1s exciton resonance, two peaks are identified in the absorption spectra, which are assigned to splitting of the exciton ground state into the triplet and singlet states. 2DFT spectra acquired for co-linear polarization of the excitation pulses feature an additional peak originating from coherent energy transfer between the singlet and triplet. At cross-linear polarization of the excitation pulses, the 2DFT spectra expose a new peak likely originating from bound biexcitons. The polarization dependent 2DFT spectra are well reproduced by simulations using the optical Bloch equations for a four level system, where many-body effects are included phenomenologically. Although biexciton effects are thought to be strong in this material, only moderate contributions from bound biexciton creation can be observed. The biexciton binding energy of ˜2 meV was estimated from the separation of the peaks in the 2DFT spectra. Temperature dependent absorption and 2DFT measurements, combined with "ab initio" theoretical calculations of the phonon spectra, indicate strong interaction with the A1 ' phonon mode. Excitation density dependent 2DFT measurements reveal excitation induced dephasing and provide a lower limit for the homogeneous linewidth of the excitons in the present GaSe crystal.

  8. Biexciton formation and exciton coherent coupling in layered GaSe

    International Nuclear Information System (INIS)

    Dey, P.; Paul, J.; Stevens, C. E.; Glikin, N.; Karaiskaj, D.; Moody, G.; Kovalyuk, Z. D.; Kudrynskyi, Z. R.; Romero, A. H.; Cantarero, A.; Hilton, D. J.

    2015-01-01

    Nonlinear two-dimensional Fourier transform (2DFT) and linear absorption spectroscopy are used to study the electronic structure and optical properties of excitons in the layered semiconductor GaSe. At the 1s exciton resonance, two peaks are identified in the absorption spectra, which are assigned to splitting of the exciton ground state into the triplet and singlet states. 2DFT spectra acquired for co-linear polarization of the excitation pulses feature an additional peak originating from coherent energy transfer between the singlet and triplet. At cross-linear polarization of the excitation pulses, the 2DFT spectra expose a new peak likely originating from bound biexcitons. The polarization dependent 2DFT spectra are well reproduced by simulations using the optical Bloch equations for a four level system, where many-body effects are included phenomenologically. Although biexciton effects are thought to be strong in this material, only moderate contributions from bound biexciton creation can be observed. The biexciton binding energy of ∼2 meV was estimated from the separation of the peaks in the 2DFT spectra. Temperature dependent absorption and 2DFT measurements, combined with “ab initio” theoretical calculations of the phonon spectra, indicate strong interaction with the A 1 ′ phonon mode. Excitation density dependent 2DFT measurements reveal excitation induced dephasing and provide a lower limit for the homogeneous linewidth of the excitons in the present GaSe crystal

  9. Biexciton formation and exciton coherent coupling in layered GaSe

    Energy Technology Data Exchange (ETDEWEB)

    Dey, P.; Paul, J.; Stevens, C. E.; Glikin, N.; Karaiskaj, D., E-mail: karaiskaj@usf.edu [Department of Physics, University of South Florida, 4202 East Fowler Ave., Tampa, Florida 33620 (United States); Moody, G. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colarado 80305 (United States); Kovalyuk, Z. D.; Kudrynskyi, Z. R. [Chernivtsi Department, Frantsevich Institute of Material Sciences Problems, The National Academy of Sciences of Ukraine, 5, Iryna Vilde St., 58001 Chernivtsi (Ukraine); Romero, A. H. [Physics Department, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Cantarero, A. [Materials Science Institute, University of Valencia, P.O. Box 2205, 46071 Valencia (Spain); Hilton, D. J. [Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294 (United States)

    2015-06-07

    Nonlinear two-dimensional Fourier transform (2DFT) and linear absorption spectroscopy are used to study the electronic structure and optical properties of excitons in the layered semiconductor GaSe. At the 1s exciton resonance, two peaks are identified in the absorption spectra, which are assigned to splitting of the exciton ground state into the triplet and singlet states. 2DFT spectra acquired for co-linear polarization of the excitation pulses feature an additional peak originating from coherent energy transfer between the singlet and triplet. At cross-linear polarization of the excitation pulses, the 2DFT spectra expose a new peak likely originating from bound biexcitons. The polarization dependent 2DFT spectra are well reproduced by simulations using the optical Bloch equations for a four level system, where many-body effects are included phenomenologically. Although biexciton effects are thought to be strong in this material, only moderate contributions from bound biexciton creation can be observed. The biexciton binding energy of ∼2 meV was estimated from the separation of the peaks in the 2DFT spectra. Temperature dependent absorption and 2DFT measurements, combined with “ab initio” theoretical calculations of the phonon spectra, indicate strong interaction with the A{sub 1}{sup ′} phonon mode. Excitation density dependent 2DFT measurements reveal excitation induced dephasing and provide a lower limit for the homogeneous linewidth of the excitons in the present GaSe crystal.

  10. Formation of a Molecular Wire Using the Chemically Adsorbed Monomolecular Layer Having Pyrrolyl Groups

    Directory of Open Access Journals (Sweden)

    Kazufumi Ogawa

    2011-01-01

    Full Text Available A molecular wire containing polypyrrolyl conjugate bonds has been prepared by a chemical adsorption technique using 1,1,1-trichloro-12-pyrrolyl-1-siladodecane (PNN and an electrooxidative polymerization technique, and the conductivity of the molecular wire without any dopant has been measured by using AFM/STM at room temperature. When sample dimension measured was about 0.3 nm (thickness of the conductive portion in the PNN monomolecular layer ×100 μm (the average width of an electric path ×2 mm (the distance between Pt positive electrode and the AFM tip covered with Au, the conductivity of the polymerized PNN molecular wire at room temperature was larger than 1.6 × 105 S/cm both in an atmosphere and in a vacuum chamber of 10−5 Torr. The activation energy obtained by Arrhenius' plots was almost zero in the temperature range between 320 and 450 K.

  11. Protoporphyrin IX formation and photobleaching in different layers of normal human skin

    DEFF Research Database (Denmark)

    Togsverd-Bo, Katrine; Idorn, Luise W; Philipsen, Peter A

    2012-01-01

    human skin was tape-stripped and incubated with 20% methylaminolevulinate (MAL) or 20% hexylaminolevulinate (HAL) for 3 h. Fluorescence microscopy quantified PpIX accumulation in epidermis, superficial, mid and deep dermis, down to 2 mm. PpIX photobleaching by light-emitting diode (LED, 632 nm, 18......Topical photodynamic therapy (PDT) is used for various skin disorders, and selective targeting of specific skin structures is desirable. The objective was to assess accumulation of PpIX fluorescence and photobleaching within skin layers using different photosensitizers and light sources. Normal...... and 37 J/cm(2)), intense pulsed light (IPL, 500-650 nm, 36 and 72 J/cm(2)) and long-pulsed dye laser (LPDL, 595 nm, 7.5 and 15 J/cm(2)) was measured using fluorescence photography and microscopy. We found higher PpIX fluorescence intensities in epidermis and superficial dermis in HAL-incubated skin than...

  12. Germ-layer commitment and axis formation in sea anemone embryonic cell aggregates.

    Science.gov (United States)

    Kirillova, Anastasia; Genikhovich, Grigory; Pukhlyakova, Ekaterina; Demilly, Adrien; Kraus, Yulia; Technau, Ulrich

    2018-02-20

    Robust morphogenetic events are pivotal for animal embryogenesis. However, comparison of the modes of development of different members of a phylum suggests that the spectrum of developmental trajectories accessible for a species might be far broader than can be concluded from the observation of normal development. Here, by using a combination of microsurgery and transgenic reporter gene expression, we show that, facing a new developmental context, the aggregates of dissociated embryonic cells of the sea anemone Nematostella vectensis take an alternative developmental trajectory. The self-organizing aggregates rely on Wnt signals produced by the cells of the original blastopore lip organizer to form body axes but employ morphogenetic events typical for normal development of distantly related cnidarians to re-establish the germ layers. The reaggregated cells show enormous plasticity including the capacity of the ectodermal cells to convert into endoderm. Our results suggest that new developmental trajectories may evolve relatively easily when highly plastic embryonic cells face new constraints. Copyright © 2018 the Author(s). Published by PNAS.

  13. Single track and single layer formation in selective laser melting of niobium solid solution alloy

    Directory of Open Access Journals (Sweden)

    Yueling GUO

    2018-04-01

    Full Text Available Selective laser melting (SLM was employed to fabricate Nb-37Ti-13Cr-2Al-1Si (at% alloy, using pre-alloyed powders prepared by plasma rotating electrode processing (PREP. A series of single tracks and single layers under different processing parameters was manufactured to evaluate the processing feasibility by SLM, including laser power, scanning speed, and hatch distance. Results showed that continuous single tracks could be fabricated using proper laser powers and scanning velocities. Both the width of a single track and its penetration depth into a substrate increased with an increase of the linear laser beam energy density (LED, i.e., an increase of the laser power and a decrease of the scanning speed. Nb, Ti, Si, Cr, and Al elements distributed heterogeneously over the melt pool in the form of swirl-like patterns. An excess of the hatch distance was not able to interconnect neighboring tracks. Under improper processing parameters, a balling phenomenon occurred, but could be eliminated with an increased LED. This work testified the SLM-processing feasibility of Nb-based alloy and promoted the application of SLM to the manufacture of niobium-based alloys. Keywords: Additive manufacturing, Melt pool, Niobium alloy, Powder metallurgy, Selective laser melting

  14. Deformation-phase transformation coupling mechanism of white layer formation in high speed machining of FGH95 Ni-based superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jin [School of Mechanical and Automotive Engineering, Qilu University of Technology, Jinan, Shandong 250353 (China); Liu, Zhanqiang, E-mail: melius@sdu.edu.cn [School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061 (China); Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Shandong University, Ministry of Education, Shandong (China); Lv, Shaoyu [School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061 (China)

    2014-02-15

    Ni-based superalloy represents a significant metal portion of the aircraft critical structural and engine components. When these critical structural components in aerospace industry are manufactured with the objective to reach high reliability levels and excellent service performance, surface integrity is one of the most relevant parameter used for evaluating the quality of finish machined surfaces. In the study of surface integrity, the formation white layer is a very important research topic. The formation of white layer on the Ni-based superalloy machined surface will reduce the machined parts service performance and fatigue life. This paper was conducted to determine the effects of cutting speed on white layer formation in high speed machining of FGH95 Ni-based superalloy. Optical microscope, scanning electron microscope and X-ray diffraction were employed to analyze the elements and microstructures of white layer and bulk materials. The statistical analysis for grain numbers was executed to study the influence of cutting speed on the grain refinement in the machined surface. The investigation results showed that white layer exhibits significantly different microstructures with the bulk materials. It shows densification, no obvious structural features characteristic. The microstructure and phase of Ni-based solid solution changed during cutting process. The increase of cutting speed causes the increase of white layer thickness when the cutting speed is less than 2000 m/min. However, white layer thickness reduces with the cutting speed further increase. The higher the cutting speed, the more serious grains refinement in machined surface. 2-D FEM for machining FGH95 were carried out to simulate the cutting process and obtained the cutting temperature field, cutting strain field and strain rate field. The impact mechanisms of cutting temperature, cutting strain and strain rates on white layer formation were analyzed. At last, deformation-phase transformation

  15. Formation of organic layer on femtosecond laser-induced periodic surface structures

    Energy Technology Data Exchange (ETDEWEB)

    Yasumaru, Naoki, E-mail: yasuma@fukui-nct.ac.jp [National Institute of Technology, Fukui College, Sabae, Fukui 916-8507 (Japan); Sentoku, Eisuke [National Institute of Technology, Fukui College, Sabae, Fukui 916-8507 (Japan); Kiuchi, Junsuke [Eyetec Co., Ltd., Sabae, Fukui 916-0016 (Japan)

    2017-05-31

    Highlights: • Surface analyses of two types of femtosecond laser-induced periodic surface structures (LIPSS) on titanium were conducted. • The parallel-oriented ultrafine LIPSS showed the almost same roughness and chemical states as the non-irradiated Ti surface. • The well-known perpendicular-oriented LIPSS were typically covered with an organic layer similar to a cellulose derivative. - Abstract: Two types of laser-induced periodic surface structures (LIPSS) formed on titanium by femtosecond (fs) laser pulses (λ = 800 nm, τ = 180 fs, ν = 1 kHz) in air were investigated experimentally. At a laser fluence F above the ablation threshold, LIPSS with a minimum mean spacing of D < λ⁄2 were observed perpendicular to the laser polarization direction. In contrast, for F slightly below than the ablation threshold, ultrafine LIPSS with a minimum value of D < λ/10 were formed parallel to the polarization direction. The surface roughness of the parallel-oriented LIPSS was almost the same as that of the non-irradiated surface, unlike the high roughness of the perpendicular-oriented LIPSS. In addition, although the surface state of the parallel-oriented LIPSS was the same as that of the non-irradiated surface, the perpendicular-oriented LIPSS were covered with an organic thin film similar to a cellulose derivative that cannot be easily formed by conventional chemical synthesis. The results of these surface analyses indicate that these two types of LIPSS are formed through different mechanisms. This fs-laser processing technique may become a new technology for the artificial synthesis of cellulose derivatives.

  16. Long-wave-instability-induced pattern formation in an evaporating sessile or pendent liquid layer

    Science.gov (United States)

    Wei, Tao; Duan, Fei

    2018-03-01

    We investigate the nonlinear dynamics and stability of an evaporating liquid layer subject to vapor recoil, capillarity, thermocapillarity, ambient cooling, viscosity, and negative or positive gravity combined with buoyancy effects in the lubrication approximation. Using linear theory, we identify the mechanisms of finite-time rupture, independent of thermocapillarity and direction of gravity, and predict the effective growth rate of an interfacial perturbation which reveals competition among the mechanisms. A stability diagram is predicted for the onset of long-wave (LW) evaporative convection. In the two-dimensional simulation, we observe well-defined capillary ridges on both sides of the valley under positive gravity and main and secondary droplets under negative gravity, while a ridge can be trapped in a large-scale drained region in both cases. Neglecting the other non-Boussinesq effects, buoyancy does not have a significant influence on interfacial evolution and rupture time but makes contributions to the evaporation-driven convection and heat transfer. The average Nusselt number is found to increase with a stronger buoyancy effect. The flow field and interface profile jointly manifest the LW Marangoni-Rayleigh-Bénard convection under positive gravity and the LW Marangoni convection under negative gravity. In the three-dimensional simulation of moderate evaporation with a random perturbation, the rupture patterns are characterized by irregular ridge networks with distinct height scales for positive and negative gravity. A variety of interfacial and internal dynamics are displayed, depending on evaporation conditions, gravity, Marangoni effect, and ambient cooling. Reasonable agreement is found between the present results and the reported experiments and simulations. The concept of dissipative compacton also sheds light on the properties of interfacial fractalization.

  17. Formation of titanium nitride layers on titanium metal: Results of XPS and AES investigations

    International Nuclear Information System (INIS)

    Moers, H.; Pfennig, G.; Klewe-Nebenius, H.; Penzhorn, R.D.; Sirch, M.; Willin, E.

    1988-09-01

    The reaction of titanium metal with gaseous nitrogen and ammonia at temperatures of 890 0 C leads to the formation of nitridic overlayers on the metallic substrate. The thicknesses of the overlayers increase with increasing reaction time. Under comparable conditions ammonia reacts much slower than nitrogen. XPS and AES depth profile analyses show continuous changes of the in-depth compositions of the overlayers. This can be interpreted in terms of a very irregular thickness of the overlayers, an assumption which is substantiated by local AES analyses and by the observation of a pronounced crystalline structure of the substrate after annealing pretreatment, which can give rise to locally different reaction rates. The depth profile is also influenced by the broad ranges of stability of the titanium nitride phases formed during the reaction. The quantitative analysis of the titanium/nitrogen overlayers by AES is difficult because of the overlap of titanium and nitrogen Auger peaks. In quantitative XPS analysis problems arise due to difficulties in defining Ti 2p peak areas. This work presents practical procedures for the quantitative evaluation by XPS and AES of nitridic overlayers with sufficient accuracy. (orig.) [de

  18. Microstructures and phase formations in the surface layer of an AISI D2 steel treated with pulsed electron beam

    International Nuclear Information System (INIS)

    Zou, J.X.; Grosdidier, T.; Zhang, K.M.; Gao, B.; Hao, S.Z.; Dong, C.

    2007-01-01

    The nanostructures and metastable phase transformations in the surface layer of an AISI D2 steel treated with high current pulsed electron beam (HCPEB) were investigated. The surface structure is marked by two distinct features, i.e. the formation of sub-micrometer fine austenite γ grains (50-150 nm), and the disappearance of carbides via dissolution and crater eruption. The γ phase directly grows from the melt and is retained down to room temperature. Although the cooling rate is as high as 10 7 K/s in our case, the martensitic transformation could completely be suppressed. Such an effect is due to the increased stability of the austenite phase through grain refinement and chemistry modification

  19. Structural amorphous steels

    International Nuclear Information System (INIS)

    Lu, Z.P.; Liu, C.T.; Porter, W.D.; Thompson, J.R.

    2004-01-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist's dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed

  20. Interaction of single and multi-layer graphene oxide with fetal bovine serum: assessing the protein corona formation

    Energy Technology Data Exchange (ETDEWEB)

    Franqui, Lidiane Silva; Farias, Marcelo Alexandre de; Portugal, Rodrigo Villares; Costa, Carlos Alberto; Leme, Adriana Franco Paes; Martinez, Diego Stefani Teodoro, E-mail: lidiane.franqui@pos.ft.unicamp.br [Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP (Brazil); Coluci, Vitor Rafael [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2016-07-01

    Full text: When in contact with biological systems, nanomaterials surface adsorbs biomolecules present in the biological medium, mainly proteins, yielding a molecular coating 'protein corona' which affects the biological response and toxicity of the nanomaterials. Several factors can influence the protein corona formation, such as nanomaterial physicochemical properties and the nature of biological medium. In this work, we have performed a comparative study between the single and multi-layer graphene oxide nanomaterials (SL-GO and ML-GO, respectively) after their interaction with DMEM cell culture medium containing fetal bovine serum (FBS). Bare GOs and FBS protein corona-c