WorldWideScience

Sample records for amorphous ice transition

  1. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chuanlong; Yong, Xue; Tse, John S.; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kenney-Benson, Curtis; Shen, Guoyin

    2017-09-01

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ~ 1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.

  2. The glass transition in high-density amorphous ice.

    Science.gov (United States)

    Loerting, Thomas; Fuentes-Landete, Violeta; Handle, Philip H; Seidl, Markus; Amann-Winkel, Katrin; Gainaru, Catalin; Böhmer, Roland

    2015-01-01

    There has been a long controversy regarding the glass transition in low-density amorphous ice (LDA). The central question is whether or not it transforms to an ultraviscous liquid state above 136 K at ambient pressure prior to crystallization. Currently, the most widespread interpretation of the experimental findings is in terms of a transformation to a superstrong liquid above 136 K. In the last decade some work has also been devoted to the study of the glass transition in high-density amorphous ice (HDA) which is in the focus of the present review. At ambient pressure HDA is metastable against both ice I and LDA, whereas at > 0.2 GPa HDA is no longer metastable against LDA, but merely against high-pressure forms of crystalline ice. The first experimental observation interpreted as the glass transition of HDA was made using in situ methods by Mishima, who reported a glass transition temperature T g of 160 K at 0.40 GPa. Soon thereafter Andersson and Inaba reported a much lower glass transition temperature of 122 K at 1.0 GPa. Based on the pressure dependence of HDA's T g measured in Innsbruck, we suggest that they were in fact probing the distinct glass transition of very high-density amorphous ice (VHDA). Very recently the glass transition in HDA was also observed at ambient pressure at 116 K. That is, LDA and HDA show two distinct glass transitions, clearly separated by about 20 K at ambient pressure. In summary, this suggests that three glass transition lines can be defined in the p-T plane for LDA, HDA, and VHDA.

  3. Amorphization of ice under mechanical stresses

    Science.gov (United States)

    Bordonskii, G. S.; Krylov, S. D.

    2017-11-01

    The dielectric parameters of freshly produced freshwater ice in the microwave range are investigated. It is established that this kind of ice contains a noticeable amount of amorphous ice. Its production is associated with plastic deformation under mechanical stresses. An assessment of the dielectric-permeability change caused by amorphous ice in the state of a slowly flowing medium is given.

  4. Polyamorphous transition in amorphous fullerites C70

    International Nuclear Information System (INIS)

    Borisova, P. A.; Agafonov, S. S.; Glazkov, V. P.; D’yakonova, N. P.; Somenkov, V. A.

    2011-01-01

    Samples of amorphous fullerites C 70 have been obtained by mechanical activation (grinding in a ball mill). The structure of the samples has been investigated by neutron and X-ray diffraction. The high-temperature (up to 1200°C) annealing of amorphous fullerites revealed a polyamorphous transition from molecular to atomic glass, which is accompanied by the disappearance of fullerene halos at small scattering angles. Possible structural versions of the high-temperature amorphous phase are discussed.

  5. Limits of metastability in amorphous ices: the neutron scattering Debye-Waller factor.

    Science.gov (United States)

    Amann-Winkel, Katrin; Löw, Florian; Handle, Philip H; Knoll, Wiebke; Peters, Judith; Geil, Burkhard; Fujara, Franz; Loerting, Thomas

    2012-12-21

    Recently, it became clear that relaxation effects in amorphous ices play a very important role that has previously been overlooked. The thermodynamic history of amorphous samples strongly affects their transition behavior. In particular, well-relaxed samples show higher thermal stability, thereby providing a larger window to investigate their glass transitions. We here present neutron scattering experiments using fixed elastic window scans on relaxed forms of amorphous ice, namely expanded high density amorphous ice (eHDA), a variant of low density amorphous ice (LDA-II) and hyperquenched glassy water (HGW). These amorphous ices are expected to be true glassy counterparts of deeply supercooled liquid water, therefore fast precursor dynamics of structural relaxation are expected to appear below the calorimetric glass transition temperature. The Debye-Waller factor shows a very weak sub-T(g) anomaly in some of the samples, which might be the signature of such fast precursor dynamics. However, we cannot find this behavior consistently in all samples at all reciprocal length scales of momentum transfer.

  6. Irradiation induced crystalline to amorphous transition

    International Nuclear Information System (INIS)

    Bourgoin, J.

    1980-01-01

    Irradiation of a crystalline solid with energetic heavy particles results in cascades of defects which, with increasing dose, overlap and form a continuous disordered layer. In semiconductors the physical properties of such disordered layers are found to be similar to those of amorphous layers produced by evaporation. It is shown in the case of silicon, that the transition from a disordered crystalline (X) layer to an amorphous (α) layer occurs when the Gibbs energy of the X phase and of the defects it contains becomes larger than the Gibbs energy of the α phase. (author)

  7. Distinct Properties of Nanofibrous Amorphous Ice

    Directory of Open Access Journals (Sweden)

    Fanyi Cai

    2014-11-01

    Full Text Available We make glassy water in the form of nanofibers by electrospraying liquid water into a hyperquenching chamber. It is measured with means of differential scanning calorimetry, wide angle X-ray diffraction and Raman spectroscopy. It is found that two apparent glass transitions at Tg1 = 136 K and Tg2 = 228 K are detected and non-crystallized water is observed at temperatures up to 228 K. This finding may expand the research objects for liquid water at low temperatures.

  8. Amorphous-crystalline transition in thermoelectric NbO2

    International Nuclear Information System (INIS)

    Music, Denis; Chen, Yen-Ting; Bliem, Pascal; Geyer, Richard W

    2015-01-01

    Density functional theory was employed to design enhanced amorphous NbO 2 thermoelectrics. The covalent-ionic nature of Nb–O bonding is identical in amorphous NbO 2 and its crystalline counterpart. However, the Anderson localisation occurs in amorphous NbO 2 , which may affect the transport properties. We calculate a multifold increase in the absolute Seebeck coefficient for the amorphous state. These predictions were critically appraised by measuring the Seebeck coefficient of sputtered amorphous and crystalline NbO 2 thin films with the identical short-range order. The first-order phase transition occurs at approximately 550 °C, but amorphous NbO 2 possesses enhanced transport properties at all temperatures. Amorphous NbO 2 , reaching  −173 μV K −1 , exhibits up to a 29% larger absolute Seebeck coefficient value, thereby validating the predictions. (paper)

  9. Visible and ultraviolet emission from pulse irradiated amorphous and polycrystalline H2O ice

    International Nuclear Information System (INIS)

    Freeman, C.G.; Quickenden, T.I.; Litjens, R.A.J.; Sangster, D.F.

    1984-01-01

    Luminescence peaking at 405 nm was observed when thin films of amorphous or polycrystalline ice at 97 K were irradiated with a pulsed beam of 0.53 MeV electrons. These emissions differed from the luminescence emitted by crystalline ice in that memory effects were not observed; the peak wavelengths were red shifted by approx.20 nm; and the half-lives were 6--9 ns instead of approx.400 ns. The emission spectra of polycrystalline ice samples produced by rapid deposition or by annealing amorphous ice were similar, but both had substantially lower intensities than amorphous ice spectra

  10. Thermal transitions of the amorphous polymers in wheat straw

    Science.gov (United States)

    Wolfgang Stelte; Craig Clemons; Jens K. Holm; Jesper Ahrenfeldt; Ulrik B. Henriksen; Anand R. Sanadi

    2011-01-01

    The thermal transitions of the amorphous polymers in wheat straw were investigated using dynamic mechanical thermal analysis (DMTA). The study included both natural and solvent extracted wheat straw, in moist (8–9% water content) and dry conditions, and was compared to spruce samples. Under these conditions two transitions arising from the glass transition of lignin...

  11. Phase transitions in biogenic amorphous calcium carbonate.

    Science.gov (United States)

    Gong, Yutao U T; Killian, Christopher E; Olson, Ian C; Appathurai, Narayana P; Amasino, Audra L; Martin, Michael C; Holt, Liam J; Wilt, Fred H; Gilbert, P U P A

    2012-04-17

    Crystalline biominerals do not resemble faceted crystals. Current explanations for this property involve formation via amorphous phases. Using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), here we examine forming spicules in embryos of Strongylocentrotus purpuratus sea urchins, and observe a sequence of three mineral phases: hydrated amorphous calcium carbonate (ACC · H(2)O) → dehydrated amorphous calcium carbonate (ACC) → calcite. Unexpectedly, we find ACC · H(2)O-rich nanoparticles that persist after the surrounding mineral has dehydrated and crystallized. Protein matrix components occluded within the mineral must inhibit ACC · H(2)O dehydration. We devised an in vitro, also using XANES-PEEM, assay to identify spicule proteins that may play a role in stabilizing various mineral phases, and found that the most abundant occluded matrix protein in the sea urchin spicules, SM50, stabilizes ACC · H(2)O in vitro.

  12. Thermal transitions of the amorphous polymers in wheat straw

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Clemons, Craig; Holm, Jens K.

    2011-01-01

    The thermal transitions of the amorphous polymers in wheat straw were investigated using dynamic mechanical thermal analysis (DMTA). The study included both natural and solvent extracted wheat straw, in moist (8–9% water content) and dry conditions, and was compared to spruce samples. Under...... these conditions two transitions arising from the glass transition of lignin and hemicelluloses have been identified. Key transitions attributed to softening of lignin were found at 53, 63 and 91 °C for moist samples of wheat straw, extracted straw and spruce, respectively. Transitions for hemicelluloses were...

  13. Pressure-induced reversible amorphization and an amorphous-amorphous transition in Ge₂Sb₂Te₅ phase-change memory material.

    Science.gov (United States)

    Sun, Zhimei; Zhou, Jian; Pan, Yuanchun; Song, Zhitang; Mao, Ho-Kwang; Ahuja, Rajeev

    2011-06-28

    Ge(2)Sb(2)Te(5) (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversible crystalline-amorphous and polymorphic amorphous transitions in NaCl structured GST by ab initio molecular dynamics calculations. We have showed that the onset amorphization of GST starts at approximately 18 GPa and the system become completely random at approximately 22 GPa. This amorphous state has a cubic framework (c-amorphous) of sixfold coordinations. With further increasing pressure, the c-amorphous transforms to a high-density amorphous structure with trigonal framework (t-amorphous) and an average coordination number of eight. The pressure-induced amorphization is investigated to be due to large displacements of Te atoms for which weak Te-Te bonds exist or vacancies are nearby. Upon decompressing to ambient conditions, the original cubic crystalline structure is restored for c-amorphous, whereas t-amorphous transforms to another amorphous phase that is similar to the melt-quenched amorphous GST.

  14. Adsorption of Methylamine on Amorphous Ice under Interstellar Conditions. A Grand Canonical Monte Carlo Simulation Study.

    Science.gov (United States)

    Horváth, Réka A; Hantal, György; Picaud, Sylvain; Szőri, Milán; Jedlovszky, Pál

    2018-04-05

    The adsorption of methylamine at the surface of amorphous ice is studied at various temperatures, ranging from 20 to 200 K, by grand canonical Monte Carlo simulations under conditions that are characteristic to the interstellar medium (ISM). The results are also compared with those obtained earlier on crystalline ( I h ) ice. We found that methylamine has a strong ability of being adsorbed on amorphous ice, involving also multilayer adsorption. The decrease of the temperature leads to a substantial increase of this adsorption ability; thus, considerable adsorption is seen at 20-50 K even at bulk gas phase concentrations that are comparable with that of the ISM. Further, methylamine molecules can also be dissolved in the bulk amorphous ice phase. Both the adsorption capacity of amorphous ice and the strength of the adsorption on it are found to be clearly larger than those corresponding to crystalline ( I h ) ice, due to the molecular scale roughness of the amorphous ice surface as well as to the lack of clear orientational preferences of the water molecules at this surface. Thus, the surface density of the saturated adsorption monolayer is estimated to be 12.6 ± 0.4 μmol/m 2 , 20% larger than the value of 10.35 μmol/m 2 , obtained earlier for I h ice, and at low enough surface coverages the adsorbed methylamine molecules are found to easily form up to three hydrogen bonds with the surface water molecules. The estimated heat of adsorption at infinitely low surface coverage is calculated to be -69 ± 5 kJ/mol, being rather close to the estimated heat of solvation in the bulk amorphous ice phase of -74 ± 7 kJ/mol, indicating that there are at least a few positions at the surface where the adsorbed methylamine molecules experience a bulk-like local environment.

  15. Characterization of the hidden glass transition of amorphous cyclomaltoheptaose.

    Science.gov (United States)

    Tabary, Nicolas; Mahieu, Aurélien; Willart, Jean-François; Dudognon, Emeline; Danède, Florence; Descamps, Marc; Bacquet, Maryse; Martel, Bernard

    2011-10-18

    An amorphous solid of cyclomaltoheptaose (β-cyclodextrin, β-CD) was formed by milling its crystalline form using a high-energy planetary mill at room temperature. The glass transition of this amorphous solid was found to occur above the thermal degradation point of the material preventing its direct observation and thus its full characterization. The corresponding glass transition temperature (T(g)) and the ΔC(p) at T(g) have, however, been estimated by extrapolation of T(g) and ΔC(p) of closely related amorphous compounds. These compounds include methylated β-CD with different degrees of substitution and molecular alloys obtained by co-milling β-CD and methylated β-CD (DS 1.8) at different ratios. The physical characterization of the amorphous states have been performed by powder X-ray diffraction and differential scanning calorimetry, while the chemical integrity of β-CD upon milling was checked by NMR spectroscopy and mass spectrometry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. In situ neutron diffraction studies of high density amorphous ice under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, Stefan [Physique des Milieux Denses, IMPMC, CNRS UMR 7590, Universite P M Curie, 4 Place Jussieu, 75252 Paris (France); Straessle, Th [Physique des Milieux Denses, IMPMC, CNRS UMR 7590, Universite P M Curie, 4 Place Jussieu, 75252 Paris (France); Saitta, A M [Physique des Milieux Denses, IMPMC, CNRS UMR 7590, Universite P M Curie, 4 Place Jussieu, 75252 Paris (France); Rousse, G [Physique des Milieux Denses, IMPMC, CNRS UMR 7590, Universite P M Curie, 4 Place Jussieu, 75252 Paris (France); Hamel, G [Physique des Milieux Denses, IMPMC, CNRS UMR 7590, Universite P M Curie, 4 Place Jussieu, 75252 Paris (France); Nelmes, R J [School of Physics and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Loveday, J S [School of Physics and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Guthrie, M [School of Physics and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom)

    2005-03-23

    We review recent in situ neutron diffraction studies on the structural pressure dependence and the recrystallization of dense amorphous ices up to 2 GPa. Progress in high pressure techniques and data analysis methods allows the reliable determination of all three partial structure factors of amorphous ice under pressure. The strong pressure dependence of the g{sub OO}(r) correlation function shows that the isothermal compression of high density amorphous ice (HDA) at 100 K is achieved by a contraction ({approx} 20%) of the second-neighbour coordination shell leading to a strong increase in coordination. The g{sub DD}(r) and g{sub OD}(r) structure factors are, in contrast, only weakly sensitive to pressure. These data allow a comparison with structural features of the recently reported 'very high density amorphous ice' (VHDA) which indicates that VHDA at ambient pressure is very similar to compressed HDA, at least up to the second-neighbour shell. The recrystallization of HDA has been investigated in the range 0.3-2 GPa. It is shown that hydrogen-disordered phases are produced which normally grow only from the liquid, such as ice XII, and in particular ice IV. These findings are in good agreement with results on quench-recovered samples.

  17. A unified description of crystalline-to-amorphous transitions

    Energy Technology Data Exchange (ETDEWEB)

    Lam, N.Q.; Okamoto, P.R. [Argonne National Lab., IL (United States); Devanathan, R. [Argonne National Lab., IL (United States)]|[Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Meshii, M. [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering

    1993-07-01

    Amorphous metallic alloys can now be synthesized by a variety of solid-state processes demonstrating the need for a more general approach to crystalline-to-amorphous (c-a) transitions. By focusing on static atomic displacements as a measure of chemical and topological disorder, we show that a unified description of c-a transformations can be based on a generalization of the phenomenological melting criterion proposed by Lindemann. The generalized version assumes that melting of a defective crystal occurs whenever the sum of thermal and static mean-square displacements exceeds a critical value identical to that for melting of the defect-free crystal. This implies that chemical or topological disorder measured by static displacements is thermodynamically equivalent to heating, and therefore that the melting temperature of the defective crystal will decrease with increasing amount of disorder. This in turn implies the existence of a critical state of disorder where the melting temperature becomes equal to a glass-transition temperature below which the metastable crystal melts to a glass. The generalized Lindemann melting criterion leads naturally to an interpretation of c-a transformations as defect-induced, low-temperature melting of critically disordered crystals. Confirmation of this criterion is provided by molecular-dynamics simulations of heat-induced melting and of defect-induced amorphization of intermetallic compounds caused either by the production of Frenkel pairs or anti-site defects. The thermodynamic equivalence between static atomic disorder and heating is reflected in the identical softening effects which they have on elastic properties and also in the diffraction analysis of diffuse scattering from disordered crystals, where the effect of static displacements appears as an artificially-enlarged thermal Debye-Waller factor. Predictions of this new, unified approach to melting and amorphization are compared with available experimental information.

  18. On Positronium Formation in Crystalline and Amorphous Ice at Low Positron Energy

    DEFF Research Database (Denmark)

    Mogensen, O. E.

    1986-01-01

    The positronium (Ps) yield for ice, measured by Eldrup et al. using a low-energy positron beam, is discussed in terms of the spur model of Ps formation. The pronounced maxima in the Ps yield for crystalline ice at positron energies below 65 eV are well explained by effects due to energy conservat...... conservation in the spur processes. Parts of the amorphous ice results are well explained by the spur but not by the Ore model. Important processes influencing the Ps formation are not included in the Ore model.......The positronium (Ps) yield for ice, measured by Eldrup et al. using a low-energy positron beam, is discussed in terms of the spur model of Ps formation. The pronounced maxima in the Ps yield for crystalline ice at positron energies below 65 eV are well explained by effects due to energy...

  19. Investigation of the atypical glass transition and recrystallization behavior of amorphous prazosin salts.

    Science.gov (United States)

    Kumar, Lokesh; Popat, Dharmesh; Bansal, Arvind K

    2011-08-25

    This manuscript studied the effect of counterion on the glass transition and recrystallization behavior of amorphous salts of prazosin. Three amorphous salts of prazosin, namely, prazosin hydrochloride, prazosin mesylate and prazosin tosylate were prepared by spray drying, and characterized by optical-polarized microscopy, differential scanning calorimetry and powder X-ray diffraction. Modulated differential scanning calorimetry was used to determine the glass transition and recrystallization temperature of amorphous salts. Glass transition of amorphous salts followed the order: prazosin mesylate > prazosin tosylate ~ prazosin hydrochloride. Amorphous prazosin mesylate and prazosin tosylate showed glass transition, followed by recrystallization. In contrast, amorphous prazosin hydrochloride showed glass transition and recrystallization simultaneously. Density Functional Theory, however, suggested the expected order of glass transition as prazosin hydrochloride > prazosin mesylate > prazosin tosylate. The counterintuitive observation of amorphous prazosin hydrochloride having lower glass transition was explained in terms of its lower activation energy (206.1 kJ/mol) for molecular mobility at Tg, compared to that for amorphous prazosin mesylate (448.5 kJ/mol) and prazosin tosylate (490.7 kJ/mol), and was further correlated to a difference in hydrogen bonding strength of the amorphous and the corresponding recrystallized salts. This study has implications in selection of an optimal amorphous salt form for pharmaceutical development.

  20. Study of ice cluster impacts on amorphous silica using the ReaxFF reactive force field molecular dynamics simulation method

    Energy Technology Data Exchange (ETDEWEB)

    Rahnamoun, A. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 234 Research East, University Park, Pennsylvania 16802 (United States); Duin, A. C. T. van [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 240 Research East, University Park, Pennsylvania 16802 (United States)

    2016-03-07

    We study the dynamics of the collisions between amorphous silica structures and amorphous and crystal ice clusters with impact velocities of 1 km/s, 4 km/s, and 7 km/s using the ReaxFF reactive molecular dynamics simulation method. The initial ice clusters consist of 150 water molecules for the amorphous ice cluster and 128 water molecules for the crystal ice cluster. The ice clusters are collided on the surface of amorphous fully oxidized and suboxide silica. These simulations show that at 1 km/s impact velocities, all the ice clusters accumulate on the surface and at 4 km/s and 7 km/s impact velocities, some of the ice cluster molecules bounce back from the surface. At 4 km/s and 7 km/s impact velocities, few of the water molecules dissociations are observed. The effect of the second ice cluster impacts on the surfaces which are fully covered with ice, on the mass loss/accumulation is studied. These studies show that at 1 km/s impacts, the entire ice cluster accumulates on the surface at both first and second ice impacts. At higher impact velocities, some ice molecules which after the first ice impacts have been attached to the surface will separate from the surface after the second ice impacts at 7 km/s impact velocity. For the 4 km/s ice cluster impact, ice accumulation is observed for the crystal ice cluster impacts and ice separation is observed for the amorphous ice impacts. Observing the temperatures of the ice clusters during the collisions indicates that the possibility of electron excitement at impact velocities less than 10 km/s is minimal and ReaxFF reactive molecular dynamics simulation can predict the chemistry of these hypervelocity impacts. However, at impact velocities close to 10 km/s the average temperature of the impacting ice clusters increase to about 2000 K, with individual molecules occasionally reaching temperatures of over 8000 K and thus it will be prudent to consider the concept of electron excitation at

  1. Isotopic quantum effects on the structure of low density amorphous ice

    CERN Document Server

    Urquidi, J; Neuefeind, J; Tomberli, B; Tulk, C A; Guthrie, M; Egelstaff, P A; Klug, D D

    2003-01-01

    Careful neutron diffraction measurements on deuterated low density amorphous (LDA) ice confirm that at 120 K it can be considered a fully 'annealed' structure, as no significant changes are observed in the amorphous spectra until crystallization occurred over time at 130 K. On this basis, the measurement of structural differences between the hydrogenated and deuterated forms of LDA ice at 120 K, have been carried out using 98 keV electromagnetic radiation diffraction techniques. The maximum observed isotope effect in LDA ice is approx 3.4% at 40 K when compared to the magnitude of the first peak in the electronic structure factor at Q = 1.70 A sup - sup 1. This compares to a maximum effect of approx 1.6% previously measured in liquid water at room temperature (Tomberli et al 2000 J. Phys.: Condens. Matter. 12 2597). The isotope effect is shown to be similar to a temperature shift in the structure of light LDA ice. However, the existence of a first sharp diffraction peak at Q = 1.0 A sup - sup 1 in the isotopi...

  2. Amorphous and crystalline phase interaction during the Brill transition in nylon 66

    Directory of Open Access Journals (Sweden)

    2009-07-01

    Full Text Available A prominent α' process in specifically treated nylon 66 and microcomposite samples is identified by dynamic mechanical analysis and proposed to be an amorphous phase counterpart of the Brill transition identified by synchrotron wide-angle X-ray diffraction (WAXD. It is suggested that this α' process, which marks a critical free volume change and an onset of segmental chain movement in the amorphous phase, precedes and prompts the Brill transition in the crystalline phase.

  3. Crystalline to amorphous transition in solids upon high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Sundeev, R.V., E-mail: apricisvir@gmail.com [I.P. Bardin Central Research Institute for Ferrous Metallurgy, 2-ya Baumanskaya 9/23, Moscow 105005 (Russian Federation); Moscow State University of Instrument Engineering and Computer Science, Stromynka 20, Moscow 107996 (Russian Federation); Glezer, A.M. [I.P. Bardin Central Research Institute for Ferrous Metallurgy, 2-ya Baumanskaya 9/23, Moscow 105005 (Russian Federation); Moscow State University of Instrument Engineering and Computer Science, Stromynka 20, Moscow 107996 (Russian Federation); National University of Science and Technology “MISIS”, Leninsky avenue 4, Moscow 119049 (Russian Federation); Shalimova, A.V. [I.P. Bardin Central Research Institute for Ferrous Metallurgy, 2-ya Baumanskaya 9/23, Moscow 105005 (Russian Federation)

    2014-10-25

    Highlights: • Ti–Ni, Zr and Fe-based alloys were deformed using HTP processing. • Ability to deformation-induced amorphization (DIA) of these alloys was studied. • Amorphization is determined by mechanical, thermodynamic and concentration factors. • The smaller stability of phases the higher their ability to deformation amorphization. • There is the difference between of DIA and to thermal amorphization in the nature. - Abstract: The amorphization behavior of the crystalline multicomponent Ni{sub 50}Ti{sub 30}Hf{sub 20}, Ti{sub 50}Ni{sub 25}Cu{sub 25,} Zr{sub 50}Ni{sub 18}Ti{sub 17}Cu{sub 15}, and Fe{sub 78}B{sub 8.5}Si{sub 9}P{sub 4.5} alloys upon severe plastic deformation (SPD) has been studied. It is shown that the crystalline to amorphous transition is determined by the ability of the crystals to accumulation of deformation defects under mechanical action, by the thermodynamic stability of the crystalline phases contained in the alloy, and by the possibility of the diffusion processes necessary for the change in the chemical composition of the crystalline and amorphous phases upon deformation. It is found that the susceptibility to amorphization upon SPD does not coincide with the tendency of the alloys to amorphization upon melt quenching.

  4. Can xenon in water inhibit ice growth? Molecular dynamics of phase transitions in water-Xe system.

    Science.gov (United States)

    Artyukhov, Vasilii I; Pulver, Alexander Yu; Peregudov, Alex; Artyuhov, Igor

    2014-07-21

    Motivated by recent experiments showing the promise of noble gases as cryoprotectants, we perform molecular dynamics modeling of phase transitions in water with xenon under cooling. We follow the structure and dynamics of xenon water solution as a function of temperature. Homogeneous nucleation of clathrate hydrate phase is observed and characterized. As the temperature is further reduced we observe hints of dissociation of clathrate due to stronger hydrophobic hydration, pointing towards a possible instability of clathrate at cryogenic temperatures and conversion to an amorphous phase comprised of "xenon + hydration shell" Xe·(H2O)21.5 clusters. Simulations of ice-xenon solution interface in equilibrium and during ice growth reveal the effects of xenon on the ice-liquid interface, where adsorbed xenon causes roughening of ice surface but does not preferentially form clathrate. These results provide evidence against the ice-blocker mechanism of xenon cryoprotection.

  5. The sorption induced glass transition in amorphous glassy polymers

    NARCIS (Netherlands)

    van der Vegt, N.F.A.; Wessling, Matthias; Strathmann, H.; Briels, Willem J.

    1999-01-01

    Sorption of CO2 in both the glassy and the rubbery state of an amorphous polyethylenelike polymer was investigated using molecular dynamics simulations. The temperature was chosen such that the system was in its glassy state at low solute concentrations and its rubbery state at large solute

  6. Three-dimensional nanomechanical mapping of amorphous and crystalline phase transitions in phase-change materials.

    Science.gov (United States)

    Grishin, Ilja; Huey, Bryan D; Kolosov, Oleg V

    2013-11-13

    The nanostructure of micrometer-sized domains (bits) in phase-change materials (PCM) that undergo switching between amorphous and crystalline phases plays a key role in the performance of optical PCM-based memories. Here, we explore the dynamics of such phase transitions by mapping PCM nanostructures in three dimensions with nanoscale resolution by combining precision Ar ion beam cross-sectional polishing and nanomechanical ultrasonic force microscopy (UFM) mapping. Surface and bulk phase changes of laser written submicrometer to micrometer sized amorphous-to-crystalline (SET) and crystalline-to-amorphous (RESET) bits in chalcogenide Ge2Sb2Te5 PCM are observed with 10-20 nm lateral and 4 nm depth resolution. UFM mapping shows that the Young's moduli of crystalline SET bits exceed the moduli of amorphous areas by 11 ± 2%, with crystalline content extending from a few nanometers to 50 nm in depth depending on the energy of the switching pulses. The RESET bits written with 50 ps pulses reveal shallower depth penetration and show 30-50 nm lateral and few nanometer vertical wavelike topography that is anticorrelated with the elastic modulus distribution. Reverse switching of amorphous RESET bits results in the full recovery of subsurface nanomechanical properties accompanied with only partial topography recovery, resulting in surface corrugations attributed to quenching. This precision sectioning and nanomechanical mapping approach could be applicable to a wide range of amorphous, nanocrystalline, and glass-forming materials for 3D nanomechanical mapping of amorphous-crystalline transitions.

  7. Thon rings from amorphous ice and implications of beam-induced Brownian motion in single particle electron cryo-microscopy.

    Science.gov (United States)

    McMullan, G; Vinothkumar, K R; Henderson, R

    2015-11-01

    We have recorded dose-fractionated electron cryo-microscope images of thin films of pure flash-frozen amorphous ice and pre-irradiated amorphous carbon on a Falcon II direct electron detector using 300 keV electrons. We observe Thon rings [1] in both the power spectrum of the summed frames and the sum of power spectra from the individual frames. The Thon rings from amorphous carbon images are always more visible in the power spectrum of the summed frames whereas those of amorphous ice are more visible in the sum of power spectra from the individual frames. This difference indicates that while pre-irradiated carbon behaves like a solid during the exposure, amorphous ice behaves like a fluid with the individual water molecules undergoing beam-induced motion. Using the measured variation in the power spectra amplitude with number of electrons per image we deduce that water molecules are randomly displaced by a mean squared distance of ∼1.1 Å(2) for every incident 300 keV e(-)/Å(2). The induced motion leads to an optimal exposure with 300 keV electrons of 4.0 e(-)/Å(2) per image with which to observe Thon rings centred around the strong 3.7 Å scattering peak from amorphous ice. The beam-induced movement of the water molecules generates pseudo-Brownian motion of embedded macromolecules. The resulting blurring of single particle images contributes an additional term, on top of that from radiation damage, to the minimum achievable B-factor for macromolecular structure determination. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Development of manufacturing method for rapidly disintegrating oral tablets using the crystalline transition of amorphous sucrose.

    Science.gov (United States)

    Sugimoto, Masaaki; Narisawa, Shinji; Matsubara, Koji; Yoshino, Hiroyuki; Nakano, Minoru; Handa, Tetsurou

    2006-08-31

    The industrial manufacturing of rapidly disintegrating oral tablets with a sufficient tensile strength was investigated. The manufacturing method of the tablets involved the crystalline transition of amorphous sucrose that was produced in the process of fluidized bed granulation of mannitol using sucrose solution as a binder. The aim of this article was to clarify the usefulness of amorphous sucrose formed during the granulation for the rapidly disintegrating oral tablets manufacturing, and to investigate the effects of crystalline transition of the amorphous sucrose in granules on the characteristics of the resultant tablets prepared by this crystalline transition (CT) method. The X-ray diffraction measurement and thermal analysis showed that amorphous sucrose was effectively formed in granules consisting of 95% mannitol and 5% sucrose when the granulation was performed on the condition of water content of 4%. The tensile strength of tablets comprised of the granules, which were compressed before the crystallization of amorphous sucrose, increased remarkably after storage, because new internal solid bridges were formed in the tablets as a result of the crystallization. We conclude that rapidly disintegrating oral tablets can effectively be manufactured by the CT method using the granules obtained by the fluidized bed granulation method.

  9. On relaxation nature of glass transition in amorphous materials

    Science.gov (United States)

    Sanditov, Damba S.; Ojovan, Michael I.

    2017-10-01

    A short review on relaxation theories of glass transition is presented. The main attention is paid to modern aspects of the glass transition equation qτg = C, suggested by Bartenev in 1951 (q - cooling rate of the melt, τg - structural relaxation time at the glass transition temperature Tg). This equation represents a criterion of structural relaxation at transition from liquid to glass at T = Tg (analogous to the condition of mechanical relaxation ωτ = 1, where the maximum of mechanical loss is observed). The empirical parameter С = δTg has the meaning of temperature range δTg that characterizes the liquid-glass transition. Different approaches of δTg calculation are reviewed. In the framework of the model of delocalized atoms a modified kinetic criterion of glass transition is proposed (q/Tg)τg = Cg, where Cg ≅ 7·10-3 is a practically universal dimensionless constant. It depends on fraction of fluctuation volume fg, which is frozen at the glass transition temperature Cg = fg/ln(1/fg). The value of fg is approximately constant fg ≅ 0.025. At Tg the process of atom delocalization, i.e. its displacement from the equilibrium position, is frozen. In silicate glasses atom delocalization is reduced to critical displacement of bridge oxygen atom in Si-O-Si bridge necessary to switch a valence bond according to Muller and Nemilov. An equation is derived for the temperature dependence of viscosity of glass-forming liquids in the wide temperature range, including the liquid-glass transition and the region of higher temperatures. Notion of (bridge) atom delocalization is developed, which is related to necessity of local low activation deformation of structural network for realization of elementary act of viscous flow - activated switch of a valence (bridge) bond. Without atom delocalization (;trigger mechanism;) a switch of the valence bond is impossible and, consequently, the viscous flow. Thus the freezing of atom delocalization process at low temperatures

  10. Computer Simulation of Water-Ice Transition in Hydrophobic Nanopores

    Czech Academy of Sciences Publication Activity Database

    Slovák, Jan; Tanaka, H.; Koga, K.; Zeng, X. C.

    2001-01-01

    Roč. 292, - (2001), s. 87-101 ISSN 0378-4371 Institutional research plan: CEZ:AV0Z4072921 Keywords : computer * water-ice transition * hydrophobic nanopore s Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.295, year: 2001

  11. Kinetics of the high- to low-density amorphous water transition

    International Nuclear Information System (INIS)

    Koza, M M; Schober, H; Fischer, H E; Hansen, T; Fujara, F

    2003-01-01

    In situ neutron diffraction experiments have been carried out to study the kinetics of the transformation of high-density amorphous (HDA) water into its low-density amorphous state at temperatures 87 K ≤ T ≤ 110 K. It is found that three different stages are comprised in this transformation, namely an annealing process of the high-density matrix followed by a first-order-like transition into a low-density state, which can be further annealed at higher temperatures T ≤ 127 K. The annealing kinetics of the HDA state follows the logarithm of time as found in other systems showing polyamorphism. According to the theory of transformation by nucleation and growth the apparent first-order transition follows an Avrami-Kolmogorov behaviour. An energy barrier ΔE ∼ 33 k Jmol -1 is estimated from the temperature dependence of this transition

  12. A molecular dynamics approach for predicting the glass transition temperature and plasticization effect in amorphous pharmaceuticals.

    Science.gov (United States)

    Gupta, Jasmine; Nunes, Cletus; Jonnalagadda, Sriramakamal

    2013-11-04

    The objectives of this study were as follows: (i) To develop an in silico technique, based on molecular dynamics (MD) simulations, to predict glass transition temperatures (Tg) of amorphous pharmaceuticals. (ii) To computationally study the effect of plasticizer on Tg. (iii) To investigate the intermolecular interactions using radial distribution function (RDF). Amorphous sucrose and water were selected as the model compound and plasticizer, respectively. MD simulations were performed using COMPASS force field and isothermal-isobaric ensembles. The specific volumes of amorphous cells were computed in the temperature range of 440-265 K. The characteristic "kink" observed in volume-temperature curves, in conjunction with regression analysis, defined the Tg. The MD computed Tg values were 367 K, 352 K and 343 K for amorphous sucrose containing 0%, 3% and 5% w/w water, respectively. The MD technique thus effectively simulated the plasticization effect of water; and the corresponding Tg values were in reasonable agreement with theoretical models and literature reports. The RDF measurements revealed strong hydrogen bond interactions between sucrose hydroxyl oxygens and water oxygen. Steric effects led to weak interactions between sucrose acetal oxygens and water oxygen. MD is thus a powerful predictive tool for probing temperature and water effects on the stability of amorphous systems during drug development.

  13. Ion-beam-induced amorphization and order-disorder transition in the murataite structure

    International Nuclear Information System (INIS)

    Lian Jie; Wang, L.M.; Ewing, Rodney C.; Yudintsev, Sergey V.; Stefanovsky, Sergey V.

    2005-01-01

    Murataite (A 3 B 6 C 2 O 22-x/2 ,F43m), a derivative of an anion-deficient fluorite structure, has been synthesized as different polytypes as a result of cation ordering. Ion-beam-induced amorphization has been investigated by 1-MeV Kr 2+ ion irradiation with in situ transmission electron microscopy. The critical amorphization dose was determined as a function of temperature and the degree of structural disordering. A lower critical amorphization temperature (∼860 K) was obtained for the disordered murataite as compared with that of the murataite superstructure (930 to 1060 K). An ion-beam-induced ordered murataite to a disordered fluorite transition occurred in the murataite superstructure, similar to that observed in the closely related pyrochlore structure-type, A 2 B 2 O 7 . The ion-beam-induced defect fluorite structure is more energetically stable in the murataite structure with a higher degree of structural disordering, as compared with the murataite superstructure. This suggests that the degree of intrinsic structural disorder has a significant effect on the energetics of structural disordering process; this affects the tendency toward the order-disorder structural transition for fluorite-related compounds and their response to ion-beam-induced amorphization

  14. Pair distribution function and its relation to the glass transition in an amorphous alloy

    International Nuclear Information System (INIS)

    Basak, S.; Clarke, R.; Nagel, S.R.

    1979-01-01

    Data for the pair distribution function g (r) are presented as a function of temperature for amorphous Nb/sub 0.4/Ni/sub 0.6/. We show, based on a simple model, that g (r) varies linearly with T over a wide temperature range in the glass as was found empirically by Wendt and Abraham. We also find that in our glass the behavior of g (r) near the glass transition is, within experimental error, similar to what they found in their Monte Carlo calculation. We interpret the deviation from linearity at the glass transition as due to the onset of diffusive motion of the atoms

  15. Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations

    Directory of Open Access Journals (Sweden)

    T. Koop

    2009-12-01

    Full Text Available Interactions with water are crucial for the properties, transformation and climate effects of atmospheric aerosols. Here we present a conceptual framework for the interaction of amorphous aerosol particles with water vapor, outlining characteristic features and differences in comparison to crystalline particles. We used a hygroscopicity tandem differential mobility analyzer (H-TDMA to characterize the hydration and dehydration of crystalline ammonium sulfate, amorphous oxalic acid and amorphous levoglucosan particles (diameter ~100 nm, relative humidity 5–95% at 298 K. The experimental data and accompanying Köhler model calculations provide new insights into particle microstructure, surface adsorption, bulk absorption, phase transitions and hygroscopic growth. The results of these and related investigations lead to the following conclusions:

    (1 Many organic substances, including carboxylic acids, carbohydrates and proteins, tend to form amorphous rather than crystalline phases upon drying of aqueous solution droplets. Depending on viscosity and microstructure, the amorphous phases can be classified as glasses, rubbers, gels or viscous liquids.

    (2 Amorphous organic substances tend to absorb water vapor and undergo gradual deliquescence and hygroscopic growth at lower relative humidity than their crystalline counterparts.

    (3 In the course of hydration and dehydration, certain organic substances can form rubber- or gel-like structures (supramolecular networks and undergo transitions between swollen and collapsed network structures.

    (4 Organic gels or (semi-solid amorphous shells (glassy, rubbery, ultra-viscous with low molecular diffusivity can kinetically limit the uptake and release of water and may influence the hygroscopic growth and activation of aerosol particles as cloud condensation nuclei (CCN and ice nuclei (IN. Moreover, (semi-solid amorphous phases may influence the uptake of gaseous photo

  16. Water/ice phase transition: The role of zirconium acetate, a compound with ice-shaping properties

    Science.gov (United States)

    Marcellini, Moreno; Fernandes, Francisco M.; Dedovets, Dmytro; Deville, Sylvain

    2017-04-01

    Few compounds feature ice-shaping properties. Zirconium acetate is one of the very few inorganic compounds reported so far to have ice-shaping properties similar to that of ice-shaping proteins, encountered in many organisms living at low temperature. When a zirconium acetate solution is frozen, oriented and perfectly hexagonal ice crystals can be formed and their growth follows the temperature gradient. To shed light on the water/ice phase transition while freezing zirconium acetate solution, we carried out differential scanning calorimetry measurements. From our results, we estimate how many water molecules do not freeze because of their interaction with Zr cations. We estimate the colligative properties of the Zr acetate on the apparent critical temperature. We further show that the phase transition is unaffected by the nature of the base which is used to adjust the pH. Our results provide thus new hints on the ice-shaping mechanism of zirconium acetate.

  17. Molecular relaxation behavior and isothermal crystallization above glass transition temperature of amorphous hesperetin.

    Science.gov (United States)

    Shete, Ganesh; Khomane, Kailas S; Bansal, Arvind Kumar

    2014-01-01

    The purpose of this paper was to investigate the relaxation behavior of amorphous hesperetin (HRN), using dielectric spectroscopy, and assessment of its crystallization kinetics above glass transition temperature (Tg ). Amorphous HRN exhibited both local (β-) and global (α-) relaxations. β-Relaxation was observed below Tg , whereas α-relaxation prominently emerged above Tg . β-Relaxation was found to be of Johari-Goldstein type and was correlated with α-process by coupling model. Secondly, isothermal crystallization experiments were performed at 363 K (Tg + 16.5 K), 373 K (Tg + 26.5 K), and 383 K (Tg + 36.5 K). The kinetics of crystallization, obtained from the normalized dielectric strength, was modeled using the Avrami model. Havriliak-Negami (HN) shape parameters, αHN and αHN .βHN , were analyzed during the course of crystallization to understand the dynamics of amorphous phase during the emergence of crystallites. HN shape parameters indicated that long range (α-like) were motions affected to a greater extent than short range (β-like) motions during isothermal crystallization studies at all temperature conditions. The variable behavior of α-like motions at different isothermal crystallization temperatures was attributed to evolving crystallites with time and increase in electrical conductivity with temperature. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Sea ice dynamics across the Mid-Pleistocene transition in the Bering Sea.

    Science.gov (United States)

    Detlef, H; Belt, S T; Sosdian, S M; Smik, L; Lear, C H; Hall, I R; Cabedo-Sanz, P; Husum, K; Kender, S

    2018-03-05

    Sea ice and associated feedback mechanisms play an important role for both long- and short-term climate change. Our ability to predict future sea ice extent, however, hinges on a greater understanding of past sea ice dynamics. Here we investigate sea ice changes in the eastern Bering Sea prior to, across, and after the Mid-Pleistocene transition (MPT). The sea ice record, based on the Arctic sea ice biomarker IP 25 and related open water proxies from the International Ocean Discovery Program Site U1343, shows a substantial increase in sea ice extent across the MPT. The occurrence of late-glacial/deglacial sea ice maxima are consistent with sea ice/land ice hysteresis and land-glacier retreat via the temperature-precipitation feedback. We also identify interactions of sea ice with phytoplankton growth and ocean circulation patterns, which have important implications for glacial North Pacific Intermediate Water formation and potentially North Pacific abyssal carbon storage.

  19. Disentangling the intricate atomic short-range order and electronic properties in amorphous transition metal oxides.

    Science.gov (United States)

    Triana, C A; Araujo, C Moyses; Ahuja, R; Niklasson, G A; Edvinsson, T

    2017-05-17

    Solid state materials with crystalline order have been well-known and characterized for almost a century while the description of disordered materials still bears significant challenges. Among these are the atomic short-range order and electronic properties of amorphous transition metal oxides [aTMOs], that have emerged as novel multifunctional materials due to their optical switching properties and high-capacity to intercalate alkali metal ions at low voltages. For decades, research on aTMOs has dealt with technological optimization. However, it remains challenging to unveil their intricate atomic short-range order. Currently, no systematic and broadly applicable methods exist to assess atomic-size structure, and since electronic localization is structure-dependent, still there are not well-established optical and electronic mechanisms for modelling the properties of aTMOs. We present state-of-the-art systematic procedures involving theory and experiment in a self-consistent computational framework to unveil the atomic short-range order and its role for the electronic properties. The scheme is applied to amorphous tungsten trioxide aWO 3 , which is the most studied electrochromic aTMO in spite of its unidentified atomic-size structure. Our approach provides a one-to-one matching of experimental data and corresponding model structure from which electronic properties can be directly calculated in agreement with the electronic transitions observed in the XANES spectra.

  20. The photoexcitation of crystalline ice and amorphous solid water: A molecular dynamics study of outcomes at 11 K and 125 K

    Energy Technology Data Exchange (ETDEWEB)

    Crouse, J.; Loock, H.-P., E-mail: hploock@chem.queensu.ca; Cann, N. M., E-mail: ncann@chem.queensu.ca [Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6 (Canada)

    2015-07-21

    Photoexcitation of crystalline ice Ih and amorphous solid water at 7-9 eV is examined using molecular dynamics simulations and a fully flexible water model. The probabilities of photofragment desorption, trapping, and recombination are examined for crystalline ice at 11 K and at 125 K and for amorphous solid water at 11 K. For 11 K crystalline ice, a fully rigid water model is also employed for comparison. The kinetic energy of desorbed H atoms and the distance travelled by trapped fragments are correlated to the location and the local environment of the photoexcited water molecule. In all cases, H atom desorption is found to be the most likely outcome in the top bilayer while trapping of all photofragments is most probable deeper in the solid where the likelihood for recombination of the fragments into H{sub 2}O molecules also rises. Trajectory analysis indicates that the local hydrogen bonding network in amorphous solid water is more easily distorted by a photodissociation event compared to crystalline ice. Also, simulations indicate that desorption of OH radicals and H{sub 2}O molecules are more probable in amorphous solid water. The kinetic energy distributions for desorbed H atoms show a peak at high energy in crystalline ice, arising from photoexcited water molecules in the top monolayer. This peak is less pronounced in amorphous solid water. H atoms that are trapped may be displaced by up to ∼10 water cages, but migrate on average 3 water cages. Trapped OH fragments tend to stay near the original solvent cage.

  1. Theoretical study of the localization-delocalization transition in amorphous molybdenum-germanium alloys

    International Nuclear Information System (INIS)

    Ding, K.; Andersen, H.C.

    1987-01-01

    Electronic structure calculations were performed for amorphous germanium and amorphous alloys of molybdenum and germanium. The calculations used Harrison's universal linear-combination-of-atomic-orbitals parameters to generate one-electron Hamiltonians for structural configurations obtained from molecular-dynamics simulations. The density of states calculated for a model of a-Ge showed a distinct pseudogap, although with an appreciable density of states at the minimum. The states in the pseudogap are localized. As the concentration of Mo atoms increases, the pseudogap of the density of states is gradually filled up. The density of states at the Fermi energy calculated for our model of the alloys agrees quite well with that experimentally determined by Yoshizumi, Geballe, and co-workers. The localization index for the states at the Fermi energy is a decreasing function of Mo concentration in the range of 2--14 at. % Mo and the localization length is an increasing function of molybdenum concentration. These results are consistent with the experimental observation of an insulator-metal transition at about 10 at. % Mo

  2. Coercivity of domain wall motion in thin films of amorphous rare earth-transition metal alloys

    Science.gov (United States)

    Mansuripur, M.; Giles, R. C.; Patterson, G.

    1991-01-01

    Computer simulations of a two dimensional lattice of magnetic dipoles are performed on the Connection Machine. The lattice is a discrete model for thin films of amorphous rare-earth transition metal alloys, which have application as the storage media in erasable optical data storage systems. In these simulations, the dipoles follow the dynamic Landau-Lifshitz-Gilbert equation under the influence of an effective field arising from local anisotropy, near-neighbor exchange, classical dipole-dipole interactions, and an externally applied field. Various sources of coercivity, such as defects and/or inhomogeneities in the lattice, are introduced and the subsequent motion of domain walls in response to external fields is investigated.

  3. Computer Simulation Study of Metastable Ice VII and Amorphous Phases Obtained by Its Melting

    Czech Academy of Sciences Publication Activity Database

    Slovák, Jan; Tanaka, H.

    2005-01-01

    Roč. 122, č. 20 (2005), s. 2045121-2045126 ISSN 0021-9606 Grant - others:NRP(JP) 1ET400720507 Program:1E Institutional research plan: CEZ:AV0Z40720504 Keywords : ice * simulation * phase equilibrium Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.138, year: 2005

  4. Coupled dissolution-precipitation as a mechanism for amorphous-to-crystalline calcium carbonate phase transition

    Science.gov (United States)

    Rodriguez-Navarro, Carlos Manuel; Kudłacz, Krzysztof; Ruiz-Agudo, Encarnacion

    2014-05-01

    Growing evidence shows that several calcium carbonate biominerals form via an amorphous precursor phase. Such a biomineralization strategy could also be applicable for the biomimetic synthesis of novel functional materials. A crucial step in this process is the transformation of amorphous calcium carbonate (ACC) into calcite. However, controversy exists as to what is the actual mechanism of this transformation: Is it a solid-solid (solid state) or a dissolution/precipitation mechanism? Determining the transition mechanism is critical for example in interpreting the formation of oriented crystalline structures in biominerals (e.g., echinoderm spicles). We studied calcium carbonate precipitation and phase transitions according to the overall reaction Ca(OH)2 + CO2 = CaCO3+ H2O. Mineral phase transformations during this reaction were studied using transmission electron microscopy (TEM). Our TEM analysis showed that two different types of ACC are sequentially formed during this reaction. Type I ACC shows no well-defined short-range order, while Type II ACC shows a short-range order corresponding to calcite. Following e-beam irradiation, Type I ACC particles transform into randomly oriented CaO nanocrystals, while irradiation of Type II ACC leads to the formation of pseudomorphs made up of perfectly oriented aggregates of calcite nanocrystals. Moreover, calcite crystals formed in solution or in air (85 % relative humidity) after Type II ACC are also pseudomorphs made up of porous aggregates of preferentially oriented calcite nanocrystals. Our results give experimental evidence showing that the ACC to calcite transformation under relevant biomineralization conditions (low T and P), also applicable in the biomimetic synthesis of calcite, is a pseudomorphic dissolution-precipitation process. This mechanism involves the tightly interface-coupled dissolution of the precursor amorphous phase (with the crystalline phase protostructure) and concomitant deposition of the

  5. Exact theory of dense amorphous hard spheres in high dimension. II. The high density regime and the Gardner transition.

    Science.gov (United States)

    Kurchan, Jorge; Parisi, Giorgio; Urbani, Pierfrancesco; Zamponi, Francesco

    2013-10-24

    We consider the theory of the glass phase and jamming of hard spheres in the large space dimension limit. Building upon the exact expression for the free-energy functional obtained previously, we find that the random first order transition (RFOT) scenario is realized here with two thermodynamic transitions: the usual Kauzmann point associated with entropy crisis and a further transition at higher pressures in which a glassy structure of microstates is developed within each amorphous state. This kind of glass-glass transition into a phase dominating the higher densities was described years ago by Elisabeth Gardner, and may well be a generic feature of RFOT. Microstates that are small excitations of an amorphous matrix-separated by low entropic or energetic barriers-thus emerge naturally, and modify the high pressure (or low temperature) limit of the thermodynamic functions.

  6. Glass-Transition Temperature of the β-Relaxation as the Major Predictive Parameter for Recrystallization of Neat Amorphous Drugs.

    Science.gov (United States)

    Kissi, Eric Ofosu; Grohganz, Holger; Löbmann, Korbinian; Ruggiero, Michael T; Zeitler, J Axel; Rades, Thomas

    2018-03-15

    Recrystallization of amorphous drugs is currently limiting the simple approach to improve solubility and bioavailability of poorly water-soluble drugs by amorphization of a crystalline form of the drug. In view of this, molecular mobility, α-relaxation and β-relaxation processes with the associated transition temperatures T gα and T gβ , was investigated using dynamic mechanical analysis (DMA). The correlation between the transition temperatures and the onset of recrystallization for nine amorphous drugs, stored under dry conditions at a temperature of 296 K, was determined. From the results obtained, T gα does not correlate with the onset of recrystallization under the experimental storage conditions. However, a clear correlation between T gβ and the onset of recrystallization was observed. It is shown that at storage temperature below T gβ , amorphous nifedipine retains its amorphous form. On the basis of the correlation, an empirical correlation is proposed for predicting the onset of recrystallization for drugs stored at 0% RH and 296 K.

  7. Upper critical fields and superconducting transition temperatures of some zirconium-base amorphous transition-metal alloys

    International Nuclear Information System (INIS)

    Karkut, M.G.; Hake, R.R.

    1983-01-01

    Superconducting upper critical fields H/sub c/2(T), transition temperatures T/sub c/, and normal-state electrical resistivities rho/sub n/ have been measured in the amorphous transition-metal alloy series Zr/sub 1-z/Co/sub x/, Zr/sub 1-x/Ni/sub x/, (Zr/sub 1-x/Ti/sub x/)/sub 0.78/Ni/sub 0.22/, and (Zr/sub 1-x/Nb/sub x/)/sub 0.78/Ni/sub 0.22/. Structural integrity of these melt-spun alloys is indicated by x-ray, density, bend-ductility, normal-state electrical resistivity, superconducting transition width, and mixed-state flux-pinning measurements. The specimens display T/sub c/ = 2.1--3.8 K, rho/sub n/ = 159--190 μΩ cm, and Vertical Bar(dH/sub c/2/dT)cVertical Bar = 28--36 kG/K. These imply electron mean free paths lroughly-equal2--6 A, zero-temperature Ginzburg-Landau coherence distances xi/sub G/0roughly-equal50--70 A, penetration depths lambda/sub G/0roughly-equal(7--10) x 10 3 A, and extremely high dirtiness parameters xi 0 /lroughly-equal300--1300. All alloys display H/sub c/2(T) curves with negative curvature and (with two exceptions) fair agreement with the standard dirty-limit theory of Werthamer, Helfand, Hohenberg, and Maki (WHHM) for physically reasonable values of spin-orbit-coupling induced, electron-spin-flip scattering time tau/sub so/. This is in contrast to the anomalously elevated H/sub c/2(T) behavior which is nearly linear in T that is observed by some, and the unphysically low-tau/sub so/ fits to WHHM theory obtained by others, for various amorphous alloys

  8. The transition from amorphous to crystalline in Al/Zr multilayers

    International Nuclear Information System (INIS)

    Zhong Qi; Zhang Zhong; Ma Shuang; Qi Runze; Li Jia; Wang Zhanshan; Le Guen, Karine; André, Jean-Michel; Jonnard, Philippe

    2013-01-01

    The amorphous-to-crystalline transition in Al(1.0%wtSi)/Zr and Al(Pure)/Zr multilayers grown by direct-current magnetron sputtering system has been characterized over a range of Al layer thicknesses (1.0–5.0 nm) by using a series of complementary measurements including grazing incidence X-ray reflectometry, atomic force microscopy, X–ray diffraction, and high-resolution transmission electron microscopy. The Al layer thickness transition exhibits the Si doped in Al could not only disfavor the crystallization of Al but also influence the changing trends of surface roughness and diffraction peak position of phase Al . An interesting feature of the presence of Si in Al layer is that Si could influence the transition process in Al(1%wtSi) layer, in which the critical thickness (1.6 nm) of Al(Pure) layer in Al(Pure)/Zr shifts to 1.8 nm of Al(1.0%wtSi) layer in Al(1.0%wtSi)/Zr multilayer. We also found that the Zr-on-Al interlayer is wider than the Al-on-Zr interlayer in both systems, and the Al layers do not have specific crystal orientation in the directions vertical to the layer from selected area electron diffraction patterns below the thickness (3.0 nm) of Al layers. Above the thickness (3.0 nm) of Al layers, the Al layers are highly oriented in Al , so that the transformation from asymmetrical to symmetrical interlayers can be observed. Based on the analysis of all measurements, we build up a model with four steps, which could explain the Al layer thickness transition process in terms of a critical thickness for the nucleation of Al(Pure) and Al(1%wtSi) crystallites.

  9. The transition from amorphous to crystalline in Al/Zr multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Zhong Qi; Zhang Zhong; Ma Shuang; Qi Runze; Li Jia; Wang Zhanshan [MOE Key Laboratory of Advanced Micro-Structured Materials, Institute of Precision Optical Engineering, Department of Physics, Tongji University, Shanghai 200092 (China); Le Guen, Karine; Andre, Jean-Michel; Jonnard, Philippe [Laboratoire de Chimie Physique - Matiere et Rayonnement, UPMC Univ. Paris 06, CNRS UMR 7614, 11 rue Pierre et Marie Curie, F-75231 Paris cedex 05 (France)

    2013-04-07

    The amorphous-to-crystalline transition in Al(1.0%wtSi)/Zr and Al(Pure)/Zr multilayers grown by direct-current magnetron sputtering system has been characterized over a range of Al layer thicknesses (1.0-5.0 nm) by using a series of complementary measurements including grazing incidence X-ray reflectometry, atomic force microscopy, X-ray diffraction, and high-resolution transmission electron microscopy. The Al layer thickness transition exhibits the Si doped in Al could not only disfavor the crystallization of Al but also influence the changing trends of surface roughness and diffraction peak position of phase Al<111>. An interesting feature of the presence of Si in Al layer is that Si could influence the transition process in Al(1%wtSi) layer, in which the critical thickness (1.6 nm) of Al(Pure) layer in Al(Pure)/Zr shifts to 1.8 nm of Al(1.0%wtSi) layer in Al(1.0%wtSi)/Zr multilayer. We also found that the Zr-on-Al interlayer is wider than the Al-on-Zr interlayer in both systems, and the Al layers do not have specific crystal orientation in the directions vertical to the layer from selected area electron diffraction patterns below the thickness (3.0 nm) of Al layers. Above the thickness (3.0 nm) of Al layers, the Al layers are highly oriented in Al<111>, so that the transformation from asymmetrical to symmetrical interlayers can be observed. Based on the analysis of all measurements, we build up a model with four steps, which could explain the Al layer thickness transition process in terms of a critical thickness for the nucleation of Al(Pure) and Al(1%wtSi) crystallites.

  10. Optical transitions of self-trapped holes in amorphous SiO2

    International Nuclear Information System (INIS)

    Sasajima, Y.; Tanimura, K.

    2003-01-01

    Optical and electron-spin resonance (ESR) spectroscopy studies of low-temperature electron-irradiated amorphous SiO 2 were carried out to identify optical transitions of self-trapped holes (STHs). Spectroscopic analysis by means of polarized optical bleaching and thermal annealing has revealed two components comprising an absorption band around 2.2 eV: the low-energy component peaking at 2.16 eV and the high energy component at 2.60 eV. These bands are formed with similar yields in three different samples that include different chemical impurities and native defect concentrations. Based on quantitative correlations between ESR signals and optical absorption strengths, the 2.16-eV band is attributed to the two-center type STH, while the 2.60-eV band is attributed to the one-center STH. The origin of STH optical transitions is discussed based on the results of this work and recent theoretical data

  11. Heterogeneous ice nucleation: exploring the transition from stochastic to singular freezing behavior

    Science.gov (United States)

    Niedermeier, D.; Shaw, R. A.; Hartmann, S.; Wex, H.; Clauss, T.; Voigtländer, J.; Stratmann, F.

    2011-08-01

    Heterogeneous ice nucleation, a primary pathway for ice formation in the atmosphere, has been described alternately as being stochastic, in direct analogy with homogeneous nucleation, or singular, with ice nuclei initiating freezing at deterministic temperatures. We present an idealized, conceptual model to explore the transition between stochastic and singular ice nucleation. This "soccer ball" model treats particles as being covered with surface sites (patches of finite area) characterized by different nucleation barriers, but with each surface site following the stochastic nature of ice embryo formation. The model provides a phenomenological explanation for seemingly contradictory experimental results obtained in our research groups. Even with ice nucleation treated fundamentally as a stochastic process this process can be masked by the heterogeneity of surface properties, as might be typical for realistic atmospheric particle populations. Full evaluation of the model findings will require experiments with well characterized ice nucleating particles and the ability to vary both temperature and waiting time for freezing.

  12. Effect of patch borders on coercivity in amorphous rare earth-transition metal thin films

    Science.gov (United States)

    Patterson, G.; Fu, H.; Giles, R. C.; Mansuripur, M.

    1991-01-01

    The coercivity at the micron scale is a very important property of magneto-optical media. It is a key factor that determines the magnetic domain wall movement and domain reversal. How the coercivity is influenced by a special type of patch borders is discussed. Patch formation is a general phenomenon in growth processes of amorphous rare earth transition metal thin films. Different patches may stem from different seeds and the patch borders are formed when they merge. Though little is known about the exact properties of the borders, we may expect that the exchange interaction at the patch border is weaker than that within a patch, since there is usually a spatial gap between two patches. Computer simulations were performed on a 2-D hexagonal lattice consisting of 37 complete patches with random shape and size. From the series of simulations we may conclude that the domain in the patch with borders of 30 percent exchange strength can expand most easily to the whole lattice, because the exchange strength can expand most easily to the whole lattice, because the exchange strength of the border is not too high to prevent the domain from growing within the patch and it is not too low to prevent the domain from expanding beyond the patch.

  13. Thermal conductivity at the amorphous-nanocrystalline phase transition in beech wood biocarbon

    Science.gov (United States)

    Parfen'eva, L. S.; Orlova, T. S.; Smirnov, B. I.; Smirnov, I. A.; Misiorek, H.; Jezowski, A.; Ramirez-Rico, J.

    2014-05-01

    High-porosity samples of beech wood biocarbon (BE-C) were prepared by pyrolysis at carbonization temperatures T carb = 650, 1300, and 1600°C, and their resistivity ρ and thermal conductivity κ were studied in the 5-300 and 80-300 K temperature intervals. The experimental results obtained were evaluated by invoking X-ray diffraction data and information on the temperature dependences ρ( T) and κ( T) for BE-C samples prepared at T carb = 800, 1000, and 2400°C, which were collected by the authors earlier. An analysis of the κ( T carb) behavior led to the conclusion that the samples under study undergo an amorphous-nanocrystalline phase transition in the interval 800°C < T carb < 1000°C. Evaluation of the electronic component of the thermal conductivity revealed that the Lorentz number of the sample prepared at T carb = 2400°C exceeds by far the classical Sommerfeld value, which is characteristic of metals and highly degenerate semiconductors.

  14. Experimental evidence of structural transition at the crystal-amorphous interphase boundary between Al and Al2O3

    International Nuclear Information System (INIS)

    Yang, Z.Q.; He, L.L.; Zhao, S.J.; Ye, H.Q.

    2002-01-01

    High-resolution transmission electron microscopy observations on the structure of the interphase boundary between crystalline Al and amorphous Al 2 O 3 coating reveal that an interfacial melting transition of Al occurs at 833 K, which is distinctly lower than the bulk melting point of Al. The crystalline lattice planes of Al near the interface bend or small segments of crystalline Al deviated from the matrix Al grains are formed. Stand-off dislocations formed at the interphase boundary are also observed. The amorphous Al 2 O 3 coating plays an important role in retaining the evidence for structural transition at high temperature to room temperature, which makes it possible to make experimental observations. (author)

  15. Bonding at Compatible and Incompatible Amorphous Interfaces of Polystyrene and Poly(Methyl Methacrylate) Below the Glass Transition Temperature

    DEFF Research Database (Denmark)

    Boiko, Yuri M.; Lyngaae-Jørgensen, Jørgen

    2004-01-01

    Films of high-molecular-weight amorphous polystyrene (PS, M-w = 225 kg/mol, M-w/M-n = 3, T-g-bulk = 97degreesC, where T-g-bulk is the glass transition temperature of the bulk sample) and poly(methyl methacrylate) (PMMA, M-w = 87 kg/mol, M-w/M-n = 2, Tg-bulk = 109degreesC) were brought into contact...

  16. Multiple phase transitions in ice induced by shock-wave loading

    Science.gov (United States)

    Tchijov, Vladimir; Rodriguez Romo, Suemi; Cruz Leon, Gloria

    2000-03-01

    Experimental studies of shock-wave loading of ice (D.B. Larson, J. Glaciol., 1984, Vol.30, p.235) indicate multiple solid-solid and solid-liquid phase transitions. In order to model these phase changes, we develop a complete set of the P-V-T equations of state of ices Ih, II, III, V, VI, and VII. We study the isoentropes of ice-water mixture along the lines of solid-liquid phase transitions on the P-T diagram, with special attention to high-pressure ice VII - water transition where various P-V-T equations of liquid water are used and compared. A kinetic model of multiple phase transitions in ice in the pressure range 0-2000 MPa has been reported elsewhere (V. Tchijov et al., J. Phys. Chem. B, 1997, Vol.101, p.6215). We use this model, extended to include ice VII, to investigate the loading and unloading paths and the hysteresis on the P-V diagram of ice in the pressure range 0-3600 MPa. We compare the results of our computer simulations against available experimental data.

  17. Atomic-scale study of the amorphous-to-crystalline phase transition mechanism in GeTe thin films

    CERN Document Server

    Mantovan, R.; Mokhles Gerami, A.; Mølholt, T. E.; Wiemer, C.; Longo, M.; Gunnlaugsson, H. P.; Johnston, K.; Masenda, H.; Naidoo, D.; Ncube, M.; Bharuth-Ram, K.; Fanciulli, M.; Gislason, H. P.; Langouche, G.; Ólafsson, S.; Weyer, G.

    The underlying mechanism driving the structural amorphous-to-crystalline transition in Group VI chalcogenides is still a matter of debate even in the simplest GeTe system. We exploit the extreme sensitivity of 57Fe emission Mössbauer spectroscopy, following dilute implantation of 57Mn (T½ = 1.5 min) at ISOLDE/CERN, to study the electronic charge distribution in the immediate vicinity  of the 57Fe probe substituting Ge (FeGe), and to interrogate the local environment of FeGe over the amorphous-crystalline phase transition in GeTe thin films. Our results show that the local structure  of as-sputtered amorphous GeTe is a combination of tetrahedral and defect-octahedral sites. The main effect of the crystallization is the conversion from tetrahedral to defect-free octahedral sites.  We discover that only the tetrahedral fraction in amorphous GeTe participates to the change of the FeGe-Te chemical bond...

  18. IceCube simulation production and the transition to IceProd2

    Directory of Open Access Journals (Sweden)

    Schultz David

    2016-01-01

    Full Text Available IceCube's simulation production relies largely on dynamic, heterogeneous resources spread around the world. Datasets consist of many thousands of job workflow subsets running in parallel as directed acyclic graphs (DAGs and using varying resources. IceProd is a set of Python daemons which process job workflow and maintain configuration and status information on jobs before, during, and after processing. IceProd manages a complex workflow of DAGs to distribute jobs across all computing grids and optimize resource usage. IceProd2 is a new version of IceProd with substantial increases in security, reliability, scalability, and ease of use. It is undergoing testing and will be deployed this fall.

  19. An Explanation for the Arctic Sea Ice Melt Pond Fractal Transition

    Science.gov (United States)

    Popovic, P.; Abbot, D. S.

    2016-12-01

    As Arctic sea ice melts during the summer, pools of melt water form on its surface. This decreases the ice's albedo, which signifcantly impacts its subsequent evolution. Understanding this process is essential for buiding accurate sea ice models in GCMs and using them to forecast future changes in sea ice. A feature of melt ponds that helps determine their impact on ice albedo is that they often form complex geometric shapes. One characteristic of their shape, the fractal dimension of the pond boundaries, D, has been shown to transition between the two fundamental limits of D = 1 and D = 2 at some critical pond size. Here, we provide an explanation for this behavior. First, using aerial photographs taken during the SHEBA mission, we show how this fractal transition curve changes with time, and show that there is a qualitative difference in the pond shape as ice transitions from impermeable to permeable. While ice is impermeable, the maximum fractal dimension is less than 2, whereas after it becomes permeable, the maximum fractal dimension becomes very close to 2. We then show how the fractal dimension of the boundary of a collection of overlapping circles placed randomly on a plane also transitions from D = 1 to D = 2 at a size equal to the average size of a single circle. We, therefore, conclude that this transition is a simple geometric consequence of regular shapes connecting. The one physical parameter that can be extracted from the fractal transition curve is the length scale at which transition occurs. Previously, this length scale has been associated with the typical size of snow dunes created on the ice surface during winter. We provide an alternative explanation by noting that the flexural wavelength of the ice poses a fundamental limit on the size of melt ponds on permeable ice. If this is true, melt ponds could be used as a proxy for ice thickness. Finally, we provide some remarks on how to observationally distinguish between the two ideas for what

  20. Raman scattering study of the a-GeTe structure and possible mechanism for the amorphous to crystal transition

    International Nuclear Information System (INIS)

    Andrikopoulos, K S; Yannopoulos, S N; Voyiatzis, G A; Kolobov, A V; Ribes, M; Tominaga, J

    2006-01-01

    We report on an inelastic (Raman) light scattering study of the local structure of amorphous GeTe (a-GeTe) films. A detailed analysis of the temperature-reduced Raman spectra has shown that appreciable structural changes occur as a function of temperature. These changes involve modifications of atomic arrangements such as to facilitate the rapid amorphous to crystal transformation, which is the major advantage of phase-change materials used in optical data storage media. A particular structural model, supported by polarization analysis, is proposed which is compatible with the experimental data as regards both the structure of a-GeTe and the crystallization transition. The remarkable difference between the Raman spectrum of the crystal and the glass can thus naturally be accounted for

  1. Freeze-Drying Above the Glass Transition Temperature in Amorphous Protein Formulations While Maintaining Product Quality and Improving Process Efficiency.

    Science.gov (United States)

    Depaz, Roberto A; Pansare, Swapnil; Patel, Sajal Manubhai

    2016-01-01

    This study explored the ability to conduct primary drying during lyophilization at product temperatures above the glass transition temperature of the maximally freeze-concentrated solution (Tg′) in amorphous formulations for four proteins from three different classes. Drying above Tg′ resulted in significant reductions in lyophilization cycle time. At higher protein concentrations, formulations freeze dried above Tg′ but below the collapse temperature yielded pharmaceutically acceptable cakes. However, using an immunoglobulin G type 4 monoclonal antibody as an example, we found that as protein concentration decreased, minor extents of collapse were observed in formulations dried at higher temperatures. No other impacts to product quality, physical stability, or chemical stability were observed in this study among the different drying conditions for the different proteins. Drying amorphous formulations above Tg′, particularly high protein concentration formulations, is a viable means to achieve significant time and cost savings in freeze-drying processes.

  2. Long-Term Stability of New Co-Amorphous Drug Binary Systems: Study of Glass Transitions as a Function of Composition and Shelf Time

    Directory of Open Access Journals (Sweden)

    Luz María Martínez

    2016-12-01

    Full Text Available The amorphous state is of particular interest in the pharmaceutical industry due to the higher solubility that amorphous active pharmaceutical ingredients show compared to their respective crystalline forms. Due to their thermodynamic instability, drugs in the amorphous state tend to recrystallize; in order to avoid crystallization, it has been a common strategy to add a second component to hinder the crystalline state and form a thermally stable co-amorphous system, that is to say, an amorphous binary system which retains its amorphous structure. The second component can be a small molecule excipient (such as a sugar or an aminoacid or a second drug, with the advantage that a second active pharmaceutical ingredient could be used for complementary or combined therapeutic purposes. In most cases, the compositions studied are limited to 1:1, 2:1 and 1:2 molar ratios, leaving a gap of information about phase transitions and stability on the amorphous state in a wider range of compositions. In the present work, a study of novel co–amorphous formulations in which the selection of the active pharmaceutical ingredients was made according to the therapeutic effect is presented. Resistance against crystallization and behavior of glass transition temperature ( T g were studied through calorimetric measurements as a function of composition and shelf time. It was found that binary formulations with T g temperatures higher than those of pure components presented long-term thermal stability. In addition, significant increments of T g values, of as much as 15 ∘ C, were detected as a result of glass relaxation at room temperature during storage time; this behavior of glass transition has not been previously reported for co-amorphous drugs. Based on these results, it can be concluded that monitoring behavior of T g and relaxation processes during the first weeks of storage leads to a more objective evaluation of the thermomechanical stability of an amorphous

  3. Topological phases and phase transitions in magnets and ice

    NARCIS (Netherlands)

    Keesman, R.

    2017-01-01

    The main focus of this Thesis is the behaviour of two-dimensional materials, namely (anti)-ferromagnetic materials in the first two chapters, which show topological phases, and energetic square ice in the third and fourth chapter. The magnetic materials are of interest in part due to foreseen

  4. Surface transition on ice induced by the formation of a grain boundary.

    Directory of Open Access Journals (Sweden)

    Christian Pedersen

    Full Text Available Interfaces between individual ice crystals, usually referred to as grain boundaries, play an important part in many processes in nature. Grain boundary properties are, for example, governing the sintering processes in snow and ice which transform a snowpack into a glacier. In the case of snow sintering, it has been assumed that there are no variations in surface roughness and surface melting, when considering the ice-air interface of an individual crystal. In contrast to that assumption, the present work suggests that there is an increased probability of molecular surface disorder in the vicinity of a grain boundary. The conclusion is based on the first detailed visualization of the formation of an ice grain boundary. The visualization is enabled by studying ice crystals growing into contact, at temperatures between -20°C and -15°C and pressures of 1-2 Torr, using Environmental Scanning Electron Microscopy. It is observed that the formation of a grain boundary induces a surface transition on the facets in contact. The transition does not propagate across facet edges. The surface transition is interpreted as the spreading of crystal dislocations away from the grain boundary. The observation constitutes a qualitatively new finding, and can potentially increase the understanding of specific processes in nature where ice grain boundaries are involved.

  5. Phénomène de la transition vitreuse appliquée aux glucides alimentaires amorphes à l'état de poudre

    Directory of Open Access Journals (Sweden)

    Deroanne C.

    2009-01-01

    Full Text Available Glass transition phenomena applied to powdered amorphous food carbohydrates. During these last fifteen years, some food technologists and scientists have become aware of the importance of the glass transition, a thermal property of glassy or amorphous material, in food preparation processes. Recent studies have successfully correlated this fundamental notion to technofunctional changes within the powder. The aim of this paper is to present in a non exhaustive manner the relationship between glass transition characteristics and applications in food technology (caking, alterations, etc..

  6. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    Science.gov (United States)

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  7. Causes of ice age intensification across the Mid-Pleistocene Transition

    Science.gov (United States)

    Chalk, Thomas B.; Hain, Mathis P.; Foster, Gavin L.; Rohling, Eelco J.; Sexton, Philip F.; Badger, Marcus P. S.; Cherry, Soraya G.; Hasenfratz, Adam P.; Haug, Gerald H.; Jaccard, Samuel L.; Martínez-García, Alfredo; Pälike, Heiko; Pancost, Richard D.; Wilson, Paul A.

    2017-12-01

    During the Mid-Pleistocene Transition (MPT; 1,200–800 kya), Earth's orbitally paced ice age cycles intensified, lengthened from ˜40,000 (˜40 ky) to ˜100 ky, and became distinctly asymmetrical. Testing hypotheses that implicate changing atmospheric CO2 levels as a driver of the MPT has proven difficult with available observations. Here, we use orbitally resolved, boron isotope CO2 data to show that the glacial to interglacial CO2 difference increased from ˜43 to ˜75 μatm across the MPT, mainly because of lower glacial CO2 levels. Through carbon cycle modeling, we attribute this decline primarily to the initiation of substantive dust-borne iron fertilization of the Southern Ocean during peak glacial stages. We also observe a twofold steepening of the relationship between sea level and CO2-related climate forcing that is suggestive of a change in the dynamics that govern ice sheet stability, such as that expected from the removal of subglacial regolith or interhemispheric ice sheet phase-locking. We argue that neither ice sheet dynamics nor CO2 change in isolation can explain the MPT. Instead, we infer that the MPT was initiated by a change in ice sheet dynamics and that longer and deeper post-MPT ice ages were sustained by carbon cycle feedbacks related to dust fertilization of the Southern Ocean as a consequence of larger ice sheets.

  8. The peculiar behavior of the glass transition temperature of amorphous drug-polymer films coated on inert sugar spheres.

    Science.gov (United States)

    Dereymaker, Aswin; Van Den Mooter, Guy

    2015-05-01

    Fluid bed coating has been proposed in the past as an alternative technology for manufacturing of drug-polymer amorphous solid dispersions, or so-called glass solutions. It has the advantage of being a one-step process, and thus omitting separate drying steps, addition of excipients, or manipulation of the dosage form. In search of an adequate sample preparation method for modulated differential scanning calorimetry analysis of beads coated with glass solutions, glass transition broadening and decrease of the glass transition temperature (Tg ) were observed with increasing particle size of crushed coated beads and crushed isolated films of indomethacin (INDO) and polyvinylpyrrolidone (PVP). Substituting INDO with naproxen gave comparable results. When ketoconazole was probed or the solvent in INDO-PVP films was switched to dichloromethane (DCM) or a methanol-DCM mixture, two distinct Tg regions were observed. Small particle sizes had a glass transition in the high Tg region, and large particle sizes had a glass transition in the low Tg region. This particle size-dependent glass transition was ascribed to different residual solvent amounts in the bulk and at the surface of the particles. A correlation was observed between the deviation of the Tg from that calculated from the Gordon-Taylor equation and the amount of residual solvent at the Tg of particles with different sizes. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. The possibility of using dc conductivity for investigating phase transition in amorphous semiconductors

    International Nuclear Information System (INIS)

    El-Mously, M.K.; Mina, N.K.

    1985-07-01

    Different formulas have been applied to deduce the effective or the generalized electrical conductivity of double phase systems. These formulas have been revised and fitted to the experimental data of the binary systems amorphous-crystal (a-c) and liquid-crystal (l-c) for pure elementary selenium and selenium doped by different other elements. Both connected medium and statistical mixture theories can be applied depending on the nature of the system under investigation. (author)

  10. Solubility of crystalline organic compounds in high and low molecular weight amorphous matrices above and below the glass transition by zero enthalpy extrapolation.

    Science.gov (United States)

    Amharar, Youness; Curtin, Vincent; Gallagher, Kieran H; Healy, Anne Marie

    2014-09-10

    Pharmaceutical applications which require knowledge of the solubility of a crystalline compound in an amorphous matrix are abundant in the literature. Several methods that allow the determination of such data have been reported, but so far have only been applicable to amorphous polymers above the glass transition of the resulting composites. The current work presents, for the first time, a reliable method for the determination of the solubility of crystalline pharmaceutical compounds in high and low molecular weight amorphous matrices at the glass transition and at room temperature (i.e. below the glass transition temperature), respectively. The solubilities of mannitol and indomethacin in polyvinyl pyrrolidone (PVP) K15 and PVP K25, respectively were measured at different temperatures. Mixtures of undissolved crystalline solute and saturated amorphous phase were obtained by annealing at a given temperature. The solubility at this temperature was then obtained by measuring the melting enthalpy of the crystalline phase, plotting it as a function of composition and extrapolating to zero enthalpy. This new method yielded results in accordance with the predictions reported in the literature. The method was also adapted for the measurement of the solubility of crystalline low molecular weight excipients in amorphous active pharmaceutical ingredients (APIs). The solubility of mannitol, glutaric acid and adipic acid in both indomethacin and sulfadimidine was experimentally determined and successfully compared with the difference between their respective calculated Hildebrand solubility parameters. As expected from the calculations, the dicarboxylic acids exhibited a high solubility in both amorphous indomethacin and sulfadimidine, whereas mannitol was almost insoluble in the same amorphous phases at room temperature. This work constitutes the first report of the methodology for determining an experimentally measured solubility for a low molecular weight crystalline solute

  11. Adsorption Energies of Carbon, Nitrogen, and Oxygen Atoms on the Low-temperature Amorphous Water Ice: A Systematic Estimation from Quantum Chemistry Calculations

    Science.gov (United States)

    Shimonishi, Takashi; Nakatani, Naoki; Furuya, Kenji; Hama, Tetsuya

    2018-03-01

    We propose a new simple computational model to estimate the adsorption energies of atoms and molecules to low-temperature amorphous water ice, and we present the adsorption energies of carbon (3 P), nitrogen (4 S), and oxygen (3 P) atoms based on quantum chemistry calculations. The adsorption energies were estimated to be 14,100 ± 420 K for carbon, 400 ± 30 K for nitrogen, and 1440 ± 160 K for oxygen. The adsorption energy of oxygen is consistent with experimentally reported values. We found that the binding of a nitrogen atom is purely physisorption, while that of a carbon atom is chemisorption, in which a chemical bond to an O atom of a water molecule is formed. That of an oxygen atom has a dual character, with both physisorption and chemisorption. The chemisorption of atomic carbon also implies the possibility of further chemical reactions to produce molecules bearing a C–O bond, though this may hinder the formation of methane on water ice via sequential hydrogenation of carbon atoms. These properties would have a large impact on the chemical evolution of carbon species in interstellar environments. We also investigated the effects of newly calculated adsorption energies on the chemical compositions of cold dense molecular clouds with the aid of gas-ice astrochemical simulations. We found that abundances of major nitrogen-bearing molecules, such as N2 and NH3, are significantly altered by applying the calculated adsorption energy, because nitrogen atoms can thermally diffuse on surfaces, even at 10 K.

  12. Evidence for a dynamic East Antarctic ice sheet during the mid-Miocene climate transition

    Science.gov (United States)

    Pierce, Elizabeth L.; van de Flierdt, Tina; Williams, Trevor; Hemming, Sidney R.; Cook, Carys P.; Passchier, Sandra

    2017-11-01

    The East Antarctic ice sheet underwent a major expansion during the Mid-Miocene Climate Transition, around 14 Ma, lowering sea level by ∼60 m. However, direct or indirect evidence of where changes in the ice sheet occurred is limited. Here we present new insights on timing and locations of ice sheet change from two drill sites offshore East Antarctica. IODP Site U1356, Wilkes Land, and ODP Site 1165, Prydz Bay are located adjacent to two major ice drainage areas, the Wilkes Subglacial Basin and the Lambert Graben. Ice-rafted detritus (IRD), including dropstones, was deposited in concentrations far exceeding those known in the rest of the Miocene succession at both sites between 14.1 and 13.8 Ma, indicating that large amounts of IRD-bearing icebergs were calved from independent drainage basins during this relatively short interval. At Site U1356, the IRD was delivered in distinct pulses, suggesting that the overall ice advance was punctuated by short periods of ice retreat in the Wilkes Subglacial Basin. Provenance analysis of the mid-Miocene IRD and fine-grained sediments provides additional insights on the movement of the ice margin and subglacial geology. At Site U1356, the dominant 40Ar/39Ar thermochronological age of the ice-rafted hornblende grains is 1400-1550 Ma, differing from the majority of recent IRD in the area, from which we infer an inland source area of this thermochronological age extending along the eastern part of the Adélie Craton, which forms the western side of the Wilkes Subglacial Basin. Neodymium isotopic compositions from the terrigenous fine fraction at Site U1356 imply that the ice margin periodically expanded from high ground well into the Wilkes Subglacial Basin during periods of MMCT ice growth. At Site 1165, MMCT pebble-sized IRD are sourced from both the local Lambert Graben and the distant Aurora Subglacial Basin drainage area. Together, the occurrence and provenance of the IRD and glacially-eroded sediment at these two marine

  13. The physics and technological aspects of the transition from amorphous to microcrystalline and polycrystalline silicon

    Czech Academy of Sciences Publication Activity Database

    Kočka, Jan; Fejfar, Antonín; Mates, Tomáš; Fojtík, Petr; Dohnalová, Kateřina; Luterová, Kateřina; Stuchlík, Jiří; Stuchlíková, The-Ha; Pelant, Ivan; Rezek, Bohuslav; Stemmer, A.; Ito, M.

    2004-01-01

    Roč. 1, č. 5 (2004), s. 1097-1114 ISSN 1610-1634 R&D Projects: GA AV ČR IAA1010316; GA AV ČR IAB2949101; GA MŽP SM/300/1/03; GA ČR GA202/03/0789 Institutional research plan: CEZ:AV0Z1010914 Keywords : silicon thin films * amorphous/microcrystalline boundary * AFM microscopic study * model of transport * metal-induced crystallization Subject RIV: BM - Solid Matter Physics ; Magnetism

  14. Amorphous-crystalline transition studied in hydrated MoO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Lopez, M.A. [Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Paseo Colon y Tollocan, Toluca Edo. de Mexico 50110 (Mexico); Haro-Poniatowski, E. [Departamento de Fisica, Laboratorio de Optica Cuantica, Universidad Autonoma Metropolitana-Iztapalapa, Apdo. Postal 55-534, Mexico, D.F. 09340 (Mexico); Lartundo-Rojas, L. [Laboratorio de Microscopia, Universidad Autonoma Metropolitana-Iztapalapa, Apdo. Postal 55-534, Mexico, D.F. 09340 (Mexico); Livage, J. [Chimie de la Matiere Condensee, Universite Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Julien, C.M. [Institut des Nano-Sciences de Paris, UMR 7588, Universite Pierre et Marie Curie, Campus Boucicaut, 140 rue de Lourmel, 75015 Paris (France)]. E-mail: Christian.Julien@insp.jussieu.fr

    2006-11-25

    In this work we study the thermal behavior of hydrated MoO{sub 3} synthesized via acidification of sodium molybdate. MoO{sub 3}.nH{sub 2}O (n = 1.4) amorphous compound was heated in air at increasing temperatures in order to obtain the crystalline MoO{sub 3} phase. We have studied the structural changes as a function of annealing temperature by Raman spectroscopy. A statistical study to determine the average size of the crystallites at each annealing step has been realized by scanning electron microscopy. Results show that the hydrated MoO{sub 3}.1.4H{sub 2}O glass transforms in an amorphous MoO{sub 3}.0.7H{sub 2}O phase prior to its crystallization, while the sample heated at 500 deg. C crystallizes into the orthorhombic {alpha}-MoO{sub 3} phase with micro-crystallites having an average size of 6.8 {mu}m.

  15. Amorphous to crystalline phase transition in carbon induced by intense femtosecond x-ray free-electron laser pulses

    Czech Academy of Sciences Publication Activity Database

    Gaudin, J.; Peyrusse, O.; Chalupský, Jaromír; Toufarová, Martina; Vyšín, Luděk; Hájková, Věra; Sobierajski, R.; Burian, Tomáš; Dastjani-Farahani, S.; Graf, A.; Amati, M.; Gregoratti, L.; Hau-Riege, S.P.; Hoffmann, G.; Juha, Libor; Krzywinski, J.; London, R.A.; Moeller, S.; Sinn, H.; Schorb, S.; Störmer, M.; Tschentscher, T.; Vorlíček, Vladimír; Vu, H.; Bozek, J.; Bostedt, C.

    2012-01-01

    Roč. 86, č. 2 (2012), "024103-1"-"024103-7" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP108/11/1312; GA ČR GAP205/11/0571; GA ČR GAP208/10/2302; GA AV ČR IAAX00100903; GA MŠk EE.2.3.20.0087 Grant - others:OP VK 2 LaserGen(XE) CZ.1.07/2.3.00/20.0087 Institutional research plan: CEZ:AV0Z10100523 Keywords : amorphous carbon * phase transition * graphitization * x-ray laser * free-electron laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.767, year: 2012

  16. Formation mechanisms of oxygen atoms in the O(3PJ) state from the 157 nm photoirradiation of amorphous water ice at 90 K

    International Nuclear Information System (INIS)

    Hama, Tetsuya; Yabushita, Akihiro; Yokoyama, Masaaki; Kawasaki, Masahiro; Watanabe, Naoki

    2009-01-01

    Desorption of ground state O( 3 P J=2,1,0 ) atoms following the vacuum ultraviolet photolysis of water ice in the first absorption band was directly measured with resonance-enhanced multiphoton ionization (REMPI) method. Based on their translational energy distributions and evolution behavior, two different formation mechanisms are proposed: One is exothermic recombination reaction of OH radicals, OH+OH→H 2 O+O( 3 P J ) and the other is the photodissociation of OH radicals on the surface of amorphous solid water. The translational and internal energy distributions of OH radicals as well as the evolution behavior were also measured by REMPI to elucidate the roles of H 2 O 2 and OH in the O( 3 P J ) formation mechanisms.

  17. Multicolor emission based on amorphous-to-crystalline phase transitions in nanostructured Mn-doped glass

    Science.gov (United States)

    Hoshino, Yoshinobu; Takahashi, Yoshihiro; Terakado, Nobuaki; Fujiwara, Takumi

    2017-12-01

    We fabricated glass-ceramics composed of emissive nanocrystals that show variation in photoluminescence coloration. The change in emission color is based on the amorphous-to-crystalline phase transformation in a Mn-containing zincogermanate glass. The transformation occurred at a 50 °C temperature range (538–588 °C), resulting in a change in photoluminescence color from orange to white to green. The color change is attributed to the co-crystallization of emissive nanophases and a change in the coordination state of Mn2+. Using laser-induced crystallization, we also achieved the space-selective arrangement of the different photoluminescence colors, indicating that photoluminescence coloration can be tuned in this Mn-doped glass.

  18. Thermal analysis of ice and glass transitions in insects that do and do not survive freezing.

    Science.gov (United States)

    Rozsypal, Jan; Moos, Martin; Šimek, Petr; Koštál, Vladimír

    2018-03-01

    Some insects rely on the strategy of freeze tolerance for winter survival. During freezing, extracellular body water transitions from the liquid to solid phase and cells undergo freeze-induced dehydration. Here we present results of a thermal analysis (from differential scanning calorimetry) of ice fraction dynamics during gradual cooling after inoculative freezing in variously acclimated larvae of two drosophilid flies, Drosophila melanogaster and Chymomyza costata. Although the species and variants ranged broadly between 0 and close to 100% survival of freezing, there were relatively small differences in ice fraction dynamics. For instance, the maximum ice fraction (IF max ) ranged between 67.9 and 77.7% total body water (TBW). The C. costata larvae showed statistically significant phenotypic shifts in parameters of ice fraction dynamics (melting point and IF max ) upon entry into diapause, cold-acclimation, and feeding on a proline-augmented diet. These differences were mostly driven by colligative effects of accumulated proline (ranging between 6 and 487 mmol.kg -1 TBW) and other metabolites. Our data suggest that these colligative effects per se do not represent a sufficient mechanistic explanation for high freeze tolerance observed in diapausing, cold-acclimated C. costata larvae. Instead, we hypothesize that accumulated proline exerts its protective role via a combination of mechanisms. Specifically, we found a tight association between proline-induced stimulation of glass transition in partially-frozen body liquids (vitrification) and survival of cryopreservation in liquid nitrogen. © 2018. Published by The Company of Biologists Ltd.

  19. Radiation-Induced Fluidity and Glass-Liquid Transition in Irradiated Amorphous Materials

    International Nuclear Information System (INIS)

    Ojovan, M.I.

    2009-01-01

    This paper describes the fluidity behaviour of continuously irradiated glasses using the Congruent Bond Lattice model in which broken bonds 'configurons' facilitate the flow. Irradiation breaks the bonds creating configurons which at high concentrations provide the transition of material from the glassy to liquid state. An explicit equation of viscosity has been derived which gives results in agreement with experimental data. This equation provides correct viscosity data for non-irradiated materials and shows a significant increase of fluidity in radiation fields. It demonstrates a decrease of activation energy of flow for irradiated glasses. A simple equation for glass-transition temperature was also obtained which shows that irradiated glasses have lower glass transition temperatures and are readily transformed from glassy to liquid state e.g. fluidized in strong radiation fields. (authors)

  20. Self-bonding in an amorphous polymer below the glass transition

    DEFF Research Database (Denmark)

    Boiko, Yuri M.; Bach, Anders; Lyngaae-Jørgensen, Jørgen

    2004-01-01

    was found to develop with (th)1/2 at Th = Tg-bulk - 33 °C (where Tg-bulk is the glass-transition temperature of the bulk sample), and log G was found to develop with 1/Th at Tg-bulk - 43 °C Th Tg-bulk - 23 °C. The smallest measured value of G = 1.4 J/m2 was at least one order of magnitude larger than...

  1. Dynamic and thermodynamic characteristics associated with the glass transition of amorphous trehalose-water mixtures.

    Science.gov (United States)

    Weng, Lindong; Elliott, Gloria D

    2014-06-21

    The glass transition temperature Tg of biopreservative formulations is important for predicting the long-term storage of biological specimens. As a complementary tool to thermal analysis techniques, which are the mainstay for determining Tg, molecular dynamics simulations have been successfully applied to predict the Tg of several protectants and their mixtures with water. These molecular analyses, however, rarely focused on the glass transition behavior of aqueous trehalose solutions, a subject that has attracted wide scientific attention via experimental approaches. Important behavior, such as hydrogen-bonding dynamics and self-aggregation has yet to be explored in detail, particularly below, or in the vicinity of, Tg. Using molecular dynamics simulations of several dynamic and thermodynamic properties, this study reproduced the supplemented phase diagram of trehalose-water mixtures (i.e., Tg as a function of the solution composition) based on experimental data. The structure and dynamics of the hydrogen-bonding network in the trehalose-water systems were also analyzed. The hydrogen-bonding lifetime was determined to be an order of magnitude higher in the glassy state than in the liquid state, while the constitution of the hydrogen-bonding network exhibited no noticeable change through the glass transition. It was also found that trehalose molecules preferred to form small, scattered clusters above Tg, but self-aggregation was substantially increased below Tg. The average cluster size in the glassy state was observed to be dependent on the trehalose concentration. Our findings provided insights into the glass transition characteristics of aqueous trehalose solutions as they relate to biopreservation.

  2. Glass transition of aqueous solutions involving annealing-induced ice recrystallization resolves liquid-liquid transition puzzle of water

    Science.gov (United States)

    Zhao, Li-Shan; Cao, Ze-Xian; Wang, Qiang

    2015-01-01

    Liquid-liquid transition of water is an important concept in condensed-matter physics. Recently, it was claimed to have been confirmed in aqueous solutions based on annealing-induced upshift of glass-liquid transition temperature, . Here we report a universal water-content, , dependence of for aqueous solutions. Solutions with vitrify/devitrify at a constant temperature, , referring to freeze-concentrated phase with left behind ice crystallization. Those solutions with totally vitrify at under conventional cooling/heating process though, of the samples annealed at temperatures   to effectively evoke ice recrystallization is stabilized at . Experiments on aqueous glycerol and 1,2,4-butanetriol solutions in literature were repeated, and the same samples subject to other annealing treatments equally reproduce the result. The upshift of by annealing is attributable to freeze-concentrated phase of solutions instead of ‘liquid II phase of water’. Our work also provides a reliable method to determine hydration formula and to scrutinize solute-solvent interaction in solution. PMID:26503911

  3. Effect of aging time on a glass transition of amorphous polymers at heating

    Czech Academy of Sciences Publication Activity Database

    Hadač, J.; Říha, Pavel; Slobodian, P.; Saha, P.; Kubát, J.

    2014-01-01

    Roč. 108, special issue 1 (2014), s. 59-65 ISSN 0009-2770 Grant - others:GA MŠk(CZ) EE.2.3.20.0104; GA MŠk(CZ) ED2.1.00/03.0111 Institutional research plan: CEZ:AV0Z20600510 Institutional support: RVO:67985874 Keywords : physical aging * glass transition * PMMA * relaxation function Subject RIV: BK - Fluid Dynamics Impact factor: 0.272, year: 2014 http://www.chemicke-listy.cz/docs/full/2014_s1_s59-s65.pdf

  4. Strain field evolution at the ductile-to-brittle transition: a case study on ice

    Science.gov (United States)

    Chauve, Thomas; Montagnat, Maurine; Lachaud, Cedric; Georges, David; Vacher, Pierre

    2017-09-01

    This paper presents, for the first time, the evolution of the local heterogeneous strain field around intra-granular cracking in polycrystalline ice, at the onset of tertiary creep. Owing to the high homologous temperature conditions and relatively low compressive stress applied, stress concentration at the crack tips is relaxed by plastic mechanisms associated with dynamic recrystallization. Strain field evolution followed by digital image correlation (DIC) directly shows the redistribution of strain during crack opening, but also the redistribution driven by crack tip plasticity mechanisms and recrystallization. Associated local changes in microstructure induce modifications of the local stress field evidenced by crack closure during deformation. At the ductile-to-brittle transition in ice, micro-cracking and dynamic recrystallization mechanisms can co-exist and interact, the later being efficient to relax stress concentration at the crack tips.

  5. High-throughput exploration of thermoelectric and mechanical properties of amorphous NbO2 with transition metal additions

    International Nuclear Information System (INIS)

    Music, Denis; Geyer, Richard W.; Hans, Marcus

    2016-01-01

    To increase the thermoelectric efficiency and reduce the thermal fatigue upon cyclic heat loading, alloying of amorphous NbO 2 with all 3d and 5d transition metals has systematically been investigated using density functional theory. It was found that Ta fulfills the key design criteria, namely, enhancement of the Seebeck coefficient and positive Cauchy pressure (ductility gauge). These quantum mechanical predictions were validated by assessing the thermoelectric and elastic properties on combinatorial thin films, which is a high-throughput approach. The maximum power factor is 2813 μW m −1  K −2 for the Ta/Nb ratio of 0.25, which is a hundredfold increment compared to pure NbO 2 and exceeds many oxide thermoelectrics. Based on the elasticity measurements, the consistency between theory and experiment for the Cauchy pressure was attained within 2%. On the basis of the electronic structure analysis, these configurations can be perceived as metallic, which is consistent with low electrical resistivity and ductile behavior. Furthermore, a pronounced quantum confinement effect occurs, which is identified as the physical origin for the Seebeck coefficient enhancement.

  6. High-throughput exploration of thermoelectric and mechanical properties of amorphous NbO2 with transition metal additions

    Science.gov (United States)

    Music, Denis; Geyer, Richard W.; Hans, Marcus

    2016-07-01

    To increase the thermoelectric efficiency and reduce the thermal fatigue upon cyclic heat loading, alloying of amorphous NbO2 with all 3d and 5d transition metals has systematically been investigated using density functional theory. It was found that Ta fulfills the key design criteria, namely, enhancement of the Seebeck coefficient and positive Cauchy pressure (ductility gauge). These quantum mechanical predictions were validated by assessing the thermoelectric and elastic properties on combinatorial thin films, which is a high-throughput approach. The maximum power factor is 2813 μW m-1 K-2 for the Ta/Nb ratio of 0.25, which is a hundredfold increment compared to pure NbO2 and exceeds many oxide thermoelectrics. Based on the elasticity measurements, the consistency between theory and experiment for the Cauchy pressure was attained within 2%. On the basis of the electronic structure analysis, these configurations can be perceived as metallic, which is consistent with low electrical resistivity and ductile behavior. Furthermore, a pronounced quantum confinement effect occurs, which is identified as the physical origin for the Seebeck coefficient enhancement.

  7. High-throughput exploration of thermoelectric and mechanical properties of amorphous NbO{sub 2} with transition metal additions

    Energy Technology Data Exchange (ETDEWEB)

    Music, Denis, E-mail: music@mch.rwth-aachen.de; Geyer, Richard W.; Hans, Marcus [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, 52074 Aachen (Germany)

    2016-07-28

    To increase the thermoelectric efficiency and reduce the thermal fatigue upon cyclic heat loading, alloying of amorphous NbO{sub 2} with all 3d and 5d transition metals has systematically been investigated using density functional theory. It was found that Ta fulfills the key design criteria, namely, enhancement of the Seebeck coefficient and positive Cauchy pressure (ductility gauge). These quantum mechanical predictions were validated by assessing the thermoelectric and elastic properties on combinatorial thin films, which is a high-throughput approach. The maximum power factor is 2813 μW m{sup −1} K{sup −2} for the Ta/Nb ratio of 0.25, which is a hundredfold increment compared to pure NbO{sub 2} and exceeds many oxide thermoelectrics. Based on the elasticity measurements, the consistency between theory and experiment for the Cauchy pressure was attained within 2%. On the basis of the electronic structure analysis, these configurations can be perceived as metallic, which is consistent with low electrical resistivity and ductile behavior. Furthermore, a pronounced quantum confinement effect occurs, which is identified as the physical origin for the Seebeck coefficient enhancement.

  8. Study of the pressure-time-temperature transformation of amorphous La6Ni5Al89 by the energy dispersive method for phase transition

    DEFF Research Database (Denmark)

    Paci, B.; Rossi-Albertini, V.; Sikorski, M.

    2005-01-01

    An energy dispersive X-ray diffraction method to observe phase transitions is applied to follow the crystallization of an amorphous alloy (La6Ni5Al89) in isothermal conditions. In this way, the diffraction-based configurational entropy (DCE) of the system undergoing the phase transformations...... importantly, the present work shows that the DCE method can be successfully applied even when DSC can no longer be used. As a consequence, regions of the phase diagram that could not be reached up to now become accessible, opening the way to the study of transition phenomena under extreme conditions....

  9. Effect of Si additions on thermal stability and the phase transition sequence of sputtered amorphous alumina thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bolvardi, H.; Baben, M. to; Nahif, F.; Music, D., E-mail: music@mch.rwth-aachen.de; Schnabel, V.; Shaha, K. P.; Mráz, S.; Schneider, J. M. [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen (Germany); Bednarcik, J.; Michalikova, J. [Deutsches Elektronen Synchrotron DESY, FS-PE group, Notkestrasse 85, D-22607 Hamburg (Germany)

    2015-01-14

    Si-alloyed amorphous alumina coatings having a silicon concentration of 0 to 2.7 at. % were deposited by combinatorial reactive pulsed DC magnetron sputtering of Al and Al-Si (90-10 at. %) split segments in Ar/O{sub 2} atmosphere. The effect of Si alloying on thermal stability of the as-deposited amorphous alumina thin films and the phase formation sequence was evaluated by using differential scanning calorimetry and X-ray diffraction. The thermal stability window of the amorphous phase containing 2.7 at. % of Si was increased by more than 100 °C compared to that of the unalloyed phase. A similar retarding effect of Si alloying was also observed for the α-Al{sub 2}O{sub 3} formation temperature, which increased by more than 120 °C. While for the latter retardation, the evidence for the presence of SiO{sub 2} at the grain boundaries was presented previously, this obviously cannot explain the stability enhancement reported here for the amorphous phase. Based on density functional theory molecular dynamics simulations and synchrotron X-ray diffraction experiments for amorphous Al{sub 2}O{sub 3} with and without Si incorporation, we suggest that the experimentally identified enhanced thermal stability of amorphous alumina with addition of Si is due to the formation of shorter and stronger Si–O bonds as compared to Al–O bonds.

  10. Nature of phase transitions in crystalline and amorphous GeTe-Sb2Te3 phase change materials.

    Science.gov (United States)

    Kalkan, B; Sen, S; Clark, S M

    2011-09-28

    The thermodynamic nature of phase stabilities and transformations are investigated in crystalline and amorphous Ge(1)Sb(2)Te(4) (GST124) phase change materials as a function of pressure and temperature using high-resolution synchrotron x-ray diffraction in a diamond anvil cell. The phase transformation sequences upon compression, for cubic and hexagonal GST124 phases are found to be: cubic → amorphous → orthorhombic → bcc and hexagonal → orthorhombic → bcc. The Clapeyron slopes for melting of the hexagonal and bcc phases are negative and positive, respectively, resulting in a pressure dependent minimum in the liquidus. When taken together, the phase equilibria relations are consistent with the presence of polyamorphism in this system with the as-deposited amorphous GST phase being the low entropy low-density amorphous phase and the laser melt-quenched and high-pressure amorphized GST being the high entropy high-density amorphous phase. The metastable phase boundary between these two polyamorphic phases is expected to have a negative Clapeyron slope. © 2011 American Institute of Physics

  11. Structural and electronic properties of binary amorphous aluminum alloys with transition metals and rare earth metals; Strukturelle und elektronische Eigenschaften binaerer amorpher Aluminiumlegierungen mit Uebergangsmetallen und Metallen der Seltenen Erden

    Energy Technology Data Exchange (ETDEWEB)

    Stiehler, Martin

    2012-02-03

    The influence of the d-states of the transition metals on the structure formation in amorphous alloys has so far only been inadequately understood. The present work aims to elaborate additional contributions to the understanding of binary amorphous aluminum alloys with transition metals. Special emphasis was placed on alloys with a subgroup of the transition metals, the rare earth metals. Within the scope of the present work, layers of Al-Ce in the region of 15at% Ce-80at% Ce were produced by sequential flash evaporation at 4.2K in the high vacuum, and characterized electronically by electrical resistance and Hall effect measurements as well as structurally by transmission electron diffraction. In addition, studies of plasma resonance were carried out by means of electron energy loss spectroscopy. In the range of 25at% Ce-60at% Ce, homogeneous amorphous samples were obtained. Especially the structural investigations were made difficult by oxidation of the material. The influence of the Ce-4f electrons manifests itself mainly in the low-temperature and magnetoresistance, both of which are dominated by the Kondo effect. The Hall effect in Al-Ce is dominated by anomalous components over the entire temperature range (2K-320K), which are attributed to skew-scattering effects, also due to Ce-4f electrons. Down to 2K there was no macroscopic magnetic order. In the region 2K-20K, the existence of clusters of ordered magnetic moments is concluded. For T> 20K, paramagnetic behavior occurs. With regard to the structural and electronic properties, a-Al-Ce can be classified as a group with a-Al- (Sc, Y, La). In the sense of plasma resonance, a-Al-Ce is excellently arranged in a system known from other Al transition metal alloys. Furthermore, by increasing the results of binary amorphous Al transition metal alloys from the literature, it has been found that the structure formation in these systems is closely linked to a known but still unexplained structure-forming effect that

  12. Application of a Salt Coformer in a Co-Amorphous Drug System Dramatically Enhances the Glass Transition Temperature: A Case Study of the Ternary System Carbamazepine, Citric Acid, and l-Arginine.

    Science.gov (United States)

    Ueda, Hiroshi; Wu, Wenqi; Löbmann, Korbinian; Grohganz, Holger; Müllertz, Anette; Rades, Thomas

    2018-04-13

    The use of co-amorphous systems containing a combination of low molecular weight drugs and excipients is a relatively new technology in the pharmaceutical field to improve the solubility of poorly water-soluble drugs. However, some co-amorphous systems show a lower glass transition temperature ( T g ) than many of their polymeric solid dispersion counterparts. In this study, we aimed at designing a stable co-amorphous system with an elevated T g . Carbamazepine (CBM) and citric acid (CA) were employed as the model drug and the coformer, respectively. co-amorphous CBM-CA at a 1:1 molar ratio was formed by ball milling, but a transition from the glassy to the supercooled melt state was observed under ambient conditions, due to the relatively low T g of 38.8 °C of the co-amorphous system and moisture absorption. To improve the T g of the coformer, salt formation of a combination of l-arginine (ARG) with CA was studied. First, ball milling of CA-ARG at molar ratios of 1:1, 1:2, and 1:3 forming co-amorphous systems was performed and led to a dramatic enhancement of the T g , depending on the CA-ARG ratio. Salt formation between CA and ARG was observed by infrared spectroscopy. Next, ball milling of CBM-CA-ARG at molar ratios of 1:1:1, 1:1:2, and 1:1:3 resulted in co-amorphous blends, which had a single T g at 77.8, 105.3, and 127.8 °C, respectively. These ternary co-amorphous samples remained in a solid amorphous form for 2 months at 40 °C. From these results, it can be concluded that blending of the salt coformer with a drug is a promising strategy to design stable co-amorphous formulations.

  13. Land-ice teleconnections of cold climatic periods during the last Glacial/Interglacial transition

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, A. [GeoForschungsZentrum Potsdam (Germany); Faculte des Sciences et Techniques de Saint-Jerome, Laboratoire de Botanique Historique et Palynologie, F-13379 Marseille Cedex 20 (France); Guenter, C. [GeoForschungsZentrum Potsdam (Germany); Universitaet Potsdam, Institut fuer Geowissenschaften, Postfach 60 15 53, D-14415 Potsdam (Germany); Johnsen, S.J. [Niels Bohr Institute of Astronomy, Department of Geophysics, University of Copenhagen, Haraldsgade 6, Copenhagen (Denmark); Iceland Univ., Reykjavik (Iceland). Science Inst.; Negendank, J.F.W. [GeoForschungsZentrum Potsdam (Germany)

    2000-02-01

    Independent calendar year chronologies are a basic requirement for the establishment of high resolution land-ice teleconnections. The annually laminated Meerfelder Maar record provides both an independent chronology, established by varve counting, and high resolution lithological proxy data for the period of the last Glacial/Interglacial transition. These data reveal a series of four periods of climatic deterioration coinciding with negative isotopic deviations in the GRIP record signal, thus demonstrating the synchronicity of environment changes in Western Germany and temperature shifts in Greenland. The terrestrial data supports a further subdivision of the event stratigraphy based on the GRIP core, by introducing the cold event GI-1c2 between 13 500 and 13 400 calendar years BP. Multiproxy analyses reveal that the environmental response at Meerfelder Maar was not linear throughout the Lateglacial but was modified by local processes. A change in the response of the lake environment to climate deterioration was observed during substage GI-1b (Gerzensee oscillation), the only event with gradual rather than abrupt transitions. The two-fold character of the Younger Dryas as seen in the GRIP record is more pronounced in the Meerfelder Maar record. This lithological signal occurred with a delay of 60 years to the GRIP signal, and has been linked to a shift in the catchment. It is proposed that the trigger for this shift was a trend towards a more humid second half of the Younger Dryas. (orig.)

  14. Magnetospheric considerations for solar system ice state

    Science.gov (United States)

    Paranicas, C.; Hibbitts, C. A.; Kollmann, P.; Ligier, N.; Hendrix, A. R.; Nordheim, T. A.; Roussos, E.; Krupp, N.; Blaney, D.; Cassidy, T. A.; Clark, G.

    2018-03-01

    The current lattice configuration of the water ice on the surfaces of the inner satellites of Jupiter and Saturn is likely shaped by many factors. But laboratory experiments have found that energetic proton irradiation can cause a transition in the structure of pure water ice from crystalline to amorphous. It is not known to what extent this process is competitive with other processes in solar system contexts. For example, surface regions that are rich in water ice may be too warm for this effect to be important, even if the energetic proton bombardment rate is very high. In this paper, we make predictions, based on particle flux levels and other considerations, about where in the magnetospheres of Jupiter and Saturn the ∼MeV proton irradiation mechanism should be most relevant. Our results support the conclusions of Hansen and McCord (2004), who related relative level of radiation on the three outer Galilean satellites to the amorphous ice content within the top 1 mm of surface. We argue here that if magnetospheric effects are considered more carefully, the correlation is even more compelling. Crystalline ice is by far the dominant ice state detected on the inner Saturnian satellites and, as we show here, the flux of bombarding energetic protons onto these bodies is much smaller than at the inner Jovian satellites. Therefore, the ice on the Saturnian satellites also corroborates the correlation.

  15. Chronology and dynamics of the Amundsen Gulf Ice Stream in Arctic Canada during the last glacial-interglacial transition

    Science.gov (United States)

    Lakeman, T. R.; MacLean, B.; Blasco, S.; Bennett, R.; Hughes Clarke, J. E.

    2012-04-01

    influence of the Mackenzie and other fluvial sediment discharge on the seabed over the last 13,000 cal yr BP. The deglacial history of Amundsen Gulf under ameliorating climate conditions of the last ~19,000 cal yr BP provides important constraints on the variables that occasioned the demise of the northwest Laurentide Ice Sheet, such as sea level change, paleoclimate, and regional ice sheet dynamics. Understanding the complex interplay among these variables during the last deglaciation will bear on current model projections of the dynamics of the Greenland and Antarctic ice sheets. In addition, quantifying past iceberg fluxes to the Arctic Ocean has implications for assessing the origin of deep ice scours in the Arctic Ocean Basin and the nature of rapid climate changes at the last glacial-interglacial transition.

  16. Probing the effects of interfacial chemistry on the kinetics of phase transitions in amorphous and tetragonal zirconia nanocrystals.

    Science.gov (United States)

    Kirsch, Bradley L; Riley, Andrew E; Gross, Adam F; Tolbert, Sarah H

    2004-12-07

    In this work, we examine the phase stability of both uncoated and alumina-coated zirconia nanoparticles using in-situ X-ray diffraction. By tracking structural changes in these particles, we seek to understand how changing interfacial bonding affects the kinetics of amorphous zirconia crystallization and the kinetics of grain growth in both initially amorphous and initially crystalline zirconia nanocrystals. Activation energies associated with crystallization are calculated using nonisothermal kinetic methods. The crystallization of the uncoated amorphous zirconia colloids has an activation energy of 117 +/- 13 kJ/mol, while that for the alumina-coated amorphous colloids is 185 +/- 28 kJ/mol. This increase in activation energy is attributed to inhibition of atomic rearrangement imparted by the alumina coating. The kinetics of grain growth are also studied with nonisothermal kinetic methods. The alumina coating again dramatically affects the activation energies. For colloids that were coated with alumina when they were in an amorphous structure, the coating imparts a 5x increase in the activation energy for grain growth (33 +/- 8 versus 150 +/- 30 kJ/mol). This increase shows that the alumina coating inhibits zirconia cores from coarsening. When the colloids are synthesized in the tetragonal phase and then coated with alumina, the effect of surface coating on coarsening kinetics is even more dramatic. In this case, a 10x increase in activation energies, from 28 +/- 3 kJ/mol for the uncoated particles to 300 +/- 25 kJ/mol for the alumina-coated crystallites, is found. The results show that one can alter phase stability in colloidal systems by using surface coatings and interfacial energy to dramatically change the kinetic barriers to structural rearrangement.

  17. Automatic Detection of the Holocene Transition in Radio-Echo Sounding Data from the Greenland Ice Sheet

    Science.gov (United States)

    Karlsson, N. B.; Dahl-Jensen, D.; Gogineni, S. P.; Paden, J.; Hvidberg, C. S.

    2012-04-01

    Radio-echo sounding has provided important insights into the subsurface properties of the Greenland Ice-Sheet. Recent years have seen increasing interest in englacial radio reflectors (or internal layers) because their stratigraphy reflects both mass balance rates and flow dynamics. Thus patterns of internal layers contain information about the past behaviour of an ice mass. Unfortunately retrieving this information often relies on a large amount of user interaction and can be very time consuming. As the amount of radio-echo sounding data increases, the development of quantitative techniques for digitising internal layers in radar data is a logical step forward. In this study we present an automated method for estimating the elevation of the Holocene transition in radio-echo sounding data from Greenland. The data was collected by the Center for Remote Sensing of Ice Sheets (CReSIS), University of Kansas. The automated method is based on the observation that the CReSIS radio-echo data often display a characteristic appearance: the upper half of the radio-echo data contains numerous internal layering and appears much darker than the lower, older part, where only a few visible layers can be seen. Compared to the depth-age relationship from the NorthGRIP ice core this change in the radar-echo data coincides with the transition to the Holocene period. The method obtains a good match with manually traced data and also returns an estimate of the confidence in its output. The depth of the Holocene transition will provide insight into the large-scale variation of mass balance and basal melt rate over the Greenland Ice Sheet and will assist in efforts to model the past evolution of the ice sheet.

  18. Sudden disintegration of ice in the glacial-proglacial transition zone of the largest glacier in Austria

    Science.gov (United States)

    Kellerer-Pirklbauer, Andreas; Avian, Michael; Hirschmann, Simon; Lieb, Gerhard Karl; Seier, Gernot; Sulzer, Wolfgang; Wakonigg, Herwig

    2017-04-01

    Rapid deglaciation does not only reveal a landscape which is prone to rapid geomorphic changes and sediment reworking but also the glacier ice itself might be in a state of disintegration by ice melting, pressure relief, crevasse formation, ice collapse or changes in the glacier's hydrology. In this study we considered the sudden disintegration of glacier ice in the glacial-proglacial transition zone of Pasterze Glacier. Pasterze Glacier is a typical alpine valley glacier and covers currently some 16.5 km2 making it to the largest glacier in Austria. This glacier is an important site for alpine mass tourism in Austria related to a public high alpine road and a cable car which enable access to the glacier rather easily also for unexperienced mountaineers. Spatial focus in our research is given on two particular study areas where several ice-mass movement events occurred during the 2015- and 2016-melting seasons. The first study area is a crevasse field at the lower third of the glacier tongue. This lateral crevasse field has been substantially modified during the last two melting seasons particularly because of thermo-erosional effects of a glacial stream which changed at this site from subglacial (until 2015) to glacier-lateral revealing a several tens of meters high unstable ice cliff prone to ice falls of different magnitudes. The second study area is located at the proglacial area. At Pasterze Glacier the proglacial area is widely influenced by dead-ice bodies of various dimensions making this area prone to slow to sudden geomorphic changes caused by ice mass changes. A particular ice-mass movement event took place on 20.09.2016. Within less than one hour the surface of the proglacial area changed substantially by tilting, lateral shifting, and subsidence of the ground accompanied by complete ice disintegration of once-debris covered ice. To understand acting processes at both areas of interest and to quantify mass changes we used field observations, terrain

  19. New Insights into Lamellar Structure Development and SAXS/WAXD Sequence Appearance During Uniaxial Stretching of Amorphous Poly(ethylene terephthalate) Above Glass Transition Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami,D.; Burger, C.; Ran, S.; Avila-Orta, C.; Sics, I.; Chu, B.; Chiao, S.; Hsiao, B.; Kikutani, T.

    2008-01-01

    An in situ study of structure formation in amorphous poly(ethylene terephthalate) (PET) during uniaxial stretching at a temperature 30 C above glass transition temperature was carried out using synchrotron small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) techniques. Three major deformation-induced structure transitions were confirmed. (1) At small strains, the applied load increased initially but leveled off afterward. Sporadic isotropic crystallization without preferred orientation was observed by WAXD, where no hierarchical structure was seen by SAXS. (2) At intermediate strains, strain hardening took place. Although WAXD showed persistent progression of isotropic crystallization, SAXS indicated formation of a layered structure as well as a fibrillar domain in large scale. This behavior is not consistent with the mechanisms for shish-kebab or spinodal-assisted structure formation. Instead, it can be explained by flow-induced demixing of crystal and amorphous phases through layerlike flocking motion perpendicular to the stretching direction. (3) At high strains, the ratio between the applied load and strain was about constant. In this stage, crystal reorientation and lateral crystal growth took place. The corresponding structure changes could be categorized into three subregions. In the first region, the (010) crystalline plane began to orient. In the second region, the (100) crystalline plane began to orient. In the last region, the structure change became stable and the sample eventually broke apart.

  20. Plankton assembly in an ultra-oligotrophic Antarctic lake over the summer transition from the ice-cover to ice-free period: A size spectra approach

    Science.gov (United States)

    Rochera, Carlos; Quesada, Antonio; Toro, Manuel; Rico, Eugenio; Camacho, Antonio

    2017-03-01

    Lakes from the Antarctic maritime region experience climate change as a main stressor capable of modifying their plankton community structure and function, essentially because summer temperatures are commonly over the freezing point and the lake's ice cap thaws. This study was conducted in such seasonally ice-covered lake (Lake Limnopolar, Byers Peninsula, Livingston Is., Antarctica), which exhibits a microbial dominated pelagic food web. An important feature is also the occurrence of benthic mosses (Drepanocladus longifolius) covering the lake bottom. Plankton dynamics were investigated during the ice-thawing transition to the summer maximum. Both bacterioplankton and viral-like particles were higher near the lake's bottom, suggesting a benthic support. When the lake was under dim conditions because of the snow-and-ice cover, autotrophic picoplankters dominated at deep layers. The taxa-specific photopigments indicated dominance of picocyanobacteria among them when the light availability was lower. By contrast, larger and less edible phytoplankton dominated at the onset of the ice melting. The plankton size spectra were fitted to the continuous model of Pareto distribution. Spectra evolved similarly at two sampled depths, in surface and near the bottom, with slopes increasing until mid-January. However, slopes were less steep (i.e., size classes more uniformly distributed) at the bottom, thus denoting a more efficient utilization of resources. These findings suggest that microbial loop pathways in the lake are efficiently channelized during some periods to the metazoan production (mainly the copepod Boeckella poppei). Our results point to that trophic interactions may still occur in these lakes despite environmental harshness. This results of interest in a framework of increasing temperatures that may reduce the climatic restrictions and therefore stimulate biotic interactions.

  1. Amorphous and crystalline aerosol particles interacting with water vapor – Part 1: Microstructure, phase transitions, hygroscopic growth and kinetic limitations

    OpenAIRE

    T. Koop; U. Pöschl; S. T. Martin; S. Vlasenko; E. Mikhailov

    2009-01-01

    Interactions with water are crucial for the properties, transformation and climate effects of atmospheric aerosols. Here we outline characteristic features and differences in the interaction of amorphous and crystalline aerosol particles with water vapor. Using a hygroscopicity tandem differential mobility analyzer (H-TDMA), we performed hydration, dehydration and cyclic hydration&dehydration experiments with aerosol particles composed of levoglucosan, oxalic acid and ammonium sulfate (diamet...

  2. Temperature dependent thermal conductivity and transition mechanism in amorphous and crystalline Sb2Te3 thin films.

    Science.gov (United States)

    Li, Qisong; Wei, Jingsong; Sun, Hao; Zhang, Kui; Huang, Zhengxing; Zhang, Long

    2017-10-23

    Sb 2 Te 3 thin films are widely used in high density optical and electronic storage, high-resolution greyscale image recording, and laser thermal lithography. Thermal conductivity and its temperature dependence are critical factors that affect the application performance of thin films. This work aims to evaluate the temperature dependence of thermal conductivity of crystalline and amorphous Sb 2 Te 3 thin films experimentally and theoretically, and explores into the corresponding mechanism of heat transport. For crystalline Sb 2 Te 3 thin films, the thermal conductivity was found to be 0.35 ± 0.035 W m -1 K -1 and showed weak temperature dependence. The thermal conductivity of amorphous Sb 2 Te 3 thin films at temperatures below ~450 K is about 0.23 ± 0.023 W m -1 K -1 , mainly arising from the lattice as the electronic contribution is negligible; at temperatures above 450 K, the thermal conductivity experiences an abrupt increase owing to the structural change from amorphous to crystalline state. The work can provide an important guide and reference to the real applications of Sb 2 Te 3 thin films.

  3. The 3D Kasteleyn transition in dipolar spin ice: a numerical study with the conserved monopoles algorithm

    Science.gov (United States)

    Baez, M. L.; Borzi, R. A.

    2017-02-01

    We study the three-dimensional Kasteleyn transition in both nearest neighbours and dipolar spin ice models using an algorithm that conserves the number of excitations. We first limit the interactions range to nearest neighbours to test the method in the presence of a field applied along ≤ft[1 0 0\\right] , and then focus on the dipolar spin ice model. The effect of dipolar interactions, which is known to be greatly self screened at zero field, is particularly strong near full polarization. It shifts the Kasteleyn transition to lower temperatures, which decreases  ≈0.4 K for the parameters corresponding to the best known spin ice materials, \\text{D}{{\\text{y}}2}\\text{T}{{\\text{i}}2}{{\\text{O}}7} and \\text{H}{{\\text{o}}2}\\text{T}{{\\text{i}}2}{{\\text{O}}7} . This shift implies effective dipolar fields as big as 0.05 T opposing the applied field, and thus favouring the creation of ‘strings’ of reversed spins. We compare the reduction in the transition temperature with results in previous experiments, and study the phenomenon quantitatively using a simple molecular field approach. Finally, we relate the presence of the effective residual field to the appearance of string-ordered phases at low fields and temperatures, and we check numerically that for fields applied along ≤ft[1 0 0\\right] there are only three different stable phases at zero temperature.

  4. Amorphous magnetism

    International Nuclear Information System (INIS)

    Rechenberg, H.R.

    1984-01-01

    The consequences of disorder on magnetic properties of solids are examined. In this context the word 'disorder' is not synonimous of structural amorphicity; chemical disorder can be achieved e.g. by randomly diffusing magnetic atoms on a nonmagnetic crystalline lattice. The name Amorphous Magnetism must be taken in a broad sense. (Author) [pt

  5. Diamond amorphization in neutron irradiation

    International Nuclear Information System (INIS)

    Nikolaenko, V.A.; Gordeev, V.G.

    1996-01-01

    The paper presents the results on neutron irradiation of the diamond in a nuclear reactor. It is shown that the neutron irradiation stimulates the diamond transition to the amorphous state. At a temperature below 750 o K the time required for the diamond-graphite transition decreases with decreasing irradiation temperature. On the contrary, in irradiation at higher temperatures the time of diamond conversion into the amorphous state increases with decreasing but always remains shorter than in the absence of irradiation. (author)

  6. Anelastic and viscoelastic behaviour of amorphous Zr65Cu17.5Ni10Al7.5 in the range of the glass transition

    International Nuclear Information System (INIS)

    Ulfert, W.; Kronmueller, H.

    1996-01-01

    Reversible (anelasticity) and the irreversible (viscosity) relaxations in the amorphous alloy Zr 65 Cu 17.5 Ni 10 Al 7.5 have been investigated by means of creep and mechanic after-effect measurements of the shear strain, which were performed in an inverted torsion pendulum. For the evaluation of the measurements a new relaxation model is proposed which takes into account that in the range of the glass-transition temperature T g the local atomic arrangement is steadely changing. By introducing a finite mean life time τ l of local structure units we are able to trace the origin of the anelasticity and the viscosity to the same atomic relaxation processes. The temperature dependence of the viscosity η measured between 560 K and 668 K shows a jump in the activation energy at T g = 606 K from 2.1 eV below T g to 5.6 eV above T g . (orig.)

  7. The effect of polymeric excipients on the physical properties and performance of amorphous dispersions: Part I, free volume and glass transition.

    Science.gov (United States)

    Li, Jinjiang; Zhao, Junshu; Tao, Li; Wang, Jennifer; Waknis, Vrushali; Pan, Duohai; Hubert, Mario; Raghavan, Krishnaswamy; Patel, Jatin

    2015-02-01

    To investigate the structural effect of polymeric excipients on the behavior of free volume of drug-polymer dispersions in relation to glass transition. Two drugs (indomethacin and ketoconazole) were selected to prepare amorphous dispersions with PVP, PVPVA, HPC, and HPMCAS through spray drying. The physical attributes of the dispersions were characterized using SEM and PXRD. The free volume (hole-size) of the dispersions along with drugs and polymers was measured using positron annihilation lifetime spectroscopy (PALS). Their glass transition temperatures (Tgs) were determined using DSC and DMA. FTIR spectra were recorded to identify hydrogen bonding in the dispersions. The chain structural difference-flexible (PVP and PVPVA) vs. inflexible (HPC and HPMCAS)-significantly impacts the free volume and Tgs of the dispersions as well as their deviation from ideality. Relative to Tg, free volume seems to be a better measure of hydrogen bonding interaction for the dispersions of PVP, HPC, and HPMCAS. The free volume of polymers and their dispersions in general appears to be related to their conformations in solution. Both the backbone chain rigidity of polymers as well as drug-polymer interaction can impact the free volume and glass transition behaviors of the dispersions.

  8. Amorphous nanophotonics

    CERN Document Server

    Scharf, Toralf

    2013-01-01

    This book represents the first comprehensive overview over amorphous nano-optical and nano-photonic systems. Nanophotonics is a burgeoning branch of optics that enables many applications by steering the mould of light on length scales smaller than the wavelength with devoted nanostructures. Amorphous nanophotonics exploits self-organization mechanisms based on bottom-up approaches to fabricate nanooptical systems. The resulting structures presented in the book are characterized by a deterministic unit cell with tailored geometries; but their spatial arrangement is not controlled. Instead of periodic, the structures appear either amorphous or random. The aim of this book is to discuss all aspects related to observable effects in amorphous nanophotonic material and aspects related to their design, fabrication, characterization and integration into applications. The book has an interdisciplinary nature with contributions from scientists in physics, chemistry and materials sciences and sheds light on the topic fr...

  9. Surface energy budget of landfast sea ice during the transitions from winter to snowmelt and melt pond onset

    DEFF Research Database (Denmark)

    Else, B.G.T.; Papakyriakou, T.N.; Raddatz, R.

    2014-01-01

    Relatively few sea ice energy balance studies have successfully captured the transition season of warming, snowmelt, and melt pond formation. In this paper, we report a surface energy budget for landfast sea ice that captures this important period. The study was conducted in the Canadian Arctic......) combined with the seasonal increase in incoming shortwave radiation then triggered snowmelt onset. Melt progressed with a rapid reduction in albedo and attendant increases in shortwave energy absorption, resulting in melt pond formation 8 days later. The key role of longwave radiation in initiating melt...... onset supports past findings, and confirms the importance of clouds and water vapor associated with synoptic weather systems. However, we also observed a period of strong turbulent energy exchange associated with the passage of a cyclone. The cyclone event occurred shortly after melt pond formation...

  10. Calorimetric study of water's two glass transitions in the presence of LiCl

    Science.gov (United States)

    Ruiz, Guadalupe N.; Amann-Winkel, Katrin; Bove, Livia E.; Corti, Horacio R.

    2018-01-01

    A DSC study of dilute glassy LiCl aqueous solutions in the water-dominated regime provides direct evidence of a glass-to-liquid transition in expanded high density amorphous (eHDA)-type solutions. Similarly, low density amorphous ice (LDA) exhibits a glass transition prior to crystallization to ice Ic. Both glass transition temperatures are independent of the salt concentration, whereas the magnitude of the heat capacity increase differs. By contrast to pure water, the glass transition endpoint for LDA can be accessed in LiCl aqueous solutions above 0.01 mole fraction. Furthermore, we also reveal the endpoint for HDA's glass transition, solving the question on the width of both glass transitions. This suggests that both equilibrated HDL and LDL can be accessed in dilute LiCl solutions, supporting the liquid–liquid transition scenario to understand water's anomalies. PMID:29442107

  11. Semiconductor to metallic transition in bulk accumulated amorphous indium-gallium-zinc-oxide dual gate thin-film transistor

    Directory of Open Access Journals (Sweden)

    Minkyu Chun

    2015-05-01

    Full Text Available We investigated the effects of top gate voltage (VTG and temperature (in the range of 25 to 70 oC on dual-gate (DG back-channel-etched (BCE amorphous-indium-gallium-zinc-oxide (a-IGZO thin film transistors (TFTs characteristics. The increment of VTG from -20V to +20V, decreases the threshold voltage (VTH from 19.6V to 3.8V and increases the electron density to 8.8 x 1018cm−3. Temperature dependent field-effect mobility in saturation regime, extracted from bottom gate sweep, show a critical dependency on VTG. At VTG of 20V, the mobility decreases from 19.1 to 15.4 cm2/V ⋅ s with increasing temperature, showing a metallic conduction. On the other hand, at VTG of - 20V, the mobility increases from 6.4 to 7.5cm2/V ⋅ s with increasing temperature. Since the top gate bias controls the position of Fermi level, the temperature dependent mobility shows metallic conduction when the Fermi level is above the conduction band edge, by applying high positive bias to the top gate.

  12. Antarctic Ice Sheet variability across the Eocene-Oligocene boundary climate transition.

    Science.gov (United States)

    Galeotti, Simone; DeConto, Robert; Naish, Timothy; Stocchi, Paolo; Florindo, Fabio; Pagani, Mark; Barrett, Peter; Bohaty, Steven M; Lanci, Luca; Pollard, David; Sandroni, Sonia; Talarico, Franco M; Zachos, James C

    2016-04-01

    About 34 million years ago, Earth's climate cooled and an ice sheet formed on Antarctica as atmospheric carbon dioxide (CO2) fell below ~750 parts per million (ppm). Sedimentary cycles from a drill core in the western Ross Sea provide direct evidence of orbitally controlled glacial cycles between 34 million and 31 million years ago. Initially, under atmospheric CO2 levels of ≥600 ppm, a smaller Antarctic Ice Sheet (AIS), restricted to the terrestrial continent, was highly responsive to local insolation forcing. A more stable, continental-scale ice sheet calving at the coastline did not form until ~32.8 million years ago, coincident with the earliest time that atmospheric CO2 levels fell below ~600 ppm. Our results provide insight into the potential of the AIS for threshold behavior and have implications for its sensitivity to atmospheric CO2 concentrations above present-day levels. Copyright © 2016, American Association for the Advancement of Science.

  13. Water’s second glass transition

    Science.gov (United States)

    Amann-Winkel, Katrin; Gainaru, Catalin; Handle, Philip H.; Seidl, Markus; Nelson, Helge; Böhmer, Roland

    2013-01-01

    The glassy states of water are of common interest as the majority of H2O in space is in the glassy state and especially because a proper description of this phenomenon is considered to be the key to our understanding why liquid water shows exceptional properties, different from all other liquids. The occurrence of water’s calorimetric glass transition of low-density amorphous ice at 136 K has been discussed controversially for many years because its calorimetric signature is very feeble. Here, we report that high-density amorphous ice at ambient pressure shows a distinct calorimetric glass transitions at 116 K and present evidence that this second glass transition involves liquid-like translational mobility of water molecules. This “double Tg scenario” is related to the coexistence of two liquid phases. The calorimetric signature of the second glass transition is much less feeble, with a heat capacity increase at Tg,2 about five times as large as at Tg,1. By using broadband-dielectric spectroscopy we resolve loss peaks yielding relaxation times near 100 s at 126 K for low-density amorphous ice and at 110 K for high-density amorphous ice as signatures of these two distinct glass transitions. Temperature-dependent dielectric data and heating-rate–dependent calorimetric data allow us to construct the relaxation map for the two distinct phases of water and to extract fragility indices m = 14 for the low-density and m = 20–25 for the high-density liquid. Thus, low-density liquid is classified as the strongest of all liquids known (“superstrong”), and also high-density liquid is classified as a strong liquid. PMID:24101518

  14. Dynamics of sea-ice biogeochemistry in the coastal Antarctica during transition from summer to winter

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.; Jena, B.; Mohan, R.

    of nutrients and dissolved inorganic carbon (DIC) and increase in pH. The major highlight of this study is the shift in the dominant biogeochemical factors from summer to early winter. Nutrient limitation (low Si/N), sea-ice cover, low photosynthetically active...

  15. Dynamics of sea-ice biogeochemistry in the coastal Antarctica during transition from summer to winter

    Directory of Open Access Journals (Sweden)

    Suhas Shetye

    2017-05-01

    Full Text Available The seasonality of carbon dioxide partial pressure (pCO2, air-sea CO2 fluxes and associated environmental parameters were investigated in the Antarctic coastal waters. The in-situ survey was carried out from the austral summer till the onset of winter (January 2012, February 2010 and March 2009 in the Enderby Basin. Rapid decrease in pCO2 was evident under the sea-ice cover in January, when both water column and sea-ice algal activity resulted in the removal of nutrients and dissolved inorganic carbon (DIC and increase in pH. The major highlight of this study is the shift in the dominant biogeochemical factors from summer to early winter. Nutrient limitation (low Si/N, sea-ice cover, low photosynthetically active radiation (PAR, deep mixed layer and high upwelling velocity contributed towards higher pCO2 during March (early winter. CO2 fluxes suggest that the Enderby Basin acts as a strong CO2 sink during January (−81 mmol m−2 d−1, however it acts as a weak sink of CO2 with −2.4 and −1.7 mmol m−2 d−1 during February and March, respectively. The present work, concludes that sea ice plays a dual role towards climate change, by decreasing sea surface pCO2 in summer and enhancing in early winter. Our observations emphasize the need to address seasonal sea-ice driven CO2 flux dynamics in assessing Antarctic contributions to the global oceanic CO2 budget.

  16. Bottom Fixed Platform Dynamics Models Assessing Surface Ice Interactions for Transitional Depth Structures in the Great Lakes: FAST8 – IceDyn

    Energy Technology Data Exchange (ETDEWEB)

    Karr, Dale G. [Univ. of Michigan, Ann Arbor, MI (United States); Yu, Bingbin [Principle Power, Inc., Emeryville, CA (United States); Sirnivas, Senu [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-04-01

    To create long-term solutions for offshore wind turbines in a variety of environmental conditions, CAE tools are needed to model the design-driving loads that interact with an offshore wind turbine system during operation. This report describes our efforts in augmenting existing CAE tools used for offshore wind turbine analysis with a new module that can provide simulation capabilities for ice loading on the system. This augmentation was accomplished by creating an ice-loading module coupled to FAST8, the CAE tool maintained by the NREL for simulating land-based and offshore wind turbine dynamics. The new module includes both static and dynamic ice loading that can be applied during a dynamic simulation of the response of an offshore wind turbine. The ice forces can be prescribed, or influenced by the structure’s compliant response, or by the dynamics of both the structure and the ice floe. The new module covers ice failure modes of spalling, buckling, crushing, splitting, and bending. The supporting structure of wind turbines can be modeled as a vertical or sloping form at the waterline. The Inward Battered Guide Structure (IBGS) foundation designed by Keystone Engineering for the Great Lakes was used to study the ice models coupled to FAST8. The IBGS foundation ice loading simulations in FAST8 were compared to the baseline simulation case without ice loading. The ice conditions reflecting those from Lake Huron at Port Huron and Lake Michigan at North Manitou were studied under near rated wind speed of 12 m/s for the NREL 5-MW reference turbine. Simulations were performed on ice loading models 1 through 4 and ice model 6 with their respective sub-models. The purpose of ice model 5 is to investigate ice loading on sloping structures such as ice-cones on a monopile and is not suitable for multi-membered jacketed structures like the IBGS foundation. The key response parameters from the simulations, shear forces and moments from the tower base and IBGS foundation

  17. Analytical theory of noncollinear amorphous metallic magnetism

    International Nuclear Information System (INIS)

    Kakehashi, Y.; Uchida, T.

    2001-01-01

    Analytical theory of noncollinear magnetism in amorphous metals is proposed on the basis of the Gaussian model for the distribution of the interatomic distance and the saddle-point approximation. The theory removes the numerical difficulty in the previous theory based on the Monte-Carlo sampling method, and reasonably describes the magnetic properties of amorphous transition metals

  18. Amorphous-to-crystalline transition in Ge8Sb(2-x)BixTe11 phase-change materials for data recording

    Czech Academy of Sciences Publication Activity Database

    Svoboda, R.; Karabyn, V.; Málek, J.; Frumar, M.; Beneš, L.; Vlček, Milan

    2016-01-01

    Roč. 674, July (2016), s. 63-72 ISSN 0925-8388 Institutional support: RVO:61389013 Keywords : amorphous materials * calorimetry * data strorage materials Subject RIV: CA - Inorganic Chemistry Impact factor: 3.133, year: 2016

  19. Well-posedness of an extended model for water-ice phase transitions

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Rocca, E.

    2013-01-01

    Roč. 6, č. 2 (2013), s. 439-460 ISSN 1937-1632 R&D Projects: GA ČR GAP201/10/2315 Institutional support: RVO:67985840 Keywords : phase transitions * nonlocal problems * uniqueness Subject RIV: BA - General Mathematics http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=7900

  20. Fracture Phenomena in Amorphous Selenium

    DEFF Research Database (Denmark)

    Lindegaard-Andersen, Asger; Dahle, Birgit

    1966-01-01

    Fracture surfaces of amorphous selenium broken in flexure at room temperature have been studied. The fracture velocity was found to vary in different regions of the fracture surface. Peculiar features were observed in a transition zone between fast and slower fracture. In this zone cleavage steps...

  1. Laboratory Research. [spectroscopic analysis, photochemical reactions, and proton irradiation of ice

    Science.gov (United States)

    Donn, B.

    1981-01-01

    To properly interpret the rapidly growing body of data from comet observations, many types of laboratory measurements are needed. These include: (1) molecular spectroscopy in the visible, ultraviolet, infrared and microwave region of the spectra; (2) laser fluorescent spectroscopy of photofragments; (3) laboratory cross-section or reaction rate measurements using flow tube techniques, fluorescent spectroscopy detection for neutrals and ion-molecule reaction techniques; (4) experiments to simulate solar-wind interactions with comets; (5) studies of the properties and behavior of ice mixtures; (6) experiments on the sublimation rate of ice, and the phase transition from amorphous to crystalline ice; (7) investigations of the irradiation of ice; and (8) the electron impact dissociation and excitation of molecules of cometary interest. A nearly completed experiment on the proton irradiation of ice is described.

  2. Liquid water in the domain of cubic crystalline ice Ic.

    Science.gov (United States)

    Jenniskens, P; Banham, S F; Blake, D F; McCoustra, M R

    1997-07-22

    Vapor-deposited amorphous water ice when warmed above the glass transition temperature (120-140 K), is a viscous liquid which exhibits a viscosity vs temperature relationship different from that of liquid water at room temperature. New studies of thin water ice films now demonstrate that viscous liquid water persists in the temperature range 140-210 K. where it coexists with cubic crystalline ice. The liquid character of amorphous water above the glass transition is demonstrated by (1) changes in the morphology of water ice films on a nonwetting surface observed in transmission electron microscopy (TEM) at around 175 K during slow warming, (2) changes in the binding energy of water molecules measured in temperature programmed desorption (TPD) studies, and (3) changes in the shape of the 3.07 micrometers absorption band observed in grazing angle reflection-absorption infrared spectroscopy (RAIRS) during annealing at high temperature. whereby the decreased roughness of the water surface is thought to cause changes in the selection rules for the excitation of O-H stretch vibrations. Because it is present over such a wide range of temperatures, we propose that this form of liquid water is a common material in nature. where it is expected to exist in the subsurface layers of comets and on the surfaces of some planets and satellites.

  3. Contributions of Heterogeneous Ice Nucleation, Large-Scale Circulation, and Shallow Cumulus Detrainment to Cloud Phase Transition in Mixed-Phase Clouds with NCAR CAM5

    Science.gov (United States)

    Liu, X.; Wang, Y.; Zhang, D.; Wang, Z.

    2016-12-01

    Mixed-phase clouds consisting of both liquid and ice water occur frequently at high-latitudes and in mid-latitude storm track regions. This type of clouds has been shown to play a critical role in the surface energy balance, surface air temperature, and sea ice melting in the Arctic. Cloud phase partitioning between liquid and ice water determines the cloud optical depth of mixed-phase clouds because of distinct optical properties of liquid and ice hydrometeors. The representation and simulation of cloud phase partitioning in state-of-the-art global climate models (GCMs) are associated with large biases. In this study, the cloud phase partition in mixed-phase clouds simulated from the NCAR Community Atmosphere Model version 5 (CAM5) is evaluated against satellite observations. Observation-based supercooled liquid fraction (SLF) is calculated from CloudSat, MODIS and CPR radar detected liquid and ice water paths for clouds with cloud-top temperatures between -40 and 0°C. Sensitivity tests with CAM5 are conducted for different heterogeneous ice nucleation parameterizations with respect to aerosol influence (Wang et al., 2014), different phase transition temperatures for detrained cloud water from shallow convection (Kay et al., 2016), and different CAM5 model configurations (free-run versus nudged winds and temperature, Zhang et al., 2015). A classical nucleation theory-based ice nucleation parameterization in mixed-phase clouds increases the SLF especially at temperatures colder than -20°C, and significantly improves the model agreement with observations in the Arctic. The change of transition temperature for detrained cloud water increases the SLF at higher temperatures and improves the SLF mostly over the Southern Ocean. Even with the improved SLF from the ice nucleation and shallow cumulus detrainment, the low SLF biases in some regions can only be improved through the improved circulation with the nudging technique. Our study highlights the challenges of

  4. A liquid-liquid transition in supercooled aqueous solution related to the HDA-LDA transition

    Science.gov (United States)

    Woutersen, Sander; Ensing, Bernd; Hilbers, Michiel; Zhao, Zuofeng; Angell, C. Austen

    2018-03-01

    Simulations and theory suggest that the thermodynamic anomalies of water may be related to a phase transition between two supercooled liquid states, but so far this phase transition has not been observed experimentally because of preemptive ice crystallization. We used calorimetry, infrared spectroscopy, and molecular dynamics simulations to investigate a water-rich hydrazinium trifluoroacetate solution in which the local hydrogen bond structure surrounding a water molecule resembles that in neat water at elevated pressure, but which does not crystallize upon cooling. Instead, this solution underwent a sharp, reversible phase transition between two homogeneous liquid states. The hydrogen-bond structures of these two states are similar to those established for high- and low-density amorphous (HDA and LDA) water. Such structural similarity supports theories that predict a similar sharp transition in pure water under pressure if ice crystallization could be suppressed.

  5. Measuring stable isotopes of hydrogen and oxygen in ice by means of laser spectrometry : The Bolling transition in the Dye-3 (south Greenland) ice core

    NARCIS (Netherlands)

    Trigt, R. van; Meijer, H.A.J.; Sveinbjornsdottir, A.E.; Johnsen, S.J.; Kerstel, E.R.Th.

    2002-01-01

    We report on the first application of a new technique in ice-core research, based on direct absorption infrared laser spectrometry (LS), for measuring H-2 O-17 and O-18 isotope ratios. The data are used to calculate the deuterium excess d (defined as delta(2)H - 8delta(18)O) for a section of the

  6. Radiation damage and associated phase change effect on photodesorption rates from ices—Lyα studies of the surface behavior of CO2(ice)

    International Nuclear Information System (INIS)

    Yuan, Chunqing; Yates, John T. Jr.

    2014-01-01

    Photodesorption from a crystalline film of CO 2 (ice) at 75 K has been studied using Lyα (10.2 eV) radiation. We combine quantitative mass spectrometric studies of gases evolved and transmission IR studies of species trapped in the ice. Direct CO desorption is observed from the primary CO 2 photodissociation process, which occurs promptly for CO 2 molecules located on the outermost surface of the ice (Process I). As the fluence of Lyα radiation increases to ∼5.5 × 10 17 photons cm –2 , extensive damage to the crystalline ice occurs and photo-produced CO molecules from deeper regions (Process II) are found to desorb at a rapidly increasing rate, which becomes two orders of magnitude greater than Process I. It is postulated that deep radiation damage to produce an extensive amorphous phase of CO 2 occurs in the 50 nm ice film and that CO (and CO 2 ) diffusive transport is strongly enhanced in the amorphous phase. Photodesorption in Process II is a combination of electronic and thermally activated processes. Radiation damage in crystalline CO 2 ice has been monitored by its effects on the vibrational line shapes of CO 2 (ice). Here the crystalline-to-amorphous phase transition has been correlated with the occurrence of efficient molecular transport over long distances through the amorphous phase of CO 2 (ice). Future studies of the composition of the interstellar region, generated by photodesorption from ice layers on grains, will have to consider the significant effects of radiation damage on photodesorption rates.

  7. Glass-to-cryogenic-liquid transitions in aqueous solutions suggested by crack healing.

    Science.gov (United States)

    Kim, Chae Un; Tate, Mark W; Gruner, Sol M

    2015-09-22

    Observation of theorized glass-to-liquid transitions between low-density amorphous (LDA) and high-density amorphous (HDA) water states had been stymied by rapid crystallization below the homogeneous water nucleation temperature (∼235 K at 0.1 MPa). We report optical and X-ray observations suggestive of glass-to-liquid transitions in these states. Crack healing, indicative of liquid, occurs when LDA ice transforms to cubic ice at 160 K, and when HDA ice transforms to the LDA state at temperatures as low as 120 K. X-ray diffraction study of the HDA to LDA transition clearly shows the characteristics of a first-order transition. Study of the glass-to-liquid transitions in nanoconfined aqueous solutions shows them to be independent of the solute concentrations, suggesting that they represent an intrinsic property of water. These findings support theories that LDA and HDA ice are thermodynamically distinct and that they are continuously connected to two different liquid states of water.

  8. Studies of cavitation and ice nucleation in 'doubly-metastable' water: time-lapse photography and neutron diffraction.

    Science.gov (United States)

    Barrow, Matthew S; Williams, P Rhodri; Chan, Hoi-Houng; Dore, John C; Bellissent-Funel, Marie-Claire

    2012-10-14

    High-speed photographic studies and neutron diffraction measurements have been made of water under tension in a Berthelot tube. Liquid water was cooled below the normal ice-nucleation temperature and was in a doubly-metastable state prior to a collapse of the liquid state. This transition was accompanied by an exothermic heat release corresponding with the rapid production of a solid phase nucleated by cavitation. Photographic techniques have been used to observe the phase transition over short time scales in which a solidification front is observed to propagate through the sample. Significantly, other images at a shorter time interval reveal the prior formation of cavitation bubbles at the beginning of the process. The ice-nucleation process is explained in terms of a mechanism involving hydrodynamically-induced changes in tension in supercooled water in the near vicinity of an expanding cavitation bubble. Previous explanations have attributed the nucleation of the solid phase to the production of high positive pressures. Corresponding results are presented which show the initial neutron diffraction pattern after ice-nucleation. The observed pattern does not exhibit the usual crystalline pattern of hexagonal ice [I(h)] that is formed under ambient conditions, but indicates the presence of other ice forms. The composite features can be attributed to a mixture of amorphous ice, ice-I(h)/I(c) and the high-pressure form, ice-III, and the diffraction pattern continues to evolve over a time period of about an hour.

  9. Critical influence of the amorphous silica-to-cristobalite phase transition on the performance of Mn/Na{sub 2}WO{sub 4}/SiO{sub 2} catalysts for the oxidative coupling of methane

    Energy Technology Data Exchange (ETDEWEB)

    Palermo, A. [UNMDP-CONICET, Mar del Plata (Argentina). Inst. of Materials Science and Technology; Vazquez, J.P.H. [CSIC-Univ. Sevilla-Junta de Andalucia (Spain). Inst. de Ciencia de Materiales; Lee, A.F.; Tikhov, M.S.; Lambert, R.M. [Univ. of Cambridge (United Kingdom). Dept. of Chemistry

    1998-07-25

    XRD, XPS/XAES, TPR analysis and catalytic testing have been applied to Na/W/Mn/SiO{sub 2} methane coupling catalysts and to corresponding formulations without one or more of Na, Mn, and W. The authors find a clear correlation between catalyst performance and support structure in the final calcined material. Amorphous silica yields active but very unselective catalysts. Crystalline SiO{sub 2} ({alpha}-cristobalite) generates active and highly selective catalysts--especially with respect to the formation of ethylene. The authors demonstrate that the presence of Na is essential for the anomalous low temperature silica {r_arrow} cristobalite support phase transition to occur. The structural, catalytic, and spectroscopic results indicate that Na plays a dual role as both structural and chemical promoter.

  10. A study on the properties of C-doped Ge8Sb2Te11 thin films during an amorphous-to-crystalline phase transition

    Science.gov (United States)

    Park, Cheol-Jin; Kong, Heon; Lee, Hyun-Yong; Yeo, Jong-Bin

    2016-04-01

    In this work, we evaluated the structural, electrical and optical properties of carbon-doped Ge8Sb2Te11 thin films. In a previous work, GeSbTe alloys were doped with different materials in an attempt to improve the thermal stability. Ge8Sb2Te11 and carbon-doped Ge8Sb2Te11 films of 250 nm in thickness were deposited on p-type Si (100) and glass substrates by using a RF magnetron reactive co-sputtering system at room temperature. The fabricated films were annealed in a furnance in the 0 ~ 400°C temperature range. The structural properties were analyzed by using X-ray diffraction (XRD), and the result showed that the carbon-doped Ge8Sb2Te11 had a face-centeredcubic (fcc) crystalline structure and an increased crystallization temperature ( T c ). An increase in the T c leads to thermal stability in the amorphous state. The optical properties were analyzed by using an UV-Vis-IR spectrophotometer, and the result showed an increase in the optical-energy band gap ( E op ) in the crystalline materials and an increase in the E op difference (Δ E op ), which is a good effect for reducing the noise in the memory device. The electrical properties were analyzed by using a 4-point probe, which showed an increase in the sheet resistance ( R s ) in the amorphous state and the crystalline state, which means a reduced programming current in the memory device.

  11. Younger-Dryas cooling and sea-ice feedbacks were prominent features of the Pleistocene-Holocene transition in Arctic Alaska

    Science.gov (United States)

    Gaglioti, Benjamin V.; Mann, Daniel H.; Wooller, Matthew J.; Jones, Benjamin M.; Wiles, Gregory C.; Groves, Pamela; Kunz, Michael L.; Baughman, Carson A.; Reanier, Richard E.

    2017-08-01

    Declining sea-ice extent is currently amplifying climate warming in the Arctic. Instrumental records at high latitudes are too short-term to provide sufficient historical context for these trends, so paleoclimate archives are needed to better understand the functioning of the sea ice-albedo feedback. Here we use the oxygen isotope values of wood cellulose in living and sub-fossil willow shrubs (δ18Owc) (Salix spp.) that have been radiocarbon-dated (14C) to produce a multi-millennial record of climatic change on Alaska's North Slope during the Pleistocene-Holocene transition (13,500-7500 calibrated 14C years before present; 13.5-7.5 ka). We first analyzed the spatial and temporal patterns of δ18Owc in living willows growing at upland sites and found that over the last 30 years δ18Owc values in individual growth rings correlate with local summer temperature and inter-annual variations in summer sea-ice extent. Deglacial δ18Owc values from 145 samples of subfossil willows clearly record the Allerød warm period (∼13.2 ka), the Younger Dryas cold period (12.9-11.7 ka), and the Holocene Thermal Maximum (11.7-9.0 ka). The magnitudes of isotopic changes over these rapid climate oscillations were ∼4.5‰, which is about 60% of the differences in δ18Owc between those willows growing during the last glacial period and today. Modeling of isotope-precipitation relationships based on Rayleigh distillation processes suggests that during the Younger Dryas these large shifts in δ18Owc values were caused by interactions between local temperature and changes in evaporative moisture sources, the latter controlled by sea ice extent in the Arctic Ocean and Bering Sea. Based on these results and on the effects that sea-ice have on climate today, we infer that ocean-derived feedbacks amplified temperature changes and enhanced precipitation in coastal regions of Arctic Alaska during warm times in the past. Today, isotope values in willows on the North Slope of Alaska are similar

  12. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    2004-01-01

    The present paper describes the preparation and properties of bulk amorphous quarternary Mg-based alloys and the influence of additional elements on the ability of the alloy to form bulk amorphous. The main goal is to find a Mg-based alloy system which shows both high strength to weight ratio...... and a low glass transition temperature. The alloys were prepared by using a relatively simple technique, i.e. rapid cooling of the melt in a copper wedge mould. The essential structural changes that are achieved by going from the amorphous to the crystalline state through the supercooled liquid state...... are discussed in this paper. On the basis of these measurements phase diagrams of the different systems were constructed. Finally, it is demonstrated that when pressing the bulk amorphous alloy onto a metallic dies at temperatures within the supercooled liquid region, the alloy faithfully replicates the surface...

  13. Transient photoconductivity in amorphous semiconductors

    International Nuclear Information System (INIS)

    Mpawenayo, P.

    1997-07-01

    Localized states in amorphous semiconductors are divided in disorder induced shallow trap levels and dangling bonds deep states. Dangling bonds are assumed here to be either neutral or charged and their energy distribution is a single gaussian. Here, it is shown analytically that transient photocurrent in amorphous semiconductors is fully controlled by charge carriers transitions between localized states for one part and tunneling hopping carriers on the other. Localized dangling bonds deep states act as non radiative recombination centres, while hopping tunnelling is assisted by the Coulomb interaction between defects sites. The half-width of defects distribution is the disorder parameter that determines the carrier hopping time between defects sites. The macroscopic time that explains the long decay response times observed will all types of amorphous semiconductors is duly thought to be temperature dependent. Basic equations developed by Longeaud and Kleider are solved for the general case of a semiconductor after photo-generation. It turns out that the transient photoconductivity decay has two components; one with short response times from carriers trap-release transitions between shallow levels and extended states and a hopping component made of inter-dependent exponentials whose time constants span in larger ranges depending on disorder. The photoconductivity hopping component appears as an additional term to be added to photocurrents derived from existing models. The results of the present study explain and complete the power law decay derived in the multiple trapping models developed 20 years ago only in the approximation of the short response time regime. The long response time regime is described by the hopping macroscopic time. The present model is verified for all samples of amorphous semiconductors known so far. Finally, it is proposed to improved the modulated photoconductivity calculation techniques by including the long-lasting hopping dark documents

  14. Cell viability, pigments and photosynthetic performance of Arctic phytoplankton in contrasting ice-covered and open-water conditions during the spring-summer transition

    KAUST Repository

    Alou-Font, E

    2015-12-02

    © Inter-Research 2016. We examined phytoplankton biomass and community composition (mostly based on pigments) as well as cell viability with the cell digestion assay in surface waters of the Canadian Beaufort Sea during the spring-summer transition. Our aim was to understand phytoplankton responses to the large environmental changes (irradiance, temperature and nutrients) occurring during this period. Two categories of stations were visited in May and June 2008: ice-covered (IC), exposed to low irradiances, and open-water (OW), exposed to higher irradiances. We observed a large variation in the percentage of living cells (%LC) relative to the total community. No relationship was found between %LC and nitrate concentration (the nutrient potentially limiting in this environment). The in situ irradiance influenced the status of the cells at OW stations. Mean surface mixed layer irradiances >600 μmol photons m-2 s-1 were associated with low cell viability and a decline in photosynthetic performance (Fv/Fm). For IC stations, %LC declined at temperatures above 0°C, whereas for OW stations, it increased, suggesting that ice melting resulted in the release into surface waters of unhealthy cells from the bottom ice in one case, and that seasonal warming favored the communities present in open waters. A chlorophyll degradation pigment tentatively identified as pyropheophorbide a-\\'like\\' showed a significant negative relationship between its concentration (relative to chlorophyll a) and the %LC and Fv/Fm. Our results suggest that the melting conditions influence the distribution of this pigment and that it may be useful as a marker for low cell viability of ice algae being released into surface waters.

  15. Amorphous Phases on the Surface of Mars

    Science.gov (United States)

    Rampe, E. B.; Morris, R. V.; Ruff, S. W.; Horgan, B.; Dehouck, E.; Achilles, C. N.; Ming, D. W.; Bish, D. L.; Chipera, S. J.

    2014-01-01

    Both primary (volcanic/impact glasses) and secondary (opal/silica, allophane, hisingerite, npOx, S-bearing) amorphous phases appear to be major components of martian surface materials based on orbital and in-situ measurements. A key observation is that whereas regional/global scale amorphous components include altered glass and npOx, local scale amorphous phases include hydrated silica/opal. This suggests widespread alteration at low water-to-rock ratios, perhaps due to snow/ice melt with variable pH, and localized alteration at high water-to-rock ratios. Orbital and in-situ measurements of the regional/global amorphous component on Mars suggests that it is made up of at least three phases: npOx, amorphous silicate (likely altered glass), and an amorphous S-bearing phase. Fundamental questions regarding the composition and the formation of the regional/global amorphous component(s) still remain: Do the phases form locally or have they been homogenized through aeolian activity and derived from the global dust? Is the parent glass volcanic, impact, or both? Are the phases separate or intimately mixed (e.g., as in palagonite)? When did the amorphous phases form? To address the question of source (local and/or global), we need to look for variations in the different phases within the amorphous component through continued modeling of the chemical composition of the amorphous phases in samples from Gale using CheMin and APXS data. If we find variations (e.g., a lack of or enrichment in amorphous silicate in some samples), this may imply a local source for some phases. Furthermore, the chemical composition of the weathering products may give insight into the formation mechanisms of the parent glass (e.g., impact glasses contain higher Al and lower Si [30], so we might expect allophane as a weathering product of impact glass). To address the question of whether these phases are separate or intimately mixed, we need to do laboratory studies of naturally altered samples made

  16. Calorimetric studies of non-isothermal crystallization in amorphous

    Indian Academy of Sciences (India)

    Administrator

    The applicability of Meyer–Neldel relation between the pre-exponential factor and activation energy of non-isothermal crystallization for amorphous alloys of Cu–Ti system was verified. Keywords. Amorphous materials; differential scanning calorimetry (DSC); phase transitions. 1. Introduction. There is a significant attention ...

  17. Ice sheet in peril

    DEFF Research Database (Denmark)

    Hvidberg, Christine Schøtt

    2016-01-01

    Earth's large ice sheets in Greenland and Antarctica are major contributors to sea level change. At present, the Greenland Ice Sheet (see the photo) is losing mass in response to climate warming in Greenland (1), but the present changes also include a long-term response to past climate transitions...

  18. A novel pressure-induced polymorphic transition from fumed silica to transparent amorphous SiO sub 2 at room temperature

    CERN Document Server

    Uchino, T; Azuma, M; Takano, M; Takahashi, M; Yoko, T

    2002-01-01

    We show that when we use highly dispersed oxides called fumed silica, a pressure-induced structural transition occurs at lower pressures (2-8 GPa) than would normally be expected for bulk a-SiO sub 2 (over 10 GPa). Furthermore, this transition finally results in a transparent monolith at 6-8 GPa, accompanied by densification, even at room temperature. We suggest that this novel polymorphic modification of a-SiO sub 2 results from the highly reactive nature surface strained Si-O bonds that are formed particularly in the compressed fumed silica samples.

  19. Ice films follow structure zone model morphologies

    International Nuclear Information System (INIS)

    Cartwright, Julyan H.E.; Escribano, Bruno; Sainz-Diaz, C. Ignacio

    2010-01-01

    Ice films deposited at temperatures of 6-220 K and at low pressures in situ in a cryo-environmental scanning electron microscope show pronounced morphologies at the mesoscale consistent with the structure zone model of film growth. Water vapour was injected directly inside the chamber at ambient pressures ranging from 10 -4 Pa to 10 2 Pa. Several different substrates were used to exclude the influence of their morphology on the grown films. At the lowest temperatures the ice, which under these conditions is amorphous on the molecular scale, shows the mesoscale morphologies typical of the low-temperature zones of the structure zone model (SZM), including cauliflower, transition, spongelike and matchstick morphologies. Our experiments confirm that the SZM is independent of the chemical nature of the adsorbate, although the intermolecular interactions in water (hydrogen bonds) are different to those in ceramics or metals. At higher temperatures, on the other hand, where the ice is hexagonal crystalline on the molecular scale, it displays a complex palmlike morphology on the mesoscale.

  20. Ice films follow structure zone model morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, Julyan H.E. [Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, E-18071 Granada (Spain); Escribano, Bruno, E-mail: bruno.escribano.salazar@gmail.co [Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, E-18071 Granada (Spain); Sainz-Diaz, C. Ignacio [Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, E-18071 Granada (Spain)

    2010-04-02

    Ice films deposited at temperatures of 6-220 K and at low pressures in situ in a cryo-environmental scanning electron microscope show pronounced morphologies at the mesoscale consistent with the structure zone model of film growth. Water vapour was injected directly inside the chamber at ambient pressures ranging from 10{sup -4} Pa to 10{sup 2} Pa. Several different substrates were used to exclude the influence of their morphology on the grown films. At the lowest temperatures the ice, which under these conditions is amorphous on the molecular scale, shows the mesoscale morphologies typical of the low-temperature zones of the structure zone model (SZM), including cauliflower, transition, spongelike and matchstick morphologies. Our experiments confirm that the SZM is independent of the chemical nature of the adsorbate, although the intermolecular interactions in water (hydrogen bonds) are different to those in ceramics or metals. At higher temperatures, on the other hand, where the ice is hexagonal crystalline on the molecular scale, it displays a complex palmlike morphology on the mesoscale.

  1. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  2. Amorphous iron (II) carbonate

    DEFF Research Database (Denmark)

    Sel, Ozlem; Radha, A.V.; Dideriksen, Knud

    2012-01-01

    Abstract The synthesis, characterization and crystallization energetics of amorphous iron (II) carbonate (AFC) are reported. AFC may form as a precursor for siderite (FeCO3). The enthalpy of crystallization (DHcrys) of AFC is similar to that of amorphous magnesium carbonate (AMC) and more...

  3. Atomistic modeling of ion beam induced amorphization in silicon

    International Nuclear Information System (INIS)

    Pelaz, Lourdes; Marques, Luis A.; Lopez, Pedro; Santos, Ivan; Aboy, Maria; Barbolla, Juan

    2005-01-01

    Ion beam induced amorphization in Si has attracted significant interest since the beginning of the use of ion implantation for the fabrication of Si devices. Nowadays, a renewed interest in the modeling of amorphization mechanisms at atomic level has arisen due to the use of preamorphizing implants and high dopant implantation doses for the fabrication of nanometric-scale Si devices. In this work, we briefly describe the existing phenomenological and defect-based amorphization models. We focus on the atomistic model we have developed to describe ion beam induced amorphization in Si. In our model, the building block for the amorphous phase is the bond defect or IV pair, whose stability increases with the number of surrounding IV pairs. This feature explains the regrowth behavior of different damage topologies and the kinetics of the crystalline to amorphous transition. The model provides excellent quantitative agreement with experimental results

  4. Effects of sea-ice and biogeochemical processes and storms on under-ice water fCO2 during the winter-spring transition in the high Arctic Ocean: Implications for sea-air CO2 fluxes

    OpenAIRE

    Fransson, Agneta Ingrid; Chierici, Melissa; Skjelvan, Ingunn; Olsen, Are; Assmy, Philipp; Peterson, Algot Kristoffer; Spreen, Gunnar; Ward, Brian

    2017-01-01

    We performed measurements of carbon dioxide fugacity (fCO2) in the surface water under Arctic sea ice from January to June 2015 during the Norwegian young sea ICE (N-ICE2015) expedition. Over this period, the ship drifted with four different ice floes and covered the deep Nansen Basin, the slopes north of Svalbard, and the Yermak Plateau. This unique winter-to-spring data set includes the first winter-time under-ice water fCO2 observations in this region. The observed under-ice fCO2 ranged be...

  5. Interplay of the Glass Transition and the Liquid-Liquid Phase Transition in Water

    Science.gov (United States)

    Giovambattista, Nicolas; Loerting, Thomas; Lukanov, Boris R.; Starr, Francis W.

    2012-01-01

    Water has multiple glassy states, often called amorphous ices. Low-density (LDA) and high-density (HDA) amorphous ice are separated by a dramatic, first-order like phase transition. It has been argued that the LDA-HDA transformation connects to a first-order liquid-liquid phase transition (LLPT) above the glass transition temperature Tg. Direct experimental evidence of the LLPT is challenging to obtain, since the LLPT occurs at conditions where water rapidly crystallizes. In this work, we explore the implications of a LLPT on the pressure dependence of Tg(P) for LDA and HDA by performing computer simulations of two water models – one with a LLPT, and one without. In the absence of a LLPT, Tg(P) for all glasses nearly coincide. When there is a LLPT, different glasses exhibit dramatically different Tg(P) which are directly linked with the LLPT. Available experimental data for Tg(P) are only consistent with the scenario including a LLPT. PMID:22550566

  6. Analysis of water sorption isotherms of amorphous food materials by solution thermodynamics with relevance to glass transition: evaluation of plasticizing effect of water by the thermodynamic parameters.

    Science.gov (United States)

    Shimazaki, Eriko; Tashiro, Akiko; Kumagai, Hitomi; Kumagai, Hitoshi

    2017-04-01

    Relation between the thermodynamic parameters obtained from water sorption isotherms and the degree of reduction in the glass transition temperature (T g ), accompanied by water sorption, was quantitatively studied. Two well-known glassy food materials namely, wheat gluten and maltodextrin were used as samples. The difference between the chemical potential of water in a solution and that of pure water ([Formula: see text]), the difference between the chemical potential of solid in a solution and that of a pure solid ([Formula: see text]), and the change in the integral Gibbs free energy ([Formula: see text]) were obtained by analyzing the water sorption isotherms using solution thermodynamics. The parameter [Formula: see text] correlated well with ΔT g (≡T g  - T g0 ; where T g0 is the glass transition temperature of dry material), which had been taken to be an index of plasticizing effect. This indicates that plasticizing effect of water on foods can be evaluated through the parameter [Formula: see text].

  7. Hydrogen in amorphous silicon

    International Nuclear Information System (INIS)

    Peercy, P.S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH 1 ) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon

  8. Canted spin structure and the first order magnetic transition in CoFe{sub 2}O{sub 4} nanoparticles coated by amorphous silica

    Energy Technology Data Exchange (ETDEWEB)

    Lyubutin, I.S. [Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow 119333 (Russian Federation); Starchikov, S.S., E-mail: sergey.s.starchikov@gmail.com [Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow 119333 (Russian Federation); Gervits, N.E.; Korotkov, N.Yu.; Dmitrieva, T.V. [Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow 119333 (Russian Federation); Lin, Chun-Rong, E-mail: crlinspin@gmail.com [Department of Applied Physics, National Pingtung University, Pingtung County 90003, Taiwan (China); Tseng, Yaw-Teng [Department of Applied Physics, National Pingtung University, Pingtung County 90003, Taiwan (China); Shih, Kun-Yauh [Department of Applied Chemistry, National Pingtung University, Pingtung County 90003, Taiwan (China); Lee, Jiann-Shing [Department of Applied Physics, National Pingtung University, Pingtung County 90003, Taiwan (China); Wang, Cheng-Chien [Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan (China)

    2016-10-01

    The functional polymer (PMA-co-MAA) latex microspheres were used as a core template to prepare magnetic hollow spheres consisting of CoFe{sub 2}O{sub 4}/SiO{sub 2} composites. The spinel type crystal structure of CoFe{sub 2}O{sub 4} ferrite is formed under annealing, whereas the polymer cores are completely removed after annealing at 450 °C. Magnetic and Mössbauer spectroscopy measurements reveal very interesting magnetic properties of the CoFe{sub 2}O{sub 4}/SiO{sub 2} hollow spheres strongly dependent on the particle size which can be tuned by the annealing temperature. In the ground state of low temperatures, the CoFe{sub 2}O{sub 4} nanoparticles are in antiferromagnetic state due to the canted magnetic structure. Under heating in the applied field, the magnetic structure gradually transforms from canted to collinear, which increases the magnetization. The Mössbauer data revealed that the small size CoFe{sub 2}O{sub 4}/SiO{sub 2} particles (2.2–4.3 nm) do not show superparamagnetic behavior but transit from the magnetic to the paramagnetic state by a jump-like magnetic transition of the first order This effect is a specific property of the magnetic nanoparticles isolated by inert material, and can be initiated by internal pressure creating at the particle surface. The suggested method of synthesis can be modified with various bio-ligands on the silane surface, and such materials can find many applications in diagnostics and bio-separation. - Highlights: • CoFe{sub 2}O{sub 4}/SiO{sub 2} nanocomposites in shell of hollow microcapsules designed for biomedical applications • The CoFe{sub 2}O{sub 4} particle size and magnetic properties can be tuned by thermal treatment • Canted spin structure in the CoFe{sub 2}O{sub 4} nanoparticles coated by SiO{sub 2} • The first order magnetic transition in the CoFe{sub 2}O{sub 4} nanoparticles coated by silica.

  9. Ice Sheets & Ice Cores

    DEFF Research Database (Denmark)

    Mikkelsen, Troels Bøgeholm

    Since the discovery of the Ice Ages it has been evident that Earth’s climate is liable to undergo dramatic changes. The previous climatic period known as the Last Glacial saw large oscillations in the extent of ice sheets covering the Northern hemisphere. Understanding these oscillations known...

  10. TRANSIT

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. TRANSIT. SYSTEM: DETERMINE 2D-POSITION GLOBALLY BUT INTERMITTENT (POST-FACTO). IMPROVED ACCURACY. PRINCIPLE: POLAR SATELLITES WITH INNOVATIONS OF: GRAVITY-GRADIENT ATTITUDE CONTROL; DRAG COMPENSATION. WORKS ...

  11. Physics of amorphous metals

    CERN Document Server

    Kovalenko, Nikolai P; Krey, Uwe

    2008-01-01

    The discovery of bulk metallic glasses has led to a large increase in the industrial importance of amorphous metals, and this is expected to continue. This book is the first to describe the theoretical physics of amorphous metals, including the important theoretical development of the last 20 years.The renowned authors stress the universal aspects in their description of the phonon or magnon low-energy excitations in the amorphous metals, e.g. concerning the remarkable consequences of the properties of these excitations for the thermodynamics at low and intermediate temperatures. Tunneling

  12. Amorphization within the tablet

    DEFF Research Database (Denmark)

    Doreth, Maria; Hussein, Murtadha Abdul; Priemel, Petra A.

    2017-01-01

    , the feasibility of microwave irradiation to prepare amorphous solid dispersions (glass solutions) in situ was investigated. Indomethacin (IND) and polyvinylpyrrolidone K12 (PVP) were tableted at a 1:2 (w/w) ratio. In order to study the influence of moisture content and energy input on the degree of amorphization......, tablet formulations were stored at different relative humidity (32, 43 and 54% RH) and subsequently microwaved using nine different power-time combinations up to a maximum energy input of 90 kJ. XRPD results showed that up to 80% (w/w) of IND could be amorphized within the tablet. mDSC measurements...

  13. Fast surface crystallization of amorphous griseofulvin below T g.

    Science.gov (United States)

    Zhu, Lei; Jona, Janan; Nagapudi, Karthik; Wu, Tian

    2010-08-01

    To study crystal growth rates of amorphous griseofulvin (GSF) below its glass transition temperature (T (g)) and the effect of surface crystallization on the overall crystallization kinetics of amorphous GSF. Amorphous GSF was generated by melt quenching. Surface and bulk crystal growth rates were determined using polarized light microscope. X-ray powder diffraction (XRPD) and Raman microscopy were used to identify the polymorph of the crystals. Crystallization kinetics of amorphous GSF powder stored at 40 degrees C (T (g)-48 degrees C) and room temperature (T (g)-66 degrees C) was monitored using XRPD. Crystal growth at the surface of amorphous GSF is 10- to 100-fold faster than that in the bulk. The surface crystal growth can be suppressed by an ultrathin gold coating. Below T (g), the crystallization of amorphous GSF powder was biphasic with a rapid initial crystallization stage dominated by the surface crystallization and a slow or suspended late stage controlled by the bulk crystallization. GSF exhibits the fastest surface crystallization kinetics among the known amorphous pharmaceutical solids. Well below T (g), surface crystallization dominated the overall crystallization kinetics of amorphous GSF powder. Thus, surface crystallization should be distinguished from bulk crystallization in studying, modeling and controlling the crystallization of amorphous solids.

  14. Molecular Oxygen Formation in Interstellar Ices Does Not Require Tunneling.

    Science.gov (United States)

    Pezzella, Marco; Unke, Oliver T; Meuwly, Markus

    2018-03-29

    The formation of molecular oxygen in and on amorphous ice in the interstellar medium requires oxygen diffusion to take place. Recent experiments suggest that this process involves quantum tunneling of the oxygen atoms at sufficiently low temperatures. Fitting experimental diffusion rates between 6 and 25 K to an expression that accounts for the roughness of the surface yields excellent agreement. The molecular dynamics of adsorbed oxygen is characterized by rapid intrasite dynamics, followed by intersite transitions over distances of ∼10 Å. Explicit simulations using a realistic free-energy surface for oxygen diffusion on amorphous ice down to 10 K show that quantum tunneling is not required for mobility of adsorbed oxygen. This is confirmed by comparing quantum and classical simulations using the same free-energy surface. The ratio of diffusional and desorption energy E dif / E des = 275/1082 ≈ 0.3 is at the lower end of typically used values but is still consistent with the assumptions made in models for interstellar chemistry.

  15. Can xenon in water inhibit ice growth? Molecular dynamics of phase transitions in water$-$Xe system

    OpenAIRE

    Artyukhov, Vasilii I.; Pulver, Alexander Yu.; Peregudov, Alex; Artyuhov, Igor

    2014-01-01

    Motivated by recent experiments showing the promise of noble gases as cryoprotectants, we perform molecular dynamics modeling of phase transitions in water with xenon under cooling. We study the structure and dynamics of xenon water solution as a function of temperature. Homogeneous nucleation of clathrate hydrate phase is observed and characterized. As the temperature is further reduced we observe hints of dissociation of clathrate due to stronger hydrophobic hydration, pointing towards a po...

  16. Numerical simulations of contrail-to-cirrus transition – Part 2: Impact of initial ice crystal number, radiation, stratification, secondary nucleation and layer depth

    Directory of Open Access Journals (Sweden)

    S. Unterstrasser

    2010-02-01

    Full Text Available Simulations of contrail-to-cirrus transition were performed with an LES model. In Part 1 the impact of relative humidity, temperature and vertical wind shear was explored in a detailed parametric study. Here, we study atmospheric parameters like stratification and depth of the supersaturated layer and processes which may affect the contrail evolution. We consider contrails in various radiation scenarios herein defined by the season, time of day and the presence of lower-level cloudiness which controls the radiance incident on the contrail layer. Under suitable conditions, controlled by the radiation scenario and stratification, radiative heating lifts the contrail-cirrus and prolongs its lifetime. The potential of contrail-driven secondary nucleation is investigated. We consider homogeneous nucleation and heterogeneous nucleation of preactivated soot cores released from sublimated contrail ice crystals. In our model the contrail dynamics triggered by radiative heating does not suffice to force homogeneous freezing of ambient liquid aerosol particles. Furthermore, our model results suggest that heterogeneous nucleation of preactivated soot cores is unimportant. Contrail evolution is not controlled by the depth of the supersaturated layer as long as it exceeds roughly 500 m. Deep fallstreaks however need thicker layers. A variation of the initial ice crystal number is effective during the whole evolution of a contrail. A cut of the soot particle emission by two orders of magnitude can reduce the contrail timescale by one hour and the optical thickness by a factor of 5. Hence future engines with lower soot particle emissions could potentially lead to a reduction of the climate impact of aviation.

  17. Reversible devitrification in amorphous As2 Se3 under pressure

    DEFF Research Database (Denmark)

    Ahmad, Azkar Saeed; Lou, Hong Bo; Lin, Chuan Long

    2016-01-01

    In pressure-induced reversible structural transitions, the term "reversible" refers to the recovery of the virgin structure in a material upon complete decompression. Pressure-induced amorphous-to-crystalline transitions have been claimed to be reversible, but evidence that amorphous material rec...

  18. Investigation of the amorphous to crystalline phase transition of chemical solution deposited Pb(Zr30Ti70)O3 thin films by soft x-ray absorption and soft x-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schneller, T.; Schneller, T.; Kohlstedt, H.; Petraru, A.; Waser, R.; Guo, J.; Denlinger, J.; Learmonth, T.; Glans, Per-Andres; Smith, K. E.

    2008-08-01

    Chemical solution deposited (CSD) complex oxide thin films attract considerable interest in various emerging fields as for example, fuel cells, ferroelectric random access memories or coated conductors. In the present paper the results of soft-x-ray spectroscopy between 100 eV and 500 eV on the amorphous to crystalline phase transition of ferroelectric PbZr{sub 0.3}Ti{sub 0.7}O{sub 3} (PZT) thin films are presented. Five CSD samples derived from the same wafer coated with a PZT film pyrolyzed at 350 C were heat treated at different temperatures between 400 C and 700 C. At first the sample were morphologically and electrically characterized. Subsequently the soft-x-ray absorption and emission experiments were performed at the undulator beamline 8.0 of the Advanced Light Source of the Lawrence Berkeley National Laboratory. Soft-x-ray absorption spectra were acquired for the Ti L{sub 2,3-}, O K-, and C K-edge thresholds by using simultaneously the total electron yield (TEY) and total fluorescence yield (TFY) detection methods. For two samples, annealed at 400 C and 700 C, respectively, the resonant inelastic soft-x-ray spectroscopy (RIXS) was applied for various excitation energies near the Ti L-, O K-edges. We observed clear evidence of a rutile phase at untypically low temperatures. This rutile phase transforms into the perovskite phase upon increasing annealing temperature. These results are discussed in the framework of current microscopic models of the PZT (111) texture selection.

  19. Development of a novel ultra cryo-milling technique for a poorly water-soluble drug using dry ice beads and liquid nitrogen.

    Science.gov (United States)

    Sugimoto, Shohei; Niwa, Toshiyuki; Nakanishi, Yasuo; Danjo, Kazumi

    2012-04-15

    A novel ultra cryo-milling micronization technique has been established using dry ice beads and liquid nitrogen (LN2). Drug particles were co-suspended with dry ice beads in LN2 and ground by stirring. Dry ice beads were prepared by storing dry ice pellets in LN2. A poorly water-soluble drug, phenytoin, was micronized more efficiently using either dry ice beads or zirconia beads compared to jet milling. Dry ice beads retained their granular shape without pulverizing and sublimating in LN2 as the milling operation progressed. Longer milling times produced smaller-sized phenytoin particles. The agitation speed for milling was optimized. Analysis of the glass transition temperature revealed that phenytoin particles co-ground with polyvinylpyrrolidone (PVP) by dry ice milling were crystalline, whereas a planetary ball-milled mixtures process with zirconia beads contained the amorphous form. The dissolution rate of phenytoin milled with PVP using dry ice beads or zirconia beads was significantly improved compared to jet-milled phenytoin or the physical mixture. Dry ice beads together with LN2 were spontaneously sublimated at ambient condition after milling. Thus, the yield was significantly improved by dry ice beads compared to zirconia beads since the loss arisen from adhering to the surface of dry ice beads could be completely avoided, resulting in about 85-90% of recovery. In addition, compounds milled using dry ice beads are free from abraded contaminating material originating from the beads and internal vessel wall. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Structural amorphous steels

    International Nuclear Information System (INIS)

    Lu, Z.P.; Liu, C.T.; Porter, W.D.; Thompson, J.R.

    2004-01-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist's dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed

  1. Infrared Spectra and Optical Constants of Elusive Amorphous Methane

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, Reggie L.

    2015-01-01

    New and accurate laboratory results are reported for amorphous methane (CH4) ice near 10 K for the study of the interstellar medium (ISM) and the outer Solar System. Near- and mid-infrared (IR) data, including spectra, band strengths, absorption coefficients, and optical constants, are presented for the first time for this seldom-studied amorphous solid. The apparent IR band strength near 1300 cm(exp -1) (7.69 micrometer) for amorphous CH4 is found to be about 33% higher than the value long used by IR astronomers to convert spectral observations of interstellar CH4 into CH4 abundances. Although CH4 is most likely to be found in an amorphous phase in the ISM, a comparison of results from various laboratory groups shows that the earlier CH4 band strength at 1300 cm(exp -1) (7.69 micrometer) was derived from IR spectra of ices that were either partially or entirely crystalline CH4 Applications of the new amorphous-CH4 results are discussed, and all optical constants are made available in electronic form.

  2. Depressurization amorphization of single-crystal boron carbide.

    Science.gov (United States)

    Yan, X Q; Tang, Z; Zhang, L; Guo, J J; Jin, C Q; Zhang, Y; Goto, T; McCauley, J W; Chen, M W

    2009-02-20

    We report depressurization amorphization of single-crystal boron carbide (B4C) investigated by in situ high-pressure Raman spectroscopy. It was found that localized amorphization of B4C takes place during unloading from high pressures, and nonhydrostatic stresses play a critical role in the high-pressure phase transition. First-principles molecular dynamics simulations reveal that the depressurization amorphization results from pressure-induced irreversible bending of C-B-C atomic chains cross-linking 12 atom icosahedra at the rhombohedral vertices.

  3. Transformation processes during annealing of Al-amorphous alloys

    International Nuclear Information System (INIS)

    Petrescu, N.; Petrescu, M.; Calin, M.; Jianu, A.D.; Fecioru, M.

    1993-01-01

    As the amorphous aluminum alloys represent the newest achievement in rapid solidification of Al-based high strength heat resistent materials, a study was undertaken on the amorphous alloys in the Al-RE-TM system, the rare-earth metal being a lanthanide mixture and the transition metal a Ni-Fe substitution in definite proportions. The decomposition on heating of the most highly alloyed amorphous alloy in the investigated series is characterized by differential thermal analysis, electron microscopy and X-ray diffraction. (orig.)

  4. Transformation processes during annealing of Al-amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Petrescu, N. (Polytechnic Inst. Bucharest, Faculty Materials Science and Engineering, Bucharest (Romania)); Petrescu, M. (Polytechnic Inst. Bucharest, Faculty Materials Science and Engineering, Bucharest (Romania)); Calin, M. (Polytechnic Inst. Bucharest, Faculty Materials Science and Engineering, Bucharest (Romania)); Jianu, A.D. (Polytechnic Inst. Bucharest, Faculty Materials Science and Engineering, Bucharest (Romania) IFTM-Bucharest (Romania)); Fecioru, M. (Polytechnic Inst. Bucharest, Faculty Materials Science and Engineering, Bucharest (Romania) DACIA Enterprise-Bucharest (Romania))

    1993-11-01

    As the amorphous aluminum alloys represent the newest achievement in rapid solidification of Al-based high strength heat resistent materials, a study was undertaken on the amorphous alloys in the Al-RE-TM system, the rare-earth metal being a lanthanide mixture and the transition metal a Ni-Fe substitution in definite proportions. The decomposition on heating of the most highly alloyed amorphous alloy in the investigated series is characterized by differential thermal analysis, electron microscopy and X-ray diffraction. (orig.).

  5. submitter Observation of viscosity transition in α-pinene secondary organic aerosol

    CERN Document Server

    Järvinen, Emma; Nichman, Leonid; Kristensen, Thomas B; Fuchs, Claudia; Hoyle, Christopher R; Höppel, Niko; Corbin, Joel C; Craven, Jill; Duplissy, Jonathan; Ehrhart, Sebastian; El Haddad, Imad; Frege, Carla; Gordon, Hamish; Jokinen, Tuija; Kallinger, Peter; Kirkby, Jasper; Kiselev, Alexei; Naumann, Karl-Heinz; Petäjä, Tuukka; Pinterich, Tamara; Prevot, Andre S H; Saathoff, Harald; Schiebel, Thea; Sengupta, Kamalika; Simon, Mario; Slowik, Jay G; Tröstl, Jasmin; Virtanen, Annele; Vochezer, Paul; Vogt, Steffen; Wagner, Andrea C; Wagner, Robert; Williamson, Christina; Winkler, Paul M; Yan, Chao; Baltensperger, Urs; Donahue, Neil M; Flagan, Rick C; Gallagher, Martin; Hansel, Armin; Kulmala, Markku; Stratmann, Frank; Worsnop, Douglas R; Möhler, Ottmar; Leisner, Thomas; Schnaiter, Martin

    2016-01-01

    Under certain conditions, secondary organic aerosol (SOA) particles can exist in the atmosphere in an amorphous solid or semi-solid state. To determine their relevance to processes such as ice nucleation or chemistry occurring within particles requires knowledge of the temperature and relative humidity (RH) range for SOA to exist in these states. In the Cosmics Leaving Outdoor Droplets (CLOUD) experiment at The European Organisation for Nuclear Research (CERN), we deployed a new in situ optical method to detect the viscous state of α-pinene SOA particles and measured their transition from the amorphous highly viscous state to states of lower viscosity. The method is based on the depolarising properties of laboratory-produced non-spherical SOA particles and their transformation to non-depolarising spherical particles at relative humidities near the deliquescence point. We found that particles formed and grown in the chamber developed an asymmetric shape through coagulation. A transition to a spherical shape w...

  6. The Effect of Volcanic Ash Composition on Ice Nucleation Affinity

    Science.gov (United States)

    Genareau, K. D.; Cloer, S.; Primm, K.; Woods, T.; Tolbert, M. A.

    2017-12-01

    Understanding the role that volcanic ash plays in ice nucleation is important for knowledge of lightning generation in both volcanic plumes and in clouds developing downwind from active volcanoes. Volcanic ash has long been suggested to influence heterogeneous ice nucleation following explosive eruptions, but determining precisely how composition and mineralogy affects ice nucleation affinity (INA) is poorly constrained. For the study presented here, volcanic ash samples with different compositions and mineral/glass contents were tested in both the deposition and immersion modes, following the methods presented in Schill et al. (2015). Bulk composition was determined with X-ray fluorescence (XRF), grain size distribution was determined with laser diffraction particle size analysis (LDPSA), and mineralogy was determined with X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results of the deposition-mode experiments reveal that there is no relationship between ice saturation ratios (Sice) and either mineralogy or bulk ash composition, as all samples have similar Sice ratios. In the immersion-mode experiments, frozen fractions were determined from -20 °C to -50 °C using three different amounts of ash (0.5, 1.0, and 2.0 wt% of slurry). Results from the immersion freezing reveal that the rhyolitic samples (73 wt% SiO2) nucleate ice at higher temperatures compared to the basaltic samples (49 wt% SiO2). There is no observed correlation between frozen fractions and mineral content of ash samples, but the two most efficient ice nuclei are rhyolites that contain the greatest proportion of amorphous glass (> 90 %), and are enriched in K2O relative to transition metals (MnO and TiO2), the latter of which show a negative correlation with frozen fraction. Higher ash abundance in water droplets increases the frozen fraction at all temperatures, indicating that ash amount plays the biggest role in ice nucleation. If volcanic ash can reach sufficient abundance (

  7. Effects of sea-ice and biogeochemical processes and storms on under-ice water fCO2 during the winter-spring transition in the high Arctic Ocean: Implications for sea-air CO2 fluxes

    Science.gov (United States)

    Fransson, Agneta; Chierici, Melissa; Skjelvan, Ingunn; Olsen, Are; Assmy, Philipp; Peterson, Algot K.; Spreen, Gunnar; Ward, Brian

    2017-07-01

    We performed measurements of carbon dioxide fugacity (fCO2) in the surface water under Arctic sea ice from January to June 2015 during the Norwegian young sea ICE (N-ICE2015) expedition. Over this period, the ship drifted with four different ice floes and covered the deep Nansen Basin, the slopes north of Svalbard, and the Yermak Plateau. This unique winter-to-spring data set includes the first winter-time under-ice water fCO2 observations in this region. The observed under-ice fCO2 ranged between 315 µatm in winter and 153 µatm in spring, hence was undersaturated relative to the atmospheric fCO2. Although the sea ice partly prevented direct CO2 exchange between ocean and atmosphere, frequently occurring leads and breakup of the ice sheet promoted sea-air CO2 fluxes. The CO2 sink varied between 0.3 and 86 mmol C m-2 d-1, depending strongly on the open-water fractions (OW) and storm events. The maximum sea-air CO2 fluxes occurred during storm events in February and June. In winter, the main drivers of the change in under-ice water fCO2 were dissolution of CaCO3 (ikaite) and vertical mixing. In June, in addition to these processes, primary production and sea-air CO2 fluxes were important. The cumulative loss due to CaCO3 dissolution of 0.7 mol C m-2 in the upper 10 m played a major role in sustaining the undersaturation of fCO2 during the entire study. The relative effects of the total fCO2 change due to CaCO3 dissolution was 38%, primary production 26%, vertical mixing 16%, sea-air CO2 fluxes 16%, and temperature and salinity insignificant.

  8. The Potential of Amorphous Solid Secondary Organic Aerosol to Form Mixed-Phase and Cirrus Clouds

    Science.gov (United States)

    Knopf, D. A.; Wang, B.; Lambe, A. T.; Massoli, P.; Onasch, T. B.; Davidovits, P.; Worsnop, D. R.

    2012-12-01

    Atmospheric ice formation by heterogeneous nucleation, which results in cirrus and mixed-phase cloud formation, is one of the least understood processes affecting the global radiation budget, the hydrological cycle, and water vapor distribution. It is commonly assumed that inorganic particles such as mineral dust and solid ammonium sulfate represent important atmospheric ice nuclei (IN). However, a growing body of evidence suggests that secondary organic aerosols (SOA), which are ubiquitous in the atmosphere, exist in a solid (glassy) state. This implies that SOA may also play a role in ice cloud formation by acting as IN, but has not previously been experimentally verified. Here, we report observations of water uptake and ice nucleation via condensation, immersion, and deposition modes initiated by amorphous SOA particles at temperatures from T = 200 - 250 K and relative humidity (RH) from subsaturation conditions up to water saturation. SOA particles with oxygen-to-carbon (O/C) ratios ranging from 0.3 to 1.0 are generated from gas-phase OH oxidation of naphthalene in a flow reactor. At T > 230 K, water uptake at subsaturation conditions is correlated with SOA oxidation level (O/C ratio). This initial water uptake is followed by a moisture-induced phase transition and subsequent immersion freezing. At T measurements of particle density, hygroscopicity, and bounced fraction, the latter indicating particle phase state. Above Tg, water uptake and immersion freezing is observed when the particles are liquid or semi-solid. Below Tg, deposition ice nucleation is observed when the particles are solid. The data show that particle phase and viscosity govern the particles' response to temperature and RH and provide a straightforward interpretation for the observed different heterogeneous ice nucleation pathways and water uptake by the laboratory-generated SOA and previously investigated fulvic acid surrogate particles and organic dominated field-collected particles. These

  9. Ice Caps and Ice Belts: The Effects of Obliquity on Ice-Albedo Feedback

    Science.gov (United States)

    Rose, Brian E. J.; Cronin, Timothy W.; Bitz, Cecilia M.

    2017-09-01

    Planetary obliquity determines the meridional distribution of the annual mean insolation. For obliquity exceeding 55°, the weakest insolation occurs at the equator. Stable partial snow and ice cover on such a planet would be in the form of a belt about the equator rather than polar caps. An analytical model of planetary climate is used to investigate the stability of ice caps and ice belts over the widest possible range of parameters. The model is a non-dimensional diffusive Energy Balance Model, representing insolation, heat transport, and ice-albedo feedback on a spherical planet. A complete analytical solution for any obliquity is given and validated against numerical solutions of a seasonal model in the “deep-water” regime of weak seasonal ice line migration. Multiple equilibria and unstable transitions between climate states (ice-free, Snowball, or ice cap/belt) are found over wide swaths of parameter space, including a “Large Ice-Belt Instability” and “Small Ice-Belt Instability” at high obliquity. The Snowball catastrophe is avoided at weak radiative forcing in two different scenarios: weak albedo feedback and inefficient heat transport (favoring stable partial ice cover), or efficient transport at high obliquity (favoring ice-free conditions). From speculative assumptions about distributions of planetary parameters, three-fourths to four-fifths of all planets with stable partial ice cover should be in the form of Earth-like polar caps.

  10. Autonomous Ice Mass Balance Buoys for Seasonal Sea Ice

    Science.gov (United States)

    Whitlock, J. D.; Planck, C.; Perovich, D. K.; Parno, J. T.; Elder, B. C.; Richter-Menge, J.; Polashenski, C. M.

    2017-12-01

    The ice mass-balance represents the integration of all surface and ocean heat fluxes and attributing the impact of these forcing fluxes on the ice cover can be accomplished by increasing temporal and spatial measurements. Mass balance information can be used to understand the ongoing changes in the Arctic sea ice cover and to improve predictions of future ice conditions. Thinner seasonal ice in the Arctic necessitates the deployment of Autonomous Ice Mass Balance buoys (IMB's) capable of long-term, in situ data collection in both ice and open ocean. Seasonal IMB's (SIMB's) are free floating IMB's that allow data collection in thick ice, thin ice, during times of transition, and even open water. The newest generation of SIMB aims to increase the number of reliable IMB's in the Arctic by leveraging inexpensive commercial-grade instrumentation when combined with specially developed monitoring hardware. Monitoring tasks are handled by a custom, expandable data logger that provides low-cost flexibility for integrating a large range of instrumentation. The SIMB features ultrasonic sensors for direct measurement of both snow depth and ice thickness and a digital temperature chain (DTC) for temperature measurements every 2cm through both snow and ice. Air temperature and pressure, along with GPS data complete the Arctic picture. Additionally, the new SIMB is more compact to maximize deployment opportunities from multiple types of platforms.

  11. On the origin of the ice ages

    NARCIS (Netherlands)

    Oerlemans, J.

    1984-01-01

    Ice sheet dynamics provide a possible explanation for the 100 kyr power in climatic records. Some numerical experiments presented here show that even the transition from an essentially ice-free earth to a glacial can be produced by a northern hemisphere ice-sheet model, provided that a

  12. Observed degradation stages of ring-mold craters (RMC): Geomorphic evidence for modification of ice-rich deposits in the transitions zone between Elysium and Utopia Basin, Mars

    DEFF Research Database (Denmark)

    Pedersen, Gro Birkefeldt Møller

    Deposits with pits, depressions and RMCs observed north of Elysium rise are interpreted as degraded mixtures of ice and clastic material (CCF, LVF and LDA). Degradation stages of RMCs are an important tool for mapping dusty, deflated ice-rich units....

  13. Amorphous Semiconductor Alloys

    Science.gov (United States)

    Madan, Arun

    1985-08-01

    Amorphous silicon (a-Si) based alloys have attracted a considerable amount of interest because of their applications in a wide variety of technologies. However, the major effort has concentrated on inexpensive photovoltaic device applications and has moved from a laboratory curiosity in the early 1970's to viable commercial applications in the 1980's. Impressive progress in this field has been made since the group at University of Dundee demonstrated that a low defect, device quality hydrogenated amorphous silicon (a-Si:H) 12 material could be produced using the radio frequency (r.f.) glow discharge in SiH4 gas ' and that the material could be doped n- and p-type.3 These results spurred a worldwide interest in a-Si based alloys, especially for photovoltaic devices which has resulted in a conversion efficiency approaching 12%. There is now a quest for even higher conversion efficiencies by using the multijunction cell approach. This necessitates the synthesis of new materials of differing bandgaps, which in principle amorphous semiconductors can achieve. In this article, we review some of this work and consider from a device and a materials point of view the hurdles which have to be overcome before this type of concept can be realized.

  14. Ice Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature, precipitation, atmospheric trace gases, and other aspects of climate and environment derived from ice cores drilled on glaciers and ice...

  15. Ancient ice

    Science.gov (United States)

    2009-11-01

    Simon Belt, Guillaume Massé and colleagues rammed their way through sheets of ice, spotting some polar bears on the way, in their attempt to reconstruct Arctic sea-ice records covering thousands of years.

  16. Compression Freezing Kinetics of Water to Ice VII

    Science.gov (United States)

    Gleason, A. E.; Bolme, C. A.; Galtier, E.; Lee, H. J.; Granados, E.; Dolan, D. H.; Seagle, C. T.; Ao, T.; Ali, S.; Lazicki, A.; Swift, D.; Celliers, P.; Mao, W. L.

    2017-07-01

    Time-resolved x-ray diffraction (XRD) of compressed liquid water shows transformation to ice VII in 6 nsec, revealing crystallization rather than amorphous solidification during compression freezing. Application of classical nucleation theory indicates heterogeneous nucleation and one-dimensional (e.g., needlelike) growth. These first XRD data demonstrate rapid growth kinetics of ice VII with implications for fundamental physics of diffusion-mediated crystallization and thermodynamic modeling of collision or impact events on ice-rich planetary bodies.

  17. Transmission and Trapping of Cold Electrons in Water Ice

    DEFF Research Database (Denmark)

    Balog, Richard; Cicman, Peter; Field, David

    2011-01-01

    Experiments are reported that show currents of low energy (“cold”) electrons pass unattenuated through crystalline ice at 135 K for energies between zero and 650 meV, up to the maximum studied film thickness of 430 bilayers, showing negligible apparent trapping. By contrast, both porous amorphous...... ice and compact crystalline ice at 40 K show efficient electron trapping. Ice at intermediate temperatures reveals metastable trapping that decays within a few hundred seconds at 110 K. Our results are the first to demonstrate full transmission of cold electrons in high temperature water ice...

  18. Ice Cream

    NARCIS (Netherlands)

    Scholten, E.

    2014-01-01

    Ice cream is a popular dessert, which owes its sensorial properties (mouth feel) to its complex microstructure. The microstructure is a result of the combination of the ingredients and the production process. Ice cream is produced by simultaneous freezing and shearing of the ice cream mix, which

  19. The Stabilization of Amorphous Zopiclone in an Amorphous Solid Dispersion.

    Science.gov (United States)

    Milne, Marnus; Liebenberg, Wilna; Aucamp, Marique

    2015-10-01

    Zopiclone is a poorly soluble psychotherapeutic agent. The aim of this study was to prepare and characterize an amorphous form of zopiclone as well as the characterization and performance of a stable amorphous solid dispersion. The amorphous form was prepared by the well-known method of quench-cooling of the melt. The solid dispersion was prepared by a solvent evaporation method of zopiclone, polyvinylpyrrolidone-25 (PVP-25), and methanol, followed by freeze-drying. The physico-chemical properties and stability of amorphous zopiclone and the solid dispersion was studied using differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), hot-stage microscopy (HSM), X-ray diffractometry (XRD), solubility, and dissolution studies. The zopiclone amorphous solid-state form was determined to be a fragile glass; it was concluded that the stability of the amorphous form is influenced by both temperature and water. Exposure of amorphous zopiclone to moisture results in rapid transformation of the amorphous form to the crystalline dihydrated form. In comparison, the amorphous solid dispersion proved to be more stable with increased aqueous solubility.

  20. Legal Ice?

    DEFF Research Database (Denmark)

    Strandsbjerg, Jeppe

    The idealised land|water dichotomy is most obviously challenged by ice when ‘land practice’ takes place on ice or when ‘maritime practice’ is obstructed by ice. Both instances represent disparity between the legal codification of space and its social practice. Logically, then, both instances call...... for alternative legal thought and practice; in the following I will emphasise the former and reflect upon the relationship between ice, law and politics. Prior to this workshop I had worked more on the relationship between cartography, geography and boundaries than specifically on ice. Listening to all...

  1. Interaction of ice sheets and climate on geological time scales

    NARCIS (Netherlands)

    Stap, L.B.

    2017-01-01

    Since the inception of the Antarctic ice sheet at the Eocene-Oligocene Transition (~34 Myr ago), land ice plays a crucial role in Earth’s climate. Through the ice-albedo and surface-height-temperature feedbacks, land ice variability strengthens atmospheric temperature changes induced by orbital and

  2. Description of Pyramimonas diskoicola sp. nov. and the importance of the flagellate Pyramimonas (Prasinophyceae) in Greenland sea ice during the winter–spring transition

    DEFF Research Database (Denmark)

    Harðardóttir, Sara; Lundholm, Nina; Moestrup, Øjvind

    2014-01-01

    . The biomass of Pyramimonas was more than a magnitude higher within sea ice compared to the surface water. The results illustrate that Pyramimonas from the ice is an important contributor to the plankton community prior to the spring bloom. An undescribed species, Pyramimonas diskoicola sp. nov., was found......, and were characterized by an uplifted quadrant in the center of the box scales, not seen at any other Pyramimonas species. The phylogenetic analyses indicated P. diskoicola to be closely related to other polar sea ice species of Pyramimonas......Pyramimonas Schmarda is a genus of unicellular green flagellates, recorded in marine water and sea ice samples. Pyramimonas is within the prey size range of the most important protozoan grazers in Disko Bay, West Greenland, where this study took place. Despite the potential ecological importance...

  3. The role of ice stream dynamics in deglaciation

    Science.gov (United States)

    Robel, Alexander A.; Tziperman, Eli

    2016-08-01

    Since the mid-Pleistocene transition, deglaciation has occurred only after ice sheets have grown large while experiencing several precession and obliquity cycles, indicating that large ice sheets are more sensitive to Milankovitch forcing than small ice sheets are. Observations and model simulations suggest that the development of ice streams in the Laurentide Ice Sheet played an as yet unknown role in deglaciations. In this study, we propose a mechanism by which ice streams may enhance deglaciation and render large ice sheets more sensitive to Milankovitch forcing. We use an idealized configuration of the Parallel Ice Sheet Model that permits the formation of ice streams. When the ice sheet is large and ice streams are sufficiently developed, an upward shift in equilibrium line altitude, commensurate with Milankovitch forcing, results in rapid deglaciation, while the same shift applied to an ice sheet without fully formed ice streams results in continued ice sheet growth or slower deglaciation. Rapid deglaciation in ice sheets with significant streaming behavior is caused by ice stream acceleration and the attendant enhancement of calving and surface melting at low elevations. Ice stream acceleration is ultimately the result of steepening of the ice surface and increased driving stresses in ice stream onset zones, which come about due to the dependence of surface mass balance on elevation. These ice sheet simulations match the broad features of geomorphological observations and add ice stream dynamics that are missing from previous model studies of deglaciation.

  4. Upper ocean stratification and sea ice growth rates during the summer-fall transition, as revealed by Elephant seal foraging in the Adélie Depression, East Antarctica

    Directory of Open Access Journals (Sweden)

    G. D. Williams

    2011-03-01

    Full Text Available Southern elephant seals (Mirounga leonina, fitted with Conductivity-Temperature-Depth sensors at Macquarie Island in January 2005 and 2010, collected unique oceanographic observations of the Adélie and George V Land continental shelf (140–148° E during the summer-fall transition (late February through April. This is a key region of dense shelf water formation from enhanced sea ice growth/brine rejection in the local coastal polynyas. In 2005, two seals occupied the continental shelf break near the grounded icebergs at the northern end of the Mertz Glacier Tongue for several weeks from the end of February. One of the seals migrated west to the Dibble Ice Tongue, apparently utilising the Antarctic Slope Front current near the continental shelf break. In 2010, immediately after that year's calving of the Mertz Glacier Tongue, two seals migrated to the same region but penetrated much further southwest across the Adélie Depression and sampled the Commonwealth Bay polynya from March through April. Here we present observations of the regional oceanography during the summer-fall transition, in particular (i the zonal distribution of modified Circumpolar Deep Water exchange across the shelf break, (ii the upper ocean stratification across the Adélie Depression, including alongside iceberg C-28 that calved from the Mertz Glacier and (iii the convective overturning of the deep remnant seasonal mixed layer in Commonwealth Bay from sea ice growth. Heat and freshwater budgets to 200–300 m are used to estimate the ocean heat content (400→50 MJ m−2, flux (50–200 W m−2 loss and sea ice growth rates (maximum of 7.5–12.5 cm day−1. Mean seal-derived sea ice growth rates were within the range of satellite-derived estimates from 1992–2007 using ERA-Interim data. We speculate that the continuous foraging by the seals within Commonwealth Bay during the summer/fall transition was due to favorable feeding

  5. Neutron diffraction study of the interaction of iron with amorphous fullerite

    Science.gov (United States)

    Borisova, P. A.; Agafonov, S. S.; Blanter, M. S.; Somenkov, V. A.

    2014-01-01

    The amorphous fullerite C60 has been prepared by mechanical activation (grinding in a ball mill), and its interaction with iron during sintering of powders with 0-95 at % Fe has been studied. After sintering in the range 800-1200°C under a pressure of 70 MPa, the samples have nonequilibrium structures different from the structures of both annealed and quenched steels. In this case, the carbon phase, i.e., amorphous fullerite, undergoes a polyamorphous transition to amorphous graphite. It has also been shown that the interaction of amorphous fullerite with iron is weaker compared to crystalline fullerite or crystalline graphite.

  6. Water migration mechanisms in amorphous powder material and related agglomeration

    NARCIS (Netherlands)

    Renzetti, S.; Voogt, J.A.; Oliver, L.; Meinders, M.B.J.

    2012-01-01

    The agglomeration phenomenon of amorphous particulate material is a major problem in the food industry. Currently, the glass transition temperature (Tg) is used as a fundamental parameter to describe and control agglomeration. Models are available that describe the kinetics of the agglomeration

  7. Structure of amorphous sulfur

    CSIR Research Space (South Africa)

    Eichinger, BE

    2001-06-01

    Full Text Available -transition is best described as a gelation transition. The geometry of the tetravalent S atom is trigonal bipyramidal, with a lone pair occupying one of the three equatorial sites; it lies in a local energy minimum about 31 kcal/mol above the normal divalent state...

  8. Observation of viscosity transition in α-pinene secondary organic aerosol

    Directory of Open Access Journals (Sweden)

    E. Järvinen

    2016-04-01

    Full Text Available Under certain conditions, secondary organic aerosol (SOA particles can exist in the atmosphere in an amorphous solid or semi-solid state. To determine their relevance to processes such as ice nucleation or chemistry occurring within particles requires knowledge of the temperature and relative humidity (RH range for SOA to exist in these states. In the Cosmics Leaving Outdoor Droplets (CLOUD experiment at The European Organisation for Nuclear Research (CERN, we deployed a new in situ optical method to detect the viscous state of α-pinene SOA particles and measured their transition from the amorphous highly viscous state to states of lower viscosity. The method is based on the depolarising properties of laboratory-produced non-spherical SOA particles and their transformation to non-depolarising spherical particles at relative humidities near the deliquescence point. We found that particles formed and grown in the chamber developed an asymmetric shape through coagulation. A transition to a spherical shape was observed as the RH was increased to between 35 % at −10 °C and 80 % at −38 °C, confirming previous calculations of the viscosity-transition conditions. Consequently, α-pinene SOA particles exist in a viscous state over a wide range of ambient conditions, including the cirrus region of the free troposphere. This has implications for the physical, chemical, and ice-nucleation properties of SOA and SOA-coated particles in the atmosphere.

  9. Sea Ice

    Science.gov (United States)

    Perovich, D.; Gerland, S.; Hendricks, S.; Meier, Walter N.; Nicolaus, M.; Richter-Menge, J.; Tschudi, M.

    2013-01-01

    During 2013, Arctic sea ice extent remained well below normal, but the September 2013 minimum extent was substantially higher than the record-breaking minimum in 2012. Nonetheless, the minimum was still much lower than normal and the long-term trend Arctic September extent is -13.7 per decade relative to the 1981-2010 average. The less extreme conditions this year compared to 2012 were due to cooler temperatures and wind patterns that favored retention of ice through the summer. Sea ice thickness and volume remained near record-low levels, though indications are of slightly thicker ice compared to the record low of 2012.

  10. AC susceptibility in amorphous and nanocrystalline Fe-Zr-B alloys

    International Nuclear Information System (INIS)

    Slawska-Waniewska, A.; Pont, M.; Lazaro, F.J.; Garcia, J.L.; Nowicki, P.; Munoz, J.S.

    1995-01-01

    AC susceptibility measurements show that in Fe 89 Zr 7 B 4 amorphous material the ferromagnetic-reentrant spin-glass transition follows the paramagnetic-ferromagnetic transition as the temperature is lowered, whereas the behavior of nanocrystalline sample is characteristic of ferromagnetic material. The results are interpreted in terms of a non-collinear magnetic structure in amorphous alloy which changes considerably after crystallization. ((orig.))

  11. Structure and Properties of Amorphous Transparent Conducting Oxides

    Science.gov (United States)

    Medvedeva, Julia

    Driven by technological appeal, the research area of amorphous oxide semiconductors has grown tremendously since the first demonstration of the unique properties of amorphous indium oxide more than a decade ago. Today, amorphous oxides, such as a-ITO, a-IZO, a-IGZO, or a-ZITO, exhibit the optical, electrical, thermal, and mechanical properties that are comparable or even superior to those possessed by their crystalline counterparts, pushing the latter out of the market. Large-area uniformity, low-cost low-temperature deposition, high carrier mobility, optical transparency, and mechanical flexibility make these materials appealing for next-generation thin-film electronics. Yet, the structural variations associated with crystalline-to-amorphous transition as well as their role in carrier generation and transport properties of these oxides are far from being understood. Although amorphous oxides lack grain boundaries, factors like (i) size and distribution of nanocrystalline inclusions; (ii) spatial distribution and clustering of incorporated cations in multicomponent oxides; (iii) formation of trap defects; and (iv) piezoelectric effects associated with internal strains, will contribute to electron scattering. In this work, ab-initio molecular dynamics (MD) and accurate density-functional approaches are employed to understand how the properties of amorphous ternary and quaternary oxides depend on quench rates, cation compositions, and oxygen stoichiometries. The MD results, combined with thorough experimental characterization, reveal that interplay between the local and long-range structural preferences of the constituent oxides gives rise to a complex composition-dependent structural behavior in the amorphous oxides. The proposed network models of metal-oxygen polyhedra help explain the observed intriguing electrical and optical properties in In-based oxides and suggest ways to broaden the phase space of amorphous oxide semiconductors with tunable properties. The

  12. Amorphous Gyroscopic Topological Metamaterials

    Science.gov (United States)

    Mitchell, Noah P.; Nash, Lisa M.; Hexner, Daniel; Turner, Ari M.; Irvine, William T. M.

    Mechanical topological metamaterials display striking mechanical responses, such as unidirectional surface modes that are impervious to disorder. This behavior arises from the topology of their vibrational spectra. All examples of topological metamaterials to date are finely-tuned structures such as crystalline lattices or jammed packings. Here, we present robust recipes for building amorphous topological metamaterials with arbitrary underlying structure and no long-range order. Using interacting gyroscopes as a model system, we demonstrate through experiment, simulation, and theoretical methods that the local geometry and interactions are sufficient to generate topological mobility gaps, allowing for spatially-resolved, real-space calculations of the Chern number. The robustness of our approach enables the design and self-assembly of non-crystalline materials with protected, unidirectional waveguides on the micro and macro scale.

  13. Small-angle neutron scattering study of micropore collapse in amorphous solid water.

    Science.gov (United States)

    Mitterdorfer, Christian; Bauer, Marion; Youngs, Tristan G A; Bowron, Daniel T; Hill, Catherine R; Fraser, Helen J; Finney, John L; Loerting, Thomas

    2014-08-14

    Vapor-deposited amorphous solid water (ASW) is the most abundant solid molecular material in space, where it plays a direct role in both the formation of more complex chemical species and the aggregation of icy materials in the earliest stages of planet formation. Nevertheless, some of its low temperature physics such as the collapse of the micropore network upon heating are still far from being understood. Here we characterize the nature of the micropores and their collapse using neutron scattering of gram-quantities of D2O-ASW of internal surface areas up to 230 ± 10 m(2) g(-1) prepared at 77 K. The model-free interpretation of the small-angle scattering data suggests micropores, which remain stable up to 120-140 K and then experience a sudden collapse. The exact onset temperature to pore collapse depends on the type of flow conditions employed in the preparation of ASW and, thus, the specific surface area of the initial deposit, whereas the onset of crystallization to cubic ice is unaffected by the flow conditions. Analysis of the small-angle neutron scattering signal using the Guinier-Porod model suggests that a sudden transition from three-dimensional cylindrical pores with 15 Å radius of gyration to two-dimensional lamellae is the mechanism underlying the pore collapse. The rather high temperature of about 120-140 K of micropore collapse and the 3D-to-2D type of the transition unraveled in this study have implications for our understanding of the processing and evolution of ices in various astrophysical environments.

  14. DETECTIONS OF TRANS-NEPTUNIAN ICE IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    McClure, M. K.; Calvet, N.; Bergin, E.; Cleeves, L. I. [Department of Astronomy, The University of Michigan, 500 Church Street, 830 Dennison Bldg., Ann Arbor, MI 48109 (United States); Espaillat, C. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); D' Alessio, P. [Centro de Radioastronomía y Astrofísica, Universidad NacionalAUtónoma de México, 58089 Morelia, Michoacán (Mexico); Watson, D. M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Manoj, P. [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Sargent, B., E-mail: melisma@umich.edu, E-mail: ncalvet@umich.edu, E-mail: ebergin@umich.edu, E-mail: cleeves@umich.edu, E-mail: cce@bu.edu, E-mail: p.dalessio@crya.unam.mx, E-mail: dmw@pas.rochester.edu, E-mail: manoj.puravankara@tifr.res.in, E-mail: baspci@rit.edu [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2015-02-01

    We present Herschel Space Observatory PACS spectra of T Tauri stars, in which we detect amorphous and crystalline water ice features. Using irradiated accretion disk models, we determine the disk structure and ice abundance in each of the systems. Combining a model-independent comparison of the ice feature strength and disk size with a detailed analysis of the model ice location, we estimate that the ice emitting region is at disk radii >30 AU, consistent with a proto-Kuiper belt. Vertically, the ice emits most below the photodesorption zone, consistent with Herschel observations of cold water vapor. The presence of crystallized water ice at a disk location (1) colder than its crystallization temperature and (2) where it should have been re-amorphized in ∼1 Myr suggests that localized generation is occurring; the most likely cause appears to be micrometeorite impact or planetesimal collisions. Based on simple tests with UV models and different ice distributions, we suggest that the SED shape from 20 to 50 μm may probe the location of the water ice snowline in the disk upper layers. This project represents one of the first extra-solar probes of the spatial structure of the cometary ice reservoir thought to deliver water to terrestrial planets.

  15. Properties of amorphous FeCoB alloy particles (abstract)

    DEFF Research Database (Denmark)

    Charles, S. W.; Wells, S.; Meagher, A.

    1988-01-01

    Amorphous and crystalline alloy particles (0.05–0.5 nm) of FexCoyBz in which the ratio x:y ranges from 0 to 1 have been prepared by the borohydride reduction of iron and cobalt salts in aqueous solution. The structure of the particles has been studied using Mössbauer spectroscopy and x......-ray diffraction. Magnetic measurements of the saturation magnetization, coercivity, and remanence of the particles have been measured. The transition from the amorphous-to-crystalline state has been studied using differential scanning calorimetry (DSC) and thermomagnetometry up to a temperature of 450 °C (see Fig...

  16. Helicopter Icing Review.

    Science.gov (United States)

    1980-09-01

    on the ground or could be injurious to per- sons on the ground. Ice on the rotor hub and fuselage may become critical in a flight transitioning from...0 uE -4- c -) U. c-j -- 0- CL) - lCA AC) O C-)) 41 4J 4- -C -I Q -. x 0 s- =U. A S (U C C -- () : -) -_ __ _r__ . -( ___ 4)a -)r ’ ) - 0 n - 1 3092

  17. Ice Surfaces

    Science.gov (United States)

    Shultz, Mary Jane

    2017-05-01

    Ice is a fundamental solid with important environmental, biological, geological, and extraterrestrial impact. The stable form of ice at atmospheric pressure is hexagonal ice, Ih. Despite its prevalence, Ih remains an enigmatic solid, in part due to challenges in preparing samples for fundamental studies. Surfaces of ice present even greater challenges. Recently developed methods for preparation of large single-crystal samples make it possible to reproducibly prepare any chosen face to address numerous fundamental questions. This review describes preparation methods along with results that firmly establish the connection between the macroscopic structure (observed in snowflakes, microcrystallites, or etch pits) and the molecular-level configuration (detected with X-ray or electron scattering techniques). Selected results of probing interactions at the ice surface, including growth from the melt, surface vibrations, and characterization of the quasi-liquid layer, are discussed.

  18. A rapid transition from ice covered CO2–rich waters to a biologically mediated CO2 sink in the eastern Weddell Gyre

    Directory of Open Access Journals (Sweden)

    W. Geibert

    2008-09-01

    Full Text Available Circumpolar Deep Water (CDW, locally called Warm Deep Water (WDW, enters the Weddell Gyre in the southeast, roughly at 25° E to 30° E. In December 2002 and January 2003 we studied the effect of entrainment of WDW on the fugacity of carbon dioxide (fCO2 and dissolved inorganic carbon (DIC in Weddell Sea surface waters. Ultimately the fCO2 difference across the sea surface drives air-sea fluxes of CO2. Deep CTD sections and surface transects of fCO2 were made along the Prime Meridian, a northwest-southeast section, and along 17° E to 23° E during cruise ANT XX/2 on FS Polarstern. Upward movement and entrainment of WDW into the winter mixed layer had significantly increased DIC and fCO2 below the sea ice along 0° W and 17° E to 23° E, notably in the southern Weddell Gyre. Nonetheless, the ice cover largely prevented outgassing of CO2 to the atmosphere. During and upon melting of the ice, biological activity rapidly reduced surface water fCO2 by up to 100 μatm, thus creating a sink for atmospheric CO2. Despite the tendency of the surfacing WDW to cause CO2 supersaturation, the Weddell Gyre may well be a CO2 sink on an annual basis due to this effective mechanism involving ice cover and ensuing biological fCO2 reduction. Dissolution of calcium carbonate (CaCO3 in melting sea ice may play a minor role in this rapid reduction of surface water fCO2.

  19. Search for the First-Order Liquid-to-Liquid Phase Transition in Low-Temperature Confined Water by Neutron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Sow-Hsin [Massachusetts Institute of Technology (MIT); Wang, Zhe [Massachusetts Institute of Technology (MIT); Kolesnikov, Alexander I [ORNL; Zhang, Yang [ORNL; Liu, Kao-Hsiang [National Taiwan University

    2013-01-01

    It has been conjectured that a 1st order liquid-to-liquid (L-L) phase transition (LLPT) between high density liquid (HDL) and low density liquid (LDL) in supercooled water may exist, as a thermodynamic extension to the liquid phase of the 1st order transition established between the two bulk solid phases of amorphous ice, the high density amorphous ice (HDA) and the low density amorphous ice (LDA). In this paper, we first recall our previous attempts to establish the existence of the 1st order L-L phase transition through the use of two neutron scattering techniques: a constant Q elastic diffraction study of isobaric temperature scan of the D2O density, namely, the equation of state (EOS) measurements. A pronounced density hysteresis phenomenon in the temperature scan of the density above P = 1500 bar is observed which gives a plausible evidence of crossing the 1st order L-L phase transition line above this pressure; an incoherent quasi-elastic scattering measurements of temperature-dependence of the alpha-relaxation time of H2O at a series of pressures, namely, the study of the Fragile-to-Strong dynamic crossover (FSC) phenomenon as a function of pressure which we interpreted as the results of crossing the Widom line in the one-phase region. In this new experiment, we used incoherent inelastic neutron scattering (INS) to measure the density of states (DOS) of H atoms in H2O molecules in confined water as function of temperature and pressure, through which we may be able to follow the emergence of the LDL and HDL phases at supercooled temperature and high pressures. We here report for the first time the differences of librational and translational DOSs between the hypothetical HDL and LDL phases, which are similar to the corresponding differences between the well-established HDA and LDA ices. This is plausible evidence that the HDL and LDL phases are the thermodynamic extensions of the corresponding amorphous solid water HDA and LDA ices.

  20. The vapor pressure over nano-crystalline ice

    Directory of Open Access Journals (Sweden)

    M. Nachbar

    2018-03-01

    Full Text Available The crystallization of amorphous solid water (ASW is known to form nano-crystalline ice. The influence of the nanoscale crystallite size on physical properties like the vapor pressure is relevant for processes in which the crystallization of amorphous ices occurs, e.g., in interstellar ices or cold ice cloud formation in planetary atmospheres, but up to now is not well understood. Here, we present laboratory measurements on the saturation vapor pressure over ice crystallized from ASW between 135 and 190 K. Below 160 K, where the crystallization of ASW is known to form nano-crystalline ice, we obtain a saturation vapor pressure that is 100 to 200 % higher compared to stable hexagonal ice. This elevated vapor pressure is in striking contrast to the vapor pressure of stacking disordered ice which is expected to be the prevailing ice polymorph at these temperatures with a vapor pressure at most 18 % higher than that of hexagonal ice. This apparent discrepancy can be reconciled by assuming that nanoscale crystallites form in the crystallization process of ASW. The high curvature of the nano-crystallites results in a vapor pressure increase that can be described by the Kelvin equation. Our measurements are consistent with the assumption that ASW is the first solid form of ice deposited from the vapor phase at temperatures up to 160 K. Nano-crystalline ice with a mean diameter between 7 and 19 nm forms thereafter by crystallization within the ASW matrix. The estimated crystal sizes are in agreement with reported crystal size measurements and remain stable for hours below 160 K. Thus, this ice polymorph may be regarded as an independent phase for many atmospheric processes below 160 K and we parameterize its vapor pressure using a constant Gibbs free energy difference of 982  ±  182 J mol−1 relative to hexagonal ice.

  1. Features of exoelectron emission in amorphous metallic alloys

    CERN Document Server

    Veksler, A S; Morozov, I L; Semenov, A L

    2001-01-01

    The peculiarities of the photothermostimulated exoelectron emission in amorphous metallic alloys of the Fe sub 6 sub 4 Co sub 2 sub 1 B sub 1 sub 5 composition are studied. It is established that the temperature dependences of the exoelectron emission spectrum adequately reflect the two-stage character of the amorphous alloy transition into the crystalline state. The exoelectron emission spectrum is sensitive to the variations in the modes of the studied sample thermal treatment. The thermal treatment of the amorphous metallic alloy leads to growth in the intensity of the exoelectrons yield. The highest growth in the intensify of the exoelectron emission was observed in the alloys at the initial stage of their crystallization

  2. Structural morphology of amorphous conducting carbon film

    Indian Academy of Sciences (India)

    Unknown

    been found to be having a lot of technological applica- tions. The properties of these amorphous carbons sensi- tively depend on the relative concentration of sp3 and sp2 hybridized carbons. The resulting amorphous materials are variously referred to as tetrahedral amorphous carbon. (ta-C), amorphous carbon (a-C), ...

  3. Amorphous drugs and dosage forms

    DEFF Research Database (Denmark)

    Grohganz, Holger; Löbmann, K.; Priemel, P.

    2013-01-01

    The transformation to an amorphous form is one of the most promising approaches to address the low solubility of drug compounds, the latter being an increasing challenge in the development of new drug candidates. However, amorphous forms are high energy solids and tend to recry stallize. New...... formulation principles are needed to ensure the stability of amorphous drug forms. The formation of solid dispersions is still the most investigated approach, but additional approaches are desirable to overcome the shortcomings of solid dispersions. Spatial separation by either coating or the use of micro......-containers has shown potential to prevent or delay recrystallization. Another recent approach is the formation of co-amorphous mixtures between either two drugs or one drug and one low molecular weight excipient. Molecular interactions between the two molecules provide an energy barrier that has to be overcome...

  4. Legal Ice?

    DEFF Research Database (Denmark)

    Strandsbjerg, Jeppe

    for alternative legal thought and practice; in the following I will emphasise the former and reflect upon the relationship between ice, law and politics. Prior to this workshop I had worked more on the relationship between cartography, geography and boundaries than specifically on ice. Listening to all...... the interesting conversations during the workshop, however, made me think that much of the concern with the Polar Regions in general, and the presence of ice in particular, reverberates around the question of how to accommodate various geographical presences and practices within the regulatory framework that we...

  5. Anomalous magnetoresistance in amorphous metals

    International Nuclear Information System (INIS)

    Kuz'menko, V.M.; Vladychkin, A.N.; Mel'nikov, V.I.; Sudovtsev, A.I.

    1984-01-01

    The magnetoresistance of amorphous Bi, Ca, V and Yb films is investigated in fields up to 4 T at low temperatures. For all metals the magnetoresistance is positive, sharply decreases with growth of temperature and depends anomalously on the magnetic field strength. For amorphous superconductors the results agree satisfactorily with the theory of anomalous magnetoresistance in which allowance is made for scattering of electrons by the superconducting fluctuations

  6. Prediction of heating rate controlled viscous flow activation energy during spark plasma sintering of amorphous alloy powders

    Science.gov (United States)

    Paul, Tanaji; Harimkar, Sandip P.

    2017-07-01

    The viscous flow behavior of Fe-based amorphous alloy powder during isochronal spark plasma sintering was analyzed under the integrated theoretical background of the Arrhenius and directional structural relaxation models. A relationship between viscous flow activation energy and heating rate was derived. An extension of the pertinent analysis to Ti-based amorphous alloys confirmed the broad applicability of such a relationship for predicting the activation energy for sintering below the glass transition temperature (T g) of the amorphous alloy powders.

  7. On the origin of the ice ages

    OpenAIRE

    Oerlemans, J.

    1984-01-01

    Ice sheet dynamics provide a possible explanation for the 100 kyr power in climatic records. Some numerical experiments presented here show that even the transition from an essentially ice-free earth to a glacial can be produced by a northern hemisphere ice-sheet model, provided that a slow general cooling on the northern hemisphere continents is imposed. Such a cooling could for example be the result of continental drift.

  8. Comprehensive modeling of ion-implant amorphization in silicon

    International Nuclear Information System (INIS)

    Mok, K.R.C.; Jaraiz, M.; Martin-Bragado, I.; Rubio, J.E.; Castrillo, P.; Pinacho, R.; Srinivasan, M.P.; Benistant, F.

    2005-01-01

    A physically based model has been developed to simulate the ion-implant induced damage accumulation up to amorphization in silicon. Based on damage structures known as amorphous pockets (AP), which are three-dimensional, irregularly shaped agglomerates of interstitials (I) and vacancies (V) surrounded by crystalline silicon, the model is able to reproduce a wide range of experimental observations of damage accumulation and amorphization with interdependent implantation parameters. Instead of recrystallizing the I's and V's instantaneously, the recrystallization rate of an AP containing nI and mV is a function of its effective size, defined as min(n, m), irrespective of its internal spatial configuration. The parameters used in the model were calibrated using the experimental silicon amorphous-crystalline transition temperature as a function of dose rate for C, Si, and Ge. The model is able to show the superlinear damage build-up with dose, the extent of amorphous layer and the superadditivity effect of polyatomic ions

  9. Generalized melting criterion for beam-induced amorphization

    International Nuclear Information System (INIS)

    Lam, N. Q.; Okamoto, Paul R.

    1993-09-01

    Recent studies have shown that the mean-square static atomic displacements provide a generic measure of the enthalpy stored in the lattice in the form of chemical and topological disorder, and that the effect of the displacements on the softening of shear elastic constants is identical to that of heating. This finding lends support to a generalized form of the Lindemann phenomenological melting criterion and leads to a natural interpretion of crystalline-to-amorphous transformations as defect-induced melting of metastable crystals driven beyond a critical state of disorder where the melting temperature falls below the glass-transition temperature. Application of the generalized Lindemann criterion to both the crystalline and amorphous phases indicates that the enthalpies of the two phases become identical when their shear moduli become equal. This thermo-elastic rule provides a basis for predicting the relative susceptibility of compounds to amorphization in terms of their elastic properties as measured by Debye temperatures. The present approach can explain many of the basic findings on beam-induced amorphization of intermetallic compounds as well as amorphous phase formation associated with ion implantation, ion-beam mixing and other solid-state processes

  10. Ice VII from aqueous salt solutions: From a glass to a crystal with broken H-bonds

    Science.gov (United States)

    Klotz, S.; Komatsu, K.; Pietrucci, F.; Kagi, H.; Ludl, A.-A.; Machida, S.; Hattori, T.; Sano-Furukawa, A.; Bove, L. E.

    2016-08-01

    It has been known for decades that certain aqueous salt solutions of LiCl and LiBr readily form glasses when cooled to below ≈160 K. This fact has recently been exploited to produce a « salty » high-pressure ice form: When the glass is compressed at low temperatures to pressures higher than 4 GPa and subsequently warmed, it crystallizes into ice VII with the ionic species trapped inside the ice lattice. Here we report the extreme limit of salt incorporation into ice VII, using high pressure neutron diffraction and molecular dynamics simulations. We show that high-pressure crystallisation of aqueous solutions of LiCl•RH2O and LiBr•RH2O with R = 5.6 leads to solids with strongly expanded volume, a destruction of the hydrogen-bond network with an isotropic distribution of water-dipole moments, as well as a crystal-to-amorphous transition on decompression. This highly unusual behaviour constitutes an interesting pathway from a glass to a crystal where translational periodicity is restored but the rotational degrees of freedom remaining completely random.

  11. Hydrogenated amorphous silicon photonics

    Science.gov (United States)

    Narayanan, Karthik

    2011-12-01

    Silicon Photonics is quickly proving to be a suitable interconnect technology for meeting the future goals of on-chip bandwidth and low power requirements. However, it is not clear how silicon photonics will be integrated into CMOS chips, particularly microprocessors. The issue of integrating photonic circuits into electronic IC fabrication processes to achieve maximum flexibility and minimum complexity and cost is an important one. In order to minimize usage of chip real estate, it will be advantageous to integrate in three-dimensions. Hydrogenated amorphous silicon (a-Si:H) is emerging as a promising material for the 3-D integration of silicon photonics for on-chip optical interconnects. In addition, a-Si:H film can be deposited using CMOS compatible low temperature plasma-enhanced chemical vapor deposition (PECVD) process at any point in the fabrication process allowing maximum flexibility and minimal complexity. In this thesis, we demonstrate a-Si:H as a high performance alternate platform to crystalline silicon, enabling backend integration of optical interconnects in a hybrid photonic-electronic network-on-chip architecture. High quality passive devices are fabricated on a low-loss a-Si:H platform enabling wavelength division multiplexing schemes. We demonstrate a broadband all-optical modulation scheme based on free-carrier absorption effect, which can enable compact electro-optic modulators in a-Si:H. Furthermore, we comprehensively characterize the optical nonlinearities in a-Si:H and observe that a-Si:H exhibits enhanced nonlinearities as compared to crystalline silicon. Based on the enhanced nonlinearities, we demonstrate low-power four-wave mixing in a-Si:H waveguides enabling high speed all-optical devices in an a-Si:H platform. Finally, we demonstrate a novel data encoding scheme using thermal and all-optical tuning of silicon waveguides, increasing the spectral efficiency in an interconnect link.

  12. Melting ice, growing trade?

    Directory of Open Access Journals (Sweden)

    Sami Bensassi

    2016-05-01

    Full Text Available Abstract Large reductions in Arctic sea ice, most notably in summer, coupled with growing interest in Arctic shipping and resource exploitation have renewed interest in the economic potential of the Northern Sea Route (NSR. Two key constraints on the future viability of the NSR pertain to bathymetry and the future evolution of the sea ice cover. Climate model projections of future sea ice conditions throughout the rest of the century suggest that even under the most “aggressive” emission scenario, increases in international trade between Europe and Asia will be very low. The large inter-annual variability of weather and sea ice conditions in the route, the Russian toll imposed for transiting the NSR, together with high insurance costs and scarce loading/unloading opportunities, limit the use of the NSR. We show that even if these obstacles are removed, the duration of the opening of the NSR over the course of the century is not long enough to offer a consequent boost to international trade at the macroeconomic level.

  13. Relating C-band Microwave and Optical Satellite Observations as A Function of Snow Thickness on First-Year Sea Ice during the Winter to Summer Transition

    Science.gov (United States)

    Zheng, J.; Yackel, J.

    2015-12-01

    The Arctic sea ice and its snow cover have a direct impact on both the Arctic and global climate system through their ability to moderate heat exchange across the ocean-sea ice-atmosphere (OSA) interface. Snow cover plays a key role in the OSA interface radiation and energy exchange, as it controls the growth and decay of first-year sea ice (FYI). However, meteoric accumulation and redistribution of snow on FYI is highly stochastic over space and time, which makes it poorly understood. Previous studies have estimated local-scale snow thickness distributions using in-situ technique and modelling but it is spatially limited and challenging due to logistic difficulties. Moreover, snow albedo is also critical for determining the surface energy balance of the OSA during the critical summer ablation season. Even then, due to persistent and widespread cloud cover in the Arctic at various spatio-temporal scales, it is difficult and unreliable to remotely measure albedo of snow cover on FYI in the optical spectrum. Previous studies demonstrate that only large-scale sea ice albedo was successfully estimated using optical-satellite sensors. However, space-borne microwave sensors, with their capability of all-weather and 24-hour imaging, can provide enhanced information about snow cover on FYI. Daily spaceborne C-band scatterometer data (ASCAT) and MODIS data are used to investigate the the seasonal co-evolution of the microwave backscatter coefficient and optical albedo as a function of snow thickness on smooth FYI. The research focuses on snow-covered FYI near Cambridge Bay, Nunavut (Fig.1) during the winter to advanced-melt period (April-June, 2014). The ACSAT time series (Fig.2) show distinct increase in scattering at melt onset indicating the first occurrence of melt water in the snow cover. The corresponding albedo exhibits no decrease at this stage. We show how the standard deviation of ASCAT backscatter on FYI during winter can be used as a proxy for surface roughness

  14. Performance comparison between crystalline and co-amorphous salts of indomethacin-lysine

    DEFF Research Database (Denmark)

    Kasten, Georgia; Nouri, Khatera; Grohganz, Holger

    2017-01-01

    forms of salts of indomethacin (IND) with the amino acid lysine (LYS), allowing the direct comparison of their solid-state properties to their in vitro performance. X-ray powder diffraction and Fourier-transformed infrared spectroscopy showed that DBM experiments led to the formation of a fully co......-amorphous salt, while LAG resulted in a crystalline salt. Differential scanning calorimetry showed that the samples prepared by DBM had a single glass transition temperature (Tg) of approx. 100°C for the co-amorphous salt, while a new melting point (223°C) was obtained for the crystalline salt prepared by LAG....... Intrinsic dissolution and powder dissolution studies demonstrated an increased dissolution rate of the drug in the co-amorphous salt compared to pure amorphous IND and also the crystalline drug-LYS salt. Furthermore, the co-amorphous IND-LYS salt presented long term physical stability in dry conditions...

  15. The effect of surfactants on the dissolution behavior of amorphous formulations

    DEFF Research Database (Denmark)

    Mah, Pei T; Peltonen, Leena; Novakovic, Dunja

    2016-01-01

    The optimal design of oral amorphous formulations benefits from the use of excipients to maintain drug supersaturation and thus ensures adequate absorption during intestinal transit. The use of surfactants for the maintenance of supersaturation in amorphous formulations has not been investigated...... in detail. The main aim of this study was to investigate the effect of surfactant on the dissolution behavior of neat amorphous drug and binary polymer based solid dispersion. Indomethacin was used as the model drug and the surfactants studied were polysorbate 80 and poloxamer 407. The presence...... of surfactants (alone or in combination with polymers) in the buffer was detrimental to the dissolution of neat amorphous indomethacin, suggesting that the surfactants promoted the crystallization of neat amorphous indomethacin. In contrast, the presence of surfactants (0.01% w/v) in the buffer resulted...

  16. Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris.

    Science.gov (United States)

    Stickley, Catherine E; St John, Kristen; Koç, Nalân; Jordan, Richard W; Passchier, Sandra; Pearce, Richard B; Kearns, Lance E

    2009-07-16

    Oceanic sediments from long cores drilled on the Lomonosov ridge, in the central Arctic, contain ice-rafted debris (IRD) back to the middle Eocene epoch, prompting recent suggestions that ice appeared in the Arctic about 46 million years (Myr) ago. However, because IRD can be transported by icebergs (derived from land-based ice) and also by sea ice, IRD records are restricted to providing a history of general ice-rafting only. It is critical to differentiate sea ice from glacial (land-based) ice as climate feedback mechanisms vary and global impacts differ between these systems: sea ice directly affects ocean-atmosphere exchanges, whereas land-based ice affects sea level and consequently ocean acidity. An earlier report assumed that sea ice was prevalent in the middle Eocene Arctic on the basis of IRD, and although somewhat preliminary supportive evidence exists, these data are neither comprehensive nor quantified. Here we show the presence of middle Eocene Arctic sea ice from an extraordinary abundance of a group of sea-ice-dependent fossil diatoms (Synedropsis spp.). Analysis of quartz grain textural characteristics further supports sea ice as the dominant transporter of IRD at this time. Together with new information on cosmopolitan diatoms and existing IRD records, our data strongly suggest a two-phase establishment of sea ice: initial episodic formation in marginal shelf areas approximately 47.5 Myr ago, followed approximately 0.5 Myr later by the onset of seasonally paced sea-ice formation in offshore areas of the central Arctic. Our data establish a 2-Myr record of sea ice, documenting the transition from a warm, ice-free environment to one dominated by winter sea ice at the start of the middle Eocene climatic cooling phase.

  17. Nanostructures having crystalline and amorphous phases

    Science.gov (United States)

    Mao, Samuel S; Chen, Xiaobo

    2015-04-28

    The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.

  18. Fundamentals of amorphous solids structure and properties

    CERN Document Server

    Stachurski, Zbigniew H

    2014-01-01

    Long awaited, this textbook fills the gap for convincing concepts to describe amorphous solids. Adopting a unique approach, the author develops a framework that lays the foundations for a theory of amorphousness. He unravels the scientific mysteries surrounding the topic, replacing rather vague notions of amorphous materials as disordered crystalline solids with the well-founded concept of ideal amorphous solids. A classification of amorphous materials into inorganic glasses, organic glasses, glassy metallic alloys, and thin films sets the scene for the development of the model of ideal amorph

  19. Controls on Arctic sea ice from first-year and multi-year survival rates

    Energy Technology Data Exchange (ETDEWEB)

    Hunke, Jes [Los Alamos National Laboratory

    2009-01-01

    The recent decrease in Arctic sea ice cover has transpired with a significant loss of multi year ice. The transition to an Arctic that is populated by thinner first year sea ice has important implications for future trends in area and volume. Here we develop a reduced model for Arctic sea ice with which we investigate how the survivability of first year and multi year ice control the mean state, variability, and trends in ice area and volume.

  20. A spongy icing model for aircraft icing

    Directory of Open Access Journals (Sweden)

    Li Xin

    2014-02-01

    Full Text Available Researches have indicated that impinging droplets can be entrapped as liquid in the ice matrix and the temperature of accreting ice surface is below the freezing point. When liquid entrapment by ice matrix happens, this kind of ice is called spongy ice. A new spongy icing model for the ice accretion problem on airfoil or aircraft has been developed to account for entrapped liquid within accreted ice and to improve the determination of the surface temperature when entering clouds with supercooled droplets. Different with conventional icing model, this model identifies icing conditions in four regimes: rime, spongy without water film, spongy with water film and glaze. By using the Eulerian method based on two-phase flow theory, the impinging droplet flow was investigated numerically. The accuracy of the Eulerian method for computing the water collection efficiency was assessed, and icing shapes and surface temperature distributions predicted with this spongy icing model agree with experimental results well.

  1. Formation of amorphous metal alloys by chemical vapor deposition

    Science.gov (United States)

    Mullendore, Arthur W.

    1990-01-01

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures or organometallic compounds and metalloid hydrides, e.g., transition metal carbonyl such as nickel carbonyl, and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit.

  2. IR-spectroscopy of environmental relevant ice-aerosols: Analysis of phase transitions; IR-Spektrometrie umweltrelevanter Eisaerosole: Untersuchung von Phasenuebergaengen

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, T. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Kuestenforschung

    2002-07-01

    Fourier transform infrared spectroscopy was used to investigate the transition area of water from the monomer to nanoparticles. To achieve the ambient temperature range from 130 K to 300 K in a collisional cooling cell a cooled gas plant was established. With the given parameters a transition temperature of 167 K was found. This temperature appeared to be a bifurcation point: small fluctuations of the temperature - due to the fuzzy control of the cell heating - caused distinct changes of the spectra. Slight increments of the temperature extend the transition period monomer/nanoparticle and let significant deviations to the typical particle spectrum occur (appearance and width of the band, respectively). The H{sub 2}O (D{sub 2}O)/He sample gas mixtures were generated by a reliable dew-point technique and were injected into the collisional cooling cell at the corresponding temperature. (orig.)

  3. Process induced disorder in crystalline materials: differentiating defective crystals from the amorphous form of griseofulvin.

    Science.gov (United States)

    Feng, Tao; Pinal, Rodolfo; Carvajal, M Teresa

    2008-08-01

    This research investigates milling induced disorder in crystalline griseofulvin. Griseofulvin was subjected to cryogenic milling for various lengths of time. For comparison, the amorphous form of griseofulvin was also prepared by the quench melt method. Different analytical techniques were used to study the differences between the cryomilled, amorphous and crystalline forms of the drug. Cryogenic milling of griseofulvin progressively reduces the crystallinity of the drug by inducing crystal defects, rather than amorphous materials. Raman analysis provides evidence of structural differences between the two. The differences between the defective crystals produced by milling and the amorphous form are significant enough as to be measurable in their bulk thermal properties. Defective crystals show significant decrease in the heat of fusion as a function of milling time but do not exhibit a glass transition nor recrystallization from the amorphous form. Crystal defects undergo recrystallization upon heating at temperatures well below the glass transition temperature (T(g)) in a process that is separate and completely independent from the crystallization of the amorphous griseofulvin, observed above T(g). Physical mixtures of defective crystals and amorphous drug demonstrate that the thermal events associated with each form persist in the mixtures, unaffected by the presence of the other form.

  4. Preparation and characterization of spray-dried co-amorphous drug-amino acid salts

    DEFF Research Database (Denmark)

    Jensen, Katrine Birgitte Tarp; Blaabjerg, Lasse Ingerslev; Lenz, Elisabeth

    2016-01-01

    -amorphous salt formation. METHODS: The mixtures were characterized for their solid state properties using differential scanning calorimetry, thermogravimetric analysis and X-ray powder diffraction. Fourier-transform infrared spectroscopy was used to analyze molecular interactions. Furthermore, intrinsic...... revealed elevated glass transition temperatures for all mixtures compared with the pure amorphous drug due to co-amorphization with the amino acids. Furthermore, strong intermolecular interactions in the form of salt/partial salt formation between the drug and amino acids were seen for all blends. All...

  5. Amorphous Alloy Membranes for High Temperature Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, K. [Southwest Research Inst. (SwRI), San Antonio, TX (United States)

    2013-09-30

    At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute® (SwRI®), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 °C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys

  6. Molecular simulation of freestanding amorphous nickel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, T.Q. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France); Hoang, V.V., E-mail: vvhoang2002@yahoo.com [Department of Physics, Institute of Technology, National University of Ho Chi Minh City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City (Viet Nam); Lauriat, G. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France)

    2013-10-31

    Size effects on glass formation in freestanding Ni thin films have been studied via molecular dynamics simulation with the n-body Gupta interatomic potential. Atomic mechanism of glass formation in the films is determined via analysis of the spatio-temporal arrangements of solid-like atoms occurred upon cooling from the melt. Solid-like atoms are detected via the Lindemann ratio. We find that solid-like atoms initiate and grow mainly in the interior of the film and grow outward. Their number increases with decreasing temperature and at a glass transition temperature they dominate in the system to form a relatively rigid glassy state of a thin film shape. We find the existence of a mobile surface layer in both liquid and glassy states which can play an important role in various surface properties of amorphous Ni thin films. We find that glass formation is size independent for models containing 4000 to 108,000 atoms. Moreover, structure of amorphous Ni thin films has been studied in details via coordination number, Honeycutt–Andersen analysis, and density profile which reveal that amorphous thin films exhibit two different parts: interior and surface layer. The former exhibits almost the same structure like that found for the bulk while the latter behaves a more porous structure containing a large amount of undercoordinated sites which are the origin of various surface behaviors of the amorphous Ni or Ni-based thin films found in practice. - Highlights: • Glass formation is analyzed via spatio-temporal arrangements of solid-like atoms. • Amorphous Ni thin film exhibits two different parts: surface and interior. • Mobile surface layer enhances various surface properties of the amorphous Ni thin films. • Undercoordinated sites play an important role in various surface activities.

  7. Critical behavior in a random field classical Heisenberg model for amorphous systems

    International Nuclear Information System (INIS)

    Albuquerque, Douglas F. de; Alves, Sandro Roberto L.; Arruda, Alberto S. de

    2005-01-01

    By using the differential operator technique and the effective field theory scheme, the critical behavior of amorphous classical Heisenberg ferromagnet of spin-1/2 in a random field is studied. The phase diagram in the T-H and T-α planes on a simple cubic lattice for a cluster with two spins is obtained. Tricritical points, reentrant phenomena and influence of the random field and amorphization on the transition temperature are discussed

  8. Superconducting Metallic Glass Transition-Edge-Sensors

    Science.gov (United States)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  9. Ice particle collisions

    Science.gov (United States)

    Sampara, Naresh; Turnbull, Barbara; Hill, Richard; Swift, Michael

    2017-04-01

    becomes more likely when the particles are new and rough, but also after they have been through many collisions. Experiment 2: To create an even higher collision density and to understand the collective behaviour of these ice particles, a sample of them were placed to cover the tray of an electromagnetic shaker, mounted in an environment controlled chamber at -2°C. Continuous shaking of this system permitted observation of a spontaneous transition from dry granular behaviour to that of wetted granules. Vibrating with a fixed acceleration, image sequences were recorded every 10 min to show that at early stage (<15min) the particles adopted the dry granular flow (particles are free to bounce on the vibrating plate). After circa 40 min 90% particles became spontaneously immobile in an approximately hexagonally packed 2 dimensional sheet.

  10. Amorphous nanoparticles — Experiments and computer simulations

    International Nuclear Information System (INIS)

    Hoang, Vo Van; Ganguli, Dibyendu

    2012-01-01

    The data obtained by both experiments and computer simulations concerning the amorphous nanoparticles for decades including methods of synthesis, characterization, structural properties, atomic mechanism of a glass formation in nanoparticles, crystallization of the amorphous nanoparticles, physico-chemical properties (i.e. catalytic, optical, thermodynamic, magnetic, bioactivity and other properties) and various applications in science and technology have been reviewed. Amorphous nanoparticles coated with different surfactants are also reviewed as an extension in this direction. Much attention is paid to the pressure-induced polyamorphism of the amorphous nanoparticles or amorphization of the nanocrystalline counterparts. We also introduce here nanocomposites and nanofluids containing amorphous nanoparticles. Overall, amorphous nanoparticles exhibit a disordered structure different from that of corresponding bulks or from that of the nanocrystalline counterparts. Therefore, amorphous nanoparticles can have unique physico-chemical properties differed from those of the crystalline counterparts leading to their potential applications in science and technology.

  11. Model for amorphous aggregation processes

    Science.gov (United States)

    Stranks, Samuel D.; Ecroyd, Heath; van Sluyter, Steven; Waters, Elizabeth J.; Carver, John A.; von Smekal, Lorenz

    2009-11-01

    The amorphous aggregation of proteins is associated with many phenomena, ranging from the formation of protein wine haze to the development of cataract in the eye lens and the precipitation of recombinant proteins during their expression and purification. While much literature exists describing models for linear protein aggregation, such as amyloid fibril formation, there are few reports of models which address amorphous aggregation. Here, we propose a model to describe the amorphous aggregation of proteins which is also more widely applicable to other situations where a similar process occurs, such as in the formation of colloids and nanoclusters. As first applications of the model, we have tested it against experimental turbidimetry data of three proteins relevant to the wine industry and biochemistry, namely, thaumatin, a thaumatinlike protein, and α -lactalbumin. The model is very robust and describes amorphous experimental data to a high degree of accuracy. Details about the aggregation process, such as shape parameters of the aggregates and rate constants, can also be extracted.

  12. Amorphous metal matrix composite ribbons

    International Nuclear Information System (INIS)

    Barczy, P.; Szigeti, F.

    1998-01-01

    Composite ribbons with amorphous matrix and ceramic (SiC, WC, MoB) particles were produced by modified planar melt flow casting methods. Weldability, abrasive wear and wood sanding examinations were carried out in order to find optimal material and technology for elevated wear resistance and sanding durability. The correlation between structure and composite properties is discussed. (author)

  13. Atomistic Models of Amorphous Semiconductors

    NARCIS (Netherlands)

    Jarolimek, K.

    2011-01-01

    Crystalline silicon is probably the best studied material, widely used by the semiconductor industry. The subject of this thesis is an intriguing form of this element namely amorphous silicon. It can contain a varying amount of hydrogen and is denoted as a-Si:H. It completely lacks the neat long

  14. Superconducting properties of amorphous Zr-Ge binary alloys

    International Nuclear Information System (INIS)

    Inoue, A.; Takahashi, Y.; Toyota, N.; Fukase, T.; Masumoto, T.

    1982-01-01

    A new type of refractory metal-metalloid amorphous alloys exhibiting superconductivity has been found in a binary Zr-Ge system by a modified melt-spinning technique. Specimens are in the form of continuous ribbons 1 to 2 mm wide and 0.02 to 0.03 mm thick. The germanium content in the amorphous alloys is limited to the range of 13 to 21 at%. These amorphous alloys are so ductile that no cracks are observed even after closely contacted bending test. Data are reported for various alloy compositions for the Vickers hardness and crystallization temperature, the tensile fracture strength, superconducting transition temperature Tsub(c), upper critical magnetic field, critical current density in the absence of an applied field, upper critical field gradient at Tsub(c) and the electrical resistivity at 4.2 K. The Ginzburg-Landau (GL) parameter and the GL coherence length were estimated to be 72 to 111 and about 7.9 nm, respectively, from these experimental values by using the Ginzburg-Landau-Abrikosov-Gorkov theory and hence it is concluded that the Zr-Ge amorphous alloys are extremely 'soft' type-II superconductor with high degree of dirtiness which possesses the Tsub(c) values higher than zirconium metal, in addition to high strength combined with good ductility. (author)

  15. Sea ice - Multiyear cycles and white ice

    Science.gov (United States)

    Ledley, T. S.

    1985-01-01

    The multiyear thickness cycles represent one of the interesting features of the sea ice studies performed by Semtner (1976) and Washington et al. (1976) with simple thermodynamic models of sea ice. In the present article, a description is given of results which show that the insulating effect of snow on the surface of the sea ice is important in producing these multiyear cycles given the physics included in the model. However, when the formation of white ice is included, the cycles almost disappear. White ice is the ice which forms at the snow-ice interface when the snow layer becomes thick enough to depress the ice below the water level. Water infiltrates the snow by coming through the ice at leads and generally freezes there, forming white ice.

  16. The discoveries of WASP-91b, WASP-105b and WASP-107b: Two warm Jupiters and a planet in the transition region between ice giants and gas giants

    Science.gov (United States)

    Anderson, D. R.; Collier Cameron, A.; Delrez, L.; Doyle, A. P.; Gillon, M.; Hellier, C.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Madhusudhan, N.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Smith, A. M. S.; Triaud, A. H. M. J.; Turner, O. D.; Udry, S.; West, R. G.

    2017-08-01

    We report the discoveries of three transiting exoplanets. WASP-91b is a warm Jupiter (1.34 MJup, 1.03 RJup) in a 2.8-day orbit around a metal-rich K3 star. WASP-105b is a warm Jupiter (1.8 MJup, 0.96 RJup) in a 7.9-day orbit around a metal-rich K2 star. WASP-107b is a warm super-Neptune/sub-Saturn (0.12 MJup, 0.94 RJup) in a 5.7-day orbit around a solar-metallicity K6 star. Considering that giant planets seem to be more common around stars of higher metallicity and stars of higher mass, it is notable that the hosts are all metal-rich, late-type stars. With orbital separations that place both WASP-105b and WASP-107b in the weak-tide regime, measurements of the alignment between the planets' orbital axes and their stars' spin axes may help us to understand the inward migration of short-period, giant planets. The mass of WASP-107b (2.2 MNep, 0.40 MSat) places it in the transition region between the ice giants and gas giants of the Solar System. Its radius of 0.94 RJup suggests that it is a low-mass gas giant with a H/He-dominated composition. The planet thus sets a lower limit of 2.2 MNep on the planetary mass above which large gaseous envelopes can be accreted and retained by proto-planets on their way to becoming gas giants. We may discover whether WASP-107b more closely resembles an ice giant or a gas giant by measuring its atmospheric metallicity via transmission spectroscopy, for which WASP-107b is a very good target. Based on observations made with: the WASP-South photometric survey instrument, the 0.6-m TRAPPIST robotic imager, and the EulerCam camera and the CORALIE spectrograph mounted on the 1.2-m Euler-Swiss telescope.The photometric time-series and radial-velocity data used in this work are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A110

  17. Crystallization process and magnetic properties of amorphous iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Phu, N D; Luong, N H; Chau, N; Hai, N H; Ngo, D T; Hoang, L H

    2011-01-01

    This paper studied the crystallization process, phase transition and magnetic properties of amorphous iron oxide nanoparticles prepared by the microwave heating technique. Thermal analysis and magnetodynamics studies revealed many interesting aspects of the amorphous iron oxide nanoparticles. The as-prepared sample was amorphous. Crystallization of the maghemite γ-Fe 2 O 3 (with an activation energy of 0.71 eV) and the hematite α-Fe 2 O 3 (with an activation energy of 0.97 eV) phase occurred at around 300 deg. C and 350 deg. C, respectively. A transition from the maghemite to the hematite occurred at 500 deg. C with an activation energy of 1.32 eV. A study of the temperature dependence of magnetization supported the crystallization and the phase transformation. Raman shift at 660 cm -1 and absorption band in the infrared spectra at 690 cm -1 showed the presence of disorder in the hematite phase on the nanoscale which is supposed to be the origin of the ferromagnetic behaviour of that antiferromagnetic phase.

  18. Solar radiation interactions with seasonal sea ice

    Science.gov (United States)

    Ehn, Jens Kristian

    Presently, the Arctic Ocean is undergoing an escalating reduction in sea ice and a transition towards a seasonal sea ice environment. This warrants detailed investigations into improving our understanding of the seasonal evolution of sea ice and snow covers, and their representation in climate models. The interaction of solar radiation with sea ice is an important process influencing the energy balance and biological activity in polar seas, and consequently plays a key role in the earth's climate system. This thesis focuses on characterization of the optical properties---and the underlying physical properties that determine them---of seasonal sea ice during the fall freeze-up and the spring melt periods. Both periods display high spatial heterogeneity and rapid temporal changes in sea ice properties, and are therefore poorly understood. Field data were collected in Amundsen Gulf/Franklin Bay (FB), southern-eastern Beaufort Sea, in Oct.-Nov. 2003 and Apr. 2004 and in Button Bay (BB), western Hudson Bay, in Mar.-May 2005 to address (1) the temporal and spatial evolution of surface albedo and transmittance, (2) how radiative transfer in sea ice is controlled by its physical nature, and (3) the characteristics of the bottom ice algae community and its effect on the optical properties. The fall study showed the importance of surface features such as dry or slushy bare ice, frost flowers and snow cover in determining the surface albedo. Ice thickness was also important, however, mostly because surface features were associated with thickness. For example, nilas (brine skim layer on the surface, while surface conditions on thicker ice types were cold and dry enough to support a snow cover. In general, the surface albedo increased exponentially with an ice thickness increase, however, variability within ice thickness types were very large. It is apparent that a more complete treatment of brine movement towards the surface ice of the ice cover and the formation of surface

  19. Ice Caps and Ice Belts: The Effects of Obliquity on Ice−Albedo Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Brian E. J. [Department of Atmospheric and Environmental Sciences, University at Albany (State University of New York), 1400 Washington Avenue, Albany, NY 12222 (United States); Cronin, Timothy W. [Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Bitz, Cecilia M., E-mail: brose@albany.edu [Department of Atmospheric Sciences, MS 351640, University of Washington, Seattle, WA 98195-1640 (United States)

    2017-09-01

    Planetary obliquity determines the meridional distribution of the annual mean insolation. For obliquity exceeding 55°, the weakest insolation occurs at the equator. Stable partial snow and ice cover on such a planet would be in the form of a belt about the equator rather than polar caps. An analytical model of planetary climate is used to investigate the stability of ice caps and ice belts over the widest possible range of parameters. The model is a non-dimensional diffusive Energy Balance Model, representing insolation, heat transport, and ice−albedo feedback on a spherical planet. A complete analytical solution for any obliquity is given and validated against numerical solutions of a seasonal model in the “deep-water” regime of weak seasonal ice line migration. Multiple equilibria and unstable transitions between climate states (ice-free, Snowball, or ice cap/belt) are found over wide swaths of parameter space, including a “Large Ice-Belt Instability” and “Small Ice-Belt Instability” at high obliquity. The Snowball catastrophe is avoided at weak radiative forcing in two different scenarios: weak albedo feedback and inefficient heat transport (favoring stable partial ice cover), or efficient transport at high obliquity (favoring ice-free conditions). From speculative assumptions about distributions of planetary parameters, three-fourths to four-fifths of all planets with stable partial ice cover should be in the form of Earth-like polar caps.

  20. Amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-04-01

    Nanoelectromechanical (NEM) switch is an interesting ultra-low power option which can operate in the harsh environment and can be a complementary element in complex digital circuitry. Although significant advancement is happening in this field, report on ultra-low voltage (pull-in) switch which offers high switching speed and area efficiency is yet to be made. One key challenge to achieve such characteristics is to fabricate nano-scale switches with amorphous metal so the shape and dimensional integrity are maintained to achieve the desired performance. Therefore, we report a tungsten alloy based amorphous metal with fabrication process development of laterally actuated dual gated NEM switches with 100 nm width and 200 nm air-gap to result in <5 volts of actuation voltage (Vpull-in). © 2013 IEEE.

  1. Uranium incorporation into amorphous silica.

    Science.gov (United States)

    Massey, Michael S; Lezama-Pacheco, Juan S; Nelson, Joey M; Fendorf, Scott; Maher, Kate

    2014-01-01

    High concentrations of uranium are commonly observed in naturally occurring amorphous silica (including opal) deposits, suggesting that incorporation of U into amorphous silica may represent a natural attenuation mechanism and promising strategy for U remediation. However, the stability of uranium in opaline silicates, determined in part by the binding mechanism for U, is an important factor in its long-term fate. U may bind directly to the opaline silicate matrix, or to materials such as iron (hydr)oxides that are subsequently occluded within the opal. Here, we examine the coordination environment of U within opaline silica to elucidate incorporation mechanisms. Precipitates (with and without ferrihydrite inclusions) were synthesized from U-bearing sodium metasilicate solutions, buffered at pH ∼ 5.6. Natural and synthetic solids were analyzed with X-ray absorption spectroscopy and a suite of other techniques. In synthetic amorphous silica, U was coordinated by silicate in a double corner-sharing coordination geometry (Si at ∼ 3.8-3.9 Å) and a small amount of uranyl and silicate in a bidentate, mononuclear (edge-sharing) coordination (Si at ∼ 3.1-3.2 Å, U at ∼ 3.8-3.9 Å). In iron-bearing synthetic solids, U was adsorbed to iron (hydr)oxide, but the coordination environment also contained silicate in both edge-sharing and corner-sharing coordination. Uranium local coordination in synthetic solids is similar to that of natural U-bearing opals that retain U for millions of years. The stability and extent of U incorporation into opaline and amorphous silica represents a long-term repository for U that may provide an alternative strategy for remediation of U contamination.

  2. Cascade overlap and amorphization in 3C-SiC: Defect accumulation, topological features, and disordering

    International Nuclear Information System (INIS)

    Gao, F.; Weber, W.J.

    2002-01-01

    Molecular dynamics (MD) simulations with a modified Tersoff potential have been used to investigate cascade overlap, damage accumulation, and amorphization processes in 3C-SiC over dose levels comparable to experimental conditions. A large number of 10 keV displacement cascades were randomly generated in a model crystal to produce damage and cause amorphization. At low dose, the damage state is dominated by point defects and small clusters, where their concentration increases sigmoidally with increasing dose. The coalescence and growth of clusters at intermediate and higher doses is an important mechanism leading to amorphization in SiC. The homogeneous nucleation of small clusters at low dose underpins the homogeneouslike amorphization observed in SiC. A large increase in the number of antisite defects at higher dose indicates that both interstitials and antisite defects play an important role in producing high-energy states that lead to amorphization in SiC. The topologies (such as total pair correlation function, bond-angle, and bond-length distributions) of damage accumulation in the crystal suggest that a crystalline-to-amorphous (c-a) transition occurs at about 0.28 dpa. This value is in qualitative agreement with the experimental value of 0.27 dpa under similar irradiation conditions. After the model crystal transforms to the fully amorphous state, the long-range order is completely lost, while the short-range order parameter saturates at a value of about 0.49

  3. Pressure-jump induced rapid solidification of melt: a method of preparing amorphous materials

    Science.gov (United States)

    Liu, Xiuru; Jia, Ru; Zhang, Doudou; Yuan, Chaosheng; Shao, Chunguang; Hong, Shiming

    2018-04-01

    By using a self-designed pressure-jump apparatus, we investigated the melt solidification behavior in rapid compression process for several kinds of materials, such as elementary sulfur, polymer polyether-ether-ketone (PEEK) and poly-ethylene-terephthalate, alloy La68Al10Cu20Co2 and Nd60Cu20Ni10Al10. Experimental results clearly show that their melts could be solidified to be amorphous states through the rapid compression process. Bulk amorphous PEEK with 24 mm in diameter and 12 mm in height was prepared, which exceeds the size obtained by melt quenching method. The bulk amorphous sulfur thus obtained exhibited extraordinarily high thermal stability, and an abnormal exothermic transition to liquid sulfur was observed at around 396 K for the first time. Furthermore, it is suggested that the glass transition pressure and critical compression rate exist to form the amorphous phase. This approach of rapid compression is very attractive not only because it is a new technique of make bulk amorphous materials, but also because novel properties are expected in the amorphous materials solidified by the pressure-jump within milliseconds or microseconds.

  4. Amorphous/crystal and polymer/filler interphases in biocomposites from poly(butylene succinate)

    Energy Technology Data Exchange (ETDEWEB)

    Signori, Francesca [Consiglio Nazionale delle Ricerche - Istituto per i Processi Chimico-Fisici (CNR-IPCF), Via G. Moruzzi 1, I-56124 Pisa (Italy); Pelagaggi, Martina [Universita di Pisa - Dipartimento di Chimica e Chimica Industriale, Via Risorgimento 35, I-56126 Pisa (Italy); Bronco, Simona [Consiglio Nazionale delle Ricerche - Istituto per i Processi Chimico-Fisici (CNR-IPCF), Via G. Moruzzi 1, I-56124 Pisa (Italy); Righetti, Maria Cristina, E-mail: righetti@ipcf.cnr.it [Consiglio Nazionale delle Ricerche - Istituto per i Processi Chimico-Fisici (CNR-IPCF), Via G. Moruzzi 1, I-56124 Pisa (Italy)

    2012-09-10

    Highlights: Black-Right-Pointing-Pointer The existence of intermolecular interactions between poly(butylene succinate) and hemp fibres was proved from specific heat capacities data. Black-Right-Pointing-Pointer Different degrees of mobility of the poly(butylene succinate) amorphous segments were evidenced at the amorphous/crystal interphase. Black-Right-Pointing-Pointer Devitrification of the rigid amorphous fraction in poly(butylene succinate) was found to occur before and simultaneously with the fusion. - Abstract: Poly(butylene succinate)-hemp composites (PBS-hemp), with hemp content in the range 0-40 wt.%, were prepared in the melt and characterized. This paper focuses on the detailed analysis of the thermal behaviour of the PBS-hemp composites, investigated by differential scanning calorimetry (DSC), to enlighten the polymer/fibre interphase features. The occurrence of specific intermolecular interactions between PBS and hemp was assessed from specific heat capacity data. Different degrees of mobility of the PBS amorphous segments were found at the amorphous/crystal interphases. A broadening of the bulk glass transition was observed, and attributed to the presence of polymer segments slightly constrained. Moreover, a rigid amorphous fraction that devitrifies at temperatures higher than the bulk glass transition, partly before the melting region and partly simultaneously with the fusion, was observed and quantified, and attributed to the presence of major constraints probably occurring in geometrically restricted areas.

  5. Amorphous Metallic Alloys: Pathways for Enhanced Wear and Corrosion Resistance

    Science.gov (United States)

    Aditya, Ayyagari; Felix Wu, H.; Arora, Harpreet; Mukherjee, Sundeep

    2017-11-01

    Amorphous metallic alloys are widely used in bulk form and as coatings for their desirable corrosion and wear behavior. Nevertheless, the effects of heat treatment and thermal cycling on these surface properties are not well understood. In this study, the corrosion and wear behavior of two Zr-based bulk metallic glasses were evaluated in as-cast and thermally relaxed states. Significant improvement in wear rate, friction coefficient, and corrosion penetration rate was seen for both alloys after thermal relaxation. A fully amorphous structure was retained with thermal relaxation below the glass transition. There was an increase in surface hardness and elastic modulus for both alloys after relaxation. The improvement in surface properties was explained based on annihilation of free volume.

  6. Crystallization of amorphous phase in niobium alloys with oxygen

    International Nuclear Information System (INIS)

    Dekanenko, V.M.; Samojlenko, Z.A.; Revyakin, A.V.

    1982-01-01

    Crystallization and subsequent phase transformations of amorphous phase during annealings in the system Nb-O are studied. It is shown that quenching from liquid state of niobium alloys with oxygen with a rate of 10 5 -10 6 K/s results in partial crystallization of the melt. Phase transition from amorphous to crystal state at 670 K in all probability takes place without the change of chemical composition. After crystallization the decomposition of oversaturated solid solution on the basis of NbO takes place with the separation of low- temperature modification, γ-Nb 2 O 5 . Niobium pentoxide of both modifications during prolong annealings at 770 K and short- time annealings higher 1070 K disappears completely [ru

  7. Kinetic Monte Carlo simulations of water ice porosity: extrapolations of deposition parameters from the laboratory to interstellar space

    Science.gov (United States)

    Clements, Aspen R.; Berk, Brandon; Cooke, Ilsa R.; Garrod, Robin T.

    2018-02-01

    Using an off-lattice kinetic Monte Carlo model we reproduce experimental laboratory trends in the density of amorphous solid water (ASW) for varied deposition angle, rate and surface temperature. Extrapolation of the model to conditions appropriate to protoplanetary disks and interstellar dark clouds indicate that these ices may be less porous than laboratory ices.

  8. Nonlinear threshold behavior during the loss of Arctic sea ice.

    Science.gov (United States)

    Eisenman, I; Wettlaufer, J S

    2009-01-06

    In light of the rapid recent retreat of Arctic sea ice, a number of studies have discussed the possibility of a critical threshold (or "tipping point") beyond which the ice-albedo feedback causes the ice cover to melt away in an irreversible process. The focus has typically been centered on the annual minimum (September) ice cover, which is often seen as particularly susceptible to destabilization by the ice-albedo feedback. Here, we examine the central physical processes associated with the transition from ice-covered to ice-free Arctic Ocean conditions. We show that although the ice-albedo feedback promotes the existence of multiple ice-cover states, the stabilizing thermodynamic effects of sea ice mitigate this when the Arctic Ocean is ice covered during a sufficiently large fraction of the year. These results suggest that critical threshold behavior is unlikely during the approach from current perennial sea-ice conditions to seasonally ice-free conditions. In a further warmed climate, however, we find that a critical threshold associated with the sudden loss of the remaining wintertime-only sea ice cover may be likely.

  9. Strain sensors for civil engineering application based on CoFeCrSiB amorphous ribbons

    Czech Academy of Sciences Publication Activity Database

    Bydžovský, J.; Kollár, M.; Jančárik, V.; Švec, P.; Kraus, Luděk

    2002-01-01

    Roč. 52, Suppl. A (2002), s. A117-A120 ISSN 0011-4626. [Czech and Slovak Conference on Magnetism. Košice, 20.08.2001-23.08.2001] Grant - others:NATO(XX) SfP973649; VEGA(XX) 1/7609/20 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetic amorphous ribbon * stress-induced anisotropy * strain sensor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.311, year: 2002

  10. Allan Hills Pleistocene Ice Project (PIP)

    Science.gov (United States)

    Kurbatov, A.; Brook, E.; Campbell, S. W.; Conway, H.; Dunbar, N. W.; Higgins, J. A.; Iverson, N. A.; Kehrl, L. M.; McIntosh, W. C.; Spaulding, N. E.; Yan, Y.; Mayewski, P. A.

    2016-12-01

    A major international effort to identify at least 1.5 Ma old ice for paleoclimate reconstructions has successfully resulted in the selection of several potential drill sites in East Antarctica. At this point it is indisputable that the Antarctic ice sheet captures a continuous envinronmental record of the Earth that spans the Mid Pleistocene Transition (MPT). In addition to traditional ice coring approaches, the oldest ice can also be recovered in Antarctic Blue Ice Areas (BIA). We have already successfully demonstrated that the Allan Hills (AH) BIA captures a regional climate signal and robust record of 1Ma atmosphere that can be studied with a relatively uncomplicated logistical imprint and essentially unlimited sampling volume. The attractiveness of unlimited sampling of known age ice is the basis for the "ice park" concept proposed earlier by our research team. The idea is that, once the age of ice exposed along the flow line at the surface of BIA is mapped, it could be sampled for numerous research projects as needed. Here we propose an intermediate ( 1,150 m deep) ice core drill site, located only 240 km away from McMurdo base that will help to develop a, continuous, high quality regional paleoclimate record that is at least 1Ma old. We will introduce and discuss the glaciological settings, paleoclimate signals and possible limitations and advantages of the 1 Ma AH BIA regional paleoclimate record. The research was funded by NSF Division of Polar Programs.

  11. Partially ordered state of ice XV

    Science.gov (United States)

    Komatsu, K.; Noritake, F.; Machida, S.; Sano-Furukawa, A.; Hattori, T.; Yamane, R.; Kagi, H.

    2016-01-01

    Most ice polymorphs have order–disorder “pairs” in terms of hydrogen positions, which contributes to the rich variety of ice polymorphs; in fact, three recently discovered polymorphs— ices XIII, XIV, and XV—are ordered counter forms to already identified disordered phases. Despite the considerable effort to understand order–disorder transition in ice crystals, there is an inconsistency among the various experiments and calculations for ice XV, the ordered counter form of ice VI, i.e., neutron diffraction observations suggest antiferroelectrically ordered structures, which disagree with dielectric measurement and theoretical studies, implying ferroelectrically ordered structures. Here we investigate in-situ neutron diffraction measurements and density functional theory calculations to revisit the structure and stability of ice XV. We find that none of the completely ordered configurations are particular favored; instead, partially ordered states are established as a mixture of ordered domains in disordered ice VI. This scenario in which several kinds of ordered configuration coexist dispels the contradictions in previous studies. It means that the order–disorder pairs in ice polymorphs are not one-to-one correspondent pairs but rather have one-to-n correspondence, where there are n possible configurations at finite temperature. PMID:27375120

  12. Great Lakes Ice Charts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Charts show ice extent and concentration three times weekly during the ice season, for all lakes except Ontario, from the 1973/74 ice season through the 2001/2002...

  13. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  14. Amorphous Semiconductors Characteristics and Their Modern Application

    International Nuclear Information System (INIS)

    Elshazly, A.A.

    2013-01-01

    Chalcogenide glasses are a recognized group of inorganic glassy materials which always contain one or more of the chalcogenide elements S, Se or Te but not O, in conjunction with more electro positive elements as As, Sb, etc. Chalcogenide glasses are generally less robust, more weakly bonded materials than oxide glasses. Glasses were prepared from Sb, Se, Bi and In elements with purity 99.999%. These glasses are reactive at high temperature with oxygen. Therefore, synthesis was accomplished in evacuated clean silica tubes. The tubes were washed by distilled water, and then dried in a furnace whose temperature was about 100 degree C . The weighted materials were introduced into the cleaned silica tubes and then evacuated to about 10-4 torr and sealed. The sealed tubes were placed inside the furnace and the temperature of the furnace was raised gradually up to 90 C within 1 hour and kept constant for 10 hours. Moreover, shaking of the constituent materials inside the tube in the furnace was necessary for realizing the homogeneity of the composition. After synthesis, the tube was quenched into ice water. The glassy ingots could be obtained by drastic quenching. Then materials were removed from the tubes and kept in dry atmosphere. The proper ingot was confirmed to be completely amorphous using x-ray diffraction and differential thermal analysis. Thin films of the selected compositions were prepared by thermal evaporation technique under vacuum 10-4 torr with constant thickness 100 nm. The effect of radiation, optical and some other effects on composition were studied.

  15. Aging, Jamming, and the Limits of Stability of Amorphous Solids.

    Science.gov (United States)

    Lubchenko, Vassiliy; Wolynes, Peter G

    2018-01-09

    Apart from not having crystallized, supercooled liquids can be considered as being properly equilibrated and thus can be described by a few thermodynamic control variables. In contrast, glasses and other amorphous solids can be arbitrarily far away from equilibrium and require a description of the history of the conditions under which they formed. In this paper we describe how the locality of interactions intrinsic to finite-dimensional systems affects the stability of amorphous solids far off equilibrium. Our analysis encompasses both structural glasses formed by cooling and colloidal assemblies formed by compression. A diagram outlining regions of marginal stability can be adduced which bears some resemblance to the quasi-equilibrium replica meanfield theory phase diagram of hard sphere glasses in high dimensions but is distinct from that construct in that the diagram describes not true phase transitions but kinetic transitions that depend on the preparation protocol. The diagram exhibits two distinct sectors. One sector corresponds to amorphous states with relatively open structures, the other to high density, more closely packed ones. The former transform rapidly owing to there being motions with no free energy barriers; these motions are string-like locally. In the dense region, amorphous systems age via compact activated reconfigurations. The two regimes correspond, in equilibrium, to the collisional or uniform liquid and the so-called landscape regime, respectively. These are separated by a spinodal line of dynamical crossovers. Owing to the rigidity of the surrounding matrix in the landscape, high-density part of the diagram, a sufficiently rapid pressure quench adds compressive energy which also leads to an instability toward string-like motions with near vanishing barriers. Conversely, a dilute collection of rigid particles, such as a colloidal suspension leads, when compressed, to a spatially heterogeneous structure with percolated mechanically stable

  16. Gas records from the West Greenland ice margin covering the Last Glacial termination: a horizontal ice core

    DEFF Research Database (Denmark)

    Petrenko, V.; Severinghaus, J.P.; Brook, E.J.

    2006-01-01

    and Preboreal intervals. Extensive sections of ice from the Holocene and most ages within the last glacial period are probably also present. Very accurate dating has been possible in the ice section containing the Younger Dryas-Preboreal abrupt climate transition signal. The ice at Pakitsoq is folded and non......Certain sites along ice sheet margins provide an easily accessible and almost unlimited supply of ancient ice at the surface. Measurements of gases in trapped air from ice outcropping at Pakitsoq, West Greenland, demonstrate that ancient air is mostly well preserved. No alterations in delta O-18......(atm) and delta N-15 of N-2 are apparent, and alterations in methane are found in only a few ice sections. Using measurements of these gases, we have unambiguously identified a stratigraphic section containing ice from the end of last glacial period as well as Bolling-Allerod, Younger Dryas...

  17. Hydrogen in disordered and amorphous solids

    International Nuclear Information System (INIS)

    Bambakidis, G; Bowman, R.C.

    1986-01-01

    This book presents information on the following topoics: elements of the theory of amorphous semiconductors; electronic structure of alpha-SiH; fluctuation induced gap states in amorphous hydrogenated silicon; hydrogen on semiconductor surfaces; the influence of hydrogen on the defects and instabilities in hydrogenated amorphous silicon; deuteron magnetic resonance in some amorphous semiconductors; formation of amorphous metals by solid state reactions of hydrogen with an intermetallic compound; NMR studies of the hydrides of disordered and amorphous alloys; neutron vibrational spectroscopy of disordered metal-hydrogen system; dynamical disorder of hydrogen in LaNi /SUB 5-y/ M /SUB y/ hydrides studied by quasi-elastic neutron scattering; recent studies of intermetallic hydrides; tritium in Pd and Pd /SUB 0.80/ Sg /SUB 0.20/ ; and determination of hydrogen concentration in thin films of absorbing materials

  18. Mechanical milling of Fe3O4/SiO2: Formation of an amorphous Fe(II)-Si-O-containing phase

    DEFF Research Database (Denmark)

    Koch, C.B.; Jiang, Jianzhong; Mørup, Steen

    1999-01-01

    of Fe(III). The material constitutes a mixture of ultrafine Fe-rich spinel particles (magnetite/maghemite) and ail amorphous Fe(II)-containing silicate with a magnetic transition temperature of approximately 25 K. The amorphous phase has a rather high Fe content and is distinctly differenct from...

  19. The physics and applications of amorphous semiconductors

    CERN Document Server

    Madan, Arun

    1988-01-01

    This comprehensive, detailed treatise on the physics and applications of the new emerging technology of amorphous semiconductors focuses on specific device research problems such as the optimization of device performance. The first part of the book presents hydrogenated amorphous silicon type alloys, whose applications include inexpensive solar cells, thin film transistors, image scanners, electrophotography, optical recording and gas sensors. The second part of the book discusses amorphous chalcogenides, whose applications include electrophotography, switching, and memory elements. This boo

  20. Changes on the ice plain of Ice Stream B and Ross Ice Shelf

    Science.gov (United States)

    Shabtaie, Sion

    1993-01-01

    During the 1970's and 1980's, nearly 200 stations from which accurate, three dimensional position fixes have been obtained from TRANSIT satellites were occupied throughout the Ross Ice Shelf. We have transformed the elevations obtained by satellite altimetry to the same geodetic datum, and then applied a second transformation to reduce the geodetic heights to elevations above mean sea level using the GEM-10C geoidal height. On the IGY Ross Ice Shelf traverse between Oct. 1957 and Feb. 1958, an accurate method of barometric altimetry was used on a loop around the ice shelf that was directly tied to the sea at both ends of the travel route, thus providing absolute elevations. Comparisons of the two sets of data at 32 station pairs on floating ice show a mean difference of 0 +/- 1 m. The elevation data were also compared with theoretical values of elevations for a hydrostatically floating ice shelf. The mean difference between theoretical and measured values of elevations is -2 +/- 1 m.

  1. Amorphous silicon based radiation detectors

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Cho, G.; Drewery, J.; Jing, T.; Kaplan, S.N.; Qureshi, S.; Wildermuth, D.; Fujieda, I.; Street, R.A.

    1991-07-01

    We describe the characteristics of thin(1 μm) and thick (>30μm) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and γ rays. For x-ray, γ ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. 13 refs., 7 figs

  2. Inception of the Laurentide Ice Sheet using asynchronous coupling of a regional atmospheric model and an ice model

    Science.gov (United States)

    Birch, L.; Cronin, T.; Tziperman, E.

    2017-12-01

    The climate over the past 0.8 million years has been dominated by ice ages. Ice sheets have grown about every 100 kyrs, starting from warm interglacials, until they spanned continents. State-of-the-art global climate models (GCMs) have difficulty simulating glacial inception, or the transition of Earth's climate from an interglacial to a glacial state. It has been suggested that this failure may be related to their poorly resolved local mountain topography, due to their coarse spatial resolution. We examine this idea as well as the possible role of ice flow dynamics missing in GCMs. We investigate the growth of the Laurentide Ice Sheet at 115 kya by focusing on the mountain glaciers of Canada's Baffin Island, where geologic evidence indicates the last inception occurred. We use the Weather Research and Forecasting model (WRF) in a regional, cloud-resolving configuration with resolved mountain terrain to explore how quickly Baffin Island could become glaciated with the favorable yet realizable conditions of 115 kya insolation, cool summers, and wet winters. Using the model-derived mountain glacier mass balance, we force an ice sheet model based on the shallow-ice approximation, capturing the ice flow that may be critical to the spread of ice sheets away from mountain ice caps. The ice sheet model calculates the surface area newly covered by ice and the change in the ice surface elevation, which we then use to run WRF again. Through this type of iterated asynchronous coupling, we investigate how the regional climate responds to both larger areas of ice cover and changes in ice surface elevation. In addition, we use the NOAH-MP Land model to characterize the importance of land processes, like refreezing. We find that initial ice growth on the Penny Ice Cap causes regional cooling that increases the accumulation on the Barnes Ice Cap. We investigate how ice and topography changes on Baffin Island may impact both the regional climate and the large-scale circulation.

  3. Forecasting Turbine Icing Events

    DEFF Research Database (Denmark)

    Davis, Neil; Hahmann, Andrea N.; Clausen, Niels-Erik

    2012-01-01

    In this study, we present a method for forecasting icing events. The method is validated at two European wind farms in with known icing events. The icing model used was developed using current ice accretion methods, and newly developed ablation algorithms. The model is driven by inputs from the WRF...... mesoscale model, allowing for both climatological estimates of icing and short term icing forecasts. The current model was able to detect periods of icing reasonably well at the warmer site. However at the cold climate site, the model was not able to remove ice quickly enough leading to large ice...... accumulations, which have not been seen in observations. In addition to the model evaluation we were able to investigate the potential occurrence of ice induced power loss at two wind parks in Europe using observed data. We found that the potential loss during an icing event is large even when the turbine...

  4. Particle-induced amorphization of complex ceramics. Final report

    International Nuclear Information System (INIS)

    Ewing, R.C.; Wang, L.M.

    1998-01-01

    The crystalline-to-amorphous (c-a) phase transition is of fundamental importance. Particle irradiations provide an important, highly controlled means of investigating this phase transformation and the structure of the amorphous state. The interaction of heavy-particles with ceramics is complex because these materials have a wide range of structure types, complex compositions, and because chemical bonding is variable. Radiation damage and annealing can produce diverse results, but most commonly, single crystals become aperiodic or break down into a polycrystalline aggregate. The authors continued the studies of the transition from the periodic-to-aperiodic state in natural materials that have been damaged by α-recoil nuclei in the uranium and thorium decay series and in synthetic, analogous structures. The transition from the periodic to aperiodic state was followed by detailed x-ray diffraction analysis, in-situ irradiation/transmission electron microscopy, high resolution transmission electron microscopy, extended x-ray absorption fine structure spectroscopy/x-ray absorption near edge spectroscopy and other spectroscopic techniques. These studies were completed in conjunction with bulk irradiations that can be completed at Los Alamos National Laboratory or Sandia National Laboratories. Principal questions addressed in this research program included: (1) What is the process at the atomic level by which a ceramic material is transformed into a disordered or aperiodic state? (2) What are the controlling effects of structural topology, bond-type, dose rate, and irradiation temperature on the final state of the irradiated material? (3) What is the structure of the damaged material? (4) What are the mechanisms and kinetics for the annealing of interstitial and aggregate defects in these irradiated ceramic materials? (5) What general criteria may be applied to the prediction of amorphization in complex ceramics?

  5. Better understanding of dissolution behaviour of amorphous drugs by in situ solid-state analysis using Raman spectroscopy

    DEFF Research Database (Denmark)

    Savolainen, M; Kogermann, K; Heinz, A

    2009-01-01

    form. The purpose of this study was to use in situ Raman spectroscopy in combination with either partial least squares discriminant analysis (PLS-DA) or partial least squares (PLS) regression analysis to monitor as well as quantify the solid-phase transitions that take place during the dissolution...... of two amorphous drugs, indomethacin (IMC) and carbamazepine (CBZ). The dissolution rate was higher from amorphous IMC compared to the crystalline alpha- and gamma-forms. However, the dissolution rate started to slow down during the experiment. In situ Raman analysis verified that at that time point...... the sample started to crystallize to the alpha-form. Amorphous CBZ instantly started to crystallize upon contact with the dissolution medium. The transition from the amorphous form to CBZ dihydrate appears to go through the anhydrate form I. Based on the PLS analysis the amount of form I formed in the sample...

  6. Phase Field Theory and Analysis of Pressure-Shear Induced Amorphization and Failure in Boron Carbide Ceramic

    Directory of Open Access Journals (Sweden)

    John D. Clayton

    2014-07-01

    Full Text Available A nonlinear continuum phase field theory is developed to describe amorphization of crystalline elastic solids under shear and/or pressure loading. An order parameter describes the local degree of crystallinity. Elastic coefficients can depend on the order parameter, inelastic volume change may accompany the transition from crystal to amorphous phase, and transitional regions parallel to bands of amorphous material are penalized by interfacial surface energy. Analytical and simple numerical solutions are obtained for an idealized isotropic version of the general theory, for an element of material subjected to compressive and/or shear loading. Solutions compare favorably with experimental evidence and atomic simulations of amorphization in boron carbide, demonstrating the tendency for structural collapse and strength loss with increasing shear deformation and superposed pressure.

  7. Correlating thermodynamic and kinetic parameters with amorphous stability

    DEFF Research Database (Denmark)

    Graeser, Kirsten A; Patterson, James E; Zeitler, J Axel

    2009-01-01

    stability of amorphous drugs for a larger sample set (12 drugs). The relaxation time, fragility index and configurational thermodynamic properties (enthalpy, entropy and Gibbs free energy) were calculated and correlated to the actual stability behaviour, obtained for 12 drugs. Below the glass transition...... temperature the relaxation time and fragility showed no correlation with the observed physical stability. All drugs were calculated to be 'fragile'. However, variation in the fragility index existed, with values spanning from 8.9 to 21.3, manifesting themselves as differences in the temperature dependencies...

  8. Ultrasonic properties of superconducting amorphous PdZr

    International Nuclear Information System (INIS)

    Weiss, G.; Arnold, W.; Dransfeld, K.; Guentherodt, H.J.

    1980-01-01

    Propagation of longitudinal waves in superconducting amorphous Pd 30 Zr 70 has been studied down to temperatures as low as 0.4 K. A strong decrease of the absorption is observed for temperatures lower than 1.5 K whereas no change of the absorption occurs when passing through the super-conducting transition temperature. Below 1.5 K the absorption becomes strongly magnetic-field dependent. Its overall behaviour is compared with a recently developed theory. At the lowest temperatures, the temperature variation of the sound velocity exhibits a contribution arising from resonant interaction of phonons with tunnelling centers, also present in this material. (author)

  9. Studies of hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, S G; Carlos, W E

    1984-07-01

    This report discusses the results of probing the defect structure and bonding of hydrogenated amorphous silicon films using both nuclear magnetic resonance (NMR) and electron spin resonance (ESR). The doping efficiency of boron in a-Si:H was found to be less than 1%, with 90% of the boron in a threefold coordinated state. On the other hand, phosphorus NMR chemical shift measurements yielded a ration of threefold to fourfold P sites of roughly 4 to 1. Various resonance lines were observed in heavily boron- and phosphorus-doped films and a-SiC:H alloys. These lines were attributed to band tail states on twofold coordinated silicon. In a-SiC:H films, a strong resonance was attributed to dangling bonds on carbon atoms. ESR measurements on low-pressure chemical-vapor-deposited (LPCVD) a-Si:H were performed on samples. The defect density in the bulk of the films was 10/sup 17//cc with a factor of 3 increase at the surface of the sample. The ESR spectrum of LPCVD-prepared films was not affected by prolonged exposure to strong light. Microcrystalline silicon samples were also examined. The phosphorus-doped films showed a strong signal from the crystalline material and no resonance from the amorphous matrix. This shows that phosphorus is incorporated in the crystals and is active as a dopant. No signal was recorded from the boron-doped films.

  10. Autonomous Ice Mass Balance Observations for Changing Arctic Sea Ice Conditions

    Science.gov (United States)

    Whitlock, J. D.; Planck, C.; Perovich, D. K.; Richter-Menge, J.; Elder, B. C.; Polashenski, C.

    2016-12-01

    Results from observational data and predictive models agree: the state of the Arctic sea ice cover is in transition with a major shift from thick multiyear ice to thinner seasonal ice. The ice mass-balance represents the integration of all surface and ocean heat fluxes, and frequent temporal measurement can aid in attributing the impact of these forcing fluxes on the ice cover. Autonomous Ice Mass Balance buoys (IMB's) have proved to be important measurement tools allowing in situ, long-term data collection at multiple locations. Seasonal IMB's (SIMB's) are free floating versions of the IMB that allow data collection in thin ice and during times of transition. To accomplish this a custom computer was developed to integrate the scientific instruments, power management, and data communications while providing expanded autonomous functionality. This new design also allows for the easy incorporation of other sensors. Additionally, the latest generation of SIMB includes improvements to make it more stable, longer lasting, easier to deploy, and less expensive. Models can provide important insights as to where to deploy the sea ice mass balance buoys and what measurements are the most important. The resulting dataset from the buoys can be used to inform and assess model results.

  11. Physical stability of API/polymer-blend amorphous solid dispersions.

    Science.gov (United States)

    Lehmkemper, Kristin; Kyeremateng, Samuel O; Bartels, Mareike; Degenhardt, Matthias; Sadowski, Gabriele

    2018-03-01

    The preparation of amorphous solid dispersions (ASDs) is a well-established strategy for formulating active pharmaceutical ingredients by embedding them in excipients, usually amorphous polymers. Different polymers can be combined for designing ASDs with desired properties like an optimized dissolution behavior. One important criterion for the development of ASD compositions is the physical stability. In this work, the physical stability of API/polymer-blend ASDs was investigated by thermodynamic modeling and stability studies. Amorphous naproxen (NAP) and acetaminophen (APAP) were embedded in blends of hydroxypropyl methylcellulose acetate succinate (HPMCAS) and either poly(vinylpyrrolidone) (PVP) or poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64). Parameters for modeling the API solubility in the blends and the glass-transition temperature curves of the water-free systems with Perturbed-Chain Statistical Associating Fluid Theory and Kwei equation, respectively, were correlated to experimental data. The phase behavior for standardized storage conditions (0%, 60% and 75% relative humidity (RH)) was predicted and compared to six months-long stability studies. According to modeling and experimental results, the physical stability was reduced with increasing HPMCAS content and increasing RH. This trend was observed for all investigated systems, with both APIs (NAP and APAP) and both polymer blends (PVP/HPMCAS and PVPVA64/HPMCAS). PC-SAFT and the Kwei equation turned out to be suitable tools for modeling and predicting the physical stability of the investigated API/polymer-blends ASDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Hole conduction pathways in transparent amorphous tin oxides

    Science.gov (United States)

    Wahila, Matthew; Lebens-Higgins, Zachary; Quackenbush, Nicholas; Piper, Louis; Butler, Keith; Hendon, Christopher; Walsh, Aron; Watson, Graeme

    P-type transparent amorphous oxide semiconductors (TAOS) have yet to be sufficiently demonstrated or commercialized, severely limiting the possible device architecture of transparent and flexible oxide electronics. The lack of p-type amorphous oxide candidates mainly originates from the directional oxygen 2 p character of their topmost valence states. Previous attempts to create p-type oxides have involved hybridization of the O 2 p with metal orbitals, such as with CuAlO2 and its Cu 3 d - O 2 p hybridization. However, the highly directional nature of the utilized orbitals means that structural disorder inhibits hybridization and severely disrupts hole-conduction pathways. Crystalline stannous oxide (SnO) and other lone-pair active post-transition metal oxides can have reduced localization at the valence band edge due to complex hybridization between the O 2 p, metal p, and spherical metal s-orbitals. I will discuss our investigation of structural disorder in SnO. Using a combination of synchrotron spectroscopy, and atomistic calculations, our investigation elucidates the important interplay between atomistic and electronic structure in establishing continuous hole conduction pathways at the valence band edge of transparent amorphous oxides.

  13. The influence of ice sheets on temperature during the past 38 million years inferred from a one-dimensional ice sheet-climate model

    NARCIS (Netherlands)

    Stap, Lennert B.; Van De Wal, Roderik S.W.; De Boer, Bas; Bintanja, Richard; Lourens, Lucas J.

    2017-01-01

    Since the inception of the Antarctic ice sheet at the Eocene-Oligocene transition ( ~34 Myr ago), land ice has played a crucial role in Earth's climate. Through feedbacks in the climate system, land ice variability modifies atmospheric temperature changes induced by orbital, topographical, and

  14. Heat capacity of amorphous and disordered Nb3Ge thin films

    International Nuclear Information System (INIS)

    Rao, N.A.H.K.

    1979-06-01

    Heat capacity measurements on 1000 to 1500A thick amorphous Nb 3 Ge and granular Al films have been carried out using an ac technique. The major goal of the experiment was to study the effect of thermal fluctuations, both above and below the superconducting transition temperature T/sub c/, in dirty, short meanfree path materials

  15. Water migration mechanisms in amorphous powder material and related agglomeration propensity

    NARCIS (Netherlands)

    Renzetti, S.; Voogt, J.A.; Oliver, L.; Meinders, M.B.J.

    2012-01-01

    The agglomeration phenomenon of amorphous particulate material is a major problem in the food industry. Currently, the glass transition temperature (Tg) is used as a fundamental parameter to describe and control agglomeration. Models are available that describe the kinetics of the agglomeration

  16. Critical behavior of electrical resistivity in amorphous Fe–Zr alloys

    Indian Academy of Sciences (India)

    Electrical resistivity (ρ) of the amorphous (a-)Fe100-Zr ( = 8.5, 9.5 and 10) alloys has been measured in the temperature range 77 to 300 K, which embraces the second-order magnetic phase transition at the Curie temperature point . Analysis of the resistivity data particularly in the critical region reveals that these ...

  17. Comparison between Zr-Rh amorphous alloys fabricated by different processes

    International Nuclear Information System (INIS)

    Missell, F.P.

    1984-01-01

    It has been considered Zr-Rh amorphous alloys fabricated by sputtering and melt-spinning. For these materials, it was compared the superconducting transition temperatures T c , the superior critical field H c2 , the states density at Fermi energy N*, the dependence of T c with the hydrostatic pressure and results of differential thermic analysis. (A.C.A.S.) [pt

  18. Bathymetric and oceanic controls on Abbot Ice Shelf thickness and stability

    Science.gov (United States)

    Cochran, J. R.; Jacobs, S. S.; Tinto, K. J.; Bell, R. E.

    2014-05-01

    Ice shelves play key roles in stabilizing Antarctica's ice sheets, maintaining its high albedo and returning freshwater to the Southern Ocean. Improved data sets of ice shelf draft and underlying bathymetry are important for assessing ocean-ice interactions and modeling ice response to climate change. The long, narrow Abbot Ice Shelf south of Thurston Island produces a large volume of meltwater, but is close to being in overall mass balance. Here we invert NASA Operation IceBridge (OIB) airborne gravity data over the Abbot region to obtain sub-ice bathymetry, and combine OIB elevation and ice thickness measurements to estimate ice draft. A series of asymmetric fault-bounded basins formed during rifting of Zealandia from Antarctica underlie the Abbot Ice Shelf west of 94° W and the Cosgrove Ice Shelf to the south. Sub-ice water column depths along OIB flight lines are sufficiently deep to allow warm deep and thermocline waters observed near the western Abbot ice front to circulate through much of the ice shelf cavity. An average ice shelf draft of ~200 m, 15% less than the Bedmap2 compilation, coincides with the summer transition between the ocean surface mixed layer and upper thermocline. Thick ice streams feeding the Abbot cross relatively stable grounding lines and are rapidly thinned by the warmest inflow. While the ice shelf is presently in equilibrium, the overall correspondence between draft distribution and thermocline depth indicates sensitivity to changes in characteristics of the ocean surface and deep waters.

  19. Ice sheet margins and ice shelves

    Science.gov (United States)

    Thomas, R. H.

    1984-01-01

    The effect of climate warming on the size of ice sheet margins in polar regions is considered. Particular attention is given to the possibility of a rapid response to warming on the order of tens to hundreds of years. It is found that the early response of the polar regions to climate warming would be an increase in the area of summer melt on the ice sheets and ice shelves. For sufficiently large warming (5-10C) the delayed effects would include the breakup of the ice shelves by an increase in ice drainage rates, particularly from the ice sheets. On the basis of published data for periodic changes in the thickness and melting rates of the marine ice sheets and fjord glaciers in Greenland and Antarctica, it is shown that the rate of retreat (or advance) of an ice sheet is primarily determined by: bedrock topography; the basal conditions of the grounded ice sheet; and the ice shelf condition downstream of the grounding line. A program of satellite and ground measurements to monitor the state of ice sheet equilibrium is recommended.

  20. Ice Lithography for Nanodevices

    DEFF Research Database (Denmark)

    Han, Anpan; Kuan, A.; Wang, J.

    Water vapor is condensed onto a cold sample, coating it with a thin-film of ice. The ice is sensitive to electron beam lithography exposure. 10 nm ice patterns are transferred into metals by “melt-off”. Non-planar samples are coated with ice, and we pattern on cantilevers, AFM tips, and suspended...

  1. In situ observation of shear-driven amorphization in silicon crystals

    Energy Technology Data Exchange (ETDEWEB)

    He, Yang; Zhong, Li; Fan, Feifei; Wang, Chongmin; Zhu, Ting; Mao, Scott X.

    2016-09-19

    Amorphous materials have attracted great interest in the scientific and technological fields. An amorphous solid usually forms under the externally driven conditions of melt-quenching, irradiation and severe mechanical deformation. However, its dynamic formation process remains elusive. Here we report the in situ atomic-scale observation of dynamic amorphization processes during mechanical straining of nanoscale silicon crystals by high resolution transmission electron microscopy (HRTEM). We observe the shear-driven amorphization (SDA) occurring in a dominant shear band. The SDA involves a sequence of processes starting with the shear-induced diamond-cubic to diamond-hexagonal phase transition that is followed by dislocation nucleation and accumulation in the newly formed phase, leading to the formation of amorphous silicon. The SDA formation through diamond-hexagonal phase is rationalized by its structural conformity with the order in the paracrystalline amorphous silicon, which maybe widely applied to diamond-cubic materials. Besides, the activation of SDA is orientation-dependent through the competition between full dislocation nucleation and partial gliding.

  2. Effects of thermal relaxation on an amorphous superconducting Zr--Rh alloy

    International Nuclear Information System (INIS)

    Drehman, A.J.; Johnson, W.L.

    1978-05-01

    The electronic and superconducting properties of an amorphous transition metal alloy are used to evaluate the effects of low temperature annealing. It is observed that the superconducting transition temperature and the electrical resistivity relax exponentially in time from their initial value to a final relaxed value. From this an activation energy for the relaxation process is derived and an explanation is suggested which involves internal stress

  3. Universal amorphous-amorphous transition in GexSe100-x glasses under pressure

    DEFF Research Database (Denmark)

    Yildirim, Can; Micoulaut, Matthieu; Boolchand, Punit

    2016-01-01

    Pressure induced structural modifications in vitreous GexSe100−x (where 10 ≤ x ≤ 25) are investigated using X-ray absorption spectroscopy (XAS) along with supplementary X-ray diffraction (XRD) experiments and ab initio molecular dynamics (AIMD) simulations. Universal changes in distances and angle......–20 GPa, depending on the composition. This increase is attributed to the metallization event that can be traced with the red shift in Ge K edge energy which is also identified by the principal peak position of the structure factor. The densification mechanisms are studied in details by means of AIMD...... simulations and compared to the experimental results. The evolution of bond angle distributions, interatomic distances and coordination numbers are examined and lead to similar pressure-induced structural changes for any composition....

  4. Monitoring of sea ice drift and area flux in the Fram Strait

    Science.gov (United States)

    Sandven, S.; Kloster, K.; Wåhlin, J.

    2009-04-01

    The western part of the Fram strait is normally covered with sea ice throughout the year. The ice is stationary as fast ice out to 70 -140km from the Greenland coast. Outside is a zone with drifting ice with a gradual increase in drift speed further eastwards to the centre of the strait. Since 2004 NERSC has used ENVISAT ASAR Wideswath images with 150 m resolution to estimate ice drift with three days interval. To resolve the zonal variability in the ice drift field, strait is divided into four different zones. Zone I has usually fastice, zone II is the transition zone with a zonal ice drift gradient, Zone III is only drifting ice and zone IV includes the shelf break and the marginal ice zone where the ice drift is normally at a maximum. This is zone is also more difficult for ice drift for ice drift retrieval from satellites because of quite homogeneous ice cover. The ice area flux is calculated from the detailed ice drift- and concentration-profiles at 79N, as the integral in longitude of the product of ice concentration and ice displacement. The data shows an increased ice flux over the last four seasons since 2004-05. The SAR derived ice drift data are compared with similar ice drift data from AMSRE and merged QuikScat and SSMI data for the winter season October to April when passive microwave and scatterometer data can be used for ice drift retrieval. The comparison shows that the SAR data resolves the zonal structure and gives a general higher ice drift compared the other data sets. SAR also provides year-round data on ice drift, which allows a more precise estimation of monthly and annual ice area fluxes. The study is supported by the DAMOCLES project.

  5. Structural morphology of amorphous conducting carbon film

    Indian Academy of Sciences (India)

    Unknown

    in nanotubes and sp3 rich amorphous carbons for their application in field emission, device application, etc in- vestigations on sp2 rich amorphous carbon forms are very few. Though DLC films have potential application in field emission (FE) due to their low threshold voltage, the carbon centres, which are believed to play ...

  6. Towards upconversion for amorphous silicon solar cells

    NARCIS (Netherlands)

    de Wild, J.; Meijerink, A.; Rath, J.K.; van Sark, W.G.J.H.M.; Schropp, R.E.I.

    2010-01-01

    Upconversion of subbandgap light of thin film single junction amorphous silicon solar cells may enhance their performance in the near infrared (NIR). In this paper we report on the application of the NIR–vis upconverter β-NaYF4:Yb3+(18%) Er3+(2%) at the back of an amorphous silicon solar cell in

  7. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    TECS

    flexible triple junction, amorphous silicon solar cells. At the Malaysia Energy Centre (MEC), we fabricated triple junction amorphous silicon solar cells (up to 12⋅7% efficiency (Wang et al 2002)) and laser-interconnected modules on steel, glass and polyimide substrates. A major issue encountered is the adhesion of thin film ...

  8. Colors and the evolution of amorphous galaxies

    International Nuclear Information System (INIS)

    Gallagher, J.S. III; Hunter, D.A.

    1987-01-01

    UBVRI and H-alpha photometric observations are presented for 16 amorphous galaxies and a comparison sample of Magellanic irregular (Im) and Sc spiral galaxies. These data are analyzed in terms of star-formation rates and histories in amorphous galaxies. Amorphous galaxies have mean global colors and star-formation rates per unit area that are similar to those in giant Im systems, despite differences in spatial distributions of star-forming centers in these two galactic structural classes. Amorphous galaxies differ from giant Im systems in having somewhat wider scatter in relationships between B - V and U - B colors, and between U - B and L(H-alpha)/L(B). This scatter is interpreted as resulting from rapid variations in star-formation rates during the recent past, which could be a natural consequence of the concentration of star-forming activity into centrally located, supergiant young stellar complexes in many amorphous galaxies. While the unusual spatial distribution and intensity of star formation in some amorphous galaxies is due to interactions with other galaxies, several amorphous galaxies are relatively isolated and thus the processes must be internal. The ultimate evolutionary fate of rapidly evolving amorphous galaxies remains unknown. 77 references

  9. Electron beam recrystallization of amorphous semiconductor materials

    Science.gov (United States)

    Evans, J. C., Jr.

    1968-01-01

    Nucleation and growth of crystalline films of silicon, germanium, and cadmium sulfide on substrates of plastic and glass were investigated. Amorphous films of germanium, silicon, and cadmium sulfide on amorphous substrates of glass and plastic were converted to the crystalline condition by electron bombardment.

  10. Photoexcitation-induced processes in amorphous semiconductors

    International Nuclear Information System (INIS)

    Singh, Jai

    2005-01-01

    Theories for the mechanism of photo-induced processes of photodarkening (PD), volume expansion (VE) in amorphous chalcogenides are presented. Rates of spontaneous emission of photons by radiative recombination of excitons in amorphous semiconductors are also calculated and applied to study the excitonic photoluminescence in a-Si:H. Results are compared with previous theories

  11. Preparation of an amorphous sodium furosemide salt improves solubility and dissolution rate and leads to a faster Tmax after oral dosing to rats

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Gordon, Sarah; Holm, René

    2013-01-01

    Amorphous forms of furosemide sodium salt and furosemide free acid were prepared by spray drying. For the preparation of the amorphous free acid, methanol was utilised as the solvent, whereas the amorphous sodium salt was formed from a sodium hydroxide-containing aqueous solvent in equimolar...... amounts of NaOH and furosemide. Information about the structural differences between the two amorphous forms was obtained by Fourier Transform Infrared Spectroscopy (FTIR), and glass transition temperature (Tg) was determined using Differential Scanning Calorimetry (DSC). The stability and devitrification...... tendency of the two amorphous forms were investigated by X-ray Powder Diffraction (XRPD). The apparent solubility of the two amorphous forms and the crystalline free acid form of furosemide in various gastric and intestinal stimulated media was determined. Moreover, the dissolution characteristics...

  12. Solid-state diffusion in amorphous zirconolite

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.; Dove, M. T.; Trachenko, K. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Zarkadoula, E. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6138 (United States); Todorov, I. T. [STFC Daresbury Laboratory, Warrington WA4 1EP (United Kingdom); Geisler, T. [Steinmann-Institut für Geologie, Mineralogie und Paläontologie, University of Bonn, D-53115 Bonn (Germany); Brazhkin, V. V. [Institute for High Pressure Physics, RAS, 142190 Moscow (Russian Federation)

    2014-11-14

    We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also find that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.

  13. Locomotion of Amorphous Surface Robots

    Science.gov (United States)

    Bradley, Arthur T. (Inventor)

    2016-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  14. Glass Transition Kinetics of 2714A amorphous alloy

    Science.gov (United States)

    Shanker Rao, T.; Lilly Shanker Rao, T.; Shaker, A. M.; Venkataraman, K.

    2018-03-01

    The present study is related to the kinetics of onset crystallization, Tx and peak crystallization Tp of cobalt based metallic glass 2714A (Co65Si15B14Fe4Ni2) using Differential Scanning Calorimetry (DSC). Non-isothermal measurements were performed at different heating rates (2, 4, 6, 8 and 10 K/min).The experimental results of the crystallization were studied by two most frequently used methods, i.e., Moynihan and Kissinger. The onset crystallization was also studied by VFT and Lasock’s approaches in addition to the above two methods. The activation energy of crystallization Ec was found to be 622.86 and 638.28 kJ/mol and Ex the activation energy of onset crystallization to be 676.34 and 688.93 kJ/mol respectively. Here Tx is used as a substitution of Tg to calculate the fragility index m of the cobalt based metallic glass in the absence of Tg. The fragility index, m which is a measure of glass forming ability (GFA) is also calculated and the value falls between 20 and 60. This indicates the studied metallic glass is an intermediate strong glass.

  15. Stochastic ice stream dynamics.

    Science.gov (United States)

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-09

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.

  16. Sea Ice Ecosystems

    Science.gov (United States)

    Arrigo, Kevin R.

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  17. Spectroscopic and mechanical studies on the Fe-based amorphous alloy 2605SA1

    Energy Technology Data Exchange (ETDEWEB)

    Cabral P, A.; Garcia S, I. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Contreras V, J. A.; Garcia S, F. [Universidad Autonoma del Estado de Mexico, Facultad de Ciencias, El Cerrillo Piedras Blancas, Toluca, Estado de Mexico (Mexico); Nava, N., E-mail: agustin.cabral@inin.gob.m [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, 07730 Mexico D. F. (Mexico)

    2010-07-01

    The Vickers micro-hardness of this alloy was unusually dependent on the heat treatment from 300 to 634 K, inferring important micro-structural changes and the presence of amorphous grains before its phase transition. Once the alloy is crystallized, the micro-hardness is characteristic of a brittle alloy, the main problem of these alloys. Within the amorphous state, other properties like free-volume, magnetic states and Fe-Fe distances were followed by Positron annihilation lifetime spectroscopy and Moessbauer spectroscopy, respectively, to analyze those micro-structural changes, thermally induced, which are of paramount interest to understand their brittleness problem. (Author)

  18. Spectroscopic and mechanical studies on the Fe-based amorphous alloy 2605SA1

    International Nuclear Information System (INIS)

    Cabral P, A.; Garcia S, I.; Contreras V, J. A.; Garcia S, F.; Nava, N.

    2010-01-01

    The Vickers micro-hardness of this alloy was unusually dependent on the heat treatment from 300 to 634 K, inferring important micro-structural changes and the presence of amorphous grains before its phase transition. Once the alloy is crystallized, the micro-hardness is characteristic of a brittle alloy, the main problem of these alloys. Within the amorphous state, other properties like free-volume, magnetic states and Fe-Fe distances were followed by Positron annihilation lifetime spectroscopy and Moessbauer spectroscopy, respectively, to analyze those micro-structural changes, thermally induced, which are of paramount interest to understand their brittleness problem. (Author)

  19. Formation of amorphous Ti-50at.%Pt by solid state reactions during mechanical alloying

    CSIR Research Space (South Africa)

    Mahlatji, ML

    2013-10-01

    Full Text Available ) homogenous equiaxed particles MA of crystalline powder mixtures of two transition metals often results in the formation of amorphous alloys (Koch et al., 1983; Schwarz and Koch, 1986). It is generally accepted that this is due to solid-state amorphization...Ni (Schwarz, Petrich, and Saw, 1985; Liang, Wang, and Li, 1995) and TiPd (Thompson and Politis, 1987) systems. The deformation, fracturing, and cold welding of powder particles is illustrated by Figure 5(a-b), where the formerly spherical/-spongy particles...

  20. The role of cracks in the crystal nucleation process of amorphous griseofulvin

    Science.gov (United States)

    Willart, J. F.; Dudognon, E.; Mahieu, A.; Eddleston, M.; Jones, W.; Descamps, M.

    2017-04-01

    In this paper we have investigated the recrystallization properties of amorphous griseofulvin obtained by melt quenching. We have shown that the maximum nucleation rates of crystalline forms 2 and 3 are located around the glass transition temperature. However, it appears that these nucleation rates are strongly increased by the sudden formation of cracks into the amorphous solid during deep quenches below Tg. Suitable thermal treatments have revealed that these cracks strongly promote the development of crystalline nuclei, but do not produce the nuclei themselves. The investigations have been performed by differential scanning calorimetry and by thermal microscopy.

  1. Amorphous TM1−xBx alloy particles prepared by chemical reduction (invited)

    DEFF Research Database (Denmark)

    Linderoth, Søren; Mørup, Steen

    1991-01-01

    Amorphous transition-metal boron (TM-B) alloy particles can be prepared by chemical reduction of TM ions by borohydride in aqueous solutions. ln the last few years systematic studies of the parameters which control the composition, and, in turn, many of the properties of the alloy particles, have...... been performed and are reviewed in the present paper. The most important preparation parameters which influence the composition are the concentration of the borohydride solution and the pH of the TM salt solution. By controlling these parameters it is possible to prepare amorphous alloy samples...

  2. Thermal conductivity of the cryoprotective cocktail DP6 in cryogenic temperatures, in the presence and absence of synthetic ice modulators.

    Science.gov (United States)

    Ehrlich, Lili E; Malen, Jonathan A; Rabin, Yoed

    2016-10-01

    The thermal conductivity of the cryoprotective agent (CPA) cocktail DP6 in combination with synthetic ice modulators (SIMs) is measured in this study, using a transient hot-wire method. DP6 is a mixture of 3 M dimethyl sulfoxide (DMSO) and 3 M propylene glycol, which received significant attention in the cryobiology community in recent years. Tested SIMs include 6% 1,3Cyclohexanediol, 6% 2,3Butanediol, and 12% PEG400 (percentage by volume). This study integrates the scanning cryomacroscope for visual verification of crystallization and vitrification events. It is demonstrated that the thermal conductivity of the vitrifying CPA cocktail decreases monotonically with the decreasing temperature down to -180 °C. By contrast, the thermal conductivity of the crystalline material increases with decreasing temperature in the same temperature range. Results of this study demonstrate that the thermal conductivity may vary by three fold between the amorphous and crystalline phases of DP6 below the glass transition temperature of DP6 (Tg = -119 °C). The selected SIMs demonstrate the ability to inhibit crystallization in DP6, even at subcritical cooling rates. An additional ice suppression capability is observed by the Euro-Collins as a vehicle solution, disproportionate to its volume ratio in the cocktail. The implication of the observed thermal conductivity differences between the amorphous and crystalline phases of the same cocktail on cryopreservation simulations is significant in some cases and must be taken into account in thermal analyses of cryopreservation protocols. Copyright © 2016. Published by Elsevier Inc.

  3. Ross Ice Shelf, Antarctic Ice and Clouds

    Science.gov (United States)

    1991-01-01

    In this view of Antarctic ice and clouds, (56.5S, 152.0W), the Ross Ice Shelf of Antarctica is almost totally clear, showing stress cracks in the ice surface caused by wind and tidal drift. Clouds on the eastern edge of the picture are associated with an Antarctic cyclone. Winds stirred up these storms have been known to reach hurricane force.

  4. Metastable Nitric Acid Trihydrate in Ice Clouds.

    Science.gov (United States)

    Weiss, Fabian; Kubel, Frank; Gálvez, Óscar; Hoelzel, Markus; Parker, Stewart F; Baloh, Philipp; Iannarelli, Riccardo; Rossi, Michel J; Grothe, Hinrich

    2016-03-01

    The composition of high-altitude ice clouds is still a matter of intense discussion. The constituents in question are ice and nitric acid hydrates, but the exact phase composition of clouds and its formation mechanisms are still unknown. In this work, conclusive evidence for a long-predicted phase, alpha-nitric acid trihydrate (alpha-NAT), is presented. This phase was characterized by a combination of X-ray and neutron diffraction experiments, allowing a convincing structure solution. Furthermore, vibrational spectra (infrared and inelastic neutron scattering) were recorded and compared with theoretical calculations. A strong interaction between water ice and alpha-NAT was found, which explains the experimental spectra and the phase-transition kinetics. On the basis of these results, we propose a new three-step mechanism for NAT formation in high-altitude ice clouds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. On the potential for abrupt Arctic winter sea-ice loss

    NARCIS (Netherlands)

    Bathiany, S.; Notz, Dirk; Mauritsen, T.; Raedel, G.; Brovkin, V.

    2016-01-01

    The authors examine the transition from a seasonally ice-covered Arctic to an Arctic Ocean that is sea ice free all year round under increasing atmospheric CO2 levels. It is shown that in comprehensive climate models, such loss of Arctic winter sea ice area is faster than the preceding loss of

  6. Effect of solute nature on the polyamorphic transition in glassy polyol aqueous solutions.

    Science.gov (United States)

    Suzuki, Yoshiharu

    2017-08-14

    I examined the polyamorphic behavior of glassy dilute aqueous solutions of polyols (ethylene glycol, glycerol, meso-erythritol, xylitol, and D-sorbitol) under pressure at low temperatures. Although the volume change of the glassy aqueous solution varied continuously against pressure, the rate of the volume change appeared to vary discontinuously at the onset pressure of the gradual polyamorphic transition. It is thought that low-density liquid-like solvent water and high-density liquid-like solvent water coexist during the transition. Moreover, the existence of a solute induces the shift of polyamorphic transition to the lower-pressure side. The effect of a solute on the polyamorphic transition becomes larger in the order ethylene glycol, glycerol, meso-erythritol, xylitol, and D-sorbitol. Therefore, the solute can become a variable controlling the polyamorphic state of liquid water. This experimental result suggests that the metastable-equilibrium phase boundary between the low-density and the high-density amorphs for pure water is likely to be located at 0.22-0.23 GPa at about 150 K, which is slightly larger than the previously estimated pressure. Moreover, the solute-nature dependence on the polyamorphic transition seems to connect to that on the homogeneous nucleation temperature of polyol aqueous solution at ambient pressure. The region in which a low-density liquid appears coincides with the region in which the nucleus of ice Ih appears, suggesting that the formation of a low-density liquid is a precursory phenomenon of the nucleation of ice Ih.

  7. Effect of solute nature on the polyamorphic transition in glassy polyol aqueous solutions

    Science.gov (United States)

    Suzuki, Yoshiharu

    2017-08-01

    I examined the polyamorphic behavior of glassy dilute aqueous solutions of polyols (ethylene glycol, glycerol, meso-erythritol, xylitol, and D-sorbitol) under pressure at low temperatures. Although the volume change of the glassy aqueous solution varied continuously against pressure, the rate of the volume change appeared to vary discontinuously at the onset pressure of the gradual polyamorphic transition. It is thought that low-density liquid-like solvent water and high-density liquid-like solvent water coexist during the transition. Moreover, the existence of a solute induces the shift of polyamorphic transition to the lower-pressure side. The effect of a solute on the polyamorphic transition becomes larger in the order ethylene glycol, glycerol, meso-erythritol, xylitol, and D-sorbitol. Therefore, the solute can become a variable controlling the polyamorphic state of liquid water. This experimental result suggests that the metastable-equilibrium phase boundary between the low-density and the high-density amorphs for pure water is likely to be located at 0.22-0.23 GPa at about 150 K, which is slightly larger than the previously estimated pressure. Moreover, the solute-nature dependence on the polyamorphic transition seems to connect to that on the homogeneous nucleation temperature of polyol aqueous solution at ambient pressure. The region in which a low-density liquid appears coincides with the region in which the nucleus of ice Ih appears, suggesting that the formation of a low-density liquid is a precursory phenomenon of the nucleation of ice Ih.

  8. Atomic scale insight into the amorphous structure of Cu doped GeTe phase-change material

    International Nuclear Information System (INIS)

    Zhang, Linchuan; Sa, Baisheng; Zhou, Jian; Sun, Zhimei; Song, Zhitang

    2014-01-01

    GeTe shows promising application as a recording material for phase-change nonvolatile memory due to its fast crystallization speed and extraordinary amorphous stability. To further improve the performance of GeTe, various transition metals, such as copper, have been doped in GeTe in recent works. However, the effect of the doped transition metals on the stability of amorphous GeTe is not known. Here, we shed light on this problem for the system of Cu doped GeTe by means of ab initio molecular dynamics calculations. Our results show that the doped Cu atoms tend to agglomerate in amorphous GeTe. Further, base on analyzing the pair correlation functions, coordination numbers and bond angle distributions, remarkable changes in the local structure of amorphous GeTe induced by Cu are obviously seen. The present work may provide some clues for understanding the effect of early transition metals on the local structure of amorphous phase-change compounds, and hence should be helpful for optimizing the structure and performance of phase-change materials by doping transition metals.

  9. Photonic crystals, amorphous materials, and quasicrystals.

    Science.gov (United States)

    Edagawa, Keiichi

    2014-06-01

    Photonic crystals consist of artificial periodic structures of dielectrics, which have attracted much attention because of their wide range of potential applications in the field of optics. We may also fabricate artificial amorphous or quasicrystalline structures of dielectrics, i.e. photonic amorphous materials or photonic quasicrystals. So far, both theoretical and experimental studies have been conducted to reveal the characteristic features of their optical properties, as compared with those of conventional photonic crystals. In this article, we review these studies and discuss various aspects of photonic amorphous materials and photonic quasicrystals, including photonic band gap formation, light propagation properties, and characteristic photonic states.

  10. On the Arctic Ocean ice thickness response to changes in the external forcing

    Science.gov (United States)

    Stranne, Christian; Björk, Göran

    2012-12-01

    Submarine and satellite observations show that the Arctic Ocean ice cover has undergone a large thickness reduction and a decrease in the areal extent during the last decades. Here the response of the Arctic Ocean ice cover to changes in the poleward atmospheric energy transport, F wall, is investigated using coupled atmosphere-ice-ocean column models. Two models with highly different complexity are used in order to illustrate the importance of different internal processes and the results highlight the dramatic effects of the negative ice thickness—ice volume export feedback and the positive surface albedo feedback. The steady state ice thickness as a function of F wall is determined for various model setups and defines what we call ice thickness response curves. When a variable surface albedo and snow precipitation is included, a complex response curve appears with two distinct regimes: a perennial ice cover regime with a fairly linear response and a less responsive seasonal ice cover regime. The two regimes are separated by a steep transition associated with surface albedo feedback. The associated hysteresis is however small, indicating that the Arctic climate system does not have an irreversible tipping point behaviour related to the surface albedo feedback. The results are discussed in the context of the recent reduction of the Arctic sea ice cover. A new mechanism related to regional and temporal variations of the ice divergence within the Arctic Ocean is presented as an explanation for the observed regional variation of the ice thickness reduction. Our results further suggest that the recent reduction in areal ice extent and loss of multiyear ice is related to the albedo dependent transition between seasonal and perennial ice i.e. large areas of the Arctic Ocean that has previously been dominated by multiyear ice might have been pushed below a critical mean ice thickness, corresponding to the above mentioned transition, and into a state dominated by

  11. Calculations of the magnetic entropy change in amorphous through a microscopic anisotropic model: Applications to Dy{sub 70}Zr{sub 30} and DyCo{sub 3.4} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ranke, P. J. von, E-mail: von.ranke@uol.com.br; Nóbrega, E. P.; Ribeiro, P. O.; Alvarenga, T. S. T.; Lopes, P. H. O.; Sousa, V. S. R. de; Oliveira, N. A. de [Instituto de Física, Universidade do Estado do Rio de Janeiro—UERJ, Rua São Francisco Xavier, 524, 20550-013 Rio de Janeiro (Brazil); Caldas, A. [Sociedade Unificada de Ensino Superior e Cultura, SUESC, 20211-351 Rio de Janeiro (Brazil); Alho, B. P. [Instituto de Aplicação Fernando Rodrigues da Silveira, Universidade do Estado do Rio de Janeiro, Rua Santa Alexandrina, 288, 20260-232 Rio de Janeiro (Brazil); Carvalho, G. [Laboratório Nacional de Luz Sincroton—LNLS, 13083-970 Campinas, São Paulo (Brazil); Magnus, A.

    2014-10-14

    We report theoretical investigations on the magnetocaloric effect, described by the magnetic entropy change in rare earth—transition metal amorphous systems. The model includes the local anisotropy on the rare earth ions in Harris-Plischke-Zuckermann assumptions. The transition metals ions are treated in terms of itinerant electron ferromagnetism and the magnetic moment of rare earth ions is coupled to the polarized d-band by a local exchange interaction. The magnetocaloric effect was calculated in DyCo{sub 3.4} system, which presents amorphous sperimagnetic configuration. The calculations predict higher refrigerant capacity in the amorphous DyCo{sub 3.4} than in DyCo{sub 2} crystal, highlighting the importance of amorphous magnetocaloric materials. Our calculation of the magnetocaloric effect in Dy{sub 70}Zr{sub 30}, which presents amorphous asperomagnetic configuration, is in good agreement with the experimental result. Furthermore, magnetic entropy changes associated with crystal-amorphous configurations change are estimated.

  12. The Effects Of Methanol On The Trapping Of Volatile Ice Components

    Science.gov (United States)

    Brown, Wendy; Burke, D.

    2012-05-01

    Icy mantle evaporation gives the rich chemistry observed around hot cores. Water ice is the dominant component of many astrophysical ices and this has motivated studies to identify the sublimation of volatile ice components when water-rich ices are heated. Most investigations focus on binary ices, with water as the main component. To understand thermal processing of real astrophysical ices, the current laboratory definition of these ices needs to be extended. Methanol is important in this regard, due to its close association with water. It is typically the second most abundant species and the most abundant organic molecule detected in cometary comae, interstellar ices and on a variety of bodies at the edge of our solar system. Methanol abundance varies depending on the environment, ranging from as low as 5% with respect to water in dark clouds, to approximately 30% near low and high mass proto-stars. With this in mind, we present an investigation of the adsorption and desorption of interstellar ices, showing the effect of methanol on the trapping and release of volatiles from water-rich ices. OCS and CO2 are used as probe molecules since they reside in water and methanol-rich environments. Experiments show that OCS thermal desorption depends on ice morphology and composition. Data suggest that OCS is incorporated into amorphous water ice during heating, as a result of morphological changes in the ice, and it then explosively desorbs as the water crystallises. Similar effects are observed for OCS deposited on/within methanol ice. In contrast, OCS desorption from mixed water/methanol ices is complex. Desorption occurs at the onset of methanol desorption, in addition to co-desorption with crystalline water. Hence co-depositing impurities, e.g. methanol, with water ice significantly alters the desorption dynamics of volatiles. These results are of interest as they can be used to model star formation.

  13. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    Science.gov (United States)

    Farmer, Joseph C [Tracy, CA; Wong, Frank M. G. [Livermore, CA; Haslam, Jeffery J [Livermore, CA; Yang, Nancy [Lafayette, CA; Lavernia, Enrique J [Davis, CA; Blue, Craig A [Knoxville, TN; Graeve, Olivia A [Reno, NV; Bayles, Robert [Annandale, VA; Perepezko, John H [Madison, WI; Kaufman, Larry [Brookline, MA; Schoenung, Julie [Davis, CA; Ajdelsztajn, Leo [Walnut Creek, CA

    2009-11-17

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  14. The origin of the compressibility anomaly in amorphous silica: a molecular dynamics study

    International Nuclear Information System (INIS)

    Walker, Andrew M; Sullivan, Lucy A; Trachenko, Kostya; Bruin, Richard P; White, Toby O H; Dove, Martin T; Tyer, Richard P; Todorov, Ilian T; Wells, Stephen A

    2007-01-01

    We propose an explanation for the anomalous compressibility maximum in amorphous silica based on rigidity arguments. The model considers the fact that a network structure will be rigidly compressed in the high-pressure limit, and rigidly taut in the negative pressure limit, but flexible and hence softer at intermediate pressures. We validate the plausibility of this explanation by the analysis of molecular dynamics simulations. In fact this model is quite general, and will apply to any network solid, crystalline or amorphous; there are experimental indications that support this prediction. In contrast to other ideas concerning the compressibility maximum in amorphous silica, the model presented here does not invoke the existence of polyamorphic phase transitions in the glass phase

  15. Antarctic Ice Velocity Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This compilation of recent ice velocity data of the Antarctic ice sheet is intended for use by the polar scientific community. The data are presented in tabular form...

  16. Current Icing Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Current Icing Product (CIP) is an automatically-generated index suitable for depicting areas of potentially hazardous airframe icing. The CIP algorithm combines...

  17. Amorphous GaP produced by ion implantation

    International Nuclear Information System (INIS)

    Shimada, T.; Kato, Y.; Shiraki, Y.; Komatsubara, K.F.

    1976-01-01

    Two types of non-crystalline states ('disordered' and 'amorphous') of GaP were produced by using ion implantation and post annealing. A structural-phase-transition-like annealing behaviour from the 'disordered' state to the 'amorphous' state was observed. The ion dose dependence and the annealing behaviour of the atomic structure of GaP implanted with 200 keV -N + ions were studied by using electron diffraction, backscattering and volume change measurements. The electronic structure was also investigated by measuring optical absorption and electrical conductivity. The implanted layer gradually loses the crystalline order with the increase of the nitrogen dose. The optical absorption coefficient α and electric conductivity sigma of GaP crystals implanted with 200 keV -N + ions of 1 x 10 16 cm -2 were expressed as αhν = C(hν - E 0 )sup(n) and log sigma = A -BTsup(-1/4), respectively. Moreover, the volume of the implanted layer increased about three percent and the electron diffraction pattern was diffused halo whose intensity monotonically decreases along the radial direction. These results indicate that the as-implanted layer has neither a long range order or short range order ('disordered state'). In the sample implanted at 1 x 10 16 cm -2 , a structural phase-transition-like annealing stage was observed at around 400 0 C. That is, the optical absorption coefficient abruptly fell off from 6 x 10 4 to 7 x 10 3 cm -1 and the volume of the implanted layer decreased about 2% within an increase of less than 10 degrees in the anneal temperature. Moreover, the short range order of the lattice structure appeared in the electron diffraction pattern. According to the backscattering experiment, the heavily implanted GaP was still in the non-crystalline state even after annealing. These facts suggest that heavily implanted GaP, followed by annealing at around 400 0 C, is in the 'amorphous' state, although as-implanted GaP is not in the 'amorphous' state but in the

  18. Molecular modeling of amorphous and crosslinked cellulose

    Science.gov (United States)

    Chen, Wei

    2001-07-01

    Structure-property relationships in cellulose crosslinked with both conventional and elastomeric crosslinking agents were successfully calculated using molecular modeling. The observed yielding for these amorphous cellulose models, which occurred at approximately 8% strain according to the calculated stress-strain relationship, is due to the disruption of hydrogen bonds, the secondary crosslinks, between cellulose chain segments. Crosslinks hold cellulose chain segments together and block chain slippage to give cellulose fibers a higher initial modulus and better elastic response. However, these crosslinks restrict chain movement so that stress is concentrated in regions of the structure and cavities are formed and developed in these regions of the models, which correlate to final fiber failure. The flexibility and response to applied external force for some potential crosslink structures were examined by molecular modeling. These molecules, which have small energy differences between conformational states, are highly coiled and have small mean end-to-end distances (accounting for 40% to 50% of the length of their fully extended chains). The presence of oxygen atoms in the backbone along with asymmetric non-polar side groups, such as methyl groups, can greatly reduce the energy difference and the energy barrier between conformational states and can thus make chains highly coiled and easy to be extended. Decane crosslinks introduced more freedom to cellulose chain segments but didn't improve the deformation recovery in cellulose models. Conformational transitions were observed in decane crosslinks during deformation. Cellulose models crosslinked with poly(propylene oxide) pentamers or with the N-methyl substituted peptide pentamers show good deformation recovery without affecting the breaking strain. Both crosslinks didn't significantly change the initial modulus and the yielding behavior of cellulose. No conformation transitions were observed in these crosslinks

  19. Surface magnetic structures in amorphous ferromagnetic microwires

    International Nuclear Information System (INIS)

    Usov, N.A.; Serebryakova, O.N.; Gudoshnikov, S.A.; Tarasov, V.P.

    2017-01-01

    The spatial period of magnetization perturbations that occur near the surface of magnetic nanotube or nanowire under the influence of surface magnetic anisotropy is determined by means of numerical simulation as a function of the sample geometry and material parameters. The surface magnetization distribution obtained is then used to estimate the period of the surface magnetic texture in amorphous microwire of several micrometers in diameter by means of appropriate variational procedure. The period of the surface magnetic texture in amorphous microwire is found to be significantly smaller than the wire diameter. - Highlights: • Magnetic structure may arise near the magnetic nanotube surface under the influence of surface magnetic anisotropy. • The period of the surface magnetization pattern is calculated as a function of the sample geometry. • Similar magnetic structure may exist in amorphous microwire of several micrometers in diameter. • The period of the surface magnetic structure in amorphous wire is found to be significantly smaller than the wire diameter.

  20. Theoretical Considerations in Developing Amorphous Solid Dispersions

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Priemel, Petra Alexandra; Surwase, Sachin

    2014-01-01

    to their glass-forming ability and glass stability. In the main parts of this chapter, we review theoretical approaches to determine amorphous drug polymer miscibility and crystalline drug polymer solubility, as a prerequisite to develop amorphous solid dispersions (glass solutions).......Before pursuing the laborious route of amorphous solid dispersion formulation and development, which is the topic of many of the subsequent chapters in this book, the formulation scientist would benefit from a priori knowledge whether the amorphous route is a viable one for a given drug and how...... much solubility improvement, and hence increase in bioavailability, can be expected, and what forms of solid dispersion have been developed in the past. In this chapter, we therefore initially define the various forms of solid dispersions, and then go on to discuss properties of pure drugs with respect...

  1. Surface magnetic structures in amorphous ferromagnetic microwires

    Energy Technology Data Exchange (ETDEWEB)

    Usov, N.A., E-mail: usov@obninsk.ru [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation); Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108840 Troitsk, Moscow (Russian Federation); Serebryakova, O.N.; Gudoshnikov, S.A. [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation); Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108840 Troitsk, Moscow (Russian Federation); Tarasov, V.P. [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation)

    2017-05-01

    The spatial period of magnetization perturbations that occur near the surface of magnetic nanotube or nanowire under the influence of surface magnetic anisotropy is determined by means of numerical simulation as a function of the sample geometry and material parameters. The surface magnetization distribution obtained is then used to estimate the period of the surface magnetic texture in amorphous microwire of several micrometers in diameter by means of appropriate variational procedure. The period of the surface magnetic texture in amorphous microwire is found to be significantly smaller than the wire diameter. - Highlights: • Magnetic structure may arise near the magnetic nanotube surface under the influence of surface magnetic anisotropy. • The period of the surface magnetization pattern is calculated as a function of the sample geometry. • Similar magnetic structure may exist in amorphous microwire of several micrometers in diameter. • The period of the surface magnetic structure in amorphous wire is found to be significantly smaller than the wire diameter.

  2. OPTICAL CONSTANTS AND LAB SPECTRA OF WATER ICE V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Transmission spectra of amorphous and crystalline H2O-ice at temperatures from 20-150 K for a wavelength range from 1.11 to 2.63 microns. These spectra have not been...

  3. OPTICAL CONSTANTS AND LAB SPECTRA OF WATER ICE V1.1

    Data.gov (United States)

    National Aeronautics and Space Administration — Transmission spectra of amorphous and crystalline H2O-ice at temperatures from 20-150 K for a wavelength range from 1.11 to 2.63 microns. These spectra have not been...

  4. A fiber-optic ice detection system for large-scale wind turbine blades

    Science.gov (United States)

    Kim, Dae-gil; Sampath, Umesh; Kim, Hyunjin; Song, Minho

    2017-09-01

    Icing causes substantial problems in the integrity of large-scale wind turbines. In this work, a fiber-optic sensor system for detection of icing with an arrayed waveguide grating is presented. The sensor system detects Fresnel reflections from the ends of the fibers. The transition in Fresnel reflection due to icing gives peculiar intensity variations, which categorizes the ice, the water, and the air medium on the wind turbine blades. From the experimental results, with the proposed sensor system, the formation of icing conditions and thickness of ice were identified successfully in real time.

  5. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    Science.gov (United States)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  6. Amorphization Mechanism of Icosahedral Platinum Clusters

    International Nuclear Information System (INIS)

    Apra, Edoardo; Baletto, Francesca; Ferrando, Riccardo; Fortunelli, Alessandro

    2004-01-01

    The amorphization mechanism of high-symmetry pt nanoclusters is investigated by a combination of Molecular Dynamics simulations and Density Functional calculations. A general mechanism for amorphization, involving rosette-like structural transformations at fivefold vertices, is proposed. IN the tosette, a fivefold vertex is transformed into a hexagonal ring. We show that for icosahedral Pt nanoclusters, this transformation is associated with an energy gain, so that their most favorable structures have a low symmetry even at icosahedral magic numbers

  7. A Magnetic Sensor with Amorphous Wire

    Directory of Open Access Journals (Sweden)

    Dongfeng He

    2014-06-01

    Full Text Available Using a FeCoSiB amorphous wire and a coil wrapped around it, we have developed a sensitive magnetic sensor. When a 5 mm long amorphous wire with the diameter of 0.1 mm was used, the magnetic field noise spectrum of the sensor was about 30 pT/ÖHz above 30 Hz. To show the sensitivity and the spatial resolution, the magnetic field of a thousand Japanese yen was scanned with the magnetic sensor.

  8. First principles centroid molecular dynamics simulation of high pressure ices

    Science.gov (United States)

    Ikeda, Takashi

    2018-03-01

    The nuclear quantum effects (NQEs) on the structural, elastic, electronic, and vibrational properties of high pressure ices (HPIs) VIII, VII, and X at 270 K were investigated via first principles centroid molecular dynamics (CMD). Our simulations clearly show that even at relatively high temperature of 270 K, the NQEs play a definite role in the pressure-induced proton order (ice VIII)-disorder (ice VII) transition occurring at ˜30 GPa in our H2O ice and the subsequent transition to the symmetric phase ice X suggested to occur at ˜80 GPa. The internal pressure computed at constant NVT conditions shows that the NQEs manifest themselves in the equation of state of HPIs. Our employed approach based on first principles CMD for computing vibrational spectra is proved to be able to reproduce well the overall features of the measured infrared and Raman spectra.

  9. Moessbauer and transport studies of amorphous and icosahedral Zr-Ni-Cu-Ag-Al alloys

    International Nuclear Information System (INIS)

    Stadnik, Z.M.; Rapp, O.; Srinivas, V.; Saida, J.; Inoue, A.

    2002-01-01

    The alloy Zr 65 Al 7.5 Ni 10 Cu 7.3 Fe 0.2 Ag 10 in the amorphous and icosahedral states, and the bulk amorphous alloy Zr 65 Al 7.5 Ni 10 Cu 7.5 Ag 10 , have been studied with 57 Fe Moessbauer spectroscopy, electrical resistance and magnetoresistance techniques. The average quadrupole splitting in both alloys decreases with temperature as T 3/2 . The average quadrupole splitting in the icosahedral alloy is the largest ever reported for a metallic system. The lattice vibrations of the Fe atoms in the amorphous and icosahedral alloys are well described by a simple Debye model, with the characteristic Moessbauer temperatures of 379(29) and 439(28) K, respectively. Amorphous alloys Zr 65 Al 7. )5Ni 10 Cu 7.5 Ag 10 and Zr 65 Al 7.5 Ni 10 Cu 7.3 Fe 0.2 Ag 10 have been found to be superconducting with the transition temperature, T c , of about 1.7 K. The magnitude of Tc and the critical field slope at Tc are in agreement with previous work on Zr-based amorphous superconductors, while the low-temperature normal state resistivity is larger than typical results for binary and ternary Zr-based alloys. The resistivity of icosahedral Zr 65 Al 7.5 Ni 10 Cu 7.3 Fe 0.2 Ag 10 is larger than that for the amorphous ribbon of the same composition, as inferred both from direct measurements on the ribbons and from the observed magnetoresistance. However the icosahedral sample is non-superconducting in the measurement range down to 1.5 K. The results for the resistivity and the superconducting T c both suggest a stronger electronic disorder in the icosahedral phase than in the amorphous phase. (author)

  10. Aircraft Icing Handbook. (Update)

    Science.gov (United States)

    1993-01-01

    pp. 68-69, 1947. Speranza, F., OThe Formation of Ice,a Rivista di Meteorologia Aeronautics, 1(2), pp. 19-30, 1937. Steiner, R. 0., "The Icing of...Deposits of Ice on Airplane Carburetors,8 (Translation) Rivista di Meteorologia Aeronautica, 4(2), pp. 38-47, 1940. Von Glahn, U. H.; Renner, C. E

  11. Technology for Ice Rinks

    Science.gov (United States)

    1983-01-01

    Ron Urban's International Ice Shows set up portable ice rinks for touring troupes performing on temporary rinks at amusement parks, sports arenas, dinner theaters, shopping malls and civic centers. Key to enhanced rink portability, fast freezing and maintaining ice consistency is a mat of flexible tubing called ICEMAT, an offshoot of a solar heating system developed by Calmac, Mfg. under contract with Marshall.

  12. Facility for testing ice drills

    Science.gov (United States)

    Nielson, Dennis L.; Delahunty, Chris; Goodge, John W.; Severinghaus, Jeffery P.

    2017-05-01

    The Rapid Access Ice Drill (RAID) is designed for subsurface scientific investigations in Antarctica. Its objectives are to drill rapidly through ice, to core samples of the transition zone and bedrock, and to leave behind a borehole observatory. These objectives required the engineering and fabrication of an entirely new drilling system that included a modified mining-style coring rig, a unique fluid circulation system, a rod skid, a power unit, and a workshop with areas for the storage of supplies and consumables. An important milestone in fabrication of the RAID was the construction of a North American Test (NAT) facility where we were able to test drilling and fluid processing functions in an environment that is as close as possible to that expected in Antarctica. Our criteria for site selection was that the area should be cold during the winter months, be located in an area of low heat flow, and be at relatively high elevation. We selected a site for the facility near Bear Lake, Utah, USA. The general design of the NAT well (NAT-1) started with a 27.3 cm (10.75 in.) outer casing cemented in a 152 m deep hole. Within that casing, we hung a 14 cm (5.5 in.) casing string, and, within that casing, a column of ice was formed. The annulus between the 14 and 27.3 cm casings provided the path for circulation of a refrigerant. After in-depth study, we chose to use liquid CO2 to cool the hole. In order to minimize the likelihood of the casing splitting due to the volume increase associated with freezing water, the hole was first cooled and then ice was formed in increments from the bottom upward. First, ice cubes were placed in the inner liner and then water was added. Using this method, a column of ice was incrementally prepared for drilling tests. The drilling tests successfully demonstrated the functioning of the RAID system. Reproducing such a facility for testing of other ice drilling systems could be advantageous to other research programs in the future.

  13. New aspect of ultrasonic detection of some significant structural parameters of amorphous Se-Te alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kostial, P.; Malik, L. (Technical Univ. of Transport and Communication Engineering, Zilina (Czechoslovakia)); Both, L. (Meopta, Bratislava (Czechoslovakia))

    1983-12-16

    Measurements of the ultrasonic attenuation and transit time as a function of temperature in amorphous Se/sub 1-x/Te/sub x/ alloys (x = 1, 3, 10, and 20 at%) are made. There is a remarkable change in the slope of the ultrasonic transit time curve at 31 /sup 0/C (T/sub 1/) and a corresponding maximum in ultrasonic attenuation. The point T/sub 1/ is independent of the Te concentration. The second point T/sub 2/ found from curves shifts to higher temperatures with increase of the Te content. T/sub 2/ is identified as glass transition point of the alloy.

  14. Role of the nano amorphous interface in the crystallization of Sb2Te3 towards non-volatile phase change memory: insights from first principles.

    Science.gov (United States)

    Wang, Xue-Peng; Chen, Nian-Ke; Li, Xian-Bin; Cheng, Yan; Liu, X Q; Xia, Meng-Jiao; Song, Z T; Han, X D; Zhang, S B; Sun, Hong-Bo

    2014-06-14

    The nano amorphous interface is important as it controls the phase transition for data storage. Yet, atomic scale insights into such kinds of systems are still rare. By first-principles calculations, we obtain the atomic interface between amorphous Si and amorphous Sb2Te3, which prevails in the series of Si-Sb-Te phase change materials. This interface model reproduces the experiment-consistent phenomena, i.e. the amorphous stability of Sb2Te3, which defines the data retention in phase change memory, and is greatly enhanced by the nano interface. More importantly, this method offers a direct platform to explore the intrinsic mechanism to understand the material function: (1) by steric effects through the atomic "channel" of the amorphous interface, the arrangement of the Te network is significantly distorted and is separated from the p-orbital bond angle in the conventional phase-change material; and (2) through the electronic "channel" of the amorphous interface, high localized electrons in the form of a lone pair are "projected" to Sb2Te3 from amorphous Si by a proximity effect. These factors set an effective barrier for crystallization and improve the amorphous stability, and thus data retention. The present research and scheme sheds new light on the engineering and manipulation of other key amorphous interfaces, such as Si3N4/Ge2Sb2Te5 and C/Sb2Te3, through first-principles calculations towards non-volatile phase change memory.

  15. Determination of the melting point of amorphous semiconductors from the kinetics of their self-sustaining crystallization

    International Nuclear Information System (INIS)

    Kulyasova, O.A.; Balandin, V.Yu.; Dvurechenskii, A.V.; Aleksandrov, L.N.

    1987-01-01

    Amorphous semiconductors are becoming increasingly important. For this reason it is necessary to study their properties thoroughly. It is well known that the melting of amorphous semiconductors, in particular silicon (a-Si), is a first-order phase transition, occurring at a definite melting point T A that depends on the structural state of the a-Si. As was shown previously, the process of lateral self-sustaining crystallization (SC), characteristic for amorphous layers of silicon, depends on the time and temperature of the preheating, during which the layer remains amorphous but undergoes local structural changes. The purpose of this work is to determine the dependence of the depth of crystallization owing to SC in a-Si on its melting temperature. This will make it possible to determine, under experimental conditions, the value of T A from the depth of crystallization of a-Si

  16. Inhibition of Recrystallization of Amorphous Lactose in Nanocomposites Formed by Spray-Drying.

    Science.gov (United States)

    Hellrup, Joel; Alderborn, Göran; Mahlin, Denny

    2015-11-01

    This study aims at investigating the recrystallization of amorphous lactose in nanocomposites. In particular, the focus is on the influence of the nano- to micrometer length scale nanofiller arrangement on the amorphous to crystalline transition. Further, the relative significance of formulation composition and manufacturing process parameters for the properties of the nanocomposite was investigated. Nanocomposites of amorphous lactose and fumed silica were produced by co-spray-drying. Solid-state transformation of the lactose was studied at 43%, 84%, and 94% relative humidity using X-ray powder diffraction and microcalorimetry. Design of experiments was used to analyze spray-drying process parameters and nanocomposite composition as factors influencing the time to 50% recrystallization. The spray-drying process parameters showed no significant influence. However, the recrystallization of the lactose in the nanocomposites was affected by the composition (fraction silica). The recrystallization rate constant decreased as a function of silica content. The lowered recrystallization rate of the lactose in the nanocomposites could be explained by three mechanisms: (1) separation of the amorphous lactose into discrete compartments on a micrometer length scale (compartmentalization), (2) lowered molecular mobility caused by molecular interactions between the lactose molecules and the surface of the silica (rigidification), and/or (3) intraparticle confinement of the amorphous lactose. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. Liquid-like behavior of UV-irradiated interstellar ice analog at low temperatures

    Science.gov (United States)

    Tachibana, Shogo; Kouchi, Akira; Hama, Tetsuya; Oba, Yasuhiro; Piani, Laurette; Sugawara, Iyo; Endo, Yukiko; Hidaka, Hiroshi; Kimura, Yuki; Murata, Ken-ichiro; Yurimoto, Hisayoshi; Watanabe, Naoki

    2017-09-01

    Interstellar ice is believed to be a cradle of complex organic compounds, commonly found within icy comets and interstellar clouds, in association with ultraviolet (UV) irradiation and subsequent warming. We found that UV-irradiated amorphous ices composed of H2O, CH3OH, and NH3 and of pure H2O behave like liquids over the temperature ranges of 65 to 150 kelvin and 50 to 140 kelvin, respectively. This low-viscosity liquid-like ice may enhance the formation of organic compounds including prebiotic molecules and the accretion of icy dust to form icy planetesimals under certain interstellar conditions.

  18. Liquid-like behavior of UV-irradiated interstellar ice analog at low temperatures.

    Science.gov (United States)

    Tachibana, Shogo; Kouchi, Akira; Hama, Tetsuya; Oba, Yasuhiro; Piani, Laurette; Sugawara, Iyo; Endo, Yukiko; Hidaka, Hiroshi; Kimura, Yuki; Murata, Ken-Ichiro; Yurimoto, Hisayoshi; Watanabe, Naoki

    2017-09-01

    Interstellar ice is believed to be a cradle of complex organic compounds, commonly found within icy comets and interstellar clouds, in association with ultraviolet (UV) irradiation and subsequent warming. We found that UV-irradiated amorphous ices composed of H 2 O, CH 3 OH, and NH 3 and of pure H 2 O behave like liquids over the temperature ranges of 65 to 150 kelvin and 50 to 140 kelvin, respectively. This low-viscosity liquid-like ice may enhance the formation of organic compounds including prebiotic molecules and the accretion of icy dust to form icy planetesimals under certain interstellar conditions.

  19. Broadband luminescence in liquid-solid transition

    CERN Document Server

    Achilov, M F; Trunilina, O V

    2002-01-01

    Broadband luminescence (BBL) intensity behavior in liquid-solid transition in polyethyleneglycol-600 has been established. Oscillation of BBL intensity observed in liquid-polycrystal transition are not found to observed in liquid-amorphous solid transition. It is shown that application of the theory of electron state tails to interpretation of BBL spectral properties in liquids demands restriction. BBL spectroscopy may be applied for optimization of preparation of polymers with determined properties. (author)

  20. Quantum phase transitions

    International Nuclear Information System (INIS)

    Sachdev, S.

    1999-01-01

    Phase transitions are normally associated with changes of temperature but a new type of transition - caused by quantum fluctuations near absolute zero - is possible, and can tell us more about the properties of a wide range of systems in condensed-matter physics. Nature abounds with phase transitions. The boiling and freezing of water are everyday examples of phase transitions, as are more exotic processes such as superconductivity and superfluidity. The universe itself is thought to have passed through several phase transitions as the high-temperature plasma formed by the big bang cooled to form the world as we know it today. Phase transitions are traditionally classified as first or second order. In first-order transitions the two phases co-exist at the transition temperature - e.g. ice and water at 0 deg., or water and steam at 100 deg. In second-order transitions the two phases do not co-exist. In the last decade, attention has focused on phase transitions that are qualitatively different from the examples noted above: these are quantum phase transitions and they occur only at the absolute zero of temperature. The transition takes place at the ''quantum critical'' value of some other parameter such as pressure, composition or magnetic field strength. A quantum phase transition takes place when co-operative ordering of the system disappears, but this loss of order is driven solely by the quantum fluctuations demanded by Heisenberg's uncertainty principle. The physical properties of these quantum fluctuations are quite distinct from those of the thermal fluctuations responsible for traditional, finite-temperature phase transitions. In particular, the quantum system is described by a complex-valued wavefunction, and the dynamics of its phase near the quantum critical point requires novel theories that have no analogue in the traditional framework of phase transitions. In this article the author describes the history of quantum phase transitions. (UK)

  1. Radiostratigraphy and age structure of the Greenland Ice Sheet.

    Science.gov (United States)

    MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Paden, John D; Prasad Gogineni, S; Young, S Keith; Rybarski, Susan C; Mabrey, Alexandria N; Wagman, Benjamin M; Morlighem, Mathieu

    2015-02-01

    Several decades of ice-penetrating radar surveys of the Greenland and Antarctic ice sheets have observed numerous widespread internal reflections. Analysis of this radiostratigraphy has produced valuable insights into ice sheet dynamics and motivates additional mapping of these reflections. Here we present a comprehensive deep radiostratigraphy of the Greenland Ice Sheet from airborne deep ice-penetrating radar data collected over Greenland by The University of Kansas between 1993 and 2013. To map this radiostratigraphy efficiently, we developed new techniques for predicting reflection slope from the phase recorded by coherent radars. When integrated along track, these slope fields predict the radiostratigraphy and simplify semiautomatic reflection tracing. Core-intersecting reflections were dated using synchronized depth-age relationships for six deep ice cores. Additional reflections were dated by matching reflections between transects and by extending reflection-inferred depth-age relationships using the local effective vertical strain rate. The oldest reflections, dating to the Eemian period, are found mostly in the northern part of the ice sheet. Within the onset regions of several fast-flowing outlet glaciers and ice streams, reflections typically do not conform to the bed topography. Disrupted radiostratigraphy is also observed in a region north of the Northeast Greenland Ice Stream that is not presently flowing rapidly. Dated reflections are used to generate a gridded age volume for most of the ice sheet and also to determine the depths of key climate transitions that were not observed directly. This radiostratigraphy provides a new constraint on the dynamics and history of the Greenland Ice Sheet. Phase information predicts reflection slope and simplifies reflection tracingReflections can be dated away from ice cores using a simple ice flow modelRadiostratigraphy is often disrupted near the onset of fast ice flow.

  2. Magnetic and magnetocaloric properties of amorphous Y{sub 3}Fe{sub 5}O{sub 12} compound

    Energy Technology Data Exchange (ETDEWEB)

    Nóbrega, E.P., E-mail: pilad@cbpf.br; Costa, S.S.; Alvarenga, T.S.T.; Alho, B.P.; Caldas, A.; Ribeiro, P.O.; Sousa, V.S.R de; Oliveira, N.A. de; Ranke, P.J. von

    2017-01-15

    We report a theoretical model formed by two coupled magnetic sublattices of localized spins in the presence of an applied magnetic field to investigate the magnetic characteristics and magnetocaloric properties of amorphous yttrium iron garnet. The magnetic state equation is based on Handrich–Kobe´s theory, where the amorphization is taken into account by introducing fluctuations in the exchange parameters. Experimental results report that Y{sub 3}Fe{sub 5}O{sub 12} presents a structural phase transition from crystalline to amorphous caused by a variation of external pressure. This phase transition on Y{sub 3}Fe{sub 5}O{sub 12} leads to interesting results in the magnetic properties and magnetocaloric quantities. - Highlights: • Study of magnetic and magnetocaloric properties of amorphous Y{sub 3}Fe{sub 5}O{sub 12} compound. • Theoretical model formed by two coupled magnetic sublattices of localized spins in the presence of an applied magnetic field. • The influence of crystalline/amorphous transition on the magnetocaloric effect.

  3. Preformulation studies and characterization of the physicochemical properties of amorphous polymers using artificial neural networks.

    Science.gov (United States)

    Ebube, N K; Owusu-Ababio, G; Adeyeye, C M

    2000-02-25

    The utility of artificial neural networks (ANNs) as a preformulation tool to determine the physicochemical properties of amorphous polymers such as the hydration characteristics, glass transition temperatures and rheological properties was investigated. The neural network simulator, CAD/Chem, based on the delta back-propagation paradigm was used for this study. The ANNs software was trained with sets of experimental data consisting of different polymer blends with known water-uptake profiles, glass transition temperatures and viscosity values. A set of similar data, not initially exposed to the ANNs was used to validate the ability of the ANNs to recognize patterns. The results of this investigation indicate that the ANNs accurately predicted the water-uptake, glass transition temperatures and viscosities of different amorphous polymers and their physical blends with a low % error (0-8%) of prediction. The ANNs also showed good correlation between the water-uptake and changes in the glass transition temperatures of the polymers. This study demonstrated the potential of the ANNs as a preformulation tool to evaluate the characteristics of amorphous polymers. This is particularly relevant when designing sustained release formulations that require the use of a fast hydrating polymer matrix.

  4. Arctic ice management

    Science.gov (United States)

    Desch, Steven J.; Smith, Nathan; Groppi, Christopher; Vargas, Perry; Jackson, Rebecca; Kalyaan, Anusha; Nguyen, Peter; Probst, Luke; Rubin, Mark E.; Singleton, Heather; Spacek, Alexander; Truitt, Amanda; Zaw, Pye Pye; Hartnett, Hilairy E.

    2017-01-01

    As the Earth's climate has changed, Arctic sea ice extent has decreased drastically. It is likely that the late-summer Arctic will be ice-free as soon as the 2030s. This loss of sea ice represents one of the most severe positive feedbacks in the climate system, as sunlight that would otherwise be reflected by sea ice is absorbed by open ocean. It is unlikely that CO2 levels and mean temperatures can be decreased in time to prevent this loss, so restoring sea ice artificially is an imperative. Here we investigate a means for enhancing Arctic sea ice production by using wind power during the Arctic winter to pump water to the surface, where it will freeze more rapidly. We show that where appropriate devices are employed, it is possible to increase ice thickness above natural levels, by about 1 m over the course of the winter. We examine the effects this has in the Arctic climate, concluding that deployment over 10% of the Arctic, especially where ice survival is marginal, could more than reverse current trends of ice loss in the Arctic, using existing industrial capacity. We propose that winter ice thickening by wind-powered pumps be considered and assessed as part of a multipronged strategy for restoring sea ice and arresting the strongest feedbacks in the climate system.

  5. Dead-ice environments

    DEFF Research Database (Denmark)

    Krüger, Johannes; Kjær, Kurt H.; Schomacker, Anders

    2010-01-01

    Kötlujökull transports considerable amounts of supraglacial debris at its snout because of frontal oscillations with frequent ice advances followed by ice-margin stagnation. Kötlujökull provides suitable conditions of studying dead-ice melting and landscape formation in a debris-charged lowland...... glacier environment. The scientific challenges are to answer the key questions. What are the conditions for dead-ice formation? From which sources does the sediment cover originate? Which melting and reworking processes act in the ice-cored moraines? What is the rate of de-icing in the ice-cored moraines...... under humid, sub-polar conditions? Does this rate differ from rates reported from polar environments of dry continental nature? How will the sedimentary architecture appear in the geological record? How will the final landsystem appear? These key questions are answered in a review of research...

  6. Autonomous Aerial Ice Observation for Ice Defense

    Directory of Open Access Journals (Sweden)

    Joakim Haugen

    2014-10-01

    Full Text Available One of the tasks in ice defense is to gather information about the surrounding ice environment using various sensor platforms. In this manuscript we identify two monitoring tasks known in literature, namely dynamic coverage and target tracking, and motivate how these tasks are relevant in ice defense using RPAS. An optimization-based path planning concept is outlined for solving these tasks. A path planner for the target tracking problem is elaborated in more detail and a hybrid experiment, which consists of both a real fixed-wing aircraft and simulated objects, is included to show the applicability of the proposed framework.

  7. Ab initio simulation of amorphous silicon

    International Nuclear Information System (INIS)

    Cooper, N.C.; McKenzie, D.R.; Goringe, C.M.

    1999-01-01

    Full text: A first-principles Car-Parrinello molecular dynamics simulation of amorphous silicon is presented. Density Functional Theory is used to describe the forces between the atoms in a 64 atom supercell which is periodically repeated throughout space in order to generate an infinite network of atoms (a good approximation to a real solid). A quench from the liquid phase is used to achieve a quenched amorphous structure, which is subjected to an annealing cycle to improve its stability. The final, annealed network is in better agreement with experiment than any previous simulation of amorphous silicon. Significantly, the predicted average first-coordination numbers of 3.56 and 3.84 for the quenched and annealed structures from this simulation agree very closely with the experimental values of 3.55 and 3.90 respectively, whereas all previous simulations yielded first coordination numbers greater than 4. This improved agreement in coordination numbers is important because it supports the experimental finding that dangling bonds (which are associated with under-coordinated atoms) are more prevalent than floating bonds (the strained, longer bond of a five coordinate atom) in pure amorphous silicon. Finally, the effect of adding hydrogen to amorphous silicon was investigated by specifically placing hydrogen atoms at the likely defect sites. After a structural relaxation to optimise the positions of these hydrogen atoms, the localised electronic states associated with these defects are absent. Thus hydrogen is responsible for removing these defect states (which are able to trap carriers) from the edge of the band gap of the amorphous silicon. These results confirm the widely held ideas about the effect of hydrogen in producing remarkable improvements in the electronic properties of amorphous silicon

  8. Effects of the amorphization on hysteresis loops of the amorphous spin-1/2 Ising system

    International Nuclear Information System (INIS)

    Essaoudi, I.; Ainane, A.; Saber, M.; Miguel, J.J. de

    2009-01-01

    We examine the effects of the amorphization on the hysteresis loops of the amorphous spin-1/2 Ising system using the effective field theory within a probability distribution technique that accounts for the self-spin correlation functions. The magnetization, the transverse and longitudinal susceptibilities, and pyromagnetic coefficient are also studied in detail

  9. Metastable hydronium ions in UV-irradiated ice

    International Nuclear Information System (INIS)

    Moon, Eui-Seong; Kang, Heon

    2012-01-01

    We show that the irradiation of UV light (10−11 eV) onto an ice film produces metastable hydronium (H 3 O + ) ions in the ice at low temperatures (53–140 K). Evidence of the presence of metastable hydronium ions was obtained by experiments involving adsorption of methylamine onto UV-irradiated ice films and hydrogen-deuterium (H/D) isotopic exchange reaction. The methylamine adsorption experiments showed that photogenerated H 3 O + species transferred a proton to the methylamine arriving at the ice surface, thus producing the methyl ammonium ion, which was detected by low energy sputtering method. The H 3 O + species induced the H/D exchange of water, which was monitored through the detection of water isotopomers on the surface by using the Cs + reactive ion scattering method. Thermal and temporal stabilities of H 3 O + and its proton migration activity were examined. The lifetime of the hydronium ions in the amorphized ice was greater than 1 h at ∼53 K and decreased to ∼5 min at 140 K. Interestingly, a small portion of hydronium ions survived for an extraordinarily long time in the ice, even at 140 K. The average migration distance of protons released from H 3 O + in the ice was estimated to be about two water molecules at ∼54 K and about six molecules at 100 K. These results indicate that UV-generated hydronium ions can be efficiently stabilized in low-temperature ice. Such metastable hydronium ions may play a significant role in the acid-base chemistry of ice particles in interstellar clouds.

  10. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  11. Amorphous formulations of indomethacin and griseofulvin prepared by electrospinning.

    Science.gov (United States)

    Lopez, Felipe L; Shearman, Gemma C; Gaisford, Simon; Williams, Gareth R

    2014-12-01

    Following an array of optimization experiments, two series of electrospun polyvinylpyrrolidone (PVP) fibers were prepared. One set of fibers contained various loadings of indomethacin, known to form stable glasses, and the other griseofulvin (a poor glass former). Drug loadings of up to 33% w/w were achieved. Electron microscopy data showed the fibers largely to comprise smooth and uniform cylinders, with evidence for solvent droplets in some samples. In all cases, the drug was found to exist in the amorphous physical state in the fibers on the basis of X-ray diffraction and differential scanning calorimetry (DSC) measurements. Modulated temperature DSC showed that the relationship between a formulation's glass transition temperature (Tg) and the drug loading follows the Gordon-Taylor equation, but not the Fox equation. The results of Gordon-Taylor analysis indicated that the drug/polymer interactions were stronger with indomethacin. The interactions between drug and polymer were explored in more detail using molecular modeling simulations and again found to be stronger with indomethacin; the presence of significant intermolecular forces was further confirmed using IR spectroscopy. The amorphous form of both drugs was found to be stable after storage of the fibers for 8 months in a desiccator (relative humidity <25%). Finally, the functional performance of the fibers was studied; in all cases, the drug-loaded fibers released their drug cargo very rapidly, offering accelerated dissolution over the pure drug.

  12. Electronic Structure Studies of Amorphous Hydrogenated Boron Carbide

    Science.gov (United States)

    Sky Driver, M.; Sandstrom, Joseph; Boyko, Teak; Moewes, Alexander; Caruso, Anthony

    2010-03-01

    Boron carbide is a technologically relevant material with importance in voltaic transduction. However, the local physical, chemical and electronic structure of low temperature deposited thin films of amorphous boron carbide is far from understood, hindering its progress in application. X-ray absorption and emission spectroscopies (XAS/XES) were applied to thin films of B4C and B5C:Hx to study the near Fermi edge structure; the films were prepared by RF magnetron sputtering and plasma enhanced chemical vapor deposition (PECVD) and were thermally treated after deposition from 400 to 800 C. XES spectra indicate a physical structure transition from amorphous to nanocrystalline at 700 C, a much lower temperature than expected from traditional physical vapor deposition or flash annealing temperatures reported. These structural differences are of significant interest to transport measurements and will be discussed as a correlation. Further, x-ray and ultraviolet photoemission were also collected as a compliment to XES/XAS and will be discussed in the context of understanding the local intra vs. intermolecular electronic structure of these boron-rich molecular based solids.

  13. Rates and mechanisms of conversion of ice nanocrystals to hydrates of HCl and HBr: acid diffusion in the ionic hydrates.

    Science.gov (United States)

    Devlin, J Paul; Gulluru, Dheeraj B; Buch, Victoria

    2005-03-03

    This FTIR study focuses on solid-state chemistry associated with formation and interconversion of the ionic HX (X = Cl, Br) hydrates. Kinetic data are reported for conversions of ice nanocrystal arrays exposed to the saturation pressure of the acids in the 110 approximately 125 K range. The product is amorphous acid dihydrate in the case of HBr, and amorphous monohydrate for HCl. The rate-determining step is identified as HX diffusion through the hydrate product crust toward the interfacial reaction zone, rather than diffusion through ice, as commonly believed. Slowing of the conversion process is thus observed with increasing thickness of the crust. The diffusion coefficient (D(e)) and activation energy values for HX diffusion through the hydrates were evaluated with the help of the shrinking-core model. Hydrate crystallization occurs as a separate step, upon heating above 130 K. Subsequently, rates of reversible transitions between crystal di- and monohydrates were observed upon exposure to acid vapor and acid evacuation. In conversion from di- to monohydrate, the rate slows after fast formation of several layers; subsequently, diffusion through the product crust appears to be the rate-controlling step. The activation energy for HBr diffusion through crystal dihydrate is found to be significantly higher than that for the amorphous analogue. Conjecture is offered for a molecular mechanism of HX transport through the crystal hydrate, based on (i) spectroscopic/computational evidence for the presence of molecular HX bonded to X(-) in each of the ionic hydrate phases and (ii) the relative E(a) values found for HBr and HCl diffusion. Monte Carlo modeling suggests acid transport to the reaction zone along boundaries between "nanocrystallites" generated by multiple hydrate nucleation events at the particle surfaces. The reverse conversion, of crystalline monohydrate particles to the dihydrate phase, as well as dihydrate to trihydrate, displays nearly constant rate

  14. Co dependence of Curie temperature in amorphous Fe-Co-Zr-B-Nb alloys with high glass-forming ability

    International Nuclear Information System (INIS)

    Yao, B; Zhang, Y; Si, L; Tan, H; Li, Y

    2004-01-01

    Effects of Co substitution for Fe on the Curie temperature (T c ), glass-forming ability (GFA) and thermal stability of amorphous Fe 61-x Co x Zr 5 B 30 Nb 4 (FCZBN) alloys were studied for Co content ranging from 0 to 15 at. %. The T c shows a sinusoid-like behaviour with increasing Co content, revealing two maxima at 3 and 12.5 at. % Co and a minimum at 7.5 at. % Co. Co content dependences of glass transition (T g ), crystallization (T x ) and reduced glass transition temperatures (T rg ) of the amorphous alloys are almost completely opposite to that of the T c . The T c decreases with increasing T g and T rg , but increases with increasing Co content. The Co content dependence of the T c is suggested to relate to both Co content and high GFA of the amorphous alloys

  15. Land Ice: Greenland & Antarctic ice mass anomaly

    Data.gov (United States)

    National Aeronautics and Space Administration — Data from NASA's Grace satellites show that the land ice sheets in both Antarctica and Greenland are losing mass. The continent of Antarctica (left chart) has been...

  16. Ice cream structure modification by ice-binding proteins.

    Science.gov (United States)

    Kaleda, Aleksei; Tsanev, Robert; Klesment, Tiina; Vilu, Raivo; Laos, Katrin

    2018-04-25

    Ice-binding proteins (IBPs), also known as antifreeze proteins, were added to ice cream to investigate their effect on structure and texture. Ice recrystallization inhibition was assessed in the ice cream mixes using a novel accelerated microscope assay and the ice cream microstructure was studied using an ice crystal dispersion method. It was found that adding recombinantly produced fish type III IBPs at a concentration 3 mg·L -1 made ice cream hard and crystalline with improved shape preservation during melting. Ice creams made with IBPs (both from winter rye, and type III IBP) had aggregates of ice crystals that entrapped pockets of the ice cream mixture in a rigid network. Larger individual ice crystals and no entrapment in control ice creams was observed. Based on these results a model of ice crystals aggregates formation in the presence of IBPs was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Ta-based amorphous metal thin films

    Energy Technology Data Exchange (ETDEWEB)

    McGlone, John M., E-mail: mcglone@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331-5501 (United States); Olsen, Kristopher R. [Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003 (United States); Stickle, William F.; Abbott, James E.; Pugliese, Roberto A.; Long, Greg S. [Hewlett-Packard Company, Corvallis, OR, 97333 (United States); Keszler, Douglas A. [Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003 (United States); Wager, John F. [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331-5501 (United States)

    2015-11-25

    With their lack of grains and grain boundaries, amorphous metals are known to possess advantageous mechanical properties and enhanced chemical stability relative to crystalline metals. Commonly, however, they exhibit poor high-temperature stability because of their metastable nature. Here, we describe two new Ta-based ternary metal thin films that retain thermal stability to 600 °C and above. The new thin-film compositions, Ta{sub 2}Ni{sub 2}Si{sub 1} and Ta{sub 2}Mo{sub 2}Si{sub 1}, are amorphous, exhibiting ultra-smooth surfaces (<0.4 nm) and resistivities typical of amorphous metals (224 and 177 μΩ cm, respectively). - Highlights: • New Ta-based amorphous metals were sputter deposited from individual targets. • As-deposited amorphous structure was confirmed through diffraction techniques. • Electrical and surface properties were characterized and possess smooth surfaces. • No evidence of crystallization up to 600 °C (TaNiSi) and 800 °C (TaMoSi). • Ultra-smooth surfaces remained unchanged up to crystallization temperature.

  18. Amorphous silicon detectors in positron emission tomography

    International Nuclear Information System (INIS)

    Conti, M.; Perez-Mendez, V.

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters ε 2 τ's are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs

  19. Amorphous silicon detectors in positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Conti, M. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy) Lawrence Berkeley Lab., CA (USA)); Perez-Mendez, V. (Lawrence Berkeley Lab., CA (USA))

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters {epsilon}{sup 2}{tau}'s are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs.

  20. The Structure of Liquid and Amorphous Hafnia

    Directory of Open Access Journals (Sweden)

    Leighanne C. Gallington

    2017-11-01

    Full Text Available Understanding the atomic structure of amorphous solids is important in predicting and tuning their macroscopic behavior. Here, we use a combination of high-energy X-ray diffraction, neutron diffraction, and molecular dynamics simulations to benchmark the atomic interactions in the high temperature stable liquid and low-density amorphous solid states of hafnia. The diffraction results reveal an average Hf–O coordination number of ~7 exists in both the liquid and amorphous nanoparticle forms studied. The measured pair distribution functions are compared to those generated from several simulation models in the literature. We have also performed ab initio and classical molecular dynamics simulations that show density has a strong effect on the polyhedral connectivity. The liquid shows a broad distribution of Hf–Hf interactions, while the formation of low-density amorphous nanoclusters can reproduce the sharp split peak in the Hf–Hf partial pair distribution function observed in experiment. The agglomeration of amorphous nanoparticles condensed from the gas phase is associated with the formation of both edge-sharing and corner-sharing HfO6,7 polyhedra resembling that observed in the monoclinic phase.

  1. CO ICE PHOTODESORPTION: A WAVELENGTH-DEPENDENT STUDY

    International Nuclear Information System (INIS)

    Fayolle, Edith C.; Linnartz, Harold; Bertin, Mathieu; Romanzin, Claire; Michaut, Xavier; Fillion, Jean-Hugues; Oeberg, Karin I.

    2011-01-01

    UV-induced photodesorption of ice is a non-thermal evaporation process that can explain the presence of cold molecular gas in a range of interstellar regions. Information on the average UV photodesorption yield of astrophysically important ices exists for broadband UV lamp experiments. UV fields around low-mass pre-main-sequence stars, around shocks and in many other astrophysical environments are however often dominated by discrete atomic and molecular emission lines. It is therefore crucial to consider the wavelength dependence of photodesorption yields and mechanisms. In this work, for the first time, the wavelength-dependent photodesorption of pure CO ice is explored between 90 and 170 nm. The experiments are performed under ultra high vacuum conditions using tunable synchrotron radiation. Ice photodesorption is simultaneously probed by infrared absorption spectroscopy in reflection mode of the ice and by quadrupole mass spectrometry of the gas phase. The experimental results for CO reveal a strong wavelength dependence directly linked to the vibronic transition strengths of CO ice, implying that photodesorption is induced by electronic transition (DIET). The observed dependence on the ice absorption spectra implies relatively low photodesorption yields at 121.6 nm (Lyα), where CO barely absorbs, compared to the high yields found at wavelengths coinciding with transitions into the first electronic state of CO (A 1 Π at 150 nm); the CO photodesorption rates depend strongly on the UV profiles encountered in different star formation environments.

  2. Increased future ice discharge from Antarctica owing to higher snowfall.

    Science.gov (United States)

    Winkelmann, R; Levermann, A; Martin, M A; Frieler, K

    2012-12-13

    Anthropogenic climate change is likely to cause continuing global sea level rise, but some processes within the Earth system may mitigate the magnitude of the projected effect. Regional and global climate models simulate enhanced snowfall over Antarctica, which would provide a direct offset of the future contribution to global sea level rise from cryospheric mass loss and ocean expansion. Uncertainties exist in modelled snowfall, but even larger uncertainties exist in the potential changes of dynamic ice discharge from Antarctica and thus in the ultimate fate of the precipitation-deposited ice mass. Here we show that snowfall and discharge are not independent, but that future ice discharge will increase by up to three times as a result of additional snowfall under global warming. Our results, based on an ice-sheet model forced by climate simulations through to the end of 2500 (ref. 8), show that the enhanced discharge effect exceeds the effect of surface warming as well as that of basal ice-shelf melting, and is due to the difference in surface elevation change caused by snowfall on grounded versus floating ice. Although different underlying forcings drive ice loss from basal melting versus increased snowfall, similar ice dynamical processes are nonetheless at work in both; therefore results are relatively independent of the specific representation of the transition zone. In an ensemble of simulations designed to capture ice-physics uncertainty, the additional dynamic ice loss along the coastline compensates between 30 and 65 per cent of the ice gain due to enhanced snowfall over the entire continent. This results in a dynamic ice loss of up to 1.25 metres in the year 2500 for the strongest warming scenario. The reported effect thus strongly counters a potential negative contribution to global sea level by the Antarctic Ice Sheet.

  3. Elemental distribution in fluorinated amorphous carbon thin films.

    Science.gov (United States)

    Lamperti, A; Bottani, C E; Ossi, P M

    2005-01-01

    Focused ion beam-secondary ion mass spectrometry (FIB-SIMS) with 20 nm spatial resolution has been used to analyze amorphous fluorinated carbon thin films, deposited by plasma assisted chemical vapor deposition (PACVD), at micro- to nano-scale. Mass spectra and ion imaging of film surface were acquired and the presence and distribution of contaminants were investigated. Surface images show the secondary ion distribution for F(-), CH(-), CF(-). A change in size and topology of fluorine-rich areas is correlated with film hardness and with microstructure transition from diamond-like to polymer-like, as indicated by infrared and Raman spectroscopies. Based on the surface distributions of CF(-) and CH(-) and on the vibrational spectroscopy results, a mechanism of fluorine substitution for hydrogen and an attempt to explain the film structure and microstructure is proposed.

  4. Systematic study of amorphous hydrogenated and fluorinated carbon films

    Science.gov (United States)

    Lamperti, A.; Ossi, P. M.

    2003-01-01

    Amorphous fluorinated carbon films were grown from CF 4 and C 2H 2 mixtures, using a Plasma Assisted Chemical Vapour Deposition (PACVD) apparatus. Two sets of films were deposited, changing in a systematic way the CF 4 flux and the bias voltage ( Vb). Film composition and structure were analysed by secondary ion mass spectroscopy (SIMS), infrared (IR) and Raman spectroscopies. Film hardness was obtained by micro-indentation measurements. On increasing fluorine content in films, hardness decreases and a fluorescence background in Raman spectra appears at high fluorine content, showing a diamond- to polymer-like structural transition. Infrared spectra indicate the presence of CF x, CCHF and CCF 2 groups in the films. Our data are compared with previous results in the literature and the mechanisms involved in film formation are discussed, especially regarding fluorine substitution for hydrogen.

  5. Vacuum ultraviolet photoabsorption spectroscopy of crystalline and amorphous benzene

    DEFF Research Database (Denmark)

    Dawes, Anita; Pascual, Natalia; Hoffmann, Soren V.

    2017-01-01

    We present the first high resolution vacuum ultraviolet photoabsorption study of amorphous benzene with com parisons to annealed crystalline benzene and the gas phase. Vapour deposited benzene layers w ere grow n at 25 K and annealed to 90 K under conditions pertinent to interstellaricy dust grains...... and icy planetary bodies in our solar system. Three single t-single t electronic transitions in solid benzene correspond to the B-1(2u), B-1(1u) and E-1(1u) states, redshifted by 0.05, 0.25 and 0.51 eV respectively with respect to the gas phase. The symmetry forbidden B-1(2u)...

  6. Radiation Effects in Hydrogen-Laden Porous Water Ice Films: Implications for Interstellar Ices

    Science.gov (United States)

    Raut, Ujjwal; Baragiola, Raul; Mitchell, Emma; Shi, Jianming

    H _{2} is the dominant gas in the dense clouds of the interstellar medium (ISM). At densities of 10 (5) cm (-3) , an H _{2} molecule arrives at the surface of a 0.1 mum-sized, ice-covered dust grain once every few seconds [1]. At 10 K, H _{2} can diffuse into the pores of the ice mantle and adsorb at high-energy binding sites, loading the ice with hydrogen over the lifetime of the cloud. These icy grains are also impacted by galactic cosmic rays and stellar winds (in clouds with embedded protostar). Based on the available cosmic proton flux spectrum [2], we estimate a small impact rate of nearly 1 hit per year on a 0.1 μm sized grain, or 10 (-7) times the impact frequency of the neutral H _{2}. The energy deposited by such impacts can release the adsorbed H _{2} into the gas phase (impact desorption or sputtering). Recently, we have reported on a new process of ion-induced enhanced adsorption, where molecules from the gas phase are incorporated into the film when irradiation is performed in the presence of ambient gas [3]. The interplay between ion-induced ejection and adsorption can be important in determining the gas-solid balance in the ISM. To understand the effects of cosmic rays/stellar winds impacts on interstellar ice immersed in H _{2} gas, we have performed irradiation of porous amorphous ice films loaded with H _{2} through co-deposition or adsorption following growth. The irradiations were performed with 100 keV H (+) using fluxes of 10 (10) -10 (12) H (+) cm (-2) s (-1) at 7 K, in presence of ambient H _{2} at pressures ranging from 10 (-5) to 10 (-8) Torr. Our initial results show a net loss in adsorbed H _{2} during irradiation, from competing ion-induced ejection and adsorption. The H _{2} loss per ion decreases exponentially with fluence, with a cross-section of 10 (-13) cm (2) . In addition to hydrogen removal, irradiation also leads to trapping of H _{2} in the ice film, from closing of the pores during irradiation [4]. As a result, 2.6 percent

  7. Emerging trends in the stabilization of amorphous drugs

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Löbmann, Korbinian; Strachan, Clare J.

    2013-01-01

    water-soluble drugs can be increased by the formation of stabilized amorphous forms. Currently, formulation as solid polymer dispersions is the preferred method to enhance drug dissolution and to stabilize the amorphous form of a drug. The purpose of this review is to highlight emerging alternative...... methods to amorphous polymer dispersions for stabilizing the amorphous form of drugs. First, an overview of the properties and stabilization mechanisms of amorphous forms is provided. Subsequently, formulation approaches such as the preparation of co-amorphous small-molecule mixtures and the use...

  8. Formation of amorphous layers by irradiation

    International Nuclear Information System (INIS)

    Bourgoin, J.C.

    1979-01-01

    When an ordered solid is irradiated with heavy energy particles, disorder is produced. When the irradiation dose exceeds a so-called critical dose, the irradiated area of the solid becomes uniformly disordered. Mention is first made of the nature, concentration and distribution of the defects created by a heavy energy particle. The description is then given -solely with respect to semiconductors- of the effect of the various parameters on the critical dose energy and nature of the ion, nature and temperature of the solid, irradiation flux. The physical properties (electronic and thermodynamic types) and the uniformly disordered areas are briefly discussed and these properties are compared with those of amorphous semiconductor layers fabricated by evaporation. It is concluded that the evaporated and irradiated layers are similar in nature. It is suggested that the transformation of an irradiated crystalline area into an amorphous one occurs when the Gibbs energy of the crystal become greater than the Gibbs energy of the amorphous one [fr

  9. Fabrication and application of amorphous semiconductor devices

    International Nuclear Information System (INIS)

    Kumurdjian, Pierre.

    1976-01-01

    This invention concerns the design and manufacture of elecric switching or memorisation components with amorphous semiconductors. As is known some compounds, particularly the chalcogenides, have a resistivity of the semiconductor type in the amorphous solid state. These materials are obtained by the high temperature homogeneisation of several single elements such as tellurium, arsenic, germanium and sulphur, followed by water or air quenching. In particular these compounds have useful switching and memorisation properties. In particular they have the characteristic of not suffering deterioration when placed in an environment subjected to nuclear radiations. In order to know more about the nature and properties of these amorphous semiconductors the French patent No. 71 28048 of 30 June 1971 may be consulted with advantage [fr

  10. Heavy ions amorphous semiconductors irradiation study

    International Nuclear Information System (INIS)

    Benmalek, M.

    1978-01-01

    The behavior of amorphous semiconductors (germanium and germanium and arsenic tellurides) under ion bombardment at energies up to 2 MeV was studied. The irradiation induced modifications were followed using electrical parameter changes (resistivity and activation energy) and by means of the transmission electron microscopy observations. The electrical conductivity enhancement of the irradiated samples was interpreted using the late conduction theories in amorphous compounds. In amorphous germanium, Electron Microscopy showed the formations of 'globules', these defects are similar to voids observed in irradiated metals. The displacement cascade theory was used for the interpretation of the irradiation induced defects formation and a coalescence mechanism of growth was pointed out for the vacancy agglomeration [fr

  11. Structural transformations of Fe81B13Si4C2 amorphous alloy induced by heating

    Czech Academy of Sciences Publication Activity Database

    Minić, Dragica M.; Minić, Dušan M.; Žák, Tomáš; Roupcová, Pavla; David, Bohumil

    2011-01-01

    Roč. 323, č. 5 (2011), s. 400-404 ISSN 0304-8853 R&D Projects: GA MŠk 1M0512 Institutional research plan: CEZ:AV0Z20410507 Keywords : Amorphous material * Metallic glass * Metal and alloy * Phase transition * Thermal analysis * Mössbauer spectrum * X-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.780, year: 2011

  12. Directional and short-range ordering kinetics in metallic alloys, crystalline and amorphous

    International Nuclear Information System (INIS)

    Hillairet, J.

    1985-01-01

    This presentation describes the methods (resistometric and anelastic) based on analysis of stress-induced directional ordering and short-range ordering and their application to the study of metallic alloys, crystalline and amorphous. It focuses on the determination of the atomic mobility and point defect properties. It discusses also the structural information which can be gained by Zener relaxation studies about the order-disorder transition and self-induced directional ordering phenomena

  13. Glass solution formation in water - In situ amorphization of naproxen and ibuprofen with Eudragit® E PO

    DEFF Research Database (Denmark)

    Doreth, Maria; Löbmann, Korbinian; Grohganz, Holger

    2016-01-01

    a glass solution with Eudragit® E when immersed into water. In XRPD, reflections of the respective drugs decreased or disappeared completely. All samples showed a single glass transition temperature in the DSC, suggesting the formation of single phase amorphous systems. Ionic interactions between drug...

  14. Effect of neutron irradiation on Mo-Si amorphous alloys

    International Nuclear Information System (INIS)

    Ito, Fumitake; Hasegawa, Masayuki; Suzuki, Kenji; Honda, Toshihisa; Fukunaga, Toshiharu.

    1982-01-01

    The irradiation effects on Mo-Si amorphous alloys were investigated by means of X-ray diffraction and positron annihilation, and their electric resistance at low temperature was measured to examine the superconductivity of the alloys. The specimens of Mo 68 Si 32 and Mo 45 Si 55 were irradiated with the neutron fluence (E > 1 MeV) of about 9 x 10 18 n/cm 2 without temperature control in the Japanese Material Testing Reactor (JMTR). For these irradiated specimens, the X-ray diffraction experiment was performed to examine the irradiation effects on the radial distribution function, and the angular correlation curves for the positron annihilation were also measured. Both experiments showed that there was almost no irradiation effect. However, the width of the superconductive transition measured in Mo 68 Si 32 became extremely narrow due to neutron irradiation, and the transition temperature rose from 6.89 K to 7.03 K. On the other hand, in Mo 45 Si 55 , the width showed a tendency to become somewhat narrow, but the transition temperature shifted to the lower side. (Asami, T.)

  15. Rhyolitic volcano-ice interactions in Iceland

    Science.gov (United States)

    McGarvie, Dave

    2009-09-01

    that they erupted prior to the last glacial maximum when temperatures were at least 4 °C cooler than the present day. Ar-Ar dating of Prestahnúkur suggests it erupted during the last interglacial-glacial transition into over 700 m of ice, which corroborates studies arguing for rapid accumulation of land-based ice during global cooling.

  16. Short range order in amorphous polycondensates

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, C.; Richter, D.; Schweika, W. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Festkoerperforschung; Batoulis, J.; Sommer, K. [Bayer AG, Leverkusen (Germany); Cable, J.W. [Oak Ridge National Lab., TN (United States); Shapiro, S.M. [Brookhaven National Lab., Upton, NY (United States)

    1992-12-01

    The static coherent structure factors S(Q) of the polymer glass Bisphenol-A-Polycarbonate and its chemical variation Bisphenol-A- Polyctherkctone- both in differently deuterated versions- have been measured by spin polarized neutron scattering. The method of spin polarization analysis provided an experimental separation of coherent and incoherent scattering and a reliable intensity calibration. Results are compared to structure factors calculated for model structures which were obtained by ``amorphous cell`` computer simulations. In general reasonable agreement is found between experiment and simulation; however, certain discrepancies hint at an insufficient structural relaxation in the amorphous cell method. 15 refs, 1 fig, 1 tab.

  17. Ion bombardment and disorder in amorphous silicon

    International Nuclear Information System (INIS)

    Sidhu, L.S.; Gaspari, F.; Zukotynski, S.

    1997-01-01

    The effect of ion bombardment during growth on the structural and optical properties of amorphous silicon are presented. Two series of films were deposited under electrically grounded and positively biased substrate conditions. The biased samples displayed lower growth rates and increased hydrogen content relative to grounded counterparts. The film structure was examined using Raman spectroscopy. The transverse optic like phonon band position was used as a parameter to characterize network order. Biased samples displayed an increased order of the amorphous network relative to grounded samples. Furthermore, biased samples exhibited a larger optical gap. These results are correlated and attributed to reduced ion bombardment effects

  18. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    OpenAIRE

    Schriver, Maria Christine

    2012-01-01

    A novel solar cell architecture made completely from the earth abundant elements silicon and carbon has been developed. Hydrogenated amorphous silicon (aSi:H), rather than crystalline silicon, is used as the active material due to its high absorption through a direct band gap of 1.7eV, well matched to the solar spectrum to ensure the possibility of improved cells in this architecture with higher efficiencies. The cells employ a Schottky barrier design wherein the amorphous silicon absorber la...

  19. Size effect on atomic structure in low-dimensional Cu-Zr amorphous systems.

    Science.gov (United States)

    Zhang, W B; Liu, J; Lu, S H; Zhang, H; Wang, H; Wang, X D; Cao, Q P; Zhang, D X; Jiang, J Z

    2017-08-04

    The size effect on atomic structure of a Cu 64 Zr 36 amorphous system, including zero-dimensional small-size amorphous particles (SSAPs) and two-dimensional small-size amorphous films (SSAFs) together with bulk sample was investigated by molecular dynamics simulations. We revealed that sample size strongly affects local atomic structure in both Cu 64 Zr 36 SSAPs and SSAFs, which are composed of core and shell (surface) components. Compared with core component, the shell component of SSAPs has lower average coordination number and average bond length, higher degree of ordering, and lower packing density due to the segregation of Cu atoms on the shell of Cu 64 Zr 36 SSAPs. These atomic structure differences in SSAPs with various sizes result in different glass transition temperatures, in which the glass transition temperature for the shell component is found to be 577 K, which is much lower than 910 K for the core component. We further extended the size effect on the structure and glasses transition temperature to Cu 64 Zr 36 SSAFs, and revealed that the T g decreases when SSAFs becomes thinner due to the following factors: different dynamic motion (mean square displacement), different density of core and surface and Cu segregation on the surface of SSAFs. The obtained results here are different from the results for the size effect on atomic structure of nanometer-sized crystalline metallic alloys.

  20. Anti-biofouling function of amorphous nano-Ta2O5 coating for VO2-based intelligent windows

    Science.gov (United States)

    Li, Jinhua; Guo, Geyong; Wang, Jiaxing; Zhou, Huaijuan; Shen, Hao; Yeung, Kelvin W. K.

    2017-04-01

    From environmental and health perspectives, the acquisition of a surface anti-biofouling property holds important significance for the usability of VO2 intelligent windows. Herein, we firstly deposited amorphous Ta2O5 nanoparticles on VO2 film by the magnetron sputtering method. It was found that the amorphous nano-Ta2O5 coating possessed a favorable anti-biofouling capability against Pseudomonas aeruginosa as an environmental microorganism model, behind which lay the mechanism that the amorphous nano-Ta2O5 could interrupt the microbial membrane electron transport chain and significantly elevate the intracellular reactive oxygen species (ROS) level. A plausible relationship was established between the anti-biofouling activity and physicochemical nature of amorphous Ta2O5 nanoparticles from the perspective of defect chemistry. ROS-induced oxidative damage gave rise to microbial viability loss. In addition, the amorphous nano-Ta2O5 coating can endow VO2 with favorable cytocompatibility with human skin fibroblasts. This study may provide new insights into understanding the anti-biofouling and antimicrobial actions of amorphous transition metal oxide nanoparticles, which is conducive to expanding their potential applications in environmental fields.

  1. Photodesorption and physical properties of CO ice as a function of temperature

    Science.gov (United States)

    Muñoz Caro, G. M.; Chen, Y.-J.; Aparicio, S.; Jiménez-Escobar, A.; Rosu-Finsen, A.; Lasne, J.; McCoustra, M. R. S.

    2016-05-01

    a gradual re-structuring toward a more compact and crystalline ice, which is only triggered above 20 K and increases for higher deposition temperatures. Conclusions: We suggest that this decrease of the photodesorption rate is related to the disorder of CO dipole molecules within the amorphous or glassy state, which influences the necessary transfer of photon energy from the first excited molecule to the desorbing molecule on the ice surface. The photodesorption yield of CO deposited at 20 K is about four times lower than at 7 K. Dust models should adopt CO photodesorption yields that are compatible with the thermal history of the cloud.

  2. Ice and ocean velocity in the Arctic marginal ice zone: Ice roughness and momentum transfer

    Directory of Open Access Journals (Sweden)

    Sylvia T. Cole

    2017-09-01

    Full Text Available The interplay between sea ice concentration, sea ice roughness, ocean stratification, and momentum transfer to the ice and ocean is subject to seasonal and decadal variations that are crucial to understanding the present and future air-ice-ocean system in the Arctic. In this study, continuous observations in the Canada Basin from March through December 2014 were used to investigate spatial differences and temporal changes in under-ice roughness and momentum transfer as the ice cover evolved seasonally. Observations of wind, ice, and ocean properties from four clusters of drifting instrument systems were complemented by direct drill-hole measurements and instrumented overhead flights by NASA operation IceBridge in March, as well as satellite remote sensing imagery about the instrument clusters. Spatially, directly estimated ice-ocean drag coefficients varied by a factor of three with rougher ice associated with smaller multi-year ice floe sizes embedded within the first-year-ice/multi-year-ice conglomerate. Temporal differences in the ice-ocean drag coefficient of 20–30% were observed prior to the mixed layer shoaling in summer and were associated with ice concentrations falling below 100%. The ice-ocean drag coefficient parameterization was found to be invalid in September with low ice concentrations and small ice floe sizes. Maximum momentum transfer to the ice occurred for moderate ice concentrations, and transfer to the ocean for the lowest ice concentrations and shallowest stratification. Wind work and ocean work on the ice were the dominant terms in the kinetic energy budget of the ice throughout the melt season, consistent with free drift conditions. Overall, ice topography, ice concentration, and the shallow summer mixed layer all influenced mixed layer currents and the transfer of momentum within the air-ice-ocean system. The observed changes in momentum transfer show that care must be taken to determine appropriate parameterizations

  3. How Will Sea Ice Loss Affect the Greenland Ice Sheet? On the Puzzling Features of Greenland Ice-Core Isotopic Composition

    Science.gov (United States)

    Pausata, Francesco S. R.; Legrande, Allegra N.; Roberts, William H. G.

    2016-01-01

    The modern cryosphere, Earth's frozen water regime, is in fast transition. Greenland ice cores show how fast theses changes can be, presenting evidence of up to 15 C warming events over timescales of less than a decade. These events, called Dansgaard/Oeschger (D/O) events, are believed to be associated with rapid changes in Arctic sea ice, although the underlying mechanisms are still unclear. The modern demise of Arctic sea ice may, in turn, instigate abrupt changes on the Greenland Ice Sheet. The Arctic Sea Ice and Greenland Ice Sheet Sensitivity (Ice2Ice Chttps://ice2ice.b.uib.noD) initiative, sponsored by the European Research Council, seeks to quantify these past rapid changes to improve our understanding of what the future may hold for the Arctic. Twenty scientists gathered in Copenhagen as part of this initiative to discuss the most recent observational, technological, and model developments toward quantifying the mechanisms behind past climate changes in Greenland. Much of the discussion focused on the causes behind the changes in stable water isotopes recorded in ice cores. The participants discussed sources of variability for stable water isotopes and framed ways that new studies could improve understanding of modern climate. The participants also discussed how climate models could provide insights into the relative roles of local and nonlocal processes in affecting stable water isotopes within the Greenland Ice Sheet. Presentations of modeling results showed how a change in the source or seasonality of precipitation could occur not only between glacial and modern climates but also between abrupt events. Recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. Further, indications from recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. This feature complicates

  4. Low energy charged particles interacting with amorphous solid water layers.

    Science.gov (United States)

    Horowitz, Yonatan; Asscher, Micha

    2012-04-07

    The interaction of charged particles with condensed water films has been studied extensively in recent years due to its importance in biological systems, ecology as well as interstellar processes. We have studied low energy electrons (3-25 eV) and positive argon ions (55 eV) charging effects on amorphous solid water (ASW) and ice films, 120-1080 ML thick, deposited on ruthenium single crystal under ultrahigh vacuum conditions. Charging the ASW films by both electrons and positive argon ions has been measured using a Kelvin probe for contact potential difference (CPD) detection and found to obey plate capacitor physics. The incoming electrons kinetic energy has defined the maximum measurable CPD values by retarding further impinging electrons. L-defects (shallow traps) are suggested to be populated by the penetrating electrons and stabilize them. Low energy electron transmission measurements (currents of 0.4-1.5 μA) have shown that the maximal and stable CPD values were obtained only after a relatively slow change has been completed within the ASW structure. Once the film has been stabilized, the spontaneous discharge was measured over a period of several hours at 103 ± 2 K. Finally, UV laser photo-emission study of the charged films has suggested that the negative charges tend to reside primarily at the ASW-vacuum interface, in good agreement with the known behavior of charged water clusters.

  5. Regular network model for the sea ice-albedo feedback in the Arctic.

    Science.gov (United States)

    Müller-Stoffels, Marc; Wackerbauer, Renate

    2011-03-01

    The Arctic Ocean and sea ice form a feedback system that plays an important role in the global climate. The complexity of highly parameterized global circulation (climate) models makes it very difficult to assess feedback processes in climate without the concurrent use of simple models where the physics is understood. We introduce a two-dimensional energy-based regular network model to investigate feedback processes in an Arctic ice-ocean layer. The model includes the nonlinear aspect of the ice-water phase transition, a nonlinear diffusive energy transport within a heterogeneous ice-ocean lattice, and spatiotemporal atmospheric and oceanic forcing at the surfaces. First results for a horizontally homogeneous ice-ocean layer show bistability and related hysteresis between perennial ice and perennial open water for varying atmospheric heat influx. Seasonal ice cover exists as a transient phenomenon. We also find that ocean heat fluxes are more efficient than atmospheric heat fluxes to melt Arctic sea ice.

  6. Sea Ice Index, Version 3

    Data.gov (United States)

    National Aeronautics and Space Administration — The Sea Ice Index provides a quick look at Arctic- and Antarctic-wide changes in sea ice. It is a source for consistent, up-to-date sea ice extent and concentration...

  7. Bacterial communities from Arctic seasonal sea ice are more compositionally variable than those from multi-year sea ice.

    Science.gov (United States)

    Hatam, Ido; Lange, Benjamin; Beckers, Justin; Haas, Christian; Lanoil, Brian

    2016-10-01

    Arctic sea ice can be classified into two types: seasonal ice (first-year ice, FYI) and multi-year ice (MYI). Despite striking differences in the physical and chemical characteristics of FYI and MYI, and the key role sea ice bacteria play in biogeochemical cycles of the Arctic Ocean, there are a limited number of studies comparing the bacterial communities from these two ice types. Here, we compare the membership and composition of bacterial communities from FYI and MYI sampled north of Ellesmere Island, Canada. Our results show that communities from both ice types were dominated by similar class-level phylogenetic groups. However, at the operational taxonomic unit (OTU) level, communities from MYI and FYI differed in both membership and composition. Communities from MYI sites had consistent structure, with similar membership (presence/absence) and composition (OTU abundance) independent of location and year of sample. By contrast, communities from FYI were more variable. Although FYI bacterial communities from different locations and different years shared similar membership, they varied significantly in composition. Should these findings apply to sea ice across the Arctic, we predict increased compositional variability in sea ice bacterial communities resulting from the ongoing transition from predominantly MYI to FYI, which may impact nutrient dynamics in the Arctic Ocean.

  8. Measurement of the accumulation of water ice on optical components in cryogenic vacuum environments

    Science.gov (United States)

    Moeller, Trevor M.; Montgomery Smith, L.; Collins, Frank G.; Labello, Jesse M.; Rogers, James P.; Lowry, Heard S.; Crider, Dustin H.

    2012-11-01

    Standard vacuum practices mitigate the presence of water vapor and contamination inside cryogenic vacuum chambers. However, anomalies can occur in the facility that can cause the accumulation of amorphous water ice on optics and test articles. Under certain conditions, the amorphous ice on optical components shatters, which leads to a reduction in signal or failure of the component. An experiment was performed to study and measure the deposition of water (H2O) ice on optical surfaces under high-vacuum cryogenic conditions. Water was introduced into a cryogenic vacuum chamber, via a hydrated molecular sieve zeolite, through an effusion cell and impinged upon a quartz-crystal microbalance (QCM) and first-surface gold-plated mirror. A laser and photodiode setup, external to the vacuum chamber, monitored the multiple-beam interference reflectance of the ice-mirror configuration while the QCM measured the mass deposition. Data indicates that water ice, under these conditions, accumulates as a thin film on optical surfaces to thicknesses over 45 microns and can be detected and measured by nonintrusive optical methods which are based upon multiple-beam interference phenomena. The QCM validated the interference measurements. This experiment established proof-of-concept for a miniature system for monitoring ice accumulation within the chamber.

  9. Amorphization of metals by ion implantation and ion beam mixing

    International Nuclear Information System (INIS)

    Rauschenbach, B.; Heera, V.

    1988-01-01

    Amorphous metallic systems can be formed either by high-fluence ion implantation of glassforming species or by irradiation of layered metal systems with inert gas ions. Both techniques and experimental examples are presented. Empirical rules are discussed which predict whether a given system can be transformed into an amorphous phase. Influence of temperature, implantation dose and pre-existing crystalline metal composition on amorphization is considered. Examples are given of the implantation induced amorphous structure, recrystallization and formation of quasicrystalline structures. (author)

  10. Dynamics of hydrogen in hydrogenated amorphous silicon

    Indian Academy of Sciences (India)

    weak (strained) Si–Si bond thereby apparently enhancing the hydrogen diffusion and increasing the light-induced dangling bonds. Keywords. Hydrogenated amorphous silicon; metastable electronic states; hydrogen diffusion. PACS Nos 61.43.Dq; 66.30.-h; 71.23.Cq. 1. Introduction. Hydrogen passivation of dangling bonds ...

  11. Characterization of amorphous hydrogenated carbon films ...

    Indian Academy of Sciences (India)

    Amorphous hydrogenated carbon films (-C:H) on -type (100) silicon wafers were prepared with a middle frequency pulsed unbalanced magnetron sputtering technique (MFPUMST) at different ratios of methane–argon gases. The band characteristics, mechanical properties as well as refractive index were measured by ...

  12. Characterization of amorphous hydrogenated carbon films ...

    Indian Academy of Sciences (India)

    †Key Laboratory of Radiation and Technology of Education Ministry of China, Institute of Nuclear Science and. Technology, Sichuan University, Chengdu 610064, P. R. China. MS received 14 March 2011; revised 29 October 2011. Abstract. Amorphous hydrogenated carbon films (a-C:H) on p-type (100) silicon wafers were ...

  13. Unusual photoanisotropic alignment in amorphous azobenzene polymers

    DEFF Research Database (Denmark)

    Ramanujam, P.S.

    2015-01-01

    It is well known that irradiation of azobenzene polymer films between 490 and 530nm results in alignment of molecules perpendicular to the polarization of the incident beam. I have recently found that irradiation of amorphous azobenzene polymers with linearly polarized light at wavelengths between...

  14. Compaction of amorphous iron–boron powder

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Mørup, Steen; Koch, Christian

    1993-01-01

    report on attempts to compact amorphous iron–boron particles prepared by chemical reduction of Fe(II) ions in aqueous solution by NaBH4 (Ref. 2). The particles prepared in this way are pyrophoric, but can be passivated. The small particle size (10–100 nm), characteristic of this preparation technique...

  15. Trap level spectroscopy in amorphous semiconductors

    CERN Document Server

    Mikla, Victor V

    2010-01-01

    Although amorphous semiconductors have been studied for over four decades, many of their properties are not fully understood. This book discusses not only the most common spectroscopic techniques but also describes their advantages and disadvantages.Provides information on the most used spectroscopic techniquesDiscusses the advantages and disadvantages of each technique

  16. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    TECS

    Abstract. A major issue encountered during fabrication of triple junction a-Si solar cells on polyimide sub- strates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and ...

  17. Structural morphology of amorphous conducting carbon film

    Indian Academy of Sciences (India)

    Amorphous conducting carbon films deposited over quartz substrates were analysed using X-ray diffraction and AFM technique. X-ray diffraction data reveal disorder and roughness in the plane of graphene sheet as compared to that of graphite. This roughness increases with decrease in preparation temperature. The AFM ...

  18. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    A major issue encountered during fabrication of triple junction -Si solar cells on polyimide substrates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and Gouldflex), and the ...

  19. Characterization of amorphous and nanocrystalline carbon films

    International Nuclear Information System (INIS)

    Chu, Paul K.; Li Liuhe

    2006-01-01

    Amorphous and nanocrystalline carbon films possess special chemical and physical properties such as high chemical inertness, diamond-like properties, and favorable tribological proprieties. The materials usually consist of graphite and diamond microstructures and thus possess properties that lie between the two. Amorphous and nanocrystalline carbon films can exist in different kinds of matrices and are usually doped with a large amount of hydrogen. Thus, carbon films can be classified as polymer-like, diamond-like, or graphite-like based on the main binding framework. In order to characterize the structure, either direct bonding characterization methods or the indirect bonding characterization methods are employed. Examples of techniques utilized to identify the chemical bonds and microstructure of amorphous and nanocrystalline carbon films include optical characterization methods such as Raman spectroscopy, Ultra-violet (UV) Raman spectroscopy, and infrared spectroscopy, electron spectroscopic and microscopic methods such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, transmission electron microscopy, and electron energy loss spectroscopy, surface morphology characterization techniques such as scanning probe microscopy (SPM) as well as other characterization methods such as X-ray reflectivity and nuclear magnetic resonance. In this review, the structures of various types of amorphous carbon films and common characterization techniques are described

  20. Dynamics of hydrogen in hydrogenated amorphous silicon

    Indian Academy of Sciences (India)

    c0, c being the instantaneous concentration at a local point and c0, the average concentration of hydrogen in the hydrogenated amorphous silicon. If the system is both incompressible and isotropic, the change in Helmholtz free energy due to fluctuations in the local concentration of hydrogen is given as. 122. Pramana – J.

  1. Radiative recombination of excitons in amorphous semiconductors

    International Nuclear Information System (INIS)

    Singh, Jai

    2005-01-01

    A theory for calculating the radiative lifetime of excitons in amorphous semiconductors is presented. Four possibilities of excitonic radiative recombination are considered and the corresponding rates are derived at thermal equilibrium. The radiative lifetime is calculated from the inverse of the maximum rate for all the four possibilities. Results agree very well with experiments

  2. Neutron diffraction studies of amorphous solids

    International Nuclear Information System (INIS)

    Wright, A.C.

    1983-01-01

    A brief survey is presented of the role of neutron diffraction in structural studies of amorphous solids. The inherent limitations of the diffraction technique are discussed, together with modern instrumentation and methods for separating individual component correlation functions. An introduction is given to the use of modelling and the extraction of structural parameters from experimental data. (author)

  3. Amorphous calcium carbonate particles form coral skeletons

    Science.gov (United States)

    Mass, Tali; Giuffre, Anthony J.; Sun, Chang-Yu; Stifler, Cayla A.; Frazier, Matthew J.; Neder, Maayan; Tamura, Nobumichi; Stan, Camelia V.; Marcus, Matthew A.; Gilbert, Pupa U. P. A.

    2017-09-01

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed “vital effects,” that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene-Eocene Thermal Maximum that occurred 56 Mya.

  4. Amorphous track models: A numerical comparison study

    DEFF Research Database (Denmark)

    Greilich, Steffen; Grzanka, L.; Bassler, N.

    2010-01-01

    We present an open-source code library for amorphous track modelling which is suppose to faciliate the application and numerical comparability as well as serve as a frame-work for the implementation of new models. We show an example of using the library indicating the choice of submodels has a si...

  5. The Electronic Structure of Amorphous Carbon Nanodots.

    Science.gov (United States)

    Margraf, Johannes T; Strauss, Volker; Guldi, Dirk M; Clark, Timothy

    2015-06-18

    We have studied hydrogen-passivated amorphous carbon nanostructures with semiempirical molecular orbital theory in order to provide an understanding of the factors that affect their electronic properties. Amorphous structures were first constructed using periodic calculations in a melt/quench protocol. Pure periodic amorphous carbon structures and their counterparts doped with nitrogen and/or oxygen feature large electronic band gaps. Surprisingly, descriptors such as the elemental composition and the number of sp(3)-atoms only influence the electronic structure weakly. Instead, the exact topology of the sp(2)-network in terms of effective conjugation defines the band gap. Amorphous carbon nanodots of different structures and sizes were cut out of the periodic structures. Our calculations predict the occurrence of localized electronic surface states, which give rise to interesting effects such as amphoteric reactivity and predicted optical band gaps in the near-UV/visible range. Optical and electronic gaps display a dependence on particle size similar to that of inorganic colloidal quantum dots.

  6. Plasma deposition of amorphous metal alloys

    Science.gov (United States)

    Hays, Auda K.

    1986-01-01

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  7. Arctic sea ice melt pond fractal dimension - explained

    Science.gov (United States)

    Popovic, Predrag

    As Arctic sea ice starts to melt in the summer, pools of melt water quickly form on its surface, significantly changing its albedo, and impacting its subsequent evolution. These melt ponds often form complex geometric shapes. One characteristic of their shape, the fractal dimension of the pond boundaries, D, when plotted as a function of pond size, has been shown to transition between the two fundamental limits of D = 1 and D = 2 at some critical pond size. Here, we provide an explanation for this behavior. First, using aerial photographs, we show how this fractal transition curve changes with time, and show that there is a qualitative difference in the pond shape as ice transitions from impermeable to permeable. Namely, while ice is impermeable, maximum fractal dimension is less than 2, whereas after it becomes permeable, maximum fractal dimension becomes very close to 2. We then show how the fractal dimension of a collection of overlapping circles placed randomly on a plane also transitions from D = 1 to D = 2 at a size equal to the average size of a single circle. We, therefore, conclude that this transition is a simple geometric consequence of regular shapes connecting. The one physical parameter that can be extracted from the fractal transition curve is the length scale at which transition occurs. We provide a possible explanation for this length scale by noting that the flexural wavelength of the ice poses a fundamental limit on the size of melt ponds on permeable ice. If this is true, melt ponds could be used as a proxy for ice thickness.

  8. Suppressing Ice Nucleation of Supercooled Condensate with Biphilic Topography

    Science.gov (United States)

    Hou, Youmin; Yu, Miao; Shang, Yuhe; Zhou, Peng; Song, Ruyuan; Xu, Xiaonan; Chen, Xuemei; Wang, Zuankai; Yao, Shuhuai

    2018-02-01

    Preventing or minimizing ice formation in supercooled water is of prominent importance in many infrastructures, transportation, and cooling systems. The overall phase change heat transfer on icephobic surfaces, in general, is intentionally sacrificed to suppress the nucleation of water and ice. However, in a condensation frosting process, inhibiting freezing without compromising the water condensation has been an unsolved challenge. Here we show that this conflict between anti-icing and efficient condensation cooling can be resolved by utilizing biphilic topography with patterned high-contrast wettability. By creating a varying interfacial thermal barrier underneath the supercooled condensate, the biphilic structures tune the nucleation rates of water and ice in the sequential condensation-to-freezing process. Our experimental and theoretical investigation of condensate freezing dynamics further unravels the correlation between the onset of droplet freezing and its characteristic radius, offering a new insight for controlling the multiphase transitions among vapor, water, and ice in supercooled conditions.

  9. Electronic transport in amorphous phase-change materials

    International Nuclear Information System (INIS)

    Luckas, Jennifer Maria

    2012-01-01

    Phase change materials combine a pronounced contrast in resistivity and reflectivity between their disordered amorphous and ordered crystalline state with very fast crystallization kinetics. Due to this exceptional combination of properties phase-change materials find broad application in non-volatile optical memories such as CD, DVD or Bluray Disc. Furthermore, this class of materials demonstrates remarkable electrical transport phenomena in their disordered state, which have shown to be crucial for their application in electronic storage devices. The threshold switching phenomenon denotes the sudden decrease in resistivity beyond a critical electrical threshold field. The threshold switching phenomenon facilitates the phase transitions at practical small voltages. Below this threshold the amorphous state resistivity is thermally activated and is observed to increase with time. This effect known as resistance drift seriously hampers the development of multi-level storage devices. Hence, understanding the physical origins of threshold switching and resistance drift phenomena is crucial to improve non-volatile phase-change memories. Even though both phenomena are often attributed to localized defect states in the band gap, the defect state density in amorphous phase-change materials has remained poorly studied. Starting from a brief introduction of the physics of phase-change materials this thesis summarizes the most important models behind electrical switching and resistance drift with the aim to discuss the role of localized defect states. The centerpiece of this thesis is the investigation of defects state densities in different amorphous phase-change materials and electrical switching chalcogenides. On the basis of Modulated Photo Current (MPC) Experiments and Photothermal Deflection Spectroscopy, a sophisticated band model for the disordered phase of the binary phase-change alloy GeTe has been developed. By this direct experimental approach the band-model for a

  10. Electronic transport in amorphous phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Luckas, Jennifer Maria

    2012-09-14

    Phase change materials combine a pronounced contrast in resistivity and reflectivity between their disordered amorphous and ordered crystalline state with very fast crystallization kinetics. Due to this exceptional combination of properties phase-change materials find broad application in non-volatile optical memories such as CD, DVD or Bluray Disc. Furthermore, this class of materials demonstrates remarkable electrical transport phenomena in their disordered state, which have shown to be crucial for their application in electronic storage devices. The threshold switching phenomenon denotes the sudden decrease in resistivity beyond a critical electrical threshold field. The threshold switching phenomenon facilitates the phase transitions at practical small voltages. Below this threshold the amorphous state resistivity is thermally activated and is observed to increase with time. This effect known as resistance drift seriously hampers the development of multi-level storage devices. Hence, understanding the physical origins of threshold switching and resistance drift phenomena is crucial to improve non-volatile phase-change memories. Even though both phenomena are often attributed to localized defect states in the band gap, the defect state density in amorphous phase-change materials has remained poorly studied. Starting from a brief introduction of the physics of phase-change materials this thesis summarizes the most important models behind electrical switching and resistance drift with the aim to discuss the role of localized defect states. The centerpiece of this thesis is the investigation of defects state densities in different amorphous phase-change materials and electrical switching chalcogenides. On the basis of Modulated Photo Current (MPC) Experiments and Photothermal Deflection Spectroscopy, a sophisticated band model for the disordered phase of the binary phase-change alloy GeTe has been developed. By this direct experimental approach the band-model for a

  11. Rheology of glacier ice

    Science.gov (United States)

    Jezek, K. C.; Alley, R. B.; Thomas, R. H.

    1985-01-01

    A new method for calculating the stress field in bounded ice shelves is used to compare strain rate and deviatoric stress on the Ross Ice Shelf, Antarctica. The analysis shows that strain rate (per second) increases as the third power of deviatoric stress (in newtons/sq meter), with a constant of proportionality equal to 2.3 x 10 to the -25th.

  12. Sputtering of water ice

    DEFF Research Database (Denmark)

    Baragiola, R.A.; Vidal, R.A.; Svendsen, W.

    2003-01-01

    We present results of a range of experiments of sputtering of water ice together with a guide to the literature. We studied how sputtering depends on the projectile energy and fluence, ice growth temperature, irradiation temperature and external electric fields. We observed luminescence from...

  13. Academic Airframe Icing Perspective

    Science.gov (United States)

    Bragg, Mike; Rothmayer, Alric; Thompson, David

    2009-01-01

    2-D ice accretion and aerodynamics reasonably well understood for engineering applications To significantly improve our current capabilities we need to understand 3-D: a) Important ice accretion physics and modeling not well understood in 3-D; and b) Aerodynamics unsteady and 3-D especially near stall. Larger systems issues important and require multidisciplinary team approach

  14. Making an Ice Core.

    Science.gov (United States)

    Kopaska-Merkel, David C.

    1995-01-01

    Explains an activity in which students construct a simulated ice core. Materials required include only a freezer, food coloring, a bottle, and water. This hands-on exercise demonstrates how a glacier is formed, how ice cores are studied, and the nature of precision and accuracy in measurement. Suitable for grades three through eight. (Author/PVD)

  15. Experimental Analysis of Sublimation Dynamics for Buried Glacier Ice in Beacon Valley, Antarctica

    Science.gov (United States)

    Ehrenfeucht, S.; Dennis, D. P.; Marchant, D. R.

    2017-12-01

    The age of the oldest known buried ice in Beacon Valley, McMurdo Dry Valleys (MDV) Antarctica is a topic of active debate due to its implications for the stability of the East Antarctic Ice Sheet. Published age estimates range from as young as 300 ka to as old as 8.1 Ma. In the upland MDV, ablation occurs predominantly via sublimation. The relict ice in question (ancient ice from Taylor Glacier) lies buried beneath a thin ( 30-70 cm) layer of sublimation till, which forms as a lag deposit as underlying debris-rich ice sublimes. As the ice sublimates, the debris held within the ice accumulates slowly on the surface, creating a porous boundary between the buried-ice surface and the atmosphere, which in turn influences gas exchange between the ice and the atmosphere. Additionally, englacial debris adds several salt species that are ultimately concentrated on the ice surface. It is well documented the rate of ice sublimation varies as a function of overlying till thickness. However, the rate-limiting dynamics under varying environmental conditions, including the threshold thicknesses at which sublimation is strongly retarded, are not yet defined. To better understand the relationships between sublimation rate, till thickness, and long-term surface evolution, we build on previous studies by Lamp and Marchant (2017) and evaluate the role of till thickness as a control on ice loss in an environmental chamber capable of replicating the extreme cold desert conditions observed in the MDV. Previous work has shown that this relationship exhibits exponential decay behavior, with sublimation rate significantly dampened under less than 10 cm of till. In our experiments we pay particular attention to the effect of the first several cm of till in order to quantify the dynamics that govern the transition from bare ice to debris-covered ice. We also examine this transition for various forms of glacier ice, including ice with various salt species.

  16. Crystallization of biogenic hydrous amorphous silica

    Science.gov (United States)

    Kyono, A.; Yokooji, M.; Chiba, T.; Tamura, T.; Tuji, A.

    2017-12-01

    Diatom, Nitzschia cf. frustulum, collected from Lake Yogo, Siga prefecture, Japan was cultured in laboratory. Organic components of the diatom cell were removed by washing with acetone and sodium hypochlorite. The remaining frustules were studied by SEM-EDX, FTIR spectroscopy, and synchrotron X-ray diffraction. The results showed that the spindle-shaped morphology of diatom frustule was composed of hydrous amorphous silica. Pressure induced phase transformation of the diatom frustule was investigated by in situ Raman spectroscopic analysis. With exposure to 0.3 GPa at 100 oC, Raman band corresponding to quartz occurred at ν = 465 cm-1. In addition, Raman bands known as a characteristic Raman pattern of moganite was also observed at 501 cm-1. From the integral ratio of Raman bands, the moganite content in the probed area was estimated to be approximately 50 wt%. With the pressure and temperature effect, the initial morphology of diatom frustule was completely lost and totally changed to a characteristic spherical particle with a diameter of about 2 mm. With keeping the compression of 5.7 GPa at 100 oC, a Raman band assignable to coesite appeared at 538 cm-1. That is, with the compression and heating, the hydrous amorphous silica can be readily crystallized into quartz, moganite, and coesite. The first-principles calculations revealed that a disiloxane molecule stabilized in a trans configuration is twisted 60o and changed into the cis configuration with a close approach of water molecule. It is therefore a reasonable assumption that during crystallization of hydrous amorphous silica, the Si-O-Si bridging unit with the cis configuration would survive as a structural defect and then crystallized into moganite by keeping the geometry. This hypothesis is adaptable to the phase transformation from hydrous amorphous silica to coesite as well, because coesite has the four-membered rings and easily formed from the hydrous amorphous silica under high pressure and high

  17. Evaluation of optical properties of the amorphous carbon film on fused silica

    International Nuclear Information System (INIS)

    Baydogan, Nilguen Dogan

    2004-01-01

    Deposition was done using a pulsed filtered cathodic arc with a graphite cathode. The carbon plasma is fully ionised and condenses on the substrate, forming diamond-like material but with amorphous structure. Optical properties of amorphous carbon films on fused-silica glass were investigated and the curves of optical density have a characteristic band at approximately 950 nm. Changes of the colourimetric quantities were evaluated and compared to uncoated fused silica glass. These changes were investigated as a function of the applied substrate bias voltage using the CIE and CIELAB colour systems. It is suggested that the mechanism of absorption is related to an allowed direct transition at the amorphous carbon films on fused silica glass. The optical energy gap of the amorphous carbon film depends on the bias voltage applied to the substrate holder. The optical colour parameters and optical band gap indicated that there is a relation between the dominant wavelength of the reflectance in the visible range and the wavelength of the optical band gap

  18. Nanocrystallization in Co67Cr7Fe4Si8B14 Amorphous Alloy Ribbons

    Directory of Open Access Journals (Sweden)

    Zahra Jamili-Shirvan

    2013-12-01

    Full Text Available The nanocrystallization of Co67Fe4Cr7Si8B14 amorphous ribbons which prepared by planar flow melt spinning process (PFMS was investigated. Crystallization of the ribbons was studied by differential thermal analysis (DTA, X-ray diffraction (XRD and transmission electron microscopy (TEM. The DTA result of amorphous ribbon at heating rate of 10˚C/min showedoccurrence of phase transitions in two stages. The ribbons were isothermally annealed for 30 minutes in argon atmosphere at different temperatures between 300 and 650ºC with 25ºC steps. The magnetic properties of annealed samples were measured using a vibrating sample magnetometer (VSM. The VSM results revealed that optimum soft magnetic properties occurred at 400ºC. XRD patterns showed that the samples isothermally annealed up to 450ºC were amorphous, while TEM results at 400ºC indicated 7-8 nm mean size nanocrytallites in amorphous matrix and size of the nanocrystallites increased by increasing temperature. Also by X-ray diffraction pattern, precipitation of different phases at higher temperatures confirmed.

  19. Photoluminescence properties of BaMoO4 amorphous thin films

    International Nuclear Information System (INIS)

    Marques, Ana Paula Azevedo; Melo, Dulce M.A. de; Longo, Elson; Paskocimas, Carlos A.; Pizani, Paulo S.; Leite, Edson R.

    2005-01-01

    BaMoO 4 amorphous and crystalline thin films were prepared from polymeric precursors. The BaMoO 4 was deposited onto Si wafers by means of the spinning technique. The structure and optical properties of the resulting films were characterized by FTIR reflectance spectra, X-ray diffraction (XRD), atomic force microscopy (AFM) and optical reflectance. The bond Mo-O present in BaMoO 4 was confirmed by FTIR reflectance spectra. XRD characterization showed that thin films heat-treated at 600 and 200 deg. C presented the scheelite-type crystalline phase and amorphous, respectively. AFM analyses showed a considerable variation in surface morphology by comparing samples heat-treated at 200 and 600 deg. C. The reflectivity spectra showed two bands, positioned at 3.38 and 4.37 eV that were attributed to the excitonic state of Ba 2+ and electronic transitions within MoO 2- 4 , respectively. The optical band gaps of BaMoO 4 were 3.38 and 2.19 eV, for crystalline (600 deg. C/2 h) and amorphous (200 deg. C/8 h) films, respectively. The room-temperature luminescence spectra revealed an intense single-emission band in the visible region. The PL intensity of these materials was increased upon heat-treatment. The excellent optical properties observed for BaMoO 4 amorphous thin films suggested that this material is a highly promising candidate for photoluminescent applications

  20. Atomic mobility in the overheated amorphous GeTe compound for phase change memories

    International Nuclear Information System (INIS)

    Sosso, G.C.; Behler, J.; Bernasconi, M.

    2016-01-01

    Abstractauthoren Phase change memories rest on the ability of some chalcogenide alloys to undergo a fast and reversible transition between the crystalline and amorphous phases upon Joule heating. The fast crystallization is due to a high nucleation rate and a large crystal growth velocity which are actually possible thanks to the fragility of the supercooled liquid that allows for the persistence of a high atomic mobility at high supercooling where the thermodynamical driving force for crystallization is also high. Since crystallization in the devices occurs by rapidly heating the amorphous phase, hysteretic effects might arise with a different diffusion coefficient and viscosity on heating than on cooling. In this work, we have quantified these hysteretic effects in the phase change compound GeTe by means of molecular dynamics simulations. The atomic mobility in the overheated amorphous phase is lower than in supercooled liquid at the same temperature and the viscosity is consequently higher. Still, the simulations of the overheated amorphous phase reveal a breakdown of the Stokes-Einstein relation between the diffusion coefficient and the viscosity, similarly to what we found previously in the supercooled liquid. Evidences are provided that the breakdown is due to the emergence of dynamical heterogeneities at high supercooling. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. First-Principles Prediction of Densities of Amorphous Materials: The Case of Amorphous Silicon

    Science.gov (United States)

    Furukawa, Yoritaka; Matsushita, Yu-ichiro

    2018-02-01

    A novel approach to predict the atomic densities of amorphous materials is explored on the basis of Car-Parrinello molecular dynamics (CPMD) in density functional theory. Despite the determination of the atomic density of matter being crucial in understanding its physical properties, no first-principles method has ever been proposed for amorphous materials until now. We have extended the conventional method for crystalline materials in a natural manner and pointed out the importance of the canonical ensemble of the total energy in the determination of the atomic densities of amorphous materials. To take into account the canonical distribution of the total energy, we generate multiple amorphous structures with several different volumes by CPMD simulations and average the total energies at each volume. The density is then determined as the one that minimizes the averaged total energy. In this study, this approach is implemented for amorphous silicon (a-Si) to demonstrate its validity, and we have determined the density of a-Si to be 4.1% lower and its bulk modulus to be 28 GPa smaller than those of the crystal, which are in good agreement with experiments. We have also confirmed that generating samples through classical molecular dynamics simulations produces a comparable result. The findings suggest that the presented method is applicable to other amorphous systems, including those for which experimental knowledge is lacking.

  2. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover

    Science.gov (United States)

    2015-09-30

    Figure 1). When the ice is snow covered there is little difference in albedo and partitioning between first year and multiyear ice. Once the snow melts...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Sunlight, Sea Ice, and the Ice Albedo Feedback in a...and iv) onset dates of melt and freeze up. 4. Assess the magnitude of the contribution from ice- albedo feedback to the observed decrease of sea ice

  3. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Artic Sea Ice Cover

    Science.gov (United States)

    2015-11-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. SUNLIGHT, SEA ICE , AND THE ICE ALBEDO FEEDBACK IN A...iv) onset dates of melt and freeze up. 4. Assess the magnitude of the contribution from ice - albedo feedback to the observed decrease of sea ice in... sea ice prediction and modeling community to improve the treatment of solar radiation and the ice - albedo feedback. This transfer will take the form of

  4. In situ X-ray diffraction study of solid state transformations during catalytic graphitisation of amorphous carbon

    CERN Document Server

    Krivoruchko, O P; Zaikovskii, V I

    2001-01-01

    Here we report on the results of an in situ X-ray diffraction study of phase transformations during catalytic graphitisation of amorphous carbon. It is demonstrated that there is unusual change of iron catalyst reflection intensity at low temperature approx 640 deg. C. This unusual intensity change may possibly be caused by the transition of some part of metal into liquid state at low temperature. It was also shown by electron microscopy that although no graphite reflections were detected 80-90% of amorphous carbon becomes graphite after sample heating in a high temperature vacuum chamber.

  5. Conversion of nuclear waste to molten glass: Formation of porous amorphous alumina in a high-Al melter feed

    Science.gov (United States)

    Xu, Kai; Hrma, Pavel; Washton, Nancy; Schweiger, Michael J.; Kruger, Albert A.

    2017-01-01

    The transition of Al phases in a simulated high-Al high-level nuclear waste melter feed heated at 5 K min-1 to 700 °C was investigated with transmission electron microscopy, 27Al nuclear magnetic resonance spectroscopy, the Brunauer-Emmett-Teller method, and X-ray diffraction. At temperatures between 300 and 500 °C, porous amorphous alumina formed from the dehydration of gibbsite, resulting in increased specific surface area of the feed (∼8 m2 g-1). The high-surface-area amorphous alumina formed in this manner could potentially stop salt migration in the cold cap during nuclear waste vitrification.

  6. GLERL Radiation Transfer Through Freshwater Ice

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radiation transmittance (ratio of transmitted to incident radiation) through clear ice, refrozen slush ice and brash ice, from ice surface to ice-water interface in...

  7. Confirming the ice plumes of Europa

    Science.gov (United States)

    Sparks, William

    2016-10-01

    The presence of plumes of water ice venting from the icy surface of Europa is of tremendous interest to the scientific community, NASA and the general public, as it offers the prospect of access to material that was once in Europa's ocean without the need to drill through many miles of ice. We secured three observations, from a sample of ten, showing plume candidates, using FUV HST imaging of Europa as it transits the smooth face of Jupiter (Sparks et al., 2016). Crucially, the most accurately localized candidate, which is also the candidate of highest statistical significance, appears to repeat in recent unpublished 2016 data. We propose to acquire additional transit images in order to assess the repeatability of this event, determine a timescale for activity, and to aid in quantifying the column density and mass required. The data will provide additional opportunities to isolate new plume candidates and further characterize the persistent absorption around the southern limb of Europa. We propose a campaign to image Europa in transit against Jupiter close to the April 2017 opposition, in order to maximize spatial resolution, sensitivity, and time sampling. These measurements have the potential to profoundly influence a topic of fundamental scientific importance and of great strategic interest to NASA. If the ice plumes of Europa arise from the deep ocean, we have gained access to probably the most astrobiologically interesting location in the Solar System.

  8. High transmittance contrast in amorphous to hexagonal phase of Ge2Sb2Te5: Reversible NIR-window

    Science.gov (United States)

    Singh, Palwinder; Singh, A. P.; Kanda, Neetu; Mishra, Monu; Gupta, Govind; Thakur, Anup

    2017-12-01

    Ge2Sb2Te5 (GST) is one of the best phase change materials because of its splendid set of properties, viz., high thermal stability, fast crystallization speed, good endurance, scalability, and reliability. Phase transition [amorphous → face centered cubic (fcc) → hexagonal close packed (hcp)] of GST thin films with annealing was studied using X-ray diffraction. Thin films in amorphous, fcc, and hcp phases are highly, medium, and negligible transparent in the near infra-red region, respectively. The optical transmission in amorphous, fcc, and hcp phases is ˜92%, ˜46%, and ˜2%, respectively, at the wavelength of 2740 nm. At 2740 nm, a high transmission contrast (˜90%) is observed with phase transition from the amorphous to hcp phase. By utilizing large transmission contrast, it is demonstrated that GST can be availed as a potential candidate for reversible near infra-red-window. The sharp change in optical transmission with phase transition can be understood from the change in density of states in the valence band.

  9. Modelling snow ice and superimposed ice on landfast sea ice in Kongsfjorden, Svalbard

    Directory of Open Access Journals (Sweden)

    Caixin Wang

    2015-08-01

    Full Text Available Snow ice and superimposed ice formation on landfast sea ice in a Svalbard fjord, Kongsfjorden, was investigated with a high-resolution thermodynamic snow and sea-ice model, applying meteorological weather station data as external forcing. The model shows that sea-ice formation occurs both at the ice bottom and at the snow/ice interface. Modelling results indicated that the total snow ice and superimposed ice, which formed at the snow/ice interface, was about 14 cm during the simulation period, accounting for about 15% of the total ice mass and 35% of the total ice growth. Introducing a time-dependent snow density improved the modelled results, and a time-dependent oceanic heat flux parameterization yielded reasonable ice growth at the ice bottom. Model results suggest that weather conditions, in particular air temperature and precipitation, as well as snow thermal properties and surface albedo are the most critical factors for the development of snow ice and superimposed ice in Kongsfjorden. While both warming air and higher precipitation led to increased snow ice and superimposed ice forming in Kongsfjorden in the model runs, the processes were more sensitive to precipitation than to air temperature.

  10. High Speed Ice Friction

    Science.gov (United States)

    Seymour-Pierce, Alexandra; Sammonds, Peter; Lishman, Ben

    2014-05-01

    Many different tribological experiments have been run to determine the frictional behaviour of ice at high speeds, ostensibly with the intention of applying results to everyday fields such as winter tyres and sports. However, experiments have only been conducted up to linear speeds of several metres a second, with few additional subject specific studies reaching speeds comparable to these applications. Experiments were conducted in the cold rooms of the Rock and Ice Physics Laboratory, UCL, on a custom built rotational tribometer based on previous literature designs. Preliminary results from experiments run at 2m/s for ice temperatures of 271 and 263K indicate that colder ice has a higher coefficient of friction, in accordance with the literature. These results will be presented, along with data from further experiments conducted at temperatures between 259-273K (in order to cover a wide range of the temperature dependent behaviour of ice) and speeds of 2-15m/s to produce a temperature-velocity-friction map for ice. The effect of temperature, speed and slider geometry on the deformation of ice will also be investigated. These speeds are approaching those exhibited by sports such as the luge (where athletes slide downhill on an icy track), placing the tribological work in context.

  11. Determination of a Critical Sea Ice Thickness Threshold for the Central Arctic Ocean

    Science.gov (United States)

    Ford, V.; Frauenfeld, O. W.; Nowotarski, C. J.

    2017-12-01

    While sea ice extent is readily measurable from satellite observations and can be used to assess the overall survivability of the Arctic sea ice pack, determining the spatial variability of sea ice thickness remains a challenge. Turbulent and conductive heat fluxes are extremely sensitive to ice thickness but are dominated by the sensible heat flux, with energy exchange expected to increase with thinner ice cover. Fluxes over open water are strongest and have the greatest influence on the atmosphere, while fluxes over thick sea ice are minimal as heat conduction from the ocean through thick ice cannot reach the atmosphere. We know that turbulent energy fluxes are strongest over open ocean, but is there a "critical thickness of ice" where fluxes are considered non-negligible? Through polar-optimized Weather Research and Forecasting model simulations, this study assesses how the wintertime Arctic surface boundary layer, via sensible heat flux exchange and surface air temperature, responds to sea ice thinning. The region immediately north of Franz Josef Land is characterized by a thickness gradient where sea ice transitions from the thickest multi-year ice to the very thin marginal ice seas. This provides an ideal location to simulate how the diminishing Arctic sea ice interacts with a warming atmosphere. Scenarios include both fixed sea surface temperature domains for idealized thickness variability, and fixed ice fields to detect changes in the ocean-ice-atmosphere energy exchange. Results indicate that a critical thickness threshold exists below 1 meter. The threshold is between 0.4-1 meters thinner than the critical thickness for melt season survival - the difference between first year and multi-year ice. Turbulent heat fluxes and surface air temperature increase as sea ice thickness transitions from perennial ice to seasonal ice. While models predict a sea ice free Arctic at the end of the warm season in future decades, sea ice will continue to transform

  12. The effects of methanol on the trapping of volatile ice components

    Science.gov (United States)

    Burke, Daren J.; Brown, Wendy A.

    2015-04-01

    The evaporation of icy mantles, which have been formed on the surface of dust grains, is acknowledged to give rise to the rich chemistry that has been observed in the vicinity of hot cores and corinos. It has long been established that water ice is the dominant species within many astrophysical ices. However, other molecules found within astrophysical ices, particularly methanol, can influence the desorption of volatile species from the ice. Here we present a detailed investigation of the adsorption and desorption of methanol-containing ices, showing the effect that methanol has on the trapping and release of volatiles from model interstellar ices. OCS and CO2 have been used as probe molecules since they have been suggested to reside in water-rich and methanol-rich environments. Experiments show that methanol fundamentally changes the desorption characteristics of both OCS and CO2, leading to the observation of mainly codesorption of both species with bulk water ice for the tertiary ices and causing a lowering of the temperature of the volcano component of the desorption. In contrast, binary ices are dominated by standard volcano desorption. This observation clearly shows that codepositing astrophysically relevant impurities with water ice, such as methanol, can alter the desorption dynamics of volatiles that become trapped in the pores of the amorphous water ice during the sublimation process. Incorporating experimental data into a simple model to simulate these processes on astrophysical timescales shows that the additional methanol component releases larger amounts of OCS from the ice mantle at lower temperatures and earlier times. These results are of interest to astronomers as they can be used to model the star formation process, hence giving information about the evolution of our Universe.

  13. Amorphous Carbon: State of the Art - Proceedings of the 1st International Specialist Meeting on Amorphous Carbon (smac '97)

    Science.gov (United States)

    Silva, S. R. P.; Robertson, J.; Milne, W. I.; Amaratunga, G. A. J.

    1998-05-01

    The Table of Contents for the full book PDF is as follows: * Preface * GROWTH AND STRUCTURE * The Structure of Tetrahedral Amorphous Carbon * Growth of DLC Films and Related Structure and Properties * Deposition Mechanism of Diamond-Like Carbon * Relaxation of sp3 Bonds in Hydrogen Free Carbon Films During Growth * MODELLING * Correlations Between Microstructure and Electronic Properties in Amorphous Carbon Based Materials * Review of Monte Carlo Simulations of Diamondlike Amorphous Carbon: Bulk, Surface, and Interface Structural Properties * DEPOSITION * Preparation of Disordered Amorphous and Partially Ordered Nano Clustered Carbon Films by Arc Deposition: A Critical Review * Plasma Deposition of Diamond-Like Carbon in an ECR-RF Discharge * Deposition of Amorphous Hydrogenated Carbon-Nitrogen Films by PECVD Using Several Hydrocarbon / Nitrogen Containing Gas Mixtures * ELECTRONIC STRUCTURE * 'Defects' and Their Detection in a-C and a-C:H * Valence Band and Gap State Spectroscopy of Amorphous Carbon by Photoelectron Emission Techniques * Photoluminescence Spectroscopy: A Probe for Inhomogeneous Structure in Polymer-Like Amorphous Carbon * Raman Characterization of Amorphous and Nanocrystalline sp3 Bonded Structures * Ultraviolet Raman Spectroscopy of Tetrahedral Amorphous Carbon Thin Films * Excitation Energy Dependent Raman and Photoluminescence Spectra of Hydrogenated Amorphous Carbon * MECHANICAL PROPERTIES * Pulsed Laser Deposited a-C: Growth, Structure and Mechanical Properties * Mechanical Properties of Laser-Assisted Deposited Amorphous Carbon Films * Mechanical and Morphology Study on Tetrahedral Amorphous Carbon Films * Time-Dependent Changes in the Mechanical Properties of Diamond-Like Carbon Films * ELECTRONIC PROPERTIES * Electronic Transport in Amorphous Carbon * Electronic Properties of Undoped/Doped Tetrahedral Amorphous Carbon * The Inclusion of Graphitic Nanoparticles in Semiconducting Amorphous Carbon to Enhance Electronic Transport Properties

  14. Emerging trends in the stabilization of amorphous drugs.

    Science.gov (United States)

    Laitinen, Riikka; Löbmann, Korbinian; Strachan, Clare J; Grohganz, Holger; Rades, Thomas

    2013-08-30

    The number of active pharmaceutical substances having high therapeutic potential but low water solubility is constantly increasing, making it difficult to formulate these compounds as oral dosage forms. The solubility and dissolution rate, and thus potentially the bioavailability, of these poorly water-soluble drugs can be increased by the formation of stabilized amorphous forms. Currently, formulation as solid polymer dispersions is the preferred method to enhance drug dissolution and to stabilize the amorphous form of a drug. The purpose of this review is to highlight emerging alternative methods to amorphous polymer dispersions for stabilizing the amorphous form of drugs. First, an overview of the properties and stabilization mechanisms of amorphous forms is provided. Subsequently, formulation approaches such as the preparation of co-amorphous small-molecule mixtures and the use of mesoporous silicon and silica-based carriers are presented as potential means to increase the stability of amorphous pharmaceuticals. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Synchronizing ice cores from the Renland and Agassiz ice caps to the Greenland Ice Core Chronology

    DEFF Research Database (Denmark)

    Vinther, Bo Møllesøe; Clausen, Henrik Brink; Fischer, D. A.

    2008-01-01

    Four ice cores from the Agassiz ice cap in the Canadian high arctic and one ice core from the Renland ice cap in eastern Greenland have been synchronized to the Greenland Ice Core Chronology 2005 (GICC05) which is based on annual layer counts in the DYE-3, GRIP and NGRIP ice cores. Volcanic....... Annual layer thicknesses in the Agassiz ice cores point to a well-developed Raymond bump in the Agassiz ice cap....... reference horizons, seen in electrical conductivity measurements (ECM) have been used to carry out the synchronization throughout the Holocene. The Agassiz ice cores have been matched to the NGRIP ice core ECM signal, while the Renland core has been matched to the GRIP ice core ECM signal, thus tying...

  16. Phase behavior and oral bioavailability of amorphous Curcumin.

    Science.gov (United States)

    Pawar, Yogesh B; Shete, Ganesh; Popat, Dharmesh; Bansal, Arvind K

    2012-08-30

    Amorphous form has been used as a means to improve aqueous solubility and oral bioavailability of poorly water soluble drugs. The objective of present study was to characterize thermodynamic and kinetic parameters of amorphous form of Curcumin (CRM-A). CRM-A was found to be a good glass former with glass transition temperature (T(g)) of 342.64K and critical cooling rate below 1K/min. CRM-A had a moderate tendency of crystallization and exhibited Kauzmann temperature (T(KS)) of 294.23 K. CRM-A was found to be fragile in nature as determined by T(m)/T(g) (1.32), C(p)(1 iq):C(p)(glass) (1.22), strength parameter (D75), T(K)/T(g) (0.85), and T(g)-T(K) (48.41). Theoretically predicted aqueous solubility advantage of 43.15-folds, was reduced to 17-folds under practical conditions. This reduction in solubility was attributed to water induced devitrification, as evident through PXRD and SEM analysis. Further, oral bioavailability study of CRM-A was undertaken to investigate bioavailability benefits, if any. C(max) was improved by 1.97-folds (statistically significant difference over control). However, oral bioavailability (AUC(0-)(∞)) was improved by 1.45-folds (statistically non significant difference over control). These observations pointed towards role of rapid devitrification of CRM-A in GIT milieu, thus limiting its oral bioavailability advantage. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Observations of brine plumes below melting Arctic sea ice

    Science.gov (United States)

    Peterson, Algot K.

    2018-02-01

    In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic heat through bottom melt. Calculated over a composite plume, oceanic heat and salt fluxes during the plumes account for 6 and 9 % of the total fluxes, respectively, while only lasting in total 0.5 % of the time. The observed salt flux accumulates to 7.6 kg m-2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agrees with accumulated salt fluxes to within a factor of 2. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the new Arctic.

  18. Observations of brine plumes below melting Arctic sea ice

    Directory of Open Access Journals (Sweden)

    A. K. Peterson

    2018-02-01

    Full Text Available In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic heat through bottom melt. Calculated over a composite plume, oceanic heat and salt fluxes during the plumes account for 6 and 9 % of the total fluxes, respectively, while only lasting in total 0.5 % of the time. The observed salt flux accumulates to 7.6 kg m−2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agrees with accumulated salt fluxes to within a factor of 2. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the new Arctic.

  19. Using Antifreeze Proteins to understand ice microstructure evolution

    Science.gov (United States)

    Bayer-Giraldi, Maddalena; Azuma, Nobuhiko; Takata, Morimasa; Weikusat, Christian; Kondo, Hidemasa; Kipfstuhl, Sepp

    2017-04-01

    Polar ice sheets are considered a unique climate archive. The chemical analysis of its impurities and the development of its microstructure with depth give insight in past climate conditions as well as in the development of the ice sheet with time and deformation. Microstructural patterns like small grain size observed in specific depths are thought to be linked to the retarding effect of impurities on ice grain growth. Clear evidence of size or chemical composition of the impurities causing this effect is missing, but in this context a major role of nanoparticles has been suggested. In order to shed light on different mechanisms by which nanoparticles can control microstructure development we used antifreeze proteins (AFPs) as proxies for particles in ice. These proteins are small nanoparticles, approx. 5 nm in size, with the special characteristics of firmly binding to ice through several hydrogen bonds. We used AFPs from the sea-ice microalgae Fragilariopsis cylindrus (fcAFPs) in bubble-free, small-grained polycrystalline ice obtained by the phase-transition size refinement method. We explain how fcAFP bind to ice by presenting the 3-D-protein structure model inferred by X-ray structure analysis, and show the importance of the chemical interaction between particles and ice in controlling normal grain growth, comparing fcAFPs to other protein nanoparticles. We used modifications of fcAFPs for particle localization through fluorescence spectroscopy. Furthermore, the effect of fcAFPs on the driving factors for ice deformation during creep, i.e. on internal dislocations due to incorporation within the lattice and on the mobility of grain boundaries due to pinning, makes these proteins particularly interesting in studying the process of ice deformation.

  20. Initial Cooling Experiment (ICE)

    CERN Multimedia

    Photographic Service; CERN PhotoLab

    1978-01-01

    In 1977, in a record-time of 9 months, the magnets of the g-2 experiment were modified and used to build a proton/antiproton storage ring: the "Initial Cooling Experiment" (ICE). It served for the verification of the cooling methods to be used for the "Antiproton Project". Stochastic cooling was proven the same year, electron cooling followed later. Also, with ICE the experimental lower limit for the antiproton lifetime was raised by 9 orders of magnitude: from 2 microseconds to 32 hours. For its previous life as g-2 storage ring, see 7405430. More on ICE: 7711282, 7809081, 7908242.

  1. Wave-ice Interaction and the Marginal Ice Zone

    Science.gov (United States)

    2015-09-30

    single buoys that were moved from place to place. These new data, obtained within the comprehensive set of ocean, ice and atmosphere sensors and remote...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave- ice interaction and the Marginal Ice Zone Prof...between ocean waves and a sea ice cover, in terms, of scattering, attenuation, and mechanical effect of the waves on the ice . OBJECTIVES The

  2. Creep of ice: further studies

    International Nuclear Information System (INIS)

    Heard, H.C.; Durham, W.B.; Kirby, S.H.

    1987-01-01

    Detailed studies have been done of ice creep as related to the icy satellites, Ganymede and Callisto. Included were: (1) the flow of high-pressure water ices II, III, and V, and (2) frictional sliding of ice I sub h. Work was also begun on the study of the effects of impurities on the flow of ice. Test results are summarized

  3. Determination of boron in amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grazhulene, S.S.; Grossman, O.V.; Kuntscher, K.K.; Malygina, L.I.; Muller, E.N.; Telegin, G.F.

    1985-10-01

    In the determination of boron in amorphous alloys containingFe, Co, B, Si, Ni, and P having unusal magnetic and electrical properties, precise analysis and rapid analysis are necessary. To improve the metrological properties of the existing procedure, to find a rapid determination of boron in amorphous alloys, and to verify the accuracy of the results, in the present work the optimization of the photometric determination after extraction of the BF/sup -//sub 4/ ion pair with methylene blue has been studied, and a boron determination by flame photometry using selective methylation has been developed. The determination of boron by the flame photometric and spectrophotometric methods is shown. When a highly precise determination is needed, the spectrophotometric procedure can be used. This procedure is distinguished by its labor intensity and duration. When the need for reproducibility is less severe, the rapid flame photometric procedure is best.

  4. Wear Resistant Amorphous and Nanocomposite Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Racek, O

    2008-03-26

    Glass forming materials (critical cooling rate <10{sup 4}K.s{sup -1}) are promising for their high corrosion and wear resistance. During rapid cooling, the materials form an amorphous structure that transforms to nanocrystalline during a process of devitrification. High hardness (HV 1690) can be achieved through a controlled crystallization. Thermal spray process has been used to apply coatings, which preserves the amorphous/nanocomposite structure due to a high cooling rate of the feedstock particles during the impact on a substrate. Wear properties have been studied with respect to process conditions and feedstock material properties. Application specific properties such as sliding wear resistance have been correlated with laboratory tests based on instrumented indentation and scratch tests.

  5. Annealing behavior of high permeability amorphous alloys

    International Nuclear Information System (INIS)

    Rabenberg, L.

    1980-06-01

    Effects of low temperature annealing on the magnetic properties of the amorphous alloy Co 71 4 Fe 4 6 Si 9 6 B 14 4 were investigated. Annealing this alloy below 400 0 C results in magnetic hardening; annealing above 400 0 C but below the crystallization temperature results in magnetic softening. Above the crystallization temperature the alloy hardens drastically and irreversibly. Conventional and high resolution transmission electron microscopy were used to show that the magnetic property changes at low temperatures occur while the alloy is truly amorphous. By imaging the magnetic microstructures, Lorentz electron microscopy has been able to detect the presence of microscopic inhomogeneities in this alloy. The low temperature annealing behavior of this alloy has been explained in terms of atomic pair ordering in the presence of the internal molecular field. Lorentz electron microscopy has been used to confirm this explanation

  6. The quantum phase-transitions of water

    Science.gov (United States)

    Fillaux, François

    2017-08-01

    It is shown that hexagonal ices and steam are macroscopically quantum condensates, with continuous spacetime-translation symmetry, whereas liquid water is a quantum fluid with broken time-translation symmetry. Fusion and vaporization are quantum phase-transitions. The heat capacities, the latent heats, the phase-transition temperatures, the critical temperature, the molar volume expansion of ice relative to water, as well as neutron scattering data and dielectric measurements are explained. The phase-transition mechanisms along with the key role of quantum interferences and that of Hartley-Shannon's entropy are enlightened. The notions of chemical bond and force-field are questioned.

  7. Characterization of diamond amorphized by ion implantation

    International Nuclear Information System (INIS)

    Allen, W.R.; Lee, E.H.

    1992-01-01

    Single crystal diamond has been implanted at 1 MeV with 2 x 10 20 Ar/m 2 . Rutherford backscattering spectrometry in a channeled geometry revealed a broad amorphized region underlying a thin, partially crystalline layer. Raman spectroscopy disclosed modifications in the bonding characteristic of the appearance of non-diamond carbon. The complementary nature of the two analysis techniques is demonstrated. The Knoop hardness of the implanted diamond was reduced by implantation

  8. Metastable states in amorphous chalcogenide semiconductors

    CERN Document Server

    Mikla, Victor I

    2009-01-01

    This book addresses an interesting and technologically important class of materials, the amorphous chalcogenide semiconductors. Experimental results on the structural and electronic metastable states in Se-rich chalcogenides are presented. Special attention is paid to the states in the mobility gap and their sensitivity to various factors such as irradiation, annealing and composition. Photoinduced changes of structure and physical properties are also considered and structural transformation at photocrystallization is studied in detail. Finally, the authors discuss potential applications of th

  9. Vortex ice in nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  10. Detailed stability investigation of amorphous solid dispersions prepared by single-needle and high speed electrospinning.

    Science.gov (United States)

    Démuth, B; Farkas, A; Pataki, H; Balogh, A; Szabó, B; Borbás, E; Sóti, P L; Vigh, T; Kiserdei, É; Farkas, B; Mensch, J; Verreck, G; Van Assche, I; Marosi, G; Nagy, Z K

    2016-02-10

    In this research the long-term stability (one year) of amorphous solid dispersions (ASDs) prepared by high speed electrospinning was investigated at 25 °C/60% relative humidity (RH) (closed conditions) and 40 °C/75% RH (open conditions). Single needle electrospinning and film casting were applied as reference technologies. Itraconazole (ITR) was used as the model API in 40% concentration and the ASDs consisted of either one of the following polymers as a comparison: polyvinylpyrrolidone-vinyl acetate 6:4 copolymer (no hydrogen bonds between API and polymer) and hydroxypropyl methylcellulose (possible hydrogen bonds between oxo or tertiary nitrogen function of API and hydroxyl moiety of polymer). DSC, XRPD and dissolution characteristics of samples at 0, 3 and 12 months were investigated. In addition, Raman maps of certain electrospun ASDs were assessed to investigate crystallinity. A new chemometric method, based on Multivariate Curve Resolution-Alternating Least Squares algorithm, was developed to calculate the spectrum of amorphous ITR in the matrices and to determine the crystalline/amorphous ratio of aged samples. As it was expected ITR in single needle electrospun SDs was totally amorphous at the beginning, in addition hydroxypropyl methylcellulose could keep ITR in this form at 40 °C/75% RH up to one year due to the hydrogen bonds and high glass transition temperature of the SD. In polyvinylpyrrolidone-vinyl acetate matrix ITR remained amorphous at 25 °C/60% RH throughout one year. Materials prepared by scaled-up, high throughput version of electrospinning, which is compatible with pharmaceutical industry, also gained the same quality. Therefore these ASDs are industrially applicable and with an appropriate downstream process it would be possible to bring them to the market. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Fluctuation microscopy analysis of amorphous silicon models

    International Nuclear Information System (INIS)

    Gibson, J.M.; Treacy, M.M.J.

    2017-01-01

    Highlights: • Studied competing computer models for amorphous silicon and simulated fluctuation microscopy data. • Show that only paracrystalline/random network composite can fit published data. • Specifically show that pure random network or random network with void models do not fit available data. • Identify a new means to measure volume fraction of ordered material. • Identify unreported limitations of the Debye model for simulating fluctuation microscopy data. - Abstract: Using computer-generated models we discuss the use of fluctuation electron microscopy (FEM) to identify the structure of amorphous silicon. We show that a combination of variable resolution FEM to measure the correlation length, with correlograph analysis to obtain the structural motif, can pin down structural correlations. We introduce the method of correlograph variance as a promising means of independently measuring the volume fraction of a paracrystalline composite. From comparisons with published data, we affirm that only a composite material of paracrystalline and continuous random network that is substantially paracrystalline could explain the existing experimental data, and point the way to more precise measurements on amorphous semiconductors. The results are of general interest for other classes of disordered materials.

  12. Intrinsic electron trapping in amorphous oxide

    Science.gov (United States)

    Strand, Jack; Kaviani, Moloud; Afanas’ev, Valeri V.; Lisoni, Judit G.; Shluger, Alexander L.

    2018-03-01

    We demonstrate that electron trapping at intrinsic precursor sites is endemic in non-glass-forming amorphous oxide films. The energy distributions of trapped electron states in ultra-pure prototype amorphous (a)-HfO2 insulator obtained from exhaustive photo-depopulation experiments demonstrate electron states in the energy range of 2–3 eV below the oxide conduction band. These energy distributions are compared to the results of density functional calculations of a-HfO2 models of realistic density. The experimental results can be explained by the presence of intrinsic charge trapping sites formed by under-coordinated Hf cations and elongated Hf–O bonds in a-HfO2. These charge trapping states can capture up to two electrons, forming polarons and bi-polarons. The corresponding trapping sites are different from the dangling-bond type defects responsible for trapping in glass-forming oxides, such as SiO2, in that the traps are formed without bonds being broken. Furthermore, introduction of hydrogen causes formation of somewhat energetically deeper electron traps when a proton is immobilized next to the trapped electron bi-polaron. The proposed novel mechanism of intrinsic charge trapping in a-HfO2 represents a new paradigm for charge trapping in a broad class of non-glass-forming amorphous insulators.

  13. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying

    Directory of Open Access Journals (Sweden)

    Goedele Craye

    2015-12-01

    Full Text Available In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS as a solubilizer, was explored as a production method for co-amorphous simvastatin–lysine (SVS-LYS at 1:1 molar mixtures, which previously have been observed to form a co-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD and differential scanning calorimetry (DSC showed that in the spray-dried formulations the remaining crystallinity originated from SLS only. The best dissolution properties and a “spring and parachute” effect were found for SVS spray-dried from a 5% SLS solution without LYS. Despite the presence of at least partially crystalline SLS in the mixtures, all the studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions was observed when SLS was spray-dried with SVS (and LYS. In conclusion, spray drying of SVS and LYS from aqueous surfactant solutions was able to produce formulations with improved physical stability for amorphous SVS.

  14. Molecular origins of anisotropic shock propagation in crystalline and amorphous polyethylene

    Science.gov (United States)

    O'Connor, Thomas C.; Elder, Robert M.; Sliozberg, Yelena R.; Sirk, Timothy W.; Andzelm, Jan W.; Robbins, Mark O.

    2018-03-01

    Molecular dynamics simulations are used to analyze shock propagation in amorphous and crystalline polyethylene. Results for the shock velocity Us are compared to predictions from Pastine's equation of state and hydrostatic theory. The results agree with Pastine at high impact velocities. At low velocities the yield stress becomes important, increasing the shock velocity and leading to anisotropy in the crystalline response. Detailed analysis of changes in atomic order reveals the origin of the anisotropic response. For shock along the polymer backbone, an elastic front is followed by a plastic front where chains buckle with a characteristic wavelength. Shock perpendicular to the chain backbone can produce plastic deformation or transitions to different orthorhombic or monoclinic structures, depending on the impact speed and direction. Tensile loading does not produce stable shocks: Amorphous systems craze and fracture while for crystals the front broadens linearly with time.

  15. Friction and wear characteristics of ceramic nanocomposite coatings: Titanium carbide/amorphous hydrocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Cao, D. M.; Feng, B.; Meng, W. J.; Rehn, L. E.; Baldo, P. M.; Khonsari, M. M.

    2001-07-16

    Friction and wear characteristics of titanium-containing amorphous hydrocarbon (Ti--C:H) coatings were measured during unlubricated sliding against WC--Co. These Ti--C:H coatings consist of nanocrystalline TiC clusters embedded in an amorphous hydrocarbon (a-C:H) matrix, i.e., they are TiC/a-C:H nanocomposites. The elastic modulus and hardness of the coatings exhibit smooth variations with increasing Ti composition. In contrast, a relatively abrupt transition occurs in the friction coefficient and wear rate of the coatings over a relatively narrow (20--30 at. %) Ti composition range. Our results reveal bimodal friction and wear behaviors for the TiC/a-C:H nanocomposites, a-C:H like at Ti compositions below 20%, and TiC like at Ti compositions above 30%. The two different wear mechanisms that operate as the volume fraction of nanocrystalline TiC clusters changes are discussed.

  16. Friction and wear characteristics of ceramic nanocomposite coatings: Titanium carbide/amorphous hydrocarbon

    Science.gov (United States)

    Cao, D. M.; Feng, B.; Meng, W. J.; Rehn, L. E.; Baldo, P. M.; Khonsari, M. M.

    2001-07-01

    Friction and wear characteristics of titanium-containing amorphous hydrocarbon (Ti-C:H) coatings were measured during unlubricated sliding against WC-Co. These Ti-C:H coatings consist of nanocrystalline TiC clusters embedded in an amorphous hydrocarbon (a-C:H) matrix, i.e., they are TiC/a-C:H nanocomposites. The elastic modulus and hardness of the coatings exhibit smooth variations with increasing Ti composition. In contrast, a relatively abrupt transition occurs in the friction coefficient and wear rate of the coatings over a relatively narrow (20-30 at. %) Ti composition range. Our results reveal bimodal friction and wear behaviors for the TiC/a-C:H nanocomposites, a-C:H like at Ti compositions below 20%, and TiC like at Ti compositions above 30%. The two different wear mechanisms that operate as the volume fraction of nanocrystalline TiC clusters changes are discussed.

  17. Web life: Ice Flows

    Science.gov (United States)

    2016-11-01

    Computer and video gamers of a certain vintage will have fond memories of Lemmings, a game in which players must shepherd pixelated, suicidal rodents around a series of obstacles to reach safety. At first glance, Ice Flows is strikingly similar.

  18. Ice Engineering Research Area

    Data.gov (United States)

    Federal Laboratory Consortium — Refrigerated Physical Modeling of Waterways in a Controlled EnvironmentThe Research Area in the Ice Engineering Facility at the Cold Regions Research and Engineering...

  19. Islands in the ice

    DEFF Research Database (Denmark)

    Jørgensen, Tina; Kjær, Kurt H.; Haile, James Seymour

    2012-01-01

    Nunataks are isolated bedrocks protruding through ice sheets. They vary in age, but represent island environments in 'oceans' of ice through which organism dispersals and replacements can be studied over time. The J.A.D. Jensen's Nunataks at the southern Greenland ice sheet are the most isolated...... nunataks on the northern hemisphere - some 30 km from the nearest biological source. They constitute around 2 km(2) of ice-free land that was established in the early Holocene. We have investigated the changes in plant composition at these nunataks using both the results of surveys of the flora over...... the last 130 years and through reconstruction of the vegetation from the end of the Holocene Thermal Maximum (5528 ± 75 cal year BP) using meta-barcoding of plant DNA recovered from the nunatak sediments (sedaDNA). Our results show that several of the plant species detected with sedaDNA are described from...

  20. Dead-ice environments

    DEFF Research Database (Denmark)

    Krüger, Johannes; Kjær, Kurt H.; Schomacker, Anders

    2010-01-01

    Kötlujökull transports considerable amounts of supraglacial debris at its snout because of frontal oscillations with frequent ice advances followed by ice-margin stagnation. Kötlujökull provides suitable conditions of studying dead-ice melting and landscape formation in a debris-charged lowland...... under humid, sub-polar conditions? Does this rate differ from rates reported from polar environments of dry continental nature? How will the sedimentary architecture appear in the geological record? How will the final landsystem appear? These key questions are answered in a review of research...... and conclusions on dead-ice melting and landscape formation from Kötlujökull. Processes and landform-sediment associations are linked to the current climate and glacier–volcano interaction....

  1. Global ice sheet modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, T.J.; Fastook, J.L. [Univ. of Maine, Orono, ME (United States). Institute for Quaternary Studies

    1994-05-01

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed.

  2. Global ice sheet modeling

    International Nuclear Information System (INIS)

    Hughes, T.J.; Fastook, J.L.

    1994-05-01

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed

  3. Ice Cream Stick Math.

    Science.gov (United States)

    Paddock, Cynthia

    1992-01-01

    Described is a teaching technique which uses the collection of ice cream sticks as a means of increasing awareness of quantity in a self-contained elementary special class for students with learning disabilities and mild mental retardation. (DB)

  4. Electrical Properties of Ice

    Science.gov (United States)

    1993-08-01

    carriers in ice. T U] P2 P3 PU4 (00C (m2 V s) (m21V S) (M21V s) (m2/V s) Method used Reference -13 to -36 (1.1±O..1)xl0𔄁 Analysis of Kunst and...Chapter 18. In Ice, 2nd ed., vol. 2. Amsterdam: North Holland Publishing Co., p. 783-7 99 . Kunst , M. and J. Warnan (1983) Nanosecond time-resolved

  5. On the nature of the sea ice albedo feedback in simple models.

    Science.gov (United States)

    Moon, W; Wettlaufer, J S

    2014-08-01

    We examine the nature of the ice-albedo feedback in a long-standing approach used in the dynamic-thermodynamic modeling of sea ice. The central issue examined is how the evolution of the ice area is treated when modeling a partial ice cover using a two-category-thickness scheme; thin sea ice and open water in one category and "thick" sea ice in the second. The problem with the scheme is that the area evolution is handled in a manner that violates the basic rules of calculus, which leads to a neglected area evolution term that is equivalent to neglecting a leading-order latent heat flux. We demonstrate the consequences by constructing energy balance models with a fractional ice cover and studying them under the influence of increased radiative forcing. It is shown that the neglected flux is particularly important in a decaying ice cover approaching the transitions to seasonal or ice-free conditions. Clearly, a mishandling of the evolution of the ice area has leading-order effects on the ice-albedo feedback. Accordingly, it may be of considerable importance to reexamine the relevant climate model schemes and to begin the process of converting them to fully resolve the sea ice thickness distribution in a manner such as remapping, which does not in principle suffer from the pathology we describe.

  6. Ice slurry accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, K.G.; Kauffeld, M.

    1998-06-01

    More and more refrigeration systems are designed with secondary loops, thus reducing the refrigerant charge of the primary refrigeration plant. In order not to increase energy consumption by introducing a secondary refrigerant, alternatives to the well established single phase coolants (brines) and different concepts of the cooling plant have to be evaluated. Combining the use of ice-slurry - mixture of water, a freezing point depressing agent (antifreeze) and ice particles - as melting secondary refrigerant and the use of a cool storage makes it possible to build plants with secondary loops without increasing the energy consumption and investment. At the same time the operating costs can be kept at a lower level. The accumulation of ice-slurry is compared with other and more traditional storage systems. The method is evaluated and the potential in different applications is estimated. Aspects of practically use of ice-slurry has been examined in the laboratory at the Danish Technological Institute (DTI). This paper will include the final conclusions from this work concerning tank construction, agitator system, inlet, outlet and control. The work at DTI indicates that in some applications systems with ice-slurry and accumulation tanks have a great future. These applications are described by a varying load profile and a process temperature suiting the temperature of ice-slurry (-3 - -8/deg. C). (au)

  7. Gallium-enhanced phase contrast in atom probe tomography of nanocrystalline and amorphous Al-Mn alloys.

    Science.gov (United States)

    Ruan, Shiyun; Torres, Karen L; Thompson, Gregory B; Schuh, Christopher A

    2011-07-01

    Over a narrow range of composition, electrodeposited Al-Mn alloys transition from a nanocrystalline structure to an amorphous one, passing through an intermediate dual-phase nanocrystal/amorphous structure. Although the structural change is significant, the chemical difference between the phases is subtle. In this study, the solute distribution in these alloys is revealed by developing a method to enhance phase contrast in atom probe tomography (APT). Standard APT data analysis techniques show that Mn distributes uniformly in single phase (nanocrystalline or amorphous) specimens, and despite some slight deviations from randomness, standard methods reveal no convincing evidence of Mn segregation in dual-phase samples either. However, implanted Ga ions deposited during sample preparation by focused ion-beam milling are found to act as chemical markers that preferentially occupy the amorphous phase. This additional information permits more robust identification of the phases and measurement of their compositions. As a result, a weak partitioning tendency of Mn into the amorphous phase (about 2 at%) is discerned in these alloys. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. From Interstellar PAHs and Ices to the Origin of Life

    Science.gov (United States)

    Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of dust in the diffuse ISM is reasonably well constrained to micron-sized cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. In dense molecular clouds, the birthplace of stars and planets, these cold dust particles are coated with mixed molecular ices whose composition is very well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by earlier interstellar chemistry standards, is widespread throughout the Universe. The first part of this lecture will describe how infrared studies of interstellar space, combined with laboratory simulations, have revealed the composition of interstellar ices (the building blocks of comets) and the high abundance and nature of interstellar PAHs. The laboratory database has now enabled us to gain insight into the identities, concentrations, and physical state of many interstellar materials. Within a dense molecular cloud, and especially in the solar nebula during the star and planet formation stage, the materials frozen into interstellar/precometary ices are photoprocessed by ultraviolet light, producing more complex molecules. The remainder of the presentation will focus on the photochemical evolution of these materials and the possible role of these compounds on the early Earth. As these materials are thought to be the building

  9. Collision-Induced Melting in Collisions of Water Ice Nanograins: Strong Deformations and Prevention of Bouncing

    Science.gov (United States)

    Nietiadi, Maureen L.; Umstätter, Philipp; Alabd Alhafez, Iyad; Rosandi, Yudi; Bringa, Eduardo M.; Urbassek, Herbert M.

    2017-11-01

    Collisions between ice grains are ubiquitous in the outer solar system. The mechanics of such collisions is traditionally described by the elastic contact theory of adhesive spheres. Here we use molecular dynamics simulations to study collisions between nanometer-sized amorphous water ice grains. We demonstrate that the collision-induced heating leads to grain melting in the interface of the colliding grains. The large lateral deformations and grain sticking induced considerably modify available macroscopic collision models. We report on systematic increases of the contact radius, strong grain deformations, and the prevention of grain bouncing.

  10. Ice recrystallization inhibition in ice cream by propylene glycol monostearate.

    Science.gov (United States)

    Aleong, J M; Frochot, S; Goff, H D

    2008-11-01

    The effectiveness of propylene glycol monostearate (PGMS) to inhibit ice recrystallization was evaluated in ice cream and frozen sucrose solutions. PGMS (0.3%) dramatically reduced ice crystal sizes in ice cream and in sucrose solutions frozen in a scraped-surface freezer before and after heat shock, but had no effect in quiescently frozen solutions. PGMS showed limited emulsifier properties by promoting smaller fat globule size distributions and enhanced partial coalescence in the mix and ice cream, respectively, but at a much lower level compared to conventional ice cream emulsifier. Low temperature scanning electron microscopy revealed highly irregular crystal morphology in both ice cream and sucrose solutions frozen in a scraped-surface freezer. There was strong evidence to suggest that PGMS directly interacts with ice crystals and interferes with normal surface propagation. Shear during freezing may be required for its distribution around the ice and sufficient surface coverage.

  11. (CH4)-C-14 Measurements in Greenland Ice: Investigating Last Glacial Termination CH4 Sources

    DEFF Research Database (Denmark)

    Petrenko, V. V.; Smith, A. M.; Brook, E. J.

    2009-01-01

    contributions to this increase. We present measurements of (CH4)-C-14 in glacial ice, targeting this transition, performed by using ice samples obtained from an ablation site in west Greenland. Measured (CH4)-C-14 values were higher than predicted under any scenario. Sample (CH4)-C-14 appears to be elevated...

  12. NASA/FAA Tailplane Icing Program: Flight Test Report

    Science.gov (United States)

    Ratvasky, Thomas P.; VanZante, Judith Foss; Sim, Alex

    2000-01-01

    This report presents results from research flights that explored the characteristics of an ice-contaminated tailplane using various simulated ice shapes attached to the leading edge of the horizontal tailplane. A clean leading edge provided the baseline case, then three ice shapes were flown in order of increasing severity. Flight tests included both steady state and dynamic maneuvers. The steady state points were 1G wings level and steady heading sideslips. The primary dynamic maneuvers were pushovers to various G-levels; elevator doublets; and thrust transitions. These maneuvers were conducted for a full range of flap positions and aircraft angle of attack where possible. The analysis of this data set has clearly demonstrated the detrimental effects of ice contamination on aircraft stability and controllability. Paths to tailplane stall were revealed through parameter isolation and transition studies. These paths are (1) increasing ice shape severity, (2) increasing flap deflection, (3) high or low speeds, depending on whether the aircraft is in a steady state (high speed) or pushover maneuver (low speed), and (4) increasing thrust. The flight research effort was very comprehensive, but did not examine effects of tailplane design and location, or other aircraft geometry configuration effects. However, this effort provided the role of some of the parameters in promoting tailplane stall. The lessons learned will provide guidance to regulatory agencies, aircraft manufacturers, and operators on ice-contaminated tailplane stall in the effort to increase aviation safety and reduce the fatal accident rate.

  13. Solvent-mediated amorphous-to-crystalline transformation of nitrendipine in amorphous particle suspensions containing polymers

    DEFF Research Database (Denmark)

    Xia, Dengning; Wu, Jian-Xiong; Cui, Fude

    2012-01-01

    The amorphous-to-crystalline transformation of nitrendipine was investigated using Raman spectroscopy and X-ray powder diffraction (XRPD). The nucleation and growth rate of crystalline nitrendipine in a medium containing poly (vinyl alcohol) (PVA) and polyethylene glycol (PEG 200) were quantitati......The amorphous-to-crystalline transformation of nitrendipine was investigated using Raman spectroscopy and X-ray powder diffraction (XRPD). The nucleation and growth rate of crystalline nitrendipine in a medium containing poly (vinyl alcohol) (PVA) and polyethylene glycol (PEG 200) were...

  14. State transitions and physicochemical aspects of cryoprotection and stabilization in freeze-drying of Lactobacillus rhamnosus GG (LGG).

    Science.gov (United States)

    Pehkonen, K S; Roos, Y H; Miao, S; Ross, R P; Stanton, C

    2008-06-01

    The frozen and dehydrated state transitions of lactose and trehalose were determined and studied as factors affecting the stability of probiotic bacteria to understand physicochemical aspects of protection against freezing and dehydration of probiotic cultures. Lactobacillus rhamnosus GG was frozen (-22 or -43 degrees C), freeze-dried and stored under controlled water vapour pressure (0%, 11%, 23% and 33% relative vapour pressure) conditions. Lactose, trehalose and their mixture (1 : 1) were used as protective media. These systems were confirmed to exhibit relatively similar state transition and water plasticization behaviour in freeze-concentrated and dehydrated states as determined by differential scanning calorimetry. Ice formation and dehydrated materials were studied using cold-stage microscopy and scanning electron microscopy. Trehalose and lactose-trehalose gave the most effective protection of cell viability as observed from colony forming units after freezing, dehydration and storage. Enhanced cell viability was observed when the freezing temperature was -43 degrees C. State transitions of protective media affect ice formation and cell viability in freeze-drying and storage. Formation of a maximally freeze-concentrated matrix with entrapped microbial cells is essential in freezing prior to freeze-drying. Freeze-drying must retain a solid amorphous state of protectant matrices. Freeze-dried matrices contain cells entrapped in the protective matrices in the freezing process. The retention of viability during storage seems to be controlled by water plasticization of the protectant matrix and possibly interactions of water with the dehydrated cells. Highest cell viability was obtained in glassy protective media. This study shows that physicochemical properties of protective media affect the stability of dehydrated cultures. Trehalose and lactose may be used in combination, which is particularly important for the stabilization of probiotic bacteria in dairy

  15. Characteristics of ice, needed for ice loadings determination

    Directory of Open Access Journals (Sweden)

    Polit’ko Valentin Aleksandrovich

    2015-12-01

    Full Text Available In order to determine ice loads on the offshore oil and gas structures different ice information is required as an input data. At the present moment there is no unified generally recognized methodology for estimating ice loads and set the main ice parameters. In this relation there appears a question of the ice parameters which need to be investigated. The article attempts to analyze a variety of sources, including standards, on the subject of collection of ice information, required and sufficient for the calculation of ice loads. The article presents the basic steps in the planning of ice information collection, the list of main characteristics and parameters of ice, modern methods of observations and direct measurements of the ice, as well as the ways in which the field tests data of physical and mechanical properties of ice is processed. Particular attention is paid to the anisotropy of ice, integrated assessment of the strength of the ice field, as well as the variability of meteorological conditions.

  16. Ice flow Modelling of the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Nielsen, Lisbeth Tangaa

    Models of ice flow have a range of application in glaciology, including investigating the large-scale response of ice sheets to changes in climate, assimilating data to estimate unknown conditions beneath the ice sheet, and in interpreting proxy records obtained from ice cores, among others. In t...... a steady state with respect to the reference climate at the end of the simulation and that the mass balance of the ice sheet at this time was more sensitive to recent climate fluctuations than the temperature forcing in the early or mid-Holocene.......Models of ice flow have a range of application in glaciology, including investigating the large-scale response of ice sheets to changes in climate, assimilating data to estimate unknown conditions beneath the ice sheet, and in interpreting proxy records obtained from ice cores, among others....... In this PhD project, the use of ice flow models for the interpretation of the age-structure of the Greenland ice sheet, i.e. the depth within the ice, at which ice deposited at given times are found at present day. Two different observational data sets of this archive were investigated. Further, paleo...

  17. The direct mechanical influence of sea ice state on ice sheet mass loss via iceberg mélange

    Science.gov (United States)

    Robel, A.

    2017-12-01

    The interaction between sea ice and land ice has typically been considered as a large-scale exchange of moisture, heat and salinity through the ocean and atmosphere. However, recent observations from marine-terminating glaciers in Greenland indicate that the long-term decline of local sea ice cover has been accompanied by an increase in nearby iceberg calving and associated ice sheet mass loss. Near glacier calving fronts, sea ice binds icebergs together into an aggregate granular material known as iceberg mélange. Studies have hypothesized that mélange may suppress calving by exerting a mechanical buttressing force directly on the glacier terminus. Here, we show explicitly how sea ice thickness and concentration play a critical role in setting the material strength of mélange. To do so, we adapt a discrete element model to simulate mélange as a cohesive granular material. In these simulations, mélange laden with thick, dense, landfast sea ice can produce enough resistance to shut down calving at the terminus. When sea ice thins, mélange weakens, reducing the mechanical force of mélange on the glacier terminus, and increasing the likelihood of calving. We discuss whether longer periods of sea-ice-free conditions in winter may lead to a transition from currently slow calving, predominantly occurring in the summer, to rapid calving, occurring throughout the year. We also discuss the potential role of freshwater discharge in promoting sea ice formation in fjords, potentially strengthening mélange.

  18. Vertical thermodynamic structure of the troposphere during the Norwegian young sea ICE expedition (N-ICE2015)

    Science.gov (United States)

    Kayser, Markus; Maturilli, Marion; Graham, Robert M.; Hudson, Stephen R.; Rinke, Annette; Cohen, Lana; Kim, Joo-Hong; Park, Sang-Jong; Moon, Woosok; Granskog, Mats A.

    2017-10-01

    The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in the young and thin sea ice regime north of Svalbard. Radiosondes were launched twice daily during the expedition from January to June 2015. Here we use these upper air measurements to study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, moisture content, and boundary layer characteristics. We provide statistics of temperature inversion characteristics, static stability, and boundary layer extent. During winter, when radiative cooling is most effective, we find the strongest impact of synoptic cyclones. Changes to thermodynamic characteristics of the boundary layer are associated with transitions between the radiatively "clear" and "opaque" atmospheric states. In spring, radiative fluxes warm the surface leading to lifted temperature inversions and a statically unstable boundary layer. Further, we compare the N-ICE2015 static stability distributions to corresponding profiles from ERA-Interim reanalysis, from the closest land station in the Arctic North Atlantic sector, Ny-Ålesund, and to soundings from the SHEBA expedition (1997/1998). We find similar stability characteristics for N-ICE2015 and SHEBA throughout the troposphere, despite differences in location, sea ice thickness, and snow cover. For Ny-Ålesund, we observe similar characteristics above 1000 m, while the topography and ice-free fjord surrounding Ny-Ålesund generate great differences below. The long-term radiosonde record (1993-2014) from Ny-Ålesund indicates that during the N-ICE2015 spring period, temperatures were close to the climatological mean, while the lowest 3000 m were 1-3°C warmer than the climatology during winter.

  19. Software Development Processes Applied to Computational Icing Simulation

    Science.gov (United States)

    Levinson, Laurie H.; Potapezuk, Mark G.; Mellor, Pamela A.

    1999-01-01

    The development of computational icing simulation methods is making the transition form the research to common place use in design and certification efforts. As such, standards of code management, design validation, and documentation must be adjusted to accommodate the increased expectations of the user community with respect to accuracy, reliability, capability, and usability. This paper discusses these concepts with regard to current and future icing simulation code development efforts as implemented by the Icing Branch of the NASA Lewis Research Center in collaboration with the NASA Lewis Engineering Design and Analysis Division. With the application of the techniques outlined in this paper, the LEWICE ice accretion code has become a more stable and reliable software product.

  20. Dynamics of hydrogen guests in ice XVII nanopores

    Science.gov (United States)

    del Rosso, Leonardo; Celli, Milva; Colognesi, Daniele; Rudić, Svemir; English, Niall J.; Burnham, Christian J.; Ulivi, Lorenzo

    2017-11-01

    The present high-resolution inelastic neutron scattering experiment on ice XVII, containing molecular hydrogen with a different ortho/para ratio, allows one to assign the H2 motion spectral bands to rotational and center-of-mass translational transitions of either para- or ortho-H2. Due to its structure, ice XVII confines H2 molecules to move in spiral channels of molecular size. Reported data demonstrate that H2 molecules rotate almost freely in these nanometric channels, though showing larger perturbation than in clathrate hydrates, and perform a translational motion exhibiting two low-frequency excitations. The agreement between the experimental spectra and the corresponding molecular dynamics results clearly enables one to portray a picture of the confined motions of a hydrophobic guest within a metastable ice framework, i.e., ice XVII.

  1. IDEOLOGICALLY CHALLENGING ENTERTAINMENT (ICE

    Directory of Open Access Journals (Sweden)

    Dana Lori Chalmers

    2015-09-01

    Full Text Available Ideologically Challenging Entertainment (ICE is entertainment that challenges ‘us vs. them’ ideologies associated with radicalization, violent conflict and terrorism. ICE presents multiple perspectives on a conflict through mainstream entertainment. This article introduces the theoretical underpinnings of ICE, the first ICE production and the audience responses to it. The first ICE production was Two Merchants: The Merchant of Venice adapted to challenge ideologies of the Arab-Israeli Conflict. A mixed-methods study of audience responses explored whether this production inspired audiences to shift their ideological views. Each performance included two versions of the adaptation: a Jewish dominated society with an Arab Muslim minority, contrasted with an Arab Muslim dominated society and a Jewish minority. A mixed-methods study of audience responses explored whether this production inspired audiences to shift their ideological views to become more tolerant of differences away from ideological radicalization. Of audience members who did not initially agree with the premise of the production, 40% reconsidered their ideological views, indicating increased tolerance, greater awareness of and desire to change their own prejudices. In addition, 86% of the audience expressed their intention to discuss the production with others, thereby encouraging critical engagement with, and broader dissemination of the message. These outcomes suggest that high quality entertainment – as defined by audience responses to it - can become a powerful tool in the struggle against radicalised ideologies.

  2. Data archaeology at ICES

    Science.gov (United States)

    Dooley, Harry D.

    1992-01-01

    This paper provides a brief overview of the function of the International Council for the Exploration of the Sea (ICES), both past and present, in particular in the context of its interest in compiling oceanographic data sets. Details are provided of the procedures it adopted to ensure adequate internationally collaborative marine investigations during the first part of the century, such as how it provided a forum for action by its member states, how it coordinated and published the results of scientific programs, and how it provided a foundation, through scientists employed in the ICES Office, for the establishment of the original oceanographic marine databases and associated products, and the scientific interpretation of the results. The growth and expansion of this area of ICES activity is then traced, taking into account the changing conditions for oceanographic data management resulting from the establishment of the National Data Centres, as well as the World Data Centres for Oceanography, which were created to meet the needs of the International Geophysical Year (IGY). Finally, there is a discussion of the way in which the very existence of ICES has proved to be a valuable source of old data, some of which have not yet been digitized, but which can be readily retrieved because they have been very carefully documented throughout the years. Lessons from this activity are noted, and suggestions are made on how the past experiences of ICES can be utilized to ensure the availability of marine data to present and future generations of scientists.

  3. Amorphization of equimolar alloys with HCP elements during mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Liang [Materials and Electro-Optics Research Division, Chung-Shan Institute of Science and Technology, Armaments Bureau, MND, P.O. Box 90008-8-5, Lung-Tan, Tao-Yuan 32599, Taiwan (China); Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Tsai, Che-Wei; Juan, Chien-Chang; Chuang, Ming-Hao [Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Yeh, Jien-Wei, E-mail: jwyeh@mx.nthu.edu.t [Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Chin, Tsung-Shune [Department of Materials Science and Engineering, Feng Chia University, 100, Wenhwa Rd., Seatwen District, Taichung 40724, Taiwan (China); Chen, Swe-Kai [Center for Nanotechnology, Materials Science and Microsystems, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)

    2010-09-10

    This study prepares two equimolar alloys, entirely composed of HCP elements, BeCoMgTi and BeCoMgTiZn, from elemental powders by mechanical alloying. No crystalline solid solutions and compounds formed during milling except an amorphous phase formed gradually until full amorphization was attained. The amorphization processes of these two alloys conform to type II according to the Weeber and Bakker classification based on binary alloys. The inhibition of crystalline solid solutions and compounds before amorphization relates to chemical compatibility, high entropy effect and large atomic size difference effect.

  4. Amorphization kinetics of Zr3Fe under electron irradiation

    International Nuclear Information System (INIS)

    Motta, A.T.; Howe, L.M.; Okamoto, P.R.

    1994-11-01

    Previous investigations using 40 Ar ion bombardments have revealed that Zr 3 Fe, which has an orthorhombic crystal structure, undergoes an irradiation-induced transformation from the crystalline to the amorphous state. In the present investigation, 0.9 MeV electron irradiations were performed at 28 - 220 K in a high-voltage electron microscope (HVEM). By measuring the onset, spread and final size of the amorphous region, factoring in the Gaussian distribution of the beam, a kinetic description of the amorphization in terms of dose, dose rate and temperature was obtained. The critical temperature for amorphization by electron irradiation was found to be ∼ 220 K, compared with 570 - 625 K for 40 Ar ion irradiation. Also, the dose-to-amorphization increased exponentially with temperature. Results indicated that the rate of growth of the amorphous region under the electron beam decreased with increasing temperature and the dose-to-amorphization decreased with increasing dose rate. The size of the amorphous region saturated after a given dose, the final size decreasing with increasing temperature, and it is argued that this is related to the existence of a critical dose rate, which increases with temperature, and below which no amorphization occurs. (author). 26 refs., 6 figs

  5. Amorphization of silicon by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Jia, Jimmy; Li Ming; Thompson, Carl V.

    2004-01-01

    We have used femtosecond laser pulses to drill submicron holes in single crystal silicon films in silicon-on-insulator structures. Cross-sectional transmission electron microscopy and energy dispersive x-ray analysis of material adjacent to the ablated holes indicates the formation of a layer of amorphous Si. This demonstrates that even when material is ablated using femtosecond pulses near the single pulse ablation threshold, sufficient heating of the surrounding material occurs to create a molten zone which solidifies so rapidly that crystallization is bypassed

  6. Atomic Distribution in Catalytic Amorphous Metals

    Directory of Open Access Journals (Sweden)

    Sanghita Mridha

    2015-01-01

    Full Text Available The atomic distribution in catalytically active metallic glass alloys, Pd43Cu27Ni10P20 and Pt57.5Cu14.7Ni5.3P22.5, was investigated using three-dimensional atom probe microscopy. Atom probe analysis showed uniform distribution of constituent elements for both the starting amorphous alloys, with no phase separation. Both the crystallized alloys showed eutectic microstructure with a very sharp interface (~0.5 nm as determined from atom probe. The atomic distribution in the devitrified state is explained based on the “fragile liquid” behavior for these noble-metal glassy alloys.

  7. Protective amorphous carbon coatings on glass substrates

    Science.gov (United States)

    Silins, Kaspars; Baránková, Hana; Bardos, Ladislav

    2017-11-01

    Thick amorphous carbon films were deposited by the Magnets-in-Motion (M-M) rf linear hollow cathode at varying acetylene contents in Ar in a hybrid PVD/PE-CVD process directly on glass substrates. The hollow cathode plates manufactured from graphite were used as the PVD target. The measurements show that the films can reach thickness of up to 50 μm at deposition rates of up to 2.5 μm/min. Scratch test measurements confirm that well adhering films several μm thick can be achieved at C2H2 contents of up to 0.5%.

  8. Medical imaging applications of amorphous silicon

    International Nuclear Information System (INIS)

    Mireshghi, A.; Drewery, J.S.; Hong, W.S.; Jing, T.; Kaplan, S.N.; Lee, H.K.; Perez-Mendez, V.

    1994-07-01

    Two dimensional hydrogenated amorphous silicon (a-Si:H) pixel arrays are good candidates as flat-panel imagers for applications in medical imaging. Various performance characteristics of these imagers are reviewed and compared with currently used equipments. An important component in the a-Si:H imager is the scintillator screen. A new approach for fabrication of high resolution CsI(Tl) scintillator layers, appropriate for coupling to a-Si:H arrays, are presented. For nuclear medicine applications, a new a-Si:H based gamma camera is introduced and Monte Carlo simulation is used to evaluate its performance

  9. IceBridge PARIS L2 Ice Thickness V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains contains Greenland ice thickness measurements acquired using the Pathfinder Advanced Radar Ice Sounder (PARIS).The data were collected as part...

  10. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying

    DEFF Research Database (Denmark)

    Craye, Goedele; Löbmann, Korbinian; Grohganz, Holger

    2015-01-01

    In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS) as a solubilizer, was explored as a production method for co-amorphous simvastatin-lysine (SVS-LYS) at 1:1 molar mixtures, which previously have been observed to form a co...

  11. Thresholds in the sliding resistance of simulated basal ice

    Directory of Open Access Journals (Sweden)

    L. F. Emerson

    2007-10-01

    Full Text Available We report laboratory determinations of the shear resistance to sliding melting ice with entrained particles over a hard, impermeable surface. With higher particle concentrations and larger particle sizes, Coulomb friction at particle-bed contacts dominates and the shear stress increases linearly with normal load. We term this the sandy regime. When either particle concentration or particle size is reduced below a threshold, the dependence of shear resistance on normal load is no longer statistically significant. We term this regime slippery. We use force and mass balance considerations to examine the flow of melt water beneath the simulated basal ice. At high particle concentrations, the transition from sandy to slippery behavior occurs when the particle size is comparable to the thickness of the melt film that separates the sliding ice from its bed. For larger particle sizes, a transition from sandy to slippery behavior occurs when the particle concentration drops sufficiently that the normal load is no longer transferred completely to the particle-bed contacts. We estimate that the melt films separating the particles from the ice are approximately 0.1 µm thick at this transition. Our laboratory results suggest the potential for abrupt transitions in the shear resistance beneath hard-bedded glaciers with changes in either the thickness of melt layers or the particle loading.

  12. Study of Critical Behavior in Amorphous Fe85Sn5Zr10 Alloy Ribbon

    Science.gov (United States)

    Han, L. A.; Hua, X. H.; Zhu, H. Z.; Yang, J.; Yang, H. P.; Yan, Z. X.; Zhang, T.

    2017-02-01

    We have investigated the critical behavior in amorphous Fe85Sn5Zr10 alloy ribbon prepared using a single-roller melt-spinning method. This alloy shows a second-order magnetic transition from paramagnetic to ferromagnetic (FM) state at the Curie temperature T C (˜306 K). To obtain more information on the features of the magnetic transition, a detailed critical exponent study was carried out using isothermal magnetization M ( H, T) data in the vicinity of the T C. Modified Arrott plot, Kouvel-Fisher plot, Widom's scaling relation and critical isotherm analysis techniques were used to investigate the critical behavior of this alloy system around its phase transition point. The values of critical exponents determined using the above methods are self-consistent. The estimated critical exponents are fairly close to the theoretical prediction of the three-dimensional (3D) Heisenberg model, implying that short-range FM interactions dominate the critical behavior in amorphous Fe85Sn5Zr10 alloy ribbon.

  13. Heterogeneity of spiral wear patterns produced by local heating on amorphous polymers

    International Nuclear Information System (INIS)

    Rice, Reginald H.; Gnecco, Enrico; King, William P.; Szoszkiewicz, Robert

    2013-01-01

    We report on spiral wear patterns produced at constant angular velocity by hot tip atomic force microscopy (HT-AFM) on surfaces of two common amorphous polymers: polystyrene (PS) and polymethylmethacrylate (PMMA). Topography of these patterns is obtained with regular AFM cantilevers. Topography cross-sections taken from a center of each spiral at a given azimuthal angle Θ relate changes of surface corrugation h corr with tangential velocity v of a thermal cantilever. Polymer wear is characterized by a power law h corr (v) = α(v/v max ) −β , which yields a pre-factor α and an exponent β. Below the glass transition temperature T g , α is polymer specific and β varies weakly between similar conditions and samples. Variations of β are hypothesized to reflect polymer relaxation processes, which are expected to vary only weakly between amorphous polymers. At and above T g , α approaches initial thermal tip indentation depth within a polymer, β plummets, and a power law relation of h corr with v diverges. These results are explained by heterogeneous wear around T g due to a local nature of glass transition. At all studied temperatures, additional wear heterogeneities are found as due to position on the polymer and Θ. Variations of α and β with position on the polymer are found to be only marginally larger then uncertainties of the thermal tip–polymer interface temperature. Variations of α and β with Θ are found to be largely influenced by buckling of thermal cantilevers traveling in a spiral pattern. - Graphical abstract: Display Omitted - Highlights: • Novel method to characterize temperature dependant wear on polymers is reported. • Hot-tip AFM methods and spiral scanning are used. • Heterogeneity of polymer wear in vicinity of glass transition is discussed. • Amorphous polymers are studied only

  14. Transition in the fractal geometry of Arctic melt ponds

    Directory of Open Access Journals (Sweden)

    C. Hohenegger

    2012-10-01

    Full Text Available During the Arctic melt season, the sea ice surface undergoes a remarkable transformation from vast expanses of snow covered ice to complex mosaics of ice and melt ponds. Sea ice albedo, a key parameter in climate modeling, is determined by the complex evolution of melt pond configurations. In fact, ice–albedo feedback has played a major role in the recent declines of the summer Arctic sea ice pack. However, understanding melt pond evolution remains a significant challenge to improving climate projections. By analyzing area–perimeter data from hundreds of thousands of melt ponds, we find here an unexpected separation of scales, where pond fractal dimension D transitions from 1 to 2 around a critical length scale of 100 m2 in area. Pond complexity increases rapidly through the transition as smaller ponds coalesce to form large connected regions, and reaches a maximum for ponds larger than 1000 m2, whose boundaries resemble space-filling curves, with D ≈ 2. These universal features of Arctic melt pond evolution are similar to phase transitions in statistical physics. The results impact sea ice albedo, the transmitted radiation fields under melting sea ice, the heat balance of sea ice and the upper ocean, and biological productivity such as under ice phytoplankton blooms.

  15. Scaling aspects of the sea-ice-drift dynamics and pack fracture

    Directory of Open Access Journals (Sweden)

    A. Chmel

    2007-05-01

    Full Text Available A study of the sea-ice dynamics in the periods of time prior to and during the cycles of basin-wide fragmentation of the ice cover in the Arctic Ocean is presented. The fractal geometry of the ice-sheets limited by leads and ridges was assessed using the satellite images, while the data on the correlated sea-ice motion were obtained in the research stations "North Pole 32" and "North Pole 33" established on the ice pack. The revealed decrease of the fractal dimension as a result of large-scale fragmentation is consistent with the localization of the fracture process (leads propagation. At the same time, the scaling properties of the distribution of amplitudes of ice-fields accelerations were insensitive to the event of sea-ice fragmentation. The temporal distribution of the accelerations was scale-invariant during "quiet" periods of sea-ice drift but disordered in the period of mechanical perturbation. The period of decorrelated (in time ice-field motion during the important fracture event was interpreted as an inter-level transition in the hierarchic dynamical system. The mechanism of the long-range correlations in the sea-ice cover, including the fracture process, is suggested to be in relation with the self-organized oscillation dynamics inherent in the ice pack.

  16. EASE-Grid Sea Ice Age

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides weekly estimates of sea ice age for the Arctic Ocean from remotely sensed sea ice motion and sea ice extent. The ice age data are derived from...

  17. Electronic properties of intrinsic and doped amorphous silicon carbide films

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, M. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain)]. E-mail: mvetter@eel.upc.edu; Voz, C. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain); Ferre, R. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain); Martin, I. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain); Orpella, A. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain); Puigdollers, J. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain); Andreu, J. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Av. Diagonal 647, E-08028 Barcelona (Spain); Alcubilla, R. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain)

    2006-07-26

    Hydrogenated amorphous silicon carbide (a-SiC{sub x} : H) films have shown excellent surface passivation of crystalline silicon. With the aim of large area deposition of these films the influence of the rf plasma power was investigated. It is found that homogenous deposition with effective surface recombination velocity lower than 100 cms{sup -1} is possible up to 6'' diameter in a simple parallel plate reactor by optimizing deposition parameters. For application in solar cell processes the conductivity of these a-SiC{sub x} : H films might become of importance since good surface passivation results from field-effect passivation which needs an insulating dielectric layer. Therefore, the temperature dependence of the dark dc conductivity of these films was investigated in the temperature range from - 20 to 260 deg. C. Two transition temperatures, T {sub s}{approx}80 deg. C and T {sub s}{approx}170 deg. C, were found where conductivity increases, resp. decreases over-exponential. From Arrhenius plots activation energy (E {sub a}) and conductivity pre-factor ({sigma} {sub 0}) were calculated for a large number of samples with different composition. A correlation between E {sub a} and {sigma} {sub 0} was found giving a Meyer-Neldel relation with a slope of 59 mV, corresponding to a material characteristic temperature T {sub m} = 400 deg. C, and an intercept at {sigma} {sub 00} = 0.1 {omega}{sup -1}cm{sup -1}.

  18. Electronic properties of intrinsic and doped amorphous silicon carbide films

    International Nuclear Information System (INIS)

    Vetter, M.; Voz, C.; Ferre, R.; Martin, I.; Orpella, A.; Puigdollers, J.; Andreu, J.; Alcubilla, R.

    2006-01-01

    Hydrogenated amorphous silicon carbide (a-SiC x : H) films have shown excellent surface passivation of crystalline silicon. With the aim of large area deposition of these films the influence of the rf plasma power was investigated. It is found that homogenous deposition with effective surface recombination velocity lower than 100 cms -1 is possible up to 6'' diameter in a simple parallel plate reactor by optimizing deposition parameters. For application in solar cell processes the conductivity of these a-SiC x : H films might become of importance since good surface passivation results from field-effect passivation which needs an insulating dielectric layer. Therefore, the temperature dependence of the dark dc conductivity of these films was investigated in the temperature range from - 20 to 260 deg. C. Two transition temperatures, T s ∼80 deg. C and T s ∼170 deg. C, were found where conductivity increases, resp. decreases over-exponential. From Arrhenius plots activation energy (E a ) and conductivity pre-factor (σ 0 ) were calculated for a large number of samples with different composition. A correlation between E a and σ 0 was found giving a Meyer-Neldel relation with a slope of 59 mV, corresponding to a material characteristic temperature T m = 400 deg. C, and an intercept at σ 00 = 0.1 Ω -1 cm -1

  19. Thin ice and storms: Sea ice deformation from buoy arrays deployed during N-ICE2015

    OpenAIRE

    Itkin, Polona; Spreen, Gunnar; Cheng, Bin; Doble, Martin; Girard-Ardhuin, Fanny; Haapala, Jari; Hughes, Nick; Kaleschke, Lars; Nicolaus, Marcel; Wilkinson, Jeremy

    2017-01-01

    Arctic sea ice has displayed significant thinning as well as an increase in drift speed in recent years. Taken together this suggests an associated rise in sea ice deformation rate. A winter and spring expedition to the sea ice covered region north of Svalbard – the Norwegian young sea ICE 2015 expedition (N-ICE2015) - gave an opportunity to deploy extensive buoy arrays and to monitor the deformation of the first- and second-year ice now common in the majority of the Arctic Basin. During the ...

  20. Measuring temperature and ammonia hydrate ice on Charon in 2015 from Keck/OSIRIS spectra

    Science.gov (United States)

    Holler, B. J.; Young, L. A.; Buie, M. W.; Grundy, W. M.; Lyke, J. E.; Young, E. F.; Roe, H. G.

    2017-03-01

    In this work we investigated the longitudinal (zonal) variability of H2O and ammonia (NH3) hydrate ices on the surface of Charon through analysis of the 1.65 μm and 2.21 μmabsorption features, respectively. Near-infrared spectra presented here were obtained between 2015-07-14 and 2015-08-30 UT with the OSIRIS integral field spectrograph on Keck I. Spectra centered on six different sub-observer longitudes were obtained through the Hbb (1.473-1.803 μm) and Kbb (1.965-2.381 μm) filters. Gaussian functions were fit to the aforementioned bands to obtain information on band center, band depth, full width at half maximum, and band area. The shift in the band center of the temperature-dependent 1.65 μm feature was used to calculate the H2O ice temperature. The mean temperature of the ice on the observable portion of Charon's surface is 45 ± 14 K and we report no statistically significant variations in temperature across the surface. We hypothesize that the crystalline and amorphous phases of water ice reached equilibrium over 3.5 Gyr ago, with thermal recrystallization balancing the effects of irradiation amorphization. We do not believe that cryovolcanism is necessary to explain the presence of crystalline water ice on the surface of Charon. Absorption from ammonia species is detected between 12° and 290°, in agreement with results from New Horizons. Ongoing diffusion of ammonia through the rocky mantle and upper layer of water ice is one possible mechanism for maintaining its presence in Charon's surface ice. Reduced Charon spectra corrected for telluric and solar absorption are available as supplementary online material.