WorldWideScience

Sample records for amorphous diamond flat

  1. Microstructural analyses of amorphic diamond, i-C, and amorphous carbon

    DEFF Research Database (Denmark)

    Collins, C. B.; Davanloo, F.; Jander, D.R.;

    1992-01-01

    comparative examinations of the microstructures of samples of amorphic diamond, i-C, and amorphous carbon. Four distinct morphologies were found that correlated closely with the energy densities used in preparing the different materials. Journal of Applied Physics is copyrighted by The American Institute of...... Physics....

  2. A percolation theory approach to the implantation induced diamond to amorphous-carbon transition

    International Nuclear Information System (INIS)

    The physical fact that diamond is electrically insulating while amorphous carbon and graphite are conducting is used in the present work to study the local damage that each implanted ion creates around its track and to conclude about the processes through which implanted diamond turns amorphous. Experimental data for the conductivity of Sb implanted diamond for various geometries, energies and doses are analyzed by the use of percolation theory. It seems that the amorphization of implanted diamond proceeds gradually with no well defined amorphous regions formed around the ion track. Amorphization in implanted diamond seems to occur in a way different than is believed to be the case for implanted silicon, where some direct amorphization around an ion track is suggested. This major difference can be attributed to the abnormally large change in densities between diamond and amorphous carbon or graphite which suppresses the growth of local amorphous regions in diamond. (author)

  3. HRTEM study of Popigai impact diamond: heterogeneous diamond nanostructures in native amorphous carbon matrix

    Science.gov (United States)

    Kis, Viktoria K.; Shumilova, Tatyana; Masaitis, Victor

    2016-07-01

    High-resolution transmission electron microscopy was applied for the detailed nanostructural investigation of Popigai impact diamonds with the aim of revealing the nature of the amorphous carbon of the matrix. The successful application of two complementary specimen preparation methods, focused ion beam (FIB) milling and mechanical cleavage, allowed direct imaging of nanotwinned nanodiamond crystals embedded in a native amorphous carbon matrix for the first time. Based on its stability under the electron beam, native amorphous carbon can be easily distinguished from the amorphous carbon layer produced by FIB milling during specimen preparation. Electron energy loss spectroscopy of the native amorphous carbon revealed the dominance of sp 2-bonded carbon and the presence of a small amount of oxygen. The heterogeneous size distribution and twin density of the nanodiamond crystals and the structural properties of the native amorphous carbon are presumably related to non-graphitic (organic) carbon precursor material.

  4. High power photoconductive semiconductor switches treated with amorphic diamond coatings

    International Nuclear Information System (INIS)

    Our recent efforts have resulted in implementation and demonstration of several intense photoconductively switched stacked Blumlein pulsers producing high power output pulses with risetimes as fast as 200 ps. A single GaAs photoconductive switch triggered with a low power laser diode array commutates these devices. During the avalanche-mode photoconductive switching of these pulsers at high powers, current filamentation associated with the high gain GaAs switches produces such high current density that switches are damaged near the metal-semiconductor interface and the lifetime is limited. This report presents progress toward improving the switch operation and lifetime by advanced treatments with the amorphic diamond coatings

  5. Fabrication of photonic amorphous diamonds for terahertz-wave applications

    Science.gov (United States)

    Komiyama, Yuichiro; Abe, Hiroyuki; Kamimura, Yasushi; Edagawa, Keiichi

    2016-05-01

    A recently proposed photonic bandgap material, named "photonic amorphous diamond" (PAD), was fabricated in a terahertz regime, and its terahertz-wave propagation properties were investigated. The PAD structure was fabricated from acrylic resin mixed with alumina powder, using laser lithographic, micro-additive manufacturing technique. After fabrication, the resulting structure was dewaxed and sintered. The formation of a photonic bandgap at around 0.45 THz was demonstrated by terahertz time-domain spectroscopy. Reflecting the disordered nature of the random network structure, diffusive terahertz-wave propagation was observed in the passbands; the scattering mean-free path decreased as the frequency approached the band edge. The mean-free paths evaluated at the band edges were close to the Ioffe-Regel threshold value for wave localization.

  6. Development of an Amorphous Selenium-Based Photodetector Driven by a Diamond Cold Cathode

    Directory of Open Access Journals (Sweden)

    Tatsuo Shimosawa

    2013-10-01

    Full Text Available Amorphous-selenium (a-Se based photodetectors are promising candidates for imaging devices, due to their high spatial resolution and response speed, as well as extremely high sensitivity enhanced by an internal carrier multiplication. In addition, a-Se is reported to show sensitivity against wide variety of wavelengths, including visible, UV and X-ray, where a-Se based flat-panel X-ray detector was proposed. In order to develop an ultra high-sensitivity photodetector with a wide detectable wavelength range, a photodetector was fabricated using a-Se photoconductor and a nitrogen-doped diamond cold cathode. In the study, a prototype photodetector has been developed, and its response to visible and ultraviolet light are characterized.

  7. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air

    International Nuclear Information System (INIS)

    We report on fundamental discovery of conversion of amorphous carbon into diamond by irradiating amorphous carbon films with nanosecond lasers at room-temperature in air at atmospheric pressure. We can create diamond in the form of nanodiamond (size range <100 nm) and microdiamond (>100 nm). Nanosecond laser pulses are used to melt amorphous diamondlike carbon and create a highly undercooled state, from which various forms of diamond can be formed upon cooling. The quenching from the super undercooled state results in nucleation of nanodiamond. It is found that microdiamonds grow out of highly undercooled state of carbon, with nanodiamond acting as seed crystals

  8. Synchrotron applications of an amorphous silicon flat-panel detector

    International Nuclear Information System (INIS)

    A GE Revolution 41RT flat-panel detector (GE 41RT) from GE Healthcare (GE) has been in operation at the Advanced Photon Source for over two years. The detector has an active area of 41 cm x 41 cm with 200 (micro)m x 200 (micro)m pixel size. The nominal working photon energy is around 80 keV. The physical set-up and utility software of the detector system are discussed in this article. The linearity of the detector response was measured at 80.7 keV. The memory effect of the detector element, called lag, was also measured at different exposure times and gain settings. The modulation transfer function was measured in terms of the line-spread function using a 25 (micro)m x 1 cm tungsten slit. The background (dark) signal, the signal that the detector will carry without exposure to X-rays, was measured at three different gain settings and with exposure times of 1 ms to 15 s. The radial geometric flatness of the sensor panel was measured using the diffraction pattern from a CeO2 powder standard. The large active area and fast data-capturing rate, i.e. 8 frames s-1 in radiography mode, 30 frames s-1 in fluoroscopy mode, make the GE 41RT one of a kind and very versatile in synchrotron diffraction. The loading behavior of a Cu/Nb multilayer material is used to demonstrate the use of the detector in a strain-stress experiment. Data from the measurement of various samples, amorphous SiO2 in particular, are presented to show the detector effectiveness in pair distribution function measurements

  9. Deposition and field-emission characterization of electrically conductive nitrogen-doped diamond-like amorphous carbon films

    International Nuclear Information System (INIS)

    For the fabrication of high performance field emitters, diamond-like amorphous carbon films doped with nitrogen (DAC:N) were formed using an intermittent supermagnetron plasma chemical vapor deposition technique. DAC:N films were deposited using isobutane plasma to investigate the influence of discharge-off time and electrode spacing on the physical properties of the films at upper- and lower-electrode radio frequency (rf) powers (LORF) of 800 W/50-800 W. At LORF of 100 W, a discharge-on time of 1 min, and a discharge-off time (cooling time) of 30 s-10 min, resistivity was decreased with a decrease of the cooling time. By reducing the electrode spacing from 60 to 20 mm at a LORF of 50 and 800 W, the optical band gap of DAC:N film was decreased from 0.85 and 0.23 eV to 0.6 and 0 eV, respectively. A flat DAC:N film of 700 A thickness was deposited on a n-Si wafer at rf powers of 800 W/800 W. Using this flat DAC:N film, a threshold electric field of 18 V/μm was observed and maximum field-emission current density of 2.2 mA/cm2 was observed at the electric field of 32 V/μm

  10. Investigation of an amorphous silicon flat-panel detector for ion radiography

    OpenAIRE

    Telsemeyer, Julia

    2012-01-01

    Using heavy ions in radiotherapy offers a good potential for targeted radiation of tumors and the ability to spare healthy tissue. Their characteristic interaction with matter holds the potential to employ ions for high-contrast radiographic imaging at a decreased dose in comparison to conventional X-ray imaging; however, it lacks simple detectors suitable for this purpose. In this study the performance of an amorphous silicon flat-panel detector, originally designed for photon imaging, was i...

  11. Compatibility of the totally replaced hip. Reduction of wear by amorphous diamond coating.

    Science.gov (United States)

    Santavirta, Seppo

    2003-12-01

    Particulate wear debris in totally replaced hips causes adverse local host reactions. The extreme form of such a reaction, aggressive granulomatosis, was found to be a distinct condition and different from simple aseptic loosening. Reactive and adaptive tissues around the totally replaced hip were made of proliferation of local fibroblast like cells and activated macrophages. Methylmethacrylate and high-molecular-weight polyethylene were shown to be essentially immunologically inert implant materials, but in small particulate form functioned as cellular irritants initiating local biological reactions leading to loosening of the implants. Chromium-cobalt-molybdenum is the most popular metallic implant material; it is hard and tough, and the bearings of this metal are partially self-polishing. In total hip implants, prerequisites for longevity of the replaced hip are good biocompatibility of the materials and sufficient tribological properties of the bearings. The third key issue is that the bearing must minimize frictional shear at the prosthetic bone-implant interface to be compatible with long-term survival. Some of the approaches to meet these demands are alumina-on-alumina and metal-on-metal designs, as well as the use of highly crosslinked polyethylene for the acetabular component. In order to avoid the wear-based deleterious properties of the conventional total hip prosthesis materials or coatings, the present work included biological and tribological testing of amorphous diamond. Previous experiments had demonstrated that a high adhesion of tetrahedral amorphous carbon coatings to a substrate can be achieved by using mixing layers or interlayers. Amorphous diamond was found to be biologically inert, and simulator testing indicated excellent wear properties for conventional total hip prostheses, in which either the ball or both bearing surfaces were coated with hydrogen-free tetrahedral amorphous diamond films. Simulator testing with such total hip prostheses

  12. Formation of Ultrananocrystalline Diamond/Amorphous Carbon Composite Films in Vacuum Using Coaxial Arc Plasma Gun

    Science.gov (United States)

    Hanada, Kenji; Yoshida, Tomohiro; Nakagawa, You; Yoshitake, Tsuyoshi

    2010-12-01

    Ultrananocrystalline diamond (UNCD)/nonhydrogenated amorphous carbon (a-C) composite films were grown in vacuum using a coaxial arc plasma gun. From the X-ray diffraction measurement, the UNCD crystallite size was estimated to be 1.6 nm. This size is dramatically reduced from that (2.3 nm) of UNCD/hydrogenated amorphous carbon (a-C:H) composite films grown in a hydrogen atmosphere. The sp3/(sp3 + sp2) value, which was estimated from the X-ray photoemission spectrum, was also reduced to be 41%. A reason for it might be the reduction in the UNCD crystallite size. From the near-edge X-ray absorption fine-structure (NEXAFS) spectrum, it was found that the π*C=C and π*C≡C bonds are preferentially formed instead of the σ*C-H bonds in the UNCD/a-C:H films. Since the extremely small UNCD crystallites (1.6 nm) correspond to the nuclei of diamond, we consider that UNCD crystallite formation should be due predominantly to nucleation. The supersaturated condition required for nucleation is expected to be realized in the deposition using the coaxial arc plasma gun.

  13. Low-emissivity coating of amorphous diamond-like carbon/Ag-alloy multilayer on glass

    International Nuclear Information System (INIS)

    Transparent low-emissivity (low-e) coatings comprising dielectrics of amorphous diamond-like carbon (DLC) and Ag-alloy films are investigated. All films have been prepared by dc magnetron sputtering. An index of refraction of the DLC film deposited in a gas mixture of Ar/H2 (4%) shows n = 1.80 + 0.047i at 500 nm wavelength. A multilayer stack of DLC (70 nm thick)/Ag87.5Cu12.5-alloy (10 nm)/DLC (140 nm)/Ag87.5Cu12.5-alloy (10 nm)/DLC (70 nm) has revealed clear interference spectra with spectra selectivity. This coating performs low emittance less than 0.1 for black body radiation at 297 K, exhibiting a transparent heat mirror property embedded in DLC films

  14. Research on the preparation of amorphous diamond nanorod arrays and their excellent field emitting properties

    Institute of Scientific and Technical Information of China (English)

    YAN; Pengxun; LI; Xiaochun; XU; Jianwei; LI; Xin; LI; Chun; LIU; Yang

    2006-01-01

    Amorphous diamond nanorod arrays with excellent field emitting have been fabricated firstly on the AAO template by the filtered cathodic arc plasma technique. Microscopic analysis has displayed that the nanorods are very uniformly distributed, and the density is very high up to ~109 cm-2. The nanorod arrays are found to have an extremely low turn-on field of 0.16 V/μm, which is lower than other reported materials, and a high- emission current density of 180 mA/cm2 under an applied field of 2 V/μm can also be obtained. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and filed emitting tester are employed to characterize the nanorod arrays. The field emission mechanism of the nanorod arrays is also discussed.

  15. Amorphous diamond-structured photonic crystal in the feather barbs of the scarlet macaw

    Science.gov (United States)

    Yin, Haiwei; Dong, Biqin; Liu, Xiaohan; Zhan, Tianrong; Shi, Lei; Zi, Jian; Yablonovitch, Eli

    2012-01-01

    Noniridescent coloration by the spongy keratin in parrot feather barbs has fascinated scientists. Nonetheless, its ultimate origin remains as yet unanswered, and a quantitative structural and optical description is still lacking. Here we report on structural and optical characterizations and numerical simulations of the blue feather barbs of the scarlet macaw. We found that the sponge in the feather barbs is an amorphous diamond-structured photonic crystal with only short-range order. It possesses an isotropic photonic pseudogap that is ultimately responsible for the brilliant noniridescent coloration. We further unravel an ingenious structural optimization for attaining maximum coloration apparently resulting from natural evolution. Upon increasing the material refractive index above the level provided by nature, there is an interesting transition from a photonic pseudogap to a complete bandgap. PMID:22615350

  16. Electron transport in W-containing amorphous carbon-silicon diamond-like nanocomposites

    International Nuclear Information System (INIS)

    The electron transport in amorphous hydrogenated carbon-silicon diamond-like nanocomposite films containing tungsten over the concentration range 12-40 at.% was studied in the temperature range 80-400 K. The films were deposited onto polycrystalline substrates, placed on the RF-biased substrate holder, by the combination of two methods: PECVD of siloxane vapours in the stimulated dc discharge and dc magnetron sputtering of tungsten target. The experimental dependences of the conductivity on the temperature are well fitted by the power-law dependences over the entire temperature range. The results obtained are discussed in terms of the model of inelastic tunnelling of the electrons in amorphous dielectrics. The average number of localized states (n) in the conducting channels between metal clusters calculated in the framework of this model is characterized by the non-monotonic dependence on the tungsten concentration in the films. The qualitative explanation of the results on the basis of host carbon-silicon matrix structural modifications is proposed. The evolution of the carbon-silicon matrix microstructure by the increase in the tungsten concentration is confirmed by the Raman spectroscopy data

  17. High sp~3 content hydrogen-free amorphous diamond: an excellent electron field emission material

    Institute of Scientific and Technical Information of China (English)

    茅东升; 赵俊; 李炜; 王曦; 柳襄怀; 诸玉坤; 李琼; 徐静芳

    1999-01-01

    Details are given of a study of the characteristics of field-induced electron emission from hydrogen-free high sp~3 content (>90 % ) amorphous diamond (a-D) film deposited on heavily doped (p<0.01 Ω·cm) n-type monoerystalline Si (111 ) substrate. It is demonstrated that a-D film has excellent electron field emission properties. The emission current can reach 0.9 μA at applied field as low as 1 V/μm, and the emission current density can be ahout several mA/cm~2 under 20 V/μm. The emission current is stable when the beginning current is at 50 μA within 72 h. Uniform fluorescence display of electron emission from the whole face of the a-D film under the electric field of 10-12 V/μm is also observed. The contribution of excellent electron emission property results from the smooth, uniform, amorphous surface and high sp~3 content of the a-D film.

  18. Energy loss of electrons impinging upon glassy carbon, amorphous carbon, and diamond: Comparison between two different dispersion laws

    International Nuclear Information System (INIS)

    In this paper, we compare and discuss calculated inelastic mean free path, stopping power, range, and reflection electron energy loss spectra obtained using two different and popular dispersion laws. We will present and discuss the results we obtained investigating the interaction of electron beams impinging upon three allotropic forms of carbon, i.e. solid glassy carbon, amorphous carbon, and diamond. We will compare numerical results with experimental reflection electron energy loss spectra

  19. Multiwavelength Raman analysis of SiOx and N containing amorphous diamond like carbon films

    International Nuclear Information System (INIS)

    In the current research SiOx and N containing amorphous diamond like carbon (a-C:H) films were deposited on crystalline silicon from hexamethyldisiloxane and hexamethyldisilazane compounds respectively, using closed drift ion beam source and different ion beam energy in a range 300–800 eV. Hydrogen was used as a carrier gas of the precursors. Composition of the films was studied by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The structure of these films was studied employing multiwavelength (325 nm–785 nm) Raman analysis. From the Raman spectra analysis, the characteristic parameters such as the position of G peak, D/G peak intensity ratio as well as dispersion of G (Disp(G)) peak showing topological disorder of sp2 phase in doped a-C:H films were determined. Analysis of Disp (G) and D/G intensity ratio revealed that in both types of films increase of ion beam energy gives higher sp3/sp2 ratio in the films. - Highlights: • Siloxanes are used to incorporate Si, O and N into a-C:H films. • Closed drift ion beam source at varying ion beam energy was used. • Multiwavelength Raman spectroscopy analysis (325–785 nm) was performed. • Dispersion of G peak shows that sp3/sp2 ratio rises with increasing ion beam energy

  20. Strength and Fracture Resistance of Amorphous Diamond-Like Carbon Films for MEMS

    Directory of Open Access Journals (Sweden)

    K. N. Jonnalagadda

    2009-01-01

    Full Text Available The mechanical strength and mixed mode I/II fracture toughness of hydrogen-free tetrahedral amorphous diamond-like carbon (ta-C films, grown by pulsed laser deposition, are discussed in connection to material flaws and its microstructure. The failure properties of ta-C were obtained from films with thicknesses 0.5–3 μm and specimen widths 10–20 μm. The smallest test samples with 10 μm gage section averaged a strength of 7.3 ± 1.2 GPa, while the strength of 20-μm specimens with thicknesses 0.5–3 μm varied between 2.2–5.7 GPa. The scaling of the mechanical strength with specimen thickness and dimensions was owed to deposition-induced surface flaws, and, only in the smallest specimens, RIE patterning generated specimen sidewall flaws. The mode I fracture toughness of ta-C films is KIc=4.4±0.4 MPam, while the results from mixed mode I/II fracture experiments with cracks arbitrarily oriented in the plane of the film compared very well with theoretical predictions.

  1. Amorphous and Polycrystalline Photoconductors for Direct Conversion Flat Panel X-Ray Image Sensors

    Directory of Open Access Journals (Sweden)

    Karim S. Karim

    2011-05-01

    Full Text Available In the last ten to fifteen years there has been much research in using amorphous and polycrystalline semiconductors as x-ray photoconductors in various x-ray image sensor applications, most notably in flat panel x-ray imagers (FPXIs. We first outline the essential requirements for an ideal large area photoconductor for use in a FPXI, and discuss how some of the current amorphous and polycrystalline semiconductors fulfill these requirements. At present, only stabilized amorphous selenium (doped and alloyed a-Se has been commercialized, and FPXIs based on a-Se are particularly suitable for mammography, operating at the ideal limit of high detective quantum efficiency (DQE. Further, these FPXIs can also be used in real-time, and have already been used in such applications as tomosynthesis. We discuss some of the important attributes of amorphous and polycrystalline x-ray photoconductors such as their large area deposition ability, charge collection efficiency, x-ray sensitivity, DQE, modulation transfer function (MTF and the importance of the dark current. We show the importance of charge trapping in limiting not only the sensitivity but also the resolution of these detectors. Limitations on the maximum acceptable dark current and the corresponding charge collection efficiency jointly impose a practical constraint that many photoconductors fail to satisfy. We discuss the case of a-Se in which the dark current was brought down by three orders of magnitude by the use of special blocking layers to satisfy the dark current constraint. There are also a number of polycrystalline photoconductors, HgI2 and PbO being good examples, that show potential for commercialization in the same way that multilayer stabilized a-Se x-ray photoconductors were developed for commercial applications. We highlight the unique nature of avalanche multiplication in a-Se and how it has led to the development of the commercial HARP video-tube. An all solid state version of the

  2. Time-Resolved Observation of Deposition Process of Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films in Pulsed Laser Deposition

    OpenAIRE

    Kunihito Nagayama; Tsuyoshi Yoshitake; Takashi Nishiyama; Kenji Hanada

    2009-01-01

    Optical emission spectroscopy was used to study pulsed laser ablation of graphite in a hydrogen atmosphere wherein ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) composite films were grown on heated substrates. Time-resolved photographs of a plume that expanded from a laser-irradiation spot toward a substrate were taken using a high-speed ICCD camera equipped with narrow-bandpass filters. While the emissions from C atoms and C2 dimers lasted above the laser-irradi...

  3. Reciprocating sliding behaviour of self-mated amorphous diamond-like carbon coatings on Si3N4 ceramics under tribological stress

    International Nuclear Information System (INIS)

    Amorphous diamond-like carbon films grown by magnetron sputtering have been deposited on silicon nitride based substrates for tribological purposes. A conductive Si3N4/30% vol.TiN composite was produced for bias substrate application. Friction and wear properties of carbon coated self-mated pairs were assessed using a reciprocal motion ball-on-flat setup in unlubricated conditions with applied normal loads of 3 N and 5 N. The worn surfaces were studied by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) in order to identify the prevalent wear mechanism. Unbiased and biased substrates behaved differently, the former undergoing premature delamination while the latter endured the tribological test conditions (3 N, ∼ 43 m). Very low friction coefficient values of ∼ 0.015 were sustained assuring remarkable wear behaviour. Surface grooving and wear debris accumulation in the sliding track lead to a roughness increase from the nominal rms value of ∼ 12 nm to ∼ 97 nm, although no weight loss and surface profile modification was quantifiable

  4. Structural and Physical Characteristics of Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films Deposited Using a Coaxial Arc Plasma Gun

    Science.gov (United States)

    Yoshitake, Tsuyoshi; Nakagawa, You; Nagano, Akira; Ohtani, Ryota; Setoyama, Hiroyuki; Kobayashi, Eiichi; Sumitani, Kazushi; Agawa, Yoshiaki; Nagayama, Kunihito

    2010-01-01

    Ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) films were formed without initial nucleation using a coaxial arc plasma gun. The UNCD crystallite diameters estimated from the X-ray diffraction peaks were approximately 2 nm. The Fourier transform infrared absorption spectrum exhibited an intense sp3-CH peak that might originate from the grain boundaries between UNCD crystallites whose dangling bonds are terminated with hydrogen atoms. A narrow sp3 peak in the photoemission spectrum implied that the film comprises a large number of UNCD crystallites. Large optical absorption coefficients at photon energies larger than 3 eV that might be due to the grain boundaries are specific to the UNCD/a-C:H films.

  5. Nitrogen incorporated ultrananocrystalline diamond based field emitter array for a flat-panel x-ray source

    International Nuclear Information System (INIS)

    A field emission based flat-panel transmission x-ray source is being developed as an alternative for medical and industrial imaging. A field emitter array (FEA) prototype based on nitrogen incorporated ultrananocrystalline diamond film has been fabricated to be used as the electron source of this flat panel x-ray source. The FEA prototype was developed using conventional microfabrication techniques. The field emission characteristics of the FEA prototype were evaluated. Results indicated that emission current densities of the order of 6 mA/cm2 could be obtained at electric fields as low as 10 V/μm to 20 V/μm. During the prototype microfabrication process, issues such as delamination of the extraction gate and poor etching of the SiO2 insulating layer located between the emitters and the extraction layer were encountered. Consequently, alternative FEA designs were investigated. Experimental and simulation data from the first FEA prototype were compared and the results were used to evaluate the performance of alternative single and double gate designs that would yield better field emission characteristics compared to the first FEA prototype. The best simulation results are obtained for the double gate FEA design, when the diameter of the collimator gate is around 2.6 times the diameter of the extraction gate

  6. Nanocrystalline diamond/amorphous carbon films for applications in tribology, optics and biomedicine

    Czech Academy of Sciences Publication Activity Database

    Popov, C.; Kulisch, W.; Jelínek, Miroslav; Bock, A.; Strnad, J.

    2006-01-01

    Roč. 494, - (2006), s. 92-97. ISSN 0040-6090 Grant ostatní: NATO(XE) CBP.EAP.CLG 981519; Marie-Curie EIF(XE) MEIF-CT-2004-500038 Institutional research plan: CEZ:AV0Z10100502 Keywords : nano crystalline diamond films * application properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.666, year: 2006

  7. Influence of the substrate temperature on the properties of nanocrystalline diamond/amorphous carbon composite films

    Czech Academy of Sciences Publication Activity Database

    Kulisch, W.; Popov, C.; Boycheva, S.; Jelínek, Miroslav; Gibson, P. N.; Vorlíček, Vladimír

    2006-01-01

    Roč. 200, - (2006), s. 4731-4736. ISSN 0257-8972 R&D Projects: GA AV ČR(CZ) IAA1010110 Grant ostatní: Marie Curie EIF - 6th EC Framework Programme(XE) MEIF-CT-2004-500038 Institutional research plan: CEZ:AV0Z1010914 Keywords : nanocrystalline diamond * microwave plasma CVD * growth rate Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.559, year: 2006

  8. The effect of temperature on the tribological mechanisms and reactivity of hydrogenerated, amorphous diamond-like carbon coatings under oil-lubricated conditions

    OpenAIRE

    Roman, E.; Kalin, Mitjan; Vižintin, Jože

    2015-01-01

    In this work we present the wear and friction behaviour of boundary-lubricated, hydrogenated, amorphous, diamond-like carbon coatings (a-C:H), in self-mated a-C:H/a-C:H contacts, at three different testing temperaturesČ 20, 80, 150 °C. We present results from Auger electron spectroscopy, X-ray photoelectron spectroscopy and Raman analyses relating to the chemical and structural changes in the diamond-like carbon coatings duringsliding in the presence of mineral oil, with and without additives...

  9. Characterization of an amorphous silicon flat panel for controlling the positioning accuracy of sheet

    International Nuclear Information System (INIS)

    It has established a method for measuring the position of the blades in a multi leaf collimator (MLC) used to measure dose portal imaging device (EPID) of amorphous silicon, and verified its accuracy using radiochromic films and measures water with diode Cuba, techniques perfectly well validated in our institution. This dose profiles are studied for each sheet and determine their position at the point which has 50% of the dose in the open field.

  10. Ion beam deposition of amorphous carbon films with diamond like properties

    Science.gov (United States)

    Angus, John C.; Mirtich, Michael J.; Wintucky, Edwin G.

    1982-01-01

    Carbon films were deposited on silicon, quartz, and potassium bromide substrates from an ion beam. Growth rates were approximately 0.3 micron/hour. The films were featureless and amorphous and contained only carbon and hydrogen in significant amounts. The density and carbon/hydrogen ratio indicate the film is a hydrogen deficient polymer. One possible structure, consistent with the data, is a random network of methylene linkages and tetrahedrally coordinated carbon atoms.

  11. Physical properties of nitrogen-doped diamond-like amorphous carbon films deposited by supermagnetron plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Diamond-like amorphous carbon films doped with nitrogen (DAC:N) were deposited on Si and glass wafers intermittently using i-C4H10/N2 repetitive supermagnetron plasma chemical vapor deposition. Deposition duration, which is equal to a plasma heating time of wafer, was selected to be 40 or 60 s, and several layers were deposited repetitively to form one thick film. DAC:N films were deposited at a lower-electrode temperature of 100 deg. C as a function of upper- and lower-electrode rf powers (200 W/200 W-1 kW/1 kW) and N2 concentration (0%-80%). With an increase in N2 concentration and rf power, the resistivity and the optical band gap decreased monotonously. With increase of the deposition duration from 40 to 60 s, resistivity decreased to 0.03Ω cm and optical band gap decreased to 0.02 eV (substantially equal to 0 eV within the range of experimental error), at an N2 concentration of 80% and rf power of 1 kW(/1 kW)

  12. Friction reduction in powertrain and engine components by coating with diamond-like, amorphous carbon; Reibungsminderung an Antriebs- und Motorkomponenten durch Beschichtungen mit diamantaehnlichem amorphen Kohlenstoff

    Energy Technology Data Exchange (ETDEWEB)

    Schork, Willi Sebastian

    2010-07-01

    The author investigated inhowfar coatings with diamond-like amorphous carbon (ta-C) in combination with suitable lubricants may help to reduce friction in selected powertrain and engine components. The influence of the microstructure on the stresses on layers in tribological contact was investigated using simulations. By varying the parameters of the background gas in the coating plant, hydrogen-free amorphous carbon layers of different elasticities and compositions were deposited reproducibly using a pulsed arc technology. For selective analyses of damage mechanisms in high-wear conditions, a novel tribometer for increasing loads was designed and constructed, with oscillating sliding contact and dynamic load. Failure models were established for various stress-related damge mechanisms of layered systems measured by the new tribometer. Practical tests with engines with ta-C coated piston rings proved the applicability of hydrogen-free amorphous carbon in engine applications.

  13. Amorphous selenium flat panel detectors for digital mammography: validation of a NPWE model observer with CDMAM observer performance experiments.

    Science.gov (United States)

    Segui, Jennifer A; Zhao, Wei

    2006-10-01

    Model observers have been developed which incorporate a specific imaging task, system performance, and human observer characteristics and can potentially overcome some of the limitations in using detective quantum efficiency for optimization and comparison of detectors. In this paper, a modified nonprewhitening matched filter (NPWE) model observer was developed and validated to predict object detectability for an amorphous selenium (a-Se) direct flat-panel imager (FPI) where aliasing is severe. A preclinical a-Se digital mammography FPI with 85 microm pixel size was used in this investigation. Its physical imaging properties including modulation transfer function (MTF), noise power spectrum, and DQE were fully characterized. An observer performance study was conducted by imaging the CDMAM 3.4 contrast-detail phantom designed specifically for digital mammography and presenting these images to a panel of seven observers. X-ray attenuation and scatter due to the phantom were determined experimentally for use in development of the model observer. The observer study results were analyzed via threshold averaging and signal detection theory (SDT) based techniques to produce contrast-detail curves where threshold contrast is plotted as a function of disk diameter. Validity of the model was established using SDT analysis of the experimental data. The effect of aliasing on the detectability of small diameter disks was determined using the NPWE model observer. The signal spectrum was calculated using the presampling MTF of the detector with and without including the aliased terms. Our results indicate that the NPWE model based on Fourier domain parameters provides reasonable prediction of object detectability for the signal-known-exactly task in uniform image noise for a-Se direct FPI. PMID:17089837

  14. Amorphous selenium flat panel detectors for digital mammography: Validation of a NPWE model observer with CDMAM observer performance experiments

    International Nuclear Information System (INIS)

    Model observers have been developed which incorporate a specific imaging task, system performance, and human observer characteristics and can potentially overcome some of the limitations in using detective quantum efficiency for optimization and comparison of detectors. In this paper, a modified nonprewhitening matched filter (NPWE) model observer was developed and validated to predict object detectability for an amorphous selenium (a-Se) direct flat-panel imager (FPI) where aliasing is severe. A preclinical a-Se digital mammography FPI with 85 μm pixel size was used in this investigation. Its physical imaging properties including modulation transfer function (MTF), noise power spectrum, and DQE were fully characterized. An observer performance study was conducted by imaging the CDMAM 3.4 contrast-detail phantom designed specifically for digital mammography and presenting these images to a panel of seven observers. X-ray attenuation and scatter due to the phantom were determined experimentally for use in development of the model observer. The observer study results were analyzed via threshold averaging and signal detection theory (SDT) based techniques to produce contrast-detail curves where threshold contrast is plotted as a function of disk diameter. Validity of the model was established using SDT analysis of the experimental data. The effect of aliasing on the detectability of small diameter disks was determined using the NPWE model observer. The signal spectrum was calculated using the presampling MTF of the detector with and without including the aliased terms. Our results indicate that the NPWE model based on Fourier domain parameters provides reasonable prediction of object detectability for the signal-known-exactly task in uniform image noise for a-Se direct FPI

  15. Corrosion resistance of amorphous hydrogenated SiC and diamond-like coatings deposited by r.f.-plasma-enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    This paper reports on the properties and corrosion resistance of amorphous hydrogenated carbon and amorphous hydrogenated SiC films deposited by r.f.-plasma-enhanced chemical vapour deposition at low temperatures (below 200 C). SiC coatings were prepared from SiH4-CH4 gas mixtures. Hydrogenated diamond-like coatings were deposited from classical CH4-H2 mixtures. The influence of various deposition parameters was investigated. Microstructural and mechanical properties of the films were studied (density, hydrogen content, nanohardness, internal stress, critical load and friction coefficient). Two examples of corrosion resistance are given: (1) the corrosion resistance and biocompatibility of SiC and diamond-like coatings deposited on metal implants (Ti alloy) (the corrosion resistance is evaluated through potentiodynamic polarization tests in biological media; the biocompatibility of coated and uncoated metals is compared using differentiated human cell cultures); and (2) the corrosion resistance of SiC-coated magnesium in chloride-containing boric borate buffer at pH = 9.3 evaluated from anodic polarization curves and scanning electron microscopy studies. (orig.)

  16. The effect of temperature on the tribological mechanisms and reactivity of hydrogenated, amorphous diamond-like carbon coatings under oil-lubricated conditions

    International Nuclear Information System (INIS)

    In this work we present the wear and friction behaviour of boundary-lubricated, hydrogenated, amorphous, diamond-like carbon coatings (a-C:H), in self-mated a-C:H/a-C:H contacts, at three different testing temperatures: 20, 80, 150 deg. C. We present results from Auger electron spectroscopy, X-ray photoelectron spectroscopy and Raman analyses relating to the chemical and structural changes in the diamond-like carbon coatings during sliding in the presence of mineral oil, with and without additives. We show, that chemical reactions between the a-C:H coatings and the oil additives take place, which are dependent on the temperature, on the presence of additives and the type of additives used. At high temperatures the extreme pressure additive interacts with the diamond-like carbon surface and forms a tribochemical layer with a four-times lower sulphur/phosphorous ratio than the additive formulation. In the absence of additives, however, graphitisation of the coating occurs under these conditions, which results in high-wear and low-friction behaviour. Another result from this study is that a-C:H coatings can oxidise during room-temperature experiments, suggesting that some interactions and adsorptions are also possible at lower temperatures

  17. Time-Resolved Spectroscopic Observation of Deposition Processes of Ultrananocrystalline Diamond/Amorphous Carbon Composite Films by Using a Coaxial Arc Plasma Gun

    Science.gov (United States)

    Hanada, Kenji; Yoshitake, Tsuyoshi; Nishiyama, Takashi; Nagayama, Kunihito

    2010-08-01

    The deposition of ultrananocrystalline diamond (UNCD)/amorphous carbon composite films using a coaxial arc plasma gun in vacuum and, for comparison, in a 53.3 Pa hydrogen atmosphere was spectroscopically observed using a high-speed camera equipped with narrow-band-pass filters. UNCD crystallites with diameters of approximately 1.6 nm were formed even in vacuum. These extremely small crystallites imply that the formation is predominantly due to nucleation without the subsequent growth. Even in vacuum, emissions from C+ ions, C atoms, and C2 dimers lasted for approximately 100 µs, although the emission lifetimes of these species are generally 10 ns. We consider that the nucleation is due to the supersaturated environment containing excited carbon species with large number densities.

  18. Simulation of the Elastic and Ultimate Tensile Properties of Diamond, Graphene, Carbon Nanotubes, and Amorphous Carbon Using a Revised ReaxFF Parametrization.

    Science.gov (United States)

    Jensen, Benjamin D; Wise, Kristopher E; Odegard, Gregory M

    2015-09-17

    In light of the enduring interest in using nanostructured carbon materials as reinforcing elements in composite materials, there is a significant need for a reliable computational tool capable to predict the mechanical properties, both elastic properties and properties at the point of fracture, in large-scale atomistic simulations. A revised version of the ReaxFF reactive force field parametrization for carbon, ReaxFFC-2013, was recently published and is notable because of the inclusion of density functional theory (DFT)-derived mechanical data for diamond and graphite in the fitting set. The purpose of the present work is to assess the accuracy of this new force field for predicting the mechanical properties for several allotropes of carbon, both in the elastic regime and during fracture. The initial discussion focuses on the performance of ReaxFFC-2013 for diamond and graphene, the two carbon forms for which mechanical properties were included in the parametrization data set. After it is established that simulations conducted with the new force field yield results that agree well with DFT and experimental data for most properties of interest, its transferability to amorphous carbon and carbon nanotubes is explored. ReaxFFC-2013 is found to produce results that, for the most part, compare favorably with available experimental data for single and multiwalled nanotubes and for amorphous carbon models prepared over a range of densities. Although there is opportunity for improvement in some predicted properties, the ReaxFFC-2013 parametrization is shown to generally perform well for each form of carbon and to compare favorably with DFT and experimental data. PMID:26315717

  19. Hydrogenation effects on carrier transport in boron-doped ultrananocrystalline diamond/amorphous carbon films prepared by coaxial arc plasma deposition

    International Nuclear Information System (INIS)

    Boron-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite (UNCD/a-C:H) films were deposited by coaxial arc plasma deposition with a boron-blended graphite target at a base pressure of <10−3 Pa and at hydrogen pressures of ≤53.3 Pa. The hydrogenation effects on the electrical properties of the films were investigated in terms of chemical bonding. Hydrogen-scattering spectrometry showed that the maximum hydrogen content was 35 at. % for the film produced at 53.3-Pa hydrogen pressure. The Fourier-transform infrared spectra showed strong absorptions by sp3 C–H bonds, which were specific to the UNCD/a-C:H, and can be attributed to hydrogen atoms terminating the dangling bonds at ultrananocrystalline diamond grain boundaries. Temperature-dependence of the electrical conductivity showed that the films changed from semimetallic to semiconducting with increasing hydrogen pressure, i.e., with enhanced hydrogenation, probably due to hydrogenation suppressing the formation of graphitic bonds, which are a source of carriers. Carrier transport in semiconducting hydrogenated films can be explained by a variable-range hopping model. The rectifying action of heterojunctions comprising the hydrogenated films and n-type Si substrates implies carrier transport in tunneling

  20. Near-Edge X-Ray Absorption Fine Structure of Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Films Prepared by Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Shinya Ohmagari

    2009-01-01

    Full Text Available The atomic bonding configuration of ultrananocrystalline diamond (UNCD/hydrogenated amorphous carbon (a-C:H films prepared by pulsed laser ablation of graphite in a hydrogen atmosphere was examined by near-edge X-ray absorption fine structure spectroscopy. The measured spectra were decomposed with simple component spectra, and they were analyzed in detail. As compared to the a-C:H films deposited at room substrate-temperature, the UNCD/a-C:H and nonhydrogenated amorphous carbon (a-C films deposited at a substrate-temperature of 550∘C exhibited enhanced π∗ and σ∗C≡C peaks. At the elevated substrate-temperature, the π∗ and σ∗C≡C bonds formation is enhanced while the σ∗C–H and σ∗C–C bonds formation is suppressed. The UNCD/a-C:H film showed a larger σ∗C–C peak than the a-C film deposited at the same elevated substrate-temperature in vacuum. We believe that the intense σ∗C–C peak is evidently responsible for UNCD crystallites existence in the film.

  1. Performance of a 41x41 cm2 amorphous silicon flat panel x-ray detector designed for angiographic and R and F imaging applications

    International Nuclear Information System (INIS)

    We measured the physical imaging performance of a 41x41 cm2 amorphous silicon flat panel detector designed for angiographic and R and F imaging applications using methods from the emerging IEC standard for the measurement of detective quantum efficiency (DQE) in digital radiographic detectors. Measurements on 12 production detectors demonstrate consistent performance. The mean DQE at the detector center is about 0.77 at zero frequency and 0.27 at the Nyquist frequency (2.5 cycles/mm) when measured with a 7 mm of Al HVL spectrum at about 3.6 μGy. The mean MTF at the center of the detector for this spectrum is 0.24 at the Nyquist frequency. For radiographic operation all 2048x2048 detector elements are read out individually. For fluoroscopy, the detector operates in two 30 frame per second modes: either the center 1024x1024 detector elements are read out or the entire detector is read out with 2x2 pixel binning. A model was developed to predict differences in performance between the modes, and measurements demonstrate agreement with the model. Lag was measured using a quasi-equilibrium exposure method and was found to be 0.044 in the first frame and less than 0.007 after 1 s. We demonstrated that it is possible to use the lag data to correct for temporal correlation in images when measuring DQE with a fluoroscopic imaging technique. Measurements as a function of position on the detector demonstrate a high degree of uniformity. We also characterized dependences on spectrum, exposure level, and direction. Finally, we measured the DQE of a current state of the art image intensifier/CCD system using the same method as for the flat panel. We found the image intensifier system to have lower DQE than the flat panel at high exposure levels and approximately equivalent DQE at fluoroscopic levels

  2. Intermittent chemical vapor deposition of thick electrically conductive diamond-like amorphous carbon films using i-C4H10/N2 supermagnetron plasma

    International Nuclear Information System (INIS)

    Electrically conductive diamond-like amorphous carbon (DAC) films with nitrogen (DAC:N) were deposited on Si and SiO2 wafers using the i-C4H10/N2 supermagnetron plasma chemical vapor deposition (CVD) method. Resistivity and hardness decreased with increase of upper electrode rf power (UPRF) under constant lower electrode rf power (LORF). Film thickness increased linearly to over 0.3 μm with deposition time via intermittent deposition. The film exhibited good adhesion to the substrate. Low-resistance thick films were deposited using alternating multilayer CVD at UPRF/LORFs of 1 kW/1 kW and 300 W/300 W. In the deposited alternating multiple layers, resistivity significantly decreased with the increase of H layer (1 kW/1 kW) thickness, and film thickness significantly increased with the increase of L layer (300 W/300 W) thickness. By the deposition of H/L multiple layers, a film of 2.1 μm thickness and 0.14 Ω cm resistivity was obtained

  3. Friction and wear properties of diamonds and diamond coatings

    International Nuclear Information System (INIS)

    The recent development of chemical vapor deposition techniques for diamond growth enables bearings to be designed which exploit diamond's low friction and extreme resistance to wear. However, currently produced diamond coatings differ from natural diamond surfaces in that they are polycrystalline and faceted, and often contain appreciable amounts of non-diamond material (i.e. graphitic or amorphous carbon). Roughness, in particular, influences the friction and wear properties; rough coatings severely abrade softer materials, and can even wear natural diamond sliders. Nevertheless, the best available coatings exhibit friction coefficients as low as those of natural diamond and are highly resistant to wear. This paper reviews the tribological properties of natural diamond, and compares them with those of chemical vapor deposited diamond coatings. Emphasis is placed on the roles played by roughness and material transfer in controlling frictional behavior. (orig.)

  4. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors

    Science.gov (United States)

    Allec, N.; Abbaszadeh, S.; Karim, K. S.

    2011-09-01

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml-1 in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  5. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors

    International Nuclear Information System (INIS)

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml-1 in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  6. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Allec, N; Abbaszadeh, S; Karim, K S, E-mail: nallec@uwaterloo.ca [Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1 (Canada)

    2011-09-21

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml{sup -1} in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  7. Diamond turning of glass

    Energy Technology Data Exchange (ETDEWEB)

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  8. The x-ray time of flight method for investigation of ghosting in amorphous selenium-based flat panel medical x-ray imagers

    International Nuclear Information System (INIS)

    Amorphous selenium (a-Se) based real-time flat-panel imagers (FPIs) are finding their way into the digital radiology department because they offer the practical advantages of digital x-ray imaging combined with an image quality that equals or outperforms that of conventional systems. The temporal imaging characteristics of FPIs can be affected by ghosting (i.e., radiation-induced changes of sensitivity) when the dose to the detector is high (e.g., portal imaging and mammography) or the images are acquired at a high frame rate (e.g., fluoroscopy). In this paper, the x-ray time-of-flight (TOF) method is introduced as a tool for the investigation of ghosting in a-Se photoconductor layers. The method consists of irradiating layers of a-Se with short x-ray pulses. From the current generated in the a-Se layer, ghosting is quantified and the ghosting parameters (charge carrier generation rate and carrier lifetimes and mobilities) are assessed. The x-ray TOF method is novel in that (1) x-ray sensitivity (S) and ghosting parameters can be measured simultaneously (2) the transport of both holes and electrons can be isolated, and (3) the method is applicable to the practical a-Se layer structure with blocking contacts used in FPIs. The x-ray TOF method was applied to an analysis of ghosting in a-Se photoconductor layers under portal imaging conditions, i.e., 1 mm thick a-Se layers, biased at 5 V/μm, were irradiated using a 6 MV LINAC x-ray beam to a total dose (ghosting dose) of 30 Gy. The initial sensitivity (S0) of the a-Se layers was 63±2 nC cm-2 cGy-1. It was found that S decreases to 30% of S0 after a ghosting dose of 5 Gy and to 21% after 30 Gy at which point no further change in S occurs. At an x-ray intensity of 22 Gy/s (instantaneous dose rate during a LINAC x-ray pulse), the charge carrier generation rate was 1.25±0.1x1022 ehp m-3 s-1 and, to a first approximation, independent of the ghosting dose. However, both hole and electron transport showed a strong

  9. TU-F-18C-02: Increasing Amorphous Selenium Thickness in Direct Conversion Flat-Panel Imagers for Contrast-Enhanced Dual-Energy Breast Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Scaduto, DA; Hu, Y-H; Zhao, W [Stony Brook University, Stony Brook, NY (United States)

    2014-06-15

    Purpose: Contrast-enhanced (CE) breast imaging using iodinated contrast agents requires imaging with x-ray spectra at energies greater than those used in mammography. Optimizing amorphous selenium (a-Se) flat panel imagers (FPI) for this higher energy range may increase lesion conspicuity. Methods: We compare imaging performance of a conventional FPI with 200 μm a-Se conversion layer to a prototype FPI with 300 μm a-Se layer. Both detectors are evaluated in a Siemens MAMMOMAT Inspiration prototype digital breast tomosynthesis (DBT) system using low-energy (W/Rh 28 kVp) and high-energy (W/Cu 49 kVp) x-ray spectra. Detectability of iodinated lesions in dual-energy images is evaluated using an iodine contrast phantom. Effects of beam obliquity are investigated in projection and reconstructed images using different reconstruction methods. The ideal observer signal-to-noise ratio is used as a figure-of-merit to predict the optimal a-Se thickness for CE lesion detectability without compromising conventional full-field digital mammography (FFDM) and DBT performance. Results: Increasing a-Se thickness from 200 μm to 300 μm preserves imaging performance at typical mammographic energies (e.g. W/Rh 28 kVp), and improves the detective quantum efficiency (DQE) for high energy (W/Cu 49 kVp) by 30%. While the more penetrating high-energy x-ray photons increase geometric blur due to beam obliquity in the FPI with thicker a-Se layer, the effect on lesion detectability in FBP reconstructions is negligible due to the reconstruction filters employed. Ideal observer SNR for CE objects shows improvements in in-plane detectability with increasing a-Se thicknesses, though small lesion detectability begins to degrade in oblique projections for a-Se thickness above 500 μm. Conclusion: Increasing a-Se thickness in direct conversion FPI from 200 μm to 300 μm improves lesion detectability in CE breast imaging with virtually no cost to conventional FFDM and DBT. This work was partially

  10. Dose reduction in skeletal and chest radiography using a large-area flat-panel detector based on amorphous silicon and thallium-doped cesium iodide: technical background, basic image quality parameters, and review of the literature

    International Nuclear Information System (INIS)

    The two most frequently performed diagnostic X-ray examinations are those of the extremities and of the chest. Thus, dose reduction in the field of conventional skeletal and chest radiography is an important issue and there is a need to reduce man-made ionizing radiation. The large-area flat-panel detector based on amorphous silicon and thallium-doped cesium iodide provides a significant reduction of radiation dose in skeletal and chest radiography compared with traditional imaging systems. This article describes the technical background and basic image quality parameters of this 43 x 43-cm digital system, and summarizes the available literature (years 2000-2003) concerning dose reduction in experimental and clinical studies. Due to its high detective quantum efficiency and dynamic range compared with traditional screen-film systems, a dose reduction of up to 50% is possible without loss of image quality. (orig.)

  11. Dose reduction in skeletal and chest radiography using a large-area flat-panel detector based on amorphous silicon and thallium-doped cesium iodide: technical background, basic image quality parameters, and review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Voelk, Markus; Hamer, Okka W.; Feuerbach, Stefan [Department of Diagnostic Radiology, University Hospital of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg (Germany); Strotzer, Michael [Department of Radiology, Hospital Hohe Warte, Hohe Warte 8, 95445, Bayreuth (Germany)

    2004-05-01

    The two most frequently performed diagnostic X-ray examinations are those of the extremities and of the chest. Thus, dose reduction in the field of conventional skeletal and chest radiography is an important issue and there is a need to reduce man-made ionizing radiation. The large-area flat-panel detector based on amorphous silicon and thallium-doped cesium iodide provides a significant reduction of radiation dose in skeletal and chest radiography compared with traditional imaging systems. This article describes the technical background and basic image quality parameters of this 43 x 43-cm digital system, and summarizes the available literature (years 2000-2003) concerning dose reduction in experimental and clinical studies. Due to its high detective quantum efficiency and dynamic range compared with traditional screen-film systems, a dose reduction of up to 50% is possible without loss of image quality. (orig.)

  12. Diamond photonics

    Science.gov (United States)

    Aharonovich, Igor; Greentree, Andrew D.; Prawer, Steven

    2011-07-01

    Diamond, a material marvelled for its strength, beauty and perfection, was first used to polish stone axes in Neolithic times. This most ancient of materials is now being touted by many as the ideal platform for quantum-age technologies. In this Review, we describe how the properties of diamond match the requirements of the 'second quantum revolution'. We also discuss recent progress in the development of diamond -- and particularly diamond colour centres -- for transforming quantum information science into practical quantum information technology.

  13. Diamond identifaction

    International Nuclear Information System (INIS)

    X-ray topography on diamonds allows for unique identification of diamonds. The method described consists of the registration of crystal defects, inclusions etc. of a diamond, resulting in a 'finger print' of the individual jewel which can only be changed by its complete destruction

  14. Tribological properties of amorphous hydrogenated (a-C:H) and hydrogen-free tetrahedral (ta-C) diamond-like carbon coatings under jatropha biodegradable lubricating oil at different temperatures

    Science.gov (United States)

    Mobarak, H. M.; Masjuki, H. H.; Mohamad, E. Niza; Kalam, M. A.; Rashedul, H. K.; Rashed, M. M.; Habibullah, M.

    2014-10-01

    The application of diamond-like carbon (DLC) coatings on automotive components is emerging as a favorable strategy to address the recent challenges in the industry. DLC coatings can effectively lower the coefficient of friction (CoF) and wear rate of engine components, thereby improving their fuel efficiency and durability. The lubrication of ferrous materials can be enhanced by a large amount of unsaturated and polar components of oils. Therefore, the interaction between nonferrous coatings (e.g., DLC) and vegetable oil should be investigated. A ball-on-plate tribotester was used to run the experiments. Stainless steel plates coated with amorphous hydrogenated (a-C:H) DLC and hydrogen-free tetrahedral (ta-C) DLC that slide against 440C stainless steel ball were used to create a ball-on-plate tribotester. The wear track was investigated through scanning electron microscopy. Energy dispersive and X-ray photoelectron spectroscopies were used to analyze the tribofilm inside the wear track. Raman analysis was performed to investigate the structural changes in the coatings. At high temperatures, the CoF in both coatings decreased. The wear rate, however, increased in the a-C:H but decreased in the ta-C DLC-coated plates. The CoF and the wear rate (coated layer and counter surface) were primarily influenced by the graphitization of the coating. Tribochemical films, such as polyphosphate glass, were formed in ta-C and acted as protective layers. Therefore, the wear rate of the ta-C DLC was lower than that of the-C:H DLC.

  15. Analysis of the Phenomena of Diamond Synthesis by Seeding with Diamond

    Institute of Scientific and Technical Information of China (English)

    Meiguang ZHANG; Haiyan YAN; Fang PENG

    2008-01-01

    Synthesizing diamond single crystal by diamond seed particles which were electroplated with nickel film as catalyst under high pressure and high temperature (HPHT) was described. The microstructure of nickel film after synthesis and morphology of grown diamond were investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The phase structure in nickel film were graphite, NiC, Ni,and diamond structure hadnt' been found. A lot of recrystallized graphite pits appear in interface between the inner surface of nickel film and the surface diamond. It is shown that the new-grown diamond was developed epitaxially on the crystal planes of seeds. Also, the new-grown diamond grew by two-dimensional nucleation and by a layer growth mechanism. The growth process of crystal was microaggregate→step→expansion→new crystal layers, and the flat growth interface transformed into a cellular interface at the same time.

  16. Should 3K zoom function be used for detection of pneumothorax in cesium iodide/amorphous silicon flat-panel detector radiographs presented on 1K-matrix soft copies?

    International Nuclear Information System (INIS)

    The purpose of the study was to evaluate observer performance in the detection of pneumothorax with cesium iodide and amorphous silicon flat-panel detector radiography (CsI/a-Si FDR) presented as 1K and 3K soft-copy images. Forty patients with and 40 patients without pneumothorax diagnosed on previous and subsequent digital storage phosphor radiography (SPR, gold standard) had follow-up chest radiographs with CsI/a-Si FDR. Four observers confirmed or excluded the diagnosis of pneumothorax according to a five-point scale first on the 1K soft-copy image and then with help of 3K zoom function (1K monitor). Receiver operating characteristic (ROC) analysis was performed for each modality (1K and 3K). The area under the curve (AUC) values for each observer were 0.7815, 0.7779, 0.7946 and 0.7066 with 1K-matrix soft copies and 0.8123, 0.7997, 0.8078 and 0.7522 with 3K zoom. Overall detection of pneumothorax was better with 3K zoom. Differences between the two display methods were not statistically significant in 3 of 4 observers (p-values between 0.13 and 0.44; observer 4: p=0.02). The detection of pneumothorax with 3K zoom is better than with 1K soft copy but not at a statistically significant level. Differences between both display methods may be subtle. Still, our results indicate that 3K zoom should be employed in clinical practice. (orig.)

  17. Tribological properties of amorphous hydrogenated (a-C:H) and hydrogen-free tetrahedral (ta-C) diamond-like carbon coatings under jatropha biodegradable lubricating oil at different temperatures

    International Nuclear Information System (INIS)

    Highlights: • We tested a-C:H and ta-C DLC coatings as a function of temperature. • Jatropha oil contains large amounts of polar components that enhanced the lubricity of coatings. • CoF decreases with increasing temperature for both contacts. • Wear rate increases with increasing temperature in a-C:H and decreases in ta-C DLC. • At high temperature, ta-C coatings confer more protection than a-C:H coatings. - Abstract: The application of diamond-like carbon (DLC) coatings on automotive components is emerging as a favorable strategy to address the recent challenges in the industry. DLC coatings can effectively lower the coefficient of friction (CoF) and wear rate of engine components, thereby improving their fuel efficiency and durability. The lubrication of ferrous materials can be enhanced by a large amount of unsaturated and polar components of oils. Therefore, the interaction between nonferrous coatings (e.g., DLC) and vegetable oil should be investigated. A ball-on-plate tribotester was used to run the experiments. Stainless steel plates coated with amorphous hydrogenated (a-C:H) DLC and hydrogen-free tetrahedral (ta-C) DLC that slide against 440C stainless steel ball were used to create a ball-on-plate tribotester. The wear track was investigated through scanning electron microscopy. Energy dispersive and X-ray photoelectron spectroscopies were used to analyze the tribofilm inside the wear track. Raman analysis was performed to investigate the structural changes in the coatings. At high temperatures, the CoF in both coatings decreased. The wear rate, however, increased in the a-C:H but decreased in the ta-C DLC-coated plates. The CoF and the wear rate (coated layer and counter surface) were primarily influenced by the graphitization of the coating. Tribochemical films, such as polyphosphate glass, were formed in ta-C and acted as protective layers. Therefore, the wear rate of the ta-C DLC was lower than that of the-C:H DLC

  18. Tribological properties of amorphous hydrogenated (a-C:H) and hydrogen-free tetrahedral (ta-C) diamond-like carbon coatings under jatropha biodegradable lubricating oil at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Mobarak, H.M., E-mail: mobarak.ho31@yahoo.com; Masjuki, H.H.; Mohamad, E. Niza, E-mail: edzrol@um.edu.my; Kalam, M.A.; Rashedul, H.K.; Rashed, M.M.; Habibullah, M.

    2014-10-30

    Highlights: • We tested a-C:H and ta-C DLC coatings as a function of temperature. • Jatropha oil contains large amounts of polar components that enhanced the lubricity of coatings. • CoF decreases with increasing temperature for both contacts. • Wear rate increases with increasing temperature in a-C:H and decreases in ta-C DLC. • At high temperature, ta-C coatings confer more protection than a-C:H coatings. - Abstract: The application of diamond-like carbon (DLC) coatings on automotive components is emerging as a favorable strategy to address the recent challenges in the industry. DLC coatings can effectively lower the coefficient of friction (CoF) and wear rate of engine components, thereby improving their fuel efficiency and durability. The lubrication of ferrous materials can be enhanced by a large amount of unsaturated and polar components of oils. Therefore, the interaction between nonferrous coatings (e.g., DLC) and vegetable oil should be investigated. A ball-on-plate tribotester was used to run the experiments. Stainless steel plates coated with amorphous hydrogenated (a-C:H) DLC and hydrogen-free tetrahedral (ta-C) DLC that slide against 440C stainless steel ball were used to create a ball-on-plate tribotester. The wear track was investigated through scanning electron microscopy. Energy dispersive and X-ray photoelectron spectroscopies were used to analyze the tribofilm inside the wear track. Raman analysis was performed to investigate the structural changes in the coatings. At high temperatures, the CoF in both coatings decreased. The wear rate, however, increased in the a-C:H but decreased in the ta-C DLC-coated plates. The CoF and the wear rate (coated layer and counter surface) were primarily influenced by the graphitization of the coating. Tribochemical films, such as polyphosphate glass, were formed in ta-C and acted as protective layers. Therefore, the wear rate of the ta-C DLC was lower than that of the-C:H DLC.

  19. Physical and Tribological Characteristics of Ion-Implanted Diamond Films

    Science.gov (United States)

    Miyoshi, K.; Heidger, S.; Korenyi-Both, A. L.; Jayne, D. T.; Herrera-Fierro, P.; Shogrin, B.; Wilbur, P. J.; Wu, R. L. C.; Garscadden, A.; Barnes, P. N.

    1994-01-01

    Unidirectional sliding friction experiments were conducted with a natural, polished diamond pin in contact with both as-deposited and carbon-ion-implanted diamond films in ultrahigh vacuum. Diamond films were deposited on silicon, silicon carbide, and silicon nitride by microwave-plasma-assisted chemical vapor deposition. The as-deposited diamond films were impacted with carbon ions at an accelerating energy of 60 keV and a current density of 50 micron A/cm(exp 2) for approximately 6 min, resulting in a dose of 1.2 x 10(exp 17) carbon ions/cm(exp 2). The results indicate that the carbon ion implantation produced a thin surface layer of amorphous, nondiamond carbon. The nondiamond carbon greatly decreased both friction and wear of the diamond films. The coefficients of friction for the carbon-ion-implanted, fine-grain diamond films were less than 0.1, factors of 20 to 30 lower than those for the as-deposited, fine-grain diamond films. The coefficients of friction for the carbon-ion-implanted, coarse-grain diamond films were approximately 0.35, a factor of five lower than those for the as-deposited, coarse-grain diamond films. The wear rates for the carbon-ion-implanted, diamond films were on the order of 10(exp -6) mm(exp 3)/Nm, factors of 30 to 80 lower than that for the as-deposited diamond films, regardless of grain size. The friction of the carbon-ion-implanted diamond films was greatly reduced because the amorphous, nondiamond carbon, which had a low shear strength, was restricted to the surface layers (less than 0.1 micron thick) and because the underlying diamond materials retained their high hardness. In conclusion, the carbon-ion-implanted, fine-grain diamond films can be used effectively as wear resistant, self-lubricating coatings for ceramics, such as silicon nitride and silicon carbide, in ultrahigh vacuum.

  20. Optical properties of impact diamonds from the Popigai astrobleme

    OpenAIRE

    Yelisseyev, A.; Meng, G. S.; Afanasyev, V.; Pokhilenko, N.; Pustovarov, V.; Isakova, A.; Z. S. Lin; Lin, H. Q.

    2013-01-01

    Impact diamonds from Popigai astrobleme were found to consist of different carbon phases: cubic and hexagonal diamond with sp3 bonding according to X-ray structural analysis as well as amorphous, crystalline and disordered graphite with sp2-bonding (Raman scattering). The sizes of graphite domains vary from 10 to 100 nm. Fundamental absorption edge for Popigai impact diamonds is shifted ~ 0.5 eV to lower energies in comparison with kimberlite diamonds (5.47 eV) as a result of the lonsdaleite ...

  1. Diamond Fuzzy Number

    OpenAIRE

    T. Pathinathan; K. Ponnivalavan

    2015-01-01

    In this paper we define diamond fuzzy number with the help of triangular fuzzy number. We include basic arithmetic operations like addition, subtraction of diamond fuzzy numbers with examples. We define diamond fuzzy matrix with some matrix properties. We have defined Nested diamond fuzzy number and Linked diamond fuzzy number. We have further classified Right Linked Diamond Fuzzy number and Left Linked Diamond Fuzzy number. Finally we have verified the arithmetic operations for the above men...

  2. The surface modification of diamond by ion implantation

    International Nuclear Information System (INIS)

    The surface modification of diamonds by ion implantation was studied by using Ar+, N2+, Zn+ and Cr+ ions. The surface layer of diamonds becomes conductive by ion implantation. The effect of ions implanted and the variation of crystal structure near surface were investigated. The ion implantation changes the color of the surface of diamonds to dark black and makes the surface layer amorphous. The distribution of implantet atoms in the surface layer was in good agreement with that estimated by the LSS theory, and the thickness of the amorphous layer was about 1.8 times of the depth of the maximum concentration. From this fact, the thickness of amorphous layer can be estimated from the LSS theory. The electric resistivity of the surface layer of diamonds decreased by the implantation of ions, and becomes a saturated value for the amount of implantation of 1 x 1016 ions/cm2. The saturated sheet resistivity was in inverse proportion to the thickness of amorphous layer. It was found that the resistivity of the produced amorphous layer was similar to that of the ordinary glassy carbon. The implanted metallic ions contributed to the electric conductivity of the matrix. The electro-chemical properties of ion-implanted diamonds were also studied. (Kato, T.)

  3. Hydrogen in nano-diamond films

    International Nuclear Information System (INIS)

    Full Text:The distribution, content and bonding of hydrogen in nano-crystalline carbon films possessing a prevailing diamond character the films are investigated by secondary ion mass spectroscopy (SIMS), high resolution electron energy loss spectroscopy (HREELS) and Raman spectroscopy. The films were deposited by DC gloss discharge chemical vapor deposition from a methane hydrogen mixture. Following the formation of a thin oriented precursor graphitic film, diamond nucleation occurs and a nano-diamond film grows. The hydrogen content in the precursor oriented graphitic film is ∼ 5 at %. Concurrently with the nucleation and growth of nano-diamond a considerable increase of the hydrogen concentration in the films occurs reaching a value of 15-20 at %. This is accompanied by appearance of ∼ 1150 cm-''1 and - 1450 cm-1 Raman peaks, attributed to distinctive bonding of hydrogen in nano-diamond films. In this work the origin of the Raman peaks was investigated by means of isotopic shift on the films deposited from deuterized and C13 gas mixtures. The HREELS revealed a broad baud associated with CH vibration centered at 362 m eV. Concurrently with film evolution the full width half maximum of this band broadens from 33 to 42 m eV and it shifts from 362 m eV to 367 m eV'. From EELS measurements it was determined that the hydrogen plasma at the conditions applied for nano-diamond growth disrupts the crystalline structure of diamond resulting in an amorphous surface layer. In this ):ark ):e further corroborate the role of hydrogen as bonding and displacing agent during diamond nucleation and nano-diamond growth as was recently proposed by us

  4. Diamond growth in oxygen-acetylene flame

    International Nuclear Information System (INIS)

    What was supposed to be a laboratory curiosity in the 80's, in recent years the low pressure process for the production of man-made diamond turned out to be a major target for research and development of many high-tech companies. The main reason for such an interest stems on the possibility of coating many materials with a diamond film possessing the same amazing properties of the bulk natural diamond. Polycrystalline diamond film has been deposited on Mo substrate by using oxygen-acetylene flame of a welding torch. The substrate temperature has been held constant about 700deg C by means of a water cooled mount designed properly. Precision flowmeters have been used to control the flow ratio oxygen/acetylene, a key parameter for the success in diamond growth. Diamond has been detected by X-ray diffraction, a fast foolproof technique for crystal identification. Another method of analysis often used in Raman spectroscopy, which is able to exhibit amorphous structure besides crystalline phase. (author)

  5. Diamond integrated quantum photonics

    OpenAIRE

    Greentree, Andrew D.; Fairchild, Barbara A.; Hossain, Faruque M.; Steven Prawer

    2008-01-01

    Diamond is a leading contender as the material of choice for the quantum computer industry. This potential arises mainly from the quantum properties of color centers in diamond. However, before diamond can realize its full potential, the technology to fabricate and sculpt diamond as well as, if not better than, silicon must be developed. A comprehensive processing capability for diamond that will allow the fabrication of qubits and their associated photonic structures is required. Here we des...

  6. Effect of Nano-Ni Catalyst on the Growth and Characterization of Diamond Films by HFCVD

    Directory of Open Access Journals (Sweden)

    Chien-Chung Teng

    2010-01-01

    Full Text Available Four different catalysts, nanodiamond seed, nano-Ni, diamond powder, and mixture of nano-Ni/diamond powder, were used to activate Si wafers for diamond film growth by hot-filament CVD (HFCVD. Diamond crystals were shown to grow directly on both large diamond powder and small nanodiamond seed, but a better crystallinity of diamond film was observed on the ultrasonicated nanodiamond seeded Si substrate. On the other hand, nano-Ni nanocatalysts seem to promote the formation of amorphous carbon but suppress transpolyacetylene (t-PA phases at the initial growth of diamond films. The subsequent nucleation and growth of diamond crystals on the amorphous carbon layer leads to generation of the spherical diamond particles and clusters prior to coalescence into continuous diamond films based on the CH3 addition mechanism as characterized by XRD, Raman, ATR/FT-IR, XPS, TEM, SEM, and AFM techniques. Moreover, a 36% reduction in surface roughness of diamond film assisted by nano-Ni catalyst is quite significant.

  7. Diamond cutters' grinders

    Science.gov (United States)

    Romanov, B. F.

    1985-03-01

    The development of diamond tool designs is determined by the development of the technology for the synthesis of artificial diamonds. The technology of syntehsizing artificial diamonds involves the production of mono and polycrystalline diamonds and composition diamond-containing materials. High strength and thermally stable monocrystalline diamonds brands AS30 to AS80 in a size of up to 800 micrometers, and polycrystalline diamonds: black diamonds, ballas (Synthetic Fiber) in a size up to 10mm, are manufactured. Production of single-layer and double-layer diamond plates used in cutting tools is organized. The raw materials base with the constant decrease in the use of natural diamonds is the basis for the development of the manufacture of a wide array of diamond tools. New areas of applications for tools using natural diamonds, such as diamond cutters for turning high-precision parts, straightening tools, hardness gages are outlined. Diamond cutters with natural diamonds are used to grind surfaces which have exceptionally high requirements with respect to the reflecting capacity and roughness.

  8. A 3D diamond detector for particle tracking

    International Nuclear Information System (INIS)

    A novel device using single-crystal chemical vapour deposited diamond and resistive electrodes in the bulk forming a 3D diamond detector is presented. The electrodes of the device were fabricated with laser assisted phase change of diamond into a combination of diamond-like carbon, amorphous carbon and graphite. The connections to the electrodes of the device were made using a photo-lithographic process. The electrical and particle detection properties of the device were investigated. A prototype detector system consisting of the 3D device connected to a multi-channel readout was successfully tested with 120 GeV protons proving the feasibility of the 3D diamond detector concept for particle tracking applications for the first time

  9. Surface Design and Engineering Toward Wear-Resistant, Self-Lubricant Diamond Films and Coatings. Chapter 10

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1999-01-01

    This chapter describes three studies on the surface design, surface engineering, and tribology of chemical-vapor-deposited (CVD) diamond films and coatings toward wear-resistant, self-lubricating diamond films and coatings. Friction mechanisms and solid lubrication mechanisms of CVD diamond are stated. Effects of an amorphous hydrogenated carbon on CVD diamond, an amorphous, nondiamond carbon surface layer formed on CVD diamond by carbon and nitrogen ion implantation, and a materials combination of cubic boron nitride and CVD diamond on the adhesion, friction, and wear behaviors of CVD diamond in ultrahigh vacuum are described. How surface modification and the selected materials couple improved the tribological functionality of coatings, giving low coefficient of friction and good wear resistance, is explained.

  10. Characterization of an amorphous silicon flat panel for controlling the positioning accuracy of sheet; Caracterizacion de un panel plano de silicio amorfo para control de la exactitud en el posicionamiento de laminas

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, J.; Gonzalez, V.; Gimeno, J.; Dolores, V. de los; Pastor, V.; Crispin, V.; Guardino, C.

    2011-07-01

    It has established a method for measuring the position of the blades in a multi leaf collimator (MLC) used to measure dose portal imaging device (EPID) of amorphous silicon, and verified its accuracy using radiochromic films and measures water with diode Cuba, techniques perfectly well validated in our institution. This dose profiles are studied for each sheet and determine their position at the point which has 50% of the dose in the open field.

  11. A Optical Study of Defects in Diamond.

    Science.gov (United States)

    Beard, Darren R.

    Available from UMI in association with The British Library. The one-phonon defect-induced infrared absorption in Type I diamonds has been studied. The previously reported spectral forms of the F and G spectra have been altered. Three components labelled J, K and L, are presented. A data base of 75 infrared spectra has been decomposed and classified. New computer programs have been produced to cope with up to 12 components in the one-phonon region simultaneously. Black diamond surfaces have been examined using photoluminescence spectroscopy. Laser cutting in air is found to result in black surfaces. Diamonds were examined both before and after cutting and changes in the spectra monitored. In Type Ib and Type IIb diamonds, the typical diamond spectrum was changed into a broad band spectrum. The first order diamond Raman was not detectable after laser cutting. Type Ia and Type IIa diamonds did not show any changes due to being cut. To investigate the graphitization process further, diamonds were heated to 850^circC in gas flows at 0.38 torr (50.7 Pa). Using oxygen, it was found that the intensity of H3 luminescence was reduced and that a broad band spectrum was produced. The spectral changes were reversed by treating with hydrogen. Two types of thin carbonaceous films have been examined, those grown by vapour deposition and those produced by scanning a high energy density laser beam across an amorphous carbon sample. The photoluminescence spectra obtained from the two sample types were different. Discs of sintered diamond have also been examined with a view to determining the strain distribution within the samples. Finally, the production mechanism of the H3 defect has been considered. A grown-in theory is developed. It is supported quantitatively with experimental results and explains the ubiquity of H3, even in synthetic crystals. The C centre is thought to be incorporated equally on all of the low index faces of diamond. Consideration of the A centre showed that it

  12. Field emission from amorphous-carbon nanotips on copper

    International Nuclear Information System (INIS)

    Amorphous-carbon (a-C) nanotips were directly grown on copper substrates by microwave plasma-enhanced chemical-vapor deposition. The length of a typical a-C nanotip is ∼250 nm and its tip diameter is ∼25 nm. The in-plane correlation length La, equivalent to the size of the sp2 clusters, is determined to be 1.2 nm through the intensity ratio of the D and G peaks in the Raman spectrum, which is about in the optimum range for field emission. A low turn-on field of 1.6 V/μm at 10 μA/cm2, a threshold field of 3.8 V/μm at 10 mA/cm2, and a high current density of 32.42 mA/cm2 at 4.0 V/μm are achieved. The field emission characteristics of a-C nanotips are close to those of carbon nanotubes, and much better than what has been reported for flat diamond-like carbon or a-C:H coated cathodes. The roles of the sp2 cluster size, electron confinement and conductivity in the field emission of a-C nanotips are discussed

  13. Clinical evaluation of digital radiography based on a large-area cesium iodide-amorphous silicon flat-panel detector compared with screen-film radiography for skeletal system and abdomen

    International Nuclear Information System (INIS)

    The aim of this clinical study was to compare the image quality of digital radiography using the new digital Bucky system based on a flat-panel detector with that of a conventional screen-film system for the skeletal structure and the abdomen. Fifty patients were examined using digital radiography with a flat-panel detector and screen-film systems, 25 for the skeletal structures and 25 for the abdomen. Six radiologists judged each paired image acquired under the same exposure parameters concerning three observation items for the bone and six items for the abdomen. Digital radiographic images for the bone were evaluated to be similar to screen-film images at the mean of 42.2%, to be superior at 50.2%, and to be inferior at 7.6%. Digital radiographic images for the abdomen were judged to be similar to screen-film images at the mean of 43.4%, superior at 52.4%, and inferior at 4.2%; thus, digital radiographic images were estimated to be either similar as or superior to screen-film images at over 92% for the bone and abdomen. On the statistical analysis, digital radiographic images were also judged to be preferred significantly in the most items for the bone and abdomen. In conclusion, the image quality of digital radiography with a flat-panel detector was superior to that of a screen-film system under the same exposure parameters, suggesting that dose reduction is possible with digital radiography. (orig.)

  14. Minimal graphene thickness for wear protection of diamond

    Directory of Open Access Journals (Sweden)

    M. M. van Wijk

    2015-01-01

    Full Text Available We show, by means of molecular dynamics simulations, that the transformation from diamond to amorphous carbon occurring while sliding under pressure can be prevented by having at least two graphene layers between the diamond slabs. The resulting reduction of wear makes this combination of materials suitable for new coatings and micro- and nanoelectromechanical devices. Grain boundaries, vacancies and steps on the diamond surface do not change this prediction. We attribute this behavior to the bonding in layered materials like graphene. The strong in-plane bonding and the weak interlayer interaction that evolves to a strong interlayer repulsion under pressure prevent the transition to amorphous carbon when more than one layer is present.

  15. Diamond bio electronics.

    Science.gov (United States)

    Linares, Robert; Doering, Patrick; Linares, Bryant

    2009-01-01

    The use of diamond for advanced applications has been the dream of mankind for centuries. Until recently this dream has been realized only in the use of diamond for gemstones and abrasive applications where tons of diamonds are used on an annual basis. Diamond is the material system of choice for many applications, but its use has historically been limited due to the small size, high cost, and inconsistent (and typically poor) quality of available diamond materials until recently. The recent development of high quality, single crystal diamond crystal growth via the Chemical Vapor Deposition (CVD) process has allowed physcists and increasingly scientists in the life science area to think beyond these limitations and envision how diamond may be used in advanced applications ranging from quantum computing, to power generation and molecular imaging, and eventually even diamond nano-bots. Because of diamond's unique properties as a bio-compatible material, better understanding of diamond's quantum effects and a convergence of mass production, semiconductor-like fabrication process, diamond now promises a unique and powerful key to the realization of the bio-electronic devices being envisioned for the new era of medical science. The combination of robust in-the-body diamond based sensors, coupled with smart bio-functionalized diamond devices may lead to diamond being the platform of choice for bio-electronics. This generation of diamond based bio-electronic devices would contribute substantially to ushering in a paradigm shift for medical science, leading to vastly improved patient diagnosis, decrease of drug development costs and risks, and improved effectiveness of drug delivery and gene therapy programs through better timed and more customized solutions. PMID:19745488

  16. Friction and wear of plasma-deposited amorphous hydrogenated films on silicon nitride

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1991-01-01

    An investigation was conducted to examine the friction and wear behavior of amorphous hydrogenated carbon (a-C:H) films in sliding contact with silicon nitride pins in both dry nitrogen and humid air environments. Amorphous hydrogenated carbon films approximately 0.06 micron thick were deposited on silicon nitride flat substrates by using the 30 kHz ac glow discharge of a planar plasma reactor. The results indicate that an increase in plasma deposition power gives an increase in film density and hardness. The high-density a-C:H films deposited behaved tribologically much like bulk diamond. In the dry nitrogen environment, a tribochemical reaction produced a substance, probably a hydrocarbon-rich layer, that decreased the coefficient of friction. In the humid air environment, tribochemical interactions drastically reduced the wear life of a-C:H films and water vapor greatly increased the friction. Even in humid air, effective lubrication is possible with vacuum-annealed a-C:H films. The vacuum-annealed high-density a-C:H film formed an outermost superficial graphitic layer, which behaved like graphite, on the bulk a-C:H film. Like graphite, the annealed a-C:H film with the superficial graphitic layer showed low friction when adsorbed water vapor was present.

  17. Diamond Synthesis Employing Nanoparticle Seeds

    Science.gov (United States)

    Uppireddi, Kishore (Inventor); Morell, Gerardo (Inventor); Weiner, Brad R. (Inventor)

    2014-01-01

    Iron nanoparticles were employed to induce the synthesis of diamond on molybdenum, silicon, and quartz substrates. Diamond films were grown using conventional conditions for diamond synthesis by hot filament chemical vapor deposition, except that dispersed iron oxide nanoparticles replaced the seeding. This approach to diamond induction can be combined with dip pen nanolithography for the selective deposition of diamond and diamond patterning while avoiding surface damage associated to diamond-seeding methods.

  18. Diamond integrated quantum photonics

    Directory of Open Access Journals (Sweden)

    Andrew D. Greentree

    2008-09-01

    Full Text Available Diamond is a leading contender as the material of choice for the quantum computer industry. This potential arises mainly from the quantum properties of color centers in diamond. However, before diamond can realize its full potential, the technology to fabricate and sculpt diamond as well as, if not better than, silicon must be developed. A comprehensive processing capability for diamond that will allow the fabrication of qubits and their associated photonic structures is required. Here we describe the remarkable properties of diamond color centers, and the techniques being developed to engineer qubits and sculpt monolithic structures around them. Finally we outline some of the new proposals that use engineered diamond to realize tasks not possible with existing technologies.

  19. Pressure-induced crystallization of amorphous red phosphorus

    Science.gov (United States)

    Rissi, Erin N.; Soignard, Emmanuel; McKiernan, Keri A.; Benmore, Chris. J.; Yarger, Jeffery L.

    2012-03-01

    Structural transitions in amorphous red phosphorus were studied at ambient temperature and pressures up to 12 GPa. Amorphous (red) phosphorus was observed to transform into crystalline black phosphorus at 7.5 ± 0.5 GPa using diamond anvil cell Raman spectroscopy, x-ray diffraction and a direct equation of state (EoS) measurement. The transition was found to be irreversible and the material recovered upon pressure cycling to 10 to 12 GPa was crystalline orthorhombic black phosphorus. A third order Birch-Murnaghan EoS was fit to the data and a bulk modulus (B0) of 11.2 GPa was measured for amorphous red phosphorus.

  20. Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles

    Science.gov (United States)

    Sun, Youhong; Meng, Qingnan; Qian, Ming; Liu, Baochang; Gao, Ke; Ma, Yinlong; Wen, Mao; Zheng, Weitao

    2016-02-01

    A boron carbide coating was applied to diamond particles by heating the particles in a powder mixture consisting of H3BO3, B and Mg. The composition, bond state and coverage fraction of the boron carbide coating on the diamond particles were investigated. The boron carbide coating prefers to grow on the diamond (100) surface than on the diamond (111) surface. A stoichiometric B4C coating completely covered the diamond particle after maintaining the raw mixture at 1200 °C for 2 h. The contribution of the boron carbide coating to the oxidation resistance enhancement of the diamond particles was investigated. During annealing of the coated diamond in air, the priory formed B2O3, which exhibits a self-healing property, as an oxygen barrier layer, which protected the diamond from oxidation. The formation temperature of B2O3 is dependent on the amorphous boron carbide content. The coating on the diamond provided effective protection of the diamond against oxidation by heating in air at 1000 °C for 1 h. Furthermore, the presence of the boron carbide coating also contributed to the maintenance of the static compressive strength during the annealing of diamond in air.

  1. Ion-implanted diamond films and their tribological properties

    International Nuclear Information System (INIS)

    This paper reports the physical characterization and tribological evaluation of ion-implanted diamond films. Diamond films were produced by microwave plasma, chemical vapor deposition technique. Diamond films with various grain sizes (0.3 and 3 μm) and roughness (9.1 and 92.1 nm r.m.s. respectively) were implanted with C+ (m/e=12) at an ion energy of 160 eV and a fluence of 6.72 x 1017 ions cm-2. Unidirectional sliding friction experiments were conducted in ultrahigh vacuum (6.6 x 10-7 Pa), dry nitrogen and humid air (40% RH) environments. The effects of C+ ion bombardment on fine and coarse-grained diamond films are as follows: the surface morphology of the diamond films did not change; the surface roughness increased (16.3 and 135.3 nm r.m.s.); the diamond structures were damaged and formed a thin layer of amorphous non-diamond carbon; the friction coefficients dramatically decreased in the ultrahigh vacuum (0.1 and 0.4); the friction coefficients decreased slightly in the dry nitrogen and humid air environments. (orig.)

  2. Nanocrystalline diamond growth on different substrates

    International Nuclear Information System (INIS)

    Nanocomposite films consisting of diamond nanoparticles of 3-5 nm diameter embedded in an amorphous carbon matrix have been deposited by means of microwave plasma chemical vapour deposition (MWCVD) from CH4/N2 gas mixtures. Si wafers, Si coated with TiN, polycrystalline diamond (PCD) and cubic boron nitride films, and Ti-6Al-4V alloy have been used as substrates. Some of the substrates have been pretreated ultrasonically with diamond powder in order to enhance the nucleation density n nuc. It turned out that n nuc depends critically on the chemical nature of the substrate, its smoothness and the pretreatment applied. No differences to the nucleation behaviour of CVD PCD films were observed. On the other hand, the growth process seems to be not affected by the substrate material. The crystallinity (studied by X-ray diffraction) and the bonding environment (investigated by Raman spectroscopy) show no significant differences for the various substrates. The mechanical and tribological properties, finally, reflect again the influence of the substrate material: on TiN, a lower hardness was measured as compared to Si, PCD and c-BN, whereas the adhesion of c-BN/nanocrystalline diamond (NCD) system was determined by that of the c-BN film on the underlying Si substrate

  3. Ionoluminescence of diamond, synthetic diamond and simulants

    International Nuclear Information System (INIS)

    Ionoluminescence (IL) spectra of diamond (natural samples and synthetic CVD) and its more common synthetic simulates such as sapphire, spinel, cubic zirconia, strontium titanate and yttrium aluminium garnet (YAG: Er) will be discussed here in order to support some criteria that will allow to distinguish between them. While diamond shows emission bands due to nitrogen defects, simulants feature d-transition metals and rare earths such as Cr3+, Mn2+, Fe3+, Ti3+ and Er3+ emissions

  4. New method of verificating optical flat flatness

    Science.gov (United States)

    Sun, Hao; Li, Xueyuan; Han, Sen; Zhu, Jianrong; Guo, Zhenglai; Fu, Yuegang

    2014-11-01

    Optical flat is commonly used in optical testing instruments, flatness is the most important parameter of forming errors. As measurement criteria, optical flat flatness (OFF) index needs to have good precision. Current measurement in China is heavily dependent on the artificial visual interpretation, through discrete points to characterize the flatness. The efficiency and accuracy of this method can not meet the demand of industrial development. In order to improve the testing efficiency and accuracy of measurement, it is necessary to develop an optical flat verification system, which can obtain all surface information rapidly and efficiently, at the same time, in accordance with current national metrological verification procedures. This paper reviews current optical flat verification method and solves the problems existing in previous test, by using new method and its supporting software. Final results show that the new system can improve verification efficiency and accuracy, by comparing with JJG 28-2000 metrological verification procedures method.

  5. Comparison theorems for causal diamonds

    CERN Document Server

    Berthiere, Clement; Solodukhin, Sergey N

    2015-01-01

    We formulate certain inequalities for the geometric quantities characterizing causal diamonds in curved and Minkowski spacetimes. These inequalities involve the red-shift factor which, as we show explicitly in the spherically symmetric case, is monotonic in the radial direction and it takes its maximal value at the centre. As a byproduct of our discussion we re-derive Bishop's inequality without assuming the positivity of the spatial Ricci tensor. We then generalize our considerations to arbitrary, static and not necessarily spherically symmetric, asymptotically flat spacetimes. In the case of spacetimes with a horizon our generalization involves the so-called {\\it domain of dependence}. The respective volume, expressed in terms of the duration measured by a distant observer compared with the volume of the domain in Minkowski spacetime, exhibits behaviours which differ if $d=4$ or $d>4$. This peculiarity of four dimensions is due to the logarithmic subleading term in the asymptotic expansion of the metric nea...

  6. Optical engineering of diamond

    CERN Document Server

    Rabeau, James R

    2013-01-01

    This is the first comprehensive book on the engineering of diamond optical devices. It will give readers an up-to-date account of the properties of optical quality synthetic diamond (single crystal, nanodiamond and polycrystalline) and reviews the large and growing field of engineering of diamond-based optical devices, with applications in quantum computation, nano-imaging, high performance lasers, and biomedicine. It aims to provide scientists, engineers and physicists with a valuable resource and reference book for the design and performance of diamond-based optical devices.

  7. Flat roof integration. CPT solar (AET IV)

    Energy Technology Data Exchange (ETDEWEB)

    Chianese, D.; Pola, I.; Bernasconi, A.; Bura, E.; Cereghetti, N.; Realini, A.; Pasinelli, P.; Rioggi, S.

    2007-11-15

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) takes a look at a 15.4 kWp solar power installation in Trevano, Switzerland, that features flexible amorphous silicon triple-junction modules, mounted nearly horizontally and directly laminated to flexible polyolefin membranes that form the covering of a flat roof. The main objective of this study was to verify in which order of magnitude the better thermal behaviour of amorphous silicon cells can compensate for losses due to the quasi-horizontal roof integration (lower irradiation and higher reflection), and thus be competitive in the flat roof construction and refurbishment markets. The modules used and their characteristics are described. Performance, temperature levels and energy-production are reviewed for the panels of the installation. The performance of the inverter used is also reviewed. Data on temperatures and production are presented in graphical form and optical losses are examined.

  8. Nucleation, growth, and graphitization of diamond nanocrystals during chlorination of carbides

    Science.gov (United States)

    Welz, Sascha; Gogotsi, Yury; McNallan, Michael J.

    2003-04-01

    Synthesis of nano- and microcrystalline sp3-bonded carbon (diamond) with cubic and hexagonal structure by extraction of silicon from silicon carbide in chlorine-containing gases has been reported recently. This process is attractive because it can produce diamond at ambient pressure and temperatures below 1000 °C. No plasma or other high-energy activation is required, thus providing an opportunity for large-scale synthesis. However, the mechanism of diamond formation has not been previously analyzed. This work reports on the formation mechanisms of diamond as well as the transformation of diamond to graphite and onionlike carbon upon heating. Study of SiC/carbon interfaces showed that direct epitaxial growth of diamond on SiC is possible, in agreement with previous molecular-dynamics simulation. However, random nucleation of diamond from amorphous sp3-bonded carbon produced as the result of extraction of Si from SiC has also been demonstrated. It has been shown that the presence of hydrogen in the environment is not required for diamond synthesis. However, hydrogen can stabilize the nanocrystals and lead to the growth of thick diamond layers. If no hydrogen is added, diamond nanocrystals transform to graphite, forming carbon onions and other curved graphitic nanostructures.

  9. Diamond films: Historical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Messier, R. [Pennsylvania State Univ., University Park (United States)

    1993-01-01

    This section is a compilation of notes and published international articles about the development of methods of depositing diamond films. Vapor deposition articles are included from American, Russian, and Japanese publications. The international competition to develop new deposition methodologies is stressed. The current status of chemical vapor deposition of diamond is assessed.

  10. Diamond Pixel Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L. E-mail: perera@physics.rutgers.edu; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M

    2001-06-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles.

  11. Diamond pixel detectors

    CERN Document Server

    Adam, W; Bergonzo, P; Bertuccio, G; Bognai, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Deneuville, A; Doroshenko, J; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foster, J; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Gobbi, B; Grim, G P; Hallewell, G D; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Koeth, T W; Krammer, Manfred; Lander, R; Lo Giudice, A; Lü, R; MacLynne, L; Manfredotti, C; Meier, D; Mishina, M; Moroni, L; Oh, A; Pan, L S; Pernicka, Manfred; Perera, L P; Pirollo, S; Plano, R; Procario, M; Riester, J L; Roe, S; Rott, C; Rousseau, L; Rudge, A; Russ, J; Sala, S; Sampietro, M; Schnetzer, S; Sciortino, S; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R; Trischuk, W; Tromson, D; Vittone, E; Wedenig, R; Weilhammer, Peter; White, C; Zeuner, W; Zöller, M

    2001-01-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles. (3 refs).

  12. Diamond Pixel Detectors

    International Nuclear Information System (INIS)

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles

  13. Triboluminescence from diamond

    International Nuclear Information System (INIS)

    The process by which diamonds wear when they are facetted using traditional diamond polishing has been the subject of much debate. The absence of a plausible wear mechanism to describe the process has been due in part to the lack of reliable data; a multitude of variables are involved with the process. In recent years, the enhancement of sophisticated analytical techniques has led to the discovery that diamond undergoes a phase transformation during polishing, although the process by which this occurs is unclear. One of the more interesting observations seen during diamond polishing is the occasional emission of light from a polishing diamond. Since this emission is a direct consequence of physical processes at the polishing interface, it provides us with detailed and direct information about electronic processes occurring as diamond bonds that are broken and/or transformed. These light emissions have loosely been described as triboluminescence, although no detailed study of the phenomenon occurring in diamond has ever been published. This paper describes an investigation into the light emitted during fracture (such as that obtained when diamond is scratched) and during polishing. In each case, the spectral emissions are different. During fracture, the overall spectral envelope is dominated by light emission due to frictional sliding and to a lesser extent by photoluminescence, demonstrated by the appearance of the 'N3' centre. During polishing, it is suggested that the mechanism by which light emission occurs is via electroluminescence

  14. STABLE DIAMOND GRINDING

    Directory of Open Access Journals (Sweden)

    Yury Gutsalenko

    2010-06-01

    Full Text Available The paper generalizes on the one hand theory of kinematic-geometrical simulation of grinding processes by means of tools with working part as binding matrix with abrasive grains located in it in random manner, for example diamond grains, and on the other hand practical performance of combined grinding process, based on introduction of additional energy as electric discharges and called by the organization-developer (Kharkov Polytechnic Institute «diamond-spark grinding» as applied to processing by means of diamond wheel. Implementation of diamond-spark grinding technologies on the basis of developed generalized theoretical approach allows to use the tool with prescribed tool-life, moreover to make the most efficient use of it up to full exhausting of tool-life, determined by diamond-bearing thickness. Development is directed forward computer-aided manufacturing.

  15. Ionoluminescence of diamond, synthetic diamond and simulants

    Energy Technology Data Exchange (ETDEWEB)

    Calvo del Castillo, H. [Departamento de Geologia y Geoquimica, Facultad de Ciencias, Universidad Autonoma de Madrid, Ctra de Colmenar km 15, Madrid 27049 (Spain); Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica s/n, Ciudad Universitaria, Ciudad de Mexico 04519, Mexico, DF (Mexico); Ruvalcaba-Sil, J.L. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica s/n, Ciudad Universitaria, Ciudad de Mexico 04519, Mexico, DF (Mexico); Barboza-Flores, M. [Centro de Investigacio en Fisica, Universidad de Sonora, Apartado postal 5-088, Hermosillo, Sonora 83190 (Mexico); Belmont, E. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica s/n, Ciudad Universitaria, Ciudad de Mexico 04519, Mexico, DF (Mexico); Calderon, T. [Departamento de Geologia y Geoquimica, Facultad de Ciencias, Universidad Autonoma de Madrid, Ctra de Colmenar km 15, Madrid 27049 (Spain)], E-mail: tomas.calderon@uam.es

    2007-09-21

    Ionoluminescence (IL) spectra of diamond (natural samples and synthetic CVD) and its more common synthetic simulates such as sapphire, spinel, cubic zirconia, strontium titanate and yttrium aluminium garnet (YAG: Er) will be discussed here in order to support some criteria that will allow to distinguish between them. While diamond shows emission bands due to nitrogen defects, simulants feature d-transition metals and rare earths such as Cr{sup 3+}, Mn{sup 2+}, Fe{sup 3+}, Ti{sup 3+} and Er{sup 3+} emissions.

  16. Metasomatic Diamond Formation revealed by X-Ray CT Scanning of Diamondiferous Eclogites from Southern Africa

    Science.gov (United States)

    Richardson, S. H.; Kahle, R. L.; Shaw-Kahle, B.; Gurney, J. J.; du Plessis, A.

    2014-12-01

    In this study, a private collection of diamondiferous eclogite xenoliths has been made available for non-destructive investigation. All samples have at least one diamond visible. The samples are predominantly sourced from the Excelsior and Newlands mines (South Africa), with additional samples from Roberts Victor mine (South Africa) and Orapa (Botswana). 3D volume models of the samples were created using X-ray tomography. The 3D images reveal abundant secondary veining that is clearly younger than the eclogite. Diamonds are located in fluid pathways and occur in both altered garnet and altered clinopyroxene. Most of the veining is unrelated to the spatial positioning of diamond in the samples. In some instances, early veining has annealed or partially annealed, suggesting a range in timing of at least some of the several metasomatic events that have affected the rock. Importantly, in the most graphic examples, a clear distinction can be seen between diamond-bearing and non-diamond-bearing veins, even where sulphide is present in abundance in the non-diamond-bearing veins. The amount of diamond detected in the xenoliths varies from a single crystal to well over 50 diamonds forming more than 9% of the rock. This extreme value contrasts with the diamond recovery from currently viable diamond mines of less than 2ppm or 0.0002%. The morphology of the diamonds includes step-faced flat-faced octahedra, single crystals and aggregates. This is particularly a feature of diamonds in the Excelsior specimens. In the samples from Newlands and Orapa, in contrast, diamond surfaces reflect resorption processes such as rounding and corrosion of the diamonds. The following conclusions can be drawn from this study: Diamonds in this collection, sourced from within the Kalahari craton, appear to have formed by a metasomatic process during which fluids infiltrated pre-existing mantle-derived eclogite; Several metasomatic events have occurred during the residence of the eclogite in the

  17. Amorphous Computing

    Science.gov (United States)

    Sussman, Gerald

    2002-03-01

    agents constructed by engineered cells, but we have few ideas for programming them effectively: How can one engineer prespecified, coherent behavior from the cooperation of immense numbers of unreliable parts that are interconnected in unknown, irregular, and time-varying ways? This is the challenge of Amorphous Computing.

  18. Electron microscopic evidence for a tribologically induced phase transformation as the origin of wear in diamond

    International Nuclear Information System (INIS)

    Tribological testing of a coarse-grained diamond layer, deposited by plasma-enhanced chemical vapor deposition, was performed on a ring-on-ring tribometer with a diamond counterpart. The origin of the wear of diamond and of the low friction coefficient of 0.15 was studied by analyzing the microstructure of worn and unworn regions by transmission and scanning electron microscopy. In the worn regions, the formation of an amorphous carbon layer with a thickness below 100 nm is observed. Electron energy loss spectroscopy of the C-K ionization edge reveals the transition from sp3-hybridized C-atoms in crystalline diamond to a high fraction of sp2-hybridized C-atoms in the tribo-induced amorphous C-layer within a transition region of less than 5 nm thickness. The mechanically induced phase transformation from diamond to the amorphous phase is found to be highly anisotropic which is clearly seen at a grain boundary, where the thickness of the amorphous layer above the two differently oriented grains abruptly changes

  19. ESR studies of high-energy phosphorus-ion implanted synthetic diamond crystals

    Energy Technology Data Exchange (ETDEWEB)

    Isoya, J. [University of Library and Information Science, Tsukuba, Ibaraki (Japan); Kanda, H.; Morita, Y.; Ohshima, T.

    1997-03-01

    Phosphorus is among potential n-type dopants in diamond. High pressure synthetic diamond crystals of type IIa implanted with high energy (9-18 MeV) phosphorus ions have been studied by using electron spin resonance (ESR) technique. The intensity and the linewidth of the ESR signal attributed to the dangling bond of the amorphous phase varied with the implantation dose, suggesting the nature of the amorphization varies with the dose. The ESR signals of point defects have been observed in the low dose as-implanted crystals and in the high dose crystals annealed at high temperature and at high pressure. (author)

  20. Science's gem: Diamond science 2009

    OpenAIRE

    MAINWOOD, A.; Newton, M. E.; STONEHAM, M.

    2009-01-01

    Natural diamond has been valued for its appearance and mechanical properties for at least two thousand years. As a gem stone diamond is unsurpassed. However, scientific work, especially in the last 20 years, has demonstrated that diamond has numerous surprising properties and many unique ones. Some of the extreme properties have been known for many years, but the true scale of diamond's other highly desirable features is still only coming to light as control in the synthesis of diamond, and h...

  1. Concepts for diamond electronics

    International Nuclear Information System (INIS)

    The present status in the development of diamond as electronic semiconductor material with wide band-gap (5.45 eV) is reviewed. Since diamond cannot be doped with shallow impurities, specific doping concepts and related diode and FET structures had to be developed, restricted to p-type boron doping. The results allow to predict that diamond high voltage switching diodes, high power RF FET sources and operation at high temperature will surpass the capability of devices designed in competing wide band-gap materials like SiC and GaN

  2. Synthesis and characterization of a nanocrystalline diamond aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Pauzauskie, Peter J.; Crowhurst, Jonathan C.; Worsley, Marcus A.; Laurence, Ted A.; Kilcoyne, A. L. David; Wang, Yinmin; Willey, Trevor M.; Visbeck, Kenneth S.; Fakra, Sirine C.; Evans, William J.; Zaug, Joseph M.; Satcher, Jr., Joe H.

    2011-07-06

    Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel's void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material reveal the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel.

  3. Nanoindentation tests on diamond-machined silicon wafers

    OpenAIRE

    YAN, Jiwang; Takahashi, Hirokazu; Tamaki, Jun-ichi; Gai, Xiaohui; Harada, Hirofumi; Patten, John

    2005-01-01

    Nanoindentation tests were performed on ultraprecision diamond-turned silicon wafers and the results were compared with those of pristine silicon wafers. Remarkable differences were found between the two kinds of test results in terms of load-displacement characteristics and indent topologies. The machining-induced amorphous layer was found to have significantly higher microplasticity and lower hardness than pristine silicon. When machining silicon in the ductile mode, we are in essence alway...

  4. Flat for Free Flow

    Institute of Scientific and Technical Information of China (English)

    Yan Manman

    2010-01-01

    @@ Just as Thomas Fried man's famous book,The World Is Flat,if not completely flat,it is anyway tending to be shaped flat.January 1,2010 saw the formation of the China-ASEAN Free Trade Agreement(CAFTA),which was another historical event flattening majority of Asia continent for international trade.

  5. Rectangular Diamond-Lined Accelerator Structure

    CERN Document Server

    Wang, Changbiao; Yakovlev, Vyacheslav P

    2005-01-01

    For high frequency accelerators with normal-conducting structures studied by the NLC/GLC collaboration and the CLIC group, rf breakdown is the main gradient limitation. In this paper, a Ka-band rectangular dielectric-lined structure is described as an attempt to increase accelerating gradient beyond the limits suitable for metallic structures. The structure is based on amorphous dielectrics that are known to exhibit high breakdown limits (~ GV/m). An example is artificial diamond that has already been successfully used on an industrial basis for large-diameter output windows of high power gyrotrons, and is produced industrially in increasing quantities. Artificial diamond has low loss tangent, moderate dielectric constant and high breakdown limit of ~2 GV/m. In the proposed structure diamond-slabs are employed to support high-gradient acceleration fields. Interposition of vacuum gaps between the dielectric slabs and the side walls is shown to reduce Ohmic losses substantially, leading to an increase in shunt ...

  6. PREFACE: Science's gem: diamond science 2009 Science's gem: diamond science 2009

    Science.gov (United States)

    Mainwood, Alison; Newton, Mark E.; Stoneham, Marshall

    2009-09-01

    devices, exploiting excellent quality boron doped p-type material, can be designed [3]. Electrical contacts can be tricky to fabricate, but progress is being made here [3, 27]. Diamond is perceived as unacceptably expensive, but for a high-quality device for an exceptional environment, this is not a problem. Carbon-based electronic materials are strikingly diverse. They include diamond, graphite, nanotubes and buckyball structures, amorphous carbons, and nanodiamond. Add hydrogen and one has a range of diamond-like carbons and the wealth of organics. Such carbon-based materials include small molecules and polymers: impressive insulators, semiconducting and conducting polymers, switchable forms, superconducting and magnetic forms, and some with the highest electrical conductivities of any material. Diamond-like carbons can have controllable mechanical properties from the viscoelastic to the highly rigid. Photochemistry brings opportunities for novel processing methods. Even water-based processing may sometimes be possible (alas, not for diamond), and additional tools like self-organisation of organic molecules on surfaces have been demonstrated. The best carbons have impressive, sometimes supreme, performances, including the mobility and optical properties of diamond, spin-conserving transport in carbon nanotubes, and electron emission. For almost all measures of performance, there is some carbon-based material that performs better than silicon. Might hybrid carbon-based materials be more successful even than silicon [28]? Should we think less about 'diamond' and more about the integration of diamond as one component of carbon electronics? Device fabrication needs lithography optics and resists, and processing at the anticipated smaller scales may well exploit new electronic excitation methods. Alternative dielectrics and interconnect materials introduce new compatibility issues, and there are further varied constraints from displays, spintronic components, electron

  7. Improvement on electrical conductivity and electron field emission properties of Au-ion implanted ultrananocrystalline diamond films by using Au-Si eutectic substrates

    International Nuclear Information System (INIS)

    In the present work, Au-Si eutectic layer was used to enhance the electrical conductivity/electron field emission (EFE) properties of Au-ion implanted ultrananocrystalline diamond (Au-UNCD) films grown on Si substrates. The electrical conductivity was improved to a value of 230 (Ω cm)−1, and the EFE properties was enhanced reporting a low turn-on field of 2.1 V/μm with high EFE current density of 5.3 mA/cm2 (at an applied field of 4.9 V/μm) for the Au-UNCD films. The formation of SiC phase circumvents the formation of amorphous carbon prior to the nucleation of diamond on Si substrates. Consequently, the electron transport efficiency of the UNCD-to-Si interface increases, thereby improving the conductivity as well as the EFE properties. Moreover, the salient feature of these processes is that the sputtering deposition of Au-coating for preparing the Au-Si interlayer, the microwave plasma enhanced chemical vapor deposition process for growing the UNCD films, and the Au-ion implantation process for inducing the nanographitic phases are standard thin film preparation techniques, which are simple, robust, and easily scalable. The availability of these highly conducting UNCD films with superior EFE characteristics may open up a pathway for the development of high-definition flat panel displays and plasma devices

  8. Improvement on electrical conductivity and electron field emission properties of Au-ion implanted ultrananocrystalline diamond films by using Au-Si eutectic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Sankaran, K. J. [Department of Materials Science and Engineering, National Tsing Hua University, Hsin-Chu Taiwan 300, Taiwan (China); Institute for Materials Research (IMO), Hasselt University, 3590 Diepenbeek (Belgium); Sundaravel, B. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Tai, N. H., E-mail: nhtai@mx.nthu.edu.tw, E-mail: inanlin@mail.tku.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsin-Chu Taiwan 300, Taiwan (China); Lin, I. N., E-mail: nhtai@mx.nthu.edu.tw, E-mail: inanlin@mail.tku.edu.tw [Department of Physics, Tamkang University, Tamsui, Taiwan 251, Taiwan (China)

    2015-08-28

    In the present work, Au-Si eutectic layer was used to enhance the electrical conductivity/electron field emission (EFE) properties of Au-ion implanted ultrananocrystalline diamond (Au-UNCD) films grown on Si substrates. The electrical conductivity was improved to a value of 230 (Ω cm){sup −1}, and the EFE properties was enhanced reporting a low turn-on field of 2.1 V/μm with high EFE current density of 5.3 mA/cm{sup 2} (at an applied field of 4.9 V/μm) for the Au-UNCD films. The formation of SiC phase circumvents the formation of amorphous carbon prior to the nucleation of diamond on Si substrates. Consequently, the electron transport efficiency of the UNCD-to-Si interface increases, thereby improving the conductivity as well as the EFE properties. Moreover, the salient feature of these processes is that the sputtering deposition of Au-coating for preparing the Au-Si interlayer, the microwave plasma enhanced chemical vapor deposition process for growing the UNCD films, and the Au-ion implantation process for inducing the nanographitic phases are standard thin film preparation techniques, which are simple, robust, and easily scalable. The availability of these highly conducting UNCD films with superior EFE characteristics may open up a pathway for the development of high-definition flat panel displays and plasma devices.

  9. Improvement on electrical conductivity and electron field emission properties of Au-ion implanted ultrananocrystalline diamond films by using Au-Si eutectic substrates

    Science.gov (United States)

    Sankaran, K. J.; Sundaravel, B.; Tai, N. H.; Lin, I. N.

    2015-08-01

    In the present work, Au-Si eutectic layer was used to enhance the electrical conductivity/electron field emission (EFE) properties of Au-ion implanted ultrananocrystalline diamond (Au-UNCD) films grown on Si substrates. The electrical conductivity was improved to a value of 230 (Ω cm)-1, and the EFE properties was enhanced reporting a low turn-on field of 2.1 V/μm with high EFE current density of 5.3 mA/cm2 (at an applied field of 4.9 V/μm) for the Au-UNCD films. The formation of SiC phase circumvents the formation of amorphous carbon prior to the nucleation of diamond on Si substrates. Consequently, the electron transport efficiency of the UNCD-to-Si interface increases, thereby improving the conductivity as well as the EFE properties. Moreover, the salient feature of these processes is that the sputtering deposition of Au-coating for preparing the Au-Si interlayer, the microwave plasma enhanced chemical vapor deposition process for growing the UNCD films, and the Au-ion implantation process for inducing the nanographitic phases are standard thin film preparation techniques, which are simple, robust, and easily scalable. The availability of these highly conducting UNCD films with superior EFE characteristics may open up a pathway for the development of high-definition flat panel displays and plasma devices.

  10. Functionalized diamond nanoparticles

    KAUST Repository

    Beaujuge, Pierre M.

    2014-10-21

    A diamond nanoparticle can be functionalized with a substituted dienophile under ambient conditions, and in the absence of catalysts or additional reagents. The functionalization is thought to proceed through an addition reaction.

  11. Diamond nanobeam waveguide optomechanics

    CERN Document Server

    Khanaliloo, Behzad; Hryciw, Aaron C; Lake, David P; Kaviani, Hamidreza; Barclay, Paul E

    2015-01-01

    Optomechanical devices sensitively transduce and actuate motion of nanomechanical structures using light, and are central to many recent fundamental studies and technological advances. Single--crystal diamond promises to improve the performance of optomechanical devices, while also providing opportunities to interface nanomechanics with diamond color center spins and related quantum technologies. Here we demonstrate measurement of diamond nanobeam resonators with a sensitivity of 9.5 fm/Hz^0.5 and bandwidth >120 nm through dissipative waveguide--optomechanical coupling. Nanobeams are fabricated from bulk single--crystal diamond using a scalable quasi--isotropic oxygen plasma undercut etching process, and support mechanical resonances with quality factor of 2.5 x 10^5 at room temperature, and 7.2 x 10^5 in cryogenic conditions (5K). Mechanical self--oscillations, resulting from interplay between optomechanical coupling and the photothermal response of nanobeams in a buckled state, are observed with amplitude e...

  12. MAMA NUV Flats

    Science.gov (United States)

    Sana, Hugues

    2013-10-01

    This program is aimed at obtaining NUV-MAMA flat-field observations for the construction of pixel-to-pixel flats {p-flats} with a SNR of 100 per binned pixel. The flats are obtained with the DEUTERIUM-lamp and the MR grisms G230M. The actual choice of central wavelength and slit combination depends on the observed count level within each exposure.Note that STIS NUV-MAMA flats are taken every other cycles{i.e. during odd number cycles} in order to not drain the DEUTERIUMlamp lifetime.

  13. Diamond dipole active antenna

    OpenAIRE

    Bubnov, I. N.; Falkovych, I. S.; Gridin, A. A.; Stanislavsky, A. A.; Reznik, A. P.

    2015-01-01

    Advantages of the diamond dipole antenna as an active antenna are presented. Such an antenna is like an inverted bow-tie antenna, but the former has some advantages over the ordinary bow-tie antenna. It is shown that the diamond dipole antenna may be an effective element of a new antenna array for low-frequency radio astronomy as well as a communication antenna.

  14. Study of carbide-forming element interlayers for diamond nucleation and growth on silicon and WC-Co substrates

    International Nuclear Information System (INIS)

    Diamond nucleation and growth on several typical carbide-forming elements (CFE) (Ti, Cr and W) coated Si and WC-Co substrates were studied. The ion beam sputtered CFE interlayers show an amorphous/nanocrystalline microstructure. The diamond formed on the CFE coated substrates shows higher nucleation density and rate and finer grain structure than on uncoated substrates. Consequently, nanocrystalline diamond thin films can be formed on the CFE coated substrates under conventional microcrystalline diamond growth conditions. Among the three tested CFE interlayers, diamond has the highest nucleation density and rate on W layer and the lowest on Ti layer. The diamond nucleation density and rate on CFE coated WC-Co are much higher than those on widely used metal nitride coated WC-Co.

  15. Study of carbide-forming element interlayers for diamond nucleation and growth on silicon and WC-Co substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Y., E-mail: yongji.tang@usask.c [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Plasma Physics Laboratory, University of Saskatchewan, 116 Science Place, Saskatoon, SK S7N 5E2 (Canada); Li, Y.S. [Plasma Physics Laboratory, University of Saskatchewan, 116 Science Place, Saskatoon, SK S7N 5E2 (Canada); Yang, Q., E-mail: qiaoqin.yang@usask.c [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Hirose, A. [Plasma Physics Laboratory, University of Saskatchewan, 116 Science Place, Saskatoon, SK S7N 5E2 (Canada)

    2010-12-30

    Diamond nucleation and growth on several typical carbide-forming elements (CFE) (Ti, Cr and W) coated Si and WC-Co substrates were studied. The ion beam sputtered CFE interlayers show an amorphous/nanocrystalline microstructure. The diamond formed on the CFE coated substrates shows higher nucleation density and rate and finer grain structure than on uncoated substrates. Consequently, nanocrystalline diamond thin films can be formed on the CFE coated substrates under conventional microcrystalline diamond growth conditions. Among the three tested CFE interlayers, diamond has the highest nucleation density and rate on W layer and the lowest on Ti layer. The diamond nucleation density and rate on CFE coated WC-Co are much higher than those on widely used metal nitride coated WC-Co.

  16. Diamond nanoimprint lithography

    Science.gov (United States)

    Taniguchi, Jun; Tokano, Yuji; Miyamoto, Iwao; Komuro, Masanori; Hiroshima, Hiroshi

    2002-10-01

    Electron beam (EB) lithography using polymethylmethacrylate (PMMA) and oxygen gas reactive ion etching (RIE) were used to fabricate fine patterns in a diamond mould. To prevent charge-up during EB lithography, thin conductive polymer was spin-coated over the PMMA resist, yielding dented line patterns 2 μ m wide and 270 nm deep. The diamond mould was pressed into PMMA on a silicon substrate heated to 130, 150 and 170ºC at 43.6, 65.4 and 87.2 MPa. All transferred PMMA convex line patterns were 2 μ m wide. Imprinted pattern depth increased with rising temperature and pressure. PMMA patterns on diamond were transferred by the diamond mould at 150ºC and 65.4 MPa, yielding convex line patterns 2 μ m wide and 200 nm high. Direct aluminium and copper patterns were obtained using the diamond mould at room temperature and 130.8 MPa. The diamond mould is thus useful for replicating patterns on PMMA and metals.

  17. High-mobility diamond

    Science.gov (United States)

    Landstrass, Maurice I.

    1994-04-01

    Recent improvements in the CVD diamond deposition process have made possible the fabrication of diamond photoconductive diodes with carrier mobility and lifetime exceeding the values typical of natural gemstones. One of the more surprising recent results is that the best room-temperature carrier properties have been measured on polycrystalline diamond films. The combined electron- hole mobility, as measured by transient photoconductivity at low carrier densities, is 4000 square centimeters per volt per second at electric field of 200 volts per centimeter and is comparable to that of the best single-crystal IIa natural diamonds. Carrier lifetimes measured under the same conditions are 150 picoseconds for the CVD diamond films. The collection distance within the diamond films, at the highest applied fields, is comparable to the average film grain size, indicative of little or no carrier scattering at grain boundaries. A comparison of SIMS measurements with electrical results suggest that impurity incorporation in the near grain boundary regions are responsible for controlling the carrier mobility.

  18. Novel phase of carbon, ferromagnetism, and conversion into diamond

    Science.gov (United States)

    Narayan, Jagdish; Bhaumik, Anagh

    2015-12-01

    We report the discovery of a new phase of carbon (referred to as Q-carbon) and address fundamental issues related to direct conversion of carbon into diamond at ambient temperatures and pressures in air without any need for catalyst and presence of hydrogen. The Q-carbon is formed as result of quenching from super undercooled state by using high-power nanosecond laser pulses. We discuss the equilibrium phase diagram (P vs. T) of carbon and show that by rapid quenching kinetics can shift thermodynamic graphite/diamond/liquid carbon triple point from 5000 K/12 GPa to super undercooled carbon at atmospheric pressure in air. It is shown that nanosecond laser heating of diamond-like amorphous carbon on sapphire, glass, and polymer substrates can be confined to melt carbon in a super undercooled state. By quenching the carbon from the super undercooled state, we have created a new state of carbon (Q-carbon) from which nanodiamond, microdiamond, microneedles, and single-crystal thin films are formed depending upon the nucleation and growth times allowed for diamond formation. The Q-carbon quenched from liquid is a new state of solid carbon with a higher mass density than amorphous carbon and a mixture of mostly fourfold sp3 (75%-85%) with the rest being threefold sp2 bonded carbon (with distinct entropy). It is expected to have new and improved mechanical hardness, electrical conductivity, chemical, and physical properties, including room-temperature ferromagnetism (RTFM) and enhanced field emission. Here we present interesting results on RTFM, enhanced electrical conductivity and surface potential of Q-carbon to emphasize its unique properties. The Q-carbon exhibits robust bulk ferromagnetism with estimated Curie temperature of about 500 K and saturation magnetization value of 20 emu g-1. From the Q-carbon, diamond phase is nucleated and a variety of micro- and nanostructures and large-area single-crystal diamond sheets are grown by allowing growth times as needed

  19. Novel phase of carbon, ferromagnetism, and conversion into diamond

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Jagdish, E-mail: narayan@ncsu.edu; Bhaumik, Anagh [Department of Materials Science and Engineering, Centennial Campus, North Carolina State University, Raleigh, North Carolina 27695-7907 (United States)

    2015-12-07

    We report the discovery of a new phase of carbon (referred to as Q-carbon) and address fundamental issues related to direct conversion of carbon into diamond at ambient temperatures and pressures in air without any need for catalyst and presence of hydrogen. The Q-carbon is formed as result of quenching from super undercooled state by using high-power nanosecond laser pulses. We discuss the equilibrium phase diagram (P vs. T) of carbon and show that by rapid quenching kinetics can shift thermodynamic graphite/diamond/liquid carbon triple point from 5000 K/12 GPa to super undercooled carbon at atmospheric pressure in air. It is shown that nanosecond laser heating of diamond-like amorphous carbon on sapphire, glass, and polymer substrates can be confined to melt carbon in a super undercooled state. By quenching the carbon from the super undercooled state, we have created a new state of carbon (Q-carbon) from which nanodiamond, microdiamond, microneedles, and single-crystal thin films are formed depending upon the nucleation and growth times allowed for diamond formation. The Q-carbon quenched from liquid is a new state of solid carbon with a higher mass density than amorphous carbon and a mixture of mostly fourfold sp{sup 3} (75%–85%) with the rest being threefold sp{sup 2} bonded carbon (with distinct entropy). It is expected to have new and improved mechanical hardness, electrical conductivity, chemical, and physical properties, including room-temperature ferromagnetism (RTFM) and enhanced field emission. Here we present interesting results on RTFM, enhanced electrical conductivity and surface potential of Q-carbon to emphasize its unique properties. The Q-carbon exhibits robust bulk ferromagnetism with estimated Curie temperature of about 500 K and saturation magnetization value of 20 emu g{sup −1}. From the Q-carbon, diamond phase is nucleated and a variety of micro- and nanostructures and large-area single-crystal diamond sheets are grown by allowing

  20. Coaxial carbon plasma gun deposition of amorphous carbon films

    International Nuclear Information System (INIS)

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented

  1. Coaxial carbon plasma gun deposition of amorphous carbon films

    Science.gov (United States)

    Sater, D. M.; Gulino, D. A.; Rutledge, S. K.

    1984-01-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented.

  2. Structural morphology of amorphous conducting carbon film

    Indian Academy of Sciences (India)

    P N Vishwakarma; V Prasad; S V Subramanyam; V Ganesan

    2005-10-01

    Amorphous conducting carbon films deposited over quartz substrates were analysed using X-ray diffraction and AFM technique. X-ray diffraction data reveal disorder and roughness in the plane of graphene sheet as compared to that of graphite. This roughness increases with decrease in preparation temperature. The AFM data shows surface roughness of carbon films depending on preparation temperatures. The surface roughness increases with decrease in preparation temperature. Also some nucleating islands were seen on the samples prepared at 900°C, which are not present on the films prepared at 700°C. Detailed analysis of these islands reveals distorted graphitic lattice arrangement. So we believe these islands to be nucleating graphitic. Power spectrum density (PSD) analysis of the carbon surface indicates a transition from the nonlinear growth mode to linear surface-diffusion dominated growth mode resulting in a relatively smoother surface as one moves from low preparation temperature to high preparation temperature. The amorphous carbon films deposited over a rough quartz substrate reveal nucleating diamond like structures. The density of these nucleating diamond like structures was found to be independent of substrate temperature (700–900°C).

  3. Cryotribology of diamond and graphite

    Energy Technology Data Exchange (ETDEWEB)

    Iwasa, Yukikazu; Ashaboglu, A.F.; Rabinowicz, E.R. [Francis Bitter Magnet Lab., Cambridge, MA (United States)

    1996-12-31

    An experimental study was carried out on the tribological behavior of materials of interest in cryogenic applications, focusing on diamond and graphite. Both natural diamond (referred in the text as diamond) and chemical-vapor-deposition (CVD) diamond (CVD-diamond) were used. The experiment was carried out using a pin-on-disk tribometer capable of operating at cryogenic temperatures, from 4.2 to 293 K. Two basic scenarios of testing were used: (1) frictional coefficient ({mu}) vs velocity (v) characteristics at constant temperatures; (2) {mu} vs temperature (T) behavior at fixed sliding speeds. For diamond/CVD-diamond, graphite/CVD-diamond, stainless steel/CVD-diamond pairs, {mu}`s are virtually velocity independent. For each of diamond/graphite, alumina/graphite, and graphite/graphite pairs, the {partial_derivative}{mu}/{partial_derivative}v characteristic is favorable, i.e., positive. For diamond/CVD-diamond and graphite/CVD-diamond pairs, {mu}`s are nearly temperature independent between in the range 77 - 293 K. Each {mu} vs T plot for pin materials sliding on graphite disks has a peak at a temperature in the range 100 - 200 K.

  4. Diamond Electronic Devices

    International Nuclear Information System (INIS)

    For high-power and high-voltage applications, silicon is by far the dominant semiconductor material. However, silicon has many limitations, e.g. a relatively low thermal conductivity, electric breakdown occurs at relatively low fields and the bandgap is 1.1 eV which effectively limits operation to temperatures below 175 deg.n C. Wide-bandgap materials, such as silicon carbide (SiC), gallium nitride (GaN) and diamond offer the potential to overcome both the temperature and power handling limitations of silicon. Diamond is the most extreme in this class of materials. By the fundamental material properties alone, diamond offers the largest benefits as a semiconductor material for power electronic applications. On the other hand, diamond has a problem with a large carrier activation energy of available dopants which necessitates specialised device concepts to allow room temperature (RT) operation. In addition, the role of common defects on the charge transport properties of diamond is poorly understood. Notwithstanding this, many proof-of-principle two-terminal and three-terminal devices have been made and tested. Two-terminal electronic diamond devices described in the literature include: p-n diodes, p-i-n diodes, various types of radiation detectors, Schottky diodes and photoconductive or electron beam triggered switches. Three terminal devices include e.g. MISFETs and JFETs. However, the development of diamond devices poses great challenges for the future. A particularly interesting way to overcome the doping problem, for which there has been some recent progress, is to make so-called delta doped (or pulse-doped) devices. Such devices utilise very thin (∼1 nm) doped layers in order to achieve high RT activation.

  5. Diamond Electronic Devices

    Science.gov (United States)

    Isberg, J.

    2010-11-01

    For high-power and high-voltage applications, silicon is by far the dominant semiconductor material. However, silicon has many limitations, e.g. a relatively low thermal conductivity, electric breakdown occurs at relatively low fields and the bandgap is 1.1 eV which effectively limits operation to temperatures below 175° C. Wide-bandgap materials, such as silicon carbide (SiC), gallium nitride (GaN) and diamond offer the potential to overcome both the temperature and power handling limitations of silicon. Diamond is the most extreme in this class of materials. By the fundamental material properties alone, diamond offers the largest benefits as a semiconductor material for power electronic applications. On the other hand, diamond has a problem with a large carrier activation energy of available dopants which necessitates specialised device concepts to allow room temperature (RT) operation. In addition, the role of common defects on the charge transport properties of diamond is poorly understood. Notwithstanding this, many proof-of-principle two-terminal and three-terminal devices have been made and tested. Two-terminal electronic diamond devices described in the literature include: p-n diodes, p-i-n diodes, various types of radiation detectors, Schottky diodes and photoconductive or electron beam triggered switches. Three terminal devices include e.g. MISFETs and JFETs. However, the development of diamond devices poses great challenges for the future. A particularly interesting way to overcome the doping problem, for which there has been some recent progress, is to make so-called delta doped (or pulse-doped) devices. Such devices utilise very thin (˜1 nm) doped layers in order to achieve high RT activation.

  6. Structural changes of hydrogenated amorphous carbon films deposited on steel rods

    Science.gov (United States)

    Choi, Junho; Hatta, Tetsuya

    2015-12-01

    In this study, hydrogenated amorphous carbon (a-C:H) films were deposited on steel rods of various radii by using bipolar-type plasma based ion implantation and deposition, and the film structure and mechanical properties have been investigated. Furthermore, the behavior of plasma surrounding the steel rods (i.e., flux and energy of incident ions and electrons) was investigated using the particle-in-cell Monte Carlo collision (PIC-MCC) method to examine the mechanism behind the structural changes of the a-C:H films. Three kinds of amorphous carbon films with different microstructures were prepared by changing the negative pulse voltages from -1 kV to -5 kV: one polymer-like carbon film and two diamond-like carbon films that possess the maximum FWHM(G) (full width at half maximum of Raman G-peak) and maximum hardness. The structure of the a-C:H films was evaluated through Raman spectroscopy, and the hardness of the films was measured using nanoindentation. It was found that the structures of a-C:H films deposited on the steel-rod surfaces are quite different from those on flat surfaces, and the film structures are directly affected by the curvature of the rod. It was also determined from the plasma simulation that the incident electron flux and ion flux become more intense as the curvature increases, resulting in the structural changes of the a-C:H films due to hydrogen evolution and thermal relaxation in the films.

  7. Automated surface profile measurement of diamond grid disk by phase-shifted shadow Moiré

    Science.gov (United States)

    Chen, Terry Yuan-Fang; Lin, Jie

    2014-06-01

    Diamond grid disk dresser is frequently employed to remove the accumulated debris lest the polishing surface glazes. The surface warpage of diamond grid disk must be small enough to assure the flatness of polished wafers during chemical mechanical planarization process. In this study, phase-shifted shadow moiré method was employed to measure the surface profile of diamond grid disk. To eliminate erroneous bright or black spots caused by the diamond grids, a new approach is proposed by automatically selecting a proper threshold value from the differentiated image resulting from the addition of four phase-shifted images. According to the largest size of erroneous spot, the size of a structuring element is determined for morphology filtering. Thereafter the phase can be calculated and unwrapped correctly. Test of the method on a diamond grid disk is demonstrated and discussed.

  8. Strongly Gorenstein Flat Dimensions

    Institute of Scientific and Technical Information of China (English)

    Chun Xia ZHANG; Li Min WANG

    2011-01-01

    This article is concerned with the strongly Gorenstein flat dimensions of modules and rings.We show this dimension has nice properties when the ring is coherent,and extend the well-known Hilbert's syzygy theorem to the strongly Gorenstein flat dimensions of rings.Also,we investigate the strongly Gorenstein flat dimensions of direct products of rings and (almost)excellent extensions of rings.

  9. Creating flat design websites

    CERN Document Server

    Pratas, Antonio

    2014-01-01

    This book contains practical, step-by-step tutorials along with plenty of explanation about designing your flat website. Each section is introduced sequentially, building up your web design skills and completing your website.Creating Flat Design Websites is ideal for you if you are starting on your web development journey, but this book will also benefit seasoned developers wanting to start developing in flat.

  10. MAMA FUV Flats

    Science.gov (United States)

    Mason, Elena

    2012-10-01

    This program aims at obtaining FUV-MAMA flat-field observations to create a new p-flats with a SNR of 100 per {low resolution} pixel. The flats are obtained with the Krypton-lamp and the MR grating G140M, similarly to the cycle 17 and 18 programs. However the exact instrument setup {slit width and central wavelength} might change depending on the desired count level {which will be close to the internally allowed global rate limit}.

  11. Diamond electronic properties and applications

    CERN Document Server

    Kania, Don R

    1995-01-01

    The use of diamond in electronic applications is not a new idea, but limitations in size and control of properties restricted the use of diamond to a few specialised applications. The vapour-phase synthesis of diamond, however, has facilitated serious interest in the development of diamond-based electronic devices. The process allows diamond films to be laid down over large areas. Both intrinsic and doped diamond films have a unique combination of extreme properties for high speed, high power and high temperature applications. The eleven chapters in Diamond: Electronic Properties and Applications, written by the world's foremost experts on the subject, give a complete characterisation of the material, in both intrinsic and doped forms, explain how to grow it for electronic applications, how to use the grown material, and a description of both passive and active devices in which it has been used with success. Diamond: Electronic Properties and Applications is a compendium of the available literature on the sub...

  12. Computer simulations of the damage due to the passage of a heavy fast ion through diamond

    International Nuclear Information System (INIS)

    Full Text:The present tight-binding molecular dynamics simulations of the structural modifications that result from the ''thermal spike'' that occurs during the passage of a heavy fast ion through a thin diamond or amorphous carbon layer, and the subsequent regrowth upon cooling. The thermal spike and cooling down are simulated by locally heating and then quenching a small region of carbon: surrounded either by diamond or by a mostly sp''3 bonded amorphous carbon network. For the case of the thermal spike in diamond Fe find that if the ''temperature'' (kinetic energy of the atoms) at the center of the thermal spike is high enough, an amorphous carbon region containing a large fraction of threefold coordinated C atoms (sp2 bonded) remains within the diamond network after cooling. The structure of this amorphous layer depends very strongly on the ''temperature'' of heating and on the dimensions of the thermal spike. Scaling is found between curves of the dependence of the percentage of sp''2 bonded atoms in the region of the thermal spike on the heating ''temperature'' for different volumes. Justification of the validity of the' tight-binding approximation for these simulations will also be given

  13. Surface Design and Engineering Toward Wear-Resistant, Self-Lubricating Diamond Films and Coatings

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1999-01-01

    The tribological properties of chemical-vapor-deposited (CVD) diamond films vary with the environment, possessing a Jekyll-and-Hyde character. CVD diamond has low coefficient of friction and high wear resistance in air but high coefficient of friction and low wear resistance in vacuum. Improving the tribological functionality of materials (such as achieving low friction and good wear resistance) was an aim of this investigation. Three studies on the surface design, surface engineering, and tribology of CVD diamond have shown that its friction and wear are significantly reduced in ultrahigh vacuum. The main criteria for judging whether diamond films are an effective wear-resistant, self-lubricating material were coefficient of friction and wear rate, which must be less than 0.1 and on the order of 10(exp 6) cu mm/N(dot)m, respectively. In the first study the presence of a thin film (less than 1 micron thick) of amorphous, nondiamond carbon (hydrogenated carbon, also called diamondlike carbon or DLC) on CVD diamond greatly decreased the coefficient of friction and the wear rate. Therefore, a thin DLC film on CVD diamond can be an effective wear-resistant, lubricating coating in ultrahigh vacuum. In the second study the presence of an amorphous, nondiamond carbon surface layer formed on CVD diamond by ion implantation significantly reduced the coefficient of friction and the wear rate in ultrahigh vacuum. Therefore, such surface layers are acceptable for effective self-lubricating, wear-resistant applications of CVD diamond. In the third study CVD diamond in contact with cubic boron nitride exhibited low coefficient of friction in ultra high vacuum. Therefore, this materials combination can provide an effective self-lubricating, wear-resistant couple in ultrahigh vacuum.

  14. Diamond Shaving of Contaminated Concrete Surfaces

    International Nuclear Information System (INIS)

    Decommissioning and decontamination of existing facilities presents technological challenges. One major challenge is the removal of surface contamination from concrete floors and walls while eliminating the spread of contamination and volumetric reduction of the waste stream. Numerous methods have been tried with a varying degree of success. Recent technology has made this goal achievable and has been used successfully. This new technology is the Diamond Floor Shaver and Diamond Wall shaver. The Diamond Floor Shaver is a self-propelled, walk behind machine that literally shaves the contaminated concrete surface to specified depths. This is accomplished by using a patented system of 100 dry cutting diamond blades with offset diamond segments that interlock to provide complete shaving of the concrete surface. Grooves are eliminated which allows for a direct frisk reading to analyze results. When attached to an appropriate size vacuum, the dust produced is 100% contained. Dust is collected in drums ready for disposition and disposal. The waste produced in shaving 7,500 square feet at 1/8 inch thickness would fill a single 55 gallon drum. Production is dependent on depth of shaving but averages 100 square feet per hour. The wall shaver uses the same patented diamond drum and blades but is hydraulically driven and is deployed using a robotic arm allowing its operation to be to totally remote. It can reach ceilings as high as 20 feet. Numerous small projects were successfully completed using this technology. Large scale deployment came in 2003. Bluegrass, in conjunction with Bartlett Services, deployed this technology to support decontamination activities for closing of the Rocky Flats nuclear weapons site. Up to six floor shavers and one wall shaver were deployed in buildings B371 and B374. These buildings had up to one half-inch, fixed plutonium and beryllium contamination. Hundred-thousands of square feet of floors and walls were shaved successfully to depths of up to

  15. Low Temperature Growth of Nanostructured Diamond Films on Metals

    Science.gov (United States)

    Baker, Paul A.; Catledge, Shane A.; Vohra, Yogesh K.

    2001-01-01

    The field of nanocrystalline diamond and tetrahedral amorphous carbon films has been the focus of intense experimental activity in the last few years for applications in field emission display devices, optical windows, and tribological coatings, The choice of substrate used in most studies has typically been silicon. For metals, however, the thermal expansion mismatch between the diamond film and substrate gives rise to thermal stress that often results in delamination of the film. To avoid this problem in conventional CVD deposition low substrate temperatures (less than 700 C) have been used, often with the incorporation of oxygen or carbon monoxide to the feedgas mixture. Conventionally grown CVD diamond films are also rough and would require post-deposition polishing for most applications. Therefore, there is an obvious need to develop techniques for deposition of well-adhered, smooth nano-structured diamond films on metals for various tribological applications. In our work, nanostructured diamond films are grown on a titanium alloy substrate using a two-step deposition process. The first step is performed at elevated temperature (820 C) for 30 minutes using a H2/CH4/N2 gas mixture in order to grow a thin (approx. 600 nm) nanostructured diamond layer and improve film adhesion. The remainder of the deposition involves growth at low temperature (less than 600 C) in a H2/CH4/O2 gas mixture. Laser reflectance Interferometry (LRI) pattern during growth of a nanostructured diamond film on Ti-6Al-4V alloy. The first 30 minutes are at a high temperature of 820 C and the rest of the film is grown at a low temperature of 580 T. The fringe pattern is observed till the very end due to extremely low surface roughness of 40 nm. The continuation of the smooth nanostructured diamond film growth during low temperature deposition is confirmed by in-situ laser reflectance interferometry and by post-deposition micro-Raman spectroscopy and surface profilometry. Similar experiments

  16. Self-Lubricating, Wear-Resistant Diamond Films Developed for Use in Vacuum Environment

    Science.gov (United States)

    1996-01-01

    Diamond's outstanding properties--extreme hardness, chemical and thermal inertness, and high strength and rigidity--make it an ideal material for many tribological applications, such as the bearings, valves, and engine parts in the harsh environment found in internal-combustion engines, jet engines, and space propulsion systems. It has been demonstrated that chemical-vapor-deposited diamond films have low coefficients of friction (on the order of 0.01) and low wear rates (less than 10(sup -7) mm (sup 3/N-m)) both in humid air and dry nitrogen but that they have both high coefficients of friction (greater than 0.4) and high wear rates (on the order of 1(sup -4) mm sup 3/N-m)) in vacuum. It is clear that surface modifications that provide acceptable levels of friction and wear properties will be necessary before diamond films can be used for tribological applications in a space-like, vacuum environment. Previously, it was found that coatings of amorphous, non-diamond carbon can provide low friction in vacuum. Therefore, to reduce the friction and wear of diamond film in vacuum, carbon ions were implanted in an attempt to form a surface layer of amorphous carbon phases on the diamond films.

  17. Diamond for microbiological studies

    Czech Academy of Sciences Publication Activity Database

    Kromka, Alexander; Potocký, Štěpán; Kozak, Halyna; Tesárek, P.; Ryparová, P.; Beranová, J.; Seydlová, G.

    Bratislava : Slovenská vákuová spoločnosť, 2014 - (Michalka, M.; Vincze, A.; Veselý, M.), s. 97-103 ISBN 978-80-971179-4-8. [School of Vacuum Technology /17./. Štrbské Pleso (SK), 02.10.2014-05.10.2014] R&D Projects: GA ČR GAP108/12/0910 Institutional support: RVO:68378271 Keywords : diamond * CVD * microwave plasma * antibacterial coating * diamond nanoparticles * polymer nanofibers Subject RIV: CE - Biochemistry

  18. Flat Pack Toy Design

    Science.gov (United States)

    Hutcheson, Brian

    2007-01-01

    In this article, the author introduces the concept of flat pack toys. Flat pack toys are designed using a template on a single sheet of letter-sized card stock paper. Before being cut out and built into a three-dimensional toy, they are scanned into the computer and uploaded to a website. With the template accessible from the website, anyone with…

  19. Flat Band Quastiperiodic Lattices

    Science.gov (United States)

    Bodyfelt, Joshua; Flach, Sergej; Danieli, Carlo

    2014-03-01

    Translationally invariant lattices with flat bands (FB) in their band structure possess irreducible compact localized flat band states, which can be understood through local rotation to a Fano structure. We present extension of these quasi-1D FB structures under incommensurate lattices, reporting on the FB effects to the Metal-Insulator Transition.

  20. Corrosion resistant amorphous alloys

    International Nuclear Information System (INIS)

    A review of publication data on corrosion resistance of amorphous alloys and the methods of amorphization of surface layers of massive materials (laser treatment, iron implantation, detonation-gas spraying, cathode and ion sputtering, electrodeposition) was made. A study was made on corrosion properties of Fe66Cr11B10Si4 alloy in cast state and after laser irradiation, rendering the surface amorphous as well as the samples of Arenco iron and steel 20 with ion-plasma coatings of Fe-Cr-Ni-Ti alloy. It was established that amorphous coatings posses much higher corrosion resistance as compared to crystalline alloys on the same base

  1. Interfacial electrical properties of ion-beam sputter deposited amorphous carbon on silicon

    Science.gov (United States)

    Khan, A. A.; Woollam, J. A.; Chung, Y.; Banks, B.

    1983-01-01

    Amorphous, 'diamond-like' carbon films have been deposited on Si substrates, using ion-beam sputtering. The interfacial properties are studied using capacitance and conductance measurements. Data are analyzed using existing theories for interfacial electrical properties. The density of electronic states at the interface, along with corresponding time constants are determined.

  2. Tribological properties of amorphous alloys and the role of surfaces in abrasive wear of materials

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The research approach undertaken by the authors relative to the subject, and examples of results from the authors are reviewed. The studies include programs in adhesion, friction, and various wear mechanisms (adhesive and abrasive wear). The materials which have been studied include such ceramic and metallic materials as silicon carbide, ferrites, diamond, and amorphous alloys.

  3. ELECTRON AMPLIFICATION IN DIAMOND.

    Energy Technology Data Exchange (ETDEWEB)

    SMEDLEY, J.; BEN-ZVI, I.; BURRILL, A.; CHANG, X.; GRIMES, J.; RAO, T.; SEGALOV, Z.; WU, Q.

    2006-07-10

    We report on recent progress toward development of secondary emission ''amplifiers'' for photocathodes. Secondary emission gain of over 300 has been achieved in transmission mode and emission mode for a variety of diamond samples. Techniques of sample preparation, including hydrogenation to achieve negative electron affinity (NEA), have been adapted to this application.

  4. CVD diamond - fundamental phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Yarbrough, W.A. [Pennsylvania State Univ., University Park (United States)

    1993-01-01

    This compilation of figures and diagrams addresses the basic physical processes involved in the chemical vapor deposition of diamond. Different methods of deposition are illustrated. For each method, observations are made of the prominent advantages and disadvantages of the technique. Chemical mechanisms of nucleation are introduced.

  5. Photochromism in irradiated diamond

    International Nuclear Information System (INIS)

    Photochromism exhibited at low temperatures in the absorption line at 1.521 eV in electron-irradiated type IIb diamond is described and understood in terms of a simple model. Energy and temperature dependences of the photoconversion process are discussed briefly. (author)

  6. DIAMOND AMPLIFIED PHOTOCATHODES.

    Energy Technology Data Exchange (ETDEWEB)

    SMEDLEY,J.; BEN-ZVI, I.; BOHON, J.; CHANG, X.; GROVER, R.; ISAKOVIC, A.; RAO, T.; WU, Q.

    2007-11-26

    High-average-current linear electron accelerators require photoinjectors capable of delivering tens to hundreds of mA average current, with peak currents of hundreds of amps. Standard photocathodes face significant challenges in meeting these requirements, and often have short operational lifetimes in an accelerator environment. We report on recent progress toward development of secondary emission amplifiers for photocathodes, which are intended to increase the achievable average current while protecting the cathode from the accelerator. The amplifier is a thin diamond wafer which converts energetic (few keV) primary electrons into hundreds of electron-hole pairs via secondary electron emission. The electrons drift through the diamond under an external bias and are emitted into vacuum via a hydrogen-terminated surface with negative electron affinity (NEA). Secondary emission gain of over 200 has been achieved. Two methods of patterning diamond, laser ablation and reactive-ion etching (RIE), are being developed to produce the required geometry. A variety of diagnostic techniques, including FTIR, SEM and AFM, have been used to characterize the diamonds.

  7. Biofunctionalization of diamond microelectrodes

    Energy Technology Data Exchange (ETDEWEB)

    Reitinger, Andreas Adam; Lud, Simon Quartus; Stutzmann, Martin; Garrido, Jose Antonio [Walter Schottky Institut, TU Muenchen (Germany); Hutter, Naima Aurelia; Richter, Gerhard; Jordan, Rainer [WACKER-Chair of Macromolecular Chemistry, TU Muenchen (Germany)

    2010-07-01

    In this work we present two main routes for the biofunctionalization of nanocrystalline diamond films, aiming at the application of diamond microelectrodes as amperometric biosensors. We report on direct covalent grafting of biomolecules on nanocrystalline diamond films via diazonium monophenyls and biphenyls as well as other linker molecules, forming self-assembled monolayers on the diamond surface. Monolayers with different functional head groups have been characterized. Patterning of the available functional groups using electron beam-induced chemical lithography allows the selective preparation of well-localized docking sites for the immobilization of biomolecules. Furthermore, polymer brushes are expected to enable novel paths for designing more advanced biosensing schemes, incorporating multifunctional groups and a higher loading capacity for biomolecules. Here, we focus on the preparation of polymer grafts by self-initiated photografting and photopolymerization. Further chemical modification of the grafted polymer brushes results in the introduction of additional functional molecules, paving the way for the incorporation of more complex molecular structures such as proteins. In a comparative study we investigate the advantages and disadvantages of both approaches.

  8. Amorphous iron (II) carbonate

    DEFF Research Database (Denmark)

    Sel, Ozlem; Radha, A.V.; Dideriksen, Knud;

    2012-01-01

    Abstract The synthesis, characterization and crystallization energetics of amorphous iron (II) carbonate (AFC) are reported. AFC may form as a precursor for siderite (FeCO3). The enthalpy of crystallization (DHcrys) of AFC is similar to that of amorphous magnesium carbonate (AMC) and more...

  9. Characterization of structural alteration in diamond turned silicon crystal by means of micro raman spectroscopy and transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    Renato Goulart Jasinevicius

    2005-09-01

    Full Text Available In this work, (100 oriented monocrystalline silicon samples were single point diamond turned under conditions that led to a ductile and brittle regime. Raman spectroscopy results showed that the ductile regime diamond turning of silicon surfaces induced amorphization and, on the contrary, in the brittle mode machining condition this amorphous layer does not exist. Ductile machined surface was found to be a mixture of crystalline and amorphous phases probed by (macro-Raman spectroscopy. Transmission Electron Microscopy (TEM analyses were then carried out in order to characterize the structural alteration in the machined surface and chips. The electron diffraction pattern of the machined surface detected a crystalline phase along with the amorphous silicon confirming the former results. The mechanism of material removal is widely discussed based upon the results presented here.

  10. Studies of defects on ion irradiated diamond

    Energy Technology Data Exchange (ETDEWEB)

    Lai, P.F.; Prawer, S.; Spargo, A.E.C.; Bursill, L.A. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    It is known that diamond is amorphized or graphitized when irradiated above a critical dose. Above this critical dose, D{sub c}, the resistance R is found to drop very rapidly due to the formation of graphite regions which overlap at D{sub c} to form a semi-continuous electrically conducting pathway through the sample. One particularly interesting method of studying this transformation is electron energy-loss spectroscopy (EELS). Using EELS, the different phases of carbon can be identified and distinguished from each other using the extended energy-loss fine structure (EXELFS) of the core-loss part of the spectrum. EELS is a sensitive method for determining the electronic structure of small areas of a sample. In this paper, transmission electron microscopy (TEM) and EELS measurements of the ion irradiated diamond were combined in an attempt to correlate the microstructural nature of the ion-beam induced damage to the changes in the electrical and other properties. 7 refs., 1 tab., 2 figs.

  11. Most diamonds were created equal

    Science.gov (United States)

    Jablon, Brooke Matat; Navon, Oded

    2016-06-01

    Diamonds crystallize deep in the mantle (>150 km), leaving their carbon sources and the mechanism of their crystallization debatable. They can form from elemental carbon, by oxidation of reduced species (e.g. methane) or reduction of oxidized ones (e.g. carbonate-bearing minerals or melts), in response to decreasing carbon solubility in melts or fluids or due to changes in pH. The mechanism of formation is clear for fibrous diamonds that grew from the carbonate-bearing fluids trapped in their microinclusions. However, these diamonds look different and, based on their lower level of nitrogen aggregation, are much younger than most monocrystalline (MC) diamonds. In the first systematic search for microinclusions in MC diamonds we examined twinned crystals (macles), assuming that during their growth, microinclusions were trapped along the twinning plane. Visible mineral inclusions (>10 μm) and nitrogen aggregation levels in these clear macles are similar to other MC diamonds. We found 32 microinclusions along the twinning planes in eight out of 30 diamonds. Eight inclusions are orthopyroxene; four contain >50% K2O (probably as K2(Mg, Ca)(CO3)2); but the major element compositions of the remaining 20 are similar to those of carbonate-bearing high-density fluids (HDFs) found in fibrous diamonds. We conclude that the source of carbon for these macles and for most diamonds is carbonate-bearing HDFs similar to those found here and in fibrous diamonds. Combined with the old ages of MC diamonds (up to 3.5 Ga), our new findings suggest that carbonates have been introduced into the reduced lithospheric mantle since the Archaean and that the mechanism of diamond formation is the same for most diamonds.

  12. Structure and properties of diamond and diamond-like films

    Energy Technology Data Exchange (ETDEWEB)

    Clausing, R.E. [Oak Ridge National Lab., TN (United States)

    1993-01-01

    This section is broken into four parts: (1) introduction, (2) natural IIa diamond, (3) importance of structure and composition, and (4) control of structure and properties. Conclusions of this discussion are that properties of chemical vapor deposited diamond films can compare favorably with natural diamond, that properties are anisotropic and are a strong function of structure and crystal perfection, that crystal perfection and morphology are functions of growth conditions and can be controlled, and that the manipulation of texture and thereby surface morphology and internal crystal perfection is an important step in optimizing chemically deposited diamond films for applications.

  13. Effect of hydrogenation, low energy ion irradiation and annealing on hydrogen bonding to polycrystalline diamond surface studied by high resolution electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    The effects of different processes of hydrogenation, thermal treatment and ion irradiation of hydrogenated polycrystalline diamond surface have been investigated by means of high resolution electron energy loss spectroscopy (HR-EELS). Analysis of the different contributions in the CH stretching, overtones and combination modes, as well as changes in relative intensities of the diamond CC and CHx related vibrations allowed us to identify the CHx adsorbed species on the diamond surface following the different treatments. Ex-situ hydrogenation of diamond surface by means of exposure to H-MW plasma results in a fully hydrogenated well-ordered diamond surface and etching of the amorphous phase located on the grain boundaries present on the sample after CVD-deposition. Annealing this surface to 600 C results in some subtle changes in the HR-EELS, probably associated with decomposition of CHx (x=2,3) adsorbed species. Ion irradiation on the surface induces partial desorption of hydrogen from the diamond phase and a large amount of amorphous defects, some of them of sp and the most of them of sp2 character. Annealing to 600-700 C of the irradiated surface leads to hydrogen desorption. In-situ hydrogenation of the irradiated and annealed sample does not restore the diamond structure, and results in hydrogenated amorphous surface, unstable with thermal annealing above 600-700 C. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Characteristics of the light emission from CVD diamond windows

    International Nuclear Information System (INIS)

    Video and infrared signals were registered from brazed and bare CVD diamond disks forming the windows of an evacuated transmission cell placed into the beam line of a high power gyrotron facility at 140 GHz (Maquette tube). Intense light emission forming spot-like patterns, that was observed under vacuum conditions, has a broad maximum around 770 nm, which is attributed to light emitting processes of non-purely thermal nature. Carbon residues, likely of amorphous structure, which can be formed by decomposition of organic fibres, such as cellulose, are shown to be one source of this spectacular phenomenon. Here, no critical limitation is seen for the performance of high power diamond windows. (authors)

  15. Effects in CVD diamond exposed to fusion plasmas

    International Nuclear Information System (INIS)

    Micro and nanocrystalline diamond layers have been deposited on molybdenum substrates by hot-filament CVD, and tested in the Mega Amp Spherical Tokamak as a protective coating of fusion plasma-facing materials. The modification of surface properties induced by high density plasma was investigated by SEM, X-ray photoelectron spectroscopy and Raman spectroscopy. Although some modifications of the coating, amorphization and some traces of arcing, diamond proved to be a viable protection as most of the samples were still coated after the plasma exposure. Fuel retention measurements, evaluated by nuclear reaction analysis, showed that a small amount of deuterium was trapped in the surface of the coatings. The chemical erosion of the layers was 50% lower than graphite, as evaluated by dedicated experiments in Pilot-PSI, a linear plasma simulator device. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  16. Genetics Home Reference: Diamond-Blackfan anemia

    Science.gov (United States)

    ... Home Health Conditions Diamond-Blackfan anemia Diamond-Blackfan anemia Enable Javascript to view the expand/collapse boxes. ... PDF Open All Close All Description Diamond-Blackfan anemia is a disorder of the bone marrow . The ...

  17. Amorphous silicon thermometer

    International Nuclear Information System (INIS)

    The carbon glass resistance thermometers (CGRT) shows an unstable drift by heat cycles. Since we were looking for a more stable element of thermometer for cryogenic and high magnetic field environments, we selected amorphous silicon as a substitute for CGRT. The resistance of many amorphous samples were measured at 4K, at 77K, and 300K. We eventually found an amorphous silicon (Si-H) alloy whose the sensitivity below 77K was comparable to that of the germanium resistance thermometer with little magnetic field influence. (author)

  18. CVD diamond as a 21st century engineering material

    International Nuclear Information System (INIS)

    Full text: Diamond is one of the most extraordinary materials known. For almost any physical property you can think of, diamond is top of the list. It is the hardest, strongest and stiffest known material, it conducts heat better than copper, is transparent from the deep ultraviolet to the far infrared, is resistant to acids and bases, and has one of the lowest thermal expansion coefficients. However, until recently diamond has only been available in the form of gemstones, obtained from mines. These are prized for jewellery, but have only limited engineering or scientific applications. However, over the past 20 years, scientists have discovered how to produce thin films of pure diamond using Chemical Vapour Deposition (CVD), using as a starting material nothing more exotic than methane and hydrogen gases. The extraordinary properties of diamond have already enabled such films to find applications as hard, wear-resistant coatings in engineering components and machine tools, as heat spreaders, and as specialised optical windows. The possibility of doping the films to produce semiconducting diamond, suggests exciting future applications for these materials as electronic devices and sensors. Furthermore, the unusual electron emission properties of diamond make it a candidate for the electrode in the next generation of flat panel displays, solar cells or even quantum computers. In this talk, I will briefly describe how CVD diamond films are produced and outline some of the important chemistry and physics of the deposition process [1]. I shall also discuss the various uses of these films, and speculate about some of the more exciting potential future applications, such as quantum computing, biosensors, atmospheric-pressure microplasmas [2], brain-computer interfaces and designer neural nets [3], including those which are relevant to energy production, such as thermionic energy generation from focused solar heat [4], and efficient electrochemical electrodes made from

  19. Technology for diamond based electronics

    OpenAIRE

    Kubovic, Michal

    2009-01-01

    The superior electrical and thermal properties of diamond predestine this material to become an important semiconductor. In this thesis, diamond field effect transistors and diodes were fabricated and evaluated. The progress in fabrication technology enabled DC, small and large signal measurements on FETs employing a hydrogen-induced p-type channel. Operation of such FETs at microwave frequencies showed high cut-off frequencies and first power measurements on diamond FETs have been performed ...

  20. Mechanically induced degradation of diamond

    International Nuclear Information System (INIS)

    This thesis deals with the wear of diamond occurring during frictional sliding contact between diamonds. In the introduction, a literature survey on friction, wear and polishing behaviour of diamond, with some emphasis on the anisotropy, is presented and earlier work is discussed. A review of the existing theories is given, a new hypothesis is proposed and key-experiments for verification are identified. Electron microscopical techniques such as High Resolution Electron Microscopy (HREM) imaging and Electron Energy Loss Spectroscopy are described as they were employed to study the nature of the surface damage and the debris which is formed during sliding contact. The results of these experiments indicate that a transformation from diamond to graphite may take place during shearing contact of diamonds. A microscopic model, which is a further refinement of the hypothesis, is developed and its prediction on the orientation dependency for shear-induced graphitisation is found to correspond to the observed anisotropy in the friction, wear and polishing behaviour of diamond. The model, based on c transformation of sp3-coordinated carbon into sp2-coordinated carbon due to excessive distortions of the diamond bonds, is used to describe phenomena occurring during macroscopic experiments. A HREM study of controlled ion beam bombarded Chemical Vapour Deposited (CVD) Diamond is presented to demonstrate the broader applicability of the model. It is found that during the ion bombardment a mechanically induced graphitisation, as opposed to a thermally activated transformation, may occur locally on collision with the CVD diamond. Two types of diamond-graphite interfaces were observed: (111) planes of diamond parallel to the a-b planes of graphite and (111) planes of diamond, smoothly within the plane, connected to a-b planes of graphite. The thesis concludes with a summary of the results, conclusions and recommendations for further work. (author)

  1. Conversion of fullerenes to diamond

    Science.gov (United States)

    Gruen, Dieter M.

    1993-01-01

    A method of forming synthetic diamond on a substrate is disclosed. The method involves providing a substrate surface covered with a fullerene or diamond coating, positioning a fullerene in an ionization source, creating a fullerene vapor, ionizing fullerene molecules, accelerating the fullerene ions to energies above 250 eV to form a fullerene ion beam, impinging the fullerene ion beam on the substrate surface and continuing these steps to obtain a diamond thickness on the substrate.

  2. Low temperature diamond growth

    Czech Academy of Sciences Publication Activity Database

    Ižák, Tibor; Babchenko, Oleg; Potocký, Štěpán; Remeš, Zdeněk; Kozak, Halyna; Verveniotis, Elisseos; Rezek, Bohuslav; Kromka, Alexander

    Cambridge: The Royal Society of Chemistry, 2014 - (Williams, O.), s. 290-342 ISBN 978-1-84973-639-8 R&D Projects: GA ČR(CZ) GBP108/12/G108 Grant ostatní: GA AV ČR(CZ) Purkyně Fellowship Institutional support: RVO:68378271 Keywords : diamond film * pulsed linear antenna MWCVD * low temperature deposition * temperature sensitive substrates Subject RIV: BM - Solid Matter Physics ; Magnetism

  3. Diamond Schottky barrier diodes

    OpenAIRE

    Brezeanu, Mihai

    2008-01-01

    Research on wide band gap semiconductors suitable for power electronic devices has spread rapidly in the last decade. The remarkable results exhibited by silicon carbide (SiC) Schottky batTier diodes (SBDs), commercially available since 2001, showed the potential of wide band gap semiconductors for replacing silicon (Si) in the range of medium to high voltage applications, where high frequency operation is required. With superior physical and electrical properties, diamond beca...

  4. Individual energy savings for individual flats in blocks of flats

    DEFF Research Database (Denmark)

    Nielsen, Anker; Rose, Jørgen

    2014-01-01

    is distributed on the individual flats. Today, most blocks of flats have individual heat meters to save energy and to ensure a fair distribution of the cost. If all flats have the same indoor temperature, the distribution is correct. In practice, the inhabitants of the different flats maintain......It is well known that similar flats in a block do not have the same energy demand. Part of the explanation for this is the location of the flat in the building, e.g. on the top floor, at the house end or in the middle of the building. It is possible to take this into account when the heating bill...... different indoor temperatures. The result is that heat flows between individual flats. This decreases the energy consumption in the flat where the owner maintains a lower temperature. The neighbouring flats will have higher energy consumption. Calculations were performed for Danish blocks of flats from 1920...

  5. Tailoring the Matrix in Ultra-Nanocrystalline Diamond Films

    Science.gov (United States)

    Buck, Volker; Woehrl, Nicolas

    2008-10-01

    By depositing films in argon-rich plasmas it is possible to produce ultra-nanocrystalline diamond (UNCD) films with grain sizes of 5-100 nm. By reducing the grain size, these films feature rather distinctive combinations of properties making them potential materials for emerging technological developments such as nano/micro-electro-mechanical systems (N/MEMS), optical coatings, bioelectronics, surface acoustic wave (SAW) filters, and tribological applications. The majority of works dealing with nanocrystalline diamond (NCD) up to now have concentrated on diamond grains (e.g., grain size, texture). In doing so the surrounding crystal matrix has been neglected and its effect on the substrate properties has been dismissed as a grain boundary effect. This view does not accord with its relevance to film properties. Because the matrix consists of amorphous carbon structures, approved methods for the characterization of this appropriate special class of materials were used here such as Raman and Fourier transform infrared spectroscopy (FTIR). The use of an amorphous matrix for nanocrystalline diamond grains has lead to an enormous field of new materials, because a whole class of carbon-based materials (diamondlike carbon, DLC) can be used as a matrix that may contain only carbon (a-C) or carbon and hydrogen (a-C:H) as well as other components such as metals (Me-C:H); additionally, other dopants such as silicon, oxygen, halogens, or nitrogen may be included. As an example, it is shown how the mechanical stress in films can be adjusted by tailoring the matrix.

  6. Raman barometry of diamond formation

    Science.gov (United States)

    Izraeli, E. S.; Harris, J. W.; Navon, O.

    1999-11-01

    Pressures and temperatures of the diamond source region are commonly estimated using chemical equilibria between coexisting mineral inclusions. Here we present another type of geobarometer, based on determination of the internal pressure in olivine inclusions and the stresses in the surrounding diamond. Using Raman spectroscopy, pressures of 0.13 to 0.65 GPa were measured inside olivine inclusions in three diamonds from the Udachnaya mine in Siberia. Stresses in the diamond surrounding the inclusions indicated similar pressures (0.11-0.41 GPa). Nitrogen concentration and aggregation state in two of the diamonds yielded mantle residence temperatures of ˜1200°C. Using this temperature and the bulk moduli and thermal expansion of olivine and diamond, we calculated source pressures of 4.4-5.2 GPa. We also derived a linear approximation for the general dependence of the source pressure ( P0, GPa) on source temperature ( T0, °C) and the measured internal pressure in the inclusion ( Pi): P0=(3.259×10 -4Pi+3.285×10 -3) T0+0.9246 Pi+0.319. Raman barometry may be applied to other inclusions in diamonds or other inclusion-host systems. If combined with IR determination of the mantle residence temperature of the diamond, it allows estimation of the pressure at the source based on a non-destructive examination of a single diamond containing a single inclusion.

  7. Conversion of fullerenes to diamonds

    Science.gov (United States)

    Gruen, Dieter M.

    1995-01-01

    A method of forming synthetic diamond or diamond-like films on a substrate surface. The method involves the steps of providing a vapor selected from the group of fullerene molecules or an inert gas/fullerene molecule mixture, providing energy to the fullerene molecules consisting of carbon-carbon bonds, the energized fullerene molecules breaking down to form fragments of fullerene molecules including C.sub.2 molecules and depositing the energized fullerene molecules with C.sub.2 fragments onto the substrate with farther fragmentation occurring and forming a thickness of diamond or diamond-like films on the substrate surface.

  8. Diamonds in ophiolites: Contamination or a new diamond growth environment?

    Science.gov (United States)

    Howell, D.; Griffin, W. L.; Yang, J.; Gain, S.; Stern, R. A.; Huang, J.-X.; Jacob, D. E.; Xu, X.; Stokes, A. J.; O'Reilly, S. Y.; Pearson, N. J.

    2015-11-01

    For more than 20 years, the reported occurrence of diamonds in the chromites and peridotites of the Luobusa massif in Tibet (a complex described as an ophiolite) has been widely ignored by the diamond research community. This skepticism has persisted because the diamonds are similar in many respects to high-pressure high-temperature (HPHT) synthetic/industrial diamonds (grown from metal solvents), and the finding previously has not been independently replicated. We present a detailed examination of the Luobusa diamonds (recovered from both peridotites and chromitites), including morphology, size, color, impurity characteristics (by infrared spectroscopy), internal growth structures, trace-element patterns, and C and N isotopes. A detailed comparison with synthetic industrial diamonds shows many similarities. Cubo-octahedral morphology, yellow color due to unaggregated nitrogen (C centres only, Type Ib), metal-alloy inclusions and highly negative δ13C values are present in both sets of diamonds. The Tibetan diamonds (n = 3) show an exceptionally large range in δ15N (-5.6 to + 28.7 ‰) within individual crystals, and inconsistent fractionation between {111} and {100} growth sectors. This in contrast to large synthetic HPHT diamonds grown by the temperature gradient method, which have with δ15N = 0 ‰ in {111} sectors and + 30 ‰ in {100} sectors, as reported in the literature. This comparison is limited by the small sample set combined with the fact the diamonds probably grew by different processes. However, the Tibetan diamonds do have generally higher concentrations and different ratios of trace elements; most inclusions are a NiMnCo alloy, but there are also some small REE-rich phases never seen in HPHT synthetics. These characteristics indicate that the Tibetan diamonds grew in contact with a C-saturated Ni-Mn-Co-rich melt in a highly reduced environment. The stable isotopes indicate a major subduction-related contribution to the chemical environment. The

  9. Surface warpage measurement of diamond grid disk by shadow Moiré method

    Science.gov (United States)

    Chen, Terry Yuan-Fang; Chen, Jian-Shiang

    2011-12-01

    Diamond grid disk dresser is frequently employed to remove the accumulated debris lest the polishing surface glazes. The surface warpage of diamond grid disk must be small enough to assure the flatness of polished wafers during chemical mechanical planarization process. In this study, phase-shifted shadow moiré method was employed to measure the surface warpage of diamond grid disks. To eliminate erroneous bright or black spots caused by the diamond grids, a novel method is proposed by selecting proper threshold values from the addition of four phase-shifted images, and from the grey-level difference between the addition of phases 0 and π images and the addition of phases π/2 and 3π/2 images. Test of the proposed method on real specimens show that the erroneous bright and black spots can be effectively identified and patched. Thereafter the phase can be unwrapped successfully to obtain the surface profile and thus the warpage of specimens.

  10. Rocky Flats Compliance Program

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) (OTD) as an element of Environmental Restoration and Waste Management (EM) in November 1989. The primary objective of the Office of Technology Development, Rocky Flats Compliance Program (RFCP), is to develop altemative treatment technologies for mixed low-level waste (wastes containing both hazardous and radioactive components) to use in bringing the Rocky Flats Plant (RFP) into compliance with Federal and state regulations and agreements. Approximately 48,000 cubic feet of untreated low-level mixed waste, for which treatment has not been specified, are stored at the RFP. The cleanup of the Rocky Flats site is driven by agreements between DOE, the Environmental Protection Agency (EPA), and the Colorado Department of Health (CDH). Under these agreements, a Comprehensive Treatment and Management Plan (CTMP) was drafted to outline the mechanisms by which RFP will achieve compliance with the regulations and agreements. This document describes DOE's strategy to treat low-level mixed waste to meet Land Disposal Restrictions and sets specific milestones related to the regulatory aspects of technology development. These milestones detail schedules for the development of technologies to treat all of the mixed wastes at the RFP. Under the Federal Facilities Compliance Act (FFCA), the CTMP has been incorporated into Rocky Flats Plant Conceptual Site Treatment Plan (CSTP). The CSTP will become the Rocky Flats Plant site Treatment Plan in 1995 and will supersede the CTMP

  11. Inclusions of chlorides in natural diamonds from Siberia

    Science.gov (United States)

    Titkov, Sergey; Ryabchikov, Igor; Pomazansky, Bogdan; Magazina, Larisa

    2010-05-01

    In recent years, microinclusions of Cl-bearing high density fluids that contained silicic, carbonatitic and saline components in variable proportions have been revealed in octahedral diamonds with cloudy central or intermediate growth zones, in diamonds with fibrous coat and in fibrous cubic diamonds from many kimberlite deposits (Tomlinson et al., 2006; Klein-BenDavid et al., 2007 and references therein). Experimental works have shown that chloride-bearing system is a favorable medium for diamond growth (Palyanov et al., 2007). In course of study of microinclusions in diamonds from Siberia unusual chloride microinclusions with specific morphologies have been found by us in a rounded dark-grey dodecahedron from the placer deposits with unknown source in northern Yakutia and in a dark-grey coarse-grained polycrystalline aggregate of diamond from the kimberlites of western Yakutia. The rounded dodecahedron represented V variety according to the diamond classification by Y.L.Orlov consisted of a quite perfect core and fibrous coat with abundant black microinclusions. Its rounded shape was formed during post growth dissolution. The polycrystalline diamond aggregate contained numerous black microinclusions of magnetite and some other Fe-phase as was reported previously (Titkov et al., 2003). The microinclusions were studied using a JEOL JSM-5300 scanning electron microscope equipped with an Oxford LINK ISIS energy-dispersive spectrometer with an analytical range from Be to U. In preparation for analysis, each sample was crushed after being wrapped in a special paper to avoid contamination. Analysis was performed on rough surfaces of fragments that were fairly flat and oriented nearly perpendicular to the electron beam. These samples were carbon coated. Study of rounded dodecahedron fragments revealed irregular cavity, about 30 m across. Its main volume was occupied by a large inclusion of variable composition with an average of 20.6 wt% Na, 15.5 wt% K, 0.6 wt% S, 0

  12. Flat flame burner

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Y.; Mitsudomi, H.

    1976-02-24

    Osaka Gas Co., Ltd.'s new flat-flame heat-treatment burner offers lower material costs, reduced combustion noise, and elimination of the need for a high-pressure fuel gas to provide a high-velocity combustion burner. The flat-flame burner contains an air-swirling chamber with a flame opening in one side; the wall defining the flame opening has a small thickness around the opening and a flat outer face. This construction causes the combustion gas to be forced out from the flame opening in a spiral direction by the swirling air current within the air chamber; together with the orifice effect of permitting the flame to emanate from a small opening to an unconfined outer space, this helps assure the formation of a flat flame spreading out over a very wide area for very rapid, uniform, and highly efficient heat treatment of an article to be heated. This approach also permits the thickness of the overall device to be reduced. The supply of combustion air in the form of a swirling stream makes it possible to provide a high-velocity combustion burner without using a high-pressure fuel gas, with the advantage of satisfactory mixture of the fuel gas and combustion air and consequently markedly reduced combustion noise.

  13. Designing of concrete diamond sawblade

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shao-he; DING Xin-yu; ZHOU Jia-xiang

    2005-01-01

    By analyzing the abrasive theory of concrete diamond sawblade, the proposal that the diamond should be selected by its function in cutting concrete is presented. The part of the big grit diamonds cut rock, and the part of the small grit diamonds improve the wearability of the matrix. The contrast tests are done with different shapes of sawbaldes in split segment, slant "U" slot segment, sandwich segment, turbo segment and three-slot segment. The special shapes of sawblades can improve the effect of cooling and the removing ability of the rock powder. The data of tests show that the efficiency of cutting and the life of sawblades are improved by designing the diamond prescription and using the especial geometry of segment.

  14. High efficiency diamond solar cells

    Science.gov (United States)

    Gruen, Dieter M.

    2008-05-06

    A photovoltaic device and method of making same. A layer of p-doped microcrystalline diamond is deposited on a layer of n-doped ultrananocrystalline diamond such as by providing a substrate in a chamber, providing a first atmosphere containing about 1% by volume CH.sub.4 and about 99% by volume H.sub.2 with dopant quantities of a boron compound, subjecting the atmosphere to microwave energy to deposit a p-doped microcrystalline diamond layer on the substrate, providing a second atmosphere of about 1% by volume CH.sub.4 and about 89% by volume Ar and about 10% by volume N.sub.2, subjecting the second atmosphere to microwave energy to deposit a n-doped ultrananocrystalline diamond layer on the p-doped microcrystalline diamond layer. Electrodes and leads are added to conduct electrical energy when the layers are irradiated.

  15. Thermal diffusivity of diamond films

    Science.gov (United States)

    Albin, Sacharia; Winfree, William P.; Crews, B. Scott

    1990-01-01

    A laser pulse technique to measure the thermal diffusivity of diamond films deposited on a silicon substrate is developed. The effective thermal diffusivity of diamond film on silicon was measured by observing the phase and amplitude of the cyclic thermal waves generated by the laser pulses. An analytical model is developed to calculate the effective in-plane (face-parallel) diffusivity of a two layer system. The model is used to reduce the effective thermal diffusivity of the diamond/silicon sample to a value for the thermal diffusivity and conductivity of the diamond film. Phase and amplitude measurements give similar results. The thermal conductivity of the films is found to be better than that of type 1a natural diamond.

  16. Ionoluminescence (IL) of synthetic diamonds

    International Nuclear Information System (INIS)

    The optical properties of natural and synthetic diamonds have been extensively characterized in the past by absorption and luminescence. The use of such techniques as cathodoluminescence, photoluminescence, photoluminescence excitation and electron spin and paramagnetic resonance has resulted in the identification of many impurity and defect related optical centres in diamond. Of the impurities found in diamond, nitrogen is by far the most abundant and hence responsible for most of the optical properties. The development of diamond synthesis methods has resulted in the discovery of a number of a new optically active impurities and defects which are introduced during the growth process. These include Si, O, Ni and B. In this study we identify a number of defect and impurity related centres in two commercially produced synthetic diamond samples by using the novel technique of ionoluminescence. The results are consistent with previous studies which have shown that Ni impurities segregate in [111] growth sector. (authors)

  17. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    Directory of Open Access Journals (Sweden)

    Vojtěch Kundrát

    2015-04-01

    Full Text Available Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42 substrates using a multi-structured molybdenum (Mo – tungsten (W interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  18. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    Science.gov (United States)

    Kundrát, Vojtěch; Zhang, Xiaoling; Cooke, Kevin; Sun, Hailin; Sullivan, John; Ye, Haitao

    2015-04-01

    Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) - tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  19. Electron field emission from amorphous semiconductor thin films

    International Nuclear Information System (INIS)

    The flat panel display market requires new and improved technologies in order to keep up with the requirements of modem lifestyles. Electron field emission from thin film amorphous semiconductors is potentially such a technology. For this technology to become viable, improvements in the field emitting properties of these materials must be achieved. To this end, it is important that a better understanding of the emission mechanisms responsible is attained. Amorphous carbon thin films, amorphous silicon thin films and other materials have been deposited, in-house and externally. These materials have been characterised using ellipsometry, profilometry, optical absorption, scanning electron microscopy, atomic force microscopy, electron paramagnetic resonance and Rutherford backscattering spectroscopy. An experimental system for evaluating the electron field emitting performance of thin films has been developed. In the process of developing thin film cathodes in this study, it has been possible to add a new and potentially more useful semiconductor, namely amorphous silicon, to the family of cold cathode emitters. Extensive experimental field emission data from amorphous carbon thin films, amorphous silicon thin films and other materials has been gathered. This data has been used to determine the mechanisms responsible for the observed electron emission. Preliminary computer simulations using appropriate values for the different material properties have exhibited emission mechanisms similar to those identified by experiment. (author)

  20. Diamond Blackfan Syndrome

    Directory of Open Access Journals (Sweden)

    Rahul SINHA, Daljit SINGH, Kirandeep SODHI, Y K KIRAN, Biju JOHN

    2010-01-01

    Full Text Available We report a case of Diamond Blackfan syndrome in 6yr old girl who was detected to have severe anaemia on D4 of life. The baby was detected to have polydactyly right hand (preaxial and weak radial pulse on right side. On examination there was severe pallor without hepatosplenomegaly. The investigations revealed haemoglobin of 1.9 gm% with reticulocyte count of 0.3%. Other investigations were done to establish the cause of anaemia. The sickling test was negative, Peripheral blood smear revealed macrocytic anaemia, Hb electrophoresis revealed fetal haemoglobin of 2.7 %. Bone marrow examination revealed markedly reduced erythroid series, stress cytogenetics study done later was negative for any chromosomal breakage. Based on the clinical profile and investigation reports the diagnosis of Diamond Blackfan Syndrome was made. The child was put on corticosteroids which were gradually tapered. Subsequently any attempt at withdrawl of steroids resulted in fall in haemoglobin levels. Hence the child has been maintained on low dose steroids and has remained symptom free.

  1. Density measurement of samples under high pressure using synchrotron microtomography and diamond anvil cell techniques

    International Nuclear Information System (INIS)

    An algorithm is developed to extract accurate mass density information from tomography data of a sample embedded in a diamond anvil cell in a high-pressure environment. Accurate mass density information is critical in high-pressure studies of materials. It is, however, very difficult to measure the mass densities of amorphous materials under high pressure with a diamond anvil cell (DAC). Employing tomography to measure mass density of amorphous samples under high pressure in a DAC has recently been reported. In reality, the tomography data of a sample in a DAC suffers from not only noise but also from the missing angle problem owing to the geometry of the DAC. An algorithm that can suppress noise and overcome the missing angle problem has been developed to obtain accurate mass density information from such ill-posed data. The validity of the proposed methods was supported with simulations

  2. Thermodynamic analysis on synthesis process of diamond

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based upon the thermodynamic analysis of the nucleation of diamond crystal, the effects of synthesis temperature and pressure on the nucleation of diamond crystal, diamond growth and output of diamond crystal, particle size and strength were discussed. The results show that the excess pressure has an important effect on the critical radius of nucleation and thermodynamic barrier in the formation of a critical nucleus. Considering the excess pressure, the expression of diamond nucleation rate was obtained.

  3. Waveguide diamond vacuum windows with HELICOFLEXR seals

    International Nuclear Information System (INIS)

    Since brazing to diamond can be difficult, time-consuming and expensive, we have designed windows sealed for high vacuum by two HelicoflexR metal seals on opposing faces of a diamond disk. To prevent excessive stress on the diamond, the seals must be well aligned and external forces on the window assembly must not be transmitted to the diamond. We describe the main features of these windows. Calculations of the temperature rises and stresses in the diamond are presented. (author)

  4. Flat flame burner

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Y.; Mitsudomi, H.

    1976-03-09

    Osaka Gas Co., Ltd.'s new flat-flame burner has an air-swirling chamber with a flame opening in one side so constructed that combustion gas is forced out from the flame opening in a spiral direction by the swirling air current within the air chamber. The orifice effect of permitting the flame to emanate from a small opening to an unconfined outer space assures formation of a flat flame spreading out over a very wide area, thereby ensuring very rapid, uniform and highly efficient heat treatment of an article to be heated. With the present invention, moreover, it is possible to materially reduce the thickness of the overall device.

  5. Flat covers of modules

    CERN Document Server

    Xu, Jinzhong

    1996-01-01

    Since the injective envelope and projective cover were defined by Eckmann and Bas in the 1960s, they have had great influence on the development of homological algebra, ring theory and module theory. In the 1980s, Enochs introduced the flat cover and conjectured that every module has such a cover over any ring. This book provides the uniform methods and systematic treatment to study general envelopes and covers with the emphasis on the existence of flat cover. It shows that Enochs' conjecture is true for a large variety of interesting rings, and then presents the applications of the results. Readers with reasonable knowledge in rings and modules will not have difficulty in reading this book. It is suitable as a reference book and textbook for researchers and graduate students who have an interest in this field.

  6. Flat Earth图片

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    欢迎来到这期的光盘介绍。本月的附刊光盘中,除了每月的精彩教程外,您可在光盘中找到15张由Flat Earth友情提供的库存图片。当然还有Twixtor和最新的Acrobat Reader 7。

  7. Diamond and Diamond-Like Materials as Hydrogen Isotope Barriers

    International Nuclear Information System (INIS)

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The purpose of this project was to develop diamond and diamond-like thin-films as hydrogen isotope permeation barriers. Hydrogen embrittlement limits the life of boost systems which otherwise might be increased to 25 years with a successful non-reactive barrier. Applications in tritium processing such as bottle filling processes, tritium recovery processes, and target filling processes could benefit from an effective barrier. Diamond-like films used for low permeability shells for ICF and HEDP targets were also investigated. Unacceptable high permeabilities for hydrogen were obtained for plasma-CVD diamond-like-carbon films

  8. Molecular dynamic simulation of low-energy FIB irradiation induced damage in diamond

    International Nuclear Information System (INIS)

    In this article, a large scale multi-particle molecular dynamics (MD) simulation model was developed to study the dynamic structural changes in single crystal diamond under 5 keV Ga+ irradiation in conjunction with a transmission electron microscopy (TEM) experiment. The results show that the thickness of ion-induced damaged layer (∼9.0 nm) obtained from experiments and simulations has good accordance, which demonstrates the high accuracy achieved by the developed MD model. Using this model, the evolution of atomic defects, the spatial distributions of implanted Ga particles and the thermal spike at the very core collision area were analysed. The local thermal recrystallizations observed during each single ion collision process and the increase of the density of the non-diamond phase (mostly sp2 bonded) at irradiation area are fund to be the underling mechanisms responsible for ion fluence dependent amorphization of diamond observed in previous experiments

  9. Investigation of focused ion beam induced damage in single crystal diamond tools

    International Nuclear Information System (INIS)

    Highlights: • The FIB-induced damage layer should be paid enough attention when shaping the cutting edges of nanoscale diamond tools. • During FIB processing cutting tools made of natural single crystal diamond, the Ga+ collision will create a damage layer around tool tips. • The thicknesses of damaged layer and the level for amorphization of diamond significantly increase with beam energy. • The FIB-induced doping and defects during tool fabrication are responsible for the early detection of tool wear of nanoscale diamond tools. - Abstract: In this work, transmission electron microscope (TEM) measurements and molecular dynamics (MD) simulations were carried out to characterise the focused ion beam (FIB) induced damage layer in a single crystal diamond tool under different FIB processing voltages. The results obtained from the experiments and the simulations are in good agreement. The results indicate that during FIB processing cutting tools made of natural single crystal diamond, the energetic Ga+ collision will create an impulse-dependent damage layer at the irradiated surface. For the tested beam voltages in a typical FIB system (from 8 kV to 30 kV), the thicknesses of the damaged layers formed on a diamond tool surface increased from 11.5 nm to 27.6 nm. The dynamic damage process of FIB irradiation and ion–solid interactions physics leading to processing defects in FIB milling were emulated by MD simulations. The research findings from this study provide the in-depth understanding of the wear of nanoscale multi-tip diamond tools considering the FIB irradiation induced doping and defects during the tool fabrication process

  10. Phase transformation of single crystal silicon induced by grinding with ultrafine diamond grits

    International Nuclear Information System (INIS)

    Phase transformation of single crystal silicon (Si) was investigated under various grinding conditions using high-resolution transmission electron microscopy. Nanocrystals with sizes ranging from 6 to 20 nm of diamond cubic silicon (Si-I) and high-pressure phase (Si-III) were observed in the grinding-induced amorphous Si layers. The phase transformation pattern was found to be influenced by the thermal status involved in the grinding processes.

  11. Preparation and optical properties of nanocrystalline diamond films for the infrared planar waveguides

    Czech Academy of Sciences Publication Activity Database

    Remeš, Zdeněk; Purkrt, Adam; Babchenko, Oleg; Varga, Marián; Stuchlík, Jiří; Kromka, Alexander; Jirásek, Vít; Prajzler, Václav; Nekvindová, P.

    Tainan : Taiwan Association for Coatings and Thin Films Technology (TACT), 2015 - (Jenq-Gong, D.). s. 305-305 [International Thin Films Conference TACT 2015. 15.11.2015-18.11.2015, Tainan] R&D Projects: GA ČR(CZ) GA14-05053S Grant ostatní: AV ČR(CZ) MOST-15-04 Institutional support: RVO:68378271 Keywords : nanocrystalline diamond * hydrogenated amorphous silicon Subject RIV: BM - Solid Matter Physics ; Magnetism

  12. Atomic interactions at the (100) diamond surface and the impact of surface and interface changes on the electronic transport properties

    Science.gov (United States)

    Deferme, Wim

    Centuries and centuries already, diamond is a material that speaks to ones imagination. Till the 18th century it was only mined in India, after it was also found in Brazil and South-Africa. But along the fascinating properties of diamond, it is also a very interesting material for industry. After the discovery at the end of the 18th century that diamond consists of carbon, it took until the 50's of the previous century before research groups from Russia, Japan and the USA were able to reproduce the growth process of diamond. In 1989 it was discovered that the surface of intrinsic, insulation diamond can be made conductive by hydrogenating the surface. It was clear that not only hydrogen at the surface but also the so called "adsorbates" were responsible for this conductivity. It was still not completely clear what was the influence of other species (like oxygen) on the mechanism of surface conductivity and therefore in this thesis the influence of oxygen on the electronic transport properties of atomically flat diamond are researched. Besides the growth of atomically flat diamond with the use of CVD (chemical vapour deposition) en the study of the grown surfaces with characterising techniques such as AFM (atomic force microscopy) and STM (scanning tunnelling microscopy), the study of the surface treatment with plasma techniques is the main topic of this thesis. The influence of oxygen on the surface conductivity is studied and with the ToF (Time-of-Flight) technique the transport properties of the freestanding diamond are examined. With a short laserflash, electrons and holes are created at the diamond/aluminium interface and due to an electric field (up to 500V) the charge carriers are translated to the back contact. In this way the influence of the surface and the changes at the aluminum contacts is studied leading to very interesting results.

  13. Atomistic simulations of swift ion tracks in diamond and graphite

    International Nuclear Information System (INIS)

    We have used molecular dynamics simulations to study ion tracks in diamond and graphite. Tracks are included using a thermal spike model, i.e. a certain number of atoms within an initial track radius are given an initial excitation energy. The total energy given to the excited atoms and the length of the track determine an 'effective' stopping power dE/dx. Electronic excitations in semiconductors and semimetals like diamond and graphite can diffuse far from each other or be quenched before they couple to the lattice. This effect is included by varying the number of atoms that are effectively energized within the track. We use an initial track radius of 3 nm and we find that full amorphization of this region during the first few ps only occurs when the 'effective' dE/dx is larger than 6 ± 0.9 keV/nm for graphite and 10.5 ± 1.5 keV/nm for diamond. Since the 'effective' dE/dx depends on the electron-phonon coupling, our simulations set bounds on the efficiency of the coupling between the electronic excitations and the lattice in this highly non-equilibrium scenario

  14. Plasmon response and structure of nanocrystalline diamond powder

    International Nuclear Information System (INIS)

    High-resolution transmission electron microscopy, electron diffraction and parallel electron energy loss spectroscopy are used to analyse nanocrystalline diamond powder. Grains of diameter in the range 2- 10 nm were found aggregated together; the grain boundaries were essentially a grossly disordered (amorphous) intergranular phase. Analysis of the plasmon loss-function indicated mass density of 3.30 g/cm3, compared with 3.51 g/cm3 for a chemically-vapour-deposited diamond. The core-loss spectra showed virtually pure sp3 bonding overall although some exposed surfaces were coated with two or three graphitic layers. Two peaks were observed in the low energy loss-function, one at 34 eV was characteristic of the volume plasmon typically observed in crystalline diamond, a second peak at ∼ 23 eV for larger grains, shifted to lower energies as the particle size decreased (to 19.5 eV for 2.8 nm diameter) and at the same time it increased in intensity, becoming stronger than the volume plasmon for a 2.8 nm crystal. these results are interpreted using theoretical results for surface plasmons in small spherical particles. 19 refs., 1 tab., 5 figs

  15. Friction between silicon and diamond at the nanoscale

    International Nuclear Information System (INIS)

    This work investigates the nanoscale friction between diamond-structure silicon (Si) and diamond via molecular dynamics simulation. The interaction between the interfaces is considered as strong covalent bonds. The effects of load, sliding velocity, temperature and lattice orientation are investigated. Results show that the friction can be divided into two stages: the static friction and the kinetic friction. During the static friction stage, the load, lattice orientation and temperature dramatically affects the friction by changing the elastic limit of Si. Large elastic deformation is induced in the Si block, which eventually leads to the formation of a thin layer of amorphous Si near the Si-diamond interface and thus the beginning of the kinetic friction stage. During the kinetic friction stage, only temperature and velocity have an effect on the friction. The investigation of the microstructural evolution of Si demonstrated that the kinetic friction can be categorized into two modes (stick-slip and smooth sliding) depending on the temperature of the fracture region. (paper)

  16. Exact Piecewise Flat Gravitational Waves

    OpenAIRE

    van de Meent, Maarten

    2011-01-01

    We generalize our previous linear result [1] in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to construct a piecewise flat spacetime that describes an impulsive plane wavefront. From these wavefronts more general plane waves may be constructed.

  17. Pressure-induced structural evolution and amorphization in Eu3Ga5O12

    Science.gov (United States)

    Lin, C. L.; Li, Y. C.; Li, X. D.; Li, R.; Lin, J. F.; Liu, J.

    2013-10-01

    Crystal structural evolution of europium gallium garnet (Eu3Ga5O12; EGG) has been investigated by a combination of synchrotron x-ray diffraction, Raman scattering, and photoluminescence spectroscopy in a high-pressure diamond anvil cell. The cubic garnet EGG mostly collapses into an amorphous state upon compression to 85 GPa at room temperature. High-pressure Raman and photoluminescence spectra indicate that the amorphization process is related to the interaction and deformation of the tetrahedra GaO4 and octahedra GaO6 under compression, leading to the increase of the asymmetry of the local oxygen environment around the Eu3+ site with increasing pressures. The amorphization of EGG is associated with the overlapping of the tetrahedra and octahedra and the increase of the average coordination numbers of the Ga3+ ions in the amorphous state. X-ray diffraction spectra of EGG taken from a laser-heated diamond anvil cell demonstrate that the pressure-induced garnet-to-amorphous transition could result from the kinetic hindrance of a crystal-to-crystal phase transition at room temperature, rather than the decomposition reported earlier.

  18. Statistical characterization of the lapping plate surface morphology evolution in a diamond charging process

    International Nuclear Information System (INIS)

    The topographical evolution of a lapping plate surface during a diamond charging process was followed by analysis of atomic force microscopy (AFM) images. AFM measurements were performed in the tapping mode on several Sn–Sb alloy lapping plates containing different amounts of encrusted diamond particles on their surface. Such plates were processed under different charging times at the Lapping Plate Area of Hitachi Global Storage Technologies in Guadalajara, Mexico. Statistical functions were applied to the AFM data to determine the height and spatial characteristics of the plate's surface roughness. The resulting probability density function of heights, height–height correlation function (HCF) and power spectral density (PSD) showed characteristic patterns of evolution related to the amount and distribution of diamond particles incorporated on the plates. The HCF evolution proved how the locally non-flat initial plate surface evolves into a self-affine fractal after the plate is uniformly charged. Surface roughness parameters were found to increase during diamond charging up to a saturation value. The statistical analysis of surface slopes allowed determining the average angle of diamond edge protrusion. According to our results, the RMS roughness along with the HCF morphology analysis could be used to establish quality control measures for diamond charged lapping plates

  19. Compression behavior and equation of state of Ni77P23 amorphous alloy

    Institute of Scientific and Technical Information of China (English)

    LI Gong; GAO YunPeng; SUN YiNan; MA MingZhen; LIU Jing; LIU RiPing

    2007-01-01

    The compression behavior of Ni77P23 amorphous alloy is investigated at room temperature in a diamond-anvil cell instrument using in-situ high pressure energy dispersive X-ray diffraction with a synchrotron radiation source. The equation of state is determined by fitting the experimental data according to Birch-Murnaghan equation: -△V/V0=0.08606P-3.2×10-4P2+5.7×10-6P3. It is found that the structure of Ni77P23 amorphous alloy is stable under pressures up to 30.5 Gpa.

  20. Compression Behaviour of Ni77P23 Amorphous Alloy up to 30.5 GPa

    Institute of Scientific and Technical Information of China (English)

    LI Gong; ZHANG Xin-Yu; SUN Yi-Nan; QIAN Yu-Qing; LIU Jing; LIU Ri-Ping

    2005-01-01

    @@ The compression behaviour of Ni77P23 amorphous alloy is investigated at room temperature in a diamond-anvil cell instrument using in-situ high pressure energy dispersive x-ray diffraction with a synchrotron radiation source.The equation of state is determined by fitting the experimental data according to the Birch-Murnaghan equation.It is found that the structure of Ni77P23 amorphous alloy is stable under pressures up to 30.5GPa. Within the pressure range from zero to the experimental one, the pressure-induced structural relaxation is reversible.

  1. Rare-earth Doped Amorphous Silicon Microdisk and Microstadium Resonators with Emission at 1550nm

    CERN Document Server

    Figueira, D S L

    2007-01-01

    Microdisks and microstadium resonators were fabricated on erbium doped amorphous hydrogenated silicon (a-Si:H) layers sandwiched in air and native SiO2 on Si substrates. Annealing condition is optimized to allow large emission at 1550 nm for samples with erbium concentrations as high as 1.02x10^20 atoms/cm3. Near field scanning optical microscopy shows evidences of the simultaneous presence of bow-tie and diamond scars. These modes indicate the high quality of the resonators and the potentiality for achieving amorphous silicon microcavity lasers.

  2. Development of flat panel digital radiography system

    International Nuclear Information System (INIS)

    We developed the Digital Radiography System CXDI-11 which digitizes the X-ray image in high quality by using a self-developed flat panel detector. The CXDI-11 has a large image area of 43 cm x 43 cm (17'' x 17''), and it can display the image on the pre-view monitor after only 3 seconds of exposure. In this report, we present the principle and the physical characteristics of the CXDI-11. The X-ray detector installed in the CXDI-11 is a combination of a rare-earth scintillator and an amorphous silicon flat panel detector (LANMIT). The X-ray is converted to the visible fluorescent light at the scintillator and the light is detected by the LANMIT. The image-processed data is transferred to the DICOM3.0 conformed devices such as the diagnosis work station, the archiver and the laser imager through the network. We also show some measurement results of the dynamic range, the pre-sampling Modulation Transfer Function and the tube voltage dependent sensitivity. The CXDI-11 is superior in real time operation and image quality, thus it is the digital radiography system of the next generation. (author)

  3. Thermally induced alkylation of diamond.

    Science.gov (United States)

    Hoeb, Marco; Auernhammer, Marianne; Schoell, Sebastian J; Brandt, Martin S; Garrido, Jose A; Stutzmann, Martin; Sharp, Ian D

    2010-12-21

    We present an approach for the thermally activated formation of alkene-derived self-assembled monolayers on oxygen-terminated single and polycrystalline diamond surfaces. Chemical modification of the oxygen and hydrogen plasma-treated samples was achieved by heating in 1-octadecene. The resulting layers were characterized using X-ray photoelectron spectroscopy, thermal desorption spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and water contact angle measurements. This investigation reveals that alkenes selectively attach to the oxygen-terminated sites via covalent C-O-C bonds. The hydrophilic oxygen-terminated diamond is rendered strongly hydrophobic following this reaction. The nature of the process limits the organic layer growth to a single monolayer, and FTIR measurements reveal that such monolayers are dense and well ordered. In contrast, hydrogen-terminated diamond sites remain unaffected by this process. This method is thus complementary to the UV-initiated reaction of alkenes with diamond, which exhibits the opposite reactivity contrast. Thermal alkylation increases the range of available diamond functionalization strategies and provides a means of straightforwardly forming single organic layers in order to engineer the surface properties of diamond. PMID:21090790

  4. Quantum photonic networks in diamond

    KAUST Repository

    Lončar, Marko

    2013-02-01

    Advances in nanotechnology have enabled the opportunity to fabricate nanoscale optical devices and chip-scale systems in diamond that can generate, manipulate, and store optical signals at the single-photon level. In particular, nanophotonics has emerged as a powerful interface between optical elements such as optical fibers and lenses, and solid-state quantum objects such as luminescent color centers in diamond that can be used effectively to manipulate quantum information. While quantum science and technology has been the main driving force behind recent interest in diamond nanophotonics, such a platform would have many applications that go well beyond the quantum realm. For example, diamond\\'s transparency over a wide wavelength range, large third-order nonlinearity, and excellent thermal properties are of great interest for the implementation of frequency combs and integrated Raman lasers. Diamond is also an inert material that makes it well suited for biological applications and for devices that must operate in harsh environments. Copyright © Materials Research Society 2013.

  5. A procedure for diamond turning KDP crystals

    Energy Technology Data Exchange (ETDEWEB)

    Montesanti, R.C.; Thompson, S.L.

    1995-07-07

    A procedure and the equipment necessary for single-point diamond flycutting (loosely referred to as diamond turning) potassium di-hydrogen phosphate (KDP) crystals are described. It is based on current KDP diamond turning activities at the Lawrence Livermore National Laboratory (LLNL), drawing upon knowledge from the Nova crystal finishing development during the 1980`s and incorporating refinements from our efforts during 1995. In addition to describing a step-by-step process for diamond turning KDP, specific discussions are included on the necessary diamond tool geometry and edge sharpness, cutting fluid, and crystal preparation, handling, cleaning, and inspection. The authors presuppose that the reader is already familiar with diamond turning practices.

  6. Biocompatibility of chemical-vapour-deposited diamond.

    Science.gov (United States)

    Tang, L; Tsai, C; Gerberich, W W; Kruckeberg, L; Kania, D R

    1995-04-01

    The biocompatibility of chemical-vapour-deposited (CVD) diamond surfaces has been assessed. Our results indicate that CVD diamond is as biocompatible as titanium (Ti) and 316 stainless steel (SS). First, the amount of adsorbed and 'denatured' fibrinogen on CVD diamond was very close to that of Ti and SS. Second, both in vitro and in vivo there appears to be less cellular adhesion and activation on the surface of CVD diamond surfaces compared to Ti and SS. This evident biocompatibility, coupled with the corrosion resistance and notable mechanical integrity of CVD diamond, suggests that diamond-coated surfaces may be highly desirable in a number of biomedical applications. PMID:7654876

  7. Hydrogenated Black Diamond: An Electrical Study

    Energy Technology Data Exchange (ETDEWEB)

    Williams, O.A.; Jackman, R.B. [Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom); Nebel, C.E. [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, 85748 Garching (Germany)

    2002-10-16

    Hydrogen surface conductivity has been a controversial subject since its discovery. Initial plasma treatments on single crystal diamond and polycrystalline diamond have lead to the widespread use of this material in active electronics. However, ''Black'' polycrystalline diamond, usually termed ''Thermal Management Grade'', shows carrier concentration and mobility values similar to both white polycrystalline diamond and single crystal material. Schottky contacts have also been fabricated and show promising characteristics. Black diamond can be grown considerably faster than white diamond and is hence much cheaper. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  8. Combined HRTEM and PEELS analysis of nanoporous and amorphous carbon

    International Nuclear Information System (INIS)

    Both the mass density (1.37 kgm/m3) and sp2+sp3 bonding fraction (0.15) were determined for an unusual nanoporous amorphous carbon consisting of curved single graphitic sheets. A combination of high-resolution transmission electron microscopy (HRTEM) and parallel electron energy loss spectroscopy (PEELS) was used. The values of these two parameters provide important constraints for the determination of the structure of this relatively low density variety of nanoporous carbon. The results are relevant also in the search for negatively-curved Schwarzite-related carbon structures. New date are also presented for highly-oriented pyrollytic graphite (HOPG), chemically vapour deposited (CVD) diamond, C60, glassy carbon (GC) and evaporated amorphous carbon (EAC); these are compared with the results for NAC. Kramers-Kronig analysis (KKA) of the low-loss PEELS data shows that the band gaps of both NAC and EAC are collapsed relative to that of CVD diamond. 18 refs., 2 tabs., 3 figs

  9. Genetic Types of Diamond Mineralization

    Institute of Scientific and Technical Information of China (English)

    A.A.MARAKUSHEV; 桑隆康; 等

    1998-01-01

    The paper describes the proposed models of diamond formation both in meteorites and in kimberlite and lamproite bodies.metamorphic complexes and explosive-ring structures ("astroblemes"),The diamond distribution in meteorites(chondrites,iron meteorites and ureilites)is restricted to taente-kamasite phase.The diamond generation here is tied up with the first stage of evolution of the planets,This stage is characterized by high pressure of hydrogen. leading to the formation of the planet envelope,The second stage of planet evolution began with the progressive imopoverishment of their atmospheres in hydrogen due to its predominant emission into the space and to progressive development of oxidative conditions.The model appears to have proved the relict nature of diamond mineraolization in meteorites.Diamond and other high-pressure minerals(its"satellites") were crystallized without any exception in the early intratelluric stages of peridotite and eclogite-pyroxenite magma evolution just before the magma intrusion into the higher levels of the mantle and crust where diamond is not thermodynamically stable,The ultramafic intrusive bodies(bearing rich relict diamonds)in the dase of a platform paaear to be the substrata for the formation of kimberlite-lamproite magma chambers as a result of magmatic replacement.The model explains the polyfacial nature of diamondiferous eclotgites,pyroxenites and peridotites and discusses the process of inheritance of their diamond mineralization by kimberlites and lamproites.Dimond oproductivity of metamorthic complexes is originated by the inheritance of their diamonds from the above-mentioned primary diamondiferous rocks.Large diamondiferous explosive-ring structures were formed by high-energy endogenic explosion of fluid which came from the Earth's core.This high energy differs endogenic impactogenesis from explosive volcanism.It proceeds at very high temperature to create diaplectic galsses(monomineral pseudomorphs)-the product of

  10. Integration of high-dielectric constant Ta2O5 oxides on diamond for power devices

    Science.gov (United States)

    Cheng, Shaoheng; Sang, Liwen; Liao, Meiyong; Liu, Jiangwei; Imura, Masataka; Li, Hongdong; Koide, Yasuo

    2012-12-01

    The authors report on the direct integration of high-dielectric constant (high-k) Ta2O5 films on p-type single crystal diamond for high-power electronic devices. Crystallized hexagonal phase δ-Ta2O5 film is achieved on diamond by annealing the amorphous Ta2O5 film deposited by a sputter-deposition technique. The electrical properties of the Ta2O5 thin films are investigated by fabricating metal-insulator-semiconductor (MIS) diodes. The leakage current of the MIS diode is as low as 10-8 A/cm2 for the as-deposited amorphous Ta2O5 film and 10-2 A/cm2 for the crystallized film, which is 108 and 102 times lower than that of the Schottky diode at a forward bias of -3 V, respectively. The dielectric constant of the amorphous Ta2O5 films is measured to be 16 and increases to 29 after annealing at 800 °C. Different current leakage mechanisms and charge trapping behaviors are proposed for the amorphous and crystallized Ta2O5 thin films.

  11. Integration of high-dielectric constant Ta2O5 oxides on diamond for power devices

    International Nuclear Information System (INIS)

    The authors report on the direct integration of high-dielectric constant (high-k) Ta2O5 films on p-type single crystal diamond for high-power electronic devices. Crystallized hexagonal phase δ-Ta2O5 film is achieved on diamond by annealing the amorphous Ta2O5 film deposited by a sputter-deposition technique. The electrical properties of the Ta2O5 thin films are investigated by fabricating metal-insulator-semiconductor (MIS) diodes. The leakage current of the MIS diode is as low as 10−8 A/cm2 for the as-deposited amorphous Ta2O5 film and 10−2 A/cm2 for the crystallized film, which is 108 and 102 times lower than that of the Schottky diode at a forward bias of −3 V, respectively. The dielectric constant of the amorphous Ta2O5 films is measured to be 16 and increases to 29 after annealing at 800 °C. Different current leakage mechanisms and charge trapping behaviors are proposed for the amorphous and crystallized Ta2O5 thin films.

  12. Pressure, stress, and strain distribution in the double-stage diamond anvil cell

    International Nuclear Information System (INIS)

    Double stage diamond anvil cells (DACs) of two designs have been assembled and tested. We used a standard symmetric DAC with flat or beveled culets as a primary stage and CVD microanvils machined by a focused ion beam as a second. We evaluated pressure, stress, and strain distributions in gold and a mixture of gold and iron as well as in secondary anvils using synchrotron x-ray diffraction with a micro-focused beam. A maximum pressure of 240 GPa was reached independent of the first stage anvil culet size. We found that the stress field generated by the second stage anvils is typical of conventional DAC experiments. The maximum pressures reached are limited by strains developing in the secondary anvil and by cupping of the first stage diamond anvil in the presented experimental designs. Also, our experiments show that pressures of several megabars may be reached without sacrificing the first stage diamond anvils

  13. Temperature distributions in the laser-heated diamond anvil cell from 3-D numerical modeling

    International Nuclear Information System (INIS)

    We present TempDAC, a 3-D numerical model for calculating the steady-state temperature distribution for continuous wave laser-heated experiments in the diamond anvil cell. TempDAC solves the steady heat conduction equation in three dimensions over the sample chamber, gasket, and diamond anvils and includes material-, temperature-, and direction-dependent thermal conductivity, while allowing for flexible sample geometries, laser beam intensity profile, and laser absorption properties. The model has been validated against an axisymmetric analytic solution for the temperature distribution within a laser-heated sample. Example calculations illustrate the importance of considering heat flow in three dimensions for the laser-heated diamond anvil cell. In particular, we show that a “flat top” input laser beam profile does not lead to a more uniform temperature distribution or flatter temperature gradients than a wide Gaussian laser beam

  14. Pressure, stress, and strain distribution in the double-stage diamond anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Lobanov, Sergey S., E-mail: slobanov@carnegiescience.edu [Geophysical Laboratory, Carnegie Institution of Washington, Washington, District of Columbia 20015 (United States); V.S. Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk 630090 (Russian Federation); Prakapenka, Vitali B.; Prescher, Clemens [Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60632 (United States); Konôpková, Zuzana; Liermann, Hanns-Peter [Photon Science DESY, D-22607 Hamburg (Germany); Crispin, Katherine L. [Geophysical Laboratory, Carnegie Institution of Washington, Washington, District of Columbia 20015 (United States); Zhang, Chi [Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics CAS, Beijing 100029 (China); Goncharov, Alexander F. [Geophysical Laboratory, Carnegie Institution of Washington, Washington, District of Columbia 20015 (United States); Key Laboratory of Materials Physics, Institute of Solid State Physics CAS, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China)

    2015-07-21

    Double stage diamond anvil cells (DACs) of two designs have been assembled and tested. We used a standard symmetric DAC with flat or beveled culets as a primary stage and CVD microanvils machined by a focused ion beam as a second. We evaluated pressure, stress, and strain distributions in gold and a mixture of gold and iron as well as in secondary anvils using synchrotron x-ray diffraction with a micro-focused beam. A maximum pressure of 240 GPa was reached independent of the first stage anvil culet size. We found that the stress field generated by the second stage anvils is typical of conventional DAC experiments. The maximum pressures reached are limited by strains developing in the secondary anvil and by cupping of the first stage diamond anvil in the presented experimental designs. Also, our experiments show that pressures of several megabars may be reached without sacrificing the first stage diamond anvils.

  15. Pulsed laser treatment of WC,Co tool substrates to improve Co removing and diamond nucleation

    International Nuclear Information System (INIS)

    Diamond coated cutting tools seem to be one of the most promising system to machine non-ferrous, very hard materials, like metal matrix composites (MMC), carbon fibers, hypereutectic Al/Si alloys. The widespread used and cheaper bulk material for tool inserts, the WC,xCo hard metal, is convenient and profitable as a substrate for diamond film coatings. Unfortunately, the Co-rich binder phase constitutes a severe obstacle for diamond deposition. Because of the catalytic effect for amorphous carbon or soot formation, the presence of Co actually resulted in a detrimental effect both on diamond nucleation and adhesion to substrate. Several chemical and physical methods have been developed to etch Co from the surface, no conclusive and perfectly reliable procedure, however, has been achieved, as far as a strong adhesion is concerned. In the experiments, the authors used ArF (λ = 193 nm, hv ≅ 6.4 eV) and Nd:YAG (λ = 532 nm, hv ≅ 2.3 eV) pulsed laser treatment to selectively remove Co from the surface and to seal the structural voids, coming out after Co chemical etching from the substrate, and responsible of surface segregation of Co from the bulk, during CVD diamond deposition. The sealing efficiency, after a thermal treatment (3h, 800 C) in an inert atmosphere, resulted to be quite good, compared to the untreated surface. The morphological and chemical effects have been studied by SEM/EDAX microscopy

  16. Investigation of structural and electrical properties of flat a-Si/c-Si heterostructure fabricated by EBPVD technique

    Energy Technology Data Exchange (ETDEWEB)

    Demiroğlu, D. [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Ayazağa 34469, Istanbul (Turkey); Tatar, B. [Faculty of Arts and Sciences, Department of Physics, Namık Kemal University, Değirmenaltı, Tekirdağ (Turkey); Kazmanli, K.; Urgen, M. [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Ayazağa 34469, Istanbul (Turkey)

    2013-12-16

    Flat amorphous silicon - crystal silicon (a-Si/c-Si) heterostructure were prepared by ultra-high vacuum electron beam evaporation technique on p-Si (111) and n-Si (100) single crystal substrates. Structural analyses were investigated by XRD, Raman and FEG-SEM analysis. With these analyses we determined that at the least amorphous structure shows modification but amorphous structure just protected. The electrical and photovoltaic properties of flat a-Si/c-Si heterojunction devices were investigated with current-voltage characteristics under dark and illumination conditions. Electrical properties of flat a-Si/c-Si heterorojunction; such as barrier height Φ{sub B}, diode ideality factor η were determined from current-voltage characteristics in dark conditions. These a-Si/c-Si heterostructure have good rectification behavior as a diode and exhibit high photovoltaic sensitivity.

  17. Modular dynamics in diamonds

    CERN Document Server

    Brunetti, Romeo

    2010-01-01

    We investigate the relation between the actions of Tomita-Takesaki modular operators for local von Neumann algebras in the vacuum for free massive and massless bosons in four dimensional Minkowskian spacetime. In particular, we prove a long-standing conjecture that says that the generators of the mentioned actions differ by a pseudo-differential operator of order zero. To get that, one needs a careful analysis of the interplay of the theories in the bulk and at the boundary of double cones (a.k.a. diamonds). After introducing some technicalities, we prove the crucial result that the vacuum state for massive bosons in the bulk of a double cone restricts to a KMS state at its boundary, and that the restriction of the algebra at the boundary does not depend anymore on the mass. The origin of such result lies in a careful treatment of classical Cauchy and Goursat problems for the Klein-Gordon equation as well as the application of known general mathematical techniques, concerning the interplay of algebraic struct...

  18. A new route to process diamond wires

    Directory of Open Access Journals (Sweden)

    Marcello Filgueira

    2003-06-01

    Full Text Available We propose an original route to process diamond wires, denominated In Situ Technology, whose fabrication involves mechanical conformation processes, such as rotary forging, copper tubes restacking, and thermal treatments, such as sintering and recrystallisation of a bronze 4 wt.% diamond composite. Tensile tests were performed, reaching an ultimate tensile strength (UTS of 230 MPa for the diameter of Æ = 1.84 mm. Scanning electron microscopy showed the diamond crystals distribution along the composite rope during its manufacture, as well as the diamond adhesion to the bronze matrix. Cutting tests were carried out with the processed wire, showing a probable performance 4 times higher than the diamond sawing discs, however its probable performance was about 5 to 8 times less than the conventional diamond wires (pearl system due to the low abrasion resistance of the bronze matrix, and low adhesion between the pair bronze-diamond due to the use of not metallised diamond single crystals.

  19. Integrated diamond networks for quantum nanophotonics

    CERN Document Server

    Hausmann, Birgit J M; Quan, Qimin; Maletinsky, Patrick; McCutcheon, Murray; Choy, Jennifer T; Babinec, Tom M; Kubanek, Alexander; Yacoby, Amir; Lukin, Mikhail D; Loncar, Marko

    2011-01-01

    Diamond is a unique material with exceptional physical and chemical properties that offers potential for the realization of high-performance devices with novel functionalities. For example diamond's high refractive index, transparency over wide wavelength range, and large Raman gain are of interest for the implementation of novel photonic devices. Recently, atom-like impurities in diamond emerged as an exceptional system for quantum information processing, quantum sensing and quantum networks. For these and other applications, it is essential to develop an integrated nanophotonic platform based on diamond. Here, we report on the realization of such an integrated diamond photonic platform, diamond on insulator (DOI), consisting of a thin single crystal diamond film on top of an insulating silicon dioxide/silicon substrate. Using this approach, we demonstrate diamond ring resonators that operate in a wide wavelength range, including the visible (630nm) and near-infrared (1,550nm). Finally, we demonstrate an int...

  20. ARC Filters with Diamond Transistors and Buffers

    OpenAIRE

    T. Dostal

    1998-01-01

    Active RC first and second order filters using diamond transistors (voltage controlled current sources) and voltage diamond buffers (voltage controlled voltage sources) are given in this paper. Circuits are simulated and experimentally compared.

  1. The Design of Diamond Compton Telescope

    CERN Document Server

    Hibino, Kinya; Okuno, Shoji; Yajima, Kaori; Uchihori, Yukio; Kitamura, Hisashi; Takashima, Takeshi; Yokota, Mamoru; Yoshida, Kenji

    2007-01-01

    We have developed radiation detectors using the new synthetic diamonds. The diamond detector has an advantage for observations of "low/medium" energy gamma rays as a Compton telescope. The primary advantage of the diamond detector can reduce the photoelectric effect in the low energy range, which is background noise for tracking of the Compton recoil electron. A concept of the Diamond Compton Telescope (DCT) consists of position sensitive layers of diamond-striped detector and calorimeter layer of CdTe detector. The key part of the DCT is diamond-striped detectors with a higher positional resolution and a wider energy range from 10 keV to 10 MeV. However, the diamond-striped detector is under development. We describe the performance of prototype diamond detector and the design of a possible DCT evaluated by Monte Carlo simulations.

  2. [Optical Spectroscopy for High-Pressure Microwave Plasma Chemical Vapor Deposition of Diamond Films].

    Science.gov (United States)

    Cao, Wei; Ma, Zhi-bin

    2015-11-01

    Polycrystalline diamond growth by microwave plasma chemical vapor deposition (MPCVD) at high-pressure (34.5 kPa) was investigated. The CH₄/H₂/O₂plasma was detected online by optical emission spectroscopy (OES), and the spatial distribution of radicals in the CH₄/H₂/O₂plasma was studied. Raman spectroscopy was employed to analyze the properties of the diamond films deposited in different oxygen volume fraction. The uniformity of diamond films quality was researched. The results indicate that the spectrum intensities of C₂, CH and Hα decrease with the oxygen volume fraction increasing. While the intensity ratios of C₂, CH to Hα also reduced as a function of increasing oxygen volume fraction. It is shown that the decrease of the absolute concentration of carbon radicals is attributed to the rise volume fraction of oxygen, while the relative concentration of carbon radicals to hydrogen atom is also reducing, which depressing the growth rate but improving the quality of diamond film. Furthermore, the OH radicals, role of etching, its intensities increase with the increase of oxygen volume fraction. Indicated that the improvement of OH concentration is also beneficial to reduce the content of amorphous carbon in diamond films. The spectrum space diagnosis results show that under high deposition pressure the distribution of the radicals in the CH₄/H₂/O₂plasma is inhomogeneous, especially, that of radical C₂ gathered in the central region. And causing a rapid increase of non-diamond components in the central area, eventually enable the uneven distribution of diamond films quality. PMID:26978897

  3. Density functional studies of surface potentials for hydrogen and oxygen atoms on diamond (111) surfaces

    Science.gov (United States)

    Moustafa, Samar; Tokuda, Norio; Inokuma, Takao

    2014-02-01

    The adsorption of hydrogen and oxygen atoms on diamond (111)-(1 × 1) surfaces is investigated by a molecular orbital method based on the density functional theory. The potential energy for hydrogen and oxygen adatoms on a flat surface and a surface with monoatomic steps are studied. The oxygen adatom is found to have a much lower energy barrier for migration than the hydrogen adatom. On the basis of the variations of potential energy, surface diffusion coefficients of adatoms are calculated. The potential energy for the oxygen adatom is much lowered near the step edge in comparison with those on flat regions. It is suggested that the oxygen atoms adsorbed on the diamond (111) surface are preferentially trapped near atomic steps after migration.

  4. IS THE WORLD FLAT?

    Directory of Open Access Journals (Sweden)

    Cristian Încalţărău

    2010-06-01

    Full Text Available Globalization became more and more prominent during the last decades. There is no way to argue that globalization led to more interconnected economies, facilitating the communication and the collaboration around the world. But where is this going? Doesglobalization mean uniformity or diversity? As the world begins to resemble more, the people are trying to distinguish between them more, which can exacerbate nationalistic feeling. Friedman argues that globalization made the world smaller and flatter, allowing all countries to take chance of the available opportunities equally. But is this really true? Although politic and cultural factors can stand in front of a really flat world, what is the key for Chinese and Indian success and which are theirs perspectives?

  5. Flat Helical Nanosieves

    CERN Document Server

    Mei, Shengtao; Hussain, Sajid; Huang, Kun; Ling, Xiaohui; Siew, Shawn Yohanes; Liu, Hong; Teng, Jinghua; Danner, Aaron; Qiu, Cheng-Wei

    2016-01-01

    Compact and miniaturized devices with flexible functionalities are always highly demanded in optical integrated systems. Plasmonic nanosieve has been successfully harnessed as an ultrathin flat platform for complex manipulation of light, including holography, vortex generation and non-linear processes. Compared with most of reported single-functional devices, multi-functional nanosieves might find more complex and novel applications across nano-photonics, optics and nanotechnology. Here, we experimentally demonstrate a promising roadmap for nanosieve-based helical devices, which achieves full manipulations of optical vortices, including its generation, hybridization, spatial multiplexing, focusing and non-diffraction propagation etc., by controlling the geometric phase of spin light via over 121 thousands of spatially-rotated nano-sieves. Thanks to such spin-conversion nanosieve helical elements, it is no longer necessary to employ the conventional two-beam interferometric measurement to characterize optical ...

  6. Flat Bands Under Correlated Perturbations

    OpenAIRE

    Bodyfelt, Joshua D.; Leykam, Daniel; Danieli, Carlo; Yu, Xiaoquan; Flach, Sergej

    2014-01-01

    Flat band networks are characterized by coexistence of dispersive and flat bands. Flat bands (FB) are generated by compact localized eigenstates (CLS) with local network symmetries, based on destructive interference. Correlated disorder and quasiperiodic potentials hybridize CLS without additional renormalization, yet with surprising consequencies: (i) states are expelled from the FB energy $E_{FB}$, (ii) the localization length of eigenstates vanishes as $\\xi \\sim 1 / \\ln (E- E_{FB})$, (iii)...

  7. More Ricci-flat branes

    CERN Document Server

    Figueroa-O'Farrill, J M

    1999-01-01

    Certain supergravity solutions (including domain walls and the magnetic fivebrane) have recently been generalised by Brecher and Perry by relaxing the condition that the brane worldvolume be flat. In this way they obtain examples in which the brane worldvolume is a static spacetime admitting parallel spinors. In this note we simply point out that the restriction to static spacetimes is unnecessary, and in this way exhibit solutions where the brane worldvolume is an indecomposable Ricci-flat lorentzian manifold admitting parallel spinors. We discuss more Ricci-flat fivebranes and domain walls, as well as new Ricci-flat D3-branes.

  8. Diamond semiconductor technology for RF device applications

    OpenAIRE

    Gürbüz, Yaşar; Gurbuz, Yasar; Esame, İbrahim Onur; Esame, Ibrahim Onur; Tekin, İbrahim; TEKIN Ibrahim; Kang, Weng Poo; Davidson, Jimmy L.

    2005-01-01

    This paper presents a comprehensive review of diamond electronics from the RF perspective. Our aim was to find and present the potential, limitations and current status of diamond semiconductor devices as well as to investigate its suitability for RF device applications. While doing this, we briefly analysed the physics and chemistry of CVD diamond process for a better understanding of the reasons for the technological challenges of diamond material. This leads to Figure of Merit definitions ...

  9. Nanocrystalline diamond growth and device applications

    OpenAIRE

    Dipalo, Michele

    2009-01-01

    Diamond possesses such outstanding properties that its exploitation in many fields is sought for several years now. Mechanical, thermal, electrical and chemical features of diamond render it the ideal material for power electronics, chemical sensors, thermal dissipation and high temperature devices. The inadequate size of available diamond substrates, limited to few millimeters, made necessary the development of nanocrystalline (NCD) diamond, available today on large area wafers. Unfortunatel...

  10. Medical applications of diamond particles & surfaces

    Directory of Open Access Journals (Sweden)

    Roger J Narayan

    2011-04-01

    Full Text Available Diamond has been considered for use in several medical applications due to its unique mechanical, chemical, optical, and biological properties. In this paper, methods for preparing synthetic diamond surfaces and particles are described. In addition, recent developments involving the use of diamond in prostheses, sensing, imaging, and drug delivery applications are reviewed. These developments suggest that diamond-containing structures will provide significant improvements in the diagnosis and treatment of medical conditions over the coming years.

  11. High-Current Cold Cathode Employing Diamond and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT (United States)

    2014-10-22

    The essence of this project was for diamond films to be deposited on cold cathodes to improve their emission properties. Films with varying morphology, composition, and size of the crystals were deposited and the emission properties of the cathodes that utilize such films were studied. The prototype cathodes fabricated by the methods developed during Phase I were tested and evaluated in an actual high-power RF device during Phase II. These high-power tests used the novel active RF pulse compression system and the X-band magnicon test facility at US Naval Research Laboratory. In earlier tests, plasma switches were employed, while tests under this project utilized electron-beam switching. The intense electron beams required in the switches were supplied from cold cathodes embodying diamond films with varying morphology, including uncoated molybdenum cathodes in the preliminary tests. Tests with uncoated molybdenum cathodes produced compressed X-band RF pulses with a peak power of 91 MW, and a maximum power gain of 16.5:1. Tests were also carried out with switches employing diamond coated cathodes. The pulse compressor was based on use of switches employing electron beam triggering to effect mode conversion. In experimental tests, the compressor produced 165 MW in a ~ 20 ns pulse at ~18× power gain and ~ 140 MW at ~ 16× power gain in a 16 ns pulse with a ~ 7 ns flat-top. In these tests, molybdenum blade cathodes with thin diamond coatings demonstrated good reproducible emission uniformity with a 100 kV, 100 ns high voltage pulse. The new compressor does not have the limitations of earlier types of active pulse compressors and can operate at significantly higher electric fields without breakdown.

  12. Diamond and diamond-like films for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J.M.

    1993-01-01

    This section is a compilation of transparency templates which describe the goals of the Office of Transportation Materials (OTM) Tribology Program. The positions of personnel on the OTM are listed. The role and mission of the OTM is reviewed. The purpose of the Tribology Program is stated to be `to obtain industry input on program(s) in tribology/advanced lubricants areas of interest`. The objective addressed here is to identify opportunities for cost effective application of diamond and diamond-like carbon in transportation systems.

  13. Fluctuation Electron Microscopy of Amorphous and Polycrystalline Materials

    Science.gov (United States)

    Rezikyan, Aram

    Fluctuation Electron Microscopy (FEM) has become an effective materials' structure characterization technique, capable of probing medium-range order (MRO) that may be present in amorphous materials. Although its sensitivity to MRO has been exercised in numerous studies, FEM is not yet a quantitative technique. The holdup has been the discrepancy between the computed kinematical variance and the experimental variance, which previously was attributed to source incoherence. Although high-brightness, high coherence, electron guns are now routinely available in modern electron microscopes, they have not eliminated this discrepancy between theory and experiment. The main objective of this thesis was to explore, and to reveal, the reasons behind this conundrum. The study was started with an analysis of the speckle statistics of tilted dark-field TEM images obtained from an amorphous carbon sample, which confirmed that the structural ordering is sensitively detected by FEM. This analysis also revealed the inconsistency between predictions of the source incoherence model and the experimentally observed variance. FEM of amorphous carbon, amorphous silicon and ultra nanocrystalline diamond samples was carried out in an attempt to explore the conundrum. Electron probe and sample parameters were varied to observe the scattering intensity variance behavior. Results were compared to models of probe incoherence, diffuse scattering, atom displacement damage, energy loss events and multiple scattering. Models of displacement decoherence matched the experimental results best. Decoherence was also explored by an interferometric diffraction method using bilayer amorphous samples, and results are consistent with strong displacement decoherence in addition to temporal decoherence arising from the electron source energy spread and energy loss events in thick samples. It is clear that decoherence plays an important role in the long-standing discrepancy between experimental FEM and its

  14. Is classical flat Kasner spacetime flat in quantum gravity?

    Science.gov (United States)

    Singh, Parampreet

    2016-05-01

    Quantum nature of classical flat Kasner spacetime is studied using effective spacetime description in loop quantum cosmology (LQC). We find that even though the spacetime curvature vanishes at the classical level, nontrivial quantum gravitational effects can arise. For the standard loop quantization of Bianchi-I spacetime, which uniquely yields universal bounds on expansion and shear scalars and results in a generic resolution of strong singularities, we find that a flat Kasner metric is not a physical solution of the effective spacetime description, except in a limit. The lack of a flat Kasner metric at the quantum level results from a novel feature of the loop quantum Bianchi-I spacetime: quantum geometry induces nonvanishing spacetime curvature components, making it not Ricci flat even when no matter is present. The noncurvature singularity of the classical flat Kasner spacetime is avoided, and the effective spacetime transits from a flat Kasner spacetime in asymptotic future, to a Minkowski spacetime in asymptotic past. Interestingly, for an alternate loop quantization which does not share some of the fine features of the standard quantization, flat Kasner spacetime with expected classical features exists. In this case, even with nontrivial quantum geometric effects, the spacetime curvature vanishes. These examples show that the character of even a flat classical vacuum spacetime can alter in a fundamental way in quantum gravity and is sensitive to the quantization procedure.

  15. Study on Platinum Coating Depth in Focused Ion Beam Diamond Cutting Tool Milling and Methods for Removing Platinum Layer

    Directory of Open Access Journals (Sweden)

    Woong Kirl Choi

    2015-09-01

    Full Text Available In recent years, nanomachining has attracted increasing attention in advanced manufacturing science and technologies as a value-added processes to control material structures, components, devices, and nanoscale systems. To make sub-micro patterns on these products, micro/nanoscale single-crystal diamond cutting tools are essential. Popular non-contact methods for the macro/micro processing of diamond composites are pulsed laser ablation (PLA and electric discharge machining (EDM. However, for manufacturing nanoscale diamond tools, these machining methods are not appropriate. Despite diamond’s extreme physical properties, diamond can be micro/nano machined relatively easily using a focused ion beam (FIB technique. In the FIB milling process, the surface properties of the diamond cutting tool is affected by the amorphous damage layer caused by the FIB gallium ion collision and implantation and these influence the diamond cutting tool edge sharpness and increase the processing procedures. To protect the diamond substrate, a protection layer—platinum (Pt coating is essential in diamond FIB milling. In this study, the depth of Pt coating layer which could decrease process-induced damage during FIB fabrication is investigated, along with methods for removing the Pt coating layer on diamond tools. The optimum Pt coating depth has been confirmed, which is very important for maintaining cutting tool edge sharpness and decreasing processing procedures. The ultra-precision grinding method and etching with aqua regia method have been investigated for removing the Pt coating layer. Experimental results show that when the diamond cutting tool width is bigger than 500 nm, ultra-precision grinding method is appropriate for removing Pt coating layer on diamond tool. However, the ultra-precision grinding method is not recommended for removing the Pt coating layer when the cutting tool width is smaller than 500 nm, because the possibility that the diamond

  16. Diamond device architectures for UV laser monitoring

    Science.gov (United States)

    Salvatori, S.; Girolami, M.; Oliva, P.; Conte, G.; Bolshakov, A.; Ralchenko, V.; Konov, V.

    2016-08-01

    The paper reviews the status of diamond detectors for UV laser monitoring and imaging. Single pixel detectors, position sensitive architectures, optically activated switches and sensor arrays for beam positioning and imaging are analyzed. The performances of natural diamond and synthetic diamond produced by chemical vapor deposition are compared to evaluate the suitability of such an outstanding material for the described applications.

  17. Amorphous silicon based particle detectors

    OpenAIRE

    Wyrsch, N; Franco, A; Riesen, Y.; Despeisse, M; S. Dunand; Powolny, F; Jarron, P.; Ballif, C.

    2012-01-01

    Radiation hard monolithic particle sensors can be fabricated by a vertical integration of amorphous silicon particle sensors on top of CMOS readout chip. Two types of such particle sensors are presented here using either thick diodes or microchannel plates. The first type based on amorphous silicon diodes exhibits high spatial resolution due to the short lateral carrier collection. Combination of an amorphous silicon thick diode with microstrip detector geometries permits to achieve micromete...

  18. Diamond based photonic crystal microcavities.

    Science.gov (United States)

    Tomljenovic-Hanic, S; Steel, M J; de Sterke, C Martijn; Salzman, J

    2006-04-17

    Diamond based technologies offer a material platform for the implementation of qubits for quantum computing. The photonic crystal architecture provides the route for a scalable and controllable implementation of high quality factor (Q) nanocavities, operating in the strong coupling regime for cavity quantum electrodynamics. Here we compute the photonic band structures and quality factors of microcavities in photonic crystal slabs in diamond, and compare the results with those of the more commonly-used silicon platform. We find that, in spite of the lower index contrast, diamond based photonic crystal microcavities can exhibit quality factors of Q=3.0x10(4), sufficient for proof of principle demonstrations in the quantum regime. PMID:19516502

  19. Diamond Molecules Found in Petroleum

    Science.gov (United States)

    Carlson, R. M. K.; Dahl, J. E. P.; Liu, S. G.; Olmstead, M. M.; Buerki, P. R.; Gat, R.

    We recently reported [1,2] the discovery and isolation of new members of the hydrogen-terminated diamond series, ˜1 to ˜2 nm sized higher diamondoids from petroleum. Crystallographic studies [1,2] revealed a wealth of diamond molecules that are nanometer-sized rods, helices, discs, pyramids, etc. Highly rigid, well-defined, readily derivatizable structures make them valuable molecular building blocks for nanotechnology. We now produce certain higher diamondoids in gram quantities. Although more stable than graphite particles of comparable size, higher diamondoids are extraordinarily difficult to synthesize. Attempts to synthesize them were abandoned in the 1980's. We examined extracts of diamond-containing materials synthesized by CO2 laser-induced gas-phase synthesis [3] and commercial CVD in an attempt to detect diamantane to undecamantane. However, high-sensitivity GCMS detected no diamondoids in these materials.

  20. Diamonds at the golden point

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    Alongside the CMS Pixel Luminosity Telescope (PLT) – installed last month (see here) – lie diamond detectors. No ordinary gems, these lab-grown diamonds will be playing a vital role in Run 2: differentiating signals from collision products with those from the beam background.   The BCM detector's green "c-shaped" printed circuit board is mounted on the PLT/BCM carbon-fibre carriage ready for installation. Earlier this year, the CMS BRIL project installed beam condition monitors (BCM) at the heart of the CMS detector. Designed to measure the online luminosity and beam background as close as possible to the LHC beam pipe, the BCMs use radiation-hard diamonds to differentiate between background and collision signals. The BCM also protects the CMS silicon trackers from damaging beam losses, by aborting the beam if the signal currents measured are above an acceptable threshold. These new BCMs are designed with Run 2 bunches in mind. &ldq...

  1. Functionalization of nanocrystalline diamond films with phthalocyanines

    Science.gov (United States)

    Petkov, Christo; Reintanz, Philipp M.; Kulisch, Wilhelm; Degenhardt, Anna Katharina; Weidner, Tobias; Baio, Joe E.; Merz, Rolf; Kopnarski, Michael; Siemeling, Ulrich; Reithmaier, Johann Peter; Popov, Cyril

    2016-08-01

    Phthalocyanine (Pc) derivatives containing different central metal atoms (Mn, Cu, Ti) and different peripheral chains were synthesized and comprehensively characterized. Their interaction with nanocrystalline diamond (NCD) films, as-grown by hot-filament chemical vapor deposition or after their modification with oxygen plasma to exchange the hydrogen termination with oxygen-containing groups, was studied by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The elemental composition as determined by XPS showed that the Pc were grafted on both as-grown and O-terminated NCD. Mn, Cu and Ti were detected together with N stemming from the Pc ring and S in case of the Ti-Pc from the peripheral ligands. The results for the elemental surface composition and the detailed study of the N 1s, S 2p and O 1s core spectra revealed that Ti-Pc grafted better on as-grown NCD but Cu-Pc and Mn-Pc on O-terminated films. Samples of Mn-Pc on as-grown and O-terminated NCD were further investigated by NEXAFS spectroscopy. The results showed ordering of the grafted molecules, laying flat on the H-terminated NCD surface while only the macrocycles were oriented parallel to the O-terminated surface with the peripheral chains perpendicular to it.

  2. Exact piecewise flat gravitational waves

    NARCIS (Netherlands)

    van de Meent, M.

    2011-01-01

    We generalize our previous linear result (van de Meent 2011 Class. Quantum Grav 28 075005) in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to constr

  3. Asymptotic Flatness in Rainbow Gravity

    OpenAIRE

    Hackett, Jonathan

    2005-01-01

    A construction of conformal infinity in null and spatial directions is constructed for the Rainbow-flat space-time corresponding to doubly special relativity. From this construction a definition of asymptotic DSRness is put forward which is compatible with the correspondence principle of Rainbow gravity. Furthermore a result equating asymptotically flat space-times with asymptotically DSR spacetimes is presented.

  4. Graphite to ultrafine nanocrystalline diamond phase transition model and growth restriction mechanism induced by nanosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Ren, X. D., E-mail: renxd@mail.ujs.edu.cn; Liu, R.; Zheng, L. M.; Ren, Y. P.; Hu, Z. Z.; He, H. [Department of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-10-05

    To have a clear insight into nanocrystal growth from graphite to diamond upon high energy pulsed laser irradiation of graphite suspension, synthesis of ultrafine nanocrystalline diamonds with laser energy set up from 0.3 J to 12 J, repetition rate of 10 Hz has been studied. The method allows synthesizing ultrafine nanocrystalline particles continuously at the ambient temperature and normal pressure. The particle size is shown independent of laser energy, which is ultrafine and ranges in 2–6 nm. The theoretical grown size of nano-diamonds is found in well agreement with the experiment results. Four kinds of production were found: nano-diamond, spherical carbon nano-particles, flocculent amorphous carbon, and graphene nano-ribbon rolls. A solid-vapor-plasma-liquid coexistence model describing phase transition from graphite to diamond induced by nanosecond laser processing was proposed. Graphene nano-ribbon rolls might be the intermediate phase in the conversion from graphite to diamond.

  5. CVD diamond for electronic devices and sensors

    CERN Document Server

    2009-01-01

    Synthetic diamond is diamond produced by using chemical or physical processes. Like naturally occurring diamond it is composed of a three-dimensional carbon crystal. Due to its extreme physical properties, synthetic diamond is used in many industrial applications, such as drill bits and scratch-proof coatings, and has the potential to be used in many new application areas A brand new title from the respected Wiley Materials for Electronic and Optoelectronic Applications series, this title is the most up-to-date resource for diamond specialists. Beginning with an introduction to the pr

  6. Diamond Sensors for Energy Frontier Experiments

    CERN Document Server

    Schnetzer, Steve

    2014-01-01

    We discuss the use of diamond sensors in high-energy, high-i ntensity collider experiments. Re- sults from diamond sensor based beam conditions monitors in the ATLAS and CMS experiments at the CERN Large Hadron Collider (LHC) are presented and pla ns for diamond based luminosity monitors for the upcoming LHC run are described. We describe recent measurements on single crystal diamond sensors that indicate a polarization effec t that causes a reduction of charge col- lection efficiency as a function of particle flux. We conclude by describing new developments on the promising technology of 3D diamond sensors.

  7. Effects of diamond magnetism on the microstructure of electrodeposited diamond composites

    Institute of Scientific and Technical Information of China (English)

    Lu Huiyang; Li Yundong; Huang Zhiwei; Go Huiyan

    2007-01-01

    Electroformed diamond tools have been used for many years in grinding and cutting fields while electrodeposited diamond composite coatings have been widely studied due to their desirable hardness, wear and corrosion resistance. This article eports the detrimental impact of diamond magnetism on the composites microstructure and gives explanations. Microstructure differences between composites that, respectively, contained no - further - treated diamond, magnetism - strengthening treated diamond and magnetism weakening treated diamond were carefully observed. It is shown that diamond magnetization treatment drastically harms the composite microstructure (e. G. , roughening the coating surface, coarsening the matrix grain, and more seriously, reducing the mechanical retention of diamond grains in the matrix) while demagnetization treatment does the opposite. All the observed facts could be explained by the electromagnetic interaction between magnetic fields produced by magnetic diamond grains and electric current (moving cations) during the electrodeposition process.

  8. High temperature brazing of diamond tools

    Institute of Scientific and Technical Information of China (English)

    YAO Zheng-jun; SU Hong-hua; FU Yu-can; XU Hong-jun

    2005-01-01

    A new brazing technique of diamond was developed. Using this new technique optimum chemical and metallurgical bonding between the diamond grits and the carbon steel can be achieved without any thermal damages to diamond grits. The results of microanalysis and X-ray diffraction analysis reveal that a carbide layer exists between the diamond and the matrix, which consists of Cr3C2, Cr7C3 and Cr23C6. Performance tests show that the brazed diamond core-drill has excellent machining performance. In comparison with traditional electroplated diamond core-drill, the brazed diamond core-drill manufactured using the new developed technique has much higher machining efficiency and much longer operating life.

  9. Fenton-treated functionalized diamond nanoparticles as gene delivery system.

    Science.gov (United States)

    Martín, Roberto; Alvaro, Mercedes; Herance, José Raúl; García, Hermenegildo

    2010-01-26

    When raw diamond nanoparticles (Dnp, 7 nm average particle size) obtained from detonation are submitted to harsh Fenton-treatment, the resulting material becomes free of amorphous soot matter and the process maintains the crystallinity, reduces the particle size (4 nm average particle size), increases the surface OH population, and increases water solubility. All these changes are beneficial for subsequent Dnp covalent functionalization and for the ability of Dnp to cross cell membranes. Fenton-treated Dnps have been functionalized with thionine and the resulting sample has been observed in HeLa cell nuclei. A triethylammonium-functionalized Dnp pairs electrostatically with a plasmid having the green fluorescent protein gene and acts as gene delivery system permitting the plasmid to cross HeLa cell membrane, something that does not occur for the plasmid alone without assistance of polycationic Dnp. PMID:20047335

  10. Focused ion beam (FIB)-induced changes in the electrochemical behavior of boron-doped diamond (BDD) electrodes

    International Nuclear Information System (INIS)

    Micro- and nanostructured electrodes play a significant role in modern electroanalytical chemistry. Here, we report on the effect of focused ion beam-induced changes in the surface layers of nanocrystalline highly boron-doped diamond (BDD). The impact of gallium ions induces an amorphization of the surface layers of the BDD lattice, and hence, changes the electron transfer behavior of redox species, which electron transfer is sensitive to surface properties. These changes in heterogeneous electron transfer behavior are investigated in dependence of FIB patterning parameters. The effects of electrochemical post-milling treatments were studied for restoring the electrochemical properties. In addition, Raman spectroscopic and electron backscatter diffraction (EBSD) measurements revealed that amorphous carbon is largely removed during the post-milling electrochemical treatment at very negative potentials. Hence, FIB-based nanostructuring of BDD-electrodes with an optimized post fabrication treatment enables the fabrication of miniaturized devices based on boron-doped diamond for a wide variety of electroanalytical applications

  11. Irritated Method for Flat warts

    Institute of Scientific and Technical Information of China (English)

    LiBingxu

    2004-01-01

    Summary Background The relation between spontaneous regression of Flat warts and T cells depended immunity was confirmed. Cells immunity against HPV was induced by presenting of HPV related antigens, and thrived by cytokine and some chemistry agent. So how to make HPV which incubated in keratinocyte to present PHV antigens and keratinocyte to secret cytokine or chemistry agents should be a pursuance for dermatologist who are looking for a efficient method to deal with flat warts. Present research had exhibited inflammable agents can induce dermatitis when apply to the skin surface, so it might bring flat warts to spontaneous regression. Objective To observe the effectiveness of irritant drugs on flat warts, and at same time to understand more on the mechanism of the regression. Methods Compared with Control we treat 88 case of flat warts with retinoid gel or 3% hydrogen peroxide solution plus 5 % salicylic acid cream (HPSC). Results Both retinoid gel and HPSC reveal significant effect on flat warts. Conclusion Retinoid gel or SPHC was effective on the treatment of flat warts. The possible explanation for this is the drugs when put on the skin will induce dermatitis and dissolve or denude keratin.

  12. Is classical flat Kasner spacetime flat in quantum gravity?

    OpenAIRE

    Singh, Parampreet

    2016-01-01

    Quantum nature of classical flat Kasner spacetime is studied using effective spacetime description in loop quantum cosmology. We find that even though the spacetime curvature vanishes at the classical level, non-trivial quantum gravitational effects can arise. For the standard loop quantization of Bianchi-I spacetime, which uniquely yields universal bounds on expansion and shear scalars and results in a generic resolution of strong singularities, we find that a flat Kasner metric is not a phy...

  13. Bias-enhanced post-treatment process for enhancing the electron field emission properties of ultrananocrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, A.; Huang, B. R. [Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Sankaran, K. J.; Tai, N. H. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Dong, C. L. [Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China); Lin, I. N., E-mail: inanlin@mail.tku.edu.tw [Department of Physics, Tamkang University, Tamsui 251, Taiwan (China)

    2015-03-16

    The electron field emission (EFE) properties of ultrananocrystalline diamond films were markedly improved via the bias-enhanced plasma post-treatment (bep) process. The bep-process induced the formation of hybrid-granular structure of the diamond (bep-HiD) films with abundant nano-graphitic phase along the grain boundaries that increased the conductivity of the films. Moreover, the utilization of Au-interlayer can effectively suppress the formation of resistive amorphous-carbon (a-C) layer, thereby enhancing the transport of electrons crossing the diamond-to-Si interface. Therefore, bep-HiD/Au/Si films exhibit superior EFE properties with low turn-on field of E{sub 0} = 2.6 V/μm and large EFE current density of J{sub e} = 3.2 mA/cm{sup 2} (at 5.3 V/μm)

  14. Influence of heat treatment temperature on bonding and oxidation resistance of diamond particles coated with TiO2 film

    Indian Academy of Sciences (India)

    Xiao-Pan Liu; Dong-Dong Song; Long Wan; Xian-Bing Pang; Zheng Li

    2015-09-01

    In this paper, TiO2 films were coated on the surface of diamond particles using a sol–gel method. The effects of heat treatment temperature on the morphology, composition, chemical bonds, oxidation resistance and compressive strength of diamond particles coated with TiO2 films were characterized through scanning electron microscopy, Fourier transform infrared, Raman spectroscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, thermogravimetric–differential scanning calorimetry and compressive strength test. The results showed that when the temperature reached 600°C, the amorphous TiO2 on the diamond particles surface exhibited as a dense anatase film and the Ti–O–C bond formed between TiO2 and the diamond substrates. When temperature reached 800°C, TiO2 films were still in anatase phase and part of the diamond carbon began to graphitize. The graphitizated carbon can also form the Ti–O–C bond with TiO2 film, although TiO2 film would tend to crack in this condition. Meanwhile, the temperature had a serious influence on the oxidation resistance of diamond particles coated with TiO2 films in air. When the heat treatment temperature reached 600°C, the initial oxidation temperature of the coated diamond particles reached the maximum value of 754°C. When the diamond particles were oxidized at 800°C for 0.5 h in air, the weight loss rate reached the minimum value of 6.7 wt% and the compressive strength reached the maximum value of 15.7 N.

  15. Is classical flat Kasner spacetime flat in quantum gravity?

    CERN Document Server

    Singh, Parampreet

    2016-01-01

    Quantum nature of classical flat Kasner spacetime is studied using effective spacetime description in loop quantum cosmology. We find that even though the spacetime curvature vanishes at the classical level, non-trivial quantum gravitational effects can arise. For the standard loop quantization of Bianchi-I spacetime, which uniquely yields universal bounds on expansion and shear scalars and results in a generic resolution of strong singularities, we find that a flat Kasner metric is not a physical solution of the effective spacetime description, except in a limit. The lack of a flat Kasner metric at the quantum level results from a novel feature of the loop quantum Bianchi-I spacetime: quantum geometry induces non-vanishing spacetime curvature components, making it not Ricci flat even when no matter is present. The non-curvature singularity of the classical flat Kasner spacetime is avoided, and the effective spacetime transits from a flat Kasner spacetime in asymptotic future, to a Minkowski spacetime in asym...

  16. Total photoelectron yield spectroscopy of diamond: teaching an old dog new tricks

    International Nuclear Information System (INIS)

    Full text: Total photoelectron yield spectroscopy (Yield) has been widely used in the past to determine the work function of metals, and the density of tail and gap states in amorphous semiconductors and at the Si/SiO2 interface, for example. In all cases advantage is taken of the unrivalled sensitivity of yield which covers more than eight orders of magnitude in the density of occupied states. However, like all photoelectron spectroscopies, Yield suffers from a short sampling depth that seldom exceeds a few nm and is determined by the inelastic mean free path of electrons with finite kinetic energies. The situation changes completely when a semiconductor with true negative electron affinity such as hydrogenated diamond is used where the vacuum level falls below the conduction band minimum. Now even electrons at the conduction band minimum contribute to the yield and the spectrum reflects the absorption process as well as the transport of thermalized electrons and excitons to the surface as has been discussed first by Bandis and Pate. Here, we have utilized yield spectra of hydrogenated homoepitaxial diamond layers with different thicknesses to determine the diffusion lengths of electrons and excitons in diamond which amount to 16 and 20 μm, respectively for the highest quality diamond. Furthermore, from changes in the relative contributions of exciton and electron excitations to the yield spectra we are able to extract the sign of subsurface band bending over the diffusion length in hydrogenated diamond. This is so because electrons are affected by the electric fields connected with band bending whereas excitons as neutral entities are not. By following the band bending as a function of surface treatment we are able to unravel the mechanism behind the p-type surface conductivity that is observed on hydrogenated diamond surfaces after exposure to air. The mechanism relies on a transfer of electrons from diamond to a redox couple in an aqueous surface layer that

  17. CVD diamond: from growth to application

    Directory of Open Access Journals (Sweden)

    K. Fabisiak

    2009-12-01

    Full Text Available Purpose: The main purpose of these studies was to give a short review of basic diamonds properties and indicate possibilities of different applications of this material. As an example, the application of CVD (Chemical Vapour Deposition diamond layer in electrochemistry was shown.Design/methodology/approach: The diamond layers were synthesized using Hot Filament CVD (HF CVD technique from a mixture of methanol and hydrogen. The physical and electrochemical properties of the obtained layers were studied by Raman spectroscopy and Cyclic Voltammetry (CV.Findings: It was shown that it is possible to synthesize the diamond layers of different morphology and quality. Raman microprobe measurements showed that quality of diamond films deposited by HF CVD method reflect their morphology. CV measurements showed that the fabricated electrodes had wide potential window almost twice bigger in comparison to the classical Pt electrode.Research limitations/implications: The interaction of diamond layers with chemical and biological environment is not complete.Practical implications: CVD diamond (synthetic diamond made by a chemical vapour deposition process is an important family of materials used in microelectronic and optoelectronic packaging and for laser and detector windows. Its ultra-high thermal conductivity enables to increase microprocessor frequency and output power of microelectronic and optoelectronic devices. Diamond is resistant to chemical attack and chemical sensors based on the fact it can work in harsh environment.Originality/value: The paper underlines an important role of diamond films as a promising material for production of electrodes for electrochemical applications.

  18. Medical applications of diamond particles and surfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, R. J.; Boehm, R. D.; Sumant, A. V. (Center for Nanoscale Materials); (Univ. of California)

    2011-04-01

    Diamond has been considered for use in several medical applications due to its unique mechanical, chemical, optical, and biological properties. In this paper, methods for preparing synthetic diamond surfaces and particles are described. In addition, recent developments involving the use of diamond in prostheses, sensing, imaging, and drug delivery applications are reviewed. These developments suggest that diamond-containing structures will provide significant improvements in the diagnosis and treatment of medical conditions over the coming years. Diamond is an allotrope of carbon that is being considered for use in several medical applications. Ramachandran determined that the crystal structure of diamond consists of two close packed interpenetrating face centered cubic lattices; one lattice is shifted with respect to the other along the elemental cube space diagonal by one-quarter of its length. If one approximates carbon atoms as equal diameter rigid spheres, the filling of this construction is 34%. Due to the carbon-carbon distance (1.54 {angstrom}), diamond crystal exhibits the highest atomic density (1.76 x 10{sup 23} cm{sup -3}) of any solid. The very high bond energy between two carbon atoms (83 kcal/mol) and the directionality of tetrahedral bonds are the main reasons for the high strength of diamond. Diamond demonstrates the highest Vickers hardness value of any material (10,000 kg/mm{sup 2}). The tribological properties of diamond are also impressive; the coefficient of friction of polished diamond is 0.07 in argon and 0.05 in humid air. Diamond is resistant to corrosion except in an oxygen atmosphere at temperatures over 800 C. In addition, type IIa diamond exhibits the highest thermal conductivity of all materials (20 W cm{sup -1} K{sup -1} at room temperature).

  19. 33 CFR 110.6 - Portland Harbor, Portland, Maine (between Little Diamond Island and Great Diamond Island).

    Science.gov (United States)

    2010-07-01

    ... (between Little Diamond Island and Great Diamond Island). 110.6 Section 110.6 Navigation and Navigable... Areas § 110.6 Portland Harbor, Portland, Maine (between Little Diamond Island and Great Diamond Island). Beginning at the southeasterly corner of the wharf, at the most southerly point of Great Diamond Island...

  20. Research on Flat Solar Collector

    OpenAIRE

    Kavolynas, Antanas

    2005-01-01

    The Thesis analyzes one of the spheres of alternative energy supply – the solar energy. The main objective of the Thesis is to determine the energy rates of the solar collector and its accumulative capacity. The Paper introduces a stand on the solar collector research which consists of a flat solar collector, heat accumulator and auxiliary equipment. The research object of the Thesis is a laboratory flat solar collector and its system. The Thesis analyses the constructions of the solar collec...

  1. 非晶硒平板探测器DR与CR模拟病变描述和剂量降低的对比研究%Amorphous selenium flat-panel detector digital radiography versus computed radiography: phantom study of depiction of simulated lesion and dose reduction

    Institute of Scientific and Technical Information of China (English)

    曾勇明; 吴富荣; 张志伟; 欧阳羽; 谭秀洪; 金瑞

    2008-01-01

    Objective To compare an amorphous selenium fiat-panel detector digital radiography(DR) with a computed radiography(CR) for the depiction of simulated pulmonary lesion,as well as for evaluation of dose reduction.Methods Simulated linear,reticular,and nodular lesion were located in all anthropomorphic chest phantom.The phantom was exposed by DR and CR with different mAs sets.The entrance surface doses were recorded for all images.Hard copy images were generated at different dose levels.Images were presented in a random order to four independent radiologists.They subjectively rated the visibility of simulated pulmonary lesion. Statistical significance of difference was analvsed with wilcoxon test.Resuits The visibility of simulated linear and reticular lesions on the images obtained with DR was superior to the images from CR at 2.0 and 3.2 mAs.P 0.05).DR was superior to CR in detection sinail nodular(diameter0.05).2.0、3.2、5.0、6.3 mAs曝光档,对于小结节(直径小于10 mm)的检测DR均优于CR(Z:-2.237,P=0.018;Z=-2.384,P=0.017;Z=-2.388,P=0.017;Z=-2.366,P=0.018).当3种模拟肺部病变都显示清楚时.用非晶硒DR系统的入射体表剂量降低约65%.结论 对微小低对比病变的描述,非晶硒平板探测器DR优于CR且明显地降低曝光剂晕.

  2. Molecular dynamics investigation on the atomic-scale friction behaviors between copper(0 0 1) and diamond(1 1 1) surfaces

    International Nuclear Information System (INIS)

    Classical molecular dynamics (MD) simulations are conducted to examine the atomic-scale friction behavior of an infinite flat-flat contact between copper(0 0 1) and diamond(1 1 1) surfaces. Two types of diamond surface, namely H-free and hydrogenated, are constructed and on each of them the copper counterface is brought to slide along the [1 1 -2] and [1 -1 0] crystallographic directions with a variety of loads. The simulation results demonstrate that the hydrogen atoms chemisorbed to the diamond surface can to large extent eliminate the directional dependency of its friction behavior with copper. Under pressures less than 30 GPa, the sliding between copper and hydrogenated is wearless. In this period, the shear stress of them just slightly increases to 0.6 GPa. Between 30 GPa and 32 GPa, copper atoms near the interface begin to be worn and incorporate into the diamond substrate and this causes a sharp shift from 0.6 GPa to 2.7 GPa in their shear stress. In contrast, the sliding process between copper and H-free diamond is always wearless even under pressure beyond 40 GPa. The H-free [1 -1 0] model exhibits much higher shear stress than H-free [1 1 -2] under pressures less than 35 GPa. Beyond 35 GPa, they present nearly consistent shear stress evolution. Moreover, the simulations for hydrogenated diamond models suggest that their friction behavior is independent on sliding velocity only under wearless sliding regime.

  3. Effects of Implant Copper Layer on Diamond Film Deposition on Cemented Carbides

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The deposition of high-quality diamond films and their adhesion on cemented carbides are strongly influenced by the catalytic effect of cobalt under typical deposition conditions.Decreasing Co content on the surface of the cemented carbide is often used for the diamond filmdeposition. But the leaching of Co from the WC-Co substrate leading to a mechanical weak surface often causes a poor adhesion. In this paper we adopted an implant copper layer preparedby vaporization to improve the mechanical properties of the Co-leached substrate. The diamondfilms were grown by microwave plasma chemical vapor deposition from CH4 :H2 gas mixture. Thecross section and the morphology of the diamond film were characterized by scanning electronmicroscopy (SEM). The non-diamond content in the film was analyzed by Raman spectroscopy.The effects of pretreatment on the concentrations of Co and Cu near the interfacial region wereexamined by energy dispersive spectrum (EDS) equipped with SEM. The adhesion of the diamondon the substrate was evaluated with a Rockwell-type hardness tester. The results indicate that thediamond films prepared with implant copper layer have a good adhesion to the cemented carbidesubstrate due to the recovery of the mechanical properties of the Co-depleted substrate after thecopper implantation and the formation of less amorphous carbon between the substrate and thediamond film.

  4. OBTAINING LAYER NANO-COATINGS ON DIAMOND POWDERS IN PLANAR MAGNETRON

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevsky

    2015-01-01

    Full Text Available The paper presents investigation results concerning evaluation of influence of technological parameters of composite cathode spraying in a planar magnetron spraying system on structure formation  and properties of layer nano-coatings (Si + C of diamond micro-powders. a-SiC formation reaction was proceeding in the nano-layer (up to 20nm presenting  Si + C atom  or cluster mixture of  amorphous structure being treated with glow-discharge plasma. The layer coating has been obtained as a result of subsequent deposition on it the following elements: Si + C and Al of the given thickness (up to 300nm  and 10nm, respectively and also outside layer of pyrolytic carbon. The coating has ensured diamond protection against graphitation while heating and formation of carbide-silicon matrix. The composite of silicon diamond-carbide obtained on the basis of diamond powders with a layer coating with the help of  a method that presupposes impregnation with liquid silicon and reaction sintering  is characterized by improved properties.

  5. Dual-ion-beam deposition of carbon films with diamond-like properties

    Science.gov (United States)

    Mirtich, M. J.; Swec, D. M.; Angus, J. C.

    1985-01-01

    A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamond like films generated by sputtering a graphite target.

  6. Shear amorphization of boron suboxide

    International Nuclear Information System (INIS)

    We report for the first time the shear-induced local amorphization of boron suboxide subjected to nanoindentation. The amorphous bands have a width of ∼1–3 nm and a length of 200–300 nm along the (01¯11) crystal plane. We show direct experimental evidence that the amorphous shear bands of boron suboxide are driven from the coalescence of dislocation loops under high shear stresses. These observations provide insights into the microscopic deformation and failure of high-strength and lightweight ceramics

  7. Simulation in Amorphous Silicon and Amorphous Silicon Carbide Pin Diodes

    OpenAIRE

    Gonçalves, Dora; Fernandes, Miguel; Louro, Paula; Fantoni, Alessandro; Vieira, Manuela

    2014-01-01

    Part 21: Electronics: Devices International audience Photodiodes are devices used as image sensors, reactive to polychromatic light and subsequently color detecting, and they are also used in optical communication applications. To improve these devices performance it is essential to study and control their characteristics, in fact their capacitance and spectral and transient responses. This study considers two types of diodes, an amorphous silicon pin and an amorphous silicon carbide pi...

  8. Growth stress in tungsten carbide-diamond-like carbon coatings

    International Nuclear Information System (INIS)

    Growth stress in tungsten carbide-diamond-like carbon coatings, sputter deposited in a reactive argon/acetylene plasma, has been studied as a function of the acetylene partial pressure. Stress and microstructure have been investigated by wafer curvature and transmission electron microscopy (TEM) whereas composition and energy distribution functions of positive ions were obtained by electron probe microanalyzer, elastic recoil detection analysis, and mass-energy analyzer (MEA). It has been observed that the compressive stress decreases with increasing acetylene partial pressure, showing an abrupt change from -5.0 to -1.6 GPa at an acetylene partial pressure of 0.012 Pa. TEM micrographs show that by increasing the acetylene partial pressure in the plasma from 0 to 0.012 Pa, the microstructure of the coating changes from polycrystalline to amorphous. MEA results show that the most probable energy of positive ions bombarding the substrate during deposition in pure argon and argon/acetylene atmosphere is the same. Based on the results, it is concluded that the huge variation in the compressive stress at low acetylene partial pressures is due to a change in the microstructure of the coating from polycrystalline to amorphous and not to the energy of positive ions bombarding the film

  9. Diamond thermoluminescence properties of different chondrites

    Science.gov (United States)

    Fisenko, A. V.; Kashkarov, L. L.; Semjonova, L. F.; Pillinger, C. T.

    1993-01-01

    It was found that thermoluminescence (TL) glows of diamonds depend on the origin of diamonds and the chondrite metamorphism degree. The investigation of TL of diamonds was continued and the results for diamonds from Murchison CM2, Krymka LL3.0, Kainsaz CO3, and Abee E4 were considered. The diamonds synthesized by CVD-process (samples 133, 159) and by detonation from soot (DDS-B14-89) were also analyzed for comparison. Before the TL measuring samples were annealed at approximately 350 C for a few seconds and then irradiated by gamma-rays of Cs-137 up to dose approximately 200 krad. TL-measurements were performed in the air atmosphere on the standard equipment. TL data for samples are shown. TL glow for some diamonds are also presented.

  10. CVD diamond detectors of ionising radiation

    International Nuclear Information System (INIS)

    Diamond is a resilient material with excellent physical properties for radiation experiments. As such it is an interesting material for fabrication of high performance solid-state particle detectors operating at room temperature. Its high radiation hardness makes it an ideal material in high radiation environment. High breakdown voltage allows application of high electric field and so speeds up the charge collection. Diamond manufacturing technology (CVD) allows low cost diamond production in large sheets and with higher purity than nature diamonds. There have been already produced CVD diamond detectors with coaxial geometry, planar, micro-strip and pixel detectors. Also at Slovak University of Technology have been already produced first CVD diamond layers. (authors)

  11. Diamond deposition on thin cylindrical substrates

    Directory of Open Access Journals (Sweden)

    GORDANA S. RISTIĆ

    2011-03-01

    Full Text Available Diamond coatings were deposited onto different cylindrical substrates (Cu, SiC, W and Mo by the hot filament chemical vapor deposition (CVD method. Continuous, adhered and well-faceted crystalline coatings of diamond were obtained on Cu-wire using a special pretreatment with a mixture of diamond and metal powders as well as carefully controlled deposition at lower power. Diamond deposition on SiC-fiber gave continuous and uniform coatings when only the filament power was properly selected. Uniform, homogeneous, euchedral diamond coatings on W- and Mo-wires, attained at a higher filament power, confirmed once more the convenience of refractory metals as substrates for diamond deposition by the CVD technique. Characterization of the obtained coatings was realized using scanning electron microscopy (SEM. The obtained results are compared with the literature data. Differences are discussed with regard to the chemical nature of the substrates as well as their thermophysical characteristics.

  12. Surface bioactivity of plasma implanted silicon and amorphous carbon

    Institute of Scientific and Technical Information of China (English)

    Paul K CHU

    2004-01-01

    Plasma immersion ion implantation and deposition (PⅢ&D) has been shown to be an effective technique to enhance the surface bioactivity of materials. In this paper, recent progress made in our laboratory on plasma surface modification single-crystal silicon and amorphous carbon is reviewed. Silicon is the most important material in the integrated circuit industry but its surface biocompatibility has not been investigated in details. We have recently performed hydrogen PⅢ into silicon and observed the biomimetic growth of apatite on its surface in simulated body fluid. Diamond-like carbon (DLC) is widely used in the industry due to its excellent mechanical properties and chemical inertness. The use of this material in biomedical engineering has also attracted much attention. It has been observed in our laboratory that doping DLC with nitrogen by means of PⅢ can improve the surface blood compatibility. The properties as well as in vitro biological test results will be discussed in this article.

  13. Nanostructured Diamond-Like Carbon Films Grown by Off-Axis Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Seong Shan Yap

    2015-01-01

    Full Text Available Nanostructured diamond-like carbon (DLC films instead of the ultrasmooth film were obtained by pulsed laser ablation of pyrolytic graphite. Deposition was performed at room temperature in vacuum with substrates placed at off-axis position. The configuration utilized high density plasma plume arriving at low effective angle for the formation of nanostructured DLC. Nanostructures with maximum size of 50 nm were deposited as compared to the ultrasmooth DLC films obtained in a conventional deposition. The Raman spectra of the films confirmed that the films were diamond-like/amorphous in nature. Although grown at an angle, ion energy of >35 eV was obtained at the off-axis position. This was proposed to be responsible for subplantation growth of sp3 hybridized carbon. The condensation of energetic clusters and oblique angle deposition correspondingly gave rise to the formation of nanostructured DLC in this study.

  14. Enhanced adhesion of diamond coatings

    Science.gov (United States)

    Zheng, Zhido

    Diamond coatings are of interest for a wide range of applications due to the unique properties of crystalline diamond. Many applications require that the coating adhere strongly to metallic substrates which may have a large difference in thermal expansion coefficient with diamond. These substrates may also have undesirable chemical interactions with carbon during the deposition of the coatings. Intermediate layers are a possible solution to both of these problems. Such layers can act as diffusion barriers preventing the deleterious chemical interactions, and may help to accommodate the thermal expansion mismatch strains. Several aspects of these issues are addressed in this work. The mechanics of the interface for a coating-substrate system loaded by thermal expansion mismatch is modeled. Both continuous coatings and coatings containing a through-thickness hole surrounded by an annular delamination crack are examined. Analytic expressions for the stress distribution in the film and in the substrate are derived by representing the thermal expansion mismatch loads as tractions and moments acting along the outer free edge of the specimen and along the tip of the annular crack. The loads near the center hole are found to vary with the size of the delamination crack, and hence constitute a driving force for growth of such a delamination. The strain energy release rate for the growth of the annular crack surrounding the central hole is derived, and expressed in terms of the thermal expansion misfit between film and substrate; their thickness, elastic moduli and Poisson's ratios; and the characteristic dimensions of the film-substrate system. The crack driving force is found to decrease as the delamination crack surrounding the hole propagates, and hence a relationship between crack length and crack driving force is established. The requirements for an effective intermediate layer between diamond films and Fe-group containing substrate materials are described, and two

  15. Diamond cells and new materials

    Directory of Open Access Journals (Sweden)

    Reinhard Boehler

    2005-11-01

    Full Text Available The diamond anvil apparatus, invented nearly 50 years ago, has developed into a versatile tool for a broad spectrum of high-pressure research topics, ranging from low-temperature physics to high-temperature geoscience. It is superbly suited for high-pressure and high-temperature synthesis because new materials can be identified and characterized in situ. The combination of high pressure and high temperature, generated by two opposed diamond anvils and infrared (IR lasers, respectively, has allowed the simulation of the extreme conditions of planetary interiors, the discovery of new structures and behavior in elements, and the synthesis of novel hard materials. Here, we describe the relatively simple technique of generating and controlling high pressure and high temperature, and present recent examples related to these topics.

  16. Diamond turning machine controller implementation

    Energy Technology Data Exchange (ETDEWEB)

    Garrard, K.P.; Taylor, L.W.; Knight, B.F.; Fornaro, R.J.

    1988-12-01

    The standard controller for a Pnuemo ASG 2500 Diamond Turning Machine, an Allen Bradley 8200, has been replaced with a custom high-performance design. This controller consists of four major components. Axis position feedback information is provided by a Zygo Axiom 2/20 laser interferometer with 0.1 micro-inch resolution. Hardware interface logic couples the computers digital and analog I/O channels to the diamond turning machine`s analog motor controllers, the laser interferometer, and other machine status and control information. It also provides front panel switches for operator override of the computer controller and implement the emergency stop sequence. The remaining two components, the control computer hardware and software, are discussed in detail below.

  17. The ATLAS Diamond Beam Monitor

    CERN Document Server

    Schaefer, Douglas; The ATLAS collaboration

    2015-01-01

    After the first three years of the LHC running the ATLAS experiment extracted it's pixel detector system to refurbish and re-position the optical readout drivers and install a new barrel layer of pixels. The experiment has also taken advantage of this access to also install a set of beam monitoring telescopes with pixel sensors, four each in the forward and backward regions. These telescopes were assembled based on chemical vapour deposited (CVD) diamond sensors to survive in this high radiation environment without needing extensive cooling. This talk will describe the lessons learned in construction and commissioning of the ATLAS x Diamond Beam Monitor (DBM). We will show results from the construction quality assurance tests, commissioning performance, including results from cosmic ray running in early 2015 and also expected first results from LHC run 2 collisions.

  18. Establishment of action levels for quality control of IMRT flat panel: experience with the algorithm iGRiMLO

    International Nuclear Information System (INIS)

    Algorithm has been used at our institution iGRiMLO scheduled for individual verification of treatment plans for intensity modulated radiotherapy (IMRT) step and shoot through portal dosimetry pretreatment of non-transmission, triggering the plan directly to a portal imaging device (EPID) of an amorphous silicon flat panel.

  19. Conductive diamond electrodes for water purification

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Martínez-Huitle

    2007-12-01

    Full Text Available Nowadays, synthetic diamond has been studied for its application in wastewater treatment, electroanalysis, organic synthesis and sensor areas; however, its use in the water disinfection/purification is its most relevant application. The new electrochemistry applications of diamond electrodes open new perspectives for an easy, effective, and chemical free water treatment. This article highlights and summarizes the results of a selection of papers dealing with electrochemical disinfection using synthetic diamond films.

  20. Superconducting Nanowire Single Photon Detector on Diamond

    CERN Document Server

    Atikian, Haig A; Salim, A Jafari; Burek, Michael J; Choy, Jennifer T; Majedi, A Hamed; Loncar, Marko

    2014-01-01

    Superconducting nanowire single photon detectors (SNSPDs) are fabricated directly on diamond substrates and their optical and electrical properties are characterized. Dark count performance and photon count rates are measured at varying temperatures for 1310nm and 632nm photons. The procedure to prepare diamond substrate surfaces suitable for the deposition and patterning of thin film superconducting layers is reported. Using this approach, diamond substrates with less than 300pm RMS surface roughness are obtained.

  1. The Charge Collection Properties of CVD Diamond

    OpenAIRE

    Behnke, Ties; Hüntemeyer, Petra; Oh, Alexander; Steuerer, Johannes; Wagner, Albrecht; Zeuner, Wolfram

    1998-01-01

    The charge collection properties of CVD diamond have been investigated with ionising radiation. In this study two CVD diamond samples, prepared with electrical contacts have been used as solid state ionisation chambers. The diamonds have been studied with beta particles and 10 keV photons, providing a homogeneous ionisation density and with protons and alpha particles which are absorbed in a thin surface layer. For the latter case a strong decrease of the signal as function of time is observe...

  2. Field electron emission of diamond films on nanocrystalline diamond coating by CVD method

    Institute of Scientific and Technical Information of China (English)

    CAI Rangqi; CHEN Guanghua; SONG Xuemei; XING Guangjian; FENG Zhenjian; HE Deyan

    2003-01-01

    The preparation process, structure feature and field electron emission characteristic of diamond films on nanocyrstalline diamond coating by the CVD method were studied. The field electron emission measurements on the samples showed that the diamond films have lower turn-on voltage and higher field emission current density. A further detailed theory explanation to the results was given.

  3. Microwave Resonators Containing Diamond Disks

    Science.gov (United States)

    Dick, G. John; Maleki, Lutfollah; Wang, Rabi T.

    1996-01-01

    Synthetic diamond dielectric bodies proposed for use in cylindrical resonators helping to stabilize frequencies of some microwave oscillators. Acting in conjunction with metal resonator cavities in which mounted, such dielectric bodies support "whispering-gallery" waveguide modes characterized by desired frequencies of resonance and by electro-magnetic-field configurations limiting dissipation of power on metal surfaces outside dielectric bodies. Performances at room temperature might exceed those of liquid-nitrogen-cooled sapphire-based resonators.

  4. Thermal Conductivity of Diamond Composites

    Directory of Open Access Journals (Sweden)

    Fedor M. Shakhov

    2009-12-01

    Full Text Available A major problem challenging specialists in present-day materials sciences is the development of compact, cheap to fabricate heat sinks for electronic devices, primarily for computer processors, semiconductor lasers, high-power microchips, and electronics components. The materials currently used for heat sinks of such devices are aluminum and copper, with thermal conductivities of about 250 W/(m·K and 400 W/(m·K, respectively. Significantly, the thermal expansion coefficient of metals differs markedly from those of the materials employed in semiconductor electronics (mostly silicon; one should add here the low electrical resistivity metals possess. By contrast, natural single-crystal diamond is known to feature the highest thermal conductivity of all the bulk materials studied thus far, as high as 2,200 W/(m·K. Needless to say, it cannot be applied in heat removal technology because of high cost. Recently, SiC- and AlN-based ceramics have started enjoying wide use as heat sink materials; the thermal conductivity of such composites, however, is inferior to that of metals by nearly a factor two. This prompts a challenging scientific problem to develop diamond-based composites with thermal characteristics superior to those of aluminum and copper, adjustable thermal expansion coefficient, low electrical conductivity and a moderate cost, below that of the natural single-crystal diamond. The present review addresses this problem and appraises the results reached by now in studying the possibility of developing composites in diamond-containing systems with a view of obtaining materials with a high thermal conductivity.

  5. Quantum information processing in diamond

    OpenAIRE

    Jelezko, F.; Wrachtrup, J.

    2005-01-01

    Quantum computing is an attractive and multidisciplinary field, which became a focus for experimental and theoretical research during last decade. Among other systems, like ions in traps or superconducting circuits, solid-states based qubits are considered to be promising candidates for first experimental tests of quantum hardware. Here we report recent progress in quantum information processing with point defect in diamond. Qubits are defined as single spin states (electron or nuclear). This...

  6. Electrical properties of diamond nanostructures

    Science.gov (United States)

    Bevilacqua, M.

    Nanocrystalline diamond films (NCD) can potentially be used in a large variety of applications such as electrochemical electrodes, tribology, cold cathodes, and corrosion resistance. A thorough knowledge of the electrical properties of NCD films is therefore critical to understand and predict their performance in various applications. In the present work the electrical properties of NCD films were analysed using Impedance Spectroscopy and Hall Effect measurements. Impedance Spectroscopy permits to identify and single out the conduction paths within the films tested. Such conduction paths can be through grain interiors and/or grain boundaries. Hall measurements, carried out on Boron doped NCD, permits determination of the mobility of the films. Specific treatments were devised to enhance the properties of the NCD films studied. Detonation nanodiamond (DND) is becoming an increasingly interesting material. It is already used as abrasive material or component for coatings [1], but its potential applications can extend far beyond these. It is therefore essential to understand the structure and electrical properties of DND in order to exploit the full potential of this material. In the present work, electrical properties of DND were studied using Impedance Spectroscopy. The results obtained suggest that DND could be used to manufacture devices able to work as Ammonia detectors. Another major area of study in this work was ultra-violet diamond photodetectors. Using high quality CVD single-crystal diamond, UV photodetection devices were built using standard lithographic techniques. Following the application of heat treatments, the photoconductive properties of these devices were highly enhanced. The devices represent the state-of-the-art UV diamond photodetectors.

  7. Aztec Diamonds and Baxter Permutations

    OpenAIRE

    Canary, Hal

    2003-01-01

    We present a proof of a conjecture about the relationship between Baxter permutations and pairs of alternating sign matrices that are produced from domino tilings of Aztec diamonds. It is shown that if and only if a tiling corresponds to a pair of ASMs that are both permutation matrices, the larger permutation matrix corresponds to a Baxter permutation. There has been a thriving literature on both pattern-avoiding permutations of various kinds and tilings of regions using dominos or rhombuses...

  8. Weak localization in ultrananocrystalline diamond

    Czech Academy of Sciences Publication Activity Database

    Mareš, Jiří J.; Hubík, Pavel; Krištofik, Jozef; Kindl, Dobroslav; Fanta, Michal; Nesládek, M.; Williams, O.; Gruen, D.M.

    2006-01-01

    Roč. 88, č. 9 (2006), 092107/1-092107/3. ISSN 0003-6951 R&D Projects: GA AV ČR(CZ) IAA1010404; GA ČR(CZ) GA202/03/0410; GA ČR(CZ) GA202/06/0040 Institutional research plan: CEZ:AV0Z10100521 Keywords : nanocrystalline diamond * superconductivity * weak localization Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.977, year: 2006

  9. Diamond gamma dose rate monitor

    International Nuclear Information System (INIS)

    CVD (chemical vapor deposition) diamond detectors for X and gamma dose rate monitoring have been fabricated and tested in the 1 mGy/h to 1 kGy/h range. They show excellent performances in terms of sensitivity and linearity. Radiation hardness measurement under 60-Co gamma rays have demonstrated long term stability for integrated doses up to 500 kGy. (authors)

  10. Antibacterial potential of diamond nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Beranová, Jana; Seydlová, Gabriela; Kozak, Halyna; Benada, Oldřich; Fišer, Radovan; Artemenko, Anna; Konopásek, Ivo; Kromka, Alexander

    Ostrava: Tanger, 2014. ISBN 978-80-87294-55-0. [International Conference NANOCON /6./. 05.11.2014-07.11.2014, Brno] R&D Projects: GA ČR GAP108/12/0910 Institutional support: RVO:68378271 ; RVO:61388971 Keywords : diamond nanoparticles * antibacterial properties * Escherichia coli * Bacillus subtilis * DLS * XPS Subject RIV: BM - Solid Matter Physics ; Magnetism; EE - Microbiology, Virology (MBU-M)

  11. Diamond turning of thermoplastic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E.; Scattergood, R.O.

    1988-12-01

    Single point diamond turning studies were made using a series of thermoplastic polymers with different glass transition temperatures. Variations in surface morphology and surface roughness were observed as a function of cutting speed. Lower glass transition temperatures facilitate smoother surface cuts and better surface finish. This can be attributed to the frictional heating that occurs during machining. Because of the very low glass transition temperatures in polymeric compared to inorganic glasses, the precision machining response can be very speed sensitive.

  12. Amorphous drugs and dosage forms

    DEFF Research Database (Denmark)

    Grohganz, Holger; Löbmann, K.; Priemel, P.;

    2013-01-01

    The transformation to an amorphous form is one of the most promising approaches to address the low solubility of drug compounds, the latter being an increasing challenge in the development of new drug candidates. However, amorphous forms are high energy solids and tend to recry stallize. New...... formulation principles are needed to ensure the stability of amorphous drug forms. The formation of solid dispersions is still the most investigated approach, but additional approaches are desirable to overcome the shortcomings of solid dispersions. Spatial separation by either coating or the use of micro......-containers has shown potential to prevent or delay recrystallization. Another recent approach is the formation of co-amorphous mixtures between either two drugs or one drug and one low molecular weight excipient. Molecular interactions between the two molecules provide an energy barrier that has to be overcome...

  13. Shape analysis of synthetic diamond

    International Nuclear Information System (INIS)

    Two-dimensional images of synthetic industrial diamond particles were obtained using a camera, framegrabber and PC-based image analysis software. Various methods for shape quantification were applied, including two-dimensional shape factors, Fourier series expansion of radius as a function of angle, boundary fractal analysis, polygonal harmonics, and comer counting methods. The shape parameter found to be the most relevant was axis ratio, defined as the ratio of the minor axis to the major axis of the ellipse with the same second moments of area as the particle. Axis ratio was used in an analysis of the sorting of synthetic diamonds on a vibrating table. A model was derived based on the probability that a particle of a given axis ratio would travel to a certain bin. The model described the sorting of bulk material accurately but it was found not to be applicable if the shape mix of the feed material changed dramatically. This was attributed to the fact that the particle-particle interference was not taken into account. An expert system and a neural network were designed in an attempt to classify particles by a combination of four shape parameters. These systems gave good results when discriminating between particles from bin 1 and bin 9 but not for neighbouring bins or for more than two classes. The table sorting process was discussed in light of the findings and it was demonstrated that the shape distributions of sorted diamond fractions can be quantified in a useful and meaningful way. (author)

  14. Status of diamond particle detectors

    International Nuclear Information System (INIS)

    To continue the exciting research in the field of particle physics new accelerators and experiments are under construction. In some of these experiments, e.g. ATLAS and CMS at the Large Hadron Collider at CERN or HERA-B at DESY, the detectors have to withstand an extreme environment. The detectors must be radiation hard, provide a very fast signal, and be as thin as possible. The properties of CVD diamond allow to fulfill these requirements and make it an ideal material for the detectors close to the interaction region of these experiments, i.e. the vertex detectors or the inner trackers. The RD42 collaboration is developing diamond detectors for these applications. The program of RD42 includes the improvement of the charge collection properties of CVD diamond, the study of the radiation hardness and the development of low-noise radiation hard readout electronics. An overview of the progress achieved during the last years will be given. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. Superconducting nanowire single photon detector on diamond

    International Nuclear Information System (INIS)

    Superconducting nanowire single photon detectors are fabricated directly on diamond substrates and their optical and electrical properties are characterized. Dark count performance and photon count rates are measured at varying temperatures for 1310 nm and 632 nm photons. A multi-step diamond surface polishing procedure is reported, involving iterative reactive ion etching and mechanical polishing to create a suitable diamond surface for the deposition and patterning of thin film superconducting layers. Using this approach, diamond substrates with less than 300 pm Root Mean Square surface roughness are obtained

  16. Direct Coating of Nanocrystalline Diamond on Steel

    Science.gov (United States)

    Tsugawa, Kazuo; Kawaki, Shyunsuke; Ishihara, Masatou; Hasegawa, Masataka

    2012-09-01

    Nanocrystalline diamond films have been successfully deposited on stainless steel substrates without any substrate pretreatments to promote diamond nucleation, including the formation of interlayers. A low-temperature growth technique, 400 °C or lower, in microwave plasma chemical vapor deposition using a surface-wave plasma has cleared up problems in diamond growth on ferrous materials, such as the surface graphitization, long incubation time, substrate softening, and poor adhesion. The deposited nanocrystalline diamond films on stainless steel exhibit good adhesion and tribological properties, such as a high wear resistance, a low friction coefficient, and a low aggression strength, at room temperature in air without lubrication.

  17. Metallisation of single crystal diamond radiation detectors

    Directory of Open Access Journals (Sweden)

    Ong Lucas

    2012-10-01

    Full Text Available Properties such as a large band gap, high thermal conductivity and resistance to radiation damage make diamond an extremely attractive candidate for detectors in next generation particle physics experiments. This paper presents our technique for metallisation of a single crystal diamond grown by chemical vapour deposition (CVD for use as a radiation detector, suitable for operation in places such as the Large Hadron Collider. The front and back side of the diamond are metalised with aluminium and gold on top of titanium respectively, after which the diamond is mounted and read out via a charge sensitive preamplifier. The device is found to collect charge at an efficiency of 97%.

  18. Superconducting nanowire single photon detector on diamond

    Energy Technology Data Exchange (ETDEWEB)

    Atikian, Haig A.; Burek, Michael J.; Choy, Jennifer T.; Lončar, Marko, E-mail: loncar@seas.harvard.edu [School of Engineering and Applied Sciences, Harvard University, 33 Oxford Street, Cambridge, Massachusetts 02138 (United States); Eftekharian, Amin; Jafari Salim, A.; Hamed Majedi, A. [University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 (Canada); Institute for Quantum Computing, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 (Canada)

    2014-03-24

    Superconducting nanowire single photon detectors are fabricated directly on diamond substrates and their optical and electrical properties are characterized. Dark count performance and photon count rates are measured at varying temperatures for 1310 nm and 632 nm photons. A multi-step diamond surface polishing procedure is reported, involving iterative reactive ion etching and mechanical polishing to create a suitable diamond surface for the deposition and patterning of thin film superconducting layers. Using this approach, diamond substrates with less than 300 pm Root Mean Square surface roughness are obtained.

  19. Squeezed light from a diamond-turned monolithic cavity

    CERN Document Server

    Brieussel, A; Campbell, G; Guccione, G; Janousek, J; Hage, B; Buchler, B C; Treps, N; Fabre, C; Fang, F Z; Li, X Y; Symul, T; Lam, P K

    2016-01-01

    For some crystalline materials, a regime can be found where continuous ductile cutting is feasible. Using precision diamond turning, such materials can be cut into complex optical components with high surface quality and form accuracy. In this work we use diamond-turning to machine a monolithic, square-shaped, doubly-resonant $LiNbO_3$ cavity with two flat and two convex facets. When additional mild polishing is implemented, the Q-factor of the resonator is found to be limited only by the material absorption loss. We show how our monolithic square resonator may be operated as an optical parametric oscillator that is evanescently coupled to free-space beams via birefringent prisms. The prism arrangement allows for independent and large tuning of the fundamental and second harmonic coupling rates. We measure $2.6\\pm0.5$ dB of vacuum squeezing at 1064 nm using our system. Potential improvements to obtain higher degrees of squeezing are discussed.

  20. All diamond self-aligned thin film transistor

    Science.gov (United States)

    Gerbi, Jennifer

    2008-07-01

    A substantially all diamond transistor with an electrically insulating substrate, an electrically conductive diamond layer on the substrate, and a source and a drain contact on the electrically conductive diamond layer. An electrically insulating diamond layer is in contact with the electrically conductive diamond layer, and a gate contact is on the electrically insulating diamond layer. The diamond layers may be homoepitaxial, polycrystalline, nanocrystalline or ultrananocrystalline in various combinations.A method of making a substantially all diamond self-aligned gate transistor is disclosed in which seeding and patterning can be avoided or minimized, if desired.

  1. Radiation effects on optical and electrical properties of diamond

    International Nuclear Information System (INIS)

    due to radiation damage induced quenching. In the case of the helium implanted sample an enormous increase in electrical conductivity occurs after implantation (surface resistance lower than 1000 ohms at 50 oC was measured). The implanted area became completely black indicating a high susceptibility to amorphization or graphitization for diamond when subjected to particle bombardment. (author)

  2. THE CONCENTRATION OF DIAMONDS INFLUENCES THE WEAR OF BEADS IN SAWING DIMENSION STONE WITH DIAMOND WIRE SAWING PLANT

    Directory of Open Access Journals (Sweden)

    Siniša Dunda

    1993-12-01

    Full Text Available The influence of diamond concentration to the wear or diamond layer and to the life time of the diamond wire has experimentally tested. The changes of the diamond concentration were achieved by changing the beads' pace per m' of diamond wire. Upon the obtained results of the experiment, the optimal concentration of diamonds has been established, also considering the least cost, per square meter of sawing (the paper is published in Croatian.

  3. An experimental investigation on the influence of machining parameters on surface finish in diamond turning of silicon optics

    Science.gov (United States)

    Khatri, Neha; Sharma, Rohit; Mishra, Vinod; Kumar, Mukesh; Karar, Vinod; Sarepaka, RamaGopal V.

    2015-06-01

    Silicon is widely used in IR optics, X-Ray optics and electronics applications. These applications require Silicon of optical quality surface as well as good form accuracy. To get the desired finish and dimensional accuracy, diamond turning is preferable. Taylor-Hobson Nanoform-250 diamond turning equipment is used to machine flat Silicon mirror. Negative rake diamond tool is used with a tool nose radius of 1.5 mm. A series of SPDT machining operations are performed in the sequential combinations of tool feed rate, Spindle Speed and depth of cut. In order to find out the effect of machining parameters on the Surface Roughness during turning, Response Surface Methodology (RSM) is used and a prediction model is developed related to average Surface Roughness (Ra) using experimental data. The surface quality is analyzed in terms of arithmetic roughness (Ra) and Power Spectral Density for uniform evaluation. In addition, a good agreement between the predicted and measured Surface Roughness is observed.

  4. On Flat Objects of Finitely Accessible Categories

    Directory of Open Access Journals (Sweden)

    Septimiu Crivei

    2013-01-01

    Full Text Available Flat objects of a finitely accessible additive category are described in terms of some objects of the associated functor category of , called strongly flat functors. We study closure properties of the class of strongly flat functors, and we use them to deduce the known result that every object of a finitely accessible abelian category has a flat cover.

  5. Deposition of diamond like carbon films by using a single ion gun with varying beam source

    Institute of Scientific and Technical Information of China (English)

    JIANG Jin-qiu; Chen Zhu-ping

    2001-01-01

    Diamond like carbon films have been successfully deposited on the steel substrate, by using a single ion gun with varying beam source. The films may appear blue, yellow and transparent in color, which was found related to contaminants from the sample holder and could be avoided. The thickness of the films ranges from tens up to 200 nanometers, and the hardness is in the range 20 to 30 GPa. Raman analytical results reveal the films are in amorphous structure. The effects of different beam source on the films structure are further discussed.

  6. Superlubricity mechanism of diamond-like carbon with glycerol. Coupling of experimental and simulation studies

    OpenAIRE

    De Barros Bouchet, M. I.; Matta, C.; Le-Mogne, Th.; Martin, J. Michel; Zhang, Q.; Goddard, W., III; Kano, M; Mabuchi, Y.; J Ye

    2007-01-01

    We report a unique tribological system that produces superlubricity under boundary lubrication conditions with extremely little wear. This system is a thin coating of hydrogen-free amorphous Diamond-Like-Carbon (denoted as ta-C) at 353 K in a ta-C/ta-C friction pair lubricated with pure glycerol. To understand the mechanism of friction vanishing we performed ToF-SIMS experiments using deuterated glycerol and 13C glycerol. This was complemented by first-principles-based computer simulations us...

  7. The effect of RF power on tribological properties of the diamond-like carbon films

    International Nuclear Information System (INIS)

    DLC thin films were prepared by radio frequency (RF) plasma-enhanced chemical vapor deposition (PECVD) method on silicon substrates using methane (CH4), hydrogen (H2) and gas mixture. We have checked the influence of varying RF power on DLC film. The Raman spectroscopy shows the diamond-like carbon (DLC) amorphous structure of the films. AFM images show the surface roughness of the DLC film decrease with increasing RF power. Also, the friction coefficients were investigated by atomic force microscope (AFM) in friction force microscope (FFM) mode

  8. OBTAINING LAYER NANO-COATINGS ON DIAMOND POWDERS IN PLANAR MAGNETRON

    OpenAIRE

    V. N. Kovalevsky; I. V. Fomikhina; A. V. Kovalevskaya; Grigoriev, S. V.; A. E. Zhuk

    2015-01-01

    The paper presents investigation results concerning evaluation of influence of technological parameters of composite cathode spraying in a planar magnetron spraying system on structure formation  and properties of layer nano-coatings (Si + C) of diamond micro-powders. a-SiC formation reaction was proceeding in the nano-layer (up to 20nm) presenting  Si + C atom  or cluster mixture of  amorphous structure being treated with glow-discharge plasma. The layer coating has been obtained as a result...

  9. Machining with micro-size single crystalline diamond tools fabricated by a focused ion beam

    International Nuclear Information System (INIS)

    A study was carried out to understand the physics of micro-scale mechanical machining (henceforth referred to as 'micro-machining') with a micro-size tool using a five-axis ultra-precision machine. A micro-size single crystalline diamond (SCD) tool with sharp cutting edges fabricated by a focused ion beam (FIB) was employed to orthogonal-machine four materials (three polycrystalline metals with various grain sizes and one amorphous metal plating material). Since the wealth of knowledge of macro-machining cannot be successfully used in micro-machining, this study contributes to the understanding of the physics of mechanical machining with micro-size tools

  10. Silicon-incorporated diamond-like coatings for Si3N4 mechanical seals

    OpenAIRE

    Camargo Junior, S. S.; Gomes, J. R.; Carrapichano, J. M.; Silva, R F; Achete, C. A.

    2005-01-01

    Amorphous silicon carbide (a-SiC) and silicon-incorporated diamond-like carbon films (DLC-Si) were evaluated as protective and friction reduction coatings onto Si3N4 rings. Unlubricated tribological tests were performed with a pin-on-disk apparatus against stainless steel pins with loads ranging from 3 N to 55 N and sliding velocities from 0.2 m/s to 1.0 m/s under ambient air and 50-60% relative humidity. At the lowest loads, a-SiC coatings present a considerable improvement with respect to t...

  11. Amorphous silicon sensor arrays for X-ray and document imaging

    International Nuclear Information System (INIS)

    Large area amorphous silicon image sensor arrays are important for X-ray medical imaging and document scanning as well as a variety of other applications where large sensor size is required. The paper first summarizes the present state of the flat panel X-ray imager technology, and compares the two main approaches for X-ray detection. The authors then describe the performance of a new, large area, high resolution, radiographic imager based o a single amorphous silicon array with 2,304 x 3,200 pixels, and an active area of 30 x 40 cm (12 x 16 inches)

  12. The mechanical and strength properties of diamond

    International Nuclear Information System (INIS)

    Diamond is an exciting material with many outstanding properties; see, for example Field J E (ed) 1979 The Properties of Diamond (London: Academic) and Field J E (ed) 1992 The Properties of Natural and Synthetic Diamond (London: Academic). It is pre-eminent as a gemstone, an industrial tool and as a material for solid state research. Since natural diamonds grew deep below the Earth's surface before their ejection to mineable levels, they also contain valuable information for geologists. The key to many of diamond's properties is the rigidity of its structure which explains, for example, its exceptional hardness and its high thermal conductivity. Since 1953, it has been possible to grow synthetic diamond. Before then, it was effectively only possible to have natural diamond, with a small number of these found in the vicinity of meteorite impacts. Techniques are now available to grow gem quality synthetic diamonds greater than 1 carat (0.2 g) using high temperatures and pressures (HTHP) similar to those found in nature. However, the costs are high, and the largest commercially available industrial diamonds are about 0.01 carat in weight or about 1 mm in linear dimension. The bulk of synthetic diamonds used industrially are 600 µm or less. Over 75% of diamond used for industrial purposes today is synthetic material. In recent years, there have been two significant developments. The first is the production of composites based on diamond; these materials have a significantly greater toughness than diamond while still maintaining very high hardness and reasonable thermal conductivity. The second is the production at low pressures by metastable growth using chemical vapour deposition techniques. Deposition onto non-diamond substrates was first demonstrated by Spitsyn et al 1981 J. Cryst. Growth 52 219–26 and confirmed by Matsumoto et al 1982 Japan J. Appl. Phys. 21 L183–5. These developments have added further to the versatility of diamond. Two other groups of

  13. The mechanical and strength properties of diamond

    Science.gov (United States)

    Field, J. E.

    2012-12-01

    Diamond is an exciting material with many outstanding properties; see, for example Field J E (ed) 1979 The Properties of Diamond (London: Academic) and Field J E (ed) 1992 The Properties of Natural and Synthetic Diamond (London: Academic). It is pre-eminent as a gemstone, an industrial tool and as a material for solid state research. Since natural diamonds grew deep below the Earth's surface before their ejection to mineable levels, they also contain valuable information for geologists. The key to many of diamond's properties is the rigidity of its structure which explains, for example, its exceptional hardness and its high thermal conductivity. Since 1953, it has been possible to grow synthetic diamond. Before then, it was effectively only possible to have natural diamond, with a small number of these found in the vicinity of meteorite impacts. Techniques are now available to grow gem quality synthetic diamonds greater than 1 carat (0.2 g) using high temperatures and pressures (HTHP) similar to those found in nature. However, the costs are high, and the largest commercially available industrial diamonds are about 0.01 carat in weight or about 1 mm in linear dimension. The bulk of synthetic diamonds used industrially are 600 µm or less. Over 75% of diamond used for industrial purposes today is synthetic material. In recent years, there have been two significant developments. The first is the production of composites based on diamond; these materials have a significantly greater toughness than diamond while still maintaining very high hardness and reasonable thermal conductivity. The second is the production at low pressures by metastable growth using chemical vapour deposition techniques. Deposition onto non-diamond substrates was first demonstrated by Spitsyn et al 1981 J. Cryst. Growth 52 219-26 and confirmed by Matsumoto et al 1982 Japan J. Appl. Phys. 21 L183-5. These developments have added further to the versatility of diamond. Two other groups of materials

  14. Dual polarization flat plate antenna

    Science.gov (United States)

    Kelly, Kenneth C.

    Rectangular waveguides with radiating slots are used in groups to form planar array microwave antennas with large apertures and small depth. Such flat plate antennas are widely used on spacecraft and aircraft. Typically, flat plate antennas provide fixed linear polarization. The present paper describes a new flat plate antenna which produces two coincident beams that are distinguished by their orthogonal linear polarizations. The antenna has two ports, one for each of the coicident beams. Completely external to the antenna, connecting a simple network to those terminal ports enables the antenna to provide right circular polarization from one port and left from the other. A different external network enables the antenna to have arbitrarily adjustable polarizations.

  15. The provenance of Borneo's enigmatic alluvial diamonds

    Science.gov (United States)

    White, Lloyd; Graham, Ian; Tanner, Dominique; Hall, Robert; Armstrong, Richard; Yaxley, Greg; Barron, Larry; Spencer, Lee; van Leeuwen, Theo

    2016-04-01

    Gem-quality diamonds occur in several alluvial deposits across central and southern Borneo. Borneo has been a known source of diamonds for centuries, but the location of their primary igneous source remains enigmatic. Numerous geological models have been proposed to explain the distribution of Borneo's diamonds. To assess these models, we used a variety of techniques to examine heavy minerals from Kalimantan's Cempaka paleoalluvial diamond deposit. This involved collecting U-Pb isotopic data, fission track and trace element geochemistry of zircon as well as major element geochemical data of spinels and morphological descriptions of zircon and diamond. Our results indicate that the Cempaka diamonds were likely derived from at least two sources, one which was relatively local and/or involved little reworking, and the other more distal recording several periods of reworking. The distal diamond source is interpreted to be diamond-bearing pipes that intruded the basement of a block that: (1) rifted from northwest Australia (East Java or SW Borneo) and the diamonds were recycled into its sedimentary cover, or: (2) were emplaced elsewhere (e.g. NW Australia) and transported to a block (e.g. East Java or SW Borneo). Both of these scenarios require the diamonds to be transported with the block when it rifted from NW Australia in the Late Jurassic. The 'local' diamonds could be associated with ophiolitic rocks that are exposed in the nearby Meratus Mountains, or could be diamondiferous diatremes associated with eroded Miocene high-K alkaline intrusions north of the Barito Basin. If this were the case, these intrusions would indicate that the lithosphere beneath SW Borneo is thick (~150 km or greater).

  16. Amorphous carbon for photovoltaics

    Science.gov (United States)

    Risplendi, Francesca; Grossman, Jeffrey C.

    2015-03-01

    All-carbon solar cells have attracted attention as candidates for innovative photovoltaic devices. Carbon-based materials such as graphene, carbon nanotubes (CNT) and amorphous carbon (aC) have the potential to present physical properties comparable to those of silicon-based materials with advantages such as low cost and higher thermal stability.In particular a-C structures are promising systems in which both sp2 and sp3 hybridization coordination are present in different proportions depending on the specific density, providing the possibility of tuning their optoelectronic properties and achieving comparable sunlight absorption to aSi. In this work we employ density functional theory to design suitable device architectures, such as bulk heterojunctions (BHJ) or pn junctions, consisting of a-C as the active layer material.Regarding BHJ, we study interfaces between aC and C nanostructures (such as CNT and fullerene) to relate their optoelectronic properties to the stoichiometry of aC. We demonstrate that the energy alignment between the a-C mobility edges and the occupied and unoccupied states of the CNT or C60 can be widely tuned by varying the aC density to obtain a type II interface.To employ aC in pn junctions we analyze the p- and n-type doping of a-C focusingon an evaluation of the Fermi level and work function dependence on doping.Our results highlight promising features of aC as the active layer material of thin-film solar cells.

  17. The Fallacies of Flatness: Thomas Friedman's "The World Is Flat"

    Science.gov (United States)

    Abowitz, Kathleen Knight; Roberts, Jay

    2007-01-01

    Thomas Friedman's best-selling "The World is Flat" has exerted much influence in the west by providing both an accessible analysis of globalization and its economic and social effects, and a powerful cultural metaphor for globalization. In this review, we more closely examine Friedman's notion of the social contract, the moral center of his…

  18. Nonlocal gravity: Conformally flat spacetimes

    CERN Document Server

    Bini, Donato

    2016-01-01

    The field equations of the recent nonlocal generalization of Einstein's theory of gravitation are presented in a form that is reminiscent of general relativity. The implications of the nonlocal field equations are studied in the case of conformally flat spacetimes. Even in this simple case, the field equations are intractable. Therefore, to gain insight into the nature of these equations, we investigate the structure of nonlocal gravity in two-dimensional spacetimes. While any smooth 2D spacetime is conformally flat and satisfies Einstein's field equations, only a subset containing either a Killing vector or a homothetic Killing vector can satisfy the field equations of nonlocal gravity.

  19. Diamond film growth with modification properties of adhesion between substrate and diamond film

    Directory of Open Access Journals (Sweden)

    Setasuwon P.

    2004-03-01

    Full Text Available Diamond film growth was studied using chemical vapor deposition (CVD. A special equipment was build in-house, employing a welding torch, and substrate holder with a water-cooling system. Acetylene and oxygen were used as combustion gases and the substrate was tungsten carbide cobalt. It was found that surface treatments, such as diamond powder scratching or acid etching, increase the adhesion and prevent the film peel-off. Diamond powder scratching and combined diamond powder scratching with acid etching gave the similar diamond film structure with small grain and slightly rough surface. The diamond film obtained with both treatments has high adhesion and can withstand internal stress better than ones obtained by untreated surface or acid etching alone. It was also found that higher substrate temperature produced smoother surface and more uniform diamond grain.

  20. High mobility diamonds and particle detectors

    Science.gov (United States)

    Pernegger, H.

    2006-10-01

    The basic properties of high-quality CVD diamond film make them very interesting for a wide range of detectors: they are radiation hard, provide fast signals, show very low leakage current even in high radiation environments, have excellent thermal properties and can be manufactured as free-standing detectors. This paper will give an overview of recent test results on polycrystalline and single crystal CVD diamond detectors. Large polycrystalline CVD diamonds with a charge collection distance up to 300 m have been tested and are used to build prototype tracking detectors and beam monitors at the moment. Further irradiation studies have been carried out using a 24 GeV proton beam to test samples up to a total fluence of 1.8 × 1016 protons/cm2. Measurements on several samples of single-crystal CVD diamonds have shown full charge collection in the detector. Results of transient-current measurements on single crystal CVD diamonds, which are used to determine the charge carrier mobility and lifetime, show the excellent electrical properties of this material. The paper will present several different applications of CVD diamond detectors, which benefit from the recent improvements of detector-grade diamonds. They range from tracking in High Energy Physics experiments, to high-speed Beam Conditions Monitor at the collider experiments up to CVD diamond detectors as beam diagnostic in proton cancer therapy.

  1. CVD diamond pixel detectors for LHC experiments

    International Nuclear Information System (INIS)

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described

  2. CVD diamond pixel detectors for LHC experiments

    CERN Document Server

    Wedenig, R; Bauer, C; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Runólfsson, O; Russ, J; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Trawick, M L; Trischuk, W; Vittone, E; Wagner, A; Walsh, A M; Weilhammer, Peter; White, C; Zeuner, W; Ziock, H J; Zöller, M

    1999-01-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described. (9 refs).

  3. CVD diamond pixel detectors for LHC experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J.C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N

    1999-08-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described.

  4. Bending diamonds by femtosecond laser ablation

    DEFF Research Database (Denmark)

    Balling, Peter; Esberg, Jakob; Kirsebom, Kim;

    2009-01-01

    We present a new method based on femtosecond laser ablation for the fabrication of statically bent diamond crystals. Using this method, curvature radii of 1 m can easily be achieved, and the curvature obtained is very uniform. Since diamond is extremely tolerant to high radiation doses, partly due...

  5. Diamond-based molecular platform for photoelectrochemistry

    Czech Academy of Sciences Publication Activity Database

    Zhong, Y.L.; Midya, A.; Ng, Z.; Chen, Z.; Daenen, M.; Nesládek, Miloš; Loh, K.P.

    2008-01-01

    Roč. 130, č. 51 (2008), s. 17218-17219. ISSN 0002-7863 Institutional research plan: CEZ:AV0Z10100520 Keywords : boron doped diamond thin film * photocurrent conversion * organic /diamond interface Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 8.091, year: 2008

  6. High mobility diamonds and particle detectors

    International Nuclear Information System (INIS)

    The basic properties of high-quality CVD diamond film make them very interesting for a wide range of detectors: they are radiation hard, provide fast signals, show very low leakage current even in high radiation environments, have excellent thermal properties and can be manufactured as free-standing detectors. This paper will give an overview of recent test results on polycrystalline and single crystal CVD diamond detectors. Large polycrystalline CVD diamonds with a charge collection distance up to 300 μm have been tested and are used to build prototype tracking detectors and beam monitors at the moment. Further irradiation studies have been carried out using a 24 GeV proton beam to test samples up to a total fluence of 1.8 x 1016 protons/cm2. Measurements on several samples of single-crystal CVD diamonds have shown full charge collection in the detector. Results of transient-current measurements on single crystal CVD diamonds, which are used to determine the charge carrier mobility and lifetime, show the excellent electrical properties of this material. The paper will present several different applications of CVD diamond detectors, which benefit from the recent improvements of detector-grade diamonds. They range from tracking in High Energy Physics experiments, to high-speed Beam Conditions Monitor at the collider experiments up to CVD diamond detectors as beam diagnostic in proton cancer therapy. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Amorphous Silicon: Flexible Backplane and Display Application

    Science.gov (United States)

    Sarma, Kalluri R.

    Advances in the science and technology of hydrogenated amorphous silicon (a-Si:H, also referred to as a-Si) and the associated devices including thin-film transistors (TFT) during the past three decades have had a profound impact on the development and commercialization of major applications such as thin-film solar cells, digital image scanners and X-ray imagers and active matrix liquid crystal displays (AMLCDs). Particularly, during approximately the past 15 years, a-Si TFT-based flat panel AMLCDs have been a huge commercial success. a-Si TFT-LCD has enabled the note book PCs, and is now rapidly replacing the venerable CRT in the desktop monitor and home TV applications. a-Si TFT-LCD is now the dominant technology in use for applications ranging from small displays such as in mobile phones to large displays such as in home TV, as well-specialized applications such as industrial and avionics displays.

  8. Unique electrical properties of nanostructured diamond cones

    International Nuclear Information System (INIS)

    The preparation and electrical properties of diamond nanocones are reviewed, including a maskless etching process and mechanism of large-area diamond conical nanostructure arrays using a hot filament chemical vapor deposition (HFCVD) system with negatively biased substrates, and the field electron emission, gas sensing, and quantum transport properties of a diamond nanocone array or an individual diamond nanocone. Optimal cone aspect ratio and array density are investigated, along with the relationships between the cone morphologies and experimental parameters, such as the CH4/H2 ratio of the etching gas, the bias current, and the gas pressure. The reviewed experiments demonstrate the possibility of using nanostructured diamond cones as a display device element, a point electron emission source, a gas sensor or a quantum device. (topical review - low-dimensional nanostructures and devices)

  9. Diamond electrophoretic microchips-Joule heating effects

    Energy Technology Data Exchange (ETDEWEB)

    Karczemska, Anna T., E-mail: anna.karczemska@p.lodz.pl [Technical University of Lodz, Institute of Turbomachinery, 219/223 Wolczanska str., Lodz (Poland); Witkowski, Dariusz [Technical University of Lodz, Institute of Turbomachinery, 219/223 Wolczanska str., Lodz (Poland); Ralchenko, Victor, E-mail: ralchenko@nsc.gpi.ru [General Physics Institute, Russian Academy of Science, 38 Vavilov str., Moscow (Russian Federation); Bolshakov, Andrey; Sovyk, Dmitry [General Physics Institute, Russian Academy of Science, 38 Vavilov str., Moscow (Russian Federation); Lysko, Jan M., E-mail: jmlysko@ite.waw.pl [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Fijalkowski, Mateusz, E-mail: petr.louda@vslib.cz [Technical University of Liberec, Faculty of Mechanical Engineering (Czech Republic); Bodzenta, Jerzy, E-mail: jerzy.bodzenta@polsl.pl [Silesian University of Technology, Institute of Physics, 2 Krzywoustego str., 44-100 Gliwice (Poland); Hassard, John, E-mail: j.hassard@imperial.ac.uk [Imperial College of Science, Technology and Medicine, London (United Kingdom)

    2011-03-15

    Microchip electrophoresis (MCE) has become a mature separation technique in the recent years. In the presented research, a polycrystalline diamond electrophoretic microchip was manufactured with a microwave plasma chemical vapour deposition (MPCVD) method. A replica technique (mould method) was used to manufacture microstructures in diamond. A numerical analysis with CoventorWare{sup TM} was used to compare thermal properties during chip electrophoresis of diamond and glass microchips of the same geometries. Temperature distributions in microchips were demonstrated. Thermal, electrical, optical, chemical and mechanical parameters of the polycrystalline diamond layers are advantageous over traditionally used materials for microfluidic devices. Especially, a very high thermal conductivity coefficient gives a possibility of very efficient dissipation of Joule heat from the diamond electrophoretic microchip. This enables manufacturing of a new generation of microdevices.

  10. Review Article: Quantum Nanophotonics in Diamond

    CERN Document Server

    Schröder, Tim; Zheng, Jiabao; Trusheim, Matthew E; Walsh, Michael; Chen, Edward H; Li, Luozhou; Bayn, Igal; Englund, Dirk

    2016-01-01

    The past decade has seen great advances in developing color centers in diamond for sensing, quantum information processing, and tests of quantum foundations. Increasingly, the success of these applications as well as fundamental investigations of light-matter interaction depend on improved control of optical interactions with color centers -- from better fluorescence collection to efficient and precise coupling with confined single optical modes. Wide ranging research efforts have been undertaken to address these demands through advanced nanofabrication of diamond. This review will cover recent advances in diamond nano- and microphotonic structures for efficient light collection, color center to nanocavity coupling, hybrid integration of diamond devices with other material systems, and the wide range of fabrication methods that have enabled these complex photonic diamond systems.

  11. High carrier mobilities in black diamond

    Science.gov (United States)

    Williams, Oliver A.; Jackman, Richard B.; Nebel, Christoph; Foord, John S.

    2003-03-01

    Hydrogen plasma treatment of diamond renders the surface p-type, with the carriers emerging with little thermal activation, in sharp contrast to the use of boron for the formation of p-type material. To date, it has been thought that only the highest quality 'white' polycrystalline material is useful for electronic device applications, with many regarding single-crystal diamond as ultimately the substrate material of choice. In this paper it is shown that when p-type material is produced through hydrogenation, this is not the case. 'Black' polycrystalline diamond, which can be grown much more rapidly than white, shows carrier concentrations and mobility values similar to both white polycrystalline diamond and single-crystal material. This result has important implications for the provision of low-cost black-diamond substrates for device applications.

  12. Morphology of diamond plate grown in the C-H-O system

    Energy Technology Data Exchange (ETDEWEB)

    Nakanose, M. [Nissan Motor Co. Ltd., Tokyo (Japan); Ichinose, H. [Univ. of Tokyo (Japan)

    1995-12-31

    A ECR-CVD system was newly designed and applied on the growth of large scale plate-like single crystal diamond. The diamond plate was grown on the (200) surface of a heated silicon substrate in H{sub 2}-CO-O{sub 2} mixing gas. Silicon wafers with (110) and (111) surface were also employed as a substrate. A plate like single crystal ten micro meter in size was grown on the (200) surface at 1123K. Top surface of the platelet crystal was very flat and was parallel to (111) plane, which was parallel to the (200) surface of the silicon substrate. Half peak width of the Raman scattering spectra was 2.6 cm{sup {minus}1} showing low impunity content in the platelet crystal less than 1ppm for N and B.

  13. Modeling of surface topography in single-point diamond turning machine.

    Science.gov (United States)

    Huang, Chih-Yu; Liang, Rongguang

    2015-08-10

    Surface roughness is an important factor in characterizing the performance of high-precision optical surfaces. In this paper, we propose a model to estimate the surface roughness generated by a single-point diamond turning machine. In this model, we take into consideration the basic tool-cutting parameters as well as the relative vibration between the tool and the workpiece in both the infeed and feeding directions. Current models focus on the relative tool-workpiece vibration in the infeed direction. However, based on our experimental measurements, the contribution of relative tool-workpiece vibration in the feeding direction is significant and cannot be ignored in the model. The proposed model is able to describe the surface topography for flat as well as cylindrical surfaces of the workpiece. It has the potential to describe more complex spherical surfaces or freeform surfaces. Our experimental study with metal materials shows good correlation between the model and the diamond-turned surfaces. PMID:26368364

  14. The complexity of flat origami

    Energy Technology Data Exchange (ETDEWEB)

    Bern, M. [Xerox, Palo Alto, CA (United States); Hayes, B. [ParcPlace-Digitalk, Inc., Sunnyvale, CA (United States)

    1996-12-31

    We study a basic problem in mathematical origami: determine if a given crease pattern can be folded to a flat origami. We show that assigning mountain and valley folds is NP-hard. We also show that determining a suitable overlap order for flaps is NP-hard, even assuming a valid mountain and valley assignment.

  15. Flat space physics from holography

    CERN Document Server

    Bousso, R

    2004-01-01

    We point out that aspects of quantum mechanics can be derived from the holographic principle, using only a perturbative limit of classical general relativity. In flat space, the covariant entropy bound reduces to the Bekenstein bound. The latter does not contain Newton's constant and cannot operate via gravitational backreaction. Instead, it is protected by - and in this sense, predicts - the Heisenberg uncertainty principle

  16. Cleaving the Halqeh-ye-nur diamonds: a dynamic fracture analysis.

    Science.gov (United States)

    Atkinson, Colin; Martineau, Philip M; Khan, Rizwan U A; Field, John E; Fisher, David; Davies, Nick M; Samartseva, Julia V; Putterman, Seth J; Hird, Jonathan R

    2015-03-28

    of diamonds, Cambridge University Press). The scientific insights gained by studying these gemstones suggest a method of producing macroscale atomically flat and stress-free surfaces on other brittle materials. PMID:25713458

  17. Surface fission tracks in diamond

    International Nuclear Information System (INIS)

    Scanning Probe Microscope (SPM) images reveal important fingerprint features of latent tracks induced in diamond by fission fragments from a californium source. Collimated fission fragments with a binary distribution of the predominant energies of 79.4 and 103.8 MeV, are assumed. Cavities, reticular formations around these cavities, and black spots of graphite were found. A brief discussion on the possible track formation mechanism is given on the basis of the explosion spike theory; an attempt to determine latent track core and halo parameters is included

  18. Toroidal plasma enhanced CVD of diamond films

    International Nuclear Information System (INIS)

    An inductively coupled toroidal plasma source is used as an alternative to microwave plasmas for chemical vapor deposition of diamond films. The source, operating at a frequency of 400 kHz, synthesizes diamond films from a mixture of argon, methane, and hydrogen. The toroidal design has been adapted to create a highly efficient environment for diamond film deposition: high gas temperature and a short distance from the sample to the plasma core. Using a toroidal plasma geometry operating in the medium frequency band allows for efficient (≈90%) coupling of AC line power to the plasma and a scalable path to high-power and large-area operation. In test runs, the source generates a high flux of atomic hydrogen over a large area, which is favorable for diamond film growth. Using a deposition temperature of 900–1050 °C and a source to sample distance of 0.1–2.0 cm, diamond films are deposited onto silicon substrates. The results showed that the deposition rate of the diamond films could be controlled using the sample temperature and source to sample spacing. The results also show the films exhibit good-quality polycrystalline diamond as verified by Raman spectroscopy, x-ray diffraction, and scanning electron microscopy. The scanning electron microscopy and x-ray diffraction results show that the samples exhibit diamond (111) and diamond (022) crystallites. The Raman results show that the sp3 peak has a narrow spectral width (FWHM 12 ± 0.5 cm−1) and that negligible amounts of the sp2 band are present, indicating good-quality diamond films

  19. Fundamentals of amorphous solids structure and properties

    CERN Document Server

    Stachurski, Zbigniew H

    2014-01-01

    Long awaited, this textbook fills the gap for convincing concepts to describe amorphous solids. Adopting a unique approach, the author develops a framework that lays the foundations for a theory of amorphousness. He unravels the scientific mysteries surrounding the topic, replacing rather vague notions of amorphous materials as disordered crystalline solids with the well-founded concept of ideal amorphous solids. A classification of amorphous materials into inorganic glasses, organic glasses, glassy metallic alloys, and thin films sets the scene for the development of the model of ideal amorph

  20. Microstructure and thermal properties of copper–diamond composites with tungsten carbide coating on diamond particles

    International Nuclear Information System (INIS)

    An effective method for preparing tungsten carbide coating on diamond surfaces was proposed to improve the interface bonding between diamond and copper. The WC coating was formed on the diamond surfaces with a reaction medium of WO3 in mixed molten NaCl–KCl salts and the copper–diamond composites were obtained by vacuum pressure infiltration of WC-coated diamond particles with pure copper. The microstructure of interface bonding between diamond and copper was discussed. Thermal conductivity and thermal expansion behavior of the obtained copper–diamond composites were investigated. Results indicated that the thermal conductivity of as-fabricated composite reached 658 W m− 1 K− 1. Significant reduction in coefficient of thermal expansion of the composite compared with that of pure copper was obtained. - Highlights: • WC coating was successfully synthesized on diamond particles in molten salts. • WC coating obviously promoted the wettability of diamond and copper matrix. • WC coating greatly enhanced the thermal conductivity of Cu–diamond composite. • The composites are suitable candidates for heat sink applications

  1. Amorphous yttrium-iron alloys

    International Nuclear Information System (INIS)

    The magnetic properties of amorphous yttrium-iron alloys Ysub(1-x)Fesub(x) have been studied over a wide concentration range 0.32 2Fe17 alloys, lead in the amorphous state to spin-glass behaviour and asperomagnetic order. The dominant positive interactions produce short-range ferromagnetic correlations which persist up to room temperature. However magnetic saturation cannot be achieved for any of the alloys in applied fields of up to 180 kOe, indicating that strong negative interactions are also present. Exchange interactions become increasingly positive with increasing x, and the magnetic properties of iron-rich alloys approach those of a normal ferromagnet. (author)

  2. Iron - based bulk amorphous alloys

    Directory of Open Access Journals (Sweden)

    R. Babilas

    2010-07-01

    Full Text Available Purpose: The paper presents a structure characterization, thermal and soft magnetic properties analysis of Fe-based bulk amorphous materials in as-cast state and after crystallization process. In addition, the paper gives some brief review about achieving, formation and structure of bulk metallic glasses as a special group of amorphous materials.Design/methodology/approach: The studies were performed on Fe72B20Si4Nb4 metallic glass in form of ribbons and rods. The amorphous structure of tested samples was examined by X-ray diffraction (XRD, transmission electron microscopy (TEM and scanning electron microscopy (SEM methods. The thermal properties of the glassy samples were measured using differential thermal analysis (DTA and differential scanning calorimetry (DSC. The magnetic properties contained initial and maximum magnetic permeability, coercive force and magnetic after-effects measurements were determined by the Maxwell-Wien bridge and VSM methods.Findings: The X-ray diffraction and transmission electron microscopy investigations revealed that the studied as-cast bulk metallic glasses in form of ribbons and rods were amorphous. Two stage crystallization process was observed for studied bulk amorphous alloy. The differences of crystallization temperature between ribbons and rods with chosen thickness are probably caused by different amorphous structures as a result of the different cooling rates in casting process. The SEM images showed that studied fractures could be classified as mixed fractures with indicated two zones contained “river” and “smooth” areas. The changing of chosen soft magnetic properties (μr, Bs, Hc obtained for samples with different thickness is a result of the non-homogenous amorphous structure of tested metallic glasses. The annealing process in temperature range from 373 to 773 K causes structural relaxation of tested amorphous materials, which leads to changes in their physical properties. The qualitative

  3. Hidden structure in amorphous solids

    Energy Technology Data Exchange (ETDEWEB)

    Inam, F. [Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701 (United States); Lewis, James P. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States); Drabold, D.A. [Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701 (United States); Trinity College, Cambridge CB2 1TQ (United Kingdom)

    2010-03-15

    Recent theoretical studies of amorphous silicon (a-Si) [Pan et al., Phys. Rev. Lett. 100, 206403 (2008)] have revealed subtle but significant structural correlations in network topology: the tendency for short (long) bonds to be spatially correlated with other short (long) bonds. These structures were linked to the electronic band tails in the optical gap. In this paper, we further examine these issues for a-Si, and demonstrate that analogous correlations exist in amorphous SiO{sub 2}, and in the organic molecule, {beta}-carotene. We conclude with a discussion of the origin of the effects and its possible generality. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  4. High resolution electron energy loss spectroscopy: A new probe of subgap absorption in amorphous solids

    International Nuclear Information System (INIS)

    The use of high resolution electron energy spectroscopy (HREELS) as a new method for studies of subgap absorption in thin films of amorphous semiconductors is demonstrated. For a-Si films, the α(ω) values extracted from the measured loss spectra are in quantitative agreement with previous optical measurements. The method is also applied to both threefold and diamond-like amorphous carbon films, yielding α(ω) down to considerably lower energies (∼50 meV) than previously reported. The HREELS method is shown to be complementary to existing techniques in that it can access the regime of low energies and ultrathin films which is difficult to investigate with the conventional methods. copyright 1996 American Institute of Physics

  5. Diamonds in an Archean greenstone belt: Diamond suites in unconventional rocks of Wawa, Northern Ontario (Canada)

    Science.gov (United States)

    Kopylova, Maya; Bruce, Loryn; Ryder, John

    2010-05-01

    Diamonds typically are found on Archean cratons entrained by younger Phanerozoic kimberlites. In contrast, Wawa diamonds are hosted in "unconventional", non-kimberlitic rocks that formed contemporaneously with the mafic and sedimentary rocks of the Archean Michipicoten Greenstone Belt (MGB). We studied two diamond suites that occur within the 2.9-2.7 Ga greenschist facies rocks of MGB located in the southwest portion of the Superior Craton (E. Canada). The first diamond suite henceforth referred to as the Wawa breccia diamonds (384 stones), are hosted in the 2618-2744 Ma calc-alkaline lamprophyres and volcaniclastic breccias, contemporaneous with pillow basalts and felsic volcanics of MGB. The second suite, the Wawa conglomerate diamonds (80 crystals), are hosted in the 2697-2700 Ma poorly sorted sedimentary polymictic conglomerate which is interpreted as a proximal alluvial fan debris flow in a fan-delta environment. The majority of the diamonds was found within the matrix of the conglomerate. The diamondiferous breccia occurs 20 km north of the town of Wawa, whereas the conglomerate is found 12 km northeast of Wawa. Diamonds from the 2 occurrences were characterized and described for provenance studies. Both the breccia and conglomerate diamonds show similar crystal habits, with the predominance of octahedral single crystals and ~ 10% of cubes. The conglomerate diamonds are significantly less resorbed (no resorbtion in 43% of the stones) than the breccia diamonds (8% non-resorbed stones). In both suites, only 21-24% show high degrees of resorption. The majority of crystals in both suites are colourless, with some yellow, brown and grey stones. Conglomerate diamonds had a wider variety of colours that were not seen in the breccia diamonds, including green and pink. The breccia diamonds contain 0-740 ppm N and show two modes of N aggregation at 0-30 and 60-95%. Among the breccia diamonds, Type IaA stones comprise 17%, whereas IaAB stones make up 49% of the

  6. Entanglement, Holography and Causal Diamonds

    CERN Document Server

    de Boer, Jan; Heller, Michal P; Myers, Robert C

    2016-01-01

    We argue that the degrees of freedom in a d-dimensional CFT can be re-organized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglement entropy from this unifying point of view. We demonstrate that for small perturbations of the va...

  7. Diamond Production and Processing : What Armenia can Learn from an Intra-Regional Exchange on the Diamond Trade

    OpenAIRE

    Grigorian, Karén

    2012-01-01

    There is a growing gap worldwide between the rising demand and stagnating supply of diamonds, producing new opportunities for diamond processing countries such as Armenia. Building productive capacity through skills development and technological progress is of central importance to achieving sustainable growth in diamond manufacturing countries. Secondary diamond industries are successful ...

  8. The Geopolitical Setting of Conflict Diamonds.

    Science.gov (United States)

    Haggerty, S. E.

    2002-05-01

    September 11, 2001 will live in infamy. Ideological differences have also led to senseless atrocities in Angola, Congo Republic, Sierra Leone, and Liberia. Hundreds of thousands have died, scores mutilated, and millions displaced. These have gone virtually unnoticed for decades. Unnoticed that is until it became evident that these barbaric acts were fueled by the sale or bartering of diamonds for arms, or by more ingenious ways that are less traceable. There is no end in sight. Industry has long recognized that about 20% of diamonds reaching the open market are smuggled from operating mines, and more recently that an additional 4% originates from conflict diamond sources. Diamond identification by laser inscription, ion implantation, or certification protocols are subject to fraudulent tampering. And these applied methods are thwarted if cutting and polishing centers are infiltrated, or if terrorist facilities are independently established. Mark ups are substantial (40-60%) from raw material to finished product. Tracking the paths of rough stones from mines to faceted gems is impractical because some 30-50 million cts of top quality material, or about 100 million stones, would require branding each year. Moreover, the long standing tradition of site-holdings and the bourse system of mixing or matching diamonds, inadvertently ensures regional anonymity. Conflict diamonds are mined in primary kimberlites and from widely dispersed alluvial fields in tropical jungle. Landscapes, eroded by 1-5 vertical km over 100 Ma, have transformed low grade primary deposits into unconsolidated sedimentary bonanzas. The current value of stones retrieved, by motivated diggers and skillful jiggers, in rebel held territories, is impossible to determine, but in 1993 amounted to tens of millions USD. Diamonds over 100 cts continue to surface at premier prices. Borders are porous, diamonds flow easily, and armed networks are permeable and mobile. Diamonds form at great depths (over 200 km

  9. CVD diamond for nuclear detection applications

    International Nuclear Information System (INIS)

    Chemically vapour deposited (CVD) diamond is a remarkable material for the fabrication of radiation detectors. In fact, there exist several applications where other standard semiconductor detectors do not fulfil the specific requirements imposed by corrosive, hot and/or high radiation dose environments. The improvement of the electronic properties of CVD diamond has been under intensive investigations and led to the development of a few applications that are addressing specific industrial needs. Here, we report on CVD diamond-based detector developments and we describe how this material, even though of a polycrystalline nature, is readily of great interest for applications in the nuclear industry as well as for physics experiments. Improvements in the material synthesis as well as on device fabrication especially concern the synthesis of films that do not exhibit space charge build up effects which are often encountered in CVD diamond materials and that are highly detrimental for detection devices. On a pre-industrial basis, CVD diamond detectors have been fabricated for nuclear industry applications in hostile environments. Such devices can operate in harsh environments and overcome limitations encountered with the standard semiconductor materials. Of these, this paper presents devices for the monitoring of the alpha activity in corrosive nuclear waste solutions, such as those encountered in nuclear fuel assembly reprocessing facilities, as well as diamond-based thermal neutron detectors exhibiting a high neutron to gamma selectivity. All these demonstrate the effectiveness of a demanding industrial need that relies on the remarkable resilience of CVD diamond

  10. CVD diamond for nuclear detection applications

    Energy Technology Data Exchange (ETDEWEB)

    Bergonzo, P. E-mail: pbergonzo@cea.fr; Brambilla, A.; Tromson, D.; Mer, C.; Guizard, B.; Marshall, R.D.; Foulon, F

    2002-01-11

    Chemically vapour deposited (CVD) diamond is a remarkable material for the fabrication of radiation detectors. In fact, there exist several applications where other standard semiconductor detectors do not fulfil the specific requirements imposed by corrosive, hot and/or high radiation dose environments. The improvement of the electronic properties of CVD diamond has been under intensive investigations and led to the development of a few applications that are addressing specific industrial needs. Here, we report on CVD diamond-based detector developments and we describe how this material, even though of a polycrystalline nature, is readily of great interest for applications in the nuclear industry as well as for physics experiments. Improvements in the material synthesis as well as on device fabrication especially concern the synthesis of films that do not exhibit space charge build up effects which are often encountered in CVD diamond materials and that are highly detrimental for detection devices. On a pre-industrial basis, CVD diamond detectors have been fabricated for nuclear industry applications in hostile environments. Such devices can operate in harsh environments and overcome limitations encountered with the standard semiconductor materials. Of these, this paper presents devices for the monitoring of the alpha activity in corrosive nuclear waste solutions, such as those encountered in nuclear fuel assembly reprocessing facilities, as well as diamond-based thermal neutron detectors exhibiting a high neutron to gamma selectivity. All these demonstrate the effectiveness of a demanding industrial need that relies on the remarkable resilience of CVD diamond.

  11. Highly stable platinum nanoparticles on diamond

    International Nuclear Information System (INIS)

    Graphical abstract: - Abstract: Platinum nanoparticles electrodeposited on diamond substrate show poor stability. Their electrochemical activities vary with different substrates and deposition methods. In this study Pt nanoparticles were prepared using a two-step deposition method. The stability and electrochemical activities of Pt nanoparticles on diamond were investigated in detail. The deposition method includes a wet-chemical seeding process and an electrochemical overgrowth of the seeds. The wet-chemical seeding process can be applied as well for other kinds of metal particles on diamond. H-terminated diamond surface is more favorable for seeding than O-terminated surface. Rapid thermal annealing process was applied to enhance the stability of Pt particles on diamond. Electrochemical activation and further overgrowth of annealed Pt nanoparticles were applied to improve the hydrogen adsorption/desorption activities of Pt nanoparticles on diamond with cyclic voltammetry in 0.1 M sulfuric acid solution. As confirmed by ultrasound removal and atomic force microscope (AFM) removal experiments as well as electrochemical tests, highly stable and active Pt nanoparticles on diamond were achieved after thermal annealing and electrochemical activation/overgrowth processes

  12. STRUCTURING OF DIAMOND FILMS USING MICROSPHERE LITHOGRAPHY

    Directory of Open Access Journals (Sweden)

    Mária Domonkos

    2014-10-01

    Full Text Available In this study, the structuring of micro- and nanocrystalline diamond thin films is demonstrated. The structuring of the diamond films is performed using the technique of microsphere lithography followed by reactive ion etching. Specifically, this paper presents a four-step fabrication process: diamond deposition (microwave plasma assisted chemical vapor deposition, mask preparation (by the standard Langmuir-Blodgett method, mask modification and diamond etching. A self-assembled monolayer of monodisperse polystyrene (PS microspheres with close-packed ordering is used as the primary template. Then the PS microspheres and the diamond films are processed in capacitively coupled radiofrequency plasma  using different plasma chemistries. This fabrication method illustrates the preparation of large arrays of periodic and homogeneous hillock-like structures. The surface morphology of processed diamond films is characterized by scanning electron microscopy and atomic force microscope. The potential applications of such diamond structures in various fields of nanotechnology are also briefly discussed.

  13. Adopting a customer-focused team approach to amorphous silicon multijunction module R ampersand D

    International Nuclear Information System (INIS)

    Informed observers of energy markets now generally believe that photovoltaics (PV) will not significantly penetrate the utility bulk-power sector before price and performance approach $50/m2 for 15% efficient modules in flat-plate systems. Recent progress toward such ''utility grade'' modules using amorphous thin films has been slow. The important amorphous thin-film research issues have been well known for some years. These have not been promptly and conclusively addressed, at least in part, because of inadequate PV industry involvement in academic research. In view of this situation, the authors recently modified their research programs seeking to improve the efficiency of amorphous silicon PV research, conclusively address the key issues, and accelerate commercial introduction of utility-grade products. They began this by seeking ''customer'' (PV industry) specification of research priorities and forming mission-oriented teams to pursue the high-priority issues (customer requirements). This paper describes the process and results to date

  14. Amorphous-silicon cell reliability testing

    Science.gov (United States)

    Lathrop, J. W.

    1985-01-01

    The work on reliability testing of solar cells is discussed. Results are given on initial temperature and humidity tests of amorphous silicon devices. Calibration and measurement procedures for amorphous and crystalline cells are given. Temperature stress levels are diagrammed.

  15. NUCLEATION RATE OF DIAMOND FILMS ON WC-Co ALLOYS

    OpenAIRE

    SHA LIU

    2005-01-01

    Diamond-coated hard alloys are prospective tool materials for extreme cutting conditions. Nucleation rate is one of important factors that affect the qualities of diamond thin films on WC-Co alloys. However, theoretical reports on nucleation rate of diamond films on WC-Co alloys are scarce. Combining the unique diamond strong orientation with substrate surface properties, an improved theoretical formula on nucleation rate of diamond films on the WC-Co alloys is deduced in this paper. First, t...

  16. Tribological performances of diamond film and graphite/diamond composite film with paraffin oil lubrication

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, the tribological performances of diamond film and graphite/diamond com-posite film were compared on an SRV wear testing machine with paraffin oil lubrication. The sur-face morphologies of specimens and wear tracks were observed by SEM. The wear volumes ofwear tracks were measured by profilometer. The influence of load on the tribological performancesof different specimens was studied. The wear mechanism under paraffin oil lubrication was ana-lyzed. The results showed that with paraffin oil lubrication, the friction coefficient and wear volumeof graphite/diamond composite film specimen are lower than diamond film. Under paraffin oil lu-brication, the wear mechanisms of both diamond film and graphite/diamond composite film weremainly sub-micro-fracture.

  17. Microstructure and chemical bond evolution of diamond-like carbon films machined by femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Wang, Chunhui [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yongsheng, E-mail: yongshengliu@nwpu.edu.cn [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Cheng, Laifei [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Weinan [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China); Zhang, Qing [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Yang, Xiaojun [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China)

    2015-06-15

    Highlights: • The machining depth was essentially proportional to the laser power. • The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. And the number of nanoparticles increased with the processing power as well. • It revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. • It showed that a great decrease of sp{sup 3}/sp{sup 2} after laser treatment. - Abstract: Femtosecond laser is of great interest for machining high melting point and hardness materials such as diamond-like carbon, SiC ceramic, et al. In present work, the microstructural and chemical bond evolution of diamond-like carbon films were investigated using electron microscopy and spectroscopy techniques after machined by diverse femtosecond laser power in air. The results showed the machining depth was essentially proportional to the laser power. The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. Considering the D and G Raman band parameters on the laser irradiation, it revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. X-ray photoelectron spectroscopy analysis showed a great decrease of sp{sup 3}/sp{sup 2} after laser treatment.

  18. Microstructure and chemical bond evolution of diamond-like carbon films machined by femtosecond laser

    International Nuclear Information System (INIS)

    Highlights: • The machining depth was essentially proportional to the laser power. • The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. And the number of nanoparticles increased with the processing power as well. • It revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. • It showed that a great decrease of sp3/sp2 after laser treatment. - Abstract: Femtosecond laser is of great interest for machining high melting point and hardness materials such as diamond-like carbon, SiC ceramic, et al. In present work, the microstructural and chemical bond evolution of diamond-like carbon films were investigated using electron microscopy and spectroscopy techniques after machined by diverse femtosecond laser power in air. The results showed the machining depth was essentially proportional to the laser power. The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. Considering the D and G Raman band parameters on the laser irradiation, it revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. X-ray photoelectron spectroscopy analysis showed a great decrease of sp3/sp2 after laser treatment

  19. Tribological properties and structural investigation of Diamond-like nano-composites

    International Nuclear Information System (INIS)

    Diamond-Like Nano composites (DylynTM) are a new family of hard amorphous coatings combining high hardness, high elasticity, low friction and good adhesion on a variety of substrates. Mechanical properties of several DylynTM films and metal-doped DylynTM films have been investigated using nano-indentation and ball-on-disk measurements. Nano hardness up to 17 GPa is reported. The coefficient of friction, measured in air at 50% relative humidity and using a steel ball with 10 N normal load, can be tailored to be typically 0.05 - 0.07. This low-friction behaviour opens up applications of these films as hard, self-lubricating, low-friction coatings. Structural characterization has been performed using Grazing Incidence X-Ray Diffraction (GIXRD), X-ray Photoelectron Spectroscopy (XPS), Auger Electron Spectroscopy (AES), Rutherford Backscattering Spectroscopy (RBS) and Elastic Recoil Detection (ERD). X-ray studies indicate that the films are completely amorphous. XPS shows that the films consist mainly of a C-based and a Si-O network. AES measurements yield spectra comparable to diamond-like carbon (DLC) due to the presence of sp3-bonded C. Finally, atomic concentrations, including the H content, have been determined with RBS and ERD. (author). 4 refs., 2 figs

  20. Focal Rigidity of Flat Tori

    CERN Document Server

    Kwakkel, Ferry; Peixoto, Mauricio

    2011-01-01

    Given a closed Riemannian manifold (M, g), there is a partition \\Sigma_i of its tangent bundle TM called the focal decomposition. The sets \\Sigma_i are closely associated to focusing of geodesics of (M, g), i.e. to the situation where there are exactly i geodesic arcs of the same length joining points p and q in M. In this note, we study the topological structure of the focal decomposition of a closed Riemannian manifold and its relation with the metric structure of the manifold. Our main result is that the flat n-tori are focally rigid, in the sense that if two flat tori are focally equivalent, then the tori are isometric up to rescaling.

  1. Investigation of Sb diffusion in amorphous silicon

    OpenAIRE

    Csik, A.; Langer, G A; Erdelyi, G.; Beke, D. L.; Erdelyi, Z.; Vad, K.

    2009-01-01

    Amorphous silicon materials and its alloys become extensively used in some technical applications involving large area of the microelectronic and optoelectronic devices. However, the amorphous-crystalline transition, segregation and diffusion processes still have numerous unanswered questions. In this work we study the Sb diffusion into an amorphous Si film by means of Secondary Neutral Mass Spectrometry (SNMS). Amorphous Si/Si1-xSbx/Si tri-layer samples with 5 at% antimony concentration were...

  2. Friction and wear performance of HFCVD nanocrystalline diamond coated silicon nitride ceramics

    OpenAIRE

    Abreu, C. S.; M. Amaral; Fernandes, A. J. S.; Oliveira, F. J.; R.F. Silva; Gomes, J. R.

    2006-01-01

    Silicon nitride (Si3N4) ceramics were selected as substrates due to their thermal and chemical compatibility to diamond that ensure the adequate NCD adhesion for mechanical purposes. NCD deposition was performed by hot-filament chemical vapour method (HFCVD) using Ar/H2/CH4 gas mixtures. The tribological assessment of homologous pairs of NCD films was accomplished using reciprocating ball-on-flat tests using NCD coated Si3N4 plates and balls. The friction evolution is characterized by an init...

  3. Fracture Phenomena in Amorphous Selenium

    DEFF Research Database (Denmark)

    Lindegaard-Andersen, Asger; Dahle, Birgit

    1966-01-01

    Fracture surfaces of amorphous selenium broken in flexure at room temperature have been studied. The fracture velocity was found to vary in different regions of the fracture surface. Peculiar features were observed in a transition zone between fast and slower fracture. In this zone cleavage steps...

  4. Amorphous metal matrix composite ribbons

    International Nuclear Information System (INIS)

    Composite ribbons with amorphous matrix and ceramic (SiC, WC, MoB) particles were produced by modified planar melt flow casting methods. Weldability, abrasive wear and wood sanding examinations were carried out in order to find optimal material and technology for elevated wear resistance and sanding durability. The correlation between structure and composite properties is discussed. (author)

  5. Atomistic Models of Amorphous Semiconductors

    NARCIS (Netherlands)

    Jarolimek, K.

    2011-01-01

    Crystalline silicon is probably the best studied material, widely used by the semiconductor industry. The subject of this thesis is an intriguing form of this element namely amorphous silicon. It can contain a varying amount of hydrogen and is denoted as a-Si:H. It completely lacks the neat long ran

  6. Physics and applications of CVD diamond

    CERN Document Server

    Koizumi, Satoshi; Nesladek, Milos

    2008-01-01

    Here, leading scientists report on why and how diamond can be optimized for applications in bioelectronic and electronics. They cover such topics as growth techniques, new and conventional doping mechanisms, superconductivity in diamond, and excitonic properties, while application aspects include quantum electronics at room temperature, biosensors as well as diamond nanocantilevers and SAWs.Written in a review style to make the topic accessible for a wider community of scientists working in interdisciplinary fields with backgrounds in physics, chemistry, biology and engineering, this is e

  7. Diamond deposition on siliconized stainless steel

    International Nuclear Information System (INIS)

    Silicon diffusion layers in AISI 304 and AISI 316 type stainless steels were investigated as an alternative to surface barrier coatings for diamond film growth. Uniform 2 μm thick silicon rich interlayers were obtained by coating the surface of the steels with silicon and performing diffusion treatments at 800 deg. C. Adherent diamond films with low sp2 carbon content were deposited on the diffused silicon layers by a modified hot filament assisted chemical vapor deposition (HFCVD) method. Characterization of as-siliconized layers and diamond coatings was performed by energy dispersive X-ray analysis, scanning electron microscopy, X-ray diffraction and Raman spectroscopy.

  8. Charge multiplication effect in thin diamond films

    Science.gov (United States)

    Skukan, N.; Grilj, V.; Sudić, I.; Pomorski, M.; Kada, W.; Makino, T.; Kambayashi, Y.; Andoh, Y.; Onoda, S.; Sato, S.; Ohshima, T.; Kamiya, T.; Jakšić, M.

    2016-07-01

    Herein, we report on the enhanced sensitivity for the detection of charged particles in single crystal chemical vapour deposition (scCVD) diamond radiation detectors. The experimental results demonstrate charge multiplication in thin planar diamond membrane detectors, upon impact of 18 MeV O ions, under high electric field conditions. Avalanche multiplication is widely exploited in devices such as avalanche photo diodes, but has never before been reproducibly observed in intrinsic CVD diamond. Because enhanced sensitivity for charged particle detection is obtained for short charge drift lengths without dark counts, this effect could be further exploited in the development of sensors based on avalanche multiplication and radiation detectors with extreme radiation hardness.

  9. Substrate and material transfer effects on the surface chemistry and texture of diamond-like carbon deposited by plasma-enhanced chemical vapour deposition

    OpenAIRE

    Jones, Benjamin; Ojeda, J. J.

    2012-01-01

    Diamond-like carbon (DLC), a thin amorphous carbon film, has many uses in tribological systems. Exploiting alternative substrates and interlayers can enable the control of the hardness and modulus of the multilayer system and improve wear or friction properties. We used XPS and atomic force microscopy to examine DLC that had been concurrently coated on an epoxy interlayer and a steel substrate by plasma-enhanced chemical vapour deposition. sp2/sp3 ratios were calculated both by the deconvolut...

  10. TEM-simulation of amorphous carbon films: influence of supercell packaging.

    Science.gov (United States)

    Schultrich, H; Schultrich, B

    2001-07-01

    Recent developments in thin film technology allow to prepare deliberately amorphous carbon films with structures widely varying between graphite-like (sp2) and diamond-like (sp3) atomic bonds. This leads to amorphous structures with correspondingly varying densities. By periodically changing deposition conditions, nanometer multilayers may be prepared consisting of carbon layers of different density. Simulation of the electron microscopic imaging allows to differentiate between such real structural details (on the nanometer scale) and artefacts induced by the imaging procedure. But it must be assured that the modeled structure reflects the real one with sufficient accuracy. Thorough comparison of different simulation strategies shows that for the adequate simulation of TEM imaging of amorphous materials, the thickness of the layer with independently distributed atoms has to exceed a certain limit. Then, the statistical scattering of the randomly distributed atoms will be averaged. Otherwise, if the model of the transmission electron microscopy sample is constructed as iteration of thin identical supercells, the superposition of scattering waves with constant phase differences results in enhanced local fluctuations burying the multilayer structure. For thicker packages of supercells with independent random distributions, the effect of statistical atomic arrangements is more and more leveled off. Hence, nanometer structures based on regions with different density will be visible more distinctively in the random background. For carbon, this critical thickness amounts to about 4 nm. This is of special importance for the visualization of nanoscaled heterogeneities like multilayers or nanotube-like inclusions in amorphous matrices. PMID:11419873

  11. Diamond turning of small Fresnel lens array in single crystal InSb

    International Nuclear Information System (INIS)

    A small Fresnel lens array was diamond turned in a single crystal (0 0 1) InSb wafer using a half-radius negative rake angle (−25°) single-point diamond tool. The machined array consisted of three concave Fresnel lenses cut under different machining sequences. The Fresnel lens profiles were designed to operate in the paraxial domain having a quadratic phase distribution. The sample was examined by scanning electron microscopy and an optical profilometer. Optical profilometry was also used to measure the surface roughness of the machined surface. Ductile ribbon-like chips were observed on the cutting tool rake face. No signs of cutting edge wear was observed on the diamond tool. The machined surface presented an amorphous phase probed by micro Raman spectroscopy. A successful heat treatment of annealing was carried out to recover the crystalline phase on the machined surface. The results indicated that it is possible to perform a ‘mechanical lithography’ process in single crystal semiconductors. (paper)

  12. Migration behaviour of carbon atoms on clean diamond (0 0 1) surface: A first principle study

    Science.gov (United States)

    Liu, Xuejie; Xia, Qing; Li, Wenjuan; Luo, Hao; Ren, Yuan; Tan, Xin; Sun, Shiyang

    2016-01-01

    The adsorption and migration energies of a single carbon atom and the configuration evolution energies of two carbon atoms on a clean diamond (0 0 1) surface were calculated using the first principle method based on density functional theory to investigate the formation of ultra-nanocrystalline diamond (UNCD) film. The activation energy of a single atom diffusing along a dimer row is 1.96 eV, which is almost the same as that of a CH2 migrating along a dimer row under hydrogen-rich conditions. However, the activation energy of a single atom diffusing along a dimer chain is 2.66 eV, which is approximately 1.55 times greater than that of a CH2 migrating along a dimer chain in a hydrogen-rich environment. The configuration evolution of the two carbon atoms is almost impossible at common diamond film deposition temperatures (700-900 °C) because the activation energies reach 4.46 or 5.90 eV. Therefore, the high-energy barrier could result in insufficient migration of adatoms, leading to the formation of amorphous in UNCD films in hydrogen-poor CVD environment.

  13. Mechanism of diamond-to-graphite transformation at diamond-stable conditions

    Institute of Scientific and Technical Information of China (English)

    ZANG ChuangYi; CHEN XiaoZhou; HU Qiang; MA HongAn; JIAXiaoPeng

    2009-01-01

    The diamond-to-graphite transformation at diamond-stable conditions is studied by temperature gradient method (TGM) under high pressure and high temperature (HPHT), although it is unreasonable from the view of thermodynamic considerations. It is found that, at diamond-stable conditions, for example, at 5.5 GPa and 1550 K, with fine diamond grits as carbon source and NiMnCo alloy as metal solvent assisted, not only large diamond crystals, but metastable regrown graphite crystals would be grown by layer growth mechanism, and the abundance of carbon source in the higher temperature region is indispensable for the presence of metastable regrown graphite crystals. From this transformation, it is concluded that, with metal solvent assisted, although the mechanism of crystal growth could be understood by the macro-mechanism of solubility difference between diamond and graphite in metal solvents, from the point of micro-mechanism, the minimum growth units for diamond or graphite crystals should be at atomic level and unrelated to the kinds of carbon source (diamond or graphite), which could be accumulated free-selectively on the graphite with sp2Tr or diamond crystals with sp3 bond structure.

  14. First principles study of Fe in diamond: A diamond-based half metallic dilute magnetic semiconductor

    International Nuclear Information System (INIS)

    Half-metallic ferromagnetic ordering in semiconductors, essential in the emerging field of spintronics for injection and transport of highly spin polarised currents, has up to now been considered mainly in III–V and II–VI materials. However, low Curie temperatures have limited implementation in room temperature device applications. We report ab initio Density Functional Theory calculations on the properties of Fe in diamond, considering the effects of lattice site, charge state, and Fermi level position. We show that the lattice sites and induced magnetic moments of Fe in diamond depend strongly on the Fermi level position and type of diamond co-doping, with Fe being energetically most favorable at the substitutional site in p-type and intrinsic diamond, while it is most stable at a divacancy site in n-type diamond. Fe induces spin polarized bands in the band gap, with strong hybridization between Fe-3d and C-2s,2p bands. We further consider Fe-Fe spin interactions in diamond and show that substitutional Fe+1 in p-type diamond exhibits a half-metallic character, with a magnetic moment of 1.0 μB per Fe atom and a large ferromagnetic stabilization energy of 33 meV, an order of magnitude larger than in other semiconductors, with correspondingly high Curie temperatures. These results, combined with diamond's unique properties, demonstrate that Fe doped p-type diamond is likely to be a highly suitable candidate material for spintronics applications

  15. Note: Novel diamond anvil cell for electrical measurements using boron-doped metallic diamond electrodes.

    Science.gov (United States)

    Matsumoto, R; Sasama, Y; Fujioka, M; Irifune, T; Tanaka, M; Yamaguchi, T; Takeya, H; Takano, Y

    2016-07-01

    A novel diamond anvil cell suitable for electrical transport measurements under high pressure has been developed. A boron-doped metallic diamond film was deposited as an electrode on a nano-polycrystalline diamond anvil using a microwave plasma-assisted chemical vapor deposition technique combined with electron beam lithography. The maximum pressure that can be achieved by this assembly is above 30 GPa. We report electrical transport measurements of Pb up to 8 GPa. The boron-doped metallic diamond electrodes showed no signs of degradation after repeated compression. PMID:27475610

  16. 49 CFR 231.6 - Flat cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Flat cars. 231.6 Section 231.6 Transportation... TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.6 Flat cars. (Cars with sides 12 inches or less above the floor may be equipped the same as flat cars.) (a) Hand brakes—(1) Number. Same as specified...

  17. Part Fixturing For Diamond Machining

    Science.gov (United States)

    Chaloux, Leonard E.

    1984-12-01

    Successful production of diamond turned components can be extremely dependent on the fixturing used to support the workpiece during the machining operation. Typical fixturing methods include vacuum chucking, air chucking and mechanical clamping. Depending on the type of part to be machined, suggested fixturing methods can vary widely. For example, a part requiring a flycut surface is not subject to the centrifugal forces and balance requirements of a part that must be turned about an axis of rotation. Therefore, in many cases the fixturing required for flycutting may be much simpler than that required for turning. In all cases, there are general guidelines that should be followed to determine the best method of fixturing.

  18. Multifrequency spin resonance in diamond

    CERN Document Server

    Childress, Lilian

    2010-01-01

    Magnetic resonance techniques provide a powerful tool for controlling spin systems, with applications ranging from quantum information processing to medical imaging. Nevertheless, the behavior of a spin system under strong excitation remains a rich dynamical problem. In this paper, we examine spin resonance of the nitrogen-vacancy center in diamond under conditions outside the regime where the usual rotating wave approximation applies, focusing on effects of multifrequency excitation and excitation with orientation parallel to the spin quantization axis. Strong-field phenomena such as multiphoton transitions and coherent destruction of tunneling are observed in the spectra and analyzed via numerical and analytic theory. In addition to illustrating the response of a spin system to strong multifrequency excitation, these observations may inform techniques for manipulating electron-nuclear spin quantum registers.

  19. Processing quantum information in diamond

    International Nuclear Information System (INIS)

    Quantum computing is an attractive and multidisciplinary field, which became a focus for experimental and theoretical research during the last decade. Among other systems, such as ions in traps and superconducting circuits, solid state based qubits are considered to be promising candidates for use in first experimental tests of quantum hardware. Here we report recent progress in quantum information processing with point defects in diamond. Qubits are defined as single spin states (electron or nuclear). This allows exploration of long coherence times (up to seconds for nuclear spins at cryogenic temperatures). In addition, the optical transition between ground and excited electronic states allows coupling of spin degrees of freedom to the state of the electromagnetic field. Such coupling gives access to spin state read-out via spin-selective scattering of photons. This also allows the use of spin states as robust memory for flying qubits (photons)

  20. Quantum information processing in diamond

    CERN Document Server

    Jelezko, F

    2005-01-01

    Quantum computing is an attractive and multidisciplinary field, which became a focus for experimental and theoretical research during last decade. Among other systems, like ions in traps or superconducting circuits, solid-states based qubits are considered to be promising candidates for first experimental tests of quantum hardware. Here we report recent progress in quantum information processing with point defect in diamond. Qubits are defined as single spin states (electron or nuclear). This allows exploring long coherence time (up to seconds for nuclear spins at cryogenic temperatures). In addition, the optical transition between ground and excited electronic states allows coupling of spin degrees of freedom to the state of the electromagnetic field. Such coupling gives access to the spin state readout via spin-selective scattering of photon. This also allows using of spin state as robust memory for flying qubits (photons).

  1. Flat panel display - Impurity doping technology for flat panel displays

    International Nuclear Information System (INIS)

    Features of the flat panel displays (FPDs) such as liquid crystal display (LCD) and organic light emitting diode (OLED) display, etc. using low temperature poly-Si (LTPS) thin film transistors (TFTs) are briefly reviewed comparing with other FPDs. The requirements for fabricating TFTs used for high performance FPDs and system on glass (SoG) are addressed. This paper focuses on the impurity doping technology, which is one of the key technologies together with crystallization by laser annealing, formation of high quality gate insulator and gate-insulator/poly-Si interface. The issues to be solved in impurity doping technology for state of the art and future TFTs are clarified

  2. Flat panel display - Impurity doping technology for flat panel displays

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Toshiharu [Advanced Technology Planning, Sumitomo Eaton Nova Corporation, SBS Tower 9F, 10-1, Yoga 4-chome, Setagaya-ku, 158-0097 Tokyo (Japan)]. E-mail: suzuki_tsh@senova.co.jp

    2005-08-01

    Features of the flat panel displays (FPDs) such as liquid crystal display (LCD) and organic light emitting diode (OLED) display, etc. using low temperature poly-Si (LTPS) thin film transistors (TFTs) are briefly reviewed comparing with other FPDs. The requirements for fabricating TFTs used for high performance FPDs and system on glass (SoG) are addressed. This paper focuses on the impurity doping technology, which is one of the key technologies together with crystallization by laser annealing, formation of high quality gate insulator and gate-insulator/poly-Si interface. The issues to be solved in impurity doping technology for state of the art and future TFTs are clarified.

  3. Diamond Analyzed by Secondary Electron Emission Spectroscopy

    Science.gov (United States)

    Krainsky, Isay L.

    1998-01-01

    Diamond is a promising semiconductor material for novel electronic applications because of its chemical stability and inertness, heat conduction properties, and so-called negative electron affinity (NEA). When a surface has NEA, electrons generated inside the bulk of the material are able to come out into the vacuum without any potential barrier (work function). Such a material would have an extremely high secondary electron emission coefficient o, very high photoelectron (quantum) yield, and would probably be an efficient field emitter. Chemical-vapor-deposited (CVD) polycrystalline diamond films have even more advantages than diamond single crystals. Their fabrication is relatively easy and inexpensive, and they can be grown with high levels of doping--consequently, they can have relatively high conductivity. Because of these properties, diamond can be used for cold cathodes and photocathodes in high-power electronics and in high-frequency and high-temperature semiconductor devices.

  4. CVD diamond for nuclear detection applications

    CERN Document Server

    Bergonzo, P; Tromson, D; Mer, C; Guizard, B; Marshall, R D; Foulon, F

    2002-01-01

    Chemically vapour deposited (CVD) diamond is a remarkable material for the fabrication of radiation detectors. In fact, there exist several applications where other standard semiconductor detectors do not fulfil the specific requirements imposed by corrosive, hot and/or high radiation dose environments. The improvement of the electronic properties of CVD diamond has been under intensive investigations and led to the development of a few applications that are addressing specific industrial needs. Here, we report on CVD diamond-based detector developments and we describe how this material, even though of a polycrystalline nature, is readily of great interest for applications in the nuclear industry as well as for physics experiments. Improvements in the material synthesis as well as on device fabrication especially concern the synthesis of films that do not exhibit space charge build up effects which are often encountered in CVD diamond materials and that are highly detrimental for detection devices. On a pre-i...

  5. Ultra-fast calculations using diamond

    NARCIS (Netherlands)

    Van Dijk, T.

    2011-01-01

    TU Delft researchers have managed to use a piece of diamond to hold four quantum bits that can be spun, flipped and entangled with each other. This is an important step towards a working quantum computer

  6. Dosimetry in radiotherapy with natural diamond detectors

    International Nuclear Information System (INIS)

    There is wide interest in the use of diamond detectors for dosimetry in radiotherapy mainly because of the small dimensions, radiation hardness, nearly tissue equivalence of sensitive material and capability to deliver the dosimetric response 'on line'. In order to assess the dosimetric properties of PTW Riga diamond detectors type 60003, experiments were performed in conventional (high energy photon and electron) therapy beams as well as in proton therapy beams. The main detector features investigated were reproducibility of response, dose-signal relationship, temperature dependence, dose-rate dependence, energy dependence and angular dependence. High energy photons (6-25 MV) and electrons (6-22 MeV), available at the Radiotherapy Department of the Florence University, were used for investigating the general properties. Two different PTW diamond detectors of the same type were used to evidence inter-sample differences. The beam quality dependence of the detector response is probably the most critical point and this statement is of particular relevance for proton dosimetry since the proton LET changes with depth in the medium. Mainly because of the little information available on detector sensitivity variations with beam energy, the use of diamonds for clinical proton dosimetry is not widespread. In two recent papers a sensitivity dependence on proton energy of a natural PTW diamond detector has been reported. Due to the necessity to characterise each diamond detector individually the PTW Riga natural diamond detector in operation at the LNS-INFN, Catania, Italy was tested with the local proton beam line. This experiment is of main concern because this proton beam, produced by a superconducting cyclotron and used for ocular melanoma treatment, is available only since 2001 (CATANA beam). The first patient has been treated in February 2002. Proton irradiations were performed with non modulated and modulated 62 MeV beams. Attention was focused on diamond sensitivity

  7. Graphitization of diamond with a metallic coating on ferritic matrix

    International Nuclear Information System (INIS)

    Iron is a strong catalyst of graphitization of diamonds. This graphitization occurs mainly during the processing of composites - conventional sintering or hot pressing, and during cutting operations. Aiming to avoid or minimize this deleterious effect, there is increasing use of diamond coated with metallic materials in the production of diamond tools processed via powder metallurgy. This work studies the influence of Fe on diamond graphitization diamond-coated Ti after mixing of Fe-diamonds, hot pressing parameters were performed with 3 minutes/35MPa/900 deg C - this is the condition of pressing hot used in industry for production of diamond tools. Microstructural features were observed by SEM, diffusion of Fe in diamond was studied by EDS. Graphitization was analyzed by X-ray diffraction and Raman spectroscopy. It was found that Fe not activate graphitization on the diamond under the conditions of hot pressing. (author)

  8. The diamond RF-transistor model

    Directory of Open Access Journals (Sweden)

    Altukhov A. A.

    2011-12-01

    Full Text Available In this work is shown that fluent shutter model it is enough well describes work field-effect diamond RF-transistors. Using this model, possible to calculate transistor parameters used electronic parameters of the diamond structure with δ-doped (hydrogen or boron layer and geometric parameter transistor element. Proof, are calculated by us main parameters model RF-transistor, which it is enough close comply with published experimental result of the measurements real RF-transistors.

  9. Nanocrystalline diamond films for biomedical applications

    DEFF Research Database (Denmark)

    Pennisi, Cristian Pablo; Alcaide, Maria

    2014-01-01

    resistance, chemical inertness, superior electrochemical behavior, biocompatibility, and nontoxicity. These properties have positioned the nanocrystalline diamond films as an attractive class of materials for a range of therapeutic and diagnostic applications in the biomedical field. Consequently, the...... better understand the terminology used in the literature, which is related to the fabrication and surface functionalization of this class of materials, some of the most common approaches for synthesis and modification of CVD diamond films is introduced. Although many challenges still remain, it is...

  10. Microengineered CVD Diamond Surfaces : Tribology and Applications

    OpenAIRE

    Andersson, Joakim

    2004-01-01

    Recent developments in thin film synthesis of diamond have facilitated a host of new technical applications. These are motivated by the many attractive properties of diamond, for example high hardness, chemical inertness, transparency and heat conductivity. Unfortunately, these properties also make it difficult to fashion complex geometries. Other problems are the severely limited choice of suitable substrate materials and large surface roughness. To reduce these complications, a technology d...

  11. Nanocrystalline diamond, its synthesis, properties and applications

    OpenAIRE

    Mitura,S; K. Mitura; Niedzielski, P.; P. Louda; Danilenko, V.

    2006-01-01

    Purpose: Carbon constitutes a principal component of a living organism. A man, weighting 100 kg, carries in his body approximately 12 kg of pure carbon. In the nature, carbon occurs in several allotropic forms, such as diamond, graphite (including nanotubes and fullerenes) and carbines. A new type of carbon material, nanocrystalline diamond formed by the decomposition of methane in a process of radio frequency plasma activated chemical vapor deposition (RF PA CVD) is presented.Design/methodol...

  12. Hematologically important mutations: Shwachman–Diamond syndrome

    OpenAIRE

    Costa, Elísio; Santos, Rosário

    2008-01-01

    Shwachman–Diamond syndrome (SDS) is a rare autosomal recessive disorder characterized by exocrine pancreatic insufficiency, bone marrow dysfunction, and skeletal abnormalities. The Shwachman–Bodian–Diamond syndrome (SBDS) gene was identified as a causative gene for SDS in 2003, and genetic analyses of SDS have been performed. Over the last 4 years, a number of different mutations affecting the SBDS gene have been described. In this report, a summary of documented SDS associated mutat...

  13. Growth and optical spectroscopy of synthetic diamonds

    International Nuclear Information System (INIS)

    It is studied the growth and optical properties of synthetic diamonds, which may be used for detection of ionizing radiation, optical windows, heat removal, ultraviolet and thermo sensors, optoelectronic devices. Optical properties of diamonds (grown in different technological conditions) were studied in temperature range 78 - 300 K by means of measuring transmission in spectral band 0.2 - 25 μm, photoluminescence and registration of luminescence excitation spectra in spectral band 0.2 - 2 μm

  14. Diamond nanostructured devices for chemical sensing applications

    OpenAIRE

    Ahmad, R. K.

    2011-01-01

    Research in the area of CVD single crystal diamond plates of which only recently has been made commercially available saw significant advancements during the last decade. In parallel to that, detonation nanodiamond (DND) particles also now widely made accessible for requisition are provoking a lot of scientific investigations. The remarkable properties of diamond including its extreme hardness, low coefficient of friction, chemical inertness, biocompatibility, high thermal c...

  15. Growth of (110) Diamond using pure Dicarbon

    OpenAIRE

    Sternberg, Michael; Kaukonen, Markus; Nieminen, Risto; Frauenheim, Thomas

    2000-01-01

    We use a density-functional based tight-binding method to study diamond growth steps by depositing dicarbon species onto a hydrogen-free diamond (110) surface. Subsequent C_2 molecules are deposited on an initially clean surface, in the vicinity of a growing adsorbate cluster, and finally, near vacancies just before completion of a full new monolayer. The preferred growth stages arise from C_2n clusters in near ideal lattice positions forming zigzag chains running along the [-110] direction p...

  16. Detection and analysis of diamond fingerprinting feature and its application

    Energy Technology Data Exchange (ETDEWEB)

    Li Xin; Huang Guoliang; Li Qiang; Chen Shengyi, E-mail: tshgl@tsinghua.edu.cn [Department of Biomedical Engineering, the School of Medicine, Tsinghua University, Beijing, 100084 (China)

    2011-01-01

    Before becoming a jewelry diamonds need to be carved artistically with some special geometric features as the structure of the polyhedron. There are subtle differences in the structure of this polyhedron in each diamond. With the spatial frequency spectrum analysis of diamond surface structure, we can obtain the diamond fingerprint information which represents the 'Diamond ID' and has good specificity. Based on the optical Fourier Transform spatial spectrum analysis, the fingerprinting identification of surface structure of diamond in spatial frequency domain was studied in this paper. We constructed both the completely coherent diamond fingerprinting detection system illuminated by laser and the partially coherent diamond fingerprinting detection system illuminated by led, and analyzed the effect of the coherence of light source to the diamond fingerprinting feature. We studied rotation invariance and translation invariance of the diamond fingerprinting and verified the feasibility of real-time and accurate identification of diamond fingerprint. With the profit of this work, we can provide customs, jewelers and consumers with a real-time and reliable diamonds identification instrument, which will curb diamond smuggling, theft and other crimes, and ensure the healthy development of the diamond industry.

  17. Development of CVD diamond radiation detectors

    CERN Document Server

    Adam, W; Berdermann, E; Bogani, F; Borchi, E; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fisch, D; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E A; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Knöpfle, K T; Krammer, Manfred; Manfredi, P F; Meier, D; Mishina, M; Le Normand, F; Pan, L S; Pernegger, H; Pernicka, Manfred; Pirollo, S; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Tapper, R J; Tesarek, R J; Thomson, G B; Trawick, M L; Trischuk, W; Turchetta, R; Walsh, A M; Wedenig, R; Weilhammer, Peter; Ziock, H J; Zoeller, M M

    1998-01-01

    Diamond is a nearly ideal material for detecting ionizing radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow a diamond detector to be used in high ra diation, high temperature and in aggressive chemical media. We have constructed charged particle detectors using high quality CVD diamond. Characterization of the diamond samples and various detect ors are presented in terms of collection distance, $d=\\mu E \\tau$, the average distance electron-hole pairs move apart under the influence of an electric field, where $\\mu$ is the sum of carrier mo bilities, $E$ is the applied electric field, and $\\tau$ is the mobility weighted carrier lifetime. Over the last two years the collection distance increased from $\\sim$ 75 $\\mu$m to over 200 $\\mu$ m. With this high quality CVD diamond a series of micro-strip and pixel particle detectors have been constructed. These devices were tested to determine their position resolution and signal to n oise performance. Diamond detectors w...

  18. Nanocrystalline diamond, its synthesis, properties and applications

    Directory of Open Access Journals (Sweden)

    S. Mitura

    2006-04-01

    Full Text Available Purpose: Carbon constitutes a principal component of a living organism. A man, weighting 100 kg, carries in his body approximately 12 kg of pure carbon. In the nature, carbon occurs in several allotropic forms, such as diamond, graphite (including nanotubes and fullerenes and carbines. A new type of carbon material, nanocrystalline diamond formed by the decomposition of methane in a process of radio frequency plasma activated chemical vapor deposition (RF PA CVD is presented.Design/methodology/approach: Nanocrystalline diamond (NCD films were synthesized with a new method, employing dense radio frequency plasma. The idea consists in a decomposition of methane in radio frequency (13.56 MHz plasma.Findings: One of the most important property of NCD is the protection living organism between the metalosis. NCD forms the barrier diffusion between implant and human environment.Practical implications: Advanced medical studies, concerning a use of medical implants coated with nanocrystalline diamond enabled their practical applications.Originality/value: The most interesting property of diamond is the fact that it can play the role of electrodonor. This is directly associated with the new type of bioactivity, exhibiting by diamond.

  19. CVD diamond deposition onto dental burs

    International Nuclear Information System (INIS)

    A hot-filament chemical vapor deposition (HFCVD) system has been modified to enable non-planar substrates, such as metallic wires and dental burs, to be uniformly coated with thin polycrystalline diamond films. Initially, diamond deposition was carried out on titanium and tantalum wires in order to test and optimize the system. High growth rates of the order of approx. 8 /hr were obtained when depositing diamond on titanium wires using the vertical filament arrangement. However, lower growth rates of the order of 4-5meu m/hr were obtained with diamond deposition on tantalum wires. To extend the work towards a practical biomedical application tungsten carbide dental burs were coated with diamond films. The as-grown films were found to be polycrystalline and uniform over the cutting tip. Finally, the costs relating to diamond CVD onto dental burs have been presented in this paper. The costs relating to coating different number of burs at a time and the effect of film thickness on costs have been included in this investigation. (author)

  20. Quantitative analysis of diamond deposition reactor efficiency

    International Nuclear Information System (INIS)

    Graphical abstract: Surface H atom densities in a diamond deposition plasma reactor and the highest predicted value (black line). A 350 μm diamond crystal grown at 70 μm/h. Highlights: ► Electron temperature measurement at high pressure in diamond deposition reactor. ► H-atom density measurements at high pressure and high power in diamond deposition reactor. ► Surface H-atom density measurements at high pressure and high power in diamond deposition reactor. ► Microwave cavity based reactor efficiency compared to others reactors. - Abstract: Optical emission spectroscopy has been used to characterize diamond deposition microwave chemical vapour deposition (MWCVD) plasmas operating at high power density. Electron temperature has been deduced from H atom emission lines while H-atom mole fraction variations have been estimated using actinometry technique, for a wide range of working conditions: pressure 25–400 hPa and MW power 600–4000 W. An increase of the pressure from 14 hPa to 400 hPa with a simultaneous increase in power causes an electron temperature decrease from 17,000 K to 10,000 K and a H atom mole fraction increase from 0.1 to up to 0.6. This last value however must be considered as an upper estimate due to some assumptions made as well as experimental uncertainties.

  1. Low temperature crystallization of diamond-like carbon films to graphene

    Energy Technology Data Exchange (ETDEWEB)

    Tinchev, Savcho, E-mail: stinchev@ie.bas.bg [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia (Bulgaria); Valcheva, Evgenia [Physics Department, Sofia University, J. Bourchier 5, 1164 Sofia (Bulgaria); Petrova, Elitza [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia (Bulgaria)

    2013-09-01

    Plasma surface modification was used to fabricate graphene on the top of insulating diamond-like carbon films. It is shown that by a combination of pulsed argon plasma treatment and thermal annealing at 350{sup o}C it is possible to achieve crystallization of amorphous carbon to graphene. The observed Raman spectra are typical for defected graphene-splitted D- and G-peaks and a broad 2D-peak. Because interpretation of Raman spectra of such complicated system is not easy we have calculated Raman signals of graphene on an amorphous hydrogenated carbon film deposited on a Si substrate. Our simulation results show that multiple reflections and interference effects lead to enhancement of Raman signal of the system. The characteristic for graphene G and 2D bands reach maximal enhancement for thicknesses of the amorphous hydrogenated carbon film of about 75 nm and 230 nm. We estimate that the interference enhancement of the 2D graphene Raman signal is very weak in contrast to that of the G band signal simulated for the underlying diamond-like carbon films on silicon substrate only. Therefore experimentally measured Raman spectra of the whole graphene/a-C:H/Si system probably will consist of interference enhanced but still weak 2D graphene peak and stronger D and G peaks dominated by G and D Raman bands of the a-C:H. This conclusion is in line with observed experimental Raman spectra. Electrical field effect measurements of the samples show ambipolar dependence, typical for single-layer graphene.

  2. Flat lens for seismic waves

    CERN Document Server

    Brule, Stephane; Guenneau, Sebastien

    2016-01-01

    A prerequisite for achieving seismic invisibility is to demonstrate the ability of civil engineers to control seismic waves with artificially structured soils. We carry out large-scale field tests with a structured soil made of a grid consisting of cylindrical and vertical holes in the ground and a low frequency artificial source (< 10 Hz). This allows the identification of a distribution of energy inside the grid, which can be interpreted as the consequence of an effective negative refraction index. Such a flat lens reminiscent of what Veselago and Pendry envisioned for light opens avenues in seismic metamaterials to counteract the most devastating components of seismic signals.

  3. Reflections on a flat wall

    International Nuclear Information System (INIS)

    This paper describes an investigation into whether estimates of attenuation in the flat sidewalls of the tunnel for the MC main ring can be based on a simple point-source/line-of-sight model. Having seen the limitations of such a model, an alternative is proposed where the main radiation source is not the initial object struck by the beam but the plane source provided by the first interactions of secondaries from the target in the shield-wall. This is shown to have a closer relation to reality than the point-source/line-of-sight model. (author)

  4. A flat laser array aperture

    Science.gov (United States)

    Papadakis, Stergios J.; Ricciardi, Gerald F.; Gross, Michael C.; Krill, Jerry A.

    2010-04-01

    We describe a design concept for a flat (or conformal) thin-plate laser phased-array aperture. The aperture consists of a substrate supporting a grid of single-mode optical waveguides fabricated from a linear electro-optic material. The waveguides are coupled to a single laser source or detector. An arrangement of electrodes provides for two-dimensional beam steering by controlling the phase of the light entering the grid. The electrodes can also be modulated to simultaneously provide atmospheric turbulence modulation for long-range free-space optical communication. An approach for fabrication is also outlined.

  5. Abrasion of flat rotating shapes

    OpenAIRE

    Roth, A.E.; Marques, C. M.; Durian, D. J.

    2010-01-01

    We report on the erosion of flat linoleum "pebbles" under steady rotation in a slurry of abrasive grit. To quantify shape as a function of time, we develop a general method in which the pebble is photographed from multiple angles with respect to the grid of pixels in a digital camera. This reduces digitization noise, and allows the local curvature of the contour to be computed with a controllable degree of uncertainty. Several shape descriptors are then employed to follow the evolution of dif...

  6. Raman spectroscopic investigation of graphitization of diamond during spark plasma sintering of UO2-diamond composite nuclear fuel

    Science.gov (United States)

    Chen, Zhichao; Subhash, Ghatu; Tulenko, James S.

    2016-07-01

    Micro-Raman spectroscopy (MRS) was utilized to investigate the graphitization of diamond particles within a UO2-diamond composite processed by spark plasma sintering (SPS). While pure diamond gives a sharp Raman peak at 1331.6 cm-1, the graphitized diamond shows broad peaks either at 1350 cm-1 (G-peak) or 1580 cm-1 (D-peak). The degree of graphitization was quantified by calculating the area beneath the diamond and graphite peaks. It was found that more than 20% of diamond was graphitized on the surface of the UO2-diamond pellet and only around 10% diamond was graphitized in the interior regions of the pellet. This current study highlights the necessity to review the implications of these results carefully while implementing UO2-diamond composite nuclear fuel.

  7. Exoelectron analysis of amorphous silicon

    Science.gov (United States)

    Dekhtyar, Yu. D.; Vinyarskaya, Yu. A.

    1994-04-01

    The method based on registration of photothermostimulated exoelectron emission (PTSE) is used in the proposed new field of investigating the structural defects in amorphous silicon (a-Si). This method can be achieved if the sample under investigation is simultaneously heated and illuminated by ultraviolet light. The mechanism of PTSE from a-Si has been studied in the case of a hydrogenized amorphous silicon (a-Si:H) film grown by glow discharge method. The electronic properties and annealing of defects were analyzed in the study. It has been shown from the results that the PTSE from a-Si:H takes place as a prethreshold single-photon external photoeffect. The exoemission spectroscopy of a-Si:H was shown to be capable in the study of thermally and optically stimulated changes in the electronic structure of defects, their annealing, as well as diffusion of atomic particles, such as hydrogen.

  8. Amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-04-01

    Nanoelectromechanical (NEM) switch is an interesting ultra-low power option which can operate in the harsh environment and can be a complementary element in complex digital circuitry. Although significant advancement is happening in this field, report on ultra-low voltage (pull-in) switch which offers high switching speed and area efficiency is yet to be made. One key challenge to achieve such characteristics is to fabricate nano-scale switches with amorphous metal so the shape and dimensional integrity are maintained to achieve the desired performance. Therefore, we report a tungsten alloy based amorphous metal with fabrication process development of laterally actuated dual gated NEM switches with 100 nm width and 200 nm air-gap to result in <5 volts of actuation voltage (Vpull-in). © 2013 IEEE.

  9. Dependence of the Diamond Type Bonding on Parameters of Deposition from a Ar + CH4 Plasma

    International Nuclear Information System (INIS)

    Dependence of the diamond type bonding on parameters of deposition from a Ar + CH4 plasma. Variation of relative fractions of sp3 and sp2 bonds studies of amorphous diamond-like carbon (a-DLC) films, deposited on silicon from RF (CH4 + Ar) RF plasma, is Presented. The electrical, optical, morphological, and mechanical properties, were measured, and the results, discussed as a function of the partial Ar pressure in the mixture of CH4 + Ar gases, during the a-ArDLC deposition. The comparative study of properties of a-DLC films, using Auger electron spectroscopy (AES), to these of the ratio Φ =: sp3/sp2 (sp2 graphite-bonding) and (sp3 diamond-bonding), have shown that Ar improves the diamond-like properties. Raman spectroscopy and FTIR were also used to determine the ratio sp3/sp2 bonds. For morphology investigation optical microscopy and Atomic Force Microscopy (AFM), were used. Electrical measurements, current-voltage (I-V) and current-temperature (I-T), were performed. Deposition of a-ArDLC films on substrates (sapphire, germanium) with average roughness (σ) of the order of (σ1000 Angstrom, have shown that a strong decrease of σ with increasing the thickness (dσ) is obtained. For d=0.8 μm the value g was reduced to about 10 Angstrom. The bonding ratio Φ remains constant with increasing d up to 0.4/μm and decreases with further increasing d. This indicates that the influence of substrate and roughness is important for obtaining optimum value of Φ. The novel and important result obtained in this paper was that a high value of ratio Φ≥50%) was achieved for the mixture of Ar/CH4 30/70), which was proved, using the above mentioned types of characterization

  10. Boron doped diamond electrode for the wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Quiroz Alfaro, Marco Antonio [Universidad de las Americas-Puebla, Santa Catarina Martir (Mexico). Escuela de Ciencias. Dept. de Quimica y Biologia; Ferro, Sergio; Martinez-Huitle, Carlos Alberto [University of Ferrara (Italy). Dept. of Chemistry; Vong, Yunny Meas [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., Quertaro (Mexico). Parque Tecnologico Queretaro Sanfandila

    2006-03-15

    Electrochemical studies of diamond were started more than fifteen years ago with the first paper on diamond electrochemistry published by Pleskov. After that, work started in Japan, United States of America, France, Switzerland and other countries. Over the last few years, the number of publications has increased considerably. Diamond films have been the subject of applications and fundamental research in electrochemistry, opening up a new branch known as the electrochemistry of diamond electrodes. Here, we first present a brief history and the process of diamond film synthesis. The principal objective of this work is to summarize the most important results in the electrochemical oxidation using diamond electrodes. (author)

  11. Development and evaluation of a portable amorphous silicon flat-panel x-ray detector

    Science.gov (United States)

    Watanabe, Minoru; Mochizuki, Chiori; Kameshima, Toshio; Yamazaki, Tatsuya; Court, Laurence; Hayashida, Shinsuke; Morishita, Masakazu; Ohta, Shin-ichi

    2001-06-01

    The design, development and evaluation of a portable x-ray detector are described. The completed detector has a pixel pitch of 100 micrometers , an active imaging area of 22.5 x 27.5 cm2 (9 x 11 inch2), package outer dimensions of 32.5 x 32.5 cm2, a thickness of only 20 mm, and a weight of around 2.8 kg. A number of significant advances in the design and production processes were needed to produce such a compact detector with such a small pixel pitch, while maintaining the image quality achieved a current detector (CXDI-22) which has a 160 mm pixel pitch. These include the development of a low power readout IC, advances in detector packaging design, concentrating on lightweight and strong components, and redesign of the pixel structure to improve the fill-factor. A comparison is made of the imaging characteristics of this new detector with the CXDI-22 detector, and it is shown that the new detector demonstrates improved CTF, and NEQ. The new detector is also shown to demonstrate superior performance in a contrast-detail phantom evaluation. This new detector should be useful for limb and joint examinations as it offers high spatial resolution, combined with the same freedom in positioning provided by conventional screen-film cassettes.

  12. EXELFS analysis of natural diamond and diamond films on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Moller, A.D. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (Mexico); Araiza, L.C.; Borja, M.A. [Universidad Nacional Autonoma de Mexico, Ensenada (Mexico)

    1996-12-31

    In this work, we report the EXELFS results obtained from a polycrystalline diamond film grown on smooth silicon substrates using the Hot Filament Chemical Vapor Deposition (HF-CVD) technique in a two-step deposition process published elsewhere. In order to evaluate the quality of the thin film obtained, these results were compared with results obtained from natural diamond.

  13. Recognition of diamond grains on surface of fine diamond grinding wheel

    Institute of Scientific and Technical Information of China (English)

    Fengwei HUO; Zhuji JIN; Renke KANG; Dongming GUO; Chun YANG

    2008-01-01

    The accurate evaluation of grinding wheel sur-face topography, which is necessary for the investigation of the grinding principle, optimism, modeling, and simu-lation of a grinding process, significantly depends on the accurate recognition of abrasive grains from the measured wheel surface. A detailed analysis of the grain size distri-bution characteristics and grain profile wavelength of the fine diamond grinding wheel used for ultra-precision grinding is presented. The requirements of the spatial sampling interval and sampling area for instruments to measure the surface topography of a diamond grinding wheel are discussed. To recognize diamond grains, digital filtering is used to eliminate the high frequency disturb-ance from the measured 3D digital surface of the grinding wheel, the geometric features of diamond grains are then extracted from the filtered 3D digital surface, and a method based on the grain profile frequency characteris-tics, diamond grain curvature, and distance between two adjacent diamond grains is proposed. A 3D surface pro-filer based on scanning white light interferometry is used to measure the 3D surface topography of a #3000 mesh resin bonded diamond grinding wheel, and the diamond grains are then recognized from the 3D digital surface. The experimental result shows that the proposed method is reasonable and effective.

  14. Inverse Conversion of CO2 into Diamond: Implications for the Origin of Natural Diamond

    Institute of Scientific and Technical Information of China (English)

    Q. W. Chen; Z. S. Lou; Y. T. Qian; Q. Wang

    2003-01-01

    @@ In prehistoric times carbon was known in the form of soot and charcoal. Ever since Antoine Lavoisier in 1792 and Smithson Tenet in 1797 demonstrated that diamond and graphite are allotropic forms of carbon[1], people have been interested in converting the relatively abundant carbon materials into much rarer diamond.

  15. A Universal Flying Amorphous Computer

    Czech Academy of Sciences Publication Activity Database

    Petrů, Lukáš; Wiedermann, Jiří

    Berlin: Springer, 2011 - (Calude, C.; Kari, J.; Petre, I.; Rozenberg, G.), s. 189-200. (Lecture Notes in Computer Science. 6714). ISBN 978-3-642-21340-3. ISSN 0302-9743. [UC 2011. Unconventional Computation /10/. Turku (FI), 06.06.2011-10.06.2011] R&D Projects: GA ČR GAP202/10/1333 Institutional research plan: CEZ:AV0Z10300504 Keywords : amorphous computing * model of computation * universality Subject RIV: IN - Informatics, Computer Science

  16. Amorphous silicon based betavoltaic devices

    OpenAIRE

    Wyrsch, N; Riesen, Y.; Franco, A; S. Dunand; Kind, H.; Schneider, S.; Ballif, C.

    2013-01-01

    Hydrogenated amorphous silicon betavoltaic devices are studied both by simulation and experimentally. Devices exhibiting a power density of 0.1 μW/cm2 upon Tritium exposure were fabricated. However, a significant degradation of the performance is taking place, especially during the first hours of the exposure. The degradation behavior differs from sample to sample as well as from published results in the literature. Comparisons with degradation from beta particles suggest an effect of tritium...

  17. Electronic Power System Application of Diamond-Like Carbon Films

    Science.gov (United States)

    Wu, Richard L. C.; Kosai, H.; Fries-Carr, S.; Weimer, J.; Freeman, M.; Schwarze, G. E.

    2003-01-01

    A prototype manufacturing technology for producing high volume efficiency and high energy density diamond-like carbon (DLC) capacitors has been developed. Unique dual ion-beam deposition and web-handling systems have been designed and constructed to deposit high quality DLC films simultaneously on both sides of capacitor grade aluminum foil and aluminum-coated polymer films. An optimized process, using inductively coupled RF ion sources, has been used to synthesize electrically robust DLC films. DLC films are amorphous and highly flexible, making them suitable for the production of wound capacitors. DLC capacitors are reliable and stable over a wide range of AC frequencies from 20 Hz to 1 MHz, and over a temperature range from .500 C to 3000 C. The compact DLC capacitors offer at least a 50% decrease in weight and volume and a greater than 50% increase in temperature handling capability over equal value capacitors built with existing technologies. The DLC capacitors will be suitable for high temperature, high voltage, pulsed power and filter applications.

  18. EBS/C proton spectra from a virgin diamond crystal

    Science.gov (United States)

    Erich, M.; Kokkoris, M.; Fazinić, S.; Petrović, S.

    2016-08-01

    In the present work, elastic backscattering channeling spectra, EBS/C, of protons in a diamond crystal were experimentally and theoretically studied via a new computer simulation code. Proton incident energies for EBS/C spectra were in the energy range from 1.0 MeV to 1.9 MeV. The energy range was chosen in order to explore a distinct strong resonance of the 12C(p,p0)12C elastic scattering at 1737 keV. The computer simulation code applied for the fitting of the experimental spectra in the random mode was compared with the corresponding SIMNRA results. In the channeling mode, it assumes a Gompertz type sigmoidal dechanneling function, which has two fitting parameters, xc and k, the dechanneling range and rate, respectively. It also uses α, ratio of the channeling to random energy losses, as a fitting parameter. It was observed that xc increases, k decreases and α stays relatively constant with the proton incident energy. These observations confirm the physical interpretation of the fitting parameters. Also, they constitute the basics for the further development of the code for the quantification of induced amorphization and depth profiling of implanted ions.

  19. National construction, Denmark. Flat roofs

    Energy Technology Data Exchange (ETDEWEB)

    Rode, C.

    1995-04-01

    The Paris meeting of IEA Annex 24 (held in the spring of 1991) declared a set of typical building constructions, the Heat, Air and Moisture characteristics of which should be dealt with as part of the Annex work. Each type of construction was assigned to one or more countries as their National Construction, and it has been the responsibility of each country to prepare a report on what may be regarded as common knowledge in the country on the hygrothermal behaviour of their construction. This knowledge is in part due to experimental work carried out by research bodies in the countries, and due to experience form practice. This report has two main sections: Section 2 gives a general overview of the design of the most common variants of flat roofs and common knowledge reported for such roofs. Section 3 gives an account of research projects carried out in Denmark on flat roofs to analyze their hygrothermal performance. Whenever possible, an emphasis will be put on the hygrothermal consequences of thermally insulating such constructions. (EG) 19 refs.

  20. Plasma spraying method for forming diamond and diamond-like coatings

    Science.gov (United States)

    Holcombe, Cressie E.; Seals, Roland D.; Price, R. Eugene

    1997-01-01

    A method and composition for the deposition of a thick layer (10) of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition (12) including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate (20). The softened or molten composition (18) crystallizes on the substrate (20) to form a thick deposition layer (10) comprising at least a diamond or diamond-like material. The selected composition (12) includes at least glassy carbon as a primary constituent (14) and may include at least one secondary constituent (16). Preferably, the secondary constituents (16) are selected from the group consisting of at least diamond powder, boron carbide (B.sub.4 C) powder and mixtures thereof.

  1. Diamond growth on an array of seeds: The revolution of diamond production

    International Nuclear Information System (INIS)

    The consumption of saw diamond grits is a measure of a nation's constructional activities. The per capita consumption for the world is about 0.7 carats in 2004, and in China, about 3 carats. The manufacture of large saw diamond grits requires stringent control of pressure and temperature that only a few companies can master. However, with the implementation of a novel diamond seeding technology, large saw diamond grits of extreme quality can be mass produced. With this breakthrough, the prices of saw grit will plummet in the near future that should benefit the constructional industry worldwide. Moreover, electronic or thermal grade of large diamond crystals may be produced for applications in semiconductor, electronic or optical industry

  2. Simulating Ramp Compression of Diamond

    Science.gov (United States)

    Godwal, B. K.; Gonzàlez-Cataldo, F. J.; Jeanloz, R.

    2014-12-01

    We model ramp compression, shock-free dynamic loading, intended to generate a well-defined equation of state that achieves higher densities and lower temperatures than the corresponding shock Hugoniot. Ramp loading ideally approaches isentropic compression for a fluid sample, so is useful for simulating the states deep inside convecting planets. Our model explicitly evaluates the deviation of ramp from "quasi-isentropic" compression. Motivated by recent ramp-compression experiments to 5 TPa (50 Mbar), we calculate the room-temperature isotherm of diamond using first-principles density functional theory and molecular dynamics, from which we derive a principal isentrope and Hugoniot by way of the Mie-Grüneisen formulation and the Hugoniot conservation relations. We simulate ramp compression by imposing a uniaxial strain that then relaxes to an isotropic state, evaluating the change in internal energy and stress components as the sample relaxes toward isotropic strain at constant volume; temperature is well defined for the resulting hydrostatic state. Finally, we evaluate multiple shock- and ramp-loading steps to compare with single-step loading to a given final compression. Temperatures calculated for single-step ramp compression are less than Hugoniot temperatures only above 500 GPa, the two being close to each other at lower pressures. We obtain temperatures of 5095 K and 6815 K for single-step ramp loading to 600 and 800 GPa, for example, which compares well with values of ~5100 K and ~6300 K estimated from previous experiments [PRL,102, 075503, 2009]. At 800 GPa, diamond is calculated to have a temperature of 500 K along the isentrope; 900 K under multi-shock compression (asymptotic result after 8-10 steps); and 3400 K under 3-step ramp loading (200-400-800 GPa). Asymptotic multi-step shock and ramp loading are indistinguishable from the isentrope, within present uncertainties. Our simulations quantify the manner in which current experiments can simulate the

  3. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  4. Black diamonds at brane junctions

    Science.gov (United States)

    Chamblin, Andrew; Csáki, Csaba; Erlich, Joshua; Hollowood, Timothy J.

    2000-08-01

    We discuss the properties of black holes in brane-world scenarios where our Universe is viewed as a four-dimensional sub-manifold of some higher-dimensional spacetime. We consider in detail such a model where four-dimensional spacetime lies at the junction of several domain walls in a higher dimensional anti-de Sitter spacetime. In this model there may be any number p of infinitely large extra dimensions transverse to the brane-world. We present an exact solution describing a black p-brane which will induce on the brane-world the Schwarzschild solution. This exact solution is unstable to the Gregory-Laflamme instability, whereby long-wavelength perturbations cause the extended horizon to fragment. We therefore argue that at late times a non-rotating uncharged black hole in the brane-world is described by a deformed event horizon in p+4 dimensions which will induce, to good approximation, the Schwarzschild solution in the four-dimensional brane world. When p=2, this deformed horizon resembles a black diamond and more generally for p>2, a polyhedron.

  5. Black Diamonds at Brane Junctions

    CERN Document Server

    Chamblin, A; Erlich, J; Hollowood, Timothy J; Chamblin, Andrew; Csaki, Csaba; Erlich, Joshua; Hollowood, Timothy J.

    2000-01-01

    We discuss the properties of black holes in brane-world scenarios where ouruniverse is viewed as a four-dimensional sub-manifold of somehigher-dimensional spacetime. We consider in detail such a model wherefour-dimensional spacetime lies at the junction of several domain walls in ahigher dimensional anti-de Sitter spacetime. In this model there may be anynumber p of infinitely large extra dimensions transverse to the brane-world. Wepresent an exact solution describing a black p-brane which will induce on thebrane-world the Schwarzschild solution. This exact solution is unstable to theGregory-Laflamme instability, whereby long-wavelength perturbations cause theextended horizon to fragment. We therefore argue that at late times anon-rotating uncharged black hole in the brane-world is described by a deformedevent horizon in p+4 dimensions which will induce, to good approximation, theSchwarzschild solution in the four-dimensional brane world. When p=2, thisdeformed horizon resembles a black diamond and more gener...

  6. Black diamonds at brane junctions

    International Nuclear Information System (INIS)

    We discuss the properties of black holes in brane-world scenarios where our Universe is viewed as a four-dimensional sub-manifold of some higher-dimensional spacetime. We consider in detail such a model where four-dimensional spacetime lies at the junction of several domain walls in a higher dimensional anti-de Sitter spacetime. In this model there may be any number p of infinitely large extra dimensions transverse to the brane-world. We present an exact solution describing a black p-brane which will induce on the brane-world the Schwarzschild solution. This exact solution is unstable to the Gregory-Laflamme instability, whereby long-wavelength perturbations cause the extended horizon to fragment. We therefore argue that at late times a non-rotating uncharged black hole in the brane-world is described by a deformed event horizon in p+4 dimensions which will induce, to good approximation, the Schwarzschild solution in the four-dimensional brane world. When p=2, this deformed horizon resembles a black diamond and more generally for p>2, a polyhedron. (c) 2000 The American Physical Society

  7. Prospective crystallization of amorphous Si films for new Si TFTs

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Takashi [University of the Ryukyus, Fuculty of Engineering, Nishihara, Okinawa (Japan)

    2008-07-01

    Prospective crystallization results of amorphous silicon film are reviewed and are discussed. Silicon TFTs are playing an important role for Active-Matrix Flat Panel Displays (AM-FPD) based on amorphous or poly-Si thin-film transistors (TFTs). Poly-Si TFTs provide a possibility to develop highly functional system on pane (SoP) applications. In order to get a high performance TFT, large poly-crystal grains or high cystallinity for the film is required. Two basic crystallization techniques namely solid phase crystallization (SPC) and excimer laser crystallization (ELC) are reviewed and relating issues are described. A grain growth technique has been developed based on the two crystallization techniques, so far. In order to mount a poly-Si TFT system on a flexible panel such as a plastic, an excimer laser of UV pulse beam has an advantage for the TFT channel as well as for the source and drain contacts as a ultra-low temperature poly-Si (U-LTPS) process. To realize a high performance TFT of uniform and high carrier mobility, location control crystallization had been proposed. Some of the distinctive results for crystal orientation control of (100) and (111) face using the laser crystallization techniques are described. In the future, single-crystalline Si TFT of a functional 3D structure is expected to realize an advanced SoP for ubiquitous electronics era. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Kankan diamonds (Guinea) III: δ13C and nitrogen characteristics of deep diamonds

    Science.gov (United States)

    Stachel, T.; Harris, J. W.; Aulbach, S.; Deines, P.

    Diamonds from the Kankan area in Guinea formed over a large depth profile beginning within the cratonic mantle lithosphere and extending through the asthenosphere and transition zone into the lower mantle. The carbon isotopic composition, the concentration of nitrogen impurities and the nitrogen aggregation level of diamonds representing this entire depth range have been determined. Peridotitic and eclogitic diamonds of lithospheric origin from Kankan have carbon isotopic compositions (δ13C: peridotitic -5.4 to -2.2‰ eclogitic -19.7 to -0.7‰) and nitrogen characteristics (N: peridotitic 17-648 atomic ppm; eclogitic 0-1,313 atomic ppm; aggregation from IaA to IaB) which are generally typical for diamonds of these two suites worldwide. Geothermobarometry of peridotitic and eclogitic inclusion parageneses (worldwide sources) indicates that both suites formed under very similar conditions within the cratonic lithosphere, which is not consistent with a derivation of diamonds with light carbon isotopic composition from subducted organic matter within subducting oceanic slabs. Diamonds containing majorite garnet inclusions fall to the isotopically heavy side (δ13C: -3.1‰ to +0.9‰) of the worldwide diamond population. Nitrogen contents are low (0-126 atomic ppm) and one of the two nitrogen-bearing diamonds shows such a low level of nitrogen aggregation (30% B-centre) that it cannot have been exposed to ambient temperatures of the transition zone (>=1,400 °C) for more than 0.2 Ma. This suggests rapid upward transport and formation of some Kankan diamonds pene-contemporaneous to Cretaceous kimberlite activity. Similar to these diamonds from the asthenosphere and the transition zone, lower mantle diamonds show a small shift towards isotopic heavy compositions (-6.6 to -0.5‰, mode at -3.5‰). As already observed for other mines, the nitrogen contents of lower mantle diamonds were below detection (using FTIRS). The mutual shift of sublithospheric diamonds towards

  9. Critical components for diamond-based quantum coherent devices

    International Nuclear Information System (INIS)

    The necessary elements for practical devices exploiting quantum coherence in diamond materials are summarized, and progress towards their realization documented. A brief review of future prospects for diamond-based devices is also provided

  10. n-Type diamond and method for producing same

    Science.gov (United States)

    Anderson, Richard J.

    2002-01-01

    A new n-type semiconducting diamond is disclosed, which is doped with n-type dopant atoms. Such diamond is advantageously formed by chemical vapor deposition from a source gas mixture comprising a carbon source compound for the diamond, and a volatile hot wire filament for the n-type impurity species, so that the n-type impurity atoms are doped in the diamond during its formation. A corresponding chemical vapor deposition method of forming the n-type semiconducting diamond is disclosed. The n-type semiconducting diamond of the invention may be usefully employed in the formation of diamond-based transistor devices comprising pn diamond junctions, and in other microelectronic device applications.

  11. Diamond photonics platform enabled by femtosecond laser writing

    OpenAIRE

    Sotillo, Belen; Bharadwaj, Vibhav; Hadden, J. P.; Sakakura, Masaaki; Chiappini, Andrea; Fernandez, Toney Teddy; Longhi, Stefano; Jedrkiewicz, Ottavia; Shimotsuma, Yasuhiko; Criante, Luigino; Osellame, Roberto; Galzerano, Gianluca; Ferrari, Maurizio; Miura, Kiyotaka; Ramponi, Roberta

    2016-01-01

    We demonstrate the first buried optical waveguides in diamond using focused femtosecond laser pulses. The properties of nitrogen vacancy centers are preserved in the waveguides, making them promising for diamond-based magnetometers or quantum information systems.

  12. "Flat-Fish" Vacuum Chamber

    CERN Multimedia

    1978-01-01

    The picture shows a "Flat-Fish" vacuum chamber being prepared in the ISR workshop for testing prior to installation in the Split Field Magnet (SFM) at intersection I4. The two shells of each part were hydroformed from 0.15 mm thick inconel 718 sheet (with end parts in inconel 600 for easier manual welding to the arms) and welded toghether with two strips which were attached by means of thin stainless steel sheets to the Split Field Magnet poles in order to take the vertical component of the atmospheric pressure force. This was the thinnest vacuum chamber ever made for the ISR. Inconel material was chosen for its high elastic modulus and strenght at chamber bake-out temperature. In this picture the thin sheets transferring the vertical component of the atmosferic pressure force are attached to a support frame for testing. See also 7712182, 7712179.

  13. Flat bunches in the LHC

    CERN Document Server

    Shaposhnikova, E; Baudrenghien, P; Mastoridis, T; Muller, J E; Papotti, G; Salvant, B; Timko, H; Bhat, C; Burov, A

    2014-01-01

    A high harmonic RF system which could serve multiple purposes was proposed for the LHC. Possible applications of the second harmonic RF system include beam stabilisation in the longitudinal plane in absence of wide-band longitudinal feedback and reduction of bunch peak line density. Apart from other useful features flat bunches are expected to produce less beam-induced heating below 1 GHz, the frequency region critical for some LHC equipment. The latter however can also be achieved by de-populating the bunch center. This was demonstrated during the dedicated machine development session in the LHC using RF phase modulation. In this paper the results of tests with single bunches and nominal LHC beams are presented and possible use of this technique in LHC operation is discussed.

  14. Flat laminated microbial mat communities

    Science.gov (United States)

    Franks, Jonathan; Stolz, John F.

    2009-10-01

    Flat laminated microbial mats are complex microbial ecosystems that inhabit a wide range of environments (e.g., caves, iron springs, thermal springs and pools, salt marshes, hypersaline ponds and lagoons, methane and petroleum seeps, sea mounts, deep sea vents, arctic dry valleys). Their community structure is defined by physical (e.g., light quantity and quality, temperature, density and pressure) and chemical (e.g., oxygen, oxidation/reduction potential, salinity, pH, available electron acceptors and donors, chemical species) parameters as well as species interactions. The main primary producers may be photoautotrophs (e.g., cyanobacteria, purple phototrophs, green phototrophs) or chemolithoautophs (e.g., colorless sulfur oxidizing bacteria). Anaerobic phototrophy may predominate in organic rich environments that support high rates of respiration. These communities are dynamic systems exhibiting both spatial and temporal heterogeneity. They are characterized by steep gradients with microenvironments on the submillimeter scale. Diel oscillations in the physical-chemical profile (e.g., oxygen, hydrogen sulfide, pH) and species distribution are typical for phototroph-dominated communities. Flat laminated microbial mats are often sites of robust biogeochemical cycling. In addition to well-established modes of metabolism for phototrophy (oxygenic and non-oxygenic), respiration (both aerobic and anaerobic), and fermentation, novel energetic pathways have been discovered (e.g., nitrate reduction couple to the oxidation of ammonia, sulfur, or arsenite). The application of culture-independent techniques (e.g., 16S rRNA clonal libraries, metagenomics), continue to expand our understanding of species composition and metabolic functions of these complex ecosystems.

  15. Representability of Hom Implies Flatness

    Indian Academy of Sciences (India)

    Nitin Nitsure

    2004-02-01

    Let be a projective scheme over a noetherian base scheme , and let $\\mathcal{F}$ be a coherent sheaf on . For any coherent sheaf $\\mathcal{E}$ on , consider the set-valued contravariant functor $\\hom_{(\\mathcal{E},\\mathcal{F})}$ on -schemes, defined by $\\hom_{(\\mathcal{E},\\mathcal{F})}(T)=\\mathrm{Hom}(\\mathcal{E}_T,\\mathcal{F}_T)$ where $\\mathcal{E}_T$ and $\\mathcal{F}_T$ are the pull-backs of $\\mathcal{E}$ and $\\mathcal{F}$ to $X_T=X×_s T$. A basic result of Grothendieck ([EGA], III 7.7.9) says that if $\\mathcal{F}$ is flat over then $\\hom_{(\\mathcal{E},\\mathcal{F})}$ is representable for all $\\mathcal{E}$. We prove the converse of the above, in fact, we show that if is a relatively ample line bundle on over such that the functor $\\hom_{(L^{-n},\\mathcal{F})}$ is representable for infinitely many positive integers , then $\\mathcal{F}$ is flat over . As a corollary, taking $X=S$, it follows that if $\\mathcal{F}$ is a coherent sheaf on then the functor $T\\mapsto H^0(T,\\mathcal{F}_T)$ on the category of -schemes is representable if and only if $\\mathcal{F}$ is locally free on . This answers a question posed by Angelo Vistoli. The techniques we use involve the proof of flattening stratification, together with the methods used in proving the author's earlier result (see [N1]) that the automorphism group functor of a coherent sheaf on is representable if and only if the sheaf is locally free.

  16. Comparative evaluation of CVD diamond technologies

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, T.R. [General Electric Corporate Research & Development Center, Schenectady, NY (United States)

    1993-01-01

    Chemical vapor deposition (CVD) of diamonds occurs from hydrogen-hydrocarbon gas mixtures in the presence of atomic hydrogen at subatmospheric pressures. Most CVD methods are based on different means of generating and transporting atomic hydrogen in a particular system. Evaluation of these different techniques involves their capital costs, material costs, energy costs, labor costs and the type and quality of diamond that they produce. Currently, there is no universal agreement on which is the best technique and technique selection has been largely driven by the professional background of the user as well as the particular application of interest. This article discusses the criteria for evaluating a process for low-pressure deposition of diamond. Next, a brief history of low-pressure diamond synthesis is reviewed. Several specific processes are addressed, including the hot filament process, hot filament electron-assisted chemical vapor deposition, and plasma generation of atomic hydrogen by glow discharge, microwave discharge, low pressure radio frequency discharge, high pressure DC discharge, high pressure microwave discharge jets, high pressure RF discharge, and high and low pressure flames. Other types of diamond deposition methods are also evaluated. 101 refs., 15 figs.

  17. Shock Response of Diamond Crystals; TOPICAL

    International Nuclear Information System (INIS)

    Sandia is investigating the shock response of single-crystal diamond up to several Mbar pressure in a collaborative effort with the Institute for Shock Physics (ISP) at Washington State University (WSU). This is project intended to determine (i) the usefulness of diamond as a window material for high pressure velocity interferometry measurements, (ii) the maximum stress level at which diamond remains transparent in the visible region, (iii) if a two-wave structure can be detected and analyzed, and if so, (iv) the Hugoniot elastic limit (HEL) for the[110] orientation of diamond. To this end experiments have been designed and performed, scoping the shock response in diamond in the 2-3 Mbar pressure range using conventional velocity interferometry techniques (conventional VISAR diagnostic). In order to perform more detailed and highly resolved measurements, an improved line-imaging VISAR has been developed and experiments using this technique have been designed. Prior to performing these more detailed experiments, additional scoping experiments are being performed using conventional techniques at WSU to refine the experimental design

  18. Diamonds: Cultural Representations and Transformations of a "Girl's Best Friend"

    OpenAIRE

    Whiteley, Bryn Elizabeth

    2016-01-01

    The great success of the advertising industry in the 1950s created a diamond culture where diamonds are continuously associated with images of love and devotion. With all of the diamond's positive associations, no one could have imagined that such a precious jewel could have negative connotations. Yet in the 1990s, the label "blood diamond" emerged and became widely correlated with torture, rape, child labor, and environmental destruction. My three- manuscript dissertation covers the followin...

  19. Study of Electron Transport and Amplification in Diamond

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Erik M.; Ben-Zvi, Ilan

    2013-03-31

    As a successful completion of this award, my group has demonstrated world-leading electron gain from diamond for use in a diamond-amplified photocathode. Also, using high-resolution photoemission measurements we were able to uncover exciting new physics of the electron emission mechanisms from hydrogen terminated diamond. Our work, through the continued support of HEP, has resulted in a greater understanding of the diamond material science, including current limits, charge transport modeling, and spatial uniformity.

  20. Intrinsic and boron-doped diamond microstructured for electrochemical batteries

    Czech Academy of Sciences Publication Activity Database

    Kromka, Alexander; Babchenko, Oleg; Rezek, Bohuslav; Ižák, Tibor; Libertínová, Jitka; Hruška, Karel; Nyholm, L.; de Oliviera Jorge, E.

    Prague : Institute of Physics ASCR, 2012 - (Rezek, B.; Kromka, A.), s. 43-44 ISBN 978-80-260-1593-2. [International Workshop on Diamond Nanotechnology and Science Progress. Prague (CZ), 15.06.2011-17.06.2011] Institutional research plan: CEZ:AV0Z10100521 Keywords : nanocrystalline diamond * intrinsic diamond * boron-doped diamond * surface conductivity * SEM * AFM Subject RIV: BM - Solid Matter Physics ; Magnetism

  1. Growth of diamond films on laser-treated substrates

    OpenAIRE

    Ralchenko, V.; Korotoushenko, K.; Smolin, A.; Konov, V

    1994-01-01

    Polycrystalline diamond films (DF) grown from hydrocarbons at low pressures is highly attractive material for optical, mechanical, electronic and other applications, in which the unique physical and chemical properties of diamond are used. Fabrication of diamond-based electronic devices requires a high resolution patterning of DF, however a conventional post-growth processing (polishing, etching ...) is difficult because of extreme hardness and chemical inertness of diamond. We report on alte...

  2. Effect of diamond on structure and properties of confined water

    Science.gov (United States)

    Batsanov, Stepan S.; Batsanov, Andrei S.

    2016-05-01

    The molar volume of water adsorbed on the surface of micro- and nano-powders of diamond was determined from the measured densities of dry and variously hydrated diamond powders. This volume decreases near the diamond surface and in the first adsorbed monolayer can be as low as half that of bulk water. This effect can be attributed to breakdown of the hydrogen bond network, as confirmed by IR spectroscopy and calorimetrical data for crystal hydrates of diamond.

  3. The physics and applications of amorphous semiconductors

    CERN Document Server

    Madan, Arun

    1988-01-01

    This comprehensive, detailed treatise on the physics and applications of the new emerging technology of amorphous semiconductors focuses on specific device research problems such as the optimization of device performance. The first part of the book presents hydrogenated amorphous silicon type alloys, whose applications include inexpensive solar cells, thin film transistors, image scanners, electrophotography, optical recording and gas sensors. The second part of the book discusses amorphous chalcogenides, whose applications include electrophotography, switching, and memory elements. This boo

  4. Amorphous powders for inhalation drug delivery.

    Science.gov (United States)

    Chen, Lan; Okuda, Tomoyuki; Lu, Xiang-Yun; Chan, Hak-Kim

    2016-05-01

    For inhalation drug delivery, amorphous powder formulations offer the benefits of increased bioavailability for poorly soluble drugs, improved biochemical stability for biologics, and expanded options of using various drugs and their combinations. However, amorphous formulations usually have poor physicochemical stability. This review focuses on inhalable amorphous powders, including the production methods, the active pharmaceutical ingredients and the excipients with a highlight on stabilization of the particles. PMID:26780404

  5. Amorphous Phase Properties Of Oriented Polyethylene Solids

    OpenAIRE

    Zahran, R. R; Kardos, J. L.

    1993-01-01

    Solid-state deformation of polyethylene results in a preferential orientation of both crystalline and amorphous regions. Usually, one major problem in the prediction of the mechanical and thermal expansion properties of anisotropic polyethylene lies in determining values for the amorphous phase properties and, particularly, at a given level of solid-state deformation. This paper outlines simple procedures for determining the two-dimensional amorphous orientation function and values for the...

  6. Gravitating cosmic strings with flat directions

    OpenAIRE

    Hartmann, Betti; Lopez-Eiguren, Asier; Sousa, Kepa; Urrestilla, Jon

    2012-01-01

    We study field theoretical models for cosmic strings with flat directions in curved space-time. More precisely, we consider minimal models with semilocal, axionic and tachyonic strings, respectively. In flat space-time, the string solutions of these models have a flat direction, i.e., a uniparametric family of configurations with the same energy exists which is associated to a zero mode. We prove that the zero mode survives coupling to gravity, and study the role of the flat direction when co...

  7. Flat-band engineering of mobility edges

    Science.gov (United States)

    Danieli, Carlo; Bodyfelt, Joshua D.; Flach, Sergej

    2015-06-01

    Properly modulated flat-band lattices have a divergent density of states at the flat-band energy. Quasiperiodic modulations are known to host a metal-insulator transition already in one space dimension. Their embedding into flat-band geometries consequently allows for a precise engineering and fine tuning of mobility edges. We obtain analytic expressions for singular mobility edges for two flat-band lattice examples. In particular, we engineer cases with arbitrarily small energy separations of mobility edge, zeroes, and divergencies.

  8. Flat conductor cable design, manufacture, and installation

    Science.gov (United States)

    Angele, W.; Hankins, J. D.

    1973-01-01

    Pertinent information for hardware selection, design, manufacture, and quality control necessary for flat conductor cable interconnecting harness application is presented. Comparisons are made between round wire cable and flat conductor cable. The flat conductor cable interconnecting harness systems show major cost, weight, and space savings, plus increased system performance and reliability. The design application section includes electrical characteristics, harness design and development, and a full treatise on EMC considerations. Manufacturing and quality control sections pertain primarily to the developed conductor-contact connector system and special flat conductor cable to round wire cable transitions.

  9. Hydrophobic transition in porous amorphous silica

    International Nuclear Information System (INIS)

    Realistic models of amorphous silica surfaces with different silanol densities are built using Monte Carlo annealing. Water-silica interfaces are characterized by their energy interaction maps, adsorption isotherms, self-diffusion coefficients, and Poiseuille flows. A hydrophilic to hydrophobic transition appears as the surface becomes purely siliceous. These results imply significant consequences for the description of surfaces. First, realistic models are required for amorphous silica interfaces. Second, experimental amorphous silica hydrophilicity is attributed to charged or uncharged defects, and not to amorphousness. In addition, auto irradiation in nuclear waste glass releases hydrogen atoms from silanol groups and can induce such a transition. (authors)

  10. 9 CFR 311.6 - Diamond-skin disease.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Diamond-skin disease. 311.6 Section... CERTIFICATION DISPOSAL OF DISEASED OR OTHERWISE ADULTERATED CARCASSES AND PARTS § 311.6 Diamond-skin disease. Carcasses of hogs affected with diamond-skin disease when localized and not associated with systemic...

  11. Fast bolometer built in an artificial HPHT diamond matrix

    International Nuclear Information System (INIS)

    A fast bolometer built in a plate of diamond grown at high pressure by the gradient growth method is developed and fabricated. The parameters of this structure are compared with these of the structures investigated earlier, which were fabricated based on chemical vapour deposited (CVD) diamond and natural type IIa diamond.

  12. The application of CVD diamond films in cyclic voltammetry

    Directory of Open Access Journals (Sweden)

    R. Torz-Piotrowska

    2009-12-01

    Full Text Available Purpose: The main purpose of these studies was to show the applicability of CVD (Chemical Vapour Deposition diamond layer in electrochemistry and to work out the technology of manufacturing diamond electrodes.Design/methodology/approach: The diamond films were deposited on tungsten substrate by HF CVD technique, and then, their quality was checked by Raman spectroscopy. It was shown, using Cyclic Voltammetry (CV measurements, that un-doped diamond films are chemically stable in aqueous solutions.Findings: The results of cyclic voltammetry measurements show that diamond electrode on tungsten substrate is electrochemically stable in aqueous solutions over a wide potential range (-3000 mV to 2000 mV. The Raman spectra confirmed the good quality of obtained diamond layer.Research limitations/implications: In particular, it was shown that diamond electrode showed a wide potential window, very low background current, chemical and physical stability.Practical implications: Presented results showed that CVD diamond films can find application in production of diamond electrodes for electrochemical application. The sensitivity of CVD diamond layers to the electroactive species indicates on possibility of application of this material for construction of chemical and biological sensors.Originality/value: The characteristics of diamond electrodes and the resistivity of this material to the chemical attack indicate that it can be employed in a number of electrochemical applications and additionally it can work in harsh environment. The HF CVD diamond layer seems to be the new, promising and versatile material for electrochemical applications.

  13. Thick porous electrochemical diamond electrodes: novel fabrication method and properties

    Czech Academy of Sciences Publication Activity Database

    Petrák, V.; Vlčková Živcová, Zuzana; Krýsová, Hana; Frank, Otakar; Zukal, Arnošt; Klimša, Ladislav; Kopeček, Jaromír; Taylor, A.; Kavan, Ladislav; Mortet, Vincent

    Hasselt: The Hasselt Diamond Workshop Committees, 201 6. Č. 146, 153. [Hasselt Diamond Workshop 2016. SBDD XXI. 09.03.2016-11.03.2016, Hasselt] R&D Projects: GA ČR GA13-31783S Institutional support: RVO:61388955 ; RVO:68378271 Keywords : electrochemistry * boron-doped diamond * electrodes Subject RIV: CG - Electrochemistry

  14. Growth and surface conductivity of diamond in-plane nanowires

    Czech Academy of Sciences Publication Activity Database

    Rezek, Bohuslav; Babchenko, Oleg; Vetushka, Aliaksi; Ledinský, Martin; Kromka, Alexander

    Munich, 2011. ISBN N. [European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes and Nitrides /22./. 04.09.2011-08.09.2011, Garmisch-Partenkirchen] Institutional research plan: CEZ:AV0Z10100521 Keywords : nanocrystalline diamond * nanowires * surface conductivity * selective area deposition Subject RIV: BM - Solid Matter Physics ; Magnetism

  15. Three-dimensional nanocrystalline diamond bio-transistor

    Czech Academy of Sciences Publication Activity Database

    Krátká, Marie; Kromka, Alexander; Rezek, Bohuslav

    Munich, 2011. ISBN N. [European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes and Nitrides /22./. 04.09.2011-08.09.2011, Garmisch-Partenkirchen] Institutional research plan: CEZ:AV0Z10100521 Keywords : low temperature hydrogenation * nanocrystalline diamond * SGFETs Subject RIV: BM - Solid Matter Physics ; Magnetism

  16. Inelastic scattering from amorphous solids

    International Nuclear Information System (INIS)

    The potential of inelastic neutron scattering techniques for surveying various aspects of the dynamics of amorphous solids is briefly reviewed. The recent use of the Intense Pulsed Neutron Source to provide detailed information on the optical vibrations of glasses is discussed in more detail. The density of states represents an averaged quantity which gives information about the general characteristics of the structure and bonding. More extensive information can be obtained by studying the detailed wavevector dependence of the dynamic structure factor. 15 refs., 7 figs

  17. Plasma Deposition of Amorphous Silicon

    Science.gov (United States)

    Calcote, H. F.

    1982-01-01

    Strongly adhering films of silicon are deposited directly on such materials as Pyrex and Vycor (or equivalent materials) and aluminum by a non-equilibrium plasma jet. Amorphous silicon films are formed by decomposition of silicon tetrachloride or trichlorosilane in the plasma. Plasma-jet technique can also be used to deposit an adherent silicon film on aluminum from silane and to dope such films with phosphorus. Ability to deposit silicon films on such readily available, inexpensive substrates could eventually lead to lower cost photovoltaic cells.

  18. Amorphous silicon based solar cells

    OpenAIRE

    Al Tarabsheh, Anas

    2007-01-01

    This thesis focuses on the deposition of hydrogenated amorphous silicon (a-Si:H) films bymeans of plasma enhanced chemical vapour deposition (PECVD). This technique allows the growth of device quality a-Si:H at relatively low deposition temperatures, below 140 °C and, therefore, enables the use of low-cost substrates, e.g. plastic foils. The maximum efficiencies of a-Si:H solar cells in this work are η= 6.8 % at a deposition temperature Tdep = 180 °C and η = 4.9 % at a deposition ...

  19. Amorphous silicon based radiation detectors

    International Nuclear Information System (INIS)

    We describe the characteristics of thin(1 μm) and thick (>30μm) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and γ rays. For x-ray, γ ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. 13 refs., 7 figs

  20. Conductivity and superconductivity in heavily vacant diamond

    Directory of Open Access Journals (Sweden)

    S A Jafari

    2009-08-01

    Full Text Available   Motivated by the idea of impurity band superconductivity in heavily Boron doped diamond, we investigate the doping of various elements into diamond to address the question, which impurity band can offer a better DOS at the Fermi level. Surprisingly, we find that the vacancy does the best job in producing the largest DOS at the Fermi surface. To investigate the effect of disorder in Anderson localization of the resulting impurity band, we use a simple tight-binding model. Our preliminary study based on the kernel polynomial method shows that the impurity band is already localized at the concentration of 10-3. Around the vacancy concentration of 0.006 the whole spectrum of diamond becomes localized and quantum percolation takes place. Therefore to achieve conducting bands at concentrations on the scale of 5-10 percent, one needs to introduce correlations such as hopping among the vacancies .

  1. Microbeam irradiation effects on transmission diamond detector

    International Nuclear Information System (INIS)

    Response of thin film CVD diamond to the ionized particle irradiation was investigated for the utilization as a transmission detector in the end-station of the microbeam line connecting to the AVF cyclotron at JAEA/Takasaki. A spectroscopy-grade 50 μm-thick film Single Crystalline CVD diamond was characterized using Ion Beam Induced Charge (IBIC) and Transient Ion Beam Induced Current (TIBIC) systems. Significant decrease in IBIC signals was observed temporally during a microbeam irradiation period. Peak degradation was easily recovered in a short time by release of biases thus it seems to be caused by the polarization effect due to charge-capture by defects in the surface layer of diamond. (author)

  2. CVD diamond detectors for ionizing radiation

    CERN Document Server

    Friedl, M; Bauer, C; Berfermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernegger, H; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Tapper, R J; Tesarek, R J; Thomson, G B; Trawick, M L; Trischuk, W; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; Ziock, H J; Zöller, M

    1999-01-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2*4 cm/sup 2/ have been grown and refined for better charge collection properties, which are measured with a beta source or in a test beam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5*10/sup 15/ cm/sup -2/ to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics. (16 refs).

  3. Recent results with CVD diamond trackers

    International Nuclear Information System (INIS)

    We present recent results on the use of Chemical Vapor Deposition (CVD) diamond microstrip detectors for charged particle tracking. A series of detectors was fabricated using 1 x 1 cm2 diamonds. Good signal-to-noise ratios were observed using both slow and fast readout electronics. For slow readout electronics, 2 μs shaping time, the most probable signal-to-noise ratio was 50 to 1. For fast readout electronics, 25 ns peaking time, the most probable signal-to-noise ratio was 7 to 1. Using the first 2 x 4 cm2 diamond from a production CVD reactor with slow readout electronics, the most probable signal-to-noise ratio was 23 to 1. The spatial resolution achieved for the detectors was consistent with the digital resolution expected from the detector pitch

  4. Recent results with CVD diamond trackers

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; White, C.; Ziock, H.; Zoeller, M

    1999-08-01

    We present recent results on the use of Chemical Vapor Deposition (CVD) diamond microstrip detectors for charged particle tracking. A series of detectors was fabricated using 1 x 1 cm{sup 2} diamonds. Good signal-to-noise ratios were observed using both slow and fast readout electronics. For slow readout electronics, 2 {mu}s shaping time, the most probable signal-to-noise ratio was 50 to 1. For fast readout electronics, 25 ns peaking time, the most probable signal-to-noise ratio was 7 to 1. Using the first 2 x 4 cm{sup 2} diamond from a production CVD reactor with slow readout electronics, the most probable signal-to-noise ratio was 23 to 1. The spatial resolution achieved for the detectors was consistent with the digital resolution expected from the detector pitch.

  5. CVD diamond detectors for ionizing radiation

    International Nuclear Information System (INIS)

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2x4 cm2 have been grown and refined for better charge collection properties, which are measured with a β source or in a test beam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5x1015 cm-2 to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics. (author)

  6. CVD diamond detectors for ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Friedl, M. E-mail: markus.friedl@cern.ch; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R.J.; Tesarek, R.; Thomson, G.B.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M

    1999-10-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2x4 cm{sup 2} have been grown and refined for better charge collection properties, which are measured with a {beta} source or in a test beam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5x10{sup 15} cm{sup -2} to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics. (author)

  7. Recent results with CVD diamond trackers

    CERN Document Server

    Adam, W; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Runólfsson, O; Russ, J; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Trawick, M L; Trischuk, W; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; White, C; Ziock, H J; Zöller, M

    1999-01-01

    We present recent results on the use of chemical vapor deposition (CVD) diamond microstrip detectors for charged particle tracking. A series of detectors was fabricated using 1*1 cm/sup 2/ diamonds. Good signal-to-noise ratios were observed using both slow and fast readout electronics. For slow readout electronics, 2 mu s shaping time, the most probable signal-to-noise ratio was 50 to 1. For fast readout electronics, 25 ns peaking time, the most probable signal-to-noise ratio was 7 to 1. Using the first 2*4 cm/sup 2/ diamond from a production CVD reactor with slow readout electronics, the most probable signal-to-noise ratio was 23 to 1. The spatial resolution achieved for the detectors was consistent with the digital resolution expected from the detector pitch. (6 refs).

  8. Behaviour of muonium in synthetic diamond

    International Nuclear Information System (INIS)

    The probabilities of finding the muon in various states in synthetic single-crystal and polycrystalline diamond were studied. In the IIa-type single-crystal sample at 150 K the contributions of the diamagnetic muon, 'normal' and 'anomalous' muonium were observed to be 1.5%, 57% and 8.1%, respectively. The missing fraction of muon polarization was 33.4%, which is approximately two times smaller than in the Ia-type natural diamond, and two or three times greater than in the IIa- and IIb-type natural diamonds. The muon spin relaxation rates at the 'normal' and 'anomalous' muonium states in the synthetic and natural samples of IIa- and IIb-type are similar

  9. Polymeric amorphous carbon as p-type window within amorphous silicon solar cells

    NARCIS (Netherlands)

    Khan, R.U.A.; Silva, S.R.P.; Van Swaaij, R.A.C.M.M.

    2003-01-01

    Amorphous carbon (a-C) has been shown to be intrinsically p-type, and polymeric a-C (PAC) possesses a wide Tauc band gap of 2.6 eV. We have replaced the p-type amorphous silicon carbide layer of a standard amorphous silicon solar cell with an intrinsic ultrathin layer of PAC. The thickness of the p

  10. Morphological analysis and cell viability on diamond-like carbon films containing nanocrystalline diamond particles

    Science.gov (United States)

    Almeida, C. N.; Ramos, B. C.; Da-Silva, N. S.; Pacheco-Soares, C.; Trava-Airoldi, V. J.; Lobo, A. O.; Marciano, F. R.

    2013-06-01

    The coating of orthopedic prostheses with diamond like-carbon (DLC) has been actively studied in the past years, in order to improve mechanical, tribological properties and promote the material's biocompatibility. Recently, the incorporation of crystalline diamond nanoparticles into the DLC film has shown effective in combating electrochemical corrosion in acidic medias. This study examines the material's biocompatibility through testing by LDH release and MTT, on in vitro fibroblasts; using different concentrations of diamond nanoparticles incorporated into the DLC film. Propounding its potential use in orthopedics in order to increase the corrosion resistance of prostheses and improve their relationship with the biological environment.

  11. Particle and radiation detectors based on diamond

    Energy Technology Data Exchange (ETDEWEB)

    Bergonzo, P.; Tromson, D.; Mer, C.; Guizard, B.; Foulon, F.; Brambilla, A. [LIST/DIMRI/SIAR, CEA/Saclay, Gif-sur-Yvette (France)

    2001-05-16

    CVD diamond is a remarkable material for the fabrication of particle and photon radiation detectors. The improvement of the electronic properties of the material has been under intensive investigations and led to the development of a few applications that are addressing specific industrial needs. In particular, we have used diamond layers for industrial applications where it exhibits attractive characteristics as compared with other materials: e.g., radiation and corrosion hardness for {alpha}-counters or high gamma-meters at high fluxes; high transparency to low energy X-rays for synchrotron beam line monitoring devices, etc. These specific properties can motivate the use of diamond even though the detection properties remain relatively poor. Indeed, one inherent problem with diamond is the presence of defect levels that are altering the detection characteristics. These are observed in all CVD materials but also in very high quality natural diamonds. They result in unstable responses and carrier losses. Also, it has been observed that high sensitivities may result from the progressive filling of deep levels, e.g. pumping effects, with a detrimental effect on the stability and the response time. Also, the polycrystalline nature is somewhat detrimental as it induces significant non-uniformities of the device response with respect to the position of interaction. We have investigated these features by imaging the response of CVD diamond using a micrometer size focused X-ray beam. The comparison with the grain structure showed that it has a strong influence on the field distribution. We present here recent developments studied at CEA in Saclay for the optimisation of the material with respect to the specific requirements of several applications. They include radiation hard counters; X-ray intensity, shape and beam position monitors, solar blind photodetectors, and high dose rate gamma-meters. (orig.)

  12. Molecular Dynamics Simulation of Chemical Vapor Deposition of Amorphous Carbon: Dependence on H/C Ratio of Source Gas

    OpenAIRE

    Ito, Atsushi M.; Takayama, Arimichi; Saito, Seiki; Ohno, Noriyasu; Kajita, Shin; Nakamura, Hiroaki

    2010-01-01

    By molecular dynamics simulation, the chemical vapor deposition of amorphous carbon onto graphite and diamond surfaces was studied. In particular, we investigated the effect of source H/C ratio, which is the ratio of the number of hydrogen atoms to the number of carbon atoms in a source gas, on the deposition process. In the present simulation, the following two source gas conditions were tested: one was that the source gas was injected as isolated carbon and hydrogen atoms, and the other was...

  13. A camac based data acquisition system for flat-panel image array readout

    International Nuclear Information System (INIS)

    A readout system has been developed to facilitate the digitization and subsequent display of image data from two-dimensional, pixellated, flat-panel, amorphous silicon imaging arrays. These arrays have been designed specifically for medical x-ray imaging applications. The readout system is based on hardware and software developed for various experiments at CERN and Fermi National Accelerator Laboratory. Additional analog signal processing and digital control electronics were constructed specifically for this application. The authors report on the form of the resulting data acquisition system, discuss aspects of its performance, and consider the compromises which were involved in its design

  14. Growth of diamond layers on diamond and cBN seeds using iron carbide under high pressure and high temperature

    CERN Document Server

    Li Xun; Hao Zhao Yin; LiuPeng; Li Musen; Zou Guang Tian; Cheng Shu Yu; Cheng Kai Jia

    2002-01-01

    Iron carbide without any graphite was studied under high pressure and high temperature (HPHT); diamond layers were obtained both on diamond and on cubic boron nitride seeds at 5.5 GPa and 1700-1750 K. The results showed that transition-metal carbide was the main intermediate in the course of the transformation from graphite to diamond under HPHT.

  15. FRICTION COEFFICIENT OF DIAMOND WIRE SAW

    Directory of Open Access Journals (Sweden)

    Siniša Dunda

    1998-12-01

    Full Text Available In order to estimate the diamond wire saw upon quarrying of dimension stone, it is necessary to know the value of a friction coefficient on the driving pulley of the saw. Therefore the numerical value of the friction coefficient between diamond wire and coating of a driving pulley was determined in experimental way. The experiments were conducted under different working conditions. The resulting average value of the friction coefficient upon working in wet and muddy conditions amounted to µ = 0,32.

  16. Behaviour of muonium in synthetic diamond

    OpenAIRE

    Mamedov, T. N.; Blank, V. D.; Gorelkin, V. N.; Gritsaj, K. I.; Kuznetsov, M. S.; Nosukhin, S. A.; Ralchenko, V. G.; Stoykov, A. V.; Scheuermann, R.; Terentiev, S. A.

    2010-01-01

    The probabilities of finding the muon in various states in synthetic single crystal and polycrystalline diamond were studied. In the IIa-type single-crystal sample at 150 K the contributions of the diamagnetic muon, `normal', and `anomalous' muonium were observed to be 1.5 %, 57 % and 8.1 %, respectively. The missing fraction of muon polarization was 33.4 %, which is approximately two times smaller than in the Ia-type natural diamond, and two or three times greater than in the IIa- and IIb-ty...

  17. Growth of (110) diamond using pure dicarbon

    OpenAIRE

    Sternberg, M.; Kaukonen, M; Nieminen, Risto M.; Frauenheim, Th.

    2001-01-01

    We use a density-functional-based tight-binding method to study diamond growth steps by depositing dicarbon species onto a hydrogen-free diamond (110) surface. Subsequent C2 molecules are deposited on an initially clean surface, in the vicinity of a growing adsorbate cluster, and finally near vacancies just before completion of a full new monolayer. The preferred growth stages arise from C2n clusters in near ideal lattice positions forming zigzag chains running along the [1¯10] direction para...

  18. Laser surface treatment of amorphous metals

    Science.gov (United States)

    Katakam, Shravana K.

    Amorphous materials are used as soft magnetic materials and also as surface coatings to improve the surface properties. Furthermore, the nanocrystalline materials derived from their amorphous precursors show superior soft magnetic properties than amorphous counter parts for transformer core applications. In the present work, laser based processing of amorphous materials will be presented. Conventionally, the nanocrystalline materials are synthesized by furnace heat treatment of amorphous precursors. Fe-based amorphous/nanocrystalline materials due to their low cost and superior magnetic properties are the most widely used soft magnetic materials. However, achieving nanocrystalline microstructure in Fe-Si-B ternary system becomes very difficult owing its rapid growth rate at higher temperatures and sluggish diffusion at low temperature annealing. Hence, nanocrystallization in this system is achieved by using alloying additions (Cu and Nb) in the ternary Fe-Si-B system. Thus, increasing the cost and also resulting in reduction of saturation magnetization. laser processing technique is used to achieve extremely fine nanocrystalline microstructure in Fe-Si-B amorphous precursor. Microstructure-magnetic Property-laser processing co-relationship has been established for Fe-Si-B ternary system using analytical techniques. Laser processing improved the magnetic properties with significant increase in saturation magnetization and near zero coercivity values. Amorphous materials exhibit excellent corrosion resistance by virtue of their atomic structure. Fe-based amorphous materials are economical and due to their ease of processing are of potential interest to synthesize as coatings materials for wear and corrosion resistance applications. Fe-Cr-Mo-Y-C-B amorphous system was used to develop thick coatings on 4130 Steel substrate and the corrosion resistance of the amorphous coatings was improved. It is also shown that the mode of corrosion depends on the laser processing

  19. Structure and characteristics of Si-coated diamond grits

    Institute of Scientific and Technical Information of China (English)

    Lu Jing; Wang Yanhui; Qi Xuehai; Huang Hao; Zang Jianbing

    2005-01-01

    During sintering process of diamond tools, metal bond containing graphitizing elements such as Fe, Co, Ni seriously erodes diamond grits, which reduces the strength of the diamond grits. In this paper, silicon films were coated on the surface of diamond grits by means of atomic layer deposition (ALD) from gaseous SiH4. Fourier transform infrared (FTIR) spectra, X-ray diffraction (XRD) and Atomic force microscopy (AFM) were utilized to analyze the structure and the morphology of Si-coated diamond respectively. The results suggested thatthe film was cubic-phase polycrystalline silicon and the surface of the film was smooth and continuous. According with the adsorption mechanism of SiH4 on the surface of diamond grits, the stretching and bending modes of SiH2 and SiH3 both existed. Differential thermal analysis (DTA) was used to compare the thermal stability of coated diamond and uncoated diamond. Owning to the protection of silicon films the starting oxidation temperature of coated diamond reached as high as 920℃, which was much higher than that of uncoated diamond. Bending experiment was conducted to measure the bending strength of Fe-Cu-Sn-Ni based metal bond diamond blade. In comparison with uncoated diamond, the bending strength of Sicoated diamond blade increased by 16.2%, scan electron microscope (SEM) observation of the blade fracture revealed that the deposited silicon films not only protected the diamond grits from erosion during sintering process but also realized the strong binding between the diamond grits and the bond.

  20. Effect of pre-treatment of the substrate surface by energetic C+ ion bombardment on structure and nano-tribological characteristics of ultra-thin tetrahedral amorphous carbon (ta-C) protective coatings

    Science.gov (United States)

    Rismani, E.; Sinha, S. K.; Tripathy, S.; Yang, H.; Bhatia, C. S.

    2011-03-01

    Depositing an ultra-thin tetrahedral amorphous carbon (ta-C) protective coating on the surface of the recording heads in magnetic tape drives can improve the tribological problems at the head/tape interface. In this work the effect of pre-treatment of the surface of AlTiC substrate (main bearing surface of head in contact with tape) by C+ ions of moderate energy (smaller than 400 eV) on the structural and tribo-mechanical behaviours of the coated surfaces is studied. Sample preparation consisted of two separate stages of surface pre-treatment and deposition of the protective film, and was done by means of filtered cathodic vacuum arc. Structure of the ta-C film and its interface with the substrate were studied by transmission electron microscopy and time-of-flight secondary ion mass spectrometry depth profiling. The results revealed the formation of a broader, dense atomically mixed layer at the ta-C film-substrate interface of the pre-treated samples comparing with that of the samples without pre-treatment. Chemical characterization of thin diamond-like carbon coatings was conducted by means of x-ray photoelectron spectroscopy and the surface pre-treatment was found to have a remarkable effect on increasing the sp3 hybridization fraction in the ta-C overcoat. Nano-tribological properties of the treated surfaces were examined using ball-on-flat wear test at very low load (20 mN). There was a good correlation between the surface and structure characteristics of the film, and the tribological results and the pre-treated surfaces presented a very low coefficient of friction and higher wear life. The experimental results demonstrate the effectiveness of bombardment of the surface with C+ ions of moderate ion energy to improve the structural and tribo-mechanical properties of the protective ta-C films on the magnetic head substrate material.

  1. Effect of pre-treatment of the substrate surface by energetic C+ ion bombardment on structure and nano-tribological characteristics of ultra-thin tetrahedral amorphous carbon (ta-C) protective coatings

    International Nuclear Information System (INIS)

    Depositing an ultra-thin tetrahedral amorphous carbon (ta-C) protective coating on the surface of the recording heads in magnetic tape drives can improve the tribological problems at the head/tape interface. In this work the effect of pre-treatment of the surface of AlTiC substrate (main bearing surface of head in contact with tape) by C+ ions of moderate energy (smaller than 400 eV) on the structural and tribo-mechanical behaviours of the coated surfaces is studied. Sample preparation consisted of two separate stages of surface pre-treatment and deposition of the protective film, and was done by means of filtered cathodic vacuum arc. Structure of the ta-C film and its interface with the substrate were studied by transmission electron microscopy and time-of-flight secondary ion mass spectrometry depth profiling. The results revealed the formation of a broader, dense atomically mixed layer at the ta-C film-substrate interface of the pre-treated samples comparing with that of the samples without pre-treatment. Chemical characterization of thin diamond-like carbon coatings was conducted by means of x-ray photoelectron spectroscopy and the surface pre-treatment was found to have a remarkable effect on increasing the sp3 hybridization fraction in the ta-C overcoat. Nano-tribological properties of the treated surfaces were examined using ball-on-flat wear test at very low load (20 mN). There was a good correlation between the surface and structure characteristics of the film, and the tribological results and the pre-treated surfaces presented a very low coefficient of friction and higher wear life. The experimental results demonstrate the effectiveness of bombardment of the surface with C+ ions of moderate ion energy to improve the structural and tribo-mechanical properties of the protective ta-C films on the magnetic head substrate material.

  2. Effect of pre-treatment of the substrate surface by energetic C{sup +} ion bombardment on structure and nano-tribological characteristics of ultra-thin tetrahedral amorphous carbon (ta-C) protective coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rismani, E; Sinha, S K [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Block EA, 07-08, Singapore 117576 (Singapore); Tripathy, S [Institute of Material Research and Engineering (IMRE), 3 Research Link, Singapore 117602 (Singapore); Yang, H; Bhatia, C S, E-mail: elebcs@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Block E4, Level 5, Room 45, Singapore 117576 (Singapore)

    2011-03-23

    Depositing an ultra-thin tetrahedral amorphous carbon (ta-C) protective coating on the surface of the recording heads in magnetic tape drives can improve the tribological problems at the head/tape interface. In this work the effect of pre-treatment of the surface of AlTiC substrate (main bearing surface of head in contact with tape) by C{sup +} ions of moderate energy (smaller than 400 eV) on the structural and tribo-mechanical behaviours of the coated surfaces is studied. Sample preparation consisted of two separate stages of surface pre-treatment and deposition of the protective film, and was done by means of filtered cathodic vacuum arc. Structure of the ta-C film and its interface with the substrate were studied by transmission electron microscopy and time-of-flight secondary ion mass spectrometry depth profiling. The results revealed the formation of a broader, dense atomically mixed layer at the ta-C film-substrate interface of the pre-treated samples comparing with that of the samples without pre-treatment. Chemical characterization of thin diamond-like carbon coatings was conducted by means of x-ray photoelectron spectroscopy and the surface pre-treatment was found to have a remarkable effect on increasing the sp{sup 3} hybridization fraction in the ta-C overcoat. Nano-tribological properties of the treated surfaces were examined using ball-on-flat wear test at very low load (20 mN). There was a good correlation between the surface and structure characteristics of the film, and the tribological results and the pre-treated surfaces presented a very low coefficient of friction and higher wear life. The experimental results demonstrate the effectiveness of bombardment of the surface with C{sup +} ions of moderate ion energy to improve the structural and tribo-mechanical properties of the protective ta-C films on the magnetic head substrate material.

  3. Natural convection between flat parallel plates

    International Nuclear Information System (INIS)

    The rate of heat transfer between two flat parallel plates inclined at some angle to the horizone is of abvious important in performance of the flat plat collectors. A complete computer program have been made for calculating free convection heat transfer coefficient, h. Angle plays as an important parameter for determining Nusselt values for plate spacing more than 5mm.(Author)

  4. Radiation monitor training program at Rocky Flats

    International Nuclear Information System (INIS)

    The Rocky Flats Radiation Monitor Training Program is tailored to train new health physics personnel in the field of radiation monitoring. The purpose of the prescribed materials and media is to be consistent in training in all areas of Rocky Flats radiation monitoring job involvement

  5. Efficiency and stability of spectral sensitization of boron-doped-diamond electrodes through covalent anchoring of a donor-acceptor organic chromophore (P1).

    Science.gov (United States)

    Krysova, Hana; Barton, Jan; Petrak, Vaclav; Jurok, Radek; Kuchar, Martin; Cigler, Petr; Kavan, Ladislav

    2016-06-28

    A novel procedure is developed for chemical modification of H-terminated B-doped diamond surfaces with a donor-π-bridge-acceptor molecule (P1). A cathodic photocurrent near 1 μA cm(-2) flows under 1 Sun (AM 1.5) illumination at the interface between the diamond electrode and aqueous electrolyte solution containing dimethylviologen (electron mediator). The efficiency of this new electrode outperforms that of the non-covalently modified diamond with the same dye. The found external quantum efficiency of the P1-sensitized diamond is not far from that of the flat titania electrode sensitized by a standard organometallic dye used in solar cells. However, the P1 dye, both pure and diamond-anchored, shows significant instability during illumination by solar light. The degradation is a two-stage process in which the initially photo-generated products further decompose in complicated dark reactions. These findings need to be taken into account for optimization of organic chromophores for solar cells in general. PMID:27264474

  6. On graphs without a C4 or a diamond

    CERN Document Server

    Eschen, Elaine M; Spinrad, Jeremy P; Sritharan, R

    2009-01-01

    We consider the class of (C4, diamond)-free graphs; graphs in this class do not contain a C4 or a diamond as an induced subgraph. We provide an efficient recognition algorithm for this class. We count the number of maximal cliques in a (C4, diamond)-free graph and the number of n-vertex, labeled (C4, diamond)-free graphs. We also give an efficient algorithm for finding a largest clique in the more general class of (house, diamond)-free graphs.

  7. Enhanced Transverse Magnetoresistive Effect in Semiconducting Diamond Films

    Institute of Scientific and Technical Information of China (English)

    WANG Wan-Lu; LIAO Ke-Jun; WANG Bi-Ben

    2000-01-01

    A very large magnetoresistive effect in both homoepitaxial and heteroepitaxial semiconducting diamond films by chemical vapor deposition has been observed. The changes in the resistance of the films strongly depend on both magnetic field intensity and geometric form of the samples. The effect of disk structure is greater than that of stripe type samples, also variation in the resistance of homoepitaxial diamond films is greater than that of eteroepitaxial diamond films. The resistance of homoepitaxial diamond films with the disk structure is increased y a factor of 2.1 at room temperature under magnetic field intensity of 5 T, but only 0.80 for heteroepitaxial diamond films.

  8. Application of CVD diamond film for radiation detection

    International Nuclear Information System (INIS)

    With the development of diamond synthesis at low pressure, the CVD diamond properties including electronic characteristics have improved continuously. Now the fabrication of electronic devices based on the CVD diamond has been one of hot research subjects in this field. Due to many unique advantages, such as high signal-noise ratio, fast time response, and normal output in extremely harsh surrounding, the CVD diamond radiation detector has attracted more and more interest. In this paper, we have reviewed the development and status of the CVD diamond radiation detector. The prospect of this detector is described. (authors)

  9. Study of the stability of n-diamond

    International Nuclear Information System (INIS)

    Powders of n-diamond can be synthesized by pyrogenation of carbon black and nanometre-sized iron catalyst at atmospheric pressure and at a temperature of 1100 deg. C. The stability of n-diamond was investigated with x-ray diffraction, thermal gravimetric analysis and differential thermal analysis. The results indicated that n-diamond was a metastable phase: it can decompose at room temperature slowly. Thermal decomposition of n-diamond begins at 150 deg. C and is complete at 400 deg. C, and the decomposition of n-diamond was an exothermic reaction

  10. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  11. Ambiguous fluidity and rigidity and diamonds that ooze!

    Science.gov (United States)

    Meyer, G E; Dougherty, T J

    1990-01-01

    If white hemicircles rotate over the edges of a black diamond, there occurs an ambiguity of rigidity and motion. As the hemicircles obscure the vertices of the diamond, the figure transforms from a diamond to a rotating, nonrigid cross made of a tar-like fluid. When the corners reappear, the stimulus again becomes a rigid, solid diamond. Visibility of the vertices implies rigidity. If white squares are rotated, fluidity is not perceived. If the diamond has sawtooth edges and the hemicircles are rotated, no fluidity is perceived. Similarly, if illusory contours suggest the amodal completion of the vertices, rigidity is maintained. PMID:2096367

  12. Thermal diffusivity of diamond films using a laser pulse technique

    International Nuclear Information System (INIS)

    Polycrystalline diamond films were deposited using a microwave plasma-enhanced chemical vapor deposition process. A laser pulse technique was developed to measure the thermal diffusivity of diamond films deposited on a silicon substrate. The effective thermal diffusivity of a diamond film on silicon was measured by observing the phase and amplitude of the cyclic thermal waves generated by laser pulses. An analytical model is presented to calculate the effective inplane (face-parallel) diffusivity of a two-layer system. The model is used to reduce the effective thermal diffusivity of the diamond/silicon sample to a value for the thermal diffusivity and conductivity of the diamond film

  13. Homo-epitaxial diamond film growth on ion implanted diamond substrates

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, P.S.; Prawer, S.; Nugent, K.W.; Bettiol, A.A.; Kostidis, L.I.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    The nucleation of CVD diamond is a complicated process, governed by many interrelated parameters. In the present work we attempt to elucidate the effect of strain on the growth of a homo-epitaxial CVD diamond. We have employed laterally confined high dose (MeV) Helium ion implantation to produce surface swelling of the substrate. The strain is enhanced by the lateral confinement of the implanted region to squares of 100 x 100 {mu}m{sup 2}. After ion implantation, micro-Raman spectroscopy was employed to map the surface strain. The substrates were then inserted into a CVD reactor and a CVD diamond film was grown upon them. Since the strained regions were laterally confined, it was then possible to monitor the effect of strain on diamond nucleation. The substrates were also analysed using Rutherford Backscattering Spectroscopy (RBS), Proton induced X-ray Emission (PIXE) and Ion Beam induced Luminescence (IBIL). 7 refs., 5 figs.

  14. Thin film deposition of diamond using normal paraffins as source of diamond nucleation centers

    International Nuclear Information System (INIS)

    Highlights: ► Paraffin compounds are diamond nucleation sources. ► Thermoconductivity of Cu–DTF device is higher than such conductivity of Cu. ► DTF growth in HFCVD reactor is not linear function of time. -- Abstract: We propose a process for diamond thin film (DTF) deposition using normal paraffins (nP) as source of diamond nucleation centers. We deposited micro-crystalline diamond thin films (MCDTF) on a Cu substrate using Hot Filament CVD (HFCVD) and Passive Pt/Pd Surface Catalysis (PPt/PdSC) methods. Beeswax and a 1:1 mixture of normal paraffins of the general formula CH3(CH2)nCH3 with n = 22 and 26 were tested as nP starting material. The films obtained were characterized by scanning electronic microscopy (SEM), Raman scattering temperature dependent spectroscopy and X-ray diffraction (XRD) methods, all of which confirmed that the deposited material is MCDTF.

  15. Photoexcitation-induced processes in amorphous semiconductors

    International Nuclear Information System (INIS)

    Theories for the mechanism of photo-induced processes of photodarkening (PD), volume expansion (VE) in amorphous chalcogenides are presented. Rates of spontaneous emission of photons by radiative recombination of excitons in amorphous semiconductors are also calculated and applied to study the excitonic photoluminescence in a-Si:H. Results are compared with previous theories

  16. Applied research on amorphous magnetic materials

    International Nuclear Information System (INIS)

    Amorphous magnetic materials are increasingly becoming an industrial reality, which a variety of applications to electronics and electrical engineering. Many research lines are in progress for what concerns the production techniques, the understanding of the structure and properties of amorphous ribbons, the optimization and extension of their applications. The fast quenching methods used to obtain amorphous materials will first be reviewed, also describing an experimental apparatus set up by the authors for laboratory investigations of rapid solidification processes. Because of the non equilibrium structure of amorphous metallic alloys, various relaxation effects are expected to occur, which may partially limit the use of these materials. Studies of these relaxation phenomena, performed by different methods, including Moessbauer spectroscopy will also be reviewed, showing their importance in better understanding the amorphous structure. Finally much attention will be devoted to actual applications of amorphous magnetic materials. Emphasis will be placed on the prospective applications of amorphous ribbons characterized by very low power losses to magnetic cores of distribution transformers, pointing to the possible advantages, but also to the technical problems involved with the substitution of crystalline laminations with the new amorphous materials. (orig.)

  17. Electron tunnelling into amorphous germanium and silicon.

    Science.gov (United States)

    Smith, C. W.; Clark, A. H.

    1972-01-01

    Measurements of tunnel conductance versus bias, capacitance versus bias, and internal photoemission were made in the systems aluminum-oxide-amorphous germanium and aluminium-oxide-amorphous silicon. A function was extracted which expresses the deviation of these systems from the aluminium-oxide-aluminium system.

  18. Band Gaps of an Amorphous Photonic Materials

    Institute of Scientific and Technical Information of China (English)

    WANG Yi-Quan; FENG Zhi-Fang; HU Xiao-Yong; CHENG Bing-Ying; ZHANG Dao-Zhong

    2004-01-01

    @@ A new kind of amorphous photonic materials is presented. Both the simulated and experimental results show that although the disorder of the whole dielectric structure is strong, the amorphous photonic materials have two photonic gaps. This confirms that the short-range order is an essential factor for the formation of the photonic gaps.

  19. Theoretical Considerations in Developing Amorphous Solid Dispersions

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Priemel, Petra Alexandra; Surwase, Sachin; Graeser, Kirsten; Strachan, Clare J.; Grohganz, Holger; Rades, Thomas

    Before pursuing the laborious route of amorphous solid dispersion formulation and development, which is the topic of many of the subsequent chapters in this book, the formulation scientist would benefit from a priori knowledge whether the amorphous route is a viable one for a given drug and how m...

  20. X-ray topographic study of diamonds: implications for the genetic nature of inclusions in diamond

    Science.gov (United States)

    Agrosì, Giovanna; Nestola, Fabrizio; Tempesta, Gioacchino; Bruno, Marco; Scandale, Eugenio; Harris, Jeff W.

    2014-05-01

    In recent years, several studies have focused on the growth conditions of the diamonds through the analysis of the mineral inclusions trapped in them (Howell, 2012 and references therein). Nevertheless, to obtain rigorous information about chemical and physical conditions of diamond formation, it is crucial to determine if the crystallization of the inclusions occurred before (protogenetic nature), during (syngenetic nature) or after (epigenetic nature) the growth of diamond (Wiggers de Vries et al., 2011). X-ray topography (XRDT) can be a helpful tool to verify the genetic nature of inclusions in diamond. This technique characterizes the extended defects and reconstructs the growth history of the samples (Agrosì et al., 2013 and references therein) and, consequently contributes to elucidation of the relationship between the inclusions and the host-diamond. With this aim a diamond from the Udachnaya kimberlite, Siberia, was investigated. The diamond crystal was the one previously studied by Nestola et al. (2011) who performed in-situ crystal structure refinement of the inclusions to obtain data about the formation pressure. The inclusions were iso-oriented olivines that did not show evident cracks and subsequently could not be considered epigenetic. Optical observations revealed an anomalous birefringence in the adjacent diamond and the inclusions had typical "diamond-imposed cubo-octahedral" shape for the largest olivine. The diffraction contrast study shows that the diamond exhibits significant deformation fields related to plastic post growth deformation. The crystallographic direction of strains was established applying the extinction criterion. Section topographs were taken to minimize the overlapping of the strain field associate with the different defects and revealed that no dislocations nucleated from the olivine inclusions. Generally, when a solid inclusion has been incorporated in the growing crystal, the associated volume distortion can be minimized by