WorldWideScience

Sample records for amorphous diamond flat

  1. Amorphous Diamond MEMS and Sensors

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, JOHN P.; FRIEDMANN, THOMAS A.; ASHBY, CAROL I.; DE BOER, MAARTEN P.; SCHUBERT, W. KENT; SHUL, RANDY J.; HOHLFELDER, ROBERT J.; LAVAN, D.A.

    2002-06-01

    This report describes a new microsystems technology for the creation of microsensors and microelectromechanical systems (MEMS) using stress-free amorphous diamond (aD) films. Stress-free aD is a new material that has mechanical properties close to that of crystalline diamond, and the material is particularly promising for the development of high sensitivity microsensors and rugged and reliable MEMS. Some of the unique properties of aD include the ability to easily tailor film stress from compressive to slightly tensile, hardness and stiffness 80-90% that of crystalline diamond, very high wear resistance, a hydrophobic surface, extreme chemical inertness, chemical compatibility with silicon, controllable electrical conductivity from insulating to conducting, and biocompatibility. A variety of MEMS structures were fabricated from this material and evaluated. These structures included electrostatically-actuated comb drives, micro-tensile test structures, singly- and doubly-clamped beams, and friction and wear test structures. It was found that surface micromachined MEMS could be fabricated in this material easily and that the hydrophobic surface of the film enabled the release of structures without the need for special drying procedures or the use of applied hydrophobic coatings. Measurements using these structures revealed that aD has a Young's modulus of {approx}650 GPa, a tensile fracture strength of 8 GPa, and a fracture toughness of 8 MPa{center_dot}m {sup 1/2}. These results suggest that this material may be suitable in applications where stiction or wear is an issue. Flexural plate wave (FPW) microsensors were also fabricated from aD. These devices use membranes of aD as thin as {approx}100 nm. The performance of the aD FPW sensors was evaluated for the detection of volatile organic compounds using ethyl cellulose as the sensor coating. For comparable membrane thicknesses, the aD sensors showed better performance than silicon nitride based sensors. Greater

  2. Microstructural analyses of amorphic diamond, i-C, and amorphous carbon

    DEFF Research Database (Denmark)

    Collins, C. B.; Davanloo, F.; Jander, D.R.;

    1992-01-01

    comparative examinations of the microstructures of samples of amorphic diamond, i-C, and amorphous carbon. Four distinct morphologies were found that correlated closely with the energy densities used in preparing the different materials. Journal of Applied Physics is copyrighted by The American Institute of...... Physics....

  3. HRTEM study of Popigai impact diamond: heterogeneous diamond nanostructures in native amorphous carbon matrix

    Science.gov (United States)

    Kis, Viktoria K.; Shumilova, Tatyana; Masaitis, Victor

    2016-07-01

    High-resolution transmission electron microscopy was applied for the detailed nanostructural investigation of Popigai impact diamonds with the aim of revealing the nature of the amorphous carbon of the matrix. The successful application of two complementary specimen preparation methods, focused ion beam (FIB) milling and mechanical cleavage, allowed direct imaging of nanotwinned nanodiamond crystals embedded in a native amorphous carbon matrix for the first time. Based on its stability under the electron beam, native amorphous carbon can be easily distinguished from the amorphous carbon layer produced by FIB milling during specimen preparation. Electron energy loss spectroscopy of the native amorphous carbon revealed the dominance of sp 2-bonded carbon and the presence of a small amount of oxygen. The heterogeneous size distribution and twin density of the nanodiamond crystals and the structural properties of the native amorphous carbon are presumably related to non-graphitic (organic) carbon precursor material.

  4. High power photoconductive semiconductor switches treated with amorphic diamond coatings

    International Nuclear Information System (INIS)

    Our recent efforts have resulted in implementation and demonstration of several intense photoconductively switched stacked Blumlein pulsers producing high power output pulses with risetimes as fast as 200 ps. A single GaAs photoconductive switch triggered with a low power laser diode array commutates these devices. During the avalanche-mode photoconductive switching of these pulsers at high powers, current filamentation associated with the high gain GaAs switches produces such high current density that switches are damaged near the metal-semiconductor interface and the lifetime is limited. This report presents progress toward improving the switch operation and lifetime by advanced treatments with the amorphic diamond coatings

  5. Fabrication of photonic amorphous diamonds for terahertz-wave applications

    Science.gov (United States)

    Komiyama, Yuichiro; Abe, Hiroyuki; Kamimura, Yasushi; Edagawa, Keiichi

    2016-05-01

    A recently proposed photonic bandgap material, named "photonic amorphous diamond" (PAD), was fabricated in a terahertz regime, and its terahertz-wave propagation properties were investigated. The PAD structure was fabricated from acrylic resin mixed with alumina powder, using laser lithographic, micro-additive manufacturing technique. After fabrication, the resulting structure was dewaxed and sintered. The formation of a photonic bandgap at around 0.45 THz was demonstrated by terahertz time-domain spectroscopy. Reflecting the disordered nature of the random network structure, diffusive terahertz-wave propagation was observed in the passbands; the scattering mean-free path decreased as the frequency approached the band edge. The mean-free paths evaluated at the band edges were close to the Ioffe-Regel threshold value for wave localization.

  6. Development of an amorphous selenium-based photodetector driven by a diamond cold cathode.

    Science.gov (United States)

    Masuzawa, Tomoaki; Saito, Ichitaro; Yamada, Takatoshi; Onishi, Masanori; Yamaguchi, Hisato; Suzuki, Yu; Oonuki, Kousuke; Kato, Nanako; Ogawa, Shuichi; Takakuwa, Yuji; Koh, Angel T T; Chua, Daniel H C; Mori, Yusuke; Shimosawa, Tatsuo; Okano, Ken

    2013-10-11

    Amorphous-selenium (a-Se) based photodetectors are promising candidates for imaging devices, due to their high spatial resolution and response speed, as well as extremely high sensitivity enhanced by an internal carrier multiplication. In addition, a-Se is reported to show sensitivity against wide variety of wavelengths, including visible, UV and X-ray, where a-Se based flat-panel X-ray detector was proposed. In order to develop an ultra high-sensitivity photodetector with a wide detectable wavelength range, a photodetector was fabricated using a-Se photoconductor and a nitrogen-doped diamond cold cathode. In the study, a prototype photodetector has been developed, and its response to visible and ultraviolet light are characterized.

  7. Development of an Amorphous Selenium-Based Photodetector Driven by a Diamond Cold Cathode

    Directory of Open Access Journals (Sweden)

    Tatsuo Shimosawa

    2013-10-01

    Full Text Available Amorphous-selenium (a-Se based photodetectors are promising candidates for imaging devices, due to their high spatial resolution and response speed, as well as extremely high sensitivity enhanced by an internal carrier multiplication. In addition, a-Se is reported to show sensitivity against wide variety of wavelengths, including visible, UV and X-ray, where a-Se based flat-panel X-ray detector was proposed. In order to develop an ultra high-sensitivity photodetector with a wide detectable wavelength range, a photodetector was fabricated using a-Se photoconductor and a nitrogen-doped diamond cold cathode. In the study, a prototype photodetector has been developed, and its response to visible and ultraviolet light are characterized.

  8. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air

    International Nuclear Information System (INIS)

    We report on fundamental discovery of conversion of amorphous carbon into diamond by irradiating amorphous carbon films with nanosecond lasers at room-temperature in air at atmospheric pressure. We can create diamond in the form of nanodiamond (size range <100 nm) and microdiamond (>100 nm). Nanosecond laser pulses are used to melt amorphous diamondlike carbon and create a highly undercooled state, from which various forms of diamond can be formed upon cooling. The quenching from the super undercooled state results in nucleation of nanodiamond. It is found that microdiamonds grow out of highly undercooled state of carbon, with nanodiamond acting as seed crystals

  9. Deposition and field-emission characterization of electrically conductive nitrogen-doped diamond-like amorphous carbon films

    International Nuclear Information System (INIS)

    For the fabrication of high performance field emitters, diamond-like amorphous carbon films doped with nitrogen (DAC:N) were formed using an intermittent supermagnetron plasma chemical vapor deposition technique. DAC:N films were deposited using isobutane plasma to investigate the influence of discharge-off time and electrode spacing on the physical properties of the films at upper- and lower-electrode radio frequency (rf) powers (LORF) of 800 W/50-800 W. At LORF of 100 W, a discharge-on time of 1 min, and a discharge-off time (cooling time) of 30 s-10 min, resistivity was decreased with a decrease of the cooling time. By reducing the electrode spacing from 60 to 20 mm at a LORF of 50 and 800 W, the optical band gap of DAC:N film was decreased from 0.85 and 0.23 eV to 0.6 and 0 eV, respectively. A flat DAC:N film of 700 A thickness was deposited on a n-Si wafer at rf powers of 800 W/800 W. Using this flat DAC:N film, a threshold electric field of 18 V/μm was observed and maximum field-emission current density of 2.2 mA/cm2 was observed at the electric field of 32 V/μm

  10. Compatibility of the totally replaced hip. Reduction of wear by amorphous diamond coating.

    Science.gov (United States)

    Santavirta, Seppo

    2003-12-01

    Particulate wear debris in totally replaced hips causes adverse local host reactions. The extreme form of such a reaction, aggressive granulomatosis, was found to be a distinct condition and different from simple aseptic loosening. Reactive and adaptive tissues around the totally replaced hip were made of proliferation of local fibroblast like cells and activated macrophages. Methylmethacrylate and high-molecular-weight polyethylene were shown to be essentially immunologically inert implant materials, but in small particulate form functioned as cellular irritants initiating local biological reactions leading to loosening of the implants. Chromium-cobalt-molybdenum is the most popular metallic implant material; it is hard and tough, and the bearings of this metal are partially self-polishing. In total hip implants, prerequisites for longevity of the replaced hip are good biocompatibility of the materials and sufficient tribological properties of the bearings. The third key issue is that the bearing must minimize frictional shear at the prosthetic bone-implant interface to be compatible with long-term survival. Some of the approaches to meet these demands are alumina-on-alumina and metal-on-metal designs, as well as the use of highly crosslinked polyethylene for the acetabular component. In order to avoid the wear-based deleterious properties of the conventional total hip prosthesis materials or coatings, the present work included biological and tribological testing of amorphous diamond. Previous experiments had demonstrated that a high adhesion of tetrahedral amorphous carbon coatings to a substrate can be achieved by using mixing layers or interlayers. Amorphous diamond was found to be biologically inert, and simulator testing indicated excellent wear properties for conventional total hip prostheses, in which either the ball or both bearing surfaces were coated with hydrogen-free tetrahedral amorphous diamond films. Simulator testing with such total hip prostheses

  11. Investigation of an amorphous silicon flat-panel detector for ion radiography

    OpenAIRE

    Telsemeyer, Julia

    2012-01-01

    Using heavy ions in radiotherapy offers a good potential for targeted radiation of tumors and the ability to spare healthy tissue. Their characteristic interaction with matter holds the potential to employ ions for high-contrast radiographic imaging at a decreased dose in comparison to conventional X-ray imaging; however, it lacks simple detectors suitable for this purpose. In this study the performance of an amorphous silicon flat-panel detector, originally designed for photon imaging, was i...

  12. Formation of Ultrananocrystalline Diamond/Amorphous Carbon Composite Films in Vacuum Using Coaxial Arc Plasma Gun

    Science.gov (United States)

    Hanada, Kenji; Yoshida, Tomohiro; Nakagawa, You; Yoshitake, Tsuyoshi

    2010-12-01

    Ultrananocrystalline diamond (UNCD)/nonhydrogenated amorphous carbon (a-C) composite films were grown in vacuum using a coaxial arc plasma gun. From the X-ray diffraction measurement, the UNCD crystallite size was estimated to be 1.6 nm. This size is dramatically reduced from that (2.3 nm) of UNCD/hydrogenated amorphous carbon (a-C:H) composite films grown in a hydrogen atmosphere. The sp3/(sp3 + sp2) value, which was estimated from the X-ray photoemission spectrum, was also reduced to be 41%. A reason for it might be the reduction in the UNCD crystallite size. From the near-edge X-ray absorption fine-structure (NEXAFS) spectrum, it was found that the π*C=C and π*C≡C bonds are preferentially formed instead of the σ*C-H bonds in the UNCD/a-C:H films. Since the extremely small UNCD crystallites (1.6 nm) correspond to the nuclei of diamond, we consider that UNCD crystallite formation should be due predominantly to nucleation. The supersaturated condition required for nucleation is expected to be realized in the deposition using the coaxial arc plasma gun.

  13. Low-emissivity coating of amorphous diamond-like carbon/Ag-alloy multilayer on glass

    International Nuclear Information System (INIS)

    Transparent low-emissivity (low-e) coatings comprising dielectrics of amorphous diamond-like carbon (DLC) and Ag-alloy films are investigated. All films have been prepared by dc magnetron sputtering. An index of refraction of the DLC film deposited in a gas mixture of Ar/H2 (4%) shows n = 1.80 + 0.047i at 500 nm wavelength. A multilayer stack of DLC (70 nm thick)/Ag87.5Cu12.5-alloy (10 nm)/DLC (140 nm)/Ag87.5Cu12.5-alloy (10 nm)/DLC (70 nm) has revealed clear interference spectra with spectra selectivity. This coating performs low emittance less than 0.1 for black body radiation at 297 K, exhibiting a transparent heat mirror property embedded in DLC films

  14. Research on the preparation of amorphous diamond nanorod arrays and their excellent field emitting properties

    Institute of Scientific and Technical Information of China (English)

    YAN; Pengxun; LI; Xiaochun; XU; Jianwei; LI; Xin; LI; Chun; LIU; Yang

    2006-01-01

    Amorphous diamond nanorod arrays with excellent field emitting have been fabricated firstly on the AAO template by the filtered cathodic arc plasma technique. Microscopic analysis has displayed that the nanorods are very uniformly distributed, and the density is very high up to ~109 cm-2. The nanorod arrays are found to have an extremely low turn-on field of 0.16 V/μm, which is lower than other reported materials, and a high- emission current density of 180 mA/cm2 under an applied field of 2 V/μm can also be obtained. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and filed emitting tester are employed to characterize the nanorod arrays. The field emission mechanism of the nanorod arrays is also discussed.

  15. High sp~3 content hydrogen-free amorphous diamond: an excellent electron field emission material

    Institute of Scientific and Technical Information of China (English)

    茅东升; 赵俊; 李炜; 王曦; 柳襄怀; 诸玉坤; 李琼; 徐静芳

    1999-01-01

    Details are given of a study of the characteristics of field-induced electron emission from hydrogen-free high sp~3 content (>90 % ) amorphous diamond (a-D) film deposited on heavily doped (p<0.01 Ω·cm) n-type monoerystalline Si (111 ) substrate. It is demonstrated that a-D film has excellent electron field emission properties. The emission current can reach 0.9 μA at applied field as low as 1 V/μm, and the emission current density can be ahout several mA/cm~2 under 20 V/μm. The emission current is stable when the beginning current is at 50 μA within 72 h. Uniform fluorescence display of electron emission from the whole face of the a-D film under the electric field of 10-12 V/μm is also observed. The contribution of excellent electron emission property results from the smooth, uniform, amorphous surface and high sp~3 content of the a-D film.

  16. Electron transport in W-containing amorphous carbon-silicon diamond-like nanocomposites

    International Nuclear Information System (INIS)

    The electron transport in amorphous hydrogenated carbon-silicon diamond-like nanocomposite films containing tungsten over the concentration range 12-40 at.% was studied in the temperature range 80-400 K. The films were deposited onto polycrystalline substrates, placed on the RF-biased substrate holder, by the combination of two methods: PECVD of siloxane vapours in the stimulated dc discharge and dc magnetron sputtering of tungsten target. The experimental dependences of the conductivity on the temperature are well fitted by the power-law dependences over the entire temperature range. The results obtained are discussed in terms of the model of inelastic tunnelling of the electrons in amorphous dielectrics. The average number of localized states (n) in the conducting channels between metal clusters calculated in the framework of this model is characterized by the non-monotonic dependence on the tungsten concentration in the films. The qualitative explanation of the results on the basis of host carbon-silicon matrix structural modifications is proposed. The evolution of the carbon-silicon matrix microstructure by the increase in the tungsten concentration is confirmed by the Raman spectroscopy data

  17. Energy loss of electrons impinging upon glassy carbon, amorphous carbon, and diamond: Comparison between two different dispersion laws

    International Nuclear Information System (INIS)

    In this paper, we compare and discuss calculated inelastic mean free path, stopping power, range, and reflection electron energy loss spectra obtained using two different and popular dispersion laws. We will present and discuss the results we obtained investigating the interaction of electron beams impinging upon three allotropic forms of carbon, i.e. solid glassy carbon, amorphous carbon, and diamond. We will compare numerical results with experimental reflection electron energy loss spectra

  18. Pulsed-laser-deposited amorphous diamond and related materials: synthesis, characterization, and field emission properties

    Science.gov (United States)

    Merkulov, Vladimir I.; Lowndes, Douglas H.; Baylor, Larry R.; Jellison, Gerald E., Jr.; Puretzky, Alexander A.; Geohegan, David B.

    1999-07-01

    Amorphous carbon films with variable sp3 content were produced by ArF pulsed laser deposition. An in-situ ion probe was used to measure kinetic energy of C+ ions. In contrast to measurements made as a function of laser fluence, ion probe measurements of kinetic energy are a convenient as well as more accurate and fundamental method for monitoring deposition conditions, with the advantage of being readily transferable for inter-laboratory comparisons. Electron energy loss spectroscopy and spectroscopic ellipsometry measurement reveal that tetrahedral amorphous carbon films with the most diamond-like properties are obtained at the C ion kinetic energy of approximately 90 eV. Film properties are uniform within a 12-15 degrees angle from the plume centerline. Tapping-mode atomic force microscope measurements show that films deposited at near- optimum kinetic energy are extremely smooth, with rms roughness of only approximately 1 angstrom over distances of several hundred nm. Field emission (FE) measurements show that ta-C does not appear to be a good electron emitter. After conditioning of ta-C films deposited on n-type Si a rather high turn-on voltage of approximately 50 V/micrometers was required to draw current of approximately 1 nA to the probe. The emission was unstable and typically ceased after a few minutes of operation. The FE tests of ta-C and other materials strongly suggest that surface morphology plays a dominant role in the FE process, in agreement with conventional Fowler-Nordheim theory.

  19. Pulsed-Laser Deposited Amorphous Diamond and Related Materials: Synthesis, Characterization, and Field Emission Properties

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, L.R.; Geohegan, D.B.; Jellison, G.E., Jr.; Lowndes, D.H.; Merkulov, V.I.; Puretzky, A.A.

    1999-01-23

    Amorphous carbon films with variable sp{sup 3} content were produced by ArF (193nm) pulsed laser deposition. An in-situ ion probe was used to measure kinetic energy of C{sup +} ions. In contrast to measurements made as a function of laser fluence, ion probe measurements of kinetic energy are a convenient as well as more accurate and fundamental method for monitoring deposition conditions, with the advantage of being readily transferable for inter-laboratory comparisons. Electron energy loss spectroscopy (EELS) and spectroscopic ellipsometry measurements reveal that tetrahedral amorphous carbon (ta-C) films with the most diamond-like properties are obtained at the C ion kinetic energy of {approximately}90 eV. Film properties are uniform within a 12-15{degree} angle from the plume centerline. Tapping-mode atomic force microscope measurements show that films deposited at near-optimum kinetic energy are extremely smooth, with rms roughness of only {approximately} 1 {angstrom} over distances of several hundred nm. Field emission (FE) measurements show that ta-C does not appear to be a good electron emitter. After conditioning of ta-C films deposited on n-type Si a rather high turn-on voltage of {approximately}50 V/{micro}m was required to draw current of {approximately}1 nA to the probe. The emission was unstable and typically ceased after a few minutes of operation. The FE tests of ta-C and other materials strongly suggest that surface morphology plays a dominant role in the FE process, in agreement with conventional Fowler-Nordheim theory.

  20. Effect of interface layers on electron field emission properties of amorphous diamond films

    Institute of Scientific and Technical Information of China (English)

    茅东升[1; 赵俊[2; 李炜[3; 王曦[4; 柳襄怀[5; 诸玉坤[6; 范忠[7; 周江云[8; 李琼[9; 徐静芳[10

    1999-01-01

    Hydrogen-free high sp~3 content amorphous diamond (AD) films are deposited on three different substrates——Au-coated Si (Au/Si), Ti-coated Si (Ti/Si) and Si wafers. Electron field emission properties and fluorescent displays of the above AD films are studied by using a sample diode structure. The compositional profile of the interfaces of AD/Ti/Si and AD/Si is examined by using secondary ions mass spectroscopy (SIMS). Because of the reaction and interdiffusion between Ti and C, the formation of a thin TiC intermediate layer is possible between AD film and Ti/Si substrate. The field emission properties of AD/Ti/Si are sufficiently improved, especially its uniformity. A field emission density of 0.352 mA/cm~2 is obtained under an electric field of 19.7 V/μm. The value is much more than that of AD/Au/Si and AD/Si under the same electric field.

  1. Strength and Fracture Resistance of Amorphous Diamond-Like Carbon Films for MEMS

    Directory of Open Access Journals (Sweden)

    K. N. Jonnalagadda

    2009-01-01

    Full Text Available The mechanical strength and mixed mode I/II fracture toughness of hydrogen-free tetrahedral amorphous diamond-like carbon (ta-C films, grown by pulsed laser deposition, are discussed in connection to material flaws and its microstructure. The failure properties of ta-C were obtained from films with thicknesses 0.5–3 μm and specimen widths 10–20 μm. The smallest test samples with 10 μm gage section averaged a strength of 7.3 ± 1.2 GPa, while the strength of 20-μm specimens with thicknesses 0.5–3 μm varied between 2.2–5.7 GPa. The scaling of the mechanical strength with specimen thickness and dimensions was owed to deposition-induced surface flaws, and, only in the smallest specimens, RIE patterning generated specimen sidewall flaws. The mode I fracture toughness of ta-C films is KIc=4.4±0.4 MPam, while the results from mixed mode I/II fracture experiments with cracks arbitrarily oriented in the plane of the film compared very well with theoretical predictions.

  2. Amorphous and Polycrystalline Photoconductors for Direct Conversion Flat Panel X-Ray Image Sensors

    Directory of Open Access Journals (Sweden)

    Karim S. Karim

    2011-05-01

    Full Text Available In the last ten to fifteen years there has been much research in using amorphous and polycrystalline semiconductors as x-ray photoconductors in various x-ray image sensor applications, most notably in flat panel x-ray imagers (FPXIs. We first outline the essential requirements for an ideal large area photoconductor for use in a FPXI, and discuss how some of the current amorphous and polycrystalline semiconductors fulfill these requirements. At present, only stabilized amorphous selenium (doped and alloyed a-Se has been commercialized, and FPXIs based on a-Se are particularly suitable for mammography, operating at the ideal limit of high detective quantum efficiency (DQE. Further, these FPXIs can also be used in real-time, and have already been used in such applications as tomosynthesis. We discuss some of the important attributes of amorphous and polycrystalline x-ray photoconductors such as their large area deposition ability, charge collection efficiency, x-ray sensitivity, DQE, modulation transfer function (MTF and the importance of the dark current. We show the importance of charge trapping in limiting not only the sensitivity but also the resolution of these detectors. Limitations on the maximum acceptable dark current and the corresponding charge collection efficiency jointly impose a practical constraint that many photoconductors fail to satisfy. We discuss the case of a-Se in which the dark current was brought down by three orders of magnitude by the use of special blocking layers to satisfy the dark current constraint. There are also a number of polycrystalline photoconductors, HgI2 and PbO being good examples, that show potential for commercialization in the same way that multilayer stabilized a-Se x-ray photoconductors were developed for commercial applications. We highlight the unique nature of avalanche multiplication in a-Se and how it has led to the development of the commercial HARP video-tube. An all solid state version of the

  3. Reciprocating sliding behaviour of self-mated amorphous diamond-like carbon coatings on Si3N4 ceramics under tribological stress

    International Nuclear Information System (INIS)

    Amorphous diamond-like carbon films grown by magnetron sputtering have been deposited on silicon nitride based substrates for tribological purposes. A conductive Si3N4/30% vol.TiN composite was produced for bias substrate application. Friction and wear properties of carbon coated self-mated pairs were assessed using a reciprocal motion ball-on-flat setup in unlubricated conditions with applied normal loads of 3 N and 5 N. The worn surfaces were studied by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) in order to identify the prevalent wear mechanism. Unbiased and biased substrates behaved differently, the former undergoing premature delamination while the latter endured the tribological test conditions (3 N, ∼ 43 m). Very low friction coefficient values of ∼ 0.015 were sustained assuring remarkable wear behaviour. Surface grooving and wear debris accumulation in the sliding track lead to a roughness increase from the nominal rms value of ∼ 12 nm to ∼ 97 nm, although no weight loss and surface profile modification was quantifiable

  4. Controllable film densification and interface flatness for high-performance amorphous indium oxide based thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Ou-Yang, Wei, E-mail: OUYANG.Wei@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Kizu, Takio; Gao, Xu; Lin, Meng-Fang; Tsukagoshi, Kazuhito, E-mail: OUYANG.Wei@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp [International Center for Materials Nanoarchitectronics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Nabatame, Toshihide [MANA Foundry and MANA Advanced Device Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-10-20

    To avoid the problem of air sensitive and wet-etched Zn and/or Ga contained amorphous oxide transistors, we propose an alternative amorphous semiconductor of indium silicon tungsten oxide as the channel material for thin film transistors. In this study, we employ the material to reveal the relation between the active thin film and the transistor performance with aid of x-ray reflectivity study. By adjusting the pre-annealing temperature, we find that the film densification and interface flatness between the film and gate insulator are crucial for achieving controllable high-performance transistors. The material and findings in the study are believed helpful for realizing controllable high-performance stable transistors.

  5. Structural and Physical Characteristics of Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films Deposited Using a Coaxial Arc Plasma Gun

    Science.gov (United States)

    Yoshitake, Tsuyoshi; Nakagawa, You; Nagano, Akira; Ohtani, Ryota; Setoyama, Hiroyuki; Kobayashi, Eiichi; Sumitani, Kazushi; Agawa, Yoshiaki; Nagayama, Kunihito

    2010-01-01

    Ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) films were formed without initial nucleation using a coaxial arc plasma gun. The UNCD crystallite diameters estimated from the X-ray diffraction peaks were approximately 2 nm. The Fourier transform infrared absorption spectrum exhibited an intense sp3-CH peak that might originate from the grain boundaries between UNCD crystallites whose dangling bonds are terminated with hydrogen atoms. A narrow sp3 peak in the photoemission spectrum implied that the film comprises a large number of UNCD crystallites. Large optical absorption coefficients at photon energies larger than 3 eV that might be due to the grain boundaries are specific to the UNCD/a-C:H films.

  6. The effect of temperature on the tribological mechanisms and reactivity of hydrogenerated, amorphous diamond-like carbon coatings under oil-lubricated conditions

    OpenAIRE

    Roman, E.; Kalin, Mitjan; Vižintin, Jože

    2015-01-01

    In this work we present the wear and friction behaviour of boundary-lubricated, hydrogenated, amorphous, diamond-like carbon coatings (a-C:H), in self-mated a-C:H/a-C:H contacts, at three different testing temperaturesČ 20, 80, 150 °C. We present results from Auger electron spectroscopy, X-ray photoelectron spectroscopy and Raman analyses relating to the chemical and structural changes in the diamond-like carbon coatings duringsliding in the presence of mineral oil, with and without additives...

  7. Ion beam deposition of amorphous carbon films with diamond like properties

    Science.gov (United States)

    Angus, John C.; Mirtich, Michael J.; Wintucky, Edwin G.

    1982-01-01

    Carbon films were deposited on silicon, quartz, and potassium bromide substrates from an ion beam. Growth rates were approximately 0.3 micron/hour. The films were featureless and amorphous and contained only carbon and hydrogen in significant amounts. The density and carbon/hydrogen ratio indicate the film is a hydrogen deficient polymer. One possible structure, consistent with the data, is a random network of methylene linkages and tetrahedrally coordinated carbon atoms.

  8. Physical properties of nitrogen-doped diamond-like amorphous carbon films deposited by supermagnetron plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Diamond-like amorphous carbon films doped with nitrogen (DAC:N) were deposited on Si and glass wafers intermittently using i-C4H10/N2 repetitive supermagnetron plasma chemical vapor deposition. Deposition duration, which is equal to a plasma heating time of wafer, was selected to be 40 or 60 s, and several layers were deposited repetitively to form one thick film. DAC:N films were deposited at a lower-electrode temperature of 100 deg. C as a function of upper- and lower-electrode rf powers (200 W/200 W-1 kW/1 kW) and N2 concentration (0%-80%). With an increase in N2 concentration and rf power, the resistivity and the optical band gap decreased monotonously. With increase of the deposition duration from 40 to 60 s, resistivity decreased to 0.03Ω cm and optical band gap decreased to 0.02 eV (substantially equal to 0 eV within the range of experimental error), at an N2 concentration of 80% and rf power of 1 kW(/1 kW)

  9. Hard coating of ultrananocrystalline diamond/nonhydrogenated amorphous carbon composite films on cemented tungsten carbide by coaxial arc plasma deposition

    Science.gov (United States)

    Naragino, Hiroshi; Egiza, Mohamed; Tominaga, Aki; Murasawa, Koki; Gonda, Hidenobu; Sakurai, Masatoshi; Yoshitake, Tsuyoshi

    2016-08-01

    Ultrananocrystalline diamond (UNCD)/nonhydrogenated amorphous carbon (a-C) composite (UNCD/a-C) films were deposited on cemented carbide containing Co by coaxial arc plasma deposition. With decreasing substrate temperature, the hardness was enhanced accompanied by an enhancement in the sp3/(sp2 + sp3). Energy-dispersive X-ray and secondary ion mass spectrometry spectroscopic measurements exhibited that the diffusion of Co atoms from the substrates into the films hardly occurs. The film deposited at room temperature exhibited the maximum hardness of 51.3 GPa and Young's modulus of 520.2 GPa, which evidently indicates that graphitization induced by Co in the WC substrates, and thermal deformation from sp3 to sp2 bonding are suppressed. The hard UNCD/a-C films can be deposited at a thickness of approximately 3 μm, which is an order larger than that of comparably hard a-C films. The internal compressive stress of the 51.3-GPa film is 4.5 GPa, which is evidently smaller than that of comparably hard a-C films. This is a reason for the thick deposition. The presence of a large number of grain boundaries in the film, which is a structural specific to UNCD/a-C films, might play a role in releasing the internal stress of the films.

  10. Time-Resolved Observation of Deposition Process of Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films in Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Kenji Hanada

    2009-01-01

    Full Text Available Optical emission spectroscopy was used to study pulsed laser ablation of graphite in a hydrogen atmosphere wherein ultrananocrystalline diamond (UNCD/hydrogenated amorphous carbon (a-C:H composite films were grown on heated substrates. Time-resolved photographs of a plume that expanded from a laser-irradiation spot toward a substrate were taken using a high-speed ICCD camera equipped with narrow-bandpass filters. While the emissions from C atoms and C2 dimers lasted above the laser-irradiation spot on the target, the emission from C+ ions lasted above the substrate surface for approximately 7 microseconds, although the emission lifetime of species is generally approximately 10 nanoseconds. This implies that C+ ions actively collided with each other above the substrate surface for such a long time. We believe that the keys to UNCD growth in PLD are the supply of highly energetic carbon species at a high density to the substrate and existence of atomic hydrogen during the growth.

  11. Friction reduction in powertrain and engine components by coating with diamond-like, amorphous carbon; Reibungsminderung an Antriebs- und Motorkomponenten durch Beschichtungen mit diamantaehnlichem amorphen Kohlenstoff

    Energy Technology Data Exchange (ETDEWEB)

    Schork, Willi Sebastian

    2010-07-01

    The author investigated inhowfar coatings with diamond-like amorphous carbon (ta-C) in combination with suitable lubricants may help to reduce friction in selected powertrain and engine components. The influence of the microstructure on the stresses on layers in tribological contact was investigated using simulations. By varying the parameters of the background gas in the coating plant, hydrogen-free amorphous carbon layers of different elasticities and compositions were deposited reproducibly using a pulsed arc technology. For selective analyses of damage mechanisms in high-wear conditions, a novel tribometer for increasing loads was designed and constructed, with oscillating sliding contact and dynamic load. Failure models were established for various stress-related damge mechanisms of layered systems measured by the new tribometer. Practical tests with engines with ta-C coated piston rings proved the applicability of hydrogen-free amorphous carbon in engine applications.

  12. The effect of temperature on the tribological mechanisms and reactivity of hydrogenated, amorphous diamond-like carbon coatings under oil-lubricated conditions

    International Nuclear Information System (INIS)

    In this work we present the wear and friction behaviour of boundary-lubricated, hydrogenated, amorphous, diamond-like carbon coatings (a-C:H), in self-mated a-C:H/a-C:H contacts, at three different testing temperatures: 20, 80, 150 deg. C. We present results from Auger electron spectroscopy, X-ray photoelectron spectroscopy and Raman analyses relating to the chemical and structural changes in the diamond-like carbon coatings during sliding in the presence of mineral oil, with and without additives. We show, that chemical reactions between the a-C:H coatings and the oil additives take place, which are dependent on the temperature, on the presence of additives and the type of additives used. At high temperatures the extreme pressure additive interacts with the diamond-like carbon surface and forms a tribochemical layer with a four-times lower sulphur/phosphorous ratio than the additive formulation. In the absence of additives, however, graphitisation of the coating occurs under these conditions, which results in high-wear and low-friction behaviour. Another result from this study is that a-C:H coatings can oxidise during room-temperature experiments, suggesting that some interactions and adsorptions are also possible at lower temperatures

  13. Time-Resolved Spectroscopic Observation of Deposition Processes of Ultrananocrystalline Diamond/Amorphous Carbon Composite Films by Using a Coaxial Arc Plasma Gun

    Science.gov (United States)

    Hanada, Kenji; Yoshitake, Tsuyoshi; Nishiyama, Takashi; Nagayama, Kunihito

    2010-08-01

    The deposition of ultrananocrystalline diamond (UNCD)/amorphous carbon composite films using a coaxial arc plasma gun in vacuum and, for comparison, in a 53.3 Pa hydrogen atmosphere was spectroscopically observed using a high-speed camera equipped with narrow-band-pass filters. UNCD crystallites with diameters of approximately 1.6 nm were formed even in vacuum. These extremely small crystallites imply that the formation is predominantly due to nucleation without the subsequent growth. Even in vacuum, emissions from C+ ions, C atoms, and C2 dimers lasted for approximately 100 µs, although the emission lifetimes of these species are generally 10 ns. We consider that the nucleation is due to the supersaturated environment containing excited carbon species with large number densities.

  14. Hydrogenation effects on carrier transport in boron-doped ultrananocrystalline diamond/amorphous carbon films prepared by coaxial arc plasma deposition

    Energy Technology Data Exchange (ETDEWEB)

    Katamune, Yūki, E-mail: yuki-katamune@kyudai.jp; Takeichi, Satoshi [Department of Applied Science for Electronics and Materials, Kyushu University, 6-1 Kasuga, Fukuoka 816-8580 (Japan); Ohmagari, Shinya [Diamond Research Group, Research Institute for Ubiquitous Energy Devices (UBIQEN), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Yoshitake, Tsuyoshi, E-mail: tsuyoshi-yoshitake@kyudai.jp [Department of Applied Science for Electronics and Materials, Kyushu University, 6-1 Kasuga, Fukuoka 816-8580 (Japan); Research Center for Synchrotron Light Applications, Kyushu University, 6-1 Kasuga 816-8580 (Japan); Research and Education Center for Advanced Energy, Materials, Devices, and Systems, Kyushu University, 6-1 Kasuga 816-8580 (Japan)

    2015-11-15

    Boron-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite (UNCD/a-C:H) films were deposited by coaxial arc plasma deposition with a boron-blended graphite target at a base pressure of <10{sup −3} Pa and at hydrogen pressures of ≤53.3 Pa. The hydrogenation effects on the electrical properties of the films were investigated in terms of chemical bonding. Hydrogen-scattering spectrometry showed that the maximum hydrogen content was 35 at. % for the film produced at 53.3-Pa hydrogen pressure. The Fourier-transform infrared spectra showed strong absorptions by sp{sup 3} C–H bonds, which were specific to the UNCD/a-C:H, and can be attributed to hydrogen atoms terminating the dangling bonds at ultrananocrystalline diamond grain boundaries. Temperature-dependence of the electrical conductivity showed that the films changed from semimetallic to semiconducting with increasing hydrogen pressure, i.e., with enhanced hydrogenation, probably due to hydrogenation suppressing the formation of graphitic bonds, which are a source of carriers. Carrier transport in semiconducting hydrogenated films can be explained by a variable-range hopping model. The rectifying action of heterojunctions comprising the hydrogenated films and n-type Si substrates implies carrier transport in tunneling.

  15. Intermittent chemical vapor deposition of thick electrically conductive diamond-like amorphous carbon films using i-C4H10/N2 supermagnetron plasma

    International Nuclear Information System (INIS)

    Electrically conductive diamond-like amorphous carbon (DAC) films with nitrogen (DAC:N) were deposited on Si and SiO2 wafers using the i-C4H10/N2 supermagnetron plasma chemical vapor deposition (CVD) method. Resistivity and hardness decreased with increase of upper electrode rf power (UPRF) under constant lower electrode rf power (LORF). Film thickness increased linearly to over 0.3 μm with deposition time via intermittent deposition. The film exhibited good adhesion to the substrate. Low-resistance thick films were deposited using alternating multilayer CVD at UPRF/LORFs of 1 kW/1 kW and 300 W/300 W. In the deposited alternating multiple layers, resistivity significantly decreased with the increase of H layer (1 kW/1 kW) thickness, and film thickness significantly increased with the increase of L layer (300 W/300 W) thickness. By the deposition of H/L multiple layers, a film of 2.1 μm thickness and 0.14 Ω cm resistivity was obtained

  16. Performance of a 41x41 cm2 amorphous silicon flat panel x-ray detector designed for angiographic and R and F imaging applications

    International Nuclear Information System (INIS)

    We measured the physical imaging performance of a 41x41 cm2 amorphous silicon flat panel detector designed for angiographic and R and F imaging applications using methods from the emerging IEC standard for the measurement of detective quantum efficiency (DQE) in digital radiographic detectors. Measurements on 12 production detectors demonstrate consistent performance. The mean DQE at the detector center is about 0.77 at zero frequency and 0.27 at the Nyquist frequency (2.5 cycles/mm) when measured with a 7 mm of Al HVL spectrum at about 3.6 μGy. The mean MTF at the center of the detector for this spectrum is 0.24 at the Nyquist frequency. For radiographic operation all 2048x2048 detector elements are read out individually. For fluoroscopy, the detector operates in two 30 frame per second modes: either the center 1024x1024 detector elements are read out or the entire detector is read out with 2x2 pixel binning. A model was developed to predict differences in performance between the modes, and measurements demonstrate agreement with the model. Lag was measured using a quasi-equilibrium exposure method and was found to be 0.044 in the first frame and less than 0.007 after 1 s. We demonstrated that it is possible to use the lag data to correct for temporal correlation in images when measuring DQE with a fluoroscopic imaging technique. Measurements as a function of position on the detector demonstrate a high degree of uniformity. We also characterized dependences on spectrum, exposure level, and direction. Finally, we measured the DQE of a current state of the art image intensifier/CCD system using the same method as for the flat panel. We found the image intensifier system to have lower DQE than the flat panel at high exposure levels and approximately equivalent DQE at fluoroscopic levels

  17. Friction and wear properties of diamonds and diamond coatings

    International Nuclear Information System (INIS)

    The recent development of chemical vapor deposition techniques for diamond growth enables bearings to be designed which exploit diamond's low friction and extreme resistance to wear. However, currently produced diamond coatings differ from natural diamond surfaces in that they are polycrystalline and faceted, and often contain appreciable amounts of non-diamond material (i.e. graphitic or amorphous carbon). Roughness, in particular, influences the friction and wear properties; rough coatings severely abrade softer materials, and can even wear natural diamond sliders. Nevertheless, the best available coatings exhibit friction coefficients as low as those of natural diamond and are highly resistant to wear. This paper reviews the tribological properties of natural diamond, and compares them with those of chemical vapor deposited diamond coatings. Emphasis is placed on the roles played by roughness and material transfer in controlling frictional behavior. (orig.)

  18. Quantitative comparison using generalized relative object detectability (G-ROD) metrics of an amorphous selenium detector with high resolution microangiographic fluoroscopes (MAF) and standard flat panel detectors (FPD)

    Science.gov (United States)

    Russ, M.; Shankar, A.; Jain, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Scott, C.; Karim, K. S.; Bednarek, D. R.; Rudin, S.

    2016-03-01

    A novel amorphous selenium (a-Se) direct detector with CMOS readout has been designed, and relative detector performance investigated. The detector features include a 25μm pixel pitch, and 1000μm thick a-Se layer operating at 10V/μm bias field. A simulated detector DQE was determined, and used in comparative calculations of the Relative Object Detectability (ROD) family of prewhitening matched-filter (PWMF) observer and non-pre-whitening matched filter (NPWMF) observer model metrics to gauge a-Se detector performance against existing high resolution micro-angiographic fluoroscopic (MAF) detectors and a standard flat panel detector (FPD). The PWMF-ROD or ROD metric compares two x-ray imaging detectors in their relative abilities in imaging a given object by taking the integral over spatial frequencies of the Fourier transform of the detector DQE weighted by an object function, divided by the comparable integral for a different detector. The generalized-ROD (G-ROD) metric incorporates clinically relevant parameters (focal- spot size, magnification, and scatter) to show the degradation in imaging performance for detectors that are part of an imaging chain. Preliminary ROD calculations using simulated spheres as the object predicted superior imaging performance by the a-Se detector as compared to existing detectors. New PWMF-G-ROD and NPWMF-G-ROD results still indicate better performance by the a-Se detector in an imaging chain over all sphere sizes for various focal spot sizes and magnifications, although a-Se performance advantages were degraded by focal spot blurring. Nevertheless, the a-Se technology has great potential to provide break- through abilities such as visualization of fine details including of neuro-vascular perforator vessels and of small vascular devices.

  19. Diamond turning of glass

    Energy Technology Data Exchange (ETDEWEB)

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  20. TU-F-18C-02: Increasing Amorphous Selenium Thickness in Direct Conversion Flat-Panel Imagers for Contrast-Enhanced Dual-Energy Breast Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Scaduto, DA; Hu, Y-H; Zhao, W [Stony Brook University, Stony Brook, NY (United States)

    2014-06-15

    Purpose: Contrast-enhanced (CE) breast imaging using iodinated contrast agents requires imaging with x-ray spectra at energies greater than those used in mammography. Optimizing amorphous selenium (a-Se) flat panel imagers (FPI) for this higher energy range may increase lesion conspicuity. Methods: We compare imaging performance of a conventional FPI with 200 μm a-Se conversion layer to a prototype FPI with 300 μm a-Se layer. Both detectors are evaluated in a Siemens MAMMOMAT Inspiration prototype digital breast tomosynthesis (DBT) system using low-energy (W/Rh 28 kVp) and high-energy (W/Cu 49 kVp) x-ray spectra. Detectability of iodinated lesions in dual-energy images is evaluated using an iodine contrast phantom. Effects of beam obliquity are investigated in projection and reconstructed images using different reconstruction methods. The ideal observer signal-to-noise ratio is used as a figure-of-merit to predict the optimal a-Se thickness for CE lesion detectability without compromising conventional full-field digital mammography (FFDM) and DBT performance. Results: Increasing a-Se thickness from 200 μm to 300 μm preserves imaging performance at typical mammographic energies (e.g. W/Rh 28 kVp), and improves the detective quantum efficiency (DQE) for high energy (W/Cu 49 kVp) by 30%. While the more penetrating high-energy x-ray photons increase geometric blur due to beam obliquity in the FPI with thicker a-Se layer, the effect on lesion detectability in FBP reconstructions is negligible due to the reconstruction filters employed. Ideal observer SNR for CE objects shows improvements in in-plane detectability with increasing a-Se thicknesses, though small lesion detectability begins to degrade in oblique projections for a-Se thickness above 500 μm. Conclusion: Increasing a-Se thickness in direct conversion FPI from 200 μm to 300 μm improves lesion detectability in CE breast imaging with virtually no cost to conventional FFDM and DBT. This work was partially

  1. Diamond-silicon carbide composite and method

    Science.gov (United States)

    Zhao, Yusheng

    2011-06-14

    Uniformly dense, diamond-silicon carbide composites having high hardness, high fracture toughness, and high thermal stability are prepared by consolidating a powder mixture of diamond and amorphous silicon. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPam.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness.

  2. Studies of flat-plate solar air collectors with absorber plates made of amorphous silicon photovoltaic modules; Amorphous taiyo denchi module wo shunetsuban to shita heibangata kukishiki shunetsuki no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Ito, S.; Miura, N. [Kanagawa Institute of Technology, Kanagawa (Japan)

    1996-10-27

    A light/heat hybrid air type heat collector has been developed in which heat is collected by solar cell panels. In Type 1 heat collector provided with a glass cover, two modules are connected in series and placed under a glass cover to serve as a heat collecting plate, each module built of a steel plate and two thin-film amorphous solar cells bonded to the steel plate. Air runs under the heat collecting plate. Type 2 heat collector is a Type 1 heat collector minus the glass cover. Air is taken in by a fan, runs in a vinyl chloride tube, and then through the heat collector where it is heated by the sun, and goes out at the exit. Heat collecting performance was subjected to theoretical analysis. This heat collector approximated in point of heat collection a model using a board painted black, which means that the new type functions effectively as an air-type heat collector. Operating as a photovoltaic power generator, the covered type generated approximately 20% less than the uncovered type under 800W/m{sup 2} insolation conditions. Type 1 has been in service for five months, and Type 2 for 2 months. At present, both are free of troubles such as deformation and the amorphous solar cell modules have deteriorated but a little. 4 refs., 9 figs.

  3. Industrial diamond

    Science.gov (United States)

    Olson, D.W.

    2013-01-01

    Estimated 2012 world production of natural and synthetic industrial diamond was about 4.45 billion carats. During 2012, natural industrial diamonds were produced in at least 20 countries, and synthetic industrial diamond was produced in at least 12 countries. About 99 percent of the combined natural and synthetic global output was produced in Belarus, China, Ireland, Japan, Russia, South Africa and the United States. During 2012, China was the world’s leading producer of synthetic industrial diamond followed by the United States and Russia. In 2012, the two U.S. synthetic producers, one in Pennsylvania and the other in Ohio, had an estimated output of 103 million carats, valued at about $70.6 million. This was an estimated 43.7 million carats of synthetic diamond bort, grit, and dust and powder with a value of $14.5 million combined with an estimated 59.7 million carats of synthetic diamond stone with a value of $56.1 million. Also in 2012, nine U.S. firms manufactured polycrystalline diamond (PCD) from synthetic diamond grit and powder. The United States government does not collect or maintain data for either domestic PCD producers or domestic chemical vapor deposition (CVD) diamond producers for quantity or value of annual production. Current trade and consumption quantity data are not available for PCD or for CVD diamond. For these reasons, PCD and CVD diamond are not included in the industrial diamond quantitative data reported here.

  4. Tribological properties of amorphous hydrogenated (a-C:H) and hydrogen-free tetrahedral (ta-C) diamond-like carbon coatings under jatropha biodegradable lubricating oil at different temperatures

    Science.gov (United States)

    Mobarak, H. M.; Masjuki, H. H.; Mohamad, E. Niza; Kalam, M. A.; Rashedul, H. K.; Rashed, M. M.; Habibullah, M.

    2014-10-01

    The application of diamond-like carbon (DLC) coatings on automotive components is emerging as a favorable strategy to address the recent challenges in the industry. DLC coatings can effectively lower the coefficient of friction (CoF) and wear rate of engine components, thereby improving their fuel efficiency and durability. The lubrication of ferrous materials can be enhanced by a large amount of unsaturated and polar components of oils. Therefore, the interaction between nonferrous coatings (e.g., DLC) and vegetable oil should be investigated. A ball-on-plate tribotester was used to run the experiments. Stainless steel plates coated with amorphous hydrogenated (a-C:H) DLC and hydrogen-free tetrahedral (ta-C) DLC that slide against 440C stainless steel ball were used to create a ball-on-plate tribotester. The wear track was investigated through scanning electron microscopy. Energy dispersive and X-ray photoelectron spectroscopies were used to analyze the tribofilm inside the wear track. Raman analysis was performed to investigate the structural changes in the coatings. At high temperatures, the CoF in both coatings decreased. The wear rate, however, increased in the a-C:H but decreased in the ta-C DLC-coated plates. The CoF and the wear rate (coated layer and counter surface) were primarily influenced by the graphitization of the coating. Tribochemical films, such as polyphosphate glass, were formed in ta-C and acted as protective layers. Therefore, the wear rate of the ta-C DLC was lower than that of the-C:H DLC.

  5. Analysis of the Phenomena of Diamond Synthesis by Seeding with Diamond

    Institute of Scientific and Technical Information of China (English)

    Meiguang ZHANG; Haiyan YAN; Fang PENG

    2008-01-01

    Synthesizing diamond single crystal by diamond seed particles which were electroplated with nickel film as catalyst under high pressure and high temperature (HPHT) was described. The microstructure of nickel film after synthesis and morphology of grown diamond were investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The phase structure in nickel film were graphite, NiC, Ni,and diamond structure hadnt' been found. A lot of recrystallized graphite pits appear in interface between the inner surface of nickel film and the surface diamond. It is shown that the new-grown diamond was developed epitaxially on the crystal planes of seeds. Also, the new-grown diamond grew by two-dimensional nucleation and by a layer growth mechanism. The growth process of crystal was microaggregate→step→expansion→new crystal layers, and the flat growth interface transformed into a cellular interface at the same time.

  6. Tribological properties of amorphous hydrogenated (a-C:H) and hydrogen-free tetrahedral (ta-C) diamond-like carbon coatings under jatropha biodegradable lubricating oil at different temperatures

    International Nuclear Information System (INIS)

    Highlights: • We tested a-C:H and ta-C DLC coatings as a function of temperature. • Jatropha oil contains large amounts of polar components that enhanced the lubricity of coatings. • CoF decreases with increasing temperature for both contacts. • Wear rate increases with increasing temperature in a-C:H and decreases in ta-C DLC. • At high temperature, ta-C coatings confer more protection than a-C:H coatings. - Abstract: The application of diamond-like carbon (DLC) coatings on automotive components is emerging as a favorable strategy to address the recent challenges in the industry. DLC coatings can effectively lower the coefficient of friction (CoF) and wear rate of engine components, thereby improving their fuel efficiency and durability. The lubrication of ferrous materials can be enhanced by a large amount of unsaturated and polar components of oils. Therefore, the interaction between nonferrous coatings (e.g., DLC) and vegetable oil should be investigated. A ball-on-plate tribotester was used to run the experiments. Stainless steel plates coated with amorphous hydrogenated (a-C:H) DLC and hydrogen-free tetrahedral (ta-C) DLC that slide against 440C stainless steel ball were used to create a ball-on-plate tribotester. The wear track was investigated through scanning electron microscopy. Energy dispersive and X-ray photoelectron spectroscopies were used to analyze the tribofilm inside the wear track. Raman analysis was performed to investigate the structural changes in the coatings. At high temperatures, the CoF in both coatings decreased. The wear rate, however, increased in the a-C:H but decreased in the ta-C DLC-coated plates. The CoF and the wear rate (coated layer and counter surface) were primarily influenced by the graphitization of the coating. Tribochemical films, such as polyphosphate glass, were formed in ta-C and acted as protective layers. Therefore, the wear rate of the ta-C DLC was lower than that of the-C:H DLC

  7. Tribological properties of amorphous hydrogenated (a-C:H) and hydrogen-free tetrahedral (ta-C) diamond-like carbon coatings under jatropha biodegradable lubricating oil at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Mobarak, H.M., E-mail: mobarak.ho31@yahoo.com; Masjuki, H.H.; Mohamad, E. Niza, E-mail: edzrol@um.edu.my; Kalam, M.A.; Rashedul, H.K.; Rashed, M.M.; Habibullah, M.

    2014-10-30

    Highlights: • We tested a-C:H and ta-C DLC coatings as a function of temperature. • Jatropha oil contains large amounts of polar components that enhanced the lubricity of coatings. • CoF decreases with increasing temperature for both contacts. • Wear rate increases with increasing temperature in a-C:H and decreases in ta-C DLC. • At high temperature, ta-C coatings confer more protection than a-C:H coatings. - Abstract: The application of diamond-like carbon (DLC) coatings on automotive components is emerging as a favorable strategy to address the recent challenges in the industry. DLC coatings can effectively lower the coefficient of friction (CoF) and wear rate of engine components, thereby improving their fuel efficiency and durability. The lubrication of ferrous materials can be enhanced by a large amount of unsaturated and polar components of oils. Therefore, the interaction between nonferrous coatings (e.g., DLC) and vegetable oil should be investigated. A ball-on-plate tribotester was used to run the experiments. Stainless steel plates coated with amorphous hydrogenated (a-C:H) DLC and hydrogen-free tetrahedral (ta-C) DLC that slide against 440C stainless steel ball were used to create a ball-on-plate tribotester. The wear track was investigated through scanning electron microscopy. Energy dispersive and X-ray photoelectron spectroscopies were used to analyze the tribofilm inside the wear track. Raman analysis was performed to investigate the structural changes in the coatings. At high temperatures, the CoF in both coatings decreased. The wear rate, however, increased in the a-C:H but decreased in the ta-C DLC-coated plates. The CoF and the wear rate (coated layer and counter surface) were primarily influenced by the graphitization of the coating. Tribochemical films, such as polyphosphate glass, were formed in ta-C and acted as protective layers. Therefore, the wear rate of the ta-C DLC was lower than that of the-C:H DLC.

  8. Should 3K zoom function be used for detection of pneumothorax in cesium iodide/amorphous silicon flat-panel detector radiographs presented on 1K-matrix soft copies?

    International Nuclear Information System (INIS)

    The purpose of the study was to evaluate observer performance in the detection of pneumothorax with cesium iodide and amorphous silicon flat-panel detector radiography (CsI/a-Si FDR) presented as 1K and 3K soft-copy images. Forty patients with and 40 patients without pneumothorax diagnosed on previous and subsequent digital storage phosphor radiography (SPR, gold standard) had follow-up chest radiographs with CsI/a-Si FDR. Four observers confirmed or excluded the diagnosis of pneumothorax according to a five-point scale first on the 1K soft-copy image and then with help of 3K zoom function (1K monitor). Receiver operating characteristic (ROC) analysis was performed for each modality (1K and 3K). The area under the curve (AUC) values for each observer were 0.7815, 0.7779, 0.7946 and 0.7066 with 1K-matrix soft copies and 0.8123, 0.7997, 0.8078 and 0.7522 with 3K zoom. Overall detection of pneumothorax was better with 3K zoom. Differences between the two display methods were not statistically significant in 3 of 4 observers (p-values between 0.13 and 0.44; observer 4: p=0.02). The detection of pneumothorax with 3K zoom is better than with 1K soft copy but not at a statistically significant level. Differences between both display methods may be subtle. Still, our results indicate that 3K zoom should be employed in clinical practice. (orig.)

  9. Diamond nanophotonics

    Directory of Open Access Journals (Sweden)

    Katja Beha

    2012-12-01

    Full Text Available We demonstrate the coupling of single color centers in diamond to plasmonic and dielectric photonic structures to realize novel nanophotonic devices. Nanometer spatial control in the creation of single color centers in diamond is achieved by implantation of nitrogen atoms through high-aspect-ratio channels in a mica mask. Enhanced broadband single-photon emission is demonstrated by coupling nitrogen–vacancy centers to plasmonic resonators, such as metallic nanoantennas. Improved photon-collection efficiency and directed emission is demonstrated by solid immersion lenses and micropillar cavities. Thereafter, the coupling of diamond nanocrystals to the guided modes of micropillar resonators is discussed along with experimental results. Finally, we present a gas-phase-doping approach to incorporate color centers based on nickel and tungsten, in situ into diamond using microwave-plasma-enhanced chemical vapor deposition. The fabrication of silicon–vacancy centers in nanodiamonds by microwave-plasma-enhanced chemical vapor deposition is discussed in addition.

  10. Physical and Tribological Characteristics of Ion-Implanted Diamond Films

    Science.gov (United States)

    Miyoshi, K.; Heidger, S.; Korenyi-Both, A. L.; Jayne, D. T.; Herrera-Fierro, P.; Shogrin, B.; Wilbur, P. J.; Wu, R. L. C.; Garscadden, A.; Barnes, P. N.

    1994-01-01

    Unidirectional sliding friction experiments were conducted with a natural, polished diamond pin in contact with both as-deposited and carbon-ion-implanted diamond films in ultrahigh vacuum. Diamond films were deposited on silicon, silicon carbide, and silicon nitride by microwave-plasma-assisted chemical vapor deposition. The as-deposited diamond films were impacted with carbon ions at an accelerating energy of 60 keV and a current density of 50 micron A/cm(exp 2) for approximately 6 min, resulting in a dose of 1.2 x 10(exp 17) carbon ions/cm(exp 2). The results indicate that the carbon ion implantation produced a thin surface layer of amorphous, nondiamond carbon. The nondiamond carbon greatly decreased both friction and wear of the diamond films. The coefficients of friction for the carbon-ion-implanted, fine-grain diamond films were less than 0.1, factors of 20 to 30 lower than those for the as-deposited, fine-grain diamond films. The coefficients of friction for the carbon-ion-implanted, coarse-grain diamond films were approximately 0.35, a factor of five lower than those for the as-deposited, coarse-grain diamond films. The wear rates for the carbon-ion-implanted, diamond films were on the order of 10(exp -6) mm(exp 3)/Nm, factors of 30 to 80 lower than that for the as-deposited diamond films, regardless of grain size. The friction of the carbon-ion-implanted diamond films was greatly reduced because the amorphous, nondiamond carbon, which had a low shear strength, was restricted to the surface layers (less than 0.1 micron thick) and because the underlying diamond materials retained their high hardness. In conclusion, the carbon-ion-implanted, fine-grain diamond films can be used effectively as wear resistant, self-lubricating coatings for ceramics, such as silicon nitride and silicon carbide, in ultrahigh vacuum.

  11. Diamond Fuzzy Number

    OpenAIRE

    T. Pathinathan; K. Ponnivalavan

    2015-01-01

    In this paper we define diamond fuzzy number with the help of triangular fuzzy number. We include basic arithmetic operations like addition, subtraction of diamond fuzzy numbers with examples. We define diamond fuzzy matrix with some matrix properties. We have defined Nested diamond fuzzy number and Linked diamond fuzzy number. We have further classified Right Linked Diamond Fuzzy number and Left Linked Diamond Fuzzy number. Finally we have verified the arithmetic operations for the above men...

  12. Diamond-like carbon for data and beer storage

    Directory of Open Access Journals (Sweden)

    Cinzia Casiraghi

    2007-01-01

    Full Text Available Carbon is a very versatile element that can crystallize in the forms of diamond or graphite. There are many noncrystalline carbons, known as amorphous carbons. An amorphous carbon with a high fraction of diamond-like (sp3 bonds is named diamond-like carbon (DLC. Unlike diamond, DLC can be deposited at room temperature. Furthermore, its properties can be tuned by changing the sp3 content, the organization of the sp2 sites, and the hydrogen content. This makes DLC ideal for a variety of different applications. We review the use of ultrathin DLC films for ultrahigh-density data storage in magnetic and optical disks and ultralong beer storage in plastic bottles.

  13. Diamond growth in oxygen-acetylene flame

    International Nuclear Information System (INIS)

    What was supposed to be a laboratory curiosity in the 80's, in recent years the low pressure process for the production of man-made diamond turned out to be a major target for research and development of many high-tech companies. The main reason for such an interest stems on the possibility of coating many materials with a diamond film possessing the same amazing properties of the bulk natural diamond. Polycrystalline diamond film has been deposited on Mo substrate by using oxygen-acetylene flame of a welding torch. The substrate temperature has been held constant about 700deg C by means of a water cooled mount designed properly. Precision flowmeters have been used to control the flow ratio oxygen/acetylene, a key parameter for the success in diamond growth. Diamond has been detected by X-ray diffraction, a fast foolproof technique for crystal identification. Another method of analysis often used in Raman spectroscopy, which is able to exhibit amorphous structure besides crystalline phase. (author)

  14. Characterization of an amorphous silicon flat panel for controlling the positioning accuracy of sheet; Caracterizacion de un panel plano de silicio amorfo para control de la exactitud en el posicionamiento de laminas

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, J.; Gonzalez, V.; Gimeno, J.; Dolores, V. de los; Pastor, V.; Crispin, V.; Guardino, C.

    2011-07-01

    It has established a method for measuring the position of the blades in a multi leaf collimator (MLC) used to measure dose portal imaging device (EPID) of amorphous silicon, and verified its accuracy using radiochromic films and measures water with diode Cuba, techniques perfectly well validated in our institution. This dose profiles are studied for each sheet and determine their position at the point which has 50% of the dose in the open field.

  15. Effect of Nano-Ni Catalyst on the Growth and Characterization of Diamond Films by HFCVD

    Directory of Open Access Journals (Sweden)

    Chien-Chung Teng

    2010-01-01

    Full Text Available Four different catalysts, nanodiamond seed, nano-Ni, diamond powder, and mixture of nano-Ni/diamond powder, were used to activate Si wafers for diamond film growth by hot-filament CVD (HFCVD. Diamond crystals were shown to grow directly on both large diamond powder and small nanodiamond seed, but a better crystallinity of diamond film was observed on the ultrasonicated nanodiamond seeded Si substrate. On the other hand, nano-Ni nanocatalysts seem to promote the formation of amorphous carbon but suppress transpolyacetylene (t-PA phases at the initial growth of diamond films. The subsequent nucleation and growth of diamond crystals on the amorphous carbon layer leads to generation of the spherical diamond particles and clusters prior to coalescence into continuous diamond films based on the CH3 addition mechanism as characterized by XRD, Raman, ATR/FT-IR, XPS, TEM, SEM, and AFM techniques. Moreover, a 36% reduction in surface roughness of diamond film assisted by nano-Ni catalyst is quite significant.

  16. Diamond integrated quantum photonics

    OpenAIRE

    Greentree, Andrew D.; Fairchild, Barbara A.; Hossain, Faruque M.; Steven Prawer

    2008-01-01

    Diamond is a leading contender as the material of choice for the quantum computer industry. This potential arises mainly from the quantum properties of color centers in diamond. However, before diamond can realize its full potential, the technology to fabricate and sculpt diamond as well as, if not better than, silicon must be developed. A comprehensive processing capability for diamond that will allow the fabrication of qubits and their associated photonic structures is required. Here we des...

  17. Surface Design and Engineering Toward Wear-Resistant, Self-Lubricant Diamond Films and Coatings. Chapter 10

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1999-01-01

    This chapter describes three studies on the surface design, surface engineering, and tribology of chemical-vapor-deposited (CVD) diamond films and coatings toward wear-resistant, self-lubricating diamond films and coatings. Friction mechanisms and solid lubrication mechanisms of CVD diamond are stated. Effects of an amorphous hydrogenated carbon on CVD diamond, an amorphous, nondiamond carbon surface layer formed on CVD diamond by carbon and nitrogen ion implantation, and a materials combination of cubic boron nitride and CVD diamond on the adhesion, friction, and wear behaviors of CVD diamond in ultrahigh vacuum are described. How surface modification and the selected materials couple improved the tribological functionality of coatings, giving low coefficient of friction and good wear resistance, is explained.

  18. Clinical evaluation of digital radiography based on a large-area cesium iodide-amorphous silicon flat-panel detector compared with screen-film radiography for skeletal system and abdomen

    International Nuclear Information System (INIS)

    The aim of this clinical study was to compare the image quality of digital radiography using the new digital Bucky system based on a flat-panel detector with that of a conventional screen-film system for the skeletal structure and the abdomen. Fifty patients were examined using digital radiography with a flat-panel detector and screen-film systems, 25 for the skeletal structures and 25 for the abdomen. Six radiologists judged each paired image acquired under the same exposure parameters concerning three observation items for the bone and six items for the abdomen. Digital radiographic images for the bone were evaluated to be similar to screen-film images at the mean of 42.2%, to be superior at 50.2%, and to be inferior at 7.6%. Digital radiographic images for the abdomen were judged to be similar to screen-film images at the mean of 43.4%, superior at 52.4%, and inferior at 4.2%; thus, digital radiographic images were estimated to be either similar as or superior to screen-film images at over 92% for the bone and abdomen. On the statistical analysis, digital radiographic images were also judged to be preferred significantly in the most items for the bone and abdomen. In conclusion, the image quality of digital radiography with a flat-panel detector was superior to that of a screen-film system under the same exposure parameters, suggesting that dose reduction is possible with digital radiography. (orig.)

  19. Friction and wear of plasma-deposited amorphous hydrogenated films on silicon nitride

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1991-01-01

    An investigation was conducted to examine the friction and wear behavior of amorphous hydrogenated carbon (a-C:H) films in sliding contact with silicon nitride pins in both dry nitrogen and humid air environments. Amorphous hydrogenated carbon films approximately 0.06 micron thick were deposited on silicon nitride flat substrates by using the 30 kHz ac glow discharge of a planar plasma reactor. The results indicate that an increase in plasma deposition power gives an increase in film density and hardness. The high-density a-C:H films deposited behaved tribologically much like bulk diamond. In the dry nitrogen environment, a tribochemical reaction produced a substance, probably a hydrocarbon-rich layer, that decreased the coefficient of friction. In the humid air environment, tribochemical interactions drastically reduced the wear life of a-C:H films and water vapor greatly increased the friction. Even in humid air, effective lubrication is possible with vacuum-annealed a-C:H films. The vacuum-annealed high-density a-C:H film formed an outermost superficial graphitic layer, which behaved like graphite, on the bulk a-C:H film. Like graphite, the annealed a-C:H film with the superficial graphitic layer showed low friction when adsorbed water vapor was present.

  20. Anisotropy of synthetic diamond in catalytic etching using iron powder

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junsha [College of Materials Science and Engineering, Hunan University, Hunan 410082 (China); Department of Mechanical Engineering, Keio University, Yokohama 223-8522 (Japan); Wan, Long, E-mail: wanlong1799@163.com [College of Materials Science and Engineering, Hunan University, Hunan 410082 (China); Chen, Jing [College of Materials Science and Engineering, Hunan University, Hunan 410082 (China); Yan, Jiwang [Department of Mechanical Engineering, Keio University, Yokohama 223-8522 (Japan)

    2015-08-15

    Highlights: • Synthetic diamond crystallites were etched using iron without requiring hydrogen. • The effect of temperature on the etching behaviour was demonstrated. • The anisotropy of etching on different crystal planes was investigated. • The extent of etching on diamond surface was examined quantitatively. • A schematic model for diamond etching by iron is being proposed. - Abstract: This paper demonstrated a novel technique for catalytic etching of synthetic diamond crystallites using iron (Fe) powder without flowing gas. The effect of temperature on the etching behaviour on different crystal planes of diamond was investigated. The surface morphology and surface roughness of the processed diamond were examined by scanning electron microscope (SEM) and laser-probe surface profiling. In addition, the material composition of the Fe-treated diamond was characterized using micro-Raman spectroscopy and the distribution of chemical elements and structural changes on Fe-loaded diamond surfaces were analyzed by energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD), respectively. Results showed that at the same temperature the {1 0 0} plane was etched faster than the {1 1 1} plane, and that the etching rate of both {1 0 0} and {1 1 1} plane increased with temperature. The etch pits on {1 0 0} plane were reversed pyramid with flat {1 1 1} walls, while the etch holes on {1 1 1} plane were characterized with flat bottom. It was also demonstrated that graphitization of diamond and subsequent carbon diffusion in molten iron were two main factors resulting in the removal of carbon from the diamond surface.

  1. Minimal graphene thickness for wear protection of diamond

    Directory of Open Access Journals (Sweden)

    M. M. van Wijk

    2015-01-01

    Full Text Available We show, by means of molecular dynamics simulations, that the transformation from diamond to amorphous carbon occurring while sliding under pressure can be prevented by having at least two graphene layers between the diamond slabs. The resulting reduction of wear makes this combination of materials suitable for new coatings and micro- and nanoelectromechanical devices. Grain boundaries, vacancies and steps on the diamond surface do not change this prediction. We attribute this behavior to the bonding in layered materials like graphene. The strong in-plane bonding and the weak interlayer interaction that evolves to a strong interlayer repulsion under pressure prevent the transition to amorphous carbon when more than one layer is present.

  2. Diamond bio electronics.

    Science.gov (United States)

    Linares, Robert; Doering, Patrick; Linares, Bryant

    2009-01-01

    The use of diamond for advanced applications has been the dream of mankind for centuries. Until recently this dream has been realized only in the use of diamond for gemstones and abrasive applications where tons of diamonds are used on an annual basis. Diamond is the material system of choice for many applications, but its use has historically been limited due to the small size, high cost, and inconsistent (and typically poor) quality of available diamond materials until recently. The recent development of high quality, single crystal diamond crystal growth via the Chemical Vapor Deposition (CVD) process has allowed physcists and increasingly scientists in the life science area to think beyond these limitations and envision how diamond may be used in advanced applications ranging from quantum computing, to power generation and molecular imaging, and eventually even diamond nano-bots. Because of diamond's unique properties as a bio-compatible material, better understanding of diamond's quantum effects and a convergence of mass production, semiconductor-like fabrication process, diamond now promises a unique and powerful key to the realization of the bio-electronic devices being envisioned for the new era of medical science. The combination of robust in-the-body diamond based sensors, coupled with smart bio-functionalized diamond devices may lead to diamond being the platform of choice for bio-electronics. This generation of diamond based bio-electronic devices would contribute substantially to ushering in a paradigm shift for medical science, leading to vastly improved patient diagnosis, decrease of drug development costs and risks, and improved effectiveness of drug delivery and gene therapy programs through better timed and more customized solutions. PMID:19745488

  3. Diamond integrated quantum photonics

    Directory of Open Access Journals (Sweden)

    Andrew D. Greentree

    2008-09-01

    Full Text Available Diamond is a leading contender as the material of choice for the quantum computer industry. This potential arises mainly from the quantum properties of color centers in diamond. However, before diamond can realize its full potential, the technology to fabricate and sculpt diamond as well as, if not better than, silicon must be developed. A comprehensive processing capability for diamond that will allow the fabrication of qubits and their associated photonic structures is required. Here we describe the remarkable properties of diamond color centers, and the techniques being developed to engineer qubits and sculpt monolithic structures around them. Finally we outline some of the new proposals that use engineered diamond to realize tasks not possible with existing technologies.

  4. Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles

    Science.gov (United States)

    Sun, Youhong; Meng, Qingnan; Qian, Ming; Liu, Baochang; Gao, Ke; Ma, Yinlong; Wen, Mao; Zheng, Weitao

    2016-02-01

    A boron carbide coating was applied to diamond particles by heating the particles in a powder mixture consisting of H3BO3, B and Mg. The composition, bond state and coverage fraction of the boron carbide coating on the diamond particles were investigated. The boron carbide coating prefers to grow on the diamond (100) surface than on the diamond (111) surface. A stoichiometric B4C coating completely covered the diamond particle after maintaining the raw mixture at 1200 °C for 2 h. The contribution of the boron carbide coating to the oxidation resistance enhancement of the diamond particles was investigated. During annealing of the coated diamond in air, the priory formed B2O3, which exhibits a self-healing property, as an oxygen barrier layer, which protected the diamond from oxidation. The formation temperature of B2O3 is dependent on the amorphous boron carbide content. The coating on the diamond provided effective protection of the diamond against oxidation by heating in air at 1000 °C for 1 h. Furthermore, the presence of the boron carbide coating also contributed to the maintenance of the static compressive strength during the annealing of diamond in air.

  5. Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles.

    Science.gov (United States)

    Sun, Youhong; Meng, Qingnan; Qian, Ming; Liu, Baochang; Gao, Ke; Ma, Yinlong; Wen, Mao; Zheng, Weitao

    2016-02-02

    A boron carbide coating was applied to diamond particles by heating the particles in a powder mixture consisting of H3BO3, B and Mg. The composition, bond state and coverage fraction of the boron carbide coating on the diamond particles were investigated. The boron carbide coating prefers to grow on the diamond (100) surface than on the diamond (111) surface. A stoichiometric B4C coating completely covered the diamond particle after maintaining the raw mixture at 1200 °C for 2 h. The contribution of the boron carbide coating to the oxidation resistance enhancement of the diamond particles was investigated. During annealing of the coated diamond in air, the priory formed B2O3, which exhibits a self-healing property, as an oxygen barrier layer, which protected the diamond from oxidation. The formation temperature of B2O3 is dependent on the amorphous boron carbide content. The coating on the diamond provided effective protection of the diamond against oxidation by heating in air at 1000 °C for 1 h. Furthermore, the presence of the boron carbide coating also contributed to the maintenance of the static compressive strength during the annealing of diamond in air.

  6. Ion-implanted diamond films and their tribological properties

    International Nuclear Information System (INIS)

    This paper reports the physical characterization and tribological evaluation of ion-implanted diamond films. Diamond films were produced by microwave plasma, chemical vapor deposition technique. Diamond films with various grain sizes (0.3 and 3 μm) and roughness (9.1 and 92.1 nm r.m.s. respectively) were implanted with C+ (m/e=12) at an ion energy of 160 eV and a fluence of 6.72 x 1017 ions cm-2. Unidirectional sliding friction experiments were conducted in ultrahigh vacuum (6.6 x 10-7 Pa), dry nitrogen and humid air (40% RH) environments. The effects of C+ ion bombardment on fine and coarse-grained diamond films are as follows: the surface morphology of the diamond films did not change; the surface roughness increased (16.3 and 135.3 nm r.m.s.); the diamond structures were damaged and formed a thin layer of amorphous non-diamond carbon; the friction coefficients dramatically decreased in the ultrahigh vacuum (0.1 and 0.4); the friction coefficients decreased slightly in the dry nitrogen and humid air environments. (orig.)

  7. Nanocrystalline diamond growth on different substrates

    International Nuclear Information System (INIS)

    Nanocomposite films consisting of diamond nanoparticles of 3-5 nm diameter embedded in an amorphous carbon matrix have been deposited by means of microwave plasma chemical vapour deposition (MWCVD) from CH4/N2 gas mixtures. Si wafers, Si coated with TiN, polycrystalline diamond (PCD) and cubic boron nitride films, and Ti-6Al-4V alloy have been used as substrates. Some of the substrates have been pretreated ultrasonically with diamond powder in order to enhance the nucleation density n nuc. It turned out that n nuc depends critically on the chemical nature of the substrate, its smoothness and the pretreatment applied. No differences to the nucleation behaviour of CVD PCD films were observed. On the other hand, the growth process seems to be not affected by the substrate material. The crystallinity (studied by X-ray diffraction) and the bonding environment (investigated by Raman spectroscopy) show no significant differences for the various substrates. The mechanical and tribological properties, finally, reflect again the influence of the substrate material: on TiN, a lower hardness was measured as compared to Si, PCD and c-BN, whereas the adhesion of c-BN/nanocrystalline diamond (NCD) system was determined by that of the c-BN film on the underlying Si substrate

  8. Diamond tool machining of materials which react with diamond

    Science.gov (United States)

    Lundin, Ralph L.; Stewart, Delbert D.; Evans, Christopher J.

    1992-01-01

    Apparatus for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond.

  9. Comparison theorems for causal diamonds

    CERN Document Server

    Berthiere, Clement; Solodukhin, Sergey N

    2015-01-01

    We formulate certain inequalities for the geometric quantities characterizing causal diamonds in curved and Minkowski spacetimes. These inequalities involve the red-shift factor which, as we show explicitly in the spherically symmetric case, is monotonic in the radial direction and it takes its maximal value at the centre. As a byproduct of our discussion we re-derive Bishop's inequality without assuming the positivity of the spatial Ricci tensor. We then generalize our considerations to arbitrary, static and not necessarily spherically symmetric, asymptotically flat spacetimes. In the case of spacetimes with a horizon our generalization involves the so-called {\\it domain of dependence}. The respective volume, expressed in terms of the duration measured by a distant observer compared with the volume of the domain in Minkowski spacetime, exhibits behaviours which differ if $d=4$ or $d>4$. This peculiarity of four dimensions is due to the logarithmic subleading term in the asymptotic expansion of the metric nea...

  10. Optical engineering of diamond

    CERN Document Server

    Rabeau, James R

    2013-01-01

    This is the first comprehensive book on the engineering of diamond optical devices. It will give readers an up-to-date account of the properties of optical quality synthetic diamond (single crystal, nanodiamond and polycrystalline) and reviews the large and growing field of engineering of diamond-based optical devices, with applications in quantum computation, nano-imaging, high performance lasers, and biomedicine. It aims to provide scientists, engineers and physicists with a valuable resource and reference book for the design and performance of diamond-based optical devices.

  11. Flat roof integration. CPT solar (AET IV)

    Energy Technology Data Exchange (ETDEWEB)

    Chianese, D.; Pola, I.; Bernasconi, A.; Bura, E.; Cereghetti, N.; Realini, A.; Pasinelli, P.; Rioggi, S.

    2007-11-15

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) takes a look at a 15.4 kWp solar power installation in Trevano, Switzerland, that features flexible amorphous silicon triple-junction modules, mounted nearly horizontally and directly laminated to flexible polyolefin membranes that form the covering of a flat roof. The main objective of this study was to verify in which order of magnitude the better thermal behaviour of amorphous silicon cells can compensate for losses due to the quasi-horizontal roof integration (lower irradiation and higher reflection), and thus be competitive in the flat roof construction and refurbishment markets. The modules used and their characteristics are described. Performance, temperature levels and energy-production are reviewed for the panels of the installation. The performance of the inverter used is also reviewed. Data on temperatures and production are presented in graphical form and optical losses are examined.

  12. Diamond Pixel Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L. E-mail: perera@physics.rutgers.edu; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M

    2001-06-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles.

  13. Diamond pixel detectors

    CERN Document Server

    Adam, W; Bergonzo, P; Bertuccio, G; Bognai, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Deneuville, A; Doroshenko, J; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foster, J; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Gobbi, B; Grim, G P; Hallewell, G D; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Koeth, T W; Krammer, Manfred; Lander, R; Lo Giudice, A; Lü, R; MacLynne, L; Manfredotti, C; Meier, D; Mishina, M; Moroni, L; Oh, A; Pan, L S; Pernicka, Manfred; Perera, L P; Pirollo, S; Plano, R; Procario, M; Riester, J L; Roe, S; Rott, C; Rousseau, L; Rudge, A; Russ, J; Sala, S; Sampietro, M; Schnetzer, S; Sciortino, S; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R; Trischuk, W; Tromson, D; Vittone, E; Wedenig, R; Weilhammer, Peter; White, C; Zeuner, W; Zöller, M

    2001-01-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles. (3 refs).

  14. Diamond Pixel Detectors

    International Nuclear Information System (INIS)

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles

  15. Investing in Diamonds

    NARCIS (Netherlands)

    Renneboog, Luc

    2015-01-01

    This paper examines the risk-return characteristics of investment grade gems (white diamonds, colored diamonds and other types of gems including sapphires, rubies, and emeralds). The transactions are coming from gem auctions and span the period 1999-2012. Over our time frame, the annual nominal USD

  16. ENZO CAPE DIAMOND

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    ENZO CAPE DIAMOND debuted at Shanghai Jiu Guang Department Store on December 18. Models from South Africa and Brazil displayed ENZO CAPE DIAMOND at the releasing ceremony for invited clients and special guest, Leon Jay Williams, a Singapore-born movie star.

  17. Diamond films: Historical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Messier, R. [Pennsylvania State Univ., University Park (United States)

    1993-01-01

    This section is a compilation of notes and published international articles about the development of methods of depositing diamond films. Vapor deposition articles are included from American, Russian, and Japanese publications. The international competition to develop new deposition methodologies is stressed. The current status of chemical vapor deposition of diamond is assessed.

  18. STABLE DIAMOND GRINDING

    Directory of Open Access Journals (Sweden)

    Yury Gutsalenko

    2010-06-01

    Full Text Available The paper generalizes on the one hand theory of kinematic-geometrical simulation of grinding processes by means of tools with working part as binding matrix with abrasive grains located in it in random manner, for example diamond grains, and on the other hand practical performance of combined grinding process, based on introduction of additional energy as electric discharges and called by the organization-developer (Kharkov Polytechnic Institute «diamond-spark grinding» as applied to processing by means of diamond wheel. Implementation of diamond-spark grinding technologies on the basis of developed generalized theoretical approach allows to use the tool with prescribed tool-life, moreover to make the most efficient use of it up to full exhausting of tool-life, determined by diamond-bearing thickness. Development is directed forward computer-aided manufacturing.

  19. Diamond Integrated Optomechanical Circuits

    CERN Document Server

    Rath, Patrik; Nebel, Christoph; Wild, Christoph; Pernice, Wolfram H P

    2013-01-01

    Diamond offers unique material advantages for the realization of micro- and nanomechanical resonators due to its high Young's modulus, compatibility with harsh environments and superior thermal properties. At the same time, the wide electronic bandgap of 5.45eV makes diamond a suitable material for integrated optics because of broadband transparency and the absence of free-carrier absorption commonly encountered in silicon photonics. Here we take advantage of both to engineer full-scale optomechanical circuits in diamond thin films. We show that polycrystalline diamond films fabricated by chemical vapour deposition provide a convenient waferscale substrate for the realization of high quality nanophotonic devices. Using free-standing nanomechanical resonators embedded in on-chip Mach-Zehnder interferometers, we demonstrate efficient optomechanical transduction via gradient optical forces. Fabricated diamond resonators reproducibly show high mechanical quality factors up to 11,200. Our low cost, wideband, carri...

  20. Ionoluminescence of diamond, synthetic diamond and simulants

    Energy Technology Data Exchange (ETDEWEB)

    Calvo del Castillo, H. [Departamento de Geologia y Geoquimica, Facultad de Ciencias, Universidad Autonoma de Madrid, Ctra de Colmenar km 15, Madrid 27049 (Spain); Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica s/n, Ciudad Universitaria, Ciudad de Mexico 04519, Mexico, DF (Mexico); Ruvalcaba-Sil, J.L. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica s/n, Ciudad Universitaria, Ciudad de Mexico 04519, Mexico, DF (Mexico); Barboza-Flores, M. [Centro de Investigacio en Fisica, Universidad de Sonora, Apartado postal 5-088, Hermosillo, Sonora 83190 (Mexico); Belmont, E. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica s/n, Ciudad Universitaria, Ciudad de Mexico 04519, Mexico, DF (Mexico); Calderon, T. [Departamento de Geologia y Geoquimica, Facultad de Ciencias, Universidad Autonoma de Madrid, Ctra de Colmenar km 15, Madrid 27049 (Spain)], E-mail: tomas.calderon@uam.es

    2007-09-21

    Ionoluminescence (IL) spectra of diamond (natural samples and synthetic CVD) and its more common synthetic simulates such as sapphire, spinel, cubic zirconia, strontium titanate and yttrium aluminium garnet (YAG: Er) will be discussed here in order to support some criteria that will allow to distinguish between them. While diamond shows emission bands due to nitrogen defects, simulants feature d-transition metals and rare earths such as Cr{sup 3+}, Mn{sup 2+}, Fe{sup 3+}, Ti{sup 3+} and Er{sup 3+} emissions.

  1. Electron microscopic evidence for a tribologically induced phase transformation as the origin of wear in diamond

    International Nuclear Information System (INIS)

    Tribological testing of a coarse-grained diamond layer, deposited by plasma-enhanced chemical vapor deposition, was performed on a ring-on-ring tribometer with a diamond counterpart. The origin of the wear of diamond and of the low friction coefficient of 0.15 was studied by analyzing the microstructure of worn and unworn regions by transmission and scanning electron microscopy. In the worn regions, the formation of an amorphous carbon layer with a thickness below 100 nm is observed. Electron energy loss spectroscopy of the C-K ionization edge reveals the transition from sp3-hybridized C-atoms in crystalline diamond to a high fraction of sp2-hybridized C-atoms in the tribo-induced amorphous C-layer within a transition region of less than 5 nm thickness. The mechanically induced phase transformation from diamond to the amorphous phase is found to be highly anisotropic which is clearly seen at a grain boundary, where the thickness of the amorphous layer above the two differently oriented grains abruptly changes

  2. ESR studies of high-energy phosphorus-ion implanted synthetic diamond crystals

    Energy Technology Data Exchange (ETDEWEB)

    Isoya, J. [University of Library and Information Science, Tsukuba, Ibaraki (Japan); Kanda, H.; Morita, Y.; Ohshima, T.

    1997-03-01

    Phosphorus is among potential n-type dopants in diamond. High pressure synthetic diamond crystals of type IIa implanted with high energy (9-18 MeV) phosphorus ions have been studied by using electron spin resonance (ESR) technique. The intensity and the linewidth of the ESR signal attributed to the dangling bond of the amorphous phase varied with the implantation dose, suggesting the nature of the amorphization varies with the dose. The ESR signals of point defects have been observed in the low dose as-implanted crystals and in the high dose crystals annealed at high temperature and at high pressure. (author)

  3. Science's gem: Diamond science 2009

    OpenAIRE

    MAINWOOD, A.; Newton, M. E.; STONEHAM, M.

    2009-01-01

    Natural diamond has been valued for its appearance and mechanical properties for at least two thousand years. As a gem stone diamond is unsurpassed. However, scientific work, especially in the last 20 years, has demonstrated that diamond has numerous surprising properties and many unique ones. Some of the extreme properties have been known for many years, but the true scale of diamond's other highly desirable features is still only coming to light as control in the synthesis of diamond, and h...

  4. Preparation and Thermal Characterization of Diamond-Like Carbon Films

    Institute of Scientific and Technical Information of China (English)

    BAI Su-Yuan; TANG Zhen-An; HUANG Zheng-Xing; Yu Jun; WANG Jing; LIU Gui-Chang

    2009-01-01

    Diamond-like carbon (DLC) films are prepared on silicon substrates by microwave electron cyclotron resonance plasma enhanced chemical vapor deposition. Raman spectroscopy indicates that the films have an amorphous structure and typical characteristics. The topographies of the films are presented by AFM images. Effective thermal conductivities of the films are measured using a nanosecond pulsed photothermal reflectance method. The results show that thermal conductivity is dominated by the microstructure of the films.

  5. Nanoindentation tests on diamond-machined silicon wafers

    OpenAIRE

    YAN, Jiwang; Takahashi, Hirokazu; Tamaki, Jun-ichi; Gai, Xiaohui; Harada, Hirofumi; Patten, John

    2005-01-01

    Nanoindentation tests were performed on ultraprecision diamond-turned silicon wafers and the results were compared with those of pristine silicon wafers. Remarkable differences were found between the two kinds of test results in terms of load-displacement characteristics and indent topologies. The machining-induced amorphous layer was found to have significantly higher microplasticity and lower hardness than pristine silicon. When machining silicon in the ductile mode, we are in essence alway...

  6. Synthesis and characterization of a nanocrystalline diamond aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Pauzauskie, Peter J.; Crowhurst, Jonathan C.; Worsley, Marcus A.; Laurence, Ted A.; Kilcoyne, A. L. David; Wang, Yinmin; Willey, Trevor M.; Visbeck, Kenneth S.; Fakra, Sirine C.; Evans, William J.; Zaug, Joseph M.; Satcher, Jr., Joe H.

    2011-07-06

    Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel's void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material reveal the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel.

  7. Concepts for diamond electronics

    International Nuclear Information System (INIS)

    The present status in the development of diamond as electronic semiconductor material with wide band-gap (5.45 eV) is reviewed. Since diamond cannot be doped with shallow impurities, specific doping concepts and related diode and FET structures had to be developed, restricted to p-type boron doping. The results allow to predict that diamond high voltage switching diodes, high power RF FET sources and operation at high temperature will surpass the capability of devices designed in competing wide band-gap materials like SiC and GaN

  8. Rectangular Diamond-Lined Accelerator Structure

    CERN Document Server

    Wang, Changbiao; Yakovlev, Vyacheslav P

    2005-01-01

    For high frequency accelerators with normal-conducting structures studied by the NLC/GLC collaboration and the CLIC group, rf breakdown is the main gradient limitation. In this paper, a Ka-band rectangular dielectric-lined structure is described as an attempt to increase accelerating gradient beyond the limits suitable for metallic structures. The structure is based on amorphous dielectrics that are known to exhibit high breakdown limits (~ GV/m). An example is artificial diamond that has already been successfully used on an industrial basis for large-diameter output windows of high power gyrotrons, and is produced industrially in increasing quantities. Artificial diamond has low loss tangent, moderate dielectric constant and high breakdown limit of ~2 GV/m. In the proposed structure diamond-slabs are employed to support high-gradient acceleration fields. Interposition of vacuum gaps between the dielectric slabs and the side walls is shown to reduce Ohmic losses substantially, leading to an increase in shunt ...

  9. Coaxial carbon plasma gun deposition of amorphous carbon films

    International Nuclear Information System (INIS)

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented

  10. Coaxial carbon plasma gun deposition of amorphous carbon films

    Science.gov (United States)

    Sater, D. M.; Gulino, D. A.; Rutledge, S. K.

    1984-01-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented.

  11. Improvement on electrical conductivity and electron field emission properties of Au-ion implanted ultrananocrystalline diamond films by using Au-Si eutectic substrates

    International Nuclear Information System (INIS)

    In the present work, Au-Si eutectic layer was used to enhance the electrical conductivity/electron field emission (EFE) properties of Au-ion implanted ultrananocrystalline diamond (Au-UNCD) films grown on Si substrates. The electrical conductivity was improved to a value of 230 (Ω cm)−1, and the EFE properties was enhanced reporting a low turn-on field of 2.1 V/μm with high EFE current density of 5.3 mA/cm2 (at an applied field of 4.9 V/μm) for the Au-UNCD films. The formation of SiC phase circumvents the formation of amorphous carbon prior to the nucleation of diamond on Si substrates. Consequently, the electron transport efficiency of the UNCD-to-Si interface increases, thereby improving the conductivity as well as the EFE properties. Moreover, the salient feature of these processes is that the sputtering deposition of Au-coating for preparing the Au-Si interlayer, the microwave plasma enhanced chemical vapor deposition process for growing the UNCD films, and the Au-ion implantation process for inducing the nanographitic phases are standard thin film preparation techniques, which are simple, robust, and easily scalable. The availability of these highly conducting UNCD films with superior EFE characteristics may open up a pathway for the development of high-definition flat panel displays and plasma devices

  12. Improvement on electrical conductivity and electron field emission properties of Au-ion implanted ultrananocrystalline diamond films by using Au-Si eutectic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Sankaran, K. J. [Department of Materials Science and Engineering, National Tsing Hua University, Hsin-Chu Taiwan 300, Taiwan (China); Institute for Materials Research (IMO), Hasselt University, 3590 Diepenbeek (Belgium); Sundaravel, B. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Tai, N. H., E-mail: nhtai@mx.nthu.edu.tw, E-mail: inanlin@mail.tku.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsin-Chu Taiwan 300, Taiwan (China); Lin, I. N., E-mail: nhtai@mx.nthu.edu.tw, E-mail: inanlin@mail.tku.edu.tw [Department of Physics, Tamkang University, Tamsui, Taiwan 251, Taiwan (China)

    2015-08-28

    In the present work, Au-Si eutectic layer was used to enhance the electrical conductivity/electron field emission (EFE) properties of Au-ion implanted ultrananocrystalline diamond (Au-UNCD) films grown on Si substrates. The electrical conductivity was improved to a value of 230 (Ω cm){sup −1}, and the EFE properties was enhanced reporting a low turn-on field of 2.1 V/μm with high EFE current density of 5.3 mA/cm{sup 2} (at an applied field of 4.9 V/μm) for the Au-UNCD films. The formation of SiC phase circumvents the formation of amorphous carbon prior to the nucleation of diamond on Si substrates. Consequently, the electron transport efficiency of the UNCD-to-Si interface increases, thereby improving the conductivity as well as the EFE properties. Moreover, the salient feature of these processes is that the sputtering deposition of Au-coating for preparing the Au-Si interlayer, the microwave plasma enhanced chemical vapor deposition process for growing the UNCD films, and the Au-ion implantation process for inducing the nanographitic phases are standard thin film preparation techniques, which are simple, robust, and easily scalable. The availability of these highly conducting UNCD films with superior EFE characteristics may open up a pathway for the development of high-definition flat panel displays and plasma devices.

  13. Improvement on electrical conductivity and electron field emission properties of Au-ion implanted ultrananocrystalline diamond films by using Au-Si eutectic substrates

    Science.gov (United States)

    Sankaran, K. J.; Sundaravel, B.; Tai, N. H.; Lin, I. N.

    2015-08-01

    In the present work, Au-Si eutectic layer was used to enhance the electrical conductivity/electron field emission (EFE) properties of Au-ion implanted ultrananocrystalline diamond (Au-UNCD) films grown on Si substrates. The electrical conductivity was improved to a value of 230 (Ω cm)-1, and the EFE properties was enhanced reporting a low turn-on field of 2.1 V/μm with high EFE current density of 5.3 mA/cm2 (at an applied field of 4.9 V/μm) for the Au-UNCD films. The formation of SiC phase circumvents the formation of amorphous carbon prior to the nucleation of diamond on Si substrates. Consequently, the electron transport efficiency of the UNCD-to-Si interface increases, thereby improving the conductivity as well as the EFE properties. Moreover, the salient feature of these processes is that the sputtering deposition of Au-coating for preparing the Au-Si interlayer, the microwave plasma enhanced chemical vapor deposition process for growing the UNCD films, and the Au-ion implantation process for inducing the nanographitic phases are standard thin film preparation techniques, which are simple, robust, and easily scalable. The availability of these highly conducting UNCD films with superior EFE characteristics may open up a pathway for the development of high-definition flat panel displays and plasma devices.

  14. Structural morphology of amorphous conducting carbon film

    Indian Academy of Sciences (India)

    P N Vishwakarma; V Prasad; S V Subramanyam; V Ganesan

    2005-10-01

    Amorphous conducting carbon films deposited over quartz substrates were analysed using X-ray diffraction and AFM technique. X-ray diffraction data reveal disorder and roughness in the plane of graphene sheet as compared to that of graphite. This roughness increases with decrease in preparation temperature. The AFM data shows surface roughness of carbon films depending on preparation temperatures. The surface roughness increases with decrease in preparation temperature. Also some nucleating islands were seen on the samples prepared at 900°C, which are not present on the films prepared at 700°C. Detailed analysis of these islands reveals distorted graphitic lattice arrangement. So we believe these islands to be nucleating graphitic. Power spectrum density (PSD) analysis of the carbon surface indicates a transition from the nonlinear growth mode to linear surface-diffusion dominated growth mode resulting in a relatively smoother surface as one moves from low preparation temperature to high preparation temperature. The amorphous carbon films deposited over a rough quartz substrate reveal nucleating diamond like structures. The density of these nucleating diamond like structures was found to be independent of substrate temperature (700–900°C).

  15. PREFACE: Science's gem: diamond science 2009 Science's gem: diamond science 2009

    Science.gov (United States)

    Mainwood, Alison; Newton, Mark E.; Stoneham, Marshall

    2009-09-01

    devices, exploiting excellent quality boron doped p-type material, can be designed [3]. Electrical contacts can be tricky to fabricate, but progress is being made here [3, 27]. Diamond is perceived as unacceptably expensive, but for a high-quality device for an exceptional environment, this is not a problem. Carbon-based electronic materials are strikingly diverse. They include diamond, graphite, nanotubes and buckyball structures, amorphous carbons, and nanodiamond. Add hydrogen and one has a range of diamond-like carbons and the wealth of organics. Such carbon-based materials include small molecules and polymers: impressive insulators, semiconducting and conducting polymers, switchable forms, superconducting and magnetic forms, and some with the highest electrical conductivities of any material. Diamond-like carbons can have controllable mechanical properties from the viscoelastic to the highly rigid. Photochemistry brings opportunities for novel processing methods. Even water-based processing may sometimes be possible (alas, not for diamond), and additional tools like self-organisation of organic molecules on surfaces have been demonstrated. The best carbons have impressive, sometimes supreme, performances, including the mobility and optical properties of diamond, spin-conserving transport in carbon nanotubes, and electron emission. For almost all measures of performance, there is some carbon-based material that performs better than silicon. Might hybrid carbon-based materials be more successful even than silicon [28]? Should we think less about 'diamond' and more about the integration of diamond as one component of carbon electronics? Device fabrication needs lithography optics and resists, and processing at the anticipated smaller scales may well exploit new electronic excitation methods. Alternative dielectrics and interconnect materials introduce new compatibility issues, and there are further varied constraints from displays, spintronic components, electron

  16. Structural peculiarities of single crystal diamond needles of nanometer thickness

    Science.gov (United States)

    Orekhov, Andrey S.; Tuyakova, Feruza T.; Obraztsova, Ekaterina A.; Loginov, Artem B.; Chuvilin, Andrey L.; Obraztsov, Alexander N.

    2016-11-01

    Diamond is attractive for various applications due to its unique mechanical and optical properties. In particular, single crystal diamond needles with high aspect ratios and sharp apexes of nanometer size are demanded for different types of optical sensors including optically sensing tip probes for scanning microscopy. This paper reports on electron microscopy and Raman spectroscopy characterization of the diamond needles having geometrically perfect pyramidal shapes with rectangular atomically flat bases with (001) crystallography orientation, 2–200 nm sharp apexes, and with lengths from about 10–160 μm. The needles were produced by selective oxidation of (001) textured polycrystalline diamond films grown by chemical vapor deposition. Here we study the types and distribution of defects inside and on the surface of the single crystal diamond needles. We show that sp3 type point defects are incorporated into the volume of the diamond crystal during growth, while the surface of the lateral facets is enriched by multiple extended defects. Nitrogen addition to the reaction mixture results in increase of the growth rate on {001} facets correlated with the rise in the concentration of sp3 type defects.

  17. Diamond nanobeam waveguide optomechanics

    CERN Document Server

    Khanaliloo, Behzad; Hryciw, Aaron C; Lake, David P; Kaviani, Hamidreza; Barclay, Paul E

    2015-01-01

    Optomechanical devices sensitively transduce and actuate motion of nanomechanical structures using light, and are central to many recent fundamental studies and technological advances. Single--crystal diamond promises to improve the performance of optomechanical devices, while also providing opportunities to interface nanomechanics with diamond color center spins and related quantum technologies. Here we demonstrate measurement of diamond nanobeam resonators with a sensitivity of 9.5 fm/Hz^0.5 and bandwidth >120 nm through dissipative waveguide--optomechanical coupling. Nanobeams are fabricated from bulk single--crystal diamond using a scalable quasi--isotropic oxygen plasma undercut etching process, and support mechanical resonances with quality factor of 2.5 x 10^5 at room temperature, and 7.2 x 10^5 in cryogenic conditions (5K). Mechanical self--oscillations, resulting from interplay between optomechanical coupling and the photothermal response of nanobeams in a buckled state, are observed with amplitude e...

  18. Functionalized diamond nanoparticles

    KAUST Repository

    Beaujuge, Pierre M.

    2014-10-21

    A diamond nanoparticle can be functionalized with a substituted dienophile under ambient conditions, and in the absence of catalysts or additional reagents. The functionalization is thought to proceed through an addition reaction.

  19. Fabrication of diamond shells

    Energy Technology Data Exchange (ETDEWEB)

    Hamza, Alex V.; Biener, Juergen; Wild, Christoph; Woerner, Eckhard

    2016-11-01

    A novel method for fabricating diamond shells is introduced. The fabrication of such shells is a multi-step process, which involves diamond chemical vapor deposition on predetermined mandrels followed by polishing, microfabrication of holes, and removal of the mandrel by an etch process. The resultant shells of the present invention can be configured with a surface roughness at the nanometer level (e.g., on the order of down to about 10 nm RMS) on a mm length scale, and exhibit excellent hardness/strength, and good transparency in the both the infra-red and visible. Specifically, a novel process is disclosed herein, which allows coating of spherical substrates with optical-quality diamond films or nanocrystalline diamond films.

  20. Flat for Free Flow

    Institute of Scientific and Technical Information of China (English)

    Yan Manman

    2010-01-01

    @@ Just as Thomas Fried man's famous book,The World Is Flat,if not completely flat,it is anyway tending to be shaped flat.January 1,2010 saw the formation of the China-ASEAN Free Trade Agreement(CAFTA),which was another historical event flattening majority of Asia continent for international trade.

  1. Study of carbide-forming element interlayers for diamond nucleation and growth on silicon and WC-Co substrates

    International Nuclear Information System (INIS)

    Diamond nucleation and growth on several typical carbide-forming elements (CFE) (Ti, Cr and W) coated Si and WC-Co substrates were studied. The ion beam sputtered CFE interlayers show an amorphous/nanocrystalline microstructure. The diamond formed on the CFE coated substrates shows higher nucleation density and rate and finer grain structure than on uncoated substrates. Consequently, nanocrystalline diamond thin films can be formed on the CFE coated substrates under conventional microcrystalline diamond growth conditions. Among the three tested CFE interlayers, diamond has the highest nucleation density and rate on W layer and the lowest on Ti layer. The diamond nucleation density and rate on CFE coated WC-Co are much higher than those on widely used metal nitride coated WC-Co.

  2. Study of carbide-forming element interlayers for diamond nucleation and growth on silicon and WC-Co substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Y., E-mail: yongji.tang@usask.c [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Plasma Physics Laboratory, University of Saskatchewan, 116 Science Place, Saskatoon, SK S7N 5E2 (Canada); Li, Y.S. [Plasma Physics Laboratory, University of Saskatchewan, 116 Science Place, Saskatoon, SK S7N 5E2 (Canada); Yang, Q., E-mail: qiaoqin.yang@usask.c [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Hirose, A. [Plasma Physics Laboratory, University of Saskatchewan, 116 Science Place, Saskatoon, SK S7N 5E2 (Canada)

    2010-12-30

    Diamond nucleation and growth on several typical carbide-forming elements (CFE) (Ti, Cr and W) coated Si and WC-Co substrates were studied. The ion beam sputtered CFE interlayers show an amorphous/nanocrystalline microstructure. The diamond formed on the CFE coated substrates shows higher nucleation density and rate and finer grain structure than on uncoated substrates. Consequently, nanocrystalline diamond thin films can be formed on the CFE coated substrates under conventional microcrystalline diamond growth conditions. Among the three tested CFE interlayers, diamond has the highest nucleation density and rate on W layer and the lowest on Ti layer. The diamond nucleation density and rate on CFE coated WC-Co are much higher than those on widely used metal nitride coated WC-Co.

  3. Diamond dipole active antenna

    OpenAIRE

    Bubnov, I. N.; Falkovych, I. S.; Gridin, A. A.; Stanislavsky, A. A.; Reznik, A. P.

    2015-01-01

    Advantages of the diamond dipole antenna as an active antenna are presented. Such an antenna is like an inverted bow-tie antenna, but the former has some advantages over the ordinary bow-tie antenna. It is shown that the diamond dipole antenna may be an effective element of a new antenna array for low-frequency radio astronomy as well as a communication antenna.

  4. Novel phase of carbon, ferromagnetism, and conversion into diamond

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Jagdish, E-mail: narayan@ncsu.edu; Bhaumik, Anagh [Department of Materials Science and Engineering, Centennial Campus, North Carolina State University, Raleigh, North Carolina 27695-7907 (United States)

    2015-12-07

    We report the discovery of a new phase of carbon (referred to as Q-carbon) and address fundamental issues related to direct conversion of carbon into diamond at ambient temperatures and pressures in air without any need for catalyst and presence of hydrogen. The Q-carbon is formed as result of quenching from super undercooled state by using high-power nanosecond laser pulses. We discuss the equilibrium phase diagram (P vs. T) of carbon and show that by rapid quenching kinetics can shift thermodynamic graphite/diamond/liquid carbon triple point from 5000 K/12 GPa to super undercooled carbon at atmospheric pressure in air. It is shown that nanosecond laser heating of diamond-like amorphous carbon on sapphire, glass, and polymer substrates can be confined to melt carbon in a super undercooled state. By quenching the carbon from the super undercooled state, we have created a new state of carbon (Q-carbon) from which nanodiamond, microdiamond, microneedles, and single-crystal thin films are formed depending upon the nucleation and growth times allowed for diamond formation. The Q-carbon quenched from liquid is a new state of solid carbon with a higher mass density than amorphous carbon and a mixture of mostly fourfold sp{sup 3} (75%–85%) with the rest being threefold sp{sup 2} bonded carbon (with distinct entropy). It is expected to have new and improved mechanical hardness, electrical conductivity, chemical, and physical properties, including room-temperature ferromagnetism (RTFM) and enhanced field emission. Here we present interesting results on RTFM, enhanced electrical conductivity and surface potential of Q-carbon to emphasize its unique properties. The Q-carbon exhibits robust bulk ferromagnetism with estimated Curie temperature of about 500 K and saturation magnetization value of 20 emu g{sup −1}. From the Q-carbon, diamond phase is nucleated and a variety of micro- and nanostructures and large-area single-crystal diamond sheets are grown by allowing

  5. Novel phase of carbon, ferromagnetism, and conversion into diamond

    Science.gov (United States)

    Narayan, Jagdish; Bhaumik, Anagh

    2015-12-01

    We report the discovery of a new phase of carbon (referred to as Q-carbon) and address fundamental issues related to direct conversion of carbon into diamond at ambient temperatures and pressures in air without any need for catalyst and presence of hydrogen. The Q-carbon is formed as result of quenching from super undercooled state by using high-power nanosecond laser pulses. We discuss the equilibrium phase diagram (P vs. T) of carbon and show that by rapid quenching kinetics can shift thermodynamic graphite/diamond/liquid carbon triple point from 5000 K/12 GPa to super undercooled carbon at atmospheric pressure in air. It is shown that nanosecond laser heating of diamond-like amorphous carbon on sapphire, glass, and polymer substrates can be confined to melt carbon in a super undercooled state. By quenching the carbon from the super undercooled state, we have created a new state of carbon (Q-carbon) from which nanodiamond, microdiamond, microneedles, and single-crystal thin films are formed depending upon the nucleation and growth times allowed for diamond formation. The Q-carbon quenched from liquid is a new state of solid carbon with a higher mass density than amorphous carbon and a mixture of mostly fourfold sp3 (75%-85%) with the rest being threefold sp2 bonded carbon (with distinct entropy). It is expected to have new and improved mechanical hardness, electrical conductivity, chemical, and physical properties, including room-temperature ferromagnetism (RTFM) and enhanced field emission. Here we present interesting results on RTFM, enhanced electrical conductivity and surface potential of Q-carbon to emphasize its unique properties. The Q-carbon exhibits robust bulk ferromagnetism with estimated Curie temperature of about 500 K and saturation magnetization value of 20 emu g-1. From the Q-carbon, diamond phase is nucleated and a variety of micro- and nanostructures and large-area single-crystal diamond sheets are grown by allowing growth times as needed

  6. MAMA NUV Flats

    Science.gov (United States)

    Sana, Hugues

    2013-10-01

    This program is aimed at obtaining NUV-MAMA flat-field observations for the construction of pixel-to-pixel flats {p-flats} with a SNR of 100 per binned pixel. The flats are obtained with the DEUTERIUM-lamp and the MR grisms G230M. The actual choice of central wavelength and slit combination depends on the observed count level within each exposure.Note that STIS NUV-MAMA flats are taken every other cycles{i.e. during odd number cycles} in order to not drain the DEUTERIUMlamp lifetime.

  7. Corrosion resistant amorphous alloys

    International Nuclear Information System (INIS)

    A review of publication data on corrosion resistance of amorphous alloys and the methods of amorphization of surface layers of massive materials (laser treatment, iron implantation, detonation-gas spraying, cathode and ion sputtering, electrodeposition) was made. A study was made on corrosion properties of Fe66Cr11B10Si4 alloy in cast state and after laser irradiation, rendering the surface amorphous as well as the samples of Arenco iron and steel 20 with ion-plasma coatings of Fe-Cr-Ni-Ti alloy. It was established that amorphous coatings posses much higher corrosion resistance as compared to crystalline alloys on the same base

  8. Cryotribology of diamond and graphite

    Energy Technology Data Exchange (ETDEWEB)

    Iwasa, Yukikazu; Ashaboglu, A.F.; Rabinowicz, E.R. [Francis Bitter Magnet Lab., Cambridge, MA (United States)

    1996-12-31

    An experimental study was carried out on the tribological behavior of materials of interest in cryogenic applications, focusing on diamond and graphite. Both natural diamond (referred in the text as diamond) and chemical-vapor-deposition (CVD) diamond (CVD-diamond) were used. The experiment was carried out using a pin-on-disk tribometer capable of operating at cryogenic temperatures, from 4.2 to 293 K. Two basic scenarios of testing were used: (1) frictional coefficient ({mu}) vs velocity (v) characteristics at constant temperatures; (2) {mu} vs temperature (T) behavior at fixed sliding speeds. For diamond/CVD-diamond, graphite/CVD-diamond, stainless steel/CVD-diamond pairs, {mu}`s are virtually velocity independent. For each of diamond/graphite, alumina/graphite, and graphite/graphite pairs, the {partial_derivative}{mu}/{partial_derivative}v characteristic is favorable, i.e., positive. For diamond/CVD-diamond and graphite/CVD-diamond pairs, {mu}`s are nearly temperature independent between in the range 77 - 293 K. Each {mu} vs T plot for pin materials sliding on graphite disks has a peak at a temperature in the range 100 - 200 K.

  9. Diamond Electronic Devices

    Science.gov (United States)

    Isberg, J.

    2010-11-01

    For high-power and high-voltage applications, silicon is by far the dominant semiconductor material. However, silicon has many limitations, e.g. a relatively low thermal conductivity, electric breakdown occurs at relatively low fields and the bandgap is 1.1 eV which effectively limits operation to temperatures below 175° C. Wide-bandgap materials, such as silicon carbide (SiC), gallium nitride (GaN) and diamond offer the potential to overcome both the temperature and power handling limitations of silicon. Diamond is the most extreme in this class of materials. By the fundamental material properties alone, diamond offers the largest benefits as a semiconductor material for power electronic applications. On the other hand, diamond has a problem with a large carrier activation energy of available dopants which necessitates specialised device concepts to allow room temperature (RT) operation. In addition, the role of common defects on the charge transport properties of diamond is poorly understood. Notwithstanding this, many proof-of-principle two-terminal and three-terminal devices have been made and tested. Two-terminal electronic diamond devices described in the literature include: p-n diodes, p-i-n diodes, various types of radiation detectors, Schottky diodes and photoconductive or electron beam triggered switches. Three terminal devices include e.g. MISFETs and JFETs. However, the development of diamond devices poses great challenges for the future. A particularly interesting way to overcome the doping problem, for which there has been some recent progress, is to make so-called delta doped (or pulse-doped) devices. Such devices utilise very thin (˜1 nm) doped layers in order to achieve high RT activation.

  10. Diamond Electronic Devices

    International Nuclear Information System (INIS)

    For high-power and high-voltage applications, silicon is by far the dominant semiconductor material. However, silicon has many limitations, e.g. a relatively low thermal conductivity, electric breakdown occurs at relatively low fields and the bandgap is 1.1 eV which effectively limits operation to temperatures below 175 deg.n C. Wide-bandgap materials, such as silicon carbide (SiC), gallium nitride (GaN) and diamond offer the potential to overcome both the temperature and power handling limitations of silicon. Diamond is the most extreme in this class of materials. By the fundamental material properties alone, diamond offers the largest benefits as a semiconductor material for power electronic applications. On the other hand, diamond has a problem with a large carrier activation energy of available dopants which necessitates specialised device concepts to allow room temperature (RT) operation. In addition, the role of common defects on the charge transport properties of diamond is poorly understood. Notwithstanding this, many proof-of-principle two-terminal and three-terminal devices have been made and tested. Two-terminal electronic diamond devices described in the literature include: p-n diodes, p-i-n diodes, various types of radiation detectors, Schottky diodes and photoconductive or electron beam triggered switches. Three terminal devices include e.g. MISFETs and JFETs. However, the development of diamond devices poses great challenges for the future. A particularly interesting way to overcome the doping problem, for which there has been some recent progress, is to make so-called delta doped (or pulse-doped) devices. Such devices utilise very thin (∼1 nm) doped layers in order to achieve high RT activation.

  11. Diamond electronic properties and applications

    CERN Document Server

    Kania, Don R

    1995-01-01

    The use of diamond in electronic applications is not a new idea, but limitations in size and control of properties restricted the use of diamond to a few specialised applications. The vapour-phase synthesis of diamond, however, has facilitated serious interest in the development of diamond-based electronic devices. The process allows diamond films to be laid down over large areas. Both intrinsic and doped diamond films have a unique combination of extreme properties for high speed, high power and high temperature applications. The eleven chapters in Diamond: Electronic Properties and Applications, written by the world's foremost experts on the subject, give a complete characterisation of the material, in both intrinsic and doped forms, explain how to grow it for electronic applications, how to use the grown material, and a description of both passive and active devices in which it has been used with success. Diamond: Electronic Properties and Applications is a compendium of the available literature on the sub...

  12. Diamond pixel modules

    CERN Document Server

    Gan, K K; Robichaud, A; Potenza, R; Kuleshov, S; Kagan, H; Kass, R; Wermes, N; Dulinski, W; Eremin, V; Smith, S; Sopko, B; Olivero, P; Gorisek, A; Chren, D; Kramberger, G; Schnetzer, S; Weilhammer, P; Martemyanov, A; Hugging, F; Pernegger, H; Lagomarsino, S; Manfredotti, C; Mishina, M; Trischuk, W; Dobos, D; Cindro, V; Belyaev, V; Duris, J; Claus, G; Wallny, R; Furgeri, A; Tuve, C; Goldstein, J; Sciortino, S; Sutera, C; Asner, D; Mikuz, M; Lo Giudice, A; Velthuis, J; Hits, D; Griesmayer, E; Oakham, G; Frais-Kolbl, H; Bellini, V; D'Alessandro, R; Cristinziani, M; Barbero, M; Schaffner, D; Costa, S; Goffe, M; La Rosa, A; Bruzzi, M; Schreiner, T; de Boer, W; Parrini, G; Roe, S; Randrianarivony, K; Dolenc, I; Moss, J; Brom, J M; Golubev, A; Mathes, M; Eusebi, R; Grigoriev, E; Tsung, J W; Mueller, S; Mandic, I; Stone, R; Menichelli, D

    2011-01-01

    With the commissioning of the LHC in 2010 and upgrades expected in 2015, ATLAS and CMS are planning to upgrade their innermost tracking layers with radiation hard technologies. Chemical Vapor Deposition diamond has been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle, CDF and all LHC experiments. This material is now being considered as a sensor material for use very close to the interaction region where the most extreme radiation conditions exist Recently the RD42 collaboration constructed, irradiated and tested polycrystalline and single-crystal chemical vapor deposition diamond sensors to the highest fluences expected at the super-LHC. We present beam test results of chemical vapor deposition diamond up to fluences of 1.8 x 10(16) protons/cm(2) illustrating that both polycrystalline and single-crystal chemical vapor deposition diamonds follow a single damage curve. We also present beam test results of irradiated complete diamond pixel m...

  13. Surface Design and Engineering Toward Wear-Resistant, Self-Lubricating Diamond Films and Coatings

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1999-01-01

    The tribological properties of chemical-vapor-deposited (CVD) diamond films vary with the environment, possessing a Jekyll-and-Hyde character. CVD diamond has low coefficient of friction and high wear resistance in air but high coefficient of friction and low wear resistance in vacuum. Improving the tribological functionality of materials (such as achieving low friction and good wear resistance) was an aim of this investigation. Three studies on the surface design, surface engineering, and tribology of CVD diamond have shown that its friction and wear are significantly reduced in ultrahigh vacuum. The main criteria for judging whether diamond films are an effective wear-resistant, self-lubricating material were coefficient of friction and wear rate, which must be less than 0.1 and on the order of 10(exp 6) cu mm/N(dot)m, respectively. In the first study the presence of a thin film (less than 1 micron thick) of amorphous, nondiamond carbon (hydrogenated carbon, also called diamondlike carbon or DLC) on CVD diamond greatly decreased the coefficient of friction and the wear rate. Therefore, a thin DLC film on CVD diamond can be an effective wear-resistant, lubricating coating in ultrahigh vacuum. In the second study the presence of an amorphous, nondiamond carbon surface layer formed on CVD diamond by ion implantation significantly reduced the coefficient of friction and the wear rate in ultrahigh vacuum. Therefore, such surface layers are acceptable for effective self-lubricating, wear-resistant applications of CVD diamond. In the third study CVD diamond in contact with cubic boron nitride exhibited low coefficient of friction in ultra high vacuum. Therefore, this materials combination can provide an effective self-lubricating, wear-resistant couple in ultrahigh vacuum.

  14. Amorphous iron (II) carbonate

    DEFF Research Database (Denmark)

    Sel, Ozlem; Radha, A.V.; Dideriksen, Knud;

    2012-01-01

    Abstract The synthesis, characterization and crystallization energetics of amorphous iron (II) carbonate (AFC) are reported. AFC may form as a precursor for siderite (FeCO3). The enthalpy of crystallization (DHcrys) of AFC is similar to that of amorphous magnesium carbonate (AMC) and more...

  15. Interfacial electrical properties of ion-beam sputter deposited amorphous carbon on silicon

    Science.gov (United States)

    Khan, A. A.; Woollam, J. A.; Chung, Y.; Banks, B.

    1983-01-01

    Amorphous, 'diamond-like' carbon films have been deposited on Si substrates, using ion-beam sputtering. The interfacial properties are studied using capacitance and conductance measurements. Data are analyzed using existing theories for interfacial electrical properties. The density of electronic states at the interface, along with corresponding time constants are determined.

  16. Strongly Gorenstein Flat Dimensions

    Institute of Scientific and Technical Information of China (English)

    Chun Xia ZHANG; Li Min WANG

    2011-01-01

    This article is concerned with the strongly Gorenstein flat dimensions of modules and rings.We show this dimension has nice properties when the ring is coherent,and extend the well-known Hilbert's syzygy theorem to the strongly Gorenstein flat dimensions of rings.Also,we investigate the strongly Gorenstein flat dimensions of direct products of rings and (almost)excellent extensions of rings.

  17. MAMA FUV Flats

    Science.gov (United States)

    Mason, Elena

    2012-10-01

    This program aims at obtaining FUV-MAMA flat-field observations to create a new p-flats with a SNR of 100 per {low resolution} pixel. The flats are obtained with the Krypton-lamp and the MR grating G140M, similarly to the cycle 17 and 18 programs. However the exact instrument setup {slit width and central wavelength} might change depending on the desired count level {which will be close to the internally allowed global rate limit}.

  18. Creating flat design websites

    CERN Document Server

    Pratas, Antonio

    2014-01-01

    This book contains practical, step-by-step tutorials along with plenty of explanation about designing your flat website. Each section is introduced sequentially, building up your web design skills and completing your website.Creating Flat Design Websites is ideal for you if you are starting on your web development journey, but this book will also benefit seasoned developers wanting to start developing in flat.

  19. Low Temperature Growth of Nanostructured Diamond Films on Metals

    Science.gov (United States)

    Baker, Paul A.; Catledge, Shane A.; Vohra, Yogesh K.

    2001-01-01

    The field of nanocrystalline diamond and tetrahedral amorphous carbon films has been the focus of intense experimental activity in the last few years for applications in field emission display devices, optical windows, and tribological coatings, The choice of substrate used in most studies has typically been silicon. For metals, however, the thermal expansion mismatch between the diamond film and substrate gives rise to thermal stress that often results in delamination of the film. To avoid this problem in conventional CVD deposition low substrate temperatures (less than 700 C) have been used, often with the incorporation of oxygen or carbon monoxide to the feedgas mixture. Conventionally grown CVD diamond films are also rough and would require post-deposition polishing for most applications. Therefore, there is an obvious need to develop techniques for deposition of well-adhered, smooth nano-structured diamond films on metals for various tribological applications. In our work, nanostructured diamond films are grown on a titanium alloy substrate using a two-step deposition process. The first step is performed at elevated temperature (820 C) for 30 minutes using a H2/CH4/N2 gas mixture in order to grow a thin (approx. 600 nm) nanostructured diamond layer and improve film adhesion. The remainder of the deposition involves growth at low temperature (less than 600 C) in a H2/CH4/O2 gas mixture. Laser reflectance Interferometry (LRI) pattern during growth of a nanostructured diamond film on Ti-6Al-4V alloy. The first 30 minutes are at a high temperature of 820 C and the rest of the film is grown at a low temperature of 580 T. The fringe pattern is observed till the very end due to extremely low surface roughness of 40 nm. The continuation of the smooth nanostructured diamond film growth during low temperature deposition is confirmed by in-situ laser reflectance interferometry and by post-deposition micro-Raman spectroscopy and surface profilometry. Similar experiments

  20. Self-Lubricating, Wear-Resistant Diamond Films Developed for Use in Vacuum Environment

    Science.gov (United States)

    1996-01-01

    Diamond's outstanding properties--extreme hardness, chemical and thermal inertness, and high strength and rigidity--make it an ideal material for many tribological applications, such as the bearings, valves, and engine parts in the harsh environment found in internal-combustion engines, jet engines, and space propulsion systems. It has been demonstrated that chemical-vapor-deposited diamond films have low coefficients of friction (on the order of 0.01) and low wear rates (less than 10(sup -7) mm (sup 3/N-m)) both in humid air and dry nitrogen but that they have both high coefficients of friction (greater than 0.4) and high wear rates (on the order of 1(sup -4) mm sup 3/N-m)) in vacuum. It is clear that surface modifications that provide acceptable levels of friction and wear properties will be necessary before diamond films can be used for tribological applications in a space-like, vacuum environment. Previously, it was found that coatings of amorphous, non-diamond carbon can provide low friction in vacuum. Therefore, to reduce the friction and wear of diamond film in vacuum, carbon ions were implanted in an attempt to form a surface layer of amorphous carbon phases on the diamond films.

  1. Diamonds in HD 97048

    CERN Document Server

    Habart, E; Natta, A; Carbillet, M

    2004-01-01

    We present adaptive optics high angular resolution ($\\sim0\\farcs$1) spectroscopic observations in the 3 $\\mu$m region of the Herbig Ae/Be star HD 97048. For the first time, we spatially resolve the emission in the diamond features at 3.43 and 3.53 $\\mu$m and in the adjacent continuum. Using both the intensity profiles along the slit and reconstructed two-dimensional images of the object, we derive full-width at half-maximum sizes consistent with the predictions for a circumstellar disk seen pole-on. The diamond emission originates in the inner region ($R \\lesssim 15$ AU) of the disk.

  2. Trehalose amorphization and recrystallization.

    Science.gov (United States)

    Sussich, Fabiana; Cesàro, Attilio

    2008-10-13

    The stability of the amorphous trehalose prepared by using several procedures is presented and discussed. Amorphization is shown to occur by melting (T(m)=215 degrees C) or milling (room temperature) the crystalline anhydrous form TRE-beta. Fast dehydration of the di-hydrate crystalline polymorph, TRE-h, also produces an amorphous phase. Other dehydration procedures of TRE-h, such as microwave treatment, supercritical extraction or gentle heating at low scan rates, give variable fractions of the polymorph TRE-alpha, that undergo amorphization upon melting (at lower temperature, T(m)=130 degrees C). Additional procedures for amorphization, such as freeze-drying, spray-drying or evaporation of trehalose solutions, are discussed. All these procedures are classified depending on the capability of the undercooled liquid phase to undergo cold crystallization upon heating the glassy state at temperatures above the glass transition temperature (T(g)=120 degrees C). The recrystallizable amorphous phase is invariably obtained by the melt of the polymorph TRE-alpha, while other procedures always give an amorphous phase that is unable to crystallize above T(g). The existence of two different categories is analyzed in terms of the transformation paths and the hypothesis that the systems may exhibit different molecular mobilities.

  3. Flat Pack Toy Design

    Science.gov (United States)

    Hutcheson, Brian

    2007-01-01

    In this article, the author introduces the concept of flat pack toys. Flat pack toys are designed using a template on a single sheet of letter-sized card stock paper. Before being cut out and built into a three-dimensional toy, they are scanned into the computer and uploaded to a website. With the template accessible from the website, anyone with…

  4. Flat Band Quastiperiodic Lattices

    Science.gov (United States)

    Bodyfelt, Joshua; Flach, Sergej; Danieli, Carlo

    2014-03-01

    Translationally invariant lattices with flat bands (FB) in their band structure possess irreducible compact localized flat band states, which can be understood through local rotation to a Fano structure. We present extension of these quasi-1D FB structures under incommensurate lattices, reporting on the FB effects to the Metal-Insulator Transition.

  5. Physics of amorphous metals

    CERN Document Server

    Kovalenko, Nikolai P; Krey, Uwe

    2008-01-01

    The discovery of bulk metallic glasses has led to a large increase in the industrial importance of amorphous metals, and this is expected to continue. This book is the first to describe the theoretical physics of amorphous metals, including the important theoretical development of the last 20 years.The renowned authors stress the universal aspects in their description of the phonon or magnon low-energy excitations in the amorphous metals, e.g. concerning the remarkable consequences of the properties of these excitations for the thermodynamics at low and intermediate temperatures. Tunneling

  6. Characterization of structural alteration in diamond turned silicon crystal by means of micro raman spectroscopy and transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    Renato Goulart Jasinevicius

    2005-09-01

    Full Text Available In this work, (100 oriented monocrystalline silicon samples were single point diamond turned under conditions that led to a ductile and brittle regime. Raman spectroscopy results showed that the ductile regime diamond turning of silicon surfaces induced amorphization and, on the contrary, in the brittle mode machining condition this amorphous layer does not exist. Ductile machined surface was found to be a mixture of crystalline and amorphous phases probed by (macro-Raman spectroscopy. Transmission Electron Microscopy (TEM analyses were then carried out in order to characterize the structural alteration in the machined surface and chips. The electron diffraction pattern of the machined surface detected a crystalline phase along with the amorphous silicon confirming the former results. The mechanism of material removal is widely discussed based upon the results presented here.

  7. ELECTRON AMPLIFICATION IN DIAMOND.

    Energy Technology Data Exchange (ETDEWEB)

    SMEDLEY, J.; BEN-ZVI, I.; BURRILL, A.; CHANG, X.; GRIMES, J.; RAO, T.; SEGALOV, Z.; WU, Q.

    2006-07-10

    We report on recent progress toward development of secondary emission ''amplifiers'' for photocathodes. Secondary emission gain of over 300 has been achieved in transmission mode and emission mode for a variety of diamond samples. Techniques of sample preparation, including hydrogenation to achieve negative electron affinity (NEA), have been adapted to this application.

  8. DIAMOND AMPLIFIED PHOTOCATHODES.

    Energy Technology Data Exchange (ETDEWEB)

    SMEDLEY,J.; BEN-ZVI, I.; BOHON, J.; CHANG, X.; GROVER, R.; ISAKOVIC, A.; RAO, T.; WU, Q.

    2007-11-26

    High-average-current linear electron accelerators require photoinjectors capable of delivering tens to hundreds of mA average current, with peak currents of hundreds of amps. Standard photocathodes face significant challenges in meeting these requirements, and often have short operational lifetimes in an accelerator environment. We report on recent progress toward development of secondary emission amplifiers for photocathodes, which are intended to increase the achievable average current while protecting the cathode from the accelerator. The amplifier is a thin diamond wafer which converts energetic (few keV) primary electrons into hundreds of electron-hole pairs via secondary electron emission. The electrons drift through the diamond under an external bias and are emitted into vacuum via a hydrogen-terminated surface with negative electron affinity (NEA). Secondary emission gain of over 200 has been achieved. Two methods of patterning diamond, laser ablation and reactive-ion etching (RIE), are being developed to produce the required geometry. A variety of diagnostic techniques, including FTIR, SEM and AFM, have been used to characterize the diamonds.

  9. CVD diamond - fundamental phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Yarbrough, W.A. [Pennsylvania State Univ., University Park (United States)

    1993-01-01

    This compilation of figures and diagrams addresses the basic physical processes involved in the chemical vapor deposition of diamond. Different methods of deposition are illustrated. For each method, observations are made of the prominent advantages and disadvantages of the technique. Chemical mechanisms of nucleation are introduced.

  10. Studies of defects on ion irradiated diamond

    Energy Technology Data Exchange (ETDEWEB)

    Lai, P.F.; Prawer, S.; Spargo, A.E.C.; Bursill, L.A. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    It is known that diamond is amorphized or graphitized when irradiated above a critical dose. Above this critical dose, D{sub c}, the resistance R is found to drop very rapidly due to the formation of graphite regions which overlap at D{sub c} to form a semi-continuous electrically conducting pathway through the sample. One particularly interesting method of studying this transformation is electron energy-loss spectroscopy (EELS). Using EELS, the different phases of carbon can be identified and distinguished from each other using the extended energy-loss fine structure (EXELFS) of the core-loss part of the spectrum. EELS is a sensitive method for determining the electronic structure of small areas of a sample. In this paper, transmission electron microscopy (TEM) and EELS measurements of the ion irradiated diamond were combined in an attempt to correlate the microstructural nature of the ion-beam induced damage to the changes in the electrical and other properties. 7 refs., 1 tab., 2 figs.

  11. Forty years of development in diamond tools

    Science.gov (United States)

    The growth of the diamond industry in Western Countries since the First World War is surveyed. The articles described deal specifically with the development of the industrial diamond and diamond tool sector in different countries. All data point to continuing rapid expansion in the diamond tool sector. The West consumes 80 percent of world industrial diamond production. Diamond consumption increased sharply in the U.S. during World War 2. There are 300 diamond manufacturers in the U.S. today. In 1940, there were 25. In Japan, consumption of industrial diamonds has increased several times. In Italy, there has been a 75 fold increase in the production of diamond tools since 1959.

  12. Amorphous Solid Water:

    DEFF Research Database (Denmark)

    Wenzel, Jack; Linderstrøm-Lang, C. U.; Rice, Stuart A.

    1975-01-01

    The structure factor of amorphous solid D2O deposited from the vapor at 10°K has been obtained by measuring the neutron diffraction spectrum in the wave vector transfer from 0.8 to 12.3 reciprocal angstroms. The results indicate that the phase investigated is amorphous and has a liquiid-like stru......The structure factor of amorphous solid D2O deposited from the vapor at 10°K has been obtained by measuring the neutron diffraction spectrum in the wave vector transfer from 0.8 to 12.3 reciprocal angstroms. The results indicate that the phase investigated is amorphous and has a liquiid...

  13. Most diamonds were created equal

    Science.gov (United States)

    Jablon, Brooke Matat; Navon, Oded

    2016-06-01

    Diamonds crystallize deep in the mantle (>150 km), leaving their carbon sources and the mechanism of their crystallization debatable. They can form from elemental carbon, by oxidation of reduced species (e.g. methane) or reduction of oxidized ones (e.g. carbonate-bearing minerals or melts), in response to decreasing carbon solubility in melts or fluids or due to changes in pH. The mechanism of formation is clear for fibrous diamonds that grew from the carbonate-bearing fluids trapped in their microinclusions. However, these diamonds look different and, based on their lower level of nitrogen aggregation, are much younger than most monocrystalline (MC) diamonds. In the first systematic search for microinclusions in MC diamonds we examined twinned crystals (macles), assuming that during their growth, microinclusions were trapped along the twinning plane. Visible mineral inclusions (>10 μm) and nitrogen aggregation levels in these clear macles are similar to other MC diamonds. We found 32 microinclusions along the twinning planes in eight out of 30 diamonds. Eight inclusions are orthopyroxene; four contain >50% K2O (probably as K2(Mg, Ca)(CO3)2); but the major element compositions of the remaining 20 are similar to those of carbonate-bearing high-density fluids (HDFs) found in fibrous diamonds. We conclude that the source of carbon for these macles and for most diamonds is carbonate-bearing HDFs similar to those found here and in fibrous diamonds. Combined with the old ages of MC diamonds (up to 3.5 Ga), our new findings suggest that carbonates have been introduced into the reduced lithospheric mantle since the Archaean and that the mechanism of diamond formation is the same for most diamonds.

  14. Individual energy savings for individual flats in blocks of flats

    DEFF Research Database (Denmark)

    Nielsen, Anker; Rose, Jørgen

    2014-01-01

    is distributed on the individual flats. Today, most blocks of flats have individual heat meters to save energy and to ensure a fair distribution of the cost. If all flats have the same indoor temperature, the distribution is correct. In practice, the inhabitants of the different flats maintain different indoor...... temperatures. The result is that heat flows between individual flats. This decreases the energy consumption in the flat where the owner maintains a lower temperature. The neighbouring flats will have higher energy consumption. Calculations were performed for Danish blocks of flats from 1920, 1940, 1960...

  15. Structure and properties of diamond and diamond-like films

    Energy Technology Data Exchange (ETDEWEB)

    Clausing, R.E. [Oak Ridge National Lab., TN (United States)

    1993-01-01

    This section is broken into four parts: (1) introduction, (2) natural IIa diamond, (3) importance of structure and composition, and (4) control of structure and properties. Conclusions of this discussion are that properties of chemical vapor deposited diamond films can compare favorably with natural diamond, that properties are anisotropic and are a strong function of structure and crystal perfection, that crystal perfection and morphology are functions of growth conditions and can be controlled, and that the manipulation of texture and thereby surface morphology and internal crystal perfection is an important step in optimizing chemically deposited diamond films for applications.

  16. Characteristics of the light emission from CVD diamond windows

    International Nuclear Information System (INIS)

    Video and infrared signals were registered from brazed and bare CVD diamond disks forming the windows of an evacuated transmission cell placed into the beam line of a high power gyrotron facility at 140 GHz (Maquette tube). Intense light emission forming spot-like patterns, that was observed under vacuum conditions, has a broad maximum around 770 nm, which is attributed to light emitting processes of non-purely thermal nature. Carbon residues, likely of amorphous structure, which can be formed by decomposition of organic fibres, such as cellulose, are shown to be one source of this spectacular phenomenon. Here, no critical limitation is seen for the performance of high power diamond windows. (authors)

  17. Effects in CVD diamond exposed to fusion plasmas

    International Nuclear Information System (INIS)

    Micro and nanocrystalline diamond layers have been deposited on molybdenum substrates by hot-filament CVD, and tested in the Mega Amp Spherical Tokamak as a protective coating of fusion plasma-facing materials. The modification of surface properties induced by high density plasma was investigated by SEM, X-ray photoelectron spectroscopy and Raman spectroscopy. Although some modifications of the coating, amorphization and some traces of arcing, diamond proved to be a viable protection as most of the samples were still coated after the plasma exposure. Fuel retention measurements, evaluated by nuclear reaction analysis, showed that a small amount of deuterium was trapped in the surface of the coatings. The chemical erosion of the layers was 50% lower than graphite, as evaluated by dedicated experiments in Pilot-PSI, a linear plasma simulator device. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  18. Genetics Home Reference: Diamond-Blackfan anemia

    Science.gov (United States)

    ... Home Health Conditions Diamond-Blackfan anemia Diamond-Blackfan anemia Enable Javascript to view the expand/collapse boxes. ... PDF Open All Close All Description Diamond-Blackfan anemia is a disorder of the bone marrow . The ...

  19. Tailoring the Matrix in Ultra-Nanocrystalline Diamond Films

    Science.gov (United States)

    Buck, Volker; Woehrl, Nicolas

    2008-10-01

    By depositing films in argon-rich plasmas it is possible to produce ultra-nanocrystalline diamond (UNCD) films with grain sizes of 5-100 nm. By reducing the grain size, these films feature rather distinctive combinations of properties making them potential materials for emerging technological developments such as nano/micro-electro-mechanical systems (N/MEMS), optical coatings, bioelectronics, surface acoustic wave (SAW) filters, and tribological applications. The majority of works dealing with nanocrystalline diamond (NCD) up to now have concentrated on diamond grains (e.g., grain size, texture). In doing so the surrounding crystal matrix has been neglected and its effect on the substrate properties has been dismissed as a grain boundary effect. This view does not accord with its relevance to film properties. Because the matrix consists of amorphous carbon structures, approved methods for the characterization of this appropriate special class of materials were used here such as Raman and Fourier transform infrared spectroscopy (FTIR). The use of an amorphous matrix for nanocrystalline diamond grains has lead to an enormous field of new materials, because a whole class of carbon-based materials (diamondlike carbon, DLC) can be used as a matrix that may contain only carbon (a-C) or carbon and hydrogen (a-C:H) as well as other components such as metals (Me-C:H); additionally, other dopants such as silicon, oxygen, halogens, or nitrogen may be included. As an example, it is shown how the mechanical stress in films can be adjusted by tailoring the matrix.

  20. Technology for diamond based electronics

    OpenAIRE

    Kubovic, Michal

    2009-01-01

    The superior electrical and thermal properties of diamond predestine this material to become an important semiconductor. In this thesis, diamond field effect transistors and diodes were fabricated and evaluated. The progress in fabrication technology enabled DC, small and large signal measurements on FETs employing a hydrogen-induced p-type channel. Operation of such FETs at microwave frequencies showed high cut-off frequencies and first power measurements on diamond FETs have been performed ...

  1. Mechanically induced degradation of diamond

    International Nuclear Information System (INIS)

    This thesis deals with the wear of diamond occurring during frictional sliding contact between diamonds. In the introduction, a literature survey on friction, wear and polishing behaviour of diamond, with some emphasis on the anisotropy, is presented and earlier work is discussed. A review of the existing theories is given, a new hypothesis is proposed and key-experiments for verification are identified. Electron microscopical techniques such as High Resolution Electron Microscopy (HREM) imaging and Electron Energy Loss Spectroscopy are described as they were employed to study the nature of the surface damage and the debris which is formed during sliding contact. The results of these experiments indicate that a transformation from diamond to graphite may take place during shearing contact of diamonds. A microscopic model, which is a further refinement of the hypothesis, is developed and its prediction on the orientation dependency for shear-induced graphitisation is found to correspond to the observed anisotropy in the friction, wear and polishing behaviour of diamond. The model, based on c transformation of sp3-coordinated carbon into sp2-coordinated carbon due to excessive distortions of the diamond bonds, is used to describe phenomena occurring during macroscopic experiments. A HREM study of controlled ion beam bombarded Chemical Vapour Deposited (CVD) Diamond is presented to demonstrate the broader applicability of the model. It is found that during the ion bombardment a mechanically induced graphitisation, as opposed to a thermally activated transformation, may occur locally on collision with the CVD diamond. Two types of diamond-graphite interfaces were observed: (111) planes of diamond parallel to the a-b planes of graphite and (111) planes of diamond, smoothly within the plane, connected to a-b planes of graphite. The thesis concludes with a summary of the results, conclusions and recommendations for further work. (author)

  2. Conversion of fullerenes to diamond

    Science.gov (United States)

    Gruen, Dieter M.

    1993-01-01

    A method of forming synthetic diamond on a substrate is disclosed. The method involves providing a substrate surface covered with a fullerene or diamond coating, positioning a fullerene in an ionization source, creating a fullerene vapor, ionizing fullerene molecules, accelerating the fullerene ions to energies above 250 eV to form a fullerene ion beam, impinging the fullerene ion beam on the substrate surface and continuing these steps to obtain a diamond thickness on the substrate.

  3. CVD diamond as a 21st century engineering material

    International Nuclear Information System (INIS)

    Full text: Diamond is one of the most extraordinary materials known. For almost any physical property you can think of, diamond is top of the list. It is the hardest, strongest and stiffest known material, it conducts heat better than copper, is transparent from the deep ultraviolet to the far infrared, is resistant to acids and bases, and has one of the lowest thermal expansion coefficients. However, until recently diamond has only been available in the form of gemstones, obtained from mines. These are prized for jewellery, but have only limited engineering or scientific applications. However, over the past 20 years, scientists have discovered how to produce thin films of pure diamond using Chemical Vapour Deposition (CVD), using as a starting material nothing more exotic than methane and hydrogen gases. The extraordinary properties of diamond have already enabled such films to find applications as hard, wear-resistant coatings in engineering components and machine tools, as heat spreaders, and as specialised optical windows. The possibility of doping the films to produce semiconducting diamond, suggests exciting future applications for these materials as electronic devices and sensors. Furthermore, the unusual electron emission properties of diamond make it a candidate for the electrode in the next generation of flat panel displays, solar cells or even quantum computers. In this talk, I will briefly describe how CVD diamond films are produced and outline some of the important chemistry and physics of the deposition process [1]. I shall also discuss the various uses of these films, and speculate about some of the more exciting potential future applications, such as quantum computing, biosensors, atmospheric-pressure microplasmas [2], brain-computer interfaces and designer neural nets [3], including those which are relevant to energy production, such as thermionic energy generation from focused solar heat [4], and efficient electrochemical electrodes made from

  4. Diamond Schottky barrier diodes

    OpenAIRE

    Brezeanu, Mihai

    2008-01-01

    Research on wide band gap semiconductors suitable for power electronic devices has spread rapidly in the last decade. The remarkable results exhibited by silicon carbide (SiC) Schottky batTier diodes (SBDs), commercially available since 2001, showed the potential of wide band gap semiconductors for replacing silicon (Si) in the range of medium to high voltage applications, where high frequency operation is required. With superior physical and electrical properties, diamond beca...

  5. Shengli Diamond Bits

    Institute of Scientific and Technical Information of China (English)

    Yang Yukun; Han Tao

    1995-01-01

    @@ The geologic condition of Shengli Oilfield (SLOF)is complicated and the range of the rock drillability is wide. For more than 20 years,Shengli Drilling Technology Research Institute, in view of the formation conditions of SLOF,has done a lot of effort and obtained many achivements in design,manufacturing technology and field service. Up to now ,the institute has developed several ten kinds of diamond bits applicable for drilling and coring in formations from extremely soft to hard.

  6. Conversion of fullerenes to diamonds

    Science.gov (United States)

    Gruen, Dieter M.

    1995-01-01

    A method of forming synthetic diamond or diamond-like films on a substrate surface. The method involves the steps of providing a vapor selected from the group of fullerene molecules or an inert gas/fullerene molecule mixture, providing energy to the fullerene molecules consisting of carbon-carbon bonds, the energized fullerene molecules breaking down to form fragments of fullerene molecules including C.sub.2 molecules and depositing the energized fullerene molecules with C.sub.2 fragments onto the substrate with farther fragmentation occurring and forming a thickness of diamond or diamond-like films on the substrate surface.

  7. Raman barometry of diamond formation

    Science.gov (United States)

    Izraeli, E. S.; Harris, J. W.; Navon, O.

    1999-11-01

    Pressures and temperatures of the diamond source region are commonly estimated using chemical equilibria between coexisting mineral inclusions. Here we present another type of geobarometer, based on determination of the internal pressure in olivine inclusions and the stresses in the surrounding diamond. Using Raman spectroscopy, pressures of 0.13 to 0.65 GPa were measured inside olivine inclusions in three diamonds from the Udachnaya mine in Siberia. Stresses in the diamond surrounding the inclusions indicated similar pressures (0.11-0.41 GPa). Nitrogen concentration and aggregation state in two of the diamonds yielded mantle residence temperatures of ˜1200°C. Using this temperature and the bulk moduli and thermal expansion of olivine and diamond, we calculated source pressures of 4.4-5.2 GPa. We also derived a linear approximation for the general dependence of the source pressure ( P0, GPa) on source temperature ( T0, °C) and the measured internal pressure in the inclusion ( Pi): P0=(3.259×10 -4Pi+3.285×10 -3) T0+0.9246 Pi+0.319. Raman barometry may be applied to other inclusions in diamonds or other inclusion-host systems. If combined with IR determination of the mantle residence temperature of the diamond, it allows estimation of the pressure at the source based on a non-destructive examination of a single diamond containing a single inclusion.

  8. Diamonds in ophiolites: Contamination or a new diamond growth environment?

    Science.gov (United States)

    Howell, D.; Griffin, W. L.; Yang, J.; Gain, S.; Stern, R. A.; Huang, J.-X.; Jacob, D. E.; Xu, X.; Stokes, A. J.; O'Reilly, S. Y.; Pearson, N. J.

    2015-11-01

    For more than 20 years, the reported occurrence of diamonds in the chromites and peridotites of the Luobusa massif in Tibet (a complex described as an ophiolite) has been widely ignored by the diamond research community. This skepticism has persisted because the diamonds are similar in many respects to high-pressure high-temperature (HPHT) synthetic/industrial diamonds (grown from metal solvents), and the finding previously has not been independently replicated. We present a detailed examination of the Luobusa diamonds (recovered from both peridotites and chromitites), including morphology, size, color, impurity characteristics (by infrared spectroscopy), internal growth structures, trace-element patterns, and C and N isotopes. A detailed comparison with synthetic industrial diamonds shows many similarities. Cubo-octahedral morphology, yellow color due to unaggregated nitrogen (C centres only, Type Ib), metal-alloy inclusions and highly negative δ13C values are present in both sets of diamonds. The Tibetan diamonds (n = 3) show an exceptionally large range in δ15N (-5.6 to + 28.7 ‰) within individual crystals, and inconsistent fractionation between {111} and {100} growth sectors. This in contrast to large synthetic HPHT diamonds grown by the temperature gradient method, which have with δ15N = 0 ‰ in {111} sectors and + 30 ‰ in {100} sectors, as reported in the literature. This comparison is limited by the small sample set combined with the fact the diamonds probably grew by different processes. However, the Tibetan diamonds do have generally higher concentrations and different ratios of trace elements; most inclusions are a NiMnCo alloy, but there are also some small REE-rich phases never seen in HPHT synthetics. These characteristics indicate that the Tibetan diamonds grew in contact with a C-saturated Ni-Mn-Co-rich melt in a highly reduced environment. The stable isotopes indicate a major subduction-related contribution to the chemical environment. The

  9. Plasma technology and its use in flat panel digital radiography.

    Science.gov (United States)

    Zur, Albert

    2010-01-01

    Plasma DR technology is used to produce a cost effective flat panel x-ray detector that acquires digital x-ray images with excellent diagnostic quality. The detector is radiation hard and permanently zero defect, with a full virtual pixel matrix that has no dead lines, pixels, or dead pixel clusters. The technology also allows the full potential of large area amorphous Selenium imaging to finally be realized (see Figure 4).

  10. Electron field emission from amorphous semiconductor thin films

    International Nuclear Information System (INIS)

    The flat panel display market requires new and improved technologies in order to keep up with the requirements of modem lifestyles. Electron field emission from thin film amorphous semiconductors is potentially such a technology. For this technology to become viable, improvements in the field emitting properties of these materials must be achieved. To this end, it is important that a better understanding of the emission mechanisms responsible is attained. Amorphous carbon thin films, amorphous silicon thin films and other materials have been deposited, in-house and externally. These materials have been characterised using ellipsometry, profilometry, optical absorption, scanning electron microscopy, atomic force microscopy, electron paramagnetic resonance and Rutherford backscattering spectroscopy. An experimental system for evaluating the electron field emitting performance of thin films has been developed. In the process of developing thin film cathodes in this study, it has been possible to add a new and potentially more useful semiconductor, namely amorphous silicon, to the family of cold cathode emitters. Extensive experimental field emission data from amorphous carbon thin films, amorphous silicon thin films and other materials has been gathered. This data has been used to determine the mechanisms responsible for the observed electron emission. Preliminary computer simulations using appropriate values for the different material properties have exhibited emission mechanisms similar to those identified by experiment. (author)

  11. Solution for Flat Roofs

    Directory of Open Access Journals (Sweden)

    Şt. Vasiliu

    2008-01-01

    Full Text Available Roofs are constructive subassemblies that are located at the top of buildings, which toghether with perimetral walls and some elements of the infrastructure belongs to the subsystem elements that close the building. An important share in the roofing is represented by the flat roofs. Flat roofs must meet the requirements of resistance to mechanical action, thermal insulation, acoustic and waterproof, fire resistance, durability and aesthetics. To meet these requirements is necessary an analysis of the component layers and materials properties that determine the durability of structural assembly.

  12. Designing of concrete diamond sawblade

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shao-he; DING Xin-yu; ZHOU Jia-xiang

    2005-01-01

    By analyzing the abrasive theory of concrete diamond sawblade, the proposal that the diamond should be selected by its function in cutting concrete is presented. The part of the big grit diamonds cut rock, and the part of the small grit diamonds improve the wearability of the matrix. The contrast tests are done with different shapes of sawbaldes in split segment, slant "U" slot segment, sandwich segment, turbo segment and three-slot segment. The special shapes of sawblades can improve the effect of cooling and the removing ability of the rock powder. The data of tests show that the efficiency of cutting and the life of sawblades are improved by designing the diamond prescription and using the especial geometry of segment.

  13. High efficiency diamond solar cells

    Science.gov (United States)

    Gruen, Dieter M.

    2008-05-06

    A photovoltaic device and method of making same. A layer of p-doped microcrystalline diamond is deposited on a layer of n-doped ultrananocrystalline diamond such as by providing a substrate in a chamber, providing a first atmosphere containing about 1% by volume CH.sub.4 and about 99% by volume H.sub.2 with dopant quantities of a boron compound, subjecting the atmosphere to microwave energy to deposit a p-doped microcrystalline diamond layer on the substrate, providing a second atmosphere of about 1% by volume CH.sub.4 and about 89% by volume Ar and about 10% by volume N.sub.2, subjecting the second atmosphere to microwave energy to deposit a n-doped ultrananocrystalline diamond layer on the p-doped microcrystalline diamond layer. Electrodes and leads are added to conduct electrical energy when the layers are irradiated.

  14. Thermal diffusivity of diamond films

    Science.gov (United States)

    Albin, Sacharia; Winfree, William P.; Crews, B. Scott

    1990-01-01

    A laser pulse technique to measure the thermal diffusivity of diamond films deposited on a silicon substrate is developed. The effective thermal diffusivity of diamond film on silicon was measured by observing the phase and amplitude of the cyclic thermal waves generated by the laser pulses. An analytical model is developed to calculate the effective in-plane (face-parallel) diffusivity of a two layer system. The model is used to reduce the effective thermal diffusivity of the diamond/silicon sample to a value for the thermal diffusivity and conductivity of the diamond film. Phase and amplitude measurements give similar results. The thermal conductivity of the films is found to be better than that of type 1a natural diamond.

  15. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    Science.gov (United States)

    Kundrát, Vojtěch; Zhang, Xiaoling; Cooke, Kevin; Sun, Hailin; Sullivan, John; Ye, Haitao

    2015-04-01

    Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) - tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  16. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    Directory of Open Access Journals (Sweden)

    Vojtěch Kundrát

    2015-04-01

    Full Text Available Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42 substrates using a multi-structured molybdenum (Mo – tungsten (W interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  17. Flat flame burner

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Y.; Mitsudomi, H.

    1976-02-24

    Osaka Gas Co., Ltd.'s new flat-flame heat-treatment burner offers lower material costs, reduced combustion noise, and elimination of the need for a high-pressure fuel gas to provide a high-velocity combustion burner. The flat-flame burner contains an air-swirling chamber with a flame opening in one side; the wall defining the flame opening has a small thickness around the opening and a flat outer face. This construction causes the combustion gas to be forced out from the flame opening in a spiral direction by the swirling air current within the air chamber; together with the orifice effect of permitting the flame to emanate from a small opening to an unconfined outer space, this helps assure the formation of a flat flame spreading out over a very wide area for very rapid, uniform, and highly efficient heat treatment of an article to be heated. This approach also permits the thickness of the overall device to be reduced. The supply of combustion air in the form of a swirling stream makes it possible to provide a high-velocity combustion burner without using a high-pressure fuel gas, with the advantage of satisfactory mixture of the fuel gas and combustion air and consequently markedly reduced combustion noise.

  18. Diamond Blackfan Syndrome

    Directory of Open Access Journals (Sweden)

    Rahul SINHA, Daljit SINGH, Kirandeep SODHI, Y K KIRAN, Biju JOHN

    2010-01-01

    Full Text Available We report a case of Diamond Blackfan syndrome in 6yr old girl who was detected to have severe anaemia on D4 of life. The baby was detected to have polydactyly right hand (preaxial and weak radial pulse on right side. On examination there was severe pallor without hepatosplenomegaly. The investigations revealed haemoglobin of 1.9 gm% with reticulocyte count of 0.3%. Other investigations were done to establish the cause of anaemia. The sickling test was negative, Peripheral blood smear revealed macrocytic anaemia, Hb electrophoresis revealed fetal haemoglobin of 2.7 %. Bone marrow examination revealed markedly reduced erythroid series, stress cytogenetics study done later was negative for any chromosomal breakage. Based on the clinical profile and investigation reports the diagnosis of Diamond Blackfan Syndrome was made. The child was put on corticosteroids which were gradually tapered. Subsequently any attempt at withdrawl of steroids resulted in fall in haemoglobin levels. Hence the child has been maintained on low dose steroids and has remained symptom free.

  19. Compression behavior and equation of state of Ni77P23 amorphous alloy

    Institute of Scientific and Technical Information of China (English)

    LI Gong; GAO YunPeng; SUN YiNan; MA MingZhen; LIU Jing; LIU RiPing

    2007-01-01

    The compression behavior of Ni77P23 amorphous alloy is investigated at room temperature in a diamond-anvil cell instrument using in-situ high pressure energy dispersive X-ray diffraction with a synchrotron radiation source. The equation of state is determined by fitting the experimental data according to Birch-Murnaghan equation: -△V/V0=0.08606P-3.2×10-4P2+5.7×10-6P3. It is found that the structure of Ni77P23 amorphous alloy is stable under pressures up to 30.5 Gpa.

  20. Compression Behaviour of Ni77P23 Amorphous Alloy up to 30.5 GPa

    Institute of Scientific and Technical Information of China (English)

    LI Gong; ZHANG Xin-Yu; SUN Yi-Nan; QIAN Yu-Qing; LIU Jing; LIU Ri-Ping

    2005-01-01

    @@ The compression behaviour of Ni77P23 amorphous alloy is investigated at room temperature in a diamond-anvil cell instrument using in-situ high pressure energy dispersive x-ray diffraction with a synchrotron radiation source.The equation of state is determined by fitting the experimental data according to the Birch-Murnaghan equation.It is found that the structure of Ni77P23 amorphous alloy is stable under pressures up to 30.5GPa. Within the pressure range from zero to the experimental one, the pressure-induced structural relaxation is reversible.

  1. Rare-earth Doped Amorphous Silicon Microdisk and Microstadium Resonators with Emission at 1550nm

    CERN Document Server

    Figueira, D S L

    2007-01-01

    Microdisks and microstadium resonators were fabricated on erbium doped amorphous hydrogenated silicon (a-Si:H) layers sandwiched in air and native SiO2 on Si substrates. Annealing condition is optimized to allow large emission at 1550 nm for samples with erbium concentrations as high as 1.02x10^20 atoms/cm3. Near field scanning optical microscopy shows evidences of the simultaneous presence of bow-tie and diamond scars. These modes indicate the high quality of the resonators and the potentiality for achieving amorphous silicon microcavity lasers.

  2. Thermodynamic analysis on synthesis process of diamond

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based upon the thermodynamic analysis of the nucleation of diamond crystal, the effects of synthesis temperature and pressure on the nucleation of diamond crystal, diamond growth and output of diamond crystal, particle size and strength were discussed. The results show that the excess pressure has an important effect on the critical radius of nucleation and thermodynamic barrier in the formation of a critical nucleus. Considering the excess pressure, the expression of diamond nucleation rate was obtained.

  3. Phase transformation of single crystal silicon induced by grinding with ultrafine diamond grits

    International Nuclear Information System (INIS)

    Phase transformation of single crystal silicon (Si) was investigated under various grinding conditions using high-resolution transmission electron microscopy. Nanocrystals with sizes ranging from 6 to 20 nm of diamond cubic silicon (Si-I) and high-pressure phase (Si-III) were observed in the grinding-induced amorphous Si layers. The phase transformation pattern was found to be influenced by the thermal status involved in the grinding processes.

  4. Atomistic simulations of swift ion tracks in diamond and graphite

    International Nuclear Information System (INIS)

    We have used molecular dynamics simulations to study ion tracks in diamond and graphite. Tracks are included using a thermal spike model, i.e. a certain number of atoms within an initial track radius are given an initial excitation energy. The total energy given to the excited atoms and the length of the track determine an 'effective' stopping power dE/dx. Electronic excitations in semiconductors and semimetals like diamond and graphite can diffuse far from each other or be quenched before they couple to the lattice. This effect is included by varying the number of atoms that are effectively energized within the track. We use an initial track radius of 3 nm and we find that full amorphization of this region during the first few ps only occurs when the 'effective' dE/dx is larger than 6 ± 0.9 keV/nm for graphite and 10.5 ± 1.5 keV/nm for diamond. Since the 'effective' dE/dx depends on the electron-phonon coupling, our simulations set bounds on the efficiency of the coupling between the electronic excitations and the lattice in this highly non-equilibrium scenario

  5. Friction between silicon and diamond at the nanoscale

    International Nuclear Information System (INIS)

    This work investigates the nanoscale friction between diamond-structure silicon (Si) and diamond via molecular dynamics simulation. The interaction between the interfaces is considered as strong covalent bonds. The effects of load, sliding velocity, temperature and lattice orientation are investigated. Results show that the friction can be divided into two stages: the static friction and the kinetic friction. During the static friction stage, the load, lattice orientation and temperature dramatically affects the friction by changing the elastic limit of Si. Large elastic deformation is induced in the Si block, which eventually leads to the formation of a thin layer of amorphous Si near the Si-diamond interface and thus the beginning of the kinetic friction stage. During the kinetic friction stage, only temperature and velocity have an effect on the friction. The investigation of the microstructural evolution of Si demonstrated that the kinetic friction can be categorized into two modes (stick-slip and smooth sliding) depending on the temperature of the fracture region. (paper)

  6. Diamond and Diamond-Like Materials as Hydrogen Isotope Barriers

    International Nuclear Information System (INIS)

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The purpose of this project was to develop diamond and diamond-like thin-films as hydrogen isotope permeation barriers. Hydrogen embrittlement limits the life of boost systems which otherwise might be increased to 25 years with a successful non-reactive barrier. Applications in tritium processing such as bottle filling processes, tritium recovery processes, and target filling processes could benefit from an effective barrier. Diamond-like films used for low permeability shells for ICF and HEDP targets were also investigated. Unacceptable high permeabilities for hydrogen were obtained for plasma-CVD diamond-like-carbon films

  7. Atomic interactions at the (100) diamond surface and the impact of surface and interface changes on the electronic transport properties

    Science.gov (United States)

    Deferme, Wim

    Centuries and centuries already, diamond is a material that speaks to ones imagination. Till the 18th century it was only mined in India, after it was also found in Brazil and South-Africa. But along the fascinating properties of diamond, it is also a very interesting material for industry. After the discovery at the end of the 18th century that diamond consists of carbon, it took until the 50's of the previous century before research groups from Russia, Japan and the USA were able to reproduce the growth process of diamond. In 1989 it was discovered that the surface of intrinsic, insulation diamond can be made conductive by hydrogenating the surface. It was clear that not only hydrogen at the surface but also the so called "adsorbates" were responsible for this conductivity. It was still not completely clear what was the influence of other species (like oxygen) on the mechanism of surface conductivity and therefore in this thesis the influence of oxygen on the electronic transport properties of atomically flat diamond are researched. Besides the growth of atomically flat diamond with the use of CVD (chemical vapour deposition) en the study of the grown surfaces with characterising techniques such as AFM (atomic force microscopy) and STM (scanning tunnelling microscopy), the study of the surface treatment with plasma techniques is the main topic of this thesis. The influence of oxygen on the surface conductivity is studied and with the ToF (Time-of-Flight) technique the transport properties of the freestanding diamond are examined. With a short laserflash, electrons and holes are created at the diamond/aluminium interface and due to an electric field (up to 500V) the charge carriers are translated to the back contact. In this way the influence of the surface and the changes at the aluminum contacts is studied leading to very interesting results.

  8. Combined HRTEM and PEELS analysis of nanoporous and amorphous carbon

    International Nuclear Information System (INIS)

    Both the mass density (1.37 kgm/m3) and sp2+sp3 bonding fraction (0.15) were determined for an unusual nanoporous amorphous carbon consisting of curved single graphitic sheets. A combination of high-resolution transmission electron microscopy (HRTEM) and parallel electron energy loss spectroscopy (PEELS) was used. The values of these two parameters provide important constraints for the determination of the structure of this relatively low density variety of nanoporous carbon. The results are relevant also in the search for negatively-curved Schwarzite-related carbon structures. New date are also presented for highly-oriented pyrollytic graphite (HOPG), chemically vapour deposited (CVD) diamond, C60, glassy carbon (GC) and evaporated amorphous carbon (EAC); these are compared with the results for NAC. Kramers-Kronig analysis (KKA) of the low-loss PEELS data shows that the band gaps of both NAC and EAC are collapsed relative to that of CVD diamond. 18 refs., 2 tabs., 3 figs

  9. Flat covers of modules

    CERN Document Server

    Xu, Jinzhong

    1996-01-01

    Since the injective envelope and projective cover were defined by Eckmann and Bas in the 1960s, they have had great influence on the development of homological algebra, ring theory and module theory. In the 1980s, Enochs introduced the flat cover and conjectured that every module has such a cover over any ring. This book provides the uniform methods and systematic treatment to study general envelopes and covers with the emphasis on the existence of flat cover. It shows that Enochs' conjecture is true for a large variety of interesting rings, and then presents the applications of the results. Readers with reasonable knowledge in rings and modules will not have difficulty in reading this book. It is suitable as a reference book and textbook for researchers and graduate students who have an interest in this field.

  10. Flat flame burner

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Y.; Mitsudomi, H.

    1976-03-09

    Osaka Gas Co., Ltd.'s new flat-flame burner has an air-swirling chamber with a flame opening in one side so constructed that combustion gas is forced out from the flame opening in a spiral direction by the swirling air current within the air chamber. The orifice effect of permitting the flame to emanate from a small opening to an unconfined outer space assures formation of a flat flame spreading out over a very wide area, thereby ensuring very rapid, uniform and highly efficient heat treatment of an article to be heated. With the present invention, moreover, it is possible to materially reduce the thickness of the overall device.

  11. Flat Earth图片

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    欢迎来到这期的光盘介绍。本月的附刊光盘中,除了每月的精彩教程外,您可在光盘中找到15张由Flat Earth友情提供的库存图片。当然还有Twixtor和最新的Acrobat Reader 7。

  12. Flat knitting of a light emitting textile with optical fibres

    DEFF Research Database (Denmark)

    Heimdal, Elisabeth Jacobsen

    2009-01-01

    of knitting production equipment and experimental work on a flat knitting machine at The Swedish School of Textiles, Boras, Sweden. Results show that the diamond shaped structure can be knitted in one piece with transparent monofilament yarns. Furthermore it also shows that difficulties occur when knitting...... in the practice of weft knitting. This paper is about the experimental product development of a light radiating textile lamp in which optical fibres are used as the only illumination source. The lampshade is produced on an electronic flat knitting machine with special equipment suitable for the feeding of yarn...... with stiff and brittle optical fibres therefore the paper ends with a discussion with suggestions of how to overcome these challenges....

  13. Flat-plate heat pipe

    Science.gov (United States)

    Marcus, B. D.; Fleischman, G. L. (Inventor)

    1977-01-01

    Flat plate (vapor chamber) heat pipes were made by enclosing metal wicking between two capillary grooved flat panels. These heat pipes provide a unique configuration and have good capacity and conductance capabilities in zero gravity. When these flat plate vapor chamber heat pipes are heated or cooled, the surfaces are essentially isothermal, varying only 3 to 5 C over the panel surface.

  14. Quantum photonic networks in diamond

    KAUST Repository

    Lončar, Marko

    2013-02-01

    Advances in nanotechnology have enabled the opportunity to fabricate nanoscale optical devices and chip-scale systems in diamond that can generate, manipulate, and store optical signals at the single-photon level. In particular, nanophotonics has emerged as a powerful interface between optical elements such as optical fibers and lenses, and solid-state quantum objects such as luminescent color centers in diamond that can be used effectively to manipulate quantum information. While quantum science and technology has been the main driving force behind recent interest in diamond nanophotonics, such a platform would have many applications that go well beyond the quantum realm. For example, diamond\\'s transparency over a wide wavelength range, large third-order nonlinearity, and excellent thermal properties are of great interest for the implementation of frequency combs and integrated Raman lasers. Diamond is also an inert material that makes it well suited for biological applications and for devices that must operate in harsh environments. Copyright © Materials Research Society 2013.

  15. Thermally induced alkylation of diamond.

    Science.gov (United States)

    Hoeb, Marco; Auernhammer, Marianne; Schoell, Sebastian J; Brandt, Martin S; Garrido, Jose A; Stutzmann, Martin; Sharp, Ian D

    2010-12-21

    We present an approach for the thermally activated formation of alkene-derived self-assembled monolayers on oxygen-terminated single and polycrystalline diamond surfaces. Chemical modification of the oxygen and hydrogen plasma-treated samples was achieved by heating in 1-octadecene. The resulting layers were characterized using X-ray photoelectron spectroscopy, thermal desorption spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and water contact angle measurements. This investigation reveals that alkenes selectively attach to the oxygen-terminated sites via covalent C-O-C bonds. The hydrophilic oxygen-terminated diamond is rendered strongly hydrophobic following this reaction. The nature of the process limits the organic layer growth to a single monolayer, and FTIR measurements reveal that such monolayers are dense and well ordered. In contrast, hydrogen-terminated diamond sites remain unaffected by this process. This method is thus complementary to the UV-initiated reaction of alkenes with diamond, which exhibits the opposite reactivity contrast. Thermal alkylation increases the range of available diamond functionalization strategies and provides a means of straightforwardly forming single organic layers in order to engineer the surface properties of diamond. PMID:21090790

  16. Development of flat panel digital radiography system

    International Nuclear Information System (INIS)

    We developed the Digital Radiography System CXDI-11 which digitizes the X-ray image in high quality by using a self-developed flat panel detector. The CXDI-11 has a large image area of 43 cm x 43 cm (17'' x 17''), and it can display the image on the pre-view monitor after only 3 seconds of exposure. In this report, we present the principle and the physical characteristics of the CXDI-11. The X-ray detector installed in the CXDI-11 is a combination of a rare-earth scintillator and an amorphous silicon flat panel detector (LANMIT). The X-ray is converted to the visible fluorescent light at the scintillator and the light is detected by the LANMIT. The image-processed data is transferred to the DICOM3.0 conformed devices such as the diagnosis work station, the archiver and the laser imager through the network. We also show some measurement results of the dynamic range, the pre-sampling Modulation Transfer Function and the tube voltage dependent sensitivity. The CXDI-11 is superior in real time operation and image quality, thus it is the digital radiography system of the next generation. (author)

  17. Flat conductor cable commercialization project

    Science.gov (United States)

    Hogarth, P.; Wadsworth, E.

    1977-01-01

    An undercarpet flat conductor cable and a baseboard flat conductor cable system were studied for commercialization. The undercarpet system is designed for use in office and commercial buildings. It employs a flat power cable, protected by a grounded metal shield, that terminates in receptacles mounted on the floor. It is designed to interface with a flat conductor cable telephone system. The baseboard system consists of a flat power cable mounted in a plastic raceway; both the raceway and the receptacles are mounted on the surface of the baseboard. It is designed primarily for use in residential buildings, particularly for renovation and concrete and masonry construction.

  18. Amorphous silicon based particle detectors

    OpenAIRE

    Wyrsch, N; Franco, A; Riesen, Y.; Despeisse, M; S. Dunand; Powolny, F; Jarron, P.; Ballif, C.

    2012-01-01

    Radiation hard monolithic particle sensors can be fabricated by a vertical integration of amorphous silicon particle sensors on top of CMOS readout chip. Two types of such particle sensors are presented here using either thick diodes or microchannel plates. The first type based on amorphous silicon diodes exhibits high spatial resolution due to the short lateral carrier collection. Combination of an amorphous silicon thick diode with microstrip detector geometries permits to achieve micromete...

  19. Hydrogenated Black Diamond: An Electrical Study

    Energy Technology Data Exchange (ETDEWEB)

    Williams, O.A.; Jackman, R.B. [Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom); Nebel, C.E. [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, 85748 Garching (Germany)

    2002-10-16

    Hydrogen surface conductivity has been a controversial subject since its discovery. Initial plasma treatments on single crystal diamond and polycrystalline diamond have lead to the widespread use of this material in active electronics. However, ''Black'' polycrystalline diamond, usually termed ''Thermal Management Grade'', shows carrier concentration and mobility values similar to both white polycrystalline diamond and single crystal material. Schottky contacts have also been fabricated and show promising characteristics. Black diamond can be grown considerably faster than white diamond and is hence much cheaper. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  20. Biocompatibility of chemical-vapour-deposited diamond.

    Science.gov (United States)

    Tang, L; Tsai, C; Gerberich, W W; Kruckeberg, L; Kania, D R

    1995-04-01

    The biocompatibility of chemical-vapour-deposited (CVD) diamond surfaces has been assessed. Our results indicate that CVD diamond is as biocompatible as titanium (Ti) and 316 stainless steel (SS). First, the amount of adsorbed and 'denatured' fibrinogen on CVD diamond was very close to that of Ti and SS. Second, both in vitro and in vivo there appears to be less cellular adhesion and activation on the surface of CVD diamond surfaces compared to Ti and SS. This evident biocompatibility, coupled with the corrosion resistance and notable mechanical integrity of CVD diamond, suggests that diamond-coated surfaces may be highly desirable in a number of biomedical applications. PMID:7654876

  1. Fluctuation Electron Microscopy of Amorphous and Polycrystalline Materials

    Science.gov (United States)

    Rezikyan, Aram

    Fluctuation Electron Microscopy (FEM) has become an effective materials' structure characterization technique, capable of probing medium-range order (MRO) that may be present in amorphous materials. Although its sensitivity to MRO has been exercised in numerous studies, FEM is not yet a quantitative technique. The holdup has been the discrepancy between the computed kinematical variance and the experimental variance, which previously was attributed to source incoherence. Although high-brightness, high coherence, electron guns are now routinely available in modern electron microscopes, they have not eliminated this discrepancy between theory and experiment. The main objective of this thesis was to explore, and to reveal, the reasons behind this conundrum. The study was started with an analysis of the speckle statistics of tilted dark-field TEM images obtained from an amorphous carbon sample, which confirmed that the structural ordering is sensitively detected by FEM. This analysis also revealed the inconsistency between predictions of the source incoherence model and the experimentally observed variance. FEM of amorphous carbon, amorphous silicon and ultra nanocrystalline diamond samples was carried out in an attempt to explore the conundrum. Electron probe and sample parameters were varied to observe the scattering intensity variance behavior. Results were compared to models of probe incoherence, diffuse scattering, atom displacement damage, energy loss events and multiple scattering. Models of displacement decoherence matched the experimental results best. Decoherence was also explored by an interferometric diffraction method using bilayer amorphous samples, and results are consistent with strong displacement decoherence in addition to temporal decoherence arising from the electron source energy spread and energy loss events in thick samples. It is clear that decoherence plays an important role in the long-standing discrepancy between experimental FEM and its

  2. Diamonds: Exploration, mines and marketing

    Science.gov (United States)

    Read, George H.; Janse, A. J. A. (Bram)

    2009-11-01

    The beauty, value and mystique of exceptional quality diamonds such as the 603 carat Lesotho Promise, recovered from the Letseng Mine in 2006, help to drive a multi-billion dollar diamond exploration, mining and marketing industry that operates in some 45 countries across the globe. Five countries, Botswana, Russia, Canada, South Africa and Angola account for 83% by value and 65% by weight of annual diamond production, which is mainly produced by four major companies, De Beers, Alrosa, Rio Tinto and BHP Billiton (BHPB), which together account for 78% by value and 72% by weight of annual diamond production for 2007. During the last twelve years 16 new diamond mines commenced production and 4 re-opened. In addition, 11 projects are in advanced evaluation and may begin operations within the next five years. Exploration for diamondiferous kimberlites was still energetic up to the last quarter of 2008 with most work carried out in Canada, Angola, Democratic Republic of the Congo (DRC) and Botswana. Many kimberlites were discovered but no new economic deposits were outlined as a result of this work, except for the discovery and possible development of the Bunder project by Rio Tinto in India. Exploration methods have benefitted greatly from improved techniques of high resolution geophysical aerial surveying, new research into the geochemistry of indicator minerals and further insights into the formation of diamonds and the relation to tectonic/structural events in the crust and mantle. Recent trends in diamond marketing indicate that prices for rough diamonds and polished goods were still rising up to the last quarter of 2008 and subsequently abruptly sank in line with the worldwide financial crisis. Most analysts predict that prices will rise again in the long term as the gap between supply and demand will widen because no new economic diamond discoveries have been made recently. The disparity between high rough and polished prices and low share prices of publicly

  3. Genetic Types of Diamond Mineralization

    Institute of Scientific and Technical Information of China (English)

    A.A.MARAKUSHEV; 桑隆康; 等

    1998-01-01

    The paper describes the proposed models of diamond formation both in meteorites and in kimberlite and lamproite bodies.metamorphic complexes and explosive-ring structures ("astroblemes"),The diamond distribution in meteorites(chondrites,iron meteorites and ureilites)is restricted to taente-kamasite phase.The diamond generation here is tied up with the first stage of evolution of the planets,This stage is characterized by high pressure of hydrogen. leading to the formation of the planet envelope,The second stage of planet evolution began with the progressive imopoverishment of their atmospheres in hydrogen due to its predominant emission into the space and to progressive development of oxidative conditions.The model appears to have proved the relict nature of diamond mineraolization in meteorites.Diamond and other high-pressure minerals(its"satellites") were crystallized without any exception in the early intratelluric stages of peridotite and eclogite-pyroxenite magma evolution just before the magma intrusion into the higher levels of the mantle and crust where diamond is not thermodynamically stable,The ultramafic intrusive bodies(bearing rich relict diamonds)in the dase of a platform paaear to be the substrata for the formation of kimberlite-lamproite magma chambers as a result of magmatic replacement.The model explains the polyfacial nature of diamondiferous eclotgites,pyroxenites and peridotites and discusses the process of inheritance of their diamond mineralization by kimberlites and lamproites.Dimond oproductivity of metamorthic complexes is originated by the inheritance of their diamonds from the above-mentioned primary diamondiferous rocks.Large diamondiferous explosive-ring structures were formed by high-energy endogenic explosion of fluid which came from the Earth's core.This high energy differs endogenic impactogenesis from explosive volcanism.It proceeds at very high temperature to create diaplectic galsses(monomineral pseudomorphs)-the product of

  4. Integration of high-dielectric constant Ta2O5 oxides on diamond for power devices

    Science.gov (United States)

    Cheng, Shaoheng; Sang, Liwen; Liao, Meiyong; Liu, Jiangwei; Imura, Masataka; Li, Hongdong; Koide, Yasuo

    2012-12-01

    The authors report on the direct integration of high-dielectric constant (high-k) Ta2O5 films on p-type single crystal diamond for high-power electronic devices. Crystallized hexagonal phase δ-Ta2O5 film is achieved on diamond by annealing the amorphous Ta2O5 film deposited by a sputter-deposition technique. The electrical properties of the Ta2O5 thin films are investigated by fabricating metal-insulator-semiconductor (MIS) diodes. The leakage current of the MIS diode is as low as 10-8 A/cm2 for the as-deposited amorphous Ta2O5 film and 10-2 A/cm2 for the crystallized film, which is 108 and 102 times lower than that of the Schottky diode at a forward bias of -3 V, respectively. The dielectric constant of the amorphous Ta2O5 films is measured to be 16 and increases to 29 after annealing at 800 °C. Different current leakage mechanisms and charge trapping behaviors are proposed for the amorphous and crystallized Ta2O5 thin films.

  5. Integration of high-dielectric constant Ta2O5 oxides on diamond for power devices

    International Nuclear Information System (INIS)

    The authors report on the direct integration of high-dielectric constant (high-k) Ta2O5 films on p-type single crystal diamond for high-power electronic devices. Crystallized hexagonal phase δ-Ta2O5 film is achieved on diamond by annealing the amorphous Ta2O5 film deposited by a sputter-deposition technique. The electrical properties of the Ta2O5 thin films are investigated by fabricating metal-insulator-semiconductor (MIS) diodes. The leakage current of the MIS diode is as low as 10−8 A/cm2 for the as-deposited amorphous Ta2O5 film and 10−2 A/cm2 for the crystallized film, which is 108 and 102 times lower than that of the Schottky diode at a forward bias of −3 V, respectively. The dielectric constant of the amorphous Ta2O5 films is measured to be 16 and increases to 29 after annealing at 800 °C. Different current leakage mechanisms and charge trapping behaviors are proposed for the amorphous and crystallized Ta2O5 thin films.

  6. Piecewise flat gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Van de Meent, Maarten, E-mail: M.vandeMeent@uu.nl [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, PO Box 80.195, 3508 TD Utrecht (Netherlands)

    2011-04-07

    We examine the continuum limit of the piecewise flat locally finite gravity model introduced by 't Hooft. In the linear weak field limit, we find the energy-momentum tensor and metric perturbation of an arbitrary configuration of defects. The energy-momentum turns out to be restricted to satisfy certain conditions. The metric perturbation is mostly fixed by the energy-momentum except for its lightlike modes which reproduce linear gravitational waves, despite no such waves being present at the microscopic level.

  7. Flat feet in children

    Directory of Open Access Journals (Sweden)

    Vukašinović Zoran

    2009-01-01

    Full Text Available The authors describe flatfoot, as one of very frequent deformities in everyday medical practice. A special condition of the deformity associated with a calcaneal valgus position and complicated by a knee valgus position (as a consequence of non-treatment is described. Also, the precise anatomy of the longitudinal foot arches (medial and lateral, definition and classification of the deformity, clinical findings and therapeutic protocols are proposed. The authors especially emphasise that the need for having extensive knowledge on the differences between a flexible and rigid flatfoot, having in mind that the treatment of flexible flat foot is usually not necessary, while the treatment of rigid flatfoot is usually unavoidable.

  8. Pulsed laser treatment of WC,Co tool substrates to improve Co removing and diamond nucleation

    International Nuclear Information System (INIS)

    Diamond coated cutting tools seem to be one of the most promising system to machine non-ferrous, very hard materials, like metal matrix composites (MMC), carbon fibers, hypereutectic Al/Si alloys. The widespread used and cheaper bulk material for tool inserts, the WC,xCo hard metal, is convenient and profitable as a substrate for diamond film coatings. Unfortunately, the Co-rich binder phase constitutes a severe obstacle for diamond deposition. Because of the catalytic effect for amorphous carbon or soot formation, the presence of Co actually resulted in a detrimental effect both on diamond nucleation and adhesion to substrate. Several chemical and physical methods have been developed to etch Co from the surface, no conclusive and perfectly reliable procedure, however, has been achieved, as far as a strong adhesion is concerned. In the experiments, the authors used ArF (λ = 193 nm, hv ≅ 6.4 eV) and Nd:YAG (λ = 532 nm, hv ≅ 2.3 eV) pulsed laser treatment to selectively remove Co from the surface and to seal the structural voids, coming out after Co chemical etching from the substrate, and responsible of surface segregation of Co from the bulk, during CVD diamond deposition. The sealing efficiency, after a thermal treatment (3h, 800 C) in an inert atmosphere, resulted to be quite good, compared to the untreated surface. The morphological and chemical effects have been studied by SEM/EDAX microscopy

  9. Temperature distributions in the laser-heated diamond anvil cell from 3-D numerical modeling

    International Nuclear Information System (INIS)

    We present TempDAC, a 3-D numerical model for calculating the steady-state temperature distribution for continuous wave laser-heated experiments in the diamond anvil cell. TempDAC solves the steady heat conduction equation in three dimensions over the sample chamber, gasket, and diamond anvils and includes material-, temperature-, and direction-dependent thermal conductivity, while allowing for flexible sample geometries, laser beam intensity profile, and laser absorption properties. The model has been validated against an axisymmetric analytic solution for the temperature distribution within a laser-heated sample. Example calculations illustrate the importance of considering heat flow in three dimensions for the laser-heated diamond anvil cell. In particular, we show that a “flat top” input laser beam profile does not lead to a more uniform temperature distribution or flatter temperature gradients than a wide Gaussian laser beam

  10. Pressure, stress, and strain distribution in the double-stage diamond anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Lobanov, Sergey S., E-mail: slobanov@carnegiescience.edu [Geophysical Laboratory, Carnegie Institution of Washington, Washington, District of Columbia 20015 (United States); V.S. Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk 630090 (Russian Federation); Prakapenka, Vitali B.; Prescher, Clemens [Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60632 (United States); Konôpková, Zuzana; Liermann, Hanns-Peter [Photon Science DESY, D-22607 Hamburg (Germany); Crispin, Katherine L. [Geophysical Laboratory, Carnegie Institution of Washington, Washington, District of Columbia 20015 (United States); Zhang, Chi [Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics CAS, Beijing 100029 (China); Goncharov, Alexander F. [Geophysical Laboratory, Carnegie Institution of Washington, Washington, District of Columbia 20015 (United States); Key Laboratory of Materials Physics, Institute of Solid State Physics CAS, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China)

    2015-07-21

    Double stage diamond anvil cells (DACs) of two designs have been assembled and tested. We used a standard symmetric DAC with flat or beveled culets as a primary stage and CVD microanvils machined by a focused ion beam as a second. We evaluated pressure, stress, and strain distributions in gold and a mixture of gold and iron as well as in secondary anvils using synchrotron x-ray diffraction with a micro-focused beam. A maximum pressure of 240 GPa was reached independent of the first stage anvil culet size. We found that the stress field generated by the second stage anvils is typical of conventional DAC experiments. The maximum pressures reached are limited by strains developing in the secondary anvil and by cupping of the first stage diamond anvil in the presented experimental designs. Also, our experiments show that pressures of several megabars may be reached without sacrificing the first stage diamond anvils.

  11. Investigation of structural and electrical properties of flat a-Si/c-Si heterostructure fabricated by EBPVD technique

    Energy Technology Data Exchange (ETDEWEB)

    Demiroğlu, D. [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Ayazağa 34469, Istanbul (Turkey); Tatar, B. [Faculty of Arts and Sciences, Department of Physics, Namık Kemal University, Değirmenaltı, Tekirdağ (Turkey); Kazmanli, K.; Urgen, M. [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Ayazağa 34469, Istanbul (Turkey)

    2013-12-16

    Flat amorphous silicon - crystal silicon (a-Si/c-Si) heterostructure were prepared by ultra-high vacuum electron beam evaporation technique on p-Si (111) and n-Si (100) single crystal substrates. Structural analyses were investigated by XRD, Raman and FEG-SEM analysis. With these analyses we determined that at the least amorphous structure shows modification but amorphous structure just protected. The electrical and photovoltaic properties of flat a-Si/c-Si heterojunction devices were investigated with current-voltage characteristics under dark and illumination conditions. Electrical properties of flat a-Si/c-Si heterorojunction; such as barrier height Φ{sub B}, diode ideality factor η were determined from current-voltage characteristics in dark conditions. These a-Si/c-Si heterostructure have good rectification behavior as a diode and exhibit high photovoltaic sensitivity.

  12. Are diamond nanoparticles cytotoxic?

    Science.gov (United States)

    Schrand, Amanda M; Huang, Houjin; Carlson, Cataleya; Schlager, John J; Omacr Sawa, Eiji; Hussain, Saber M; Dai, Liming

    2007-01-11

    Finely divided carbon particles, including charcoal, lampblack, and diamond particles, have been used for ornamental and official tattoos since ancient times. With the recent development in nanoscience and nanotechnology, carbon-based nanomaterials (e.g., fullerenes, nanotubes, nanodiamonds) attract a great deal of interest. Owing to their low chemical reactivity and unique physical properties, nanodiamonds could be useful in a variety of biological applications such as carriers for drugs, genes, or proteins; novel imaging techniques; coatings for implantable materials; and biosensors and biomedical nanorobots. Therefore, it is essential to ascertain the possible hazards of nanodiamonds to humans and other biological systems. We have, for the first time, assessed the cytotoxicity of nanodiamonds ranging in size from 2 to 10 nm. Assays of cell viability such as mitochondrial function (MTT) and luminescent ATP production showed that nanodiamonds were not toxic to a variety of cell types. Furthermore, nanodiamonds did not produce significant reactive oxygen species. Cells can grow on nanodiamond-coated substrates without morphological changes compared to controls. These results suggest that nanodiamonds could be ideal for many biological applications in a diverse range of cell types.

  13. Are diamond nanoparticles cytotoxic?

    Science.gov (United States)

    Schrand, Amanda M; Huang, Houjin; Carlson, Cataleya; Schlager, John J; Omacr Sawa, Eiji; Hussain, Saber M; Dai, Liming

    2007-01-11

    Finely divided carbon particles, including charcoal, lampblack, and diamond particles, have been used for ornamental and official tattoos since ancient times. With the recent development in nanoscience and nanotechnology, carbon-based nanomaterials (e.g., fullerenes, nanotubes, nanodiamonds) attract a great deal of interest. Owing to their low chemical reactivity and unique physical properties, nanodiamonds could be useful in a variety of biological applications such as carriers for drugs, genes, or proteins; novel imaging techniques; coatings for implantable materials; and biosensors and biomedical nanorobots. Therefore, it is essential to ascertain the possible hazards of nanodiamonds to humans and other biological systems. We have, for the first time, assessed the cytotoxicity of nanodiamonds ranging in size from 2 to 10 nm. Assays of cell viability such as mitochondrial function (MTT) and luminescent ATP production showed that nanodiamonds were not toxic to a variety of cell types. Furthermore, nanodiamonds did not produce significant reactive oxygen species. Cells can grow on nanodiamond-coated substrates without morphological changes compared to controls. These results suggest that nanodiamonds could be ideal for many biological applications in a diverse range of cell types. PMID:17201422

  14. The Design of Diamond Compton Telescope

    CERN Document Server

    Hibino, Kinya; Okuno, Shoji; Yajima, Kaori; Uchihori, Yukio; Kitamura, Hisashi; Takashima, Takeshi; Yokota, Mamoru; Yoshida, Kenji

    2007-01-01

    We have developed radiation detectors using the new synthetic diamonds. The diamond detector has an advantage for observations of "low/medium" energy gamma rays as a Compton telescope. The primary advantage of the diamond detector can reduce the photoelectric effect in the low energy range, which is background noise for tracking of the Compton recoil electron. A concept of the Diamond Compton Telescope (DCT) consists of position sensitive layers of diamond-striped detector and calorimeter layer of CdTe detector. The key part of the DCT is diamond-striped detectors with a higher positional resolution and a wider energy range from 10 keV to 10 MeV. However, the diamond-striped detector is under development. We describe the performance of prototype diamond detector and the design of a possible DCT evaluated by Monte Carlo simulations.

  15. ARC Filters with Diamond Transistors and Buffers

    OpenAIRE

    T. Dostal

    1998-01-01

    Active RC first and second order filters using diamond transistors (voltage controlled current sources) and voltage diamond buffers (voltage controlled voltage sources) are given in this paper. Circuits are simulated and experimentally compared.

  16. Diamond semiconductor technology for RF device applications

    OpenAIRE

    Gürbüz, Yaşar; Gurbuz, Yasar; Esame, İbrahim Onur; Esame, Ibrahim Onur; Tekin, İbrahim; TEKIN Ibrahim; Kang, Weng Poo; Davidson, Jimmy L.

    2005-01-01

    This paper presents a comprehensive review of diamond electronics from the RF perspective. Our aim was to find and present the potential, limitations and current status of diamond semiconductor devices as well as to investigate its suitability for RF device applications. While doing this, we briefly analysed the physics and chemistry of CVD diamond process for a better understanding of the reasons for the technological challenges of diamond material. This leads to Figure of Merit definitions ...

  17. Nanocrystalline diamond growth and device applications

    OpenAIRE

    Dipalo, Michele

    2009-01-01

    Diamond possesses such outstanding properties that its exploitation in many fields is sought for several years now. Mechanical, thermal, electrical and chemical features of diamond render it the ideal material for power electronics, chemical sensors, thermal dissipation and high temperature devices. The inadequate size of available diamond substrates, limited to few millimeters, made necessary the development of nanocrystalline (NCD) diamond, available today on large area wafers. Unfortunatel...

  18. Raman spectral research on MPCVD diamond film

    Institute of Scientific and Technical Information of China (English)

    YAN Yan; ZHANG Shulin; ZHAO Xinsheng; HAN Yisong; HOU Li

    2003-01-01

    Raman spectra of MPCVD diamond film have been studied. Based on the resonance size selection effect, we think that there is no nano-crystalline diamond in the sample and the Raman peak at 1145 cm-1 can not be considered as the characteristic peak of nano-crystalline diamond though it has been used as the characteristic peak of nano-crystalline diamond widely for many years.

  19. Medical applications of diamond particles & surfaces

    Directory of Open Access Journals (Sweden)

    Roger J Narayan

    2011-04-01

    Full Text Available Diamond has been considered for use in several medical applications due to its unique mechanical, chemical, optical, and biological properties. In this paper, methods for preparing synthetic diamond surfaces and particles are described. In addition, recent developments involving the use of diamond in prostheses, sensing, imaging, and drug delivery applications are reviewed. These developments suggest that diamond-containing structures will provide significant improvements in the diagnosis and treatment of medical conditions over the coming years.

  20. Diamond and diamond-like films for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J.M.

    1993-01-01

    This section is a compilation of transparency templates which describe the goals of the Office of Transportation Materials (OTM) Tribology Program. The positions of personnel on the OTM are listed. The role and mission of the OTM is reviewed. The purpose of the Tribology Program is stated to be `to obtain industry input on program(s) in tribology/advanced lubricants areas of interest`. The objective addressed here is to identify opportunities for cost effective application of diamond and diamond-like carbon in transportation systems.

  1. Study on Platinum Coating Depth in Focused Ion Beam Diamond Cutting Tool Milling and Methods for Removing Platinum Layer

    Directory of Open Access Journals (Sweden)

    Woong Kirl Choi

    2015-09-01

    Full Text Available In recent years, nanomachining has attracted increasing attention in advanced manufacturing science and technologies as a value-added processes to control material structures, components, devices, and nanoscale systems. To make sub-micro patterns on these products, micro/nanoscale single-crystal diamond cutting tools are essential. Popular non-contact methods for the macro/micro processing of diamond composites are pulsed laser ablation (PLA and electric discharge machining (EDM. However, for manufacturing nanoscale diamond tools, these machining methods are not appropriate. Despite diamond’s extreme physical properties, diamond can be micro/nano machined relatively easily using a focused ion beam (FIB technique. In the FIB milling process, the surface properties of the diamond cutting tool is affected by the amorphous damage layer caused by the FIB gallium ion collision and implantation and these influence the diamond cutting tool edge sharpness and increase the processing procedures. To protect the diamond substrate, a protection layer—platinum (Pt coating is essential in diamond FIB milling. In this study, the depth of Pt coating layer which could decrease process-induced damage during FIB fabrication is investigated, along with methods for removing the Pt coating layer on diamond tools. The optimum Pt coating depth has been confirmed, which is very important for maintaining cutting tool edge sharpness and decreasing processing procedures. The ultra-precision grinding method and etching with aqua regia method have been investigated for removing the Pt coating layer. Experimental results show that when the diamond cutting tool width is bigger than 500 nm, ultra-precision grinding method is appropriate for removing Pt coating layer on diamond tool. However, the ultra-precision grinding method is not recommended for removing the Pt coating layer when the cutting tool width is smaller than 500 nm, because the possibility that the diamond

  2. High-Current Cold Cathode Employing Diamond and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT (United States)

    2014-10-22

    The essence of this project was for diamond films to be deposited on cold cathodes to improve their emission properties. Films with varying morphology, composition, and size of the crystals were deposited and the emission properties of the cathodes that utilize such films were studied. The prototype cathodes fabricated by the methods developed during Phase I were tested and evaluated in an actual high-power RF device during Phase II. These high-power tests used the novel active RF pulse compression system and the X-band magnicon test facility at US Naval Research Laboratory. In earlier tests, plasma switches were employed, while tests under this project utilized electron-beam switching. The intense electron beams required in the switches were supplied from cold cathodes embodying diamond films with varying morphology, including uncoated molybdenum cathodes in the preliminary tests. Tests with uncoated molybdenum cathodes produced compressed X-band RF pulses with a peak power of 91 MW, and a maximum power gain of 16.5:1. Tests were also carried out with switches employing diamond coated cathodes. The pulse compressor was based on use of switches employing electron beam triggering to effect mode conversion. In experimental tests, the compressor produced 165 MW in a ~ 20 ns pulse at ~18× power gain and ~ 140 MW at ~ 16× power gain in a 16 ns pulse with a ~ 7 ns flat-top. In these tests, molybdenum blade cathodes with thin diamond coatings demonstrated good reproducible emission uniformity with a 100 kV, 100 ns high voltage pulse. The new compressor does not have the limitations of earlier types of active pulse compressors and can operate at significantly higher electric fields without breakdown.

  3. Diamond device architectures for UV laser monitoring

    Science.gov (United States)

    Salvatori, S.; Girolami, M.; Oliva, P.; Conte, G.; Bolshakov, A.; Ralchenko, V.; Konov, V.

    2016-08-01

    The paper reviews the status of diamond detectors for UV laser monitoring and imaging. Single pixel detectors, position sensitive architectures, optically activated switches and sensor arrays for beam positioning and imaging are analyzed. The performances of natural diamond and synthetic diamond produced by chemical vapor deposition are compared to evaluate the suitability of such an outstanding material for the described applications.

  4. Flat Helical Nanosieves

    CERN Document Server

    Mei, Shengtao; Hussain, Sajid; Huang, Kun; Ling, Xiaohui; Siew, Shawn Yohanes; Liu, Hong; Teng, Jinghua; Danner, Aaron; Qiu, Cheng-Wei

    2016-01-01

    Compact and miniaturized devices with flexible functionalities are always highly demanded in optical integrated systems. Plasmonic nanosieve has been successfully harnessed as an ultrathin flat platform for complex manipulation of light, including holography, vortex generation and non-linear processes. Compared with most of reported single-functional devices, multi-functional nanosieves might find more complex and novel applications across nano-photonics, optics and nanotechnology. Here, we experimentally demonstrate a promising roadmap for nanosieve-based helical devices, which achieves full manipulations of optical vortices, including its generation, hybridization, spatial multiplexing, focusing and non-diffraction propagation etc., by controlling the geometric phase of spin light via over 121 thousands of spatially-rotated nano-sieves. Thanks to such spin-conversion nanosieve helical elements, it is no longer necessary to employ the conventional two-beam interferometric measurement to characterize optical ...

  5. IS THE WORLD FLAT?

    Directory of Open Access Journals (Sweden)

    Cristian Încalţărău

    2010-06-01

    Full Text Available Globalization became more and more prominent during the last decades. There is no way to argue that globalization led to more interconnected economies, facilitating the communication and the collaboration around the world. But where is this going? Doesglobalization mean uniformity or diversity? As the world begins to resemble more, the people are trying to distinguish between them more, which can exacerbate nationalistic feeling. Friedman argues that globalization made the world smaller and flatter, allowing all countries to take chance of the available opportunities equally. But is this really true? Although politic and cultural factors can stand in front of a really flat world, what is the key for Chinese and Indian success and which are theirs perspectives?

  6. Flat Bands Under Correlated Perturbations

    OpenAIRE

    Bodyfelt, Joshua D.; Leykam, Daniel; Danieli, Carlo; Yu, Xiaoquan; Flach, Sergej

    2014-01-01

    Flat band networks are characterized by coexistence of dispersive and flat bands. Flat bands (FB) are generated by compact localized eigenstates (CLS) with local network symmetries, based on destructive interference. Correlated disorder and quasiperiodic potentials hybridize CLS without additional renormalization, yet with surprising consequencies: (i) states are expelled from the FB energy $E_{FB}$, (ii) the localization length of eigenstates vanishes as $\\xi \\sim 1 / \\ln (E- E_{FB})$, (iii)...

  7. Diamonds at the golden point

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    Alongside the CMS Pixel Luminosity Telescope (PLT) – installed last month (see here) – lie diamond detectors. No ordinary gems, these lab-grown diamonds will be playing a vital role in Run 2: differentiating signals from collision products with those from the beam background.   The BCM detector's green "c-shaped" printed circuit board is mounted on the PLT/BCM carbon-fibre carriage ready for installation. Earlier this year, the CMS BRIL project installed beam condition monitors (BCM) at the heart of the CMS detector. Designed to measure the online luminosity and beam background as close as possible to the LHC beam pipe, the BCMs use radiation-hard diamonds to differentiate between background and collision signals. The BCM also protects the CMS silicon trackers from damaging beam losses, by aborting the beam if the signal currents measured are above an acceptable threshold. These new BCMs are designed with Run 2 bunches in mind. &ldq...

  8. Diamond based photonic crystal microcavities.

    Science.gov (United States)

    Tomljenovic-Hanic, S; Steel, M J; de Sterke, C Martijn; Salzman, J

    2006-04-17

    Diamond based technologies offer a material platform for the implementation of qubits for quantum computing. The photonic crystal architecture provides the route for a scalable and controllable implementation of high quality factor (Q) nanocavities, operating in the strong coupling regime for cavity quantum electrodynamics. Here we compute the photonic band structures and quality factors of microcavities in photonic crystal slabs in diamond, and compare the results with those of the more commonly-used silicon platform. We find that, in spite of the lower index contrast, diamond based photonic crystal microcavities can exhibit quality factors of Q=3.0x10(4), sufficient for proof of principle demonstrations in the quantum regime. PMID:19516502

  9. More Ricci-flat branes

    CERN Document Server

    Figueroa-O'Farrill, J M

    1999-01-01

    Certain supergravity solutions (including domain walls and the magnetic fivebrane) have recently been generalised by Brecher and Perry by relaxing the condition that the brane worldvolume be flat. In this way they obtain examples in which the brane worldvolume is a static spacetime admitting parallel spinors. In this note we simply point out that the restriction to static spacetimes is unnecessary, and in this way exhibit solutions where the brane worldvolume is an indecomposable Ricci-flat lorentzian manifold admitting parallel spinors. We discuss more Ricci-flat fivebranes and domain walls, as well as new Ricci-flat D3-branes.

  10. Low temperature surface conductivity of hydrogenated diamond

    Energy Technology Data Exchange (ETDEWEB)

    Sauerer, C.; Ertl, F.; Nebel, C.E.; Stutzmann, M. [Technische Univ. Muenchen, Garching (Germany). Walter-Schottky-Inst. fuer Physikalische Grundlagen der Halbleiterelektronik; Bergonzo, P. [LIST(CEA-Recherche Technology)/DIMIR/SIAR/Saclay, Gif-sur-Yvette (France); Williams, O.A.; Jackman, R.A. [University Coll., London (United Kingdom). Dept. of Electrical and Electronic Engineering

    2001-07-23

    Conductivity and Hall experiments are performed on hydrogenated poly-CVD, atomically flat homoepitaxially grown Ib and natural type IIa diamond layers in the regime 0.34 to 400 K. For all experiments hole transport is detected with sheet resistivities at room temperature in the range 10{sup 4} to 10{sup 5} {omega}/{radical}. We introduce a transport model where a disorder induced tail of localized states traps holes at very low temperatures (T < 70 K). The characteristic energy of the tail is in the range of 6 meV. Towards higher temperatures (T > 70 K) the hole density is approximately constant and the hole mobility {mu} is increasing two orders of magnitude. In the regime 70 K < T < 200 K, {mu} is exponentially activated with 22 meV, above it follows a {proportional_to}T{sup 3/2} law. The activation energy of the hole density at T < 70 K is governed by the energy gap between holes trapped in the tail and the mobility edge which they can propagate. In the temperature regime T < 25 K an increasing hole mobility is detected which is attributed to transport in delocalized states at the surface. (orig.)

  11. Functionalization of nanocrystalline diamond films with phthalocyanines

    Science.gov (United States)

    Petkov, Christo; Reintanz, Philipp M.; Kulisch, Wilhelm; Degenhardt, Anna Katharina; Weidner, Tobias; Baio, Joe E.; Merz, Rolf; Kopnarski, Michael; Siemeling, Ulrich; Reithmaier, Johann Peter; Popov, Cyril

    2016-08-01

    Phthalocyanine (Pc) derivatives containing different central metal atoms (Mn, Cu, Ti) and different peripheral chains were synthesized and comprehensively characterized. Their interaction with nanocrystalline diamond (NCD) films, as-grown by hot-filament chemical vapor deposition or after their modification with oxygen plasma to exchange the hydrogen termination with oxygen-containing groups, was studied by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The elemental composition as determined by XPS showed that the Pc were grafted on both as-grown and O-terminated NCD. Mn, Cu and Ti were detected together with N stemming from the Pc ring and S in case of the Ti-Pc from the peripheral ligands. The results for the elemental surface composition and the detailed study of the N 1s, S 2p and O 1s core spectra revealed that Ti-Pc grafted better on as-grown NCD but Cu-Pc and Mn-Pc on O-terminated films. Samples of Mn-Pc on as-grown and O-terminated NCD were further investigated by NEXAFS spectroscopy. The results showed ordering of the grafted molecules, laying flat on the H-terminated NCD surface while only the macrocycles were oriented parallel to the O-terminated surface with the peripheral chains perpendicular to it.

  12. Superconductivity in CVD Diamond Films

    Science.gov (United States)

    Takano, Yoshihiko

    2005-03-01

    The recent news of superconductivity 2.3K in heavily boron-doped diamond synthesized by high pressure sintering was received with considerable surprise (1). Opening up new possibilities for diamond-based electrical devices, a systematic investigation of these phenomena clearly needs to be achieved. Application of diamond to actual devices requires it to be made into the form of wafers or thin films. We show unambiguous evidence for superconductivity in a heavily boron-doped diamond thin film deposited by the microwave plasma assisted chemical vapor deposition (MPCVD) method (2). An advantage of the MPCVD deposited diamond is that it can control boron concentration in its wider range, particularly in (111) oriented films. The temperature dependence of resistivity for (111) and (100) homoepitaxial thin films were measured under several magnetic fields. Superconducting transition temperatures of (111) homoepitaxial film are determined to be 11.4K for Tc onset and 7.2K for zero resistivity. And the upper critical field is estimated to be about 8T. These values are 2-3 times higher than these ever reported (1,3). On other hand, for (100) homoepitaxial film, Tc onset and Tc zero resistivity were estimated to be 6.3 and 3.2K respectively. The superconductivity in (100) film was strongly suppressed even at the same boron concentration. These differences of superconductivity in film orientation will be discussed. These findings established the superconductivity as a universal property of boron-doped diamond, demonstrating that device application is indeed a feasible challenge. 1. E. A. Ekimov et al. Nature, 428, 542 (2004). 2. Y. Takano et al., Appl. Phys. Lett. 85, 2851 (2004). 3. E. Bustarret et al., ond-mat 0408517.

  13. Is classical flat Kasner spacetime flat in quantum gravity?

    Science.gov (United States)

    Singh, Parampreet

    2016-05-01

    Quantum nature of classical flat Kasner spacetime is studied using effective spacetime description in loop quantum cosmology (LQC). We find that even though the spacetime curvature vanishes at the classical level, nontrivial quantum gravitational effects can arise. For the standard loop quantization of Bianchi-I spacetime, which uniquely yields universal bounds on expansion and shear scalars and results in a generic resolution of strong singularities, we find that a flat Kasner metric is not a physical solution of the effective spacetime description, except in a limit. The lack of a flat Kasner metric at the quantum level results from a novel feature of the loop quantum Bianchi-I spacetime: quantum geometry induces nonvanishing spacetime curvature components, making it not Ricci flat even when no matter is present. The noncurvature singularity of the classical flat Kasner spacetime is avoided, and the effective spacetime transits from a flat Kasner spacetime in asymptotic future, to a Minkowski spacetime in asymptotic past. Interestingly, for an alternate loop quantization which does not share some of the fine features of the standard quantization, flat Kasner spacetime with expected classical features exists. In this case, even with nontrivial quantum geometric effects, the spacetime curvature vanishes. These examples show that the character of even a flat classical vacuum spacetime can alter in a fundamental way in quantum gravity and is sensitive to the quantization procedure.

  14. Graphite to ultrafine nanocrystalline diamond phase transition model and growth restriction mechanism induced by nanosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Ren, X. D., E-mail: renxd@mail.ujs.edu.cn; Liu, R.; Zheng, L. M.; Ren, Y. P.; Hu, Z. Z.; He, H. [Department of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-10-05

    To have a clear insight into nanocrystal growth from graphite to diamond upon high energy pulsed laser irradiation of graphite suspension, synthesis of ultrafine nanocrystalline diamonds with laser energy set up from 0.3 J to 12 J, repetition rate of 10 Hz has been studied. The method allows synthesizing ultrafine nanocrystalline particles continuously at the ambient temperature and normal pressure. The particle size is shown independent of laser energy, which is ultrafine and ranges in 2–6 nm. The theoretical grown size of nano-diamonds is found in well agreement with the experiment results. Four kinds of production were found: nano-diamond, spherical carbon nano-particles, flocculent amorphous carbon, and graphene nano-ribbon rolls. A solid-vapor-plasma-liquid coexistence model describing phase transition from graphite to diamond induced by nanosecond laser processing was proposed. Graphene nano-ribbon rolls might be the intermediate phase in the conversion from graphite to diamond.

  15. CVD diamond for electronic devices and sensors

    CERN Document Server

    2009-01-01

    Synthetic diamond is diamond produced by using chemical or physical processes. Like naturally occurring diamond it is composed of a three-dimensional carbon crystal. Due to its extreme physical properties, synthetic diamond is used in many industrial applications, such as drill bits and scratch-proof coatings, and has the potential to be used in many new application areas A brand new title from the respected Wiley Materials for Electronic and Optoelectronic Applications series, this title is the most up-to-date resource for diamond specialists. Beginning with an introduction to the pr

  16. Method for machining steel with diamond tools

    Science.gov (United States)

    Casstevens, John M.

    1986-01-01

    The present invention is directed to a method for machining optical quality inishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.

  17. Diamond Sensors for Energy Frontier Experiments

    CERN Document Server

    Schnetzer, Steve

    2014-01-01

    We discuss the use of diamond sensors in high-energy, high-i ntensity collider experiments. Re- sults from diamond sensor based beam conditions monitors in the ATLAS and CMS experiments at the CERN Large Hadron Collider (LHC) are presented and pla ns for diamond based luminosity monitors for the upcoming LHC run are described. We describe recent measurements on single crystal diamond sensors that indicate a polarization effec t that causes a reduction of charge col- lection efficiency as a function of particle flux. We conclude by describing new developments on the promising technology of 3D diamond sensors.

  18. Fenton-treated functionalized diamond nanoparticles as gene delivery system.

    Science.gov (United States)

    Martín, Roberto; Alvaro, Mercedes; Herance, José Raúl; García, Hermenegildo

    2010-01-26

    When raw diamond nanoparticles (Dnp, 7 nm average particle size) obtained from detonation are submitted to harsh Fenton-treatment, the resulting material becomes free of amorphous soot matter and the process maintains the crystallinity, reduces the particle size (4 nm average particle size), increases the surface OH population, and increases water solubility. All these changes are beneficial for subsequent Dnp covalent functionalization and for the ability of Dnp to cross cell membranes. Fenton-treated Dnps have been functionalized with thionine and the resulting sample has been observed in HeLa cell nuclei. A triethylammonium-functionalized Dnp pairs electrostatically with a plasmid having the green fluorescent protein gene and acts as gene delivery system permitting the plasmid to cross HeLa cell membrane, something that does not occur for the plasmid alone without assistance of polycationic Dnp. PMID:20047335

  19. Effects of diamond magnetism on the microstructure of electrodeposited diamond composites

    Institute of Scientific and Technical Information of China (English)

    Lu Huiyang; Li Yundong; Huang Zhiwei; Go Huiyan

    2007-01-01

    Electroformed diamond tools have been used for many years in grinding and cutting fields while electrodeposited diamond composite coatings have been widely studied due to their desirable hardness, wear and corrosion resistance. This article eports the detrimental impact of diamond magnetism on the composites microstructure and gives explanations. Microstructure differences between composites that, respectively, contained no - further - treated diamond, magnetism - strengthening treated diamond and magnetism weakening treated diamond were carefully observed. It is shown that diamond magnetization treatment drastically harms the composite microstructure (e. G. , roughening the coating surface, coarsening the matrix grain, and more seriously, reducing the mechanical retention of diamond grains in the matrix) while demagnetization treatment does the opposite. All the observed facts could be explained by the electromagnetic interaction between magnetic fields produced by magnetic diamond grains and electric current (moving cations) during the electrodeposition process.

  20. Asymptotic Flatness in Rainbow Gravity

    OpenAIRE

    Hackett, Jonathan

    2005-01-01

    A construction of conformal infinity in null and spatial directions is constructed for the Rainbow-flat space-time corresponding to doubly special relativity. From this construction a definition of asymptotic DSRness is put forward which is compatible with the correspondence principle of Rainbow gravity. Furthermore a result equating asymptotically flat space-times with asymptotically DSR spacetimes is presented.

  1. Exact piecewise flat gravitational waves

    NARCIS (Netherlands)

    van de Meent, M.

    2011-01-01

    We generalize our previous linear result (van de Meent 2011 Class. Quantum Grav 28 075005) in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to constr

  2. High temperature brazing of diamond tools

    Institute of Scientific and Technical Information of China (English)

    YAO Zheng-jun; SU Hong-hua; FU Yu-can; XU Hong-jun

    2005-01-01

    A new brazing technique of diamond was developed. Using this new technique optimum chemical and metallurgical bonding between the diamond grits and the carbon steel can be achieved without any thermal damages to diamond grits. The results of microanalysis and X-ray diffraction analysis reveal that a carbide layer exists between the diamond and the matrix, which consists of Cr3C2, Cr7C3 and Cr23C6. Performance tests show that the brazed diamond core-drill has excellent machining performance. In comparison with traditional electroplated diamond core-drill, the brazed diamond core-drill manufactured using the new developed technique has much higher machining efficiency and much longer operating life.

  3. Simulation in Amorphous Silicon and Amorphous Silicon Carbide Pin Diodes

    OpenAIRE

    Gonçalves, Dora; Fernandes, Miguel; Louro, Paula; Fantoni, Alessandro; Vieira, Manuela

    2014-01-01

    Part 21: Electronics: Devices International audience Photodiodes are devices used as image sensors, reactive to polychromatic light and subsequently color detecting, and they are also used in optical communication applications. To improve these devices performance it is essential to study and control their characteristics, in fact their capacitance and spectral and transient responses. This study considers two types of diodes, an amorphous silicon pin and an amorphous silicon carbide pi...

  4. Amorphous drugs and dosage forms

    DEFF Research Database (Denmark)

    Grohganz, Holger; Löbmann, K.; Priemel, P.;

    2013-01-01

    The transformation to an amorphous form is one of the most promising approaches to address the low solubility of drug compounds, the latter being an increasing challenge in the development of new drug candidates. However, amorphous forms are high energy solids and tend to recry stallize. New...... formulation principles are needed to ensure the stability of amorphous drug forms. The formation of solid dispersions is still the most investigated approach, but additional approaches are desirable to overcome the shortcomings of solid dispersions. Spatial separation by either coating or the use of micro......-containers has shown potential to prevent or delay recrystallization. Another recent approach is the formation of co-amorphous mixtures between either two drugs or one drug and one low molecular weight excipient. Molecular interactions between the two molecules provide an energy barrier that has to be overcome...

  5. Influence of heat treatment temperature on bonding and oxidation resistance of diamond particles coated with TiO2 film

    Indian Academy of Sciences (India)

    Xiao-Pan Liu; Dong-Dong Song; Long Wan; Xian-Bing Pang; Zheng Li

    2015-09-01

    In this paper, TiO2 films were coated on the surface of diamond particles using a sol–gel method. The effects of heat treatment temperature on the morphology, composition, chemical bonds, oxidation resistance and compressive strength of diamond particles coated with TiO2 films were characterized through scanning electron microscopy, Fourier transform infrared, Raman spectroscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, thermogravimetric–differential scanning calorimetry and compressive strength test. The results showed that when the temperature reached 600°C, the amorphous TiO2 on the diamond particles surface exhibited as a dense anatase film and the Ti–O–C bond formed between TiO2 and the diamond substrates. When temperature reached 800°C, TiO2 films were still in anatase phase and part of the diamond carbon began to graphitize. The graphitizated carbon can also form the Ti–O–C bond with TiO2 film, although TiO2 film would tend to crack in this condition. Meanwhile, the temperature had a serious influence on the oxidation resistance of diamond particles coated with TiO2 films in air. When the heat treatment temperature reached 600°C, the initial oxidation temperature of the coated diamond particles reached the maximum value of 754°C. When the diamond particles were oxidized at 800°C for 0.5 h in air, the weight loss rate reached the minimum value of 6.7 wt% and the compressive strength reached the maximum value of 15.7 N.

  6. Surface bioactivity of plasma implanted silicon and amorphous carbon

    Institute of Scientific and Technical Information of China (English)

    Paul K CHU

    2004-01-01

    Plasma immersion ion implantation and deposition (PⅢ&D) has been shown to be an effective technique to enhance the surface bioactivity of materials. In this paper, recent progress made in our laboratory on plasma surface modification single-crystal silicon and amorphous carbon is reviewed. Silicon is the most important material in the integrated circuit industry but its surface biocompatibility has not been investigated in details. We have recently performed hydrogen PⅢ into silicon and observed the biomimetic growth of apatite on its surface in simulated body fluid. Diamond-like carbon (DLC) is widely used in the industry due to its excellent mechanical properties and chemical inertness. The use of this material in biomedical engineering has also attracted much attention. It has been observed in our laboratory that doping DLC with nitrogen by means of PⅢ can improve the surface blood compatibility. The properties as well as in vitro biological test results will be discussed in this article.

  7. Total photoelectron yield spectroscopy of diamond: teaching an old dog new tricks

    International Nuclear Information System (INIS)

    Full text: Total photoelectron yield spectroscopy (Yield) has been widely used in the past to determine the work function of metals, and the density of tail and gap states in amorphous semiconductors and at the Si/SiO2 interface, for example. In all cases advantage is taken of the unrivalled sensitivity of yield which covers more than eight orders of magnitude in the density of occupied states. However, like all photoelectron spectroscopies, Yield suffers from a short sampling depth that seldom exceeds a few nm and is determined by the inelastic mean free path of electrons with finite kinetic energies. The situation changes completely when a semiconductor with true negative electron affinity such as hydrogenated diamond is used where the vacuum level falls below the conduction band minimum. Now even electrons at the conduction band minimum contribute to the yield and the spectrum reflects the absorption process as well as the transport of thermalized electrons and excitons to the surface as has been discussed first by Bandis and Pate. Here, we have utilized yield spectra of hydrogenated homoepitaxial diamond layers with different thicknesses to determine the diffusion lengths of electrons and excitons in diamond which amount to 16 and 20 μm, respectively for the highest quality diamond. Furthermore, from changes in the relative contributions of exciton and electron excitations to the yield spectra we are able to extract the sign of subsurface band bending over the diffusion length in hydrogenated diamond. This is so because electrons are affected by the electric fields connected with band bending whereas excitons as neutral entities are not. By following the band bending as a function of surface treatment we are able to unravel the mechanism behind the p-type surface conductivity that is observed on hydrogenated diamond surfaces after exposure to air. The mechanism relies on a transfer of electrons from diamond to a redox couple in an aqueous surface layer that

  8. 非晶硒平板探测器DR与CR模拟病变描述和剂量降低的对比研究%Amorphous selenium flat-panel detector digital radiography versus computed radiography: phantom study of depiction of simulated lesion and dose reduction

    Institute of Scientific and Technical Information of China (English)

    曾勇明; 吴富荣; 张志伟; 欧阳羽; 谭秀洪; 金瑞

    2008-01-01

    Objective To compare an amorphous selenium fiat-panel detector digital radiography(DR) with a computed radiography(CR) for the depiction of simulated pulmonary lesion,as well as for evaluation of dose reduction.Methods Simulated linear,reticular,and nodular lesion were located in all anthropomorphic chest phantom.The phantom was exposed by DR and CR with different mAs sets.The entrance surface doses were recorded for all images.Hard copy images were generated at different dose levels.Images were presented in a random order to four independent radiologists.They subjectively rated the visibility of simulated pulmonary lesion. Statistical significance of difference was analvsed with wilcoxon test.Resuits The visibility of simulated linear and reticular lesions on the images obtained with DR was superior to the images from CR at 2.0 and 3.2 mAs.P 0.05).DR was superior to CR in detection sinail nodular(diameter0.05).2.0、3.2、5.0、6.3 mAs曝光档,对于小结节(直径小于10 mm)的检测DR均优于CR(Z:-2.237,P=0.018;Z=-2.384,P=0.017;Z=-2.388,P=0.017;Z=-2.366,P=0.018).当3种模拟肺部病变都显示清楚时.用非晶硒DR系统的入射体表剂量降低约65%.结论 对微小低对比病变的描述,非晶硒平板探测器DR优于CR且明显地降低曝光剂晕.

  9. Irritated Method for Flat warts

    Institute of Scientific and Technical Information of China (English)

    LiBingxu

    2004-01-01

    Summary Background The relation between spontaneous regression of Flat warts and T cells depended immunity was confirmed. Cells immunity against HPV was induced by presenting of HPV related antigens, and thrived by cytokine and some chemistry agent. So how to make HPV which incubated in keratinocyte to present PHV antigens and keratinocyte to secret cytokine or chemistry agents should be a pursuance for dermatologist who are looking for a efficient method to deal with flat warts. Present research had exhibited inflammable agents can induce dermatitis when apply to the skin surface, so it might bring flat warts to spontaneous regression. Objective To observe the effectiveness of irritant drugs on flat warts, and at same time to understand more on the mechanism of the regression. Methods Compared with Control we treat 88 case of flat warts with retinoid gel or 3% hydrogen peroxide solution plus 5 % salicylic acid cream (HPSC). Results Both retinoid gel and HPSC reveal significant effect on flat warts. Conclusion Retinoid gel or SPHC was effective on the treatment of flat warts. The possible explanation for this is the drugs when put on the skin will induce dermatitis and dissolve or denude keratin.

  10. CVD diamond: from growth to application

    Directory of Open Access Journals (Sweden)

    K. Fabisiak

    2009-12-01

    Full Text Available Purpose: The main purpose of these studies was to give a short review of basic diamonds properties and indicate possibilities of different applications of this material. As an example, the application of CVD (Chemical Vapour Deposition diamond layer in electrochemistry was shown.Design/methodology/approach: The diamond layers were synthesized using Hot Filament CVD (HF CVD technique from a mixture of methanol and hydrogen. The physical and electrochemical properties of the obtained layers were studied by Raman spectroscopy and Cyclic Voltammetry (CV.Findings: It was shown that it is possible to synthesize the diamond layers of different morphology and quality. Raman microprobe measurements showed that quality of diamond films deposited by HF CVD method reflect their morphology. CV measurements showed that the fabricated electrodes had wide potential window almost twice bigger in comparison to the classical Pt electrode.Research limitations/implications: The interaction of diamond layers with chemical and biological environment is not complete.Practical implications: CVD diamond (synthetic diamond made by a chemical vapour deposition process is an important family of materials used in microelectronic and optoelectronic packaging and for laser and detector windows. Its ultra-high thermal conductivity enables to increase microprocessor frequency and output power of microelectronic and optoelectronic devices. Diamond is resistant to chemical attack and chemical sensors based on the fact it can work in harsh environment.Originality/value: The paper underlines an important role of diamond films as a promising material for production of electrodes for electrochemical applications.

  11. Medical applications of diamond particles and surfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, R. J.; Boehm, R. D.; Sumant, A. V. (Center for Nanoscale Materials); (Univ. of California)

    2011-04-01

    Diamond has been considered for use in several medical applications due to its unique mechanical, chemical, optical, and biological properties. In this paper, methods for preparing synthetic diamond surfaces and particles are described. In addition, recent developments involving the use of diamond in prostheses, sensing, imaging, and drug delivery applications are reviewed. These developments suggest that diamond-containing structures will provide significant improvements in the diagnosis and treatment of medical conditions over the coming years. Diamond is an allotrope of carbon that is being considered for use in several medical applications. Ramachandran determined that the crystal structure of diamond consists of two close packed interpenetrating face centered cubic lattices; one lattice is shifted with respect to the other along the elemental cube space diagonal by one-quarter of its length. If one approximates carbon atoms as equal diameter rigid spheres, the filling of this construction is 34%. Due to the carbon-carbon distance (1.54 {angstrom}), diamond crystal exhibits the highest atomic density (1.76 x 10{sup 23} cm{sup -3}) of any solid. The very high bond energy between two carbon atoms (83 kcal/mol) and the directionality of tetrahedral bonds are the main reasons for the high strength of diamond. Diamond demonstrates the highest Vickers hardness value of any material (10,000 kg/mm{sup 2}). The tribological properties of diamond are also impressive; the coefficient of friction of polished diamond is 0.07 in argon and 0.05 in humid air. Diamond is resistant to corrosion except in an oxygen atmosphere at temperatures over 800 C. In addition, type IIa diamond exhibits the highest thermal conductivity of all materials (20 W cm{sup -1} K{sup -1} at room temperature).

  12. Is classical flat Kasner spacetime flat in quantum gravity?

    OpenAIRE

    Singh, Parampreet

    2016-01-01

    Quantum nature of classical flat Kasner spacetime is studied using effective spacetime description in loop quantum cosmology. We find that even though the spacetime curvature vanishes at the classical level, non-trivial quantum gravitational effects can arise. For the standard loop quantization of Bianchi-I spacetime, which uniquely yields universal bounds on expansion and shear scalars and results in a generic resolution of strong singularities, we find that a flat Kasner metric is not a phy...

  13. OBTAINING LAYER NANO-COATINGS ON DIAMOND POWDERS IN PLANAR MAGNETRON

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevsky

    2015-01-01

    Full Text Available The paper presents investigation results concerning evaluation of influence of technological parameters of composite cathode spraying in a planar magnetron spraying system on structure formation  and properties of layer nano-coatings (Si + C of diamond micro-powders. a-SiC formation reaction was proceeding in the nano-layer (up to 20nm presenting  Si + C atom  or cluster mixture of  amorphous structure being treated with glow-discharge plasma. The layer coating has been obtained as a result of subsequent deposition on it the following elements: Si + C and Al of the given thickness (up to 300nm  and 10nm, respectively and also outside layer of pyrolytic carbon. The coating has ensured diamond protection against graphitation while heating and formation of carbide-silicon matrix. The composite of silicon diamond-carbide obtained on the basis of diamond powders with a layer coating with the help of  a method that presupposes impregnation with liquid silicon and reaction sintering  is characterized by improved properties.

  14. Effects of Implant Copper Layer on Diamond Film Deposition on Cemented Carbides

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The deposition of high-quality diamond films and their adhesion on cemented carbides are strongly influenced by the catalytic effect of cobalt under typical deposition conditions.Decreasing Co content on the surface of the cemented carbide is often used for the diamond filmdeposition. But the leaching of Co from the WC-Co substrate leading to a mechanical weak surface often causes a poor adhesion. In this paper we adopted an implant copper layer preparedby vaporization to improve the mechanical properties of the Co-leached substrate. The diamondfilms were grown by microwave plasma chemical vapor deposition from CH4 :H2 gas mixture. Thecross section and the morphology of the diamond film were characterized by scanning electronmicroscopy (SEM). The non-diamond content in the film was analyzed by Raman spectroscopy.The effects of pretreatment on the concentrations of Co and Cu near the interfacial region wereexamined by energy dispersive spectrum (EDS) equipped with SEM. The adhesion of the diamondon the substrate was evaluated with a Rockwell-type hardness tester. The results indicate that thediamond films prepared with implant copper layer have a good adhesion to the cemented carbidesubstrate due to the recovery of the mechanical properties of the Co-depleted substrate after thecopper implantation and the formation of less amorphous carbon between the substrate and thediamond film.

  15. Is classical flat Kasner spacetime flat in quantum gravity?

    CERN Document Server

    Singh, Parampreet

    2016-01-01

    Quantum nature of classical flat Kasner spacetime is studied using effective spacetime description in loop quantum cosmology. We find that even though the spacetime curvature vanishes at the classical level, non-trivial quantum gravitational effects can arise. For the standard loop quantization of Bianchi-I spacetime, which uniquely yields universal bounds on expansion and shear scalars and results in a generic resolution of strong singularities, we find that a flat Kasner metric is not a physical solution of the effective spacetime description, except in a limit. The lack of a flat Kasner metric at the quantum level results from a novel feature of the loop quantum Bianchi-I spacetime: quantum geometry induces non-vanishing spacetime curvature components, making it not Ricci flat even when no matter is present. The non-curvature singularity of the classical flat Kasner spacetime is avoided, and the effective spacetime transits from a flat Kasner spacetime in asymptotic future, to a Minkowski spacetime in asym...

  16. Amorphous carbon for photovoltaics

    Science.gov (United States)

    Risplendi, Francesca; Grossman, Jeffrey C.

    2015-03-01

    All-carbon solar cells have attracted attention as candidates for innovative photovoltaic devices. Carbon-based materials such as graphene, carbon nanotubes (CNT) and amorphous carbon (aC) have the potential to present physical properties comparable to those of silicon-based materials with advantages such as low cost and higher thermal stability.In particular a-C structures are promising systems in which both sp2 and sp3 hybridization coordination are present in different proportions depending on the specific density, providing the possibility of tuning their optoelectronic properties and achieving comparable sunlight absorption to aSi. In this work we employ density functional theory to design suitable device architectures, such as bulk heterojunctions (BHJ) or pn junctions, consisting of a-C as the active layer material.Regarding BHJ, we study interfaces between aC and C nanostructures (such as CNT and fullerene) to relate their optoelectronic properties to the stoichiometry of aC. We demonstrate that the energy alignment between the a-C mobility edges and the occupied and unoccupied states of the CNT or C60 can be widely tuned by varying the aC density to obtain a type II interface.To employ aC in pn junctions we analyze the p- and n-type doping of a-C focusingon an evaluation of the Fermi level and work function dependence on doping.Our results highlight promising features of aC as the active layer material of thin-film solar cells.

  17. Molecular dynamics investigation on the atomic-scale friction behaviors between copper(0 0 1) and diamond(1 1 1) surfaces

    International Nuclear Information System (INIS)

    Classical molecular dynamics (MD) simulations are conducted to examine the atomic-scale friction behavior of an infinite flat-flat contact between copper(0 0 1) and diamond(1 1 1) surfaces. Two types of diamond surface, namely H-free and hydrogenated, are constructed and on each of them the copper counterface is brought to slide along the [1 1 -2] and [1 -1 0] crystallographic directions with a variety of loads. The simulation results demonstrate that the hydrogen atoms chemisorbed to the diamond surface can to large extent eliminate the directional dependency of its friction behavior with copper. Under pressures less than 30 GPa, the sliding between copper and hydrogenated is wearless. In this period, the shear stress of them just slightly increases to 0.6 GPa. Between 30 GPa and 32 GPa, copper atoms near the interface begin to be worn and incorporate into the diamond substrate and this causes a sharp shift from 0.6 GPa to 2.7 GPa in their shear stress. In contrast, the sliding process between copper and H-free diamond is always wearless even under pressure beyond 40 GPa. The H-free [1 -1 0] model exhibits much higher shear stress than H-free [1 1 -2] under pressures less than 35 GPa. Beyond 35 GPa, they present nearly consistent shear stress evolution. Moreover, the simulations for hydrogenated diamond models suggest that their friction behavior is independent on sliding velocity only under wearless sliding regime.

  18. Growth stress in tungsten carbide-diamond-like carbon coatings

    International Nuclear Information System (INIS)

    Growth stress in tungsten carbide-diamond-like carbon coatings, sputter deposited in a reactive argon/acetylene plasma, has been studied as a function of the acetylene partial pressure. Stress and microstructure have been investigated by wafer curvature and transmission electron microscopy (TEM) whereas composition and energy distribution functions of positive ions were obtained by electron probe microanalyzer, elastic recoil detection analysis, and mass-energy analyzer (MEA). It has been observed that the compressive stress decreases with increasing acetylene partial pressure, showing an abrupt change from -5.0 to -1.6 GPa at an acetylene partial pressure of 0.012 Pa. TEM micrographs show that by increasing the acetylene partial pressure in the plasma from 0 to 0.012 Pa, the microstructure of the coating changes from polycrystalline to amorphous. MEA results show that the most probable energy of positive ions bombarding the substrate during deposition in pure argon and argon/acetylene atmosphere is the same. Based on the results, it is concluded that the huge variation in the compressive stress at low acetylene partial pressures is due to a change in the microstructure of the coating from polycrystalline to amorphous and not to the energy of positive ions bombarding the film

  19. Nanostructured Diamond-Like Carbon Films Grown by Off-Axis Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Seong Shan Yap

    2015-01-01

    Full Text Available Nanostructured diamond-like carbon (DLC films instead of the ultrasmooth film were obtained by pulsed laser ablation of pyrolytic graphite. Deposition was performed at room temperature in vacuum with substrates placed at off-axis position. The configuration utilized high density plasma plume arriving at low effective angle for the formation of nanostructured DLC. Nanostructures with maximum size of 50 nm were deposited as compared to the ultrasmooth DLC films obtained in a conventional deposition. The Raman spectra of the films confirmed that the films were diamond-like/amorphous in nature. Although grown at an angle, ion energy of >35 eV was obtained at the off-axis position. This was proposed to be responsible for subplantation growth of sp3 hybridized carbon. The condensation of energetic clusters and oblique angle deposition correspondingly gave rise to the formation of nanostructured DLC in this study.

  20. Influences of H+ Implantation on the Boron-Doped Synthesized by Chemical Vapor Deposition Diamond Films

    Institute of Scientific and Technical Information of China (English)

    WANG Shuang-Bao

    2000-01-01

    Diamond films (DF) were preliminarily B doped in situ during chemical vapor deposition. Subsequently, the films were implanted with 120keV H+ to dose of 5 × 1014 ~ 5 × 1016cm-2. After the implantation, the B doped DF become insulating and Raman measurements indicate that the implantation has amorphous carbon and graphite etched. It is known that the formation of H-B pairs plays an important pole in property changes. However, for larger dose cases, the electrical resistance of DF is influenced by radiation damage and/or non-diamond phases. In addition to them, annealing makes the specimens conducting again. This phenomenon maybe has potential for application in designing DF device.

  1. Boundaries of flat compact surfaces

    DEFF Research Database (Denmark)

    Røgen, Peter

    1999-01-01

    This paper deals with the problem: ``Which knots or links in 3-space bound flat (immersed) compact surfaces?''. In a previous paper by the author it was proven that: Any simple closed space curve can be deformed until it bounds a flat orientable compact (Seifert) surface. The main results...... of this paper are: There exist knots that do not bound any flat compact surfaces. The lower bound of total curvature of a knot bounding an orientable non-negatively curved compact surface can, for varying knot type, be arbitrarily much greater than the infimum of curvature needed for the knot to have its knot...... type. The number of $3$-singular points (points of zero curvature or if not then of zero torsion) on the boundary of a flat immersed compact surface is greater than or equal to twice the absolute value of the Euler characteristic of the surface. A set of necessary and, in a weakened sense, sufficient...

  2. Diamond deposition on thin cylindrical substrates

    Directory of Open Access Journals (Sweden)

    GORDANA S. RISTIĆ

    2011-03-01

    Full Text Available Diamond coatings were deposited onto different cylindrical substrates (Cu, SiC, W and Mo by the hot filament chemical vapor deposition (CVD method. Continuous, adhered and well-faceted crystalline coatings of diamond were obtained on Cu-wire using a special pretreatment with a mixture of diamond and metal powders as well as carefully controlled deposition at lower power. Diamond deposition on SiC-fiber gave continuous and uniform coatings when only the filament power was properly selected. Uniform, homogeneous, euchedral diamond coatings on W- and Mo-wires, attained at a higher filament power, confirmed once more the convenience of refractory metals as substrates for diamond deposition by the CVD technique. Characterization of the obtained coatings was realized using scanning electron microscopy (SEM. The obtained results are compared with the literature data. Differences are discussed with regard to the chemical nature of the substrates as well as their thermophysical characteristics.

  3. CVD diamond detectors of ionising radiation

    International Nuclear Information System (INIS)

    Diamond is a resilient material with excellent physical properties for radiation experiments. As such it is an interesting material for fabrication of high performance solid-state particle detectors operating at room temperature. Its high radiation hardness makes it an ideal material in high radiation environment. High breakdown voltage allows application of high electric field and so speeds up the charge collection. Diamond manufacturing technology (CVD) allows low cost diamond production in large sheets and with higher purity than nature diamonds. There have been already produced CVD diamond detectors with coaxial geometry, planar, micro-strip and pixel detectors. Also at Slovak University of Technology have been already produced first CVD diamond layers. (authors)

  4. Research on Flat Solar Collector

    OpenAIRE

    Kavolynas, Antanas

    2005-01-01

    The Thesis analyzes one of the spheres of alternative energy supply – the solar energy. The main objective of the Thesis is to determine the energy rates of the solar collector and its accumulative capacity. The Paper introduces a stand on the solar collector research which consists of a flat solar collector, heat accumulator and auxiliary equipment. The research object of the Thesis is a laboratory flat solar collector and its system. The Thesis analyses the constructions of the solar collec...

  5. The ATLAS Diamond Beam Monitor

    CERN Document Server

    Schaefer, Douglas; The ATLAS collaboration

    2015-01-01

    After the first three years of the LHC running the ATLAS experiment extracted it's pixel detector system to refurbish and re-position the optical readout drivers and install a new barrel layer of pixels. The experiment has also taken advantage of this access to also install a set of beam monitoring telescopes with pixel sensors, four each in the forward and backward regions. These telescopes were assembled based on chemical vapour deposited (CVD) diamond sensors to survive in this high radiation environment without needing extensive cooling. This talk will describe the lessons learned in construction and commissioning of the ATLAS x Diamond Beam Monitor (DBM). We will show results from the construction quality assurance tests, commissioning performance, including results from cosmic ray running in early 2015 and also expected first results from LHC run 2 collisions.

  6. Diamonds and the african lithosphere.

    Science.gov (United States)

    Boyd, F R; Gurney, J J

    1986-04-25

    Data and inferences drawn from studies of diamond inclusions, xenocrysts, and xenoliths in the kimberlites of southern Africa are combined to characterize the structure of that portion of the Kaapvaal craton that lies within the mantle. The craton has a root composed in large part of peridotites that are strongly depleted in basaltic components. The asthenosphere boundary shelves from depths of 170 to 190 kilometers beneath the craton to approximately 140 kilometers beneath the mobile belts bordering the craton on the south and west. The root formed earlier than 3 billion years ago, and at that time ambient temperatures in it were 900 degrees to 1200 degrees C; these temperatures are near those estimated from data for xenoliths erupted in the Late Cretaceous or from present-day heat-flow measurements. Many of the diamonds in southern Africa are believed to have crystallized in this root in Archean time and were xenocrysts in the kimberlites that brought them to the surface.

  7. Diamond turning machine controller implementation

    Energy Technology Data Exchange (ETDEWEB)

    Garrard, K.P.; Taylor, L.W.; Knight, B.F.; Fornaro, R.J.

    1988-12-01

    The standard controller for a Pnuemo ASG 2500 Diamond Turning Machine, an Allen Bradley 8200, has been replaced with a custom high-performance design. This controller consists of four major components. Axis position feedback information is provided by a Zygo Axiom 2/20 laser interferometer with 0.1 micro-inch resolution. Hardware interface logic couples the computers digital and analog I/O channels to the diamond turning machine`s analog motor controllers, the laser interferometer, and other machine status and control information. It also provides front panel switches for operator override of the computer controller and implement the emergency stop sequence. The remaining two components, the control computer hardware and software, are discussed in detail below.

  8. Conductive diamond electrodes for water purification

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Martínez-Huitle

    2007-12-01

    Full Text Available Nowadays, synthetic diamond has been studied for its application in wastewater treatment, electroanalysis, organic synthesis and sensor areas; however, its use in the water disinfection/purification is its most relevant application. The new electrochemistry applications of diamond electrodes open new perspectives for an easy, effective, and chemical free water treatment. This article highlights and summarizes the results of a selection of papers dealing with electrochemical disinfection using synthetic diamond films.

  9. The Charge Collection Properties of CVD Diamond

    OpenAIRE

    Behnke, Ties; Hüntemeyer, Petra; Oh, Alexander; Steuerer, Johannes; Wagner, Albrecht; Zeuner, Wolfram

    1998-01-01

    The charge collection properties of CVD diamond have been investigated with ionising radiation. In this study two CVD diamond samples, prepared with electrical contacts have been used as solid state ionisation chambers. The diamonds have been studied with beta particles and 10 keV photons, providing a homogeneous ionisation density and with protons and alpha particles which are absorbed in a thin surface layer. For the latter case a strong decrease of the signal as function of time is observe...

  10. Field electron emission of diamond films on nanocrystalline diamond coating by CVD method

    Institute of Scientific and Technical Information of China (English)

    CAI Rangqi; CHEN Guanghua; SONG Xuemei; XING Guangjian; FENG Zhenjian; HE Deyan

    2003-01-01

    The preparation process, structure feature and field electron emission characteristic of diamond films on nanocyrstalline diamond coating by the CVD method were studied. The field electron emission measurements on the samples showed that the diamond films have lower turn-on voltage and higher field emission current density. A further detailed theory explanation to the results was given.

  11. Thermal Conductivity of Diamond Composites

    Directory of Open Access Journals (Sweden)

    Fedor M. Shakhov

    2009-12-01

    Full Text Available A major problem challenging specialists in present-day materials sciences is the development of compact, cheap to fabricate heat sinks for electronic devices, primarily for computer processors, semiconductor lasers, high-power microchips, and electronics components. The materials currently used for heat sinks of such devices are aluminum and copper, with thermal conductivities of about 250 W/(m·K and 400 W/(m·K, respectively. Significantly, the thermal expansion coefficient of metals differs markedly from those of the materials employed in semiconductor electronics (mostly silicon; one should add here the low electrical resistivity metals possess. By contrast, natural single-crystal diamond is known to feature the highest thermal conductivity of all the bulk materials studied thus far, as high as 2,200 W/(m·K. Needless to say, it cannot be applied in heat removal technology because of high cost. Recently, SiC- and AlN-based ceramics have started enjoying wide use as heat sink materials; the thermal conductivity of such composites, however, is inferior to that of metals by nearly a factor two. This prompts a challenging scientific problem to develop diamond-based composites with thermal characteristics superior to those of aluminum and copper, adjustable thermal expansion coefficient, low electrical conductivity and a moderate cost, below that of the natural single-crystal diamond. The present review addresses this problem and appraises the results reached by now in studying the possibility of developing composites in diamond-containing systems with a view of obtaining materials with a high thermal conductivity.

  12. Quantum information processing in diamond

    OpenAIRE

    Jelezko, F.; Wrachtrup, J.

    2005-01-01

    Quantum computing is an attractive and multidisciplinary field, which became a focus for experimental and theoretical research during last decade. Among other systems, like ions in traps or superconducting circuits, solid-states based qubits are considered to be promising candidates for first experimental tests of quantum hardware. Here we report recent progress in quantum information processing with point defect in diamond. Qubits are defined as single spin states (electron or nuclear). This...

  13. Electrical properties of diamond nanostructures

    Science.gov (United States)

    Bevilacqua, M.

    Nanocrystalline diamond films (NCD) can potentially be used in a large variety of applications such as electrochemical electrodes, tribology, cold cathodes, and corrosion resistance. A thorough knowledge of the electrical properties of NCD films is therefore critical to understand and predict their performance in various applications. In the present work the electrical properties of NCD films were analysed using Impedance Spectroscopy and Hall Effect measurements. Impedance Spectroscopy permits to identify and single out the conduction paths within the films tested. Such conduction paths can be through grain interiors and/or grain boundaries. Hall measurements, carried out on Boron doped NCD, permits determination of the mobility of the films. Specific treatments were devised to enhance the properties of the NCD films studied. Detonation nanodiamond (DND) is becoming an increasingly interesting material. It is already used as abrasive material or component for coatings [1], but its potential applications can extend far beyond these. It is therefore essential to understand the structure and electrical properties of DND in order to exploit the full potential of this material. In the present work, electrical properties of DND were studied using Impedance Spectroscopy. The results obtained suggest that DND could be used to manufacture devices able to work as Ammonia detectors. Another major area of study in this work was ultra-violet diamond photodetectors. Using high quality CVD single-crystal diamond, UV photodetection devices were built using standard lithographic techniques. Following the application of heat treatments, the photoconductive properties of these devices were highly enhanced. The devices represent the state-of-the-art UV diamond photodetectors.

  14. Diamond gamma dose rate monitor

    International Nuclear Information System (INIS)

    CVD (chemical vapor deposition) diamond detectors for X and gamma dose rate monitoring have been fabricated and tested in the 1 mGy/h to 1 kGy/h range. They show excellent performances in terms of sensitivity and linearity. Radiation hardness measurement under 60-Co gamma rays have demonstrated long term stability for integrated doses up to 500 kGy. (authors)

  15. Diamond turning of thermoplastic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E.; Scattergood, R.O.

    1988-12-01

    Single point diamond turning studies were made using a series of thermoplastic polymers with different glass transition temperatures. Variations in surface morphology and surface roughness were observed as a function of cutting speed. Lower glass transition temperatures facilitate smoother surface cuts and better surface finish. This can be attributed to the frictional heating that occurs during machining. Because of the very low glass transition temperatures in polymeric compared to inorganic glasses, the precision machining response can be very speed sensitive.

  16. Aztec Diamonds and Baxter Permutations

    OpenAIRE

    Canary, Hal

    2003-01-01

    We present a proof of a conjecture about the relationship between Baxter permutations and pairs of alternating sign matrices that are produced from domino tilings of Aztec diamonds. It is shown that if and only if a tiling corresponds to a pair of ASMs that are both permutation matrices, the larger permutation matrix corresponds to a Baxter permutation. There has been a thriving literature on both pattern-avoiding permutations of various kinds and tilings of regions using dominos or rhombuses...

  17. Entanglement, holography and causal diamonds

    Science.gov (United States)

    de Boer, Jan; Haehl, Felix M.; Heller, Michal P.; Myers, Robert C.

    2016-08-01

    We argue that the degrees of freedom in a d-dimensional CFT can be reorganized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2 d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglemententropy from this unifying point of view. We demonstrate that for small perturbations of the vacuum, our observables obey linear two-derivative equations of motion on the space of causal diamonds. In two dimensions, the latter is given by a product of two copies of a two-dimensional de Sitter space. For a class of universal states, we show that the entanglement entropy and its spin-three generalization obey nonlinear equations of motion with local interactions on this moduli space, which can be identified with Liouville and Toda equations, respectively. This suggests the possibility of extending the definition of our new observables beyond the linear level more generally and in such a way that they give rise to new dynamically interacting theories on the moduli space of causal diamonds. Various challenges one has to face in order to implement this idea are discussed.

  18. Shape analysis of synthetic diamond

    International Nuclear Information System (INIS)

    Two-dimensional images of synthetic industrial diamond particles were obtained using a camera, framegrabber and PC-based image analysis software. Various methods for shape quantification were applied, including two-dimensional shape factors, Fourier series expansion of radius as a function of angle, boundary fractal analysis, polygonal harmonics, and comer counting methods. The shape parameter found to be the most relevant was axis ratio, defined as the ratio of the minor axis to the major axis of the ellipse with the same second moments of area as the particle. Axis ratio was used in an analysis of the sorting of synthetic diamonds on a vibrating table. A model was derived based on the probability that a particle of a given axis ratio would travel to a certain bin. The model described the sorting of bulk material accurately but it was found not to be applicable if the shape mix of the feed material changed dramatically. This was attributed to the fact that the particle-particle interference was not taken into account. An expert system and a neural network were designed in an attempt to classify particles by a combination of four shape parameters. These systems gave good results when discriminating between particles from bin 1 and bin 9 but not for neighbouring bins or for more than two classes. The table sorting process was discussed in light of the findings and it was demonstrated that the shape distributions of sorted diamond fractions can be quantified in a useful and meaningful way. (author)

  19. Status of diamond particle detectors

    International Nuclear Information System (INIS)

    To continue the exciting research in the field of particle physics new accelerators and experiments are under construction. In some of these experiments, e.g. ATLAS and CMS at the Large Hadron Collider at CERN or HERA-B at DESY, the detectors have to withstand an extreme environment. The detectors must be radiation hard, provide a very fast signal, and be as thin as possible. The properties of CVD diamond allow to fulfill these requirements and make it an ideal material for the detectors close to the interaction region of these experiments, i.e. the vertex detectors or the inner trackers. The RD42 collaboration is developing diamond detectors for these applications. The program of RD42 includes the improvement of the charge collection properties of CVD diamond, the study of the radiation hardness and the development of low-noise radiation hard readout electronics. An overview of the progress achieved during the last years will be given. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. ATLAS diamond Beam Condition Monitor

    CERN Document Server

    Gorišek, A; Dolenc, I; Frais-Kölbl, H; Griesmayer, E; Kagan, H; Korpar, S; Kramberger, G; Mandic, I; Meyer, M; Mikuz, M; Pernegger, H; Smith, S; Trischuk, W; Weilhammer, P; Zavrtanik, M

    2007-01-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at . Timing of signals from the two stations will provide almost ideal separation of beam–beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of area and thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test bea...

  1. Superconducting nanowire single photon detector on diamond

    International Nuclear Information System (INIS)

    Superconducting nanowire single photon detectors are fabricated directly on diamond substrates and their optical and electrical properties are characterized. Dark count performance and photon count rates are measured at varying temperatures for 1310 nm and 632 nm photons. A multi-step diamond surface polishing procedure is reported, involving iterative reactive ion etching and mechanical polishing to create a suitable diamond surface for the deposition and patterning of thin film superconducting layers. Using this approach, diamond substrates with less than 300 pm Root Mean Square surface roughness are obtained

  2. Direct Coating of Nanocrystalline Diamond on Steel

    Science.gov (United States)

    Tsugawa, Kazuo; Kawaki, Shyunsuke; Ishihara, Masatou; Hasegawa, Masataka

    2012-09-01

    Nanocrystalline diamond films have been successfully deposited on stainless steel substrates without any substrate pretreatments to promote diamond nucleation, including the formation of interlayers. A low-temperature growth technique, 400 °C or lower, in microwave plasma chemical vapor deposition using a surface-wave plasma has cleared up problems in diamond growth on ferrous materials, such as the surface graphitization, long incubation time, substrate softening, and poor adhesion. The deposited nanocrystalline diamond films on stainless steel exhibit good adhesion and tribological properties, such as a high wear resistance, a low friction coefficient, and a low aggression strength, at room temperature in air without lubrication.

  3. Processing of diamond by laser beam irradiation

    Science.gov (United States)

    Yoshikawa, Masanori; Hirata, Atsushi

    1998-10-01

    YAG and ArF excimer laser beams, of which wavelengths are 1.06 micrometers and 193 nm respectively, have been applied to processing of a variety of diamonds. Cutting and smoothing of natural, CVD and sintered diamonds have been performed. CVD diamond films were prepared by arc discharge plasma jet CVD and microwave plasma CVD, and sintered diamonds contain metallic or ceramic binder have been used. Fundamental removal processes of diamond with YAG and ArF excimer laser have been investigated using natural single crystal and CVD diamonds in various atmospheres changing laser irradiation conditions such as average power, energy density and pulse repetition rates. Cutting of natural and CVD diamonds with YAG laser proceeds at higher peal power that occurs at lower pulse repetition rates. Smooth surfaces are obtained by excimer laser irradiation at the incident angle of 80 percent. In the cases of the processing with YAG laser, the effect of local heating by laser beam irradiation mainly assists the diamond processing, and diamond appears to be removed after graphitization and oxidization following vaporization in the atmosphere contains oxygen. The temperature measurement was carried out at backside of irradiation surface, and increase of temperature when YAG laser beam was irradiated was larger than that when excimer laser was irradiated. On the contrary, the detection of C, C2, C+, O2 and CO from the emission at the irradiation area with ArF excimer laser beam suggest that processing partly proceeds by the separation of carbon atoms from the surface of diamond after braking bonds between carbon atoms caused by laser beam. Cutting of sintered diamond with metallic binder was difficult because metallic binder remains in the groove while ceramic binder was easily removed. Processing technique using laser beams has been applied to surface planing, chip preparation and edge formation of CVD diamond and curved surface formation on sintered diamond. Surface planing was

  4. Amorphous Silicon: Flexible Backplane and Display Application

    Science.gov (United States)

    Sarma, Kalluri R.

    Advances in the science and technology of hydrogenated amorphous silicon (a-Si:H, also referred to as a-Si) and the associated devices including thin-film transistors (TFT) during the past three decades have had a profound impact on the development and commercialization of major applications such as thin-film solar cells, digital image scanners and X-ray imagers and active matrix liquid crystal displays (AMLCDs). Particularly, during approximately the past 15 years, a-Si TFT-based flat panel AMLCDs have been a huge commercial success. a-Si TFT-LCD has enabled the note book PCs, and is now rapidly replacing the venerable CRT in the desktop monitor and home TV applications. a-Si TFT-LCD is now the dominant technology in use for applications ranging from small displays such as in mobile phones to large displays such as in home TV, as well-specialized applications such as industrial and avionics displays.

  5. Squeezed light from a diamond-turned monolithic cavity

    CERN Document Server

    Brieussel, A; Campbell, G; Guccione, G; Janousek, J; Hage, B; Buchler, B C; Treps, N; Fabre, C; Fang, F Z; Li, X Y; Symul, T; Lam, P K

    2016-01-01

    For some crystalline materials, a regime can be found where continuous ductile cutting is feasible. Using precision diamond turning, such materials can be cut into complex optical components with high surface quality and form accuracy. In this work we use diamond-turning to machine a monolithic, square-shaped, doubly-resonant $LiNbO_3$ cavity with two flat and two convex facets. When additional mild polishing is implemented, the Q-factor of the resonator is found to be limited only by the material absorption loss. We show how our monolithic square resonator may be operated as an optical parametric oscillator that is evanescently coupled to free-space beams via birefringent prisms. The prism arrangement allows for independent and large tuning of the fundamental and second harmonic coupling rates. We measure $2.6\\pm0.5$ dB of vacuum squeezing at 1064 nm using our system. Potential improvements to obtain higher degrees of squeezing are discussed.

  6. Superlubricity mechanism of diamond-like carbon with glycerol. Coupling of experimental and simulation studies

    OpenAIRE

    De Barros Bouchet, M. I.; Matta, C.; Le-Mogne, Th.; Martin, J. Michel; Zhang, Q.; Goddard, W., III; Kano, M; Mabuchi, Y.; J Ye

    2007-01-01

    We report a unique tribological system that produces superlubricity under boundary lubrication conditions with extremely little wear. This system is a thin coating of hydrogen-free amorphous Diamond-Like-Carbon (denoted as ta-C) at 353 K in a ta-C/ta-C friction pair lubricated with pure glycerol. To understand the mechanism of friction vanishing we performed ToF-SIMS experiments using deuterated glycerol and 13C glycerol. This was complemented by first-principles-based computer simulations us...

  7. The effect of RF power on tribological properties of the diamond-like carbon films

    International Nuclear Information System (INIS)

    DLC thin films were prepared by radio frequency (RF) plasma-enhanced chemical vapor deposition (PECVD) method on silicon substrates using methane (CH4), hydrogen (H2) and gas mixture. We have checked the influence of varying RF power on DLC film. The Raman spectroscopy shows the diamond-like carbon (DLC) amorphous structure of the films. AFM images show the surface roughness of the DLC film decrease with increasing RF power. Also, the friction coefficients were investigated by atomic force microscope (AFM) in friction force microscope (FFM) mode

  8. Deposition of diamond like carbon films by using a single ion gun with varying beam source

    Institute of Scientific and Technical Information of China (English)

    JIANG Jin-qiu; Chen Zhu-ping

    2001-01-01

    Diamond like carbon films have been successfully deposited on the steel substrate, by using a single ion gun with varying beam source. The films may appear blue, yellow and transparent in color, which was found related to contaminants from the sample holder and could be avoided. The thickness of the films ranges from tens up to 200 nanometers, and the hardness is in the range 20 to 30 GPa. Raman analytical results reveal the films are in amorphous structure. The effects of different beam source on the films structure are further discussed.

  9. OBTAINING LAYER NANO-COATINGS ON DIAMOND POWDERS IN PLANAR MAGNETRON

    OpenAIRE

    V. N. Kovalevsky; I. V. Fomikhina; A. V. Kovalevskaya; Grigoriev, S. V.; A. E. Zhuk

    2015-01-01

    The paper presents investigation results concerning evaluation of influence of technological parameters of composite cathode spraying in a planar magnetron spraying system on structure formation  and properties of layer nano-coatings (Si + C) of diamond micro-powders. a-SiC formation reaction was proceeding in the nano-layer (up to 20nm) presenting  Si + C atom  or cluster mixture of  amorphous structure being treated with glow-discharge plasma. The layer coating has been obtained as a result...

  10. Nanostructures having crystalline and amorphous phases

    Science.gov (United States)

    Mao, Samuel S; Chen, Xiaobo

    2015-04-28

    The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.

  11. Fundamentals of amorphous solids structure and properties

    CERN Document Server

    Stachurski, Zbigniew H

    2014-01-01

    Long awaited, this textbook fills the gap for convincing concepts to describe amorphous solids. Adopting a unique approach, the author develops a framework that lays the foundations for a theory of amorphousness. He unravels the scientific mysteries surrounding the topic, replacing rather vague notions of amorphous materials as disordered crystalline solids with the well-founded concept of ideal amorphous solids. A classification of amorphous materials into inorganic glasses, organic glasses, glassy metallic alloys, and thin films sets the scene for the development of the model of ideal amorph

  12. Comprehensive Evaluation of the Properties of Nanocrystalline Diamond Coatings Grown Using CVD with E/H Field Glow Discharge Stabilization

    Directory of Open Access Journals (Sweden)

    Iu. Nasieka

    2015-01-01

    Full Text Available The nanocrystalline diamond films (coatings were prepared using the plasma enhanced chemical vapor deposition (PECVD technique. In this method, direct current (DC glow discharge in the crossed E/H fields was used to activate the gas phase. The diamond coatings were deposited from the working gas mixture CH4/H2 with addition of nitrogen in various concentrations. It was ascertained that addition of N2 to the working gas mixture leads to reduction in the sizes of diamond grains as well as to the substantial decrease in the resistivity of the studied films. The electrophysical data are in good agreement with the changes induced by varying the N2 content in the Raman scattering spectra. The increase in the N2 concentration causes significant lowering of the crystalline diamond related peak and increase in the intensity of the peaks related to the sp2-bonded carbon. These changes in the spectra indicate significant disordering of the structure of prepared films and its uniformity in the nanodiamond film volume. With the great possibility, it is associated with a decrease in the sizes of diamond crystalline grains and tendency of NCD film to amorphization.

  13. Amorphization of Crystalline Water Ice

    CERN Document Server

    Zheng, Weijun; Kaiser, Ralf I

    2008-01-01

    We conducted a systematic experimental study to investigate the amorphization of crystalline ice by irradiation in the 10-50 K temperature range with 5 keV electrons at a dose of ~140 eV per molecule. We found that crystalline water ice can be converted partially to amorphous ice by electron irradiation. Our experiments showed that some of the 1.65-micrometer band survived the irradiation, to a degree that depends on the temperature, demonstrating that there is a balance between thermal recrystallization and irradiation-induced amorphization, with thermal recrystallizaton dominant at higher temperatures. At 50 K, recrystallization due to thermal effects is strong, and most of the crystalline ice survived. Temperatures of most known objects in the solar system, including Jovian satellites, Saturnian satellites, and Kuiper belt objects, are equal to or above 50 K, this might explain why water ice detected on those objects is mostly crystalline.

  14. THE CONCENTRATION OF DIAMONDS INFLUENCES THE WEAR OF BEADS IN SAWING DIMENSION STONE WITH DIAMOND WIRE SAWING PLANT

    Directory of Open Access Journals (Sweden)

    Siniša Dunda

    1993-12-01

    Full Text Available The influence of diamond concentration to the wear or diamond layer and to the life time of the diamond wire has experimentally tested. The changes of the diamond concentration were achieved by changing the beads' pace per m' of diamond wire. Upon the obtained results of the experiment, the optimal concentration of diamonds has been established, also considering the least cost, per square meter of sawing (the paper is published in Croatian.

  15. An experimental investigation on the influence of machining parameters on surface finish in diamond turning of silicon optics

    Science.gov (United States)

    Khatri, Neha; Sharma, Rohit; Mishra, Vinod; Kumar, Mukesh; Karar, Vinod; Sarepaka, RamaGopal V.

    2015-06-01

    Silicon is widely used in IR optics, X-Ray optics and electronics applications. These applications require Silicon of optical quality surface as well as good form accuracy. To get the desired finish and dimensional accuracy, diamond turning is preferable. Taylor-Hobson Nanoform-250 diamond turning equipment is used to machine flat Silicon mirror. Negative rake diamond tool is used with a tool nose radius of 1.5 mm. A series of SPDT machining operations are performed in the sequential combinations of tool feed rate, Spindle Speed and depth of cut. In order to find out the effect of machining parameters on the Surface Roughness during turning, Response Surface Methodology (RSM) is used and a prediction model is developed related to average Surface Roughness (Ra) using experimental data. The surface quality is analyzed in terms of arithmetic roughness (Ra) and Power Spectral Density for uniform evaluation. In addition, a good agreement between the predicted and measured Surface Roughness is observed.

  16. Improved conversion efficiency of amorphous Si solar cells using a mesoporous ZnO pattern

    Science.gov (United States)

    Go, Bit-Na; Kim, Yang Doo; suk Oh, Kyoung; Kim, Chaehyun; Choi, Hak-Jong; Lee, Heon

    2014-09-01

    To provide a front transparent electrode for use in highly efficient hydrogenated amorphous silicon (a-Si:H) thin-film solar cells, porous flat layer and micro-patterns of zinc oxide (ZnO) nanoparticle (NP) layers were prepared through ultraviolet nanoimprint lithography (UV-NIL) and deposited on Al-doped ZnO (AZO) layers. Through this, it was found that a porous micro-pattern of ZnO NPs dispersed in resin can optimize the light-trapping pattern, with the efficiency of solar cells based on patterned or flat mesoporous ZnO layers increased by 27% and 12%, respectively.

  17. Iron - based bulk amorphous alloys

    Directory of Open Access Journals (Sweden)

    R. Babilas

    2010-07-01

    Full Text Available Purpose: The paper presents a structure characterization, thermal and soft magnetic properties analysis of Fe-based bulk amorphous materials in as-cast state and after crystallization process. In addition, the paper gives some brief review about achieving, formation and structure of bulk metallic glasses as a special group of amorphous materials.Design/methodology/approach: The studies were performed on Fe72B20Si4Nb4 metallic glass in form of ribbons and rods. The amorphous structure of tested samples was examined by X-ray diffraction (XRD, transmission electron microscopy (TEM and scanning electron microscopy (SEM methods. The thermal properties of the glassy samples were measured using differential thermal analysis (DTA and differential scanning calorimetry (DSC. The magnetic properties contained initial and maximum magnetic permeability, coercive force and magnetic after-effects measurements were determined by the Maxwell-Wien bridge and VSM methods.Findings: The X-ray diffraction and transmission electron microscopy investigations revealed that the studied as-cast bulk metallic glasses in form of ribbons and rods were amorphous. Two stage crystallization process was observed for studied bulk amorphous alloy. The differences of crystallization temperature between ribbons and rods with chosen thickness are probably caused by different amorphous structures as a result of the different cooling rates in casting process. The SEM images showed that studied fractures could be classified as mixed fractures with indicated two zones contained “river” and “smooth” areas. The changing of chosen soft magnetic properties (μr, Bs, Hc obtained for samples with different thickness is a result of the non-homogenous amorphous structure of tested metallic glasses. The annealing process in temperature range from 373 to 773 K causes structural relaxation of tested amorphous materials, which leads to changes in their physical properties. The qualitative

  18. The mechanical and strength properties of diamond

    International Nuclear Information System (INIS)

    Diamond is an exciting material with many outstanding properties; see, for example Field J E (ed) 1979 The Properties of Diamond (London: Academic) and Field J E (ed) 1992 The Properties of Natural and Synthetic Diamond (London: Academic). It is pre-eminent as a gemstone, an industrial tool and as a material for solid state research. Since natural diamonds grew deep below the Earth's surface before their ejection to mineable levels, they also contain valuable information for geologists. The key to many of diamond's properties is the rigidity of its structure which explains, for example, its exceptional hardness and its high thermal conductivity. Since 1953, it has been possible to grow synthetic diamond. Before then, it was effectively only possible to have natural diamond, with a small number of these found in the vicinity of meteorite impacts. Techniques are now available to grow gem quality synthetic diamonds greater than 1 carat (0.2 g) using high temperatures and pressures (HTHP) similar to those found in nature. However, the costs are high, and the largest commercially available industrial diamonds are about 0.01 carat in weight or about 1 mm in linear dimension. The bulk of synthetic diamonds used industrially are 600 µm or less. Over 75% of diamond used for industrial purposes today is synthetic material. In recent years, there have been two significant developments. The first is the production of composites based on diamond; these materials have a significantly greater toughness than diamond while still maintaining very high hardness and reasonable thermal conductivity. The second is the production at low pressures by metastable growth using chemical vapour deposition techniques. Deposition onto non-diamond substrates was first demonstrated by Spitsyn et al 1981 J. Cryst. Growth 52 219–26 and confirmed by Matsumoto et al 1982 Japan J. Appl. Phys. 21 L183–5. These developments have added further to the versatility of diamond. Two other groups of

  19. The mechanical and strength properties of diamond

    Science.gov (United States)

    Field, J. E.

    2012-12-01

    Diamond is an exciting material with many outstanding properties; see, for example Field J E (ed) 1979 The Properties of Diamond (London: Academic) and Field J E (ed) 1992 The Properties of Natural and Synthetic Diamond (London: Academic). It is pre-eminent as a gemstone, an industrial tool and as a material for solid state research. Since natural diamonds grew deep below the Earth's surface before their ejection to mineable levels, they also contain valuable information for geologists. The key to many of diamond's properties is the rigidity of its structure which explains, for example, its exceptional hardness and its high thermal conductivity. Since 1953, it has been possible to grow synthetic diamond. Before then, it was effectively only possible to have natural diamond, with a small number of these found in the vicinity of meteorite impacts. Techniques are now available to grow gem quality synthetic diamonds greater than 1 carat (0.2 g) using high temperatures and pressures (HTHP) similar to those found in nature. However, the costs are high, and the largest commercially available industrial diamonds are about 0.01 carat in weight or about 1 mm in linear dimension. The bulk of synthetic diamonds used industrially are 600 µm or less. Over 75% of diamond used for industrial purposes today is synthetic material. In recent years, there have been two significant developments. The first is the production of composites based on diamond; these materials have a significantly greater toughness than diamond while still maintaining very high hardness and reasonable thermal conductivity. The second is the production at low pressures by metastable growth using chemical vapour deposition techniques. Deposition onto non-diamond substrates was first demonstrated by Spitsyn et al 1981 J. Cryst. Growth 52 219-26 and confirmed by Matsumoto et al 1982 Japan J. Appl. Phys. 21 L183-5. These developments have added further to the versatility of diamond. Two other groups of materials

  20. The provenance of Borneo's enigmatic alluvial diamonds

    Science.gov (United States)

    White, Lloyd; Graham, Ian; Tanner, Dominique; Hall, Robert; Armstrong, Richard; Yaxley, Greg; Barron, Larry; Spencer, Lee; van Leeuwen, Theo

    2016-04-01

    Gem-quality diamonds occur in several alluvial deposits across central and southern Borneo. Borneo has been a known source of diamonds for centuries, but the location of their primary igneous source remains enigmatic. Numerous geological models have been proposed to explain the distribution of Borneo's diamonds. To assess these models, we used a variety of techniques to examine heavy minerals from Kalimantan's Cempaka paleoalluvial diamond deposit. This involved collecting U-Pb isotopic data, fission track and trace element geochemistry of zircon as well as major element geochemical data of spinels and morphological descriptions of zircon and diamond. Our results indicate that the Cempaka diamonds were likely derived from at least two sources, one which was relatively local and/or involved little reworking, and the other more distal recording several periods of reworking. The distal diamond source is interpreted to be diamond-bearing pipes that intruded the basement of a block that: (1) rifted from northwest Australia (East Java or SW Borneo) and the diamonds were recycled into its sedimentary cover, or: (2) were emplaced elsewhere (e.g. NW Australia) and transported to a block (e.g. East Java or SW Borneo). Both of these scenarios require the diamonds to be transported with the block when it rifted from NW Australia in the Late Jurassic. The 'local' diamonds could be associated with ophiolitic rocks that are exposed in the nearby Meratus Mountains, or could be diamondiferous diatremes associated with eroded Miocene high-K alkaline intrusions north of the Barito Basin. If this were the case, these intrusions would indicate that the lithosphere beneath SW Borneo is thick (~150 km or greater).

  1. On Flat Objects of Finitely Accessible Categories

    Directory of Open Access Journals (Sweden)

    Septimiu Crivei

    2013-01-01

    Full Text Available Flat objects of a finitely accessible additive category are described in terms of some objects of the associated functor category of , called strongly flat functors. We study closure properties of the class of strongly flat functors, and we use them to deduce the known result that every object of a finitely accessible abelian category has a flat cover.

  2. Diamond film growth with modification properties of adhesion between substrate and diamond film

    Directory of Open Access Journals (Sweden)

    Setasuwon P.

    2004-03-01

    Full Text Available Diamond film growth was studied using chemical vapor deposition (CVD. A special equipment was build in-house, employing a welding torch, and substrate holder with a water-cooling system. Acetylene and oxygen were used as combustion gases and the substrate was tungsten carbide cobalt. It was found that surface treatments, such as diamond powder scratching or acid etching, increase the adhesion and prevent the film peel-off. Diamond powder scratching and combined diamond powder scratching with acid etching gave the similar diamond film structure with small grain and slightly rough surface. The diamond film obtained with both treatments has high adhesion and can withstand internal stress better than ones obtained by untreated surface or acid etching alone. It was also found that higher substrate temperature produced smoother surface and more uniform diamond grain.

  3. Amorphous-silicon cell reliability testing

    Science.gov (United States)

    Lathrop, J. W.

    1985-01-01

    The work on reliability testing of solar cells is discussed. Results are given on initial temperature and humidity tests of amorphous silicon devices. Calibration and measurement procedures for amorphous and crystalline cells are given. Temperature stress levels are diagrammed.

  4. Structure and property relationships of amorphous CN sub x a joint experimental and theoretical study

    CERN Document Server

    Santos, M C D

    2000-01-01

    Amorphous CN sub x and CN sub x :H have been prepared by the ion beam assisted deposition technique. Samples were characterized through X-ray and UV photoemission, IR absorption and Raman spectroscopies. These spectra have been interpreted with the aid of quantum chemical calculations based upon the Hartree-Fock theory on several molecular models. The understanding of the electronic and structural properties of the amorphous alloy as a function of nitrogen content could help in the task of synthesizing the metastable silicon-nitride like-phase beta-C sub 3 N sub 4 , a solid which has been predicted to be as hard as diamond. The physical picture emerging from the present study helps to clarify the difficulties in obtaining the crystalline phase of the material, suggesting new experimental directions for syntheses.

  5. Dual polarization flat plate antenna

    Science.gov (United States)

    Kelly, Kenneth C.

    Rectangular waveguides with radiating slots are used in groups to form planar array microwave antennas with large apertures and small depth. Such flat plate antennas are widely used on spacecraft and aircraft. Typically, flat plate antennas provide fixed linear polarization. The present paper describes a new flat plate antenna which produces two coincident beams that are distinguished by their orthogonal linear polarizations. The antenna has two ports, one for each of the coicident beams. Completely external to the antenna, connecting a simple network to those terminal ports enables the antenna to provide right circular polarization from one port and left from the other. A different external network enables the antenna to have arbitrarily adjustable polarizations.

  6. High mobility diamonds and particle detectors

    Science.gov (United States)

    Pernegger, H.

    2006-10-01

    The basic properties of high-quality CVD diamond film make them very interesting for a wide range of detectors: they are radiation hard, provide fast signals, show very low leakage current even in high radiation environments, have excellent thermal properties and can be manufactured as free-standing detectors. This paper will give an overview of recent test results on polycrystalline and single crystal CVD diamond detectors. Large polycrystalline CVD diamonds with a charge collection distance up to 300 m have been tested and are used to build prototype tracking detectors and beam monitors at the moment. Further irradiation studies have been carried out using a 24 GeV proton beam to test samples up to a total fluence of 1.8 × 1016 protons/cm2. Measurements on several samples of single-crystal CVD diamonds have shown full charge collection in the detector. Results of transient-current measurements on single crystal CVD diamonds, which are used to determine the charge carrier mobility and lifetime, show the excellent electrical properties of this material. The paper will present several different applications of CVD diamond detectors, which benefit from the recent improvements of detector-grade diamonds. They range from tracking in High Energy Physics experiments, to high-speed Beam Conditions Monitor at the collider experiments up to CVD diamond detectors as beam diagnostic in proton cancer therapy.

  7. CVD diamond pixel detectors for LHC experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J.C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N

    1999-08-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described.

  8. CVD diamond pixel detectors for LHC experiments

    International Nuclear Information System (INIS)

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described

  9. CVD diamond pixel detectors for LHC experiments

    CERN Document Server

    Wedenig, R; Bauer, C; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Runólfsson, O; Russ, J; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Trawick, M L; Trischuk, W; Vittone, E; Wagner, A; Walsh, A M; Weilhammer, Peter; White, C; Zeuner, W; Ziock, H J; Zöller, M

    1999-01-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described. (9 refs).

  10. The Returns on Investment Grade Diamonds

    NARCIS (Netherlands)

    Renneboog, L.D.R.

    2013-01-01

    Abstract: This paper examines the risk-return characteristics of investment grade gems (white diamonds, colored diamonds and other types of gems including sapphires, rubies, and emeralds). The transactions are coming from gem auctions and span the period 1999-2012. Over our time frame, the annual no

  11. Bending diamonds by femtosecond laser ablation

    DEFF Research Database (Denmark)

    Balling, Peter; Esberg, Jakob; Kirsebom, Kim;

    2009-01-01

    We present a new method based on femtosecond laser ablation for the fabrication of statically bent diamond crystals. Using this method, curvature radii of 1 m can easily be achieved, and the curvature obtained is very uniform. Since diamond is extremely tolerant to high radiation doses, partly due...

  12. GaAs single-drift flat-profile IMPATT diodes for CW operation at D band

    Science.gov (United States)

    Eisele, H.; Haddad, G. I.

    1992-01-01

    Single-drift flat-profile GaAs IMPATT diodes were designed for CW operation in the 140 GHz range. The diodes were fabricated from MBE grown material, mounted on diamond heatsinks, and tested in a radial line full height waveguide cavity. An RF output power of 15 mW with a corresponding DC to RF conversion efficiency of 1.5 percent was obtained at 135.3 GHz.

  13. Investigation of Sb diffusion in amorphous silicon

    OpenAIRE

    Csik, A.; Langer, G A; Erdelyi, G.; Beke, D. L.; Erdelyi, Z.; Vad, K.

    2009-01-01

    Amorphous silicon materials and its alloys become extensively used in some technical applications involving large area of the microelectronic and optoelectronic devices. However, the amorphous-crystalline transition, segregation and diffusion processes still have numerous unanswered questions. In this work we study the Sb diffusion into an amorphous Si film by means of Secondary Neutral Mass Spectrometry (SNMS). Amorphous Si/Si1-xSbx/Si tri-layer samples with 5 at% antimony concentration were...

  14. Atomistic Models of Amorphous Semiconductors

    NARCIS (Netherlands)

    Jarolimek, K.

    2011-01-01

    Crystalline silicon is probably the best studied material, widely used by the semiconductor industry. The subject of this thesis is an intriguing form of this element namely amorphous silicon. It can contain a varying amount of hydrogen and is denoted as a-Si:H. It completely lacks the neat long ran

  15. The Fallacies of Flatness: Thomas Friedman's "The World Is Flat"

    Science.gov (United States)

    Abowitz, Kathleen Knight; Roberts, Jay

    2007-01-01

    Thomas Friedman's best-selling "The World is Flat" has exerted much influence in the west by providing both an accessible analysis of globalization and its economic and social effects, and a powerful cultural metaphor for globalization. In this review, we more closely examine Friedman's notion of the social contract, the moral center of his…

  16. Nonlocal gravity: Conformally flat spacetimes

    CERN Document Server

    Bini, Donato

    2016-01-01

    The field equations of the recent nonlocal generalization of Einstein's theory of gravitation are presented in a form that is reminiscent of general relativity. The implications of the nonlocal field equations are studied in the case of conformally flat spacetimes. Even in this simple case, the field equations are intractable. Therefore, to gain insight into the nature of these equations, we investigate the structure of nonlocal gravity in two-dimensional spacetimes. While any smooth 2D spacetime is conformally flat and satisfies Einstein's field equations, only a subset containing either a Killing vector or a homothetic Killing vector can satisfy the field equations of nonlocal gravity.

  17. Adopting a customer-focused team approach to amorphous silicon multijunction module R ampersand D

    International Nuclear Information System (INIS)

    Informed observers of energy markets now generally believe that photovoltaics (PV) will not significantly penetrate the utility bulk-power sector before price and performance approach $50/m2 for 15% efficient modules in flat-plate systems. Recent progress toward such ''utility grade'' modules using amorphous thin films has been slow. The important amorphous thin-film research issues have been well known for some years. These have not been promptly and conclusively addressed, at least in part, because of inadequate PV industry involvement in academic research. In view of this situation, the authors recently modified their research programs seeking to improve the efficiency of amorphous silicon PV research, conclusively address the key issues, and accelerate commercial introduction of utility-grade products. They began this by seeking ''customer'' (PV industry) specification of research priorities and forming mission-oriented teams to pursue the high-priority issues (customer requirements). This paper describes the process and results to date

  18. Review Article: Quantum Nanophotonics in Diamond

    CERN Document Server

    Schröder, Tim; Zheng, Jiabao; Trusheim, Matthew E; Walsh, Michael; Chen, Edward H; Li, Luozhou; Bayn, Igal; Englund, Dirk

    2016-01-01

    The past decade has seen great advances in developing color centers in diamond for sensing, quantum information processing, and tests of quantum foundations. Increasingly, the success of these applications as well as fundamental investigations of light-matter interaction depend on improved control of optical interactions with color centers -- from better fluorescence collection to efficient and precise coupling with confined single optical modes. Wide ranging research efforts have been undertaken to address these demands through advanced nanofabrication of diamond. This review will cover recent advances in diamond nano- and microphotonic structures for efficient light collection, color center to nanocavity coupling, hybrid integration of diamond devices with other material systems, and the wide range of fabrication methods that have enabled these complex photonic diamond systems.

  19. Diamond electrophoretic microchips-Joule heating effects

    Energy Technology Data Exchange (ETDEWEB)

    Karczemska, Anna T., E-mail: anna.karczemska@p.lodz.pl [Technical University of Lodz, Institute of Turbomachinery, 219/223 Wolczanska str., Lodz (Poland); Witkowski, Dariusz [Technical University of Lodz, Institute of Turbomachinery, 219/223 Wolczanska str., Lodz (Poland); Ralchenko, Victor, E-mail: ralchenko@nsc.gpi.ru [General Physics Institute, Russian Academy of Science, 38 Vavilov str., Moscow (Russian Federation); Bolshakov, Andrey; Sovyk, Dmitry [General Physics Institute, Russian Academy of Science, 38 Vavilov str., Moscow (Russian Federation); Lysko, Jan M., E-mail: jmlysko@ite.waw.pl [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Fijalkowski, Mateusz, E-mail: petr.louda@vslib.cz [Technical University of Liberec, Faculty of Mechanical Engineering (Czech Republic); Bodzenta, Jerzy, E-mail: jerzy.bodzenta@polsl.pl [Silesian University of Technology, Institute of Physics, 2 Krzywoustego str., 44-100 Gliwice (Poland); Hassard, John, E-mail: j.hassard@imperial.ac.uk [Imperial College of Science, Technology and Medicine, London (United Kingdom)

    2011-03-15

    Microchip electrophoresis (MCE) has become a mature separation technique in the recent years. In the presented research, a polycrystalline diamond electrophoretic microchip was manufactured with a microwave plasma chemical vapour deposition (MPCVD) method. A replica technique (mould method) was used to manufacture microstructures in diamond. A numerical analysis with CoventorWare{sup TM} was used to compare thermal properties during chip electrophoresis of diamond and glass microchips of the same geometries. Temperature distributions in microchips were demonstrated. Thermal, electrical, optical, chemical and mechanical parameters of the polycrystalline diamond layers are advantageous over traditionally used materials for microfluidic devices. Especially, a very high thermal conductivity coefficient gives a possibility of very efficient dissipation of Joule heat from the diamond electrophoretic microchip. This enables manufacturing of a new generation of microdevices.

  20. Nanocrystalline diamond films for biomedical applications

    DEFF Research Database (Denmark)

    Pennisi, Cristian Pablo; Alcaide, Maria

    2014-01-01

    to better understand the terminology used in the literature, which is related to the fabrication and surface functionalization of this class of materials, some of the most common approaches for synthesis and modification of CVD diamond films is introduced. Although many challenges still remain......Nanocrystalline diamond films, which comprise the so called nanocrystalline diamond (NCD) and ultrananocrystalline diamond (UNCD), represent a class of biomaterials possessing outstanding mechanical, tribological, and electrical properties, which include high surface smoothness, high corrosion...... resistance, chemical inertness, superior electrochemical behavior, biocompatibility, and nontoxicity. These properties have positioned the nanocrystalline diamond films as an attractive class of materials for a range of therapeutic and diagnostic applications in the biomedical field. Consequently...

  1. Unique electrical properties of nanostructured diamond cones

    International Nuclear Information System (INIS)

    The preparation and electrical properties of diamond nanocones are reviewed, including a maskless etching process and mechanism of large-area diamond conical nanostructure arrays using a hot filament chemical vapor deposition (HFCVD) system with negatively biased substrates, and the field electron emission, gas sensing, and quantum transport properties of a diamond nanocone array or an individual diamond nanocone. Optimal cone aspect ratio and array density are investigated, along with the relationships between the cone morphologies and experimental parameters, such as the CH4/H2 ratio of the etching gas, the bias current, and the gas pressure. The reviewed experiments demonstrate the possibility of using nanostructured diamond cones as a display device element, a point electron emission source, a gas sensor or a quantum device. (topical review - low-dimensional nanostructures and devices)

  2. The Charge Collection Properties of CVD Diamond

    CERN Document Server

    Behnke, T; Oh, A; Steuerer, J; Wagner, A; Zeuner, W; Behnke, Ties; Hüntemeyer, Petra; Oh, Alexander; Steuerer, Johannes; Wagner, Albrecht; Zeuner, Wolfram

    1998-01-01

    The charge collection properties of CVD diamond have been investigated with ionising radiation. In this study two CVD diamond samples, prepared with electrical contacts have been used as solid state ionisation chambers. The diamonds have been studied with beta particles and 10 keV photons, providing a homogeneous ionisation density and with protons and alpha particles which are absorbed in a thin surface layer. For the latter case a strong decrease of the signal as function of time is observed, which is attributed to polarisation effects inside the diamond. Spatially resolved measurements with protons show a large variation of the charge collection efficiency, whereas for photons and minimum ionising particles the response is much more uniform and in the order of 18%. These results indicate that the applicability of CVD diamond as a position sensitive particle detector depends on the ionisation type and appears to be promising for homogeneous ionisation densities as provided by relativistic charged particles.

  3. Diamond sensors for future high energy experiments

    Science.gov (United States)

    Bachmair, Felix

    2016-09-01

    With the planned upgrade of the LHC to High-Luminosity-LHC [1], the general purpose experiments ATLAS and CMS are planning to upgrade their innermost tracking layers with more radiation tolerant technologies. Chemical Vapor Deposition CVD diamond is one such technology. CVD diamond sensors are an established technology as beam condition monitors in the highest radiation areas of all LHC experiments. The RD42-collaboration at CERN is leading the effort to use CVD diamond as a material for tracking detectors operating in extreme radiation environments. An overview of the latest developments from RD42 is presented including the present status of diamond sensor production, a study of pulse height dependencies on incident particle flux and the development of 3D diamond sensors.

  4. Morphology of diamond plate grown in the C-H-O system

    Energy Technology Data Exchange (ETDEWEB)

    Nakanose, M. [Nissan Motor Co. Ltd., Tokyo (Japan); Ichinose, H. [Univ. of Tokyo (Japan)

    1995-12-31

    A ECR-CVD system was newly designed and applied on the growth of large scale plate-like single crystal diamond. The diamond plate was grown on the (200) surface of a heated silicon substrate in H{sub 2}-CO-O{sub 2} mixing gas. Silicon wafers with (110) and (111) surface were also employed as a substrate. A plate like single crystal ten micro meter in size was grown on the (200) surface at 1123K. Top surface of the platelet crystal was very flat and was parallel to (111) plane, which was parallel to the (200) surface of the silicon substrate. Half peak width of the Raman scattering spectra was 2.6 cm{sup {minus}1} showing low impunity content in the platelet crystal less than 1ppm for N and B.

  5. Toroidal plasma enhanced CVD of diamond films

    International Nuclear Information System (INIS)

    An inductively coupled toroidal plasma source is used as an alternative to microwave plasmas for chemical vapor deposition of diamond films. The source, operating at a frequency of 400 kHz, synthesizes diamond films from a mixture of argon, methane, and hydrogen. The toroidal design has been adapted to create a highly efficient environment for diamond film deposition: high gas temperature and a short distance from the sample to the plasma core. Using a toroidal plasma geometry operating in the medium frequency band allows for efficient (≈90%) coupling of AC line power to the plasma and a scalable path to high-power and large-area operation. In test runs, the source generates a high flux of atomic hydrogen over a large area, which is favorable for diamond film growth. Using a deposition temperature of 900–1050 °C and a source to sample distance of 0.1–2.0 cm, diamond films are deposited onto silicon substrates. The results showed that the deposition rate of the diamond films could be controlled using the sample temperature and source to sample spacing. The results also show the films exhibit good-quality polycrystalline diamond as verified by Raman spectroscopy, x-ray diffraction, and scanning electron microscopy. The scanning electron microscopy and x-ray diffraction results show that the samples exhibit diamond (111) and diamond (022) crystallites. The Raman results show that the sp3 peak has a narrow spectral width (FWHM 12 ± 0.5 cm−1) and that negligible amounts of the sp2 band are present, indicating good-quality diamond films

  6. Low temperature amorphization and superconductivity in FeSe single crystals at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Stemshorn, Andrew K.; Tsoi, Georgiy; Vohra, Yogesh K.; Sinogeiken, Stanislav; Wu, Phillip M.; Huang, Yilin; Rao, Sistla M.; Wu, Maw-Kuen; Yeh, Kuo W.; Weir, Samuel T. (IP-Taiwan); (UAB); (Duke); (LLNL)

    2010-08-04

    In this study, we report low temperature x-ray diffraction studies combined with electrical resistance measurements on single crystals of iron-based layered superconductor FeSe to a temperature of 10 K and a pressure of 44 GPa. The low temperature high pressure x-ray diffraction studies were performed using a synchrotron source and superconductivity at high pressure was studied using designer diamond anvils. At ambient temperature, the FeSe sample shows a phase transformation from a PbO-type tetragonal phase to a NiAs-type hexagonal phase at 10 {+-} 2 GPa. On cooling, a structural distortion from a PbO-type tetragonal phase to an orthorhombic Cmma phase is observed below 100 K. At a low temperature of 10 K, compression of the orthorhombic Cmma phase results in a gradual transformation to an amorphous phase above 15 GPa. The transformation to the amorphous phase is completed by 40 GPa at 10 K. A loss of superconductivity is observed in the amorphous phase and a dramatic change in the temperature behavior of electrical resistance indicates formation of a semiconducting state at high pressures and low temperatures. The formation of the amorphous phase is attributed to a kinetic hindrance to the growth of a hexagonal NiAs phase under high pressures and low temperatures.

  7. Control of normally on/off characteristics in hydrogenated diamond metal-insulator-semiconductor field-effect transistors

    Science.gov (United States)

    Liu, J. W.; Liao, M. Y.; Imura, M.; Matsumoto, T.; Shibata, N.; Ikuhara, Y.; Koide, Y.

    2015-09-01

    Normally on/off operation in hydrogenated diamond (H-diamond) metal-insulator-semiconductor field-effect transistors (MISFETs) is reproducibly controlled by annealing at 180 °C. The transfer characteristics of the MISFETs reveal that the threshold gate voltage changes from 0.8 ± 0.1 to -0.5 ± 0.1 V after annealing, which indicates the MISFETs switch from normally on to normally off operation. Annealing also shifts the flat-band voltage in the capacitance-voltage curve of MIS capacitors from zero to -0.47 V. The mechanism behind the switch of normally on/off characteristics induced by annealing is explained by a change of transfer doping as follows. Adsorbed acceptors at the insulator/H-diamond interface allow the holes to accumulate in the H-diamond channel layer, so the MISFETs before annealing show normally on characteristics. Annealing causes loss of the adsorbed acceptors or provides compensatory positive charge in the insulator oxide, so the hole density in the H-diamond channel layer decreases markedly, and the MISFETs show normally off characteristics.

  8. Flat space physics from holography

    CERN Document Server

    Bousso, R

    2004-01-01

    We point out that aspects of quantum mechanics can be derived from the holographic principle, using only a perturbative limit of classical general relativity. In flat space, the covariant entropy bound reduces to the Bekenstein bound. The latter does not contain Newton's constant and cannot operate via gravitational backreaction. Instead, it is protected by - and in this sense, predicts - the Heisenberg uncertainty principle

  9. Diamond nucleation on surface of C60 thin layers

    Institute of Scientific and Technical Information of China (English)

    杨国伟; 袁放成; 刘大军; 何金田; 张兵临

    1997-01-01

    Diamond nucleation on the surface of C60 thin layers and intermediate layer of Si substrates are studied by scanning electron microscopy (SEM). The cross-section SEM images of diamond films show that diamond grains really nucleate on the surface of C60 thin layers. The SEM images of diamond nucleating sites show the nucleating aggregation of diamond on C60 surfaces. The preferential oriented diamond films are observed. The plasma pre-treatment of C60 sublimating layers is a key factor for diamond nucleation.

  10. Effects of titanium coating on property of diamond

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The titanium film was coated on the surface of diamond crystal in order to improve the chemical properties of diamond and the effect of titanium coating on the property of diamond was discussed. The anti-impacting strength, the oxidization process and the soakage property between vitrified bond and diamond were investigated. It is found that, when the titanium film is coated on the surface of diamond crystal, the soakage angle between vitrified bond and diamond decreases from 39.5° to 34.5° at 993 K, and the oxidization degree on the surface of diamonds is lowered greatly.

  11. Automatic Flatness Control of Cold Rolling Mill

    Science.gov (United States)

    Anbe, Yoshiharu; Sekiguchi, Kunio

    One of the subjects of cold rolling is a flatness of the rolled strip. Conventionally, measured strip flatness was approximated by polynomial (2th, 4th, 6th) equation across the entire strip width. This made it difficult to deal with desired loose edge or any desired flatness across the entire strip width. Also conventional flatness control was done for the entire strip width, so if there is a different flatness error among drive side and work side, conventional flatness control can not control properly. We propose independent strip flatness control among drive side and work side, and also automatic flatness control (AFC) system with arbitrary desired strip flatness. Also some applied results to cold mill are shown.

  12. Entanglement, Holography and Causal Diamonds

    CERN Document Server

    de Boer, Jan; Heller, Michal P; Myers, Robert C

    2016-01-01

    We argue that the degrees of freedom in a d-dimensional CFT can be re-organized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglement entropy from this unifying point of view. We demonstrate that for small perturbations of the va...

  13. Microstructure and chemical bond evolution of diamond-like carbon films machined by femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Wang, Chunhui [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yongsheng, E-mail: yongshengliu@nwpu.edu.cn [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Cheng, Laifei [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Weinan [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China); Zhang, Qing [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Yang, Xiaojun [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China)

    2015-06-15

    Highlights: • The machining depth was essentially proportional to the laser power. • The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. And the number of nanoparticles increased with the processing power as well. • It revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. • It showed that a great decrease of sp{sup 3}/sp{sup 2} after laser treatment. - Abstract: Femtosecond laser is of great interest for machining high melting point and hardness materials such as diamond-like carbon, SiC ceramic, et al. In present work, the microstructural and chemical bond evolution of diamond-like carbon films were investigated using electron microscopy and spectroscopy techniques after machined by diverse femtosecond laser power in air. The results showed the machining depth was essentially proportional to the laser power. The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. Considering the D and G Raman band parameters on the laser irradiation, it revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. X-ray photoelectron spectroscopy analysis showed a great decrease of sp{sup 3}/sp{sup 2} after laser treatment.

  14. Microstructure and chemical bond evolution of diamond-like carbon films machined by femtosecond laser

    International Nuclear Information System (INIS)

    Highlights: • The machining depth was essentially proportional to the laser power. • The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. And the number of nanoparticles increased with the processing power as well. • It revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. • It showed that a great decrease of sp3/sp2 after laser treatment. - Abstract: Femtosecond laser is of great interest for machining high melting point and hardness materials such as diamond-like carbon, SiC ceramic, et al. In present work, the microstructural and chemical bond evolution of diamond-like carbon films were investigated using electron microscopy and spectroscopy techniques after machined by diverse femtosecond laser power in air. The results showed the machining depth was essentially proportional to the laser power. The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. Considering the D and G Raman band parameters on the laser irradiation, it revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. X-ray photoelectron spectroscopy analysis showed a great decrease of sp3/sp2 after laser treatment

  15. Tribological properties and structural investigation of Diamond-like nano-composites

    International Nuclear Information System (INIS)

    Diamond-Like Nano composites (DylynTM) are a new family of hard amorphous coatings combining high hardness, high elasticity, low friction and good adhesion on a variety of substrates. Mechanical properties of several DylynTM films and metal-doped DylynTM films have been investigated using nano-indentation and ball-on-disk measurements. Nano hardness up to 17 GPa is reported. The coefficient of friction, measured in air at 50% relative humidity and using a steel ball with 10 N normal load, can be tailored to be typically 0.05 - 0.07. This low-friction behaviour opens up applications of these films as hard, self-lubricating, low-friction coatings. Structural characterization has been performed using Grazing Incidence X-Ray Diffraction (GIXRD), X-ray Photoelectron Spectroscopy (XPS), Auger Electron Spectroscopy (AES), Rutherford Backscattering Spectroscopy (RBS) and Elastic Recoil Detection (ERD). X-ray studies indicate that the films are completely amorphous. XPS shows that the films consist mainly of a C-based and a Si-O network. AES measurements yield spectra comparable to diamond-like carbon (DLC) due to the presence of sp3-bonded C. Finally, atomic concentrations, including the H content, have been determined with RBS and ERD. (author). 4 refs., 2 figs

  16. The Geopolitical Setting of Conflict Diamonds.

    Science.gov (United States)

    Haggerty, S. E.

    2002-05-01

    September 11, 2001 will live in infamy. Ideological differences have also led to senseless atrocities in Angola, Congo Republic, Sierra Leone, and Liberia. Hundreds of thousands have died, scores mutilated, and millions displaced. These have gone virtually unnoticed for decades. Unnoticed that is until it became evident that these barbaric acts were fueled by the sale or bartering of diamonds for arms, or by more ingenious ways that are less traceable. There is no end in sight. Industry has long recognized that about 20% of diamonds reaching the open market are smuggled from operating mines, and more recently that an additional 4% originates from conflict diamond sources. Diamond identification by laser inscription, ion implantation, or certification protocols are subject to fraudulent tampering. And these applied methods are thwarted if cutting and polishing centers are infiltrated, or if terrorist facilities are independently established. Mark ups are substantial (40-60%) from raw material to finished product. Tracking the paths of rough stones from mines to faceted gems is impractical because some 30-50 million cts of top quality material, or about 100 million stones, would require branding each year. Moreover, the long standing tradition of site-holdings and the bourse system of mixing or matching diamonds, inadvertently ensures regional anonymity. Conflict diamonds are mined in primary kimberlites and from widely dispersed alluvial fields in tropical jungle. Landscapes, eroded by 1-5 vertical km over 100 Ma, have transformed low grade primary deposits into unconsolidated sedimentary bonanzas. The current value of stones retrieved, by motivated diggers and skillful jiggers, in rebel held territories, is impossible to determine, but in 1993 amounted to tens of millions USD. Diamonds over 100 cts continue to surface at premier prices. Borders are porous, diamonds flow easily, and armed networks are permeable and mobile. Diamonds form at great depths (over 200 km

  17. STRUCTURING OF DIAMOND FILMS USING MICROSPHERE LITHOGRAPHY

    Directory of Open Access Journals (Sweden)

    Mária Domonkos

    2014-10-01

    Full Text Available In this study, the structuring of micro- and nanocrystalline diamond thin films is demonstrated. The structuring of the diamond films is performed using the technique of microsphere lithography followed by reactive ion etching. Specifically, this paper presents a four-step fabrication process: diamond deposition (microwave plasma assisted chemical vapor deposition, mask preparation (by the standard Langmuir-Blodgett method, mask modification and diamond etching. A self-assembled monolayer of monodisperse polystyrene (PS microspheres with close-packed ordering is used as the primary template. Then the PS microspheres and the diamond films are processed in capacitively coupled radiofrequency plasma  using different plasma chemistries. This fabrication method illustrates the preparation of large arrays of periodic and homogeneous hillock-like structures. The surface morphology of processed diamond films is characterized by scanning electron microscopy and atomic force microscope. The potential applications of such diamond structures in various fields of nanotechnology are also briefly discussed.

  18. CVD diamond for nuclear detection applications

    International Nuclear Information System (INIS)

    Chemically vapour deposited (CVD) diamond is a remarkable material for the fabrication of radiation detectors. In fact, there exist several applications where other standard semiconductor detectors do not fulfil the specific requirements imposed by corrosive, hot and/or high radiation dose environments. The improvement of the electronic properties of CVD diamond has been under intensive investigations and led to the development of a few applications that are addressing specific industrial needs. Here, we report on CVD diamond-based detector developments and we describe how this material, even though of a polycrystalline nature, is readily of great interest for applications in the nuclear industry as well as for physics experiments. Improvements in the material synthesis as well as on device fabrication especially concern the synthesis of films that do not exhibit space charge build up effects which are often encountered in CVD diamond materials and that are highly detrimental for detection devices. On a pre-industrial basis, CVD diamond detectors have been fabricated for nuclear industry applications in hostile environments. Such devices can operate in harsh environments and overcome limitations encountered with the standard semiconductor materials. Of these, this paper presents devices for the monitoring of the alpha activity in corrosive nuclear waste solutions, such as those encountered in nuclear fuel assembly reprocessing facilities, as well as diamond-based thermal neutron detectors exhibiting a high neutron to gamma selectivity. All these demonstrate the effectiveness of a demanding industrial need that relies on the remarkable resilience of CVD diamond

  19. CVD diamond for nuclear detection applications

    Energy Technology Data Exchange (ETDEWEB)

    Bergonzo, P. E-mail: pbergonzo@cea.fr; Brambilla, A.; Tromson, D.; Mer, C.; Guizard, B.; Marshall, R.D.; Foulon, F

    2002-01-11

    Chemically vapour deposited (CVD) diamond is a remarkable material for the fabrication of radiation detectors. In fact, there exist several applications where other standard semiconductor detectors do not fulfil the specific requirements imposed by corrosive, hot and/or high radiation dose environments. The improvement of the electronic properties of CVD diamond has been under intensive investigations and led to the development of a few applications that are addressing specific industrial needs. Here, we report on CVD diamond-based detector developments and we describe how this material, even though of a polycrystalline nature, is readily of great interest for applications in the nuclear industry as well as for physics experiments. Improvements in the material synthesis as well as on device fabrication especially concern the synthesis of films that do not exhibit space charge build up effects which are often encountered in CVD diamond materials and that are highly detrimental for detection devices. On a pre-industrial basis, CVD diamond detectors have been fabricated for nuclear industry applications in hostile environments. Such devices can operate in harsh environments and overcome limitations encountered with the standard semiconductor materials. Of these, this paper presents devices for the monitoring of the alpha activity in corrosive nuclear waste solutions, such as those encountered in nuclear fuel assembly reprocessing facilities, as well as diamond-based thermal neutron detectors exhibiting a high neutron to gamma selectivity. All these demonstrate the effectiveness of a demanding industrial need that relies on the remarkable resilience of CVD diamond.

  20. Diamond detector - material science, design and application

    Science.gov (United States)

    Gaowei, Mengjia

    Modern synchrotrons, such as the NSLS-II, will enable unprecedented science by having extremely high brightness and flux with exceptional beam stability. These capabilities create a harsh and demanding environment for measuring the characteristics of the x-ray beam. In many cases, existing measurement techniques fail completely, requiring the development of new detectors which can meet the demands of the synchrotron. The combination of diamond properties ranked diamond an appealing candidate in the field of radiation detection in extreme conditions and it has been used as x-ray sensor material for decades. However, only until the development of chemical vapor deposition (CVD) process in the synthesis of diamond that has it been considered for wider applications in the state-of-art synchrotron light sources as part of beamline diagnostics, including the detection of x-ray beam flux and position. While defects and dislocations in CVD grown single crystal diamonds are inevitable, there are solutions in other aspects of a device fabrication to compensate this technological downside, including improving device performance in engineering diamond surface electrode materials and patterns and slicing and polishing diamond plates into thinner pieces. The content of this dissertation summarizes our effort in addressing several problems we encounter in the process of design and fabrication of single crystal CVD diamond based electronic devices. In order to study the generation of post-anneal photoconductive gain in our devices we have discussed in section 3 and 4 the two criteria for the observation of photoconductive current. In section 3 we reveal the correlation between structural defects in diamond and the post-anneal photoconductive regions. Section 4 introduces the measurements of hard x-ray photoelectron spectroscopy (HAXPES) we applied to investigate the diamond-metal Schottky barrier height for several metals and diamond surface terminations. The position of the

  1. NUCLEATION RATE OF DIAMOND FILMS ON WC-Co ALLOYS

    OpenAIRE

    SHA LIU

    2005-01-01

    Diamond-coated hard alloys are prospective tool materials for extreme cutting conditions. Nucleation rate is one of important factors that affect the qualities of diamond thin films on WC-Co alloys. However, theoretical reports on nucleation rate of diamond films on WC-Co alloys are scarce. Combining the unique diamond strong orientation with substrate surface properties, an improved theoretical formula on nucleation rate of diamond films on the WC-Co alloys is deduced in this paper. First, t...

  2. Artifact Diamond Its Allure And Significance

    Science.gov (United States)

    Yoder, Max N.

    1989-01-01

    While the preponderance of the mechanical, optical, and electronic properties of natural diamond have been known for over a decade, only recently has artifact diamond in technologically useful form factors become an exciting possibility. The advent of sacrificial, lattice matched crystalline substrates provides the basis not only for semiconducting applications of diamond, but for optical mirrors, lenses, and windows as well. As a semiconductor, diamond has the highest resistivity, the highest saturated electron velocity, the highest thermal conductivity, the lowest dielectric constant, the highest dielectric strength, the greatest hardness, the largest bandgap and the smallest lattice constant of any material. It also has electron and hole mobilities greater than those of silicon. Its figure of merit as a microwave power amplifier is unexcelled and exceeds that of silicon by a multiplier of 8200. For integrated circuit potential, its thermal conductivity, saturated velocity, and dielectric constant also place it in the premier position (32 times that of silicon, 46 times that of GaAs). Although not verified, its radiation hardness should also be unmatched. Aside from its brilliant sparkle as a gemstone, there has been little use of diamond in the field of optics. Processing of the diamond surface now appears to be as simple as that of any other material --albeit with different techniques. In fact, it may be possible to etch diamond far more controllably (at economically viable rates) than any other material as the product of the etch is gaseous and the etched trough is self-cleaning. Other properties of diamond make it an ideal optical material. Among them are its unmatched thermal conductivity, its extremely low absorption loss above 228 nanometers, and unmatched Young's modulus, Poisson's ratio, tensile strength, hardness, thermal shock, and modulus of elasticity. If the recently-found mechanisms by which erbium impurities in III-V junctions can be made to "lase

  3. Tribological performances of diamond film and graphite/diamond composite film with paraffin oil lubrication

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, the tribological performances of diamond film and graphite/diamond com-posite film were compared on an SRV wear testing machine with paraffin oil lubrication. The sur-face morphologies of specimens and wear tracks were observed by SEM. The wear volumes ofwear tracks were measured by profilometer. The influence of load on the tribological performancesof different specimens was studied. The wear mechanism under paraffin oil lubrication was ana-lyzed. The results showed that with paraffin oil lubrication, the friction coefficient and wear volumeof graphite/diamond composite film specimen are lower than diamond film. Under paraffin oil lu-brication, the wear mechanisms of both diamond film and graphite/diamond composite film weremainly sub-micro-fracture.

  4. Amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-04-01

    Nanoelectromechanical (NEM) switch is an interesting ultra-low power option which can operate in the harsh environment and can be a complementary element in complex digital circuitry. Although significant advancement is happening in this field, report on ultra-low voltage (pull-in) switch which offers high switching speed and area efficiency is yet to be made. One key challenge to achieve such characteristics is to fabricate nano-scale switches with amorphous metal so the shape and dimensional integrity are maintained to achieve the desired performance. Therefore, we report a tungsten alloy based amorphous metal with fabrication process development of laterally actuated dual gated NEM switches with 100 nm width and 200 nm air-gap to result in <5 volts of actuation voltage (Vpull-in). © 2013 IEEE.

  5. Substrate and material transfer effects on the surface chemistry and texture of diamond-like carbon deposited by plasma-enhanced chemical vapour deposition

    OpenAIRE

    Jones, Benjamin; Ojeda, J. J.

    2012-01-01

    Diamond-like carbon (DLC), a thin amorphous carbon film, has many uses in tribological systems. Exploiting alternative substrates and interlayers can enable the control of the hardness and modulus of the multilayer system and improve wear or friction properties. We used XPS and atomic force microscopy to examine DLC that had been concurrently coated on an epoxy interlayer and a steel substrate by plasma-enhanced chemical vapour deposition. sp2/sp3 ratios were calculated both by the deconvolut...

  6. Amorphous silicon based betavoltaic devices

    OpenAIRE

    Wyrsch, N; Riesen, Y.; Franco, A; S. Dunand; Kind, H.; Schneider, S.; Ballif, C.

    2013-01-01

    Hydrogenated amorphous silicon betavoltaic devices are studied both by simulation and experimentally. Devices exhibiting a power density of 0.1 μW/cm2 upon Tritium exposure were fabricated. However, a significant degradation of the performance is taking place, especially during the first hours of the exposure. The degradation behavior differs from sample to sample as well as from published results in the literature. Comparisons with degradation from beta particles suggest an effect of tritium...

  7. Physics and applications of CVD diamond

    CERN Document Server

    Koizumi, Satoshi; Nesladek, Milos

    2008-01-01

    Here, leading scientists report on why and how diamond can be optimized for applications in bioelectronic and electronics. They cover such topics as growth techniques, new and conventional doping mechanisms, superconductivity in diamond, and excitonic properties, while application aspects include quantum electronics at room temperature, biosensors as well as diamond nanocantilevers and SAWs.Written in a review style to make the topic accessible for a wider community of scientists working in interdisciplinary fields with backgrounds in physics, chemistry, biology and engineering, this is e

  8. Charge multiplication effect in thin diamond films

    Science.gov (United States)

    Skukan, N.; Grilj, V.; Sudić, I.; Pomorski, M.; Kada, W.; Makino, T.; Kambayashi, Y.; Andoh, Y.; Onoda, S.; Sato, S.; Ohshima, T.; Kamiya, T.; Jakšić, M.

    2016-07-01

    Herein, we report on the enhanced sensitivity for the detection of charged particles in single crystal chemical vapour deposition (scCVD) diamond radiation detectors. The experimental results demonstrate charge multiplication in thin planar diamond membrane detectors, upon impact of 18 MeV O ions, under high electric field conditions. Avalanche multiplication is widely exploited in devices such as avalanche photo diodes, but has never before been reproducibly observed in intrinsic CVD diamond. Because enhanced sensitivity for charged particle detection is obtained for short charge drift lengths without dark counts, this effect could be further exploited in the development of sensors based on avalanche multiplication and radiation detectors with extreme radiation hardness.

  9. Diamond deposition on siliconized stainless steel

    International Nuclear Information System (INIS)

    Silicon diffusion layers in AISI 304 and AISI 316 type stainless steels were investigated as an alternative to surface barrier coatings for diamond film growth. Uniform 2 μm thick silicon rich interlayers were obtained by coating the surface of the steels with silicon and performing diffusion treatments at 800 deg. C. Adherent diamond films with low sp2 carbon content were deposited on the diffused silicon layers by a modified hot filament assisted chemical vapor deposition (HFCVD) method. Characterization of as-siliconized layers and diamond coatings was performed by energy dispersive X-ray analysis, scanning electron microscopy, X-ray diffraction and Raman spectroscopy.

  10. Characterisation of Diamond-Like Carbon (DLC) laser targets by Raman spectroscopy

    Science.gov (United States)

    Haddock, D.; Parker, T.; Spindloe, C.; Tolley, M.

    2016-04-01

    The search for target materials suitable for High Power Laser Experiments at ultralow thicknesses (below ten nanometres) is ongoing. Diamond-Like Carbon is investigated as an answer for a low-Z material that can survive target chamber pump-down and laser prepulse. DLC was produced using Plasma-Enhanced Chemical Vapour Deposition, using with varying gas flow mixtures of argon and methane. The methane plasma deposits amorphous carbon onto the substrate and the argon plasma re-sputters the weakly bonded carbon leaving a high proportion of diamond-like bonding. Bonding natures were probed using Raman spectroscopy; analysis of the resulting spectrum showed that flow rates of 40sccm/60sccm methane to argon produced DLC films with a diamond-like (sp 3) content of ∼20%. Increasing the methane gas flow decreased this value to less than 5%. DLC foils were processed into laser targets by method of float off; using a sodium chloride release layer and lowering into water, this was then lifted onto an array of apertures allowing for laser irradiation of the material with no backing. DLC with 20% sp 3 content showed superior yield when compared to other materials such as metals and some plastics of the same thickness, with ∼70% of the target positions surviving the float off procedure at <10nm. As a result of this work DLC targets have been available for a number of experiments at the Central Laser Facility.

  11. Note: Novel diamond anvil cell for electrical measurements using boron-doped metallic diamond electrodes.

    Science.gov (United States)

    Matsumoto, R; Sasama, Y; Fujioka, M; Irifune, T; Tanaka, M; Yamaguchi, T; Takeya, H; Takano, Y

    2016-07-01

    A novel diamond anvil cell suitable for electrical transport measurements under high pressure has been developed. A boron-doped metallic diamond film was deposited as an electrode on a nano-polycrystalline diamond anvil using a microwave plasma-assisted chemical vapor deposition technique combined with electron beam lithography. The maximum pressure that can be achieved by this assembly is above 30 GPa. We report electrical transport measurements of Pb up to 8 GPa. The boron-doped metallic diamond electrodes showed no signs of degradation after repeated compression. PMID:27475610

  12. Mechanism of diamond-to-graphite transformation at diamond-stable conditions

    Institute of Scientific and Technical Information of China (English)

    ZANG ChuangYi; CHEN XiaoZhou; HU Qiang; MA HongAn; JIAXiaoPeng

    2009-01-01

    The diamond-to-graphite transformation at diamond-stable conditions is studied by temperature gradient method (TGM) under high pressure and high temperature (HPHT), although it is unreasonable from the view of thermodynamic considerations. It is found that, at diamond-stable conditions, for example, at 5.5 GPa and 1550 K, with fine diamond grits as carbon source and NiMnCo alloy as metal solvent assisted, not only large diamond crystals, but metastable regrown graphite crystals would be grown by layer growth mechanism, and the abundance of carbon source in the higher temperature region is indispensable for the presence of metastable regrown graphite crystals. From this transformation, it is concluded that, with metal solvent assisted, although the mechanism of crystal growth could be understood by the macro-mechanism of solubility difference between diamond and graphite in metal solvents, from the point of micro-mechanism, the minimum growth units for diamond or graphite crystals should be at atomic level and unrelated to the kinds of carbon source (diamond or graphite), which could be accumulated free-selectively on the graphite with sp2Tr or diamond crystals with sp3 bond structure.

  13. Flat

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    菲亚特选在柏林举行的“面包与黄油(Bread&Butter)”青年时尚秀中发布了500柴油版车型。这款车型首先推出的是黑色和绿色车身颜色,共限量1万辆,目前已有6000辆被售出。现在,它又追加了1款车身颜色“午夜蓝”,菲亚特选择这款颜色,是因为它很接近牛仔裤的颜色,更容易吸引年轻的消费者。

  14. Focal Rigidity of Flat Tori

    CERN Document Server

    Kwakkel, Ferry; Peixoto, Mauricio

    2011-01-01

    Given a closed Riemannian manifold (M, g), there is a partition \\Sigma_i of its tangent bundle TM called the focal decomposition. The sets \\Sigma_i are closely associated to focusing of geodesics of (M, g), i.e. to the situation where there are exactly i geodesic arcs of the same length joining points p and q in M. In this note, we study the topological structure of the focal decomposition of a closed Riemannian manifold and its relation with the metric structure of the manifold. Our main result is that the flat n-tori are focally rigid, in the sense that if two flat tori are focally equivalent, then the tori are isometric up to rescaling.

  15. Parallel spinors on flat manifolds

    Science.gov (United States)

    Sadowski, Michał

    2006-05-01

    Let p(M) be the dimension of the vector space of parallel spinors on a closed spin manifold M. We prove that every finite group G is the holonomy group of a closed flat spin manifold M(G) such that p(M(G))>0. If the holonomy group Hol(M) of M is cyclic, then we give an explicit formula for p(M) another than that given in [R.J. Miatello, R.A. Podesta, The spectrum of twisted Dirac operators on compact flat manifolds, Trans. Am. Math. Soc., in press]. We answer the question when p(M)>0 if Hol(M) is a cyclic group of prime order or dim⁡M≤4.

  16. Laser illuminated flat panel display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T.

    1995-12-31

    A 10 inch laser illuminated flat panel Planar Optic Display (POD) screen has been constructed and tested. This POD screen technology is an entirely new concept in display technology. Although the initial display is flat and made of glass, this technology lends itself to applications where a plastic display might be wrapped around the viewer. The display screen is comprised of hundreds of planar optical waveguides where each glass waveguide represents a vertical line of resolution. A black cladding layer, having a lower index of refraction, is placed between each waveguide layer. Since the cladding makes the screen surface black, the contrast is high. The prototype display is 9 inches wide by 5 inches high and approximately I inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  17. Multifrequency spin resonance in diamond

    CERN Document Server

    Childress, Lilian

    2010-01-01

    Magnetic resonance techniques provide a powerful tool for controlling spin systems, with applications ranging from quantum information processing to medical imaging. Nevertheless, the behavior of a spin system under strong excitation remains a rich dynamical problem. In this paper, we examine spin resonance of the nitrogen-vacancy center in diamond under conditions outside the regime where the usual rotating wave approximation applies, focusing on effects of multifrequency excitation and excitation with orientation parallel to the spin quantization axis. Strong-field phenomena such as multiphoton transitions and coherent destruction of tunneling are observed in the spectra and analyzed via numerical and analytic theory. In addition to illustrating the response of a spin system to strong multifrequency excitation, these observations may inform techniques for manipulating electron-nuclear spin quantum registers.

  18. Processing quantum information in diamond

    International Nuclear Information System (INIS)

    Quantum computing is an attractive and multidisciplinary field, which became a focus for experimental and theoretical research during the last decade. Among other systems, such as ions in traps and superconducting circuits, solid state based qubits are considered to be promising candidates for use in first experimental tests of quantum hardware. Here we report recent progress in quantum information processing with point defects in diamond. Qubits are defined as single spin states (electron or nuclear). This allows exploration of long coherence times (up to seconds for nuclear spins at cryogenic temperatures). In addition, the optical transition between ground and excited electronic states allows coupling of spin degrees of freedom to the state of the electromagnetic field. Such coupling gives access to spin state read-out via spin-selective scattering of photons. This also allows the use of spin states as robust memory for flying qubits (photons)

  19. Quantum information processing in diamond

    CERN Document Server

    Jelezko, F

    2005-01-01

    Quantum computing is an attractive and multidisciplinary field, which became a focus for experimental and theoretical research during last decade. Among other systems, like ions in traps or superconducting circuits, solid-states based qubits are considered to be promising candidates for first experimental tests of quantum hardware. Here we report recent progress in quantum information processing with point defect in diamond. Qubits are defined as single spin states (electron or nuclear). This allows exploring long coherence time (up to seconds for nuclear spins at cryogenic temperatures). In addition, the optical transition between ground and excited electronic states allows coupling of spin degrees of freedom to the state of the electromagnetic field. Such coupling gives access to the spin state readout via spin-selective scattering of photon. This also allows using of spin state as robust memory for flying qubits (photons).

  20. Flat colon polyps: what should radiologists know?

    Energy Technology Data Exchange (ETDEWEB)

    Ignjatovic, A. [Intestinal Imaging Centre, St Mark' s Hospital, Harrow, Middlesex (United Kingdom); Burling, D., E-mail: burlingdavid@yahoo.co.u [Intestinal Imaging Centre, St Mark' s Hospital, Harrow, Middlesex (United Kingdom); Ilangovan, R.; Clark, S.K.; Taylor, S.A.; East, J.E.; Saunders, B.P. [Intestinal Imaging Centre, St Mark' s Hospital, Harrow, Middlesex (United Kingdom)

    2010-12-15

    With the recent publication of international computed tomography (CT) colonography standards, which aim to improve quality of examinations, this review informs radiologists about the significance of flat polyps (adenomas and hyperplastic polyps) in colorectal cancer pathways. We describe flat polyp classification systems and propose how flat polyps should be reported to ensure patient management strategies are based on polyp morphology as well as size. Indeed, consistency when describing flat polyps is of increasing importance given the strengthening links between CT colonography and endoscopy.

  1. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  2. CVD diamond for nuclear detection applications

    CERN Document Server

    Bergonzo, P; Tromson, D; Mer, C; Guizard, B; Marshall, R D; Foulon, F

    2002-01-01

    Chemically vapour deposited (CVD) diamond is a remarkable material for the fabrication of radiation detectors. In fact, there exist several applications where other standard semiconductor detectors do not fulfil the specific requirements imposed by corrosive, hot and/or high radiation dose environments. The improvement of the electronic properties of CVD diamond has been under intensive investigations and led to the development of a few applications that are addressing specific industrial needs. Here, we report on CVD diamond-based detector developments and we describe how this material, even though of a polycrystalline nature, is readily of great interest for applications in the nuclear industry as well as for physics experiments. Improvements in the material synthesis as well as on device fabrication especially concern the synthesis of films that do not exhibit space charge build up effects which are often encountered in CVD diamond materials and that are highly detrimental for detection devices. On a pre-i...

  3. Diamond Analyzed by Secondary Electron Emission Spectroscopy

    Science.gov (United States)

    Krainsky, Isay L.

    1998-01-01

    Diamond is a promising semiconductor material for novel electronic applications because of its chemical stability and inertness, heat conduction properties, and so-called negative electron affinity (NEA). When a surface has NEA, electrons generated inside the bulk of the material are able to come out into the vacuum without any potential barrier (work function). Such a material would have an extremely high secondary electron emission coefficient o, very high photoelectron (quantum) yield, and would probably be an efficient field emitter. Chemical-vapor-deposited (CVD) polycrystalline diamond films have even more advantages than diamond single crystals. Their fabrication is relatively easy and inexpensive, and they can be grown with high levels of doping--consequently, they can have relatively high conductivity. Because of these properties, diamond can be used for cold cathodes and photocathodes in high-power electronics and in high-frequency and high-temperature semiconductor devices.

  4. Ultra-fast calculations using diamond

    NARCIS (Netherlands)

    Van Dijk, T.

    2011-01-01

    TU Delft researchers have managed to use a piece of diamond to hold four quantum bits that can be spun, flipped and entangled with each other. This is an important step towards a working quantum computer

  5. 49 CFR 231.6 - Flat cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Flat cars. 231.6 Section 231.6 Transportation... TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.6 Flat cars. (Cars with sides 12 inches or less above the floor may be equipped the same as flat cars.) (a) Hand brakes—(1) Number. Same as specified...

  6. The diamond RF-transistor model

    Directory of Open Access Journals (Sweden)

    Altukhov A. A.

    2011-12-01

    Full Text Available In this work is shown that fluent shutter model it is enough well describes work field-effect diamond RF-transistors. Using this model, possible to calculate transistor parameters used electronic parameters of the diamond structure with δ-doped (hydrogen or boron layer and geometric parameter transistor element. Proof, are calculated by us main parameters model RF-transistor, which it is enough close comply with published experimental result of the measurements real RF-transistors.

  7. Microengineered CVD Diamond Surfaces : Tribology and Applications

    OpenAIRE

    Andersson, Joakim

    2004-01-01

    Recent developments in thin film synthesis of diamond have facilitated a host of new technical applications. These are motivated by the many attractive properties of diamond, for example high hardness, chemical inertness, transparency and heat conductivity. Unfortunately, these properties also make it difficult to fashion complex geometries. Other problems are the severely limited choice of suitable substrate materials and large surface roughness. To reduce these complications, a technology d...

  8. Nanocrystalline diamond, its synthesis, properties and applications

    OpenAIRE

    Mitura,S; K. Mitura; Niedzielski, P.; P. Louda; Danilenko, V.

    2006-01-01

    Purpose: Carbon constitutes a principal component of a living organism. A man, weighting 100 kg, carries in his body approximately 12 kg of pure carbon. In the nature, carbon occurs in several allotropic forms, such as diamond, graphite (including nanotubes and fullerenes) and carbines. A new type of carbon material, nanocrystalline diamond formed by the decomposition of methane in a process of radio frequency plasma activated chemical vapor deposition (RF PA CVD) is presented.Design/methodol...

  9. Low-stress doped ultrananocrystalline diamond

    Energy Technology Data Exchange (ETDEWEB)

    Sumant, Anirudha V.; Buja, Federico; van Spengen, Willem Merlijn

    2016-10-25

    Nanocrystalline diamond coatings exhibit stress in nano/micro-electro mechanical systems (MEMS). Doped nanocrstalline diamond coatings exhibit increased stress. A carbide forming metal coating reduces the in-plane stress. In addition, without any metal coating, simply growing UNCD or NCD with thickness in the range of 3-4 micron also reduces in-plane stress significantly. Such coatings can be used in MEMS applications.

  10. Low temperature crystallization of diamond-like carbon films to graphene

    Energy Technology Data Exchange (ETDEWEB)

    Tinchev, Savcho, E-mail: stinchev@ie.bas.bg [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia (Bulgaria); Valcheva, Evgenia [Physics Department, Sofia University, J. Bourchier 5, 1164 Sofia (Bulgaria); Petrova, Elitza [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia (Bulgaria)

    2013-09-01

    Plasma surface modification was used to fabricate graphene on the top of insulating diamond-like carbon films. It is shown that by a combination of pulsed argon plasma treatment and thermal annealing at 350{sup o}C it is possible to achieve crystallization of amorphous carbon to graphene. The observed Raman spectra are typical for defected graphene-splitted D- and G-peaks and a broad 2D-peak. Because interpretation of Raman spectra of such complicated system is not easy we have calculated Raman signals of graphene on an amorphous hydrogenated carbon film deposited on a Si substrate. Our simulation results show that multiple reflections and interference effects lead to enhancement of Raman signal of the system. The characteristic for graphene G and 2D bands reach maximal enhancement for thicknesses of the amorphous hydrogenated carbon film of about 75 nm and 230 nm. We estimate that the interference enhancement of the 2D graphene Raman signal is very weak in contrast to that of the G band signal simulated for the underlying diamond-like carbon films on silicon substrate only. Therefore experimentally measured Raman spectra of the whole graphene/a-C:H/Si system probably will consist of interference enhanced but still weak 2D graphene peak and stronger D and G peaks dominated by G and D Raman bands of the a-C:H. This conclusion is in line with observed experimental Raman spectra. Electrical field effect measurements of the samples show ambipolar dependence, typical for single-layer graphene.

  11. Detection and analysis of diamond fingerprinting feature and its application

    Energy Technology Data Exchange (ETDEWEB)

    Li Xin; Huang Guoliang; Li Qiang; Chen Shengyi, E-mail: tshgl@tsinghua.edu.cn [Department of Biomedical Engineering, the School of Medicine, Tsinghua University, Beijing, 100084 (China)

    2011-01-01

    Before becoming a jewelry diamonds need to be carved artistically with some special geometric features as the structure of the polyhedron. There are subtle differences in the structure of this polyhedron in each diamond. With the spatial frequency spectrum analysis of diamond surface structure, we can obtain the diamond fingerprint information which represents the 'Diamond ID' and has good specificity. Based on the optical Fourier Transform spatial spectrum analysis, the fingerprinting identification of surface structure of diamond in spatial frequency domain was studied in this paper. We constructed both the completely coherent diamond fingerprinting detection system illuminated by laser and the partially coherent diamond fingerprinting detection system illuminated by led, and analyzed the effect of the coherence of light source to the diamond fingerprinting feature. We studied rotation invariance and translation invariance of the diamond fingerprinting and verified the feasibility of real-time and accurate identification of diamond fingerprint. With the profit of this work, we can provide customs, jewelers and consumers with a real-time and reliable diamonds identification instrument, which will curb diamond smuggling, theft and other crimes, and ensure the healthy development of the diamond industry.

  12. On Structure and Properties of Amorphous Materials

    Directory of Open Access Journals (Sweden)

    Zbigniew H. Stachurski

    2011-09-01

    Full Text Available Mechanical, optical, magnetic and electronic properties of amorphous materials hold great promise towards current and emergent technologies. We distinguish at least four categories of amorphous (glassy materials: (i metallic; (ii thin films; (iii organic and inorganic thermoplastics; and (iv amorphous permanent networks. Some fundamental questions about the atomic arrangements remain unresolved. This paper focuses on the models of atomic arrangements in amorphous materials. The earliest ideas of Bernal on the structure of liquids were followed by experiments and computer models for the packing of spheres. Modern approach is to carry out computer simulations with prediction that can be tested by experiments. A geometrical concept of an ideal amorphous solid is presented as a novel contribution to the understanding of atomic arrangements in amorphous solids.

  13. Flat panel display - Impurity doping technology for flat panel displays

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Toshiharu [Advanced Technology Planning, Sumitomo Eaton Nova Corporation, SBS Tower 9F, 10-1, Yoga 4-chome, Setagaya-ku, 158-0097 Tokyo (Japan)]. E-mail: suzuki_tsh@senova.co.jp

    2005-08-01

    Features of the flat panel displays (FPDs) such as liquid crystal display (LCD) and organic light emitting diode (OLED) display, etc. using low temperature poly-Si (LTPS) thin film transistors (TFTs) are briefly reviewed comparing with other FPDs. The requirements for fabricating TFTs used for high performance FPDs and system on glass (SoG) are addressed. This paper focuses on the impurity doping technology, which is one of the key technologies together with crystallization by laser annealing, formation of high quality gate insulator and gate-insulator/poly-Si interface. The issues to be solved in impurity doping technology for state of the art and future TFTs are clarified.

  14. Flat panel display - Impurity doping technology for flat panel displays

    International Nuclear Information System (INIS)

    Features of the flat panel displays (FPDs) such as liquid crystal display (LCD) and organic light emitting diode (OLED) display, etc. using low temperature poly-Si (LTPS) thin film transistors (TFTs) are briefly reviewed comparing with other FPDs. The requirements for fabricating TFTs used for high performance FPDs and system on glass (SoG) are addressed. This paper focuses on the impurity doping technology, which is one of the key technologies together with crystallization by laser annealing, formation of high quality gate insulator and gate-insulator/poly-Si interface. The issues to be solved in impurity doping technology for state of the art and future TFTs are clarified

  15. Quantitative analysis of diamond deposition reactor efficiency

    International Nuclear Information System (INIS)

    Graphical abstract: Surface H atom densities in a diamond deposition plasma reactor and the highest predicted value (black line). A 350 μm diamond crystal grown at 70 μm/h. Highlights: ► Electron temperature measurement at high pressure in diamond deposition reactor. ► H-atom density measurements at high pressure and high power in diamond deposition reactor. ► Surface H-atom density measurements at high pressure and high power in diamond deposition reactor. ► Microwave cavity based reactor efficiency compared to others reactors. - Abstract: Optical emission spectroscopy has been used to characterize diamond deposition microwave chemical vapour deposition (MWCVD) plasmas operating at high power density. Electron temperature has been deduced from H atom emission lines while H-atom mole fraction variations have been estimated using actinometry technique, for a wide range of working conditions: pressure 25–400 hPa and MW power 600–4000 W. An increase of the pressure from 14 hPa to 400 hPa with a simultaneous increase in power causes an electron temperature decrease from 17,000 K to 10,000 K and a H atom mole fraction increase from 0.1 to up to 0.6. This last value however must be considered as an upper estimate due to some assumptions made as well as experimental uncertainties.

  16. Development of CVD diamond radiation detectors

    CERN Document Server

    Adam, W; Berdermann, E; Bogani, F; Borchi, E; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fisch, D; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E A; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Knöpfle, K T; Krammer, Manfred; Manfredi, P F; Meier, D; Mishina, M; Le Normand, F; Pan, L S; Pernegger, H; Pernicka, Manfred; Pirollo, S; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Tapper, R J; Tesarek, R J; Thomson, G B; Trawick, M L; Trischuk, W; Turchetta, R; Walsh, A M; Wedenig, R; Weilhammer, Peter; Ziock, H J; Zoeller, M M

    1998-01-01

    Diamond is a nearly ideal material for detecting ionizing radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow a diamond detector to be used in high ra diation, high temperature and in aggressive chemical media. We have constructed charged particle detectors using high quality CVD diamond. Characterization of the diamond samples and various detect ors are presented in terms of collection distance, $d=\\mu E \\tau$, the average distance electron-hole pairs move apart under the influence of an electric field, where $\\mu$ is the sum of carrier mo bilities, $E$ is the applied electric field, and $\\tau$ is the mobility weighted carrier lifetime. Over the last two years the collection distance increased from $\\sim$ 75 $\\mu$m to over 200 $\\mu$ m. With this high quality CVD diamond a series of micro-strip and pixel particle detectors have been constructed. These devices were tested to determine their position resolution and signal to n oise performance. Diamond detectors w...

  17. Nanocrystalline diamond, its synthesis, properties and applications

    Directory of Open Access Journals (Sweden)

    S. Mitura

    2006-04-01

    Full Text Available Purpose: Carbon constitutes a principal component of a living organism. A man, weighting 100 kg, carries in his body approximately 12 kg of pure carbon. In the nature, carbon occurs in several allotropic forms, such as diamond, graphite (including nanotubes and fullerenes and carbines. A new type of carbon material, nanocrystalline diamond formed by the decomposition of methane in a process of radio frequency plasma activated chemical vapor deposition (RF PA CVD is presented.Design/methodology/approach: Nanocrystalline diamond (NCD films were synthesized with a new method, employing dense radio frequency plasma. The idea consists in a decomposition of methane in radio frequency (13.56 MHz plasma.Findings: One of the most important property of NCD is the protection living organism between the metalosis. NCD forms the barrier diffusion between implant and human environment.Practical implications: Advanced medical studies, concerning a use of medical implants coated with nanocrystalline diamond enabled their practical applications.Originality/value: The most interesting property of diamond is the fact that it can play the role of electrodonor. This is directly associated with the new type of bioactivity, exhibiting by diamond.

  18. Distribution and characteristics of diamonds from Myanmar

    Science.gov (United States)

    Win, T. T.; Davies, R. M.; Griffin, W. L.; Wathanakul, P.; French, D. H.

    2001-08-01

    Diamonds occur in headless placers at several locations within Myanmar. Twenty-six stones from the Momeik area of northern Myanmar and 111 stones from the Theindaw area of southern Myanmar have been studied to characterise their morphology, crystal forms, colour, degree of resorption, surface features, internal structures, mineral inclusions, and nitrogen content and aggregation state. Most stones grew originally as octahedra, but now show very high degrees of resorption, and highly polished surfaces, reflecting transport in a magma. Etch features are abundant, and breakage and abrasion are common, due to alluvial transport. Brown radiation spots are common, suggesting that these diamonds have a long history in surface environments. Cathodoluminescence (CL) images of plates and whole stones commonly display marked oscillatory zoning of yellow and blue bands, outlining octahedral growth zones. Many other stones show uniform yellow CL. Syngenetic mineral inclusions identified thus far are mainly of peridotitic paragenesis and include olivine, chromite and native iron. Infrared spectroscopy studies show that ˜10% of the diamonds have very low-N contents (Type II diamonds). More N-rich diamonds show high degrees of aggregation (Type IaAB). Both types are consistent with derivation from the upper mantle, rather than from crustal metamorphic sources. The primary source of these diamonds is believed to be an alkaline igneous rock (lamproitic rather than kimberlitic) but they may have reached their present locations via a secondary collector such as a sedimentary rock.

  19. Prospective crystallization of amorphous Si films for new Si TFTs

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Takashi [University of the Ryukyus, Fuculty of Engineering, Nishihara, Okinawa (Japan)

    2008-07-01

    Prospective crystallization results of amorphous silicon film are reviewed and are discussed. Silicon TFTs are playing an important role for Active-Matrix Flat Panel Displays (AM-FPD) based on amorphous or poly-Si thin-film transistors (TFTs). Poly-Si TFTs provide a possibility to develop highly functional system on pane (SoP) applications. In order to get a high performance TFT, large poly-crystal grains or high cystallinity for the film is required. Two basic crystallization techniques namely solid phase crystallization (SPC) and excimer laser crystallization (ELC) are reviewed and relating issues are described. A grain growth technique has been developed based on the two crystallization techniques, so far. In order to mount a poly-Si TFT system on a flexible panel such as a plastic, an excimer laser of UV pulse beam has an advantage for the TFT channel as well as for the source and drain contacts as a ultra-low temperature poly-Si (U-LTPS) process. To realize a high performance TFT of uniform and high carrier mobility, location control crystallization had been proposed. Some of the distinctive results for crystal orientation control of (100) and (111) face using the laser crystallization techniques are described. In the future, single-crystalline Si TFT of a functional 3D structure is expected to realize an advanced SoP for ubiquitous electronics era. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. The physics and applications of amorphous semiconductors

    CERN Document Server

    Madan, Arun

    1988-01-01

    This comprehensive, detailed treatise on the physics and applications of the new emerging technology of amorphous semiconductors focuses on specific device research problems such as the optimization of device performance. The first part of the book presents hydrogenated amorphous silicon type alloys, whose applications include inexpensive solar cells, thin film transistors, image scanners, electrophotography, optical recording and gas sensors. The second part of the book discusses amorphous chalcogenides, whose applications include electrophotography, switching, and memory elements. This boo

  1. Dependence of the Diamond Type Bonding on Parameters of Deposition from a Ar + CH4 Plasma

    International Nuclear Information System (INIS)

    Dependence of the diamond type bonding on parameters of deposition from a Ar + CH4 plasma. Variation of relative fractions of sp3 and sp2 bonds studies of amorphous diamond-like carbon (a-DLC) films, deposited on silicon from RF (CH4 + Ar) RF plasma, is Presented. The electrical, optical, morphological, and mechanical properties, were measured, and the results, discussed as a function of the partial Ar pressure in the mixture of CH4 + Ar gases, during the a-ArDLC deposition. The comparative study of properties of a-DLC films, using Auger electron spectroscopy (AES), to these of the ratio Φ =: sp3/sp2 (sp2 graphite-bonding) and (sp3 diamond-bonding), have shown that Ar improves the diamond-like properties. Raman spectroscopy and FTIR were also used to determine the ratio sp3/sp2 bonds. For morphology investigation optical microscopy and Atomic Force Microscopy (AFM), were used. Electrical measurements, current-voltage (I-V) and current-temperature (I-T), were performed. Deposition of a-ArDLC films on substrates (sapphire, germanium) with average roughness (σ) of the order of (σ1000 Angstrom, have shown that a strong decrease of σ with increasing the thickness (dσ) is obtained. For d=0.8 μm the value g was reduced to about 10 Angstrom. The bonding ratio Φ remains constant with increasing d up to 0.4/μm and decreases with further increasing d. This indicates that the influence of substrate and roughness is important for obtaining optimum value of Φ. The novel and important result obtained in this paper was that a high value of ratio Φ≥50%) was achieved for the mixture of Ar/CH4 30/70), which was proved, using the above mentioned types of characterization

  2. Raman spectroscopic investigation of graphitization of diamond during spark plasma sintering of UO2-diamond composite nuclear fuel

    Science.gov (United States)

    Chen, Zhichao; Subhash, Ghatu; Tulenko, James S.

    2016-07-01

    Micro-Raman spectroscopy (MRS) was utilized to investigate the graphitization of diamond particles within a UO2-diamond composite processed by spark plasma sintering (SPS). While pure diamond gives a sharp Raman peak at 1331.6 cm-1, the graphitized diamond shows broad peaks either at 1350 cm-1 (G-peak) or 1580 cm-1 (D-peak). The degree of graphitization was quantified by calculating the area beneath the diamond and graphite peaks. It was found that more than 20% of diamond was graphitized on the surface of the UO2-diamond pellet and only around 10% diamond was graphitized in the interior regions of the pellet. This current study highlights the necessity to review the implications of these results carefully while implementing UO2-diamond composite nuclear fuel.

  3. An extension to flat band ferromagnetism

    Science.gov (United States)

    Gulacsi, M.; Kovacs, G.; Gulacsi, Z.

    2014-11-01

    From flat band ferromagnetism, we learned that the lowest energy half-filled flat band gives always ferromagnetism if the localized Wannier states on the flat band satisfy the connectivity condition. If the connectivity conditions are not satisfied, ferromagnetism does not appear. We show that this is not always the case namely, we show that ferromagnetism due to flat bands can appear even if the connectivity condition does not hold due to a peculiar behavior of the band situated just above the flat band.

  4. Electronic Power System Application of Diamond-Like Carbon Films

    Science.gov (United States)

    Wu, Richard L. C.; Kosai, H.; Fries-Carr, S.; Weimer, J.; Freeman, M.; Schwarze, G. E.

    2003-01-01

    A prototype manufacturing technology for producing high volume efficiency and high energy density diamond-like carbon (DLC) capacitors has been developed. Unique dual ion-beam deposition and web-handling systems have been designed and constructed to deposit high quality DLC films simultaneously on both sides of capacitor grade aluminum foil and aluminum-coated polymer films. An optimized process, using inductively coupled RF ion sources, has been used to synthesize electrically robust DLC films. DLC films are amorphous and highly flexible, making them suitable for the production of wound capacitors. DLC capacitors are reliable and stable over a wide range of AC frequencies from 20 Hz to 1 MHz, and over a temperature range from .500 C to 3000 C. The compact DLC capacitors offer at least a 50% decrease in weight and volume and a greater than 50% increase in temperature handling capability over equal value capacitors built with existing technologies. The DLC capacitors will be suitable for high temperature, high voltage, pulsed power and filter applications.

  5. EBS/C proton spectra from a virgin diamond crystal

    Science.gov (United States)

    Erich, M.; Kokkoris, M.; Fazinić, S.; Petrović, S.

    2016-08-01

    In the present work, elastic backscattering channeling spectra, EBS/C, of protons in a diamond crystal were experimentally and theoretically studied via a new computer simulation code. Proton incident energies for EBS/C spectra were in the energy range from 1.0 MeV to 1.9 MeV. The energy range was chosen in order to explore a distinct strong resonance of the 12C(p,p0)12C elastic scattering at 1737 keV. The computer simulation code applied for the fitting of the experimental spectra in the random mode was compared with the corresponding SIMNRA results. In the channeling mode, it assumes a Gompertz type sigmoidal dechanneling function, which has two fitting parameters, xc and k, the dechanneling range and rate, respectively. It also uses α, ratio of the channeling to random energy losses, as a fitting parameter. It was observed that xc increases, k decreases and α stays relatively constant with the proton incident energy. These observations confirm the physical interpretation of the fitting parameters. Also, they constitute the basics for the further development of the code for the quantification of induced amorphization and depth profiling of implanted ions.

  6. Hydrophobic transition in porous amorphous silica

    International Nuclear Information System (INIS)

    Realistic models of amorphous silica surfaces with different silanol densities are built using Monte Carlo annealing. Water-silica interfaces are characterized by their energy interaction maps, adsorption isotherms, self-diffusion coefficients, and Poiseuille flows. A hydrophilic to hydrophobic transition appears as the surface becomes purely siliceous. These results imply significant consequences for the description of surfaces. First, realistic models are required for amorphous silica interfaces. Second, experimental amorphous silica hydrophilicity is attributed to charged or uncharged defects, and not to amorphousness. In addition, auto irradiation in nuclear waste glass releases hydrogen atoms from silanol groups and can induce such a transition. (authors)

  7. Boron doped diamond electrode for the wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Quiroz Alfaro, Marco Antonio [Universidad de las Americas-Puebla, Santa Catarina Martir (Mexico). Escuela de Ciencias. Dept. de Quimica y Biologia; Ferro, Sergio; Martinez-Huitle, Carlos Alberto [University of Ferrara (Italy). Dept. of Chemistry; Vong, Yunny Meas [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., Quertaro (Mexico). Parque Tecnologico Queretaro Sanfandila

    2006-03-15

    Electrochemical studies of diamond were started more than fifteen years ago with the first paper on diamond electrochemistry published by Pleskov. After that, work started in Japan, United States of America, France, Switzerland and other countries. Over the last few years, the number of publications has increased considerably. Diamond films have been the subject of applications and fundamental research in electrochemistry, opening up a new branch known as the electrochemistry of diamond electrodes. Here, we first present a brief history and the process of diamond film synthesis. The principal objective of this work is to summarize the most important results in the electrochemical oxidation using diamond electrodes. (author)

  8. Research on a New Type of Diamond Saw Plate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With the developing of stone material, diamond saw pl ate is used widely, and in order to increase cutting efficiency and life-span o f diamond saw plate, there are a lot of research jobs of segment for diamond saw plate. Layered segment for diamond saw plate is to divide single segment into s everal cutting tools by its structure, then increases rock-cutting faces. For i mpregnated man-made diamond saw plate, the bonding strength of diamonds with ma trix material has great effect on its life and service....

  9. Plasma Deposition of Amorphous Silicon

    Science.gov (United States)

    Calcote, H. F.

    1982-01-01

    Strongly adhering films of silicon are deposited directly on such materials as Pyrex and Vycor (or equivalent materials) and aluminum by a non-equilibrium plasma jet. Amorphous silicon films are formed by decomposition of silicon tetrachloride or trichlorosilane in the plasma. Plasma-jet technique can also be used to deposit an adherent silicon film on aluminum from silane and to dope such films with phosphorus. Ability to deposit silicon films on such readily available, inexpensive substrates could eventually lead to lower cost photovoltaic cells.

  10. Recognition of diamond grains on surface of fine diamond grinding wheel

    Institute of Scientific and Technical Information of China (English)

    Fengwei HUO; Zhuji JIN; Renke KANG; Dongming GUO; Chun YANG

    2008-01-01

    The accurate evaluation of grinding wheel sur-face topography, which is necessary for the investigation of the grinding principle, optimism, modeling, and simu-lation of a grinding process, significantly depends on the accurate recognition of abrasive grains from the measured wheel surface. A detailed analysis of the grain size distri-bution characteristics and grain profile wavelength of the fine diamond grinding wheel used for ultra-precision grinding is presented. The requirements of the spatial sampling interval and sampling area for instruments to measure the surface topography of a diamond grinding wheel are discussed. To recognize diamond grains, digital filtering is used to eliminate the high frequency disturb-ance from the measured 3D digital surface of the grinding wheel, the geometric features of diamond grains are then extracted from the filtered 3D digital surface, and a method based on the grain profile frequency characteris-tics, diamond grain curvature, and distance between two adjacent diamond grains is proposed. A 3D surface pro-filer based on scanning white light interferometry is used to measure the 3D surface topography of a #3000 mesh resin bonded diamond grinding wheel, and the diamond grains are then recognized from the 3D digital surface. The experimental result shows that the proposed method is reasonable and effective.

  11. Inverse Conversion of CO2 into Diamond: Implications for the Origin of Natural Diamond

    Institute of Scientific and Technical Information of China (English)

    Q. W. Chen; Z. S. Lou; Y. T. Qian; Q. Wang

    2003-01-01

    @@ In prehistoric times carbon was known in the form of soot and charcoal. Ever since Antoine Lavoisier in 1792 and Smithson Tenet in 1797 demonstrated that diamond and graphite are allotropic forms of carbon[1], people have been interested in converting the relatively abundant carbon materials into much rarer diamond.

  12. EXELFS analysis of natural diamond and diamond films on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Moller, A.D. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (Mexico); Araiza, L.C.; Borja, M.A. [Universidad Nacional Autonoma de Mexico, Ensenada (Mexico)

    1996-12-31

    In this work, we report the EXELFS results obtained from a polycrystalline diamond film grown on smooth silicon substrates using the Hot Filament Chemical Vapor Deposition (HF-CVD) technique in a two-step deposition process published elsewhere. In order to evaluate the quality of the thin film obtained, these results were compared with results obtained from natural diamond.

  13. 76 FR 37684 - Airworthiness Directives; Diamond Aircraft Industries GmbH Model (Diamond) DA 40 Airplanes...

    Science.gov (United States)

    2011-06-28

    ... Procedures (44 FR 11034, February 26, 1979), (3) Will not affect intrastate aviation in Alaska, and (4) Will... Industries GmbH Model (Diamond) DA 40 Airplanes Equipped With Certain Cabin Air Conditioning Systems AGENCY... inspections of the Diamond Model DA 40 airplanes equipped with a VCS installed per Premier Aircraft...

  14. Non-Perturbative Flat Direction Decay

    CERN Document Server

    Basboll, A; Riva, F; West, S M; Basboll, Anders; Maybury, David; Riva, Francesco; West, Stephen M.

    2007-01-01

    We argue that supersymmetric flat direction vevs can decay non-perturbatively via preheating. Considering the case of a single flat direction, we explicitly calculate the scalar potential in the unitary gauge for a U(1) theory and show that the mass matrix for excitations around the flat direction has non-diagonal entries which vary with the phase of the flat direction vev. Furthermore, this mass matrix has 2 zero eigenvalues (associated with the excitations along the flat direction) whose eigenstates change with time. We show that these 2 light degrees of freedom are produced copiously in the non-perturbative decay of the flat direction vev. We also comment on the application of these results to the MSSM flat direction H_uL.

  15. Atmospheric Plasma Deposition of Diamond-like Carbon Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ladwig, Angela

    2008-01-23

    There is great demand for thin functional coatings in the semiconductor, optics, electronics, medical, automotive and aerospace industries [1-13]. As fabricated components become smaller and more complex, the properties of the materials’ surface take on greater importance. Thin coatings play a key role in tailoring surfaces to give them the desired hardness, wear resistance, chemical inertness, and electrical characteristics. Diamond-like carbon (DLC) coatings possess an array of desirable properties, including outstanding abrasion and wear resistance, chemical inertness, hardness, a low coefficient of friction and exceptionally high dielectric strength [14-22]. Diamond-like carbon is considered to be an amorphous material, containing a mixture of sp2 and sp3 bonded carbon. Based on the percentage of sp3 carbon and the hydrogen content, four different types of DLC coatings have been identified: tetrahedral carbon (ta-C), hydrogenated amorphous carbon (a-C:H) hard, a-C:H soft, and hydrogenated tetrahedral carbon (ta-C:H) [20,24,25]. Possessing the highest hardness of 80 GPa, ta-C possesses an sp3 carbon content of 80 to 88u%, and no appreciable hydrogen content whereas a-C:H soft possesses a hardness of less than 10 GPa, contains an sp3 carbon content of 60% and a hydrogen content between 30 to 50%. Methods used to deposit DLC coatings include ion beam deposition, cathodic arc spray, pulsed laser ablation, argon ion sputtering, and plasma-enhanced chemical vapor deposition [73-83]. Researchers contend that several advantages exist when depositing DLC coatings in a low-pressure environment. For example, ion beam processes are widely utilized since the ion bombardment is thought to promote denser sp3-bonded carbon networks. Other processes, such as sputtering, are better suited for coating large parts [29,30,44]. However, the deposition of DLC in a vacuum system has several disadvantages, including high equipment cost and restrictions on the size and shape of

  16. Polymeric amorphous carbon as p-type window within amorphous silicon solar cells

    NARCIS (Netherlands)

    Khan, R.U.A.; Silva, S.R.P.; Van Swaaij, R.A.C.M.M.

    2003-01-01

    Amorphous carbon (a-C) has been shown to be intrinsically p-type, and polymeric a-C (PAC) possesses a wide Tauc band gap of 2.6 eV. We have replaced the p-type amorphous silicon carbide layer of a standard amorphous silicon solar cell with an intrinsic ultrathin layer of PAC. The thickness of the p

  17. Flat lens for seismic waves

    CERN Document Server

    Brule, Stephane; Guenneau, Sebastien

    2016-01-01

    A prerequisite for achieving seismic invisibility is to demonstrate the ability of civil engineers to control seismic waves with artificially structured soils. We carry out large-scale field tests with a structured soil made of a grid consisting of cylindrical and vertical holes in the ground and a low frequency artificial source (< 10 Hz). This allows the identification of a distribution of energy inside the grid, which can be interpreted as the consequence of an effective negative refraction index. Such a flat lens reminiscent of what Veselago and Pendry envisioned for light opens avenues in seismic metamaterials to counteract the most devastating components of seismic signals.

  18. Abrasion of flat rotating shapes

    OpenAIRE

    Roth, A.E.; Marques, C. M.; Durian, D. J.

    2010-01-01

    We report on the erosion of flat linoleum "pebbles" under steady rotation in a slurry of abrasive grit. To quantify shape as a function of time, we develop a general method in which the pebble is photographed from multiple angles with respect to the grid of pixels in a digital camera. This reduces digitization noise, and allows the local curvature of the contour to be computed with a controllable degree of uncertainty. Several shape descriptors are then employed to follow the evolution of dif...

  19. Diamond Structure BeO, Designable Super-Hard Materials and Semiconductor Be-Diamond

    Institute of Scientific and Technical Information of China (English)

    XU Ji-An; SI Yan; SUN Zong-Qi; XIE Hong-Sen

    2009-01-01

    It is possible for Beryllium oxide (BeO) to have a cubic diamond structure although it normally has a hexagonal structure under ambient conditions. As the solution of cubic BN and diamond, the solid solution of cubic BeO-diamond or BeO-cBN-diamond can potentially be a kind of super-hard materials with designable hardness; and this solution has also been confirmed based on our preliminary first principles calculations. In addition, the nonstoichiometry of BeO could create a mobile carrier in the cubic BeO-C or BeO-BN-C system and it might lead to a new type of semiconductor Be-diamond.

  20. Plasma spraying method for forming diamond and diamond-like coatings

    Science.gov (United States)

    Holcombe, Cressie E.; Seals, Roland D.; Price, R. Eugene

    1997-01-01

    A method and composition for the deposition of a thick layer (10) of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition (12) including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate (20). The softened or molten composition (18) crystallizes on the substrate (20) to form a thick deposition layer (10) comprising at least a diamond or diamond-like material. The selected composition (12) includes at least glassy carbon as a primary constituent (14) and may include at least one secondary constituent (16). Preferably, the secondary constituents (16) are selected from the group consisting of at least diamond powder, boron carbide (B.sub.4 C) powder and mixtures thereof.

  1. Diamond growth on an array of seeds: The revolution of diamond production

    International Nuclear Information System (INIS)

    The consumption of saw diamond grits is a measure of a nation's constructional activities. The per capita consumption for the world is about 0.7 carats in 2004, and in China, about 3 carats. The manufacture of large saw diamond grits requires stringent control of pressure and temperature that only a few companies can master. However, with the implementation of a novel diamond seeding technology, large saw diamond grits of extreme quality can be mass produced. With this breakthrough, the prices of saw grit will plummet in the near future that should benefit the constructional industry worldwide. Moreover, electronic or thermal grade of large diamond crystals may be produced for applications in semiconductor, electronic or optical industry

  2. Laser surface treatment of amorphous metals

    Science.gov (United States)

    Katakam, Shravana K.

    Amorphous materials are used as soft magnetic materials and also as surface coatings to improve the surface properties. Furthermore, the nanocrystalline materials derived from their amorphous precursors show superior soft magnetic properties than amorphous counter parts for transformer core applications. In the present work, laser based processing of amorphous materials will be presented. Conventionally, the nanocrystalline materials are synthesized by furnace heat treatment of amorphous precursors. Fe-based amorphous/nanocrystalline materials due to their low cost and superior magnetic properties are the most widely used soft magnetic materials. However, achieving nanocrystalline microstructure in Fe-Si-B ternary system becomes very difficult owing its rapid growth rate at higher temperatures and sluggish diffusion at low temperature annealing. Hence, nanocrystallization in this system is achieved by using alloying additions (Cu and Nb) in the ternary Fe-Si-B system. Thus, increasing the cost and also resulting in reduction of saturation magnetization. laser processing technique is used to achieve extremely fine nanocrystalline microstructure in Fe-Si-B amorphous precursor. Microstructure-magnetic Property-laser processing co-relationship has been established for Fe-Si-B ternary system using analytical techniques. Laser processing improved the magnetic properties with significant increase in saturation magnetization and near zero coercivity values. Amorphous materials exhibit excellent corrosion resistance by virtue of their atomic structure. Fe-based amorphous materials are economical and due to their ease of processing are of potential interest to synthesize as coatings materials for wear and corrosion resistance applications. Fe-Cr-Mo-Y-C-B amorphous system was used to develop thick coatings on 4130 Steel substrate and the corrosion resistance of the amorphous coatings was improved. It is also shown that the mode of corrosion depends on the laser processing

  3. National construction, Denmark. Flat roofs

    Energy Technology Data Exchange (ETDEWEB)

    Rode, C.

    1995-04-01

    The Paris meeting of IEA Annex 24 (held in the spring of 1991) declared a set of typical building constructions, the Heat, Air and Moisture characteristics of which should be dealt with as part of the Annex work. Each type of construction was assigned to one or more countries as their National Construction, and it has been the responsibility of each country to prepare a report on what may be regarded as common knowledge in the country on the hygrothermal behaviour of their construction. This knowledge is in part due to experimental work carried out by research bodies in the countries, and due to experience form practice. This report has two main sections: Section 2 gives a general overview of the design of the most common variants of flat roofs and common knowledge reported for such roofs. Section 3 gives an account of research projects carried out in Denmark on flat roofs to analyze their hygrothermal performance. Whenever possible, an emphasis will be put on the hygrothermal consequences of thermally insulating such constructions. (EG) 19 refs.

  4. Critical components for diamond-based quantum coherent devices

    International Nuclear Information System (INIS)

    The necessary elements for practical devices exploiting quantum coherence in diamond materials are summarized, and progress towards their realization documented. A brief review of future prospects for diamond-based devices is also provided

  5. Diamond photonics platform enabled by femtosecond laser writing

    CERN Document Server

    Sotillo, Belen; Hadden, J P; Sakakura, Masaaki; Chiappini, Andrea; Fernandez, Toney Teddy; Longhi, Stefano; Jedrkiewicz, Ottavia; Shimotsuma, Yasuhiko; Criante, Luigino; Osellame, Roberto; Galzerano, Gianluca; Ferrari, Maurizio; Miura, Kiyotaka; Ramponi, Roberta; Barclay, Paul E; Eaton, Shane Michael

    2016-01-01

    We demonstrate the first buried optical waveguides in diamond using focused femtosecond laser pulses. The properties of nitrogen vacancy centers are preserved in the waveguides, making them promising for diamond-based magnetometers or quantum information systems.

  6. Architecting boron nanostructure on the diamond particle surface

    Energy Technology Data Exchange (ETDEWEB)

    Bai, H.; Dai, D.; Yu, J.H. [Key Laboratory of Marine New Materials and Application Technology, Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Zhenhai, Ningbo 315201 (China); Nishimura, K. [Key Laboratory of Marine New Materials and Application Technology, Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Zhenhai, Ningbo 315201 (China); Kochi FEL Co. Ltd., 3-1,Shinonome-cho, Kochi-shi 780-0805 (Japan); Sasaoka, S. [Kochi FEL Co. Ltd., 3-1,Shinonome-cho, Kochi-shi 780-0805 (Japan); Jiang, N., E-mail: jiangnan@nimte.ac.cn [Key Laboratory of Marine New Materials and Application Technology, Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Zhenhai, Ningbo 315201 (China)

    2014-02-15

    The present study provides an efficient approach for nano-functionalization of diamond powders. Boron nanostructure can be grown on diamond particle entire surface by a simple heat-treatment process. After treatment, various boron nanoforms were grown on the diamond particle surface at different processing temperature. High-density boron nanowires (BNWs) grow on the diamond particle entire surface at 1333 K, while nanopillars cover diamond powders when the heat treatment process is performed at 1393 K. The influence of the pretreatment temperature on the microstructure and thermal conductivity of Cu/diamond composites were investigated. Cu/diamond composites with high thermal conductivity of 670 W (m K){sup −1} was obtained, which was achieved by the formation of large number of nanowires and nanopillars on the diamond particle surface.

  7. n-Type diamond and method for producing same

    Science.gov (United States)

    Anderson, Richard J.

    2002-01-01

    A new n-type semiconducting diamond is disclosed, which is doped with n-type dopant atoms. Such diamond is advantageously formed by chemical vapor deposition from a source gas mixture comprising a carbon source compound for the diamond, and a volatile hot wire filament for the n-type impurity species, so that the n-type impurity atoms are doped in the diamond during its formation. A corresponding chemical vapor deposition method of forming the n-type semiconducting diamond is disclosed. The n-type semiconducting diamond of the invention may be usefully employed in the formation of diamond-based transistor devices comprising pn diamond junctions, and in other microelectronic device applications.

  8. Electron tunnelling into amorphous germanium and silicon.

    Science.gov (United States)

    Smith, C. W.; Clark, A. H.

    1972-01-01

    Measurements of tunnel conductance versus bias, capacitance versus bias, and internal photoemission were made in the systems aluminum-oxide-amorphous germanium and aluminium-oxide-amorphous silicon. A function was extracted which expresses the deviation of these systems from the aluminium-oxide-aluminium system.

  9. Band Gaps of an Amorphous Photonic Materials

    Institute of Scientific and Technical Information of China (English)

    WANG Yi-Quan; FENG Zhi-Fang; HU Xiao-Yong; CHENG Bing-Ying; ZHANG Dao-Zhong

    2004-01-01

    @@ A new kind of amorphous photonic materials is presented. Both the simulated and experimental results show that although the disorder of the whole dielectric structure is strong, the amorphous photonic materials have two photonic gaps. This confirms that the short-range order is an essential factor for the formation of the photonic gaps.

  10. Towards upconversion for amorphous silicon solar cells

    NARCIS (Netherlands)

    de Wild, J.; Meijerink, A.; Rath, J.K.; van Sark, W.G.J.H.M.; Schropp, R.E.I.

    2010-01-01

    Upconversion of subbandgap light of thin film single junction amorphous silicon solar cells may enhance their performance in the near infrared (NIR). In this paper we report on the application of the NIR–vis upconverter β-NaYF4:Yb3+(18%) Er3+(2%) at the back of an amorphous silicon solar cell in com

  11. Electron beam recrystallization of amorphous semiconductor materials

    Science.gov (United States)

    Evans, J. C., Jr.

    1968-01-01

    Nucleation and growth of crystalline films of silicon, germanium, and cadmium sulfide on substrates of plastic and glass were investigated. Amorphous films of germanium, silicon, and cadmium sulfide on amorphous substrates of glass and plastic were converted to the crystalline condition by electron bombardment.

  12. Shock Response of Diamond Crystals; TOPICAL

    International Nuclear Information System (INIS)

    Sandia is investigating the shock response of single-crystal diamond up to several Mbar pressure in a collaborative effort with the Institute for Shock Physics (ISP) at Washington State University (WSU). This is project intended to determine (i) the usefulness of diamond as a window material for high pressure velocity interferometry measurements, (ii) the maximum stress level at which diamond remains transparent in the visible region, (iii) if a two-wave structure can be detected and analyzed, and if so, (iv) the Hugoniot elastic limit (HEL) for the[110] orientation of diamond. To this end experiments have been designed and performed, scoping the shock response in diamond in the 2-3 Mbar pressure range using conventional velocity interferometry techniques (conventional VISAR diagnostic). In order to perform more detailed and highly resolved measurements, an improved line-imaging VISAR has been developed and experiments using this technique have been designed. Prior to performing these more detailed experiments, additional scoping experiments are being performed using conventional techniques at WSU to refine the experimental design

  13. Comparative evaluation of CVD diamond technologies

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, T.R. [General Electric Corporate Research & Development Center, Schenectady, NY (United States)

    1993-01-01

    Chemical vapor deposition (CVD) of diamonds occurs from hydrogen-hydrocarbon gas mixtures in the presence of atomic hydrogen at subatmospheric pressures. Most CVD methods are based on different means of generating and transporting atomic hydrogen in a particular system. Evaluation of these different techniques involves their capital costs, material costs, energy costs, labor costs and the type and quality of diamond that they produce. Currently, there is no universal agreement on which is the best technique and technique selection has been largely driven by the professional background of the user as well as the particular application of interest. This article discusses the criteria for evaluating a process for low-pressure deposition of diamond. Next, a brief history of low-pressure diamond synthesis is reviewed. Several specific processes are addressed, including the hot filament process, hot filament electron-assisted chemical vapor deposition, and plasma generation of atomic hydrogen by glow discharge, microwave discharge, low pressure radio frequency discharge, high pressure DC discharge, high pressure microwave discharge jets, high pressure RF discharge, and high and low pressure flames. Other types of diamond deposition methods are also evaluated. 101 refs., 15 figs.

  14. Solid-state diffusion in amorphous zirconolite

    Science.gov (United States)

    Yang, C.; Zarkadoula, E.; Dove, M. T.; Todorov, I. T.; Geisler, T.; Brazhkin, V. V.; Trachenko, K.

    2014-11-01

    We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also find that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.

  15. Neutron irradiation induced amorphization of silicon carbide

    International Nuclear Information System (INIS)

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 x 1025 n/m2. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density (-10.8%), elastic modulus as measured using a nanoindentation technique (-45%), hardness as measured by nanoindentation (-45%), and standard Vickers hardness (-24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C

  16. Neutron irradiation induced amorphization of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Hay, J.C. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  17. Solid-state diffusion in amorphous zirconolite

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.; Dove, M. T.; Trachenko, K. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Zarkadoula, E. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6138 (United States); Todorov, I. T. [STFC Daresbury Laboratory, Warrington WA4 1EP (United Kingdom); Geisler, T. [Steinmann-Institut für Geologie, Mineralogie und Paläontologie, University of Bonn, D-53115 Bonn (Germany); Brazhkin, V. V. [Institute for High Pressure Physics, RAS, 142190 Moscow (Russian Federation)

    2014-11-14

    We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also find that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.

  18. Alluvial Diamond Resource Potential and Production Capacity Assessment of Ghana

    Science.gov (United States)

    Chirico, Peter G.; Malpeli, Katherine C.; Anum, Solomon; Phillips, Emily C.

    2010-01-01

    In May of 2000, a meeting was convened in Kimberley, South Africa, and attended by representatives of the diamond industry and leaders of African governments to develop a certification process intended to assure that rough, exported diamonds were free of conflictual concerns. This meeting was supported later in 2000 by the United Nations in a resolution adopted by the General Assembly. By 2002, the Kimberley Process Certification Scheme (KPCS) was ratified and signed by both diamond-producing and diamond-importing countries. Over 70 countries were included as members at the end of 2007. To prevent trade in 'conflict' diamonds while protecting legitimate trade, the KPCS requires that each country set up an internal system of controls to prevent conflict diamonds from entering any imported or exported shipments of rough diamonds. Every diamond or diamond shipment must be accompanied by a Kimberley Process (KP) certificate and be contained in tamper-proof packaging. The objective of this study was to assess the alluvial diamond resource endowment and current production capacity of the alluvial diamond-mining sector in Ghana. A modified volume and grade methodology was used to estimate the remaining diamond reserves within the Birim and Bonsa diamond fields. The production capacity of the sector was estimated using a formulaic expression of the number of workers reported in the sector, their productivity, and the average grade of deposits mined. This study estimates that there are approximately 91,600,000 carats of alluvial diamonds remaining in both the Birim and Bonsa diamond fields: 89,000,000 carats in the Birim and 2,600,000 carats in the Bonsa. Production capacity is calculated to be 765,000 carats per year, based on the formula used and available data on the number of workers and worker productivity. Annual production is highly dependent on the international diamond market and prices, the numbers of seasonal workers actively mining in the sector, and

  19. Diamonds: Cultural Representations and Transformations of a "Girl's Best Friend"

    OpenAIRE

    Whiteley, Bryn Elizabeth

    2016-01-01

    The great success of the advertising industry in the 1950s created a diamond culture where diamonds are continuously associated with images of love and devotion. With all of the diamond's positive associations, no one could have imagined that such a precious jewel could have negative connotations. Yet in the 1990s, the label "blood diamond" emerged and became widely correlated with torture, rape, child labor, and environmental destruction. My three- manuscript dissertation covers the followin...

  20. Study of Electron Transport and Amplification in Diamond

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Erik M.; Ben-Zvi, Ilan

    2013-03-31

    As a successful completion of this award, my group has demonstrated world-leading electron gain from diamond for use in a diamond-amplified photocathode. Also, using high-resolution photoemission measurements we were able to uncover exciting new physics of the electron emission mechanisms from hydrogen terminated diamond. Our work, through the continued support of HEP, has resulted in a greater understanding of the diamond material science, including current limits, charge transport modeling, and spatial uniformity.

  1. Effect of pre-treatment of the substrate surface by energetic C+ ion bombardment on structure and nano-tribological characteristics of ultra-thin tetrahedral amorphous carbon (ta-C) protective coatings

    Science.gov (United States)

    Rismani, E.; Sinha, S. K.; Tripathy, S.; Yang, H.; Bhatia, C. S.

    2011-03-01

    Depositing an ultra-thin tetrahedral amorphous carbon (ta-C) protective coating on the surface of the recording heads in magnetic tape drives can improve the tribological problems at the head/tape interface. In this work the effect of pre-treatment of the surface of AlTiC substrate (main bearing surface of head in contact with tape) by C+ ions of moderate energy (smaller than 400 eV) on the structural and tribo-mechanical behaviours of the coated surfaces is studied. Sample preparation consisted of two separate stages of surface pre-treatment and deposition of the protective film, and was done by means of filtered cathodic vacuum arc. Structure of the ta-C film and its interface with the substrate were studied by transmission electron microscopy and time-of-flight secondary ion mass spectrometry depth profiling. The results revealed the formation of a broader, dense atomically mixed layer at the ta-C film-substrate interface of the pre-treated samples comparing with that of the samples without pre-treatment. Chemical characterization of thin diamond-like carbon coatings was conducted by means of x-ray photoelectron spectroscopy and the surface pre-treatment was found to have a remarkable effect on increasing the sp3 hybridization fraction in the ta-C overcoat. Nano-tribological properties of the treated surfaces were examined using ball-on-flat wear test at very low load (20 mN). There was a good correlation between the surface and structure characteristics of the film, and the tribological results and the pre-treated surfaces presented a very low coefficient of friction and higher wear life. The experimental results demonstrate the effectiveness of bombardment of the surface with C+ ions of moderate ion energy to improve the structural and tribo-mechanical properties of the protective ta-C films on the magnetic head substrate material.

  2. Effect of pre-treatment of the substrate surface by energetic C+ ion bombardment on structure and nano-tribological characteristics of ultra-thin tetrahedral amorphous carbon (ta-C) protective coatings

    International Nuclear Information System (INIS)

    Depositing an ultra-thin tetrahedral amorphous carbon (ta-C) protective coating on the surface of the recording heads in magnetic tape drives can improve the tribological problems at the head/tape interface. In this work the effect of pre-treatment of the surface of AlTiC substrate (main bearing surface of head in contact with tape) by C+ ions of moderate energy (smaller than 400 eV) on the structural and tribo-mechanical behaviours of the coated surfaces is studied. Sample preparation consisted of two separate stages of surface pre-treatment and deposition of the protective film, and was done by means of filtered cathodic vacuum arc. Structure of the ta-C film and its interface with the substrate were studied by transmission electron microscopy and time-of-flight secondary ion mass spectrometry depth profiling. The results revealed the formation of a broader, dense atomically mixed layer at the ta-C film-substrate interface of the pre-treated samples comparing with that of the samples without pre-treatment. Chemical characterization of thin diamond-like carbon coatings was conducted by means of x-ray photoelectron spectroscopy and the surface pre-treatment was found to have a remarkable effect on increasing the sp3 hybridization fraction in the ta-C overcoat. Nano-tribological properties of the treated surfaces were examined using ball-on-flat wear test at very low load (20 mN). There was a good correlation between the surface and structure characteristics of the film, and the tribological results and the pre-treated surfaces presented a very low coefficient of friction and higher wear life. The experimental results demonstrate the effectiveness of bombardment of the surface with C+ ions of moderate ion energy to improve the structural and tribo-mechanical properties of the protective ta-C films on the magnetic head substrate material.

  3. Effect of pre-treatment of the substrate surface by energetic C{sup +} ion bombardment on structure and nano-tribological characteristics of ultra-thin tetrahedral amorphous carbon (ta-C) protective coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rismani, E; Sinha, S K [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Block EA, 07-08, Singapore 117576 (Singapore); Tripathy, S [Institute of Material Research and Engineering (IMRE), 3 Research Link, Singapore 117602 (Singapore); Yang, H; Bhatia, C S, E-mail: elebcs@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Block E4, Level 5, Room 45, Singapore 117576 (Singapore)

    2011-03-23

    Depositing an ultra-thin tetrahedral amorphous carbon (ta-C) protective coating on the surface of the recording heads in magnetic tape drives can improve the tribological problems at the head/tape interface. In this work the effect of pre-treatment of the surface of AlTiC substrate (main bearing surface of head in contact with tape) by C{sup +} ions of moderate energy (smaller than 400 eV) on the structural and tribo-mechanical behaviours of the coated surfaces is studied. Sample preparation consisted of two separate stages of surface pre-treatment and deposition of the protective film, and was done by means of filtered cathodic vacuum arc. Structure of the ta-C film and its interface with the substrate were studied by transmission electron microscopy and time-of-flight secondary ion mass spectrometry depth profiling. The results revealed the formation of a broader, dense atomically mixed layer at the ta-C film-substrate interface of the pre-treated samples comparing with that of the samples without pre-treatment. Chemical characterization of thin diamond-like carbon coatings was conducted by means of x-ray photoelectron spectroscopy and the surface pre-treatment was found to have a remarkable effect on increasing the sp{sup 3} hybridization fraction in the ta-C overcoat. Nano-tribological properties of the treated surfaces were examined using ball-on-flat wear test at very low load (20 mN). There was a good correlation between the surface and structure characteristics of the film, and the tribological results and the pre-treated surfaces presented a very low coefficient of friction and higher wear life. The experimental results demonstrate the effectiveness of bombardment of the surface with C{sup +} ions of moderate ion energy to improve the structural and tribo-mechanical properties of the protective ta-C films on the magnetic head substrate material.

  4. The application of CVD diamond films in cyclic voltammetry

    Directory of Open Access Journals (Sweden)

    R. Torz-Piotrowska

    2009-12-01

    Full Text Available Purpose: The main purpose of these studies was to show the applicability of CVD (Chemical Vapour Deposition diamond layer in electrochemistry and to work out the technology of manufacturing diamond electrodes.Design/methodology/approach: The diamond films were deposited on tungsten substrate by HF CVD technique, and then, their quality was checked by Raman spectroscopy. It was shown, using Cyclic Voltammetry (CV measurements, that un-doped diamond films are chemically stable in aqueous solutions.Findings: The results of cyclic voltammetry measurements show that diamond electrode on tungsten substrate is electrochemically stable in aqueous solutions over a wide potential range (-3000 mV to 2000 mV. The Raman spectra confirmed the good quality of obtained diamond layer.Research limitations/implications: In particular, it was shown that diamond electrode showed a wide potential window, very low background current, chemical and physical stability.Practical implications: Presented results showed that CVD diamond films can find application in production of diamond electrodes for electrochemical application. The sensitivity of CVD diamond layers to the electroactive species indicates on possibility of application of this material for construction of chemical and biological sensors.Originality/value: The characteristics of diamond electrodes and the resistivity of this material to the chemical attack indicate that it can be employed in a number of electrochemical applications and additionally it can work in harsh environment. The HF CVD diamond layer seems to be the new, promising and versatile material for electrochemical applications.

  5. Fast bolometer built in an artificial HPHT diamond matrix

    International Nuclear Information System (INIS)

    A fast bolometer built in a plate of diamond grown at high pressure by the gradient growth method is developed and fabricated. The parameters of this structure are compared with these of the structures investigated earlier, which were fabricated based on chemical vapour deposited (CVD) diamond and natural type IIa diamond.

  6. 21 CFR 872.4535 - Dental diamond instrument.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental diamond instrument. 872.4535 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4535 Dental diamond instrument. (a) Identification. A dental diamond instrument is an abrasive device intended to smooth tooth surfaces during...

  7. 9 CFR 311.6 - Diamond-skin disease.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Diamond-skin disease. 311.6 Section... CERTIFICATION DISPOSAL OF DISEASED OR OTHERWISE ADULTERATED CARCASSES AND PARTS § 311.6 Diamond-skin disease. Carcasses of hogs affected with diamond-skin disease when localized and not associated with systemic...

  8. Locomotion of Amorphous Surface Robots

    Science.gov (United States)

    Bradley, Arthur T. (Inventor)

    2016-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  9. Electrical Characterization of Diamond/Boron Doped Diamond Nanostructures for Use in Harsh Environment Applications

    Science.gov (United States)

    Gołuński, Ł.; Zwolski, K.; Płotka, P.

    2016-01-01

    The polycrystalline boron doped diamond (BDD) shows stable electrical properties and high tolerance for harsh environments (e.g. high temperature or aggressive chemical compounds) comparing to other materials used in semiconductor devices. In this study authors have designed electronic devices fabricated from non-intentionally (NiD) films and highly boron doped diamond structures. Presented semiconductor devices consist of highly boron doped structures grown on NiD diamond films. Fabricated structures were analyzed by electrical measurements for use in harsh environment applications. Moreover, the boron-doping level and influence of oxygen content on chemical composition of diamond films were particularly investigated. Microwave Plasma Enhanced Chemical Vapour Deposition (MW PE CVD) has been used for thin diamond films growth. Non-intentionally doped diamond (0 ppm [B]/[C]) films have been deposited on the Si/SiO2 wafers with different content of carbon, boron and oxygen in the gas phase. Then, the shape of the highly doped diamond structures were obtained by pyrolysis of SiO2 on NiD film and standard lithography process. The highly doped structures were obtained for different growth time and [B]/[C] ratio (4000 - 10000 ppm). The narrowest distance between two highly doped structures was 5pm. The standard Ti/Au ohmic contacts were deposited using physical vapour deposition for electrical characterization of NiD/BDD devices. The influence of diffusion boron from highly doped diamond into non-doped/low-doped diamond film was investigated. Surface morphology of designed structures was analyzed by Scanning Electron Microscope and optical microscope. The resistivity of the NiD and film was studied using four-point probe measurements also DC studies were done.

  10. "Flat-Fish" Vacuum Chamber

    CERN Multimedia

    1978-01-01

    The picture shows a "Flat-Fish" vacuum chamber being prepared in the ISR workshop for testing prior to installation in the Split Field Magnet (SFM) at intersection I4. The two shells of each part were hydroformed from 0.15 mm thick inconel 718 sheet (with end parts in inconel 600 for easier manual welding to the arms) and welded toghether with two strips which were attached by means of thin stainless steel sheets to the Split Field Magnet poles in order to take the vertical component of the atmospheric pressure force. This was the thinnest vacuum chamber ever made for the ISR. Inconel material was chosen for its high elastic modulus and strenght at chamber bake-out temperature. In this picture the thin sheets transferring the vertical component of the atmosferic pressure force are attached to a support frame for testing. See also 7712182, 7712179.

  11. Representability of Hom Implies Flatness

    Indian Academy of Sciences (India)

    Nitin Nitsure

    2004-02-01

    Let be a projective scheme over a noetherian base scheme , and let $\\mathcal{F}$ be a coherent sheaf on . For any coherent sheaf $\\mathcal{E}$ on , consider the set-valued contravariant functor $\\hom_{(\\mathcal{E},\\mathcal{F})}$ on -schemes, defined by $\\hom_{(\\mathcal{E},\\mathcal{F})}(T)=\\mathrm{Hom}(\\mathcal{E}_T,\\mathcal{F}_T)$ where $\\mathcal{E}_T$ and $\\mathcal{F}_T$ are the pull-backs of $\\mathcal{E}$ and $\\mathcal{F}$ to $X_T=X×_s T$. A basic result of Grothendieck ([EGA], III 7.7.9) says that if $\\mathcal{F}$ is flat over then $\\hom_{(\\mathcal{E},\\mathcal{F})}$ is representable for all $\\mathcal{E}$. We prove the converse of the above, in fact, we show that if is a relatively ample line bundle on over such that the functor $\\hom_{(L^{-n},\\mathcal{F})}$ is representable for infinitely many positive integers , then $\\mathcal{F}$ is flat over . As a corollary, taking $X=S$, it follows that if $\\mathcal{F}$ is a coherent sheaf on then the functor $T\\mapsto H^0(T,\\mathcal{F}_T)$ on the category of -schemes is representable if and only if $\\mathcal{F}$ is locally free on . This answers a question posed by Angelo Vistoli. The techniques we use involve the proof of flattening stratification, together with the methods used in proving the author's earlier result (see [N1]) that the automorphism group functor of a coherent sheaf on is representable if and only if the sheaf is locally free.

  12. Flat laminated microbial mat communities

    Science.gov (United States)

    Franks, Jonathan; Stolz, John F.

    2009-10-01

    Flat laminated microbial mats are complex microbial ecosystems that inhabit a wide range of environments (e.g., caves, iron springs, thermal springs and pools, salt marshes, hypersaline ponds and lagoons, methane and petroleum seeps, sea mounts, deep sea vents, arctic dry valleys). Their community structure is defined by physical (e.g., light quantity and quality, temperature, density and pressure) and chemical (e.g., oxygen, oxidation/reduction potential, salinity, pH, available electron acceptors and donors, chemical species) parameters as well as species interactions. The main primary producers may be photoautotrophs (e.g., cyanobacteria, purple phototrophs, green phototrophs) or chemolithoautophs (e.g., colorless sulfur oxidizing bacteria). Anaerobic phototrophy may predominate in organic rich environments that support high rates of respiration. These communities are dynamic systems exhibiting both spatial and temporal heterogeneity. They are characterized by steep gradients with microenvironments on the submillimeter scale. Diel oscillations in the physical-chemical profile (e.g., oxygen, hydrogen sulfide, pH) and species distribution are typical for phototroph-dominated communities. Flat laminated microbial mats are often sites of robust biogeochemical cycling. In addition to well-established modes of metabolism for phototrophy (oxygenic and non-oxygenic), respiration (both aerobic and anaerobic), and fermentation, novel energetic pathways have been discovered (e.g., nitrate reduction couple to the oxidation of ammonia, sulfur, or arsenite). The application of culture-independent techniques (e.g., 16S rRNA clonal libraries, metagenomics), continue to expand our understanding of species composition and metabolic functions of these complex ecosystems.

  13. Conductivity and superconductivity in heavily vacant diamond

    Directory of Open Access Journals (Sweden)

    S A Jafari

    2009-08-01

    Full Text Available   Motivated by the idea of impurity band superconductivity in heavily Boron doped diamond, we investigate the doping of various elements into diamond to address the question, which impurity band can offer a better DOS at the Fermi level. Surprisingly, we find that the vacancy does the best job in producing the largest DOS at the Fermi surface. To investigate the effect of disorder in Anderson localization of the resulting impurity band, we use a simple tight-binding model. Our preliminary study based on the kernel polynomial method shows that the impurity band is already localized at the concentration of 10-3. Around the vacancy concentration of 0.006 the whole spectrum of diamond becomes localized and quantum percolation takes place. Therefore to achieve conducting bands at concentrations on the scale of 5-10 percent, one needs to introduce correlations such as hopping among the vacancies .

  14. Diamond-based 1-D imaging arrays

    Energy Technology Data Exchange (ETDEWEB)

    Lansley, S.P.; Williams, O.A.; Ye, H. [Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Rizvi, N.; Whitfield, M.D.; Jackman, R.B. [Exitech Limited, Hanborough Park, Long Hanborough, Oxford OX8 8LH (United Kingdom); McKeag, R.D. [Centronic Ltd., Centronic House, King Henry' s Drive, New Addington, Croydon CR9 OBG (United Kingdom)

    2002-10-16

    Diamond has shown great promise for the fabrication of high sensitivity, low dark current, fast and visible-blind deep UV photodetectors. In addition to careful choice of substrate material, defect passivation treatments applied to the diamond after growth have been found to considerably enhance the detector characteristics achieved. In this paper we report on the first purposefully designed 1-D CVD diamond imaging array for the detection of nanosecond 193 nm excimer laser pulses using this approach. It is shown to perform extremely well, giving less than 2% pixel-to-pixel variation in signal response, and is fast enough to avoid any sign of charge build up during prolonged operation. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  15. CVD diamond detectors for ionizing radiation

    CERN Document Server

    Friedl, M; Bauer, C; Berfermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernegger, H; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Tapper, R J; Tesarek, R J; Thomson, G B; Trawick, M L; Trischuk, W; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; Ziock, H J; Zöller, M

    1999-01-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2*4 cm/sup 2/ have been grown and refined for better charge collection properties, which are measured with a beta source or in a test beam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5*10/sup 15/ cm/sup -2/ to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics. (16 refs).

  16. Recent results with CVD diamond trackers

    International Nuclear Information System (INIS)

    We present recent results on the use of Chemical Vapor Deposition (CVD) diamond microstrip detectors for charged particle tracking. A series of detectors was fabricated using 1 x 1 cm2 diamonds. Good signal-to-noise ratios were observed using both slow and fast readout electronics. For slow readout electronics, 2 μs shaping time, the most probable signal-to-noise ratio was 50 to 1. For fast readout electronics, 25 ns peaking time, the most probable signal-to-noise ratio was 7 to 1. Using the first 2 x 4 cm2 diamond from a production CVD reactor with slow readout electronics, the most probable signal-to-noise ratio was 23 to 1. The spatial resolution achieved for the detectors was consistent with the digital resolution expected from the detector pitch

  17. Recent results with CVD diamond trackers

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; White, C.; Ziock, H.; Zoeller, M

    1999-08-01

    We present recent results on the use of Chemical Vapor Deposition (CVD) diamond microstrip detectors for charged particle tracking. A series of detectors was fabricated using 1 x 1 cm{sup 2} diamonds. Good signal-to-noise ratios were observed using both slow and fast readout electronics. For slow readout electronics, 2 {mu}s shaping time, the most probable signal-to-noise ratio was 50 to 1. For fast readout electronics, 25 ns peaking time, the most probable signal-to-noise ratio was 7 to 1. Using the first 2 x 4 cm{sup 2} diamond from a production CVD reactor with slow readout electronics, the most probable signal-to-noise ratio was 23 to 1. The spatial resolution achieved for the detectors was consistent with the digital resolution expected from the detector pitch.

  18. CVD diamond detectors for ionizing radiation

    International Nuclear Information System (INIS)

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2x4 cm2 have been grown and refined for better charge collection properties, which are measured with a β source or in a test beam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5x1015 cm-2 to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics. (author)

  19. CVD diamond detectors for ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Friedl, M. E-mail: markus.friedl@cern.ch; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R.J.; Tesarek, R.; Thomson, G.B.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M

    1999-10-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2x4 cm{sup 2} have been grown and refined for better charge collection properties, which are measured with a {beta} source or in a test beam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5x10{sup 15} cm{sup -2} to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics. (author)

  20. Recent results with CVD diamond trackers

    CERN Document Server

    Adam, W; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Runólfsson, O; Russ, J; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Trawick, M L; Trischuk, W; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; White, C; Ziock, H J; Zöller, M

    1999-01-01

    We present recent results on the use of chemical vapor deposition (CVD) diamond microstrip detectors for charged particle tracking. A series of detectors was fabricated using 1*1 cm/sup 2/ diamonds. Good signal-to-noise ratios were observed using both slow and fast readout electronics. For slow readout electronics, 2 mu s shaping time, the most probable signal-to-noise ratio was 50 to 1. For fast readout electronics, 25 ns peaking time, the most probable signal-to-noise ratio was 7 to 1. Using the first 2*4 cm/sup 2/ diamond from a production CVD reactor with slow readout electronics, the most probable signal-to-noise ratio was 23 to 1. The spatial resolution achieved for the detectors was consistent with the digital resolution expected from the detector pitch. (6 refs).

  1. Morphological analysis and cell viability on diamond-like carbon films containing nanocrystalline diamond particles

    Science.gov (United States)

    Almeida, C. N.; Ramos, B. C.; Da-Silva, N. S.; Pacheco-Soares, C.; Trava-Airoldi, V. J.; Lobo, A. O.; Marciano, F. R.

    2013-06-01

    The coating of orthopedic prostheses with diamond like-carbon (DLC) has been actively studied in the past years, in order to improve mechanical, tribological properties and promote the material's biocompatibility. Recently, the incorporation of crystalline diamond nanoparticles into the DLC film has shown effective in combating electrochemical corrosion in acidic medias. This study examines the material's biocompatibility through testing by LDH release and MTT, on in vitro fibroblasts; using different concentrations of diamond nanoparticles incorporated into the DLC film. Propounding its potential use in orthopedics in order to increase the corrosion resistance of prostheses and improve their relationship with the biological environment.

  2. Flat conductor cable design, manufacture, and installation

    Science.gov (United States)

    Angele, W.; Hankins, J. D.

    1973-01-01

    Pertinent information for hardware selection, design, manufacture, and quality control necessary for flat conductor cable interconnecting harness application is presented. Comparisons are made between round wire cable and flat conductor cable. The flat conductor cable interconnecting harness systems show major cost, weight, and space savings, plus increased system performance and reliability. The design application section includes electrical characteristics, harness design and development, and a full treatise on EMC considerations. Manufacturing and quality control sections pertain primarily to the developed conductor-contact connector system and special flat conductor cable to round wire cable transitions.

  3. Flat-band engineering of mobility edges

    Science.gov (United States)

    Danieli, Carlo; Bodyfelt, Joshua D.; Flach, Sergej

    2015-06-01

    Properly modulated flat-band lattices have a divergent density of states at the flat-band energy. Quasiperiodic modulations are known to host a metal-insulator transition already in one space dimension. Their embedding into flat-band geometries consequently allows for a precise engineering and fine tuning of mobility edges. We obtain analytic expressions for singular mobility edges for two flat-band lattice examples. In particular, we engineer cases with arbitrarily small energy separations of mobility edge, zeroes, and divergencies.

  4. Particle and radiation detectors based on diamond

    Energy Technology Data Exchange (ETDEWEB)

    Bergonzo, P.; Tromson, D.; Mer, C.; Guizard, B.; Foulon, F.; Brambilla, A. [LIST/DIMRI/SIAR, CEA/Saclay, Gif-sur-Yvette (France)

    2001-05-16

    CVD diamond is a remarkable material for the fabrication of particle and photon radiation detectors. The improvement of the electronic properties of the material has been under intensive investigations and led to the development of a few applications that are addressing specific industrial needs. In particular, we have used diamond layers for industrial applications where it exhibits attractive characteristics as compared with other materials: e.g., radiation and corrosion hardness for {alpha}-counters or high gamma-meters at high fluxes; high transparency to low energy X-rays for synchrotron beam line monitoring devices, etc. These specific properties can motivate the use of diamond even though the detection properties remain relatively poor. Indeed, one inherent problem with diamond is the presence of defect levels that are altering the detection characteristics. These are observed in all CVD materials but also in very high quality natural diamonds. They result in unstable responses and carrier losses. Also, it has been observed that high sensitivities may result from the progressive filling of deep levels, e.g. pumping effects, with a detrimental effect on the stability and the response time. Also, the polycrystalline nature is somewhat detrimental as it induces significant non-uniformities of the device response with respect to the position of interaction. We have investigated these features by imaging the response of CVD diamond using a micrometer size focused X-ray beam. The comparison with the grain structure showed that it has a strong influence on the field distribution. We present here recent developments studied at CEA in Saclay for the optimisation of the material with respect to the specific requirements of several applications. They include radiation hard counters; X-ray intensity, shape and beam position monitors, solar blind photodetectors, and high dose rate gamma-meters. (orig.)

  5. Spatial-Temporal Oscillations of Relaxation and Pre-Turbulent Type in Ideal Confined Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    I.B. Krasnyuk

    2013-10-01

    Full Text Available The conditions for oscillating distributions at surface-induced crystallization of a quasi-binary volcanic melt, as a superposition of two travelling waves, are found. It is shown that change in the cooling conditions on the surfaces of flat walls which confine the melt leads to the change in the surface structure, i.e. surface amorphous-crystal waves penetrating the amorphous melt and initiating different types of pulse oscillations in the bulk in turn. For ideal melts, when bulk perturbations can be neglected, the solution tends to an asymptotically periodic piecewise-constant function. In the case of non-ideal melts, competition between surface and volume fluctuations arises and solution tends to an asymptotically quasi-periodic function.

  6. Growth of diamond layers on diamond and cBN seeds using iron carbide under high pressure and high temperature

    CERN Document Server

    Li Xun; Hao Zhao Yin; LiuPeng; Li Musen; Zou Guang Tian; Cheng Shu Yu; Cheng Kai Jia

    2002-01-01

    Iron carbide without any graphite was studied under high pressure and high temperature (HPHT); diamond layers were obtained both on diamond and on cubic boron nitride seeds at 5.5 GPa and 1700-1750 K. The results showed that transition-metal carbide was the main intermediate in the course of the transformation from graphite to diamond under HPHT.

  7. Arsenic-bound excitons in diamond

    Science.gov (United States)

    Barjon, J.; Jomard, F.; Morata, S.

    2014-01-01

    A set of new excitonic recombinations is observed in arsenic-implanted diamond. It is composed of two groups of emissions at 5.355/5.361 eV and at 5.215/5.220/5.227 eV. They are respectively attributed to the no-phonon and transverse-optical phonon-assisted recombinations of excitons bound to neutral arsenic donors. From the Haynes rule, an ionization energy of 0.41 eV is deduced for arsenic in diamond, which shows that arsenic is a shallower donor than phosphorus (0.6 eV), in agreement with theory.

  8. FRICTION COEFFICIENT OF DIAMOND WIRE SAW

    Directory of Open Access Journals (Sweden)

    Siniša Dunda

    1998-12-01

    Full Text Available In order to estimate the diamond wire saw upon quarrying of dimension stone, it is necessary to know the value of a friction coefficient on the driving pulley of the saw. Therefore the numerical value of the friction coefficient between diamond wire and coating of a driving pulley was determined in experimental way. The experiments were conducted under different working conditions. The resulting average value of the friction coefficient upon working in wet and muddy conditions amounted to µ = 0,32.

  9. Behaviour of muonium in synthetic diamond

    OpenAIRE

    Mamedov, T. N.; Blank, V. D.; Gorelkin, V. N.; Gritsaj, K. I.; Kuznetsov, M. S.; Nosukhin, S. A.; Ralchenko, V. G.; Stoykov, A. V.; Scheuermann, R.; Terentiev, S. A.

    2010-01-01

    The probabilities of finding the muon in various states in synthetic single crystal and polycrystalline diamond were studied. In the IIa-type single-crystal sample at 150 K the contributions of the diamagnetic muon, `normal', and `anomalous' muonium were observed to be 1.5 %, 57 % and 8.1 %, respectively. The missing fraction of muon polarization was 33.4 %, which is approximately two times smaller than in the Ia-type natural diamond, and two or three times greater than in the IIa- and IIb-ty...

  10. Wear Test Of A Preselected Diamond Tool

    Science.gov (United States)

    Hurt, H. H.; Showman, G. A.

    1987-02-01

    An investigation was conducted to develop a set of criteria that would allow the typical user to preselect a diamond-turning tool for the most critical optical finishing operations. A wide variety of tools used in this study had their edge quality evaluated by Nomarski and scanning electron microscopy methods, and the diamond crystal orientation and quality were determined by Laue x-ray methods. One of the tools was subjected to a long-term machining test to evaluate the tool wear process and to correlate the wear observed with changes in the scattering properties of the surface.

  11. Structure and characteristics of Si-coated diamond grits

    Institute of Scientific and Technical Information of China (English)

    Lu Jing; Wang Yanhui; Qi Xuehai; Huang Hao; Zang Jianbing

    2005-01-01

    During sintering process of diamond tools, metal bond containing graphitizing elements such as Fe, Co, Ni seriously erodes diamond grits, which reduces the strength of the diamond grits. In this paper, silicon films were coated on the surface of diamond grits by means of atomic layer deposition (ALD) from gaseous SiH4. Fourier transform infrared (FTIR) spectra, X-ray diffraction (XRD) and Atomic force microscopy (AFM) were utilized to analyze the structure and the morphology of Si-coated diamond respectively. The results suggested thatthe film was cubic-phase polycrystalline silicon and the surface of the film was smooth and continuous. According with the adsorption mechanism of SiH4 on the surface of diamond grits, the stretching and bending modes of SiH2 and SiH3 both existed. Differential thermal analysis (DTA) was used to compare the thermal stability of coated diamond and uncoated diamond. Owning to the protection of silicon films the starting oxidation temperature of coated diamond reached as high as 920℃, which was much higher than that of uncoated diamond. Bending experiment was conducted to measure the bending strength of Fe-Cu-Sn-Ni based metal bond diamond blade. In comparison with uncoated diamond, the bending strength of Sicoated diamond blade increased by 16.2%, scan electron microscope (SEM) observation of the blade fracture revealed that the deposited silicon films not only protected the diamond grits from erosion during sintering process but also realized the strong binding between the diamond grits and the bond.

  12. Quantification of surface amorphous content using dispersive surface energy: the concept of effective amorphous surface area.

    Science.gov (United States)

    Brum, Jeffrey; Burnett, Daniel

    2011-09-01

    We investigate the use of dispersive surface energy in quantifying surface amorphous content, and the concept of effective amorphous surface area is introduced. An equation is introduced employing the linear combination of surface area normalized square root dispersive surface energy terms. This equation is effective in generating calibration curves when crystalline and amorphous references are used. Inverse gas chromatography is used to generate dispersive surface energy values. Two systems are investigated, and in both cases surface energy data collected for physical mixture samples comprised of amorphous and crystalline references fits the predicted response with good accuracy. Surface amorphous content of processed lactose samples is quantified using the calibration curve, and interpreted within the context of effective amorphous surface area. Data for bulk amorphous content is also utilized to generate a thorough picture of how disorder is distributed throughout the particle. An approach to quantifying surface amorphous content using dispersive surface energy is presented. Quantification is achieved by equating results to an effective amorphous surface area based on reference crystalline, and amorphous materials. PMID:21725707

  13. Efficiency and stability of spectral sensitization of boron-doped-diamond electrodes through covalent anchoring of a donor-acceptor organic chromophore (P1).

    Science.gov (United States)

    Krysova, Hana; Barton, Jan; Petrak, Vaclav; Jurok, Radek; Kuchar, Martin; Cigler, Petr; Kavan, Ladislav

    2016-06-28

    A novel procedure is developed for chemical modification of H-terminated B-doped diamond surfaces with a donor-π-bridge-acceptor molecule (P1). A cathodic photocurrent near 1 μA cm(-2) flows under 1 Sun (AM 1.5) illumination at the interface between the diamond electrode and aqueous electrolyte solution containing dimethylviologen (electron mediator). The efficiency of this new electrode outperforms that of the non-covalently modified diamond with the same dye. The found external quantum efficiency of the P1-sensitized diamond is not far from that of the flat titania electrode sensitized by a standard organometallic dye used in solar cells. However, the P1 dye, both pure and diamond-anchored, shows significant instability during illumination by solar light. The degradation is a two-stage process in which the initially photo-generated products further decompose in complicated dark reactions. These findings need to be taken into account for optimization of organic chromophores for solar cells in general. PMID:27264474

  14. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  15. On graphs without a C4 or a diamond

    CERN Document Server

    Eschen, Elaine M; Spinrad, Jeremy P; Sritharan, R

    2009-01-01

    We consider the class of (C4, diamond)-free graphs; graphs in this class do not contain a C4 or a diamond as an induced subgraph. We provide an efficient recognition algorithm for this class. We count the number of maximal cliques in a (C4, diamond)-free graph and the number of n-vertex, labeled (C4, diamond)-free graphs. We also give an efficient algorithm for finding a largest clique in the more general class of (house, diamond)-free graphs.

  16. Promulgation and Implementation of National Standard on Diamond Grading

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ With the development of the diamond market, a revision of the national standard, Diamond Grading, formulated in 1996, was promulgated on July 1, 2003 and became effective since Nov. 1, 2003.The revision was formulated based upon GB/T16554-1996, GB/T18303 and a large amount of domestic and international data and information to serve the purpose of improving the technical standard of diamond grading, accelerating the domestic market′s entry the international diamond market as well as protecting the basic interests of diamond traders and all customers.

  17. Enhanced Transverse Magnetoresistive Effect in Semiconducting Diamond Films

    Institute of Scientific and Technical Information of China (English)

    WANG Wan-Lu; LIAO Ke-Jun; WANG Bi-Ben

    2000-01-01

    A very large magnetoresistive effect in both homoepitaxial and heteroepitaxial semiconducting diamond films by chemical vapor deposition has been observed. The changes in the resistance of the films strongly depend on both magnetic field intensity and geometric form of the samples. The effect of disk structure is greater than that of stripe type samples, also variation in the resistance of homoepitaxial diamond films is greater than that of eteroepitaxial diamond films. The resistance of homoepitaxial diamond films with the disk structure is increased y a factor of 2.1 at room temperature under magnetic field intensity of 5 T, but only 0.80 for heteroepitaxial diamond films.

  18. Photonic crystals, amorphous materials, and quasicrystals

    International Nuclear Information System (INIS)

    Photonic crystals consist of artificial periodic structures of dielectrics, which have attracted much attention because of their wide range of potential applications in the field of optics. We may also fabricate artificial amorphous or quasicrystalline structures of dielectrics, i.e. photonic amorphous materials or photonic quasicrystals. So far, both theoretical and experimental studies have been conducted to reveal the characteristic features of their optical properties, as compared with those of conventional photonic crystals. In this article, we review these studies and discuss various aspects of photonic amorphous materials and photonic quasicrystals, including photonic band gap formation, light propagation properties, and characteristic photonic states. (focus issue)

  19. High-pressure behavior of amorphous selenium from ultrasonic measurements and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    He, Z.; Liu, X. R.; Hong, S. M., E-mail: hpswjtu@gmail.com, E-mail: smhong@home.swjtu.edu.cn [Laboratory of High Pressure Physics, Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Chengdu 610031 (China); Wang, Z. G. [National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900 (China); Zhu, H. Y. [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Peng, J. P. [School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China)

    2014-07-07

    The high-pressure behavior of melt-quenched amorphous selenium (a-Se) has been investigated via ultrasonic measurements and Raman scattering at room temperature. The ultrasonic measurements were conducted on a-Se in a multi-anvil apparatus with two different sample assemblies at pressures of up to 4.5 and 4.8 GPa. We discovered that similar kinks occur in the slopes of the pressure dependence characteristics of the travel time and the sound velocity in both shear and longitudinal waves in the 2.0–2.5 GPa range. These kinks are independent of the sample assemblies, indicating an intrinsic transformation of the a-Se. Additionally, we deduced the pressure-volume relationship of a-Se from the sound velocity characteristics using the Birch–Murnaghan equation of state, and the results agreed well with those of previous reports. In situ high-pressure Raman scattering measurements of a-Se were conducted in a diamond anvil cell with an 830 nm excitation line up to a pressure of 4.3 GPa. We found that the characteristic band of a-Se at ∼250 cm{sup −1} experienced a smooth shift to a lower frequency with pressure, but a sharp slope change in the band intensity versus pressure occurred near 2.5 GPa. The results of X-ray diffraction and differential scanning calorimetry measurements indicate that the samples remain in their amorphous states after decompression. Thus, we proposed that the abnormal compression behavior of a-Se in the 2.0–2.5 GPa range can be attributed to pressure-induced local atomic reconfiguration, implying an amorphous-amorphous transition of the elementary selenium.

  20. Homo-epitaxial diamond film growth on ion implanted diamond substrates

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, P.S.; Prawer, S.; Nugent, K.W.; Bettiol, A.A.; Kostidis, L.I.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    The nucleation of CVD diamond is a complicated process, governed by many interrelated parameters. In the present work we attempt to elucidate the effect of strain on the growth of a homo-epitaxial CVD diamond. We have employed laterally confined high dose (MeV) Helium ion implantation to produce surface swelling of the substrate. The strain is enhanced by the lateral confinement of the implanted region to squares of 100 x 100 {mu}m{sup 2}. After ion implantation, micro-Raman spectroscopy was employed to map the surface strain. The substrates were then inserted into a CVD reactor and a CVD diamond film was grown upon them. Since the strained regions were laterally confined, it was then possible to monitor the effect of strain on diamond nucleation. The substrates were also analysed using Rutherford Backscattering Spectroscopy (RBS), Proton induced X-ray Emission (PIXE) and Ion Beam induced Luminescence (IBIL). 7 refs., 5 figs.

  1. Atomic oxygen resistant behaviors of Mo/diamond-like carbon nanocomposite lubricating films

    International Nuclear Information System (INIS)

    Mo doped diamond-like carbon (Mo/DLC) films were deposited on Si substrates via unbalanced magnetron sputtering of molybdenum combined with plasma chemical vapor deposition of CH4/Ar. The microstructure of the films, characterized by transmission electron microscopy and selected area electron diffraction, was considered as a nanocomposite with nano-sized MoC particles uniformly embedded in the amorphous carbon matrix. The structure, morphology, surface composition and tribological properties of the Mo/DLC films before and after the atomic oxygen (AO) irradiation were investigated and a comparison made with the DLC films. The Mo/DLC films exhibited more excellent degradation resistant behaviors in AO environment than the DLC films, and the MoC nanoparticles were proved to play a critical role of preventing the incursion of AO and maintaining the intrinsic structure and excellent tribological properties of DLC films.

  2. Tribological properties of ion beam deposited diamond-like carbon film on silicon nitride

    International Nuclear Information System (INIS)

    The present article reports on the physical characterization and tribological properties of diamond-like carbon (DLC) films deposited on structural Si3N4 substrates. The films were deposited by the direct ion beam deposition technique. The ion beam was produced by plasma discharge of pre-mixed methane and hydrogen gas in a Kaufman-type ion source. The deposited films were found to be amorphous and contained about 70% carbon and 30% hydrogen. The friction coefficient of an uncoated Si3N4 ball on a DLC coated Si3N4 disc starts at about 0.2, then decreases rapidly to 0.1-0.15 with increasing sliding distance. Increasing humidity results in a slight increase in friction coefficient, but a significant decrease in wear factor. The wear factor for the tests at ≅60% rh (relative humidity) are about an order of magnitude smaller than the tests at 3% rh. (orig.)

  3. Diamond-Like Carbon Film Deposition Using DC Ion Source with Cold Hollow Cathode

    Directory of Open Access Journals (Sweden)

    E. F. Shevchenko

    2014-01-01

    Full Text Available Carbon diamond-like thin films on a silicon substrate were deposited by direct reactive ion beam method with an ion source based on Penning direct-current discharge system with cold hollow cathode. Deposition was performed under various conditions. The pressure (12–200 mPa and the plasma-forming gas composition consisting of different organic compounds and hydrogen (C3H8, CH4, Si(CH32Cl2, H2, the voltage of accelerating gap in the range 0.5–5 kV, and the substrate temperature in the range 20–850°C were varied. Synthesized films were researched using nanoindentation, Raman, and FTIR spectroscopy methods. Analysis of the experimental results was made in accordance with a developed model describing processes of growth of the amorphous and crystalline carbon materials.

  4. On the generation of surface depressions in polishing polycrystalline diamond compacts

    International Nuclear Information System (INIS)

    This paper investigates the surface depressions generated during the polishing of the (1 1 1) surfaces of polycrystalline diamond (PCD) compacts when using the dynamic friction polishing (DFP) method. It was found that surface depressions of six-sided faces along octahedral planes were the typical features created by the DFP. Although the size of the well-developed depressions can vary significantly, the rectilinear edges are always aligned with the directions. Pronounced {1 1 1} planar defects (i.e., twins) were revealed underneath a depression apex. The interception of the defect plane with the polished surface accounts for the generation of the aligned depressions and for the discernible asymmetry of the pyramidal faces with respect to the (1 1 1) plane. It was revealed that the attached debris layer on the PCD surfaces contained sp2-bounded amorphous carbon and nano-sized crystals. (paper)

  5. Noble gases in presolar diamonds I: Three distinct components and their implications for diamond origins

    Science.gov (United States)

    Huss, Gary R.; Lewis, Roy S.

    1994-01-01

    High-purity separates of presolar diamond were prepared from 14 primitive chondrites from 7 compositional groups. Their noble gases were measured using stepped pyrolysis. Three distinct noble gas components are present in diamonds, HL, P3, and P6, each of which is found to consist of five noble gases. P3, released between 200 C and 900 C, has a 'planetary' elemental abundance pattern and roughly 'normal' isotopic ratios. HL, consisting of isotopically anomalous Xe-HL and Kr-H, Ar with high Ar-38/Ar-36, and most of the gas making up Ne-A2 and He-A, is released between 1100 C and 1600 C. HL has 'planetary' elemental ratios, except that it has much more He and Ne than other known 'planetary' components. HL gases are carried in the bulk diamonds, not in some trace phase. P6 has a slightly higher median release temperature than HL and is not cleanly separated from HL by stepped pyrolysis. Our data suggest that P6 has roughly 'normal' isotopic compositions and 'planetary' elemental ratios. Both P3 and P6 seem to be isotopically distinct from P1, the dominant 'planetary' noble-gas component in primitive chondrites. Release characteristics suggest that HL and P6 are sited in different carriers within the diamond fractions, while P3 may be sited near the surfaces of the diamonds. We find no evidence of separability of Xe-H and Xe-L or other isotopic variations in the HL component. However, because approximately 10(exp 10) diamonds are required to measure a Xe composition, a lack of isotopic variability does not constrain diamonds to come from a single source. In fact, the high abundance of diamonds in primitive chondrites and the presence of at least three distinct noble-gas components strongly suggest that diamonds originated in many sources. Relative abundances of noble-gas components in diamonds correlate with degree of thermal processing, indicating that all meteorites sampled essentially the same mixture of diamonds. That mixture was probably inherited from the Sun

  6. Diamond MEMS: wafer scale processing, devices, and technology insertion

    Science.gov (United States)

    Carlisle, J. A.

    2009-05-01

    Diamond has long held the promise of revolutionary new devices: impervious chemical barriers, smooth and reliable microscopic machines, and tough mechanical tools. Yet it's been an outsider. Laboratories have been effectively growing diamond crystals for at least 25 years, but the jump to market viability has always been blocked by the expense of diamond production and inability to integrate with other materials. Advances in chemical vapor deposition (CVD) processes have given rise to a hierarchy of carbon films ranging from diamond-like carbon (DLC) to vapor-deposited diamond coatings, however. All have pros and cons based on structure and cost, but they all share some of diamond's heralded attributes. The best performer, in theory, is the purest form of diamond film possible, one absent of graphitic phases. Such a material would capture the extreme hardness, high Young's modulus and chemical inertness of natural diamond. Advanced Diamond Technologies Inc., Romeoville, Ill., is the first company to develop a distinct chemical process to create a marketable phase-pure diamond film. The material, called UNCD® (for ultrananocrystalline diamond), features grain sizes from 3 to 300 nm in size, and layers just 1 to 2 microns thick. With significant advantages over other thin films, UNCD is designed to be inexpensive enough for use in atomic force microscopy (AFM) probes, microelectromechanical machines (MEMS), cell phone circuitry, radio frequency devices, and even biosensors.

  7. Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells

    OpenAIRE

    Massiot, I.; Colin, Clément; Péré-Laperne, Nicolas; Roca I Cabarrocas, Pere; Sauvan, Christophe; Lalanne, Philippe; Pelouard, Jean-Luc; Collin, Stéphane

    2012-01-01

    International audience Broadband light trapping is numerically demonstrated in ultra-thin solar cells composed of a flat amorphous silicon absorber layer deposited on a silver mirror. A one-dimensional silver array is used to enhance light absorption in the visible spectral range with low polarization and angle dependencies. In addition, the metallic nanowires play the role of transparent electrodes. We predict a short-circuit current density of 14:6mA=cm2 for a solar cell with a 90 nm-thi...

  8. Dry Etching Characteristics of Amorphous Indium-Gallium-Zinc-Oxide Thin Films

    Institute of Scientific and Technical Information of China (English)

    郑艳彬; 李光; 王文龙; 李秀昌; 姜志刚

    2012-01-01

    Amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) backplane technology is the best candidate for flat panel displays (FPDs). In this paper, a-IGZO TFT structures are described. The effects of etch parameters (rf power, dc-bias voltage and gas pressure) on the etch rate and etch profile are discussed. Three kinds of gas mixtures are compared in the dry etching process of a-IGZO thin films. Lastly, three problems are pointed out that need to be addressed in the dry etching process of a-IGZO TFTs.

  9. Radiation monitor training program at Rocky Flats

    International Nuclear Information System (INIS)

    The Rocky Flats Radiation Monitor Training Program is tailored to train new health physics personnel in the field of radiation monitoring. The purpose of the prescribed materials and media is to be consistent in training in all areas of Rocky Flats radiation monitoring job involvement

  10. Mechanical pretreatment for improved adhesion of diamond coatings

    International Nuclear Information System (INIS)

    Diamond coatings are mainly used in cutting processes due to their tribological characteristics. They show a high hardness, low friction coefficient, high wear resistance and good chemical inertness. In relation to polycrystalline diamond (PCD)-tipped cutting inserts, especially the advantageous chemical stability of diamond coatings is superior as no binder phases between diamond grains are used. However, the deposition of adherent high-quality diamond coatings has been found difficult. Thus, substrate pretreatment is utilised to improve film adhesion. This investigation is based on water peening of the substrate material before coating. The investigation revealed best results for diamond film adhesion on pretreated substrates compared to conventional diamond coatings on cemented carbide tools applied with the CVD hot-filament process. In final cutting tests with increased film adhesion trough water peened cutting tools an improved wear behavior was detected. (orig.)

  11. ROLE OF DIAMOND SECONDARY EMITTERS IN HIGH BRIGHTNESS ELECTRON SOURCES.

    Energy Technology Data Exchange (ETDEWEB)

    RAO, T.; BEN-ZVI, I.; BURRILL, A.; CHANG, X.; GRIMES, J.; RANK, J.; SEGALOV, Z.; SMEDLEY, J.

    2005-09-20

    In this paper we explore the possibility of using diamond secondary emitter in a high average current electron injector to amplify the current from the photocathode and to isolate the cathode and the injector from each other to increase the life time of the cathode and preserve the performance of the injector. Secondary electron yield of 225 and current density of 0.8 a/cm{sup 2} have been measured in the transmission mode from type 2 a natural diamond. Although the diamond will be heated during normal operation in the injector, calculations indicate that by cryogenically cooling the diamond, the temperature gradient along the diamond can be maintained within the acceptable range. The electron energy and temporal distributions are expected to be narrow from this device resulting in high brightness beams. Plans are underway to measure the SEY in emission mode, fabricate photocathode-diamond capsule and test diamond and capsule in superconducting RF injector.

  12. Diamond particle detectors systems in high energy physics

    CERN Document Server

    Gan, Kock Kiam

    2015-01-01

    The measurement of luminosity at the Large Hadron Collider (LHC) using diamond detect or s has matured from devices based on a rather large pads to highly granular pixelated device s . The ATLAS experiment has recently installed a diamond pixel detector, the Diamond Beam Monitor (DBM), to measure the luminosity in the upgraded LHC with higher instantaneous luminosity. Polycrystalline diamonds were used to fabricate the diamond pixel modules. The design , production, and test beam result s are described. CMS also has a similar plan to construct a diamond based luminosity monitor, the Pixel Luminos ity Telescope s (PLT) . In a pilot run using single crystal diamond, the pulse height was found to depend on the luminosity . Consequently the collaboration decided to use silicon instead due to time constrain ts .

  13. Thermal residual stress analysis of coated diamond grits

    Institute of Scientific and Technical Information of China (English)

    Zi-qian Huang; Bo Xiang; Yue-hui He; Bai-yun Huang

    2009-01-01

    Residual stresses of coated diamond grits were analyzed by a finite element unit cell model.Diamond grits coated with four types of metals, W, Mo, Ti, and Cr, were considered.The numerical results show that compressive stress occurs in the diamond particles and tensile stress occurs in the metal matrix; compressive stress is concentrated in the diamond sharp comer; interface stresses decrease by more than 1000 MPa with a metal interlayer; plastic deformation of the matrix begins near the sharp comer of diamond grits and extends toward the peripheral zone.Stress concentration dramatically decreases due to plastic deformation of the matrix.The deposition of transition metals on a diamond surface can dramatically promote the adhesion between diamond grits and the metal bond.

  14. The characterization of low energy molecular hydrogen ion—induced defects in synthetic diamond by optical absorption

    Institute of Scientific and Technical Information of China (English)

    MaZhong-Quan; AokiY; 等

    1998-01-01

    The results of optical absorption analysis of the synthetic diamonds(type Ib) which were implanted with 40 keV molecular hydrogen ions at doses of 1015-1017H/cm2(at 100K),showed that the increase of optical density(OD) of modified layer(-140nm) in UV-VIS region was dependent upon the damage level caused by ion implantation process.The range of relative optical band gap(Er.opt) around 2.0eV suggested that an amorphous carbon network structure like a-C film,which probably contains some localized subtetrabedral-coordinated clusters embedded in the fourflod(sp3) sites.was tentatively found in this layer,basing on the optical gap of carbon materials.The evolution of Er,opt with ion fluence indicated that no more hydrogenated carbon compositions were produced in as -implanted samples,while the increase of Er,opt with annealing temperature was very similar to that of hydrogen content dependence of Eopt in hydrogenately amorphous carbon(a-C:H):In addition the optical inhomogeneity of type Ib diamond has been revealed by a 2-dimension topograph in transmission mode at λ=430nm。

  15. Domain wall energy landscapes in amorphous magnetic films with asymmetric arrays of holes

    Energy Technology Data Exchange (ETDEWEB)

    Alija, A; Perez-Junquera, A; RodrIguez-RodrIguez, G; Velez, M; Alameda, J M; MartIn, J I [Depto. Fisica, Fac. Ciencias, Universidad de Oviedo - CINN, Av. Calvo Sotelo s/n, 33007 Oviedo (Spain); Marconi, V I; Kolton, A B; Parrondo, J M R [Depto. Fisica Atomica, Molecular y Nuclear, and GISC, Universidad Complutense, 28040 Madrid (Spain); Anguita, J V [Instituto de Microelectronica de Madrid, CNM-CSIC, Isaac Newton 8, PTM, Tres Cantos, 28760 Madrid (Spain)

    2009-02-21

    Arrays of asymmetric holes have been defined in amorphous Co-Si films by e-beam lithography in order to study domain wall motion across the array subject to the asymmetric pinning potential created by the holes. Experimental results on Kerr effect magnetooptical measurements and hysteresis loops are compared with micromagnetic simulations in films with arrays of triangular holes. These show that the potential asymmetry favours forward wall propagation for flat walls but, if the wall contains a kink, net backward wall propagation is preferred at low fields, in agreement with minor loop experiments. The difference between the fields needed for forward and backward flat wall propagation increases as the size of the triangular holes is reduced, becoming maximum for 1 {mu}m triangles, which is the characteristic length scale set by domain wall width.

  16. Double Aztec Diamonds and the Tacnode Process

    CERN Document Server

    Adler, Mark; van Moerbeke, Pierre

    2011-01-01

    Discrete and continuous non-intersecting random processes have given rise to critical "infinite dimensional diffusions", like the Airy process, the Pearcey process and variations thereof. It has been known that domino tilings of very large Aztec diamonds lead macroscopically to a disordered region within an inscribed ellipse (arctic circle in the homogeneous case), and a regular brick-like region outside the ellipse. The fluctuations near the ellipse, appropriately magnified and away from the boundary of the Aztec diamond, form an Airy process, run with time tangential to the boundary. This paper investigates the domino tiling of two overlapping Aztec diamonds; this situation also leads to non-intersecting random walks and an induced point process; this process is shown to be determinantal. In the large size limit, when the overlap is such that the two arctic ellipses for the single Aztec diamonds merely touch, a new critical process will appear near the point of osculation (tacnode), which is run with a time...

  17. Diamond-based single-photon emitters

    International Nuclear Information System (INIS)

    The exploitation of emerging quantum technologies requires efficient fabrication of key building blocks. Sources of single photons are extremely important across many applications as they can serve as vectors for quantum information-thereby allowing long-range (perhaps even global-scale) quantum states to be made and manipulated for tasks such as quantum communication or distributed quantum computation. At the single-emitter level, quantum sources also afford new possibilities in terms of nanoscopy and bio-marking. Color centers in diamond are prominent candidates to generate and manipulate quantum states of light, as they are a photostable solid-state source of single photons at room temperature. In this review, we discuss the state of the art of diamond-based single-photon emitters and highlight their fabrication methodologies. We present the experimental techniques used to characterize the quantum emitters and discuss their photophysical properties. We outline a number of applications including quantum key distribution, bio-marking and sub-diffraction imaging, where diamond-based single emitters are playing a crucial role. We conclude with a discussion of the main challenges and perspectives for employing diamond emitters in quantum information processing.

  18. On the Diamond Bessel Heat Kernel

    OpenAIRE

    Wanchak Satsanit

    2011-01-01

    We study the heat equation in n dimensional by Diamond Bessel operator. We find the solution by method of convolution and Fourier transform in distribution theory and also obtain an interesting kernel related to the spectrum and the kernel which is called Bessel heat kernel.

  19. Laser systems with diamond optical elements

    International Nuclear Information System (INIS)

    High power laser systems with optical elements of diamond having a thermal conductivity of at least 10 W/cm. 0K at 3000K and an optical absorption at the laser beam wavelength of no more than 10 to 20 percent are described. (U.S.)

  20. On-Chip Diamond Raman Laser

    CERN Document Server

    Latawiec, Pawel; Burek, Michael J; Hausmann, Birgit J M; Bulu, Irfan; Loncar, Marko

    2015-01-01

    Synthetic single-crystal diamond has recently emerged as a promising platform for Raman lasers at exotic wavelengths due to its giant Raman shift, large transparency window and excellent thermal properties yielding a greatly enhanced figure-of-merit compared to conventional materials. To date, diamond Raman lasers have been realized using bulk plates placed inside macroscopic cavities, requiring careful alignment and resulting in high threshold powers (~W-kW). Here we demonstrate an on-chip Raman laser based on fully-integrated, high quality-factor, diamond racetrack micro-resonators embedded in silica. Pumping at telecom wavelengths, we show Stokes output discretely tunable over a ~100nm bandwidth around 2-{\\mu}m with output powers >250 {\\mu}W, extending the functionality of diamond Raman lasers to an interesting wavelength range at the edge of the mid-infrared spectrum. Continuous-wave operation with only ~85 mW pump threshold power in the feeding waveguide is demonstrated along with continuous, mode-hop-fr...

  1. AC Impedance Behaviour of Black Diamond Films

    Institute of Scientific and Technical Information of China (English)

    Haitao YE; Olivier GAUDIN; Richard B.JACKMAN

    2005-01-01

    The first measurement of impedance on free-standing diamond films from 0.1 Hz to 10 MHz up to 300℃ were reported. A wide range of chemical vapour deposition (CVD) materials were investigated, but here we concentrate are well fitted to a RC parallel circuit model and the equivalent resistance and capacitance for the diamond films have been estimated using the Zview curve fitting. The results show only one single semicircle response at each temperature measured. It was found that the resistance decreases from 62 MΩ at room temperature to 4 kΩ at300℃, with an activation energy around 0.51 eV. The equivalent capacitance is maintained at the level of 100 pF up to 300℃ suggesting that the diamond grain boundaries are dominating the conduction. At 400℃, the impedance at low frequencies shows a linear tail, which can be explained that the AC polarization of diamond/Au interface occurs.

  2. Application of diamond based beam loss monitors

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maria [Brandenburgische Technische Univ. Cottbus (Germany); DESY, Zeuthen (Germany); CERN, Geneva (Switzerland); Baer, Tobias [CERN, Geneva (Switzerland); Hamburg Univ. (Germany); Castro Carballo, Elena Maria [DESY, Zeuthen (Germany); Lohmann, Wolfgang [Brandenburgische Technische Univ. Cottbus (Germany); DESY, Zeuthen (Germany); Schmidt, Ruediger [CERN, Geneva (Switzerland)

    2013-07-01

    The LHC has an operational stored energy of 130MJ per beam. Only a small percentage of beam losses in the LHC equipment can damage material or lead to magnet quenches. Therefore, it is important to monitor different types of beam losses, e.g. scattering on residual gas particles, UFOs, collisions and injection losses. A detailed understanding of beam loss mechanisms is necessary to reduce them and ensure save operation. Two different beam loss monitors are installed in the LHC tunnel: ionization chambers and diamond sensors. Ionization chambers trigger a beam dump if beam losses exceed a certain threshold. They have a time resolution of 40um (half LHC turn) which is not sufficient to resolve bunch-by-bunch beam losses. Diamond sensors have a nanosecond time resolution and can therefore detect bunch-by-bunch beam losses. This time resolution allows an analysis of various types of beam losses and an understanding of the mechanisms. For the first time beam loss intensities were measured bunch-by-bunch caused by different origins of losses. Beam loss measurements using diamond sensors will be presented. The results are compared to simulations and good qualitative agreement was found. The potential of diamond sensors for LHC and experiment applications are discussed.

  3. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    Science.gov (United States)

    Farmer, Joseph C.; Wong, Frank M.G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo

    2014-07-15

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  4. Cathodoluminescence of diamond as an indicator of its metamorphic history

    Science.gov (United States)

    Kopylova, Maya; Bruce, Loryn; Longo, Micaela; Ryder, John; Dobrzhinetskaya, Larissa

    2010-05-01

    Diamond displays a supreme resistance to chemical and mechanical weathering, ensuring its survival through complex and prolonged crustal processes, including metamorphism and exhumation. For these reasons, volcanic sources and secondary and tertiary collectors for detrital placer diamonds, like Ural or Bingara diamonds, may be difficult to determine. If metamorphic processes leave their marks on diamond, they can be used to reconstruct crustal geologic processes and ages of primary diamondiferous volcanics. Four diamond suites extracted from metamorphic rocks have been characterized using optical CL, infrared and CL spectroscopy, and photoluminescence at the liquid nitrogen temperature. The studied diamonds are from the ~2.7 Ga sedimentary conglomerate and lamprophyric breccia metamorphosed in the greenschist facies (Wawa, Northern Ontario, Canada) during the 2.67 Ga Kenoran orogeny, and from the ultra-high pressure (UHP) terranes of Kokchetav (Kazakhstan) and Erzgebirge (Germany) exhumated in the Paleozoic. Wawa diamonds (Type IaAB and Type II) displayed green, yellow, orange, and red CL colours controlled by the CL emittance at 520, 576 nm, and between 586 and 664 nm. The UHP terranes diamonds show much weaker CL; few luminescent stones display CL peaks at 395, 498, 528 nm and a broad band at 580-668 nm. In contrast, most common diamonds found in unmetamorphosed rocks, i.e. octahedrally grown Type IaAB stones, luminescence blue emitting light at ~415-440 nm and 480-490 nm. There is a noticeable difference between cathodoluminescence of these diamonds and diamonds in metamorphic rocks. The studied diamonds that experienced metamorphism show a shift of CL emission to longer wavelengths (above 520 nm) and to green, yellow and red CL colours. Photoluminescence has the high resolution necessary to assign luminescence to specific optical centers of diamond. Diamonds in metamorphic rocks contain H3 (pairs of substitutional nitrogen atoms separated by a vacancy) and NVo

  5. Surface Acidity of Amorphous Aluminum Hydroxide

    Institute of Scientific and Technical Information of China (English)

    K. FUKUSHI; K. TSUKIMURA; H. YAMADA

    2006-01-01

    The surface acidity of synthetic amorphous Al hydroxide was determined by acid/base titration with several complementary methods including solution analyses of the reacted solutions and XRD characterization of the reacted solids. The synthetic specimen was characterized to be the amorphous material showing four broad peaks in XRD pattern. XRD analyses of reacted solids after the titration experiments showed that amorphous Al hydroxide rapidly transformed to crystalline bayerite at the alkaline condition (pH>10). The solution analyses after and during the titration experiments showed that the solubility of amorphous aluminum hydroxide, Ksp =aAl3+/a3H+,was 1010.3,The amount of consumption of added acid or base during the titration experiment was attributed to both the protonation/deprotonation of dissolved Al species and surface hydroxyl group. The surface acidity constants, surface hydroxyl density and specific surface area were estimated by FITEQL 4.0.

  6. LOCAL ATOMIC STRUCTURE OF AMORPHOUS METALS

    OpenAIRE

    Egami, T.; Maed, K.; Srolovitz, D.; Vitek, V.

    1980-01-01

    The local parameters are introduced to describe the local atomic structure of amorphous metals. They define the structural defects which facilitate the explanation of various properties, including the volume change by annealing.

  7. Enhanced electron emission from diamond film deposited on pre-seeded Si substrate with nanosized diamond power

    International Nuclear Information System (INIS)

    Diamond film was synthesized by microwave plasma chemical vapor deposition (MWPCVD) method. The deposition process of diamond film on 4-in. pre-seeded mirror polished silicon wafer was divided into four steps: (a) seeding nano-diamond powder on Si surface; (b) annealing for increasing the adsorbed strength between diamond powder and substrate; (c) diamond film growth; (d) bombarding with H+ ion for decreasing film stress and obtaining planar field emission from diamond film with large area. Scanning electron microscopy (SEM), Raman spectroscopy and stress measurement system were used to characterize the structure and property of diamond film. The electron emission from large area diamond film on seeded substrate was described and compared with that from diamond film deposited on Si substrate scratched by diamond powder. The results suggested that low-field electron emission and high emission current could be obtained from diamond film deposited on seeded substrate due to the reduction of interface energy barrier for electron tunneling. A threshold field of 3.0 V/μm and emission current density of 1 mA/cm2 at 30 V/μm were achieved

  8. Deposit of thin films of nitrided amorphous carbon using the laser ablation technique

    International Nuclear Information System (INIS)

    It is reported the synthesis and characterization of thin films of amorphous carbon (a-C) nitrided, deposited by laser ablation in a nitrogen atmosphere at pressures which are from 4.5 x 10 -4 Torr until 7.5 x 10 -2 Torr. The structural properties of the films are studied by Raman spectroscopy obtaining similar spectra at the reported for carbon films type diamond. The study of behavior of the energy gap and the ratio nitrogen/carbon (N/C) in the films, shows that the energy gap is reduced when the nitrogen incorporation is increased. It is showed that the refraction index of the thin films diminish as nitrogen pressure is increased, indicating the formation of graphitic material. (Author)

  9. The Influence of Volcanological and Sedimentological Processes on Diamond Grade Distribution: Examples From the Ekati Diamond Mine, NWT, Canada

    Science.gov (United States)

    Porritt, L. A.; Cas, R. A.; Ailleres, L.; Oshust, P.

    2009-05-01

    The study of the diamond distribution within two kimberlite pipes, Fox and Koala, from the Ekati Diamond Mine, NWT, Canada, in conjunction with detailed facies models has shown several distinct relationships of deposit type and grade distribution. In both pipes the lithological facies represent grade units which can be distinguished from each other in terms of relative size and abundance of diamonds. Positive correlation of olivine grain size and abundance with diamond grade is seen, indicating that density sorting of fragmental kimberlites occurs both in pyroclastic and resedimented deposits. Though surface geological processes do not control the diamond potential of the erupting magma, they can be responsible for concentrating diamonds into economically significant proportions. A good understanding of the eruption, transport and depositional processes responsible for the individual lithological units and the diamond distribution within them is important for successful resource estimation and may lead to recognition of areas suitable for selective mining, making a marginal deposit economic.

  10. Thermodynamic and kinetic study on interfacial reaction and diamond graphitization of Cu-Fe-based diamond composite

    Institute of Scientific and Technical Information of China (English)

    Li Wen-Sheng; Zhang Jie; Dong Hong-Feng; Chu Ke; Wang Shun-Cai; Liu Yi; Li Ya-Ming

    2013-01-01

    Cu-Fe based diamond composites used for saw-blade segments are directly fabricated by vacuum and pressureassisted sintering.The carbide forming elements Cr and Ti are added to improve interfacial bonding between diamond and the Cu-Fe matrix.The interfacial reactions between diamond/graphite and Cr or Ti,and diamond graphitization are investigated by thermodynamics/kinetics analyses and experimental methods.The results show that interfacial reactions and graphitization of diamond can automatically proceed thermodynamically.The Cr3C2,Cr7C3,Cr23C6,and TiC are formed at the interfaces of composites by reactions between diamond and Cr or Ti; diamond graphitization does not occur because of the kinetic difficulty at 1093 K under the pressure of 13 MPa.

  11. Emerging trends in the stabilization of amorphous drugs

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Löbmann, Korbinian; Strachan, Clare J.;

    2013-01-01

    water-soluble drugs can be increased by the formation of stabilized amorphous forms. Currently, formulation as solid polymer dispersions is the preferred method to enhance drug dissolution and to stabilize the amorphous form of a drug. The purpose of this review is to highlight emerging alternative...... methods to amorphous polymer dispersions for stabilizing the amorphous form of drugs. First, an overview of the properties and stabilization mechanisms of amorphous forms is provided. Subsequently, formulation approaches such as the preparation of co-amorphous small-molecule mixtures and the use...... of mesoporous silicon and silica-based carriers are presented as potential means to increase the stability of amorphous pharmaceuticals....

  12. Laser annealing of hydrogen implanted amorphous silicon

    International Nuclear Information System (INIS)

    Amorphous silicon, prepared by silicon bombardment at energies of 200 to 250 keV, was implanted with 40 keV H2+ to peak concentrations up to 15 at .% and recrystallized in air by single 20 nsec pulses at 1.06 μm from a Nd:glass laser. Amorphous layer formation and recrystallization were verified using Raman spectroscopy and ion backscattering/channeling analysis

  13. Tests Of Amorphous-Silicon Photovoltaic Modules

    Science.gov (United States)

    Ross, Ronald G., Jr.

    1988-01-01

    Progress in identification of strengths and weaknesses of amorphous-silicon technology detailed. Report describes achievements in testing reliability of solar-power modules made of amorphous-silicon photovoltaic cells. Based on investigation of modules made by U.S. manufacturers. Modules subjected to field tests, to accelerated-aging tests in laboratory, and to standard sequence of qualification tests developed for modules of crystalline-silicon cells.

  14. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    Science.gov (United States)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  15. A Magnetic Sensor with Amorphous Wire

    Directory of Open Access Journals (Sweden)

    Dongfeng He

    2014-06-01

    Full Text Available Using a FeCoSiB amorphous wire and a coil wrapped around it, we have developed a sensitive magnetic sensor. When a 5 mm long amorphous wire with the diameter of 0.1 mm was used, the magnetic field noise spectrum of the sensor was about 30 pT/ÖHz above 30 Hz. To show the sensitivity and the spatial resolution, the magnetic field of a thousand Japanese yen was scanned with the magnetic sensor.

  16. DEFECTS IN AMORPHOUS CHALCOGENIDES AND SILICON

    OpenAIRE

    Adler, D.

    1981-01-01

    Our comprehension of the physical properties of amorphous semiconductors has improved considerably over the past few years, but many puzzles remain. From our present perspective, the major features of chalcogenide glasses appear to be well understood, and some of the fine points which have arisen recently have been explained within the same general model. On the other hand, there are a grear number of unresolved mysteries with regard to amorphous silicon-based alloys. In this paper, the valen...

  17. Surface characterization of diamond-like carbon for ultracold neutron storage

    Science.gov (United States)

    Atchison, F.; Bergmaier, A.; Daum, M.; Döbeli, M.; Dollinger, G.; Fierlinger, P.; Foelske, A.; Henneck, R.; Heule, S.; Kasprzak, M.; Kirch, K.; Knecht, A.; Kuźniak, M.; Pichlmaier, A.; Schelldorfer, R.; Zsigmond, G.

    2008-03-01

    We report the characterization of diamond-like carbon (DLC) surfaces to be used for the storage of ultracold neutrons (UCN). The samples investigated were 100-300-nm-thick tetragonal amorphous carbon (ta-C) coatings produced by vacuum-arc technology on thin foils (0.1-0.2 mm aluminum, stainless steel, PET). The diamond sp 3 fraction was determined by X-ray photoelectron spectroscopy (XPS) to be in the range 45-65%. Secondary-ion mass spectroscopy (SIMS) and elastic recoil detection analysis (ERDA) yielded consistent results for the hydrogen contribution (about 1×10 16 cm -2 within the top 20 nm), strongly concentrated within a surface layer of 1 nm thickness. The boron contamination was found to be around 50 at. ppm. The fractional hole area of the coatings is on a level of about 1×10 -4. Temperature cycling of mechanically pre-stressed samples between 77 and 380 K revealed no detrimental effect.

  18. Beam assisted molecular rearrangement observed by TDPAD for fluorine complexes in diamond

    Science.gov (United States)

    Sideras-Haddad, E.; Connell, S. H.; Sellschop, J. P. F.; Bharuth-Ram, K.; Stemmet, M. C.; Naidoo, S.; Appel, H.

    1992-02-01

    Time dependent perturbed angular distribution (TDPAD) measurements have consistently revealed two unique sites for recoil implanted 19F in different types of natural diamonds. These correspond to quadrupole coupling constants of 63(2) and 56(2) MHz. The first corresponds to the formation of a C-F bond at an intrabond site and the second is interpreted as a distorted substitutional site. A third resolved coupling constant of 33(3) MHz is associated with a broadly distributed site with random electric field gradient orientation which might be indicative of local amorphous conditions and is interpreted as arising from the formation of H-F molecular complexes. A strong dependence on the incident proton dose of this fraction has been observed for all types of natural diamonds. A model proposed for such an effect involves a beam-assisted mechanism which accounts for disruption of existing hydrogenic molecular complexes and rearrangement of ions under the influence of intense electronic excitation caused by the incident proton beam. Such results give new insights on 19F as a TDPAD probe. Its small size and chemical affinity render it particularly appropriate for studies of molecular complexes with TDPAD.

  19. Thermal transport in amorphous materials: a review

    Science.gov (United States)

    Wingert, Matthew C.; Zheng, Jianlin; Kwon, Soonshin; Chen, Renkun

    2016-11-01

    Thermal transport plays a crucial role in performance and reliability of semiconductor electronic devices, where heat is mainly carried by phonons. Phonon transport in crystalline semiconductor materials, such as Si, Ge, GaAs, GaN, etc, has been extensively studied over the past two decades. In fact, study of phonon physics in crystalline semiconductor materials in both bulk and nanostructure forms has been the cornerstone of the emerging field of ‘nanoscale heat transfer’. On the contrary, thermal properties of amorphous materials have been relatively less explored. Recently, however, a growing number of studies have re-examined the thermal properties of amorphous semiconductors, such as amorphous Si. These studies, which included both computational and experimental work, have revealed that phonon transport in amorphous materials is perhaps more complicated than previously thought. For instance, depending on the type of amorphous materials, thermal transport occurs via three types of vibrations: propagons, diffusons, and locons, corresponding to the propagating, diffusion, and localized modes, respectively. The relative contribution of each of these modes dictates the thermal conductivity of the material, including its magnitude and its dependence on sample size and temperature. In this article, we will review the fundamental principles and recent development regarding thermal transport in amorphous semiconductors.

  20. Fundamental Discovery of New Phases and Direct Conversion of Carbon into Diamond and hBN into cBN and Properties

    Science.gov (United States)

    Narayan, Jagdish; Bhaumik, Anagh

    2016-04-01

    We review the discovery of new phases of carbon (Q-carbon) and BN (Q-BN) and address critical issues related to direct conversion of carbon into diamond and hBN into cBN at ambient temperatures and pressures in air without any need for catalyst and the presence of hydrogen. The Q-carbon and Q-BN are formed as a result of quenching from super undercooled state by using high-power nanosecond laser pulses. We discuss the equilibrium phase diagram ( P vs T) of carbon, and show that by rapid quenching, kinetics can shift thermodynamic graphite/diamond/liquid carbon triple point from 5000 K/12 GPa to super undercooled carbon at atmospheric pressure in air. Similarly, the hBN-cBN-Liquid triple point is shifted from 3500 K/9.5 GPa to as low as 2800 K and atmospheric pressure. It is shown that nanosecond laser heating of amorphous carbon and nanocrystalline BN on sapphire, glass, and polymer substrates can be confined to melt in a super undercooled state. By quenching this super undercooled state, we have created a new state of carbon (Q-carbon) and BN (Q-BN) from which nanocrystals, microcrystals, nanoneedles, microneedles, and thin films are formed depending upon the nucleation and growth times allowed and the presence of growth template. The large-area epitaxial diamond and cBN films are formed, when appropriate planar matching or lattice matching template is provided for growth from super undercooled liquid. The Q-phases have unique atomic structure and bonding characteristics as determined by high-resolution SEM and backscatter diffraction, HRTEM, STEM-Z, EELS, and Raman spectroscopy, and exhibit new and improved mechanical hardness, electrical conductivity, and chemical and physical properties, including room-temperature ferromagnetism and enhanced field emission. The Q-carbon exhibits robust bulk ferromagnetism with estimated Curie temperature of about 500 K and saturation magnetization value of 20 emu g-1. We have also deposited diamond on cBN by using a novel

  1. Polycrystalline diamond based detector for Z-pinch diagnosis

    International Nuclear Information System (INIS)

    Full text of publication follows: Z-pinch is a self-constricted plasma configuration, as well as a high efficient X-ray simulator with energy transfer coefficient in the range of 0.8% - 23% [1-4]. Characteristics of the X-ray from Z-pinch are very important for researches focusing on the physical processes of plasma [5-6]. A chemical vapour deposition (CVD) derived polycrystalline diamond film detector has been developed as the X-ray detector on Z-pinch at a high powerful pulsed electron beam accelerator named Qiangguang-I (current 1.4-2.1 MA, rising time 80-100 ns) in Northwest Institute of Nuclear Technology in P. R. China. This detector is 16 mm in diameter and 300 μm in thickness with gold electrodes on both sides. The dark current of the detector is lower than 60 pA with the electric field intensity of 3 V/μm. The charge collection efficiency is 60.8% with the electric field intensity of 1.67 V/μm. The energy response and the time response have been studied by both experiments and theoretical calculation. The spectral response to X-ray is flat over the range of 3-5 keV. The rising time of response pulse is 2-3 ns. This diamond detector acquires good experimental data which are in good agreement with the results got from the X-ray Diodes (XRDs) [7] on Z-pinch diagnosis at Qiangguang-I facility. These results show that the device we developed offers a good choice for Z-pinch diagnosis at high power electron beam accelerator. References: [1] R. B. Spielman, C. Deeney and G. A. Chandler, Phys of Plasmas 5, 5 (1998); [2] Proceedings of 10. IEEE International Pulsed Power Conference 1995, 1-2; [3] Proceedings of 11. IEEE International Pulsed Power Conference 1997, 23-36; [4] A. Qiu, Engineering Science 2, 9(2000); [5] A. Qiu, B. Kuai and Z. Zeng, Acta Physica Sinica 55, 11 (2006); [6] W. Wang, D. He and A. Qiu, High Power Laser and Particle Beams 15, 184(2003); [7] G. A. Chandler, C. Deeney and M. Cuneo, Review of Scientific Instruments 70, 1(1999). (authors)

  2. Amorphous calcium carbonate controls avian eggshell mineralization: A new paradigm for understanding rapid eggshell calcification.

    Science.gov (United States)

    Rodríguez-Navarro, Alejandro B; Marie, Pauline; Nys, Yves; Hincke, Maxwell T; Gautron, Joel

    2015-06-01

    Avian eggshell mineralization is the fastest biogenic calcification process known in nature. How this is achieved while producing a highly crystalline material composed of large calcite columnar single crystals remains largely unknown. Here we report that eggshell mineral originates from the accumulation of flat disk-shaped amorphous calcium carbonate (ACC) particles on specific organic sites on the eggshell membrane, which are rich in proteins and sulfated proteoglycans. These structures known as mammillary cores promote the nucleation and stabilization of a amorphous calcium carbonate with calcitic short range order which predetermine the calcite composition of the mature eggshell. The amorphous nature of the precursor phase was confirmed by the diffuse scattering of X-rays and electrons. The nascent calcitic short-range order of this transient mineral phase was revealed by infrared spectroscopy and HRTEM. The ACC mineral deposited around the mammillary core sites progressively transforms directly into calcite crystals without the occurrence of any intermediate phase. Ionic speciation data suggest that the uterine fluid is equilibrated with amorphous calcium carbonate, throughout the duration of eggshell mineralization process, supporting that this mineral phase is constantly forming at the shell mineralization front. On the other hand, the transient amorphous calcium carbonate mineral deposits, as well as the calcite crystals into which they are converted, form by the ordered aggregation of nanoparticles that support the rapid mineralization of the eggshell. The results of this study alter our current understanding of avian eggshell calcification and provide new insights into the genesis and formation of calcium carbonate biominerals in vertebrates.

  3. Long-range Rocky Flats utilization study

    International Nuclear Information System (INIS)

    The purpose of this Study was to provide information concerning the Rocky Flats Plant and its operations that will be useful to the Nation's decision-makers in determining the long-range future of the Plant. This Study was conducted under the premise that national defense policy must be supported and, accordingly, the capabilities at Rocky Flats must be maintained there or at some other location(s). The Study, therefore, makes no attempt to speculate on how possible future changes in national defense policy might affect decisions regarding the utilization of Rocky Flats. Factors pertinent to decisions regarding Rocky Flats, which are included in the Study, are: physical condition of the Plant and its vulnerabilities to natural phenomena; risks associated with plutonium to Plant workers and the public posed by postulated natural phenomena and operational accidents; identification of alternative actions regarding the future use of the Rocky Flats Plant with associated costs and time scales; local socioeconomic impacts if Rocky Flats operations were relocated; and potential for other uses if Rocky Flats facilities were vacated. The results of the tasks performed in support of this Study are summarized in the context of these five factors

  4. Hydrocarbons Encapsulated in Diamonds From China and India

    Science.gov (United States)

    Leung, I.; Tsao, C.; Taj-Eddin, I.

    2005-05-01

    We examined a large number of diamonds from a kimberlite pipe located in Fuxian, China, and alluvial diamonds from Panna, India. We selected 6-10 diamonds from each locality based on certain characteristics: they are white, brilliant, mostly devoid of mineral inclusions, fracture-free, many contain microscopic bubbles, some display etched circular patterns. These diamonds were examined under ultraviolet (UV) light using a fluorescence microscope, then, investigated using a Nicolet 6700 FT-IR spectrometer. Several diamonds emit blue fluorescence when excited with UV light, while others appear dim because they are not fluorescent. It is the latter that render the included bubbles clearly visible, glowing as yellow and blue spherules within the dim diamond host. These fluorescent bubbles are probably filled with hydrocarbon fluids of variable compositions. FT-IR spectra of diamond typically show absorption due to intrinsic diamond lattice vibrations. We found in most of our diamonds used in this study an additional, outstanding group of absorption bands located just below the wavenumber 3000. Peak positions in this region correlate well with symmetric and asymmetric stretching of methylene and methyl groups, attributable to H bonded to C atoms. Comparing them with standard spectral shapes, we found a good match with an alkane molecule composed of saturated aliphatic hydrocarbons. Our observations provide evidence that hydrocarbons might be important components in the deep mantle, but, to transport them up to Earth's surface would require strong capsules which, perhaps, only diamond could provide.

  5. Inclusions of Hydrocarbon Fluids in Diamonds From Wafangdian, Liaoning, China

    Science.gov (United States)

    Leung, I. S.; Tsao, C.

    2015-12-01

    We studied a large number of industrial-grade diamonds from Pipe 50 of Liaoning, China. These diamonds are not suitable for polishing into gems or making cutting tools. They are usually crushed to form abrasives, without much scientific scrutiny. We report here fluid inclusions in dozens of diamonds. The first type of fluids occur in the outer rim of diamonds, just below the surface, while their interior is free of visible fluids. Under UV radiation, when a non-fluorescent diamond appeared dim, bubbles of included fluids became visible as yellow and blue spherules. Such diamonds are sometimes encrusted with euhedral micro-diamonds resembling those on thin films grown by CVD. The second type of fluid-rich diamonds display iridescence of pink, blue, green and yellow colors. They show lamellar, filamentous, or tubular structures, some of the tubes are filled with granules, probably grown from fluids in the tubes. An FT-IR investigation of both types yielded similar results. Apart from absorption due to intrinsic diamond lattice vibrations, we found an outstanding group of bands just below wavenumber 3000. This indicates the presence of a saturated aliphatic hydrocarbons of long chain length. Our results seem to implicate that hydrocarbons might be an important component in Earth's mantle, which might even have provided carbon from which diamonds crystllized.

  6. New Vitrified Bond Diamond Grinding Wheel for Grinding the Cylinder of Polycrystalline Diamond Compacts

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this work, a kind of new vitrified bond based on Li2O-Al2O3-SiO2 glass ceramics was used to bond the diamond grains, which is made into grinding wheel and the cylindrical grinding process of polycrystalline diamond compacts (PDCs) by using the new vitrified bond diamond grinding wheel was discussed. Several factors which influence the properties of grinding wheel such as amount of vitrified bond and the kinds and amount of stuff in grinding wheel were also investigated. It was found that the new vitrified bond can firmly combine diamond grains, when there are only diamonds and vitrified bond in the structure of grinding wheel, the longevity of the grinding wheel is about 2.5-3 times as that of resin bond grinding wheel for processing PDCs. The grinding size precision of PDCs can be improved from ±0.03 mm to ±0.01 mm because of larger Young's modulus of vitrified bond than resin bond. The grinding time of a PDC product can be 1.75-2.0 min from 3.25-3.5 min, so this kind of grinding wheel can save much time for processing PDCs. Also, there is hardly noise when using this new vitrified bond diamond grinding wheel to process PDCs. The amount of vitrified bond in grinding wheel influences the longevity of grinding wheel. When the size of diamond grains is 90-107 μm, the optimal amount of vitrified bond in grinding wheel is 21% (wt pet). When the amount of vitrified bond exceeds 21%, there are many pores in grinding block, which will decrease the longevity of grinding wheel. The existence of addition stuff such as Al2O3 or SiC can reduce the longevity of grinding wheel.

  7. Dissociative adsorption of molecular deuterium and thermal stability onto hydrogenated, bare and ion beam damaged poly- and single crystalline diamond surfaces

    Science.gov (United States)

    Michaelson, Sh.; Chandran, M.; Zalkind, S.; Shamir, N.; Akhvlediani, R.; Hoffman, A.

    2015-12-01

    In this work we report on dissociative adsorption of deuterium (D2) on bare, hydrogenated and ion beam bombarded polycrystalline and single crystalline diamond surfaces. Polycrystalline diamond films with an average grain size of ~ 300 nm were deposited on silicon substrates by hot filament chemical vapor deposition technique from methane/hydrogen gas mixture. Deposited films were characterized using Raman spectroscopy, atomic force microscopy and scanning electron microscopy to estimate the phase composition and microstructure. High resolution electron energy loss spectroscopy and direct recoil spectrometry were used to study hydrogen (deuterium) bonding configuration of the upper surface region. Near surface amorphization was achieved by 1 keV Ar+ implantation at ~ 1 × 1015 ions/cm2 at room temperature (RT). As deposited and Ar+ bombarded films are annealed to 500-1000 °C in ultra-high vacuum conditions and also under D2 partial pressure of 5 × 10- 6 Torr. For comparison, key experiments were repeated on the single crystal (100) diamond. Our results clearly show the preferential dissociative adsorption of D2 on low hybridized carbon (sp/sp2) states with activation temperature as low as RT, but with a lower thermal stability compared to pure diamond Csbnd D bonds.

  8. Gas desorption during friction of amorphous carbon films

    Science.gov (United States)

    Rusanov, A.; Fontaine, J.; Martin, J.-M.; Mogne, T. L.; Nevshupa, R.

    2008-03-01

    Gas desorption induced by friction of solids, i.e. tribodesorption, is one of the numerous physical and chemical phenomena, which arise during friction as result of thermal and structural activation of material in a friction zone. Tribodesorption of carbon oxides, hydrocarbons, and water vapours may lead to significant deterioration of ultra high vacuum conditions in modern technological equipment in electronic, optoelectronic industries. Therefore, knowledge of tribodesorption is crucial for the performance and lifetime of vacuum tribosystems. Diamond-like carbon (DLC) coatings are interesting materials for vacuum tribological systems due to their high wear resistance and low friction. Highly hydrogenated amorphous carbon (a-C:H) films are known to exhibit extremely low friction coefficient under high vacuum or inert environment, known as 'superlubricity' or 'superlow friction'. However, the superlow friction period is not always stable and then tends to spontaneous transition to high friction. It is supposed that hydrogen supply from the bulk to the surface is crucial for establishing and maintaining superlow friction. Thus, tribodesorption can serve also as a new technique to determine the role of gases in superlow friction mechanisms. Desorption of various a-C:H films, deposited by PECVD, ion-beam deposition and deposition using diode system, has been studied by means of ultra-high vacuum tribometer equipped with a mass spectrometer. It was found that in superlow friction period desorption rate was below the detection limit in the 0-85 mass range. However, transition from superlow friction to high friction was accompanied by desorption of various gases, mainly of H2 and CH4. During friction transition, surfaces were heavily damaged. In experiments with DLC films with low hydrogen content tribodesorption was significant during the whole experiment, while low friction was not observed. From estimation of maximum surface temperature during sliding contact it was

  9. Flat Absorber Phosphorous Black Nickel Coatings for Space Applications

    Institute of Scientific and Technical Information of China (English)

    V. Maria Shalini; P. Arockiasamy; R. Urna Rani; A.K. Sharma

    2012-01-01

    A new process of flat absorber black nickel alloy coating tion from a bath containing nickel, zinc and ammonium was developed on stainless steel by electrodeposi- sulphates; thiocyanate and sodium hypophosphite for space applications. Coating process was optimized by investigating the effects of plating parameters, viz concentration of bath constituents, current density, temperature, pH and plating time on the optical properties of the black deposits. Energy dispersive X-ray spectroscopy showed the inclusion of about 6% phosphorous in the coating. The scanning electron microscopy studies revealed the amorphous nature of the coating. The corrosion resistance of the coatings was evaluated by the electrochemical impedance spectroscopy (EIS) and linear polarization (LP) techniques. The results revealed that, phosphorous addition confers better corro- sion resistance in comparison to conventional black nickel coatings. The black nickel coating obtained from hypophosphite bath provides high solar absorptance (αs) and infrared emittance (εIR) of the order of 0.93. Environmental stability to space applications was established by the humidity and thermal cycling tests.

  10. Flatness Control Using Roll Coolant Based on Predicted Flatness Variation in Cold Rolling Mills

    Science.gov (United States)

    Dohmae, Yukihiro; Okamura, Yoshihide

    Flatness control for cold rolling mills is one of the important technologies for improving of product quality and productivity. In particular, poor flatness leads to strip tearing in the extreme case and, moreover, it significantly reduces productivity. Therefore, various flatness control system has been developed. The main actuators for flatness control are classified into two types; one is mechanical equipment such as roll bender, the other is roll coolant, which controls thermal expansion of roll. Flatness variation such as center buckle or edge wave is mainly controlled by mechanical actuator which has high response characteristics. On another front, flatness variation of local zone can be controlled by roll coolant although one's response is lower than the response of mechanical actuator. For accomplishing good flatness accuracy in cold rolling mills, it is important to improve the performance of coolant control moreover. In this paper, a new coolant control method based on flatness variation model is described. In proposed method, the state of coolant spray on or off is selected to minimize the flatness deviation by using predicted flatness variation. The effectiveness of developed system has been demonstrated by application in actual plant.

  11. Electrons and phonons in amorphous semiconductors

    Science.gov (United States)

    Prasai, Kiran; Biswas, Parthapratim; Drabold, D. A.

    2016-07-01

    The coupling between lattice vibrations and electrons is one of the central concepts of condensed matter physics. The subject has been deeply studied for crystalline materials, but far less so for amorphous and glassy materials, which are among the most important for applications. In this paper, we explore the electron-lattice coupling using current tools of a first-principles computer simulation. We choose three materials to illustrate the phenomena: amorphous silicon (a-Si), amorphous selenium (a-Se) and amorphous gallium nitride (a-GaN). In each case, we show that there is a strong correlation between the localization of electron states and the magnitude of thermally induced fluctuations in energy eigenvalues obtained from the density-functional theory (i.e. Kohn–Sham eigenvalues). We provide a heuristic theory to explain these observations. The case of a-GaN, a topologically disordered partly ionic insulator, is distinctive compared to the covalent amorphous examples. Next, we explore the consequences of changing the charge state of a system as a proxy for tracking photo-induced structural changes in the materials. Where transport is concerned, we lend insight into the Meyer–Neldel compensation rule and discuss a thermally averaged Kubo–Greenwood formula as a means to estimate electrical conductivity and especially its temperature dependence. We close by showing how the optical gap of an amorphous semiconductor can be computationally engineered with the judicious use of Hellmann–Feynman forces (associated with a few defect states) using molecular dynamics simulations. These forces can be used to close or open an optical gap, and identify a structure with a prescribed gap. We use the approach with plane-wave density functional methods to identify a low-energy amorphous phase of silicon including several coordination defects, yet with a gap close to that of good quality a-Si models.

  12. Electrons and phonons in amorphous semiconductors

    Science.gov (United States)

    Prasai, Kiran; Biswas, Parthapratim; Drabold, D. A.

    2016-07-01

    The coupling between lattice vibrations and electrons is one of the central concepts of condensed matter physics. The subject has been deeply studied for crystalline materials, but far less so for amorphous and glassy materials, which are among the most important for applications. In this paper, we explore the electron-lattice coupling using current tools of a first-principles computer simulation. We choose three materials to illustrate the phenomena: amorphous silicon (a-Si), amorphous selenium (a-Se) and amorphous gallium nitride (a-GaN). In each case, we show that there is a strong correlation between the localization of electron states and the magnitude of thermally induced fluctuations in energy eigenvalues obtained from the density-functional theory (i.e. Kohn-Sham eigenvalues). We provide a heuristic theory to explain these observations. The case of a-GaN, a topologically disordered partly ionic insulator, is distinctive compared to the covalent amorphous examples. Next, we explore the consequences of changing the charge state of a system as a proxy for tracking photo-induced structural changes in the materials. Where transport is concerned, we lend insight into the Meyer-Neldel compensation rule and discuss a thermally averaged Kubo-Greenwood formula as a means to estimate electrical conductivity and especially its temperature dependence. We close by showing how the optical gap of an amorphous semiconductor can be computationally engineered with the judicious use of Hellmann-Feynman forces (associated with a few defect states) using molecular dynamics simulations. These forces can be used to close or open an optical gap, and identify a structure with a prescribed gap. We use the approach with plane-wave density functional methods to identify a low-energy amorphous phase of silicon including several coordination defects, yet with a gap close to that of good quality a-Si models.

  13. Performance and characterisation of CVD diamond coated, sintered diamond and WC-Co cutting tools for dental and micromachining applications

    International Nuclear Information System (INIS)

    Diamond coatings are attractive for cutting processes due to their high hardness, low friction coefficient, excellent wear resistance and chemical inertness. The application of diamond coatings on cemented tungsten carbide (WC-Co) tools was the subject of much attention in recent years in order to improve cutting performance and tool life. WC-Co tools containing 6% Co and 94% WC substrate with an average grain size 1-3 μm were used in this study. In order to improve the adhesion between diamond and WC substrates, it is necessary to etch away the surface Co and prepare the surface for subsequent diamond growth. Hot filament chemical vapour deposition with a modified vertical filament arrangement has been employed for the deposition of diamond films. Diamond film quality and purity have been characterised using scanning electron microscopy and micro-Raman spectroscopy. The performance of diamond coated WC-Co bur, uncoated WC-Co bur, and diamond embedded (sintered) bur have been compared by drilling a series of holes into various materials such as human teeth, borosilicate glass and porcelain teeth. Flank wear has been used to assess the wear rates of the tools. The materials subjected to cutting processes have been examined to assess the quality of the finish. Diamond coated WC-Co microdrills and uncoated microdrills were also tested on aluminium alloys. Results show that there was a 300% improvement when the drills were coated with diamond compared to the uncoated tools

  14. Performance and characterisation of CVD diamond coated, sintered diamond and WC-Co cutting tools for dental and micromachining applications

    Energy Technology Data Exchange (ETDEWEB)

    Sein, Htet; Ahmed, Waqar; Jackson, Mark; Woodwards, Robert; Polini, Riccardo

    2004-01-30

    Diamond coatings are attractive for cutting processes due to their high hardness, low friction coefficient, excellent wear resistance and chemical inertness. The application of diamond coatings on cemented tungsten carbide (WC-Co) tools was the subject of much attention in recent years in order to improve cutting performance and tool life. WC-Co tools containing 6% Co and 94% WC substrate with an average grain size 1-3 {mu}m were used in this study. In order to improve the adhesion between diamond and WC substrates, it is necessary to etch away the surface Co and prepare the surface for subsequent diamond growth. Hot filament chemical vapour deposition with a modified vertical filament arrangement has been employed for the deposition of diamond films. Diamond film quality and purity have been characterised using scanning electron microscopy and micro-Raman spectroscopy. The performance of diamond coated WC-Co bur, uncoated WC-Co bur, and diamond embedded (sintered) bur have been compared by drilling a series of holes into various materials such as human teeth, borosilicate glass and porcelain teeth. Flank wear has been used to assess the wear rates of the tools. The materials subjected to cutting processes have been examined to assess the quality of the finish. Diamond coated WC-Co microdrills and uncoated microdrills were also tested on aluminium alloys. Results show that there was a 300% improvement when the drills were coated with diamond compared to the uncoated tools.

  15. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  16. AdS/Ricci-flat correspondence

    International Nuclear Information System (INIS)

    We present a comprehensive analysis of the AdS/Ricci-flat correspondence, a map between a class of asymptotically locally AdS spacetimes and a class of Ricci-flat spacetimes. We provide a detailed derivation of the map, discuss a number of extensions and apply it to a number of important examples, such as AdS on a torus, AdS black branes and fluids/gravity metrics. In particular, the correspondence links the hydrodynamic regime of asymptotically flat black p-branes or the Rindler fluid with that of AdS. It implies that this class of Ricci-flat spacetimes inherits from AdS a generalized conformal symmetry and has a holographic structure. We initiate the discussion of holography by analyzing how the map acts on boundary conditions and holographic 2-point functions

  17. Flat-package DIP handling tool

    Science.gov (United States)

    Angelou, E.; Fraser, R.

    1977-01-01

    Device, using magnetic attraction, can facilitate handling of integrated-circuit flat packages and prevent contamination and bent leads. Tool lifts packages by their cases and releases them by operation of manual plunger.

  18. Fuzzy Neural Model for Flatness Pattern Recognition

    Institute of Scientific and Technical Information of China (English)

    JIA Chun-yu; SHAN Xiu-ying; LIU Hong-min; NIU Zhao-ping

    2008-01-01

    For the problems occurring in a least square method model,a fuzzy model,and a neural network model for flatness pattern recognition,a fuzzy neural network model for flatness pattern recognition with only three-input and three-output signals was proposed with Legendre orthodoxy polynomial as basic pattern,based on fuzzy logic expert experiential knowledge and genetic-BP hybrid optimization algorithm.The model not only had definite physical meanings in its inner nodes,but also had strong self-adaptability,anti-interference ability,high recognition precision,and high velocity,thereby meeting the demand of high-precision flatness control for cold strip mill and providing a convenient,practical,and novel method for flatness pattern recognition.

  19. Workshop on diamond and diamond-like-carbon films for the transportation industry

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, F.A.; Moores, D.K. [eds.

    1993-01-01

    Applications exist in advanced transportation systems as well as in manufacturing processes that would benefit from superior tribological properties of diamond, diamond-like-carbon and cubic boron nitride coatings. Their superior hardness make them ideal candidates as protective coatings to reduce adhesive, abrasive and erosive wear in advanced diesel engines, gas turbines and spark-ignited engines and in machining and manufacturing tools as well. The high thermal conductivity of diamond also makes it desirable for thermal management not only in tribological applications but also in high-power electronic devices and possibly large braking systems. A workshop has been recently held at Argonne National Laboratory entitled ``Diamond and Diamond-Like-Carbon Films for Transportation Applications`` which was attended by 85 scientists and engineers including top people involved in the basic technology of these films and also representatives from many US industrial companies. A working group on applications endorsed 18 different applications for these films in the transportation area alone. Separate abstracts have been prepared.

  20. 电镀铬-金刚石复合过渡层提高金刚石膜/基结合力%Improvement of Adhesive Strength of Diamond Films by Plating Cr-diamond Composite Interlayer

    Institute of Scientific and Technical Information of China (English)

    邱万奇; 潘建伟; 刘仲武; 余红雅; 钟喜春; 曾德长

    2012-01-01

    The diamond films were fabricated by using a two-step process on copper substrates. Firstly, chromium (Cr)-diamond composite interlayer was electroplated on copper substrates, then continuous diamond films were deposited by using hot-filament chemical vapor deposition (HFCVD) method. The interfacial characteristics were investigated by indentation test. The film surface morphology, phase structure and inner stress were analyzed by scanning electron microscope (SEM), X-ray diffraction (XRD) and Raman spectrum. The results show that the diamond particles are deeply imbedded in chromium layer and the amorphous Cr in the composite interlayer is car-borized to Cr3C2 in the CVD process. Low inner stress is detected in the diamond films and good adhesive strength between film and substrate is obtained due to the deep anchoring of the diamond particles in the Cr3C2 matrix. Concentric cracks but no delaminate area and radial cracks are observed on the periphery of the indentation in 294 N load indentation test.%在铜基体上沉积铬-金刚石复合过渡层,用热丝CVD系统在复合过渡层上沉积连续的金刚石涂层.用扫描电镜(SEM)、X射线(XRD)、拉曼光谱及压痕试验对所沉积的镶嵌结构界面金刚石膜的相结构及膜/基结合性能进行了研究.结果表明,非晶态的电镀Cr在CVD过程中转变成Cr3C2,由于金刚石颗粒与Cr3C2的相互咬合作用,金刚石膜/基结合力高;在294 N载荷压痕试验时,压痕外围不产生大块涂层崩落和径向裂纹,只形成环状裂纹.